Science.gov

Sample records for expression reveals oncogenic

  1. Expression Profiling of Circulating Microvesicles Reveals Intercellular Transmission of Oncogenic Pathways.

    PubMed

    Milani, Gloria; Lana, Tobia; Bresolin, Silvia; Aveic, Sanja; Pastò, Anna; Frasson, Chiara; Te Kronnie, Geertruy

    2017-06-01

    Circulating microvesicles have been described as important players in cell-to-cell communication carrying biological information under normal or pathologic condition. Microvesicles released by cancer cells may incorporate diverse biomolecules (e.g., active lipids, proteins, and RNA), which can be delivered and internalized by recipient cells, potentially altering the gene expression of recipient cells and eventually impacting disease progression. Leukemia in vitro model systems were used to investigate microvesicles as vehicles of protein-coding messages. Several leukemic cells (K562, LAMA-87, TOM-1, REH, and SHI-1), each carrying a specific chromosomal translocation, were analyzed. In the leukemic cells, these chromosomal translocations are transcribed into oncogenic fusion transcripts and the transfer of these transcripts was monitored from leukemic cells to microvesicles for each of the cell lines. Microarray gene expression profiling was performed to compare transcriptomes of K562-derived microvesicles and parental K562 cells. The data show that oncogenic BCR-ABL1 transcripts and mRNAs related to basic functions of leukemic cells were included in microvesicles. Further analysis of microvesicles cargo revealed a remarkable enrichment of transcripts related to cell membrane activity, cell surface receptors, and extracellular communication when compared with parental K562 cells. Finally, coculturing of healthy mesenchymal stem cells (MSC) with K562-derived microvesicles displayed the transfer of the oncogenic message, and confirmed the increase of target cell proliferation as a function of microvesicle dosage.Implications: This study provides novel insight into tumor-derived microvesicles as carriers of oncogenic protein-coding messages that can potentially jeopardize cell-directed therapy, and spread to other compartments of the body. Mol Cancer Res; 15(6); 683-95. ©2017 AACR. ©2017 American Association for Cancer Research.

  2. Integrated genome-wide genotyping and gene expression profiling reveals BCL11B as a putative oncogene in acute myeloid leukemia with 14q32 aberrations.

    PubMed

    Abbas, Saman; Sanders, Mathijs A; Zeilemaker, Annelieke; Geertsma-Kleinekoort, Wendy M C; Koenders, Jasper E; Kavelaars, Francois G; Abbas, Zabiollah G; Mahamoud, Souad; Chu, Isabel W T; Hoogenboezem, Remco; Peeters, Justine K; van Drunen, Ellen; van Galen, Janneke; Beverloo, H Berna; Löwenberg, Bob; Valk, Peter J M

    2014-05-01

    Acute myeloid leukemia is a neoplasm characterized by recurrent molecular aberrations traditionally demonstrated by cytogenetic analyses. We used high density genome-wide genotyping and gene expression profiling to reveal acquired cryptic abnormalities in acute myeloid leukemia. By genome-wide genotyping of 137 cases of primary acute myeloid leukemia, we disclosed a recurrent focal amplification on chromosome 14q32, which included the genes BCL11B, CCNK, C14orf177 and SETD3, in two cases. In the affected cases, the BCL11B gene showed consistently high mRNA expression, whereas the expression of the other genes was unperturbed. Fluorescence in situ hybridization on 40 cases of acute myeloid leukemia with high BCL11B mRNA expression [2.5-fold above median; 40 out of 530 cases (7.5%)] revealed 14q32 abnormalities in two additional cases. In the four BCL11B-rearranged cases the 14q32 locus was fused to different partner chromosomes. In fact, in two cases, we demonstrated that the focal 14q32 amplifications were integrated into transcriptionally active loci. The translocations involving BCL11B result in increased expression of full-length BCL11B protein. The BCL11B-rearranged acute myeloid leukemias expressed both myeloid and T-cell markers. These biphenotypic acute leukemias all carried FLT3 internal tandem duplications, a characteristic marker of acute myeloid leukemia. BCL11B mRNA expression in acute myeloid leukemia appeared to be strongly associated with expression of other T-cell-specific genes. Myeloid 32D(GCSF-R) cells ectopically expressing Bcl11b showed decreased proliferation rate and less maturation. In conclusion, by an integrated approach involving high-throughput genome-wide genotyping and gene expression profiling we identified BCL11B as a candidate oncogene in acute myeloid leukemia.

  3. Integrated genome-wide genotyping and gene expression profiling reveals BCL11B as a putative oncogene in acute myeloid leukemia with 14q32 aberrations

    PubMed Central

    Abbas, Saman; Sanders, Mathijs A.; Zeilemaker, Annelieke; Geertsma-Kleinekoort, Wendy M.C.; Koenders, Jasper E.; Kavelaars, Francois G.; Abbas, Zabiollah G.; Mahamoud, Souad; Chu, Isabel W.T.; Hoogenboezem, Remco; Peeters, Justine K.; van Drunen, Ellen; van Galen, Janneke; Beverloo, H. Berna; Löwenberg, Bob; Valk, Peter J.M.

    2014-01-01

    Acute myeloid leukemia is a neoplasm characterized by recurrent molecular aberrations traditionally demonstrated by cytogenetic analyses. We used high density genome-wide genotyping and gene expression profiling to reveal acquired cryptic abnormalities in acute myeloid leukemia. By genome-wide genotyping of 137 cases of primary acute myeloid leukemia, we disclosed a recurrent focal amplification on chromosome 14q32, which included the genes BCL11B, CCNK, C14orf177 and SETD3, in two cases. In the affected cases, the BCL11B gene showed consistently high mRNA expression, whereas the expression of the other genes was unperturbed. Fluorescence in situ hybridization on 40 cases of acute myeloid leukemia with high BCL11B mRNA expression [2.5-fold above median; 40 out of 530 cases (7.5%)] revealed 14q32 abnormalities in two additional cases. In the four BCL11B-rearranged cases the 14q32 locus was fused to different partner chromosomes. In fact, in two cases, we demonstrated that the focal 14q32 amplifications were integrated into transcriptionally active loci. The translocations involving BCL11B result in increased expression of full-length BCL11B protein. The BCL11B-rearranged acute myeloid leukemias expressed both myeloid and T-cell markers. These biphenotypic acute leukemias all carried FLT3 internal tandem duplications, a characteristic marker of acute myeloid leukemia. BCL11B mRNA expression in acute myeloid leukemia appeared to be strongly associated with expression of other T-cell-specific genes. Myeloid 32D(GCSF-R) cells ectopically expressing Bcl11b showed decreased proliferation rate and less maturation. In conclusion, by an integrated approach involving high-throughput genome-wide genotyping and gene expression profiling we identified BCL11B as a candidate oncogene in acute myeloid leukemia. PMID:24441149

  4. Expression of Cellular Oncogenes in Human Malignancies

    NASA Astrophysics Data System (ADS)

    Slamon, Dennis J.; Dekernion, Jean B.; Verma, Inder M.; Cline, Martin J.

    1984-04-01

    Cellular oncogenes have been implicated in the induction of malignant transformation in some model systems in vitro and may be related to malignancies in vivo in some vertebrate species. This article describes a study of the expression of 15 cellular oncogenes in fresh human tumors from 54 patients, representing 20 different tumor types. More than one cellular oncogene was transcriptionally active in all of the tumors examined. In 14 patients it was possible to study normal and malignant tissue from the same organ. In many of these patients, the transcriptional activity of certain oncogenes was greater in the malignant than the normal tissue. The cellular fes (feline sarcoma) oncogene, not previously known to be transcribed in mammalian tissue, was found to be active in lung and hematopoietic malignancies.

  5. Global expression profiling reveals gain-of-function onco-genic activity of a mutated thyroid hormone receptor in thyroid carcinogenesis

    PubMed Central

    Lu, Changxue; Mishra, Alok; Zhu, Yuelin J; Meltzer, Paul; Cheng, Sheue-yann

    2011-01-01

    Thyroid hormone receptors (TRs) are critical in regulating gene expression in normal physiological processes. Decreased expression and/or somatic mutations of TRs have been shown to be associated several types of human cancers including liver, breast, lung, and thyroid. To understand the molecular mechanisms by which mutated TRs promote carcinogenesis, an animal model of follicular thyroid carcinoma (FTC) (Thrbpv/pv mice) was used in the present study. The Thrbpv/pv mouse harbors a knockin dominant negative PV mutation, identified in a patient with resistance to thyroid hormone. To understand whether oncogenic actions of PV involve not only the loss of normal TR functions but also gain-of-function activities, we compared the gene expression profiles of thyroid lesions in Thrbpv/pv mice and Thra1-/- Thrb-/- mice that also spontaneously develop FTC, but with less severe malignancy. Analysis of the cDNA microarray data derived from microdissected thyroid tumor cells of these two mice showed contrasting global gene expression profiles. With stringent selection using 2.5-fold change (p<0.01) in cDNA microarray analysis, 241 genes with altered gene expression were identified. Nearly half of the genes (n=103: 42.7% of total) with altered gene expression in thyroid tumor cells of Thrbpv/pv mice were associated with tumorigenesis and metastasis; some of these genes function as oncogenes in human thyroid cancers. The remaining genes were found to function in transcriptional regulation, RNA processing, cell proliferation, apoptosis, angiogenesis, and cytoskeleton modification. These results indicate that the more aggressive thyroid tumor progression in Thrbpv/pv mice was not due simply to the loss of tumor suppressor functions of TR via mutation but also, importantly, to gain-of-function in the oncogenic activities of PV to drive thyroid carcinogenesis. Thus, the present study identifies a novel mechanism by which a mutated TRβ evolves with an oncogenic advantage to promote

  6. Comprehensive gene and microRNA expression profiling reveals a role for miRNAs in the oncogenic roles of SphK1 in papillary thyroid cancer.

    PubMed

    Liang, Weiwei; Xie, Zhiwei; Cui, Weiling; Guo, Yan; Xu, Lijuan; Wu, Jueheng; Guan, Hongyu

    2017-04-01

    The oncogenic roles of sphingosine kinase 1 (SphK1) in various cancers, including thyroid cancer, have been well demonstrated. However, the microRNAs (miRNAs) associated with the oncogenic roles of SphK1 remain largely unknown. Global gene and miRNA expression in TPC1-Vector and TPC1-SphK1 cells was analyzed using digital gene expression (DGE) analysis and small RNA-seq, respectively. miRNA-mRNA interactions were explored by microT-CDS, and the predicted networks were visualized using CytoScape(®). Cell invasion and migration were assessed by performing Transwell invasion and wound-healing assays. Luciferase reporter and immunoblot assays were used to evaluate the targeting of fibronectin 1 (FN1) by miR-144-3p. In this study, we found that overexpression of SphK1 differentially regulates the expression of 46 miRNAs and 506 mRNAs in papillary thyroid cancer (PTC) TPC1 cells. Combining bioinformatics predictions of mRNA targets with DGE data on mRNA expression allowed us to identify the mRNA targets of deregulated miRNAs. The direct interaction between miR-144-3p and FN1, which mediates the pro-invasive role of SphK1 in PTC cells, was experimentally validated. Our results demonstrated that SphK1 overexpression drives a regulatory network governing miRNA and mRNA expression in PTC cells. We also demonstrated the roles played by miR-144-3p and FN1 in mediating the oncogenic function of SphK1, which enhanced the understanding of the etiology of PTC.

  7. Genome-wide analysis of the rat colon reveals proximal-distal differences in histone modifications and proto-oncogene expression

    PubMed Central

    Triff, Karen; Konganti, Kranti; Gaddis, Sally; Zhou, Beiyan; Ivanov, Ivan

    2013-01-01

    Since disease susceptibility of the intestine exhibits an anatomical bias, we propose that the chromatin landscape, especially the site-specific epigenetic differences in histone modification patterns throughout the colonic longitudinal axis, contributes to the differential incidence of site-specific pathology. To test this hypothesis, we assessed the chromatin structure associated with gene expression profiles in the rat proximal and distal colon by globally correlating chromatin immunoprecipitation next-generation sequencing analysis (ChIP-Seq) with mRNA transcription (RNA-Seq) data. Crypts were isolated from the proximal and distal colonic regions from rats maintained on a semipurified diet, and mRNA gene expression profiles were generated by RNA-Seq. The remaining isolated crypts were formaldehyde-cross-linked and chromatin immunoprecipitated with antibodies against H3K4me3, H3K9me3, and RNA polymerase II. Globally, RNA-Seq results indicate that 9,866 genes were actively expressed, of which 540 genes were differentially expressed between the proximal and distal colon. Gene ontology analysis indicates that crypt location significantly affected both chromatin and transcriptional regulation of genes involved in enterocyte movement, lipid metabolism, lymphatic development, and immune cell trafficking. Gene function analysis indicates that the PI3-kinase signaling pathway was regulated in a site-specific manner, e.g., proto-oncogenes, JUN, FOS, and ATF, were upregulated in the distal colon. Middle and long noncoding RNAs (lncRNAs) were also detected in the colon, including select lncRNAs formerly only detected in the rat nervous system. In summary, distinct combinatorial patterns of histone modifications exist in the proximal versus distal colon. These site-specific differences may explain the differential effects of chemoprotective agents on cell transformation in the ascending (proximal) and descending (distal) colon. PMID:24151245

  8. Oncogenes

    SciTech Connect

    Compans, R.W.; Cooper, M.; Koprowski, H.; McConell, I.; Melchers, F.; Nussenzweig, V.; Oldstone, M.; Olsnes, S.; Saedler, H.; Vogt, P.K.

    1989-01-01

    This book covers the following topics: Roles of drosophila proto-oncogenes and growth factor homologs during development of the fly; Interaction of oncogenes with differentiation programs; Genetics of src: structure and functional organization of a protein tyrosine kinase; Structures and activities of activated abl oncogenes; Eukaryotic RAS proteins and yeast proteins with which they interact. This book presents up-to-data review articles on oncogenes. The editor includes five contributions which critically evaluate recent research in the field.

  9. Dynamic regulation of c-Myc proto-oncogene expression during lymphocyte development revealed by a GFP-c-Myc knock-in mouse.

    PubMed

    Huang, Ching-Yu; Bredemeyer, Andrea L; Walker, Laura M; Bassing, Craig H; Sleckman, Barry P

    2008-02-01

    c-Myc induces widely varying cellular effects, including cell proliferation and cell death. These different cellular effects are determined, in part, by c-Myc protein expression levels, which are regulated through several transcriptional and post-transcriptional pathways. c-Myc transcripts can be detected in cells at all stages of B and T lymphocyte development. However, little is known about c-Myc protein expression, and how it varies, in developing lymphocytes. Here mice have been generated in which the endogenous c-Myc locus has been modified (c-Myc(G)) so that it encodes a GFP-c-Myc fusion protein. c-Myc(G/G) mice are viable, appear normal and exhibit grossly normal lymphocyte development. Flow cytometric analyses revealed significant heterogeneity in c-Myc protein expression levels in developing c-Myc(G/G) B and T lymphocytes. GFP-c-Myc expression levels were highest in proliferating lymphocytes, suggesting that c-Myc up-regulation is important for promoting lymphocyte cell division, and demonstrating that GFP-c-Myc expression is a marker of proliferating lymphocytes in vivo.

  10. Expression of hpttg proto-oncogene in lymphoid neoplasias.

    PubMed

    Sáez, Carmen; Pereda, Teresa; Borrero, Juan J; Espina, Agueda; Romero, Francisco; Tortolero, María; Pintor-Toro, José A; Segura, Dolores I; Japón, Miguel A

    2002-11-21

    Pituitary tumor-transforming gene (pttg) is a distinct proto-oncogene which is expressed in certain normal tissues with high proliferation rate and in a variety of tumors. PTTG is the vertebrate analog of yeast securins Pds1 and Cut2 with a key role in the regulation of sister chromatid separation during mitosis. Impairment of PTTG regulated functions is expected to lead to chromosomal instability and aneuploidy. Human pttg (hpttg) is abundantly expressed in Jurkat T lymphoblastic lymphoma cells but not in normal peripheral blood leukocytes. To obtain additional data on the potential role of hpttg in lymphomagenesis we selected 150 cases of lymphoid tumors for the assessment of hpttg expression in tumor tissues. Immunohistochemical studies on formalin-fixed, paraffin-embedded tissues revealed hPTTG in 38.8% of B-cell lymphomas, 70.2% of T-cell lymphomas, and 73.1% of Hodgkin's lymphomas. Among B-cell lymphomas, the most frequently immunostained tumors were plasma cell tumors, diffuse large cell lymphomas, and follicle center cell lymphomas. In Hodgkin's disease, immunoreactivity was mainly noted in Reed-Sternberg cells. In conclusion, the frequent overexpression of hpttg in many histological subtypes of lymphoma suggests the involvement of this proto-oncogene in lymphomagenesis.

  11. ENL links histone acetylation to oncogenic gene expression in AML

    PubMed Central

    Wan, Liling; Wen, Hong; Li, Yuanyuan; Lyu, Jie; Xi, Yuanxin; Hoshii, Takayuki; Joseph, Julia; Wang, Xiaolu; Loh, Yong-Hwee E.; Erb, Michael A.; Souza, Amanda L.; Bradner, James E.; Shen, Li; Li, Wei; Li, Haitao; Allis, C. David; Armstrong, Scott A.; Shi, Xiaobing

    2017-01-01

    Cancer cells are characterized by aberrant epigenetic landscapes and often exploit chromatin machinery to activate oncogenic gene expression programs1. Recognition of modified histones by “reader” proteins constitutes a key mechanism underlying these processes; therefore, targeting such pathways holds clinical promise, as exemplified by the development of BET bromodomain inhibitors2, 3. We recently identified the YEATS domain as a novel acetyllysine-binding module4, yet its functional importance in human cancer remains unknown. Here we show that the YEATS domain-containing protein ENL, but not its paralog AF9, is required for disease maintenance in acute myeloid leukaemia (AML). CRISPR-Cas9 mediated depletion of ENL led to anti-leukemic effects, including increased terminal myeloid differentiation and suppression of leukaemia growth in vitro and in vivo. Biochemical and crystal structural studies and ChIP-seq analyses revealed that ENL binds to acetylated histone H3, and colocalizes with H3K27ac and H3K9ac on the promoters of actively transcribed genes that are essential for leukaemias. Disrupting the interaction between the YEATS domain and histone acetylation via structure-based mutagenesis reduced RNA polymerase II recruitment to ENL target genes, leading to suppression of oncogenic gene expression programs. Importantly, disruption of ENL’s functionality further sensitized leukaemia cells to BET inhibitors. Together, our study identifies ENL as a histone acetylation reader that regulates oncogenic transcriptional programs in AML and suggests that displacement of ENL from chromatin may be a promising epigenetic therapy alone or in combination with BET inhibitors for AML. PMID:28241141

  12. Developmental-stage-dependent transcriptional response to leukaemic oncogene expression

    PubMed Central

    Regha, Kakkad; Assi, Salam A.; Tsoulaki, Olga; Gilmour, Jane; Lacaud, Georges; Bonifer, Constanze

    2015-01-01

    Acute myeloid leukaemia (AML) is characterized by a block in myeloid differentiation the stage of which is dependent on the nature of the transforming oncogene and the developmental stage of the oncogenic hit. This is also true for the t(8;21) translocation that gives rise to the RUNX1-ETO fusion protein and initiates the most common form of human AML. Here we study the differentiation of mouse embryonic stem cells expressing an inducible RUNX1-ETO gene into blood cells as a model, combined with genome-wide analyses of transcription factor binding and gene expression. RUNX1-ETO interferes with both the activating and repressive function of its normal counterpart, RUNX1, at early and late stages of blood cell development. However, the response of the transcriptional network to RUNX1-ETO expression is developmental stage specific, highlighting the molecular mechanisms determining specific target cell expansion after an oncogenic hit. PMID:26018585

  13. Microarray-based gene expression profiling reveals genes and pathways involved in the oncogenic function of REG3A on pancreatic cancer cells.

    PubMed

    Xu, Qianqian; Fu, Rong; Yin, Guoxiao; Liu, Xiulan; Liu, Yang; Xiang, Ming

    2016-03-10

    We previously reported that regenerating islet-derived protein 3 alpha (REG3A) exacerbates pancreatic malignancies. The mechanism of this effect has not been clearly elucidated. Here we first identified key differentially expressed genes (DEGs) and signal pathways in the pancreatic cancer cell line SW1990, compared to two control cell lines, by microarray analysis. We then identified key genes and pathways regulated by REG3A or the cytokine IL6 in SW1990 cells. Afterwards, these DEGs induced by REG3A or IL6 were subjected to KEGG pathway enrichment analysis and GO function analysis by the DAVID online tool. Ultimately, we constructed protein-protein interaction networks among the DEGs by Cytoscape. Among the three pancreatic cell lines, SW1990 exhibited highly deterioration with the activation of genes and pathways related to proliferation, survival, angiogenesis, and invasion. As a result, 50 DEGs enriched in 11 pathways were identified in REG3A-treated SW1990 cells, and 28 DEGs enriched in 9 pathways were detected in IL6-treated cells. Overall, results of microarray analysis followed by qRT-PCR and Western blotting suggest that REG3A regulates pancreatic cell growth by increasing the expression of at least 8 genes: JAK1, STAT3, IL10, FOXM1, KRAS, MYC, CyclinD1, and c-fos; and activation of at least 4 signal pathways: TGFβ, PDGF, angiogenesis and RAS. Similar results were obtained with IL6 treatment. Regulation network analysis confirmed the cell growth related DEGs, and further uncovered three transcription factor families with immune functions regulated by REG3A.

  14. Protein Kinase Cι Expression and Oncogenic Signaling Mechanisms in Cancer

    PubMed Central

    Murray, Nicole R.; Kalari, Krishna R.; Fields, Alan P.

    2010-01-01

    Accumulating evidence demonstrates that PKCι is an oncogene and prognostic marker that is frequently targeted for genetic alteration in many major forms of human cancer. Functional data demonstrate that PKCι is required for the transformed phenotype of NSCLC, pancreatic, ovarian, prostate, colon and brain cancer cells. Future studies will be required to determine whether PKCι is also an oncogene in the many other cancer types that also overexpress PKCι. Studies of PKCι using genetically defined models of tumorigenesis have revealed a critical role for PKCι in multiple stages of tumorigenesis, including tumor initiation, progression and metastasis. Recent studies in a genetic model of lung adenocarcinoma suggest a role for PKCι in transformation of lung cancer stem cells. These studies have important implications for the therapeutic use of aurothiomalate (ATM), a highly selective PKCι signaling inhibitor currently undergoing clinical evaluation. Significant progress has been made in determining the molecular mechanisms by which PKCι drives the transformed phenotype, particularly the central role played by the oncogenic PKCι-Par6 complex in transformed growth and invasion, and of several PKCι-dependent survival pathways in chemo-resistance. Future studies will be required to determine the composition and dynamics of the PKCι-Par6 complex, and the mechanisms by which oncogenic signaling through this complex is regulated. Likewise, a better understanding of the critical downstream effectors of PKCι in various human tumor types holds promise for identifying novel prognostic and surrogate markers of oncogenic PKCι activity that may be clinically useful in ongoing clinical trials of ATM. PMID:20945390

  15. Microarray analysis of colorectal cancer stromal tissue reveals upregulation of two oncogenic miRNA clusters.

    PubMed

    Nishida, Naohiro; Nagahara, Makoto; Sato, Tetsuya; Mimori, Koshi; Sudo, Tomoya; Tanaka, Fumiaki; Shibata, Kohei; Ishii, Hideshi; Sugihara, Kenichi; Doki, Yuichiro; Mori, Masaki

    2012-06-01

    Cancer stroma plays an important role in the progression of cancer. Although alterations in miRNA expression have been explored in various kinds of cancers, the expression of miRNAs in cancer stroma has not been explored in detail. Using a laser microdissection technique, we collected RNA samples specific for epithelium or stroma from 13 colorectal cancer tissues and four normal tissues, and miRNA microarray and gene expression microarray were carried out. The expression status of miRNAs was confirmed by reverse transcriptase PCR. Furthermore, we investigated whether miRNA expression status in stromal tissue could influence the clinicopathologic factors. Oncogenic miRNAs, including two miRNA clusters, miR-17-92a and miR-106b-25 cluster, were upregulated in cancer stromal tissues compared with normal stroma. Gene expression profiles from cDNA microarray analyses of the same stromal tissue samples revealed that putative targets of these miRNA clusters, predicted by Target Scan, such as TGFBR2, SMAD2, and BMP family genes, were significantly downregulated in cancer stromal tissue. Downregulated putative targets were also found to be involved in cytokine interaction and cellular adhesion. Importantly, expression of miR-25 and miR-92a in stromal tissues was associated with a variety of clinicopathologic factors. Oncogenic miRNAs were highly expressed in cancer stroma. Although further validation is required, the finding that stromal miRNA expression levels were associated with clinicopathologic factors suggests the possibility that miRNAs in cancer stroma are crucially involved in cancer progression.

  16. Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes

    PubMed Central

    Liem, Michael; Fonseka, Pamali; Atukorala, Ishara; Ozcitti, Cemil; Mechler, Adam; Adda, Christopher G.; Ang, Ching-Seng; Mathivanan, Suresh

    2015-01-01

    Extracellular vesicles (EVs) include the exosomes (30-100 nm) that are produced through the endocytic pathway via the multivesicular bodies and the ectosomes (100-1000 nm) that are released through the budding of the plasma membrane. Despite the differences in the mode of biogenesis and size, reliable markers that can distinguish between exosomes and ectosomes are non-existent. Moreover, the precise functional differences between exosomes and ectosomes remains poorly characterised. Here, using label-free quantitative proteomics, we highlight proteins that could be exploited as markers to discriminate between exosomes and ectosomes. For the first time, a global proteogenomics analysis unveiled the secretion of mutant proteins that are implicated in cancer progression through tumor-derived EVs. Follow up integrated bioinformatics analysis highlighted the enrichment of oncogenic cargo in exosomes and ectosomes. Interestingly, exosomes induced significant cell proliferation and migration in recipient cells compared to ectosomes confirming the oncogenic nature of exosomes. These findings ascertain that cancer cells facilitate oncogenesis by the secretion of mutant and oncoproteins into the tumor microenvironment via exosomes and ectosomes. The integrative proteogenomics approach utilized in this study has the potential to identify disease biomarker candidates which can be later assayed in liquid biopsies obtained from cancer patients. PMID:25944692

  17. Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes.

    PubMed

    Keerthikumar, Shivakumar; Gangoda, Lahiru; Liem, Michael; Fonseka, Pamali; Atukorala, Ishara; Ozcitti, Cemil; Mechler, Adam; Adda, Christopher G; Ang, Ching-Seng; Mathivanan, Suresh

    2015-06-20

    Extracellular vesicles (EVs) include the exosomes (30-100 nm) that are produced through the endocytic pathway via the multivesicular bodies and the ectosomes (100-1000 nm) that are released through the budding of the plasma membrane. Despite the differences in the mode of biogenesis and size, reliable markers that can distinguish between exosomes and ectosomes are non-existent. Moreover, the precise functional differences between exosomes and ectosomes remains poorly characterised. Here, using label-free quantitative proteomics, we highlight proteins that could be exploited as markers to discriminate between exosomes and ectosomes. For the first time, a global proteogenomics analysis unveiled the secretion of mutant proteins that are implicated in cancer progression through tumor-derived EVs. Follow up integrated bioinformatics analysis highlighted the enrichment of oncogenic cargo in exosomes and ectosomes. Interestingly, exosomes induced significant cell proliferation and migration in recipient cells compared to ectosomes confirming the oncogenic nature of exosomes. These findings ascertain that cancer cells facilitate oncogenesis by the secretion of mutant and oncoproteins into the tumor microenvironment via exosomes and ectosomes. The integrative proteogenomics approach utilized in this study has the potential to identify disease biomarker candidates which can be later assayed in liquid biopsies obtained from cancer patients.

  18. Expression of the PTTG1 oncogene is associated with aggressive clear cell renal cell carcinoma.

    PubMed

    Wondergem, Bill; Zhang, Zhongfa; Huang, Dachuan; Ong, Choon Kiat; Koeman, Julie; Hof, David Van't; Petillo, David; Ooi, Aikseng; Anema, John; Lane, Brian; Kahnoski, Richard J; Furge, Kyle A; Teh, Bin Tean

    2012-09-01

    The pituitary tumor transforming gene (PTTG1) is a recently discovered oncogene implicated in malignant progression of both endocrine and nonendocrine malignancies. Clear cell renal cell carcinoma (ccRCC) is cytogenetically characterized by chromosome 3p deletions that harbor the ccRCC-related von Hippel-Lindau, PBRM1, BAP1, and SETD2 tumor suppressor genes, along with chromosome 5q amplifications where the significance has been unclear. PTTG1 localizes to the chromosome 5q region where amplifications occur in ccRCC. In this study, we report a functional role for PTTG1 in ccRCC tumorigenesis. PTTG1 was amplified in ccRCC, overexpressed in tumor tissue, and associated with high-grade tumor cells and poor patient prognosis. In preclinical models, PTTG1 ablation reduced tumorigenesis and invasion. An analysis of gene expression affected by PTTG1 indicated an association with invasive and metastatic disease. PTTG1-dependent expression of the RhoGEF proto-oncogene ECT2 was observed in a number of ccRCC cell lines. Moreover, ECT2 expression correlated with PTTG1 expression and poor clinical features. Together, our findings reveal features of PTTG1 that are consistent with its identification of an oncogene amplified on chromsome 5q in ccRCC, where it may offer a novel therapeutic target of pathologic significance in this disease. ©2012 AACR.

  19. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma

    PubMed Central

    Grosso, Ana R; Leite, Ana P; Carvalho, Sílvia; Matos, Mafalda R; Martins, Filipa B; Vítor, Alexandra C; Desterro, Joana MP; Carmo-Fonseca, Maria; de Almeida, Sérgio F

    2015-01-01

    Aberrant expression of cancer genes and non-canonical RNA species is a hallmark of cancer. However, the mechanisms driving such atypical gene expression programs are incompletely understood. Here, our transcriptional profiling of a cohort of 50 primary clear cell renal cell carcinoma (ccRCC) samples from The Cancer Genome Atlas (TCGA) reveals that transcription read-through beyond the termination site is a source of transcriptome diversity in cancer cells. Amongst the genes most frequently mutated in ccRCC, we identified SETD2 inactivation as a potent enhancer of transcription read-through. We further show that invasion of neighbouring genes and generation of RNA chimeras are functional outcomes of transcription read-through. We identified the BCL2 oncogene as one of such invaded genes and detected a novel chimera, the CTSC-RAB38, in 20% of ccRCC samples. Collectively, our data highlight a novel link between transcription read-through and aberrant expression of oncogenes and chimeric transcripts that is prevalent in cancer. DOI: http://dx.doi.org/10.7554/eLife.09214.001 PMID:26575290

  20. ENL links histone acetylation to oncogenic gene expression in acute myeloid leukaemia.

    PubMed

    Wan, Liling; Wen, Hong; Li, Yuanyuan; Lyu, Jie; Xi, Yuanxin; Hoshii, Takayuki; Joseph, Julia K; Wang, Xiaolu; Loh, Yong-Hwee E; Erb, Michael A; Souza, Amanda L; Bradner, James E; Shen, Li; Li, Wei; Li, Haitao; Allis, C David; Armstrong, Scott A; Shi, Xiaobing

    2017-03-09

    Cancer cells are characterized by aberrant epigenetic landscapes and often exploit chromatin machinery to activate oncogenic gene expression programs. Recognition of modified histones by 'reader' proteins constitutes a key mechanism underlying these processes; therefore, targeting such pathways holds clinical promise, as exemplified by the development of bromodomain and extra-terminal (BET) inhibitors. We recently identified the YEATS domain as an acetyl-lysine-binding module, but its functional importance in human cancer remains unknown. Here we show that the YEATS domain-containing protein ENL, but not its paralogue AF9, is required for disease maintenance in acute myeloid leukaemia. CRISPR-Cas9-mediated depletion of ENL led to anti-leukaemic effects, including increased terminal myeloid differentiation and suppression of leukaemia growth in vitro and in vivo. Biochemical and crystal structural studies and chromatin-immunoprecipitation followed by sequencing analyses revealed that ENL binds to acetylated histone H3, and co-localizes with H3K27ac and H3K9ac on the promoters of actively transcribed genes that are essential for leukaemia. Disrupting the interaction between the YEATS domain and histone acetylation via structure-based mutagenesis reduced the recruitment of RNA polymerase II to ENL-target genes, leading to the suppression of oncogenic gene expression programs. Notably, disrupting the functionality of ENL further sensitized leukaemia cells to BET inhibitors. Together, our data identify ENL as a histone acetylation reader that regulates oncogenic transcriptional programs in acute myeloid leukaemia, and suggest that displacement of ENL from chromatin may be a promising epigenetic therapy, alone or in combination with BET inhibitors, for aggressive leukaemia.

  1. Development of a highly efficient expression cDNA cloning system: application to oncogene isolation.

    PubMed Central

    Miki, T; Fleming, T P; Crescenzi, M; Molloy, C J; Blam, S B; Reynolds, S H; Aaronson, S A

    1991-01-01

    We developed an expression cDNA cloning system capable of generating high-complexity libraries with unidirectionally inserted cDNA fragments and allowing efficient plasmid rescue. As an application of this system, a cDNA library was constructed from an NIH 3T3 transformant induced by mouse hepatocellular carcinoma DNA. Transfection of NIH 3T3 cells by the library DNA led to the detection of several transformed foci from which identical plasmids with transforming ability could be rescued. Structure and sequence analysis of the cDNA clones revealed that the oncogene was created by recombinational events involving an unknown gene and the mouse homologue of the B-raf protooncogene. Detection of the same genetic rearrangement in independent primary transformants implied that generation of the oncogene occurred within the tumor rather than during DNA transfection or cDNA library construction. The high frequency at which clones were identified and the large sizes of some of the transforming cDNA inserts isolated suggest wide applicability of this mammalian expression cloning system for isolating cDNAs of biologic interest. Images PMID:2052597

  2. Clinical correlates in acromegalic patients with pituitary tumors expressing GSP oncogenes.

    PubMed

    Buchfelder, M; Fahlbusch, R; Merz, T; Symowski, H; Adams, E F

    1999-05-01

    We herein review published findings on the clinical characteristics of acromegalic patients harboring pituitary somatotrophinomas expressing adenylyl cyclase activating gsp mutations and present an update of our own data on a large series of 176 patients with and without these oncogenes. Gsp oncogenes are the result of point mutations in either codon 201 or 227 of the Gs-alpha subunit of the Gs-protein which controls adenylyl cyclase. They result ultimately in increased intracellular cAMP levels and thus in excessive growth hormone (GH) secretion. Our large series has allowed us to characterise patients with mutations in codon 201 and the far rarer group possessing codon 227 defects. Both groups were compared with patients without gsp oncogenes. In accordance with previous findings, there was no statistically significant difference in age of the patients belonging to each group, the overall average tumor diameter nor in pre-operative serum GH levels, although the latter showed a tendency to be lower in patients with gsp oncogenes. The distribution of different types of response during an oral glucose tolerance test (no change, paradoxical rise or greater than 50% decrease in serum GH levels) did not differ between the 3 groups. However, the incidence of microadenomas was higher in acromegalics expressing gsp oncogenes in patients possessing mutations in codon 227. Additionally, the incidence of invasiveness was much lower (10% v. 33%) in those tumors with mutations in codon 227. Finally, previous in-vitro data indicating that gsp oncogene-expressing tumors may respond more efficiently to the somatostatin analogue, octreotide, have been confirmed by subsequent in-vivo studies showing a better reduction in serum GH levels in patients with gsp oncogenes. These latter findings suggest that presence of gsp oncogenes may be a marker for good reponsiveness to octreotide. Assessment of gsp oncogene status of surgically removed pituitary somatotrophinomas may thus be

  3. Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence

    PubMed Central

    Patel, Priyanka L.; Suram, Anitha; Mirani, Neena; Bischof, Oliver; Herbig, Utz

    2016-01-01

    Oncogene-induced senescence (OIS) is a critical tumor-suppressing mechanism that restrains cancer progression at premalignant stages, in part by causing telomere dysfunction. Currently it is unknown whether this proliferative arrest presents a stable and therefore irreversible barrier to cancer progression. Here we demonstrate that cells frequently escape OIS induced by oncogenic H-Ras and B-Raf, after a prolonged period in the senescence arrested state. Cells that had escaped senescence displayed high oncogene expression levels, retained functional DNA damage responses, and acquired chromatin changes that promoted c-Myc–dependent expression of the human telomerase reverse transcriptase gene (hTERT). Telomerase was able to resolve existing telomeric DNA damage response foci and suppressed formation of new ones that were generated as a consequence of DNA replication stress and oncogenic signals. Inhibition of MAP kinase signaling, suppressing c-Myc expression, or inhibiting telomerase activity, caused telomere dysfunction and proliferative defects in cells that had escaped senescence, whereas ectopic expression of hTERT facilitated OIS escape. In human early neoplastic skin and breast tissue, hTERT expression was detected in cells that displayed features of senescence, suggesting that reactivation of telomerase expression in senescent cells is an early event during cancer progression in humans. Together, our data demonstrate that cells arrested in OIS retain the potential to escape senescence by mechanisms that involve derepression of hTERT expression. PMID:27503890

  4. Cancer induction by restriction of oncogene expression to the stem cell compartment

    PubMed Central

    Pérez-Caro, María; Cobaleda, César; González-Herrero, Inés; Vicente-Dueñas, Carolina; Bermejo-Rodríguez, Camino; Sánchez-Beato, Margarita; Orfao, Alberto; Pintado, Belén; Flores, Teresa; Sánchez-Martín, Manuel; Jiménez, Rafael; Piris, Miguel A; Sánchez-García, Isidro

    2009-01-01

    In human cancers, all cancerous cells carry the oncogenic genetic lesions. However, to elucidate whether cancer is a stem cell-driven tissue, we have developed a strategy to limit oncogene expression to the stem cell compartment in a transgenic mouse setting. Here, we focus on the effects of the BCR-ABLp210 oncogene, associated with chronic myeloid leukaemia (CML) in humans. We show that CML phenotype and biology can be established in mice by restricting BCR-ABLp210 expression to stem cell antigen 1 (Sca1)+ cells. The course of the disease in Sca1-BCR-ABLp210 mice was not modified on STI571 treatment. However, BCR-ABLp210-induced CML is reversible through the unique elimination of the cancer stem cells (CSCs). Overall, our data show that oncogene expression in Sca1+ cells is all that is required to fully reprogramme it, giving rise to a full-blown, oncogene-specified tumour with all its mature cellular diversity, and that elimination of the CSCs is enough to eradicate the whole tumour. PMID:19037256

  5. C-myc oncogene expression in human melanoma and its relationship with tumour antigenicity.

    PubMed

    Grover, R; Ross, D A; Richman, P I; Robinson, B; Wilson, G D

    1996-08-01

    Melanoma produces specific tumour antigens which are capable of eliciting an immune response. However, this tumour evades the immune system, in part, by downregulation of class I HLA antigens on the cell surface, which are required for T cell recognition. It has been suggested that the oncogene c-myc may have a role in effecting this change in vitro, however, the relationship between oncoprotein level and tumour antigenicity has not been established in human tumours. This study measured c-myc oncoprotein in 94 melanoma specimens (46 primary tumours and 48 regional metastases) using flow cytometry and evaluated class I HLA expression with immunohistochemistry. C-myc expression was found in 91 tumours (96%) with higher expression in metastases than primary melanomas (P<0.005). Class I HLA expression was found to show great variation although metastases showed less antigenicity than primary tumours (P<0.01). Analysis of the relationship between these two parameters revealed a highly significant correlation in both primary (P<0.01) and metastatic disease (P<0.01), with high oncoprotein being associated with down regulation of cell surface antigens. Knowledge of the control of tumour antigenicity is likely to provide an objective platform for the development of new strategies for immunotherapy.

  6. Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression

    NASA Astrophysics Data System (ADS)

    Roszik, Jason; Wu, Chang-Jiun; Siroy, Alan E.; Lazar, Alexander J.; Davies, Michael A.; Woodman, Scott E.; Kwong, Lawrence N.

    2016-01-01

    Somatic copy number alterations (SCNAs) affecting oncogenic drivers have a firmly established role in promoting cancer. However, no agreed-upon standard exists for calling locus-specific amplifications and deletions in each patient sample. Here, we report the correlative analysis of copy number amplitude and length with gene expression across 6,109 samples from The Cancer Genome Atlas (TCGA) dataset across 16 cancer types. Using specificity, sensitivity, and precision-based scores, we assigned optimized amplitude and length cutoffs for nine recurrent SCNAs affecting known oncogenic drivers, using mRNA expression as a functional readout. These cutoffs captured the majority of SCNA-driven, highly-expression-altered samples. The majority of oncogenes required only amplitude cutoffs, as high amplitude samples were almost invariably focal; however, CDKN2A and PTEN uniquely required both amplitude and length cutoffs as primary predictors. For PTEN, these extended to downstream AKT activation. In contrast, SCNA genes located peri-telomerically or in fragile sites showed poor expression-copy number correlations. Overall, our analyses identify optimized amplitude and length cutoffs as efficient predictors of gene expression changes for specific oncogenic SCNAs, yet warn against one-size-fits-all interpretations across all loci. Our results have implications for cancer data analyses and the clinic, where copy number and mutation data are increasingly used to personalize cancer therapy.

  7. Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression

    PubMed Central

    Roszik, Jason; Wu, Chang-Jiun; Siroy, Alan E.; Lazar, Alexander J.; Davies, Michael A; Woodman, Scott E; Kwong, Lawrence N

    2016-01-01

    Somatic copy number alterations (SCNAs) affecting oncogenic drivers have a firmly established role in promoting cancer. However, no agreed-upon standard exists for calling locus-specific amplifications and deletions in each patient sample. Here, we report the correlative analysis of copy number amplitude and length with gene expression across 6,109 samples from The Cancer Genome Atlas (TCGA) dataset across 16 cancer types. Using specificity, sensitivity, and precision-based scores, we assigned optimized amplitude and length cutoffs for nine recurrent SCNAs affecting known oncogenic drivers, using mRNA expression as a functional readout. These cutoffs captured the majority of SCNA-driven, highly-expression-altered samples. The majority of oncogenes required only amplitude cutoffs, as high amplitude samples were almost invariably focal; however, CDKN2A and PTEN uniquely required both amplitude and length cutoffs as primary predictors. For PTEN, these extended to downstream AKT activation. In contrast, SCNA genes located peri-telomerically or in fragile sites showed poor expression-copy number correlations. Overall, our analyses identify optimized amplitude and length cutoffs as efficient predictors of gene expression changes for specific oncogenic SCNAs, yet warn against one-size-fits-all interpretations across all loci. Our results have implications for cancer data analyses and the clinic, where copy number and mutation data are increasingly used to personalize cancer therapy. PMID:26787600

  8. Reduced expression of AMPK-β1 during tumor progression enhances the oncogenic capacity of advanced ovarian cancer

    PubMed Central

    2014-01-01

    AMP-activated protein kinase (AMPK) is a key energy sensor that is involved in regulating cell metabolism. Our previous study revealed that the subunits of the heterotimeric AMPK enzyme are diversely expressed during ovarian cancer progression. However, the impact of the variable expression of these AMPK subunits in ovarian cancer oncogenesis remains obscure. Here, we provide evidence to show that reduced expression of the AMPK-β1 subunit during tumor progression is associated with the increased oncogenic capacity of advanced ovarian cancer cells. Immunohistochemical analysis revealed that AMPK-β1 levels were reduced in advanced-stage (P = 0.008), high-grade (P = 0.013) and metastatic ovarian cancers (P = 0.008). Intriguingly, down-regulation of AMPK-β1 was progressively reduced from tumor stages 1 to 3 of ovarian cancer. Functionally, enforced expression of AMPK-β1 inhibited ovarian-cancer-cell proliferation, anchorage-independent cell growth, cell migration and invasion. Conversely, depletion of AMPK-β1 by siRNA enhanced the oncogenic capacities of ovarian cancer cells, suggesting that the loss of AMPK-β1 favors the aggressiveness of ovarian cancer. Mechanistically, enforced expression of AMPK-β1 increased AMPK activity, which, in turn, induced cell-cycle arrest via inhibition of AKT/ERK signaling activity as well as impaired cell migration/invasion through the suppression of JNK signaling in ovarian cancer cells. Taken together, these findings suggest that the reduced expression of AMPK-β1 confers lower AMPK activity, which enhances the oncogenic capacity of advanced-stage ovarian cancer. PMID:24602453

  9. The contribution of tumor and host tissue factor expression to oncogene-driven gliomagenesis.

    PubMed

    Magnus, Nathalie; Meehan, Brian; Garnier, Delphine; Hashemi, Maryam; Montermini, Laura; Lee, Tae Hoon; Milsom, Chloe; Pawlinski, Rafal; Ohlfest, John; Anderson, Mark; Mackman, Nigel; Rak, Janusz

    2014-11-14

    Glioblastoma multiforme (GBM) is an aggressive form of glial brain tumors, associated with angiogenesis, thrombosis, and upregulation of tissue factor (TF), the key cellular trigger of coagulation and signaling. Since TF is upregulated by oncogenic mutations occurring in different subsets of human brain tumors we investigated whether TF contributes to tumourigenesis driven by oncogenic activation of EGFR (EGFRvIII) and RAS pathways in the brain. Here we show that TF expression correlates with poor prognosis in glioma, but not in GBM. In situ, the TF protein expression is heterogeneously expressed in adult and pediatric gliomas. GBM cells harboring EGFRvIII (U373vIII) grow aggressively as xenografts in SCID mice and their progression is delayed by administration of monoclonal antibodies blocking coagulant (CNTO 859) and signaling (10H10) effects of TF in vivo. Mice in which TF gene is disrupted in the neuroectodermal lineage exhibit delayed progression of spontaneous brain tumors driven by oncogenic N-ras and SV40 large T antigen (SV40LT) expressed under the control of sleeping beauty transposase. Reduced host TF levels in low-TF/SCID hypomorphic mice mitigated growth of glioma subcutaneously but not in the brain. Thus, we suggest that tumor-associated TF may serve as therapeutic target in the context of oncogene-driven disease progression in a subset of glioma.

  10. Chrysotile effects on the expression of anti-oncogene P53 and P16 and oncogene C-jun and C-fos in Wistar rats' lung tissues.

    PubMed

    Cui, Yan; Wang, Yuchan; Deng, Jianjun; Hu, Gongli; Dong, Faqin; Zhang, Qingbi

    2017-09-13

    Chrysotile is the most widely used form of asbestos worldwide. China is the world's largest consumer and second largest producer of chrysotile. The carcinogenicity of chrysotile has been extensively documented, and accumulative evidence has shown that chrysotile is capable of causing lung cancer and other forms of cancer. However, molecular mechanisms underlying the tumorigenic effects of chrysotile remained poorly understood. To explore the carcinogenicity of chrysotile, Wistar rats were administered by intratracheal instillation (by an artificial route of administration) for 0, 0.5, 2, or 8 mg/ml of natural chrysotile (from Mangnai, Qinghai, China) dissolved in saline, repeated once a month for 6 months (a repeated high-dose exposure which may have little bearing on the effects following human exposure). The lung tissues were analyzed for viscera coefficients and histopathological alterations. Expression of P53, P16, C-JUN, and C-FOS was measured by western blotting and qRT-PCR. Our results found that chrysotile exposure leads the body weight to grow slowly and lung viscera coefficients to increase in a dose-dependent manner. General sample showed white nodules, punctiform asbestos spots, and irregular atrophy; moreover, HE staining revealed inflammatory infiltration, damage of alveolar structures, agglomerations, and pulmonary fibrosis. In addition, chrysotile can induce inactivation of the anti-oncogene P53 and P16 and activation of the proto-oncogenes C-JUN and C-FOS both in the messenger RNA and protein level. In conclusion, chrysotile induced an imbalanced expression of cancer-related genes in rats' lung tissue. These results contribute to our understanding of the carcinogenic mechanism of chrysotile.

  11. Cloning and characterization of the murine homolog of the sno proto-oncogene reveals a novel splice variant

    NASA Technical Reports Server (NTRS)

    Pelzer, T.; Lyons, G. E.; Kim, S.; Moreadith, R. W.; Blomqvist, C. G. (Principal Investigator)

    1996-01-01

    The cellular function(s) of the SNO protein remain undefined. To gain a better understanding of possible developmental roles of this cellular proto-oncogene, we have cloned two murine sno cDNAs and have investigated their expression patterns in embryonic and postnatal tissues. A single major transcript of 7.5 kb is detected in multiple tissues by Northern blot. However, reverse transcriptase polymerase chain reaction (RT-PCR) and RNAse protection assays revealed a novel splice variant in every tissue examined. Two isoforms, termed sno N and sno-dE3 (dE3, deletion within exon 3), were identified. The sno-dE3 isoform employs a novel 5' splice site located within the coding region of the third exon and deletes potential kinase recognition motifs. Transcripts of both sno isoforms accumulate ubiquitously but are most abundant in the developing central nervous system. The in situ hybridization patterns of sno expression during murine development suggest potential roles in tissues with a high degree of cellular proliferation. Expression in terminally differentiated tissues such as muscle and neurons indicates that SNO may have multiple functional activities.

  12. Cloning and characterization of the murine homolog of the sno proto-oncogene reveals a novel splice variant

    NASA Technical Reports Server (NTRS)

    Pelzer, T.; Lyons, G. E.; Kim, S.; Moreadith, R. W.; Blomqvist, C. G. (Principal Investigator)

    1996-01-01

    The cellular function(s) of the SNO protein remain undefined. To gain a better understanding of possible developmental roles of this cellular proto-oncogene, we have cloned two murine sno cDNAs and have investigated their expression patterns in embryonic and postnatal tissues. A single major transcript of 7.5 kb is detected in multiple tissues by Northern blot. However, reverse transcriptase polymerase chain reaction (RT-PCR) and RNAse protection assays revealed a novel splice variant in every tissue examined. Two isoforms, termed sno N and sno-dE3 (dE3, deletion within exon 3), were identified. The sno-dE3 isoform employs a novel 5' splice site located within the coding region of the third exon and deletes potential kinase recognition motifs. Transcripts of both sno isoforms accumulate ubiquitously but are most abundant in the developing central nervous system. The in situ hybridization patterns of sno expression during murine development suggest potential roles in tissues with a high degree of cellular proliferation. Expression in terminally differentiated tissues such as muscle and neurons indicates that SNO may have multiple functional activities.

  13. ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes.

    PubMed

    Margolin, Adam A; Palomero, Teresa; Sumazin, Pavel; Califano, Andrea; Ferrando, Adolfo A; Stolovitzky, Gustavo

    2009-01-06

    ChIP-on-chip has emerged as a powerful tool to dissect the complex network of regulatory interactions between transcription factors and their targets. However, most ChIP-on-chip analysis methods use conservative approaches aimed at minimizing false-positive transcription factor targets. We present a model with improved sensitivity in detecting binding events from ChIP-on-chip data. Its application to human T cells, followed by extensive biochemical validation, reveals that 3 oncogenic transcription factors, NOTCH1, MYC, and HES1, bind to several thousand target gene promoters, up to an order of magnitude increase over conventional analysis methods. Gene expression profiling upon NOTCH1 inhibition shows broad-scale functional regulation across the entire range of predicted target genes, establishing a closer link between occupancy and regulation. Finally, the increased sensitivity reveals a combinatorial regulatory program in which MYC cobinds to virtually all NOTCH1-bound promoters. Overall, these results suggest an unappreciated complexity of transcriptional regulatory networks and highlight the fundamental importance of genome-scale analysis to represent transcriptional programs.

  14. Profiling of Oncogenic Driver Events in Lung Adenocarcinoma Revealed MET Mutation as Independent Prognostic Factor.

    PubMed

    Yeung, Sai F; Tong, Joanna H M; Law, Peggy P W; Chung, Lau Y; Lung, Raymond W M; Tong, Carol Y K; Chow, Chit; Chan, Anthony W H; Wan, Innes Y P; Mok, Tony S K; To, Ka F

    2015-09-01

    Oncogenic driver mutations activating receptor tyrosine kinase pathways are promising predictive markers for targeted treatment. We investigated the mutation profile of an updated driver events list on receptor tyrosine kinase/RAS/PI3K axis and the clinicopathologic implications in a cohort of never-smoker predominated Chinese lung adenocarcinoma. We tested 154 lung adenocarcinomas and adenosquamous carcinomas for EGFR, KRAS, HER2, BRAF, PIK3CA, MET, NRAS, MAP2K1, and RIT1 mutations by polymerase chain reaction-direct sequencing. MET amplification and ALK and ROS1 translocations were assessed by fluorescent in situ hybridizations. MET and thyroid transcription factor-1 protein expressions were investigated by immunohistochemistry. Seventy percent of lung adenocarcinomas carried actionable driver events. Alterations on EGFR (43%), KRAS (11.4%), ALK (6%), and MET (5.4%) were frequently found. ROS1 translocation and mutations involving BRAF, HER2, NRAS, and PIK3CA were also detected. No mutation was observed in RIT1 and MAP2K1. Patients with EGFR mutations had a favorable prognosis, whereas those with MET mutations had poorer overall survival. Multivariate analysis further demonstrated that MET mutation was an independent prognostic factor. Although MET protein expression was detected in 65% of lung adenocarcinoma, only 10% of the MET-immunohistochemistry positive tumors harbor MET DNA alterations that drove protein overexpression. Appropriate predictive biomarker is essential for selecting patients who might benefit from specific targeted therapy. Actionable driver events can be detected in two thirds of lung adenocarcinoma. MET DNA alterations define a subset of patients with aggressive diseases that might potentially benefit from anti-MET targeted therapy. High negative predictive values of thyroid transcription factor-1 and MET expression suggest potential roles as surrogate markers for EGFR and/or MET mutations.

  15. Cellular oncogene expression following exposure of mice to {gamma}-rays

    SciTech Connect

    Anderson, A.; Woloschak, G.E.

    1991-06-12

    We examined the effects of total body exposure of BCF1 mice to {gamma}-rays (300 cGy) in modulating expression of cellular oncogenes in both gut and liver tissues. We selected specific cellular oncogenes (c-fos, c-myc, c-src, and c-H-ras), based on their normal expression in liver and gut tissues from untreated mice. As early as 5 min. following whole body exposure of BCF1 mice to {gamma}-rays we detected induction of mRNA specific for c-src and c-H-ras in both liver and gut tissues. c-fos RNA was slightly decreased in accumulation in gut but was unaffected in liver tissue from irradiated mice relative to untreated controls. c-myc mRNA accumulation was unaffected in all tissues examined. These experiments document that modulation of cellular oncogene expression can occur as an early event in tissues following irradiation and suggest that this modulation may play a role in radiation-induced carcinogenesis.

  16. DEK Proto-Oncogene Expression Interferes with the Normal Epithelial Differentiation Program

    PubMed Central

    Wise-Draper, Trisha M.; Morreale, Richard J.; Morris, Teresa A.; Mintz-Cole, Rachael A.; Hoskins, Elizabeth E.; Balsitis, Scott J.; Husseinzadeh, Nader; Witte, David P.; Wikenheiser-Brokamp, Kathryn A.; Lambert, Paul F.; Wells, Susanne I.

    2009-01-01

    Overexpression of the DEK gene is associated with multiple human cancers, but its specific roles as a putative oncogene are not well defined. DEK transcription was previously shown to be induced by the high-risk human papillomavirus (HPV) E7 oncogene via E2F and Rb pathways. Transient DEK overexpression was able to inhibit both senescence and apoptosis in cultured cells. In at least the latter case, this mechanism involved the destabilization of p53 and the decreased expression of p53 target genes. We show here that DEK overexpression disrupts the normal differentiation program in a manner that is independent of either p53 or cell death. DEK expression was distinctly repressed upon the differentiation of cultured primary human keratinocytes, and stable DEK overexpression caused epidermal thickening in an organotypic raft model system. The observed hyperplasia involved a delay in keratinocyte differentiation toward a more undifferentiated state, and expansion of the basal cell compartment was due to increased proliferation, but not apoptosis. These phenotypes were accompanied by elevated p63 expression in the absence of p53 destabilization. In further support of bona fide oncogenic DEK activities, we report here up-regulated DEK protein levels in both human papilloma virus-positive hyperplastic murine skin and a subset of human squamous cell carcinomas. We suggest that DEK up-regulation may contribute to carcinoma development at least in part through increased proliferation and retardation of differentiation. PMID:19036808

  17. Normal Expression of a Rearranged and Mutated c-myc Oncogene after Transfection into Fibroblasts

    NASA Astrophysics Data System (ADS)

    Richman, Adam; Hayday, Adrian

    1989-10-01

    Expression of the c-myc oncogene is deregulated in a variety of malignancies. Rearrangement and mutation of the c-myc locus is a characteristic feature of human Burkitt's lymphoma. Whether deregulation is solely a result of mutation of c-myc or whether it is influenced by the transformed B cell context has not been determined. A translocated and mutated allele of c-myc was stably transfected into fibroblasts. The rearranged allele was expressed indistinguishably from a normal c-myc gene: it had serum-regulated expression, was transcribed with normal promoter preference, and was strongly attenuated. Thus mutations by themselves are insufficient to deregulate c-myc transcription.

  18. Analysis of Multiple Sarcoma Expression Datasets: Implications for Classification, Oncogenic Pathway Activation and Chemotherapy Resistance

    PubMed Central

    Goldsmith, Jeffrey D.; Bhasin, Manoj; Pillay, Kamana; Francoeur, Nancy; Libermann, Towia A.; Gebhardt, Mark C.; Spentzos, Dimitrios

    2010-01-01

    Background Diagnosis of soft tissue sarcomas (STS) is challenging. Many remain unclassified (not-otherwise-specified, NOS) or grouped in controversial categories such as malignant fibrous histiocytoma (MFH), with unclear therapeutic value. We analyzed several independent microarray datasets, to identify a predictor, use it to classify unclassifiable sarcomas, and assess oncogenic pathway activation and chemotherapy response. Methodology/Principal Findings We analyzed 5 independent datasets (325 tumor arrays). We developed and validated a predictor, which was used to reclassify MFH and NOS sarcomas. The molecular “match” between MFH and their predicted subtypes was assessed using genome-wide hierarchical clustering and Subclass-Mapping. Findings were validated in 15 paraffin samples profiled on the DASL platform. Bayesian models of oncogenic pathway activation and chemotherapy response were applied to individual STS samples. A 170-gene predictor was developed and independently validated (80-85% accuracy in all datasets). Most MFH and NOS tumors were reclassified as leiomyosarcomas, liposarcomas and fibrosarcomas. “Molecular match” between MFH and their predicted STS subtypes was confirmed both within and across datasets. This classification revealed previously unrecognized tissue differentiation lines (adipocyte, fibroblastic, smooth-muscle) and was reproduced in paraffin specimens. Different sarcoma subtypes demonstrated distinct oncogenic pathway activation patterns, and reclassified MFH tumors shared oncogenic pathway activation patterns with their predicted subtypes. These patterns were associated with predicted resistance to chemotherapeutic agents commonly used in sarcomas. Conclusions/Significance STS profiling can aid in diagnosis through a predictor tracking distinct tissue differentiation in unclassified tumors, and in therapeutic management via oncogenic pathway activation and chemotherapy response assessment. PMID:20368975

  19. Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras.

    PubMed

    Wang, Tim; Yu, Haiyan; Hughes, Nicholas W; Liu, Bingxu; Kendirli, Arek; Klein, Klara; Chen, Walter W; Lander, Eric S; Sabatini, David M

    2017-02-23

    The genetic dependencies of human cancers widely vary. Here, we catalog this heterogeneity and use it to identify functional gene interactions and genotype-dependent liabilities in cancer. By using genome-wide CRISPR-based screens, we generate a gene essentiality dataset across 14 human acute myeloid leukemia (AML) cell lines. Sets of genes with correlated patterns of essentiality across the lines reveal new gene relationships, the essential substrates of enzymes, and the molecular functions of uncharacterized proteins. Comparisons of differentially essential genes between Ras-dependent and -independent lines uncover synthetic lethal partners of oncogenic Ras. Screens in both human AML and engineered mouse pro-B cells converge on a surprisingly small number of genes in the Ras processing and MAPK pathways and pinpoint PREX1 as an AML-specific activator of MAPK signaling. Our findings suggest general strategies for defining mammalian gene networks and synthetic lethal interactions by exploiting the natural genetic and epigenetic diversity of human cancer cells.

  20. Integrative genomics analysis reveals the multilevel dysregulation and oncogenic characteristics of TEAD4 in gastric cancer.

    PubMed

    Lim, Byungho; Park, Jong-Lyul; Kim, Hee-Jin; Park, Young-Kyu; Kim, Jeong-Hwan; Sohn, Hyun Ahm; Noh, Seung-Moo; Song, Kyu-Sang; Kim, Woo-Ho; Kim, Yong Sung; Kim, Seon-Young

    2014-05-01

    Tumorigenesis is a consequence of failures of multistep defense mechanisms against deleterious perturbations that occur at the genomic, epigenomic, transcriptomic and proteomic levels. To uncover previously unrecognized genes that undergo multilevel perturbations in gastric cancer (GC), we integrated epigenomic and transcriptomic approaches using two recently developed tools: MENT and GENT. This integrative analysis revealed that nine Hippo pathway-related genes, including components [FAT, JUB, LATS2, TEA domain family member 4 (TEAD4) and Yes-associated protein 1 (YAP1)] and targets (CRIM1, CYR61, CTGF and ITGB2), are concurrently hypomethylated at promoter CpG sites and overexpressed in GC tissues. In particular, TEAD4, a link between Hippo pathway components and targets, was significantly hypomethylated at CpG site cg21637033 (P = 3.8 × 10(-) (20)) and overexpressed (P = 5.2 × 10(-) (10)) in 108 Korean GC tissues compared with the normal counterparts. A reduced level of methylation at the TEAD4 promoter was significantly associated with poor outcomes, including large tumor size, high-grade tumors and low survival rates. Compared with normal tissues, the TEAD4 protein was more frequently found in the nuclei of tumor cells along with YAP1 in 53 GC patients, demonstrating the posttranslational activation of this protein. Moreover, the knockdown of TEAD4 resulted in the reduced growth of GC cells both in vitro and in vivo. Finally, chromatin immunoprecipitation-sequencing and microarray analysis revealed the oncogenic properties of TEAD4 and its novel targets (ADM, ANG, ARID5B, CALD1, EDN2, FSCN1 and OSR2), which are involved in cell proliferation and migration. In conclusion, the multilevel perturbations of TEAD4 at epigenetic, transcriptional and posttranslational levels may contribute to GC development.

  1. Regulation of oncogene expression in T-DNA-transformed host plant cells.

    PubMed

    Zhang, Yi; Lee, Chil-Woo; Wehner, Nora; Imdahl, Fabian; Svetlana, Veselova; Weiste, Christoph; Dröge-Laser, Wolfgang; Deeken, Rosalia

    2015-01-01

    Virulent Agrobacterium tumefaciens strains integrate their T-DNA into the plant genome where the encoded agrobacterial oncogenes are expressed and cause crown gall disease. Essential for crown gall development are IaaH (indole-3-acetamide hydrolase), IaaM (tryptophan monooxygenase) and Ipt (isopentenyl transferase), which encode enzymes for the biosynthesis of auxin (IaaH, IaaM) and cytokinin (Ipt). Although these oncogenes are well studied as the tumor-inducing principle, nothing is known about the regulation of oncogene expression in plant cells. Our studies show that the intergenic regions (IGRs) between the coding sequences (CDS) of the three oncogenes function as promoters in plant cells. These promoters possess a eukaryotic sequence organization and cis-regulatory elements for the binding of plant transcription factors. WRKY18, WRKY40, WRKY60 and ARF5 were identified as activators of the Ipt promoter whereas IaaH and IaaM is constitutively expressed and no transcription factor further activates their promoters. Consistent with these results, the wrky triple mutant plants in particular, develops smaller crown galls than wild-type and exhibits a reduced Ipt transcription, despite the presence of an intact ARF5 gene. WRKY40 and WRKY60 gene expression is induced by A. tumefaciens within a few hours whereas the ARF5 gene is transcribed later during crown gall development. The WRKY proteins interact with ARF5 in the plant nucleus, but only WRKY40 together with ARF5 synergistically boosts the activation of the Ipt promoter in an auxin-dependent manner. From our data, we propose that A. tumefaciens initially induces WRKY40 gene expression as a pathogen defense response of the host cell. The WRKY protein is recruited to induce Ipt expression, which initiates cytokinin-dependent host cell division. With increasing auxin levels triggered by ubiquitous expression of IaaH and IaaM, ARF5 is activated and interacts with WRKY40 to potentiate Ipt expression and balance

  2. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    PubMed Central

    Coppé, Jean-Philippe; Sun, Yu; Muñoz, Denise P; Goldstein, Joshua; Nelson, Peter S; Desprez, Pierre-Yves; Campisi, Judith

    2008-01-01

    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial–mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment. PMID:19053174

  3. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    SciTech Connect

    Coppé, Jean-Philippe; Patil, Christopher; Rodier, Francis; Sun, Yu; Munoz, Denise; Goldstein, Joshua; Nelson, Peter; Desprez, Pierre-Yves; Campisi, Judith

    2008-10-24

    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.

  4. MicroRNA29a regulates the expression of the nuclear oncogene Ski.

    PubMed

    Teichler, Sabine; Illmer, Thomas; Roemhild, Josephine; Ovcharenko, Dmitriy; Stiewe, Thorsten; Neubauer, Andreas

    2011-08-18

    MicroRNAs (miRNAs) are small, noncoding RNA molecules that regulate growth and differentiation. miRNAs are frequently located at cancer-specific fragile sites in the human genome, such as chromosome 7q. The nuclear oncogene SKI is up-regulated in acute myeloid leukemia (AML) with -7/del7q. Here we asked whether loss of miRNAs on chromosome 7q may explain this up-regulation. miR-29a expression was found to be down-regulated in AML with -7/del7q. Forced expression of miR-29a down-regulated Ski and its target gene, Nr-CAM, whereas miR-29a inhibition induced Ski expression. Luciferase assays validated a functional binding site for miR-29a in the 3' untranslated region of SKI. Finally, in samples of AML patients, we observed an inverse correlation of Ski and miR-29a expression, respectively. In conclusion, up-regulation of Ski in AML with -7/del7q is caused by loss of miR-29a. miR-29a may therefore function as an important tumor suppressor in AML by restraining expression of the SKI oncogene.

  5. [Oncogenic human papillomaviruses in extra-genital Bowen disease revealed by in situ hybridization].

    PubMed

    Derancourt, C; Mougin, C; Chopard Lallier, M; Coumes-Marquet, S; Drobacheff, C; Laurent, R

    2001-01-01

    The association between mucosal oncogenic human papillomaviruses (HPV) and bowenoid papulosis or genital Bowen's disease is well documented. In contrast this association with extra-genital Bowen's disease is poorly studied. The aim of this study was to detect oncogenic (16/18, 31/33/51) and non oncogenic (8/11) mucosal HPV using a in situ hybridization method in 28 skin biopsy specimens of extra-genital Bowen's disease. Twenty-eight cases of extra-genital Bowen's disease seen in the period 1990-96 in the Dermatology department were included: 19 women and 9 men (mean age: 72 years). Bowen's disease locations were: hands and feet (8 cases), limbs (11 cases), face (8 cases), trunk (1 case). Blinded histopathologic examination confirmed the diagnosis of Bowen's disease and signs of HPV infection (koilocytosis). In situ hybridization was performed using three biotinylated probes detecting HPV types 6/11, 16/18, 31/33/51. Oncogenic HPV genoma was detected in 8 skin samples (28.6 p. 100). In all these cases, 16/18 probe was positive and in two cases, both 16/18 and 31/33/51 probes were positive; 4/8 Bowen's diseases of the extremities were positive for HPV. Koilocytes were found in 6/8 of skin samples with positive HPV detection. Mucosal oncogenic HPV are detected by in situ hybridization in 28.6 p. 100 of extra-genital Bowen's disease. In situ hybridization is an easier technique than Southern-Blot hybridization which is the gold standard. Five studies reported similar results and three studies reported different results that we discuss. A precise understanding of oncogenic HPV implication in the development of extra-genital Bowen's disease could lead to the development of new therapeutic strategies (topical cidofovir or imiquimod).

  6. Immortalization by c-myc, H-ras, and Ela oncogenes induces differential cellular gene expression and growth factor responses

    SciTech Connect

    Kelekar, A.; Cole, M.D.

    1987-11-01

    Early-passage rat kidney cells were immortalized or rescued from senescence with three different oncogenes: viral promoter-driven c-myc, H-ras (Val-12), and adenovirus type 5 E1a. The normal c-myc and H-ras (Gly-12) were unable to immortalize cells under similar conditions. Quantitation of RNA in the ras-immortalized lines demonstrated that the H-ras oncogene was expressed at a level equivalent to that of the normal H-ras gene in established human or rat cell lines. Cell lines immortalized by different oncogenes were found to have distinct growth responses to individual growth factors in a short-term assay. E1a-immortalized cells were largely independent of serum growth factors, whereas c-myc-immortalized cells responded to serum better than to epidermal growth factor and insulin. H-ras-immortalized cells responded significantly to insulin alone and gave a maximal response to epidermal growth factor and insulin. Several cellular genes associated with platelet-derived growth factor stimulation, including c-myc, were expressed at high levels in the H-ras-immortalized cells, and c-myc expression was deregulated, suggesting that the H-ras oncogene has provided a ''competence'' function. H-ras-immortalized cells could not be morphologically transformed by secondary transfection with a long terminal repeat-c-myc oncogene, but secondary transfection of the same cells with H-ras (Val-12) produced morphologically transformed colonies that had 20- to 40-fold higher levels of H-ras oncogene expression. Thus transformation in this system is dependent on high levels of H-ras oncogene expression rather than on the presence of activated H-ras and c-myc oncogenes in the same cell.

  7. Expression of cellular oncogenes in primary cells from human acute leukemias.

    PubMed Central

    Mavilio, F; Sposi, N M; Petrini, M; Bottero, L; Marinucci, M; De Rossi, G; Amadori, S; Mandelli, F; Peschle, C

    1986-01-01

    The structure and the expression of 11 cellular oncogenes (protooncogenes) were analyzed in primary cells from 20 acute lymphocytic (ALL) and 31 acute myelogenous (AML) leukemia patients. Neoplastic cells, obtained prior to initiation of therapy, were purified and classified, on the basis of both surface antigen pattern and morphology, into pre-B, B, and T ALL and M1-M5 AML. RNA was extracted and analyzed for expression of cellular oncogenes coding for nuclear proteins (c-myc, c-myb, c-fos), the beta-chain of platelet-derived growth factor (c-sis), growth factor receptors or related proteins (c-src, c-abl, c-fes, c-erbB), or putative intermediate transducers of mitogenic signals (c-Ha-ras, c-Ki-ras, c-N-ras). Quantitative analysis of total RNA was carried out by dot blot hybridization to specific cDNA or genomic probes. Number and size of transcripts were evaluated by blot hybridization of electrophoretically fractionated poly(A)+ RNA. Expression of c-myc and c-myb was detected in all leukemic cells at variable levels and was characterized by well-defined patterns within ALL subtypes. Conversely, significant levels of c-fos transcripts were detected only in myelomonocytic (M4) and monocytic (M5) leukemias. Among the "src-family," c-fes was expressed more in AML than ALL, and c-abl was expressed at variable but not elevated levels in all leukemia types. c-Ha-ras was uniformly expressed at low levels, as in non-neoplastic cells. c-Ki-ras transcription was detected only in T ALL; N-ras expression was barely demonstrable. The structure of these protooncogenes was not grossly modified, as evaluated by Southern analysis, except for c-myc rearrangement in B ALL. These studies indicate that cellular oncogene expression in specific subtypes of leukemic cells may relate to either the proliferative activity (c-myc, c-myb) or the differentiation state (c-fos) of the cells, or possibly to expression of receptors for putative hemopoiesis-related growth factors (c-fes, c

  8. Chromosomal integration of an avian oncogenic herpesvirus reveals telomeric preferences and evidence for lymphoma clonality

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease (MD) is a highly contagious neoplastic disease resulting from a cell-associated oncogenic herpesvirus, Marek’s disease virus (MDV) that induces lymphoid tumors in chickens, its natural host. Genomic interactions between virus and host, and their involvement in the process of tumorig...

  9. Expression of oncogenic BARD1 isoforms affects colon cancer progression and correlates with clinical outcome.

    PubMed

    Zhang, Y-Q; Pilyugin, M; Kuester, D; Leoni, V P; Li, L; Casula, G; Zorcolo, L; Schneider-Stock, R; Atzori, L; Irminger-Finger, I

    2012-08-07

    Colon cancer predisposition is associated with mutations in BRCA1. BRCA1 protein stability depends on binding to BARD1. In different cancers, expression of differentially spliced BARD1 isoforms is correlated with poor prognosis and decreased patient survival. We therefore suspected a role of BARD1 isoforms in colon cancer. We performed immunohistochemistry in 168 colorectal cancers, using four antibodies directed against differentially expressed regions of BARD1. We determined structure and relative expression of BARD1 mRNA isoforms in 40 tumour and paired normal peri-tumour tissues. BARD1 expression was correlated with clinical outcome. BARD1 isoforms were expressed in 98% of cases and not correlated with BRCA1. BARD1 mRNA isoforms were upregulated in all tumours as compared with paired normal peri-tumour tissues. Non-correlated expression and localisation of different epitopes suggested insignificant expression of full-length (FL) BARD1. Expression of N- and C-terminal epitopes correlated with increased survival, but expression of epitopes mapping to the middle of BARD1 correlated with decreased survival. Middle epitopes are present in oncogenic BARD1 isoforms, which have pro-proliferative functions. Correlated upregulation of only N- and C-terminal epitopes reflects the expression of isoforms BARD1δ and BARD1φ. Our results suggest that BARD1 isoforms, but not FL BARD1, are expressed in colon cancer and affect its progression and clinical outcome.

  10. Tocopherol Succinate: Modulation of Antioxidant Enzymes and Oncogene Expression, and Hematopoietic Recovery

    SciTech Connect

    Singh, Vijay K.; Parekh, Vaishali I.; Brown, Darren S.; Kao, Tzu-Cheg; Mog, Steven R.

    2011-02-01

    Purpose: A class of naturally occurring isoforms of tocopherol (tocols) was shown to have varying degrees of protection when administered before radiation exposure. We recently demonstrated that {alpha}-tocopherol succinate (TS) is a potential radiation prophylactic agent. Our objective in this study was to further investigate the mechanism of action of TS in mice exposed to {sup 60}Co {gamma}-radiation. Methods and Materials: We evaluated the effects of TS on expression of antioxidant enzymes and oncogenes by quantitative RT-PCR in bone marrow cells of {sup 60}Co {gamma}-irradiated mice. Further, we tested the ability of TS to rescue and repopulate hematopoietic stem cells by analyzing bone marrow cellularity and spleen colony forming unit in spleen of TS-injected and irradiated mice. Results: Our results demonstrate that TS modulated the expression of antioxidant enzymes and inhibited expression of oncogenes in irradiated mice at different time points. TS also increased colony forming unit-spleen numbers and bone marrow cellularity in irradiated mice. Conclusions: Results provide additional support for the observed radioprotective efficacy of TS and insight into mechanisms.

  11. AID-expressing epithelium is protected from oncogenic transformation by an NKG2D surveillance pathway

    PubMed Central

    Pérez-García, Arantxa; Pérez-Durán, Pablo; Wossning, Thomas; Sernandez, Isora V; Mur, Sonia M; Cañamero, Marta; Real, Francisco X; Ramiro, Almudena R

    2015-01-01

    Activation-induced deaminase (AID) initiates secondary antibody diversification in germinal center B cells, giving rise to higher affinity antibodies through somatic hypermutation (SHM) or to isotype-switched antibodies through class switch recombination (CSR). SHM and CSR are triggered by AID-mediated deamination of cytosines in immunoglobulin genes. Importantly, AID activity in B cells is not restricted to Ig loci and can promote mutations and pro-lymphomagenic translocations, establishing a direct oncogenic mechanism for germinal center-derived neoplasias. AID is also expressed in response to inflammatory cues in epithelial cells, raising the possibility that AID mutagenic activity might drive carcinoma development. We directly tested this hypothesis by generating conditional knock-in mouse models for AID overexpression in colon and pancreas epithelium. AID overexpression alone was not sufficient to promote epithelial cell neoplasia in these tissues, in spite of displaying mutagenic and genotoxic activity. Instead, we found that heterologous AID expression in pancreas promotes the expression of NKG2D ligands, the recruitment of CD8+ T cells, and the induction of epithelial cell death. Our results indicate that AID oncogenic potential in epithelial cells can be neutralized by immunosurveillance protective mechanisms. PMID:26282919

  12. STAT5 Outcompetes STAT3 To Regulate the Expression of the Oncogenic Transcriptional Modulator BCL6

    PubMed Central

    Walker, Sarah R.; Nelson, Erik A.; Yeh, Jennifer E.; Pinello, Luca; Yuan, Guo-Cheng

    2013-01-01

    Inappropriate activation of the transcription factors STAT3 and STAT5 has been shown to drive cancer pathogenesis through dysregulation of genes involved in cell survival, growth, and differentiation. Although STAT3 and STAT5 are structurally related, they can have opposite effects on key genes, including BCL6. BCL6, a transcriptional repressor, has been shown to be oncogenic in diffuse large B cell lymphoma. BCL6 also plays an important role in breast cancer pathogenesis, a disease in which STAT3 and STAT5 can be activated individually or concomitantly. To determine the mechanism by which these oncogenic transcription factors regulate BCL6 transcription, we analyzed their effects at the levels of chromatin and gene expression. We found that STAT3 increases expression of BCL6 and enhances recruitment of RNA polymerase II phosphorylated at a site associated with transcriptional initiation. STAT5, in contrast, represses BCL6 expression below basal levels and decreases the association of RNA polymerase II at the gene. Furthermore, the repression mediated by STAT5 is dominant over STAT3-mediated induction. STAT5 exerts this effect by displacing STAT3 from one of the two regulatory regions to which it binds. These findings may underlie the divergent biology of breast cancers containing activated STAT3 alone or in conjunction with activated STAT5. PMID:23716595

  13. Expression of BCR-ABL1 oncogene relative to ABL1 gene changes overtime in chronic myeloid leukemia

    SciTech Connect

    Gupta, Manu; Milani, Lili; Hermansson, Monica; Simonsson, Bengt; Markevaern, Berit; Syvaenen, Ann Christine; Barbany, Gisela

    2008-02-15

    Using a quantitative single nucleotide polymorphism (SNP) assay we have investigated the changes in the expression of the BCR-ABL1 oncogene relative to the wild-type ABL1 and BCR alleles in cells from chronic myeloid leukemia (CML) patients not responding to therapy. The results show a progressive increase in the BCR-ABL1 oncogene expression at the expense of decreased expression of the ABL1 allele, not involved in the fusion. No relative changes in the expression of the two BCR alleles were found. These results demonstrate that allele-specific changes in gene expression, with selective, progressive silencing of the wild-type ABL1 allele in favor of the oncogenic BCR-ABL1 allele occur in CML patients with therapy-resistant disease.

  14. Detection of Enhancer-Associated Rearrangements Reveals Mechanisms of Oncogene Dysregulation in B-cell Lymphoma

    PubMed Central

    Ryan, Russell J.H.; Drier, Yotam; Whitton, Holly; Cotton, M. Joel; Kaur, Jasleen; Issner, Robbyn; Gillespie, Shawn; Epstein, Charles B.; Nardi, Valentina; Sohani, Aliyah R.; Hochberg, Ephraim P.; Bernstein, Bradley E.

    2015-01-01

    B-cell lymphomas frequently contain genomic rearrangements that lead to oncogene activation by heterologous distal regulatory elements. We utilized a novel approach, termed ‘Pinpointing Enhancer-Associated Rearrangements by Chromatin Immunoprecipitation’ or PEAR-ChIP, to simultaneously map enhancer activity and proximal rearrangements in lymphoma cell lines and patient biopsies. This method detects rearrangements involving known cancer genes, including CCND1, BCL2, MYC, PDCD1LG2, NOTCH1, CIITA, and SGK1, as well as novel enhancer duplication events of likely oncogenic significance. We identify lymphoma subtype-specific enhancers in the MYC locus that are silenced in lymphomas with MYC-activating rearrangements and are associated with germline polymorphisms that alter lymphoma risk. We show that BCL6-locus enhancers are acetylated by the BCL6-activating transcription factor MEF2B, and can undergo genomic duplication, or target the MYC promoter for activation in the context of a “pseudo-double-hit” t(3;8)(q27;q24) rearrangement linking the BCL6 and MYC loci. Our work provides novel insights regarding enhancer-driven oncogene activation in lymphoma. PMID:26229090

  15. Oncogene GAEC1 regulates CAPN10 expression which predicts survival in esophageal squamous cell carcinoma

    PubMed Central

    Chan, Dessy; Tsoi, Miriam Yuen-Tung; Liu, Christina Di; Chan, Sau-Hing; Law, Simon Ying-Kit; Chan, Kwok-Wah; Chan, Yuen-Piu; Gopalan, Vinod; Lam, Alfred King-Yin; Tang, Johnny Cheuk-On

    2013-01-01

    AIM: To identify the downstream regulated genes of GAEC1 oncogene in esophageal squamous cell carcinoma and their clinicopathological significance. METHODS: The anti-proliferative effect of knocking down the expression of GAEC1 oncogene was studied by using the RNA interference (RNAi) approach through transfecting the GAEC1-overexpressed esophageal carcinoma cell line KYSE150 with the pSilencer vector cloned with a GAEC1-targeted sequence, followed by MTS cell proliferation assay and cell cycle analysis using flow cytometry. RNA was then extracted from the parental, pSilencer-GAEC1-targeted sequence transfected and pSilencer negative control vector transfected KYSE150 cells for further analysis of different patterns in gene expression. Genes differentially expressed with suppressed GAEC1 expression were then determined using Human Genome U133 Plus 2.0 cDNA microarray analysis by comparing with the parental cells and normalized with the pSilencer negative control vector transfected cells. The most prominently regulated genes were then studied by immunohistochemical staining using tissue microarrays to determine their clinicopathological correlations in esophageal squamous cell carcinoma by statistical analyses. RESULTS: The RNAi approach of knocking down gene expression showed the effective suppression of GAEC1 expression in esophageal squamous cell carcinoma cell line KYSE150 that resulted in the inhibition of cell proliferation and increase of apoptotic population. cDNA microarray analysis for identifying differentially expressed genes detected the greatest levels of downregulation of calpain 10 (CAPN10) and upregulation of trinucleotide repeat containing 6C (TNRC6C) transcripts when GAEC1 expression was suppressed. At the tissue level, the high level expression of calpain 10 protein was significantly associated with longer patient survival (month) of esophageal squamous cell carcinoma compared to the patients with low level of calpain 10 expression (37.73 ± 16

  16. Clonal composition of human ovarian cancer based on copy number analysis reveals a reciprocal relation with oncogenic mutation status.

    PubMed

    Sakai, Kazuko; Ukita, Masayo; Schmidt, Jeanette; Wu, Longyang; De Velasco, Marco A; Roter, Alan; Jevons, Luis; Nishio, Kazuto; Mandai, Masaki

    2017-10-01

    Intratumoral heterogeneity of cancer cells remains largely unexplored. Here we investigated the composition of ovarian cancer and its biological relevance. A whole-genome single nucleotide polymorphism array was applied to detect the clonal composition of 24 formalin-fixed, paraffin-embedded samples of human ovarian cancer. Genome-wide segmentation data consisting of the log2 ratio (log2R) and B allele frequency (BAF) were used to calculate an estimate of the clonal composition number (CC number) for each tumor. Somatic mutation profiles of cancer-related genes were also determined for the same 24 samples by next-generation sequencing. The CC number was estimated successfully for 23 of the 24 cancer samples. The mean ± SD value for the CC number was 1.7 ± 1.1 (range of 0-4). A somatic mutation in at least one gene was identified in 22 of the 24 ovarian cancer samples, with the mutations including those in the oncogenes KRAS (29.2%), PIK3CA (12.5%), BRAF (8.3%), FGFR2 (4.2%), and JAK2 (4.2%) as well as those in the tumor suppressor genes TP53 (54.2%), FBXW7 (8.3%), PTEN (4.2%), and RB1 (4.2%). Tumors with one or more oncogenic mutations had a significantly lower CC number than did those without such a mutation (1.0 ± 0.8 versus 2.3 ± 0.9, P = 0.0027), suggesting that cancers with driver oncogene mutations are less heterogeneous than those with other mutations. Our results thus reveal a reciprocal relation between oncogenic mutation status and clonal composition in ovarian cancer using the established method for the estimation of the CC number. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  17. Oncogenic relevant defensins: expression pattern and proliferation characteristics of human tumor cell lines.

    PubMed

    Winter, Jochen; Kraus, Dominik; Reckenbeil, Jan; Probstmeier, Rainer

    2016-06-01

    The objective of this study was to investigate gene expression levels of oncogenic relevant human defensins and their impact on proliferation rates of 29 cell lines derived from main types of different tumor origins. Differential gene expression analysis of human defensins was performed by real-time PCR experiments. The proliferation rate of tumor cells that had been cultivated in the absence or presence of biologically active peptides was analyzed with a lactate dehydrogenase assay kit. At least one member of the defensin family was expressed in each tumor cell line, whereby α-defensin (DEFA1), DEFA2, or DEFA3 transcripts could be ubiquitously detected. Cell lines of neural origin (glioma, neuroblastoma, and small-cell lung carcinoma) expressed far less human β-defensins (hBDs) in comparison to other tumor types. The expression level of a specific defensin in various cell lines could vary by more than five orders of magnitude. Compensatory mechanisms on the expression levels of the different defensins could not be strictly observed. Only in 3 out of 29 tumor cell lines the proliferation rate was affected after defensin stimulation. The variable appearance of defensins, as well as the cell line-restricted functional activity, argues for the integration of defensins in complex cellular and molecular networks that tolerate rather flexible expression patterns.

  18. Wild-type p53 induces diverse effects in 32D cells expressing different oncogenes.

    PubMed Central

    Soddu, S; Blandino, G; Scardigli, R; Martinelli, R; Rizzo, M G; Crescenzi, M; Sacchi, A

    1996-01-01

    Expression of exogenous wild-type (wt) p53 in different leukemia cell lines can induce growth arrest, apoptotic cell death, or cell differentiation. The hematopoietic cell lines that have been used so far to study wt p53 functions have in common the characteristic of not expressing endogenous p53. However, the mechanisms involved in the transformation of these cells are different, and the cells are at different stages of tumor progression. It can be postulated that each type of neoplastic cell offers a particular environment in which p53 might generate different effects. To test this hypothesis, we introduced individual oncogenes into untransformed, interleukin-3 (IL-3)-dependent myeloid precursor 32D cells to have a single transforming agent at a time. The effects induced by wt p53 overexpression were subsequently evaluated in each oncogene-expressing 32D derivative. We found that in not fully transformed, v-ras-expressing 32D cells, as already shown for the parental 32D cells, overexpression of the wt p53 gene caused no phenotypic changes and no reduction of the proliferative rate as long as the cells were maintained in their normal culture conditions (presence of IL-3 and serum). An accelerated rate of apoptosis was observed after IL-3 withdrawal. In contrast, in transformed, IL-3-independent 32D cells, wt p53 overexpression induced different effects. The v-abl-transformed cells manifested a reduction in growth rate, while the v-src-transformed cells underwent monocytic differentiation. These results show that the phenotype effects of wt p53 action(s) can vary as a function of the cellular environment. PMID:8552075

  19. Multiple endocrine neoplasia induced by the promiscuous expression of a viral oncogene.

    PubMed

    Reynolds, R K; Hoekzema, G S; Vogel, J; Hinrichs, S H; Jay, G

    1988-05-01

    There is increasing evidence for the importance of events that govern and influence the interaction between the transformed cell and its host being ultimately responsible for the establishment of the cancer phenotype. To derive an animal model that will allow us to define some of these phenomena at the molecular level, we have chosen to induce the expression of a viral oncogene in all tissue types, with the hope of identifying sites that are more susceptible to malignant transformation. When the gene for simian virus 40 large tumor antigen (T antigen) was placed under the control of a major histocompatibility complex class I gene enhancer, the resulting transgenic mice not only developed choroid plexus papillomas, as seen with wild-type simian virus 40, but also lymphoid hyperplasia and multiple endocrine neoplasias. The development of lymphoid hyperplasia was preceded by an elevated level of expression of T antigen in these tissues at an early age. Surprisingly, the striking thymic hyperplasia has not been observed to progress toward malignancy. The multiple endocrine neoplasias developed later in life and involved the pancreas, pituitary, thyroid, adrenals, and testes. While not preceded by an elevated level of expression of T antigen, once endocrine tumors appeared they quickly progressed toward malignant growth. Although other tissues also exhibited a basal level of expression of the viral oncogene similar to that detected in endocrine tissues, they rarely developed tumors. This transgenic mouse model seems particularly suitable for a molecular understanding of events responsible for certain tissue types being so much more susceptible to neoplastic conversion, with others being so refractory.

  20. Enhanced human papillomavirus type 8 oncogene expression levels are crucial for skin tumorigenesis in transgenic mice

    SciTech Connect

    Hufbauer, M.; Lazic, D.; Akguel, B.; Brandsma, J.L.; Pfister, H.; Weissenborn, S.J.

    2010-08-01

    Human papillomavirus 8 (HPV8) is involved in skin cancer development in epidermodysplasia verruciformis patients. Transgenic mice expressing HPV8 early genes (HPV8-CER) developed papillomas, dysplasias and squamous cell carcinomas. UVA/B-irradiation and mechanical wounding of HPV8-CER mouse skin led to prompt papilloma induction in about 3 weeks. The aim of this study was to analyze the kinetics and level of transgene expression in response to skin irritations. Transgene expression was already enhanced 1 to 2 days after UVA/B-irradiation or tape-stripping and maintained during papilloma development. The enhanced transgene expression could be assigned to UVB and not to UVA. Papilloma development was thus always paralleled by an increased transgene expression irrespective of the type of skin irritation. A knock-down of E6 mRNA by tattooing HPV8-E6-specific siRNA led to a delay and a lower incidence of papilloma development. This indicates that the early increase of viral oncogene expression is crucial for induction of papillomatosis.

  1. Expression of the proto-oncogene Fos after exposure to radiofrequency radiation relevant to wireless communications.

    PubMed

    Whitehead, Timothy D; Brownstein, Bernard H; Parry, Jesse J; Thompson, Dominic; Cha, Bibianna A; Moros, Eduardo G; Rogers, Buck E; Roti Roti, Joseph L

    2005-10-01

    In this study the expression levels of the proto-oncogene Fos were measured after exposure to radiofrequency (RF) radiation at two relatively high specific absorption rates (SARs) of 5 and 10 W/kg for three types of modulated signals: 847.74 MHz code division multiple access (CDMA), 835.62 MHz frequency division multiple access (FDMA), and 836.55 MHz time division multiple access (TDMA). This work was undertaken to confirm a previous report by Goswami et al. (Radiat. Res. 151, 300-309, 1999) that CDMA and FDMA radiation caused small but statistically significant increases in Fos levels as cells entered plateau phase during exposure. No effects on Myc or Jun levels were observed in that study. Therefore, in the present study, analyses were restricted to Fos expression during the transition from exponential growth to plateau phase. Fos expression was measured using the real-time polymerase chain reaction (RT-PCR) technique. Serum-stimulated C3H 10T(1/2) cells were used as a positive control for Fos expression. Possible influences of final cell number or pH variability on Fos expression were evaluated. Expression of Fos mRNA in C3H 10T(1/2) cells was not significantly different from that found after sham exposure at either SAR level for any signal modulation. Therefore, the results of Goswami et al. could not be confirmed.

  2. Expression of a fms-related oncogene in carcinogen-induced neoplastic epithelial cells

    SciTech Connect

    Walker, C.; Nettesheim, P.; Barrett, J.C.; Gilmer, T.M.

    1987-04-01

    Following carcinogen exposure in vitro, normal rat tracheal epithelial cells are transformed in a multistage process in which the cultured cells become immortal and ultimately, neoplastic. Five cell lines derived from tumors produced by neoplastically transformed rat tracheal epithelial cells were examined for the expression of 11 cellular oncogenes previously implicated in pulmonary or epithelial carcinogenesis. RNA homologous to fms was expressed at a level 5-19 times higher than normal tracheal epithelial cells in three of five of the tumor-derived lines. All three lines expressing high levels of fms-related RNA gave rise to invasive tumors of epithelial origin when injected into nude mice. Increased expression of the fms-related mRNA was not due to gene amplification, and no gene rearrangement was detected by Southern analyses. RNA blot analysis using a 3' v-fms probe detected a 9.5-kilobase message in the three tumor-derived lines, whereas both normal rat aveolar macrophages and the human choriocarcinoma line BeWo expressed a fms transcript of approx. = 4 kilobases. The authors conclude from these data that the gene expressed as a 9.5-kilobase transcript in these neoplastic epithelial cells is a member of a fms-related gene family but may be distinct from the gene that encodes the macrophage colony-stimulating factor (CSF-1) receptor.

  3. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    SciTech Connect

    Wang, Hongtao; Gao, Peng; Zheng, Jie

    2014-09-05

    Highlights: • As{sub 2}O{sub 3} inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As{sub 2}O{sub 3} is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As{sub 2}O{sub 3}) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As{sub 2}O{sub 3} induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As{sub 2}O{sub 3} on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As{sub 2}O{sub 3} than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As{sub 2}O{sub 3} than HPV 16-positive CaSki and SiHa cells. After As{sub 2}O{sub 3} treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As{sub 2}O{sub 3} is a potential anticancer drug for cervical cancer.

  4. Oncogenic Ras promotes butyrate-induced apoptosis through inhibition of gelsolin expression.

    PubMed

    Klampfer, Lidija; Huang, Jie; Sasazuki, Takehiko; Shirasawa, Senji; Augenlicht, Leonard

    2004-08-27

    Activation of Ras promotes oncogenesis by altering a multiple of cellular processes, such as cell cycle progression, differentiation, and apoptosis. Oncogenic Ras can either promote or inhibit apoptosis, depending on the cell type and the nature of the apoptotic stimuli. The response of normal and transformed colonic epithelial cells to the short chain fatty acid butyrate, a physiological regulator of epithelial cell maturation, is also divergent: normal epithelial cells proliferate, and transformed cells undergo apoptosis in response to butyrate. To investigate the role of k-ras mutations in butyrate-induced apoptosis, we utilized HCT116 cells, which harbor an oncogenic k-ras mutation and two isogenic clones with targeted inactivation of the mutant k-ras allele, Hkh2, and Hke-3. We demonstrated that the targeted deletion of the mutant k-ras allele is sufficient to protect epithelial cells from butyrate-induced apoptosis. Consistent with this, we showed that apigenin, a dietary flavonoid that has been shown to inhibit Ras signaling and to reverse transformation of cancer cell lines, prevented butyrate-induced apoptosis in HCT116 cells. To investigate the mechanism whereby activated k-ras sensitizes colonic cells to butyrate, we performed a genome-wide analysis of Ras target genes in the isogenic cell lines HCT116, Hkh2, and Hke-3. The gene exhibiting the greatest down-regulation by the activating k-ras mutation was gelsolin, an actin-binding protein whose expression is frequently reduced or absent in colorectal cancer cell lines and primary tumors. We demonstrated that silencing of gelsolin expression by small interfering RNA sensitized cells to butyrate-induced apoptosis through amplification of the activation of caspase-9 and caspase-7. These data therefore demonstrate that gelsolin protects cells from butyrate-induced apoptosis and suggest that Ras promotes apoptosis, at least in part, through its ability to down-regulate the expression of gelsolin.

  5. bcl-2 proto-oncogene expression in normal and neoplastic human myeloid cells.

    PubMed

    Delia, D; Aiello, A; Soligo, D; Fontanella, E; Melani, C; Pezzella, F; Pierotti, M A; Della Porta, G

    1992-03-01

    The present study provides immunobiochemical and molecular data on the differentiation-linked expression of the bcl-2 proto-oncogene in normal and neoplastic myeloid cells. Using a recently developed monoclonal antibody (MoAb) to the bcl-2 molecule, staining of normal bone marrow myeloblasts, promyelocytes, and myelocytes, but neither monocytes nor most polymorphonuclear cells, was demonstrated. By two-color flow cytometric analysis, bcl-2 was evidenced in CD33+ and CD33+/CD34+ myeloid cells as well as in the more primitive CD33-/CD34+ population. The leukemic cell lines HL-60, KG1, GM-1, and K562 were bcl-2 positive together with 11 of 14 acute myeloid leukemias (AML) and three of three chronic myeloid leukemias (CML) in blast crises; six of seven CML were negative. Among myelodysplastic cases, augmentation of the bcl-2 positive myeloblastic compartment was found in refractory anemia with excess of blasts (RAEB) and in transformation (RAEB-t). Western blots of myeloid leukemias and control lymphocytes extracts evidenced an anti-bcl-2 immunoreactive band of the expected size (26 Kd). Moreover, the HL-60 and KG1 cell lines, both positive for the bcl-2 protein, exhibited the appropriate size bcl-2 mRNA (7.5 Kb). These findings clearly indicate that the bcl-2 gene is operative in myeloid cells and that the anti-bcl-2 MoAb identifies its product and not a cross-reactive epitope. Induction of HL-60 differentiation toward the monocytic and granulocytic pathways was accompanied by a marked decrease in bcl-2 mRNA and protein levels; bivariate flow cytometric analysis showed that the fraction becoming bcl-2 negative was in the G1 phase of the cell cycle. These data establish that the bcl-2 proto-oncogene is expressed on myeloid cells and their progenitors and is regulated in a differentiation-linked manner.

  6. Osteofibrous dysplasia and adamantinoma: correlation of proto-oncogene product and matrix protein expression.

    PubMed

    Maki, Masahiiko; Athanasou, Nicholas

    2004-01-01

    To investigate the relationship between osteofibrous dysplasia (OFD) and adamantinoma, we analyzed the expression of several proto-oncogene products and extracellular matrix proteins by immunohistochemistry and correlated our results with histological and ultrastructural findings. C-fos and c-jun, but not c-Met, were observed in OFD and in the fibrous and epithelial components of differentiated and classical adamantinomas. Staining for collagen IV, laminin and galectin-3, a laminin binding protein was seen in OFD and around cell nests in adamantinoma. E-, P-, and N-cadherin expression was found in all cases of classical adamantinoma, but not in differentiated adamantinoma or OFD. Osteonectin was detected in both the epithelial and fibrous components of adamantinomas, but osteopontin and osteocalcin were not seen in classical adamantinomas. The results show common expression of a number of oncoproteins and bone matrix proteins in adamantinoma and OFD, some of which are associated with mesenchymal-to-epithelial cell transformation. These findings would be in keeping with the hypothesis that OFD represents a precursor lesion of adamantinoma. Differential expression of a number of bone matrix protein in adamantinoma may also be of diagnostic use in distinguishing these 2 lesions immunohistochemically.

  7. Dbl oncogene expression in MCF-10 A epithelial cells disrupts mammary acinar architecture, induces EMT and angiogenic factor secretion

    PubMed Central

    Vanni, Cristina; Ognibene, Marzia; Finetti, Federica; Mancini, Patrizia; Cabodi, Sara; Segalerba, Daniela; Torrisi, Maria Rosaria; Donnini, Sandra; Bosco, Maria Carla; Varesio, Luigi; Eva, Alessandra

    2015-01-01

    The proteins of the Dbl family are guanine nucleotide exchange factors (GEFs) of Rho GTPases and are known to be involved in cell growth regulation. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders, neoplastic transformation, and tumor metastasis. We have previously demonstrated that expression of Dbl oncogene in lens epithelial cells modulates genes encoding proteins involved in epithelial-mesenchymal-transition (EMT) and induces angiogenesis in the lens. Our present study was undertaken to investigate the role of Dbl oncogene in epithelial cells transformation, providing new insights into carcinoma progression.To assess how Dbl oncogene can modulate EMT, cell migration, morphogenesis, and expression of pro-apoptotic and angiogenic factors we utilized bi- and 3-dimensional cultures of MCF-10 A cells. We show that upon Dbl expression MCF-10 A cells undergo EMT. In addition, we found that Dbl overexpression sustains Cdc42 and Rac activation inducing morphological alterations, characterized by the presence of lamellipodia and conferring a high migratory capacity to the cells. Moreover, Dbl expressing MCF-10 A cells form altered 3D structures and can induce angiogenesis by producing proangiogenic factors such as CCL2. These results support a role for Dbl oncogene in epithelial cell differentiation and transformation and suggest the relevance of GEF deregulation in tumor onset and progression. PMID:25723869

  8. Dbl oncogene expression in MCF-10 A epithelial cells disrupts mammary acinar architecture, induces EMT and angiogenic factor secretion.

    PubMed

    Vanni, Cristina; Ognibene, Marzia; Finetti, Federica; Mancini, Patrizia; Cabodi, Sara; Segalerba, Daniela; Torrisi, Maria Rosaria; Donnini, Sandra; Bosco, Maria Carla; Varesio, Luigi; Eva, Alessandra

    2015-01-01

    The proteins of the Dbl family are guanine nucleotide exchange factors (GEFs) of Rho GTPases and are known to be involved in cell growth regulation. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders, neoplastic transformation, and tumor metastasis. We have previously demonstrated that expression of Dbl oncogene in lens epithelial cells modulates genes encoding proteins involved in epithelial-mesenchymal-transition (EMT) and induces angiogenesis in the lens. Our present study was undertaken to investigate the role of Dbl oncogene in epithelial cells transformation, providing new insights into carcinoma progression.To assess how Dbl oncogene can modulate EMT, cell migration, morphogenesis, and expression of pro-apoptotic and angiogenic factors we utilized bi- and 3-dimensional cultures of MCF-10 A cells. We show that upon Dbl expression MCF-10 A cells undergo EMT. In addition, we found that Dbl overexpression sustains Cdc42 and Rac activation inducing morphological alterations, characterized by the presence of lamellipodia and conferring a high migratory capacity to the cells. Moreover, Dbl expressing MCF-10 A cells form altered 3D structures and can induce angiogenesis by producing proangiogenic factors such as CCL2. These results support a role for Dbl oncogene in epithelial cell differentiation and transformation and suggest the relevance of GEF deregulation in tumor onset and progression.

  9. LIN28 Expression in malignant germ cell tumors downregulates let-7 and increases oncogene levels.

    PubMed

    Murray, Matthew J; Saini, Harpreet K; Siegler, Charlotte A; Hanning, Jennifer E; Barker, Emily M; van Dongen, Stijn; Ward, Dawn M; Raby, Katie L; Groves, Ian J; Scarpini, Cinzia G; Pett, Mark R; Thornton, Claire M; Enright, Anton J; Nicholson, James C; Coleman, Nicholas

    2013-08-01

    Despite their clinicopathologic heterogeneity, malignant germ cell tumors (GCT) share molecular abnormalities that are likely to be functionally important. In this study, we investigated the potential significance of downregulation of the let-7 family of tumor suppressor microRNAs in malignant GCTs. Microarray results from pediatric and adult samples (n = 45) showed that LIN28, the negative regulator of let-7 biogenesis, was abundant in malignant GCTs, regardless of patient age, tumor site, or histologic subtype. Indeed, a strong negative correlation existed between LIN28 and let-7 levels in specimens with matched datasets. Low let-7 levels were biologically significant, as the sequence complementary to the 2 to 7 nt common let-7 seed "GAGGUA" was enriched in the 3' untranslated regions of mRNAs upregulated in pediatric and adult malignant GCTs, compared with normal gonads (a mixture of germ cells and somatic cells). We identified 27 mRNA targets of let-7 that were upregulated in malignant GCT cells, confirming significant negative correlations with let-7 levels. Among 16 mRNAs examined in a largely independent set of specimens by quantitative reverse transcription PCR, we defined negative-associations with let-7e levels for six oncogenes, including MYCN, AURKB, CCNF, RRM2, MKI67, and C12orf5 (when including normal control tissues). Importantly, LIN28 depletion in malignant GCT cells restored let-7 levels and repressed all of these oncogenic let-7 mRNA targets, with LIN28 levels correlating with cell proliferation and MYCN levels. Conversely, ectopic expression of let-7e was sufficient to reduce proliferation and downregulate MYCN, AURKB, and LIN28, the latter via a double-negative feedback loop. We conclude that the LIN28/let-7 pathway has a critical pathobiologic role in malignant GCTs and therefore offers a promising target for therapeutic intervention. ©2013 AACR.

  10. Tumor markers and oncogene expression in thyroid cancer using biochemical and immunohistochemical studies.

    PubMed

    Hashimoto, T; Matsubara, F; Mizukami, Y; Miyazaki, I; Michigishi, T; Yanaihara, N

    1990-04-01

    In 111 thyroid cancer patients consisting of 89 papillary carcinomas, 17 follicular carcinomas, 2 medullary carcinomas, 1 squamous cell carcinoma and 2 malignant lymphomas, the levels of 12 tumor markers, including thyroglobulin (Tg), were measured in the serum by radioimmunoassay and radioimmunoassay related methods. Serum levels of Tg were elevated in 58.6%, those of CA-M26 in 15.7%, CA 19-9 in 5.3%, CT in 3.6%, NSE in 3.6%, CA 15-3 in 2.6%, CA 125 in 2.6%, CEA in 0.9%, CA-M 29 in 0%, ferritin in 0%, SCC in 0% and AFP in 0% of cases. Among the patients, there was a case of thyroid carcinoma secreting thyroglobulin and CA 19-9, both of whose titer decreased after surgery. Immunohistochemical studies were carried out on 57 of the above mentioned patients plus 6 anaplastic carcinomas, 15 adenomas, 5 adenomatous goiters, 6 Hashimoto's thyroiditis, 15 Graves' disease and 15 normal subjects. CA 19-9 was positive in 58% of the papillary carcinomas, EGF in 73% of papillary carcinomas, 67% of anaplastic carcinomas, and 33% of follicular carcinomas, while EGF-R was found in 73% of the papillary carcinomas, and 33% of the follicular carcinomas. Enhanced expression of ras p 21 oncogene and (c-myc oncogene) was demonstrated in 100% (100%) of anaplastic carcinomas, in 100% (67%) of follicular carcinomas and in 63% (90%) of papillary carcinomas. Our results indicate that a better tumor marker is required and more extensive molecular oncology research should be pursued.

  11. Global Regulation of Differential Gene Expression by c-Abl/Arg Oncogenic Kinases.

    PubMed

    Dong, Qincai; Li, Chenggong; Qu, Xiuhua; Cao, Cheng; Liu, Xuan

    2017-05-30

    BACKGROUND Studies have found that c-Abl oncogenic kinases may regulate gene transcription by RNA polymerase II phosphorylation or by direct regulation of specific transcription factors or coactivators. However, the global regulation of differential gene expression by c-Abl/Arg is largely unknown. In this study, differentially expressed genes (DEGs) regulated by c-Abl/Arg were identified, and related cellular functions and associated pathways were investigated. MATERIAL AND METHODS RNA obtained from wild-type and c-Abl/Arg gene-silenced MCF-7 cells was analyzed by RNA-Seq. DEGs were identified using edgeR software and partially validated by qRT-PCR. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to explore the potential functions of these DEGs. RESULTS A total of 1,034 DEGs were significantly regulated by c-Abl/Arg (399 were up-regulated and 635 were down-regulated after c-Abl/Arg double knockdown). GO and KEGG analyses showed that the DEGs were primarily involved in cellular metabolic processes, neurodegenerative disease, the metabolic process and signaling pathway of cAMP, angiogenesis, and cell proliferation. CONCLUSIONS Our data collectively support the hypothesis that c-Abl/Arg regulate differential gene expression, providing new insights into the biological functions of c-Abl and Arg.

  12. Posttranscriptional regulation of cellular gene expression by the c-myc oncogene

    SciTech Connect

    Prendergast, G.C.; Cole, M.D. . Dept. of Biology)

    1989-01-01

    The c-myc oncogene has been implicated in the development of many different cancers, yet the mechanism by which the c-myc protein alters cellular growth control has proven elusive. The authors used a cDNA hybridization difference assay to isolate two genes, mr1 and mr2, that were constitutively expressed (i.e., deregulated) in rodent fibroblast cell lines immortalized by transfection of a viral promoter-linked c-myc gene. Both cDNAs were serum inducible in quiescent G/sub o/ fibroblasts, suggesting that they are functionally related to cellular proliferative processes. Although there were significant differences in cytoplasmic mRNA levels between myc-immortalized and control cells, the rates of transcription and mRNA turnover of both genes were similar, suggesting that c-myc regulates mr1 and mr2 expression by some nuclear posttranscriptional mechanism. Their results provide evidence that c-myc can rapidly modulate cellular gene expression and suggest that c-myc may function in gene regulation at the level of RNA export, splicing, or nuclear RNA turnover.

  13. Expression of the Ets-1 proto-oncogene in human gastric carcinoma: correlation with tumor invasion.

    PubMed Central

    Nakayama, T.; Ito, M.; Ohtsuru, A.; Naito, S.; Nakashima, M.; Fagin, J. A.; Yamashita, S.; Sekine, I.

    1996-01-01

    The proto-oncogene Ets-1 is a transcription factor known to control the expression of a number of genes involved in extracellular matrix remodeling and has been postulated to play a role in cell migration and tumor invasion. To elucidate the involvement of Ets-1 in human gastric carcinomas, we examined 11 cases of gastric adenoma and 110 cases of gastric carcinoma by immunohistochemistry and compared the degree of Ets-1 expression with the depth of carcinoma invasion. Ets-1 was not expressed either in the normal gastric epithelium or in gastric adenomas. Among the 110 cases with gastric adenocarcinoma, 70 (63.6%) showed positive staining for the Ets-1 protein. In mucosal carcinomas, only 3 of 26 cases (11.5%) showed positive immunostaining for Ets-1. In contrast, 67 of 84 cases (79.8%) with submucosal or more invasive carcinomas showed immunopositivity and intense staining for Ets-1 in the tumor cells. The pattern of Ets-1 immunostaining in mucosal carcinomas was weak and differed from that of other local invasive carcinomas (P < 0.001). Histologically, signet-ring cell and mucinous carcinomas expressed relatively weak positivity for Ets-1. Ets-1 expression correlated significantly with the presence of lymph node metastasis (P < 0.001). In situ hybridization, using an Ets-1 oligonucleotide probe, also confirmed the presence of Ets-1 mRNA in gastric carcinomas. Expression of Ets-1 mRNA was also detected in four different kinds of cultured human gastric carcinoma cell lines by the reverse transcription polymerase chain reaction method. These findings suggest that Ets-1 is overexpressed in gastric mucosal cells that have undergone malignant conversion and that Ets-1 is one of the factors involved in the penetration of gastric carcinoma beyond the muscularis mucosa. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8952528

  14. Oncogenic Ras and B-Raf proteins positively regulate death receptor 5 expression through co-activation of ERK and JNK signaling.

    PubMed

    Oh, You-Take; Yue, Ping; Zhou, Wei; Balko, Justin M; Black, Esther P; Owonikoko, Taofeek K; Khuri, Fadlo R; Sun, Shi-Yong

    2012-01-02

    Oncogenic mutations of ras and B-raf frequently occur in many cancer types and are critical for cell transformation and tumorigenesis. Death receptor 5 (DR5) is a cell surface pro-apoptotic death receptor for tumor necrosis factor-related apoptosis-inducing ligand and has been targeted in cancer therapy. The current study has demonstrated induction of DR5 expression by the oncogenic proteins Ras and B-Raf and revealed the underlying mechanisms. We demonstrated that both Ras and B-Raf induce DR5 expression by enforced expression of oncogenic Ras (e.g. H-Ras12V or K-Ras12V) or B-Raf (i.e. V600E) in cells and by analyzing gene expression array data generated from cancer cell lines and from human cancer tissues. This finding is further supported by our results that knockdown of endogenous K-Ras or B-Raf (V600E) reduced the expression of DR5. Importantly, we have elucidated that Ras induces DR5 expression through co-activation of ERK/RSK and JNK signaling pathways and subsequent cooperative effects among the transcriptional factors CHOP, Elk1, and c-Jun to enhance DR5 gene transcription. Moreover, we found that the majority of cancer cell lines highly sensitive to the DR5 agonistic antibody AMG655 have either Ras or B-Raf mutations. Our findings warrant further study on the biology of DR5 regulation by Ras and B-Raf, which may provide new insight into the biology of Ras and B-Raf, and on the potential impact of Ras or B-Raf mutations on the outcome of DR5-targeted cancer therapy.

  15. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells.

    PubMed

    Wang, Hongtao; Gao, Peng; Zheng, Jie

    2014-09-05

    Arsenic trioxide (As2O3) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As2O3 induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As2O3 on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As2O3 than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As2O3 than HPV 16-positive CaSki and SiHa cells. After As2O3 treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As2O3 is a potential anticancer drug for cervical cancer.

  16. Proliferative response and oncogene expression induced by epidermal growth factor in EL2 rat fibroblasts.

    PubMed

    Liboi, E; Pelosi, E; Testa, U; Peschle, C; Rossi, G B

    1986-06-01

    Extensive evidence supports a two-step model for the control of fibroblast growth, which includes first the action of a competence factor (e.g., platelet-derived growth factor) followed by the stimulus of a progression factor (e.g., epidermal growth factor [EGF]). We investigated whether this model may be applied to the euploid EL2 fibroblast line recently isolated from rat embryos (E. Liboi, M. Caruso, and C. Basilico, Mol. Cell. Biol. 4:2925-2928, 1984). Our results clearly show that EGF alone leads EL2 cells to proliferate in serum-free conditions at a rate corresponding to 50 to 60% of that observed in the presence of 10% calf serum. It is of interest that, when resting EL2 cells were exposed to EGF, transcription of both c-myc and c-fos was markedly induced. Altogether, these observations suggest that, in contrast with the model of fibroblast growth mentioned above, EL2 cells require the presence of a single growth factor (EGF) for induction of DNA synthesis, and the expression of myc and fos proto-oncogenes may represent an obligatory step in the pathway of commitment of EL2 cells to proliferation. In addition, we showed that EGF may induce EL2 cells to acquire some properties of transformed cells, such as growth in agar and loss of contact inhibition. This suggests that the particular response to EGF of the EL2 line may be strictly connected with the expression of a transformed phenotype.

  17. ZYG11A serves as an oncogene in non-small cell lung cancer and influences CCNE1 expression

    PubMed Central

    Wang, Xin; Sun, Qi; Chen, Chen; Yin, Rong; Huang, Xing; Wang, Xuan; Shi, Run; Xu, Lin; Ren, Binhui

    2016-01-01

    By analyzing The Cancer Genome Atlas (TCGA) database, we identified ZYG11A as a potential oncogene. We determined the expression of ZYG11A in NSCLC tissues and explored its clinical significance. And also evaluated the effects of ZYG11A on NSCLC cell proliferation, migration, and invasion both in vitro and in vivo. Our results show that ZYG11A is hyper-expressed in NSCLC tissues compared to adjacent normal tissues, and increased expression of ZYG11A is associated with a poor prognosis (HR: 2.489, 95%CI: 1.248-4.963, p = 0.010). ZYG11A knockdown induces cell cycle arrest and inhibits proliferation, migration, and invasion of NSCLC cells. ZYG11A knockdown also results in decreased expression of CCNE1. Over-expression of CCNE1 in cells with ZYG11A knockdown restores their oncogenic activities. Our data suggest that ZYG11A may serve as a novel oncogene promoting tumorigenicity of NSCLC cells by inducing cell cycle alterations and increasing CCNE1 expression. PMID:26771237

  18. The MYC 3′ Wnt-Responsive Element Drives Oncogenic MYC Expression in Human Colorectal Cancer Cells

    PubMed Central

    Rennoll, Sherri A.; Eshelman, Melanie A.; Raup-Konsavage, Wesley M.; Kawasawa, Yuka Imamura; Yochum, Gregory S.

    2016-01-01

    Mutations in components of the Wnt/β-catenin signaling pathway drive colorectal cancer (CRC) by deregulating expression of downstream target genes including the c-MYC proto-oncogene (MYC). The critical regulatory DNA enhancer elements that control oncogenic MYC expression in CRC have yet to be fully elucidated. In previous reports, we correlated T-cell factor (TCF) and β-catenin binding to the MYC 3′ Wnt responsive DNA element (MYC 3′ WRE) with MYC expression in HCT116 cells. Here we used CRISPR/Cas9 to determine whether this element is a critical driver of MYC. We isolated a clonal population of cells that contained a deletion of a single TCF binding element (TBE) within the MYC 3′ WRE. This deletion reduced TCF/β-catenin binding to this regulatory element and decreased MYC expression. Using RNA-Seq analysis, we found altered expression of genes that regulate metabolic processes, many of which are known MYC target genes. We found that 3′ WRE-Mut cells displayed a reduced proliferative capacity, diminished clonogenic growth, and a decreased potential to form tumors in vivo. These findings indicate that the MYC 3′ WRE is a critical driver of oncogenic MYC expression and suggest that this element may serve as a therapeutic target for CRC. PMID:27223305

  19. Integrative analysis reveals clinical phenotypes and oncogenic potentials of long non-coding RNAs across 15 cancer types

    PubMed Central

    Piccolo, Stephen R.; Zhang, Xiao-Qin; Li, Jun-Hao; Zhou, Hui; Yang, Jian-Hua; Qu, Liang-Hu

    2016-01-01

    Long non-coding RNAs (lncRNAs) have been shown to contribute to tumorigenesis. However, surprisingly little is known about the comprehensive clinical and genomic characterization of lncRNAs across human cancer. In this study, we conducted comprehensive analyses for the expression profile, clinical outcomes, somatic copy number alterations (SCNAs) profile of lncRNAs in ~7000 clinical samples from 15 different cancer types. We identified significantly differentially expressed lncRNAs between tumor and normal tissues from each cancer. Notably, we characterized 47 lncRNAs which were extensively dysregulated in at least 10 cancer types, suggesting a conserved function in cancer development. We also analyzed the associations between lncRNA expressions and patient survival, and identified sets of lncRNAs that possessed significant prognostic values in specific cancer types. Our combined analysis of SCNA data and expression data uncovered 116 dysregulated lncRNAs are strikingly genomic altered across 15 cancer types, indicating their oncogenic potentials. Our study may lay the groundwork for future functional studies of lncRNAs and help facilitate the discovery of novel clinical biomarkers. PMID:27147563

  20. Intestine-specific homeobox (ISX) upregulates E2F1 expression and related oncogenic activities in HCC

    PubMed Central

    Chai, Chee-Yin; Hsi, Edward; Kuo, Hsing-Tao; Yokoyama, Kazunari K.; Hsu, Shih-Hsien

    2016-01-01

    Intestine-specific homeobox (ISX), a newly identified proto-oncogene, is involved in cell proliferation and progression of hepatocellular carcinoma (HCC). However, the underlying mechanisms linking gene expression and tumor formation remain unclear. In this study, we found that ISX transcriptionally activated E2F transcription factor 1 (E2F1) and associated oncogenic activity by directly binding to the E2 site of its promoter. Forced expression of ISX increased the expression of and phosphorylated the serine residue at position 332 of E2F1, which may be translocated into the nucleus to form the E2F1–DP-1 complex, suggesting that the promotion of oncogenic activities of the ISX–E2F1 axis plays a critical role in hepatoma cells. Coexpression of ISX and E2F1 significantly promoted p53 and RB-mediated cell proliferation and anti-apoptosis, and repressed apoptosis and autophagy. In contrast, short hairpin RNAi-mediated attenuation of ISX and E2F1 decreased cell proliferation and malignant transformation, respectively, in hepatoma cells in vitro and in vivo. The mRNA expression of E2F1 and ISX in 238 paired specimens from human HCC patients, and the adjacent, normal tissues exhibited a tumor-specific expression pattern which was highly correlated with disease pathogenesis, patient survival time, progression stage, and poor prognosis. Therefore, our results indicate that E2F1 is an important downstream gene of ISX in hepatoma progression. PMID:27175585

  1. Merkel cell carcinoma subgroups by Merkel cell polyomavirus DNA relative abundance and oncogene expression

    PubMed Central

    Bhatia, Kishor; Goedert, James J.; Modali, Rama; Preiss, Liliana; Ayers, Leona W.

    2010-01-01

    Merkel cell polyomavirus (MCPyV) was recently discovered in Merkel cell carcinoma (MCC), a clinically and pathologically heterogeneous malignancy of dermal neuroendocrine cells. To investigate this heterogeneity, we developed a tissue microarray (TMA) to characterize immunohistochemical staining of candidate tumor cell proteins and a quantitative PCR assay to detect MCPyV and measure viral loads. MCPyV was detected in 19 of 23 (74%) primary MCC tumors, but 8 of these had less than 1 viral copy per 300 cells. Viral abundance of 0.06–1.2viral copies/cell was directly related to presence of retinoblastoma gene product (pRb) and terminal deoxyribonucleotidyl transferase (TdT) by immunohistochemical staining (P≤0.003). Higher viral abundance tumors tended to be associated with less p53 expression, younger age at diagnosis, and longer survival (P≤0.08). These data suggest that MCC may arise through different oncogenic pathways, including ones independent of pRb and MCPyV. PMID:19551862

  2. Oncogenic ras-induced expression of cytokines: a new target of anti-cancer therapeutics.

    PubMed

    Ancrile, Brooke B; O'Hayer, Kevin M; Counter, Christopher M

    2008-02-01

    The Ras family of small guanosine triphosphatases normally transmit signals from cell surface receptors to the interior of the cell. Stimulation of cell surface receptors leads to the activation of guanine exchange factors, which, in turn, convert Ras from an inactive GDP-bound state to an active GTP-bound state. However, in one third of human cancers, RAS is mutated and remains in the constitutively active GTP-bound state. In this oncogenic state, RAS activates a constellation of signaling that is known to promote tumorigenesis. One consequence of this oncogenic RAS signal in cancer cells is the upregulation of the cytokines interleukin (IL)-6, IL-8, and chemokine growth-regulated oncogene 1 (GRO-1). We review the evidence supporting a role for these cytokines in oncogenic RAS-driven solid tumors.

  3. Immortality, but not oncogenic transformation, of primary human cells leads to epigenetic reprogramming of DNA methylation and gene expression.

    PubMed

    Gordon, Katrina; Clouaire, Thomas; Bao, Xun X; Kemp, Sadie E; Xenophontos, Maria; de Las Heras, Jose Ignacio; Stancheva, Irina

    2014-04-01

    Tumourigenic transformation of normal cells into cancer typically involves several steps resulting in acquisition of unlimited growth potential, evasion of apoptosis and non-responsiveness to growth inhibitory signals. Both genetic and epigenetic changes can contribute to cancer development and progression. Given the vast genetic heterogeneity of human cancers and difficulty to monitor cancer-initiating events in vivo, the precise relationship between acquisition of genetic mutations and the temporal progression of epigenetic alterations in transformed cells is largely unclear. Here, we use an in vitro model system to investigate the contribution of cellular immortality and oncogenic transformation of primary human cells to epigenetic reprogramming of DNA methylation and gene expression. Our data demonstrate that extension of replicative life span of the cells is sufficient to induce accumulation of DNA methylation at gene promoters and large-scale changes in gene expression in a time-dependent manner. In contrast, continuous expression of cooperating oncogenes in immortalized cells, although essential for anchorage-independent growth and evasion of apoptosis, does not affect de novo DNA methylation at promoters and induces subtle expression changes. Taken together, these observations imply that cellular immortality promotes epigenetic adaptation to highly proliferative state, whereas transforming oncogenes confer additional properties to transformed human cells.

  4. Activity-Based Protein Profiling of Oncogene-Driven Changes in Metabolism Reveals Broad Dysregulation of PAFAH1B2 and 1B3 in Cancer

    PubMed Central

    Kohnz, Rebecca A.; Mulvihill, Melinda M.; Chang, Jae Won; Hsu, Ku-Lung; Sorrentino, Antonio; Cravatt, Benjamin F.; Bandyopadhyay, Sourav; Goga, Andrei; Nomura, Daniel K.

    2015-01-01

    Targeting dysregulated metabolic pathways is a promising therapeutic strategy for eradicating cancer. Understanding how frequently altered oncogenes regulate metabolic enzyme targets would be useful in identifying both broad-spectrum and targeted metabolic therapies for cancer. Here, we used activity-based protein profiling to identify serine hydrolase activities that were consistently upregulated by various human oncogenes. Through this profiling effort, we found oncogenic regulatory mechanisms for several cancer-relevant serine hydrolases and discovered that platelet activating factor acetylhydrolase 1B2 and 1B3 (PAFAH1B2 and PAFAH1B3) activities were consistently upregulated by several oncogenes, alongside previously discovered cancer-relevant hydrolases fatty acid synthase and monoacylglycerol lipase. While we previously showed that PAFAH1B2 and 1B3 were important in breast cancer our most recent profiling studies have revealed that these enzymes may be dysregulated broadly across many types of cancers. Here, we find that pharmacological blockade of both enzymes impairs cancer pathogenicity across multiple different types of cancer cells, including breast, ovarian, melanoma, and prostate cancer. We also show that pharmacological blockade of PAFAH1B2 and 1B3 cause unique changes in lipid metabolism, including heightened levels of tumor-suppressing lipids. Our results reveal oncogenic regulatory mechanisms of several cancer-relevant serine hydrolases using activity-based protein profiling and we show that PAFAH1B2 and 1B3 are important in maintaining cancer pathogenicity across a wide spectrum of cancer types. PMID:25945974

  5. ELF4/MEF activates MDM2 expression and blocks oncogene-induced p16 activation to promote transformation.

    PubMed

    Sashida, Goro; Liu, Yan; Elf, Shannon; Miyata, Yasuhiko; Ohyashiki, Kazuma; Izumi, Miki; Menendez, Silvia; Nimer, Stephen D

    2009-07-01

    Several ETS transcription factors, including ELF4/MEF, can function as oncogenes in murine cancer models and are overexpressed in human cancer. We found that Elf4/Mef activates Mdm2 expression; thus, lack of or knockdown of Elf4/Mef reduces Mdm2 levels in mouse embryonic fibroblasts (mef's), leading to enhanced p53 protein accumulation and p53-dependent senescence. Even though p53 is absent in Elf4(-/-) p53(-/-) mef's, neither oncogenic H-Ras(V12) nor c-myc can induce transformation of these cells. This appears to relate to the INK4a/ARF locus; both p19(ARF) and p16 are increased in Elf4(-/-) p53(-/-) mef's, and expression of Bmi-1 or knockdown of p16 in this context restores H-Ras(V12)-induced transformation. Thus, ELF4/MEF promotes tumorigenesis by inhibiting both the p53 and p16/Rb pathways.

  6. Comprehensive analysis of cellular galectin-3 reveals no consistent oncogenic function in pancreatic cancer cells.

    PubMed

    Hann, Alexander; Gruner, Anja; Chen, Ying; Gress, Thomas M; Buchholz, Malte

    2011-01-01

    Galectin-3 (Gal-3), a 31 kDa member of the family of beta-galactoside-binding proteins, has been implicated in the progression of different human cancers. However, the proposed roles differ widely, ranging from tumor-promoting cellular functions and negative impact on patient prognosis to tumor-suppressive properties and positive prognostic impact. We and others have previously identified Gal-3 as overexpressed in pancreatic cancer as compared to chronic pancreatitis and normal pancreatic tissue. The purpose of this study was thus the comprehensive analysis of putative cellular functions of Gal-3 by transient as well as stable silencing or overexpression of Gal-3 in a panel of 6 well-established pancreatic cancer cell lines. Our results confirm that galectin-3 is upregulated at the mRNA level in pancreatic cancer and strongly expressed in the majority of pancreatic cancer cell lines. In individual cell lines, transient knockdown of Gal-3 expression resulted in moderate inhibitory effects on proliferation, migration or anchorage-independent growth of the cells, but these effects were not consistent across the spectrum of analyzed cell lines. Moreover, functional effects of the modulation of Gal-3 expression were not observed in stable knockdown or overexpression approaches in vitro and did not alter the growth characteristics of nude mouse xenograft tumors in vivo. Our data thus do not support a direct functional role of Gal-3 in the malignant transformation of pancreatic epithelial cells, although paracrine or systemic effects of Gal-3 expression are not excluded.

  7. Sensitivity of acute myeloid leukemia Kasumi-1 cells to binase toxic action depends on the expression of KIT and АML1-ETO oncogenes.

    PubMed

    Mitkevich, Vladimir A; Petrushanko, Irina Y; Spirin, Pavel V; Fedorova, Tatiana V; Kretova, Olga V; Tchurikov, Nickolai A; Prassolov, Vladimir S; Ilinskaya, Olga N; Makarov, Alexander A

    2011-12-01

    Some RNases selectively attack malignant cells, triggering an apoptotic response, and therefore are considered as alternative chemotherapeutic drugs. Here we studied the effects of Bacillus intermedius RNase (binase) on murine myeloid progenitor cells FDC-P1; transduced FDC-P1 cells ectopically expressing mutated human KIT N822K oncogene and/or human AML1-ETO oncogene; and human leukemia Kasumi-1 cells expressing both of these oncogenes. Expression of both KIT and AML1-ETO oncogenes makes FDC-P1 cells sensitive to the toxic effects of binase. Kasumi-1 cells were the most responsive to the toxic actions of binase among the cell lines used in this work with an IC50 value of 0.56 µM. Either blocking the functional activity of the KIT protein with imatinib or knocking-down oncogene expression using lentiviral vectors producing shRNA against AML1-ETO or KIT eliminated the sensitivity of Kasumi-1 cells to binase toxic action and promoted their survival, even in the absence of KIT-dependent proliferation and antiapoptotic pathways. Here we provide evidence that the cooperative effect of the expression of mutated KIT and AML1-ETO oncogenes is crucial for selective toxic action of binase on malignant cells. These findings can facilitate clinical applications of binase providing a useful screen based on the presence of the corresponding target oncogenes in malignant cells.

  8. Normal ABL1 is a tumor suppressor and therapeutic target in human and mouse leukemias expressing oncogenic ABL1 kinases.

    PubMed

    Dasgupta, Yashodhara; Koptyra, Mateusz; Hoser, Grazyna; Kantekure, Kanchan; Roy, Darshan; Gornicka, Barbara; Nieborowska-Skorska, Margaret; Bolton-Gillespie, Elisabeth; Cerny-Reiterer, Sabine; Müschen, Markus; Valent, Peter; Wasik, Mariusz A; Richardson, Christine; Hantschel, Oliver; van der Kuip, Heiko; Stoklosa, Tomasz; Skorski, Tomasz

    2016-04-28

    Leukemias expressing constitutively activated mutants of ABL1 tyrosine kinase (BCR-ABL1, TEL-ABL1, NUP214-ABL1) usually contain at least 1 normal ABL1 allele. Because oncogenic and normal ABL1 kinases may exert opposite effects on cell behavior, we examined the role of normal ABL1 in leukemias induced by oncogenic ABL1 kinases. BCR-ABL1-Abl1(-/-) cells generated highly aggressive chronic myeloid leukemia (CML)-blast phase-like disease in mice compared with less malignant CML-chronic phase-like disease from BCR-ABL1-Abl1(+/+) cells. Additionally, loss of ABL1 stimulated proliferation and expansion of BCR-ABL1 murine leukemia stem cells, arrested myeloid differentiation, inhibited genotoxic stress-induced apoptosis, and facilitated accumulation of chromosomal aberrations. Conversely, allosteric stimulation of ABL1 kinase activity enhanced the antileukemia effect of ABL1 tyrosine kinase inhibitors (imatinib and ponatinib) in human and murine leukemias expressing BCR-ABL1, TEL-ABL1, and NUP214-ABL1. Therefore, we postulate that normal ABL1 kinase behaves like a tumor suppressor and therapeutic target in leukemias expressing oncogenic forms of the kinase. © 2016 by The American Society of Hematology.

  9. Deregulated miRNAs in Hereditary Breast Cancer Revealed a Role for miR-30c in Regulating KRAS Oncogene

    PubMed Central

    Tanic, Miljana; Yanowsky, Kira; Rodriguez-Antona, Cristina; Andrés, Raquel; Márquez-Rodas, Iván; Osorio, Ana; Benitez, Javier; Martinez-Delgado, Beatriz

    2012-01-01

    Aberrant miRNA expression has been previously established in breast cancer and has clinical relevance. However, no studies so far have defined miRNAs deregulated in hereditary breast tumors. In this study we investigated the role of miRNAs in hereditary breast tumors comparing with normal breast tissue. Global miRNA expression profiling using Exiqon microarrays was performed on 22 hereditary breast tumors and 15 non-tumoral breast tissues. We identified 19 miRNAs differentially expressed, most of them down-regulated in tumors. An important proportion of deregulated miRNAs in hereditary tumors were previously identified commonly deregulated in sporadic breast tumors. Under-expression of these miRNAs was validated by qRT-PCR in additional 18 sporadic breast tumors and their normal breast tissue counterparts. Pathway enrichment analysis revealed that deregulated miRNAs collectively targeted a number of genes belonging to signaling pathways such as MAPK, ErbB, mTOR, and those regulating cell motility or adhesion. In silico prediction detected KRAS oncogene as target of several deregulated miRNAs. In particular, we experimentally validated KRAS as a miR-30c target. Luciferase assays confirmed that miR-30c binds the 3′UTR of KRAS transcripts and expression of pre-miR-30c down-regulated KRAS mRNA and protein. Furthermore, miR-30c overexpression inhibited proliferation of breast cancer cells. Our results identify miRNAs associated to hereditary breast cancer, as well as miRNAs commonly miss-expressed in hereditary and sporadic tumors, suggesting common underlying mechanisms of tumor progression. In addition, we provide evidence that KRAS is a target of miR-30c, and that this miRNA suppresses breast cancer cell growth potentially through inhibition of KRAS signaling. PMID:22701724

  10. Transgenic expression of oncogenic BRAF induces loss of stem cells in the mouse intestine, which is antagonized by β-catenin activity.

    PubMed

    Riemer, P; Sreekumar, A; Reinke, S; Rad, R; Schäfer, R; Sers, C; Bläker, H; Herrmann, B G; Morkel, M

    2015-06-11

    Colon cancer cells frequently carry mutations that activate the β-catenin and mitogen-activated protein kinase (MAPK) signaling cascades. Yet how oncogenic alterations interact to control cellular hierarchies during tumor initiation and progression is largely unknown. We found that oncogenic BRAF modulates gene expression associated with cell differentiation in colon cancer cells. We therefore engineered a mouse with an inducible oncogenic BRAF transgene, and analyzed BRAF effects on cellular hierarchies in the intestinal epithelium in vivo and in primary organotypic culture. We demonstrate that transgenic expression of oncogenic BRAF in the mouse strongly activated MAPK signal transduction, resulted in the rapid development of generalized serrated dysplasia, but unexpectedly also induced depletion of the intestinal stem cell (ISC) pool. Histological and gene expression analyses indicate that ISCs collectively converted to short-lived progenitor cells after BRAF activation. As Wnt/β-catenin signals encourage ISC identity, we asked whether β-catenin activity could counteract oncogenic BRAF. Indeed, we found that intestinal organoids could be partially protected from deleterious oncogenic BRAF effects by Wnt3a or by small-molecule inhibition of GSK3β. Similarly, transgenic expression of stabilized β-catenin in addition to oncogenic BRAF partially prevented loss of stem cells in the mouse intestine. We also used BRAF(V637E) knock-in mice to follow changes in the stem cell pool during serrated tumor progression and found ISC marker expression reduced in serrated hyperplasia forming after BRAF activation, but intensified in progressive dysplastic foci characterized by additional mutations that activate the Wnt/β-catenin pathway. Our study suggests that oncogenic alterations activating the MAPK and Wnt/β-catenin pathways must be consecutively and coordinately selected to assure stem cell maintenance during colon cancer initiation and progression. Notably, loss of

  11. Potential microRNA-mediated oncogenic intercellular communication revealed by pan-cancer analysis

    NASA Astrophysics Data System (ADS)

    Li, Yue; Zhang, Zhaolei

    2014-11-01

    Carcinogenesis consists of oncogenesis and metastasis, and intriguingly microRNAs (miRNAs) are involved in both processes. Although aberrant miRNA activities are prevalent in diverse tumor types, the exact mechanisms for how they regulate cancerous processes are not always clear. To this end, we performed a large-scale pan-cancer analysis via a novel probabilistic approach to infer recurrent miRNA-target interactions implicated in 12 cancer types using data from The Cancer Genome Atlas. We discovered ~20,000 recurrent miRNA regulations, which are enriched for cancer-related miRNAs/genes. Notably, miRNA 200 family (miR-200/141/429) is among the most prominent miRNA regulators, which is known to be involved in metastasis. Importantly, the recurrent miRNA regulatory network is not only enriched for cancer pathways but also for extracellular matrix (ECM) organization and ECM-receptor interactions. The results suggest an intriguing cancer mechanism involving miRNA-mediated cell-to-cell communication, which possibly involves delivery of tumorigenic miRNA messengers to adjacent cells via exosomes. Finally, survival analysis revealed 414 recurrent-prognostic associations, where both gene and miRNA involved in each interaction conferred significant prognostic power in one or more cancer types. Together, our comprehensive pan-cancer analysis provided not only biological insights into metastasis but also brought to bear the clinical relevance of the proposed recurrent miRNA-gene associations.

  12. Potential microRNA-mediated oncogenic intercellular communication revealed by pan-cancer analysis.

    PubMed

    Li, Yue; Zhang, Zhaolei

    2014-11-18

    Carcinogenesis consists of oncogenesis and metastasis, and intriguingly microRNAs (miRNAs) are involved in both processes. Although aberrant miRNA activities are prevalent in diverse tumor types, the exact mechanisms for how they regulate cancerous processes are not always clear. To this end, we performed a large-scale pan-cancer analysis via a novel probabilistic approach to infer recurrent miRNA-target interactions implicated in 12 cancer types using data from The Cancer Genome Atlas. We discovered ~20,000 recurrent miRNA regulations, which are enriched for cancer-related miRNAs/genes. Notably, miRNA 200 family (miR-200/141/429) is among the most prominent miRNA regulators, which is known to be involved in metastasis. Importantly, the recurrent miRNA regulatory network is not only enriched for cancer pathways but also for extracellular matrix (ECM) organization and ECM-receptor interactions. The results suggest an intriguing cancer mechanism involving miRNA-mediated cell-to-cell communication, which possibly involves delivery of tumorigenic miRNA messengers to adjacent cells via exosomes. Finally, survival analysis revealed 414 recurrent-prognostic associations, where both gene and miRNA involved in each interaction conferred significant prognostic power in one or more cancer types. Together, our comprehensive pan-cancer analysis provided not only biological insights into metastasis but also brought to bear the clinical relevance of the proposed recurrent miRNA-gene associations.

  13. Mitochondrial STAT3 contributes to transformation of Barrett's epithelial cells that express oncogenic Ras in a p53-independent fashion.

    PubMed

    Yu, Chunhua; Huo, Xiaofang; Agoston, Agoston T; Zhang, Xi; Theiss, Arianne L; Cheng, Edaire; Zhang, Qiuyang; Zaika, Alexander; Pham, Thai H; Wang, David H; Lobie, Peter E; Odze, Robert D; Spechler, Stuart J; Souza, Rhonda F

    2015-08-01

    Metaplastic epithelial cells of Barrett's esophagus transformed by the combination of p53-knockdown and oncogenic Ras expression are known to activate signal transducer and activator of transcription 3 (STAT3). When phosphorylated at tyrosine 705 (Tyr705), STAT3 functions as a nuclear transcription factor that can contribute to oncogenesis. STAT3 phosphorylated at serine 727 (Ser727) localizes in mitochondria, but little is known about mitochondrial STAT3's contribution to carcinogenesis in Barrett's esophagus, which is the focus of this study. We introduced a constitutively active variant of human STAT3 (STAT3CA) into the following: 1) non-neoplastic Barrett's (BAR-T) cells; 2) BAR-T cells with p53 knockdown; and 3) BAR-T cells that express oncogenic H-Ras(G12V). STAT3CA transformed only the H-Ras(G12V)-expressing BAR-T cells (evidenced by loss of contact inhibition, formation of colonies in soft agar, and generation of tumors in immunodeficient mice), and did so in a p53-independent fashion. The transformed cells had elevated levels of both mitochondrial (Ser727) and nuclear (Tyr705) phospho-STAT3. Introduction of a STAT3CA construct with a mutated tyrosine phosphorylation site into H-Ras(G12V)-expressing Barrett's cells resulted in high levels of mitochondrial phospho-STAT3 (Ser727) with little or no nuclear phospho-STAT3 (Tyr705), and the cells still formed tumors in immunodeficient mice. Thus tyrosine phosphorylation of STAT3 is not required for tumor formation in Ras-expressing Barrett's cells. We conclude that mitochondrial STAT3 (Ser727) can contribute to oncogenesis in Barrett's cells that express oncogenic Ras. These findings suggest that agents targeting STAT3 might be useful for chemoprevention in patients with Barrett's esophagus.

  14. Tal1 transgenic expression reveals absence of B lymphocytes.

    PubMed

    Palamarchuk, Alexey; Zanesi, Nicola; Aqeilan, Rami I; Efanov, Alexey; Maximov, Vadim; Santanam, Urmila; Hagan, John P; Croce, Carlo M; Pekarsky, Yuri

    2006-06-15

    TAL1 oncogene encodes a helix-loop-helix transcription factor, Tal1, which is required for blood cell development, and its activation is a frequent event in T-cell acute lymphoblastic leukemia. Tal1 interacts and inhibits other helix-loop-helix factors such as E47 and HEB. To investigate the function of Tal1 in B cells, we generated Emu-TAL1 transgenic mouse line, expressing Tal1 in mouse B-cell lineage. Fluorescence-activated cell sorting (FACS) analysis of lymphocytes isolated from spleens of five out of five founders reveals complete absence of IgM- or CD19-expressing cells. Only 2% to 3% of these cells were B220+ and 100% of B220+ cells were CD43+, indicating that these mice were able to make pro-B cells. Similarly, FACS analysis of bone marrow cells in Emu-TAL1 mice revealed complete absence of B220+IgM+ and B220+CD19+ cells. Analysis of the recombination status of IgH genes revealed the presence of D-J but absence or drastic reduction of V-D-J rearrangements. Our results suggest that Tal1 overexpression in B cells results in a phenotype similar to that of B cells of E47/E2A knockout animals. This represents first in vivo evidence that Tal1 can completely inhibit E47/E2A function.

  15. DEK oncogene expression during normal hematopoiesis and in Acute Myeloid Leukemia (AML).

    PubMed

    Logan, Gemma E; Mor-Vaknin, Nirit; Braunschweig, Till; Jost, Edgar; Schmidt, Pia Verena; Markovitz, David M; Mills, Ken I; Kappes, Ferdinand; Percy, Melanie J

    2015-01-01

    DEK is important in regulating cellular processes including proliferation, differentiation and maintenance of stem cell phenotype. The translocation t(6;9) in Acute Myeloid Leukemia (AML), which fuses DEK with NUP214, confers a poor prognosis and a higher risk of relapse. The over-expression of DEK in AML has been reported, but different studies have shown diminished levels in pediatric and promyelocytic leukemias. This study has characterized DEK expression, in silico, using a large multi-center cohort of leukemic and normal control cases. Overall, DEK was under-expressed in AML compared to normal bone marrow (NBM). Studying specific subtypes of AML confirmed either no significant change or a significant reduction in DEK expression compared to NBM. Importantly, the similarity of DEK expression between AML and NBM was confirmed using immunohistochemistry analysis of tissue mircorarrays. In addition, stratification of AML patients based on median DEK expression levels indicated that DEK showed no effect on the overall survival of patients. DEK expression during normal hematopoiesis did reveal a relationship with specific cell types implicating a distinct function during myeloid differentiation. Whilst DEK may play a potential role in hematopoiesis, it remains to be established whether it is important for leukemagenesis, except when involved in the t(6;9) translocation. Copyright © 2014. Published by Elsevier Inc.

  16. Gene expression profiling to define the cell intrinsic role of the SKI proto-oncogene in hematopoiesis and myeloid neoplasms.

    PubMed

    Chalk, Alistair M; Liddicoat, Brian J J; Walkley, Carl R; Singbrant, Sofie

    2014-12-01

    The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced gene signatures associated with hematopoietic stem cells and myeloid differentiation. Here we provide detailed experimental methods and analysis for the gene expression profiling described in our recently published study of Singbrant et al. (2014) in Haematologica. Our data sets (available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39457) provide a resource for exploring the underlying molecular mechanisms of the involvement of the proto-oncogene SKI in hematopoietic stem cell function and development of myeloid neoplasms.

  17. Nuclear Localization and DNA Binding Properties of a Protein Expressed by Human c-myc Oncogene

    NASA Astrophysics Data System (ADS)

    Persson, Hakan; Leder, Philip

    1984-08-01

    Antisera to the human cellular myc oncogene product were used to identify a human c-myc specific protein with a molecular weight of 65,000. Subcellular fractionation showed that the human c-myc protein is predominantly found in the cell nucleus. The p65 Kc-myc protein binds to double- and single-stranded DNA as measured by a DNA affinity chromatography assay.

  18. MicroRNA 10b promotes abnormal expression of the proto-oncogene c-Jun in metastatic breast cancer cells

    PubMed Central

    Knirsh, Revital; Ben-Dror, Iris; Modai, Shira; Shomron, Noam; Vardimon, Lily

    2016-01-01

    MicroRNAs have been shown to act as oncogenes or tumor suppressers via various cellular pathways. Specifically, in breast cancer, upregulation of miR-10b is positively associated with aggressiveness of tumors. However, the mechanism by which miR-10b contributes to cell malignancy is largely unknown. Here we show that at the receiving end of the miR-10b pathway is the proto-oncogene c-Jun, a transcription factor that plays a critical role in stimulation of cell proliferation and tumor progression. c-Jun is known to be translationally activated by loss of cell contacts or restructuring of the cytoskeleton. A comprehensive analysis of miRNA expression exhibited a significant increase in miR-10b expression. This was supported by analysis of breast cancer cells, which showed that loss of E-cadherin in metastatic cells is accompanied by elevation of miR-10b and interestingly, by a marked increase in accumulation of c-Jun. Silencing miR-10b in metastatic breast cancer cells leads to a decline in c-Jun expression, whereas overexpression of miR-10b in HaCaT cells is sufficient to elevate the accumulation of c-Jun. The increase in c-Jun protein accumulation in metastatic cells is not accompanied by an increase in c-Jun mRNA and is not dependent on MAPK activity. Knockdown and overexpression experiments revealed that the increase is mediated by NF1 and RhoC, downstream targets of miR-10b that affect cytoskeletal dynamics through the ROCK pathway. Overall, we show the ability of miR-10b to activate the expression of c-Jun through RhoC and NF1, which represents a novel pathway for promoting migration and invasion of human cancer cells. PMID:27494896

  19. Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells.

    PubMed

    Honegger, Anja; Leitz, Jenny; Bulkescher, Julia; Hoppe-Seyler, Karin; Hoppe-Seyler, Felix

    2013-10-01

    The human papillomavirus (HPV) E6/E7 oncogenes play a crucial role in the HPV-induced carcinogenesis. In this study, the authors investigated whether silencing of endogenous HPV E6/E7 expression may influence the contents or amounts of extracellular microvesicles (eMVs) released from HPV-positive cancer cells. It was found that eMVs secreted from HeLa cells are enriched for Survivin protein. RNA interference studies revealed that maintenance of both intracellular and microvesicular Survivin amounts was strongly dependent on continuous E6/E7 expression. This indicates that intracellular HPV activities are translated into visible alterations of protein contents in eMVs. Besides Survivin, eMVs from HeLa cells contain additional members of the inhibitor of apoptosis protein (IAP) family (XIAP, c-IAP1 and Livin). In contrast, no evidence for the presence of the HPV E6 and E7 oncoproteins in eMVs was obtained. Moreover, it was found that silencing of HPV E6/E7 expression led to a significant increase of exosomes-representing eMVs of endocytic origin-released from HeLa cells. This effect was associated with the reinduction of p53, stimulation of the p53 target genes TSAP6 and CHMP4C that can enhance exosome production and induction of senescence. Taken together, these results show that silencing of HPV E6/E7 oncogene expression profoundly affects both the composition and amounts of eMVs secreted by HPV-positive cancer cells. This indicates that HPVs can induce molecular signatures in eMVs that may affect intercellular communication and could be explored for diagnostic purposes.

  20. Suppression of the metastatic phenotype of a mouse skin carcinoma cell line independent of E-cadherin expression and correlated with reduced Ha-ras oncogene products.

    PubMed

    Caulín, C; López-Barcons, L; Gonzáles-Garrigues, M; Navarro, P; Lozano, E; Rodrigo, I; Gamallo, C; Cano, A; Fabra, A; Quintanilla, M

    1996-02-01

    The HaCa4 cell line, derived from a mouse skin carcinoma induced by Harvey murine sarcoma virus, is highly tumorigenic when injected into nude mice and produces multiple metastases in the lungs. HaCa4 cells express high levels of viral Ha-ras oncogene products, anomalously synthesize the embryonic/simple epithelial keratin K8, and have lost the expression of the cell-cell adhesion receptor E-cadherin (E-CD). E-CD(+) cell clones (E62 and E24), obtained by transfection of an exogenous E-CD cDNA into HaCa4 cells, had a decreased ability to migrate through type IV collagen matrices. However, the E-CD (+) E62 clone remained as metastatic as the parental cell line, whereas the E24 clone, which does not take up the exogenous cDNA but spontaneously switches on the endogenous E-CD gene, suppressed the metastatic phenotype although it maintained its tumorigenicity. E24 cells had fivefold to sixfold lower levels of viral Ha-ras mRNA and p21 protein than the other cell lines. In addition, they did not synthesize K8 but rather switched on keratin K19. The comparison of E-CD proteins synthesized by E62 and E24 cell lines revealed no structural or functional differences because both localized at cell-cell contacts and associated with alpha-catenin, beta-catenin, and plakoglobin. Furthermore, E-CD was still expressed in metastatic lung nodules produced by E62 cells. These results suggest that suppression of the metastatic phenotype in E24 cells occurs independently of E-CD expression and correlates with decreased levels of the oncogenic ras p21 protein.

  1. Localized adenocarcinoma of the lung: oncogene expression of erbB-2 and p53 in 150 patients.

    PubMed

    Harpole, D H; Marks, J R; Richards, W G; Herndon, J E; Sugarbaker, D J

    1995-06-01

    Historical information and pathological material from 150 consecutive patients with localized adenocarcinoma of the lung was collected to evaluate oncogene expression of erbB-2 and p53, and erbB-2 gene amplification. Pathological material after resection was reviewed to verify histological staging, and patient follow-up was complete in all cases for at least 68 months. Immunohistochemistry of erbB-2 (HER-2/neu) and p53 oncogene expression was performed on two separate paraffin tumor blocks for each patient with normal lung as control. Gene amplification of erbB-2 was measured after DNA extraction from 20-micrometer sections of erbB-2-positive and -negative tumors. All analyses were blinded and included Kaplan-Meier survival estimates with Cox proportional hazards regression modeling. Two adequate blocks of tumor and normal lung were available for 138 (92%) patients. Immunohistochemical identification of expression of p53 was observed in 49 (37%) patients and erbB-2 in 17 (13%) patients. DNA dot blot analyses were performed on 17 erbB-2-positive and 13 randomly selected erbB-2-negative tumors. There was 1 (6%) of 17 erbB-2-positve tumors with 4-fold erbB-2 gene amplification. Actual 5-year survival was 63% and actuarial 10-year survival was 59% for the entire population of 150 patients. Significant univariate predictors (P < 0.05) of cancer death were the presence of symptoms, tumor size >3 cm, poor differentiation, visceral pleural invasion, and p53 expression. Multivariate analysis associated symptoms and p53 expression as independent factors with decreased survival. Thus, this project examined p53 and erbB-2 expression in patients with localized adenocarcinoma and associated p53 status with survival. Multicenter collection of data should allow the development of a model of cancer recurrence in this most common lung cancer.

  2. A Global View of the Oncogenic Landscape in Nasopharyngeal Carcinoma: An Integrated Analysis at the Genetic and Expression Levels

    PubMed Central

    Hu, Chunfang; Wei, Wenbin; Chen, Xiaoyi; Woodman, Ciaran B.; Yao, Yunhong; Nicholls, John M.; Joab, Irène; Sihota, Sim K.; Shao, Jian-Yong; Derkaoui, K. Dalia; Amari, Aicha; Maloney, Stephanie L.; Bell, Andrew I.; Murray, Paul G.; Dawson, Christopher W.; Young, Lawrence S.; Arrand, John R.

    2012-01-01

    Previous studies have reported that the tumour cells of nasopharyngeal carcinoma (NPC) exhibit recurrent chromosome abnormalities. These genetic changes are broadly assumed to lead to changes in gene expression which are important for the pathogenesis of this tumour. However, this assumption has yet to be formally tested at a global level. Therefore a genome wide analysis of chromosome copy number and gene expression was performed in tumour cells micro-dissected from the same NPC biopsies. Cellular tumour suppressor and tumour-promoting genes (TSG, TPG) and Epstein-Barr Virus (EBV)-encoded oncogenes were examined. The EBV-encoded genome maintenance protein EBNA1, along with the putative oncogenes LMP1, LMP2 and BARF1 were expressed in the majority of NPCs that were analysed. Significant downregulation of expression in an average of 76 cellular TSGs per tumour was found, whilst a per-tumour average of 88 significantly upregulated, TPGs occurred. The expression of around 60% of putative TPGs and TSGs was both up-and down-regulated in different types of cancer, suggesting that the simplistic classification of genes as TSGs or TPGs may not be entirely appropriate and that the concept of context-dependent onco-suppressors may be more extensive than previously recognised. No significant enrichment of TPGs within regions of frequent genomic gain was seen but TSGs were significantly enriched within regions of frequent genomic loss. It is suggested that loss of the FHIT gene may be a driver of NPC tumourigenesis. Notwithstanding the association of TSGs with regions of genomic loss, on a gene by gene basis and excepting homozygous deletions and high-level amplification, there is very little correlation between chromosomal copy number aberrations and expression levels of TSGs and TPGs in NPC. PMID:22815911

  3. Expression of the human ETS-2 oncogene in normal fetal tissues and in the brain of a fetus with trisomy 21.

    PubMed

    Baffico, M; Perroni, L; Rasore-Quartino, A; Scartezzini, P

    1989-10-01

    The expression of the ETS-2 proto-oncogene, located on chromosome 21, in normal fetal tissues and in neural tissue of a fetus affected by Down syndrome has been investigated. The results show that the ETS-2 proto-oncogene is expressed in almost all the tissues examined and that it is transcribed at constant levels in neural tissue between the 13th and 24th weeks. ETS-2 expression appeared to be slightly increased in Down syndrome brain compared with that of normal controls of the same gestational age.

  4. Hypoxia induces H19 expression through direct and indirect Hif-1α activity, promoting oncogenic effects in glioblastoma

    PubMed Central

    Wu, Weining; Hu, Qi; Nie, Er; Yu, Tianfu; Wu, Youzhi; Zhi, Tongle; Jiang, Kuan; Shen, Feng; Wang, Yingyi; Zhang, Junxia; You, Yongping

    2017-01-01

    H19 expression is elevated in many human tumors including glioblastomas, suggesting an oncogenic role for the long noncoding RNA; yet the upregulation of H19 in glioblastomas remains unclear. Here we report that hypoxia significantly stimulated H19 expression in glioblastoma cell lines, which was related to hypoxia-inducible factors 1α (Hif-1α). Hif-1α promoted H19 expression in U87 and U251 cells. Meanwhile PTEN is an advantageous factor to affect H19 expression, through attenuating Hif-1α stability. Hif-1α also positively correlates with H19 in human glioblastoma samples depending on PTEN status. ChIP and luciferase reporter assays showed that Hif-1α induced H19 transcription through directly binding to the H19 promoter. Furthermore, Hif-1α upregulated specific protein 1 (SP1) expression in glioblastomas cells in vitro and in vivo, and SP1 also strongly interacted with the H19 promoter to promote H19 expression under hypoxia. We also showed that H19 acts as a molecular sponge that binds miR-181d, relieving inhibition of β-catenin expression. Therefore, H19 participates in hypoxia-driven migration and invasion in glioblastoma cells. In summary, our results uncover the mechanisms that stimulate H19 expression under hypoxia to promote malignant effects in glioblastomas and suggest H19 might be a promising therapeutic target. PMID:28327666

  5. Comparative transcriptomic analysis reveals the oncogenic fusion protein PAX3-FOXO1 globally alters mRNA and miRNA to enhance myoblast invasion

    PubMed Central

    Loupe, J M; Miller, P J; Bonner, B P; Maggi, E C; Vijayaraghavan, J; Crabtree, J S; Taylor, C M; Zabaleta, J; Hollenbach, A D

    2016-01-01

    Rhabdomyosarcoma, one of the most common childhood sarcomas, is comprised of two main subtypes, embryonal and alveolar (ARMS). ARMS, the more aggressive subtype, is primarily characterized by the t(2;13)(p35;p14) chromosomal translocation, which fuses two transcription factors, PAX3 and FOXO1 to generate the oncogenic fusion protein PAX3-FOXO1. Patients with PAX3-FOXO1-postitive tumors have a poor prognosis, in part due to the enhanced local invasive capacity of these cells, which leads to the increased metastatic potential for this tumor. Despite this knowledge, little is known about the role that the oncogenic fusion protein has in this increased invasive potential. In this report we use large-scale comparative transcriptomic analyses in physiologically relevant primary myoblasts to demonstrate that the presence of PAX3-FOXO1 is sufficient to alter the expression of 70 mRNA and 27 miRNA in a manner predicted to promote cellular invasion. In contrast the expression of PAX3 alters 60 mRNA and 23 miRNA in a manner predicted to inhibit invasion. We demonstrate that these alterations in mRNA and miRNA translate into changes in the invasive potential of primary myoblasts with PAX3-FOXO1 increasing invasion nearly 2-fold while PAX3 decreases invasion nearly 4-fold. Taken together, these results allow us to build off of previous reports and develop a more expansive molecular model by which the presence of PAX3-FOXO1 alters global gene regulatory networks to enhance the local invasiveness of cells. Further, the global nature of our observed changes highlights the fact that instead of focusing on a single-gene target, we must develop multi-faceted treatment regimens targeting multiple genes of a single oncogenic phenotype or multiple genes that target different oncogenic phenotypes for tumor progression. PMID:27454080

  6. The structural pathway of interleukin 1 (IL-1) initiated signaling reveals mechanisms of oncogenic mutations and SNPs in inflammation and cancer.

    PubMed

    Acuner Ozbabacan, Saliha Ece; Gursoy, Attila; Nussinov, Ruth; Keskin, Ozlem

    2014-02-01

    Interleukin-1 (IL-1) is a large cytokine family closely related to innate immunity and inflammation. IL-1 proteins are key players in signaling pathways such as apoptosis, TLR, MAPK, NLR and NF-κB. The IL-1 pathway is also associated with cancer, and chronic inflammation increases the risk of tumor development via oncogenic mutations. Here we illustrate that the structures of interfaces between proteins in this pathway bearing the mutations may reveal how. Proteins are frequently regulated via their interactions, which can turn them ON or OFF. We show that oncogenic mutations are significantly at or adjoining interface regions, and can abolish (or enhance) the protein-protein interaction, making the protein constitutively active (or inactive, if it is a repressor). We combine known structures of protein-protein complexes and those that we have predicted for the IL-1 pathway, and integrate them with literature information. In the reconstructed pathway there are 104 interactions between proteins whose three dimensional structures are experimentally identified; only 15 have experimentally-determined structures of the interacting complexes. By predicting the protein-protein complexes throughout the pathway via the PRISM algorithm, the structural coverage increases from 15% to 71%. In silico mutagenesis and comparison of the predicted binding energies reveal the mechanisms of how oncogenic and single nucleotide polymorphism (SNP) mutations can abrogate the interactions or increase the binding affinity of the mutant to the native partner. Computational mapping of mutations on the interface of the predicted complexes may constitute a powerful strategy to explain the mechanisms of activation/inhibition. It can also help explain how an oncogenic mutation or SNP works.

  7. The Structural Pathway of Interleukin 1 (IL-1) Initiated Signaling Reveals Mechanisms of Oncogenic Mutations and SNPs in Inflammation and Cancer

    PubMed Central

    Acuner Ozbabacan, Saliha Ece; Gursoy, Attila; Nussinov, Ruth; Keskin, Ozlem

    2014-01-01

    Interleukin-1 (IL-1) is a large cytokine family closely related to innate immunity and inflammation. IL-1 proteins are key players in signaling pathways such as apoptosis, TLR, MAPK, NLR and NF-κB. The IL-1 pathway is also associated with cancer, and chronic inflammation increases the risk of tumor development via oncogenic mutations. Here we illustrate that the structures of interfaces between proteins in this pathway bearing the mutations may reveal how. Proteins are frequently regulated via their interactions, which can turn them ON or OFF. We show that oncogenic mutations are significantly at or adjoining interface regions, and can abolish (or enhance) the protein-protein interaction, making the protein constitutively active (or inactive, if it is a repressor). We combine known structures of protein-protein complexes and those that we have predicted for the IL-1 pathway, and integrate them with literature information. In the reconstructed pathway there are 104 interactions between proteins whose three dimensional structures are experimentally identified; only 15 have experimentally-determined structures of the interacting complexes. By predicting the protein-protein complexes throughout the pathway via the PRISM algorithm, the structural coverage increases from 15% to 71%. In silico mutagenesis and comparison of the predicted binding energies reveal the mechanisms of how oncogenic and single nucleotide polymorphism (SNP) mutations can abrogate the interactions or increase the binding affinity of the mutant to the native partner. Computational mapping of mutations on the interface of the predicted complexes may constitute a powerful strategy to explain the mechanisms of activation/inhibition. It can also help explain how an oncogenic mutation or SNP works. PMID:24550720

  8. Inhibition of carcinogen induced c-Ha-ras and c-fos proto-oncogenes expression by dietary curcumin

    PubMed Central

    Limtrakul, Porn-ngarm; Anuchapreeda, Songyot; Lipigorngoson, Suwiwek; Dunn, Floyd W

    2001-01-01

    Background We investigated the chemopreventive action of dietary curcumin on 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12,0-tetradecanoylphorbol-13-acetate (TPA)-promoted skin tumor formation in Swiss albino mice. Curcumin, a yellow coloring matter isolated from roots of Curcuma longa Linn, is a phenolic compound possessing antioxidant, free radical scavenger, and antiinflammatory properties. It has been shown by previously reported work that TPA-induced skin tumors were inhibited by topical application of curcumin, and curcumin has been shown to inhibit a variety of biological activities of TPA. Topical application of curcumin was reported to inhibit TPA-induced c-fos, c-jun and c-myc gene expression in mouse skin. This paper reports the effects of orally administered curcumin, which was consumed as a dietary component at concentrations of 0.2 % or 1 %, in ad libitum feeding. Results Animals in which tumors had been initiated with DMBA and promoted with TPA experienced significantly fewer tumors and less tumor volume if they ingested either 0.2% or 1% curcumin diets. Also, the dietary consumption of curcumin resulted in a significantly decreased expression of ras and fos proto-oncogenes in the tumorous skin, as measured by enhanced chemiluminesence Western blotting detection system (Amersham). Conclusions Whereas earlier work demonstrated that topical application of curcumin to mouse skin inhibited TPA-induced expression of c-fos, c-jun and c-myc oncogenes, our results are the first to show that orally consumed curcumin significantly inhibited DMBA- and TPA-induced ras and fos gene expression in mouse skin. PMID:11231886

  9. The RON and MET oncogenes are co-expressed in human ovarian carcinomas and cooperate in activating invasiveness.

    PubMed

    Maggiora, Piera; Lorenzato, Annalisa; Fracchioli, Stefano; Costa, Barbara; Castagnaro, Massimo; Arisio, Riccardo; Katsaros, Dionyssios; Massobrio, Marco; Comoglio, Paolo M; Flavia Di Renzo, Maria

    2003-08-15

    RON is a member of the receptor tyrosine kinase gene family that includes the MET oncogene, whose germline mutations have been causally related to human tumorigenesis. In vitro, RON and MET receptors cross-talk, synergize in intracellular signaling, and cooperate in inducing morphogenic responses. Here we show that the RON and MET oncogenes were expressed in 55% and 56% of human ovarian carcinomas, respectively, and were significantly coexpressed in 42% (P < 0.001). In ovarian carcinoma samples and cell lines we did not find mutations in RON and MET gene kinase domain, nor coexpression of RON and MET receptor ligands (MSP and HGF, respectively). We show that motility and invasiveness of ovarian cancer cells coexpressing MET and RON receptors were elicited by HGF and, to a lesser extent, by MSP. More interestingly, invasion of both reconstituted basement membrane and collagen gel was greatly enhanced by the simultaneous addition of the two ligands. These data suggest that coexpression of the MET and RON receptors confer a selective advantage to ovarian cancer cells and might promote ovarian cancer progression.

  10. Whole transcriptome analysis reveals dysregulated oncogenic lncRNAs in natural killer/T-cell lymphoma and establishes MIR155HG as a target of PRDM1.

    PubMed

    Baytak, Esra; Gong, Qiang; Akman, Burcu; Yuan, Hongling; Chan, Wing C; Küçük, Can

    2017-05-01

    Natural killer/T-cell lymphoma is a rare but aggressive neoplasm with poor prognosis. Despite previous reports that showed potential tumor suppressors, such as PRDM1 or oncogenes associated with the etiology of this malignancy, the role of long non-coding RNAs in natural killer/T-cell lymphoma pathobiology has not been addressed to date. Here, we aim to identify cancer-associated dysregulated long non-coding RNAs and signaling pathways or biological processes associated with these long non-coding RNAs in natural killer/T-cell lymphoma cases and to identify the long non-coding RNAs transcriptionally regulated by PRDM1. RNA-Seq analysis revealed 166 and 66 long non-coding RNAs to be significantly overexpressed or underexpressed, respectively, in natural killer/T-cell lymphoma cases compared with resting or activated normal natural killer cells. Novel long non-coding RNAs as well as the cancer-associated ones such as SNHG5, ZFAS1, or MIR155HG were dysregulated. Interestingly, antisense transcripts of many growth-regulating genes appeared to be transcriptionally deregulated. Expression of ZFAS1, which is upregulated in natural killer/T-cell lymphoma cases, showed association with growth-regulating pathways such as stabilization of P53, regulation of apoptosis, cell cycle, or nuclear factor-kappa B signaling in normal and neoplastic natural killer cell samples. Consistent with the tumor suppressive role of PRDM1, we identified MIR155HG and TERC to be transcriptionally downregulated by PRDM1 in two PRDM1-null NK-cell lines when it is ectopically expressed. In conclusion, this is the first study that identified long non-coding RNAs whose expression is dysregulated in natural killer/T-cell lymphoma cases. These findings suggest that ZFAS1 and other dysregulated long non-coding RNAs may be involved in natural killer/T-cell lymphoma pathobiology through regulation of cancer-related genes, and loss-of-PRDM1 expression in natural killer/T-cell lymphomas may contribute to

  11. Epigenome Mapping Reveals Distinct Modes of Gene Regulation and Widespread Enhancer Reprogramming by the Oncogenic Fusion Protein EWS-FLI1

    PubMed Central

    Tomazou, Eleni M.; Sheffield, Nathan C.; Schmidl, Christian; Schuster, Michael; Schönegger, Andreas; Datlinger, Paul; Kubicek, Stefan; Bock, Christoph; Kovar, Heinrich

    2015-01-01

    Summary Transcription factor fusion proteins can transform cells by inducing global changes of the transcriptome, often creating a state of oncogene addiction. Here, we investigate the role of epigenetic mechanisms in this process, focusing on Ewing sarcoma cells that are dependent on the EWS-FLI1 fusion protein. We established reference epigenome maps comprising DNA methylation, seven histone marks, open chromatin states, and RNA levels, and we analyzed the epigenome dynamics upon downregulation of the driving oncogene. Reduced EWS-FLI1 expression led to widespread epigenetic changes in promoters, enhancers, and super-enhancers, and we identified histone H3K27 acetylation as the most strongly affected mark. Clustering of epigenetic promoter signatures defined classes of EWS-FLI1-regulated genes that responded differently to low-dose treatment with histone deacetylase inhibitors. Furthermore, we observed strong and opposing enrichment patterns for E2F and AP-1 among EWS-FLI1-correlated and anticorrelated genes. Our data describe extensive genome-wide rewiring of epigenetic cell states driven by an oncogenic fusion protein. PMID:25704812

  12. mTORC1 upregulation via ERK-dependent gene expression change confers intrinsic resistance to MEK inhibitors in oncogenic KRas-mutant cancer cells.

    PubMed

    Komatsu, N; Fujita, Y; Matsuda, M; Aoki, K

    2015-11-05

    Cancer cells harboring oncogenic BRaf mutants, but not oncogenic KRas mutants, are sensitive to MEK inhibitors (MEKi). The mechanism underlying the intrinsic resistance to MEKi in KRas-mutant cells is under intensive investigation. Here, we pursued this mechanism by live imaging of extracellular signal-regulated kinases (ERK) and mammalian target of rapamycin complex 1 (mTORC1) activities in oncogenic KRas or BRaf-mutant cancer cells. We established eight cancer cell lines expressing Förster resonance energy transfer (FRET) biosensors for ERK activity and S6K activity, which was used as a surrogate marker for mTORC1 activity. Under increasing concentrations of MEKi, ERK activity correlated linearly with the cell growth rate in BRaf-mutant cancer cells, but not KRas-mutant cancer cells. The administration of PI3K inhibitors resulted in a linear correlation between ERK activity and cell growth rate in KRas-mutant cancer cells. Intriguingly, mTORC1 activity was correlated linearly with the cell growth rate in both BRaf-mutant cancer cells and KRas-mutant cancer cells. These observations suggested that mTORC1 activity had a pivotal role in cell growth and that the mTORC1 activity was maintained primarily by the ERK pathway in BRaf-mutant cancer cells and by both the ERK and PI3K pathways in KRas-mutant cancer cells. FRET imaging revealed that MEKi inhibited mTORC1 activity with slow kinetics, implying transcriptional control of mTORC1 activity by ERK. In agreement with this observation, MEKi induced the expression of negative regulators of mTORC1, including TSC1, TSC2 and Deptor, which occurred more significantly in BRaf-mutant cells than in KRas-mutant cells. These findings suggested that the suppression of mTORC1 activity and induction of negative regulators of mTORC1 in cancer cells treated for at least 1 day could be used as surrogate markers for the MEKi sensitivity of cancer cells.

  13. A Novel Model of SCID-X1 Reconstitution Reveals Predisposition to Retrovirus-induced Lymphoma but No Evidence of γC Gene Oncogenicity

    PubMed Central

    Scobie, Linda; Hector, Ralph D; Grant, Louise; Bell, Margaret; Nielsen, Anne A; Meikle, Sharon; Philbey, Adrain; Thrasher, Adrain J; Cameron, Ewan R; Blyth, Karen; Neil, James C

    2009-01-01

    The emergence of leukemia following gene transfer to restore common cytokine receptor γ chain (γC) function in X-linked severe combined immunodeficiency (SCID-X1) has raised important questions with respect to gene therapy safety. To explore the risk factors involved, we tested the oncogenic potential of human γC in new strains of transgenic mice expressing the gene under the control of the CD2 promoter and locus control region (LCR). These mice demonstrated mildly perturbed T-cell development, with an increased proportion of thymic CD8 cells, but showed no predisposition to tumor development even on highly tumor prone backgrounds or after γ-retrovirus infection. The human CD2-γC transgene rescued T and B-cell development in γC−/− mice but with an age-related delay, mimicking postnatal reconstitution in SCID-X1 gene therapy subjects. However, we noted that γC−/− mice are acutely susceptible to murine leukemia virus (MLV) leukemogenesis, and that this trait was not corrected by the γC transgene. We conclude that the SCID-X1 phenotype can be corrected safely by stable ectopic expression of γC and that the transgene is not significantly oncogenic when expressed in this context. However, an underlying predisposition conferred by the SCID-X1 background appears to collaborate with insertional mutagenesis to increase the risk of tumor development. PMID:19337236

  14. A novel model of SCID-X1 reconstitution reveals predisposition to retrovirus-induced lymphoma but no evidence of gammaC gene oncogenicity.

    PubMed

    Scobie, Linda; Hector, Ralph D; Grant, Louise; Bell, Margaret; Nielsen, Anne A; Meikle, Sharon; Philbey, Adrian; Philbey, Adrain; Thrasher, Adrian J; Thrasher, Adrain J; Cameron, Ewan R; Blyth, Karen; Neil, James C

    2009-06-01

    The emergence of leukemia following gene transfer to restore common cytokine receptor gamma chain (gammaC) function in X-linked severe combined immunodeficiency (SCID-X1) has raised important questions with respect to gene therapy safety. To explore the risk factors involved, we tested the oncogenic potential of human gammaC in new strains of transgenic mice expressing the gene under the control of the CD2 promoter and locus control region (LCR). These mice demonstrated mildly perturbed T-cell development, with an increased proportion of thymic CD8 cells, but showed no predisposition to tumor development even on highly tumor prone backgrounds or after gamma-retrovirus infection. The human CD2-gammaC transgene rescued T and B-cell development in gammaC(-/-) mice but with an age-related delay, mimicking postnatal reconstitution in SCID-X1 gene therapy subjects. However, we noted that gammaC(-/-) mice are acutely susceptible to murine leukemia virus (MLV) leukemogenesis, and that this trait was not corrected by the gammaC transgene. We conclude that the SCID-X1 phenotype can be corrected safely by stable ectopic expression of gammaC and that the transgene is not significantly oncogenic when expressed in this context. However, an underlying predisposition conferred by the SCID-X1 background appears to collaborate with insertional mutagenesis to increase the risk of tumor development.

  15. A Novel Model of SCID-X1 Reconstitution Reveals Predisposition to Retrovirus-induced Lymphoma but No Evidence of γC Gene Oncogenicity.

    PubMed

    Scobie, Linda; Hector, Ralph D; Grant, Louise; Bell, Margaret; Nielsen, Anne A; Meikle, Sharon; Philbey, Adrain; Thrasher, Adrain J; Cameron, Ewan R; Blyth, Karen; Neil, James C

    2009-06-01

    The emergence of leukemia following gene transfer to restore common cytokine receptor γ chain (γC) function in X-linked severe combined immunodeficiency (SCID-X1) has raised important questions with respect to gene therapy safety. To explore the risk factors involved, we tested the oncogenic potential of human γC in new strains of transgenic mice expressing the gene under the control of the CD2 promoter and locus control region (LCR). These mice demonstrated mildly perturbed T-cell development, with an increased proportion of thymic CD8 cells, but showed no predisposition to tumor development even on highly tumor prone backgrounds or after γ-retrovirus infection. The human CD2-γC transgene rescued T and B-cell development in γC(-/-) mice but with an age-related delay, mimicking postnatal reconstitution in SCID-X1 gene therapy subjects. However, we noted that γC(-/-) mice are acutely susceptible to murine leukemia virus (MLV) leukemogenesis, and that this trait was not corrected by the γC transgene. We conclude that the SCID-X1 phenotype can be corrected safely by stable ectopic expression of γC and that the transgene is not significantly oncogenic when expressed in this context. However, an underlying predisposition conferred by the SCID-X1 background appears to collaborate with insertional mutagenesis to increase the risk of tumor development.

  16. Aberrant microRNA Expression Likely Controls RAS Oncogene Activation During Malignant Transformation of Human Prostate Epithelial and Stem Cells by Arsenic

    PubMed Central

    Ngalame, Ntube N. O.; Tokar, Erik J.; Person, Rachel J.; Xu, Yuanyuan; Waalkes, Michael P.

    2014-01-01

    Inorganic arsenic (iAs), a human carcinogen, potentially targets the prostate. iAs malignantly transforms the RWPE-1 human prostate epithelial line to CAsE-PE cells, and a derivative normal stem cell (SC) line, WPE-stem, to As-Cancer SC (As-CSC) line. MicroRNAs (miRNA) are noncoding but exert negative control on expression by degradation or translational repression of target mRNAs. Aberrant miRNA expression is important in carcinogenesis. A miRNA array of CAsE-PE and As-CSC revealed common altered expression in both for pathways concerning oncogenesis, miRNA biogenesis, cell signaling, proliferation, and tumor metastasis and invasion. The KRAS oncogene is overexpressed in CAsE-PE cells but not by mutation or promoter hypomethylation, and is intensely overexpressed in As-CSC cells. In both transformants, decreased miRNAs targeting KRAS and RAS superfamily members occurred. Reduced miR-134, miR-373, miR-155, miR-138, miR-205, miR-181d, miR-181c, and let-7 in CAsE-PE cells correlated with increased target RAS oncogenes, RAN, RAB27A, RAB22A mRNAs, and KRAS protein. Reduced miR-143, miR-34c-5p, and miR-205 in As-CSC correlated with increased target RAN mRNA, and KRAS, NRAS, and RRAS proteins. The RAS/ERK and PI3K/PTEN/AKT pathways control cell survival, differentiation, and proliferation, and when dysregulated promote a cancer phenotype. iAs transformation increased expression of activated ERK kinase in both transformants and altered components of the PI3K/PTEN/AKT pathway including decreased PTEN and increases in BCL2, BCL-XL, and VEGF in the absence of AKT activation. Thus, dysregulated miRNA expression may be linked to RAS activation in both transformants. PMID:24431212

  17. c-Kit proto-oncogene expression in endometrial hyperplasia and endometrial cancer.

    PubMed

    Yilmaz, Ercan; Celik, Onder; Simsek, Yavuz; Turkcuoglu, Ilgin; Celik, Ebru; Gül, Mehmet; Hascalik, Seyma; Aydin, Nasuhi Engin; Aydin, Engin

    2012-07-01

    To evaluate the expression of c-kit (CD117) in endometrial hyperplasia and endometrial cancer. Expression of c-kit in 10 normal endometrium, 18 simple endometrial hyperplasia, 16 complex endometrial hyperplasia (10 cases with atypia and 6 cases without atypia), and 6 endometrial cancer were investigated by immunohistochemistry. c-Kit expression decreased as the lesion progressed to endometrial cancer. Immunostaining was mostly focal and weak in the normal endometrium and was mostly diffuse and strong in the simple and complex endometrial hyperplasia. Simple and complex hyperplastic endometrial tissues express diffuse cytoplasmic staining for c-kit and the expression decreases with the progression of the lesion.

  18. Transient expression of Bcl6 is sufficient for oncogenic function and induction of mature B-cell lymphoma

    PubMed Central

    Green, Michael R; Vicente-Dueñas, Carolina; Romero-Camarero, Isabel; Liu, Chih Long; Dai, Bo; González-Herrero, Inés; García-Ramírez, Idoia; Alonso-Escudero, Esther; Iqbal, Javeed; Chan, Wing C; Campos-Sanchez, Elena; Orfao, Alberto; Pintado, Belén; Flores, Teresa; Blanco, Oscar; Jiménez, Rafael; Martínez-Climent, Jose Angel; Criado, Francisco Javier García; Cenador, María Begoña García; Zhao, Shuchun; Natkunam, Yasodha; Lossos, Izidore S; Majeti, Ravindra; Melnick, Ari; Cobaleda, César; Alizadeh, Ash A.; Sánchez-García, Isidro

    2015-01-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma and can be separated into two subtypes based upon molecular features with similarities to germinal center B-cells (GCB-like) or activated B-cells (ABC-like). Here we identify gain of 3q27.2 as being significantly associated with adverse outcome in DLBCL and linked with the ABC-like subtype. This lesion includes the BCL6 oncogene, but does not alter BCL6 transcript levels or target-gene repression. Separately, we identify expression of BCL6 in a subset of human hematopoietic stem/progenitor cells (HSPCs). We therefore hypothesize that BCL6 may act by hit-and-run oncogenesis. We model this by transiently expressing Bcl6 within murine HSPCs, and find it causes mature B-cell lymphomas that lack Bcl6 expression and target-gene repression, are transcriptionally similar to post-GCB cells, and show epigenetic changes that are conserved from HSPCs to mature B-cells. Together these results suggest that Bcl6 may function in a hit-and-run role in lymphomagenesis. PMID:24887457

  19. Transient expression of Bcl6 is sufficient for oncogenic function and induction of mature B-cell lymphoma.

    PubMed

    Green, Michael R; Vicente-Dueñas, Carolina; Romero-Camarero, Isabel; Long Liu, Chih; Dai, Bo; González-Herrero, Inés; García-Ramírez, Idoia; Alonso-Escudero, Esther; Iqbal, Javeed; Chan, Wing C; Campos-Sanchez, Elena; Orfao, Alberto; Pintado, Belén; Flores, Teresa; Blanco, Oscar; Jiménez, Rafael; Martínez-Climent, Jose Angel; Criado, Francisco Javier García; Cenador, María Begoña García; Zhao, Shuchun; Natkunam, Yasodha; Lossos, Izidore S; Majeti, Ravindra; Melnick, Ari; Cobaleda, César; Alizadeh, Ash A; Sánchez-García, Isidro

    2014-06-02

    Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma and can be separated into two subtypes based upon molecular features with similarities to germinal centre B-cells (GCB-like) or activated B-cells (ABC-like). Here we identify gain of 3q27.2 as being significantly associated with adverse outcome in DLBCL and linked with the ABC-like subtype. This lesion includes the BCL6 oncogene, but does not alter BCL6 transcript levels or target-gene repression. Separately, we identify expression of BCL6 in a subset of human haematopoietic stem/progenitor cells (HSPCs). We therefore hypothesize that BCL6 may act by 'hit-and-run' oncogenesis. We model this hit-and-run mechanism by transiently expressing Bcl6 within murine HSPCs, and find that it causes mature B-cell lymphomas that lack Bcl6 expression and target-gene repression, are transcriptionally similar to post-GCB cells, and show epigenetic changes that are conserved from HSPCs to mature B-cells. Together, these results suggest that BCL6 may function in a 'hit-and-run' role in lymphomagenesis.

  20. Xenopus myc proto-oncogene during development: expression as a stable maternal mRNA uncoupled from cell division.

    PubMed Central

    Taylor, M V; Gusse, M; Evan, G I; Dathan, N; Mechali, M

    1986-01-01

    A Xenopus cDNA clone highly homologous to the proto-oncogene c-myc has been isolated and used to derive a homologous probe to study myc expression during embryonic development. Myc RNA is identified as a member of the class of maternal mRNAs expressed before fertilisation. It is highly accumulated from early oogenesis and an unfertilised egg contains 8 pg, about 10(5)-fold the myc content of proliferative somatic cells. After fertilisation a post-transcriptional regulation of the gene is induced and the accumulated myc RNA is degraded (t1/2 = 4 h 20 min) to reach a level at gastrula of 10 transcripts per cell; a value maintained during subsequent embryonic development. The Xenopus myc protein has also been identified by both myc-specific antibodies and hybrid selection experiments. Translation in vitro of Xenopus myc RNA shows that it encodes a 62-kd protein which is also recognised by myc antibodies in oocyte extracts. This protein is accumulated in late oogenesis. The results indicate an unusual uncoupling of myc expression and cell proliferation linked to a stabilisation of the RNA product. Images Fig. 2. Fig. 3. Fig. 4. Fig. 6. Fig. 7. Fig. 8. PMID:3549280

  1. Control of PD-L1 Expression by Oncogenic Activation of the AKT-mTOR Pathway in Non-Small Cell Lung Cancer.

    PubMed

    Lastwika, Kristin J; Wilson, Willie; Li, Qing Kay; Norris, Jeffrey; Xu, Haiying; Ghazarian, Sharon R; Kitagawa, Hiroshi; Kawabata, Shigeru; Taube, Janis M; Yao, Sheng; Liu, Linda N; Gills, Joell J; Dennis, Phillip A

    2016-01-15

    Alterations in EGFR, KRAS, and ALK are oncogenic drivers in lung cancer, but how oncogenic signaling influences immunity in the tumor microenvironment is just beginning to be understood. Immunosuppression likely contributes to lung cancer, because drugs that inhibit immune checkpoints like PD-1 and PD-L1 have clinical benefit. Here, we show that activation of the AKT-mTOR pathway tightly regulates PD-L1 expression in vitro and in vivo. Both oncogenic and IFNγ-mediated induction of PD-L1 was dependent on mTOR. In human lung adenocarcinomas and squamous cell carcinomas, membranous expression of PD-L1 was significantly associated with mTOR activation. These data suggest that oncogenic activation of the AKT-mTOR pathway promotes immune escape by driving expression of PD-L1, which was confirmed in syngeneic and genetically engineered mouse models of lung cancer where an mTOR inhibitor combined with a PD-1 antibody decreased tumor growth, increased tumor-infiltrating T cells, and decreased regulatory T cells.

  2. Expression of oncogenic K-ras from its endogenous promoter leads to a partial block of erythroid differentiation and hyperactivation of cytokine-dependent signaling pathways.

    PubMed

    Zhang, Jing; Liu, Yangang; Beard, Caroline; Tuveson, David A; Jaenisch, Rudolf; Jacks, Tyler E; Lodish, Harvey F

    2007-06-15

    When overexpressed in primary erythroid progenitors, oncogenic Ras leads to the constitutive activation of its downstream signaling pathways, severe block of terminal erythroid differentiation, and cytokine-independent growth of primary erythroid progenitors. However, whether high-level expression of oncogenic Ras is required for these phenotypes is unknown. To address this issue, we expressed oncogenic K-ras (K-ras(G12D)) from its endogenous promoter using a tetracycline-inducible system. We show that endogenous K-ras(G12D) leads to a partial block of terminal erythroid differentiation in vivo. In contrast to results obtained when oncogenic Ras was overexpressed from retroviral vectors, endogenous levels of K-ras(G12D) fail to constitutively activate but rather hyperactivate cytokine-dependent signaling pathways, including Stat5, Akt, and p44/42 MAPK, in primary erythroid progenitors. This explains previous observations that hematopoietic progenitors expressing endogenous K-ras(G12D) display hypersensitivity to cytokine stimulation in various colony assays. Our results support efforts to modulate Ras signaling for treating hematopoietic malignancies.

  3. Regulation of proto-oncogene expression in adult and developing lungs.

    PubMed Central

    Molinar-Rode, R; Smeyne, R J; Curran, T; Morgan, J I

    1993-01-01

    Activation of immediate-early gene expression has been associated with mitogenesis, differentiation, nerve cell depolarization, and recently, terminal differentiation processes and programmed cell death. Previous evidence also suggested that immediate-early genes play a role in the physiology of the lungs (J. I. Morgan, D. R. Cohen, J. L. Hempstead, and T. Curran, Science 237:192-197, 1987). Therefore, we analyzed c-fos expression in adult and developing lung tissues. Seizures elicited by chemoconvulsants induced expression of mRNA for c-fos, c-jun, and junB and Fos-like immunoreactivity in lung tissue. The use of pharmacological antagonists and adrenalectomy indicated that this increased expression was neurogenic. Interestingly, by using a fos-lacZ transgenic mouse, it was shown that Fos-LacZ expression in response to seizure occurred preferentially in clusters of epithelial cells at the poles of the bronchioles. This was the same location of Fos-LacZ expression detected during early lung development. These data imply that pharmacological induction of immediate-early gene expression in adult mice recapitulates an embryological program of gene expression. Images PMID:8497249

  4. Oncogenic transformation of mesenchymal stem cells decreases Nrf2 expression favoring in vivo tumor growth and poorer survival

    PubMed Central

    2014-01-01

    Background The transcription factor Nrf2 is a key regulator of the cellular antioxidant response, and its activation by chemoprotective agents has been proposed as a potential strategy to prevent cancer. However, activating mutations in the Nrf2 pathway have been found to promote tumorigenesis in certain models. Therefore, the role of Nrf2 in cancer remains contentious. Methods We employed a well-characterized model of stepwise human mesenchymal stem cell (MSC) transformation and breast cancer cell lines to investigate oxidative stress and the role of Nrf2 during tumorigenesis. The Nrf2 pathway was studied by microarray analyses, qRT-PCR, and western-blotting. To assess the contribution of Nrf2 to transformation, we established tumor xenografts with transformed MSC expressing Nrf2 (n = 6 mice per group). Expression and survival data for Nrf2 in different cancers were obtained from GEO and TCGA databases. All statistical tests were two-sided. Results We found an accumulation of reactive oxygen species during MSC transformation that correlated with the transcriptional down-regulation of antioxidants and Nrf2-downstream genes. Nrf2 was repressed in transformed MSC and in breast cancer cells via oncogene-induced activation of the RAS/RAF/ERK pathway. Furthermore, restoration of Nrf2 function in transformed cells decreased reactive oxygen species and impaired in vivo tumor growth (P = 0.001) by mechanisms that included sensitization to apoptosis, and a decreased hypoxic/angiogenic response through HIF-1α destabilization and VEGFA repression. Microarray analyses showed down-regulation of Nrf2 in a panel of human tumors and, strikingly, low Nrf2 expression correlated with poorer survival in patients with melanoma (P = 0.0341), kidney (P = 0.0203) and prostate (P = 0.00279) cancers. Conclusions Our data indicate that oncogene-induced Nrf2 repression is an adaptive response for certain cancers to acquire a pro-oxidant state that favors cell survival and

  5. Current Protocols in Mouse Biology Tissue-specific regulation of oncogene expression using Cre-inducible ROSA26 knock-in transgenic mice

    PubMed Central

    Carofino, Brandi L.; Justice, Monica J.

    2015-01-01

    Cre-inducible mouse models are often utilized for the spatial and temporal expression of oncogenes. With the wide number of Cre recombinase lines available, inducible transgenesis represents a tractable approach to achieve discrete oncogene expression. Here, we describe a protocol for targeting Cre-inducible genes using a loxP-STOP-loxP approach to the ubiquitously expressed ROSA26 locus. Gene targeting provides several advantages over standard transgenic techniques, including a known site of integration and previously characterized pattern of expression. Historically, an inherent instability of ROSA26 targeting vectors has hampered the efficiency of developing ROSA26 knock-in lines. In this protocol, we provide individual steps for utilizing Gateway recombination for cloning, and detailed instructions for screening targeted ES cell clones. By following this protocol, one can achieve germline transmission of a ROSA26 knock-in line within several months. PMID:26069083

  6. The relationship between expressions of N-myc and c-myc oncogenes in neuroblastoma: an in situ hybridization and immunocytochemical study.

    PubMed

    Zhe, X; Chen, J; Liu, T; Zhang, L; Li, P; Wang, D

    1999-06-01

    N-myc gene amplification is the most characteristic feature of neuroblastoma. c-myc oncogene, another member of myc gene family, plays an important role in cell proliferation and differentiation. Both of them may contribute to tumorigenesis of neuroblastoma. In this study we use the in situ hybridization and immunocytochemical methods to test the frequencies of N-myc and c-myc expressions in 20 cases of human neuroblastoma at mRNA and protein levels. The positive rates of the expression of N-myc are 90% and 100% detected by in situ hybridization and immunocytochemical methods respectively. The positive rates of c-myc are 80% and 85% respectively. Sixty percent of the 20 specimens tested by in situ hybridization and 55% by immunocytochemistry show an inverse relationship between the expressions of these two oncogenes and this may indicate that there are different gene expression controlling mechanisms in different cases.

  7. Inhibition of PTEN Gene Expression by Oncogenic miR-23b-3p in Renal Cancer

    PubMed Central

    Zaman, Mohd Saif; Thamminana, Sobha; Shahryari, Varahram; Chiyomaru, Takeshi; Deng, Guoren; Saini, Sharanjot; Majid, Shahana; Fukuhara, Shinichiro; Chang, Inik; Arora, Sumit; Hirata, Hiroshi; Ueno, Koji; Singh, Kamaldeep; Tanaka, Yuichiro; Dahiya, Rajvir

    2012-01-01

    Background miR-23b is located on chromosome number 9 and plays different roles in different organs especially with regards to cancer development. However, the functional significance of miR-23b-3p in renal cell carcinoma (RCC) has not been reported. Methods and Results We measured miR-23b-3p levels in 29 pairs of renal cell carcinoma and their normal matched tissues using real-time PCR. The expression level of miR-23b-3p was correlated with the 5 year survival rate of renal cancer patients. In 15 cases (52%), miR-23b-3p expression was found to be high. All patients with moderate to low miR-23b-3p expression survived 5 years, while those with high miR-23b-3p expression, only 50% survived. After knocking down miRNA-23b-3p expression in RCC cell lines, there was an induction of apoptosis and reduced invasive capabilities. MiR-23b-3p was shown to directly target PTEN gene through 3′UTR reporter assays. Inhibition of miR-23b-3p induces PTEN gene expression with a concomitant reduction in PI3-kinase, total Akt and IL-32. Immunohistochemistry showed the lack of PTEN protein expression in cancerous regions of tissue samples where the expression of miR-23b-3p was high. We studied the in vitro effects of the dietary chemo preventive agent genistein on miR-23b-3p expression and found that it inhibited expression of miR-23b-3p in RCC cell lines. Conclusions The current study shows that miR-23b-3p is an oncogenic miRNA and inhibits PTEN tumor suppressor gene in RCC. Therefore, inhibition of miR-23b-3p may be a useful therapeutic target for the treatment of renal cell carcinoma. PMID:23189187

  8. Oral Vaccination With Adeno-associated Virus Vectors Expressing the Neu Oncogene Inhibits the Growth of Murine Breast Cancer

    PubMed Central

    Steel, Jason C; Di Pasquale, Giovanni; Ramlogan, Charmaine A; Patel, Vyomesh; Chiorini, John A; Morris, John C

    2013-01-01

    Recombinant adeno-associated viruses (AAV) have been used for therapeutic gene transfer. These vectors offer a number of advantages including resistance to the effects of pH, a broad cellular tropism, efficient gene transfer, persistence of gene expression, and little toxicity. AAV vectors; however, at high doses can induce humoral and cellular immune responses. While potentially problematic for replacement gene therapy, this effect may be advantageous for antitumor vaccination. We examined the activity of an oral and intramuscular antitumor vaccination using AAV serotypes 5 and 6 expressing a truncated neu oncogene in a neu-positive murine TUBO breast cancer model. Mice receiving a single oral administration of AAV5-neu or AAV6-neu demonstrated improved survival. Oral vaccination significantly improved survivals compared with intramuscular vaccination. Mice vaccinated with AAV6-neu survived longer than those treated with AAV5-neu. Vaccination with AAV5-neu or AAV6-neu induced both humoral and cellular immune responses against the NEU antigen. These responses were more robust in the mice undergoing oral vaccination compared with mice receiving the intramuscular vaccination. Protection from tumor was long lasting with 80% of the animals treated with oral AAV6-neu surviving a re-challenge with TUBO cells at 120 and 320 days post-vaccination. Further evaluation of AAV-based vectors as tumor vaccines is warranted. PMID:23295951

  9. Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice.

    PubMed

    Vicente-Dueñas, Carolina; Fontán, Lorena; Gonzalez-Herrero, Ines; Romero-Camarero, Isabel; Segura, Victor; Aznar, M Angela; Alonso-Escudero, Esther; Campos-Sanchez, Elena; Ruiz-Roca, Lucía; Barajas-Diego, Marcos; Sagardoy, Ainara; Martinez-Ferrandis, Jose I; Abollo-Jimenez, Fernando; Bertolo, Cristina; Peñuelas, Ivan; Garcia-Criado, Francisco J; García-Cenador, María B; Tousseyn, Thomas; Agirre, Xabier; Prosper, Felipe; Garcia-Bragado, Federico; McPhail, Ellen D; Lossos, Izidore S; Du, Ming-Qing; Flores, Teresa; Hernandez-Rivas, Jesus M; Gonzalez, Marcos; Salar, Antonio; Bellosillo, Beatriz; Conde, Eulogio; Siebert, Reiner; Sagaert, Xavier; Cobaleda, Cesar; Sanchez-Garcia, Isidro; Martinez-Climent, Jose A

    2012-06-26

    Chromosomal translocations involving the MALT1 gene are hallmarks of mucosa-associated lymphoid tissue (MALT) lymphoma. To date, targeting these translocations to mouse B cells has failed to reproduce human disease. Here, we induced MALT1 expression in mouse Sca1(+)Lin(-) hematopoietic stem/progenitor cells, which showed NF-κB activation and early lymphoid priming, being selectively skewed toward B-cell differentiation. These cells accumulated in extranodal tissues and gave rise to clonal tumors recapitulating the principal clinical, biological, and molecular genetic features of MALT lymphoma. Deletion of p53 gene accelerated tumor onset and induced transformation of MALT lymphoma to activated B-cell diffuse large-cell lymphoma (ABC-DLBCL). Treatment of MALT1-induced lymphomas with a specific inhibitor of MALT1 proteolytic activity decreased cell viability, indicating that endogenous Malt1 signaling was required for tumor cell survival. Our study shows that human-like lymphomas can be modeled in mice by targeting MALT1 expression to hematopoietic stem/progenitor cells, demonstrating the oncogenic role of MALT1 in lymphomagenesis. Furthermore, this work establishes a molecular link between MALT lymphoma and ABC-DLBCL, and provides mouse models to test MALT1 inhibitors. Finally, our results suggest that hematopoietic stem/progenitor cells may be involved in the pathogenesis of human mature B-cell lymphomas.

  10. Expression and function of the novel proto-oncogene PBF in thyroid cancer: a new target for augmenting radioiodine uptake.

    PubMed

    Smith, Vicki E; Franklyn, Jayne A; McCabe, Christopher J

    2011-08-01

    Pituitary tumor-transforming gene (PTTG)-binding factor (PBF; PTTG1IP) was initially identified through its interaction with the human securin, PTTG. Like PTTG, PBF is upregulated in multiple endocrine tumours including thyroid cancer. PBF is believed to induce the translocation of PTTG into the cell nucleus where it can drive tumourigenesis via a number of different mechanisms. However, an independent transforming ability has been demonstrated both in vitro and in vivo, suggesting that PBF is itself a proto-oncogene. Studied in only a limited number of publications to date, PBF is emerging as a protein with a growing repertoire of roles. Recent data suggest that PBF possesses a complex multifunctionality in an increasing number of tumour settings. For example, PBF is upregulated by oestrogen and mediates oestrogen-stimulated cell invasion in breast cancer cells. In addition to a possible role in the induction of thyroid tumourigenesis, PBF overexpression in thyroid cancers inhibits iodide uptake. PBF has been shown to repress sodium iodide symporter (NIS) activity by transcriptional regulation of NIS expression through the human NIS upstream enhancer and further inhibits iodide uptake via a post-translational mechanism of NIS governing subcellular localisation. This review discusses the current data describing PBF expression and function in thyroid cancer and highlights PBF as a novel target for improving radioiodine uptake and thus prognosis in thyroid cancer.

  11. Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice

    PubMed Central

    Vicente-Dueñas, Carolina; Fontán, Lorena; Gonzalez-Herrero, Ines; Romero-Camarero, Isabel; Segura, Victor; Aznar, M. Angela; Alonso-Escudero, Esther; Campos-Sanchez, Elena; Ruiz-Roca, Lucía; Barajas-Diego, Marcos; Sagardoy, Ainara; Martinez-Ferrandis, Jose I.; Abollo-Jimenez, Fernando; Bertolo, Cristina; Peñuelas, Ivan; Garcia-Criado, Francisco J.; García-Cenador, María B.; Tousseyn, Thomas; Agirre, Xabier; Prosper, Felipe; Garcia-Bragado, Federico; McPhail, Ellen D.; Lossos, Izidore S.; Du, Ming-Qing; Flores, Teresa; Hernandez-Rivas, Jesus M.; Gonzalez, Marcos; Salar, Antonio; Bellosillo, Beatriz; Conde, Eulogio; Siebert, Reiner; Sagaert, Xavier; Cobaleda, Cesar; Sanchez-Garcia, Isidro; Martinez-Climent, Jose A.

    2012-01-01

    Chromosomal translocations involving the MALT1 gene are hallmarks of mucosa-associated lymphoid tissue (MALT) lymphoma. To date, targeting these translocations to mouse B cells has failed to reproduce human disease. Here, we induced MALT1 expression in mouse Sca1+Lin− hematopoietic stem/progenitor cells, which showed NF-κB activation and early lymphoid priming, being selectively skewed toward B-cell differentiation. These cells accumulated in extranodal tissues and gave rise to clonal tumors recapitulating the principal clinical, biological, and molecular genetic features of MALT lymphoma. Deletion of p53 gene accelerated tumor onset and induced transformation of MALT lymphoma to activated B-cell diffuse large-cell lymphoma (ABC-DLBCL). Treatment of MALT1-induced lymphomas with a specific inhibitor of MALT1 proteolytic activity decreased cell viability, indicating that endogenous Malt1 signaling was required for tumor cell survival. Our study shows that human-like lymphomas can be modeled in mice by targeting MALT1 expression to hematopoietic stem/progenitor cells, demonstrating the oncogenic role of MALT1 in lymphomagenesis. Furthermore, this work establishes a molecular link between MALT lymphoma and ABC-DLBCL, and provides mouse models to test MALT1 inhibitors. Finally, our results suggest that hematopoietic stem/progenitor cells may be involved in the pathogenesis of human mature B-cell lymphomas. PMID:22689981

  12. Stat3 induces oncogenic Skp2 expression in human cervical carcinoma cells

    SciTech Connect

    Huang, Hanhui; Zhao, Wenrong; Yang, Dan

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Upregulation of Skp2 by IL-6 or Stat3 activation. Black-Right-Pointing-Pointer Stat3 activates Skp2 expression through bound to its promoter region. Black-Right-Pointing-Pointer Stat3 activates Skp2 expression through recruitment of P300. Black-Right-Pointing-Pointer Stat3 activation decreases the P27 stability. -- Abstract: Dysregulated Skp2 function promotes cell proliferation, which is consistent with observations of Skp2 over-expression in many types of human cancers, including cervical carcinoma (CC). However, the molecular mechanisms underlying elevated Skp2 expression have not been fully explored. Interleukin-6 (IL-6) induced Stat3 activation is viewed as crucial for multiple tumor growth and metastasis. Here, we demonstrate that Skp2 is a direct transcriptional target of Stat3 in the human cervical carcinoma cells. Our data show that IL-6 administration or transfection of a constitutively activated Stat3 in HeLa cells activates Skp2 mRNA transcription. Using luciferase reporter and ChIP assays, we show that Stat3 binds to the promoter region of Skp2 and promotes its activity through recruiting P300. As a result of the increase of Skp2 expression, endogenous p27 protein levels are markedly decreased. Thus, our results suggest a previously unknown Stat3-Skp2 molecular network controlling cervical carcinoma development.

  13. Pyrosequencing-based methods reveal marked inter-individual differences in oncogene mutation burden in human colorectal tumours.

    PubMed

    Weidlich, S; Walsh, K; Crowther, D; Burczynski, M E; Feuerstein, G; Carey, F A; Steele, R J C; Wolf, C R; Miele, G; Smith, G

    2011-07-12

    The epidermal growth factor receptor-targeted monoclonal antibody cetuximab (Erbitux) was recently introduced for the treatment of metastatic colorectal cancer. Treatment response is dependent on Kirsten-Ras (K-Ras) mutation status, in which the majority of patients with tumour-specific K-Ras mutations fail to respond to treatment. Mutations in the oncogenes B-Raf and PIK3CA (phosphoinositide-3-kinase) may also influence cetuximab response, highlighting the need for a sensitive, accurate and quantitative assessment of tumour mutation burden. Mutations in K-Ras, B-Raf and PIK3CA were identified by both dideoxy and quantitative pyrosequencing-based methods in a cohort of unselected colorectal tumours (n=102), and pyrosequencing-based mutation calls correlated with various clinico-pathological parameters. The use of quantitative pyrosequencing-based methods allowed us to report a 13.7% increase in mutation burden, and to identify low-frequency (<30% mutation burden) mutations not routinely detected by dideoxy sequencing. K-Ras and B-Raf mutations were mutually exclusive and independently associated with a more advanced tumour phenotype. Pyrosequencing-based methods facilitate the identification of low-frequency tumour mutations and allow more accurate assessment of tumour mutation burden. Quantitative assessment of mutation burden may permit a more detailed evaluation of the role of specific tumour mutations in the pathogenesis and progression of colorectal cancer and may improve future patient selection for targeted drug therapies.

  14. Pyrosequencing-based methods reveal marked inter-individual differences in oncogene mutation burden in human colorectal tumours

    PubMed Central

    Weidlich, S; Walsh, K; Crowther, D; Burczynski, M E; Feuerstein, G; Carey, F A; Steele, R J C; Wolf, C R; Miele, G; Smith, G

    2011-01-01

    Background: The epidermal growth factor receptor-targeted monoclonal antibody cetuximab (Erbitux) was recently introduced for the treatment of metastatic colorectal cancer. Treatment response is dependent on Kirsten-Ras (K-Ras) mutation status, in which the majority of patients with tumour-specific K-Ras mutations fail to respond to treatment. Mutations in the oncogenes B-Raf and PIK3CA (phosphoinositide-3-kinase) may also influence cetuximab response, highlighting the need for a sensitive, accurate and quantitative assessment of tumour mutation burden. Methods: Mutations in K-Ras, B-Raf and PIK3CA were identified by both dideoxy and quantitative pyrosequencing-based methods in a cohort of unselected colorectal tumours (n=102), and pyrosequencing-based mutation calls correlated with various clinico-pathological parameters. Results: The use of quantitative pyrosequencing-based methods allowed us to report a 13.7% increase in mutation burden, and to identify low-frequency (<30% mutation burden) mutations not routinely detected by dideoxy sequencing. K-Ras and B-Raf mutations were mutually exclusive and independently associated with a more advanced tumour phenotype. Conclusion: Pyrosequencing-based methods facilitate the identification of low-frequency tumour mutations and allow more accurate assessment of tumour mutation burden. Quantitative assessment of mutation burden may permit a more detailed evaluation of the role of specific tumour mutations in the pathogenesis and progression of colorectal cancer and may improve future patient selection for targeted drug therapies. PMID:21712828

  15. NANOG upregulates c-Jun oncogene expression through binding the c-Jun promoter.

    PubMed

    Lin, Yanli; Xiong, Fuyin; Zhou, Yanrong; Wu, Xiaojie; Liu, Fang; Xue, Shiwei; Chen, Hongxing

    2015-11-01

    NANOG plays important roles in neoplastic processes. However, the molecular mechanism of NANOG in tumorigenesis remains to be elucidated. In this report, we demonstrated that forced expression of NANOG in 293 cells and cancer cells led to increased c-Jun expression, whereas downregulation of endogenous NANOG significantly reduced c-Jun expression in cancer cells. Dual luciferase reporter assays demonstrated that NANOG binds the c-Jun proximal promoter and transactivates the c-Jun gene. An ATTA consensus motif between the -160 and -268 region of the c-Jun promoter was identified as the NANOG-responsive element. Electromobility shift assay and chromatin immunoprecipitation results confirmed the direct binding of NANOG protein to the c-Jun promoter in vitro and in vivo. NANOG directly bound c-Jun protein as shown by GST pulldown and immunoprecipitation assays. Taking these findings together, we conclude that c-Jun is a direct target gene of NANOG and that c-Jun protein may be a novel co-activator of NANOG in cancer cells. We suggest the possibility that NANOG may play a significant role in carcinogenesis via its activation of c-Jun expression.

  16. Myc oncogene expression and nude mouse tumorigenicity and metastasis formation are higher in alveolar than embryonal rhabdomyosarcoma cell lines.

    PubMed

    Kouraklis, G; Triche, T J; Wesley, R; Tsokos, M

    1999-04-01

    Accumulated clinical evidence suggests that alveolar rhabdomyosarcoma (ARMS) is more aggressive than embryonal rhabdomyosarcoma (ERMS). Here, we study six childhood rhabdomyosarcoma cell lines, three ERMS and three ARMS. We have assayed the ability of the tumor cells to grow in culture and in nude mice as well as their propensity for pulmonary metastasis formation by tail vein injection. We also compared levels of c- and N-myc oncogene expression and DNA copy number. We find no correlation of histologic tumor type (i.e. ERMS versus ARMS) with growth rate in culture, but we do find suggestive correlations of histologic type with tumorigenicity (mean tumor diameter in millimeters at 6 wk: ARMS 30, ERMS 10; p1 = 0.1) and metastasis formation (ARMS 12, ERMS 0; p1 = 0.1). These properties also correlate with uniform greater overexpression of c-myc in ARMS (mean 39.3-fold, range 16-83) compared with ERMS (mean 5.3, range 4-8) (p1 = 0.05, control fibroblasts = 1). Although c-myc was often amplified in vitro (four of six lines), there was no correlation with histologic type (2/3 ARMS, 2/3 ERMS). These data on rhabdomyosarcoma cell lines derived from verified ERMS and ARMS tumors support the impression from previous clinicopathologic observations that ARMS is a more malignant form of rhabdomyosarcoma than ERMS.

  17. Zebra fish myc family and max genes: differential expression and oncogenic activity throughout vertebrate evolution.

    PubMed Central

    Schreiber-Agus, N; Horner, J; Torres, R; Chiu, F C; DePinho, R A

    1993-01-01

    To gain insight into the role of Myc family oncoproteins and their associated protein Max in vertebrate growth and development, we sought to identify homologs in the zebra fish (Brachydanio rerio). A combination of a polymerase chain reaction-based cloning strategy and low-stringency hybridization screening allowed for the isolation of zebra fish c-, N-, and L-myc and max genes; subsequent structural characterization showed a high degree of conservation in regions that encode motifs of known functional significance. On the functional level, zebra fish Max, like its mammalian counterpart, served to suppress the transformation activity of mouse c-Myc in rat embryo fibroblasts. In addition, the zebra fish c-myc gene proved capable of cooperating with an activated H-ras to effect the malignant transformation of mammalian cells, albeit with diminished potency compared with mouse c-myc. With respect to their roles in normal developing tissues, the differential temporal and spatial patterns of steady-state mRNA expression observed for each zebra fish myc family member suggest unique functions for L-myc in early embryogenesis, for N-myc in establishment and growth of early organ systems, and for c-myc in increasingly differentiated tissues. Furthermore, significant alterations in the steady-state expression of zebra fish myc family genes concomitant with relatively constant max expression support the emerging model of regulation of Myc function in cellular growth and differentiation. Images PMID:8474440

  18. LIN28 expression in malignant germ cell tumors down-regulates let-7 and increases oncogene levels

    PubMed Central

    Murray, Matthew J.; Saini, Harpreet K.; Siegler, Charlotte A.; Hanning, Jennifer E.; Barker, Emily M.; van Dongen, Stijn; Ward, Dawn M.; Raby, Katie L.; Groves, Ian J.; Scarpini, Cinzia G.; Pett, Mark R.; Thornton, Claire M.; Enright, Anton J.; Nicholson, James C.; Coleman, Nicholas

    2013-01-01

    Despite their clinico-pathologic heterogeneity, malignant germ-cell-tumors (GCTs) share molecular abnormalities that are likely to be functionally important. In this study, we investigated the potential significance of down-regulation of the let-7 family of tumor-suppressor microRNAs in malignant-GCTs. Microarray results from pediatric and adult samples (n=45) showed that LIN28, the negative-regulator of let-7 biogenesis, was abundant in malignant-GCTs, regardless of patient age, tumor site or histologic subtype. Indeed, a strong negative-correlation existed between LIN28 and let-7 levels in specimens with matched datasets. Low let-7 levels were biologically significant, since the sequence complementary to the 2-7nt common let-7 seed ‘GAGGUA’ was enriched in the 3′untranslated regions of mRNAs up-regulated in pediatric and adult malignant-GCTs, compared with normal gonads (a mixture of germ cells and somatic cells). We identified 27 mRNA targets of let-7 that were up-regulated in malignant-GCT cells, confirming significant negative-correlations with let-7 levels. Among 16 mRNAs examined in a largely independent set of specimens by qRT-PCR, we defined negative-associations with let-7e levels for six oncogenes, including MYCN, AURKB, CCNF, RRM2, MKI67 and C12orf5 (when including normal control tissues). Importantly, LIN28 depletion in malignant-GCT cells restored let-7 levels and repressed all of these oncogenic let-7 mRNA targets, with LIN28 levels correlating with cell proliferation and MYCN levels. Conversely, ectopic expression of let-7e was sufficient to reduce proliferation and down-regulate MYCN, AURKB and LIN28, the latter via a double-negative feedback loop. We concluded that the LIN28/let-7 pathway has a critical pathobiological role in malignant-GCTs and therefore offers a promising target for therapeutic intervention. PMID:23774216

  19. Loss of Dependence on Continued Expression of the Human Papillomavirus 16 E7 Oncogene in Cervical Cancers and Precancerous Lesions Arising in Fanconi Anemia Pathway-Deficient Mice.

    PubMed

    Park, Soyeong; Park, Jung Wook; Pitot, Henry C; Lambert, Paul F

    2016-05-17

    Fanconi anemia (FA) is a rare genetic disorder caused by defects in DNA damage repair. FA patients often develop squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) are known to cause cancer, including the cervix. However, SCCs found in human FA patients are often HPV negative, even though the majority of female FA patients with anogenital cancers had preexisting HPV-positive dysplasia. We hypothesize that HPVs contribute to the development of SCCs in FA patients but that the continued expression of HPV oncogenes is not required for the maintenance of the cancer state because FA deficiency leads to an accumulation of mutations in cellular genes that render the cancer no longer dependent upon viral oncogenes. We tested this hypothesis, making use of Bi-L E7 transgenic mice in which we temporally controlled expression of HPV16 E7, the dominant viral oncogene in HPV-associated cancers. As seen before, the persistence of cervical neoplastic disease was highly dependent upon the continued expression of HPV16 E7 in FA-sufficient mice. However, in mice with FA deficiency, cervical cancers persisted in a large fraction of the mice after HPV16 E7 expression was turned off, indicating that these cancers had escaped from their dependency on E7. Furthermore, the severity of precancerous lesions also failed to be reduced significantly in the mice with FA deficiency upon turning off expression of E7. These findings confirm our hypothesis and may explain the fact that, while FA patients have a high frequency of infections by HPVs and HPV-induced precancerous lesions, the cancers are frequently HPV negative. IMPORTANCE  : Fanconi anemia (FA) patients are at high risk for developing squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) frequently cause cancer. Yet these SCCs are often HPV negative. FA patients have a genetic defect in their capacity to repair damaged DNA. HPV oncogenes cause an accumulation of DNA

  20. Loss of Dependence on Continued Expression of the Human Papillomavirus 16 E7 Oncogene in Cervical Cancers and Precancerous Lesions Arising in Fanconi Anemia Pathway-Deficient Mice

    PubMed Central

    Park, Soyeong; Park, Jung Wook; Pitot, Henry C.

    2016-01-01

    ABSTRACT   Fanconi anemia (FA) is a rare genetic disorder caused by defects in DNA damage repair. FA patients often develop squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) are known to cause cancer, including the cervix. However, SCCs found in human FA patients are often HPV negative, even though the majority of female FA patients with anogenital cancers had preexisting HPV-positive dysplasia. We hypothesize that HPVs contribute to the development of SCCs in FA patients but that the continued expression of HPV oncogenes is not required for the maintenance of the cancer state because FA deficiency leads to an accumulation of mutations in cellular genes that render the cancer no longer dependent upon viral oncogenes. We tested this hypothesis, making use of Bi-L E7 transgenic mice in which we temporally controlled expression of HPV16 E7, the dominant viral oncogene in HPV-associated cancers. As seen before, the persistence of cervical neoplastic disease was highly dependent upon the continued expression of HPV16 E7 in FA-sufficient mice. However, in mice with FA deficiency, cervical cancers persisted in a large fraction of the mice after HPV16 E7 expression was turned off, indicating that these cancers had escaped from their dependency on E7. Furthermore, the severity of precancerous lesions also failed to be reduced significantly in the mice with FA deficiency upon turning off expression of E7. These findings confirm our hypothesis and may explain the fact that, while FA patients have a high frequency of infections by HPVs and HPV-induced precancerous lesions, the cancers are frequently HPV negative. Importance   Fanconi anemia (FA) patients are at high risk for developing squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) frequently cause cancer. Yet these SCCs are often HPV negative. FA patients have a genetic defect in their capacity to repair damaged DNA. HPV oncogenes cause an

  1. Differential expression of the ufo/axl oncogene in human leukemia-lymphoma cell lines.

    PubMed

    Challier, C; Uphoff, C C; Janssen, J W; Drexler, H G

    1996-05-01

    The ufo protein (also termed axl) is a member of a new family of receptor tyrosine kinases and is encoded by a transforming gene that was initially isolated from primary human myeloid leukemia cells by DNA-mediated transformation of NIH/3T3 cells. The ligand, Gas6, a protein S-related molecule lacking any known function yet, has recently been identified. We report the expression pattern of ufo mRNA in a panel of 76 human continuous leukemia-lymphoma cell lines. The gene was not expressed in cell lines derived from lymphoid malignancies (n=28), but transcription was seen in 3/11 myeloid, 0/6 monocytic, 9/13 erythroid and 11/18 megakaryocytic cell lines. Several cell lines were treated with phorbol ester leading to significant upregulation of the ufo message in constitutively positive cells. An apparent ufo mRNA overexpression was not found in any of the positive leukemia cell lines, but was identified in the drug-resistant subclones of the cervix carcinoma cell line HeLa. Southern blot analysis of restriction enzyme-digested genomic DNA did not provide evidence for gene amplification, but the HeLa subclones showed banding patterns suggestive of gene rearrangement. Two main ufo mRNA bands of 3.2 and 5.0 kb were identified; no differences in the half-lives (t1/2 = 2.5 h) of these two mRNA species could be identified. In summary, ufo, representing a novel type of receptor tyrosine kinase, is expressed solely in myeloid and erythro-megakaryocytic leukemias but not in lymphoid malignancies. These and previous data suggest an involvement of the ufo receptor tyrosine kinase in normal and malignant myelopoiesis; however, its exact role, if any, and mode of operation in leukemogenesis remains to be determined.

  2. Hepatocyte specific expression of an oncogenic variant of β-catenin results in cholestatic liver disease

    PubMed Central

    Lemberger, Ursula J.; Fuchs, Claudia D.; Karer, Matthias; Haas, Stefanie; Stojakovic, Tatjana; Schöfer, Christian; Marschall, Hanns-Ulrich; Wrba, Fritz; Taketo, Makoto M.; Egger, Gerda; Trauner, Michael; Österreiche, Christophr H.

    2016-01-01

    Background The Wnt/β-catenin signaling pathway plays a crucial role in embryonic development, tissue homeostasis, wound healing and malignant transformation in different organs including the liver. The consequences of continuous β-catenin signaling in hepatocytes remain elusive. Results Livers of Ctnnb1CA hep mice were characterized by disturbed liver architecture, proliferating cholangiocytes and biliary type of fibrosis. Serum ALT and bile acid levels were significantly increased in Ctnnb1CA hep mice. The primary bile acid synthesis enzyme Cyp7a1 was increased whereas Cyp27 and Cyp8b1 were reduced in Ctnnb1CA hep mice. Expression of compensatory bile acid transporters including Abcb1, Abcb4, Abcc2 and Abcc4 were significantly increased in Ctnnb1CA hep mice while Ntcp was reduced. Accompanying changes of bile acid transporters favoring excretion of bile acids were observed in intestine and kidneys of Ctnnb1CA hep mice. Additionally, disturbed bile acid regulation through the FXR-FGF15-FGFR4 pathway was observed in mice with activated β-catenin. Materials and Methods Mice with a loxP-flanked exon 3 of the Ctnnb1 gene were crossed to Albumin-Cre mice to obtain mice with hepatocyte-specific expression of a dominant stable form of β-catenin (Ctnnb1CA hep mice). Ctnnb1CA hep mice were analyzed by histology, serum biochemistry and mRNA profiling. Conclusions Expression of a dominant stable form of β-catenin in hepatocytes results in severe cholestasis and biliary type fibrosis. PMID:27895309

  3. An In Silico Study of the Differential Effect of Oxidation on Two Biologically Relevant G-Quadruplexes: Possible Implications in Oncogene Expression

    PubMed Central

    Stebbeds, William J. D.; Lunec, Joseph; Larcombe, Lee D.

    2012-01-01

    G-quadruplex structures, formed from guanine rich sequences, have previously been shown to be involved in various physiological processes including cancer-related gene expression. Furthermore, G-quadruplexes have been found in several oncogene promoter regions, and have been shown to play a role in the regulation of gene expression. The mutagenic properties of oxidative stress on DNA have been widely studied, as has the association with carcinogenesis. Guanine is the most susceptible nucleotide to oxidation, and as such, G-rich sequences that form G-quadruplexes can be viewed as potential “hot-spots” for DNA oxidation. We propose that oxidation may destabilise the G-quadruplex structure, leading to its unfolding into the duplex structure, affecting gene expression. This would imply a possible mechanism by which oxidation may impact on oncogene expression. This work investigates the effect of oxidation on two biologically relevant G-quadruplex structures through 500 ns molecular dynamics simulations on those found in the promoter regions of the c-Kit and c-Myc oncogenes. The results show oxidation having a detrimental effect on stability of the structure, substantially destabilising the c-Kit quadruplex, and with a more attenuated effect on the c-Myc quadruplex. Results are suggestive of a novel route for oxidation-mediated oncogenesis and may have wider implications for genome stability. PMID:22928025

  4. Perylene and coronene derivatives binding to G-rich promoter oncogene sequences efficiently reduce their expression in cancer cells.

    PubMed

    Micheli, Emanuela; Altieri, Alessandro; Cianni, Lorenzo; Cingolani, Chiara; Iachettini, Sara; Bianco, Armandodoriano; Leonetti, Carlo; Cacchione, Stefano; Biroccio, Annamaria; Franceschin, Marco; Rizzo, Angela

    2016-06-01

    A novel approach to cancer therapeutics is emerging in the field of G-quadruplex (G4) ligands, small molecules designed to stabilize four-stranded structures that can form at telomeres as well as in other genomic sequences, including oncogene promoter sequences, 5'-UTR regions and introns. In this study, we investigated the binding activity of perylene and coronene derivatives PPL3C, CORON and EMICORON to G4 structures formed within the promoter regions of two important cancer-related genes, c-MYC and BCL-2, and their biochemical effects on gene and protein expression. In order to fully characterize the ability of the selected ligands to bind and stabilize the G4 structures originated by the c-MYC and BCL-2 promoter sequences, we performed electrospray ionization mass spectrometry (ESI-MS), Fluorescence Resonance Energy Transfer (FRET) measurements, Circular Dichroism (CD) spectra and polymerase stop assay. Altogether our results showed that the ligands had a high capacity in binding and stabilizing the G4 structures within the c-MYC and BCL-2 promoter sequences in vitro. Notably, when we evaluated by quantitative real-time PCR and western blotting analysis, the effects of treatment with the different G4 ligands on c-MYC and BCL2 expression in a human melanoma cell line, EMICORON appeared the most effective compound in reducing the mRNA and protein levels of both genes. These results encourage to consider EMICORON as a promising example of multimodal class of an antineoplastic drug, affecting different tumor crucial pathways simultaneously: telomere maintenance (as previously described), cell proliferation and apoptosis via down-regulation of both c-MYC and BCL-2 (this paper).

  5. An amphotropic retroviral vector expressing a mutant gsp oncogene: effects on human thyroid cells in vitro.

    PubMed

    Ivan, M; Ludgate, M; Gire, V; Bond, J A; Wynford-Thomas, D

    1997-08-01

    Point mutations of the gsp protooncogene (encoding the alpha-subunit of the Gs protein) that constitutively activate the cAMP signaling pathway are a common feature of and a plausible causative mechanism for thyroid hyperfunctioning adenomas (hot nodules). To investigate the extent to which mutant gsp acting alone can induce proliferation of thyroid follicular cells, we generated an amphotropic retroviral vector (based on the pBABE-neo plasmid and psi-CRIP packaging line) to permit stable introduction of a hemagglutinin-tagged Gln227-->Leu mutant gsp gene into normal human thyrocytes in vitro. The biological activity of the vector was confirmed by detection of HA-tagged Gsp protein expression and induction of cAMP synthesis in selected target cells. Normal human thyroid follicular cells in primary monolayer culture were infected with the gsp retroviral vector or with corresponding vectors expressing mutant H-ras or neo only as positive and negative controls, respectively. Although, as before, mutant ras generated 10-20 well differentiated epithelial colonies/dish of 10(5) infected cells, with an average lifespan of 15-20 population doublings, only small groups of no more than 15-50 differentiated thyrocytes were observed with the gsp vector. In addition to standard conditions (10% FCS), infections were performed in reduced serum (1% FCS, TSH, and insulin), in the presence of isobutylylmethylxanthine, or in the presence of agents capable of closing gap junctions, with no significant difference in outcome. Although little or no proliferative response was observed regardless of the conditions, there was clear evidence of morphological response (rearrangement of the actin cytoskeleton and increased cell size). The results suggest that gsp mutation may not be a sufficient proliferogenic stimulus by itself to account for hot nodule formation.

  6. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice

    SciTech Connect

    Andres, A.C.; Schoenenberger, C.A.; Groner, B.; Henninghausen, L.; LeMeur, M.; Gelinger, P.

    1987-03-01

    The activated human Ha-ras oncogene was subjected to the control of the promoter region of the murine whey acidic protein (Wap) gene, which is expressed in mammary epithelial cells in response to lactogenic hormones. The Wap-ras gene was stably introduced into the mouse germ line of five transgenic mice (one male and four females). Wap-ras expression was observed in the mammary glands of lactating females in two lines derived from female founders. The tissue-directed and hormone-dependent Wap expression was conferred on the Ha-ras oncogene. The signals governing Wap expression are located within 2.5 kilobases of 5' flanking sequence. The other two lines derived from female founders did not express the chimeric gene. In the line derived from the male founder the Wap-ras gene is integrated into the Y chromosome. Expression was found in the salivary gland of male animals only. After a long latency, Wap-ras-expressing mice developed tumors. The tumors arose in tissues expressing Wap-ras - i.e., mammary or salivary glands. Compared to the corresponding nonmalignant tissues, Wap-ras expression was enhanced in the tumors.

  7. Low Expression of miR-196b Enhances the Expression of BCR-ABL1 and HOXA9 Oncogenes in Chronic Myeloid Leukemogenesis

    PubMed Central

    Liu, Yue; Zheng, Wenling; Song, Yanbin; Ma, Wenli; Yin, Hong

    2013-01-01

    MicroRNAs (miRNAs) can function as tumor suppressors or oncogene promoters during tumor development. In this study, low levels of expression of miR-196b were detected in patients with chronic myeloid leukemia. Bisulfite genomic sequencing PCR and methylation-specific PCR were used to examine the methylation status of the CpG islands in the miR-196b promoter in K562 cells, patients with leukemia and healthy individuals. The CpG islands showed more methylation in patients with chronic myeloid leukemia compared with healthy individuals (P<0.05), which indicated that low expression of miR-196b may be associated with an increase in the methylation of CpG islands. The dual-luciferase reporter assay system demonstrated that BCR-ABL1 and HOXA9 are the target genes of miR-196b, which was consistent with predictions from bioinformatics software analyses. Further examination of cell function indicated that miR-196b acts to reduce BCR-ABL1 and HOXA9 protein levels, decrease cell proliferation rate and retard the cell cycle. A low level of expression of miR-196b can cause up-regulation of BCR-ABL1 and HOXA9 expression, which leads to the development of chronic myeloid leukemia. MiR-196b may represent an effective target for chronic myeloid leukemia therapy. PMID:23894305

  8. Expression of oncogenic miR-17-92 and tumor suppressive miR-143-145 clusters in basal cell carcinoma and cutaneous squamous cell carcinoma.

    PubMed

    Sand, Michael; Hessam, Schapoor; Amur, Susanne; Skrygan, Marina; Bromba, Michael; Stockfleth, Eggert; Gambichler, Thilo; Bechara, Falk G

    2017-05-01

    A variety of cancers are associated with the expression of the oncogenic miR-17-92 cluster (Oncomir-1) and tumor suppressor miR-143-5p/miR-145-5p. Epidermal skin cancer has not been investigated for the expression of miR-17-92 and miR-143-145 clusters, despite being extensively studied regarding global microRNA profiles. The goal of this study was to investigate the expression and possible correlation of expression of miR17-92 and miR-143-145 cluster members in epidermal skin cancer. We evaluated punch biopsies from patients with cutaneous squamous cell carcinoma (cSCC, n=15) and basal cell carcinoma (BCC, n=16), along with control specimens from non-lesional epidermal skin (n=16). Expression levels of the miR17-92 cluster (including miR-17-5p, miR-17-3p, miR-18a-3p, miR-18a-5p, miR-19a-3p, miR-19a-5p, miR-19b-3p, miR-19b-1-5p, miR-20a-3p, miR-20a-5p, miR-92a-3p, and miR-92a-5p) and the tumor-suppressive cluster miR-143-145 (including miR-143-5p and miR-145-5p) were detected by quantitative real-time reverse transcriptase polymerase chain reaction. We noted a highly significant increased expression of the miR-17-92 members miR-17-5p, miR-18a-5p, miR19a-3p, and miR-19b-3p and tumor suppressor miR-143-5p (p<0.01) in cSCC. miR-145-5p had a significantly decreased expression (p<0.05) for in BCC. A correlation analysis revealed multiple correlating miRNA-pairs within and between the investigated clusters. This study marks the first evidence for the participation of members of the miR-17-92 cluster in cSCC and miR-143-145 cluster in BCC. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  9. Effect of Neem Leaf Extract (Azadirachta indica) on c-Myc Oncogene Expression in 4T1 Breast Cancer Cells of BALB/c Mice

    PubMed Central

    Othman, Fauziah; Motalleb, Gholamreza; Lam Tsuey Peng, Sally; Rahmat, Asmah; Basri, Rusliza; Pei Pei, Chong

    2012-01-01

    Objective: Breast cancer is the most common cause of cancer-related deaths in women both worldwide and in Malaysia. Azadirachta indica (A. Juss), commonly known as neem, is one of the most versatile medicinal plants that has gained worldwide prominence due to its medicinal properties. However, the anticancer effect of ethanolic neem leaf extract against breast cancer has not been documented. The purpose of the present study is to investigate the effect of neem leaf extract on c-Myc oncogene expression in 4T1 breast cancer BALB/c mice. Materials and Methods: In this experimental study, A total of 48 female BALB/c mice were divided randomly into four groups of 12 mice per group: i.cancer control (CC) treated with 0.5% Tween 20 in PBS, ii. 0.5 µg/mL tamoxifen citrate (CT), iii. 250 mg/kg neem leaf extract (C250), and iv. 500 mg/kg neem leaf extract (C500). in situ reverse transcription polymerase chain reaction (in situ RT-PCR) was applied to evaluate suppression of c-Myc oncogene expression in breast cancer tissue. Results: The C500 group showed significant (p<0.05) suppression of c-Myc oncogene expression compared to the CC group. Conclusion: c-Myc was found to be down regulated under the effect of 500 mg/kg ethanolic neem leaf extract. PMID:23626938

  10. Effect of Neem Leaf Extract (Azadirachta indica) on c-Myc Oncogene Expression in 4T1 Breast Cancer Cells of BALB/c Mice.

    PubMed

    Othman, Fauziah; Motalleb, Gholamreza; Lam Tsuey Peng, Sally; Rahmat, Asmah; Basri, Rusliza; Pei Pei, Chong

    2012-01-01

    Breast cancer is the most common cause of cancer-related deaths in women both worldwide and in Malaysia. Azadirachta indica (A. Juss), commonly known as neem, is one of the most versatile medicinal plants that has gained worldwide prominence due to its medicinal properties. However, the anticancer effect of ethanolic neem leaf extract against breast cancer has not been documented. The purpose of the present study is to investigate the effect of neem leaf extract on c-Myc oncogene expression in 4T1 breast cancer BALB/c mice. In this experimental study, A total of 48 female BALB/c mice were divided randomly into four groups of 12 mice per group: i.cancer control (CC) treated with 0.5% Tween 20 in PBS, ii. 0.5 µg/mL tamoxifen citrate (CT), iii. 250 mg/kg neem leaf extract (C250), and iv. 500 mg/kg neem leaf extract (C500). in situ reverse transcription polymerase chain reaction (in situ RT-PCR) was applied to evaluate suppression of c-Myc oncogene expression in breast cancer tissue. The C500 group showed significant (p<0.05) suppression of c-Myc oncogene expression compared to the CC group. c-Myc was found to be down regulated under the effect of 500 mg/kg ethanolic neem leaf extract.

  11. Oncogene-mediated transformation of fetal rat colon in vitro.

    PubMed

    Pories, S; Jaros, K; Steele, G; Pauley, A; Summerhayes, I C

    1992-05-01

    Short-term maintenance of fetal rat colonic tissue in vitro has been demonstrated using a collagen matrix organ culture system. The introduction of single (v-myc, v-rasH, v-src) oncogenes or combinations of oncogenes (v-myc/rasH, v-myc/src) into normal colon mucosal elements was established using retroviral vectors, resulting in enhanced proliferation and migration of epithelial cells from the lumen of tissue implants. Expression of a single oncogene in normal colon epithelium did not result in the establishment of cell lines. In contrast, expression of cooperating oncogenic elements resulted in cell lines in greater than 80% of experiments, revealing different morphological characteristics dependent upon the oncogene combination used. Confirmation of the expression of viral transcripts was determined using Northern blot analysis and viral oncoprotein expression using Western blot analysis (p21) and an immunoprecipitation kinase assay (src). Expression of keratin filaments was lost following passaging of cell lines but could be induced by the myc/ras transformants by growth on Rat-1 feeder layers. This induction phenomenon was not observed with myc/src lines, and although these expressed high levels of sucrase isomaltase the epithelial origin of these cells is unclear. Karyotypic analysis performed on three myc/ras-transformed cell lines revealed a normal chromosome complement associated with transformation. In this report we describe a novel in vitro transformation system for normal rat colonic epithelium mediated by the introduction of oncogene elements using different retroviral vector constructs. The potential to generate cell lines representing different stages of neoplastic progression using relevant genetic components presents significant advantages for the study of cellular and molecular interactions underlying colon neoplastic progression.

  12. Repression of CD24 surface protein expression by oncogenic Ras is relieved by inhibition of Raf but not MEK or PI3K

    PubMed Central

    Pallegar, Nikitha K.; Ayre, D. Craig; Christian, Sherri L.

    2015-01-01

    CD24 is a dynamically regulated cell surface protein. High expression of CD24 leads to progression of lung, prostrate, colon, and pancreatic cancers, among others. In contrast, low expression of CD24 leads to cell proliferation and metastasis of breast cancer stem cells (BCSCs). Activating mutations in Ras are found in 30% of all human cancers. Oncogenic Ras constitutively stimulates the Raf, PI3K, and Ral GDS signaling pathways, leading to cellular transformation. Previous studies have shown that expression of oncogenic Ras in breast cancer cells generates CD24− cells from CD24+ cells. However, the molecular mechanisms involved in the generation of CD24− cells were not determined. Here, we demonstrate that oncogenic Ras (RasV12) expression suppresses CD24 mRNA, protein, and promoter levels when expressed in NIH/3T3 cells. Furthermore, activation of only the Raf pathway was sufficient to downregulate CD24 mRNA and protein expression to levels similar to those seen in with RasV12 expression. In contrast, activation of the PI3K pathway downregulated mRNA expression with a partial effect on protein expression whereas activation of the RalGDS pathway only partially affected protein expression. Surprisingly, inhibition of MEK with U0126 only partially restored CD24 mRNA expression but not surface protein expression. In contrast, inhibition of Raf with sorafenib did not restore CD24 mRNA expression but significantly increased the proportion of RasV12 cells expressing CD24. Therefore, the Raf pathway is the major repressor of CD24 mRNA and protein expression, with PI3K also able to substantially inhibit CD24 expression. Moreover, these data indicate that the levels of CD24 mRNA and surface protein are independently regulated. Although inhibition of Raf by sorafenib only partially restored CD24 expression, sorafenib should still be considered as a potential therapeutic strategy to alter CD24 expression in CD24− cells, such as BCSCs. PMID:26301220

  13. Expression of the EWS/FLI-1 oncogene in murine primary bone-derived cells Results in EWS/FLI-1-dependent, ewing sarcoma-like tumors.

    PubMed

    Castillero-Trejo, Yeny; Eliazer, Susan; Xiang, Lilin; Richardson, James A; Ilaria, Robert L

    2005-10-01

    Ewing sarcoma is the second most common malignant pediatric bone tumor. Over 80% of Ewing sarcoma contain the oncogene EWS/FLI-1, which encodes the EWS/FLI-1 oncoprotein, a hybrid transcription factor comprised of NH2-terminal sequences from the RNA-binding protein EWS and the DNA-binding and COOH-terminal regions of the Ets transcription factor FLI-1. Although numerous genes are dysregulated by EWS/FLI-1, advances in Ewing sarcoma cancer biology have been hindered by the lack of an animal model because of EWS/FLI-1-mediated cytotoxicity. In this study, we have developed conditions for the isolation and propagation of murine primary bone-derived cells (mPBDC) that stably express EWS/FLI-1. Early-passage EWS/FLI-1 mPBDCs were immortalized in culture but inefficient at tumor induction, whereas later-passage cells formed sarcomatous tumors in immunocompetent syngeneic mice. Murine EWS/FLI-1 tumors contained morphologically primitive cells that lacked definitive lineage markers. Molecular characterization of murine EWS/FLI-1 tumors revealed that some but not all had acquired a novel, clonal in-frame p53 mutation associated with a constitutive loss of p21 expression. Despite indications that secondary events facilitated EWS/FLI-1 mPBDC tumorigenesis, cells remained highly dependent on EWS/FLI-1 for efficient transformation in clonogenic assays. This Ewing sarcoma animal model will be a useful tool for dissecting the molecular pathogenesis of Ewing sarcoma and provides rationale for the broader use of organ-specific progenitor cell populations for the study of human sarcoma.

  14. Elevated expression of proto-oncogenes accompany enhanced induction of heat-shock genes after exposure of rat embryos in utero to ionizing irradiation

    SciTech Connect

    Higo, H.; Lee, J.Y.; Satow, Y.; Higo, K. )

    1989-01-01

    We have recently found that the effects of exposing rat embryos in utero to teratogens capable of producing cardiac anomalies were expressed later as enhanced induction of heat-shock proteins (hsp70 family) when embryonic hearts were cultured in vitro. However, it remained to be determined whether heat-shock proteins are induced in vivo after exposure to teratogens. The heat-shock response in some mammalian systems is known to be accompanied by elevated expression of proto-oncogenes. Using gene-specific DNA probes, we examined the levels of the expression (transcription) of heat-shock protein genes and two nuclear proto-oncogenes, c-fos and c-myc, in the embryos removed from irradiated pregnant mother rats 4 or 5 days after the irradiation. We found that the levels of expression in vivo of the hsp70 and c-myc genes in the irradiated embryos increased by approximately twofold as compared with those in the control. The expression in vivo of the c-fos gene was not detected in either the irradiated or non-irradiated embryos. After 0.5-hr incubation in vitro of the embryos, however, the expression of the c-fos gene in the irradiated embryos was highly enhanced whereas the control showed no changes. Although the exact functions of these gene products still remain obscure, the enhanced expression of hsp70 gene(s) and the nuclear proto-oncogenes observed in the present study may reflect repair of intracellular damages and/or regeneration of tissue by compensatory cell proliferation, processes that may disturb the normal program of organogenesis.

  15. Ras oncogene and Hypoxia-inducible factor-1 alpha (hif-1α) expression in the Amazon fish Colossoma macropomum (Cuvier, 1818) exposed to benzo[a]pyrene.

    PubMed Central

    da Silva, Grazyelle Sebrenski; Fé, Luciana Mara Lopes; da Silva, Maria de Nazaré Paula; Val, Vera Maria Fonseca de Almeida e

    2017-01-01

    Abstract Benzo[a]pyrene (B[a]P) is a petroleum derivative capable of inducing cancer in human and animals. In this work, under laboratory conditions, we analyzed the responses of Colossoma macropomum to B[a]P acute exposure through intraperitoneal injection of four different B[a]P concentrations (4, 8, 16 and 32 μmol/kg) or corn oil (control group). We analyzed expression of the ras oncogene and the Hypoxia-inducible factor-1 alpha (hif-1α) gene using quantitative real-time PCR. Additionally, liver histopathological changes and genotoxic effects were evaluated through the comet assay. Ras oncogene was overexpressed in fish exposed to 4, 8 of 16 μmol/kg B[a]P, showing 4.96, 7.10 and 6.78-fold increases, respectively. Overexpression also occurred in hif-1α in fish injected with 4 and 8 μmol/kg B[a]P, showing 8.82 and 4.64-fold increases, respectively. Histopathological damage in fish liver was classified as irreparable in fish exposed to 8, 16 and 32 μmol/kg μM B[a]P. The genotoxic damage increased in fish injected with 8 and 16 μmol/kg in comparison with the control group. Acute exposure of B[a]P was capable to interrupt the expression of ras oncogene and hif-1α, and increase DNA breaks due to tissue damage. PMID:28486571

  16. Prevention of tumor growth driven by PIK3CA and HPV oncogenes by targeting mTOR signaling with metformin in oral squamous carcinomas expressing OCT3

    PubMed Central

    Madera, Dmitri; Vitale-Cross, Lynn; Martin, Daniel; Schneider, Abraham; Molinolo, Alfredo A.; Gangane, Nitin; Carey, Thomas E.; McHugh, Jonathan B.; Komarck, Christine M.; Walline, Heather M.; William, William N.; Seethala, Raja R.; Ferris, Robert; Gutkind, J. Silvio

    2015-01-01

    Most head and neck squamous cell carcinomas (HNSCC) exhibit a persistent activation of the PI3K-mTOR signaling pathway. We have recently shown that metformin, an oral antidiabetic drug that is also used to treat lipodystrophy in HIV-infected (HIV+) individuals, diminishes mTOR activity and prevents the progression of chemically-induced experimental HNSCC premalignant lesions. Here, we explored the preclinical activity of metformin in HNSCCs harboring PIK3CA mutations and HPV oncogenes, both representing frequent HNSCC alterations, aimed at developing effective targeted preventive strategies. The biochemical and biological effects of metformin were evaluated in representative HNSCC cells expressing mutated PIK3CA or HPV oncogenes (HPV+). The oral delivery of metformin was optimized to achieve clinical relevant blood levels. Molecular determinants of metformin sensitivity were also investigated, and their expression levels examined in a large collection of HNSCC cases. We found that metformin inhibits mTOR signaling and tumor growth in HNSCC cells expressing mutated PIK3CA and HPV oncogenes, and that these activities require the expression of organic cation transporter 3 (OCT3/SLC22A3), a metformin uptake transporter. Co-expression of OCT3 and the mTOR pathway activation marker pS6 were observed in most HNSCC cases, including those arising in HIV+ patients. Activation of the PI3K-mTOR pathway is a widespread event in HNSCC, including HPV− and HPV+ lesions arising in HIV+ patients, all of which co-express OCT3. These observations may provide a rationale for the clinical evaluation of metformin to halt HNSCC development from precancerous lesions, including in HIV+ individuals at risk of developing HPV-associated cancers. PMID:25681087

  17. Her2/neu Protein Expression and Oncogene Amplification in Gastric Carcinoma with Clinico-Pathological Correlation in Egyptian Patients

    PubMed Central

    Hadi, Ahmed Abdel; Hindawi, Ali El; Hareedy, Amal; Khalil, Heba; Ashiry, Ranya Al; Elia, Shady; Sadek, Ahmed; Magdy, Mona; Atta, Rafatt; Anas, Amgad; Bakr, Hisham; Hammam, Olfat

    2016-01-01

    AIM: Amplification of the Her2/neu gene and overexpression of the Her2/neu protein in gastric carcinoma (GC) is a golden criterion for target therapy with trastuzumab (Herceptin). We aim to evaluate the immunohistochemical protein expression and amplification of the oncogene Her2/neu by FISH technique in the epithelial gastric carcinoma and to compare their association with different clinicopathologic parameters aiming at identifying positive cases that may benefit from targeted therapy. MATERIALS AND METHODS: This study was done on eighty-five tumour tissue samples from patients with GC as well as thirty non-malignant lesions (Gastritis, intestinal metaplasia, adenoma with low-grade dysplasia, adenoma with high-grade dysplasia). All were immunohistochemically stained with Her2/neu antibody. RESULTS: All equivocal and some selected GC cases were submitted for FISH technique to detect Her2/neu gene amplification. By immunohistochemistry twenty-three cases (27%) were defined as positive for Her2/neu gene amplification and/or protein overexpression. The levels of Her2/neu positive (3+), Her2/neu equivocal (2+) and Her2/neu negative (1+/0) were measurable in 14.2%, 32.9% and 52.9% of the samples, respectively. FISH showed that Her2/neu gene was amplified in 22 cases, 10 Her2/neu positive (3+), 11 (39.3%) Her2/neu equivocal (2+) and 1 Her2/neu negative (1+) cases with IHC staining those who can benefit from anti Her2/neu target therapy. Her2/neu was overexpressed positivity (3+) more in intestinal type and mixed carcinoma, and moderately differentiated tumours. None of gastritis, intestinal metaplasia or adenoma with low-grade dysplasia cases showed positivity for Her2/neu (3+). The Her2/neu positivity (3+) was associated with both adenocarcinoma cases and high-grade dysplasia (P = 0.002). CONCLUSIONS: The results highlight the necessity of FISH test for further categorization when gastric cancer cases are equivocal (2+) by IHC to determine eligibility for the targeted

  18. A promising hypothesis of c-KIT methylation/ expression paradox in c-KIT (+) squamous cell carcinoma of uterine cervix ----- CTCF transcriptional repressor regulates c-KIT proto-oncogene expression.

    PubMed

    Chang, Shih-Wen; Chao, Wan-Ru; Ruan, Alexandra; Wang, Po-Hui; Lin, Jau-Chen; Han, Chih-Ping

    2015-11-25

    We recently reported one interesting case showing mutation-free c-KIT proto-oncogene overexpression and paradoxical hypermethylation in 54 cases of primary squamous cell carcinoma of uterine cervix (SCC). However, its molecular mechanisms still remain unknown. We propose the hypothesis that increased methylation at the CpG islands on the promoter near the first exon region might interfere with the binding of CTCF repressor with c-KIT promoter that regulates c-KIT proto-oncogene expression in such case. Further studies focusing on the status of epigenetic modifications of mutation-free c-KIT (+) tumors are encouraged.

  19. The interplay between epigenetic silencing, oncogenic KRas and HIF-1 regulatory pathways in control of BNIP3 expression in human colorectal cancer cells.

    PubMed

    Swiderek, Ewelina; Kalas, Wojciech; Wysokinska, Edyta; Pawlak, Alicja; Rak, Janusz; Strzadala, Leon

    2013-11-29

    Bcl-2/adenovirus E1B-19kDa-interacting protein 3 (BNIP3) is an important mediator of cell survival and a member of the Bcl-2 family of proteins that regulate programmed cell death and autophagy. We have previously established a link between the expression of oncogenic HRas and up-regulation of BNIP3 and the control of autophagy in cancer cells. However, in view of varied expression of BNIP3 in different tumor types and emerging uncertainties as to the role of epigenetic silencing, oncogenic regulation and the role of BNIP3 in cancer are still poorly understood. In the present study we describe profound effect of KRas on the expression of methylated BNIP3 in colorectal cancer cells and explore the interplay between HIF-1, hypoxia pathway and oncogenic KRas in this context. We observed that BNIP3 mRNA remains undetectable in aggressive DLD-1 cells harboring G13D mutant KRAS and HT-29 colorectal cancer cells unless the cells are exposed to demethylating agents such as 5-aza-2'-deoxycytidine. Following this treatment BNIP3 expression remains uniquely dependent on the Ras activity. We found that hypoxia or pharmacological activation of HIF-1 alone contributes to, but is not sufficient for efficient induction of BNIP3 mRNA transcription in cells lacking mutant KRas activity. The up-regulation of BNIP3 by KRas in this setting is mediated by the MAPK pathway, and is attenuated by the respective inhibitors (PD98059, U0126). Thus, we demonstrate the novel mechanism where activity of Ras is essential for 5-aza-2'-deoxycytidine-mediated BNIP3 expression. Moreover, we found that 5-aza-2'-deoxycytidine-mediated or enforced up-regulation of BNIP3 in DLD-1 cells results in KRas-dependent resistance to 5-Fluorouracil. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Inhibition of Oncogenic BRAF Activity by Indole-3-Carbinol Disrupts Microphthalmia-Associated Transcription Factor Expression and Arrests Melanoma Cell Proliferation

    PubMed Central

    Kundu, Aishwarya; Quirit, Jeanne G.; Khouri, Michelle G.; Firestone, Gary L.

    2016-01-01

    Indole-3-carbinol (I3C), an anti-cancer phytochemical derived from cruciferous vegetables, strongly inhibited proliferation and down-regulated protein levels of the melanocyte master regulator micropthalmia-associated transcription factor (MITF-M) in oncogenic BRAF-V600E expressing melanoma cells in culture as well as in vivo in tumor xenografted athymic nude mice. In contrast, wild type BRAF-expressing melanoma cells remained relatively insensitive to I3C anti-proliferative signaling. In BRAF-V600E-expressing melanoma cells, I3C treatment inhibited phosphorylation of MEK and ERK/MAPK, the down stream effectors of BRAF. The I3C anti-proliferative arrest was concomitant with the down-regulation of MITF-M transcripts and promoter activity, loss of endogenous BRN-2 binding to the MITF-M promoter, and was strongly attenuated by expression of exogenous MITF-M. Importantly, in vitro kinase assays using immunoprecipitated BRAF-V600E and wild type BRAF demonstrated that I3C selectively inhibited the enzymatic activity of the oncogenic BRAF-V600E but not of the wild type protein. In silico modeling predicted an I3C interaction site in the BRAF-V600E protomer distinct from where the clinically used BRAF-V600E inhibitor Vemurafenib binds to BRAF-V600E. Consistent with this prediction, combinations of I3C and Vemurafenib more potently inhibited melanoma cell proliferation and reduced MITF-M levels in BRAF-V600E expressing melanoma cells compared to the effects of each compound alone. Thus, our results demonstrate that oncogenic BRAF-V600E is a new cellular target of I3C that implicate this indolecarbinol compound as a potential candidate for novel single or combination therapies for melanoma. PMID:26878440

  1. Concordant down-regulation of proto-oncogene PML and major histocompatibility antigen HLA class I expression in high-grade prostate cancer.

    PubMed

    Zhang, Huiming; Melamed, Jonathan; Wei, Ping; Cox, Karen; Frankel, Wendy; Bahnson, Robert R; Robinson, Nikki; Pyka, Ron; Liu, Yang; Zheng, Pan

    2003-02-14

    Recognition of tumor cells by cytolytic T lymphocytes depends on cell surface MHC class I expression. As a mechanism to evade T cell recognition, many malignant cancer cells, including those of prostate cancer, down-regulate MHC class I. For the majority of human cancers, the molecular mechanism of MHC class I down regulation is unclear, although it is well established that MHC class I down-regulation is often associated with the down-regulation of multiple genes devoted to antigen presentation. Since the promyelocytic leukemia (PML) proto-oncogene controls multiple antigen-presentation genes in some murine cancer cells, we analyzed the expression of proto-oncogene PML and MHC class I in high-grade prostate cancer. We found that 30 of 37 (81%) prostate adenocarcinoma cases with a Gleason grade of 7-8 had more than 50% down-regulation of HLA class I expression. Among these, 22 cases (73.3%) had no detectable PML protein, while 4 cases (13.3%) showed partial PML down-regulation. In contrast, all 7 cases of prostate cancer with high expression of cell surface HLA class I had high levels of PML expression. Concordant down-regulation of HLA and PML was observed in different histological patterns of prostate adenocarcinoma. These results suggest that in high-grade prostate cancer, malfunction of proto-oncogene PML is a major factor in the down-regulation of cell surface HLA class I molecules, the target molecules essential for the direct recognition of cancer cells by cytolytic T lymphocytes.

  2. Linking Proteomic and Transcriptional Data through the Interactome and Epigenome Reveals a Map of Oncogene-induced Signaling

    PubMed Central

    Huang, Shao-shan Carol; Clarke, David C.; Gosline, Sara J. C.; Labadorf, Adam; Chouinard, Candace R.; Gordon, William; Lauffenburger, Douglas A.; Fraenkel, Ernest

    2013-01-01

    Cellular signal transduction generally involves cascades of post-translational protein modifications that rapidly catalyze changes in protein-DNA interactions and gene expression. High-throughput measurements are improving our ability to study each of these stages individually, but do not capture the connections between them. Here we present an approach for building a network of physical links among these data that can be used to prioritize targets for pharmacological intervention. Our method recovers the critical missing links between proteomic and transcriptional data by relating changes in chromatin accessibility to changes in expression and then uses these links to connect proteomic and transcriptome data. We applied our approach to integrate epigenomic, phosphoproteomic and transcriptome changes induced by the variant III mutation of the epidermal growth factor receptor (EGFRvIII) in a cell line model of glioblastoma multiforme (GBM). To test the relevance of the network, we used small molecules to target highly connected nodes implicated by the network model that were not detected by the experimental data in isolation and we found that a large fraction of these agents alter cell viability. Among these are two compounds, ICG-001, targeting CREB binding protein (CREBBP), and PKF118–310, targeting β-catenin (CTNNB1), which have not been tested previously for effectiveness against GBM. At the level of transcriptional regulation, we used chromatin immunoprecipitation sequencing (ChIP-Seq) to experimentally determine the genome-wide binding locations of p300, a transcriptional co-regulator highly connected in the network. Analysis of p300 target genes suggested its role in tumorigenesis. We propose that this general method, in which experimental measurements are used as constraints for building regulatory networks from the interactome while taking into account noise and missing data, should be applicable to a wide range of high-throughput datasets. PMID:23408876

  3. Targeting the Human Papillomavirus E6 and E7 Oncogenes through Expression of the Bovine Papillomavirus Type 1 E2 Protein Stimulates Cellular Motility▿†

    PubMed Central

    Morrison, Monique A.; Morreale, Richard J.; Akunuru, Shailaja; Kofron, Matthew; Zheng, Yi; Wells, Susanne I.

    2011-01-01

    Expression of the high-risk human papillomavirus (HPV) E6 and E7 oncogenes is essential for the initiation and maintenance of cervical cancer. The repression of both was previously shown to result in activation of their respective tumor suppressor targets, p53 and pRb, and subsequent senescence induction in cervical cancer cells. Consequently, viral oncogene suppression is a promising approach for the treatment of HPV-positive tumors. One well-established method of E6/E7 repression involves the reexpression of the viral E2 protein which is usually deleted in HPV-positive cancer cells. Here, we show that, surprisingly, bovine papillomavirus type 1 (BPV1) E2 but not RNA interference-mediated E6/E7 repression in HPV-positive cervical cancer cells stimulates cellular motility and invasion. Migration correlated with the dynamic formation of cellular protrusions and was dependent upon cell-to-cell contact. While E2-expressing migratory cells were senescent, migration was not a general feature of cellular senescence or cell cycle arrest and was specifically observed in HPV-positive cervical cancer cells. Interestingly, E2-expressing cells not only were themselves motile but also conferred increased motility to admixed HeLa cervical cancer cells. Together, our data suggest that repression of the viral oncogenes by E2 stimulates the motility of E6/E7-targeted cells as well as adjacent nontargeted cancer cells, thus raising the possibility that E2 expression may unfavorably increase the local invasiveness of HPV-positive tumors. PMID:21835799

  4. Prevention of tumor growth driven by PIK3CA and HPV oncogenes by targeting mTOR signaling with metformin in oral squamous carcinomas expressing OCT3.

    PubMed

    Madera, Dmitri; Vitale-Cross, Lynn; Martin, Daniel; Schneider, Abraham; Molinolo, Alfredo A; Gangane, Nitin; Carey, Thomas E; McHugh, Jonathan B; Komarck, Christine M; Walline, Heather M; William, William N; Seethala, Raja R; Ferris, Robert L; Gutkind, J Silvio

    2015-03-01

    Most squamous cell carcinomas of the head and neck (HNSCC) exhibit a persistent activation of the PI3K-mTOR signaling pathway. We have recently shown that metformin, an oral antidiabetic drug that is also used to treat lipodystrophy in HIV-infected (HIV(+)) individuals, diminishes mTOR activity and prevents the progression of chemically induced experimental HNSCC premalignant lesions. Here, we explored the preclinical activity of metformin in HNSCCs harboring PIK3CA mutations and HPV oncogenes, both representing frequent HNSCC alterations, aimed at developing effective targeted preventive strategies. The biochemical and biologic effects of metformin were evaluated in representative HNSCC cells expressing mutated PIK3CA or HPV oncogenes (HPV(+)). The oral delivery of metformin was optimized to achieve clinical relevant blood levels. Molecular determinants of metformin sensitivity were also investigated, and their expression levels were examined in a large collection of HNSCC cases. We found that metformin inhibits mTOR signaling and tumor growth in HNSCC cells expressing mutated PIK3CA and HPV oncogenes, and that these activities require the expression of organic cation transporter 3 (OCT3/SLC22A3), a metformin uptake transporter. Coexpression of OCT3 and the mTOR pathway activation marker pS6 were observed in most HNSCC cases, including those arising in HIV(+) patients. Activation of the PI3K-mTOR pathway is a widespread event in HNSCC, including HPV(-) and HPV(+) lesions arising in HIV(+) patients, all of which coexpress OCT3. These observations may provide a rationale for the clinical evaluation of metformin to halt HNSCC development from precancerous lesions, including in HIV(+) individuals at risk of developing HPV(-) associated cancers. ©2015 American Association for Cancer Research.

  5. Loss of RALT/MIG-6 expression in ERBB2-amplified breast carcinomas enhances ErbB-2 oncogenic potency and favors resistance to Herceptin.

    PubMed

    Anastasi, Sergio; Sala, Gianluca; Huiping, Chen; Caprini, Elisabetta; Russo, Giandomenico; Iacovelli, Stefano; Lucini, Fabiana; Ingvarsson, Sigurdur; Segatto, Oreste

    2005-06-30

    An emerging paradigm holds that loss of negative signalling to receptor tyrosine kinases (RTKs) is permissive for their oncogenic activity. Herein, we have addressed tumor suppression by RALT/MIG-6, a transcriptionally controlled feedback inhibitor of ErbB RTKs, in breast cancer cells. Knockdown of RALT expression by RNAi enhanced the EGF-dependent proliferation of normal breast epithelial cells, indicating that loss of RALT signalling in breast epithelium may represent an advantageous condition during ErbB-driven tumorigenesis. Although mutational inactivation of the RALT gene was not detected in human breast carcinomas, RALT mRNA and protein expression was strongly and selectively reduced in ERBB2-amplified breast cancer cell lines. Reconstitution of RALT expression in ERBB2-amplified SKBr-3 and BT474 cells inhibited ErbB-2-dependent mitogenic signalling and counteracted the ability of ErbB ligands to promote resistance to the ErbB-2-targeting drug Herceptin. Thus, loss of RALT expression cooperates with ERBB2 gene amplification to drive full oncogenic signalling by the ErbB-2 receptor. Moreover, loss of RALT signalling may adversely affect tumor responses to ErbB-2-targeting agents.

  6. E6 and E7 oncogene expression by human papilloma virus (HPV) and the aggressive behavior of recurrent laryngeal papillomatosis (RLP).

    PubMed

    Shehata, Bahig M; Otto, Kristen J; Sobol, Steven E; Stockwell, Christina A; Foulks, Cora; Lancaster, Wayne; Gregoire, Lucie; Hill, Charles E

    2008-01-01

    Recurrent laryngeal papillomatosis (RLP), a chronic disease associated with human papilloma virus (HPV), requires serial surgical procedures for debulking, resulting in debilitating long-term dysphonia, laryngeal scarring, and rarely malignant degeneration. Human papilloma virus 11 tumors have been widely accepted as more aggressive than HPV 6 tumors; however, the clinical course has been difficult to predict at disease onset, and the biologic mediators of proliferation have not been well characterized. A retrospective case review of 43 patients (4 months to 10 years at diagnosis) was performed on children treated for recurrent laryngeal papillomatosis. Patient charts were reviewed for demographic information, age at RLP diagnosis, approximate frequency of surgical intervention, and absolute number of surgical procedures performed. Human papilloma virus subtyping was performed. Expression analysis of the HPV-encoded E6 and E7 oncogenes was performed by reverse-transcriptase polymerase chain reaction. Fourteen patients had subtype 11 (33%) and 29 patients had subtype 6 (67%). As expected, HPV 11 patients showed a more aggressive clinical course than HPV 6 patients. However, 38% of patients with subtype 6 (11 patients) followed a clinical course that mirrored the more severe subtype 11 patients. These patients expressed the disease at a younger age (P < 0.0002) and showed higher levels of E6 and E7 oncogenes compared to the patients with the more indolent course. Although HPV subtype and early onset of RLP are well characterized prognostic factors, our study documents the significance of E6 and E7 oncogene expression as potential biologic mediators of proliferation and thereby clinical behavior.

  7. Multiple oncogene activation in a radiation carcinogenesis model

    SciTech Connect

    Garte, S.J.; Sawey, M.J.; Burns, F.J.; Felber, M.; Ashkenazi-Kimmel, T.

    1987-01-01

    There is evidence from animal systems to suggest that certain oncogenes may be activated by the direct action of the initiating carcinogen. Consistent activation by a point mutation of a single member of the ras oncogene family in different tumors produced by a single agent has been demonstrated. In contrast the c-myc and other oncogenes have been shown to be activated by a process involving chromosomal translocations, enhanced expression, and/or gene amplification. We have examined a panel of 12 late stage rat skin tumors for activation of oncogenes from the ras and myc complementation groups. These tumors were four squamous cell carcinomas, three poorly differentiated carcinomas (clear cell), one each of basal cell carcinoma, sebaceous carcinoma, sarcoma, fibroma, and mixed (largely squamous) histology carcinoma. The positive tumor DNAs were from three poorly differentiated clear cell carcinomas, a sebaceous carcinoma, a squamous cell carcinoma, and a sarcoma. DNA from one of the primary transfectants was positive in a second round of transfection. The transformed phenotype of the transfectants was confirmed by anchorage independent growth and tumorigenicity in nude mice. Southern blot analysis of DNA from primary and secondary transfectants, as well as from nude mouse tumors arising after injection of transfectant cells revealed the presence of rat derived restriction fragments homologous to the K-ras oncogene against the mouse background. Similar experiments using N- and H-ras probes, revealed only the endogenous mouse fragments in transfectant DNA. 11 refs., 1 tab.

  8. Expression and mutational status of treatment-relevant targets and key oncogenes in 123 malignant salivary gland tumours.

    PubMed

    Cros, J; Sbidian, E; Hans, S; Roussel, H; Scotte, F; Tartour, E; Brasnu, D; Laurent-Puig, P; Bruneval, P; Blons, H; Badoual, C

    2013-10-01

    Malignant tumours of the salivary glands (MSGT) are rare and pleomorphic entities. Patients with advanced disease may benefit from targeted therapy; however, specific targets for optimising and personalising treatments are yet to be identified. Immunohistochemistry for C-KIT, EGFR, HER2, MUC1, phospho-mTOR, androgen/estrogens/progesterone receptors and Ki67 was carried out and evaluated in terms of progression-free and overall survival. High throughput molecular screening of key oncogenes was done in 107 patients using routine diagnostic methods and Sequenom technology. Several therapy leads were identified, including high levels of HER2 and androgen receptors in salivary duct carcinomas, C-KIT in myoepithelial carcinomas and EGFR in mucoepidermoid carcinomas. Recurrent mutations involving downstream elements of the EGFR pathway were found in HRAS, notably in tumours with a myoepithelial component, and in other key oncogenes (KRAS/NRAS/PI3KCA/BRAF/MAP2K). On the other hand, <1% of samples had EGFR or HER2 mutations. Several tumour subtypes overexpressed targets of directed therapies suggesting potential therapy leads. Genotyping results suggest activation downstream of EGFR in 18 of the 107 samples that could be associated with low efficacy of EGFR inhibitors. Other molecules, such as PI3K/MEK or mTOR inhibitors, may have anti-tumour activity in this subgroup. The high mutation rate in HRAS highlights a novel key oncogenic event in MSGT.

  9. Hematopoietic expression of oncogenic BRAF promotes aberrant growth of monocyte-lineage cells resistant to PLX4720

    PubMed Central

    Kamata, Tamihiro; Dankort, David; Kang, Jing; Giblett, Susan; Pritchard, Catrin A.; McMahon, Martin; Leavitt, Andrew D.

    2013-01-01

    Mutational activation of BRAF leading to expression of the BRAFV600E oncoprotein was recently identified in a high percentage of specific hematopoietic neoplasms in monocyte/histiocyte and mature B-cell lineages. Although BRAFV600E is a driver oncoprotein and pharmacological target in solid tumors such as melanoma, lung and thyroid cancer, it remains unknown whether BRAFV600E is an appropriate therapeutic target in hematopoietic neoplasms. To address this critical question, we generated a mouse model expressing inducible BRAFV600E in the hematopoietic system, and evaluated the efficacy of pathway-targeted therapeutics against primary hematopoietic cells. In this model, BRAFV600E expression conferred cytokine-independent growth to monocyte/macrophage-lineage progenitors leading to aberrant in vivo and in vitro monocyte/macrophage expansion. Furthermore, transplantation of BRAFV600E-expressing bone marrow cells promoted an in vivo pathology most notable for monocytosis in hematopoietic tissues and visceral organs. In vitro analysis revealed that MEK inhibition, but not RAF inhibition, effectively suppressed cytokine-independent clonal growth of monocyte/macrophage-lineage progenitors. However, combined RAF and PI3K inhibition effectively inhibited cytokine-independent colony formation, suggesting autocrine PI3K pathway activation. Taken together, these results provide evidence that constitutively activated BRAFV600E drives aberrant proliferation of monocyte-lineage cells. This study supports the development of pathway-targeted therapeutics in the treatment of BRAFV600E-expressing hematopoietic neoplasms in the monocyte/histiocyte lineage. PMID:24152792

  10. Protein kinase C-independent expression of stromelysin by platelet-derived growth factor, ras oncogene, and phosphatidylcholine-hydrolyzing phospholipase C.

    PubMed

    Diaz-Meco, M T; Quiñones, S; Municio, M M; Sanz, L; Bernal, D; Cabrero, E; Saus, J; Moscat, J

    1991-11-25

    Changes in the expression of several genes play critical roles in cell growth and tumor transformation. A number of proteases are increased in some tumors, and the level of these enzymes correlates with the metastatic potential of several cancer cell lines. Stromelysin, with the widest substrate specificity, can degrade the extracellular matrix conferring metastatic potential to tumor cells. The mechanisms whereby growth factors and oncogenes control the expression of stromelysin are beginning to be characterized. In the study shown here we also identify a region in the stromelysin promoter which is involved in the induction of stromelysin in response to platelet-derived growth factor, phosphatidylcholine-hydrolyzing phospholipase C, and ras oncogene. Our results are consistent with the notion that platelet-derived growth factor/phosphatidylcholine-hydrolyzing phospholipase C induces stromelysin gene expression through a phorbol myristate acetate/protein kinase C-independent mechanism by acting through elements in the stromelysin promoter distinct from the 12-O-tetradecanoylphorbol-13-acetate-responsive element.

  11. 5-aza-2'-deoxycytidine (DAC) treatment downregulates the HPV E6 and E7 oncogene expression and blocks neoplastic growth of HPV-associated cancer cells.

    PubMed

    Stich, Maximilian; Ganss, Lennard; Puschhof, Jens; Prigge, Elena-Sophie; Reuschenbach, Miriam; Guiterrez, Ana; Vinokurova, Svetlana; von Knebel Doeberitz, Magnus

    2016-07-16

    High-risk human papillomaviruses (hr HPVs) may cause various human cancers and associated premalignant lesions. Transformation of the host cells is triggered by overexpression of the viral oncogenes E6 and E7 that deregulate the cell cycle and induce chromosomal instability. This process is accompanied by hypermethylation of distinct CpG sites resulting in silencing of tumor suppressor genes, inhibition of the viral E2 mediated control of E6 and E7 transcription as well as deregulated expression of host cell microRNAs. Therefore, we hypothesized that treatment with demethylating agents might restore those regulatory mechanisms. Here we show that treatment with 5-aza-2'-deoxycytidine (DAC) strongly decreases the expression of E6 and E7 in a panel of HPV-transformed cervical cancer and head and neck squamous cell carcinoma cell lines. Reduction of E6 and E7 further resulted in increased target protein levels including p53 and p21 reducing the proliferation rates and colony formation abilities of the treated cell lines. Moreover, DAC treatment led to enhanced expression of tumor the suppressive miRNA-375 that targets and degrades E6 and E7 transcripts. Therefore, we suggest that DAC treatment of HPV-associated cancers and respective precursor lesions may constitute a targeted approach to subvert HPV oncogene functions that deserves testing in clinical trials.

  12. Downregulation of oncogenic RAS and c-Myc expression in MOLT-4 leukaemia cells by a salicylaldehyde semicarbazone copper(II) complex

    PubMed Central

    Goh, Yan-Yih; Yan, Yaw-Kai; Tan, Nguan Soon; Goh, Su-Ann; Li, Shang; Teoh, You-Chuan; Lee, Peter P. F.

    2016-01-01

    Copper complexes with potent anti-tumor effect have been extensively developed. Most investigations of their modes of action focused on the biomolecular targets but not the signal transduction between target binding and cell death. We have previously shown that the cytotoxic complex pyridine(2,4-dihydroxybenzaldehyde dibenzyl semicarbazone)copper(II) (complex 1) shows selective binding to human telomeric G-quadruplex DNA over double-stranded DNA in vitro. Herein, we elucidate the mechanism of action by which complex 1 induces apoptosis in MOLT-4 cells. Complex 1 accumulates in the nuclei and differentially downregulates the expression of c-Myc, c-Kit and KRAS oncogenes. Chemical affinity capture assay results show that the complex is associated with c-Myc and KRAS quadruplex sequences in MOLT-4 cells. We further showed that the reduction in Ras protein expression resulted in attenuated MEK-ERK and PI3K-Akt signalling activities, leading to the activation of caspase-dependent apoptosis. Notably, complex 1 increased the sensitivity of MOLT-4 cells to cisplatin and vice versa. Overall, we demonstrated that complex 1 induces apoptosis, at least in part, by suppressing KRAS, c-Kit and c-Myc oncogene expression and the pro-survival MEK-ERK and PI3K-Akt signalling pathways. PMID:27841290

  13. Downregulation of oncogenic RAS and c-Myc expression in MOLT-4 leukaemia cells by a salicylaldehyde semicarbazone copper(II) complex.

    PubMed

    Goh, Yan-Yih; Yan, Yaw-Kai; Tan, Nguan Soon; Goh, Su-Ann; Li, Shang; Teoh, You-Chuan; Lee, Peter P F

    2016-11-14

    Copper complexes with potent anti-tumor effect have been extensively developed. Most investigations of their modes of action focused on the biomolecular targets but not the signal transduction between target binding and cell death. We have previously shown that the cytotoxic complex pyridine(2,4-dihydroxybenzaldehyde dibenzyl semicarbazone)copper(II) (complex 1) shows selective binding to human telomeric G-quadruplex DNA over double-stranded DNA in vitro. Herein, we elucidate the mechanism of action by which complex 1 induces apoptosis in MOLT-4 cells. Complex 1 accumulates in the nuclei and differentially downregulates the expression of c-Myc, c-Kit and KRAS oncogenes. Chemical affinity capture assay results show that the complex is associated with c-Myc and KRAS quadruplex sequences in MOLT-4 cells. We further showed that the reduction in Ras protein expression resulted in attenuated MEK-ERK and PI3K-Akt signalling activities, leading to the activation of caspase-dependent apoptosis. Notably, complex 1 increased the sensitivity of MOLT-4 cells to cisplatin and vice versa. Overall, we demonstrated that complex 1 induces apoptosis, at least in part, by suppressing KRAS, c-Kit and c-Myc oncogene expression and the pro-survival MEK-ERK and PI3K-Akt signalling pathways.

  14. Genetic and epigenetic silencing of mircoRNA-506-3p enhances COTL1 oncogene expression to foster non-small lung cancer progression

    PubMed Central

    Li, Xiaojiang; Wang, Yuanyuan; Zhang, Xin; Sun, Binxu; Zhang, Yao; Jia, Yingjie

    2017-01-01

    Although previous studies suggested that microRNA-506-3p (miR-506-3p) was frequently downregulated, and functioned as a tumor suppressor in several cancers, the biological role and intrinsic regulatory mechanisms of miR-506-3p in non-small cell lung cancer (NSCLC) remain elusive. The present study found miR-506-3p expression was downregulated in advanced NSCLC tissues and cell lines. The expression of miR-506-3p in NSCLC was inversely correlated with larger tumor size, advanced TNM stage and lymph node metastasis. In addition, we also found patients with lower expression of miR-506-3p had a poor prognosis than those patients with higher expression of miR-506-3p. Function studies demonstrated that aberrant miR-506-3p expression modulates tumor cell growth, cell mobility, cell migration and invasion in vitro and in vivo. Mechanistic investigations manifested that coactosin-like protein 1 (COTL1) was a direct downstream target of miR-506-3p. Knockdown of COTL1 mimicked the tumor-suppressive effects of miR-506-3p overexpression in A549 cells, whereas COTL1 overexpression enhanced the tumorigenic function in HCC827 cells. Importantly, we also found GATA3 transcriptionally actives miR-506-3p expression, and the long non-coding RNA urothelial carcinoma-associated 1 (UCA1) exerts oncogenic function in NSCLC by competitively ‘sponging’ miRNA-506. Together, our combined results elucidated genetic and epigenetic silencing of miR-506-3p enhances COTL1 oncogene expression to foster NSCLC progression. PMID:27893417

  15. Genetic and epigenetic silencing of mircoRNA-506-3p enhances COTL1 oncogene expression to foster non-small lung cancer progression.

    PubMed

    Guo, Shanqi; Yang, Peiying; Jiang, Xingkang; Li, Xiaojiang; Wang, Yuanyuan; Zhang, Xin; Sun, Binxu; Zhang, Yao; Jia, Yingjie

    2017-01-03

    Although previous studies suggested that microRNA-506-3p (miR-506-3p) was frequently downregulated, and functioned as a tumor suppressor in several cancers, the biological role and intrinsic regulatory mechanisms of miR-506-3p in non-small cell lung cancer (NSCLC) remain elusive. The present study found miR-506-3p expression was downregulated in advanced NSCLC tissues and cell lines. The expression of miR-506-3p in NSCLC was inversely correlated with larger tumor size, advanced TNM stage and lymph node metastasis. In addition, we also found patients with lower expression of miR-506-3p had a poor prognosis than those patients with higher expression of miR-506-3p. Function studies demonstrated that aberrant miR-506-3p expression modulates tumor cell growth, cell mobility, cell migration and invasion in vitro and in vivo. Mechanistic investigations manifested that coactosin-like protein 1 (COTL1) was a direct downstream target of miR-506-3p. Knockdown of COTL1 mimicked the tumor-suppressive effects of miR-506-3p overexpression in A549 cells, whereas COTL1 overexpression enhanced the tumorigenic function in HCC827 cells. Importantly, we also found GATA3 transcriptionally actives miR-506-3p expression, and the long non-coding RNA urothelial carcinoma-associated 1 (UCA1) exerts oncogenic function in NSCLC by competitively 'sponging' miRNA-506. Together, our combined results elucidated genetic and epigenetic silencing of miR-506-3p enhances COTL1 oncogene expression to foster NSCLC progression.

  16. Oncogenic activation of the PI3K/Akt pathway promotes cellular glucose uptake by downregulating the expression of thioredoxin-interacting protein.

    PubMed

    Hong, Shin Yee; Yu, Fa-Xing; Luo, Yan; Hagen, Thilo

    2016-05-01

    Oncogenic activation of the PI3K/Akt pathway is known to play an important role to promote glucose metabolism in cancer cells. However, the molecular mechanism through which the PI3K/Akt signalling pathway promotes glucose utilisation in cancer cells is still not well understood. It has recently been shown that the oncogenic activation of the PI3K/Akt/mTOR signalling in lung adenocarcinoma is important in promoting the localisation of glucose transporter 1 (GLUT1) at the plasma membrane. We thus hypothesised that the effect of constitutive activation of the PI3K/AKT signalling on glucose metabolism is mediated by thioredoxin interacting protein (TXNIP), a known regulator of the GLUT1 plasma membrane localisation. Consistent with previous studies, inhibition of the PI3K/Akt pathway decreased cellular glucose uptake. Furthermore, inhibition of PI3K/Akt signalling in non-small cell lung cancer (NSCLC) cell lines using clinically used tyrosine kinase inhibitors (TKIs) resulted in a decrease in GLUT1 membrane localisation. We also observed that inhibition of the PI3K/Akt pathway in various cell lines, including NSCLC cells, resulted in an increase in TXNIP expression. Importantly, knockdown of TXNIP using siRNA in the NSCLC cells promoted GLUT1 to be localised at the plasma membrane and reversed the effect of PI3K/Akt inhibitors. Together, our results suggest that the oncogenic activation of PI3K/Akt signalling promotes cellular glucose uptake, at least in part, through the regulation of TXNIP expression. This mechanism may contribute to the Warburg effect in cancer cells.

  17. Control of MicroRNA-21 expression in colorectal cancer cells by oncogenic epidermal growth factor/Ras signaling and Ets transcription factors.

    PubMed

    Kern, Hanna B; Niemeyer, Brian F; Parrish, Janet K; Kerr, Carol A; Yaghi, Nasser K; Prescott, Jason D; Gutierrez-Hartmann, Arthur; Jedlicka, Paul

    2012-08-01

    MicroRNAs (miRs) are important regulators of gene expression in normal physiology and disease, and are widely misexpressed in cancer. A number of studies have identified miR-21 as an important promoter of oncogenesis. However, as is true of most miRs, the mechanisms behind the aberrant expression of miR-21 in cancer are poorly understood. Herein, we examine the regulation of miR-21 expression in colorectal cancer (CRC) cells by the oncogenic epidermal growth factor (EGF)/Ras pathway and by Ets transcription factors, modulators of epithelial oncogenesis that are frequently misexpressed in CRC. We show that EGF/Ras efficiently induces the miR-21 primary transcript, but this does not rapidly and simply translate into higher mature miR-21 levels. Rather, induction of mature miR-21 by constitutive activation of this pathway is slow, is associated with only minimal activation of mitogen-activated protein kinase, and may involve stimulation of post-transcriptional processing by mechanisms other than Dicer stabilization. We further identify Ets transcription factors as modifiers of miR-21 expression in CRC. The effects of Ets factors on miR-21 expression are cell context-dependent, and appear to involve both direct and indirect mechanisms. The Ets factor Pea3 emerges from our studies as a consistent repressor of miR-21 transcription. Overall, our studies identify a complex relationship between oncogenic pathways and steady-state miR-21 levels in CRC, and highlight the need for greater understanding of the control of miR expression in cancer and other disease states.

  18. High-resolution three-dimensional NMR structure of the KRAS proto-oncogene promoter reveals key features of a G-quadruplex involved in transcriptional regulation.

    PubMed

    Kerkour, Abdelaziz; Marquevielle, Julien; Ivashchenko, Stefaniia; Yatsunyk, Liliya A; Mergny, Jean-Louis; Salgado, Gilmar F

    2017-05-12

    Non-canonical base pairing within guanine-rich DNA and RNA sequences can produce G-quartets, whose stacking leads to the formation of a G-quadruplex (G4). G4s can coexist with canonical duplex DNA in the human genome and have been suggested to suppress gene transcription, and much attention has therefore focused on studying G4s in promotor regions of disease-related genes. For example, the human KRAS proto-oncogene contains a nuclease-hypersensitive element located upstream of the major transcription start site. The KRAS nuclease-hypersensitive element (NHE) region contains a G-rich element (22RT; 5'-AGGGCGGTGTGGGAATAGGGAA-3') and encompasses a Myc-associated zinc finger-binding site that regulates KRAS transcription. The NEH region therefore has been proposed as a target for new drugs that control KRAS transcription, which requires detailed knowledge of the NHE structure. In this study, we report a high-resolution NMR structure of the G-rich element within the KRAS NHE. We found that the G-rich element forms a parallel structure with three G-quartets connected by a four-nucleotide loop and two short one-nucleotide double-chain reversal loops. In addition, a thymine bulge is found between G8 and G9. The loops of different lengths and the presence of a bulge between the G-quartets are structural elements that potentially can be targeted by small chemical ligands that would further stabilize the structure and interfere or block transcriptional regulators such as Myc-associated zinc finger from accessing their binding sites on the KRAS promoter. In conclusion, our work suggests a possible new route for the development of anticancer agents that could suppress KRAS expression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Targeted disruption of the murine fps/fes proto-oncogene reveals that Fps/Fes kinase activity is dispensable for hematopoiesis.

    PubMed

    Senis, Y; Zirngibl, R; McVeigh, J; Haman, A; Hoang, T; Greer, P A

    1999-11-01

    The fps/fes proto-oncogene encodes a cytoplasmic protein-tyrosine kinase that is functionally implicated in the survival and terminal differentiation of myeloid progenitors and in signaling from several members of the cytokine receptor superfamily. To gain further insight into the physiological function of fps/fes, we targeted the mouse locus with a kinase-inactivating missense mutation. Mutant Fps/Fes protein was expressed at normal levels in these mice, but it lacked detectable kinase activity. Homozygous mutant animals were viable and fertile, and they showed no obvious defects. Flow cytometry analysis of bone marrow showed no statistically significant differences in the levels of myeloid, erythroid, or B-cell precursors. Subtle abnormalities observed in mutant mice included slightly elevated total leukocyte counts and splenomegaly. In bone marrow hematopoietic progenitor cell colony-forming assays, mutant mice gave slightly elevated numbers and variable sizes of CFU-granulocyte macrophage in response to interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Tyrosine phosphorylation of Stat3 and Stat5A in bone marrow-derived macrophages was dramatically reduced in response to GM-CSF but not to IL-3 or IL-6. This suggests a distinct nonredundant role for Fps/Fes in signaling from the GM-CSF receptor that does not extend to the closely related IL-3 receptor. Lipopolysaccharide-induced Erk1/2 activation was also reduced in mutant macrophages. These subtle molecular phenotypes suggest a possible nonredundant role for Fps/Fes in myelopoiesis and immune responses.

  20. Structure of the Catalytic Domain of EZH2 Reveals Conformational Plasticity in Cofactor and Substrate Binding Sites and Explains Oncogenic Mutations

    PubMed Central

    Wu, Hong; Zeng, Hong; Dong, Aiping; Li, Fengling; He, Hao; Senisterra, Guillermo; Seitova, Alma; Duan, Shili; Brown, Peter J.; Vedadi, Masoud; Arrowsmith, Cheryl H.; Schapira, Matthieu

    2013-01-01

    Polycomb repressive complex 2 (PRC2) is an important regulator of cellular differentiation and cell type identity. Overexpression or activating mutations of EZH2, the catalytic component of the PRC2 complex, are linked to hyper-trimethylation of lysine 27 of histone H3 (H3K27me3) in many cancers. Potent EZH2 inhibitors that reduce levels of H3K27me3 kill mutant lymphoma cells and are efficacious in a mouse xenograft model of malignant rhabdoid tumors. Unlike most SET domain methyltransferases, EZH2 requires PRC2 components, SUZ12 and EED, for activity, but the mechanism by which catalysis is promoted in the PRC2 complex is unknown. We solved the 2.0 Å crystal structure of the EZH2 methyltransferase domain revealing that most of the canonical structural features of SET domain methyltransferase structures are conserved. The site of methyl transfer is in a catalytically competent state, and the structure clarifies the structural mechanism underlying oncogenic hyper-trimethylation of H3K27 in tumors harboring mutations at Y641 or A677. On the other hand, the I-SET and post-SET domains occupy atypical positions relative to the core SET domain resulting in incomplete formation of the cofactor binding site and occlusion of the substrate binding groove. A novel CXC domain N-terminal to the SET domain may contribute to the apparent inactive conformation. We propose that protein interactions within the PRC2 complex modulate the trajectory of the post-SET and I-SET domains of EZH2 in favor of a catalytically competent conformation. PMID:24367611

  1. Transformation of Rat-1 fibroblasts with the v-src oncogene induces inositol 1,4,5-trisphosphate 3-kinase expression.

    PubMed Central

    Woodring, P J; Garrison, J C

    1996-01-01

    Transformation of Rat-1 fibroblasts with the v-src oncogene leads to a 6- to 8-fold enhancement of the activity of the Ins(1,4,5)P3 3-kinase in cytosolic extracts [Johnson, Wasilenko, Mattingly, Weber and Garrison (1989) Science 246, 121-124]. This study confirms these results using another v-src-transformed Rat-1 cell line (B31 cells) and investigates the molecular mechanism by which pp60v-src activates Ins(1,4,5)P3 3-kinase. The mRNA and protein levels for two rat isoforms of Ins(1,4,5)P3 3-kinase were determined in the v-src-transformed cell line. Both the mRNA and protein levels for isoform A were elevated in v-src-transformed Rat-1 cells while those for isoform B were not significantly affected. Moreover, stable expression of either form of Ins(1,4,5)P3 3-kinase in the B31 v-src-transformed Rat-1 cell line did not result in tyrosine phosphorylation of Ins(1,4,5)P3 3-kinase A or B. These results suggest that at least one mechanism by which the v-src oncogene increases the activity of the Ins(1,4,5)P3 3-kinase in the Rat-1 transformed fibroblast is by increasing the level of expression of Ins(1,4,5)P3 3-kinase A. PMID:8870651

  2. Global gene expression changes of in vitro stimulated human transformed germinal centre B cells as surrogate for oncogenic pathway activation in individual aggressive B cell lymphomas

    PubMed Central

    2012-01-01

    Background Aggressive Non-Hodgkin lymphomas (NHL) are a group of lymphomas derived from germinal centre B cells which display a heterogeneous pattern of oncogenic pathway activation. We postulate that specific immune response associated signalling, affecting gene transcription networks, may be associated with the activation of different oncogenic pathways in aggressive Non-Hodgkin lymphomas (NHL). Methodology The B cell receptor (BCR), CD40, B-cell activating factor (BAFF)-receptors and Interleukin (IL) 21 receptor and Toll like receptor 4 (TLR4) were stimulated in human transformed germinal centre B cells by treatment with anti IgM F(ab)2-fragments, CD40L, BAFF, IL21 and LPS respectively. The changes in gene expression following the activation of Jak/STAT, NF-кB, MAPK, Ca2+ and PI3K signalling triggered by these stimuli was assessed using microarray analysis. The expression of top 100 genes which had a change in gene expression following stimulation was investigated in gene expression profiles of patients with Aggressive non-Hodgkin Lymphoma (NHL). Results αIgM stimulation led to the largest number of changes in gene expression, affecting overall 6596 genes. While CD40L stimulation changed the expression of 1194 genes and IL21 stimulation affected 902 genes, only 283 and 129 genes were modulated by lipopolysaccharide or BAFF receptor stimulation, respectively. Interestingly, genes associated with a Burkitt-like phenotype, such as MYC, BCL6 or LEF1, were affected by αIgM. Unique and shared gene expression was delineated. NHL-patients were sorted according to their similarity in the expression of TOP100 affected genes to stimulated transformed germinal centre B cells The αIgM gene module discriminated individual DLBCL in a similar manner to CD40L or IL21 gene modules. DLBCLs with low module activation often carry chromosomal MYC aberrations. DLBCLs with high module activation show strong expression of genes involved in cell-cell communication, immune responses

  3. Histone H3 lysine 23 acetylation is associated with oncogene TRIM24 expression and a poor prognosis in breast cancer.

    PubMed

    Ma, Li; Yuan, Lili; An, Jing; Barton, Michelle C; Zhang, Qingyuan; Liu, Zhaoliang

    2016-11-01

    Acetylated H3 lysine 23 (H3K23ac) is a specific histone post-translational modification recognized by oncoprotein TRIM24. However, it is not clear whether H3K23ac levels are correlated with TRIM24 expression and what role H3K23ac may have in cancer. In this study, we collected breast carcinoma samples from 121 patients and conducted immunohistochemistry to determine the levels of TRIM24 and H3K23ac in breast cancer. Our results demonstrated that TRIM24 expression is positively correlated with H3K23ac levels, and high levels of both TRIM24 and H3K23ac predict shorter overall survival of breast cancer patients. We also showed that both TRIM24 and H3K23ac are higher in HER2-positive patients, and their levels were positively correlated with HER2 levels in breast cancer. Moreover, TRIM24 expression is associated with estrogen receptor (ER) and progesterone receptor (PR) statuses in both our cohort and The Cancer Genome Atlas (TCGA) breast carcinoma. In summary, our results revealed an important role of TRIM24 and H3K23ac in breast cancer and provided further evidence that TRIM24 small-molecule inhibitors may benefit ER- and PR-negative or HER2-positive breast cancer patients.

  4. Short Communication: Studying the Role of Smart Flare Gold Nano Particles in Studying Micro RNA and Oncogene Differential Expression in Prostate Cancer Cell Lines.

    PubMed

    Banerjee, Hirendra; Joyner, Jamel; Stevenson, Monet; Kaha, William; Krauss, Christopher; Hodges, Sasha; Santos, Eduardo; Worthington, Myla; Rousch, Jeffferey; Payne, Gloria; Manglik, Vinod; Banerjee, Narendra; Morris, Brianna; Bell, Dayton; Mandal, Santosh

    2017-01-01

    Nano technology is a cutting edge science which is now effectively used in the field of cancer biology. Smart Flare gold nanoparticles are now used often for differential gene expression analysis. In this manuscript we are reporting the use of micro RNA miR 146a and onco gene EZH2 Smart Flare probes to study their expression in different prostate cancer cell lines and the effect of novel Rhenium compounds on these genes using a flow cytometer and a Fluorescence microscope. Our results showed this novel nanotechnology can be effectively used in cancer biology to successfully detect the effect of novel drugs on oncogenes and could be a very useful tool for next generation of cancer researchers.

  5. Acidosis Decreases c-Myc Oncogene Expression in Human Lymphoma Cells: A Role for the Proton-Sensing G Protein-Coupled Receptor TDAG8

    PubMed Central

    Li, Zhigang; Dong, Lixue; Dean, Eric; Yang, Li V.

    2013-01-01

    Acidosis is a biochemical hallmark of the tumor microenvironment. Here, we report that acute acidosis decreases c-Myc oncogene expression in U937 human lymphoma cells. The level of c-Myc transcripts, but not mRNA or protein stability, contributes to c-Myc protein reduction under acidosis. The pH-sensing receptor TDAG8 (GPR65) is involved in acidosis-induced c-Myc downregulation. TDAG8 is expressed in U937 lymphoma cells, and the overexpression or knockdown of TDAG8 further decreases or partially rescues c-Myc expression, respectively. Acidic pH alone is insufficient to reduce c-Myc expression, as it does not decrease c-Myc in H1299 lung cancer cells expressing very low levels of pH-sensing G protein-coupled receptors (GPCRs). Instead, c-Myc is slightly increased by acidosis in H1299 cells, but this increase is completely inhibited by ectopic overexpression of TDAG8. Interestingly, TDAG8 expression is decreased by more than 50% in human lymphoma samples in comparison to non-tumorous lymph nodes and spleens, suggesting a potential tumor suppressor function of TDAG8 in lymphoma. Collectively, our results identify a novel mechanism of c-Myc regulation by acidosis in the tumor microenvironment and indicate that modulation of TDAG8 and related pH-sensing receptor pathways may be exploited as a new approach to inhibit Myc expression. PMID:24152439

  6. Acidosis decreases c-Myc oncogene expression in human lymphoma cells: a role for the proton-sensing G protein-coupled receptor TDAG8.

    PubMed

    Li, Zhigang; Dong, Lixue; Dean, Eric; Yang, Li V

    2013-10-11

    Acidosis is a biochemical hallmark of the tumor microenvironment. Here, we report that acute acidosis decreases c-Myc oncogene expression in U937 human lymphoma cells. The level of c-Myc transcripts, but not mRNA or protein stability, contributes to c-Myc protein reduction under acidosis. The pH-sensing receptor TDAG8 (GPR65) is involved in acidosis-induced c-Myc downregulation. TDAG8 is expressed in U937 lymphoma cells, and the overexpression or knockdown of TDAG8 further decreases or partially rescues c-Myc expression, respectively. Acidic pH alone is insufficient to reduce c-Myc expression, as it does not decrease c-Myc in H1299 lung cancer cells expressing very low levels of pH-sensing G protein-coupled receptors (GPCRs). Instead, c-Myc is slightly increased by acidosis in H1299 cells, but this increase is completely inhibited by ectopic overexpression of TDAG8. Interestingly, TDAG8 expression is decreased by more than 50% in human lymphoma samples in comparison to non-tumorous lymph nodes and spleens, suggesting a potential tumor suppressor function of TDAG8 in lymphoma. Collectively, our results identify a novel mechanism of c-Myc regulation by acidosis in the tumor microenvironment and indicate that modulation of TDAG8 and related pH-sensing receptor pathways may be exploited as a new approach to inhibit Myc expression.

  7. Identification of novel non-coding RNA-based negative feedback regulating the expression of the oncogenic transcription factor GLI1.

    PubMed

    Villegas, Victoria E; Rahman, Mohammed Ferdous-Ur; Fernandez-Barrena, Maite G; Diao, Yumei; Liapi, Eleni; Sonkoly, Enikö; Ståhle, Mona; Pivarcsi, Andor; Annaratone, Laura; Sapino, Anna; Ramírez Clavijo, Sandra; Bürglin, Thomas R; Shimokawa, Takashi; Ramachandran, Saraswathi; Kapranov, Philipp; Fernandez-Zapico, Martin E; Zaphiropoulos, Peter G

    2014-07-01

    Non-coding RNAs are a complex class of nucleic acids, with growing evidence supporting regulatory roles in gene expression. Here we identify a non-coding RNA located head-to-head with the gene encoding the Glioma-associated oncogene 1 (GLI1), a transcriptional effector of multiple cancer-associated signaling pathways. The expression of this three-exon GLI1 antisense (GLI1AS) RNA in cancer cells was concordant with GLI1 levels. siRNAs knockdown of GLI1AS up-regulated GLI1 and increased cellular proliferation and tumor growth in a xenograft model system. Conversely, GLI1AS overexpression decreased the levels of GLI1, its target genes PTCH1 and PTCH2, and cellular proliferation. Additionally, we demonstrate that GLI1 knockdown reduced GLI1AS, while GLI1 overexpression increased GLI1AS, supporting the role of GLI1AS as a target gene of the GLI1 transcription factor. Activation of TGFβ and Hedgehog signaling, two known regulators of GLI1 expression, conferred a concordant up-regulation of GLI1 and GLI1AS in cancer cells. Finally, analysis of the mechanism underlying the interplay between GLI1 and GLI1AS indicates that the non-coding RNA elicits a local alteration of chromatin structure by increasing the silencing mark H3K27me3 and decreasing the recruitment of RNA polymerase II to this locus. Taken together, the data demonstrate the existence of a novel non-coding RNA-based negative feedback loop controlling GLI1 levels, thus expanding the repertoire of mechanisms regulating the expression of this oncogenic transcription factor.

  8. Activation of human papillomavirus type 18 E6-E7 oncogene expression by transcription factor Sp1.

    PubMed Central

    Hoppe-Seyler, F; Butz, K

    1992-01-01

    The human papillomavirus 18 (HPV18) E6 and E7 proteins are considered to be primarily responsive for the transforming activity of the virus. In order to analyse the molecular mechanisms resulting in viral oncoprotein expression, it is necessary to identify the factors involved in the transcriptional regulation of the E6/E7 genes. Here we define by gel retardation experiments a sequence aberrant Sp1 binding site present in the promoter proximal part of the viral transcriptional control region (Upstream Regulatory Region, URR). Functional analyses employing transient reporter assays reveal that this Sp1 element is required for an efficient stimulation of the HPV18 E6/E7-promoter. Mutation of the Sp1 element in the natural context of the HPV18 URR leads to a strong decrease in the activity of the E6/E7-promoter in several cell lines. The magnitude of reduction varies between different cell types and is higher in cell lines of epithelial origin when compared with nonepithelial cells. Cotransfection assays using Sp1 expression vector systems further define the promoter proximal HPV18 Sp1 binding motif as a functional Sp1 element in vivo and show that its integrity is essential for the stimulation of the E6/E7-promoter by augmented levels of Sp1. These results indicate, that the cellular transcription factor Sp1 plays an important role for the stimulation of the E6/E7-promoter by the viral URR and represents a major determinant for the expression of HPV18 transforming genes E6 and E7. Images PMID:1336181

  9. Bivalent promoter marks and a latent enhancer may prime the leukaemia oncogene LMO1 for ectopic expression in T-cell leukaemia.

    PubMed

    Oram, S H; Thoms, J; Sive, J I; Calero-Nieto, F J; Kinston, S J; Schütte, J; Knezevic, K; Lock, R B; Pimanda, J E; Göttgens, B

    2013-06-01

    LMO1 is a transcriptional regulator and a T-acute lymphoblastic leukaemia (T-ALL) oncogene. Although first identified in association with a chromosomal translocation in T-ALL, the ectopic expression of LMO1 occurs far more frequently in the absence of any known mutation involving its locus. Given that LMO1 is barely expressed in any haematopoietic lineage, and activation of transcriptional drivers in leukaemic cells is not well described, we investigated the regulation of this gene in normal haematopoietic and leukaemic cells. We show that LMO1 has two promoters that drive reporter gene expression in transgenic mice to neural tissues known to express endogenous LMO1. The LMO1 promoters display bivalent histone marks in multiple blood lineages including T-cells, and a 3' flanking region at LMO1 +57 contains a transcriptional enhancer that is active in developing blood cells in transgenic mouse embryos. The LMO1 promoters become activated in T-ALL together with the 3' enhancer, which is bound in primary T-ALL cells by SCL/TAL1 and GATA3. Taken together, our results show that LMO1 is poised for expression in normal progenitors, where activation of SCL/TAL1 together with a breakdown of epigenetic repression of LMO1 regulatory elements induces ectopic LMO1 expression that contributes to the development and maintenance of T-ALL.

  10. Oncogenic osteomalacia.

    PubMed

    Jacob, J J; Finny, P; Thomas, Meera; Thomas, N; John, M

    2007-03-01

    A 59-year-old gentleman presented with symptoms of progressively worsening low back pain associated with difficulty in rising from a squat over a period of two years. Biochemical tests confirmed the initial clinical diagnosis of osteomalacia. Blood pool scanning revealed a focal hot spot on the site of the clinically visible swelling close to the metacarpo-phalangeal joint of the left index finger. The biopsy of the specimen obtained by excision was reported to be consistent with a phosphaturic mesenchymal tumour. The patient had complete resolution of symptoms six months following excision of the lesion.

  11. Deregulated expression of the PCPH proto-oncogene in rat mammary tumors induced with 7,12-dimethylbenz[a]anthracene.

    PubMed

    Solanas, Montserrat; Escrich, Eduard; Rouzaut, Ana; Costa, Irmgard; Martínez, Alfredo; Notario, Vicente

    2002-04-01

    The PCPH proto-oncogene was identified by its frequent activation in Syrian hamster fetal cells exposed to 3-methylcholanthrene. We previously isolated human PCPH cDNA and studied its expression in normal human tissues. We report herein the pattern of PCPH expression in normal rat tissues. Each tissue expressed one major PCPH polypeptide that varied in molecular mass in different tissues. Normal mammary gland expressed a single PCPH polypeptide of 27 kDa. This PCPH form also was expressed in lactating mammary glands but at significantly greater levels. These results suggest the existence of tissue-specific regulatory mechanisms for PCPH expression that may be influenced by the differentiation stage. Our previous studies on the involvement of PCPH in human cancer showed that human breast tumor cell lines have frequent alterations in PCPH, including multiple PCPH polypeptide forms that are not expressed in normal cells. These cell lines also have frequent loss of a 27-kDa form identified as the only PCPH polypeptide expressed by normal human breast epithelial cells. In this study, we found that these same alterations occurred in vivo during mammary carcinogenesis in Sprague-Dawley rats treated with 7,12-dimethylbenz[a]anthracene, in both benign and malignant tumors, indicating that stable changes in PCPH expression took place early in the neoplastic process. Results showed that this experimental system is relevant to human breast carcinogenesis and provides an excellent model to study the molecular basis of the regulation of PCPH expression during normal differentiation and pathologic stages of neoplasia of the mammary gland and to analyze the role of PCPH in the carcinogenic process. Furthermore, the detection of atypical PCPH polypeptides in tumors suggests that PCPH immunodetection may be applied as a diagnostic tool for the early identification of neoplastic breast epithelial cells. Copyright 2002 Wiley-Liss, Inc.

  12. Topological evidence of differential oncogene activation-tumor suppressor gene inactivation features in 10 human neoplasias, as revealed by sequential regression analysis of world cancer incidence data.

    PubMed

    Kodama, M; Murakami, M; Kodama, T

    1997-01-01

    Recent progress in the molecular biology of cancer research indicates that oncogene activation and tumor suppressor gene inactivation are the two key events in the carcinogenesis of humans as well as of animals. The purpose of this investigation was to assess separately the impact of oncogene activation and tumor suppressor gene inactivation on the genesis of a given neoplasia using the log-transformed age-adjusted incidence rates (log AAIRs) data from 47 cancer registration areas world wide. In practice, the sequential regression analysis test was applied to each of 15 (male) or 16 (female) tumor pairs, in which the neoplasia in question (marker tumor) was designated as the common x partner in the calculation of the 1st order regression equation. The correlation coefficient of the sequential regression analysis, r seq, served as an index of fitness to the equilibrium models of both oncogene activation and tumor suppressor gene inactivation, in which the expected values of r seq for sole oncogene activation and sole tumor suppressor gene inactivation were each -1.00 and +1.00. The calculation results with the sequential regression analysis were given as the profile of 15 (male) or 16 (female) r seq data for each marker tumor. The r seq profile of a given neoplasia was also prepared using each the original coordinates (the "Org" coordinates) and 2 variant coordinates (the "Rect" coordinates and the "Para" coordinates). The "Rect" and the "Para" coordinates were so designed as to allow their x-axes to run at a right angle and parallel to the regression line of the tumor pair data block. Results obtained are as follows: a) The "Org" coordinates gave an oncogene activation- type r seq profile for each of all marker tumors tested; b) The "Rect" coordinates gave a tumor suppressor inactivation-type r seq profile for each of all marker tumors tested; c) The r seq profile of the "Para" coordinates was classified as of the intermediate type as regards the direction (+ or

  13. Characteristics of an infinite life span diploid human fibroblast cell strain and a near-diploid strain arising from a clone of cells expressing a transfected v-myc oncogene

    SciTech Connect

    Morgan, T.L.; Dajun Yang; Fry, D.G.; Hurlin, P.J.; Kohler, S.K.; Maher, V.M.; McCormick, J.J. )

    1991-11-01

    Diploid human fibroblasts were transfected with a plasmid carrying a v-myc oncogene linked to the neo gene or with a vector control carrying a neo gene. Drug-resistant clones were isolated and subcultured as needed. All populations went into crisis and eventually senesced. But while they were senescing, viable-appearing clones were noted among the progeny of a transfected population that expressed the v-myc oncogene. After several months, these cells began replicating more rapidly. Karyotype analysis indicated that they were clonally derived since all of them had 45 chromosomes, including 2 marker chromosomes. This cell strain was designated MSU-1.1. Similar analysis showed that cells from an earlier passage were diploid. These cells were designated MSU-1.0. The expression of v-myc is probably required for acquisition of an infinite life span, since this phenotype did not develop in populations not expressing this oncogene. However, expression of v-myc is clearly not sufficient, since all of the progeny of the clone that gave rise to the MSU-1.0 cells expressed this oncogene, but the vast majority of them senesced.

  14. Four not six: Revealing culturally common facial expressions of emotion.

    PubMed

    Jack, Rachael E; Sun, Wei; Delis, Ioannis; Garrod, Oliver G B; Schyns, Philippe G

    2016-06-01

    As a highly social species, humans generate complex facial expressions to communicate a diverse range of emotions. Since Darwin's work, identifying among these complex patterns which are common across cultures and which are culture-specific has remained a central question in psychology, anthropology, philosophy, and more recently machine vision and social robotics. Classic approaches to addressing this question typically tested the cross-cultural recognition of theoretically motivated facial expressions representing 6 emotions, and reported universality. Yet, variable recognition accuracy across cultures suggests a narrower cross-cultural communication supported by sets of simpler expressive patterns embedded in more complex facial expressions. We explore this hypothesis by modeling the facial expressions of over 60 emotions across 2 cultures, and segregating out the latent expressive patterns. Using a multidisciplinary approach, we first map the conceptual organization of a broad spectrum of emotion words by building semantic networks in 2 cultures. For each emotion word in each culture, we then model and validate its corresponding dynamic facial expression, producing over 60 culturally valid facial expression models. We then apply to the pooled models a multivariate data reduction technique, revealing 4 latent and culturally common facial expression patterns that each communicates specific combinations of valence, arousal, and dominance. We then reveal the face movements that accentuate each latent expressive pattern to create complex facial expressions. Our data questions the widely held view that 6 facial expression patterns are universal, instead suggesting 4 latent expressive patterns with direct implications for emotion communication, social psychology, cognitive neuroscience, and social robotics. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. The Oncogenic Response to MiR-335 Is Associated with Cell Surface Expression of Membrane-Type 1 Matrix Metalloproteinase (MT1-MMP) Activity

    PubMed Central

    Rojas, Fausto; Hernandez, Maria E.; Silva, Milagros; Li, Lihua; Subramanian, Subbaya; Wilson, Michael J.; Liu, Ping

    2015-01-01

    MicroRNA miR-335 has been reported to have both tumor suppressor and oncogenic activities. In order to determine possible tissue and cell type differences in response to miR-335, we examined the effect of miR-335 on cell expression of MT1-MMP, a proteinase commonly expressed in tumors and associated with cell proliferation and migration. miR-335 increased cell surface expression of MT1-MMP in fibrosarcoma HT-1080 and benign prostate BPH-1 cells, but not in prostate LNCaP or breast MCF-7 tumor cells. miR-335 stimulated proliferation and cell migration in a wound healing in vitro assay in HT-1080, BPH-1, and U87 glioblastoma cells, cells which demonstrated significant cell surface expression of MT1-MMP. In contrast, miR-335 did not affect proliferation or migration in cells without a prominent plasma membrane associated MT1-MMP activity. Our data suggest that differences in response to miR-335 by tumor cells may lie in part in the mechanism of regulation of MT1-MMP production. PMID:26204513

  16. The Oncogenic Response to MiR-335 Is Associated with Cell Surface Expression of Membrane-Type 1 Matrix Metalloproteinase (MT1-MMP) Activity.

    PubMed

    Rojas, Fausto; Hernandez, Maria E; Silva, Milagros; Li, Lihua; Subramanian, Subbaya; Wilson, Michael J; Liu, Ping

    2015-01-01

    MicroRNA miR-335 has been reported to have both tumor suppressor and oncogenic activities. In order to determine possible tissue and cell type differences in response to miR-335, we examined the effect of miR-335 on cell expression of MT1-MMP, a proteinase commonly expressed in tumors and associated with cell proliferation and migration. miR-335 increased cell surface expression of MT1-MMP in fibrosarcoma HT-1080 and benign prostate BPH-1 cells, but not in prostate LNCaP or breast MCF-7 tumor cells. miR-335 stimulated proliferation and cell migration in a wound healing in vitro assay in HT-1080, BPH-1, and U87 glioblastoma cells, cells which demonstrated significant cell surface expression of MT1-MMP. In contrast, miR-335 did not affect proliferation or migration in cells without a prominent plasma membrane associated MT1-MMP activity. Our data suggest that differences in response to miR-335 by tumor cells may lie in part in the mechanism of regulation of MT1-MMP production.

  17. Modulation of EZH2 expression by MEK-ERK or PI3K-AKT signaling in lung cancer is dictated by different KRAS oncogene mutations

    PubMed Central

    Riquelme, Erick; Behrens, Carmen; Lin, Heather Y.; Simon, George; Papadimitrakopoulou, Vassiliki; Izzo, Julie; Moran, Cesar; Kalhor, Neda; Lee, J. Jack; Minna, John D.; Wistuba, Ignacio I.

    2016-01-01

    EZH2 overexpression promotes cancer by increasing histone methylation to silence tumor suppressor genes, but how EZH2 levels become elevated in cancer is not understood. In this study, we investigated the mechanisms by which EZH2 expression is regulated in non-small cell lung carcinoma cells by oncogenic KRAS. In cells harboring KRASG12C and KRASG12D mutations, EZH2 expression was modulated by MEK-ERK and PI3K/AKT signaling, respectively. Accordingly, MEK-ERK depletion decreased EZH2 expression in cells harboring the KRASG12C mutation, whereas PI3K/AKT depletion decreased EZH2 expression, EZH2 phosphorylation, and STAT3 activity in KRASG12D mutant cell lines. Combined inhibition of EZH2 and MEK-ERK or PI3K/AKT increased the sensitivity of cells with specific KRAS mutations to MEK-ERK and PI3K/AKT targeted therapies. Our work define EZH2 as a downstream effector of KRAS signaling and offer a rationale for combining EZH2 inhibitory strategies with MEK-ERK- or PI3K/AKT-targeted therapies to treat lung cancer patients, as stratified into distinct treatment groups based on specific KRAS mutations. PMID:26676756

  18. In vivo evolution of c-rel oncogenic potential.

    PubMed

    Hrdlicková, R; Nehyba, J; Humphries, E H

    1994-04-01

    The c-rel proto-oncogene belongs to the NF-kappa B/rel and I kappa B gene families, which regulate several inducible processes, including self-defense/repair and embryogenesis. Transduction of the c-rel transcription factor by the avian retrovirus resulted in the formation of a highly oncogenic virus, reticuloendotheliosis virus strain T (REV-T), that encodes the oncogene v-rel. To examine the oncogenic potential of c-rel, we inserted it into a REV-T-based retroviral vector, rescued virus [REV-C(CSV)], and infected 1-day-old chicks. All birds developed tumors, and all cell lines established from REV-C-induced tumors expressed c-rel proteins that lacked C-terminal sequences. These proteins, responsible for both in vivo and in vitro cell proliferation, were apparently selected for their oncogenic potential. In order to examine the cooperation of C-terminal deletions with other oncogenic alterations in vivo, point mutations present in the N-terminal and middle regions of v-rel were analyzed by a similar protocol. The data obtained support four conclusions. (i) c-rel proteins bearing any of three single-amino-acid mutations present in the N-terminal portion of v-rel were sufficiently oncogenic to induce tumor development in the absence of additional mutations. (ii) Combining a mutation from the N-terminal region of v-rel with a deletion of the C-terminal sequences of c-rel increases the oncogenicity of the protein in an additive manner. (iii) Mutations present in the middle of v-rel cooperated synergistically with C-terminal deletions to produce highly transforming viruses. (iv) Deletion of c-rel produced a variety of transforming rel proteins with sizes that extended from 42 to 65 kDa. The most frequently isolated rel deletion was 62 kDa in size. To examine the basis for the selection of different rel mutants, their ability to induce immunoregulatory surface receptors was analyzed. The data revealed a correlation between the induction capacity of these mutants and

  19. Gene Expression Patterns of Hemizygous and Heterozygous KIT Mutations Suggest Distinct Oncogenic Pathways: A Study in NIH3T3 Cell Lines and GIST Samples

    PubMed Central

    Dessaux, Sophie; Besse, Anthony; Brahimi-Adouane, Sabrina; Emile, Jean-François; Blay, Jean-Yves; Alberti, Laurent

    2013-01-01

    Objective Most gain of function mutations of tyrosine kinase receptors in human tumours are hemizygous. Gastrointestinal stromal tumours (GIST) with homozygous mutations have a worse prognosis. We aimed to identify genes differentially regulated by hemizygous and heterozygous KIT mutations. Materials and Methods Expression of 94 genes and 384 miRNA was analysed with low density arrays in five NIH3T3 cell lines expressing the full-length human KIT cDNA wild-type (WT), hemizygous KIT mutation with del557-558 (D6) or del564-581 (D54) and heterozygous WT/D6 or WT/D54. Expression of 5 of these genes and 384 miRNA was then analysed in GISTs samples. Results Unsupervised and supervised hierarchical clustering of the mRNA and miRNA profiles showed that heterozygous mutants clustered with KIT WT expressing cells while hemizygous mutants were distinct. Among hemizygous cells, D6 and D54 expressing cells clustered separately. Most deregulated genes have been reported as potentially implicated in cancer and severals, as ANXA8 and FBN1, are highlighted by both, mRNA and miRNA analyses. MiRNA and mRNA analyses in GISTs samples confirmed that their expressions varied according to the mutation of the alleles. Interestingly, RGS16, a membrane protein of the regulator of G protein family, correlate with the subcellular localization of KIT mutants and might be responsible for regulation of the PI3K/AKT signalling pathway. Conclusion Patterns of mRNA and miRNA expression in cells and tumours depend on heterozygous/hemizygous status of KIT mutations, and deletion/presence of TYR568 & TYR570 residues. Thus each mutation of KIT may drive specific oncogenic pathways. PMID:23593401

  20. HER-2/neu oncogene amplification and chromosome 17 aneusomy in endometrial carcinoma: correlation with oncoprotein expression and conventional pathological parameters.

    PubMed

    Cianciulli, A M; Guadagni, F; Marzano, R; Benevolo, M; Merola, R; Giannarelli, D; Marandino, F; Vocaturo, G; Mariani, L; Mottolese, M

    2003-06-01

    The objective of the present study was to evaluate the correlation between HER-2 gene amplification and HER-2 protein overexpression in endometrial carcinoma using fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC). We also analyzed chromosome 17 aneusomy and the association between these biological parameters and conventional clinicopathological variables. FISH analysis was performed on 73 selected paraffin-embedded sections from endometrial carcinomas which previously had HER-2 status determined immunohistochemically using monoclonal antibodies (MoAb) 300G9 and CB11. Using a ratio of more than two oncogene signals/centromere to indicate amplification, a total of 42 out of the 73 endometrial tumors included in this study resulted positive by FISH where as protein overexpression was identified in 29 out of 73 with a concordance rate of 74.3%. However, when the mean signals/centromere per nucleus increased (ratio > 4 < or = 5) a higher concordance between the two assays was seen (p = 0.007). In addition, HER-2 amplification was significantly correlated with tumor stage (p = 0.021) and myometrial invasion (p = 0.010), whereas chromosome 17 polisomy showed a positive correlation only with myometrial invasion (p = 0.004) No significant correlation was found between HER-2 gene amplification, chromosome 17 aneusomy and patient outcome. Nevertheless, the probability of a 5 year overall survival decreased from 70% to 43%, respectively, for ratio > 2 < or = 4 and ratio > 4 < or = 5 when we grouped the amplified cases on the basis of HER-2:CEP17 ratio. In conclusion, molecular characteristics provide objective data that may be useful in predicting prognosis in patients with endometrial cancer.

  1. Tobacco exposure results in increased E6 and E7 oncogene expression, DNA damage and mutation rates in cells maintaining episomal human papillomavirus 16 genomes.

    PubMed

    Wei, Lanlan; Griego, Anastacia M; Chu, Ming; Ozbun, Michelle A

    2014-10-01

    High-risk human papillomavirus (HR-HPV) infections are necessary but insufficient agents of cervical and other epithelial cancers. Epidemiological studies support a causal, but ill-defined, relationship between tobacco smoking and cervical malignancies. In this study, we used mainstream tobacco smoke condensate (MSTS-C) treatments of cervical cell lines that maintain either episomal or integrated HPV16 or HPV31 genomes to model tobacco smoke exposure to the cervical epithelium of the smoker. MSTS-C exposure caused a dose-dependent increase in viral genome replication and correspondingly higher early gene transcription in cells with episomal HPV genomes. However, MSTS-C exposure in cells with integrated HR-HPV genomes had no effect on genome copy number or early gene transcription. In cells with episomal HPV genomes, the MSTS-C-induced increases in E6 oncogene transcription led to decreased p53 protein levels and activity. As expected from loss of p53 activity in tobacco-exposed cells, DNA strand breaks were significantly higher but apoptosis was minimal compared with cells containing integrated viral genomes. Furthermore, DNA mutation frequencies were higher in surviving cells with HPV episomes. These findings provide increased understanding of tobacco smoke exposure risk in HPV infection and indicate tobacco smoking acts more directly to alter HR-HPV oncogene expression in cells that maintain episomal viral genomes. This suggests a more prominent role for tobacco smoke in earlier stages of HPV-related cancer progression. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Specific polymorphisms in the RET proto-oncogene are over-represented in patients with Hirschsprung disease and may represent loci modifying phenotypic expression

    PubMed Central

    Borrego, S.; Saez, M. E.; Ruiz, A.; Gimm, O.; Lopez-Alonso, M.; Antinolo, G.; Eng, C.

    1999-01-01

    Hirschsprung disease (HSCR) is a common genetic disorder presenting with functional intestinal obstruction secondary to enteric aganglionosis. HSCR can be familial or sporadic. Although five putative susceptibility genes have been identified, only germline mutations in the RET proto-oncogene account for a significant minority (up to 50%) of familial HSCR; 3% of sporadic HSCR in a population based series carry RET mutations. From 1998 to February 1999, we prospectively ascertained 64 cases of sporadic HSCR from the western Andalusia region. To determine if polymorphic sequence variants within RET could act as low penetrance predisposing alleles, we examined allelic frequencies at seven polymorphic loci in this population based series. Whether allele frequencies differed from those in the control population were determined by either chi-squared analysis or Fisher's exact test. For two sequence variants, A45A (c 135G→A) (exon 2) and L769L (c 2307T→G) (exon 13), the rarer polymorphic allele was over-represented among HSCR cases versus controls (p<0.0006). In contrast, two other polymorphisms, G691S (c 2071C→A) (exon 11) and S904S (c 2712C→G) (exon 15), were under-represented in the HSCR patients compared to controls (p=0.02). Polymorphisms in the RET proto-oncogene appear to predispose to HSCR in a complex, low penetrance fashion and may also modify phenotypic expression.


Keywords: polymorphism; low penetrance alleles; neurocristopathy; chromosome 10 PMID:10528857

  3. The long noncoding RNA HULC promotes liver cancer by increasing the expression of the HMGA2 oncogene via sequestration of the microRNA-186.

    PubMed

    Wang, Yuan; Chen, Fuquan; Zhao, Man; Yang, Zhe; Li, Jiong; Zhang, Shuqin; Zhang, Weiying; Ye, Lihong; Zhang, Xiaodong

    2017-09-15

    The long noncoding RNA highly up-regulated in liver cancer (HULC) is aberrantly elevated in hepatocellular carcinoma (HCC), and this up-regulation is crucial for HCC pathogenesis. However, the underlying mechanism in HULC up-regulation is poorly understood. We hypothesized that HULC might modulate the oncogene high mobility group A2 (HMGA2) to promote hepatocarcinogenesis. Quantitative real-time PCR analysis showed that the expression levels of HULC were positively correlated with those of HMGA2 in clinical HCC tissues. Interestingly, we also observed that HULC could up-regulate HMGA2 in HCC cells. Mechanistically, we found that the microRNA-186 inhibited HMGA2 expression by targeting the 3'-untranslated region (3'-UTR) of HMGA2 mRNA. Strikingly, HULC acted as a competing noncoding RNA to sequester miR-186 and thereby relieved miR-186-mediated HMGA2 repression. Functionally, HMGA2 knockdown decreased the HULC-enhanced growth of HCC cells both in vitro and in vivo We conclude that the long noncoding RNA HULC increases HMGA2 expression by sequestering miR-186 post-transcriptionally and thereby promotes liver cancer growth, providing new insights into the mechanism by which HULC enhances hepatocarcinogenesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Merlin/NF2 functions upstream of the nuclear E3 ubiquitin ligase CRL4DCAF1 to suppress oncogenic gene expression.

    PubMed

    Cooper, Jonathan; Li, Wei; You, Liru; Schiavon, Gaia; Pepe-Caprio, Angela; Zhou, Lu; Ishii, Ryohei; Giovannini, Marco; Hanemann, C Oliver; Long, Stephen B; Erdjument-Bromage, Hediye; Zhou, Pengbo; Tempst, Paul; Giancotti, Filippo G

    2011-08-23

    Integrin-mediated activation of PAK (p21-activated kinase) causes phosphorylation and inactivation of the FERM (4.1, ezrin, radixin, moesin) domain-containing protein Merlin, which is encoded by the NF2 (neurofibromatosis type 2) tumor suppressor gene. Conversely, cadherin engagement inactivates PAK, thus leading to accumulation of unphosphorylated Merlin. Current models imply that Merlin inhibits cell proliferation by inhibiting mitogenic signaling at or near the plasma membrane. We have recently shown that the unphosphorylated, growth-inhibiting form of Merlin accumulates in the nucleus and binds to the E3 ubiquitin ligase CRL4(DCAF1) to suppress its activity. Depletion of DCAF1 blocks the hyperproliferation caused by inactivation of Merlin. Conversely, expression of a Merlin-insensitive DCAF1 mutant counteracts the antimitogenic effect of Merlin. Expression of Merlin or silencing of DCAF1 in Nf2-deficient cells induce an overlapping, tumor-suppressive program of gene expression. Mutations present in some tumors from NF2 patients disrupt Merlin's ability to interact with or inhibit CRL4(DCAF1). Lastly, depletion of DCAF1 inhibits the hyperproliferation of Schwannoma cells isolated from NF2 patients and suppresses the oncogenic potential of Merlin-deficient tumor cell lines. Current studies are aimed at identifying the substrates and mechanism of action of CRL4(DCAF1) and examining its role in NF2-dependent tumorigenesis in mouse models. We propose that Merlin mediates contact inhibition and suppresses tumorigenesis by translocating to the nucleus to inhibit CRL4(DCAF1).

  5. Impact of gsp oncogene on the expression of genes coding for Gsalpha, Pit-1, Gi2alpha, and somatostatin receptor 2 in human somatotroph adenomas: involvement in octreotide sensitivity.

    PubMed

    Barlier, A; Pellegrini-Bouiller, I; Gunz, G; Zamora, A J; Jaquet, P; Enjalbert, A

    1999-08-01

    The impact of the gsp oncogene on the expression of genes engaged in the somatotroph cell phenotype remains poorly understood in human somatotroph adenomas. As the gsp oncogene is associated with an increased octreotide (somatostatin agonist) sensitivity, a group of 8 somatotroph adenomas bearing the gsp mutation (gsp+) and another group of 16 adenomas without the mutation (gsp-) were analyzed, all of them presenting variable octreotide sensitivities. The expressions of genes encoding for G(s)alpha, Pit-1, G(i2)alpha, and SSTR2, involved in the regulation of secretory activity in somatotroph cells, were assessed by Northern blot. A decreased expression of the G(s)alpha gene was found in gsp + tumors, suggesting the existence of a negative feedback of the oncogenic protein upon its own messenger ribonucleic acid (mRNA). In contrast, G(i2)alpha, Pit-1, and GH messengers were not significantly different in the groups. A positive correlation between the in vitro and in vivo GH octreotide-induced secretory inhibition and the expression of SSTR2 mRNA was found. However, the expression of the gene for SSTR2 appeared not to be different between gsp + and gsp-, even when the octreotide sensitivity was significantly higher in the adenomas carrying the mutation. Interestingly, the SSTR2 gene expression was significantly correlated to those of G(i2)alpha and Pit-1. In the same way, the G(s)alpha mRNA expression was positively correlated with those of Gi2alpha and Pit-1. Such correlations strongly suggest a concerted dysregulation of the expression of these genes in both categories of adenomas. The loss of the octreotide sensitivity represents one aspect of the dysregulation process that partially results from the decreased SSTR2 expression. However, the improvement of the sensitivity associated with the presence of the gsp oncogene seems to proceed in a way different from SSTR2 expression.

  6. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1)

    PubMed Central

    Marzec, Michal; Zhang, Qian; Goradia, Ami; Raghunath, Puthiyaveettil N.; Liu, Xiaobin; Paessler, Michele; Wang, Hong Yi; Wysocka, Maria; Cheng, Mangeng; Ruggeri, Bruce A.; Wasik, Mariusz A.

    2008-01-01

    The mechanisms of malignant cell transformation caused by the oncogenic, chimeric nucleophosmin (NPM)/anaplastic lymphoma kinase (ALK) remain only partially understood, with most of the previous studies focusing mainly on the impact of NPM/ALK on cell survival and proliferation. Here we report that the NPM/ALK-carrying T cell lymphoma (ALK+TCL) cells strongly express the immunosuppressive cell-surface protein CD274 (PD-L1, B7-H1), as determined on the mRNA and protein level. The CD274 expression is strictly dependent on the expression and enzymatic activity of NPM/ALK, as demonstrated by inhibition of the NPM/ALK function in ALK+TCL cells by the small molecule ALK inhibitor CEP-14083 and by documenting CD274 expression in IL-3-depleted BaF3 cells transfected with the wild-type NPM/ALK, but not the kinase-inactive NPM/ALK K210R mutant or empty vector alone. NPM/ALK induces CD274 expression by activating its key signal transmitter, transcription factor STAT3. STAT3 binds to the CD274 gene promoter in vitro and in vivo, as shown in the gel electromobility shift and chromatin immunoprecipitation assays, and is required for the PD-L1 gene expression, as demonstrated by siRNA-mediated STAT3 depletion. These findings identify an additional cell-transforming property of NPM/ALK and describe a direct link between an oncoprotein and an immunosuppressive cell-surface protein. These results also provide an additional rationale to therapeutically target NPM/ALK and STAT3 in ALK+TCL. Finally, they suggest that future immunotherapeutic protocols for this type of lymphoma may need to include the inhibition of NPM/ALK and STAT3 to achieve optimal clinical efficacy. PMID:19088198

  7. Regulation of apoptosis by fau revealed by functional expression cloning and antisense expression.

    PubMed

    Mourtada-Maarabouni, Mirna; Kirkham, Lucy; Farzaneh, Farzin; Williams, Gwyn T

    2004-12-16

    Functional expression cloning is a powerful strategy for identifying critical steps in biological pathways independently of prior assumptions. It is particularly suitable for the identification of molecules crucial to the control of apoptosis. Our screen for sequences suppressing T-cell apoptosis isolated a sequence antisense to fau (Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV)-associated ubiquitously expressed gene). The fox gene in FBR murine osteosarcoma virus is also antisense to fau and several reports have indicated that fau displays tumour suppressor and oncogenic properties in different contexts. Our observations indicate that the fau antisense sequence suppresses expression of endogenous fau mRNA and produces resistance to apoptosis induced both by the glucocorticoid analogue dexamethasone' by ultraviolet radiation, and by the anticancer drug cisplatin. In all cases, colony-forming ability is protected, indicating that fau affects the critical events prior to commitment to cell death. Overexpression of fau in the sense orientation induces cell death, which is inhibited both by Bcl-2 and by inhibition of caspases, in line with its proposed role in apoptosis.

  8. Gene expression profiling of precursor T-cell lymphoblastic leukemia/lymphoma identifies oncogenic pathways that are potential therapeutic targets

    PubMed Central

    Lin, Ying-Wei; Aplan, Peter D.

    2007-01-01

    We compared the gene expression pattern of thymic tumors from precursor T-cell lymphoblastic lymphoma/leukemia (pre-T LBL) that arose in transgenic mice which over-expressed SCL, LMO1, or NUP98-HOXD13 (NHD13) with that of thymocytes from normal littermates. Only two genes, Ccl8 and Mrpl38, were consistently more than 4-fold over-expressed in pre-T LBL from all three genotypes analyzed, and a single gene, Prss16 was consistently under-expressed. However, we identified a number of genes, such as Cfl1, Tcra, Tcrb, Pbx3, Eif4a, Eif4b, and Cox8b that were over or under-expressed in pre-T LBL that arose in specific transgenic lines. Similar to the situation seen with human pre-T LBL, the SCL/LMO1 leukemias displayed an expression profile consistent with mature, late cortical thymocytes, whereas the NHD13 leukemias displayed an expression profile more consistent with immature thymocytes. We evaluated two of the most differentially regulated genes as potential therapeutic targets. Cfl1 was specifically over-expressed in SCL-LMO1 tumors; inactivation of Cfl1 using Okadaic acid resulted in suppression of leukemic cell growth. Overexpression of Ccl8 was a consistent finding in all 3 transgenic lines, and an antagonist for the Ccl8 receptor induced death of leukemic cell lines, suggesting a novel therapeutic approach. PMID:17429429

  9. Secondary biopsy of non-oncogenic-driven lung cancer may reveal a clinically sensible histologic change. A brief report of two paradigmatic cases.

    PubMed

    Mengoli, Maria C; Orsi, Giulia; Lococo, Filippo; Grizzi, Giulia; Barbieri, Fausto; Bertolini, Federica; Rossi, Giulio; Novello, Silvia

    2017-07-01

    After an initial benefit, non-small-cell lung cancer (NSCLC) patients receiving therapy with tyrosine kinase inhibitors develop drug resistance through a variety of mechanisms. Among these, tumor histology changes are a mechanism of acquired resistance in epidermal growth factor receptor-mutated and anaplastic lymphoma kinase-rearranged NSCLC cases. The current availability of therapeutic approaches to overcome tyrosine kinase inhibitor resistance in oncogenic-driven lung cancers justifies secondary tumor biopsy in these patients. On the other hand, little is known about the mechanism of disease progression in non-oncogenic driven NSCLC. Nevertheless, NSCLC lacking "druggable" genetic alterations are not considered for secondary biopsy, as it is commonly believed that these tumors cannot develop histologic or molecular changes. Herein, we report two paradigmatic cases of wild-type NSCLC showing histologic "change" on secondary biopsy, allowing for a successful switch in therapeutic strategy. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  10. Mass spectrometry analysis of the oxidation states of the pro-oncogenic protein anterior gradient-2 reveals covalent dimerization via an intermolecular disulphide bond.

    PubMed

    Clarke, David J; Murray, Euan; Faktor, Jakub; Mohtar, Aiman; Vojtesek, Borek; MacKay, C Logan; Smith, Pat Langridge; Hupp, Ted R

    2016-05-01

    Anterior Gradient-2 (AGR2) is a component of a pro-oncogenic signalling pathway that can promote p53 inhibition, metastatic cell migration, limb regeneration, and cancer drug-resistance. AGR2 is in the protein-disulphide isomerase superfamily containing a single cysteine (Cys-81) that forms covalent adducts with its client proteins. We have found that mutation of Cysteine-81 attenuates its biochemical activity in its sequence-specific peptide docking function, reduces binding to Reptin, and reduces its stability in cells. As such, we evaluated how chemical oxidation of its cysteine affects its biochemical properties. Recombinant AGR2 spontaneously forms covalent dimers in the absence of reductant whilst DTT promotes dimer to monomer conversion. Mutation of Cysteine-81 to alanine prevents peroxide catalysed dimerization of AGR2 in vitro, suggesting a reactive cysteine is central to covalent dimer formation. Both biochemical assays and ESI mass spectrometry were used to demonstrate that low levels of a chemical oxidant promote an intermolecular disulphide bond through formation of a labile sulfenic acid intermediate. However, higher levels of oxidant promote sulfinic or sulfonic acid formation thus preventing covalent dimerization of AGR2. These data together identify the single cysteine of AGR2 as an oxidant responsive moiety that regulates its propensity for oxidation and its monomeric-dimeric state. This has implications for redox regulation of the pro-oncogenic functions of AGR2 protein in cancer cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Altered DNA methylation landscapes of polycomb-repressed loci are associated with prostate cancer progression and ERG oncogene expression in prostate cancer.

    PubMed

    Kron, Ken; Trudel, Dominique; Pethe, Vaijayanti; Briollais, Laurent; Fleshner, Neil; van der Kwast, Theodorus; Bapat, Bharati

    2013-07-01

    To assess differentially methylated "landscapes" according to prostate cancer Gleason score (GS) and ERG oncogene expression status, and to determine the extent of polycomb group (PcG) target gene involvement, we sought to assess the genome-wide DNA methylation profile of prostate cancer according to Gleason score and ERG expression. Genomic DNA from 39 prostate cancer specimens was hybridized to CpG island microarrays through differential methylation hybridization. We compared methylation profiles between Gleason score and ERG expression status as well as Gleason score stratified by ERG expression status. In addition, we compared results from our dataset to publicly available datasets of histone modifications in benign prostate cells. We discovered hundreds of distinct differentially methylated regions (DMR) associated with increasing Gleason score and ERG. Furthermore, the number of DMRs associated with Gleason score was greatly expanded by stratifying samples into ERG-positive versus ERG-negative, with ERG-positive/GS-associated DMRs being primarily hypermethylated as opposed to hypomethylated. Finally, we found that there was a significant overlap between either Gleason score-related or ERG-hypermethylated DMRs and distinct regions in benign epithelial cells that have PcG signatures (H3K27me3, SUZ12) and lack active gene expression signatures (H3K4me3, RNA pol II). This work defines methylation landscapes of prostate cancer according to Gleason score, and suggests that initiating genetic events may influence the prostate cancer epigenome, which is further perturbed as prostate cancer progresses. Moreover, CpG islands with silent chromatin signatures in benign cells are particularly susceptible to prostate cancer-related hypermethylation. ©2013 AACR.

  12. Automatic decoding of facial movements reveals deceptive pain expressions.

    PubMed

    Bartlett, Marian Stewart; Littlewort, Gwen C; Frank, Mark G; Lee, Kang

    2014-03-31

    In highly social species such as humans, faces have evolved to convey rich information for social interaction, including expressions of emotions and pain [1-3]. Two motor pathways control facial movement [4-7]: a subcortical extrapyramidal motor system drives spontaneous facial expressions of felt emotions, and a cortical pyramidal motor system controls voluntary facial expressions. The pyramidal system enables humans to simulate facial expressions of emotions not actually experienced. Their simulation is so successful that they can deceive most observers [8-11]. However, machine vision may be able to distinguish deceptive facial signals from genuine facial signals by identifying the subtle differences between pyramidally and extrapyramidally driven movements. Here, we show that human observers could not discriminate real expressions of pain from faked expressions of pain better than chance, and after training human observers, we improved accuracy to a modest 55%. However, a computer vision system that automatically measures facial movements and performs pattern recognition on those movements attained 85% accuracy. The machine system's superiority is attributable to its ability to differentiate the dynamics of genuine expressions from faked expressions. Thus, by revealing the dynamics of facial action through machine vision systems, our approach has the potential to elucidate behavioral fingerprints of neural control systems involved in emotional signaling.

  13. Mutations in the nucleolar phosphoprotein, nucleophosmin, promote the expression of the oncogenic transcription factor MEF/ELF4 in leukemia cells and potentiates transformation.

    PubMed

    Ando, Koji; Tsushima, Hideki; Matsuo, Emi; Horio, Kensuke; Tominaga-Sato, Shinya; Imanishi, Daisuke; Imaizumi, Yoshitaka; Iwanaga, Masako; Itonaga, Hidehiro; Yoshida, Shinichiro; Hata, Tomoko; Moriuchi, Ryozo; Kiyoi, Hitoshi; Nimer, Stephen; Mano, Hiroyuki; Naoe, Tomoki; Tomonaga, Masao; Miyazaki, Yasushi

    2013-03-29

    Myeloid ELF1-like factor (MEF/ELF4), a member of the ETS transcription factors, can function as an oncogene in murine cancer models and is overexpressed in various human cancers. Here, we report a mechanism by which MEF/ELF4 may be activated by a common leukemia-associated mutation in the nucleophosmin gene. By using a tandem affinity purification assay, we found that MEF/ELF4 interacts with multifactorial protein nucleophosmin (NPM1). Coimmunoprecipitation and GST pull-down experiments demonstrated that MEF/ELF4 directly forms a complex with NPM1 and also identified the region of NPM1 that is responsible for this interaction. Functional analyses showed that wild-type NPM1 inhibited the DNA binding and transcriptional activity of MEF/ELF4 on the HDM2 promoter, whereas NPM1 mutant protein (Mt-NPM1) enhanced these activities of MEF/ELF4. Induction of Mt-NPM1 into MEF/ELF4-overexpressing NIH3T3 cells facilitated malignant transformation. In addition, clinical leukemia samples with NPM1 mutations had higher human MDM2 (HDM2) mRNA expression. Our data suggest that enhanced HDM2 expression induced by mutant NPM1 may have a role in MEF/ELF4-dependent leukemogenesis.

  14. Hidden among the crowd: differential DNA methylation-expression correlations in cancer occur at important oncogenic pathways

    PubMed Central

    Mosquera Orgueira, Adrián

    2015-01-01

    DNA methylation is a frequent epigenetic mechanism that participates in transcriptional repression. Variations in DNA methylation with respect to gene expression are constant, and, for unknown reasons, some genes with highly methylated promoters are sometimes overexpressed. In this study we have analyzed the expression and methylation patterns of thousands of genes in five groups of cancer and normal tissue samples in order to determine local and genome-wide differences. We observed significant changes in global methylation-expression correlation in all the neoplasms, which suggests that differential correlation events are frequent in cancer. A focused analysis in the breast cancer cohort identified 1662 genes whose correlation varies significantly between normal and cancerous breast, but whose DNA methylation and gene expression patterns do not change substantially. These genes were enriched in cancer-related pathways and repressive chromatin features across various model cell lines, such as PRC2 binding and H3K27me3 marks. Substantial changes in methylation-expression correlation indicate that these genes are subject to epigenetic remodeling, where the differential activity of other factors break the expected relationship between both variables. Our findings suggest a complex regulatory landscape where a redistribution of local and large-scale chromatin repressive domains at differentially correlated genes (DCGs) creates epigenetic hotspots that modulate cancer-specific gene expression. PMID:26029238

  15. Hidden among the crowd: differential DNA methylation-expression correlations in cancer occur at important oncogenic pathways.

    PubMed

    Mosquera Orgueira, Adrián

    2015-01-01

    DNA methylation is a frequent epigenetic mechanism that participates in transcriptional repression. Variations in DNA methylation with respect to gene expression are constant, and, for unknown reasons, some genes with highly methylated promoters are sometimes overexpressed. In this study we have analyzed the expression and methylation patterns of thousands of genes in five groups of cancer and normal tissue samples in order to determine local and genome-wide differences. We observed significant changes in global methylation-expression correlation in all the neoplasms, which suggests that differential correlation events are frequent in cancer. A focused analysis in the breast cancer cohort identified 1662 genes whose correlation varies significantly between normal and cancerous breast, but whose DNA methylation and gene expression patterns do not change substantially. These genes were enriched in cancer-related pathways and repressive chromatin features across various model cell lines, such as PRC2 binding and H3K27me3 marks. Substantial changes in methylation-expression correlation indicate that these genes are subject to epigenetic remodeling, where the differential activity of other factors break the expected relationship between both variables. Our findings suggest a complex regulatory landscape where a redistribution of local and large-scale chromatin repressive domains at differentially correlated genes (DCGs) creates epigenetic hotspots that modulate cancer-specific gene expression.

  16. A newly identified RET proto-oncogene polymorphism is found in a high number of endocrine tumor patients.

    PubMed

    Gartner, Wolfgang; Mineva, Ivelina; Daneva, Teodora; Baumgartner-Parzer, Sabina; Niederle, Bruno; Vierhapper, Heinrich; Weissel, Michael; Wagner, Ludwig

    2005-07-01

    Multiple RET proto-oncogene transcripts, due to genomic variations and alternate splicing, have been described. To investigate endocrine tumor tissue characteristic RET proto-oncogene expression, we performed quantitative RT-PCR, Northern blot and Southern blot analyses of benign and malignant endocrine-derived tissues. We newly describe RET proto-oncogene expression in carcinoid-, gastrinoma- and insulinoma-derived tissue samples. In addition, the presence of a 3'-terminally truncated RET proto-oncogene mRNA variant in benign and malignant thyroid neoplasias, as well as in a pheochromocytoma, an ovarian carcinoma and a medullary thyroid carcinoma, is demonstrated. Southern blot analysis revealed no evidence of gross RET proto-oncogene rearrangements or deletions. As the underlying cause for a bi-allelic TaqI restriction fragment length polymorphism (RFLP), a C (allele 1)/T (allele 2) transition within intron 19, was characterized. This polymorphism is close to a recently described polyadenylation site and lies within a binding site for the nucleic acid binding protein Pbx-1. Screening of healthy subjects and of patients suffering from various endocrine malignancies revealed exclusively allele 1 homozygous and allele 1/allele 2 heterozygous genotypes. Heterozygous genotypes were found in a significantly higher percentage in samples derived from endocrine tumor patients when compared with those from healthy control subjects. Homozygosity for allele 2 was found exclusively in somatic DNA derived from endocrine tumors with high malignant potential. Analysis of DNA derived from varying regions within individual anaplastic thyroid carcinomas revealed an allele 1/allele 2 switch of the RFLP banding pattern, indicating loss of heterozygosity at the RET proto-oncogene locus. In conclusion, our data demonstrate presence of a 5'-terminal RET proto-oncogene transcript in endocrine tissues and reveal a bi-allelic RET proto-oncogene polymorphism. A heterozygous genotype for

  17. Redox-modulating agents target NOX2-dependent IKKε oncogenic kinase expression and proliferation in human breast cancer cell lines

    PubMed Central

    Mukawera, Espérance; Chartier, Stefany; Williams, Virginie; Pagano, Patrick J.; Lapointe, Réjean; Grandvaux, Nathalie

    2015-01-01

    Oxidative stress is considered a causative factor in carcinogenesis, but also in the development of resistance to current chemotherapies. The appropriate usage of redox-modulating compounds is limited by the lack of knowledge of their impact on specific molecular pathways. Increased levels of the IKKε kinase, as a result of gene amplification or aberrant expression, are observed in a substantial number of breast carcinomas. IKKε not only plays a key role in cell transformation and invasiveness, but also in the development of resistance to tamoxifen. Here, we studied the effect of in vitro treatment with the redox-modulating triphenylmethane dyes, Gentian Violet and Brilliant Green, and nitroxide Tempol on IKKε expression and cell proliferation in the human breast cancer epithelial cell lines exhibiting amplification of IKKε, MCF-7 and ZR75.1. We show that Gentian Violet, Brilliant Green and Tempol significantly decrease intracellular superoxide anion levels and inhibit IKKε expression and cell viability. Treatment with Gentian Violet and Brilliant Green was associated with a reduced cyclin D1 expression and activation of caspase 3 and/or 7. Tempol decreased cyclin D1 expression in both cell lines, while activation of caspase 7 was only observed in MCF-7 cells. Silencing of the superoxide-generating NOX2 NADPH oxidase expressed in breast cancer cells resulted in the significant reduction of IKKε expression. Taken together, our results suggest that redox-modulating compounds targeting NOX2 could present a particular therapeutic interest in combination therapy against breast carcinomas exhibiting IKKε amplification. PMID:26177467

  18. Exposure to diethylstilbestrol during pregnancy modulates microRNA expression profile in mothers and fetuses reflecting oncogenic and immunological changes.

    PubMed

    Singh, Narendra P; Abbas, Ikbal K; Menard, Martine; Singh, Udai P; Zhang, Jiajia; Nagarkatti, Prakash; Nagarkatti, Mitzi

    2015-05-01

    Prenatal exposure to diethylstilbestrol (DES) is known to cause an increased susceptibility to a wide array of clinical disorders in humans. Previous studies from our laboratory demonstrated that prenatal exposure to DES induces thymic atrophy and apoptosis in the thymus. In the current study, we investigated if such effects on the thymus result from alterations in the expression of microRNA (miR). To that end, pregnant C57BL/6 mice who were exposed to DES and miR profiles in thymocytes of both the mother and fetuses on postnatal day 3 (gestation day 17) were studied. Of the 609 mouse miRs examined, we noted 59 altered miRs that were common for both mothers and fetuses, whereas 107 altered miRs were specific to mothers only and 101 altered miRs were specific to fetuses only. Upon further analyses in the fetuses, we observed that DES-mediated changes in miR expression may regulate genes involved in important functions, such as apoptosis, autophagy, toxicity, and cancer. Of the miRs that showed decreased expression following DES treatment, miR-18b and miR-23a were found to possess complementary sequences and binding affinity for 3' untranslated regions of the Fas ligand (FasL) and Fas, respectively. Transfection studies confirmed that DES-mediated downregulation of miR-18b and miR-23a led to increased FasL and Fas expression. These data demonstrated that prenatal DES exposure can cause alterations in miRs, leading to changes in the gene expression, specifically, miR-mediated increased expression in FasL and Fas causing apoptosis and thymic atrophy.

  19. Exposure to Diethylstilbestrol during Pregnancy Modulates MicroRNA Expression Profile in Mothers and Fetuses Reflecting Oncogenic and Immunological Changes

    PubMed Central

    Singh, Narendra P.; Abbas, Ikbal K.; Menard, Martine; Singh, Udai P.; Zhang, Jiajia; Nagarkatti, Prakash

    2015-01-01

    Prenatal exposure to diethylstilbestrol (DES) is known to cause an increased susceptibility to a wide array of clinical disorders in humans. Previous studies from our laboratory demonstrated that prenatal exposure to DES induces thymic atrophy and apoptosis in the thymus. In the current study, we investigated if such effects on the thymus result from alterations in the expression of microRNA (miR). To that end, pregnant C57BL/6 mice who were exposed to DES and miR profiles in thymocytes of both the mother and fetuses on postnatal day 3 (gestation day 17) were studied. Of the 609 mouse miRs examined, we noted 59 altered miRs that were common for both mothers and fetuses, whereas 107 altered miRs were specific to mothers only and 101 altered miRs were specific to fetuses only. Upon further analyses in the fetuses, we observed that DES-mediated changes in miR expression may regulate genes involved in important functions, such as apoptosis, autophagy, toxicity, and cancer. Of the miRs that showed decreased expression following DES treatment, miR-18b and miR-23a were found to possess complementary sequences and binding affinity for 3′ untranslated regions of the Fas ligand (FasL) and Fas, respectively. Transfection studies confirmed that DES-mediated downregulation of miR-18b and miR-23a led to increased FasL and Fas expression. These data demonstrated that prenatal DES exposure can cause alterations in miRs, leading to changes in the gene expression, specifically, miR-mediated increased expression in FasL and Fas causing apoptosis and thymic atrophy. PMID:25753120

  20. Glycerophospholipid profile in oncogene-induced senescence.

    PubMed

    Cadenas, Cristina; Vosbeck, Sonja; Hein, Eva-Maria; Hellwig, Birte; Langer, Alice; Hayen, Heiko; Franckenstein, Dennis; Büttner, Bettina; Hammad, Seddik; Marchan, Rosemarie; Hermes, Matthias; Selinski, Silvia; Rahnenführer, Jörg; Peksel, Begüm; Török, Zsolt; Vígh, László; Hengstler, Jan G

    2012-09-01

    Alterations in lipid metabolism and in the lipid composition of cellular membranes are linked to the pathology of numerous diseases including cancer. However, the influence of oncogene expression on cellular lipid profile is currently unknown. In this work we analyzed changes in lipid profiles that are induced in the course of ERBB2-expression mediated premature senescence. As a model system we used MCF-7 breast cancer cells with doxycycline-inducible expression of NeuT, an oncogenic ERBB2 variant. Affymetrix gene array data showed NeuT-induced alterations in the transcription of many enzymes involved in lipid metabolism, several of which (ACSL3, CHPT1, PLD1, LIPG, MGLL, LDL and NPC1) could be confirmed by quantitative realtime PCR. A study of the glycerophospholipid and lyso-glycerophospholipid profiles, obtained by high performance liquid chromatography coupled to Fourier-transform ion cyclotron resonance-mass spectrometry revealed senescence-associated changes in numerous lipid species, including mitochondrial lipids. The most prominent changes were found in PG(34:1), PG(36:1) (increased) and LPE(18:1), PG(40:7) and PI(36:1) (decreased). Statistical analysis revealed a general trend towards shortened phospholipid acyl chains in senescence and a significant trend to more saturated acyl chains in the class of phosphatidylglycerol. Additionally, the cellular cholesterol content was elevated and accumulated in vacuoles in senescent cells. These changes were accompanied by increased membrane fluidity. In mitochondria, loss of membrane potential along with altered intracellular distribution was observed. In conclusion, we present a comprehensive overview of altered cholesterol and glycerophospholipid patterns in senescence, showing that predominantly mitochondrial lipids are affected and lipid species less susceptible to peroxidation are increased.

  1. Ectopic over-expression of oncogene Pim-2 induce malignant transformation of nontumorous human liver cell line L02.

    PubMed

    Ren, Ke; Duan, Wentao; Shi, Yujun; Li, Bo; Liu, Zuojin; Gong, Jiangping

    2010-07-01

    In order to prove that ectopic over-expression of Pim-2 could induce malignant transformation of human liver cell line L02, three groups of cells were set up including human liver cell line L02 (L02), L02 cells transfected with Pim-2 gene (L02/Pim-2) and L02 cells transfected with empty-vector (L02/Vector). Pim-2 expression levels were detected. The morphology, proliferation level, apoptosis rate and migration ability of the cells were detected respectively. Then the cells were subcutaneously inoculated into athymic mice and the microstructures of the neoplasm were observed. Compared with the controls, Pim-2 expression levels were significantly higher in L02/Pim-2 cells (P<0.05), and their morphology had obvious malignant changes. They also showed a significantly increased proliferation rate (P<0.05) and migration capacity (P<0.05), as well as a significantly decreased apoptosis rate (P<0.05). Only the athymic mice inoculated with L02/Pim-2 cells could generate neoplasm, and the morphology of the neoplasm coincided with that of the hepatoma. The results manifest that ectopic Pim-2 gene could be stably expressed in L02/Pim-2 cells. Both the morphological and biological changes of L02/Pim-2 cells demonstrate the trend of malignant transformation. L02/Pim-2 cells could generate hepatoma in athymic mice. In conclusion, Pim-2 could induce malignant transformation of human liver cell line L02.

  2. ERMP1, a novel potential oncogene involved in UPR and oxidative stress defense, is highly expressed in human cancer

    PubMed Central

    Grandi, Alberto; Santi, Alice; Campagnoli, Susanna; Parri, Matteo; De Camilli, Elisa; Song, Chaojun; Jin, Boquan; Lacombe, Aurelien; Castori-Eppenberger, Serenella; Sarmientos, Paolo; Grandi, Guido; Viale, Giuseppe; Terracciano, Luigi; Chiarugi, Paola; Pileri, Piero; Grifantini, Renata

    2016-01-01

    Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) are highly activated in cancer and involved in tumorigenesis and resistance to anti-cancer therapy. UPR is becoming a promising target of anti-cancer therapies. Thus, the identification of UPR components that are highly expressed in cancer could offer new therapeutic opportunity. In this study, we demonstrate that Endoplasmic Reticulum Metallo Protease 1 (ERMP1) is broadly expressed in a high percentage of breast, colo-rectal, lung, and ovary cancers, regardless of their stage and grade. Moreover, we show that loss of ERMP1 expression significantly hampers proliferation, migration and invasiveness of cancer cells. Furthermore, we show that this protein is an important player in the UPR and defense against oxidative stress. ERMP1 expression is strongly affected by reticular stress induced by thapsigargin and other oxidative stresses. ERMP1 silencing during reticular stress impairs the activation of PERK, a key sensor of the UPR activation. Loss of ERMP1 also prevents the expression of GRP78/BiP, a UPR stress marker involved in the activation of the survival pathway. Finally, ERMP1 silencing in cells exposed to hypoxia leads to inhibition of the Nrf2-mediated anti-oxidant response and to reduction of accumulation of HIF-1, the master transcription factor instructing cells to respond to hypoxic stress. Our results suggest that ERMP1 could act as a molecular starter to the survival response induced by extracellular stresses. Moreover, they provide the rationale for the design of ERMP1-targeting drugs that could act by inhibiting the UPR initial adaptive response of cancer cells and impair cell survival. PMID:27566589

  3. Automatic decoding of facial movements reveals deceptive pain expressions

    PubMed Central

    Bartlett, Marian Stewart; Littlewort, Gwen C.; Frank, Mark G.; Lee, Kang

    2014-01-01

    Summary In highly social species such as humans, faces have evolved to convey rich information for social interaction, including expressions of emotions and pain [1–3]. Two motor pathways control facial movement [4–7]. A subcortical extrapyramidal motor system drives spontaneous facial expressions of felt emotions. A cortical pyramidal motor system controls voluntary facial expressions. The pyramidal system enables humans to simulate facial expressions of emotions not actually experienced. Their simulation is so successful that they can deceive most observers [8–11]. Machine vision may, however, be able to distinguish deceptive from genuine facial signals by identifying the subtle differences between pyramidally and extrapyramidally driven movements. Here we show that human observers could not discriminate real from faked expressions of pain better than chance, and after training, improved accuracy to a modest 55%. However a computer vision system that automatically measures facial movements and performs pattern recognition on those movements attained 85% accuracy. The machine system’s superiority is attributable to its ability to differentiate the dynamics of genuine from faked expressions. Thus by revealing the dynamics of facial action through machine vision systems, our approach has the potential to elucidate behavioral fingerprints of neural control systems involved in emotional signaling. PMID:24656830

  4. Sparse expression bases in cancer reveal tumor drivers

    PubMed Central

    Logsdon, Benjamin A.; Gentles, Andrew J.; Miller, Chris P.; Blau, C. Anthony; Becker, Pamela S.; Lee, Su-In

    2015-01-01

    We define a new category of candidate tumor drivers in cancer genome evolution: ‘selected expression regulators’ (SERs)—genes driving dysregulated transcriptional programs in cancer evolution. The SERs are identified from genome-wide tumor expression data with a novel method, namely SPARROW (SPARse selected expRessiOn regulators identified With penalized regression). SPARROW uncovers a previously unknown connection between cancer expression variation and driver events, by using a novel sparse regression technique. Our results indicate that SPARROW is a powerful complementary approach to identify candidate genes containing driver events that are hard to detect from sequence data, due to a large number of passenger mutations and lack of comprehensive sequence information from a sufficiently large number of samples. SERs identified by SPARROW reveal known driver mutations in multiple human cancers, along with known cancer-associated processes and survival-associated genes, better than popular methods for inferring gene expression networks. We demonstrate that when applied to acute myeloid leukemia expression data, SPARROW identifies an apoptotic biomarker (PYCARD) for an investigational drug obatoclax. The PYCARD and obatoclax association is validated in 30 AML patient samples. PMID:25583238

  5. Proteomics profiling of Madin-Darby canine kidney plasma membranes reveals Wnt-5a involvement during oncogenic H-Ras/TGF-beta-mediated epithelial-mesenchymal transition.

    PubMed

    Chen, Yuan-Shou; Mathias, Rommel A; Mathivanan, Suresh; Kapp, Eugene A; Moritz, Robert L; Zhu, Hong-Jian; Simpson, Richard J

    2011-02-01

    Epithelial-mesenchymal transition (EMT) describes a process whereby polarized epithelial cells with restricted migration transform into elongated spindle-shaped mesenchymal cells with enhanced motility and invasiveness. Although there are some molecular markers for this process, including the down-regulation of E-cadherin, our understanding of plasma membrane (PM) and associated proteins involved in EMT is limited. To specifically explore molecular alterations occurring at the PM, we used the cationic colloidal silica isolation technique to purify PM fractions from epithelial Madin-Darby canine kidney cells during Ras/TGF-β-mediated EMT. Proteins in the isolated membrane fractions were separated by one-dimensional SDS-PAGE and subjected to nano-LC-MS/MS-based protein identification. In this study, the first membrane protein analysis of an EMT model, we identified 805 proteins and determined their differential expression using label-free spectral counting. These data reveal that Madin-Darby canine kidney cells switch from cadherin-mediated to integrin-mediated adhesion following Ras/TGF-β-mediated EMT. Thus, during the EMT process, E-cadherin, claudin 4, desmoplakin, desmoglein-2, and junctional adhesion molecule A were down-regulated, whereas integrins α6β1, α3β1, α2β1, α5β1, αVβ1, and αVβ3 along with their extracellular ligands collagens I and V and fibronectin had increased expression levels. Conspicuously, Wnt-5a expression was elevated in cells undergoing EMT, and transient Wnt-5a siRNA silencing attenuated both cell migration and invasion in these cells. Furthermore, Wnt-5a expression suppressed canonical Wnt signaling induced by Wnt-3a. Wnt-5a may act through the planar cell polarity pathway of the non-canonical Wnt signaling pathway as several of the components and modulators (Wnt-5a, -5b, frizzled 6, collagen triple helix repeat-containing protein 1, tyrosine-protein kinase 7, RhoA, Rac, and JNK) were found to be up-regulated during Ras

  6. SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of {beta}-catenin

    SciTech Connect

    Cho, Il-Rae; Koh, Sang Seok; Malilas, Waraporn; Srisuttee, Ratakorn; Moon, Jeong; Choi, Young-Whan; Horio, Yoshiyuki; Oh, Sangtaek; Chung, Young-Hwa

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer SIRT1 inhibits protein levels of {beta}-catenin and its transcriptional activity. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for the decrease of {beta}-catenin expression. Black-Right-Pointing-Pointer SIRT1-mediated degradation of {beta}-catenin is not required for GSK-3{beta} and Siah-1 but for proteosome. Black-Right-Pointing-Pointer SIRT1 activation inhibits proliferation of pancreatic cancer cells expressing PAUF. -- Abstract: Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of {beta}-catenin, we postulated that {beta}-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, known to target {beta}-catenin in a colon cancer model, suppresses {beta}-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of {beta}-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced {beta}-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of {beta}-catenin. Treatment with MG132, a proteasomal inhibitor, restored {beta}-catenin protein levels, suggesting that SIRT1-mediated degradation of {beta}-catenin requires proteasomal activity. It was reported that inhibition of GSK-3{beta} or Siah-1 stabilizes {beta}-catenin in colon cancer cells, but suppression of GSK-3{beta} or Siah-1 using siRNA in the presence of resveratrol instead diminished {beta}-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3{beta} and Siah-1 are not involved in SIRT1

  7. Genome-scale expression and transcription factor binding profiles reveal therapeutic targets in transgenic ERG myeloid leukemia

    PubMed Central

    Goldberg, Liat; Tijssen, Marloes R.; Birger, Yehudit; Hannah, Rebecca L.; Kinston, Sarah J.; Schütte, Judith; Beck, Dominik; Knezevic, Kathy; Schiby, Ginette; Jacob-Hirsch, Jasmine; Biran, Anat; Kloog, Yoel; Marcucci, Guido; Bloomfield, Clara D.; Aplan, Peter D.; Pimanda, John E.

    2013-01-01

    The ETS transcription factor ERG plays a central role in definitive hematopoiesis, and its overexpression in acute myeloid leukemia (AML) is associated with a stem cell signature and poor prognosis. Yet how ERG causes leukemia is unclear. Here we show that pan-hematopoietic ERG expression induces an early progenitor myeloid leukemia in transgenic mice. Integrated genome-scale analysis of gene expression and ERG binding profiles revealed that ERG activates a transcriptional program similar to human AML stem/progenitor cells and to human AML with high ERG expression. This transcriptional program was associated with activation of RAS that was required for leukemia cells growth in vitro and in vivo. We further show that ERG induces expression of the Pim1 kinase oncogene through a novel hematopoietic enhancer validated in transgenic mice and human CD34+ normal and leukemic cells. Pim1 inhibition disrupts growth and induces apoptosis of ERG-expressing leukemic cells. The importance of the ERG/PIM1 axis is further underscored by the poorer prognosis of AML highly expressing ERG and PIM1. Thus, integrative genomic analysis demonstrates that ERG causes myeloid progenitor leukemia characterized by an induction of leukemia stem cell transcriptional programs. Pim1 and the RAS pathway are potential therapeutic targets of these high-risk leukemias. PMID:23974202

  8. Multi-focal control of mitochondrial gene expression by oncogenic MYC provides potential therapeutic targets in cancer

    PubMed Central

    Oran, Amanda R.; Adams, Clare M.; Zhang, Xiao-yong; Gennaro, Victoria J.; Pfeiffer, Harla K.; Mellert, Hestia S.; Seidel, Hans E.; Mascioli, Kirsten; Kaplan, Jordan; Gaballa, Mahmoud R.; Shen, Chen; Rigoutsos, Isidore; King, Michael P.; Cotney, Justin L.; Arnold, Jamie J.; Sharma, Suresh D.; Martinez, Ubaldo E.; Vakoc, Christopher R.; Chodosh, Lewis A.; Thompson, James E.; Bradner, James E.; Cameron, Craig E.; Shadel, Gerald S.; Eischen, Christine M.; McMahon, Steven B.

    2016-01-01

    Despite ubiquitous activation in human cancer, essential downstream effector pathways of the MYC transcription factor have been difficult to define and target. Using a structure/function-based approach, we identified the mitochondrial RNA polymerase (POLRMT) locus as a critical downstream target of MYC. The multifunctional POLRMT enzyme controls mitochondrial gene expression, a process required both for mitochondrial function and mitochondrial biogenesis. We further demonstrate that inhibition of this newly defined MYC effector pathway causes robust and selective tumor cell apoptosis, via an acute, checkpoint-like mechanism linked to aberrant electron transport chain complex assembly and mitochondrial reactive oxygen species (ROS) production. Fortuitously, MYC-dependent tumor cell death can be induced by inhibiting the mitochondrial gene expression pathway using a variety of strategies, including treatment with FDA-approved antibiotics. In vivo studies using a mouse model of Burkitt's Lymphoma provide pre-clinical evidence that these antibiotics can successfully block progression of MYC-dependent tumors. PMID:27590350

  9. CIB1 contributes to oncogenic signalling by Ras via modulating the subcellular localisation of sphingosine kinase 1

    PubMed Central

    Zhu, Wenying; Gliddon, Briony L.; Jarman, Kate E.; Moretti, Paul A. B.; Tin, Teresa; Parise, Leslie V.; Woodcock, Joanna M.; Powell, Jason A.; Ruszkiewicz, Andrew; Pitman, Melissa R.; Pitson, Stuart M.

    2016-01-01

    CIB1 (calcium and integrin binding protein 1) is a small intracellular protein with numerous interacting partners, and hence has been implicated in various cellular functions. Recent studies have revealed emerging roles of CIB1 in regulating cancer cell survival and angiogenesis, although the mechanisms involved have remained largely undefined. In investigating the oncogenic function of CIB1, we initially found that CIB1 is widely up-regulated across a diverse range of cancers, with this up-regulation frequently correlating with oncogenic mutations of KRas. Consistent with this, we found that ectopic expression of oncogenic KRas and HRas in cells resulted in elevated CIB1 expression. We previously described the Ca2+-myristoyl switch function of CIB1, and its ability to facilitate agonist-induced plasma membrane localisation of sphingosine kinase 1 (SK1), a location where SK1 is known to elicit oncogenic signalling. Thus, we examined the role this may play in oncogenesis. Consistent with these findings, we demonstrated here that over-expression of CIB1 by itself is sufficient to drive localisation of SK1 to the plasma membrane and enhance the membrane associated enzymatic activity of SK1, as well as its oncogenic signalling. We subsequently demonstrated that elevated levels of CIB1 resulted in full neoplastic transformation, in a manner dependent on SK1. In agreement with our previous findings that SK1 is a downstream mediator of oncogenic signalling by Ras, we found that targeting CIB1 also inhibited neoplastic growth of cells induced by oncogenic Ras, suggesting an important pro-tumorigenic role for CIB1. Thus, we have demonstrated for the first time a role for CIB1 in neoplastic transformation, and revealed a novel mechanism facilitating oncogenic signalling by Ras and SK1. PMID:27941888

  10. What Facial Appearance Reveals Over Time: When Perceived Expressions in Neutral Faces Reveal Stable Emotion Dispositions

    PubMed Central

    Adams, Reginald B.; Garrido, Carlos O.; Albohn, Daniel N.; Hess, Ursula; Kleck, Robert E.

    2016-01-01

    It might seem a reasonable assumption that when we are not actively using our faces to express ourselves (i.e., when we display nonexpressive, or neutral faces), those around us will not be able to read our emotions. Herein, using a variety of expression-related ratings, we examined whether age-related changes in the face can accurately reveal one’s innermost affective dispositions. In each study, we found that expressive ratings of neutral facial displays predicted self-reported positive/negative dispositional affect, but only for elderly women, and only for positive affect. These findings meaningfully replicate and extend earlier work examining age-related emotion cues in the face of elderly women (Malatesta et al., 1987a). We discuss these findings in light of evidence that women are expected to, and do, smile more than men, and that the quality of their smiles predicts their life satisfaction. Although ratings of old male faces did not significantly predict self-reported affective dispositions, the trend was similar to that found for old female faces. A plausible explanation for this gender difference is that in the process of attenuating emotional expressions over their lifetimes, old men reveal less evidence of their total emotional experiences in their faces than do old women. PMID:27445944

  11. Small genomic insertions form enhancers that misregulate oncogenes

    PubMed Central

    Abraham, Brian J.; Hnisz, Denes; Weintraub, Abraham S.; Kwiatkowski, Nicholas; Li, Charles H.; Li, Zhaodong; Weichert-Leahey, Nina; Rahman, Sunniyat; Liu, Yu; Etchin, Julia; Li, Benshang; Shen, Shuhong; Lee, Tong Ihn; Zhang, Jinghui; Look, A. Thomas; Mansour, Marc R.; Young, Richard A.

    2017-01-01

    The non-coding regions of tumour cell genomes harbour a considerable fraction of total DNA sequence variation, but the functional contribution of these variants to tumorigenesis is ill-defined. Among these non-coding variants, somatic insertions are among the least well characterized due to challenges with interpreting short-read DNA sequences. Here, using a combination of Chip-seq to enrich enhancer DNA and a computational approach with multiple DNA alignment procedures, we identify enhancer-associated small insertion variants. Among the 102 tumour cell genomes we analyse, small insertions are frequently observed in enhancer DNA sequences near known oncogenes. Further study of one insertion, somatically acquired in primary leukaemia tumour genomes, reveals that it nucleates formation of an active enhancer that drives expression of the LMO2 oncogene. The approach described here to identify enhancer-associated small insertion variants provides a foundation for further study of these abnormalities across human cancers. PMID:28181482

  12. Function of oncogenes in cancer development: a changing paradigm

    PubMed Central

    Vicente-Dueñas, Carolina; Romero-Camarero, Isabel; Cobaleda, Cesar; Sánchez-García, Isidro

    2013-01-01

    Tumour-associated oncogenes induce unscheduled proliferation as well as genomic and chromosomal instability. According to current models, therapeutic strategies that block oncogene activity are likely to selectively target tumour cells. However, recent evidences have revealed that oncogenes are only essential for the proliferation of some specific tumour cell types, but not all. Indeed, the latest studies of the interactions between the oncogene and its target cell have shown that oncogenes contribute to cancer development not only by inducing proliferation but also by developmental reprogramming of the epigenome. This provides the first evidence that tumorigenesis can be initiated by stem cell reprogramming, and uncovers a new role for oncogenes in the origin of cancer. Here we analyse these evidences and propose an updated model of oncogene function that can explain the full range of genotype–phenotype associations found in human cancer. Finally, we discuss how this vision opens new avenues for developing novel anti-cancer interventions. PMID:23632857

  13. Activating the expression of human K-rasG12D stimulates oncogenic transformation in transgenic goat fetal fibroblast cells.

    PubMed

    Gong, Jianhua; Wang, Zhongde; Polejaeva, Irina; Salgia, Ravi; Kao, Chien-Min; Chen, Chin-Tu; Chen, Guangchun; Chen, Liaohai

    2014-01-01

    Humane use of preclinical large animal cancer models plays a critical role in understanding cancer biology and developing therapeutic treatments. Among the large animal candidates, goats have great potentials as sustainable sources for large animal cancer model development. Goats are easier to handle and cheaper to raise. The genome of the goats has been sequenced recently. It has been known that goats develop skin, adrenal cortex, breast and other types of cancers. Technically, goats are subject to somatic cell nuclear transfer more efficiently and exhibit better viability through the cloning process. Towards the development of a goat cancer model, we created a transgenic goat fetal fibroblast (GFF) cell as the donor cell for SCNT. Human mutated K-ras (hK-rasG12D) was chosen as the transgene, as it is present in 20% of cancers. Both hK-rasG12D and a herpes simplex viral thymidine kinase (HSV1-tk) reporter genes, flanked by a pair of LoxP sites, were knocked in the GFF endogenous K-ras locus through homologous recombination. Following Cre-mediated activation (with a 95% activation efficiency), hK-rasG12D and HSV1-tk were expressed in the transgenic GFF cells, evidently through the presence of corresponding mRNAs, and confirmed by HSV1-tk protein function assay. The hK-rasG12D expressing GFF cells exhibited enhanced proliferation rates and an anchorage-independent growth behavior. They were able to initiate tumor growth in athymic nude mice. In conclusion, after activating hK-rasG12D gene expression, hK-rasG12D transgenic GFF cells were transformed into tumorgenesis cells. Transgenic goats via SCNT using the above-motioned cells as the donor cells have been established.

  14. The Dioxin Receptor Regulates the Constitutive Expression of the Vav3 Proto-Oncogene and Modulates Cell Shape and Adhesion

    PubMed Central

    Carvajal-Gonzalez, Jose M.; Mulero-Navarro, Sonia; Roman, Angel Carlos; Sauzeau, Vincent; Merino, Jaime M.; Bustelo, Xose R.

    2009-01-01

    The dioxin receptor (AhR) modulates cell plasticity and migration, although the signaling involved remains unknown. Here, we report a mechanism that integrates AhR into these cytoskeleton-related functions. Immortalized and mouse embryonic fibroblasts lacking AhR (AhR−/−) had increased cell area due to spread cytoplasms that reverted to wild-type morphology upon AhR re-expression. The AhR-null phenotype included increased F-actin stress fibers, depolarized focal adhesions, and enhanced spreading and adhesion. The cytoskeleton alterations of AhR−/− cells were due to down-regulation of constitutive Vav3 expression, a guanosine diphosphate/guanosine triphosphate exchange factor for Rho/Rac GTPases and a novel transcriptional target of AhR. AhR was recruited to the vav3 promoter and maintained constitutive mRNA expression in a ligand-independent manner. Consistently, AhR−/− fibroblasts had reduced Rac1 activity and increased activation of the RhoA/Rho kinase (Rock) pathway. Pharmacological inhibition of Rac1 shifted AhR+/+ fibroblasts to the null phenotype, whereas Rock inhibition changed AhR-null cells to the AhR+/+ morphology. Knockdown of vav3 transcripts by small interfering RNA induced cytoskeleton defects and changes in adhesion and spreading mimicking those of AhR-null cells. Moreover, vav3−/− MEFs, as AhR−/− mouse embryonic fibroblasts, had increased cell area and enhanced stress fibers. By modulating Vav3-dependent signaling, AhR could regulate cell shape, adhesion, and migration under physiological conditions and, perhaps, in certain pathological states. PMID:19158396

  15. Activating the Expression of Human K-rasG12D Stimulates Oncogenic Transformation in Transgenic Goat Fetal Fibroblast Cells

    PubMed Central

    Gong, Jianhua; Wang, Zhongde; Polejaeva, Irina; Salgia, Ravi; Kao, Chien-Min; Chen, Chin-Tu; Chen, Guangchun; Chen, Liaohai

    2014-01-01

    Humane use of preclinical large animal cancer models plays a critical role in understanding cancer biology and developing therapeutic treatments. Among the large animal candidates, goats have great potentials as sustainable sources for large animal cancer model development. Goats are easier to handle and cheaper to raise. The genome of the goats has been sequenced recently. It has been known that goats develop skin, adrenal cortex, breast and other types of cancers. Technically, goats are subject to somatic cell nuclear transfer more efficiently and exhibit better viability through the cloning process. Towards the development of a goat cancer model, we created a transgenic goat fetal fibroblast (GFF) cell as the donor cell for SCNT. Human mutated K-ras (hK-rasG12D) was chosen as the transgene, as it is present in 20% of cancers. Both hK-rasG12D and a herpes simplex viral thymidine kinase (HSV1-tk) reporter genes, flanked by a pair of LoxP sites, were knocked in the GFF endogenous K-ras locus through homologous recombination. Following Cre-mediated activation (with a 95% activation efficiency), hK-rasG12D and HSV1-tk were expressed in the transgenic GFF cells, evidently through the presence of corresponding mRNAs, and confirmed by HSV1-tk protein function assay. The hK-rasG12D expressing GFF cells exhibited enhanced proliferation rates and an anchorage-independent growth behavior. They were able to initiate tumor growth in athymic nude mice. In conclusion, after activating hK-rasG12D gene expression, hK-rasG12D transgenic GFF cells were transformed into tumorgenesis cells. Transgenic goats via SCNT using the above-motioned cells as the donor cells have been established. PMID:24594684

  16. Induction of cell death by stimulation of protein kinase C in human epithelial cells expressing a mutant ras oncogene: a potential therapeutic target.

    PubMed Central

    Hall-Jackson, C. A.; Jones, T.; Eccles, N. G.; Dawson, T. P.; Bond, J. A.; Gescher, A.; Wynford-Thomas, D.

    1998-01-01

    Ras oncogene activation is a key genetic event in several types of human cancer, making its signal pathways an ideal target for novel therapies. We previously showed that expression of mutant ras sensitizes human thyroid epithelial cells to induction of cell death by treatment with phorbol 12-myristate 13-acetate (PMA) and other phorbol esters. We have now investigated further the nature and mechanism of this cell death using both primary and cell line models. The cytotoxic effect of PMA could be blocked by bisindolylmaleimide (GF 109203X), a well-characterized inhibitor of c and n protein kinase C (PKC) isoforms, and by prior down-regulation of PKC, indicating that it is mediated by acute stimulation, rather than down-regulation. Western analysis identified two candidate isoforms--alpha and epsilon--both of which showed PMA-induced subcellular translocation, either or both of which may be necessary for PMA-induced cell death. Immunofluorescence showed that PMA induced a rapid nuclear translocation of p42 MAP kinase of similar magnitude in the presence or absence of mutant ras expression. Cell death exhibited the microscopic features (chromatin condensation, TdT labelling) and DNA fragmentation typical of apoptosis but after a surprising lag (4 days). Taken together with recent models of ras-modulated apoptosis, our data suggest that activation of the MAPK pathway by PMA tips the balance of pro- and anti-apoptotic signals generated by ras in favour of apoptosis. The high frequency of ras mutations in some cancers, such as cancer of the pancreas, which are refractory to conventional chemotherapy, together with the potential for stimulating PKC by cell-permeant pharmacological agents, makes this an attractive therapeutic approach. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 7 Figure 6 Figure 8 PMID:9744505

  17. Proto-oncogene ACTR/AIB1 promotes cancer cell invasion by up-regulating specific matrix metalloproteinase expression.

    PubMed

    Li, Li B; Louie, Maggie C; Chen, H-W; Zou, June X

    2008-03-08

    Overexpression of ACTR/AIB1 is frequently found in different cancers with distant metastasis. To address its possible involvement in tumor metastasis, we performed invasion assays to examine the effect of ACTR alteration on the invasiveness of breast cancer cells (MDA-MB-231 or T-47D) and found that high levels of ACTR are required for their strong invasiveness. Molecular analysis indicates that ACTR functions as a coactivator of AP-1 to up-regulate the expression of matrix metalloproteinases such as MMP-7 and MMP-10 and reduce cell adhesion to specific extracellular matrix proteins. These novel findings provide a mechanistic link between ACTR and MMPs, and suggest that ACTR may also play an important role in cancer progression by facilitating tumor invasion.

  18. The pan-deacetylase inhibitor panobinostat suppresses the expression of oncogenic miRNAs in hepatocellular carcinoma cell lines.

    PubMed

    Henrici, Alexander; Montalbano, Roberta; Neureiter, Daniel; Krause, Michael; Stiewe, Thorsten; Slater, Emily Prentice; Quint, Karl; Ocker, Matthias; Di Fazio, Pietro

    2015-08-01

    Deacetylase inhibitors (DACi) are a new class of drugs with a broad spectrum of mechanisms that favor their application in cancer therapy. Currently, the exact mechanisms and cellular effects of DACi have not been fully elucidated. In addition to their effects on histone acetylation, DACi can interfere with gene expression via miRNA pathways. Treatment with panobinostat (LBH589), a novel potent DACi, led to the highly aberrant modulation of several miRNAs in hepatocellular carcinoma (HCC) cell lines as shown by miRNA array analysis. Among them, hsa-miR-19a, hsa-miR-19b1 and the corresponding precursors were down-regulated by panobinostat in TP53(-/-) Hep3B and TP53(+/+) HepG2 cell lines; hsa-miR30a-5p mature form only was suppressed in both HCC cell lines, as confirmed by further RT-qPCR analysis. In HCC cell lines, panobinostat caused the upregulation of the predicted miRNA targets APAF1 and Beclin1 protein levels. Transfection with oligonucleotides mimicking these miRNAs led to an increase in the viability rate of both cell lines as analyzed by impedance-based real-time cell analysis. In addition, transfecting miRNA mimicking oligonucleotides resulted in the decrease of APAF1, Beclin1 and PAK6 at the protein level, proving the regulating influence of the investigated miRNAs on gene final products. The overexpression of the above mentioned oncomiRs in Hep3B and HepG2 cell lines leads to cell proliferation and downregulation of cell death associated proteins. In our model, panobinostat exerts its anti-cancer effect by suppressing these miRNAs and restoring the expression of their corresponding tumor suppressor targets. © 2013 Wiley Periodicals, Inc.

  19. Genome-Wide Gene Expression Analysis Identifies the Proto-oncogene Tyrosine-Protein Kinase Src as a Crucial Virulence Determinant of Infectious Laryngotracheitis Virus in Chicken Cells

    PubMed Central

    Li, Hai; Wang, Fengjie; Han, Zongxi; Gao, Qi; Li, Huixin; Shao, Yuhao; Sun, Nana

    2015-01-01

    ABSTRACT Given the side effects of vaccination against infectious laryngotracheitis (ILT), novel strategies for ILT control and therapy are urgently needed. The modulation of host-virus interactions is a promising strategy to combat the virus; however, the interactions between the host and avian ILT herpesvirus (ILTV) are unclear. Using genome-wide transcriptome studies in combination with a bioinformatic analysis, we identified proto-oncogene tyrosine-protein kinase Src (Src) to be an important modulator of ILTV infection. Src controls the virulence of ILTV and is phosphorylated upon ILTV infection. Functional studies revealed that Src prolongs the survival of host cells by increasing the threshold of virus-induced cell death. Therefore, Src is essential for viral replication in vitro and in ovo but is not required for ILTV-induced cell death. Furthermore, our results identify a positive-feedback loop between Src and the tyrosine kinase focal adhesion kinase (FAK), which is necessary for the phosphorylation of either Src or FAK and is required for Src to modulate ILTV infection. To the best of our knowledge, we are the first to identify a key host regulator controlling host-ILTV interactions. We believe that our findings have revealed a new potential therapeutic target for ILT control and therapy. IMPORTANCE Despite the extensive administration of live attenuated vaccines starting from the mid-20th century and the administration of recombinant vaccines in recent years, infectious laryngotracheitis (ILT) outbreaks due to avian ILT herpesvirus (ILTV) occur worldwide annually. Presently, there are no drugs or control strategies that effectively treat ILT. Targeting of host-virus interactions is considered to be a promising strategy for controlling ILTV infections. However, little is known about the mechanisms governing host-ILTV interactions. The results from our study advance our understanding of host-ILTV interactions on a molecular level and provide experimental

  20. Inhibition of MEK5 by BIX02188 induces apoptosis in cells expressing the oncogenic mutant FLT3-ITD

    SciTech Connect

    Razumovskaya, Elena; Sun, Jianmin; Roennstrand, Lars

    2011-08-26

    Highlights: {yields} In this study we have demonstrated that FLT3 activation leads to activation of ERK5. {yields} We have demonstrated that ERK5 is involved in activation of AKT downstream of FLT3. {yields} (BIX02188) blocks activation of ERK5 and induces apoptosis in FLT3 Ba/F3 cells. {yields} (BIX02188) induce apoptosis in the two leukemic cell lines MV4-11 and MOLM-13. -- Abstract: Fms-like tyrosine kinase-3 (FLT3) is a growth factor receptor normally expressed on hematopoietic progenitor cells. Approximately one third of all patients with AML carry an activating mutation in FLT3 that drives proliferation and survival of the leukemic cells. The most common activating mutation is the so-called internal tandem duplication (ITD), which involves an in-frame duplication of a segment of varying length in the region of the FLT3 gene that encodes the juxtamembrane domain. The pathways downstream of FLT3-ITD are partially known but further knowledge regarding the downstream signal transduction molecules is important in order to develop alternative strategies for pharmacological intervention. In this paper we have studied the role of MEK/ERK5 in FLT3-ITD mediated transformation. We have found that both wild-type FLT3 and FLT3-ITD activate MEK5 leading to the activation of ERK5. By use of the selective inhibitor of MEK5, (BIX02188), we have shown that activation of AKT downstream of FLT3 is partially dependent on ERK5. Furthermore, inhibition of MEK5/ERK5 induces apoptosis of both FLT3-ITD transfected Ba/F3 cells as well as the FLT3-ITD carrying leukemic cell lines MV4-11 and MOLM-13. These results suggest that MEK5/ERK5 is important for FLT3-ITD induced hematopoietic transformation and may thus represent an alternative therapeutic target in the treatment of FLT3-ITD positive leukemia.

  1. Effect of Helicobacter pylori infection and its eradication on cell proliferation, DNA status, and oncogene expression in patients with chronic gastritis

    PubMed Central

    Nardone, G; Staibano, S; Rocco, A; Mezza, E; D'Armiento, F; Insabato, L; Coppola, A; Salvatore, G; Lucariello, A; Figura, N; De Rosa, G; Budillon, G

    1999-01-01

    BACKGROUND—Helicobacter pylori, the main cause of chronic gastritis, is a class I gastric carcinogen. Chronic gastritis progresses to cancer through atrophy, metaplasia, and dysplasia. Precancerous phenotypic expression is generally associated with acquired genomic instability.
AIM—To evaluate the effect of H pylori infection and its eradication on gastric histology, cell proliferation, DNA status, and oncogene expression.
METHODS/SUBJECTS—Morphometric and immunohistochemical techniques were used to examine gastric mucosal biopsy specimens from eight controls, 10 patients with H pylori negative chronic gastritis, 53 with H pylori positive chronic gastritis, and 11 with gastric cancer.
RESULTS—All patients with chronic gastritis were in a hyperproliferative state related to mucosal inflammation, regardless of H pylori infection. Atrophy was present in three of 10 patients with H pylori negative chronic gastritis and in 26 of 53 with H pylori positive chronic gastritis, associated in 18 with intestinal metaplasia. DNA content was abnormal in only 11 patients with atrophy and H pylori infection; eight of these also had c-Myc expression, associated in six cases with p53 expression. Fifty three patients with H pylori positive chronic gastritis were monitored for 12 months after antibiotic treatment: three dropped out; infection was eradicated in 45, in whom cell proliferation decreased in parallel with the reduction in gastritis activity; atrophy previously detected in 21/45 disappeared in five, regressed from moderate to mild in nine, and remained unchanged in seven; complete metaplasia disappeared in 4/14, and markers of genomic instability disappeared where previously present. In the five patients in whom H pylori persisted, atrophy, metaplasia, dysplasia, and markers of genomic instability remained unchanged.
CONCLUSIONS—Chronic H pylori infection seems to be responsible for genomic instability in a subset of cases of H pylori positive

  2. Cell Proliferation and Oncogene Expression After Bile Duct Ligation in the Rat: Evidence of a Specific Growth Effect on Bile Duct Cells

    PubMed Central

    Polimeno, Lorenzo; Azzarone, Alessandro; Zeng, Qui Hua; Panella, Carmine; Subbotin, Vladimir; Carr, Brian; Bouzahzah, Boumediene; Francavilla, Antonio; Starzl, Thomas E.

    2010-01-01

    The proliferative response of the rat liver was measured after temporary or permanent total biliary obstruction (BDO) and in different regions after selective ligation of the lobar ducts draining the right 60% of the hepatic mass. The results were compared with those after 70% partial hepatectomy (PH). Cell proliferation was assessed globally by measuring DNA synthesis and stratified to the separate cell populations with cytostaining techniques that allowed distinction of hepatocytes, duct cells, and nonparenchymal cells (NPCs). In selected experimental groups, gene expression was determined of transforming growth factor-β1 (TGFβ-1), prothrom-bin, c-erb-B2, transforming growth factor alpha (TGFα), human Cyclophilin (CyP), and 28S ribosomal RNA. The stimulation of a proliferative response to total BDO required obstruction for longer than 24 hours, but after this deligation did not switch off regeneration. In the first week after permanent BDO, there was progressive infiltration of NPCs, fibrous linkage of some portal areas, and a crescendo of DNA synthesis that was obvious at 24 hours, maximal at 48 hours, and back nearly to baseline at 6 days. At the 2-day mark. the bile duct cells had a 17-fold increase in proliferation, accompanied by a threefold to fourfold increase in hepatocyte renewal Little or no increase in expression of TGFα or the hepatocyte-specific prothrombin gene was detectable in the first 48 hours, whereas levels of the oncogene c-erb-B2 that is associated with cholangiocarcinoma were expressed from 48 to 96 hours. Livers subjected to regional BDO with or without immunosuppressive treatment with FK 506 and cyclosporine had an inflammatory reaction only on the side with ligated ducts. DNA synthesis increased in both the obstructed and freely draining lobes to approximately half the level that occurred after total BDO. The proliferation of the obstructed side was similar to the mixed duct cell/hepatocyte response after total BDO, but this almost

  3. Enhanced expression of Ca2+ channels by nerve growth factor and the v-src oncogene in rat phaeochromocytoma cells.

    PubMed Central

    Lewis, D L; De Aizpurua, H J; Rausch, D M

    1993-01-01

    1. Rat phaeochromocytoma (PC12) cells were used to investigate the expression of Ca2+ channel types during neuronal differentiation. Neuronal differentiation was induced by treatment with nerve growth factor (NGF) or by activation of a temperature-sensitive tyrosine kinase (pp60v-src) in genetically modified PC12 (PC12/v-src) cells. PC12 cells differentiated morphologically in the presence of NGF. When grown at the permissive temperature of 37 degrees C which activates the kinase activity of pp60v-src, PC12/v-src cells differentiated morphologically with the extension of neurites. In contrast, PC12/v-src cells grown at the non-permissive temperature of 40 degrees C continued to divide and were morphologically indistinguishable from control PC12 cells. 2. Whole-cell Ca2+ currents were measured in PC12 cells using Ba2+ as the charge carrier. Ba2+ currents measured at the peak of the current-voltage curve from a holding potential of -80 mV were -0.28 +/- 0.04 nA (mean +/- S.E.M.) in control PC12 cells compared to -1.25 +/- 0.16 nA in NGF-differentiated cells. The current density increased from 9.4 +/- 0.7 pA/pF in control PC12 cells to 22.8 +/- 2.4 pA/pF in NGF-differentiated PC12 cells. Ba2+ currents were -0.24 +/- 0.04 nA in undifferentiated PC12/v-src cells grown at the non-permissive temperature of 40 degrees C compared to -0.95 +/- 0.16 nA in differentiated PC12/v-src cells grown at the permissive temperature of 37 degrees C. The current density increased from 4.5 +/- 0.5 pA/pF in PC12/v-src cells grown at the non-permissive temperature of 40 degrees C to 13.3 +/- 2.4 pA/pF in PC12/v-src cells grown at the permissive temperature of 37 degrees C. 3. The sensitivity of Ba2+ currents to omega-conotoxin GVIA (omega-CgTX) was determined for currents measured at the peak of the current-voltage curve (0 mV in 10 mM Ba2+) from a holding potential of -80 mV. In NGF-differentiated PC12 cells, 10 microM omega-CgTx inhibited 68.1 +/- 3.2% of the total Ba2+ current compared

  4. Genome-wide functional screening identifies CDC37 as a crucial HSP90-cofactor for KIT oncogenic expression in gastrointestinal stromal tumors.

    PubMed

    Mariño-Enríquez, A; Ou, W-B; Cowley, G; Luo, B; Jonker, A H; Mayeda, M; Okamoto, M; Eilers, G; Czaplinski, J T; Sicinska, E; Wang, Y; Taguchi, T; Demetri, G D; Root, D E; Fletcher, J A

    2014-04-03

    Most gastrointestinal stromal tumors (GISTs) contain KIT or PDGFRA kinase gain-of-function mutations, and therefore respond clinically to imatinib and other tyrosine kinase inhibitor (TKI) therapies. However, clinical progression subsequently results from selection of TKI-resistant clones, typically containing secondary mutations in the KIT kinase domain, which can be heterogeneous between and within GIST metastases in a given patient. TKI-resistant KIT oncoproteins require HSP90 chaperoning and are potently inactivated by HSP90 inhibitors, but clinical applications in GIST patients are constrained by the toxicity resulting from concomitant inactivation of various other HSP90 client proteins, beyond KIT and PDGFRA. To identify novel targets responsible for KIT oncoprotein function, we performed parallel genome-scale short hairpin RNA (shRNA)-mediated gene knockdowns in KIT-mutant GIST-T1 and GIST882. GIST cells were infected with a lentiviral shRNA pooled library targeting 11 194 human genes, and allowed to proliferate for 5-7 weeks, at which point assessment of relative hairpin abundance identified the HSP90 cofactor, CDC37, as one of the top six GIST-specific essential genes. Validations in treatment-naive (GIST-T1, GIST882) vs imatinib-resistant GISTs (GIST48, GIST430) demonstrated that: (1) CDC37 interacts with oncogenic KIT; (2) CDC37 regulates expression and activation of KIT and downstream signaling intermediates in GIST; and (3) unlike direct HSP90 inhibition, CDC37 knockdown accomplishes prolonged KIT inhibition (>20 days) in GIST. These studies highlight CDC37 as a key biologic vulnerability in both imatinib-sensitive and imatinib-resistant GIST. CDC37 targeting is expected to be selective for KIT/PDGFRA and a subset of other HSP90 clients, and thereby represents a promising strategy for inactivating the myriad KIT/PDGFRA oncoproteins in TKI-resistant GIST patients.

  5. Regulation of Na+-H+ exchange in normal NIH-3T3 cells and in NIH-3T3 cells expressing the ras oncogene

    SciTech Connect

    Owen, N.E.; Knapik, J.; Strebel, F.; Tarpley, W.G.; Gorman, R.R.

    1989-04-01

    Our laboratory and others have demonstrated that Na+-H+ exchange can be regulated by two different pathways; one that is mediated by an inositol trisphosphate-stimulated increase in intracellular calcium activity, and one that is mediated by an increase in protein kinase C activity. To determine whether one of these pathways is more important than the other, or whether one pathway is physiologically relevant, we employed normal NIH-3T3 cells (3T3 cells) and NIH-3T3 cells expressing the EJ human bladder ras oncogene (EJ cells). The EJ cells were chosen because they provide a genetic model that does not exhibit serum- or platelet-derived growth factor (PDGF)-stimulated inositol trisphosphate release or Ca2+ mobilization. It was found that serum- or PDGF-stimulated Na+-H+ exchange was more pronounced in EJ cells than in control 3T3 cells. As expected, serum- or PDGF-stimulated Na+-H+ exchange in 3T3 cells was inhibited by chelating intracellular Ca2+ with the intracellular Ca2+ chelator quin2, by the intracellular Ca2+ antagonist 8-(N,N-diethylamino)octyl 3,4,5-trimethoxybenzoate (TMB-8), and by the calmodulin antagonist trifluoperazine. In contrast, these agents did not inhibit serum- or PDGF-stimulated Na+-H+ exchange in EJ cells. Activators of protein kinase C (e.g., 1-oleoyl-2-acetylglycerol or biologically active phorbol esters) were found to stimulate Na+-H+ exchange in EJ cells to the same extent as serum. However, these agents were considerably less effective than serum in control 3T3 cells. Despite these findings, PDGF did not stimulate diacylglycerol levels in EJ cells.

  6. Loss of platelet-derived growth factor-stimulated phospholipase activity in NIH-3T3 cells expressing the EJ-ras oncogene

    SciTech Connect

    Benjamin, C.W.; Tarpley, W.G.; Gorman, R.R.

    1987-01-01

    Data indicating that the 21-kDa protein (p21) Harvey-ras gene product shares sequence homology with guanine nucleotide-binding proteins (G proteins) has stimulated research on the influence(s) of p21 on G-protein-regulated systems in vertebrate cells. Previous work demonstrated that NIH-3T3 mouse cells expressing high levels of the cellular ras oncogene isolated from the EJ human bladder carcinoma (EJ-ras) exhibited reduced hormone-stimulated adenylate cyclase activity. The authors now report that in these cells another enzyme system thought to be regulated by G proteins is inhibited, namely phospholipases A/sub 2/ and C. NIH-3T3 cells incubated in plasma-derived serum release significant levels of prostaglandin E/sub 2/ (PGE/sub 2/) as determined by radioimmunoassay when exposed to platelet-derived growth factor (PDGF) at 2 units/ml. The lack of PDGF-stimulated PGE/sub 2/ release from EJ-ras-transfected cells is not due to a defect in the prostaglandin cyclooxygenase enzyme, since incubation of control cells and EJ-ras-transfected cells in 0.33, 3.3, or 33 ..mu..M arachidonate resulted in identical levels of PGE/sub 2/ release. The lack of PDGF-stimulated PGE/sub 2/ release from EJ-ras-transfected cells also does not result from the loss of functional PDGF receptors. EJ-ras-transformed cells bind 70% as much /sup 125/I-labeled PDGF as control cells and are stimulated to incorporate (/sup 3/H)thymidine and to proliferate after exposure to PDGF. Determination of total water-soluble inositolphospholipids and changes in the specific activities of phosphatidylcholine in control and EJ-ras-transfected cells demonstrated that PDGF-stimulated phospholipase C and A/sub 2/ activities are inhibited in the EJ-ras-transfected cells.

  7. Phenotypic Expression in Wheat Revealed Using FT-IR Microspectroscopy

    SciTech Connect

    Brewer, L.; Wetzel, D

    2009-01-01

    Wheat selected for cultivation through the centuries has a glume that is 'soft' instead of 'tough' as naturally occurring. In production, this is desirable because it enables mechanical threshing with efficient separation of kernel from the head of each stalk without damaging the kernel. FT-IR microspectroscopy provides chemically based, objective assessment of genetic expression by measuring the extent of genetic expression. In the Microbeam Molecular Spectroscopy Laboratory, Manhattan, KS, an imaging FT-IR microspectrometer with a detector array focused on the image plane was used to obtain spectral data from dissected glume specimens of nine tough and eleven soft wheat cultivars in a rectangular mapping pattern. With cellulose as the substrate, the extent of lignification is measurable from the ratio of the lignin (1508 cm{sup -1}) baseline adjusted band area to the representative cellulosic (1370 cm{sup -1}) band area. A distinction between soft and tough glumes is obtained in numerical terms. Using a band ratio minimizes variation due to thickness differences. While analyzing mapped sections of glume, care is taken to avoid tabulation of spectral data from vascular bundles. Inclusion of these data would to avoid tabulation of spectral data from vascular bundles. Inclusion of these data would bias the analysis toward the composition of highly lignified vascular bundles. Spatially resolved focal plane array FT-IR microspectroscopy reveals the extent of glume lignification that is coincident with the toughness trait. This enables breeders to rank the degree of lignin expression and discriminate between soft and tough breeding results.

  8. Oncogenes and tumor suppressor genes as paradigms in oncogenesis.

    PubMed

    Spandidos, Demetrios A

    2007-09-01

    Cancer is the result of genetic and epigenetic changes that occur mainly in stem (precursor) cells of various cell types. Two main categories of genes are involved in the process of carcinogenesis. Oncogenes are activated proto-oncogenes and tumor suppressor genes are inactivated by mutation in the global sense, that is point mutation, deletion, rearrangement, and duplication. Both types of genes are required for normal cell proliferation and differentiation and aberrant expression leads to abnormal cell proliferation. Ras and p53 genes are the paradigms for oncogenes and tumor suppressor genes, respectively, whereas the oncogenes carried by the human papillomaviruses (HPV) comprise the best example of tumor viruses involvement in human cancer.

  9. Pancreatitis promotes oncogenic Kras(G12D)-induced pancreatic transformation through activation of Nupr1.

    PubMed

    Grasso, Daniel; Garcia, Maria Noé; Hamidi, Tewfik; Cano, Carla; Calvo, Ezequiel; Lomberk, Gwen; Urrutia, Raul; Iovanna, Juan L

    2014-01-01

    During the initiation stage of pancreatic adenocarcinoma induced by oncogenic Kras, pancreatic cells are exposed to both a protumoral effect and an opposing tumor suppressive process known as oncogene-induced senescence. Pancreatitis disrupts this balance in favor of the transforming effect of oncogenes by lowering the tumor suppressive threshold of oncogene-induced senescence through expression of the stress protein Nupr1.

  10. Oncogenic KRAS triggers MAPK-dependent errors in mitosis and MYC-dependent sensitivity to anti-mitotic agents

    PubMed Central

    Perera, David; Venkitaraman, Ashok R.

    2016-01-01

    Oncogenic KRAS induces cell proliferation and transformation, but little is known about its effects on cell division. Functional genetic screens have recently revealed that cancer cell lines expressing oncogenic KRAS are sensitive to interference with mitosis, but neither the mechanism nor the uniformity of anti-mitotic drug sensitivity connected with mutant KRAS expression are yet clear. Here, we report that acute expression of oncogenic KRAS in HeLa cells induces mitotic delay and defects in chromosome segregation through mitogen-activated protein kinase (MAPK) pathway activation and de-regulated expression of several mitosis-related genes. These anomalies are accompanied by increased sensitivity to anti-mitotic agents, a phenotype dependent on the transcription factor MYC and its downstream target anti-apoptotic protein BCL-XL. Unexpectedly, we find no correlation between KRAS mutational status or MYC expression levels and anti-mitotic drug sensitivity when surveying a large database of anti-cancer drug responses. However, we report that the co-existence of KRAS mutations and high MYC expression predicts anti-mitotic drug sensitivity. Our findings reveal a novel function of oncogenic KRAS in regulating accurate mitotic progression and suggest new avenues to therapeutically target KRAS-mutant tumours and stratify patients in ongoing clinical trials of anti-mitotic drugs. PMID:27412232

  11. Analysis of wntless (WLS) expression in gastric, ovarian, and breast cancers reveals a strong association with HER2 overexpression.

    PubMed

    Stewart, Jonathan; James, Jacqueline; McCluggage, Glenn W; McQuaid, Stephen; Arthur, Kenneth; Boyle, David; Mullan, Paul; McArt, Darragh; Yan, Benedict; Irwin, Gareth; Harkin, D Paul; Zhengdeng, Lei; Ong, Chee-Wee; Yu, Jia; Virshup, David M; Salto-Tellez, Manuel

    2015-03-01

    The oncogenic role of WNT is well characterized. Wntless (WLS) (also known as GPR177, or Evi), a key modulator of WNT protein secretion, was recently found to be highly overexpressed in malignant astrocytomas. We hypothesized that this molecule may be aberrantly expressed in other cancers known to possess aberrant WNT signaling such as ovarian, gastric, and breast cancers. Immunohistochemical analysis using a TMA platform revealed WLS overexpression in a subset of ovarian, gastric, and breast tumors; this overexpression was associated with poorer clinical outcomes in gastric cancer (P=0.025). In addition, a strong correlation was observed between WLS expression and human epidermal growth factor receptor 2 (HER2) overexpression. Indeed, 100% of HER2-positive intestinal gastric carcinomas, 100% of HER2-positive serous ovarian carcinomas, and 64% of HER2-positive breast carcinomas coexpressed WLS protein. Although HER2 protein expression or gene amplification is an established predictive biomarker for trastuzumab response in breast and gastric cancers, a significant proportion of HER2-positive tumors display resistance to trastuzumab, which may be in part explainable by a possible mechanistic link between WLS and HER2.

  12. Oncogenic human papillomaviruses.

    PubMed

    McBride, Alison A

    2017-10-19

    Human papillomaviruses (HPVs) are an ancient group of viruses with small, double-stranded DNA circular genomes. They are species-specific and have a strict tropism for mucosal and cutaneous stratified squamous epithelial surfaces of the host. A subset of these viruses has been demonstrated to be the causative agent of several human cancers. Here, we review the biology, natural history, evolution and cancer association of the oncogenic HPVs.This article is part of the themed issue 'Human oncogenic viruses'. © 2017 The Authors.

  13. Oncogenic human papillomaviruses

    PubMed Central

    2017-01-01

    Human papillomaviruses (HPVs) are an ancient group of viruses with small, double-stranded DNA circular genomes. They are species-specific and have a strict tropism for mucosal and cutaneous stratified squamous epithelial surfaces of the host. A subset of these viruses has been demonstrated to be the causative agent of several human cancers. Here, we review the biology, natural history, evolution and cancer association of the oncogenic HPVs. This article is part of the themed issue ‘Human oncogenic viruses’. PMID:28893940

  14. Hepatocarcinogenic potential of the glucocorticoid antagonist RU486 in B6C3F1 mice: effect on apoptosis, expression of oncogenes and the tumor suppressor gene p53.

    PubMed

    Youssef, Jihan A; Badr, Mostafa Z

    2003-01-03

    Glucocorticoids inhibit hepatocellular proliferation and modulate the expression of oncogenes and tumor suppressor genes via mechanisms involving the glucocorticoid receptor. Glucocorticoids also produce a receptor-mediated inhibitory effect on both basal and hormone-stimulated expression of a newly discovered family of molecules important for shutting off cytokine action. We therefore hypothesized that inhibiting glucocorticoid receptors may disturb hepatocellular growth and apoptosis. Consequently, we investigated the effect of RU486, a potent antagonist of the glucocorticoid receptor, on basal levels of hepatocellular proliferation and apoptosis in male B6C3F1 mice. Furthermore, we evaluated the effect of this compound on cellular genes involved in the regulation of these important processes. Data show that treatment of male B6F3C1 mice with RU486 (2 mg/kg/d, ip) for 7 days dramatically inhibited liver cell proliferation by about 45% and programmed hepatocellular death by approximately 66%. RU 486 also significantly increased hepatic expression of the oncogenes mdm2 and JunB, while reducing that of the tumor suppressor gene p53. Exposure to RU486 may ultimately enhance the susceptibility of the liver to cancer risk by diminishing its ability to purge itself of pre-cancerous cells via apoptosis. This effect may be mediated through increases in the hepatic expression of the oncogene mdm2, coupled with decreases in that of the tumor suppressor gene p53. The decrease in hepatocellular proliferation caused by RU 486 may be related to effects other than its anti-glucocorticoid activity.

  15. A Tox21 Approach to Altered Epigenetic Landscapes: Assessing Epigenetic Toxicity Pathways Leading to Altered Gene Expression and Oncogenic Transformation In Vitro

    PubMed Central

    Parfett, Craig L.; Desaulniers, Daniel

    2017-01-01

    An emerging vision for toxicity testing in the 21st century foresees in vitro assays assuming the leading role in testing for chemical hazards, including testing for carcinogenicity. Toxicity will be determined by monitoring key steps in functionally validated molecular pathways, using tests designed to reveal chemically-induced perturbations that lead to adverse phenotypic endpoints in cultured human cells. Risk assessments would subsequently be derived from the causal in vitro endpoints and concentration vs. effect data extrapolated to human in vivo concentrations. Much direct experimental evidence now shows that disruption of epigenetic processes by chemicals is a carcinogenic mode of action that leads to altered gene functions playing causal roles in cancer initiation and progression. In assessing chemical safety, it would therefore be advantageous to consider an emerging class of carcinogens, the epigenotoxicants, with the ability to change chromatin and/or DNA marks by direct or indirect effects on the activities of enzymes (writers, erasers/editors, remodelers and readers) that convey the epigenetic information. Evidence is reviewed supporting a strategy for in vitro hazard identification of carcinogens that induce toxicity through disturbance of functional epigenetic pathways in human somatic cells, leading to inactivated tumour suppressor genes and carcinogenesis. In the context of human cell transformation models, these in vitro pathway measurements ensure high biological relevance to the apical endpoint of cancer. Four causal mechanisms participating in pathways to persistent epigenetic gene silencing were considered: covalent histone modification, nucleosome remodeling, non-coding RNA interaction and DNA methylation. Within these four interacting mechanisms, 25 epigenetic toxicity pathway components (SET1, MLL1, KDM5, G9A, SUV39H1, SETDB1, EZH2, JMJD3, CBX7, CBX8, BMI, SUZ12, HP1, MPP8, DNMT1, DNMT3A, DNMT3B, TET1, MeCP2, SETDB2, BAZ2A, UHRF1, CTCF

  16. EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3.

    PubMed

    Prieur, Alexandre; Tirode, Franck; Cohen, Pinchas; Delattre, Olivier

    2004-08-01

    Ewing tumors are characterized by abnormal transcription factors resulting from the oncogenic fusion of EWS with members of the ETS family, most commonly FLI-1. RNA interference targeted to the junction between EWS and FLI-1 sequences was used to inactivate the EWS/FLI-1 fusion gene in Ewing cells and to explore the resulting phenotype and alteration of the gene expression profile. Loss of expression of EWS/FLI-1 resulted in the complete arrest of growth and was associated with a dramatic increase in the number of apoptotic cells. Gene profiling of Ewing cells in which the EWS/FLI-1 fusion gene had been inactivated identified downstream targets which could be grouped in two major functional clusters related to extracellular matrix structure or remodeling and regulation of signal transduction pathways. Among these targets, the insulin-like growth factor binding protein 3 gene (IGFBP-3), a major regulator of insulin-like growth factor 1 (IGF-1) proliferation and survival signaling, was strongly induced upon treating Ewing cells with EWS/FLI-1-specific small interfering RNAs. We show that EWS/FLI-1 can bind the IGFBP-3 promoter in vitro and in vivo and can repress its activity. Moreover, IGFBP-3 silencing can partially rescue the apoptotic phenotype caused by EWS/FLI-1 inactivation. Finally, IGFBP-3-induced Ewing cell apoptosis relies on both IGF-1-dependent and -independent pathways. These findings therefore identify the repression of IGFBP-3 as a key event in the development of Ewing's sarcoma.

  17. The RNA helicase/transcriptional co-regulator, p68 (DDX5), stimulates expression of oncogenic protein kinase, Polo-like kinase-1 (PLK1), and is associated with elevated PLK1 levels in human breast cancers

    PubMed Central

    Iyer, R Sumanth; Nicol, Samantha M; Quinlan, Philip R; Thompson, Alastair M; Meek, David W; Fuller-Pace, Frances V

    2014-01-01

    p68 (DDX5) acts both as an ATP-dependent RNA helicase and as a transcriptional co-activator of several cancer-associated transcription factors, including the p53 tumor suppressor. p68 is aberrantly expressed in a high proportion of cancers, but the oncogenic drive for, or the consequences of, these expression changes remain unclear. Here we show that elevated p68 expression in a cohort of human breast cancers is associated significantly with elevated levels of the oncogenic protein kinase, Polo-like kinase-1 (PLK1). Patients expressing detectable levels of both p68 and PLK1 have a poor prognosis, but only if they also have mutation in the TP53 gene (encoding p53), suggesting that p68 can regulate PLK1 levels in a manner that is suppressed by p53. In support of this hypothesis, we show that p68 stimulates expression from the PLK1 promoter, and that silencing of endogenous p68 expression downregulates endogenous PLK1 gene expression. In the absence of functional p53, p68 stimulates the expression of PLK1 both at basal levels and in response to the clinically relevant drug, etoposide. In keeping with a role as a transcriptional activator/co-activator, chromatin immuno-precipitation analysis shows that p68 is associated with the PLK1 promoter, irrespective of the p53 status. However, its recruitment is stimulated by etoposide in cells lacking p53, suggesting that p53 can oppose association of p68 with the PLK1 promoter. These data provide a model in which p68 and p53 interplay regulates PLK1 expression, and which describes the behavior of these molecules, and the outcome of their interaction, in human breast cancer. PMID:24626184

  18. Oncogene v-jun modulates DNA replication.

    PubMed

    Wasylyk, C; Schneikert, J; Wasylyk, B

    1990-07-01

    Cell transformation leads to alterations in both transcription and DNA replication. Activation of transcription by the expression of a number of transforming oncogenes is mediated by the transcription factor AP1 (Herrlich & Ponta, 1989; Imler & Wasylyk, 1989). AP1 is a composite transcription factor, consisting of members of the jun and fos gene-families. c-jun and c-fos are progenitors of oncogenes, suggestion that an important transcriptional event in cell transformation is altered activity of AP1, which may arise either indirectly by oncogene expression or directly by structural modification of AP1. We report here that the v-jun oncogene and its progenitor c-jun, as fusion proteins with the lex-A-repressor DNA binding domain, can activate DNA replication from the Polyoma virus (Py) origin of replication, linked to the lex-A operator. The transcription-activation region of v-jun is required for activation of replication. When excess v-jun is expressed in the cell, replication is inhibited or 'squelched'. These results suggest that one consequence of deregulated jun activity could be altered DNA replication and that there are similarities in the way v-jun activates replication and transcription.

  19. Cadherin-11 mRNA and protein expression in ovarian tumors of different malignancy: No evidence of oncogenic or tumor-suppressive function

    PubMed Central

    VON BÜLOW, CHARLOTTE; OLIVEIRA-FERRER, LETICIA; LÖNING, THOMAS; TRILLSCH, FABIAN; MAHNER, SVEN; MILDE-LANGOSCH, KARIN

    2015-01-01

    Cadherin-11 (CDH11, OB-cadherin) is a mesenchymal cadherin found to be upregulated in various types of tumors and implicated in tumor progression and metastasis. In order to determine the role of CDH11 expression in ovarian tumors, we performed a combined reverse transcription quantitative polymerase chain reaction (RT-qPCR), western blot analysis and immunohistochemical study on a large cohort of benign, borderline and invasive ovarian tumors. The RT-qPCR and western blot analysis demonstrated that the CDH11 expression was high in benign cystadenomas and decreased with increasing malignancy. This may be explained by the different tumor-stroma ratios, since immunohistochemistry revealed strong staining of stromal cells, particularly vascular smooth muscle cells and endothelial cells, but only weak cytoplasmic or nuclear immunoreactivity of cancer cells. Within the group of invasive carcinomas, high CDH11 protein expression, as detected by western blot analysis, was found to be significantly correlated with advanced stage and nodal involvement. However, the recurrence-free and overall survival analyses did not reveal any prognostic or predictive significance. In conclusion, in contrast to other tumor types, CDH11 does not play an important role in ovarian cancer progression. PMID:26623052

  20. The CD24 protein inducible expression system is an ideal tool to explore the potential of CD24 as an oncogene and a target for immunotherapy in vitro and in vivo.

    PubMed

    Shapira, Shiran; Kazanov, Dina; Weisblatt, Samuel; Starr, Alex; Arber, Nadir; Kraus, Sarah

    2011-11-25

    CD24 is a cell surface, heavily glycosylated glycosylphosphatidylinositol-anchored mucin-like protein that is overexpressed in various human malignancies. To accurately analyze CD24 function and dissect its biological role in a defined genetic background, it is critical to tightly regulate its expression and be able to turn it on/off in a restricted environment and at a specific time. The tetracycline-induced expression system is most promising as it exhibits such regulation, lack of pleiotropic effects, and high and rapid induction levels. To evaluate the oncogenic and immunotherapeutic potential of CD24 by applying the Tet-On system, the human CD24 gene was cloned downstream to two tetracycline operator sequences, resulting in pCDNA4/TO-CD24, which was then transfected into tetracycline (Tet) repressor-expressing cells (293T-REx), allowing tight on/off regulation, thereby resulting in a very low background or leaky CD24 expression. Selected clones were chosen for further studies and characterized in vitro and in vivo, and several treatment modalities were examined. In addition, the role of CD24 in promoting cell proliferation and tumor growth was studied. The tetracycline-dependent system was successfully implemented. Tetracycline treatment induced CD24 expression in a dose- and time-dependent fashion, which was abrogated following treatment with anti-CD24 monoclonal antibodies (mAbs). CD24-induced expression led to an increased proliferation rate that was inhibited by mAb treatment. In vivo, significantly larger tumors were developed in tetracycline-fed mice. The CD24 Tet-On system is a good model to unravel the role and underlying CD24 pathogenesis in vivo. This valuable tool allows the successful study of novel treatment options, whose effectiveness depends on the CD24 expression level. This set of experiments supports CD24 oncogenic properties.

  1. Oncogene amplification in the proximal part of chromosome 6 in rat endometrial adenocarcinoma as revealed by combined BAC/PAC FISH, chromosome painting, zoo-FISH, and allelotyping.

    PubMed

    Adamovic, Tatjana; Trossö, Fredrik; Roshani, Leyla; Andersson, Lars; Petersen, Greta; Rajaei, Saide; Helou, Khalil; Levan, Göran

    2005-10-01

    The inbred BDII rat is a valuable experimental model for the genetic analysis of endometrial adenocarcinoma (EAC). One common aberration detected by comparative genomic hybridization in rat EAC was gain/amplification affecting the proximal part of rat chromosome 6 (RNO6). We applied rat and mouse chromosome painting probes onto tumor cell metaphase preparations in order to detect and characterize gross RNO6 aberrations. In addition, the RNO6q11-q16 segment was analyzed by fluorescence in situ hybridization with probes representing 12 cancer-related genes in the region. The analysis revealed that seven tumors contained large RNO6-derived homogeneously staining regions (HSRs) in addition to several normal or near-normal RNO6 chromosomes. Five tumors (two of which also had HSRs) exhibited a selective increase of the RNO6q11-q16 segment, sometimes in conjunction with moderate amplification of one or a few genes. Most commonly, the amplification affected the region centered around band 6q16 and included the Mycn, Ddx1, and Rrm2 genes. A second region, centering around Slc8a1 and Xdh, also was affected by gene amplification but to a lesser extent. The aberrations in the proximal part of RNO6 were further analyzed using allelotyping of microsatellite markers in all tumors from animals that were heterozygous in the proximal RNO6 region. We could detect allelic imbalance (AI) in 12 of 20 informative tumors, 6 of which were in addition to those already analyzed by molecular cytogenetic methods as described. Our findings suggest that increase/amplification of genes in this chromosome region contribute to the development of this hormone-dependent tumor.

  2. Global hormone profiling of murine placenta reveals Secretin expression

    PubMed Central

    Knox, K.; Leuenberger, D.; Penn, A.A.; Baker, J.C.

    2013-01-01

    Objective To elucidate and categorize the murine placental hormones expressed across gestation, including the expression of hormones with previously undescribed roles. Study design Expression levels of all genes with known or predicted hormone activity expressed in two separate tissues, the placenta and maternal decidua, were assessed across a timecourse spanning the full lifetime of the placenta. Novel expression patterns were confirmed by in situ hybridization and protein level measurements. Results A combination of temporal and spatial information defines five groups that can accurately predict the patterns of uncharacterized hormones. Our analysis identified Secretin, a novel placental hormone that is expressed specifically by the trophoblast at levels many times greater than in any other tissue. Conclusions The characteristics of Secretin fit the paradigm of known placental hormones and suggest that it may play an important role during pregnancy. PMID:21944867

  3. Oncogenes in retroviruses and cells

    NASA Astrophysics Data System (ADS)

    Kurth, Reinhard

    1983-09-01

    Oncogenes are genes that cause cancer. Retroviruses contain oncogenes and cause cancer in animals and, perhaps, in man. The viruses have appropriated their oncogenes from normal cellular DNA by genetic recombination. Correspondingly, uninfected vertebrate cells contain a family of evolutionary conserved cellular oncogenes. Retrovirus infection, introducing additional viral oncogenes into the cells, as well as carcinogen-mediated activation of cellular oncogenes may both lead to increased synthesis of oncogene encoded transforming proteins which convert normal cells to tumor cells. Unique retroviruses of human origin have recently been identified. They may, on occasion, directly cause tumors in man. However, the general significance of retroviruses may better be illustrated by their remarkable genetic composition which allows them to promote tumor growth by a variety of genetic mechanisms.

  4. The human oncogenic viruses

    SciTech Connect

    Luderer, A.A.; Weetall, H.H

    1986-01-01

    This book contains eight selections. The titles are: Cytogenetics of the Leukemias and Lymphomas; Cytogenetics of Solid Tumors: Renal Cell Carcinoma, Malignant Melanoma, Retinoblastoma, and Wilms' Tumor; Elucidation of a Normal Function for a Human Proto-Oncogene; Detection of HSV-2 Genes and Gene Products in Cervical Neoplasia; Papillomaviruses in Anogennital Neoplasms; Human Epstein-Barr Virus and Cancer; Hepatitis B Virus and Hepatocellular Carcinoma; and Kaposi's Sarcoma: Acquired Immunodeficiency Syndrome (AIDS) and Associated Viruses.

  5. Patterns of gene expression in the sheep heart during the perinatal period revealed by transcriptomic modeling

    PubMed Central

    Rabaglino, M. Belen; Antolic, Andrew; Wood, Charles E.; Keller-Wood, Maureen

    2015-01-01

    Septa from sheep hearts at 130 days gestation, term, and 14-day-old lambs were used to model the changes in gene expression patterns during the perinatal period using Agilent 15k ovine microarrays. We used Bioconductor for R to model five major patterns of coexpressed genes. Gene ontology and transcription factor analyses using Webgestalt modeled the biological significances and transcription factors of the gene expression patterns. Modeling indicated a decreased expression of genes associated with anatomical development and differentiation during this period, whereas those associated with increased protein synthesis and growth associated with maturation of the endoplasmic reticulum rose to term but did not further increase from the near term expression. Expression of genes associated with cell responsiveness, for example, immune responses, decreased at term but expression returned by postnatal day 14. Changes in genes related to metabolism showed differential substrate-associated patterns: those related to carbohydrate metabolism rose to term and remained stable thereafter, whereas those associated with fatty acid oxidation facility rose throughout the period. The timing of many of these maturational processes was earlier in relation to birth than in the rodent. The importance of the transcription factors, estrogen-related receptors, and v-myc avian myelocytomatosis viral oncogene homolog was also highlighted in the pattern of gene expression during development of the perinatal sheep heart. PMID:26126790

  6. Patterns of gene expression in the sheep heart during the perinatal period revealed by transcriptomic modeling.

    PubMed

    Richards, Elaine M; Rabaglino, M Belen; Antolic, Andrew; Wood, Charles E; Keller-Wood, Maureen

    2015-09-01

    Septa from sheep hearts at 130 days gestation, term, and 14-day-old lambs were used to model the changes in gene expression patterns during the perinatal period using Agilent 15k ovine microarrays. We used Bioconductor for R to model five major patterns of coexpressed genes. Gene ontology and transcription factor analyses using Webgestalt modeled the biological significances and transcription factors of the gene expression patterns. Modeling indicated a decreased expression of genes associated with anatomical development and differentiation during this period, whereas those associated with increased protein synthesis and growth associated with maturation of the endoplasmic reticulum rose to term but did not further increase from the near term expression. Expression of genes associated with cell responsiveness, for example, immune responses, decreased at term but expression returned by postnatal day 14. Changes in genes related to metabolism showed differential substrate-associated patterns: those related to carbohydrate metabolism rose to term and remained stable thereafter, whereas those associated with fatty acid oxidation facility rose throughout the period. The timing of many of these maturational processes was earlier in relation to birth than in the rodent. The importance of the transcription factors, estrogen-related receptors, and v-myc avian myelocytomatosis viral oncogene homolog was also highlighted in the pattern of gene expression during development of the perinatal sheep heart.

  7. The complexity of gene expression dynamics revealed by permutation entropy

    PubMed Central

    2010-01-01

    Background High complexity is considered a hallmark of living systems. Here we investigate the complexity of temporal gene expression patterns using the concept of Permutation Entropy (PE) first introduced in dynamical systems theory. The analysis of gene expression data has so far focused primarily on the identification of differentially expressed genes, or on the elucidation of pathway and regulatory relationships. We aim to study gene expression time series data from the viewpoint of complexity. Results Applying the PE complexity metric to abiotic stress response time series data in Arabidopsis thaliana, genes involved in stress response and signaling were found to be associated with the highest complexity not only under stress, but surprisingly, also under reference, non-stress conditions. Genes with house-keeping functions exhibited lower PE complexity. Compared to reference conditions, the PE of temporal gene expression patterns generally increased upon stress exposure. High-complexity genes were found to have longer upstream intergenic regions and more cis-regulatory motifs in their promoter regions indicative of a more complex regulatory apparatus needed to orchestrate their expression, and to be associated with higher correlation network connectivity degree. Arabidopsis genes also present in other plant species were observed to exhibit decreased PE complexity compared to Arabidopsis specific genes. Conclusions We show that Permutation Entropy is a simple yet robust and powerful approach to identify temporal gene expression profiles of varying complexity that is equally applicable to other types of molecular profile data. PMID:21176199

  8. Microarray analysis reveals differential gene expression in hybrid sunflower species

    PubMed Central

    LAI, ZHAO; GROSS, BRIANA L.; YIZOU; ANDREWS, JUSTEN; RIESEBERG, LOREN H.

    2008-01-01

    This paper describes the creation of a cDNA microarray for annual sunflowers and its use to elucidate patterns of gene expression in Helianthus annuus, Helianthus petiolaris, and the homoploid hybrid species Helianthus deserticola. The array comprises 3743 ESTs (expressed sequence tags) representing approximately 2897 unique genes. It has an average clone/EST identity rate of 91%, is applicable across species boundaries within the annual sunflowers, and shows patterns of gene expression that are highly reproducible according to real-time RT–PCR (reverse transcription–polymerase chain reaction) results. Overall, 12.8% of genes on the array showed statistically significant differential expression across the three species. Helianthus deserticola displayed transgressive, or extreme, expression for 58 genes, with roughly equal numbers exhibiting up- or down-regulation relative to both parental species. Transport-related proteins were strongly over-represented among the transgressively expressed genes, which makes functional sense given the extreme desert floor habitat of H. deserticola. The potential adaptive value of differential gene expression was evaluated for five genes in two populations of early generation (BC2) hybrids between the parental species grown in the H. deserticola habitat. One gene (a G protein-coupled receptor) had a significant association with fitness and maps close to a QTL controlling traits that may be adaptive in the desert habitat. PMID:16626449

  9. Activation of endogenous c-fos proto-oncogene expression by human T-cell leukemia virus type I-encoded p40 sup tax protein in the human T-cell line, Jurkat

    SciTech Connect

    Nagata, Kinya; Ohtani, Kiyoshi; Nakamura, Masataka; Sugamura, Kazuo )

    1989-08-01

    The authors examined the ability of the trans-acting factor p40{sup tax} of human T-cell leukemia virus type I (HTLV-I), which is thought to be a crucial molecule in T-cell transformation by HTLV-I, to activate expression of a set of endogenous cellular genes related to T-cell proliferation. For this purpose, they established a subclone (JPX-9) of Jurkat cells that was stably transfected with an expression plasmid containing the p40{sup tax} gene, whose expression is definitively dependent on heavy-metal ions. Expression of the interleukin-2 receptor {alpha} chain in JPX-9 cells was induced in response to the induction of p40{sup tax} expression, as has been demonstrated by others in transient transfection experiments with Jurkat cells. In addition, they found that significant enhancement of expression of the nuclear proto-oncogene c-fos was closely associated with expression of p40{sup tax}. Continuous enhancement in the level of c-fos mRNA was observed in the presence of p40{sup tax}. These results suggest that (i) in addition to the interleukin-2-interleukin-2 receptor system, cellular genes such as c-fos, which regulate normal T-cell growth, are also activated directly or indirectly by p40{sup tax} and (ii) p40{sup tax}-induced modulation of gene expression plays a crucial role in T-cell transformation by HTLV-I.

  10. Comparative transcriptome analysis reveals differentially expressed genes associated with sex expression in garden asparagus (Asparagus officinalis).

    PubMed

    Li, Shu-Fen; Zhang, Guo-Jun; Zhang, Xue-Jin; Yuan, Jin-Hong; Deng, Chuan-Liang; Gao, Wu-Jun

    2017-08-22

    Garden asparagus (Asparagus officinalis) is a highly valuable vegetable crop of commercial and nutritional interest. It is also commonly used to investigate the mechanisms of sex determination and differentiation in plants. However, the sex expression mechanisms in asparagus remain poorly understood. De novo transcriptome sequencing via Illumina paired-end sequencing revealed more than 26 billion bases of high-quality sequence data from male and female asparagus flower buds. A total of 72,626 unigenes with an average length of 979 bp were assembled. In comparative transcriptome analysis, 4876 differentially expressed genes (DEGs) were identified in the possible sex-determining stage of female and male/supermale flower buds. Of these DEGs, 433, including 285 male/supermale-biased and 149 female-biased genes, were annotated as flower related. Of the male/supermale-biased flower-related genes, 102 were probably involved in anther development. In addition, 43 DEGs implicated in hormone response and biosynthesis putatively associated with sex expression and reproduction were discovered. Moreover, 128 transcription factor (TF)-related genes belonging to various families were found to be differentially expressed, and this finding implied the essential roles of TF in sex determination or differentiation in asparagus. Correlation analysis indicated that miRNA-DEG pairs were also implicated in asparagus sexual development. Our study identified a large number of DEGs involved in the sex expression and reproduction of asparagus, including known genes participating in plant reproduction, plant hormone signaling, TF encoding, and genes with unclear functions. We also found that miRNAs might be involved in the sex differentiation process. Our study could provide a valuable basis for further investigations on the regulatory networks of sex determination and differentiation in asparagus and facilitate further genetic and genomic studies on this dioecious species.

  11. The Fanconi anemia pathway controls oncogenic response in hematopoietic stem and progenitor cells by regulating PRMT5-mediated p53 arginine methylation

    PubMed Central

    Du, Wei; Amarachintha, Surya; Erden, Ozlem; Wilson, Andrew; Pang, Qishen

    2016-01-01

    The Fanconi anemia (FA) pathway is involved in DNA damage and other cellular stress responses. We have investigated the role of the FA pathway in oncogenic stress response by employing an in vivo stress-response model expressing the Gadd45β-luciferase transgene. Using two inducible models of oncogenic activation (LSL-K-rasG12D and MycER), we show that hematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA core complex components Fanca or Fancc exhibit aberrant short-lived response to oncogenic insults. Mechanistic studies reveal that FA deficiency in HSPCs impairs oncogenic stress-induced G1 cell-cycle checkpoint, resulting from a compromised K-rasG12D-induced arginine methylation of p53 mediated by the protein arginine methyltransferase 5 (PRMT5). Furthermore, forced expression of PRMT5 in HSPCs from LSL-K-rasG12D/CreER-Fanca−/− mice prolongs oncogenic response and delays leukemia development in recipient mice. Our study defines an arginine methylation-dependent FA-p53 interplay that controls oncogenic stress response. PMID:27507053

  12. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma

    PubMed Central

    Drier, Yotam; Cotton, Matthew J.; Williamson, Kaylyn E.; Gillespie, Shawn M.; Ryan, Russell J.H.; Kluk, Michael J.; Carey, Christopher D.; Rodig, Scott J.; Sholl, Lynette M; Afrogheh, Amir H.; Faquin, William C.; Queimado, Lurdes; Qi, Jun; Wick, Michael J.; El-Naggar, Adel K.; Bradner, James E.; Moskaluk, Christopher A.; Aster, Jon C.; Knoechel, Birgit; Bernstein, Bradley E.

    2016-01-01

    Translocation events are frequent in cancer and may create chimeric fusions or ‘regulatory rearrangements’ that drive oncogene overexpression. Here we identify super-enhancer translocations that drive overexpression of the oncogenic transcription factor MYB as a recurrent theme in adenoid cystic carcinoma (ACC). Whole-genome sequencing data and chromatin maps reveal distinct chromosomal rearrangements that juxtapose super-enhancers to the MYB locus. Chromosome conformation capture confirms that the translocated enhancers interact with the MYB promoter. Remarkably, MYB protein binds to the translocated enhancers, creating a positive feedback loop that sustains its expression. MYB also binds enhancers that drive different regulatory programs in alternate cell lineages in ACC, cooperating with TP63 in myoepithelial cells and a Notch program in luminal epithelial cells. Bromodomain inhibitors slow tumor growth in ACC primagraft models in vivo. Thus, our study identifies super-enhancer translocations that drive MYB expression and provides insight into downstream MYB functions in the alternate ACC lineages. PMID:26829750

  13. Fundamental Patterns Underlying Neurotoxicity Revealed by DNA Microarray Expression Profiling

    DTIC Science & Technology

    2004-09-01

    microarray analysis of the dopaminergic cell line, SN4741 , revealed induction of stress indices following MPP* treatment (Chun et al., 2001). To...response to a wide range of cellular stresses including oxidative insult of the nigral dopaminergic cell line SN4741 with hydrogen peroxide or MPP* (Salinas

  14. Retroviral Oncogenes: A Historical Primer

    PubMed Central

    Vogt, Peter K.

    2012-01-01

    Retroviruses are the original source of oncogenes. The discovery and characterization of these genes were made possible by the introduction of quantitative cell biological and molecular techniques for the study of tumor viruses. Key features of all retroviral oncogenes were first identified in src, the oncogene of Rous sarcoma virus. These include non-involvement in viral replication, coding for a single protein, and cellular origin. The myc, ras and erbB oncogenes quickly followed src, and these together with pi3k are now recognized as critical driving forces in human cancer. PMID:22898541

  15. Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress.

    PubMed

    Maya-Mendoza, Apolinar; Ostrakova, Jitka; Kosar, Martin; Hall, Arnaldur; Duskova, Pavlina; Mistrik, Martin; Merchut-Maya, Joanna Maria; Hodny, Zdenek; Bartkova, Jirina; Christensen, Claus; Bartek, Jiri

    2015-03-01

    Both Myc and Ras oncogenes impact cellular metabolism, deregulate redox homeostasis and trigger DNA replication stress (RS) that compromises genomic integrity. However, how are such oncogene-induced effects evoked and temporally related, to what extent are these kinetic parameters shared by Myc and Ras, and how are these cellular changes linked with oncogene-induced cellular senescence in different cell context(s) remain poorly understood. Here, we addressed the above-mentioned open questions by multifaceted comparative analyses of human cellular models with inducible expression of c-Myc and H-RasV12 (Ras), two commonly deregulated oncoproteins operating in a functionally connected signaling network. Our study of DNA replication parameters using the DNA fiber approach and time-course assessment of perturbations in glycolytic flux, oxygen consumption and production of reactive oxygen species (ROS) revealed the following results. First, overabundance of nuclear Myc triggered RS promptly, already after one day of Myc induction, causing slow replication fork progression and fork asymmetry, even before any metabolic changes occurred. In contrast, Ras overexpression initially induced a burst of cell proliferation and increased the speed of replication fork progression. However, after several days of induction Ras caused bioenergetic metabolic changes that correlated with slower DNA replication fork progression and the ensuing cell cycle arrest, gradually leading to senescence. Second, the observed oncogene-induced RS and metabolic alterations were cell-type/context dependent, as shown by comparative analyses of normal human BJ fibroblasts versus U2-OS sarcoma cells. Third, the energy metabolic reprogramming triggered by Ras was more robust compared to impact of Myc. Fourth, the detected oncogene-induced oxidative stress was due to ROS (superoxide) of non-mitochondrial origin and mitochondrial OXPHOS was reduced (Crabtree effect). Overall, our study provides novel

  16. Recurrent fusion oncogenes in carcinomas.

    PubMed

    Teixeira, Manuel R

    2006-12-01

    Chromosome structural aberrations giving rise to fusion oncogenes is one of the most common mechanisms in oncogenesis. Although this type of gene rearrangement has long been recognized as a fundamental pathogenetic mechanism in hematologi-cal malignancies and soft-tissue tumors, it has until recently only rarely been described in the common carcinomas. In this review, the existing information on recurrent fusion oncogenes characterizing carcinomas is summarized, namely, the RET and NTRK1 fusion oncogenes in papillary thyroid carcinoma, PAX8-PPARG in follicular thyroid carcinoma, MECT1-MAML2 in mucoepidermoid carcinoma, the TFE3 and TFEB fusion oncogenes in kidney carcinomas, BRD4-NUT in midline carcinomas, ETV6-NTRK3 in secretory breast carcinomas, and TMPRSS2-ETS fusion oncogenes in prostate carcinomas. As in hematological and soft-tissue malignancies, the most common types of genes involved in fusion oncogenes in carcinomas are transcription factors and tyrosine kinases. With a few exceptions, most fusion oncogenes are tumor type specific in carcinomas, as in other cancers. The mechanisms behind the relative specificity of this type of somatic mutation involve the cellular environment influencing the selection of oncogenic fusions, and the oncogenic fusions in turn driving differentiation programs that may alter the cellular environment. The data summarized on different types of carcinomas characterized by fusion oncogenes indicate that the pathogenetic mechanisms involved in epithelial carcino-genesis may be similar to those known to operate in hematological and soft-tissue malignancies, and further anticipates that many more fusion oncogenes await identification in the most common types of human cancer.

  17. Expression patterns reveal niche diversification in a marine microbial assemblage

    PubMed Central

    Gifford, Scott M; Sharma, Shalabh; Booth, Melissa; Moran, Mary Ann

    2013-01-01

    Resolving the ecological niches of coexisting marine microbial taxa is challenging due to the high species richness of microbial communities and the apparent functional redundancy in bacterial genomes and metagenomes. Here, we generated over 11 million Illumina reads of protein-encoding transcripts collected from well-mixed southeastern US coastal waters to characterize gene expression patterns distinguishing the ecological roles of hundreds of microbial taxa sharing the same environment. The taxa with highest in situ growth rates (based on relative abundance of ribosomal protein transcripts) were typically not the greatest contributors to community transcription, suggesting strong top-down ecological control, and their diverse transcriptomes indicated roles as metabolic generalists. The taxa with low in situ growth rates typically had low diversity transcriptomes dominated by specialized metabolisms. By identifying protein-encoding genes with atypically high expression for their level of conservation, unique functional roles of community members emerged related to substrate use (such as complex carbohydrates, fatty acids, methanesulfonate, taurine, tartrate, ectoine), alternative energy-conservation strategies (proteorhodopsin, AAnP, V-type pyrophosphatases, sulfur oxidation, hydrogen oxidation) and mechanisms for negotiating a heterogeneous environment (flagellar motility, gliding motility, adhesion strategies). On average, the heterotrophic bacterioplankton dedicated 7% of their transcriptomes to obtaining energy by non-heterotrophic means. This deep sequencing of a coastal bacterioplankton transcriptome provides the most highly resolved view of bacterioplankton niche dimensions yet available, uncovering a spectrum of unrecognized ecological strategies. PMID:22931830

  18. Heart morphogenesis gene regulatory networks revealed by temporal expression analysis.

    PubMed

    Hill, Jonathon T; Demarest, Bradley; Gorsi, Bushra; Smith, Megan; Yost, H Joseph

    2017-10-01

    During embryogenesis the heart forms as a linear tube that then undergoes multiple simultaneous morphogenetic events to obtain its mature shape. To understand the gene regulatory networks (GRNs) driving this phase of heart development, during which many congenital heart disease malformations likely arise, we conducted an RNA-seq timecourse in zebrafish from 30 hpf to 72 hpf and identified 5861 genes with altered expression. We clustered the genes by temporal expression pattern, identified transcription factor binding motifs enriched in each cluster, and generated a model GRN for the major gene batteries in heart morphogenesis. This approach predicted hundreds of regulatory interactions and found batteries enriched in specific cell and tissue types, indicating that the approach can be used to narrow the search for novel genetic markers and regulatory interactions. Subsequent analyses confirmed the GRN using two mutants, Tbx5 and nkx2-5, and identified sets of duplicated zebrafish genes that do not show temporal subfunctionalization. This dataset provides an essential resource for future studies on the genetic/epigenetic pathways implicated in congenital heart defects and the mechanisms of cardiac transcriptional regulation. © 2017. Published by The Company of Biologists Ltd.

  19. Oncogenes in melanoma: an update.

    PubMed

    Kunz, Manfred

    2014-01-01

    Melanoma is a highly aggressive tumour with poor prognosis in the metastatic stage. BRAF, NRAS, and KIT are three well-known oncogenes involved in melanoma pathogenesis. Targeting of mutated BRAF kinase has recently been shown to significantly improve overall survival of metastatic melanoma patients, underscoring the particular role of this oncogene in melanoma biology. However, recurrences regularly occur within several months, which supposedly involve further oncogenes. Moreover, oncogenic driver mutations have not been described for up to 30% of all melanomas. In order to obtain a more complete picture of the mutational landscape of melanoma, more recent studies used high-throughput DNA sequencing technologies. A number of new oncogene candidates such as MAPK1/2, ERBB4, GRIN2A, GRM3, RAC1, and PREX2 were identified. Their particular role in melanoma biology is currently under investigation. Evidence for the functional relevance of some of these new oncogene candidates has been provided in in vitro and in vivo experiments. However, these findings await further validation in clinical studies. This review provides an overview on well-known melanoma oncogenes and new oncogene candidates, based on recent high-throughput sequencing studies. The list of genes discussed herein is of course not complete but highlights some of the most significant of recent findings in this area. The new candidates may support more individualized treatment approaches for metastatic melanoma patients in the future.

  20. Genome Wide Expression Profiling of Cancer Cell Lines Cultured in Microgravity Reveals Significant Dysregulation of Cell Cycle and MicroRNA Gene Networks

    PubMed Central

    Vidyasekar, Prasanna; Shyamsunder, Pavithra; Arun, Rajpranap; Santhakumar, Rajalakshmi; Kapadia, Nand Kishore; Kumar, Ravi; Verma, Rama Shanker

    2015-01-01

    Zero gravity causes several changes in metabolic and functional aspects of the human body and experiments in space flight have demonstrated alterations in cancer growth and progression. This study reports the genome wide expression profiling of a colorectal cancer cell line-DLD-1, and a lymphoblast leukemic cell line-MOLT-4, under simulated microgravity in an effort to understand central processes and cellular functions that are dysregulated among both cell lines. Altered cell morphology, reduced cell viability and an aberrant cell cycle profile in comparison to their static controls were observed in both cell lines under microgravity. The process of cell cycle in DLD-1 cells was markedly affected with reduced viability, reduced colony forming ability, an apoptotic population and dysregulation of cell cycle genes, oncogenes, and cancer progression and prognostic markers. DNA microarray analysis revealed 1801 (upregulated) and 2542 (downregulated) genes (>2 fold) in DLD-1 cultures under microgravity while MOLT-4 cultures differentially expressed 349 (upregulated) and 444 (downregulated) genes (>2 fold) under microgravity. The loss in cell proliferative capacity was corroborated with the downregulation of the cell cycle process as demonstrated by functional clustering of DNA microarray data using gene ontology terms. The genome wide expression profile also showed significant dysregulation of post transcriptional gene silencing machinery and multiple microRNA host genes that are potential tumor suppressors and proto-oncogenes including MIR22HG, MIR17HG and MIR21HG. The MIR22HG, a tumor-suppressor gene was one of the highest upregulated genes in the microarray data showing a 4.4 log fold upregulation under microgravity. Real time PCR validated the dysregulation in the host gene by demonstrating a 4.18 log fold upregulation of the miR-22 microRNA. Microarray data also showed dysregulation of direct targets of miR-22, SP1, CDK6 and CCNA2. PMID:26295583

  1. Transcriptional Factor Aryl Hydrocarbon Receptor (Ahr) Controls Cardiovascular and Respiratory Functions by Regulating the Expression of the Vav3 Proto-oncogene*

    PubMed Central

    Sauzeau, Vincent; Carvajal-González, José M.; Riolobos, Adelaida S.; Sevilla, María A.; Menacho-Márquez, Mauricio; Román, Ángel C.; Abad, Antonio; Montero, María J.; Fernández-Salguero, Pedro; Bustelo, Xosé R.

    2011-01-01

    Aryl hydrocarbon receptor (Ahr) is a transcriptional factor involved in detoxification responses to pollutants and in intrinsic biological processes of multicellular organisms. We recently described that Vav3, an activator of Rho/Rac GTPases, is an Ahr transcriptional target in embryonic fibroblasts. These results prompted us to compare the Ahr−/− and Vav3−/− mouse phenotypes to investigate the implications of this functional interaction in vivo. Here, we show that Ahr is important for Vav3 expression in kidney, lung, heart, liver, and brainstem regions. This process is not affected by the administration of potent Ahr ligands such as benzo[a]pyrene. We also report that Ahr- and Vav3-deficient mice display hypertension, tachypnea, and sympathoexcitation. The Ahr gene deficiency also induces the GABAergic transmission defects present in the Vav3−/− ventrolateral medulla, a main cardiorespiratory brainstem center. However, Ahr−/− mice, unlike Vav3-deficient animals, display additional defects in fertility, perinatal growth, liver size and function, closure, spleen size, and peripheral lymphocytes. These results demonstrate that Vav3 is a bona fide Ahr target that is in charge of a limited subset of the developmental and physiological functions controlled by this transcriptional factor. Our data also reveal the presence of sympathoexcitation and new cardiorespiratory defects in Ahr−/− mice. PMID:21115475

  2. Behaviourally driven gene expression reveals song nuclei in hummingbird brain.

    PubMed

    Jarvis, E D; Ribeiro, S; da Silva, M L; Ventura, D; Vielliard, J; Mello, C V

    2000-08-10

    Hummingbirds have developed a wealth of intriguing features, such as backwards flight, ultraviolet vision, extremely high metabolic rates, nocturnal hibernation, high brain-to-body size ratio and a remarkable species-specific diversity of vocalizations. Like humans, they have also developed the rare trait of vocal learning, this being the ability to acquire vocalizations through imitation rather than instinct. Here we show, using behaviourally driven gene expression in freely ranging tropical animals, that the forebrain of hummingbirds contains seven discrete structures that are active during singing, providing the first anatomical and functional demonstration of vocal nuclei in hummingbirds. These structures are strikingly similar to seven forebrain regions that are involved in vocal learning and production in songbirds and parrots--the only other avian orders known to be vocal learners. This similarity is surprising, as songbirds, parrots and hummingbirds are thought to have evolved vocal learning and associated brain structures independently, and it indicates that strong constraints may influence the evolution of forebrain vocal nuclei.

  3. Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS

    PubMed Central

    Stelniec-Klotz, Iwona; Legewie, Stefan; Tchernitsa, Oleg; Witzel, Franziska; Klinger, Bertram; Sers, Christine; Herzel, Hanspeter; Blüthgen, Nils; Schäfer, Reinhold

    2012-01-01

    RAS mutations are highly relevant for progression and therapy response of human tumours, but the genetic network that ultimately executes the oncogenic effects is poorly understood. Here, we used a reverse-engineering approach in an ovarian cancer model to reconstruct KRAS oncogene-dependent cytoplasmic and transcriptional networks from perturbation experiments based on gene silencing and pathway inhibitor treatments. We measured mRNA and protein levels in manipulated cells by microarray, RT–PCR and western blot analysis, respectively. The reconstructed model revealed complex interactions among the transcriptional and cytoplasmic components, some of which were confirmed by double pertubation experiments. Interestingly, the transcription factors decomposed into two hierarchically arranged groups. To validate the model predictions, we analysed growth parameters and transcriptional deregulation in the KRAS-transformed epithelial cells. As predicted by the model, we found two functional groups among the selected transcription factors. The experiments thus confirmed the predicted hierarchical transcription factor regulation and showed that the hierarchy manifests itself in downstream gene expression patterns and phenotype. PMID:22864383

  4. Activation of ras oncogenes preceding the onset of neoplasia

    SciTech Connect

    Kumar, R.; Barbacid, M. ); Sukumar, S. )

    1990-06-01

    The identification of ras oncogenes in human and animal cancers including precancerous lesions indicates that these genes participate in the early stages of neoplastic development. Yet, these observations do not define the timing of ras oncogene activation in the multistep process of carcinogenesis. To ascertain the timing of ras oncogene activation, an animal model system was devised that involves the induction of mammary carcinomas in rats exposed at birth to the carcinogen nitrosomethylurea. High-resolution restriction fragment length polymorphism analysis of polymerase chain reaction-amplified ras sequences revealed the presence of both H-ras and K-ras oncogenes in normal mammary glands 2 weeks after carcinogen treatment and at least 2 months before the onset of neoplasia. These ras oncogenes can remain latent within the mammary gland until exposure to estrogens, demonstrating that activation of ras oncogenes can precede the onset of neoplasia and suggesting that normal physiological proliferative processes such as estrogen-induced mammary gland development may lead to neoplasia if the targeted cells harbor latent ras oncogenes.

  5. Connexin43 null mice reveal that astrocytes express multiple connexins.

    PubMed

    Dermietzel, R; Gao, Y; Scemes, E; Vieira, D; Urban, M; Kremer, M; Bennett, M V; Spray, D C

    2000-04-01

    The gap junction protein connexin43 (Cx43) is the primary component of intercellular channels in cardiac tissue and in astrocytes, the most abundant type of glial cells in the brain. Mice in which the gene for Cx43 is deleted by homologous recombination die at birth, due to profound hypertrophy of the ventricular outflow tract and stenosis of the pulmonary artery. Despite this significant cardiovascular abnormality, brains of connexin43 null [Cx43 (-/-)] animals are shown to be macroscopically normal and to display a pattern of cortical lamination that is not detectably different from wildtype siblings. Presence of Cx40 and Cx45 in brains and astrocytes cultured from both Cx43 (-/-) mice and wildtype littermates was confirmed by RT-PCR, Northern blot analyses and by immunostaining; Cx46 was detected by RT-PCR and Northern blot analyses. Presence of Cx26 in astrocyte cultures was indicated by RT-PCR and by Western blot analysis, although we were unable to resolve whether it was contributed by contaminating cells; Cx30 mRNA was detected by Northern blot in long term (2 weeks) but not fresh cultures of astrocytes. These studies thus reveal that astrocyte gap junctions may be formed of multiple connexins. Presumably, the metabolic and ionic coupling provided by these diverse gap junction types may functionally compensate for the absence of the major astrocyte gap junction protein in Cx43 (-/-) mice, providing whatever intercellular signaling is necessary for brain development and cortical lamination.

  6. Oncogenic K-ras expression is associated with derangement of the cAMP/PKA pathway and forskolin-reversible alterations of mitochondrial dynamics and respiration.

    PubMed

    Palorini, R; De Rasmo, D; Gaviraghi, M; Sala Danna, L; Signorile, A; Cirulli, C; Chiaradonna, F; Alberghina, L; Papa, S

    2013-01-17

    The Warburg effect in cancer cells has been proposed to involve several mechanisms, including adaptation to hypoxia, oncogenes activation or loss of oncosuppressors and impaired mitochondrial function. In previous papers, it has been shown that K-ras transformed mouse cells are much more sensitive as compared with normal cells to glucose withdrawal (undergoing apoptosis) and present a high glycolytic rate and a strong reduction of mitochondrial complex I. Recent observations suggest that transformed cells have a derangement in the cyclic adenosine monophosphate/cAMP-dependent protein kinase (cAMP/PKA) pathway, which is known to regulate several mitochondrial functions. Herein, the derangement of the cAMP/PKA pathway and its impact on transformation-linked changes of mitochondrial functions is investigated. Exogenous stimulation of PKA activity, achieved by forskolin treatment, protected K-ras-transformed cells from apoptosis induced by glucose deprivation, enhanced complex I activity, intracellular adenosine triphosphate (ATP) levels, mitochondrial fusion and decreased intracellular reactive oxygen species (ROS) levels. Several of these effects were almost completely prevented by inhibiting the PKA activity. Short-time treatment with compounds favoring mitochondrial fusion strongly decreased the cellular ROS levels especially in transformed cells. These findings support the notion that glucose shortage-induced apoptosis, specific of K-ras-transformed cells, is associated to a derangement of PKA signaling that leads to mitochondrial complex I decrease, reduction of ATP formation, prevalence of mitochondrial fission over fusion, and thereby opening new approaches for development of anticancer drugs.

  7. Structure, chromosome location, and expression of the mouse zinc finger gene Krox-20: multiple gene products and coregulation with the proto-oncogene c-fos.

    PubMed Central

    Chavrier, P; Janssen-Timmen, U; Mattéi, M G; Zerial, M; Bravo, R; Charnay, P

    1989-01-01

    We have analyzed the structure and the regulation of Krox-20, a mouse zinc finger-encoding gene which is transiently activated following serum stimulation of quiescent fibroblast cells in culture. The gene is localized on chromosome 10, band B5, in the mouse, and the homologous human gene also maps to chromosome 10 (region q21.1 to q22.1). Alternative splicing of the 5'-most intron of the Krox-20 gene gives rise to mRNAs encoding putative zinc finger proteins with different N termini. The first exon contains a sequence element with strong similarity to the c-fos proto-oncogene serum response element (SRE). This element can functionally substitute for the c-fos SRE, and it binds the same nuclear protein. It is probably responsible for the serum induction of Krox-20, possibly in combination with a weaker SRE located in the 5'-flanking region of the gene. Our findings suggest that c-fos, Krox-20, and a number of immediate-early serum response genes are coregulated and that the SRE and its cognate protein are essential components of this regulatory pathway. Images PMID:2496302

  8. Regulation of oncogene-induced cell cycle exit and senescence by chromatin modifiers.

    PubMed

    David, Gregory

    2012-09-01

    Oncogene activation leads to dramatic changes in numerous biological pathways controlling cellular division, and results in the initiation of a transcriptional program that promotes transformation. Conversely, it also triggers an irreversible cell cycle exit called cellular senescence, which allows the organism to counteract the potentially detrimental uncontrolled proliferation of damaged cells. Therefore, a tight transcriptional control is required at the onset of oncogenic signal, coordinating both positive and negative regulation of gene expression. Not surprisingly, numerous chromatin modifiers contribute to the cellular response to oncogenic stress. While these chromatin modifiers were initially thought of as mere mediators of the cellular response to oncogenic stress, recent studies have uncovered a direct and specific regulation of chromatin modifiers by oncogenic signals. We review here the diverse functions of chromatin modifiers in the cellular response to oncogenic stress, and discuss the implications of these findings on the regulation of cell cycle progression and proliferation by activated oncogenes.

  9. Mutant calreticulin requires both its mutant C-terminus and the thrombopoietin receptor for oncogenic transformation

    PubMed Central

    Elf, Shannon; Abdelfattah, Nouran S.; Chen, Edwin; Perales-Patón, Javier; Rosen, Emily A.; Ko, Amy; Peisker, Fabian; Florescu, Natalie; Giannini, Silvia; Wolach, Ofir; Morgan, Elizabeth A.; Tothova, Zuzana; Losman, Julie-Aurore; Schneider, Rebekka K.; Al-Shahrour, Fatima; Mullally, Ann

    2016-01-01

    Somatic mutations in calreticulin (CALR) are present in approximately 40% of patients with myeloproliferative neoplasms (MPN) but the mechanism by which mutant CALR is oncogenic remains unclear. Here, we demonstrate that expression of mutant CALR alone is sufficient to engender MPN in mice and recapitulates the disease phenotype of CALR-mutant MPN patients. We further show that the thrombopoietin receptor, MPL is required for mutant CALR-driven transformation through JAK-STAT pathway activation, thus rendering mutant CALR-transformed hematopoietic cells sensitive to JAK2 inhibition. Finally, we demonstrate that the oncogenicity of mutant CALR is dependent on the positive electrostatic charge of the C-terminus of the mutant protein, which is necessary for physical interaction between mutant CALR and MPL. Together, our findings elucidate a novel paradigm of cancer pathogenesis and reveal how CALR mutations induce MPN. PMID:26951227

  10. The Curcumin Analogue 1,5-Bis(2-hydroxyphenyl)-1,4-pentadiene-3-one Induces Apoptosis and Downregulates E6 and E7 Oncogene Expression in HPV16 and HPV18-Infected Cervical Cancer Cells.

    PubMed

    Paulraj, Felicia; Abas, Faridah; Lajis, Nordin H; Othman, Iekhsan; Hassan, Sharifah Syed; Naidu, Rakesh

    2015-06-29

    In an effort to study curcumin analogues as an alternative to improve the therapeutic efficacy of curcumin, we screened the cytotoxic potential of four diarylpentanoids using the HeLa and CaSki cervical cancer cell lines. Determination of their EC50 values indicated relatively higher potency of 1,5-bis(2-hydroxyphenyl)-1,4-pentadiene-3-one (MS17, 1.03 ± 0.5 μM; 2.6 ± 0.9 μM) and 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one (MS13, 2.8 ± 0.4; 6.7 ± 2.4 μM) in CaSki and HeLa, respectively, with significantly greater growth inhibition at 48 and 72 h of treatment compared to the other analogues or curcumin. Based on cytotoxic and anti-proliferative activity, MS17 was selected for comprehensive apoptotic studies. At 24 h of treatment, fluorescence microscopy detected that MS17-exposed cells exhibited significant morphological changes consistent with apoptosis, corroborated by an increase in nucleosomal enrichment due to DNA fragmentation in HeLa and CaSki cells and activation of caspase-3 activity in CaSki cells. Quantitative real-time PCR also detected significant down-regulation of HPV18- and HPV16-associated E6 and E7 oncogene expression following treatment. The overall data suggests that MS17 treatment has cytotoxic, anti-proliferative and apoptosis-inducing potential in HPV-positive cervical cancer cells. Furthermore, its role in down-regulation of HPV-associated oncogenes responsible for cancer progression merits further investigation into its chemotherapeutic role for cervical cancer.

  11. Pancreatitis promotes oncogenic KrasG12D-induced pancreatic transformation through activation of Nupr1

    PubMed Central

    Grasso, Daniel; Garcia, Maria Noé; Hamidi, Tewfik; Cano, Carla; Calvo, Ezequiel; Lomberk, Gwen; Urrutia, Raul; Iovanna, Juan L

    2014-01-01

    During the initiation stage of pancreatic adenocarcinoma induced by oncogenic Kras, pancreatic cells are exposed to both a protumoral effect and an opposing tumor suppressive process known as oncogene-induced senescence. Pancreatitis disrupts this balance in favor of the transforming effect of oncogenes by lowering the tumor suppressive threshold of oncogene-induced senescence through expression of the stress protein Nupr1. PMID:27308320

  12. Noxa upregulation by oncogenic activation of MEK/ERK through CREB promotes autophagy in human melanoma cells

    PubMed Central

    Wilmott, James S.; Yan, Xu Guang; Liu, Xiao Ying; Luan, Qi; Guo, Su Tang; Jiang, Chen Chen; Tseng, Hsin-Yi; Scolyer, Richard A.; Jin, Lei; Zhang, Xu Dong

    2014-01-01

    Reduction in the expression of the anti-survival BH3-only proteins PUMA and Bim is associated with the pathogenesis of melanoma. However, we have found that the expression of the other BH3-only protein Noxa is commonly upregulated in melanoma cells, and that this is driven by oncogenic activation of MEK/ERK. Immunohistochemistry studies showed that Noxa was expressed at higher levels in melanomas than nevi. Moreover, the expression of Noxa was increased in metastatic compared to primary melanomas, and in thick primaries compared to thin primaries. Inhibition of oncogenic BRAFV600E or MEK downregulated Noxa, whereas activation of MEK/ERK caused its upregulation. In addition, introduction of BRAFV600E increased Noxa expression in melanocytes. Upregulation of Noxa was due to a transcriptional increase mediated by cAMP responsive element binding protein, activation of which was also increased by MEK/ERK signaling in melanoma cells. Significantly, Noxa appeared necessary for constitutive activation of autophagy, albeit at low levels, by MEK/ERK in melanoma cells. Furthermore, it was required for autophagy activation that delayed apoptosis in melanoma cells undergoing nutrient deprivation. These results reveal that oncogenic activation of MEK/ERK drives Noxa expression to promote autophagy, and suggest that Noxa has an indirect anti-apoptosis role in melanoma cells under nutrient starvation conditions. PMID:25365078

  13. A RAS oncogene imparts growth factor independence to myeloid cells that abnormally regulate protein kinase C: a nonautocrine transformation pathway.

    PubMed

    Boswell, H S; Nahreini, T S; Burgess, G S; Srivastava, A; Gabig, T G; Inhorn, L; Srour, E F; Harrington, M A

    1990-06-01

    The factor-dependent cell line FDC-P1 has been utilized as a model of interleukin 3 (IL-3)-dependent myeloid cell proliferation. However, it has been recently observed that active phorbol esters (e.g., phorbol 12-myristate 13-acetate) may entirely replace IL-3 to promote its proliferation. These observations reveal abnormal regulation of protein kinase C (pkC) (absence of downregulation or overexpression). This property allowed a test of the hypothesis that the T24 RAS (codon 12) oncogene acts by constitutive and persistent pkC activation, driving proliferation. FDC-P1 cells were transfected by electroporation with the T24 RAS-containing vector pAL 8, or with a control vector pSVX Zip Neo, and neomycin-resistant clones were selected. Multiple RAS-transfectant clones were categorized for their growth factor requirement and incorporation of the 6.6-kb human mutant H-RAS genome. IL-3-independent clones had incorporated multiple (more than two) copies of the entire 6.6-kb RAS genome. The incorporation of multiple 6.6-kb RAS genomes was correlated with high-level p21 RAS expression. No evidence for autostimulatory growth factor production by clones containing the RAS oncogene was observed. Thus, acquisition of growth factor independence in myeloid cells by abundant expression of a RAS oncogene is linked, in part, to abnormal regulation of pkC, which acts as a collaborating oncogene.

  14. Subversion of autophagy by Kaposi's sarcoma-associated herpesvirus impairs oncogene-induced senescence.

    PubMed

    Leidal, Andrew M; Cyr, David P; Hill, Richard J; Lee, Patrick W K; McCormick, Craig

    2012-02-16

    Acute oncogenic stress can activate autophagy and facilitate permanent arrest of the cell cycle through a failsafe mechanism known as oncogene-induced senescence (OIS). Kaposi's sarcoma-associated herpesvirus (KSHV) proteins are known to subvert autophagic pathways, but the link to Kaposi's sarcoma pathogenesis is unclear. We find that oncogenic assault caused by latent KSHV infection elicits DNA damage responses (DDRs) characteristic of OIS, yet infected cells display only modest levels of autophagy and fail to senesce. These aberrant responses result from the combined activities of tandemly expressed KSHV v-cyclin and v-FLIP proteins. v-Cyclin deregulates the cell cycle, triggers DDRs, and if left unchecked can promote autophagy and senescence. However, during latency v-FLIP blocks v-cyclin-induced autophagy and senescence in a manner that requires intact v-FLIP ATG3-binding domains. Together, these data reveal a coordinated viral gene expression program that usurps autophagy, blocks senescence, and facilitates the proliferation of KSHV-infected cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Ewing Sarcoma, an enigmatic malignancy of likely progenitor cell origin, driven by transcription factor oncogenic fusions

    PubMed Central

    Jedlicka, Paul

    2010-01-01

    Since its first description by James Ewing in 1921, Ewing Sarcoma has been a cryptic malignancy. A poorly differentiated tumor of uncertain histogenesis and aggressive biologic behavior, it is the second most common malignancy of bone and soft tissue affecting adolescents and young adults. Some two decades ago, the understanding of Ewing Sarcoma biology took a leap forward with the identification of recurrent EWS/Ets fusions, which drive onco-genesis in this disease. A further leap forward occurred over the last half decade with the application of gene silencing, global expression profiling and primary cell culture technologies to the study of this disease. Resulting work has revealed EWS/Ets fusions to be surprisingly versatile regulators of gene expression, and has narrowed the search for the elusive cell of origin. Improved understanding of EWS/Ets biology and relevant oncogenic pathways has in turn led to the development of targeted therapies, including, recently, small molecules targeting key complexes involving the oncogenic fusion itself. In many respects still remaining an enigma, Ewing Sarcoma is an important model for cancers originating in progenitor-type cells or manifesting progenitor-type cell features, and cancers containing recurrent oncogenic fusions, the latter a surprisingly expanding number. PMID:20490326

  16. Pro-oncogenic and anti-oncogenic pathways: opportunities and challenges of cancer therapy

    PubMed Central

    Zhang, Jiao; Chen, Yan-Hua; Lu, Qun

    2010-01-01

    Carcinogenesis is the uncontrolled growth of cells gaining the potential to invade and disrupt vital tissue functions. This malignant process includes the occurrence of ‘unwanted’ gene mutations that induce the transformation of normal cells, for example, by overactivation of pro-oncogenic pathways and inactivation of tumor-suppressive or anti-oncogenic pathways. It is now recognized that the number of major signaling pathways that control oncogenesis is not unlimited; therefore, suppressing these pathways can conceivably lead to a cancer cure. However, the clinical application of cancer intervention has not matched up to scientific expectations. Increasing numbers of studies have revealed that many oncogenic-signaling elements show double faces, in which they can promote or suppress cancer pathogenesis depending on tissue type, cancer stage, gene dosage and their interaction with other players in carcinogenesis. This complexity of oncogenic signaling poses challenges to traditional cancer therapy and calls for considerable caution when designing an anticancer drug strategy. We propose future oncology interventions with the concept of integrative cancer therapy. PMID:20373871

  17. Transcriptomic analysis of gene expression profiles of stomach carcinoma reveal abnormal expression of mitotic components.

    PubMed

    Tong, Hongfei; Wang, Jisheng; Chen, Hui; Wang, Zhaohong; Fan, Henwei; Ni, Zhonglin

    2017-02-01

    In order to explore the etiology of gastric cancer on global gene expression level, we developed advanced bioinformatic analysis to investigate the variations of global gene expression and the interactions among them. We downloaded the dataset GSE63288 from Gene Expression Omnibus (GEO) database which included 22 human gastric cancer and 22 healthy control samples. We identified the differential expression genes, and explored the Gene ontology (GO) and pathways of the differentially expressed genes. Furthermore, integrative interaction network and co-expression network were employed to identify the key genes which may contribute to gastric cancer progression. The results indicated that 5 kinases including BUB1, TTK protein kinase, Citron Rho-interacting kinase (CIT), ZAK and NEK2 were upregulated in gastric cancer. Interestingly, BUB1, TTK, CIT and NEK2 have shown high expression similarities and bound with each other, and participated in multiple phases of mitosis. Moreover, a subnet of co-expression genes e.g. KIF14, PRC1, CENPF and CENPI was also involved in mitosis which was functionally coupled with the kinases above. By validation assays, the results indicated that CIT, PRC1, TTK and KIF14 were significantly upregulated in gastric cancer. These evidences have suggested that aberrant expression of these genes may drive gastric cancer including progression, invasion and metastasis. Although the causal relationships between gastric cancer and the genes are still lacking, it was reasonable to take them as biomarkers for diagnosis of gastric cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Oncogenes and tumor-suppressor genes.

    PubMed Central

    Lehman, T A; Reddel, R; Peiifer, A M; Spillare, E; Kaighn, M E; Weston, A; Gerwin, B I; Harris, C C

    1991-01-01

    The functional role of oncogenes in human lung carcinogenesis has been investigated by transfer of activated oncogenes into normal cells or an immortalized bronchial epithelial cell line, BEAS-2B. Transfection of v-Ha-ras, Ki-ras, or the combination of myc and raf into BEAS-2B cells produced tumorigenic cell lines, while transfection of raf or myc alone produced nontumorigenic cell lines. In addition to studying the pathogenic role of oncogenes, we are attempting to define negative growth-regulating genes that have tumor-suppressive effects for human lung carcinomas. Our strategy to identify tumor-suppressor genes involves loss of heterozygosity studies, monochromosome-cell fusion, and cell-cell fusion studies. Loss of heterozygosity studies have revealed consistent allelic DNA sequence deletions on chromosome 17p in squamous cell carcinomas, while large cell carcinomas and adenocarcinomas retained this locus. Mutations in p53, a tumor-suppressor gene located on chromosome 17p, have been observed. Cell-cell hybrid clones produced from fusion of nontumorigenic BEAS-2B cells with tumorigenic HuT292DM cells generally are nontumorigenic. The mechanistic role of the known tumor-suppressor genes Rb-1 and p53 in the development of human lung carcinomas is being investigated in this epithelial cell model of human bronchogenic carcinogenesis. PMID:1685442

  19. Construction of recombinant Marek's disease virus (MDV) lacking the meq oncogene and co-expressing AIV-H9N2 HA and NA genes under control of exogenous promoters.

    PubMed

    Zhang, Zhenjie; Chen, Wenqing; Ma, Chengtai; Zhao, Peng; Duan, Luntao; Zhang, Fushou; Sun, Aijun; Li, Yanpeng; Su, Hongqin; Li, Sifei; Cui, He; Cui, Zhizhong

    2014-07-10

    To develop a recombinant Marek's disease virus (rMDV1) co-expressing the hemagglutinin gene (HA) and neuramidinase gene (NA) from a low pathogenic avian influenza virus (LPAIV) H9N2 strain and lacking the meq oncogene that shares homology with the Jun/Fos family of transcriptional factors, a wild strain of MDV GX0101 was used as parental virus, the HA and NA genes co-expression cassette under control of the CMV and SV40 early promoters was inserted at two meq sites of GX0101 to form a new meq knock-out mutant MDV (MZC12HA/NA) through homologous recombination. MZC12HA/NA was reconstituted by transfection of recombinant BAC-MDV DNA into the secondary chicken embryo fibroblast (CEF) cells. Highly purified MZC12HA/NA was obtained after four rounds of plaque purification and proliferation. In vitro growth properties of recombinant virus were also inspected and concluded that the MZC12HA/NA had the same growth kinetics in CEF cultures as its parental wild type virus GX0101. Southern blot indicated that co-expression cassette was successfully inserted at two copies sites of meq gene, so two meq genes were knocked-out completely. RT-qPCR showed transcription and expression levels of the HA and NA genes were both significantly higher than that of GX0101 own pp38 gene. Indirect fluorescence antibody (IFA) test, and Western blot analyses indicated that HA and NA genes were co-expressed simultaneously under control of the different promoters but meq genes were not. These results herald a new and effective recombinant meq-deleted MDV-based AIV-H9N2 vaccine may be useful in protecting chickens from very virulent MDV and H9N2 challenges. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Human telomerase reverse transcriptase regulates vascular endothelial growth factor expression via human papillomavirus oncogene E7 in HPV-18-positive cervical cancer cells.

    PubMed

    Li, Fang; Cui, Jinquan

    2015-07-01

    Human papillomavirus (HPV) infection induces chronic and precancerous lesions and results in invasive cervical cancer. Human telomerase as well as inflammatory and angiogenic factors such as telomerase reverse transcriptase (hTERT) or vascular endothelial growth factor (VEGF) could play a role in regulating HPV-induced cervical cancer. This study investigated underlying molecular events in HPV-induced HPV-positive cervical cancer through hTERT and VEGF in vitro. Expressions of hTERT, a rate-limiting subunit of telomerase, and VEGF mRNA and proteins were, respectively, assessed by qRT-PCR, ELISA, and TRAP-ELISA in HPV-positive tissue samples and cervical cancer cell lines. To assess hTERT and VEGF secretion, hTERT overexpression and knockdown were conducted in HPV-18-positive Hela cells by hTERT cDNA and shRNA transfection, respectively. Then, the effect of HPV E6 and E7 on VEGF expressions was assessed in HPV-negative cervical cancer cells. Data have shown that VEGF expression levels are associated with hTERT expressions and telomerase activity in HPV-positive cervical cancer tissues and cells. Knockdown of hTERT expression down-regulated VEGF expressions, whereas overexpression of hTERT up-regulated VEGF expressions in HPV-18-positive Hela cells. Furthermore, HPV E7 oncoprotein was necessary for hTERT to up-regulate VEGF expressions in HPV-negative cervical cancer cells. Data from this current study indicate that HPV oncoproteins up-regulated hTERT and telomerase activity and in turn promoted VEGF expressions, which could be a key mechanism for HPV-induced cervical cancer development and progression.

  1. Investigation of Astragalus honey and propolis extract's cytotoxic effect on two human cancer cell lines and their oncogen and proapoptotic gene expression profiles

    PubMed Central

    Sadeghi-Aliabadi, Hojjat; Hamzeh, Jamal; Mirian, Mina

    2015-01-01

    Background: Cancer is one of the major fatal human diseases. Natural products have been used in the treatment of cancer for long time. Bee products including honey and propolis have been introduced for malignancy treatment in recent decades. In this study cytotoxicity of bee products and their effects on the expression of proapoptotic genes have been investigated. Materials and Methods: Cytotoxic effects of Astragalus honey, ethanol extract of propolis and a sugar solution (as control) against HepG2, 5637 and L929 cell lines have been evaluated by the MTT assay. Total RNAs of treated cells were isolated and p53 and Bcl-2 gene expression were evaluated, using real-time PCR. Results: Propolis IC50 values were 58, 30 and 15 μg/ml against L929, HepG2 and 5637, respectively. These values for honey were 3.1%, 2.4% and 1.9%, respectively. Propolis extract has increased the expression of the Bcl-2 gene in all cell lines whereas the honey decreased that significantly (P < 0.05). Also, we found that honey and propolis decreased p53 gene expression in HepG2 and 5637 significantly but not in L929 cells. The sugar solution increased the expression of p53 in two cancer cell lines but no significant changes were observed in the expression of this gene in L929 as normal mouse cell. Conclusion: By downregulation of Bcl-2 expression it could be concluded that the cytotoxicity of honey was more than two fold against tested cancer cells compared with the sugar solution. No significant changes were observed in the expression of p53 in honey-treated cells. Propolis had no significant effect on Bcl-2 and p53 gene expressions (P > 0.05). PMID:25789268

  2. An Interaction with Ewing's Sarcoma Breakpoint Protein EWS Defines a Specific Oncogenic Mechanism of ETS Factors Rearranged in Prostate Cancer.

    PubMed

    Kedage, Vivekananda; Selvaraj, Nagarathinam; Nicholas, Taylor R; Budka, Justin A; Plotnik, Joshua P; Jerde, Travis J; Hollenhorst, Peter C

    2016-10-25

    More than 50% of prostate tumors have a chromosomal rearrangement resulting in aberrant expression of an oncogenic ETS family transcription factor. However, mechanisms that differentiate the function of oncogenic ETS factors expressed in prostate tumors from non-oncogenic ETS factors expressed in normal prostate are unknown. Here, we find that four oncogenic ETS (ERG, ETV1, ETV4, and ETV5), and no other ETS, interact with the Ewing's sarcoma breakpoint protein, EWS. This EWS interaction was necessary and sufficient for oncogenic ETS functions including gene activation, cell migration, clonogenic survival, and transformation. Significantly, the EWS interacting region of ERG has no homology with that of ETV1, ETV4, and ETV5. Therefore, this finding may explain how divergent ETS factors have a common oncogenic function. Strikingly, EWS is fused to various ETS factors by the chromosome translocations that cause Ewing's sarcoma. Therefore, these findings link oncogenic ETS function in both prostate cancer and Ewing's sarcoma.

  3. A differential gene expression profile reveals overexpression of RUNX1/AML1 in invasive endometrioid carcinoma.

    PubMed

    Planagumà, Jesús; Díaz-Fuertes, María; Gil-Moreno, Antonio; Abal, Miguel; Monge, Marta; García, Angel; Baró, Teresa; Thomson, Timothy M; Xercavins, Jordi; Alameda, Francesc; Reventós, Jaume

    2004-12-15

    Endometrial carcinoma is the most common gynecological malignant disease in industrialized countries. Two clinicopathological types of endometrial carcinoma have been described, based on estrogen relation and grade: endometrioid carcinoma (EEC) and non-EEC (NEEC). Some of the molecular events that occur during the development of endometrial carcinoma have been characterized, showing a dualistic genetic model for EEC and NEEC. However, the molecular bases for endometrial tumorigenesis are not clearly elucidated. In the present work, we attempted to identify new genes that could trigger cell transformation in EEC. We analyzed the differential gene expression profile between tumoral and nontumoral endometrial specimens with cDNA array hybridization. Among the 53 genes for which expression was found to be altered in EEC, the acute myeloid leukemia proto-oncogene, RUNX1/AML1, was one of the most highly up-regulated. The gene expression levels of RUNX1/AML1 were quantified by real-time quantitative PCR, and protein levels were characterized by tissue array immunohistochemistry. Real-time quantitative PCR validated RUNX1/AML1 up-regulation in EEC and demonstrated a specific and significantly stronger up-regulation in those tumor stages associated with myometrial invasion. Furthermore, tissue array immunohistochemistry showed that RUNX1/AML1 up-regulation correlates to the process of tumorigenesis, from normal atrophic endometrium to simple and complex hyperplasia and then, on to carcinoma. These results demonstrate for the first time the up-regulation of RUNX1/AML1 in EEC correlating with the initial steps of myometrial infiltration.

  4. Gene expression and epigenetic discovery screen reveal methylation of SFRP2 in prostate cancer.

    PubMed

    Perry, Antoinette S; O'Hurley, Gillian; Raheem, Omer A; Brennan, Kevin; Wong, Simon; O'Grady, Anthony; Kennedy, Anne-Marie; Marignol, Laure; Murphy, Therese M; Sullivan, Linda; Barrett, Ciara; Loftus, Barbara; Thornhill, John; Hewitt, Stephen M; Lawler, Mark; Kay, Elaine; Lynch, Thomas; Hollywood, Donal

    2013-04-15

    Aberrant activation of Wnts is common in human cancers, including prostate. Hypermethylation associated transcriptional silencing of Wnt antagonist genes SFRPs (Secreted Frizzled-Related Proteins) is a frequent oncogenic event. The significance of this is not known in prostate cancer. The objectives of our study were to (i) profile Wnt signaling related gene expression and (ii) investigate methylation of Wnt antagonist genes in prostate cancer. Using TaqMan Low Density Arrays, we identified 15 Wnt signaling related genes with significantly altered expression in prostate cancer; the majority of which were upregulated in tumors. Notably, histologically benign tissue from men with prostate cancer appeared more similar to tumor (r = 0.76) than to benign prostatic hyperplasia (BPH; r = 0.57, p < 0.001). Overall, the expression profile was highly similar between tumors of high (≥ 7) and low (≤ 6) Gleason scores. Pharmacological demethylation of PC-3 cells with 5-Aza-CdR reactivated 39 genes (≥ 2-fold); 40% of which inhibit Wnt signaling. Methylation frequencies in prostate cancer were 10% (2/20) (SFRP1), 64.86% (48/74) (SFRP2), 0% (0/20) (SFRP4) and 60% (12/20) (SFRP5). SFRP2 methylation was detected at significantly lower frequencies in high-grade prostatic intraepithelial neoplasia (HGPIN; 30%, (6/20), p = 0.0096), tumor adjacent benign areas (8.82%, (7/69), p < 0.0001) and BPH (11.43% (4/35), p < 0.0001). The quantitative level of SFRP2 methylation (normalized index of methylation) was also significantly higher in tumors (116) than in the other samples (HGPIN = 7.45, HB = 0.47, and BPH = 0.12). We show that SFRP2 hypermethylation is a common event in prostate cancer. SFRP2 methylation in combination with other epigenetic markers may be a useful biomarker of prostate cancer.

  5. DNA Vaccine Encoding HPV16 Oncogenes E6 and E7 Induces Potent Cell-mediated and Humoral Immunity Which Protects in Tumor Challenge and Drives E7-expressing Skin Graft Rejection

    PubMed Central

    Chandra, Janin; Dutton, Julie L.; Li, Bo; Woo, Wai-Ping; Xu, Yan; Tolley, Lynn K.; Yong, Michelle; Wells, James W.; R. Leggatt, Graham; Finlayson, Neil

    2017-01-01

    We have previously shown that a novel DNA vaccine technology of codon optimization and the addition of ubiquitin sequences enhanced immunogenicity of a herpes simplex virus 2 polynucleotide vaccine in mice, and induced cell-mediated immunity when administered in humans at relatively low doses of naked DNA. We here show that a new polynucleotide vaccine using the same technology and encoding a fusion protein of the E6 and E7 oncogenes of high-risk human papillomavirus type 16 (HPV16) is immunogenic in mice. This vaccine induces long-lasting humoral and cell-mediated immunity and protects mice from establishment of HPV16-E7-expressing tumors. In addition, it suppresses growth of readily established tumors and shows enhanced efficacy when combined with immune checkpoint blockade targeted at PD-L1. This vaccine also facilitates rejection of HPV16-E7-expressing skin grafts that demonstrate epidermal hyperplasia with characteristics of cervical and vulvar intraepithelial neoplasia. Clinical studies evaluating the efficacy of this vaccine in patients with HPV16+ premalignancies are planned. PMID:28166181

  6. Reconstructing dynamic mental models of facial expressions in prosopagnosia reveals distinct representations for identity and expression.

    PubMed

    Richoz, Anne-Raphaëlle; Jack, Rachael E; Garrod, Oliver G B; Schyns, Philippe G; Caldara, Roberto

    2015-04-01

    The human face transmits a wealth of signals that readily provide crucial information for social interactions, such as facial identity and emotional expression. Yet, a fundamental question remains unresolved: does the face information for identity and emotional expression categorization tap into common or distinct representational systems? To address this question we tested PS, a pure case of acquired prosopagnosia with bilateral occipitotemporal lesions anatomically sparing the regions that are assumed to contribute to facial expression (de)coding (i.e., the amygdala, the insula and the posterior superior temporal sulcus--pSTS). We previously demonstrated that PS does not use information from the eye region to identify faces, but relies on the suboptimal mouth region. PS's abnormal information use for identity, coupled with her neural dissociation, provides a unique opportunity to probe the existence of a dichotomy in the face representational system. To reconstruct the mental models of the six basic facial expressions of emotion in PS and age-matched healthy observers, we used a novel reverse correlation technique tracking information use on dynamic faces. PS was comparable to controls, using all facial features to (de)code facial expressions with the exception of fear. PS's normal (de)coding of dynamic facial expressions suggests that the face system relies either on distinct representational systems for identity and expression, or dissociable cortical pathways to access them. Interestingly, PS showed a selective impairment for categorizing many static facial expressions, which could be accounted for by her lesion in the right inferior occipital gyrus. PS's advantage for dynamic facial expressions might instead relate to a functionally distinct and sufficient cortical pathway directly connecting the early visual cortex to the spared pSTS. Altogether, our data provide critical insights on the healthy and impaired face systems, question evidence of deficits

  7. Human papillomavirus oncogenic E6 protein regulates human β-defensin 3 (hBD3) expression via the tumor suppressor protein p53

    PubMed Central

    Yue, Hong; Wang, Liming; Jin, Jessica; Ghosh, Santosh K.; Kawsar, Hameem I.; Zender, Chad; Androphy, Elliot J.; Weinberg, Aaron; McCormick, Thomas S.; Jin, Ge

    2016-01-01

    Human β-defensin-3 (hBD3) is an epithelial cell-derived innate immune regulatory molecule overexpressed in oral dysplastic lesions and fosters a tumor-promoting microenvironment. Expression of hBD3 is induced by the epidermal growth factor receptor signaling pathway. Here we describe a novel pathway through which the high-risk human papillomavirus type-16 (HPV-16) oncoprotein E6 induces hBD3 expression in mucosal keratinocytes. Ablation of E6 by siRNA induces the tumor suppressor p53 and diminishes hBD3 in HPV-16 positive CaSki cervical cancer cells and UM-SCC-104 head and neck cancer cells. Malignant cells in HPV-16-associated oropharyngeal cancer overexpress hBD3. HPV-16 E6 induces hBD3 mRNA expression, peptide production and gene promoter activity in mucosal keratinocytes. Reduction of cellular levels of p53 stimulates hBD3 expression, while activation of p53 by doxorubicin inhibits its expression in primary oral keratinocytes and CaSki cells, suggesting that p53 represses hBD3 expression. A p53 binding site in the hBD3 gene promoter has been identified by using electrophoretic mobility shift assays and chromatin immunoprecipitation (ChIP). In addition, the p63 protein isoform ΔNp63α, but not TAp63, stimulated transactivation of the hBD3 gene and was co-expressed with hBD3 in head and neck cancer specimens. Therefore, high-risk HPV E6 oncoproteins may stimulate hBD3 expression in tumor cells to facilitate tumorigenesis of HPV-associated head and neck cancer. PMID:27034006

  8. The zinc finger gene ZIC2 has features of an oncogene and its over- expression correlates strongly with the clinical course of epithelial ovarian cancer

    PubMed Central

    Marchini, Sergio; Poynor, Elizabeth; Barakat, Richard R; Clivio, Luca; Cinquini, Michela; Fruscio, Robert; Porcu, Luca; Bussani, Cecilia; D’Incalci, Maurizio; Erba, Eugenio; Romano, Michela; Cattoretti, Giorgio; Katsaros, Dionyssios; Koff, Andrew; Luzzatto, Lucio

    2015-01-01

    Purpose Epithelial ovarian tumors (EOTs) are amongst the most lethal of malignancies in women. We have previously identified ZIC2 as expressed at a higher level in samples of a malignant form (MAL) of EOT than in samples of a form with low malignant potential (LMP). We have now investigated the role of ZIC2 in driving tumor growth and its association with clinical outcomes. Experimental Design ZIC2 expression levels were analysed in two independent tumor tissue collections of LMP and MAL. In vitro experiments aimed to test the role of ZIC2 as a transforming gene. Cox models were used to correlate ZIC2 expression with clinical endpoints. Results ZIC2 expression was about 40-fold in terms of mRNA and about 17-fold in terms of protein in MAL (n = 193) versus LMP (n = 39) tumors. ZIC2 mRNA levels were high in MAL cell lines, but undetectable in LMP cell lines. Over-expression of ZIC2 was localized to the nucleus. ZIC2 over-expression increases the growth rate and foci formation of NIH 3T3 cells, and stimulates anchorage-independent colony formation; down-regulation of ZIC2 decreases the growth rate of MAL cell lines. Zinc finger domains 1 and 2 are required for transforming activity. In stage I MAL ZIC2 expression was significantly associated with overall survival in both univariate (p = 0.046), and multivariate model (p = 0.049). Conclusions ZIC2, a transcription factor related to the sonic hedgehog pathway, is a strong discriminant between MAL and LMP tumors: it may be a major determinant of outcome of EOT. PMID:22733541

  9. Changes in the phenotype of human small cell lung cancer cell lines after transfection and expression of the c-myc proto-oncogene.

    PubMed Central

    Johnson, B E; Battey, J; Linnoila, I; Becker, K L; Makuch, R W; Snider, R H; Carney, D N; Minna, J D

    1986-01-01

    Small cell lung cancer growing in cell culture possesses biologic properties that allow classification into two categories: classic and variant. Compared with classic small cell lung cancer cell lines, variant lines have altered large cell morphology, shorter doubling times, higher cloning efficiencies in soft agarose, and very low levels of L dopa decarboxylase production and bombesin-like immunoreactivity. C-myc is amplified and expressed in some small cell lung cancer cell lines and all c-myc amplified lines studied to date display the variant phenotype. To investigate if c-myc amplification and expression is responsible for the variant phenotype, a normal human c-myc gene was transfected into a cloned classic small cell lung cancer cell line not amplified for or expressing detectable c-myc messenger RNA (mRNA). Clones were isolated with one to six copies of c-myc stably integrated into DNA that expressed c-myc mRNA. In addition, one clone with an integrated neo gene but a deleted c-myc gene was isolated and in this case c-myc was not expressed. C-myc expression in transfected clones was associated with altered large cell morphology, a shorter doubling time, and increased cloning efficiency, but no difference in L dopa decarboxylase levels and bombesin-like immunoreactivity. We conclude increased c-myc expression observed here in transfected clones correlates with some of the phenotypic properties distinguishing c-myc amplified variants from unamplified classic small cell lung cancer lines. Images PMID:3016030

  10. Effects of 12-O-tetradecanoyl-phorbol-13-acetate [corrected] and sodium lauryl sulfate on the production and expression of cytokines and proto-oncogenes in photoaged and intrinsically aged human keratinocytes.

    PubMed

    Suh, D H; Youn, J I; Eun, H C

    2001-11-01

    Skin aging may be divided into photoaging and intrinsic aging. The purpose of this study was to investigate the effects of 12-O-tetradecanoyl-phorbol-13-acetate and sodium lauryl sulfate on the production and expression of cytokines and proto-oncogenes in photoaged and intrinsically aged skin, compared with young skin. Keratinocytes were taken from newborns, young adults in their twenties, and from the forearm and thigh of volunteers in their fifties and seventies. Interleukin-1alpha and -6, and interleukin-1 receptor antagonist, c-fos and c-myc were measured after cultured keratinocytes had been treated with 12-O-tetradecanoyl-phorbol-13-acetate and sodium lauryl sulfate. There has been no report concerning the dependence of cytokine production by sodium lauryl sulfate upon photoaging and intrinsic aging. This study also involves the first investigation of the effects of aging on c-myc expression by 12-O-tetradecanoyl-phorbol-13-acetate treatment. Cytokine production decreased markedly with age. These results suggest the progressive decline of cellular function with age. The ratio of cytokine production in the irritant-treated group compared with that in the control group showed a different pattern in photoaging and intrinsic aging. With the significant difference between photoaging and intrinsic aging, T/C ratio decreased in interleukin-1alpha and interleukin-1 receptor antagonist upon aging, whereas it increased in interleukin-6. S/C ratio was uniquely elevated on photoaged skin in the 50 y age group. It is suggested that photoaged skin shows an exaggerated reaction to surfactant. Compared with the control, c-fos expression in 12-O-tetradecanoyl-phorbol-13-acetate-treated keratinocytes decreased with age in the thigh, but increased in the photoaged skin of forearm. The increased c-fos expression in 12-O-tetradecanoyl-phorbol-13-acetate-treated keratinocytes could be relevant for the predisposition of photoaged keratinocytes to malignant transformation.

  11. Targeting the PyMT Oncogene to Diverse Mammary Cell Populations Enhances Tumor Heterogeneity and Generates Rare Breast Cancer Subtypes

    PubMed Central

    Smith, Brittni A.; Shelton, Dawne N.; Kieffer, Collin; Milash, Brett; Usary, Jerry; Perou, Charles M.; Bernard, Philip S.

    2012-01-01

    Human breast cancer is a heterogeneous disease composed of different histologies and molecular subtypes, many of which are not replicated in animal models. Here, we report a mouse model of breast cancer that generates unique tumor histologies including tubular, adenosquamous, and lipid-rich carcinomas. Utilizing a nononcogenic variant of polyoma middle T oncogene (PyMT) that requires a spontaneous base-pair deletion to transform cells, in conjunction with lentiviral transduction and orthotopic transplantation of primary mammary epithelial cells, this model sporadically induces oncogene expression in both the luminal and myoepithelial cell lineages of the normal mouse mammary epithelium. Microarray and hierarchical analyses using an intrinsic subtype gene set revealed that lentiviral PyMT generates both luminal and basal-like tumors. Cumulatively, these results show that low-level expression of PyMT in a broad range of cell types significantly increases tumor heterogeneity and establishes a mouse model of several rare human breast cancer subtypes. PMID:23486760

  12. Cellular senescence checkpoint function determines differential Notch1-dependent oncogenic and tumor-suppressor activities.

    PubMed

    Kagawa, S; Natsuizaka, M; Whelan, K A; Facompre, N; Naganuma, S; Ohashi, S; Kinugasa, H; Egloff, A M; Basu, D; Gimotty, P A; Klein-Szanto, A J; Bass, A J; Wong, K-K; Diehl, J A; Rustgi, A K; Nakagawa, H

    2015-04-30

    Notch activity regulates tumor biology in a context-dependent and complex manner. Notch may act as an oncogene or a tumor-suppressor gene even within the same tumor type. Recently, Notch signaling has been implicated in cellular senescence. Yet, it remains unclear as to how cellular senescence checkpoint functions may interact with Notch-mediated oncogenic and tumor-suppressor activities. Herein, we used genetically engineered human esophageal keratinocytes and esophageal squamous cell carcinoma cells to delineate the functional consequences of Notch activation and inhibition along with pharmacological intervention and RNA interference experiments. When expressed in a tetracycline-inducible manner, the ectopically expressed activated form of Notch1 (ICN1) displayed oncogene-like characteristics inducing cellular senescence corroborated by the induction of G0/G1 cell-cycle arrest, Rb dephosphorylation, flat and enlarged cell morphology and senescence-associated β-galactosidase activity. Notch-induced senescence involves canonical CSL/RBPJ-dependent transcriptional activity and the p16(INK4A)-Rb pathway. Loss of p16(INK4A) or the presence of human papilloma virus (HPV) E6/E7 oncogene products not only prevented ICN1 from inducing senescence but permitted ICN1 to facilitate anchorage-independent colony formation and xenograft tumor growth with increased cell proliferation and reduced squamous-cell differentiation. Moreover, Notch1 appears to mediate replicative senescence as well as transforming growth factor-β-induced cellular senescence in non-transformed cells and that HPV E6/E7 targets Notch1 for inactivation to prevent senescence, revealing a tumor-suppressor attribute of endogenous Notch1. In aggregate, cellular senescence checkpoint functions may influence dichotomous Notch activities in the neoplastic context.

  13. Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution

    PubMed Central

    Flagel, Lex; Udall, Joshua; Nettleton, Dan; Wendel, Jonathan

    2008-01-01

    Background Polyploidy has played a prominent role in shaping the genomic architecture of the angiosperms. Through allopolyploidization, several modern Gossypium (cotton) species contain two divergent, although largely redundant genomes. Owing to this redundancy, these genomes can play host to an array of evolutionary processes that act on duplicate genes. Results We compared homoeolog (genes duplicated by polyploidy) contributions to the transcriptome of a natural allopolyploid and a synthetic interspecific F1 hybrid, both derived from a merger between diploid species from the Gossypium A-genome and D-genome groups. Relative levels of A- and D-genome contributions to the petal transcriptome were determined for 1,383 gene pairs. This comparison permitted partitioning of homoeolog expression biases into those arising from genomic merger and those resulting from polyploidy. Within allopolyploid Gossypium, approximately 24% of the genes with biased (unequal contributions from the two homoeologous copies) expression patterns are inferred to have arisen as a consequence of genomic merger, indicating that a substantial fraction of homoeolog expression biases occur instantaneously with hybridization. The remaining 76% of biased homoeologs reflect long-term evolutionary forces, such as duplicate gene neofunctionalization and subfunctionalization. Finally, we observed a greater number of genes biased toward the paternal D-genome and that expression biases have tended to increases during allopolyploid evolution. Conclusion Our results indicate that allopolyploidization entails significant homoeolog expression modulation, both immediately as a consequence of genomic merger, and secondarily as a result of long-term evolutionary transformations in duplicate gene expression. PMID:18416842

  14. Direct reprogramming by oncogenic Ras and Myc.

    PubMed

    Ischenko, Irene; Zhi, Jizu; Moll, Ute M; Nemajerova, Alice; Petrenko, Oleksi

    2013-03-05

    Genetically or epigenetically defined reprogramming is a hallmark of cancer cells. However, a causal association between genome reprogramming and cancer has not yet been conclusively established. In particular, little is known about the mechanisms that underlie metastasis of cancer, and even less is known about the identity of metastasizing cancer cells. In this study, we used a model of conditional expression of oncogenic KrasG12D allele in primary mouse cells to show that reprogramming and dedifferentiation is a fundamental early step in malignant transformation and cancer initiation. Our data indicate that stable expression of activated KrasG12D confers on cells a large degree of phenotypic plasticity that predisposes them to neoplastic transformation and acquisition of stem cell characteristics. We have developed a genetically tractable model system to investigate the origins and evolution of metastatic pancreatic cancer cells. We show that metastatic conversion of KrasG12D-expressing cells that exhibit different degrees of differentiation and malignancy can be reconstructed in cell culture, and that the proto-oncogene c-Myc controls the generation of self-renewing metastatic cancer cells. Collectively, our results support a model wherein non-stem cancer cells have the potential to dedifferentiate and acquire stem cell properties as a direct consequence of oncogene-induced plasticity. Moreover, the disturbance in the normally existing dynamic equilibrium between cancer stem cells and non-stem cancer cells allows the formation of cancer stem cells with high metastatic capacity at any time during cancer progression.

  15. MicroRNA Expression Analysis of Centenarians and Rheumatoid Arthritis Patients Reveals a Common Expression Pattern.

    PubMed

    Balzano, Francesca; Deiana, Marta; Dei Giudici, Silvia; Oggiano, Annalisa; Pasella, Sara; Pinna, Sara; Mannu, Andrea; Deiana, Nicola; Porcu, Baingio; Masala, Antonio G E; Pileri, Piera V; Scognamillo, Fabrizio; Pala, Carlo; Zinellu, Angelo; Carru, Ciriaco; Deiana, Luca

    2017-01-01

    Micro-RNA (miRNA) are a family of small non-coding ribonucleic acids that inhibits post-transcriptionally the expression of their target messenger RNA (mRNA). We are interested in studying the involvement of miRNA in longevity and autoimmune diseases. In this study we compared the different expression of seven microRNAs between human plasma healthy controls, plasma samples of centenarians and samples from patients with rheumatoid arthritis. We used the Life Technologies' protocol to quantify seven miRNAs from 62 plasma samples: 20 healthy human controls, 14 centenarians, 28 patients with rheumatoid arthritis. TaqMan MicroRNA assays were used to analyze the expression profiles of miR-125b-5p, miR-425-5p, miR-200b5p, miR-200c-3p, miR-579-3p, miR-212-3p, miR-21-5p and miR-126-3p. The relative expression of mature miRNAs was analyzed using software REST. Our results show that miR-425-5p, miR-21 and miR-212 significantly decreased in centenarians and in patients with rheumatoid arthritis compared with controls. Furthermore in this work we highlight a connection between corticosteroid treatment and miRNAs expression.

  16. Analysis of gelsolin expression pattern in developing chicken embryo reveals high GSN expression level in tissues of neural crest origin.

    PubMed

    Mazur, Antonina Joanna; Morosan-Puopolo, Gabriela; Makowiecka, Aleksandra; Malicka-Błaszkiewicz, Maria; Nowak, Dorota; Brand-Saberi, Beate

    2016-01-01

    Gelsolin is one of the most intensively studied actin-binding proteins. However, in the literature comprehensive studies of GSN expression during development have not been performed yet in all model organisms. In zebrafish, gelsolin is a dorsalizing factor that modulates bone morphogenetic proteins signaling pathways, whereas knockout of the gelsolin coding gene, GSN is not lethal in murine model. To study the role of gelsolin in development of higher vertebrates, it is crucial to estimate GSN expression pattern during development. Here, we examined GSN expression in the developing chicken embryo. We applied numerous methods to track GSN expression in developing embryos at mRNA and protein level. We noted a characteristic GSN expression pattern. Although GSN transcripts were present in several cell types starting from early developmental stages, a relatively high GSN expression was observed in eye, brain vesicles, midbrain, neural tube, heart tube, and splanchnic mesoderm. In older embryos, we observed a high GSN expression in the cranial ganglia and dorsal root ganglia. A detailed analysis of 10-day-old chicken embryos revealed high amounts of gelsolin especially within the head region: in the olfactory and optic systems, meninges, nerves, muscles, presumptive pituitary gland, and pericytes, but not oligodendrocytes in the brain. Obtained results suggest that GSN is expressed at high levels in some tissues of ectodermal origin including all neural crest derivatives. Additionally, we describe that silencing of GSN expression in brain vesicles leads to altered morphology of the mesencephalon. This implies gelsolin is crucial for chicken brain development.

  17. EGFR/ARF6 regulation of Hh signalling stimulates oncogenic Ras tumour overgrowth.

    PubMed

    Chabu, Chiswili; Li, Da-Ming; Xu, Tian

    2017-03-10

    Multiple signalling events interact in cancer cells. Oncogenic Ras cooperates with Egfr, which cannot be explained by the canonical signalling paradigm. In turn, Egfr cooperates with Hedgehog signalling. How oncogenic Ras elicits and integrates Egfr and Hedgehog signals to drive overgrowth remains unclear. Using a Drosophila tumour model, we show that Egfr cooperates with oncogenic Ras via Arf6, which functions as a novel regulator of Hh signalling. Oncogenic Ras induces the expression of Egfr ligands. Egfr then signals through Arf6, which regulates Hh transport to promote Hh signalling. Blocking any step of this signalling cascade inhibits Hh signalling and correspondingly suppresses the growth of both, fly and human cancer cells harbouring oncogenic Ras mutations. These findings highlight a non-canonical Egfr signalling mechanism, centered on Arf6 as a novel regulator of Hh signalling. This explains both, the puzzling requirement of Egfr in oncogenic Ras-mediated overgrowth and the cooperation between Egfr and Hedgehog.

  18. EGFR/ARF6 regulation of Hh signalling stimulates oncogenic Ras tumour overgrowth

    PubMed Central

    Chabu, Chiswili; Li, Da-Ming; Xu, Tian

    2017-01-01

    Multiple signalling events interact in cancer cells. Oncogenic Ras cooperates with Egfr, which cannot be explained by the canonical signalling paradigm. In turn, Egfr cooperates with Hedgehog signalling. How oncogenic Ras elicits and integrates Egfr and Hedgehog signals to drive overgrowth remains unclear. Using a Drosophila tumour model, we show that Egfr cooperates with oncogenic Ras via Arf6, which functions as a novel regulator of Hh signalling. Oncogenic Ras induces the expression of Egfr ligands. Egfr then signals through Arf6, which regulates Hh transport to promote Hh signalling. Blocking any step of this signalling cascade inhibits Hh signalling and correspondingly suppresses the growth of both, fly and human cancer cells harbouring oncogenic Ras mutations. These findings highlight a non-canonical Egfr signalling mechanism, centered on Arf6 as a novel regulator of Hh signalling. This explains both, the puzzling requirement of Egfr in oncogenic Ras-mediated overgrowth and the cooperation between Egfr and Hedgehog. PMID:28281543

  19. Genistein suppresses prostate cancer growth through inhibition of oncogenic microRNA-151.

    PubMed

    Chiyomaru, Takeshi; Yamamura, Soichiro; Zaman, Mohd Saif; Majid, Shahana; Deng, Guoren; Shahryari, Varahram; Saini, Sharanjot; Hirata, Hiroshi; Ueno, Koji; Chang, Inik; Tanaka, Yuichiro; Tabatabai, Z Laura; Enokida, Hideki; Nakagawa, Masayuki; Dahiya, Rajvir

    2012-01-01

    Genistein has been shown to suppress the growth of several cancers through modulation of various pathways. However, the effects of genistein on the regulation of oncogenic microRNA-151 (miR-151) have not been reported. In this study, we investigated whether genistein could alter the expression of oncogenic miR-151 and its target genes that are involved in the progression and metastasis of prostate cancer (PCa). Real-time RT-PCR showed that the expression of miR-151 was higher in PC3 and DU145 cells compared with RWPE-1 cells. Treatment of PC3 and DU145 cells with 25 µM genistein down-regulated the expression of miR-151 compared with vehicle control. Inhibition of miR-151 in PCa cells by genistein significantly inhibited cell migration and invasion. In-silico analysis showed that several genes (CASZ1, IL1RAPL1, SOX17, N4BP1 and ARHGDIA) suggested to have tumor suppressive functions were target genes of miR-151. Luciferase reporter assays indicated that miR-151 directly binds to specific sites on the 3'UTR of target genes. Quantitative real-time PCR analysis showed that the mRNA expression levels of the five target genes in PC3 and DU145 were markedly changed with miR-151 mimics and inhibitor. Kaplan-Meier curves and log-rank tests revealed that high expression levels of miR-151 had an adverse effect on survival rate. This study suggests that genistein mediated suppression of oncogenic miRNAs can be an important dietary therapeutic strategy for the treatment of PCa.

  20. Genistein Suppresses Prostate Cancer Growth through Inhibition of Oncogenic MicroRNA-151

    PubMed Central

    Chiyomaru, Takeshi; Yamamura, Soichiro; Zaman, Mohd Saif; Majid, Shahana; Deng, Guoren; Shahryari, Varahram; Saini, Sharanjot; Hirata, Hiroshi; Ueno, Koji; Chang, Inik; Tanaka, Yuichiro; Tabatabai, Z. Laura; Enokida, Hideki; Nakagawa, Masayuki; Dahiya, Rajvir

    2012-01-01

    Genistein has been shown to suppress the growth of several cancers through modulation of various pathways. However, the effects of genistein on the regulation of oncogenic microRNA-151 (miR-151) have not been reported. In this study, we investigated whether genistein could alter the expression of oncogenic miR-151 and its target genes that are involved in the progression and metastasis of prostate cancer (PCa). Real-time RT-PCR showed that the expression of miR-151 was higher in PC3 and DU145 cells compared with RWPE-1 cells. Treatment of PC3 and DU145 cells with 25 µM genistein down-regulated the expression of miR-151 compared with vehicle control. Inhibition of miR-151 in PCa cells by genistein significantly inhibited cell migration and invasion. In-silico analysis showed that several genes (CASZ1, IL1RAPL1, SOX17, N4BP1 and ARHGDIA) suggested to have tumor suppressive functions were target genes of miR-151. Luciferase reporter assays indicated that miR-151 directly binds to specific sites on the 3′UTR of target genes. Quantitative real-time PCR analysis showed that the mRNA expression levels of the five target genes in PC3 and DU145 were markedly changed with miR-151 mimics and inhibitor. Kaplan-Meier curves and log-rank tests revealed that high expression levels of miR-151 had an adverse effect on survival rate. This study suggests that genistein mediated suppression of oncogenic miRNAs can be an important dietary therapeutic strategy for the treatment of PCa. PMID:22928040

  1. TRAIL induces apoptosis in oral squamous carcinoma cells--a crosstalk with oncogenic Ras regulated cell surface expression of death receptor 5.

    PubMed

    Chen, Jun-Jie; Mikelis, Constantinos M; Zhang, Yaqin; Gutkind, J Silvio; Zhang, Baolin

    2013-02-01

    TNF-related apoptosis inducing ligand (TRAIL) induces apoptosis through its death receptors (DRs) 4 and/or 5 expressed on the surface of target cells. The selectivity of TRAIL towards cancer cells has promoted clinical evaluation of recombinant human TRAIL (rhTRAIL) and its agonistic antibodies in treating several major human cancers including colon and non-Hodgkin's lymphoma. However, little is known about their ability in killing oral squamous cell carcinoma (OSCC) cells. In this study, we tested the apoptotic responses of a panel of seven human OSCC cell lines (HN31, HN30, HN12, HN6, HN4, Cal27, and OSCC3) to rhTRAIL and monoclonal antibodies against DR4 or DR5. We found that rhTRAIL is a potent inducer of apoptosis in most of the oral cancer cell lines tested both in vitro and in vivo. We also showed that DR5 was expressed on the surface of the tested cell lines which correlated with the cellular susceptibility to apoptosis induced by rhTRAIL and anti-DR5 antibody. By contrast, little or no DR4 was detected on the surface of OSCC3 and HN6 cells rendering cellular resistance to DR4 antibody and a reduced sensitivity to rhTRAIL. Notably, the overall TRAIL sensitivity correlated well with the levels of endogenous active Ras in the cell lines tested. Expression of a constitutively active Ras mutant (RasV12) in OSCC3 cells selectively upregulated surface expression of DR5, but not DR4, and restored TRAIL sensitivity. Our findings could have implications for the use of TRAIL receptor targeted therapies in the treatment of human OSCC tumors particularly the ones harboring constitutively active Ras mutant.

  2. Effect of teicoplanin on the expression of c-myc and c-fos proto-oncogenes in MCF-7 breast cancer cell line

    PubMed Central

    Ashouri, Saeideh; Khujin, Maryam Hosseindokht; Kazemi, Mohammad; Kheirollahi, Majid

    2016-01-01

    Background: Teicoplanin is a member of vancomycin-ristocetin family of glycopeptide antibiotics. It mediated wound healing by increasing neovascularization possibly through activation of MAP kinase signaling pathway. The aim of this study is an evaluation of c-myc and c-fos genes expression after treatment of cells by teicoplanin and determines whether this glycopeptide antibiotic exerts its proliferation effects by influencing the expression of these genes. Hence, this study was designed to elucidate one possible mechanism underlying teicoplanin effects on cell proliferation using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Materials and Methods: Breast cancer cell line, MCF-7, was cultured, and three different concentrations of teicoplanin were added to the plates. We measured the cell proliferation rate by MTT assay. After cell harvesting, total RNA was extracted to synthesize single-stranded cDNA. Real-time polymerase chain reaction was performed, and the data were analyzed. Results: It was observed that the level of c-fos and c-myc genes’ expressions was decreased at all three different concentrations of teicoplanin. Conclusion: it could be concluded that although teicoplanin is considered as an enhancing cell growth and proliferation, but probably its effect is not through MAP kinase signaling pathway or perhaps even has inhibitory effect on the expression of some genes such as c-myc and c-fos in this pathway. Hence, the mechanism of action of teicoplanin for increasing cell propagation, through cell signaling pathways or chromosomal abnormalities, remains unclear, and further studies should be conducted. PMID:28028512

  3. Leucine Leucine-37 Uses Formyl Peptide Receptor–Like 1 to Activate Signal Transduction Pathways, Stimulate Oncogenic Gene Expression, and Enhance the Invasiveness of Ovarian Cancer Cells

    PubMed Central

    Coffelt, Seth B.; Tomchuck, Suzanne L.; Zwezdaryk, Kevin J.; Danka, Elizabeth S.; Scandurro, Aline B.

    2009-01-01

    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. However, the receptor or receptors through which these processes are mediated have not been thoroughly examined. In the present study, expression of formyl peptide receptor–like 1 (FPRL1) was confirmed on ovarian cancer cells. Proliferation assays indicated that LL-37 does not signal through a G protein–coupled receptor, such as FPRL1, to promote cancer cell growth. By contrast, FPRL1 was required for LL-37–induced invasion through Matrigel. The peptide stimulated mitogen-activated protein kinase and Janus-activated kinase/signal transducers and activators of transcription signaling cascades and led to the significant activation of several transcription factors, through both FPRL1-dependent and FPRL1-independent pathways. Likewise, expression of some LL-37–stimulated genes was attenuated by the inhibition of FPRL1. Increased expression of CXCL10, EGF, and PDGF-BB as well as other soluble factors was confirmed from conditioned medium of LL-37–treated cells. Taken together, these data suggest that LL-37 potentiates a more aggressive behavior from ovarian cancer cells through its interaction with FPRL1. PMID:19491199

  4. Leucine leucine-37 uses formyl peptide receptor-like 1 to activate signal transduction pathways, stimulate oncogenic gene expression, and enhance the invasiveness of ovarian cancer cells.

    PubMed

    Coffelt, Seth B; Tomchuck, Suzanne L; Zwezdaryk, Kevin J; Danka, Elizabeth S; Scandurro, Aline B

    2009-06-01

    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. However, the receptor or receptors through which these processes are mediated have not been thoroughly examined. In the present study, expression of formyl peptide receptor-like 1 (FPRL1) was confirmed on ovarian cancer cells. Proliferation assays indicated that LL-37 does not signal through a G protein-coupled receptor, such as FPRL1, to promote cancer cell growth. By contrast, FPRL1 was required for LL-37-induced invasion through Matrigel. The peptide stimulated mitogen-activated protein kinase and Janus-activated kinase/signal transducers and activators of transcription signaling cascades and led to the significant activation of several transcription factors, through both FPRL1-dependent and FPRL1-independent pathways. Likewise, expression of some LL-37-stimulated genes was attenuated by the inhibition of FPRL1. Increased expression of CXCL10, EGF, and PDGF-BB as well as other soluble factors was confirmed from conditioned medium of LL-37-treated cells. Taken together, these data suggest that LL-37 potentiates a more aggressive behavior from ovarian cancer cells through its interaction with FPRL1.

  5. Ethyl acetate fraction of adlay bran ethanolic extract inhibits oncogene expression and suppresses DMH-induced preneoplastic lesions of the colon in F344 rats through an anti-inflammatory pathway.

    PubMed

    Chung, Cheng-Pei; Hsu, Hsin-Yi; Huang, Din-Wen; Hsu, Hsing-Hua; Lin, Ju-Tsui; Shih, Chun-Kuang; Chiang, Wenchang

    2010-07-14

    Adlay ( Coix lachryma-jobi L. var. ma-yuen Stapf) is a grass crop and was reported to possess anti-inflammatory activity and an antiproliferative effect in cancer cell lines. The purpose of this study was to evaluate the effects of the ethyl acetate fraction of an adlay bran ethanolic extract (ABE-Ea) on colon carcinogenesis in an animal model and investigate its mechanism. Male F344 rats received 1,2-dimethylhydrazine (DMH) and consumed different doses of ABE-Ea. The medium-dose group (17.28 mg of ABE-Ea/day) exhibited the best suppressive effect on colon carcinogenesis and prevented preneoplastic mucin-depleted foci (MDF) formation. Moreover, RAS and Ets2 oncogenes were significantly down-regulated in this group compared to the negative control group, whereas Wee1, a gene involved in the cell cycle, was up-regulated. Cyclooxygenase-2 (COX-2) protein expression was significantly suppressed in all colons receiving the ABE-Ea, indicating that ABE-Ea delayed carcinogenesis by suppressing chronic inflammation. ABE-Ea included considerable a proportion of phenolic compounds, and ferulic acid was the major phenolic acid (5206 microg/g ABE-Ea) on the basis of HPLC analysis. Results from this study suggest that ABE-Ea suppressed DMH-indued preneoplastic lesions of the colon in F344 rats and that ferulic acid may be one of the active compounds.

  6. A human cellular sequence implicated in trk oncogene activation is DNA damage inducible

    SciTech Connect

    Ben-Ishai, R.; Scharf, R.; Sharon, R.; Kapten, I. )

    1990-08-01

    Xeroderma pigmentosum cells, which are deficient in the repair of UV light-induced DNA damage, have been used to clone DNA-damage-inducible transcripts in human cells. The cDNA clone designated pC-5 hybridizes on RNA gel blots to a 1-kilobase transcript, which is moderately abundant in nontreated cells and whose synthesis is enhanced in human cells following UV irradiation or treatment with several other DNA-damaging agents. UV-enhanced transcription of C-5 RNA is transient and occurs at lower fluences and to a greater extent in DNA-repair-deficient than in DNA-repair-proficient cells. Southern blot analysis indicates that the C-5 gene belongs to a multigene family. A cDNA clone containing the complete coding sequence of C-5 was isolated. Sequence analysis revealed that it is homologous to a human cellular sequence encoding the amino-terminal activating sequence of the trk-2h chimeric oncogene. The presence of DNA-damage-responsive sequences at the 5' end of a chimeric oncogene could result in enhanced expression of the oncogene in response to carcinogens.

  7. PIK3CA is implicated as an oncogene in ovarian cancer

    SciTech Connect

    Shayesteh, Laleh; Lu, Yiling; Kuo, Wen-Lin; Baldocchi, Russell; Godfrey, Tony; Collins, Colin; Pinkel, Daniel; Powell, Bethan; Mills,Gordon B.; Gray, Joe W.

    1998-03-25

    Ovarian cancer is the leading cause of death from gynecological malignancy and the fourth leading cause of cancer death among American women, yet little is known about its molecular aetiology. Studies using comparative genomic hybridization (CGH) have revealed several regions of recurrent, abnormal, DNA sequence copy number that may encode genes involved in the genesis or progression of the disease. One region at 3q26 found to be increased in copy number in approximately 40 percent of ovarian and other cancers contains PIK3CA, which encodes the p110 a catalytic subunit of phosphatidylinositol 3-kinase(PI3-kinase). The association between PIK3CA copy number and PI3-kinase activity makes PIK3CA a candidate oncogene because a broad range of cancer-related functions have been associated with PI3-kinase mediated signaling. These include proliferation, glucose transport and catabolism, cell adhesion, apoptosis, RAS signaling and oncogenic transformation. In addition, downstream effectors of PI3-kinase,AKT1 and AKT2, have been found to be amplified or activated in human tumors, including ovarian cancer. We show here that PIK3CA is frequently increased in copy number in ovarian cancers, that the increased copy number is associated with increased PIK3CA transcription, p110 a protein expression and PI3-kinase activity and that treatment with the PI3-kinase inhibitor LY294002 decreases proliferation and increases apoptosis. Our observations suggest PIK3CA is an oncogene that has an important role in ovarian cancer.

  8. A combined oncogenic pathway signature of BRAF, KRAS and PI3KCA mutation improves colorectal cancer classification and cetuximab treatment prediction.

    PubMed

    Tian, Sun; Simon, Iris; Moreno, Victor; Roepman, Paul; Tabernero, Josep; Snel, Mireille; van't Veer, Laura; Salazar, Ramon; Bernards, Rene; Capella, Gabriel

    2013-04-01

    To develop gene expression profiles that characterise KRAS-, BRAF- or PIK3CA-activated- tumours, and to explore whether these profiles might be helpful in predicting the response to the epidermal growth factor receptor (EGFR) pathway inhibitors better than mutation status alone. Fresh frozen tumour samples from 381 colorectal cancer (CRC) patients were collected and mutations in KRAS, BRAF and PIK3CA were assessed. Using microarray data, three individual oncogenic and a combined model were developed and validated in an independent set of 80 CRC patients, and in a dataset from metastatic CRC patients treated with cetuximab. 175 tumours (45.9%) harboured oncogenic mutations in KRAS (30.2%), BRAF (11.0%) and PIK3CA (11.5%). Activating mutation signatures for KRAS (75 genes), for BRAF (58 genes,) and for PIK3CA (49 genes) were developed. The development of a combined oncogenic pathway signature-classified tumours as 'activated oncogenic', or as 'wildtype-like' with a sensitivity of 90.3% and a specificity of 61.7%. The identified signature revealed other mechanisms that can activate ERK/MAPK pathway in KRAS, BRAF and PIK3CA wildtype patients. The combined signature is associated with response to cetuximab treatment in patients with metastatic CRC (HR 2.51, p<0.0009). A combined oncogenic pathway signature allows the identification of patients with an active EGFR-signalling pathway that could benefit from downstream pathway inhibition.

  9. Oncogenes and RNA splicing of human tumor viruses.

    PubMed

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2014-09-01

    Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein-Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis.

  10. Oncogenes and RNA splicing of human tumor viruses

    PubMed Central

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2014-01-01

    Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein–Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis. PMID:26038756

  11. Novel insights of the gastric gland organization revealed by chief cell specific expression of moesin.

    PubMed

    Zhu, Lixin; Hatakeyama, Jason; Zhang, Bing; Makdisi, Joy; Ender, Cody; Forte, John G

    2009-02-01

    ERM (ezrin, radixin, and moesin) proteins play critical roles in epithelial and endothelial cell polarity, among other functions. In gastric glands, ezrin is mainly expressed in acid-secreting parietal cells, but not in mucous neck cells or zymogenic chief cells. In looking for other ERM proteins, moesin was found lining the lumen of much of the gastric gland, but it was not expressed in parietal cells. No significant radixin expression was detected in the gastric glands. Moesin showed an increased gradient of expression from the neck to the base of the glands. In addition, the staining pattern of moesin revealed a branched morphology for the gastric lumen. This pattern of short branches extending from the glandular lumen was confirmed by using antibody against zonula occludens-1 (ZO-1) to stain tight junctions. With a mucous neck cell probe (lectin GSII, from Griffonia simplicifolia) and a chief cell marker (pepsinogen C), immunohistochemistry revealed that the mucous neck cells at the top of the glands do not express moesin, but, progressing toward the base, mucous cells showing decreased GSII staining had low or moderate level of moesin expression. The level of moesin expression continued to increase toward the base of the glands and reached a plateau in the base where chief cells and parietal cells abound. The level of pepsinogen expression also increased toward the base. Pepsinogen C was located on cytoplasmic granules and/or more generally distributed in chief cells, whereas moesin was exclusively expressed on the apical membrane. This is a clear demonstration of distinctive cellular expression of two ERM family members in the same tissue. The results provide the first evidence that moesin is involved in the cell biology of chief cells. Novel insights on gastric gland morphology revealed by the moesin and ZO-1 staining provide the basis for a model of cell maturation and migration within the gland.

  12. Integrative analysis of genome-wide loss of heterozygosity and monoallelic expression at nucleotide resolution reveals disrupted pathways in triple-negative breast cancer.

    PubMed

    Ha, Gavin; Roth, Andrew; Lai, Daniel; Bashashati, Ali; Ding, Jiarui; Goya, Rodrigo; Giuliany, Ryan; Rosner, Jamie; Oloumi, Arusha; Shumansky, Karey; Chin, Suet-Feung; Turashvili, Gulisa; Hirst, Martin; Caldas, Carlos; Marra, Marco A; Aparicio, Samuel; Shah, Sohrab P

    2012-10-01

    Loss of heterozygosity (LOH) and copy number alteration (CNA) feature prominently in the somatic genomic landscape of tumors. As such, karyotypic aberrations in cancer genomes have been studied extensively to discover novel oncogenes and tumor-suppressor genes. Advances in sequencing technology have enabled the cost-effective detection of tumor genome and transcriptome mutation events at single-base-pair resolution; however, computational methods for predicting segmental regions of LOH in this context are not yet fully explored. Consequently, whole transcriptome, nucleotide-level resolution analysis of monoallelic expression patterns associated with LOH has not yet been undertaken in cancer. We developed a novel approach for inference of LOH from paired tumor/normal sequence data and applied it to a cohort of 23 triple-negative breast cancer (TNBC) genomes. Following extensive benchmarking experiments, we describe the nucleotide-resolution landscape of LOH in TNBC and assess the consequent effect of LOH on the transcriptomes of these tumors using RNA-seq-derived measurements of allele-specific expression. We show that the majority of monoallelic expression in the transcriptomes of triple-negative breast cancer can be explained by genomic regions of LOH and establish an upper bound for monoallelic expression that may be explained by other tumor-specific modifications such as epigenetics or mutations. Monoallelically expressed genes associated with LOH reveal that cell cycle, homologous recombination and actin-cytoskeletal functions are putatively disrupted by LOH in TNBC. Finally, we show how inference of LOH can be used to interpret allele frequencies of somatic mutations and postulate on temporal ordering of mutations in the evolutionary history of these tumors.

  13. Integrative analysis of genome-wide loss of heterozygosity and monoallelic expression at nucleotide resolution reveals disrupted pathways in triple-negative breast cancer

    PubMed Central

    Ha, Gavin; Roth, Andrew; Lai, Daniel; Bashashati, Ali; Ding, Jiarui; Goya, Rodrigo; Giuliany, Ryan; Rosner, Jamie; Oloumi, Arusha; Shumansky, Karey; Chin, Suet-Feung; Turashvili, Gulisa; Hirst, Martin; Caldas, Carlos; Marra, Marco A.; Aparicio, Samuel; Shah, Sohrab P.

    2012-01-01

    Loss of heterozygosity (LOH) and copy number alteration (CNA) feature prominently in the somatic genomic landscape of tumors. As such, karyotypic aberrations in cancer genomes have been studied extensively to discover novel oncogenes and tumor-suppressor genes. Advances in sequencing technology have enabled the cost-effective detection of tumor genome and transcriptome mutation events at single-base-pair resolution; however, computational methods for predicting segmental regions of LOH in this context are not yet fully explored. Consequently, whole transcriptome, nucleotide-level resolution analysis of monoallelic expression patterns associated with LOH has not yet been undertaken in cancer. We developed a novel approach for inference of LOH from paired tumor/normal sequence data and applied it to a cohort of 23 triple-negative breast cancer (TNBC) genomes. Following extensive benchmarking experiments, we describe the nucleotide-resolution landscape of LOH in TNBC and assess the consequent effect of LOH on the transcriptomes of these tumors using RNA-seq-derived measurements of allele-specific expression. We show that the majority of monoallelic expression in the transcriptomes of triple-negative breast cancer can be explained by genomic regions of LOH and establish an upper bound for monoallelic expression that may be explained by other tumor-specific modifications such as epigenetics or mutations. Monoallelically expressed genes associated with LOH reveal that cell cycle, homologous recombination and actin-cytoskeletal functions are putatively disrupted by LOH in TNBC. Finally, we show how inference of LOH can be used to interpret allele frequencies of somatic mutations and postulate on temporal ordering of mutations in the evolutionary history of these tumors. PMID:22637570

  14. Internal representations reveal cultural diversity in expectations of facial expressions of emotion.

    PubMed

    Jack, Rachael E; Caldara, Roberto; Schyns, Philippe G

    2012-02-01

    Facial expressions have long been considered the "universal language of emotion." Yet consistent cultural differences in the recognition of facial expressions contradict such notions (e.g., R. E. Jack, C. Blais, C. Scheepers, P. G. Schyns, & R. Caldara, 2009). Rather, culture--as an intricate system of social concepts and beliefs--could generate different expectations (i.e., internal representations) of facial expression signals. To investigate, they used a powerful psychophysical technique (reverse correlation) to estimate the observer-specific internal representations of the 6 basic facial expressions of emotion (i.e., happy, surprise, fear, disgust, anger, and sad) in two culturally distinct groups (i.e., Western Caucasian [WC] and East Asian [EA]). Using complementary statistical image analyses, cultural specificity was directly revealed in these representations. Specifically, whereas WC internal representations predominantly featured the eyebrows and mouth, EA internal representations showed a preference for expressive information in the eye region. Closer inspection of the EA observer preference revealed a surprising feature: changes of gaze direction, shown primarily among the EA group. For the first time, it is revealed directly that culture can finely shape the internal representations of common facial expressions of emotion, challenging notions of a biologically hardwired "universal language of emotion."

  15. A cyclometallated iridium(III) complex as a c-myc G-quadruplex stabilizer and down-regulator of c-myc oncogene expression.

    PubMed

    Yang, H; Ma, V P-Y; Chan, D S-H; He, H-Z; Leung, C-H; Ma, D-L

    2013-01-01

    A new cyclometallated iridium(III) complex with the 2,2'-biquinoline N-donor ligand has been synthesized and characterized. The interaction and affinity of the complex towards c-myc G-quadruplex and duplex DNA have been investigated using UV/Vis spectroscopy and gel mobility shift assay. These studies revealed that complex 1 binds to c-myc G-quadruplexes (Pu22 and Pu27) with high affinity but does not interact with duplex DNA either by intercalation or groove binding. The ability of 1 to stabilize c-myc G-quadruplex DNA in vitro has also been examined through a PCR stop assay and a cell-based luciferase reporter assay. Complex 1 displays promising cytotoxic activity against the HeLa cell line with sub-micromolar potency.

  16. Can plant oncogenes inhibit programmed cell death? The rolB oncogene reduces apoptosis-like symptoms in transformed plant cells.

    PubMed

    Gorpenchenko, Tatiana Y; Aminin, Dmitry L; Vereshchagina, Yuliya V; Shkryl, Yuri N; Veremeichik, Galina N; Tchernoded, Galina K; Bulgakov, Victor P

    2012-09-01

    The rolB oncogene was previously identified as an important player in ROS metabolism in transformed plant cells. Numerous reports indicate a crucial role for animal oncogenes in apoptotic cell death. Whether plant oncogenes such as rolB can induce programmed cell death (PCD) in transformed plant cells is of particular importance. In this investigation, we used a single-cell assay based on confocal microscopy and fluorescent dyes capable of discriminating between apoptotic and necrotic cells. Our results indicate that the expression of rolB in plant cells was sufficient to decrease the proportion of apoptotic cells in steady-state conditions and diminish the rate of apoptotic cells during induced PCD. These data suggest that plant oncogenes, like animal oncogenes, may be involved in the processes mediating PCD.

  17. Identification of MYC-Dependent Transcriptional Programs in Oncogene-Addicted Liver Tumors.

    PubMed

    Kress, Theresia R; Pellanda, Paola; Pellegrinet, Luca; Bianchi, Valerio; Nicoli, Paola; Doni, Mirko; Recordati, Camilla; Bianchi, Salvatore; Rotta, Luca; Capra, Thelma; Ravà, Micol; Verrecchia, Alessandro; Radaelli, Enrico; Littlewood, Trevor D; Evan, Gerard I; Amati, Bruno

    2016-06-15

    Tumors driven by activation of the transcription factor MYC generally show oncogene addiction. However, the gene expression programs that depend upon sustained MYC activity remain unknown. In this study, we employed a mouse model of liver carcinoma driven by a reversible tet-MYC transgene, combined with chromatin immunoprecipitation and gene expression profiling to identify MYC-dependent regulatory events. As previously reported, MYC-expressing mice exhibited hepatoblastoma- and hepatocellular carcinoma-like tumors, which regressed when MYC expression was suppressed. We further show that cellular transformation, and thus initiation of liver tumorigenesis, were impaired in mice harboring a MYC mutant unable to associate with the corepressor protein MIZ1 (ZBTB17). Notably, switching off the oncogene in advanced carcinomas revealed that MYC was required for the continuous activation and repression of distinct sets of genes, constituting no more than half of all genes deregulated during tumor progression and an even smaller subset of all MYC-bound genes. Altogether, our data provide the first detailed analysis of a MYC-dependent transcriptional program in a fully developed carcinoma and offer a guide to identifying the critical effectors contributing to MYC-driven tumor maintenance. Cancer Res; 76(12); 3463-72. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Chemopreventive activity of plant flavonoid isorhamnetin in colorectal cancer is mediated by oncogenic Src and β-catenin.

    PubMed

    Saud, Shakir M; Young, Matthew R; Jones-Hall, Yava L; Ileva, Lilia; Evbuomwan, Moses O; Wise, Jennifer; Colburn, Nancy H; Kim, Young S; Bobe, Gerd

    2013-09-01

    Analysis of the Polyp Prevention Trial showed an association between an isorhamnetin-rich diet and a reduced risk of advanced adenoma recurrence; however, the mechanism behind the chemoprotective effects of isorhamnetin remains unclear. Here, we show that isorhamnetin prevents colorectal tumorigenesis of FVB/N mice treated with the chemical carcinogen azoxymethane and subsequently exposed to colonic irritant dextran sodium sulfate (DSS). Dietary isorhamnetin decreased mortality, tumor number, and tumor burden by 62%, 35%, and 59%, respectively. MRI, histopathology, and immunohistochemical analysis revealed that dietary isorhamnetin resolved the DSS-induced inflammatory response faster than the control diet. Isorhamnetin inhibited AOM/DSS-induced oncogenic c-Src activation and β-catenin nuclear translocation, while promoting the expression of C-terminal Src kinase (CSK), a negative regulator of Src family of tyrosine kinases. Similarly, in HT-29 colon cancer cells, isorhamnetin inhibited oncogenic Src activity and β-catenin nuclear translocation by inducing expression of csk, as verified by RNA interference knockdown of csk. Our observations suggest the chemoprotective effects of isorhamnetin in colon cancer are linked to its anti-inflammatory activities and its inhibition of oncogenic Src activity and consequential loss of nuclear β-catenin, activities that are dependent on CSK expression.

  19. Metabolic rewiring by oncogenic BRAF V600E links ketogenesis pathway to BRAF-MEK1 signaling

    PubMed Central

    Elf, Shannon; Ji, Quanjiang; Zhao, Liang; Jin, Lingtao; Seo, Jae Ho; Shan, Changliang; Arbiser, Jack L.; Cohen, Cynthia; Brat, Daniel; Miziorko, Henry M.; Kim, Eunhee; Abdel-Wahab, Omar; Merghoub, Taha; Fröhling, Stefan; Scholl, Claudia; Tamayo, Pablo; Barbie, David A.; Zhou, Lu; Pollack, Brian P.; Fisher, Kevin; Kudchadkar, Ragini R.; Lawson, David H.; Sica, Gabriel; Rossi, Michael; Lonial, Sagar; Khoury, Hanna J.; Khuri, Fadlo R.; Lee, Benjamin H.; Boggon, Titus J.; He, Chuan; Kang, Sumin; Chen, Jing

    2015-01-01

    SUMMARY Many human cancers share similar metabolic alterations, including the Warburg effect. However, it remains unclear whether oncogene-specific metabolic alterations are required for tumor development. Here we demonstrate a “synthetic lethal” interaction between oncogenic BRAF V600E and a ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL). HMGCL expression is upregulated in BRAF V600E-expressing human primary melanoma and hairy cell leukemia cells. Suppression of HMGCL specifically attenuates proliferation and tumor growth potential of human melanoma cells expressing BRAF V600E. Mechanistically, active BRAF upregulates HMGCL through an octamer transcription factor Oct-1, leading to increased intracellular levels of HMGCL product, acetoacetate, which selectively enhances binding of BRAF V600E but not BRAF wild type to MEK1 in V600E-positive cancer cells to promote activation of MEK-ERK signaling. These findings reveal a mutation-specific mechanism by which oncogenic BRAF V600E “rewires” metabolic and cell signaling networks and signals through the Oct-1-HMGCL-acetoacetate axis to selectively promote BRAF V600E-dependent tumor development. PMID:26145173

  20. c-ets1 proto-oncogene is a transcription factor expressed in endothelial cells during tumor vascularization and other forms of angiogenesis in humans.

    PubMed

    Wernert, N; Raes, M B; Lassalle, P; Dehouck, M P; Gosselin, B; Vandenbunder, B; Stehelin, D

    1992-01-01

    The c-ets1 proteins are transcriptional activators expressed within endothelial cells during blood vessel development in chick embryos. The authors show by in situ hybridization that c-ets1 is transcribed in the endothelia during angiogenesis in human embryos, in granulation tissue, and especially during tumor vascularization. c-ets1 mRNAs were also detected in the fibrocytes of tumor stroma and in the spindle cells of Kaposi's sarcomas, regarded as cells of endothelial origin. It has been shown that the c-ets proteins activate transcription through a PEA3 motif that plays a role in the stimulation of transcription of urokinase-type plasminogen-activator (u-PA), stromelysin and collagenase genes. The authors demonstrate in vitro that the angiogenic factor TNF alpha increases transiently the amount of both c-ets1 and u-PA mRNA in confluent human umbilical vein endothelial cells. Therefore, the authors suggest that the c-ets1 proteins might regulate the transcription of the genes coding for matrix-degrading proteases, which are necessary for both angiogenesis and tumor invasion.

  1. TPR-MET oncogenic rearrangement: Detection by polymerase chain reaction amplification of the transcript and expression in human tumor cells lines

    SciTech Connect

    Soman, N.R.; Wogan, G.N. ); Rhim, J.S. )

    1990-01-01

    Activation of the MET protooncogene by a rearrangement involving the fusion of TPR and MET specific gene sequences has been observed in a human osteosarcoma cell line (HOS) treated in vitro with N-methyl-N{prime}-nitro-N-nitrosoguanidine (MNNG). No information has been available about the possible occurrence of this rearrangement in human tumors. To facilitate rapid screening of human cell lines and tumor samples for this specific gene rearrangement; the authors developed a sensitive detection method based on polymerase chain reaction (PCR) amplification of TPR-MET mRNA. cDNA was generated from cellular transcripts by using one of the PCR primers, which was then used as a template for PCR amplification of a 205-base-pair region carrying the breakpoint. An end-labeled internal probe was hybridized in solution to an aliquot of the PCR product for detecting amplification. Cells could be directly screened by the assay without prior isolation of RNA. A 205-base-pair DNA fragment characteristic of the TRP-MET rearrangement was detected in cell lines previously known to contain this altered sequence. The rearrangement was also detected at very low levels in the parental (nontransformed) cell line, HOS TE-85. A preliminary survey of cell lines derived from a variety of human tumors indicates that TPR-MET rearrangement occurred and was expressed at very low frequencies by cells from 7 of 14 tumors of nonhematopoietic origin.

  2. Metatranscriptome sequence analysis reveals diel periodicity of microbial community gene expression in the ocean's interior

    NASA Astrophysics Data System (ADS)

    Vislova, A.; Aylward, F.; Sosa, O.; DeLong, E.

    2016-02-01

    Previous work has revealed diel periodicity of gene expression in key metabolic pathways in both autotrophic and heterotrophic microbes in the surface ocean. In this study, we investigated patterns of diel periodicity of gene expression in depth profiles (25, 75, 125 and 250 meters). We postulated that microbial diel transcriptional signals would be increasingly dampened with depth, and that the timing of peak expression of specific transcripts would be shifted in time between depths, in accordance with depth-dependent diel light variability. Bacterioplankton were sampled from four depths every four hours at station ALOHA (22° 45' N 158° W) over 2 days. RNA was extracted from cells preserved on filters, converted to cDNA, and sequenced on the Illumina platform. Surprisingly, harmonic regression analysis revealed an increasing proportion of genes with diel periodic expression patterns with increasing depth between 25- 125 meters. At 250 meters, the proportion of genes exhibiting diel expression patterns decreased an order of magnitude compared to the photic zone. Community composition, functional gene categories, and diel patterns of gene expression were significantly different between the photic zone and 250 meter samples. The signals driving diel periodic gene expression in microbes at 250 meters is under further investigation. These data are now beginning provide a better understanding of the tempo and mode of microbial dynamics among specific taxa, throughout the ocean's interior.

  3. Analysis of spatial-temporal gene expression patterns reveals dynamics and regionalization in developing mouse brain.

    PubMed

    Chou, Shen-Ju; Wang, Chindi; Sintupisut, Nardnisa; Niou, Zhen-Xian; Lin, Chih-Hsu; Li, Ker-Chau; Yeang, Chen-Hsiang

    2016-01-20

    Allen Brain Atlas (ABA) provides a valuable resource of spatial/temporal gene expressions in mammalian brains. Despite rich information extracted from this database, current analyses suffer from several limitations. First, most studies are either gene-centric or region-centric, thus are inadequate to capture the superposition of multiple spatial-temporal patterns. Second, standard tools of expression analysis such as matrix factorization can capture those patterns but do not explicitly incorporate spatial dependency. To overcome those limitations, we proposed a computational method to detect recurrent patterns in the spatial-temporal gene expression data of developing mouse brains. We demonstrated that regional distinction in brain development could be revealed by localized gene expression patterns. The patterns expressed in the forebrain, medullary and pontomedullary, and basal ganglia are enriched with genes involved in forebrain development, locomotory behavior, and dopamine metabolism respectively. In addition, the timing of global gene expression patterns reflects the general trends of molecular events in mouse brain development. Furthermore, we validated functional implications of the inferred patterns by showing genes sharing similar spatial-temporal expression patterns with Lhx2 exhibited differential expression in the embryonic forebrains of Lhx2 mutant mice. These analysis outcomes confirm the utility of recurrent expression patterns in studying brain development.

  4. Genome-Wide Analysis of Gene Expression in Primate Taste Buds Reveals Links to Diverse Processes

    PubMed Central

    Lu, Min; Gao, Na; White, Evan; Echeverri, Fernando; Kalabat, Dalia; Soto, Hortensia; Laita, Bianca; Li, Cherry; Yeh, Shaoyang Anthony; Zoller, Mark; Zlotnik, Albert

    2009-01-01

    Efforts to unravel the mechanisms underlying taste sensation (gustation) have largely focused on rodents. Here we present the first comprehensive characterization of gene expression in primate taste buds. Our findings reveal unique new insights into the biology of taste buds. We generated a taste bud gene expression database using laser capture microdissection (LCM) procured fungiform (FG) and circumvallate (CV) taste buds from primates. We also used LCM to collect the top and bottom portions of CV taste buds. Affymetrix genome wide arrays were used to analyze gene expression in all samples. Known taste receptors are preferentially expressed in the top portion of taste buds. Genes associated with the cell cycle and stem cells are preferentially expressed in the bottom portion of taste buds, suggesting that precursor cells are located there. Several chemokines including CXCL14 and CXCL8 are among the highest expressed genes in taste buds, indicating that immune system related processes are active in taste buds. Several genes expressed specifically in endocrine glands including growth hormone releasing hormone and its receptor are also strongly expressed in taste buds, suggesting a link between metabolism and taste. Cell type-specific expression of transcription factors and signaling molecules involved in cell fate, including KIT, reveals the taste bud as an active site of cell regeneration, differentiation, and development. IKBKAP, a gene mutated in familial dysautonomia, a disease that results in loss of taste buds, is expressed in taste cells that communicate with afferent nerve fibers via synaptic transmission. This database highlights the power of LCM coupled with transcriptional profiling to dissect the molecular composition of normal tissues, represents the most comprehensive molecular analysis of primate taste buds to date, and provides a foundation for further studies in diverse aspects of taste biology. PMID:19636377

  5. Protein kinase Cι: human oncogene, prognostic marker and therapeutic target

    PubMed Central

    Fields, Alan P.; Regala, Roderick P.

    2009-01-01

    The Protein kinase C (PKC) family of serine/threonine kinases has been the subject of intensive study in the field of cancer since their initial discovery as major cellular receptors for the tumor promoting phorbol esters nearly thirty years ago. However, despite these efforts, the search for a direct genetic link between members of the PKC family and human cancer has yielded only circumstantial evidence that any PKC isozyme is a true cancer gene. This situation changed in the past year with the discovery that atypical protein kinase C iota (PKCι) is a bonafide human oncogene. PKCι is required for the transformed growth of human cancer cells and the PKCι gene is the target of tumor-specific gene amplification in multiple forms of human cancer. PKCι participates in multiple aspects of the transformed phenotype of human cancer cells including transformed growth, invasion and survival. Herein, we review pertinent aspects of atypical PKC structure, function and regulation that relate to the role of these enzymes in oncogenesis. We discuss the evidence that PKCι is a human oncogene, review mechanisms controlling PKCι expression in human cancers, and describe the molecular details of PKCι-mediated oncogenic signaling. We conclude with a discussion of how oncogenic PKCι signaling has been successfully targeted to identify a novel, mechanism-based therapeutic drug currently entering clinical trials for treatment of human lung cancer. Throughout, we identify key unanswered questions and exciting future avenues of investigation regarding this important oncogenic molecule. PMID:17570678

  6. Differential expression and co-expression gene networks reveal candidate biomarkers of boar taint in non-castrated pigs.

    PubMed

    Drag, Markus; Skinkyté-Juskiené, Ruta; Do, Duy N; Kogelman, Lisette J A; Kadarmideen, Haja N

    2017-09-22

    Boar taint (BT) is an offensive odour or taste observed in pork from a proportion of non-castrated male pigs. Surgical castration is effective in avoiding BT, but animal welfare issues have created an incentive for alternatives such as genomic selection. In order to find candidate biomarkers, gene expression profiles were analysed from tissues of non-castrated pigs grouped by their genetic merit of BT. Differential expression analysis revealed substantial changes with log-transformed fold changes of liver and testis from -3.39 to 2.96 and -7.51 to 3.53, respectively. Co-expression network analysis revealed one module with a correlation of -0.27 in liver and three modules with correlations of 0.31, -0.44 and -0.49 in testis. Differential expression and co-expression analysis revealed candidate biomarkers with varying biological functions: phase I (COQ3, COX6C, CYP2J2, CYP2B6, ACOX2) and phase II metabolism (GSTO1, GSR, FMO3) of skatole and androstenone in liver to steroidgenesis (HSD17B7, HSD17B8, CYP27A1), regulation of steroidgenesis (STARD10, CYB5R3) and GnRH signalling (MAPK3, MAP2K2, MAP3K2) in testis. Overrepresented pathways included "Ribosome", "Protein export" and "Oxidative phosphorylation" in liver and "Steroid hormone biosynthesis" and "Gap junction" in testis. Future work should evaluate the biomarkers in large populations to ensure their usefulness in genomic selection programs.

  7. Mouse Elk oncogene maps to chromosome X and a novel Elk oncogene (Elk3) maps to chromosome 10

    SciTech Connect

    Tamai, Yoshitaka; Taketo, Makoto; Nozaki, Masami

    1995-03-20

    The Elk protein is a member of the Ets family found in both vertebrates and invertebrates. Human ELK1 encoded by ELK1 binds alone or together with serum response factor to DNA and regulates gene expression in a variety of biological processes. Using a panel of interspecific backcross mice, we have mapped the Elk oncogene (Elk) and a novel type Elk oncogene (Elk3), closely related to ELK1. Elk maps to Chr X, and Elk3 maps to the proximal region of Chr 10. 18 refs., 1 fig., 1 tab.

  8. First in Vivo Batrachochytrium dendrobatidis Transcriptomes Reveal Mechanisms of Host Exploitation, Host-Specific Gene Expression, and Expressed Genotype Shifts.

    PubMed

    Ellison, Amy R; DiRenzo, Graziella V; McDonald, Caitlin A; Lips, Karen R; Zamudio, Kelly R

    2017-01-05

    For generalist pathogens, host species represent distinct selective environments, providing unique challenges for resource acquisition and defense from host immunity, potentially resulting in host-dependent differences in pathogen fitness. Gene expression modulation should be advantageous, responding optimally to a given host and mitigating the costs of generalism. Batrachochytrium dendrobatidis (Bd), a fungal pathogen of amphibians, shows variability in pathogenicity among isolates, and within-strain virulence changes rapidly during serial passages through artificial culture. For the first time, we characterize the transcriptomic profile of Bd in vivo, using laser-capture microdissection. Comparison of Bd transcriptomes (strain JEL423) in culture and in two hosts (Atelopus zeteki and Hylomantis lemur), reveals >2000 differentially expressed genes that likely include key Bd defense and host exploitation mechanisms. Variation in Bd transcriptomes from different amphibian hosts demonstrates shifts in pathogen resource allocation. Furthermore, expressed genotype variant frequencies of Bd populations differ between culture and amphibian skin, and among host species, revealing potential mechanisms underlying rapid changes in virulence and the possibility that amphibian community composition shapes Bd evolutionary trajectories. Our results provide new insights into how changes in gene expression and infecting population genotypes can be key to the success of a generalist fungal pathogen. Copyright © 2017 Ellison et al.

  9. First in Vivo Batrachochytrium dendrobatidis Transcriptomes Reveal Mechanisms of Host Exploitation, Host-Specific Gene Expression, and Expressed Genotype Shifts

    PubMed Central

    Ellison, Amy R.; DiRenzo, Graziella V.; McDonald, Caitlin A.; Lips, Karen R.; Zamudio, Kelly R.

    2016-01-01

    For generalist pathogens, host species represent distinct selective environments, providing unique challenges for resource acquisition and defense from host immunity, potentially resulting in host-dependent differences in pathogen fitness. Gene expression modulation should be advantageous, responding optimally to a given host and mitigating the costs of generalism. Batrachochytrium dendrobatidis (Bd), a fungal pathogen of amphibians, shows variability in pathogenicity among isolates, and within-strain virulence changes rapidly during serial passages through artificial culture. For the first time, we characterize the transcriptomic profile of Bd in vivo, using laser-capture microdissection. Comparison of Bd transcriptomes (strain JEL423) in culture and in two hosts (Atelopus zeteki and Hylomantis lemur), reveals >2000 differentially expressed genes that likely include key Bd defense and host exploitation mechanisms. Variation in Bd transcriptomes from different amphibian hosts demonstrates shifts in pathogen resource allocation. Furthermore, expressed genotype variant frequencies of Bd populations differ between culture and amphibian skin, and among host species, revealing potential mechanisms underlying rapid changes in virulence and the possibility that amphibian community composition shapes Bd evolutionary trajectories. Our results provide new insights into how changes in gene expression and infecting population genotypes can be key to the success of a generalist fungal pathogen. PMID:27856699

  10. Tumour-suppressive microRNA-224 inhibits cancer cell migration and invasion via targeting oncogenic TPD52 in prostate cancer.

    PubMed

    Goto, Yusuke; Nishikawa, Rika; Kojima, Satoko; Chiyomaru, Takeshi; Enokida, Hideki; Inoguchi, Satoru; Kinoshita, Takashi; Fuse, Miki; Sakamoto, Shinichi; Nakagawa, Masayuki; Naya, Yukio; Ichikawa, Tomohiko; Seki, Naohiko

    2014-05-21

    Our recent study of the microRNA expression signature of prostate cancer (PCa) revealed that microRNA-224 (miR-224) is significantly downregulated in PCa tissues. Here, we found that restoration of miR-224 significantly inhibits PCa cell migration and invasion. Additionally, we found that oncogenic TPD52 is a direct target of miR-224 regulation. Silencing of the TPD52 gene significantly inhibits cancer cell migration and invasion. Moreover, TPD52 expression is upregulated in cancer tissues and negatively correlates with miR-224 expression. We conclude that loss of tumour-suppressive miR-224 enhances cancer cell migration and invasion in PCa through direct regulation of oncogenic TPD52. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells

    PubMed Central

    Tan, David W. M.; Jensen, Kim B.; Trotter, Matthew W. B.; Connelly, John T.; Broad, Simon; Watt, Fiona M.

    2013-01-01

    Human epidermal stem cells express high levels of β1 integrins, delta-like 1 (DLL1) and the EGFR antagonist LRIG1. However, there is cell-to-cell variation in the relative abundance of DLL1 and LRIG1 mRNA transcripts. Single-cell global gene expression profiling showed that undifferentiated cells fell into two clusters delineated by expression of DLL1 and its binding partner syntenin. The DLL1+ cluster had elevated expression of genes associated with endocytosis, integrin-mediated adhesion and receptor tyrosine kinase signalling. Differentially expressed genes were not independently regulated, as overexpression of DLL1 alone or together with LRIG1 led to the upregulation of other genes in the DLL1+ cluster. Overexpression of DLL1 and LRIG1 resulted in enhanced extracellular matrix adhesion and increased caveolin-dependent EGFR endocytosis. Further characterisation of CD46, one of the genes upregulated in the DLL1+ cluster, revealed it to be a novel cell surface marker of human epidermal stem cells. Cells with high endogenous levels of CD46 expressed high levels of β1 integrin and DLL1 and were highly adhesive and clonogenic. Knockdown of CD46 decreased proliferative potential and β1 integrin-mediated adhesion. Thus, the previously unknown heterogeneity revealed by our studies results in differences in the interaction of undifferentiated basal keratinocytes with their environment. PMID:23482486

  12. The bcl-2 candidate proto-oncogene product is a 24-kilodalton integral-membrane protein highly expressed in lymphoid cell lines and lymphomas carrying the t(14;18) translocation.

    PubMed Central

    Chen-Levy, Z; Nourse, J; Cleary, M L

    1989-01-01

    We have identified a 24-kilodalton protein that is the product of the human bcl-2 gene, implicated as an oncogene because of its presence at the site of t(14;18) translocation breakpoints. The Bcl-2 protein was detected by specific, highly sensitive rabbit antibodies and was shown to be present in a number of human lymphoid cell lines and tissues, as well as in mouse B cells transfected with a bcl-2 cDNA construct. Characterization of the Bcl-2 protein demonstrated that it has a lipophilic nature and is associated with membrane structures, probably by means of its hydrophobic carboxy-terminal membrane-spanning domain. In t(14;18)-carrying cell lines, the protein is predominantly localized to the perinuclear endoplasmic reticulum, with a minor fraction in the plasma membrane. These properties, together with the observations that Bcl-2 does not have a characteristic signal peptide and is not glycosylated, suggest that it is an integral-membrane protein that spans the bilayer at its C-terminal hydrophobic region but is exposed only at the cytoplasmic surface. The relative abundance of the Bcl-2 protein in various human lymphoid cell lines correlated with transcription of the bcl-2 gene. The protein was abundant in all t(14;18)-carrying cell lines and lymphomas and was also found at lower levels in pre-B-cell lines and nonmalignant lymphoid tissues that do not carry t(14;18) translocations. These results suggest that the Bcl-2 protein is functional in normal B lymphocytes and that a quantitative difference in its expression may play a role in the pathogenesis of lymphomas carrying the t(14;18) translocation. Images PMID:2651903

  13. Microarray analysis reveals altered circulating microRNA expression in mice infected with Coxsackievirus B3

    PubMed Central

    Sun, Chaoyu; Tong, Lei; Zhao, Wenran; Wang, Yan; Meng, Yuan; Lin, Lexun; Liu, Bingchen; Zhai, Yujia; Zhong, Zhaohua; Li, Xueqi

    2016-01-01

    Coxsackievirus B3 (CVB3) is a common causative agent in the development of inflammatory cardiomyopathy. However, whether the expression of peripheral blood microRNAs (miRNAs) is altered in this process is unknown. The present study investigated changes to miRNA expression in the peripheral blood of CVB3-infected mice. Utilizing miRNA microarray technology, differential miRNA expression was examined between normal and CVB3-infected mice. The present results suggest that specific miRNAs were differentially expressed in the peripheral blood of mice infected with CVB3, varying with infection duration. Using miRNA microarray analysis, a total of 96 and 89 differentially expressed miRNAs were identified in the peripheral blood of mice infected with CVB3 for 3 and 6 days, respectively. Quantitative polymerase chain reaction was used to validate differentially expressed miRNAs, revealing a consistency of these results with the miRNA microarray analysis results. The biological functions of the differentially expressed miRNAs were then predicted by bioinformatics analysis. The potential biological roles of differentially expressed miRNAs included hypertrophic cardiomyopathy, dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy. These results may provide important insights into the mechanisms responsible for the progression of CVB3 infection. PMID:27698715

  14. Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution.

    PubMed

    Davidson, Rebecca M; Gowda, Malali; Moghe, Gaurav; Lin, Haining; Vaillancourt, Brieanne; Shiu, Shin-Han; Jiang, Ning; Robin Buell, C

    2012-08-01

    The Poaceae family, also known as the grasses, includes agronomically important cereal crops such as rice, maize, sorghum, and wheat. Previous comparative studies have shown that much of the gene content is shared among the grasses; however, functional conservation of orthologous genes has yet to be explored. To gain an understanding of the genome-wide patterns of evolution of gene expression across reproductive tissues, we employed a sequence-based approach to compare analogous transcriptomes in species representing three Poaceae subgroups including the Pooideae (Brachypodium distachyon), the Panicoideae (sorghum), and the Ehrhartoideae (rice). Our transcriptome analyses reveal that only a fraction of orthologous genes exhibit conserved expression patterns. A high proportion of conserved orthologs include genes that are upregulated in physiologically similar tissues such as leaves, anther, pistil, and embryo, while orthologs that are highly expressed in seeds show the most diverged expression patterns. More generally, we show that evolution of gene expression profiles and coding sequences in the grasses may be linked. Genes that are highly and broadly expressed tend to be conserved at the coding sequence level while genes with narrow expression patterns show accelerated rates of sequence evolution. We further show that orthologs in syntenic genomic blocks are more likely to share correlated expression patterns compared with non-syntenic orthologs. These findings are important for agricultural improvement because sequence information is transferred from model species, such as Brachypodium, rice, and sorghum to crop plants without sequenced genomes. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  15. Massive reshaping of genome-nuclear lamina interactions during oncogene-induced senescence.

    PubMed

    Lenain, Christelle; de Graaf, Carolyn A; Pagie, Ludo; Visser, Nils L; de Haas, Marcel; de Vries, Sandra S; Peric-Hupkes, Daniel; van Steensel, Bas; Peeper, Daniel S

    2017-10-01

    Cellular senescence is a mechanism that virtually irreversibly suppresses the proliferative capacity of cells in response to various stress signals. This includes the expression of activated oncogenes, which causes Oncogene-Induced Senescence (OIS). A body of evidence points to the involvement in OIS of chromatin reorganization, including the formation of senescence-associated heterochromatic foci (SAHF). The nuclear lamina (NL) is an important contributor to genome organization and has been implicated in cellular senescence and organismal aging. It interacts with multiple regions of the genome called lamina-associated domains (LADs). Some LADs are cell-type specific, whereas others are conserved between cell types and are referred to as constitutive LADs (cLADs). Here, we used DamID to investigate the changes in genome-NL interactions in a model of OIS triggered by the expression of the common BRAF(V600E) oncogene. We found that OIS cells lose most of their cLADS, suggesting the loss of a specific mechanism that targets cLADs to the NL. In addition, multiple genes relocated to the NL. Unexpectedly, they were not repressed, implying the abrogation of the repressive activity of the NL during OIS. Finally, OIS cells displayed an increased association of telomeres with the NL. Our study reveals that senescent cells acquire a new type of LAD organization and suggests the existence of as yet unknown mechanisms that tether cLADs to the NL and repress gene expression at the NL. © 2017 Lenain et al.; Published by Cold Spring Harbor Laboratory Press.

  16. IL-33 Facilitates Oncogene Induced Cholangiocarcinoma in Mice by an IL-6 Sensitive Mechanism

    PubMed Central

    Yamada, Daisaku; Rizvi, Sumera; Razumilava, Nataliya; Bronk, Steven F.; Davila, Jaime I.; Champion, Mia D.; Borad, Mitesh J.; Bezerra, Jorge A.; Chen, Xin; Gores, Gregory J.

    2015-01-01

    Cholangiocarcinoma (CCA) is a lethal hepatobiliary neoplasm originating from the biliary apparatus. In humans, CCA risk factors include hepatobiliary inflammation and fibrosis. The recently identified IL-1 family member, IL-33, has been shown to be a biliary mitogen which also promotes liver inflammation and fibrosis. Our aim was to generate a mouse model of CCA mimicking the human disease. Ectopic oncogene expression in the biliary tract was accomplished by the Sleeping Beauty transposon transfection system with transduction of constitutively active AKT (myr-AKT) and Yes-associated protein (YAP). Intrabiliary instillation of the transposon-transposase complex was coupled with lobar bile duct ligation in CL57BL/6 mice, followed by administration of IL-33 for three consecutive days. Tumors developed in 72% of the male mice receiving both oncogenes plus IL-33 by 10 weeks, but in only 20% of the male mice transduced with the oncogenes alone. Tumors expressed SOX9 and pancytokeratin (PanCK) [features of cholangiocarcinoma] but were negative for HepPar1 [a marker of hepatocellular carcinoma (HCC)]. RNA profiling revealed substantive overlap with human CCA specimens. Not only did IL-33 induce IL-6 expression by human cholangiocytes, but IL-33 likely facilitated tumor development in vivo by an IL-6 sensitive process, as tumor development was significantly attenuated in Il-6 -/- male animals. Furthermore, tumor formation occurred at a similar rate when IL-6 was substituted for IL-33 in this model. In conclusion, the transposase-mediated transduction of constitutively active AKT and YAP in the biliary epithelium coupled with lobar obstruction and IL-33 administration results in the development of CCA with morphological and biochemical features of the human disease. This model highlights the role of inflammatory cytokines in CCA oncogenesis. PMID:25580681

  17. Effect of cellular determination on oncogenic transformation by chemicals and oncogenes.

    PubMed Central

    Harrington, M A; Gonzales, F; Jones, P A

    1988-01-01

    Three developmentally determined myogenic cell lines derived from C3H 10T1/2 C18 (10T1/2) mouse embryo cells treated with 5-azacytidine were compared with the parental 10T1/2 line for their susceptibility to oncogenic transformation by 3-methylcholanthrene or the activated human c-Ha-ras oncogene. Neither the 10T1/2 cells nor the myogenic derivatives grew in soft agar or formed tumors in nude mice. In contrast to 10T1/2 cells, the three myogenic derivatives were not susceptible to transformation by 3-methylcholanthrene, so that cellular determination altered the response of 10T1/2 cells to chemical carcinogen. On the other hand, all cell types were transformed to a tumorigenic phenotype following transfection with the activated c-Ha-ras gene. The transfected myogenic cells expressed both the c-Ha-ras gene and the muscle determination gene MyoD1. In contrast to other reports, the presence of as many as six copies of the c-Ha-ras gene per genome did not prevent the formation of striated muscle cells which expressed immunologically detectable muscle-specific myosin. The expression of the c-Ha-ras gene does not therefore necessarily preclude the expression of the determination gene for myogenesis or prevent end-stage myogenic differentiation. Images PMID:2460742

  18. Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos.

    PubMed

    Bothma, Jacques P; Garcia, Hernan G; Esposito, Emilia; Schlissel, Gavin; Gregor, Thomas; Levine, Michael

    2014-07-22

    We present the use of recently developed live imaging methods to examine the dynamic regulation of even-skipped (eve) stripe 2 expression in the precellular Drosophila embryo. Nascent transcripts were visualized via MS2 RNA stem loops. The eve stripe 2 transgene exhibits a highly dynamic pattern of de novo transcription, beginning with a broad domain of expression during nuclear cycle 12 (nc12), and progressive refinement during nc13 and nc14. The mature stripe 2 pattern is surprisingly transient, constituting just ∼15 min of the ∼90-min period of expression. Nonetheless, this dynamic transcription profile faithfully predicts the limits of the mature stripe visualized by conventional in situ detection methods. Analysis of individual transcription foci reveals intermittent bursts of de novo transcription, with duration cycles of 4-10 min. We discuss a multistate model of transcription regulation and speculate on its role in the dynamic repression of the eve stripe 2 expression pattern during development.

  19. Antineoplastic Effects of siRNA against TMPRSS2-ERG Junction Oncogene in Prostate Cancer

    PubMed Central

    Urbinati, Giorgia; Ali, Hafiz Muhammad; Rousseau, Quentin; Chapuis, Hubert; Desmaële, Didier; Couvreur, Patrick; Massaad-Massade, Liliane

    2015-01-01

    TMPRSS2-ERG junction oncogene is present in more than 50% of patients with prostate cancer and its expression is frequently associated with poor prognosis. Our aim is to achieve gene knockdown by siRNA TMPRSS2-ERG and then to assess the biological consequences of this inhibition. First, we designed siRNAs against the two TMPRSS2-ERG fusion variants (III and IV), most frequently identified in patients’ biopsies. Two of the five siRNAs tested were found to efficiently inhibit mRNA of both TMPRSS2-ERG variants and to decrease ERG protein expression. Microarray analysis further confirmed ERG inhibition by both siRNAs TMPRSS2-ERG and revealed one common down-regulated gene, ADRA2A, involved in cell proliferation and migration. The siRNA against TMPRSS2-ERG fusion variant IV showed the highest anti-proliferative effects: Significantly decreased cell viability, increased cleaved caspase-3 and inhibited a cluster of anti-apoptotic proteins. To propose a concrete therapeutic approach, siRNA TMPRSS2-ERG IV was conjugated to squalene, which can self-organize as nanoparticles in water. The nanoparticles of siRNA TMPRSS2-ERG-squalene injected intravenously in SCID mice reduced growth of VCaP xenografted tumours, inhibited oncoprotein expression and partially restored differentiation (decrease in Ki67). In conclusion, this study offers a new prospect of treatment for prostate cancer based on siRNA-squalene nanoparticles targeting TMPRSS2-ERG junction oncogene. PMID:25933120

  20. Expression of the nuclear factor-kappaB and proto-oncogenes c-fos and c-jun are induced by low extracellular Mg2+ in aortic and cerebral vascular smooth muscle cells: possible links to hypertension, atherogenesis, and stroke.

    PubMed

    Altura, Burton M; Kostellow, Adele B; Zhang, Aimin; Li, Wenyan; Morrill, Gene A; Gupta, Raj K; Altura, Bella T

    2003-09-01

    Proto-oncogene (c-fos, c-jun) and nuclear factor-kappa B (NF-kappaB) expression, as well as DNA synthesis, in aortic and cerebral vascular smooth muscle cells (VSMCs) were upregulated by a decrease in extracellular magnesium ions ([Mg2+]o). Upregulation of these transcriptional factors was inversely proportional to the [Mg2+]o and occurred over the pathophysiologic range of serum Mg2+ found in patients presenting with hypertension, ischemic heart disease, and stroke. Removal of extracellular Ca2+ ([Ca2+]o), use of nifedipine or protein kinase C (PKC) inhibitors prevented the upregulation of the proto-oncogenes and DNA synthesis in VSMCs. These data show that [Mg2+]o may be an important, heretofore, overlooked natural modulator of proto-oncogene and NF-kappaB expression in VSMCs and that Ca2+ and PKC may play critical roles in induction of c-fos and c-jun in VSMCs induced by a decrease in [Mg2+]o. These results point to a role for low serum Mg2+ in potential development of hypertension, atherogenesis, vascular disease, and stroke.

  1. Genome-wide gene expression analyses reveal unique cellular characteristics related to the amenability of HPC/HSCs into high-quality induced pluripotent stem cells.

    PubMed

    Gao, Shuai; Tao, Li; Hou, Xinfeng; Xu, Zijian; Liu, Wenqiang; Zhao, Kun; Guo, Mingyue; Wang, Hong; Cai, Tao; Tian, Jianhui; Gao, Shaorong; Chang, Gang

    2016-03-15

    Transcription factor-mediated reprogramming can efficiently convert differentiated cells into induced pluripotent stem cells (iPSCs). Furthermore, many cell types have been shown to be amenable to reprogramming into iPSCs, such as neural stem cells, hematopoietic progenitor and stem cells (HPC/HSCs). However, the mechanisms related to the amenability of these cell types to be reprogrammed are still unknown. Herein, we attempt to elucidate the mechanisms of HPC/HSC reprogramming using the sequential reprogramming system that we have previously established. We found that HPC/HSCs were amenable to transcription factor-mediated reprogramming, which yielded a high frequency of fully reprogrammed HPC/HSC-iPSCs. Genome-wide gene expression analyses revealed select down-regulated tumor suppressor and mesenchymal genes as well as up-regulated oncogenes in HPC/HSCs compared with mouse embryonic fibroblasts (MEFs), indicating that these genes may play important roles during the reprogramming of HPC/HSCs. Additional studies provided insights into the contribution of select tumor suppressor genes (p21, Ink4a and Arf) and an epithelial-to-mesenchymal transition (EMT) factor (Snail1) to the reprogramming process of HPC/HSCs. Our findings demonstrate that HPC/HSCs carry unique cellular characteristics, which determine the amenability of HPC/HSCs to be reprogrammed into high-quality iPSCs.

  2. Integrated Analysis of Alzheimer's Disease and Schizophrenia Dataset Revealed Different Expression Pattern in Learning and Memory.

    PubMed

    Li, Wen-Xing; Dai, Shao-Xing; Liu, Jia-Qian; Wang, Qian; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    Alzheimer's disease (AD) and schizophrenia (SZ) are both accompanied by impaired learning and memory functions. This study aims to explore the expression profiles of learning or memory genes between AD and SZ. We downloaded 10 AD and 10 SZ datasets from GEO-NCBI for integrated analysis. These datasets were processed using RMA algorithm and a global renormalization for all studies. Then Empirical Bayes algorithm was used to find the differentially expressed genes between patients and controls. The results showed that most of the differentially expressed genes were related to AD whereas the gene expression profile was little affected in the SZ. Furthermore, in the aspects of the number of differentially expressed genes, the fold change and the brain region, there was a great difference in the expression of learning or memory related genes between AD and SZ. In AD, the CALB1, GABRA5, and TAC1 were significantly downregulated in whole brain, frontal lobe, temporal lobe, and hippocampus. However, in SZ, only two genes CRHBP and CX3CR1 were downregulated in hippocampus, and other brain regions were not affected. The effect of these genes on learning or memory impairment has been widely studied. It was suggested that these genes may play a crucial role in AD or SZ pathogenesis. The different gene expression patterns between AD and SZ on learning and memory functions in different brain regions revealed in our study may help to understand the different mechanism between two diseases.

  3. A new engineering approach to reveal correlation of physiological change and spontaneous expression from video images

    NASA Astrophysics Data System (ADS)

    Yang, Fenglei; Hu, Sijung; Ma, Xiaoyun; Hassan, Harnani; Wei, Dongqing

    2015-03-01

    Spontaneous expression is associated with physiological states, i.e., heart rate, respiration, oxygen saturation (SpO2%), and heart rate variability (HRV). There have yet not sufficient efforts to explore correlation of physiological change and spontaneous expression. This study aims to study how spontaneous expression is associated with physiological changes with an approved protocol or through the videos provided from Denver Intensity of Spontaneous Facial Action Database. Not like a posed expression, motion artefact in spontaneous expression is one of evitable challenges to be overcome in the study. To obtain a physiological signs from a region of interest (ROI), a new engineering approach is being developed with an artefact-reduction method consolidated 3D active appearance model (AAM) based track, affine transformation based alignment with opto-physiological mode based imaging photoplethysmography. Also, a statistical association spaces is being used to interpret correlation of spontaneous expressions and physiological states including their probability densities by means of Gaussian Mixture Model. The present work is revealing a new avenue of study associations of spontaneous expressions and physiological states with its prospect of applications on physiological and psychological assessment.

  4. Expression differences of anthocyanin biosynthesis genes reveal regulation patterns for red pear coloration.

    PubMed

    Yang, Ya-nan; Yao, Gai-fang; Zheng, Danman; Zhang, Shao-ling; Wang, Chao; Zhang, Ming-yue; Wu, Jun

    2015-02-01

    This research reveals the different expression patterns of anthocyanin biosynthesis enzyme genes and transcription factors in six red-skinned pear cultivars with different genetic backgrounds. Skin color is an important feature of pear fruits, with red skin generally attracting consumers. However, great differences of coloration exist in different pear cultivars. To elucidate the characteristics of pigmentation in pear cultivars with different genetic backgrounds, six cultivars, belonging to P. communis, P. pyrifolia, P. ussuriensis, P. bretschneideri, and a hybrid of P. communis × P. pyrifolia, were used to detect pigment concentrations, expressions of seven anthocyanin biosynthesis enzyme genes, and three related transcription factor genes. Results showed that the occidental pears 'Starkrimson' and 'Red Bartlett' colored at the beginning of fruit setting, but color decreased with fruit maturity; the other four cultivars showed low anthocyanin accumulations and the contents increased during fruit development, but also decreased at later stages. The expression patterns of genes encoding enzymes indicated that ANS and UFGT were decisive genes for anthocyanin biosynthesis for red-skinned pear, and their different expressions led to the coloration differences between occidental and oriental pears. The expression patterns of transcription factors indicated that the different co-expression of MYB10 and bHLH33 genes and the different expressions of WD40 are involved in the differential regulation mechanisms of anthocyanin biosynthesis and coloration pattern between occidental and oriental pears.

  5. Authentic and Play-Acted Vocal Emotion Expressions Reveal Acoustic Differences

    PubMed Central

    Jürgens, Rebecca; Hammerschmidt, Kurt; Fischer, Julia

    2011-01-01

    Play-acted emotional expressions are a frequent aspect in our life, ranging from deception to theater, film, and radio drama, to emotion research. To date, however, it remained unclear whether play-acted emotions correspond to spontaneous emotion expressions. To test whether acting influences the vocal expression of emotion, we compared radio sequences of naturally occurring emotions to actors’ portrayals. It was hypothesized that play-acted expressions were performed in a more stereotyped and aroused fashion. Our results demonstrate that speech segments extracted from play-acted and authentic expressions differ in their voice quality. Additionally, the play-acted speech tokens revealed a more variable F0-contour. Despite these differences, the results did not support the hypothesis that the variation was due to changes in arousal. This analysis revealed that differences in perception of play-acted and authentic emotional stimuli reported previously cannot simply be attributed to differences in arousal, but by slight and implicitly perceptible differences in encoding. PMID:21847385

  6. Genome wide analysis of Silurana (Xenopus) tropicalis development reveals dynamic expression using network enrichment analysis.

    PubMed

    Langlois, Valérie S; Martyniuk, Christopher J

    2013-01-01

    Development involves precise timing of gene expression and coordinated pathways for organogenesis and morphogenesis. Functional and sub-network enrichment analysis provides an integrated approach for identifying networks underlying development. The objectives of this study were to characterize early gene regulatory networks over Silurana tropicalis development from NF stage 2 to 46 using a custom Agilent 4×44K microarray. There were >8000 unique gene probes that were differentially expressed between Nieuwkoop-Faber (NF) stage 2 and stage 16, and >2000 gene probes differentially expressed between NF 34 and 46. Gene ontology revealed that genes involved in nucleosome assembly, cell division, pattern specification, neurotransmission, and general metabolism were increasingly regulated throughout development, consistent with active development. Sub-network enrichment analysis revealed that processes such as membrane hyperpolarisation, retinoic acid, cholesterol, and dopamine metabolic gene networks were activated/inhibited over time. This study identifies RNA transcripts that are potentially maternally inherited in an anuran species, provides evidence that the expression of genes involved in retinoic acid receptor signaling may increase prior to those involved in thyroid receptor signaling, and characterizes novel gene expression networks preceding organogenesis which increases understanding of the spatiotemporal embryonic development in frogs.

  7. Gene expression profiling in equine polysaccharide storage myopathy revealed inflammation, glycogenesis inhibition, hypoxia and mitochondrial dysfunctions

    PubMed Central

    Barrey, Eric; Mucher, Elodie; Jeansoule, Nicolas; Larcher, Thibaut; Guigand, Lydie; Herszberg, Bérénice; Chaffaux, Stéphane; Guérin, Gérard; Mata, Xavier; Benech, Philippe; Canale, Marielle; Alibert, Olivier; Maltere, Péguy; Gidrol, Xavier

    2009-01-01

    Background Several cases of myopathies have been observed in the horse Norman Cob breed. Muscle histology examinations revealed that some families suffer from a polysaccharide storage myopathy (PSSM). It is assumed that a gene expression signature related to PSSM should be observed at the transcriptional level because the glycogen storage disease could also be linked to other dysfunctions in gene regulation. Thus, the functional genomic approach could be conducted in order to provide new knowledge about the metabolic disorders related to PSSM. We propose exploring the PSSM muscle fiber metabolic disorders by measuring gene expression in relationship with the histological phenotype. Results Genotypying analysis of GYS1 mutation revealed 2 homozygous (AA) and 5 heterozygous (GA) PSSM horses. In the PSSM muscles, histological data revealed PAS positive amylase resistant abnormal polysaccharides, inflammation, necrosis, and lipomatosis and active regeneration of fibers. Ultrastructural evaluation revealed a decrease of mitochondrial number and structural disorders. Extensive accumulation of an abnormal polysaccharide displaced and partially replaced mitochondria and myofibrils. The severity of the disease was higher in the two homozygous PSSM horses. Gene expression analysis revealed 129 genes significantly modulated (p < 0.05). The following genes were up-regulated over 2 fold: IL18, CTSS, LUM, CD44, FN1, GST01. The most down-regulated genes were the following: mitochondrial tRNA, SLC2A2, PRKCα, VEGFα. Data mining analysis showed that protein synthesis, apoptosis, cellular movement, growth and proliferation were the main cellular functions significantly associated with the modulated genes (p < 0.05). Several up-regulated genes, especially IL18, revealed a severe muscular inflammation in PSSM muscles. The up-regulation of glycogen synthase kinase-3 (GSK3β) under its active form could be responsible for glycogen synthase (GYS1) inhibition and hypoxia-inducible factor

  8. Genome-Wide Chromosomal Targets of Oncogenic Transcription Factors

    DTIC Science & Technology

    2005-04-01

    cancer. Cancer involves, at least in part, aberrant programs of gene expression often mediated by oncogenic transcription factors activating downstream...networks that underlie complex gene expression programs that are activated in cancer. Indeed, transcription factors have been proposed as targets of...some of the limitations of ChIP-chip analysis and can be applied to transcription factors important in breast cancer such as c-myc and ER ( estrogen

  9. Gene Expression Profiling Reveals New Potential Players of Gonad Differentiation in the Chicken Embryo

    PubMed Central

    Carré, Gwenn-Aël; Couty, Isabelle; Hennequet-Antier, Christelle; Govoroun, Marina S.

    2011-01-01

    Background In birds as in mammals, a genetic switch determines whether the undifferentiated gonad develops into an ovary or a testis. However, understanding of the molecular pathway(s) involved in gonad differentiation is still incomplete. Methodology/Principal Findings With the aim of improving characterization of the molecular pathway(s) involved in gonad differentiation in the chicken embryo, we developed a large scale real time reverse transcription polymerase chain reaction approach on 110 selected genes for evaluation of their expression profiles during chicken gonad differentiation between days 5.5 and 19 of incubation. Hierarchical clustering analysis of the resulting datasets discriminated gene clusters expressed preferentially in the ovary or the testis, and/or at early or later periods of embryonic gonad development. Fitting a linear model and testing the comparisons of interest allowed the identification of new potential actors of gonad differentiation, such as Z-linked ADAMTS12, LOC427192 (corresponding to NIM1 protein) and CFC1, that are upregulated in the developing testis, and BMP3 and Z-linked ADAMTSL1, that are preferentially expressed in the developing ovary. Interestingly, the expression patterns of several members of the transforming growth factor β family were sexually dimorphic, with inhibin subunits upregulated in the testis, and bone morphogenetic protein subfamily members including BMP2, BMP3, BMP4 and BMP7, upregulated in the ovary. This study also highlighted several genes displaying asymmetric expression profiles such as GREM1 and BMP3 that are potentially involved in different aspects of gonad left-right asymmetry. Conclusion/Significance This study supports the overall conservation of vertebrate sex differentiation pathways but also reveals some particular feature of gene expression patterns during gonad development in the chicken. In particular, our study revealed new candidate genes which may be potential actors of chicken gonad

  10. Compartmentalized gene expression profiling of receptive endometrium reveals progesterone regulated ENPP3 is differentially expressed and secreted in glycosylated form

    PubMed Central

    Boggavarapu, Nageswara Rao; Lalitkumar, Sujata; Joshua, Vijay; Kasvandik, Sergo; Salumets, Andres; Lalitkumar, Parameswaran Grace; Gemzell-Danielsson, Kristina

    2016-01-01

    The complexity of endometrial receptivity at the molecular level needs to be explored in detail to improve the management of infertility. Here, differential expression of transcriptomes in receptive endometrial glands and stroma revealed Ectonucleotide Pyrophosphatase/Phosphodiesterase 3 (ENPP3) as a progesterone regulated factor and confirmed by various methods, both at mRNA and protein level. The involvement of ENPP3 in embryo attachment was tested in an in vitro model for human embryo implantation. Interestingly, there was high expression of ENPP3 mRNA in stroma but not protein. Presence of N-glycosylated ENPP3 in receptive phase uterine fluid in women confirms its regulation by progesterone and makes it possible to use in a non-invasive test of endometrial receptivity. PMID:27665743

  11. Folate levels modulate oncogene-induced replication stress and tumorigenicity

    PubMed Central

    Lamm, Noa; Maoz, Karin; Bester, Assaf C; Im, Michael M; Shewach, Donna S; Karni, Rotem; Kerem, Batsheva

    2015-01-01

    Chromosomal instability in early cancer stages is caused by replication stress. One mechanism by which oncogene expression induces replication stress is to drive cell proliferation with insufficient nucleotide levels. Cancer development is driven by alterations in both genetic and environmental factors. Here, we investigated whether replication stress can be modulated by both genetic and non-genetic factors and whether the extent of replication stress affects the probability of neoplastic transformation. To do so, we studied the effect of folate, a micronutrient that is essential for nucleotide biosynthesis, on oncogene-induced tumorigenicity. We show that folate deficiency by itself leads to replication stress in a concentration-dependent manner. Folate deficiency significantly enhances oncogene-induced replication stress, leading to increased DNA damage and tumorigenicity in vitro. Importantly, oncogene-expressing cells, when grown under folate deficiency, exhibit a significantly increased frequency of tumor development in mice. These findings suggest that replication stress is a quantitative trait affected by both genetic and non-genetic factors and that the extent of replication stress plays an important role in cancer development. PMID:26197802

  12. [Nature of cancer explored from the perspective of the functional evolution of proto-oncogenes].

    PubMed

    Watari, Akihiro

    2012-01-01

    The products of proto-oncogene play critical roles in the development or maintenance of multicellular societies in animals via strict regulatory systems. When these regulatory systems are disrupted, proto-oncogenes can become oncogenes, and thereby induce cell transformation and carcinogenesis. To understand the molecular basis for development of the regulatory system of proto-oncogenes during evolution, we screened for ancestral proto-oncogenes from the unicellular choanoflagellate Monosiga ovata (M. ovata) by monitoring their transforming ability in mammalian cells; consequently, we isolated a Pak gene ortholog, which encodes a serine/threonine kinase as a 'primitive oncogene'. We also cloned Pak orthologs from fungi and the multicellular sponge Ephydatia fluviatilis, and compared their regulatory features with that of M. ovata Pak (MoPak). MoPak is constitutively active and induces cell transformation in mammalian cells. In contrast, Pak orthologs from multicellular animals are strictly regulated. Analyses of Pak mutants revealed that structural alterations in the auto-inhibitory domain (AID) are responsible for the enhanced kinase activity and the oncogenic activity of MoPak. Furthermore, we show that Rho family GTPases-mediated regulatory system of Pak kinase is conserved throughout the evolution from unicellular to multicellular animals, but the MoPak is more sensitive to the Rho family GTPases-mediated activation than multicellular Pak. These results show that maturation of AID function was required for the development of the strict regulatory system of the Pak proto-oncogene, and support the potential link between the development of the regulatory system of proto-oncogenes and the evolution of multicellularity. Further analysis of oncogenic functions of proto-oncogene orthologs in the unicellular genes would provide some insights into the mechanisms of the destruction of multicellular society in cancer.

  13. RNA sequencing reveals differentially expressed genes as potential diagnostic and prognostic indicators of gallbladder carcinoma

    PubMed Central

    Jiang, Mingming; Fang, Meng; Ji, Jun; Wang, Aihua; Wang, Mengmeng; Jiang, Xiaoqing; Gao, Chunfang

    2015-01-01

    Gallbladder carcinoma (GBC) is a rare tumor with a dismal survival rate overall. Hence, there is an urgent need for exploring more specific and sensitive biomarkers for the diagnosis and treatment of GBC. At first, amplified total RNAs from two paired GBC tumors and adjacent non-tumorous tissues (ANTTs) were subjected to RNA sequencing. 161 genes were identified differentially expressed between tumors and ANTTs. Functional enrichment analysis indicated that the up-regulated genes in tumor were primarily associated with signaling molecules and enzyme modulators, and mainly involved in cell cycles and pathways in cancer. Twelve differentially expressed genes (DEGs) were further confirmed in another independent cohort of 35 GBC patients. Expression levels of BIRC5, TK1, TNNT1 and MMP9 were found to be positively related to postoperative relapse. There was also a significant correlation between BIRC5 expression and tumor-node-metastasis (TNM) stage. Besides, we observed a positive correlation between serum CA19–9 concentration and the expression levels of TNNT1, MMP9 and CLIC3. Survival analysis revealed that GBC patients with high TK1 and MMP9 expression levels had worse prognosis. These identified DEGs might not only be promising biomarkers for GBC diagnosis and prognosis, but also expedite the discovery of novel therapeutic strategies. PMID:25970782

  14. Myoepithelial mRNA expression profiling reveals a common tumor-suppressor phenotype.

    PubMed

    Barsky, Sanford H

    2003-04-01

    A series of myoepithelial cell lines and xenografts derived from benign human myoepithelial tumors of diverse sources (salivary gland, breast, and lung) exhibit common mRNA expression profiles indicative of a tumor-suppressor phenotype. Previously established myoepithelial cell lines and xenografts (HMS-#; HMS-#X) were compared to nonmyoepithelial breast carcinoma cells (MDA-MB-231 and MDA-MB-468, and inflammatory breast carcinoma samples, IBCr, and IBCw), a normal mammary epithelial cell line (HMEC) and individual cases of human breast cancer (zcBT#T), and matched normal human breast tissues (zcBT#N) (overall samples = 22). The global gene expression profile (22,000 genes) of these individual samples was examined using Affymetrix Microarray Gene Chips and subsequently analyzed with both Affymetrix and DChip algorithms. The myoepithelial cell lines/xenografts were distinct and very different from the nonmyoepithelial breast carcinoma cells and the normal breast and breast tumor biopsies. Two hundred and seven specifically selected genes represented a subset of genes that distinguished (P < 0.05) all the myoepithelial cell lines/xenografts from all the other samples and which themselves exhibited hierarchical clustering. Further analysis of these genes revealed increased expression in genes belonging to the classes of extracellular matrix proteins, angiogenic inhibitors, and proteinase inhibitors and decreased expression belonging to the classes of angiogenic factors and proteinases. Developmental genes were also differentially expressed (either over or underexpressed). These studies confirm our previous impression that human myoepithelial cells express a distinct tumor-suppressor phenotype.

  15. A Novel Role for Keratin 17 in Coordinating Oncogenic Transformation and Cellular Adhesion in Ewing Sarcoma

    PubMed Central

    Sankar, Savita; Tanner, Jason M.; Bell, Russell; Chaturvedi, Aashi; Randall, R. Lor; Beckerle, Mary C.

    2013-01-01

    Oncogenic transformation in Ewing sarcoma is caused by EWS/FLI, an aberrant transcription factor fusion oncogene. Glioma-associated oncogene homolog 1 (GLI1) is a critical target gene activated by EWS/FLI, but the mechanism by which GLI1 contributes to the transformed phenotype of Ewing sarcoma was unknown. In this work, we identify keratin 17 (KRT17) as a direct downstream target gene upregulated by GLI1. We demonstrate that KRT17 regulates cellular adhesion by activating AKT/PKB (protein kinase B) signaling. In addition, KRT17 is necessary for oncogenic transformation in Ewing sarcoma and accounts for much of the GLI1-mediated transformation function but via a mechanism independent of AKT signaling. Taken together, our data reveal previously unknown molecular functions for a cytoplasmic intermediate filament protein, KRT17, in coordinating EWS/FLI- and GLI1-mediated oncogenic transformation and cellular adhesion in Ewing sarcoma. PMID:24043308

  16. Testing the Oncogenic Relevance of Cell Adhesion and Cytosketal Genes Affected by DNA Deletions in Breast Cancer

    DTIC Science & Technology

    2010-07-01

    and hair follicle derived cells as targets for the v-rasHa oncogene in mouse skin carcinogenesis. Carcinogenesis 12, 1119–1124. Wicki, A., Lehembre, F...potential oncogenic significance of genes directly involved in cell adhesion and the cytoskeleton. The aim of this study was therefore to directly test ...expression of candidate cancer genes belonging to the cytoskeletal/cell adhesion category, (2) use these tools to test the oncogenic significance of

  17. Tagging methyl-CpG-binding domain proteins reveals different spatiotemporal expression and supports distinct functions.

    PubMed

    Wood, Kathleen H; Johnson, Brian S; Welsh, Sarah A; Lee, Jun Y; Cui, Yue; Krizman, Elizabeth; Brodkin, Edward S; Blendy, Julie A; Robinson, Michael B; Bartolomei, Marisa S; Zhou, Zhaolan

    2016-04-01

    DNA methylation is recognized by methyl-CpG-binding domain (MBD) proteins. Multiple MBDs are linked to neurodevelopmental disorders in humans and mice. However, the functions of MBD2 are poorly understood. We characterized Mbd2 knockout mice and determined spatiotemporal expression of MBDs and MBD2-NuRD (nucleosome remodeling deacetylase) interactions. We analyzed behavioral phenotypes, generated biotin-tagged MBD1 and MBD2 knockin mice, and performed biochemical studies of MBD2-NuRD. Most behavioral measures are minimally affected in Mbd2 knockout mice. In contrast to other MBDs, MBD2 shows distinct expression patterns. Unlike most MBDs, MBD2 is ubiquitously expressed in all tissues examined and appears dispensable for brain functions measured in this study. We provide novel genetic tools and reveal new directions to investigate MBD2 functions in vivo.

  18. Tagging methyl-CpG-binding domain proteins reveals different spatiotemporal expression and supports distinct functions

    PubMed Central

    Wood, Kathleen H; Johnson, Brian S; Welsh, Sarah A; Lee, Jun Y; Cui, Yue; Krizman, Elizabeth; Brodkin, Edward S; Blendy, Julie A; Robinson, Michael B; Bartolomei, Marisa S; Zhou, Zhaolan

    2016-01-01

    Aim: DNA methylation is recognized by methyl-CpG-binding domain (MBD) proteins. Multiple MBDs are linked to neurodevelopmental disorders in humans and mice. However, the functions of MBD2 are poorly understood. We characterized Mbd2 knockout mice and determined spatiotemporal expression of MBDs and MBD2–NuRD (nucleosome remodeling deacetylase) interactions. Experimental procedures: We analyzed behavioral phenotypes, generated biotin-tagged MBD1 and MBD2 knockin mice, and performed biochemical studies of MBD2–NuRD. Results: Most behavioral measures are minimally affected in Mbd2 knockout mice. In contrast to other MBDs, MBD2 shows distinct expression patterns. Conclusion: Unlike most MBDs, MBD2 is ubiquitously expressed in all tissues examined and appears dispensable for brain functions measured in this study. We provide novel genetic tools and reveal new directions to investigate MBD2 functions in vivo. PMID:27066839

  19. Analysis of Synaptic Gene Expression in the Neocortex of Primates Reveals Evolutionary Changes in Glutamatergic Neurotransmission

    PubMed Central

    Muntané, Gerard; Horvath, Julie E.; Hof, Patrick R.; Ely, John J.; Hopkins, William D.; Raghanti, Mary Ann; Lewandowski, Albert H.; Wray, Gregory A.; Sherwood, Chet C.

    2015-01-01

    Increased relative brain size characterizes the evolution of primates, suggesting that enhanced cognition plays an important part in the behavioral adaptations of this mammalian order. In addition to changes in brain anatomy, cognition can also be regulated by molecular changes that alter synaptic function, but little is known about modifications of synapses in primate brain evolution. The aim of the current study was to investigate the expression patterns and evolution of 20 synaptic genes from the prefrontal cortex of 12 primate species. The genes investigated included glutamate receptors, scaffolding proteins, synaptic vesicle components, as well as factors involved in synaptic vesicle release and structural components of the nervous system. Our analyses revealed that there have been significant changes during primate brain evolution in the components of the glutamatergic signaling pathway in terms of gene expression, protein expression, and promoter sequence changes. These results could entail functional modifications in the regulation of specific genes related to processes underlying learning and memory. PMID:24408959

  20. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis

    NASA Astrophysics Data System (ADS)

    Kaminski, Naftali; Allard, John D.; Pittet, Jean F.; Zuo, Fengrong; Griffiths, Mark J. D.; Morris, David; Huang, Xiaozhu; Sheppard, Dean; Heller, Renu A.

    2000-02-01

    The molecular mechanisms of pulmonary fibrosis are poorly understood. We have used oligonucleotide arrays to analyze the gene expression programs that underlie pulmonary fibrosis in response to bleomycin, a drug that causes lung inflammation and fibrosis, in two strains of susceptible mice (129 and C57BL/6). We then compared the gene expression patterns in these mice with 129 mice carrying a null mutation in the epithelial-restricted integrin 6 subunit (6/-), which develop inflammation but are protected from pulmonary fibrosis. Cluster analysis identified two distinct groups of genes involved in the inflammatory and fibrotic responses. Analysis of gene expression at multiple time points after bleomycin administration revealed sequential induction of subsets of genes that characterize each response. The availability of this comprehensive data set should accelerate the development of more effective strategies for intervention at the various stages in the development of fibrotic diseases of the lungs and other organs.

  1. What has DNA sequencing revealed about the VSG expression sites of African trypanosomes?

    PubMed

    McCulloch, Richard; Horn, David

    2009-08-01

    Antigenic variation is crucial for the survival of African trypanosomes in mammals and involves switches in expression of variant surface glycoprotein genes, which are co-transcribed with a number of expression-site-associated genes (ESAGs) from loci termed 'bloodstream expression sites' (BESs). Trypanosomes possess multiple BESs, although the reason for this (and why ESAGs are resident in these loci) has remained a subject of debate. The genome sequence of Trypanosoma brucei, released in 2005, did not include the BESs because of their telomeric disposition. This gap in our knowledge has now been bridged by two new studies, which we discuss here, asking what has been revealed about the biological significance of BES multiplicity and ESAG function and evolution.

  2. Analysis of synaptic gene expression in the neocortex of primates reveals evolutionary changes in glutamatergic neurotransmission.

    PubMed

    Muntané, Gerard; Horvath, Julie E; Hof, Patrick R; Ely, John J; Hopkins, William D; Raghanti, Mary Ann; Lewandowski, Albert H; Wray, Gregory A; Sherwood, Chet C

    2015-06-01

    Increased relative brain size characterizes the evolution of primates, suggesting that enhanced cognition plays an important part in the behavioral adaptations of this mammalian order. In addition to changes in brain anatomy, cognition can also be regulated by molecular changes that alter synaptic function, but little is known about modifications of synapses in primate brain evolution. The aim of the current study was to investigate the expression patterns and evolution of 20 synaptic genes from the prefrontal cortex of 12 primate species. The genes investigated included glutamate receptors, scaffolding proteins, synaptic vesicle components, as well as factors involved in synaptic vesicle release and structural components of the nervous system. Our analyses revealed that there have been significant changes during primate brain evolution in the components of the glutamatergic signaling pathway in terms of gene expression, protein expression, and promoter sequence changes. These results could entail functional modifications in the regulation of specific genes related to processes underlying learning and memory.

  3. Oncogenicity of human N-ras oncogene and proto-oncogene introduced into retroviral vectors

    SciTech Connect

    Souyri, M.; Vigon, I.; Charon, M.; Tambourin, P. )

    1989-09-01

    The N-ras gene is the only member of the ras family which has never been naturally transduced into a retrovirus. In order to study the in vitro and in vivo oncogenicity of N-ras and to compare its pathogenicity to that of H-ras, the authors have inserted an activated or a normal form of human N-ras cDNA into a slightly modified Harvey murine sarcoma virus-derived vector in which the H-ras p21 coding region had been deleted. The resulting constructions were transfected into NIH 3T3 cells. The activated N-ras-containing construct (HSN) induced 10{sup 4} foci per {mu}g of DNA and was found to be as transforming as H-ras was. After infection of the transfected cells by either the ecotropic Moloney murine leukemia virus or the amphotropic 4070A helper viruses, rescued transforming viruses were injected into newborn mice. Both pseudotypes of HSN virus containing activated N-ras induced the typical Harvey disease with similar latency. However, they found that the virus which contained normal N-ras p21 (HSn) was also pathogenic and induced splenomegaly, lymphadenopathies, and sarcoma in mice after a latency of 3 to 7 weeks. In addition, Moloney murine leukemia virus pseudotypes of N-ras caused neurological disorders in 30% of the infected animals. These results differed markedly from those of previous experiments in which the authors had inserted the activated form of N-ras in the pSV(X) vector: the resulting SVN-ras virus was transforming on NIH 3T3 cells but was poorly oncogenic in vivo. Altogether, these data demonstrated unequivocally that N-ras is potentially as oncogenic as H-ras and that such oncogenic effect could depend on the vector environment.

  4. Nicotinic Receptor Alpha7 Expression during Tooth Morphogenesis Reveals Functional Pleiotropy

    PubMed Central

    Rogers, Scott W.; Gahring, Lorise C.

    2012-01-01

    The expression of nicotinic acetylcholine receptor (nAChR) subtype, alpha7, was investigated in the developing teeth of mice that were modified through homologous recombination to express a bi-cistronic IRES-driven tau-enhanced green fluorescent protein (GFP); alpha7GFP) or IRES-Cre (alpha7Cre). The expression of alpha7GFP was detected first in cells of the condensing mesenchyme at embryonic (E) day E13.5 where it intensifies through E14.5. This expression ends abruptly at E15.5, but was again observed in ameloblasts of incisors at E16.5 or molar ameloblasts by E17.5–E18.5. This expression remains detectable until molar enamel deposition is completed or throughout life as in the constantly erupting mouse incisors. The expression of alpha7GFP also identifies all stages of innervation of the tooth organ. Ablation of the alpha7-cell lineage using a conditional alpha7Cre×ROSA26-LoxP(diphtheria toxin A) strategy substantially reduced the mesenchyme and this corresponded with excessive epithelium overgrowth consistent with an instructive role by these cells during ectoderm patterning. However, alpha7knock-out (KO) mice exhibited normal tooth size and shape indicating that under normal conditions alpha7 expression is dispensable to this process. The function of ameloblasts in alpha7KO mice is altered relative to controls. High resolution micro-computed tomography analysis of adult mandibular incisors revealed enamel volume of the alpha7KO was significantly reduced and the organization of enamel rods was altered relative to controls. These results demonstrate distinct and varied spatiotemporal expression of alpha7 during tooth development, and they suggest that dysfunction of this receptor would have diverse impacts upon the adult organ. PMID:22666322

  5. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane.

    PubMed

    Ferreira, Savio Siqueira; Hotta, Carlos Takeshi; Poelking, Viviane Guzzo de Carli; Leite, Debora Chaves Coelho; Buckeridge, Marcos Silveira; Loureiro, Marcelo Ehlers; Barbosa, Marcio Henrique Pereira; Carneiro, Monalisa Sampaio; Souza, Glaucia Mendes

    2016-05-01

    Sugarcane is a hybrid of Saccharum officinarum and Saccharum spontaneum, with minor contributions from other species in Saccharum and other genera. Understanding the molecular basis of cell wall metabolism in sugarcane may allow for rational changes in fiber quality and content when designing new energy crops. This work describes a comparative expression profiling of sugarcane ancestral genotypes: S. officinarum, S. spontaneum and S. robustum and a commercial hybrid: RB867515, linking gene expression to phenotypes to identify genes for sugarcane improvement. Oligoarray experiments of leaves, immature and intermediate internodes, detected 12,621 sense and 995 antisense transcripts. Amino acid metabolism was particularly evident among pathways showing natural antisense transcripts expression. For all tissues sampled, expression analysis revealed 831, 674 and 648 differentially expressed genes in S. officinarum, S. robustum and S. spontaneum, respectively, using RB867515 as reference. Expression of sugar transporters might explain sucrose differences among genotypes, but an unexpected differential expression of histones were also identified between high and low Brix° genotypes. Lignin biosynthetic genes and bioenergetics-related genes were up-regulated in the high lignin genotype, suggesting that these genes are important for S. spontaneum to allocate carbon to lignin, while S. officinarum allocates it to sucrose storage. Co-expression network analysis identified 18 transcription factors possibly related to cell wall biosynthesis while in silico analysis detected cis-elements involved in cell wall biosynthesis in their promoters. Our results provide information to elucidate regulatory networks underlying traits of interest that will allow the improvement of sugarcane for biofuel and chemicals production.

  6. Expression Profiling during Arabidopsis/Downy Mildew Interaction Reveals a Highly-Expressed Effector That Attenuates Responses to Salicylic Acid

    PubMed Central

    Asai, Shuta; Caillaud, Marie-Cécile; Furzer, Oliver J.; Ishaque, Naveed; Wirthmueller, Lennart; Fabro, Georgina; Shirasu, Ken; Jones, Jonathan D. G.

    2014-01-01

    Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA)-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should help unravel pathogen infection strategies and the mechanisms by which host defense responses are overcome. PMID:25329884

  7. Oncogenicity of L-type amino-acid transporter 1 (LAT1) revealed by targeted gene disruption in chicken DT40 cells: LAT1 is a promising molecular target for human cancer therapy

    SciTech Connect

    Ohkawa, Mayumi; Ohno, Yoshiya; Masuko, Kazue; Takeuchi, Akiko; Suda, Kentaro; Kubo, Akihiro; Kawahara, Rieko; Okazaki, Shogo; Tanaka, Toshiyuki; Saya, Hideyuki; Seki, Masayuki; Enomoto, Takemi; Yagi, Hideki; Hashimoto, Yoshiyuki; Masuko, Takashi

    2011-03-25

    Highlights: {yields} We established LAT1 amino-acid transporter-disrupted DT40 cells. {yields} LAT1-disrupted cells showed slow growth and lost the oncogenicity. {yields} siRNA and mAb inhibited human tumor growth in vitro and in vivo. {yields} LAT1 is a promising target molecule for cancer therapy. -- Abstract: L-type amino-acid transporter 1 (LAT1) is the first identified light chain of CD98 molecule, disulfide-linked to a heavy chain of CD98. Following cDNA cloning of chicken full-length LAT1, we have constructed targeting vectors for the disruption of chicken LAT1 gene from genomic DNA of chicken LAT1 consisting of 5.4 kb. We established five homozygous LAT1-disrupted (LAT1{sup -/-}) cell clones, derived from a heterozygous LAT1{sup +/-} clone of DT40 chicken B cell line. Reactivity of anti-chicken CD98hc monoclonal antibody (mAb) with LAT1{sup -/-} DT40 cells was markedly decreased compared with that of wild-type DT40 cells. All LAT1{sup -/-} cells were deficient in L-type amino-acid transporting activity, although alternative-splice variant but not full-length mRNA of LAT1 was detected in these cells. LAT1{sup -/-} DT40 clones showed outstandingly slow growth in liquid culture and decreased colony-formation capacity in soft agar compared with wild-type DT40 cells. Cell-cycle analyses indicated that LAT1{sup -/-} DT40 clones have prolonged cell-cycle phases compared with wild-type or LAT1{sup +/-} DT40 cells. Knockdown of human LAT1 by small interfering RNAs resulted in marked in vitro cell-growth inhibition of human cancer cells, and in vivo tumor growth of HeLa cells in athymic mice was significantly inhibited by anti-human LAT1 mAb. All these results indicate essential roles of LAT1 in the cell proliferation and occurrence of malignant phenotypes and that LAT1 is a promising candidate as a molecular target of human cancer therapy.

  8. Inhibition of the Pim1 Oncogene Results in Diminished Visual Function

    PubMed Central

    Yin, Jun; Shine, Lisa; Raycroft, Francis; Deeti, Sudhakar; Reynolds, Alison; Ackerman, Kristin M.; Glaviano, Antonino; O'Farrell, Sean; O'Leary, Olivia; Kilty, Claire; Kennedy, Ciaran; McLoughlin, Sarah; Rice, Megan; Russell, Eileen; Higgins, Desmond G.; Hyde, David R.; Kennedy, Breandan N.

    2012-01-01

    Our objective was to profile genetic pathways whose differential expression correlates with maturation of visual function in zebrafish. Bioinformatic analysis of transcriptomic data revealed Jak-Stat signalling as the pathway most enriched in the eye, as visual function develops. Real-time PCR, western blotting, immunohistochemistry and in situ hybridization data confirm that multiple Jak-Stat pathway genes are up-regulated in the zebrafish eye between 3–5 days post-fertilisation, times associated with significant maturation of vision. One of the most up-regulated Jak-Stat genes is the proto-oncogene Pim1 kinase, previously associated with haematological malignancies and cancer. Loss of function experiments using Pim1 morpholinos or Pim1 inhibitors result in significant diminishment of visual behaviour and function. In summary, we have identified that enhanced expression of Jak-Stat pathway genes correlates with maturation of visual function and that the Pim1 oncogene is required for normal visual function. PMID:23300608

  9. Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis.

    PubMed

    Burney, Richard O; Talbi, Said; Hamilton, Amy E; Vo, Kim Chi; Nyegaard, Mette; Nezhat, Camran R; Lessey, Bruce A; Giudice, Linda C

    2007-08-01

    The identification of molecular differences in the endometrium of women with endometriosis is an important step toward understanding the pathogenesis of this condition and toward developing novel strategies for the treatment of associated infertility and pain. In this study, we conducted global gene expression analysis of endometrium from women with and without moderate/severe stage endometriosis and compared the gene expression signatures across various phases of the menstrual cycle. The transcriptome analysis revealed molecular dysregulation of the proliferative-to-secretory transition in endometrium of women with endometriosis. Paralleled gene expression analysis of endometrial specimens obtained during the early secretory phase demonstrated a signature of enhanced cellular survival and persistent expression of genes involved in DNA synthesis and cellular mitosis in the setting of endometriosis. Comparative gene expression analysis of progesterone-regulated genes in secretory phase endometrium confirmed the observation of attenuated progesterone response. Additionally, interesting candidate susceptibility genes were identified that may be associated with this disorder, including FOXO1A, MIG6, and CYP26A1. Collectively these findings provide a framework for further investigations on causality and mechanisms underlying attenuated progesterone response in endometrium of women with endometriosis.

  10. Comparison of larval and adult Drosophila astrocytes reveals stage-specific gene expression profiles.

    PubMed

    Huang, Yanmei; Ng, Fanny S; Jackson, F Rob

    2015-02-04

    The analysis of adult astrocyte glial cells has revealed a remarkable heterogeneity with regard to morphology, molecular signature, and physiology. A key question in glial biology is how such heterogeneity arises during brain development. One approach to this question is to identify genes with differential astrocyte expression during development; certain genes expressed later in neural development may contribute to astrocyte differentiation. We have utilized the Drosophila model and Translating Ribosome Affinity Purification (TRAP)-RNA-seq methods to derive the genome-wide expression profile of Drosophila larval astrocyte-like cells (hereafter referred to as astrocytes) for the first time. These studies identified hundreds of larval astrocyte-enriched genes that encode proteins important for metabolism, energy production, and protein synthesis, consistent with the known role of astrocytes in the metabolic support of neurons. Comparison of the larval profile with that observed for adults has identified genes with astrocyte-enriched expression specific to adulthood. These include genes important for metabolism and energy production, translation, chromatin modification, protein glycosylation, neuropeptide signaling, immune responses, vesicle-mediated trafficking or secretion, and the regulation of behavior. Among these functional classes, the expression of genes important for chromatin modification and vesicle-mediated trafficking or secretion is overrepresented in adult astrocytes based on Gene Ontology analysis. Certain genes with selective adult enrichment may mediate functions specific to this stage or may be important for the differentiation or maintenance of adult astrocytes, with the latter perhaps contributing to population heterogeneity.

  11. Gene Expression Profiling Analysis Reveals Fur Development in Rex Rabbits (Oryctolagus cuniculus).

    PubMed

    Zhao, Bohao; Chen, Yang; Yan, Xiaorong; Hao, Ye; Zhu, Jie; Weng, Qiiaoqing; Wu, Xinsheng

    2017-08-29

    Fur is an important economic trait in rabbits. The identification of genes that influence fur development and knowledge regarding the actions of these genes provides useful tools for improving fur quality. However, the mechanism of fur development is unclear. To obtain candidate genes related to fur development, the transcriptomes of tissues from backs and bellies of Chinchilla rex rabbits were compared. Of the genes analyzed, 336 showed altered expression in the two groups (285 upregulated and 51 downregulated), P≤0.05, fold-change≥2 or ≤0.5). Using GO and KEGG to obtain gene classes that were differentially enriched, we found several genes to be involved in many important biological processes. In addition, we identified several signaling pathways involved in fur development, including the Wnt and MAPK signaling pathways, revealing mechanisms of skin and hair follicle development, and epidermal cell and keratinocytes differentiation. The obtained rabbit transcriptome and differentially expressed gene profiling data provided comprehensive gene expression information for SFRP2, FRZB, CACNG1, SLC25A4 and SLC16A3. To validate the RNA-seq data, the expression levels of eight differentially expressed genes involved in fur development were confirmed by qRT-PCR. The results of rabbit transcriptomic profiling provide a basis for understanding the molecular mechanisms of fur development.

  12. Aneuploidy, oncogene amplification and epithelial to mesenchymal transition define spontaneous transformation of murine epithelial cells

    PubMed Central

    Padilla-Nash, Hesed M.; McNeil, Nicole E.

    2013-01-01

    Human epithelial cancers are defined by a recurrent distribution of specific chromosomal aneuploidies, a trait less typical for murine cancer models induced by an oncogenic stimulus. After prolonged culture, mouse epithelial cells spontaneously immortalize, transform and become tumorigenic. We assessed genome and transcriptome alterations in cultures derived from bladder and kidney utilizing spectral karyotyping, array CGH, FISH and gene expression profiling. The results show widespread aneuploidy, yet a recurrent and tissue-specific distribution of genomic imbalances, just as in human cancers. Losses of chromosome 4 and gains of chromosome 15 are common and occur early during the transformation process. Global gene expression profiling revealed early and significant transcriptional deregulation. Chromosomal aneuploidy resulted in expression changes of resident genes and consequently in a massive deregulation of the cellular transcriptome. Pathway interrogation of expression changes during the sequential steps of transformation revealed enrichment of genes associated with DNA repair, centrosome regulation, stem cell characteristics and aneuploidy. Genes that modulate the epithelial to mesenchymal transition and genes that define the chromosomal instability phenotype played a dominant role and were changed in a directionality consistent with loss of cell adhesion, invasiveness and proliferation. Comparison with gene expression changes during human bladder and kidney tumorigenesis revealed remarkable overlap with changes observed in the spontaneously transformed murine cultures. Therefore, our novel mouse models faithfully recapitulate the sequence of genomic and transcriptomic events that define human tumorigenesis, hence validating them for both basic and preclinical research. PMID:23619298

  13. Analysis of Notch Signaling-Dependent Gene Expression in Developing Airways Reveals Diversity of Clara Cells

    PubMed Central

    Guha, Arjun; Vasconcelos, Michelle; Zhao, Rui; Gower, Adam C.; Rajagopal, Jayaraj; Cardoso, Wellington V.

    2014-01-01

    Clara cells (CCs) are a morphologically and operationally heterogeneous population of Secretoglobin Scgb1a1-expressing secretory cells that are crucial for airway homeostasis and post-injury repair. Analysis of the extent and origin of CC diversity are limited by knowledge of genes expressed in these cells and their precursors. To identify novel putative markers of CCs and explore the origins of CC diversity, we characterized global changes in gene expression in embryonic lungs in which CCs do not form due to conditional disruption of Notch signaling (RbpjkCNULL). Microarray profiling, Real Time PCR (qRT-PCR), and RNA in situ hybridization (ISH) identified eleven genes downregulated in the E18.5 airways of Rbpjkcnull compared to controls, nearly half not previously known to mark CCs. ISH revealed that several genes had overlapping but distinct domains of expression of in the normal developing lung (E18.5). Notably, Reg3g, Chad, Gabrp and Lrrc26 were enriched in proximal airways, Hp in the distal airways and Upk3a in clusters of cells surrounding Neuroepithelial Bodies (NEBs). Seven of the eleven genes, including Reg3g, Hp, and Upk3a, were expressed in the adult lung in CCs in a pattern similar to that observed in the developing airways. qRT-PCR-based analysis of gene expression of CCs isolated from different airway regions of B1-EGFP reporter mice corroborated the spatial enrichment in gene expression observed by ISH. Our study identifies candidate markers for CC-precursors and CCs and supports the idea that the diversification of the CC phenotype occurs already during embryonic development. PMID:24586412

  14. Ectopic Expression of Mouse Melanopsin in Drosophila Photoreceptors Reveals Fast Response Kinetics and Persistent Dark Excitation.

    PubMed

    Yasin, Bushra; Kohn, Elkana; Peters, Maximilian; Zaguri, Rachel; Weiss, Shirley; Schopf, Krystina; Katz, Ben; Huber, Armin; Minke, Baruch

    2017-03-03

    The intrinsically photosensitive M1 retinal ganglion cells (ipRGC) initiate non-image-forming light-dependent activities and express the melanopsin (OPN4) photopigment. Several features of ipRGC photosensitivity are characteristic of fly photoreceptors. However, the light response kinetics of ipRGC is much slower due to unknown reasons. Here we used transgenic Drosophila, in which the mouse OPN4 replaced the native Rh1 photopigment of Drosophila R1-6 photoreceptors, resulting in deformed rhabdomeric structure. Immunocytochemistry revealed OPN4 expression at the base of the rhabdomeres, mainly at the rhabdomeral stalk. Measurements of the early receptor current, a linear manifestation of photopigment activation, indicated large expression of OPN4 in the plasma membrane. Comparing the early receptor current amplitude and action spectra between WT and the Opn4-expressing Drosophila further indicated that large quantities of a blue absorbing photopigment were expressed, having a dark stable blue intermediate state. Strikingly, the light-induced current of the Opn4-expressing fly photoreceptors was ∼40-fold faster than that of ipRGC. Furthermore, an intense white flash induced a small amplitude prolonged dark current composed of discrete unitary currents similar to the Drosophila single photon responses. The induction of prolonged dark currents by intense blue light could be suppressed by a following intense green light, suggesting induction and suppression of prolonged depolarizing afterpotential. This is the first demonstration of heterologous functional expression of mammalian OPN4 in the genetically emendable Drosophila photoreceptors. Moreover, the fast OPN4-activated ionic current of Drosophila photoreceptors relative to that of mouse ipRGC, indicates that the slow light response of ipRGC does not arise from an intrinsic property of melanopsin. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Astrocyte heterogeneity revealed by expression of a GFAP-LacZ transgene.

    PubMed

    Lee, Youngjin; Su, Mu; Messing, Albee; Brenner, Michael

    2006-05-01

    Glial fibrillary acidic protein (GFAP) is an intermediate filament protein present primarily in astrocytes. The gene is first expressed as astrocytes mature, and in the adult is strongly upregulated in response to CNS damage. Thus, in addition to its astrocyte specificity, transcriptional regulation of the GFAP gene is of interest as a reporter of CNS signaling during development and injury. Several laboratories have shown that approximately 2 kb of 5'-flanking DNA of the human or mouse GFAP gene is sufficient to direct transgene expression to astrocytes and to confer developmental and injury-induced regulation. Enhancer regions have been identified adjacent to the basal promoter and about 1500 bp upstream of the RNA start site. Juxtaposition of these two segments yielded a 447 bp promoter, gfa28, which strongly drove reporter activity in transfected glioma cells. We report here that in mice a gfa28-lacZ transgene expresses in only certain brain regions, revealing an unexpected heterogeneity among astrocytes. The restricted pattern of expression is present early in development, is not altered by injury, and is preserved in cultured astrocytes. However, astrocytes cultured from an inactive region strongly express a transiently transfected gfa28-lacZ construct, and activity of the embedded gfa28-lacZ transgene is partially restored by treatment with a histone deacetylase inhibitor. These results indicate that the absence of gfa28-lacZ expression in specific brain regions results from a developmental failure to remodel GFAP chromatin to an open structure. Thus, expression of the gfa28-lacZ transgene appears to serendipitously mark a distinct set of astrocyte precursors.

  16. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process

    PubMed Central

    Chandran, Uma R; Ma, Changqing; Dhir, Rajiv; Bisceglia, Michelle; Lyons-Weiler, Maureen; Liang, Wenjing; Michalopoulos, George; Becich, Michael; Monzon, Federico A

    2007-01-01

    Background Prostate cancer is characterized by heterogeneity in the clinical course that often does not correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets. Methods Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors. Results The metastatic samples are highly heterogenous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodelling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1). Conclusion We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer. PMID:17430594

  17. Comparative Transcriptional Analysis Reveals Differential Gene Expression between Asymmetric and Symmetric Zygotic Divisions in Tobacco

    PubMed Central

    Zhao, Jie

    2011-01-01

    Asymmetric cell divisions occur widely during many developmental processes in plants. In most angiosperms, the first zygotic cell division is asymmetric resulting in two daughter cells of unequal size and with distinct fates. However, the critical molecular mechanisms regulating this division remain unknown. Previously we showed that treatment of tobacco zygotes with beta-glucosyl Yariv (βGlcY) could dramatically alter the first zygotic asymmetric division to produce symmetric two-celled proembryos. In the present study, we isolated zygotes and two-celled asymmetric proembryos in vivo by micromanipulation, and obtained symmetric, two-celled proembryos by in vitro cell cultures. Using suppression-subtractive hybridization (SSH) and macroarray analysis differential gene expression between the zygote and the asymmetric and symmetric two-celled proembryos was investigated. After sequencing of the differentially expressed clones, a total of 1610 EST clones representing 685 non-redundant transcripts were obtained. Gene ontology (GO) term analysis revealed that these transcripts include those involved in physiological processes such as response to stimulus, regulation of gene expression, and localization and formation of anatomical structures. A homology search against known genes from Arabidopsis indicated that some of the above transcripts are involved in asymmetric cell division and embryogenesis. Quantitative real-time PCR confirmed the up- or down-regulation of the selected candidate transcripts during zygotic division. A few of these transcripts were expressed exclusively in the zygote, or in either type of the two-celled proembryos. Expression analyses of select genes in different tissues and organs also revealed potential roles of these transcripts in fertilization, seed maturation and organ development. The putative roles of few of the identified transcripts in the regulation of zygotic division are discussed. Further functional work on these candidate

  18. TEADs mediate nuclear retention of TAZ to promote oncogenic transformation.

    PubMed

    Chan, Siew Wee; Lim, Chun Jye; Loo, Li Shen; Chong, Yaan Fun; Huang, Caixia; Hong, Wanjin

    2009-05-22

    The transcriptional coactivators YAP and TAZ are downstream targets inhibited by the Hippo tumor suppressor pathway. The expression level of TAZ is recently shown to be elevated in invasive breast cancer cells and some primary breast cancers. TAZ is important for breast cancer cell migration, invasion, and tumorigenesis, but the underlying mechanism is not defined. In this study, we show that TAZ interacts with TEAD transcriptional factors. Knockdown of TEADs suppresses TAZ-mediated oncogenic transformation of MCF10A cells. Uncoupling TAZ from Hippo regulation by S89A mutation enhances its transforming ability. Several residues located in the N-terminal region of TAZ are identified to be important for interaction with TEADs, and these same residues are equally important for TAZ to transform MCF10A cells. Mechanistically, TAZ mutants defective in interaction with TEADs fail to accumulate in the nucleus. Live cell imaging of enhanced green fluorescent protein-TAZ and its mutant defective in TEAD interaction suggests that TEAD interaction mediates nuclear retention. These results reveal a novel mechanism for TEADs to regulate nuclear retention and thus the transforming ability of TAZ.

  19. State of the art address oncogenes and tumor-suppressing genes

    SciTech Connect

    Frazier, M.E.

    1989-05-01

    Cancer has a myriad of causes but, whatever the cause, the changes that result in neoplasia are usually genetic. Although not all DNA damage results in cancer, evidence implicates two broad classes of genes in carcinogenesis. The first class, oncogenes are genes that cause cancer. An oncogene results when there is increased and/or changed expression of the proto-oncogene. Oncogenes are dominant: when activated, they predominate over the activity of any normal alleles in the cell. Thus oncogenes act directly to cause cancer. The second class of genes associated with cancer are tumor-suppressing genes, which either code directly for, or control expression of a wide spectrum of tissue-specific differentiation antigens. Malignancy occurs in a specific cell type when expression of an appropriate tumor-suppressing gene is, homozygously, seriously distorted or completely lacking. Tumor suppressing genes also appear to regulate expression of a third, uncharacterized group of cancer-related genes that act in a recessive manner and are not expressed in the presence of the tumor-suppressing genes. We will first discuss oncogenes, then the tumor-suppressing genes. Experimental data will be used to illustrate key features of the carcinogenic process.

  20. A Balanced Tissue Composition Reveals New Metabolic and Gene Expression Markers in Prostate Cancer

    PubMed Central

    Tessem, May-Britt; Bertilsson, Helena; Angelsen, Anders; Bathen, Tone F.; Drabløs, Finn; Rye, Morten Beck

    2016-01-01

    Molecular analysis of patient tissue samples is essential to characterize the in vivo variability in human cancers which are not accessible in cell-lines or animal models. This applies particularly to studies of tumor metabolism. The challenge is, however, the complex mixture of various tissue types within each sample, such as benign epithelium, stroma and cancer tissue, which can introduce systematic biases when cancers are compared to normal samples. In this study we apply a simple strategy to remove such biases using sample selections where the average content of stroma tissue is balanced between the sample groups. The strategy is applied to a prostate cancer patient cohort where data from MR spectroscopy and gene expression have been collected from and integrated on the exact same tissue samples. We reveal in vivo changes in cancer-relevant metabolic pathways which are otherwise hidden in the data due to tissue confounding. In particular, lowered levels of putrescine are connected to increased expression of SRM, reduced levels of citrate are attributed to upregulation of genes promoting fatty acid synthesis, and increased succinate levels coincide with reduced expression of SUCLA2 and SDHD. In addition, the strategy also highlights important metabolic differences between the stroma, epithelium and prostate cancer. These results show that important in vivo metabolic features of cancer can be revealed from patient data only if the heterogeneous tissue composition is properly accounted for in the analysis. PMID:27100877

  1. Representing high throughput expression profiles via perturbation barcodes reveals compound targets

    PubMed Central

    Kutchukian, Peter S.; Li, Jing; Tudor, Matthew

    2017-01-01

    High throughput mRNA expression profiling can be used to characterize the response of cell culture models to perturbations such as pharmacologic modulators and genetic perturbations. As profiling campaigns expand in scope, it is important to homogenize, summarize, and analyze the resulting data in a manner that captures significant biological signals in spite of various noise sources such as batch effects and stochastic variation. We used the L1000 platform for large-scale profiling of 978 representative genes across thousands of compound treatments. Here, a method is described that uses deep learning techniques to convert the expression changes of the landmark genes into a perturbation barcode that reveals important features of the underlying data, performing better than the raw data in revealing important biological insights. The barcode captures compound structure and target information, and predicts a compound’s high throughput screening promiscuity, to a higher degree than the original data measurements, indicating that the approach uncovers underlying factors of the expression data that are otherwise entangled or masked by noise. Furthermore, we demonstrate that visualizations derived from the perturbation barcode can be used to more sensitively assign functions to unknown compounds through a guilt-by-association approach, which we use to predict and experimentally validate the activity of compounds on the MAPK pathway. The demonstrated application of deep metric learning to large-scale chemical genetics projects highlights the utility of this and related approaches to the extraction of insights and testable hypotheses from big, sometimes noisy data. PMID:28182661

  2. Representing high throughput expression profiles via perturbation barcodes reveals compound targets.

    PubMed

    Filzen, Tracey M; Kutchukian, Peter S; Hermes, Jeffrey D; Li, Jing; Tudor, Matthew

    2017-02-01

    High throughput mRNA expression profiling can be used to characterize the response of cell culture models to perturbations such as pharmacologic modulators and genetic perturbations. As profiling campaigns expand in scope, it is important to homogenize, summarize, and analyze the resulting data in a manner that captures significant biological signals in spite of various noise sources such as batch effects and stochastic variation. We used the L1000 platform for large-scale profiling of 978 representative genes across thousands of compound treatments. Here, a method is described that uses deep learning techniques to convert the expression changes of the landmark genes into a perturbation barcode that reveals important features of the underlying data, performing better than the raw data in revealing important biological insights. The barcode captures compound structure and target information, and predicts a compound's high throughput screening promiscuity, to a higher degree than the original data measurements, indicating that the approach uncovers underlying factors of the expression data that are otherwise entangled or masked by noise. Furthermore, we demonstrate that visualizations derived from the perturbation barcode can be used to more sensitively assign functions to unknown compounds through a guilt-by-association approach, which we use to predict and experimentally validate the activity of compounds on the MAPK pathway. The demonstrated application of deep metric learning to large-scale chemical genetics projects highlights the utility of this and related approaches to the extraction of insights and testable hypotheses from big, sometimes noisy data.

  3. Identification of Hyaloperonospora arabidopsidis Transcript Sequences Expressed during Infection Reveals Isolate-Specific Effectors

    PubMed Central

    Cabral, Adriana; Stassen, Joost H. M.; Seidl, Michael F.; Bautor, Jaqueline; Parker, Jane E.; Van den Ackerveken, Guido

    2011-01-01

    Biotrophic plant pathogens secrete effector proteins that are important for infection of the host. The aim of this study was to identify effectors of the downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) that are expressed during infection of its natural host Arabidopsis thaliana. Infection-related transcripts were identified from Expressed Sequence Tags (ESTs) derived from leaves of the susceptible Arabidopsis Ws eds1-1 mutant inoculated with the highly virulent Hpa isolate Waco9. Assembly of 6364 ESTs yielded 3729 unigenes, of which 2164 were Hpa-derived. From the translated Hpa unigenes, 198 predicted secreted proteins were identified. Of these, 75 were found to be Hpa-specific and six isolate Waco9-specific. Among 42 putative effectors identified there were three Elicitin-like proteins, 16 Cysteine-rich proteins and 18 host-translocated RXLR effectors. Sequencing of alleles in different Hpa isolates revealed that five RXLR genes show signatures of diversifying selection. Thus, EST analysis of Hpa-infected Arabidopsis is proving to be a powerful method for identifying pathogen effector candidates expressed during infection. Delivery of the Waco9-specific protein RXLR29 in planta revealed that this effector can suppress PAMP-triggered immunity and enhance disease susceptibility. We propose that differences in host colonization can be conditioned by isolate-specific effectors. PMID:21573066

  4. Transcriptome-wide functional characterization reveals novel relationships among differentially expressed transcripts in developing soybean embryos.

    PubMed

    Aghamirzaie, Delasa; Batra, Dhruv; Heath, Lenwood S; Schneider, Andrew; Grene, Ruth; Collakova, Eva

    2015-11-14

    Transcriptomics reveals the existence of transcripts of different coding potential and strand orientation. Alternative splicing (AS) can yield proteins with altered number and types of functional domains, suggesting the global occurrence of transcriptional and post-transcriptional events. Many biological processes, including seed maturation and desiccation, are regulated post-transcriptionally (e.g., by AS), leading to the production of more than one coding or noncoding sense transcript from a single locus. We present an integrated computational framework to predict isoform-specific functions of plant transcripts. This framework includes a novel plant-specific weighted support vector machine classifier called CodeWise, which predicts the coding potential of transcripts with over 96 % accuracy, and several other tools enabling global sequence similarity, functional domain, and co-expression network analyses. First, this framework was applied to all detected transcripts (103,106), out of which 13 % was predicted by CodeWise to be noncoding RNAs in developing soybean embryos. Second, to investigate the role of AS during soybean embryo development, a population of 2,938 alternatively spliced and differentially expressed splice variants was analyzed and mined with respect to timing of expression. Conserved domain analyses revealed that AS resulted in global changes in the number, types, and extent of truncation of functional domains in protein variants. Isoform-specific co-expression network analysis using ArrayMining and clustering analyses revealed specific sub-networks and potential interactions among the components of selected signaling pathways related to seed maturation and the acquisition of desiccation tolerance. These signaling pathways involved abscisic acid- and FUSCA3-related transcripts, several of which were classified as noncoding and/or antisense transcripts and were co-expressed with corresponding coding transcripts. Noncoding and antisense transcripts

  5. (Oncogenic action of ionizing radiation)

    SciTech Connect

    Not Available

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. The carcinogenicity of energetic electrons was determined for comparison with the neon ion results. As in past reports we will describe progress in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) DNA strand breaks in the epidermis as a function of radiation penetration; (3) oncogene activation in radiation-induced rat skin cancers. 72 refs., 6 tabs.

  6. Role of cannabinoid receptor CB2 in HER2 pro-oncogenic signaling in breast cancer.

    PubMed

    Pérez-Gómez, Eduardo; Andradas, Clara; Blasco-Benito, Sandra; Caffarel, María M; García-Taboada, Elena; Villa-Morales, María; Moreno, Estefanía; Hamann, Sigrid; Martín-Villar, Ester; Flores, Juana M; Wenners, Antonia; Alkatout, Ibrahim; Klapper, Wolfram; Röcken, Christoph; Bronsert, Peter; Stickeler, Elmar; Staebler, Annette; Bauer, Maret; Arnold, Norbert; Soriano, Joaquim; Pérez-Martínez, Manuel; Megías, Diego; Moreno-Bueno, Gema; Ortega-Gutiérrez, Silvia; Artola, Marta; Vázquez-Villa, Henar; Quintanilla, Miguel; Fernández-Piqueras, José; Canela, Enric I; McCormick, Peter J; Guzmán, Manuel; Sánchez, Cristina

    2015-06-01

    Pharmacological activation of cannabinoid receptors elicits antitumoral responses in different cancer models. However, the biological role of these receptors in tumor physio-pathology is still unknown. We analyzed CB2 cannabinoid receptor protein expression in two series of 166 and 483 breast tumor samples operated in the University Hospitals of Kiel, Tübingen, and Freiburg between 1997 and 2010 and CB2 mRNA expression in previously published DNA microarray datasets. The role of CB2 in oncogenesis was studied by generating a mouse line that expresses the human V-Erb-B2 Avian Erythroblastic Leukemia Viral Oncogene Homolog 2 (HER2) rat ortholog (neu) and lacks CB2 and by a variety of biochemical and cell biology approaches in human breast cancer cells in culture and in vivo, upon modulation of CB2 expression by si/shRNAs and overexpression plasmids. CB2-HER2 molecular interaction was studied by colocalization, coimmunoprecipitation, and proximity ligation assays. Statistical tests were two-sided. We show an association between elevated CB2 expression in HER2+ breast tumors and poor patient prognosis (decreased overall survival, hazard ratio [HR] = 0.29, 95% confidence interval [CI] = 0.09 to 0.71, P = .009) and higher probability to suffer local recurrence (HR = 0.09, 95% CI = 0.049 to 0.54, P = .003) and to develop distant metastases (HR = 0.33, 95% CI = 0.13 to 0.75, P = .009). We also demonstrate that genetic inactivation of CB2 impairs tumor generation and progression in MMTV-neu mice. Moreover, we show that HER2 upregulates CB2 expression by activating the transcription factor ELK1 via the ERK cascade and that an increased CB2 expression activates the HER2 pro-oncogenic signaling at the level of the tyrosine kinase c-SRC. Finally, we show HER2 and CB2 form heteromers in cancer cells. Our findings reveal an unprecedented role of CB2 as a pivotal regulator of HER2 pro-oncogenic signaling in breast cancer, and they suggest that CB2 may be a biomarker with

  7. Oncogenic cancer/testis antigens: prime candidates for immunotherapy.

    PubMed

    Gjerstorff, Morten F; Andersen, Mads H; Ditzel, Henrik J

    2015-06-30

    Recent developments have set the stage for immunotherapy as a supplement to conventional cancer treatment. Consequently, a significant effort is required to further improve efficacy and specificity, particularly the identification of optimal therapeutic targets for clinical testing. Cancer/testis antigens are immunogenic, highly cancer-specific, and frequently expressed in various types of cancer, which make them promising candidate targets for cancer immunotherapy, including cancer vaccination and adoptive T-cell transfer with chimeric T-cell receptors. Our current understanding of tumor immunology and immune escape suggests that targeting oncogenic antigens may be beneficial, meaning that identification of cancer/testis antigens with oncogenic properties is of high priority. Recent work from our lab and others provide evidence that many cancer/testis antigens, in fact, have oncogenic functions, including support of growth, survival and metastasis. This novel insight into the function of cancer/testis antigens has the potential to deliver more effective cancer vaccines. Moreover, immune targeting of oncogenic cancer/testis antigens in combination with conventional cytotoxic therapies or novel immunotherapies such as checkpoint blockade or adoptive transfer, represents a highly synergistic approach with the potential to improve patient survival.

  8. A combined oncogenic pathway signature of BRAF, KRAS and PI3KCA mutation improves colorectal cancer classification and cetuximab treatment prediction

    PubMed Central

    Tian, Sun; Simon, Iris; Moreno, Victor; Roepman, Paul; Tabernero, Josep; Snel, Mireille; van't Veer, Laura; Salazar, Ramon; Bernards, Rene

    2013-01-01

    Objective To develop gene expression profiles that characterise KRAS-, BRAF- or PIK3CA-activated- tumours, and to explore whether these profiles might be helpful in predicting the response to the epidermal growth factor receptor (EGFR) pathway inhibitors better than mutation status alone. Design Fresh frozen tumour samples from 381 colorectal cancer (CRC) patients were collected and mutations in KRAS, BRAF and PIK3CA were assessed. Using microarray data, three individual oncogenic and a combined model were developed and validated in an independent set of 80 CRC patients, and in a dataset from metastatic CRC patients treated with cetuximab. Results 175 tumours (45.9%) harboured oncogenic mutations in KRAS (30.2%), BRAF (11.0%) and PIK3CA (11.5%). Activating mutation signatures for KRAS (75 genes), for BRAF (58 genes,) and for PIK3CA (49 genes) were developed. The development of a combined oncogenic pathway signature-classified tumours as ‘activated oncogenic’, or as ‘wildtype-like’ with a sensitivity of 90.3% and a specificity of 61.7%. The identified signature revealed other mechanisms that can activate ERK/MAPK pathway in KRAS, BRAF and PIK3CA wildtype patients. The combined signature is associated with response to cetuximab treatment in patients with metastatic CRC (HR 2.51, p<0.0009). Conclusion A combined oncogenic pathway signature allows the identification of patients with an active EGFR-signalling pathway that could benefit from downstream pathway inhibition. PMID:22798500

  9. Targeting Oncogenic Mutant p53 for Cancer Therapy.

    PubMed

    Parrales, Alejandro; Iwakuma, Tomoo

    2015-01-01

    Among genetic alterations in human cancers, mutations in the tumor suppressor p53 gene are the most common, occurring in over 50% of human cancers. The majority of p53 mutations are missense mutations and result in the accumulation of dysfunctional p53 protein in tumors. These mutants frequently have oncogenic gain-of-function activities and exacerbate malignant properties of cancer cells, such as metastasis and drug resistance. Increasing evidence reveals that stabilization of mutant p53 in tumors is crucial for its oncogenic activities, while depletion of mutant p53 attenuates malignant properties of cancer cells. Thus, mutant p53 is an attractive druggable target for cancer therapy. Different approaches have been taken to develop small-molecule compounds that specifically target mutant p53. These include compounds that restore wild-type conformation and transcriptional activity of mutant p53, induce depletion of mutant p53, inhibit downstream pathways of oncogenic mutant p53, and induce synthetic lethality to mutant p53. In this review article, we comprehensively discuss the current strategies targeting oncogenic mutant p53 in cancers, with special focus on compounds that restore wild-type p53 transcriptional activity of mutant p53 and those reducing mutant p53 levels.

  10. Reconstitution of the ERG Gene Expression Network Reveals New Biomarkers and Therapeutic Targets in ERG Positive Prostate Tumors

    PubMed Central

    Dubovenko, Alexey; Serebryiskaya, Tatiana; Nikolsky, Yuri; Nikolskaya, Tatiana; Perlina, Ally; JeBailey, Lellean; Bureeva, Svetlana; Katta, Shilpa; Srivastava, Shiv; Dobi, Albert; Khasanova, Tatiana

    2015-01-01

    Background: Despite a growing number of studies evaluating cancer of prostate (CaP) specific gene alterations, oncogenic activation of the ETS Related Gene (ERG) by gene fusions remains the most validated cancer gene alteration in CaP. Prevalent gene fusions have been described between the ERG gene and promoter upstream sequences of androgen-inducible genes, predominantly TMPRSS2 (transmembrane protease serine 2). Despite the extensive evaluations of ERG genomic rearrangements, fusion transcripts and the ERG oncoprotein, the prognostic value of ERG remains to be better understood. Using gene expression dataset from matched prostate tumor and normal epithelial cells from an 80 GeneChip experiment examining 40 tumors and their matching normal pairs in 40 patients with known ERG status, we conducted a cancer signaling-focused functional analysis of prostatic carcinoma representing moderate and aggressive cancers stratified by ERG expression. Results: In the present study of matched pairs of laser capture microdissected normal epithelial cells and well-to-moderately differentiated tumor epithelial cells with known ERG gene expression status from 20 patients with localized prostate cancer, we have discovered novel ERG associated biochemical networks. Conclusions: Using causal network reconstruction methods, we have identified three major signaling pathways related to MAPK/PI3K cascade that may indeed contribute synergistically to the ERG dependent tumor development. Moreover, the key components of these pathways have potential as biomarkers and therapeutic target for ERG positive prostate tumors. PMID:26000039

  11. Blood-Gene Expression Reveals Reduced Circadian Rhythmicity in Individuals Resistant to Sleep Deprivation

    PubMed Central

    Arnardottir, Erna S.; Nikonova, Elena V.; Shockley, Keith R.; Podtelezhnikov, Alexei A.; Anafi, Ron C.; Tanis, Keith Q.; Maislin, Greg; Stone, David J.; Renger, John J.; Winrow, Christopher J.; Pack, Allan I.

    2014-01-01

    Study Objectives: To address whether changes in gene expression in blood cells with sleep loss are different in individuals resistant and sensitive to sleep deprivation. Design: Blood draws every 4 h during a 3-day study: 24-h normal baseline, 38 h of continuous wakefulness and subsequent recovery sleep, for a total of 19 time-points per subject, with every 2-h psychomotor vigilance task (PVT) assessment when awake. Setting: Sleep laboratory. Participants: Fourteen subjects who were previously identified as behaviorally resistant (n = 7) or sensitive (n = 7) to sleep deprivation by PVT. Intervention: Thirty-eight hours of continuous wakefulness. Measurements and Results: We found 4,481 unique genes with a significant 24-h diurnal rhythm during a normal sleep-wake cycle in blood (false discovery rate [FDR] < 5%). Biological pathways were enriched for biosynthetic processes during sleep. After accounting for circadian effects, two genes (SREBF1 and CPT1A, both involved in lipid metabolism) exhibited small, but significant, linear changes in expression with the duration of sleep deprivation (FDR < 5%). The main change with sleep deprivation was a reduction in the amplitude of the diurnal rhythm of expression of normally cycling probe sets. This reduction was noticeably higher in behaviorally resistant subjects than sensitive subjects, at any given P value. Furthermore, blood cell type enrichment analysis showed that the expression pattern difference between sensitive and resistant subjects is mainly found in cells of myeloid origin, such as monocytes. Conclusion: Individual differences in behavioral effects of sleep deprivation are associated with differences in diurnal amplitude of gene expression for genes that show circadian rhythmicity. Citation: Arnardottir ES, Nikonova EV, Shockley KR, Podtelezhnikov AA, Anafi RC, Tanis KQ, Maislin G, Stone DJ, Renger JJ, Winrow CJ, Pack AI. Blood-gene expression reveals reduced circadian rhythmicity in individuals resistant to

  12. Proteomic analysis of MG132-treated germinating pollen reveals expression signatures associated with proteasome inhibition.

    PubMed

    Vannini, Candida; Bracale, Marcella; Crinelli, Rita; Marconi, Valerio; Campomenosi, Paola; Marsoni, Milena; Scoccianti, Valeria

    2014-01-01

    Chemical inhibition of the proteasome has been previously found to effectively impair pollen germination and tube growth in vitro. However, the mediators of these effects at the molecular level are unknown. By performing 2DE proteomic analysis, 24 differentially expressed protein spots, representing 14 unique candidate proteins, were identified in the pollen of kiwifruit (Actinidia deliciosa) germinated in the presence of the MG132 proteasome inhibitor. qPCR analysis revealed that 11 of these proteins are not up-regulated at the mRNA level, but are most likely stabilized by proteasome inhibition. These differentially expressed proteins are predicted to function in various pathways including energy and lipid metabolism, cell wall synthesis, protein synthesis/degradation and stress responses. In line with this evidence, the MG132-induced changes in the proteome were accompanied by an increase in ATP and ROS content and by an alteration in fatty acid composition.

  13. mPGES-1 in prostate cancer controls stemness and amplifies epidermal growth factor receptor-driven oncogenicity.

    PubMed

    Finetti, Federica; Terzuoli, Erika; Giachetti, Antonio; Santi, Raffaella; Villari, Donata; Hanaka, Hiromi; Radmark, Olof; Ziche, Marina; Donnini, Sandra

    2015-08-01

    There is evidence that an inflammatory microenvironment is associated with the development and progression of prostate cancer (PCa), although the determinants of intrinsic inflammation in PCa cells are not completely understood. Here we investigated whether expression of intrinsic microsomal PGE synthase-1 (mPGES-1) enhanced aggressiveness of PCa cells and might be critical for epidermal growth factor receptor (EGFR)-mediated tumour progression. In PCa, overexpression of EGFR promotes metastatic invasion and correlates with a high Gleason score, while prostaglandin E2 (PGE2) has been reported to modulate oncogenic EGFR-driven oncogenicity. Immunohistochemical studies revealed that mPGES-1 in human prostate tissues is correlated with EGFR expression in advanced tumours. In DU145 and PC-3 cell lines expressing mPGES-1 (mPGES-1(SC) cells), we demonstrate that silencing or 'knock down' of mPGES-1 (mPGES-1(KD)) or pharmacological inhibition by MF63 strongly attenuates overall oncogenic drive. Indeed, mPGES-1(SC) cells express stem-cell-like features (high CD44, β1-integrin, Nanog and Oct4 and low CD24 and α6-integrin) as well as mesenchymal transition markers (high vimentin, high fibronectin, low E-cadherin). They also show increased capacity to survive irrespective of anchorage condition, and overexpress EGFR compared to mPGES-1(KD) cells. mPGES-1 expression correlates with increased in vivo tumour growth and metastasis. Although EGFR inhibition reduces mPGES-1(SC) and mPGES-1(KD) cell xenograft tumour growth, we show that mPGES-1/PGE2 signalling sensitizes tumour cells to EGFR inhibitors. We propose mPGES-1 as a possible new marker of tumour aggressiveness in PCa.

  14. mPGES-1 in prostate cancer controls stemness and amplifies epidermal growth factor receptor-driven oncogenicity

    PubMed Central

    Finetti, Federica; Terzuoli, Erika; Giachetti, Antonio; Santi, Raffaella; Villari, Donata; Hanaka, Hiromi; Radmark, Olof; Ziche, Marina; Donnini, Sandra

    2015-01-01

    There is evidence that an inflammatory microenvironment is associated with the development and progression of prostate cancer (PCa), although the determinants of intrinsic inflammation in PCa cells are not completely understood. Here we investigated whether expression of intrinsic microsomal PGE synthase-1 (mPGES-1) enhanced aggressiveness of PCa cells and might be critical for epidermal growth factor receptor (EGFR)-mediated tumour progression. In PCa, overexpression of EGFR promotes metastatic invasion and correlates with a high Gleason score, while prostaglandin E2 (PGE2) has been reported to modulate oncogenic EGFR-driven oncogenicity. Immunohistochemical studies revealed that mPGES-1 in human prostate tissues is correlated with EGFR expression in advanced tumours. In DU145 and PC-3 cell lines expressing mPGES-1 (mPGES-1SC cells), we demonstrate that silencing or ‘knock down’ of mPGES-1 (mPGES-1KD) or pharmacological inhibition by MF63 strongly attenuates overall oncogenic drive. Indeed, mPGES-1SC cells express stem-cell-like features (high CD44, β1-integrin, Nanog and Oct4 and low CD24 and α6-integrin) as well as mesenchymal transition markers (high vimentin, high fibronectin, low E-cadherin). They also show increased capacity to survive irrespective of anchorage condition, and overexpress EGFR compared to mPGES-1KD cells. mPGES-1 expression correlates with increased in vivo tumour growth and metastasis. Although EGFR inhibition reduces mPGES-1SC and mPGES-1KD cell xenograft tumour growth, we show that mPGES-1/PGE2 signalling sensitizes tumour cells to EGFR inhibitors. We propose mPGES-1 as a possible new marker of tumour aggressiveness in PCa. PMID:26113609

  15. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes

    PubMed Central

    Zhang, Yanzhao; Cheng, Yanwei; Ya, Huiyuan; Xu, Shuzhen; Han, Jianming

    2015-01-01

    The pigmented cells in defined region of a petal constitute the petal spots. Petal spots attract pollinators and are found in many angiosperm families. Several cultivars of tree peony contain a single red or purple spot at the base of petal that makes the flower more attractive for the ornamental market. So far, the understanding of the molecular mechanism of spot formation is inadequate. In this study, we sequenced the transcriptome of the purple spot and the white non-spot of tree peony flower. We assembled and annotated 67,892 unigenes. Comparative analyses of the two transcriptomes showed 1,573 differentially expressed genes, among which 933 were up-regulated, and 640 were down-regulated in the purple spot. Subsequently, we examined four anthocyanin structural genes, including PsCHS, PsF3′H, PsDFR, and PsANS, which expressed at a significantly higher level in the purple spot than in the white non-spot. We further validated the digital expression data using quantitative real-time PCR. Our result uncovered transcriptome variance between the spot and non-spot of tree peony flower, and revealed that the co-expression of four anthocyanin structural genes was responsible for spot pigment in tree peony. The data will further help to unravel the genetic mechanism of peony flower spot formation. PMID:26583029

  16. Gene expression profiles in granuloma tissue reveal novel diagnostic markers in sarcoidosis.

    PubMed

    Christophi, George P; Caza, Tiffany; Curtiss, Christopher; Gumber, Divya; Massa, Paul T; Landas, Steve K

    2014-06-01

    Sarcoidosis is an immune-mediated multisystem disease characterized by the formation of non-caseating granulomas. The pathogenesis of sarcoidosis is unclear, with proposed infectious or environmental antigens triggering an aberrant immune response in susceptible hosts. Multiple pro-inflammatory signaling pathways have been implicated in mediating macrophage activation and granuloma formation in sarcoidosis, including IFN-γ/STAT-1, IL-6/STAT-3, and NF-κB. It is difficult to distinguish sarcoidosis from other granulomatous diseases or assess disease severity and treatment response with histopathology alone. Therefore, development of improved diagnostic tools is imperative. Herein, we describe an efficient and reliable technique to classify granulomatous disease through selected gene expression and identify novel genes and cytokine pathways contributing to the pathogenesis of sarcoidosis. We quantified the expression of twenty selected mRNAs extracted from formalin-fixed paraffin embedded (FFPE) tissue (n = 38) of normal lung, suture granulomas, sarcoid granulomas, and fungal granulomas. Utilizing quantitative real-time RT-PCR we analyzed the expression of several genes, including IL-6, COX-2, MCP-1, IFN-γ, T-bet, IRF-1, Nox2, IL-33, and eotaxin-1 and revealed differential regulation between suture, sarcoidosis, and fungal granulomas. This is the first study demonstrating that quantification of target gene expression in FFPE tissue biopsies is a potentially effective diagnostic and research tool in sarcoidosis.

  17. Dynamic Changes in Amygdala Psychophysiological Connectivity Reveal Distinct Neural Networks for Facial Expressions of Basic Emotions

    PubMed Central

    Diano, Matteo; Tamietto, Marco; Celeghin, Alessia; Weiskrantz, Lawrence; Tatu, Mona-Karina; Bagnis, Arianna; Duca, Sergio; Geminiani, Giuliano; Cauda, Franco; Costa, Tommaso

    2017-01-01

    The quest to characterize the neural signature distinctive of different basic emotions has recently come under renewed scrutiny. Here we investigated whether facial expressions of different basic emotions modulate the functional connectivity of the amygdala with the rest of the brain. To this end, we presented seventeen healthy participants (8 females) with facial expressions of anger, disgust, fear, happiness, sadness and emotional neutrality and analyzed amygdala’s psychophysiological interaction (PPI). In fact, PPI can reveal how inter-regional amygdala communications change dynamically depending on perception of various emotional expressions to recruit different brain networks, compared to the functional interactions it entertains during perception of neutral expressions. We found that for each emotion the amygdala recruited a distinctive and spatially distributed set of structures to interact with. These changes in amygdala connectional patters characterize the dynamic signature prototypical of individual emotion processing, and seemingly represent a neural mechanism that serves to implement the distinctive influence that each emotion exerts on perceptual, cognitive, and motor responses. Besides these differences, all emotions enhanced amygdala functional integration with premotor cortices compared to neutral faces. The present findings thus concur to reconceptualise the structure-function relation between brain-emotion from the traditional one-to-one mapping toward a network-based and dynamic perspective. PMID:28345642

  18. Dynamic Changes in Amygdala Psychophysiological Connectivity Reveal Distinct Neural Networks for Facial Expressions of Basic Emotions.

    PubMed

    Diano, Matteo; Tamietto, Marco; Celeghin, Alessia; Weiskrantz, Lawrence; Tatu, Mona-Karina; Bagnis, Arianna; Duca, Sergio; Geminiani, Giuliano; Cauda, Franco; Costa, Tommaso

    2017-03-27

    The quest to characterize the neural signature distinctive of different basic emotions has recently come under renewed scrutiny. Here we investigated whether facial expressions of different basic emotions modulate the functional connectivity of the amygdala with the rest of the brain. To this end, we presented seventeen healthy participants (8 females) with facial expressions of anger, disgust, fear, happiness, sadness and emotional neutrality and analyzed amygdala's psychophysiological interaction (PPI). In fact, PPI can reveal how inter-regional amygdala communications change dynamically depending on perception of various emotional expressions to recruit different brain networks, compared to the functional interactions it entertains during perception of neutral expressions. We found that for each emotion the amygdala recruited a distinctive and spatially distributed set of structures to interact with. These changes in amygdala connectional patters characterize the dynamic signature prototypical of individual emotion processing, and seemingly represent a neural mechanism that serves to implement the distinctive influence that each emotion exerts on perceptual, cognitive, and motor responses. Besides these differences, all emotions enhanced amygdala functional integration with premotor cortices compared to neutral faces. The present findings thus concur to reconceptualise the structure-function relation between brain-emotion from the traditional one-to-one mapping toward a network-based and dynamic perspective.

  19. Proteomic Profiling Reveals Upregulated Protein Expression of Hsp70 in Keloids

    PubMed Central

    Lee, Ju Hee; Shin, Jung U.; Lee, Hemin; Rah, Dong Kyun; Jung, Jin Young; Lee, Won Jai

    2013-01-01

    Background. The biochemical characteristics of keloid-derived fibroblasts differ from those of adjacent normal fibroblasts, and these differences are thought to be the cause of abnormal fibrosis. Therefore, we investigated the characteristic proteins that are differentially expressed in keloid-derived fibroblasts using proteomics tools. Objective. We attempted to investigate the novel proteins that play important roles in the pathophysiology of keloids. Methods. Proteomics analysis was performed to identify differentially expressed proteins in keloid-derived fibroblasts. Keloid-derived fibroblasts and adjacent normal fibroblasts were analyzed with 2-DAGE. We validated these proteins with immunoblot analysis, real-time RT-PCR, and immunohistochemistry. Results. Sixteen differentially expressed protein spots were identified in keloid-derived fibroblasts. Among them, heat shock protein 70 (Hsp70) was specifically upregulated in keloid-derived fibroblasts. Also, immunohistochemistry and western blot analysis revealed increased Hsp70, TGF-β, and PCNA expressions in keloids compared to normal tissue. Conclusion. Hsp70 is overexpressed in keloid fibroblasts and tissue. The overexpression of Hsp70 may be involved in the pathogenesis of keloids, and the inhibition of Hsp70 could be a new therapeutic tool for the treatment of keloids. PMID:24260741

  20. Exon expression profiling reveals stimulus-mediated exon use in neural cells

    PubMed Central

    McKee, Adrienne E; Neretti, Nicola; Carvalho, Luis E; Meyer, Clifford A; Fox, Edward A; Brodsky, Alexander S; Silver, Pamela A

    2007-01-01

    Background: Neuronal cells respond to changes in intracellular calcium ([Ca2+]i) by affecting both the abundance and architecture of specific mRNAs. Although calcium-induced transcription and transcript variation have both been recognized as important sources of gene regulation, the interplay between these two phenomena has not been evaluated on a genome-wide scale. Results: Here, we show that exon-centric microarrays can be used to resolve the [Ca2+]i-modulated gene expression response into transcript-level and exon-level regulation. Global assessments of affected transcripts reveal modulation within distinct functional gene categories. We find that transcripts containing calcium-modulated exons exhibit enrichment for calcium ion binding, calmodulin binding, plasma membrane associated, and metabolic proteins. Additionally, we uncover instances of regulated exon use in potassium channels, neuroendocrine secretory proteins and metabolic enzymes, and demonstrate that regulated changes in exon expression give rise to distinct transcript variants. Conclusion: Our findings connect extracellular stimuli