Sample records for expression site es

  1. Gene targeting and subsequent site-specific transgenesis at the β-actin (ACTB) locus in common marmoset embryonic stem cells.

    PubMed

    Shiozawa, Seiji; Kawai, Kenji; Okada, Yohei; Tomioka, Ikuo; Maeda, Takuji; Kanda, Akifumi; Shinohara, Haruka; Suemizu, Hiroshi; James Okano, Hirotaka; Sotomaru, Yusuke; Sasaki, Erika; Okano, Hideyuki

    2011-09-01

    Nonhuman primate embryonic stem (ES) cells have vast promise for preclinical studies. Genetic modification in nonhuman primate ES cells is an essential technique for maximizing the potential of these cells. The common marmoset (Callithrix jacchus), a nonhuman primate, is expected to be a useful transgenic model for preclinical studies. However, genetic modification in common marmoset ES (cmES) cells has not yet been adequately developed. To establish efficient and stable genetic modifications in cmES cells, we inserted the enhanced green fluorescent protein (EGFP) gene with heterotypic lox sites into the β-actin (ACTB) locus of the cmES cells using gene targeting. The resulting knock-in ES cells expressed EGFP ubiquitously under the control of the endogenous ACTB promoter. Using inserted heterotypic lox sites, we demonstrated Cre recombinase-mediated cassette exchange (RMCE) and successfully established a monomeric red fluorescent protein (mRFP) knock-in cmES cell line. Further, a herpes simplex virus-thymidine kinase (HSV-tk) knock-in cmES cell line was established using RMCE. The growth of tumor cells originating from the cell line was significantly suppressed by the administration of ganciclovir. Therefore, the HSV-tk/ganciclovir system is promising as a safeguard for stem cell therapy. The stable and ubiquitous expression of EGFP before RMCE enables cell fate to be tracked when the cells are transplanted into an animal. Moreover, the creation of a transgene acceptor locus for site-specific transgenesis will be a powerful tool, similar to the ROSA26 locus in mice.

  2. The Challenges of Recombinant Endostatin in Clinical Application: Focus on the Different Expression Systems and Molecular Bioengineering

    PubMed Central

    Mohajeri, Abbas; Sanaei, Sarvin; Kiafar, Farhad; Fattahi, Amir; Khalili, Majid; Zarghami, Nosratollah

    2017-01-01

    Angiogenesis plays an essential role in rapid growing and metastasis of the tumors. Inhibition of angiogenesis is a putative strategy for cancer therapy. Endostatin (Es) is an attractive anti-angiogenesis protein with some clinical application challenges including; short half-life, instability in serum and requirement to high dosage. Therefore, production of recombinant endostatin (rEs) is necessary in large scale. The production of rEs is difficult because of its structural properties and is high-cost. Therefore, this review focused on the different expression systems that involved in rEs production including; mammalian, baculovirus, yeast, and Escherichia coli (E. coli) expression systems. The evaluating of the results of different expression systems declared that none of the mentioned systems can be considered to be generally superior to the other. Meanwhile with considering the advantages and disadvantage of E. coli expression system compared with other systems beside the molecular properties of Es, E. coli expression system can be a preferred expression system for expressing of the Es in large scale. Also, the molecular bioengineering and sustained release formulations that lead to improving of its stability and bioactivity will be discussed. Point mutation (P125A) of Es, addition of RGD moiety or an additional zinc biding site to N-terminal of Es , fusing of Es to anti-HER2 IgG or heavy-chain of IgG, and finally loading of the endostar by PLGA and PEG- PLGA nanoparticles and gold nano-shell particles are the effective bioengineering methods to overcome to clinical changes of endostatin. PMID:28507934

  3. NLP is a novel transcription regulator involved in VSG expression site control in Trypanosoma brucei.

    PubMed

    Narayanan, Mani Shankar; Kushwaha, Manish; Ersfeld, Klaus; Fullbrook, Alexander; Stanne, Tara M; Rudenko, Gloria

    2011-03-01

    Trypanosoma brucei mono-allelically expresses one of approximately 1500 variant surface glycoprotein (VSG) genes while multiplying in the mammalian bloodstream. The active VSG is transcribed by RNA polymerase I in one of approximately 15 telomeric VSG expression sites (ESs). T. brucei is unusual in controlling gene expression predominantly post-transcriptionally, and how ESs are mono-allelically controlled remains a mystery. Here we identify a novel transcription regulator, which resembles a nucleoplasmin-like protein (NLP) with an AT-hook motif. NLP is key for ES control in bloodstream form T. brucei, as NLP knockdown results in 45- to 65-fold derepression of the silent VSG221 ES. NLP is also involved in repression of transcription in the inactive VSG Basic Copy arrays, minichromosomes and procyclin loci. NLP is shown to be enriched on the 177- and 50-bp simple sequence repeats, the non-transcribed regions around rDNA and procyclin, and both active and silent ESs. Blocking NLP synthesis leads to downregulation of the active ES, indicating that NLP plays a role in regulating appropriate levels of transcription of ESs in both their active and silent state. Discovery of the unusual transcription regulator NLP provides new insight into the factors that are critical for ES control.

  4. Efficient conditional and promoter-specific in vivo expression of cDNAs of choice by taking advantage of recombinase-mediated cassette exchange using FlEx gene traps

    PubMed Central

    Schebelle, Laura; Wolf, Claudia; Stribl, Carola; Javaheri, Tahereh; Schnütgen, Frank; Ettinger, Andreas; Ivics, Zoltán; Hansen, Jens; Ruiz, Patricia; von Melchner, Harald; Wurst, Wolfgang; Floss, Thomas

    2010-01-01

    Recombinase-mediated cassette exchange (RMCE) exploits the possibility to unidirectionally exchange any genetic material flanked by heterotypic recombinase recognition sites (RRS) with target sites in the genome. Due to a limited number of available pre-fabricated target sites, RMCE in mouse embryonic stem (ES) cells has not been tapped to its full potential to date. Here, we introduce a universal system, which allows the targeted insertion of any given transcriptional unit into 85 742 previously annotated retroviral conditional gene trap insertions, representing 7013 independent genes in mouse ES cells, by RMCE. This system can be used to express any given cDNA under the control of endogenous trapped promoters in vivo, as well as for the generation of transposon ‘launch pads’ for chromosomal region-specific ‘Sleeping Beauty’ insertional mutagenesis. Moreover, transcription of the gene-of-interest is only activated upon Cre-recombinase activity, a feature that adds conditionality to this expression system, which is demonstrated in vivo. The use of the RMCE system presented in this work requires one single-cloning step followed by one overnight gateway clonase reaction and subsequent cassette exchange in ES cells with efficiencies of 40% in average. PMID:20139417

  5. High neuropeptide Y release associates with Ewing sarcoma bone dissemination - in vivo model of site-specific metastases

    PubMed Central

    Hong, Sung-Hyeok; Tilan, Jason U.; Galli, Susana; Izycka-Swieszewska, Ewa; Polk, Taylor; Horton, Meredith; Mahajan, Akanksha; Christian, David; Jenkins, Shari; Acree, Rachel; Connors, Katherine; Ledo, Phuong; Lu, Congyi; Lee, Yi-Chien; Rodriguez, Olga; Toretsky, Jeffrey A.; Albanese, Chris; Kitlinska, Joanna

    2015-01-01

    Ewing sarcoma (ES) develops in bones or soft tissues of children and adolescents. The presence of bone metastases is one of the most adverse prognostic factors, yet the mechanisms governing their formation remain unclear. As a transcriptional target of EWS-FLI1, the fusion protein driving ES transformation, neuropeptide Y (NPY) is highly expressed and released from ES tumors. Hypoxia up-regulates NPY and activates its pro-metastatic functions. To test the impact of NPY on ES metastatic pattern, ES cell lines, SK-ES1 and TC71, with high and low peptide release, respectively, were used in an orthotopic xenograft model. ES cells were injected into gastrocnemius muscles of SCID/beige mice, the primary tumors excised, and mice monitored for the presence of metastases. SK-ES1 xenografts resulted in thoracic extra-osseous metastases (67%) and dissemination to bone (50%) and brain (25%), while TC71 tumors metastasized to the lungs (70%). Bone dissemination in SK-ES1 xenografts associated with increased NPY expression in bone metastases and its accumulation in bone invasion areas. The genetic silencing of NPY in SK-ES1 cells reduced bone degradation. Our study supports the role for NPY in ES bone invasion and provides new models for identifying pathways driving ES metastases to specific niches and testing anti-metastatic therapeutics. PMID:25714031

  6. A quorum sensing-independent path to stumpy development in Trypanosoma brucei

    PubMed Central

    Zimmermann, Henriette; Batram, Christopher; Kramer, Susanne; Janzen, Christian J.; Engstler, Markus

    2017-01-01

    For persistent infections of the mammalian host, African trypanosomes limit their population size by quorum sensing of the parasite-excreted stumpy induction factor (SIF), which induces development to the tsetse-infective stumpy stage. We found that besides this cell density-dependent mechanism, there exists a second path to the stumpy stage that is linked to antigenic variation, the main instrument of parasite virulence. The expression of a second variant surface glycoprotein (VSG) leads to transcriptional attenuation of the VSG expression site (ES) and immediate development to tsetse fly infective stumpy parasites. This path is independent of SIF and solely controlled by the transcriptional status of the ES. In pleomorphic trypanosomes varying degrees of ES-attenuation result in phenotypic plasticity. While full ES-attenuation causes irreversible stumpy development, milder attenuation may open a time window for rescuing an unsuccessful antigenic switch, a scenario that so far has not been considered as important for parasite survival. PMID:28394929

  7. Combined experience of six independent laboratories attempting to create an Ewing sarcoma mouse model

    PubMed Central

    Han, Jenny; Han, Zhi-Yan; Sax, Barbara; Kream, Barbara E.; Hong, Sung-Hyeok; Çelik, Haydar; Tirode, Franck; Tuckermann, Jan; Toretsky, Jeffrey A.; Kenner, Lukas; Kovar, Heinrich; Lee, Sean; Sweet-Cordero, E. Alejandro; Nakamura, Takuro; Moriggl, Richard; Delattre, Olivier; Üren, Aykut

    2017-01-01

    Ewing sarcoma (ES) involves a tumor-specific chromosomal translocation that produces the EWS-FLI1 protein, which is required for the growth of ES cells both in vitro and in vivo. However, an EWS-FLI1-driven transgenic mouse model is not currently available. Here, we present data from six independent laboratories seeking an alternative approach to express EWS-FLI1 in different murine tissues. We used the Runx2, Col1a2.3, Col1a3.6, Prx1, CAG, Nse, NEFL, Dermo1, P0, Sox9 and Osterix promoters to target EWS-FLI1 or Cre expression. Additional approaches included the induction of an endogenous chromosomal translocation, in utero knock-in, and the injection of Cre-expressing adenovirus to induce EWS-FLI1 expression locally in multiple lineages. Most models resulted in embryonic lethality or developmental defects. EWS-FLI1-induced apoptosis, promoter leakiness, the lack of potential cofactors, and the difficulty of expressing EWS-FLI1 in specific sites were considered the primary reasons for the failed attempts to create a transgenic mouse model of ES. PMID:27191748

  8. Combined experience of six independent laboratories attempting to create an Ewing sarcoma mouse model.

    PubMed

    Minas, Tsion Zewdu; Surdez, Didier; Javaheri, Tahereh; Tanaka, Miwa; Howarth, Michelle; Kang, Hong-Jun; Han, Jenny; Han, Zhi-Yan; Sax, Barbara; Kream, Barbara E; Hong, Sung-Hyeok; Çelik, Haydar; Tirode, Franck; Tuckermann, Jan; Toretsky, Jeffrey A; Kenner, Lukas; Kovar, Heinrich; Lee, Sean; Sweet-Cordero, E Alejandro; Nakamura, Takuro; Moriggl, Richard; Delattre, Olivier; Üren, Aykut

    2017-05-23

    Ewing sarcoma (ES) involves a tumor-specific chromosomal translocation that produces the EWS-FLI1 protein, which is required for the growth of ES cells both in vitro and in vivo. However, an EWS-FLI1-driven transgenic mouse model is not currently available. Here, we present data from six independent laboratories seeking an alternative approach to express EWS-FLI1 in different murine tissues. We used the Runx2, Col1a2.3, Col1a3.6, Prx1, CAG, Nse, NEFL, Dermo1, P0, Sox9 and Osterix promoters to target EWS-FLI1 or Cre expression. Additional approaches included the induction of an endogenous chromosomal translocation, in utero knock-in, and the injection of Cre-expressing adenovirus to induce EWS-FLI1 expression locally in multiple lineages. Most models resulted in embryonic lethality or developmental defects. EWS-FLI1-induced apoptosis, promoter leakiness, the lack of potential cofactors, and the difficulty of expressing EWS-FLI1 in specific sites were considered the primary reasons for the failed attempts to create a transgenic mouse model of ES.

  9. TelAP1 links telomere complexes with developmental expression site silencing in African trypanosomes

    PubMed Central

    Reis, Helena; Schwebs, Marie; Dietz, Sabrina; Janzen, Christian J; Butter, Falk

    2018-01-01

    Abstract During its life cycle, Trypanosoma brucei shuttles between a mammalian host and the tsetse fly vector. In the mammalian host, immune evasion of T. brucei bloodstream form (BSF) cells relies on antigenic variation, which includes monoallelic expression and periodic switching of variant surface glycoprotein (VSG) genes. The active VSG is transcribed from only 1 of the 15 subtelomeric expression sites (ESs). During differentiation from BSF to the insect-resident procyclic form (PCF), the active ES is transcriptionally silenced. We used mass spectrometry-based interactomics to determine the composition of telomere protein complexes in T. brucei BSF and PCF stages to learn more about the structure and functions of telomeres in trypanosomes. Our data suggest a different telomere complex composition in the two forms of the parasite. One of the novel telomere-associated proteins, TelAP1, forms a complex with telomeric proteins TbTRF, TbRAP1 and TbTIF2 and influences ES silencing kinetics during developmental differentiation. PMID:29385523

  10. Dynamic impact of brief electrical nerve stimulation on the neural immune axis-polarization of macrophages toward a pro-repair phenotype in demyelinated peripheral nerve.

    PubMed

    McLean, Nikki A; Verge, Valerie M K

    2016-09-01

    Demyelinating peripheral nerves are infiltrated by cells of the monocyte lineage, including macrophages, which are highly plastic, existing on a continuum from pro-inflammatory M1 to pro-repair M2 phenotypic states. Whether one can therapeutically manipulate demyelinated peripheral nerves to promote a pro-repair M2 phenotype remains to be elucidated. We previously identified brief electrical nerve stimulation (ES) as therapeutically beneficial for remyelination, benefits which include accelerated clearance of macrophages, making us theorize that ES alters the local immune response. Thus, the impact of ES on the immune microenvironment in the zone of demyelination was examined. Adult male rat tibial nerves were focally demyelinated via 1% lysophosphatidyl choline (LPC) injection. Five days later, half underwent 1 hour 20 Hz sciatic nerve ES proximal to the LPC injection site. ES had a remarkable and significant impact, shifting the macrophage phenotype from predominantly pro-inflammatory/M1 toward a predominantly pro-repair/M2 one, as evidenced by an increased incidence of expression of M2-associated phenotypic markers in identified macrophages and a decrease in M1-associated marker expression. This was discernible at 3 days post-ES (8 days post-LPC) and continued at the 5 day post-ES (10 days post-LPC) time point examined. ES also affected chemokine (C-C motif) ligand 2 (CCL2; aka MCP-1) expression in a manner that correlated with increases and decreases in macrophage numbers observed in the demyelination zone. The data establish that briefly increasing neuronal activity favorably alters the immune microenvironment in demyelinated nerve, rapidly polarizing macrophages toward a pro-repair phenotype, a beneficial therapeutic concept that may extend to other pathologies. GLIA 2016;64:1546-1561. © 2016 Wiley Periodicals, Inc.

  11. Marking Embryonic Stem Cells with a 2A Self-Cleaving Peptide: A NKX2-5 Emerald GFP BAC Reporter

    PubMed Central

    Hsiao, Edward C.; Yoshinaga, Yuko; Nguyen, Trieu D.; Musone, Stacy L.; Kim, Judy E.; Swinton, Paul; Espineda, Isidro; Manalac, Carlota; deJong, Pieter J.; Conklin, Bruce R.

    2008-01-01

    Background Fluorescent reporters are useful for assaying gene expression in living cells and for identifying and isolating pure cell populations from heterogeneous cultures, including embryonic stem (ES) cells. Multiple fluorophores and genetic selection markers exist; however, a system for creating reporter constructs that preserve the regulatory sequences near a gene's native ATG start site has not been widely available. Methodology Here, we describe a series of modular marker plasmids containing independent reporter, bacterial selection, and eukaryotic selection components, compatible with both Gateway recombination and lambda prophage bacterial artificial chromosome (BAC) recombineering techniques. A 2A self-cleaving peptide links the reporter to the native open reading frame. We use an emerald GFP marker cassette to create a human BAC reporter and ES cell reporter line for the early cardiac marker NKX2-5. NKX2-5 expression was detected in differentiating mouse ES cells and ES cell-derived mice. Conclusions Our results describe a NKX2-5 ES cell reporter line for studying early events in cardiomyocyte formation. The results also demonstrate that our modular marker plasmids could be used for generating reporters from unmodified BACs, potentially as part of an ES cell reporter library. PMID:18596956

  12. Treatment of hypoxic-ischemic encephalopathy in mouse by transplantation of embryonic stem cell-derived cells.

    PubMed

    Ma, Jie; Wang, Yu; Yang, Jianhua; Yang, Min; Chang, Keun-A; Zhang, Linhua; Jiang, Feng; Li, Yi; Zhang, Zhonggong; Heo, Chaejeong; Suh, Yoo-Hun

    2007-07-01

    A 7-day-old hypoxic-ischemic encephalopathy (HIE) mouse model was used to study the effect of transplantation of embryonic stem (ES) cell-derived cells on the HIE. After the inducement in vitro, the ES cell-derived cells expressed Nestin and MAP-2, rather than GFAP mRNA. After transplantation, ES cell-derived cells can survive, migrate into the injury site, and specifically differentiate into neurons, showing improvement of the learning ability and memory of the HIE mouse at 8 months post-transplantation. The non-grafted HIE mouse brain showed typical pathological changes in the hippocampus and cerebral cortex, where the number of neurons was reduced, while in the cell graft group, number of the neurons increased in the same regions. Although further study is necessary to elucidate the precise mechanisms responsible for this functional recovery, we believe that ES cells have advantages for use as a donor source in HIE.

  13. Therapeutic Angiogenesis via Solar Cell-Facilitated Electrical Stimulation.

    PubMed

    Jeong, Gun-Jae; Oh, Jin Young; Kim, Yeon-Ju; Bhang, Suk Ho; Jang, Hyeon-Ki; Han, Jin; Yoon, Jeong-Kee; Kwon, Sang-Mo; Lee, Tae Il; Kim, Byung-Soo

    2017-11-08

    Cell therapy has been suggested as a treatment modality for ischemic diseases, but the poor survival and engraftment of implanted cells limit its therapeutic efficacy. To overcome such limitation, we used electrical stimulation (ES) derived from a wearable solar cell for inducing angiogenesis in ischemic tissue. ES enhanced the secretion of angiogenic growth factors and the migration of mesenchymal stem cells (MSCs), myoblasts, endothelial progenitor cells, and endothelial cells in vitro. In a mouse ischemic hindlimb model, ES generated by a solar cell and applied to the ischemic region promoted migration of MSCs toward the ischemic site and upregulated expression of angiogenic paracrine factors (vascular endothelial, basic fibroblast, and hepatocyte growth factors; and stromal cell-derived factor-1α). Importantly, solar cell-generated ES promoted the formation of capillaries and arterioles at the ischemic region, attenuated muscle necrosis and fibrosis, and eventually prevented loss of the ischemic limb. Solar cell ES therapy showed higher angiogenic efficacy than conventional MSC therapy. This study shows the feasibility of using solar cell ES as a novel treatment for therapeutic angiogenesis.

  14. In Vivo Imaging of mdrla Gene Expression

    DTIC Science & Technology

    2005-06-01

    svImJ mouse strain, compatible with the ES cells used in our Transgenic Mouse Facility. b. Engineer PGK-neo and Renilla luciferase cassettes...inserted between the two loxP sites, upstream of the Neo cassette. A cloning strategy was then devised to fuse Renilla luciferase in-frame with the...sites: B, BamHI; E, EcoRI; S, ScaI. PGK-neo: neo under the control of the PGK promoter. Luc: Renilla luciferase fused in- frame with the translated

  15. The reprogramming factor nuclear receptor subfamily 5, group A, member 2 cannot replace octamer-binding transcription factor 4 function in the self-renewal of embryonic stem cells.

    PubMed

    Choi, Kyeng-Won; Oh, Hye-Rim; Lee, Jaeyoung; Lim, Bobae; Han, Yong-Mahn; Oh, Junseo; Kim, Jungho

    2014-02-01

    Although octamer-binding transcription factor 4 (Oct-4) is one of the most intensively studied factors in mammalian development, no cellular genes capable of replacing Oct-4 function in embryonic stem (ES) cells have been found. Recent data show that nuclear receptor subfamily 5, group A, member 2 (Nr5a2) is able to replace Oct-4 function in the reprogramming process; however, it is unclear whether Nr5a2 can replace Oct-4 function in ES cells. In this study, the ability of Nr5a2 to maintain self-renewal and pluripotency in ES cells was investigated. Nr5a2 localized to the nucleus in ES cells, similarly to Oct-4. However, expression of Nr5a2 failed to rescue the stem cell phenotype or to maintain the self-renewal ability of ES cells. Furthermore, as compared with Oct-4-expressing ES cells, Nr5a2-expressing ES cells showed a reduced number of cells in S-phase, did not expand normally, and did not remain in an undifferentiated state. Ectopic expression of Nr5a2 in ES cells was not able to activate transcription of ES cell-specific genes, and gene expression profiling demonstrated differences between Nr5a2-expressing and Oct-4-expressing ES cells. In addition, Nr5a2-expressing ES cells were not able to form teratomas in nude mice. Taken together, these results strongly suggest that the gene regulation properties of Nr5a2 and Oct-4 and their abilities to confer self-renewal and pluripotency of ES cells differ. The present study provides strong evidence that Nr5a2 cannot replace Oct-4 function in ES cells. © 2013 FEBS.

  16. β-Globin-Expressing Definitive Erythroid Progenitor Cells Generated from Embryonic and Induced Pluripotent Stem Cell-Derived Sacs.

    PubMed

    Fujita, Atsushi; Uchida, Naoya; Haro-Mora, Juan J; Winkler, Thomas; Tisdale, John

    2016-06-01

    Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells represent a potential alternative source for red blood cell transfusion. However, when using traditional methods with embryoid bodies, ES cell-derived erythroid cells predominantly express embryonic type ɛ-globin, with lesser fetal type γ-globin and very little adult type β-globin. Furthermore, no β-globin expression is detected in iPS cell-derived erythroid cells. ES cell-derived sacs (ES sacs) have been recently used to generate functional platelets. Due to its unique structure, we hypothesized that ES sacs serve as hemangioblast-like progenitors capable to generate definitive erythroid cells that express β-globin. With our ES sac-derived erythroid differentiation protocol, we obtained ∼120 erythroid cells per single ES cell. Both primitive (ɛ-globin expressing) and definitive (γ- and β-globin expressing) erythroid cells were generated from not only ES cells but also iPS cells. Primitive erythropoiesis is gradually switched to definitive erythropoiesis during prolonged ES sac maturation, concurrent with the emergence of hematopoietic progenitor cells. Primitive and definitive erythroid progenitor cells were selected on the basis of glycophorin A or CD34 expression from cells within the ES sacs before erythroid differentiation. This selection and differentiation strategy represents an important step toward the development of in vitro erythroid cell production systems from pluripotent stem cells. Further optimization to improve expansion should be required for clinical application. Stem Cells 2016;34:1541-1552. © 2016 AlphaMed Press.

  17. Characterization of a Crabs Claw Gene in basal eudicot species Epimedium sagittatum (Berberidaceae).

    PubMed

    Sun, Wei; Huang, Wenjun; Li, Zhineng; Lv, Haiyan; Huang, Hongwen; Wang, Ying

    2013-01-08

    The Crabs Claw (CRC) YABBY gene is required for regulating carpel development in angiosperms and has played an important role in nectary evolution during core eudicot speciation. The function or expression of CRC-like genes has been explored in two basal eudicots, Eschscholzia californica and Aquilegia formosa. To further investigate the function of CRC orthologous genes related to evolution of carpel and nectary development in basal eudicots, a CRC ortholog, EsCRC, was isolated and characterized from Epimedium sagittatum (Sieb. and Zucc.) Maxim. A phylogenetic analysis of EsCRC and previously identified CRC-like genes placed EsCRC within the basal eudicot lineage. Gene expression results suggest that EsCRC is involved in the development of sepals and carpels, but not nectaries. Phenotypic complementation of the Arabidopsis mutant crc-1 was achieved by constitutive expression of EsCRC. In addition, over-expression of EsCRC in Arabidopsis and tobacco gave rise to abaxially curled leaves. Transgenic results together with the gene expression analysis suggest that EsCRC may maintain a conserved function in carpel development and also play a novel role related to sepal formation. Absence of EsCRC and ElCRC expression in nectaries further indicates that nectary development in non-core eudicots is unrelated to expression of CRC-like genes.

  18. Characterization of a Crabs Claw Gene in Basal Eudicot Species Epimedium sagittatum (Berberidaceae)

    PubMed Central

    Sun, Wei; Huang, Wenjun; Li, Zhineng; Lv, Haiyan; Huang, Hongwen; Wang, Ying

    2013-01-01

    The Crabs Claw (CRC) YABBY gene is required for regulating carpel development in angiosperms and has played an important role in nectary evolution during core eudicot speciation. The function or expression of CRC-like genes has been explored in two basal eudicots, Eschscholzia californica and Aquilegia formosa. To further investigate the function of CRC orthologous genes related to evolution of carpel and nectary development in basal eudicots, a CRC ortholog, EsCRC, was isolated and characterized from Epimedium sagittatum (Sieb. and Zucc.) Maxim. A phylogenetic analysis of EsCRC and previously identified CRC-like genes placed EsCRC within the basal eudicot lineage. Gene expression results suggest that EsCRC is involved in the development of sepals and carpels, but not nectaries. Phenotypic complementation of the Arabidopsis mutant crc-1 was achieved by constitutive expression of EsCRC. In addition, over-expression of EsCRC in Arabidopsis and tobacco gave rise to abaxially curled leaves. Transgenic results together with the gene expression analysis suggest that EsCRC may maintain a conserved function in carpel development and also play a novel role related to sepal formation. Absence of EsCRC and ElCRC expression in nectaries further indicates that nectary development in non-core eudicots is unrelated to expression of CRC-like genes. PMID:23299438

  19. Characterization of the groEL and groES loci in Bifidobacterium breve UCC 2003: genetic, transcriptional, and phylogenetic analyses.

    PubMed

    Ventura, Marco; Canchaya, Carlos; Zink, Ralf; Fitzgerald, Gerald F; van Sinderen, Douwe

    2004-10-01

    The bacterial heat shock response is characterized by the elevated expression of a number of chaperone complexes, including the GroEL and GroES proteins. The groES and groEL genes are highly conserved among eubacteria and are typically arranged as an operon. Genome analysis of Bifidobacterium breve UCC 2003 revealed that the groES and groEL genes are located in different chromosomal regions. The heat inducibility of the groEL and groES genes of B. breve UCC 2003 was verified by slot blot analysis. Northern blot analyses showed that the cspA gene is cotranscribed with the groEL gene, while the groES gene is transcribed as a monocistronic unit. The transcription initiation sites of these two mRNAs were determined by primer extension. Sequence and transcriptional analyses of the region flanking the groEL and groES genes of various bifidobacteria revealed similar groEL-cspA and groES gene units, suggesting a novel genetic organization of these chaperones. Phylogenetic analysis of the available bifidobacterial groES and groEL genes suggested that these genes evolved differently. Discrepancies in the phylogenetic positioning of groES-based trees make this gene an unreliable molecular marker. On the other hand, the bifidobacterial groEL gene sequences can be used as an alternative to current methods for tracing Bifidobacterium species, particularly because they allow a high level of discrimination between closely related species of this genus.

  20. Impacts of Agricultural Practices and Individual Life Characteristics on Ecosystem Services: A Case Study on Family Farmers in the Context of an Amazonian Pioneer Front.

    PubMed

    Solen, Le Clec'h; Nicolas, Jégou; de Sartre Xavier, Arnauld; Thibaud, Decaens; Simon, Dufour; Michel, Grimaldi; Johan, Oszwald

    2018-05-01

    In tropical forests farmers are among the most important agents of deforestation. At the interface between societies and their environment, ecosystem services (ES) is an integrated working framework through which natural and anthropogenic dimensions can be addressed. Here, we aimed to understand to what extent farmers impact ES availability. Based on case studies in three locations in the Brazilian Amazon rainforest, we performed statistical analyses at 135 sampling points and 110 farms to link socioeconomic and ES data, both derived from field work. The socioeconomic data characterized agricultural production, sociological characteristics, and quality of life. ES data were obtained from statistical analyses that yielded a multiple ES indicator for each sampling point and farm. Our results produced three main findings: first, the establishment of ES associations is due more to agricultural production characteristics than to sociological and quality-of-life factors. Second, the impact of agricultural production on ES availability depends on the level of total incomes. An increase in incomes causes a decrease in the forest cover that provides many ES and an increase in other areas that provide fewer ES. Finally, our analyses show a very strong site effect that probably expresses the heterogeneity of the biophysical contexts, but also the importance for ES availability of the historical depth of deforestation and/or the role of specific public policies. Finding ways of producing an alternative impact on ES availability and establishing specific ES associations will therefore depend more on changes in the global political context than in individual practices.

  1. Transplantation of motoneurons derived from MASH1-transfected mouse ES cells reconstitutes neural networks and improves motor function in hemiplegic mice.

    PubMed

    Ikeda, Ritsuko; Kurokawa, Manae S; Chiba, Shunmei; Yoshikawa, Hideshi; Hashimoto, Takuo; Tadokoro, Mamoru; Suzuki, Noboru

    2004-10-01

    Mouse embryonic stem (ES) cells were transfected with a MASH1 expression vector and G418-resistant cells were selected. The MASH1-transfected cells became neuron-like appearance and expressed betaIIItubulin and panNCAM. Glial fibrillary acidic protein (GFAP) and galactocerebroside (GalC)-expressing cells were rarely detected. Half of the neural cells differentiated into the Islet1+ motoneuron lineage. Thus, we obtained motoneuron lineage-enriched neuronal cells by transfection of ES cells with MASH1. A hemiplegic model of mice was developed by cryogenic injury of the motor cortex, and motoneuron lineage-enriched neuronal cells were transplanted underneath the injured motor cortex neighboring the periventricular region. The motor function of the recipients was assessed by a beam walking and rotarod tests, whereby the results gradually improved, but little improvement was observed in vehicle injected control mice. We found that the grafted cells not only remained close to the implantation site, but also exhibited substantial migration, penetrating into the damaged lesion in a directed manner up to the cortical region. Grafted neuronal cells that had migrated into the cortex were elongated axon-positive for neurofilament middle chain (NFM). Synaptophysin immunostaining showed a positive staining pattern around the graft, suggesting that the transplanted neurons interacted with the recipient neurons to form a neural network. Our study suggests that the motoneuron lineage can be induced from ES cells, and grafted cells adapt to the host environment and can reconstitute a neural network to improve motor function of a paralyzed limb.

  2. Trypanosoma brucei gambiense adaptation to different mammalian sera is associated with VSG expression site plasticity.

    PubMed

    Cordon-Obras, Carlos; Cano, Jorge; González-Pacanowska, Dolores; Benito, Agustin; Navarro, Miguel; Bart, Jean-Mathieu

    2013-01-01

    Trypanosoma brucei gambiense infection is widely considered an anthroponosis, although it has also been found in wild and domestic animals. Thus, fauna could act as reservoir, constraining the elimination of the parasite in hypo-endemic foci. To better understand the possible maintenance of T. b. gambiense in local fauna and investigate the molecular mechanisms underlying adaptation, we generated adapted cells lines (ACLs) by in vitro culture of the parasites in different mammalian sera. Using specific antibodies against the Variant Surface Glycoproteins (VSGs) we found that serum ACLs exhibited different VSG variants when maintained in pig, goat or human sera. Although newly detected VSGs were independent of the sera used, the consistent appearance of different VSGs suggested remodelling of the co-transcribed genes at the telomeric Expression Site (VSG-ES). Thus, Expression Site Associated Genes (ESAGs) sequences were analysed to investigate possible polymorphism selection. ESAGs 6 and 7 genotypes, encoding the transferrin receptor (TfR), expressed in different ACLs were characterised. In addition, we quantified the ESAG6/7 mRNA levels and analysed transferrin (Tf) uptake. Interestingly, the best growth occurred in pig and human serum ACLs, which consistently exhibited a predominant ESAG7 genotype and higher Tf uptake than those obtained in calf and goat sera. We also detected an apparent selection of specific ESAG3 genotypes in the pig and human serum ACLs, suggesting that other ESAGs could be involved in the host adaptation processes. Altogether, these results suggest a model whereby VSG-ES remodelling allows the parasite to express a specific set of ESAGs to provide selective advantages in different hosts. Finally, pig serum ACLs display phenotypic adaptation parameters closely related to human serum ACLs but distinct to parasites grown in calf and goat sera. These results suggest a better suitability of swine to maintain T. b. gambiense infection supporting previous epidemiological results.

  3. Revealing the association between cerebrovascular accidents and ambient temperature: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Zorrilla-Vaca, Andrés; Healy, Ryan Jacob; Silva-Medina, Melissa M.

    2017-05-01

    The association between cerebrovascular accidents (CVA) and weather has been described across several studies showing multiple conflicting results. In this paper, we aim to conduct a meta-analysis to further clarify this association, as well as to find the potential sources of heterogeneity. PubMed, EMBASE, and Google Scholar were searched from inception through 2015, for articles analyzing the correlation between the incidence of CVA and temperature. A pooled effect size (ES) was estimated using random effects model and expressed as absolute values. Subgroup analyses by type of CVA were also performed. Heterogeneity and influence of covariates—including geographic latitude of the study site, male percentage, average temperature, and time interval—were assessed by meta-regression analysis. Twenty-six articles underwent full data extraction and scoring. A total of 19,736 subjects with CVA from 12 different countries were included and grouped as ischemic strokes (IS; n = 14,199), intracerebral hemorrhages (ICH; n = 3798), and subarachnoid hemorrhages (SAH; n = 1739). Lower ambient temperature was significantly associated with increase in incidence of overall CVA when using unadjusted (pooled ES = 0.23, P < 0.001) and adjusted data (pooled ES = 0.03, P = 0.003). Subgroup analyses showed that lower temperature has higher impact on the incidence of ICH (pooled ES = 0.34, P < 0.001), than that of IS (pooled ES = 0.22, P < 0.001) and SAH (pooled ES = 0.11, P = 0.012). In meta-regression analysis, the geographic latitude of the study site was the most influencing factor on this association ( Z-score = 8.68). Synthesis of the existing data provides evidence supporting that a lower ambient temperature increases the incidence of CVA. Further population-based studies conducted at negative latitudes are needed to clarify the influence of this factor.

  4. α6β1- and αV-integrins are required for long-term self-renewal of murine embryonic stem cells in the absence of LIF.

    PubMed

    Cattavarayane, Sandhanakrishnan; Palovuori, Riitta; Tanjore Ramanathan, Jayendrakishore; Manninen, Aki

    2015-02-27

    The growth properties and self-renewal capacity of embryonic stem (ES) cells are regulated by their immediate microenvironment such as the extracellular matrix (ECM). Integrins, a central family of cellular ECM receptors, have been implicated in these processes but their specific role in ES cell self-renewal remains unclear. Here we have studied the effects of different ECM substrates and integrins in mouse ES cells in the absence of Leukemia Inhibitory Factor (LIF) using short-term assays as well as long-term cultures. Removal of LIF from ES cell culture medium induced morphological differentiation of ES cells into polarized epistem cell-like cells. These cells maintained epithelial morphology and expression of key stemness markers for at least 10 passages in the absence of LIF when cultured on laminin, fibronectin or collagen IV substrates. The specific functional roles of α6-, αV- and β1-integrin subunits were dissected using stable lentivirus-mediated RNAi methodology. β1-integrins were required for ES cell survival in long-term cultures and for the maintenance of stem cell marker expression. Inhibition of α6-integrin expression compromised self-renewal on collagen while αV-integrins were required for robust ES cell adhesion on laminin. Analysis of the stemness marker expression revealed subtle differences between α6- and αV-depleted ES cells but the expression of both was required for optimal self-renewal in long-term ES cell cultures. In the absence of LIF, long-term ES cell cultures adapt an epistem cell-like epithelial phenotype and retain the expression of multiple stem cell markers. Long-term maintenance of such self-renewing cultures depends on the expression of β1-, α6- and αV-integrins.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanai, Dai; Ueda, Atsushi; Akagi, Tadayuki

    Embryonic stem (ES) cells, derived from the inner cell mass of blastocysts, have a characteristic cell cycle with truncated G1 and G2 phases. Recent findings that suppression of Oct3/4 expression results in a reduced proliferation rate of ES cells suggest the involvement of Oct3/4 in the regulation of ES cell growth, although the underlying molecular mechanism remains unclear. In the present study, we identified E2F3a as a direct target gene of Oct3/4 in ES cells. Oct3/4 directly bound to the promoter region of the E2F3a gene and positively regulated expression of E2F3a in mouse ES cells. Suppression of E2F3a activitymore » by E2F6 overexpression led to the reduced proliferation in ES cells, which was relieved by co-expression of E2F3a. Furthermore, cell growth retardation caused by loss of Oct3/4 was rescued by E2F3a expression. These results suggest that Oct3/4 upregulates E2F3a expression to promote ES cell growth. - Highlights: • Oct3/4 positively regulates E2F3a expression in ES cells. • Oct3/4 binds to the promoter region of the E2F3a gene. • Overexpression of E2F6, an inhibitor of E2F3a, reduces ES cell growth. • E2F3a recovers growth retardation of ES cells caused by Oct3/4 reduction.« less

  6. GroEL-GroES assisted folding of multiple recombinant proteins simultaneously over-expressed in Escherichia coli.

    PubMed

    Goyal, Megha; Chaudhuri, Tapan K

    2015-07-01

    Folding of aggregation prone recombinant proteins through co-expression of chaperonin GroEL and GroES has been a popular practice in the effort to optimize preparation of functional protein in Escherichia coli. Considering the demand for functional recombinant protein products, it is desirable to apply the chaperone assisted protein folding strategy for enhancing the yield of properly folded protein. Toward the same direction, it is also worth attempting folding of multiple recombinant proteins simultaneously over-expressed in E. coli through the assistance of co-expressed GroEL-ES. The genesis of this thinking was originated from the fact that cellular GroEL and GroES assist in the folding of several endogenous proteins expressed in the bacterial cell. Here we present the experimental findings from our study on co-expressed GroEL-GroES assisted folding of simultaneously over-expressed proteins maltodextrin glucosidase (MalZ) and yeast mitochondrial aconitase (mAco). Both proteins mentioned here are relatively larger and aggregation prone, mostly form inclusion bodies, and undergo GroEL-ES assisted folding in E. coli cells during over-expression. It has been reported that the relative yield of properly folded functional forms of MalZ and mAco with the exogenous GroEL-ES assistance were comparable with the results when these proteins were overexpressed alone. This observation is quite promising and highlights the fact that GroEL and GroES can assist in the folding of multiple substrate proteins simultaneously when over-expressed in E. coli. This method might be a potential tool for enhanced production of multiple functional recombinant proteins simultaneously in E. coli. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Hanford Site Environmental Safety and Health Fiscal Year 2001 Budget-Risk management summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    REEP, I.E.

    1999-05-12

    The Hanford Site Environment, Safety and Health (ES&H) Budget-Risk Management Summary report is prepared to support the annual request to sites in the U.S. Department of Energy (DOE) Complex by DOE, Headquarters. The request requires sites to provide supplementary crosscutting information related to ES&H activities and the ES&H resources that support these activities. The report includes the following: (1) A summary status of fiscal year (FY) 1999 ES&H performance and ES&H execution commitments; (2)Status and plans of Hanford Site Office of Environmental Management (EM) cleanup activities; (3) Safety and health (S&H) risk management issues and compliance vulnerabilities of FY 2001more » Target Case and Below Target Case funding of EM cleanup activities; (4) S&H resource planning and crosscutting information for FY 1999 to 2001; and (5) Description of indirect-funded S&H activities.« less

  8. Antitumor activity of combined endostatin and thymidine kinase gene therapy in C6 glioma models.

    PubMed

    Chen, Yan; Huang, Honglan; Yao, Chunshan; Su, Fengbo; Guan, Wenming; Yan, Shijun; Ni, Zhaohui

    2016-09-01

    The combination of Endostatin (ES) and Herpes Simplex Virus thymidine kinase (HSV-TK) gene therapy is known to have antitumor activity in bladder cancer. The potential effect of ES and TK therapy in glioma has not yet been investigated. In this study, pTK-internal ribosome entry site (IRES), pIRES-ES, and pTK-IRES-ES plasmids were constructed; pIRES empty vector served as the negative control. The recombinant constructs were transfected into human umbilical vein endothelial cells (HUVECs) ECV304 and C6 rat glioma cell line. Ganciclovir (GCV) was used to induce cell death in transfected C6 cells. We found that ECV304 cells expressing either ES or TK-ES showed reduced proliferation, decreased migration capacity, and increased apoptosis, as compared to untransfected cells or controls. pTK-IRES-ES/GCV or pTK-IRES/GCV significantly suppressed cell proliferation and induced cell apoptosis in C6 cells, as compared to the control. In addition, the administration of pIRES-ES, pTK-IRES/GCV, or pTK-IRES-ES/GCV therapy improved animal activity and behavior; was associated with prolonged animal survival, and a lower microvessel density (MVD) value in tumor tissues of C6 glioma rats. In comparison to others, dual gene therapy in form of pTK-IRES-ES/GCV had a significant antitumor activity against C6 glioma. These findings indicate combined TK and ES gene therapy was associated with a superior antitumor efficacy as compared to single gene therapy in C6 glioma. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  9. Breast cancer resistance protein regulates apical ectoplasmic specialization dynamics stage specifically in the rat testis

    PubMed Central

    Qian, Xiaojing; Mruk, Dolores D.; Wong, Elissa W. P.

    2013-01-01

    Drug transporters determine the bioavailability of drugs in the testis behind the blood-testis barrier (BTB). Thus, they are crucial for male contraceptive development if these drugs (e.g., adjudin) exert their effects behind the BTB. Herein breast cancer resistance protein (Bcrp), an efflux drug transporter, was found to be expressed by both Sertoli and germ cells. Interestingly, Bcrp was not a component of the Sertoli cell BTB. Instead, it was highly expressed by peritubular myoid cells at the tunica propria and also endothelial cells of the microvessels in the interstitium at all stages of the epithelial cycle. Unexpectedly, Bcrp was found to be expressed at the Sertoli-step 18–19 spermatid interface but limited to stage VI-early VIII tubules, and an integrated component of the apical ectoplasmic specialization (apical ES). Apparently, Bcrp is being used by late-stage spermatids to safeguard their completion of spermiogenesis by preventing harmful drugs to enter these cells while they transform to spermatozoa. Also, the association of Bcrp with actin, Eps8 (epidermal growth factor receptor pathway substrate 8, an actin barbed end capping and bundling protein), and Arp3 (actin-related protein 3, a component of the Arp2/3 complex known to induce branched actin polymerization) at the apical ES suggest that Bcrp may be involved in regulating the organization of actin filament bundles at the site. Indeed, a knockdown of Bcrp by RNAi in the testis perturbed the apical ES function, disrupting spermatid polarity and adhesion. In summary, Bcrp is a regulator of the F-actin-rich apical ES in the testis. PMID:23403943

  10. p75 neurotrophin receptor is involved in proliferation of undifferentiated mouse embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moscatelli, Ilana; Pierantozzi, Enrico; Camaioni, Antonella

    2009-11-01

    Neurotrophins and their receptors are known to play a role in the proliferation and survival of many different cell types of neuronal and non-neuronal lineages. In addition, there is much evidence in the literature showing that the p75 neurotrophin receptor (p75{sup NTR}), alone or in association with members of the family of Trk receptors, is expressed in a wide variety of stem cells, although its role in such cells has not been completely elucidated. In the present work we have investigated the expression of p75{sup NTR} and Trks in totipotent and pluripotent cells, the mouse pre-implantation embryo and embryonic stemmore » and germ cells (ES and EG cells). p75{sup NTR} and TrkA can be first detected in the blastocyst from which ES cell lines are derived. Mouse ES cells retain p75{sup NTR}/TrkA expression. Nerve growth factor is the only neurotrophin able to stimulate ES cell growth in culture, without affecting the expression of stem cell markers, alkaline phosphatase, Oct4 and Nanog. Such proliferation effect was blocked by antagonizing either p75{sup NTR} or TrkA. Interestingly, immunoreactivity to anti-p75{sup NTR} antibodies is lost upon ES cell differentiation. The expression pattern of neurotrophin receptors in murine ES cells differs from human ES cells, that only express TrkB and C, and do not respond to NGF. In this paper we also show that, while primordial germ cells (PGC) do not express p75{sup NTR}, when they are made to revert to an ES-like phenotype, becoming EG cells, expression of p75{sup NTR} is turned on.« less

  11. Effect of peritoneal dialysis on expression of vascular endothelial growth factor, basic fibroblast growth factor and endostatin of the peritoneum in peritoneal dialysis patients.

    PubMed

    Gao, Dan; Zhao, Zhan-Zheng; Liang, Xian-Hui; Li, Yan; Cao, Ying; Liu, Zhang-Suo

    2011-11-01

    The aim of this study is to investigate the expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and endostatin (ES) in human peritoneum and investigate the relationship between them and peritoneum neoangiogensis in the patients with uraemia and peritoneal dialysis (PD). Peritoneal biopsies were obtained from normal subjects (n = 8), uraemic predialysis patients (n = 12) and PD patients (n = 10). The mRNA expression of VEGF, bFGF and ES in peritoneal tissues were measured through real-time polymerase chain reaction. The protein expression of VEGF, bFGF and ES in peritoneal tissues were determined through western blot. Microvessel density (MVD) of peritoneal tissue was assessed using immunohistochemistry with CD34 monoclonal antibody. The mRNA and protein of VEGF, bFGF and ES were expressed in all peritoneal samples. Compared with the normal control group, the mRNA and protein expression of VEGF and bFGF in peritoneal tissues were all significantly upregulated in the uraemic predialysis and PD group (all P < 0.05). Compared with the normal control group, the protein expression of ES were significantly upregulated in the uraemic predialysis and PD group (all (P < 0.05), but the mRNA expression of ES did not have obvious differences in the uraemic predialysis and PD group as compared to the normal control group (P > 0.05). MVD of peritoneal tissue were increased in the uraemic predialysis and PD group compared with the normal group (all P < 0.05). A significant positive correlation was found between VEGF mRNA expression and MVD, bFGF mRNA expression and MVD. The mRNA expression of VEGF and bFGF, the protein expression of VEGF, bFGF, and ES and microvessel density (MVD) are increased both in the uraemic predialysis and PD patients. These results show that uraemia circumstances and non-physiological compatibility of peritoneal dialysis solution might increase VEGF, bFGF and ES expression and MVD, which might participate in the increment of the peritoneum neoangiogensis and ultrafiltration failure in PD patients. © 2011 The Authors. Nephrology © 2011 Asian Pacific Society of Nephrology.

  12. An in vitro ES cell imprinting model shows that imprinted expression of the Igf2r gene arises from an allele-specific expression bias

    PubMed Central

    Latos, Paulina A.; Stricker, Stefan H.; Steenpass, Laura; Pauler, Florian M.; Huang, Ru; Senergin, Basak H.; Regha, Kakkad; Koerner, Martha V.; Warczok, Katarzyna E.; Unger, Christine; Barlow, Denise P.

    2010-01-01

    Genomic imprinting is an epigenetic process that results in parental-specific gene expression. Advances in understanding the mechanism that regulates imprinted gene expression in mammals have largely depended on generating targeted manipulations in embryonic stem (ES) cells that are analysed in vivo in mice. However, genomic imprinting consists of distinct developmental steps, some of which occur in post-implantation embryos, indicating that they could be studied in vitro in ES cells. The mouse Igf2r gene shows imprinted expression only in post-implantation stages, when repression of the paternal allele has been shown to require cis-expression of the Airn non-coding (nc) RNA and to correlate with gain of DNA methylation and repressive histone modifications. Here we follow the gain of imprinted expression of Igf2r during in vitro ES cell differentiation and show that it coincides with the onset of paternal-specific expression of the Airn ncRNA. Notably, although Airn ncRNA expression leads, as predicted, to gain of repressive epigenetic marks on the paternal Igf2r promoter, we unexpectedly find that the paternal Igf2r promoter is expressed at similar low levels throughout ES cell differentiation. Our results further show that the maternal and paternal Igf2r promoters are expressed equally in undifferentiated ES cells, but during differentiation expression of the maternal Igf2r promoter increases up to 10-fold, while expression from the paternal Igf2r promoter remains constant. This indicates, contrary to expectation, that the Airn ncRNA induces imprinted Igf2r expression not by silencing the paternal Igf2r promoter, but by generating an expression bias between the two parental alleles. PMID:19141673

  13. Electrical stimulation modulates Wnt signaling and regulates genes for the motor endplate and calcium binding in muscle of rats with spinal cord transection

    PubMed Central

    2013-01-01

    Background Spinal cord injury (SCI) results in muscle atrophy and a shift of slow oxidative to fast glycolytic fibers. Electrical stimulation (ES) at least partially restores muscle mass and fiber type distribution. The objective of this study was to was to characterize the early molecular adaptations that occur in rat soleus muscle after initiating isometric resistance exercise by ES for one hour per day for 1, 3 or 7 days when ES was begun 16 weeks after SCI. Additionally, changes in mRNA levels after ES were compared with those induced in soleus at the same time points after gastrocnemius tenotomy (GA). Results ES increased expression of Hey1 and Pitx2 suggesting increased Notch and Wnt signaling, respectively, but did not normalize RCAN1.4, a measure of calcineurin/NFAT signaling, or PGC-1ß mRNA levels. ES increased PGC-1α expression but not that of slow myofibrillar genes. Microarray analysis showed that after ES, genes coding for calcium binding proteins and nicotinic acetylcholine receptors were increased, and the expression of genes involved in blood vessel formation and morphogenesis was altered. Of the 165 genes altered by ES only 16 were also differentially expressed after GA, of which 12 were altered in the same direction by ES and GA. In contrast to ES, GA induced expression of genes related to oxidative phosphorylation. Conclusions Notch and Wnt signaling may be involved in ES-induced increases in the mass of paralyzed muscle. Molecular adaptations of paralyzed soleus to resistance exercise are delayed or defective compared to normally innervated muscle. PMID:23914941

  14. wnt3a but not wnt11 supports self-renewal of embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singla, Dinender K.; Schneider, David J.; LeWinter, Martin M.

    2006-06-30

    wnt proteins (wnts) promote both differentiation of midbrain dopaminergic cells and self-renewal of haematopoietic stem cells. Mouse embryonic stem (ES) cells can be maintained and self-renew on mouse feeder cell layers or in media containing leukemia inhibitory factor (LIF). However, the effects of wnts on ES cells self-renewal and differentiation are not clearly understood. In the present study, we found that conditioned medium prepared from L cells expressing wnt3a can replace feeder cell layers and medium containing LIF in maintaining ES cells in the proliferation without differentiation (self-renewal) state. By contrast, conditioned medium from NIH3T3 cells expressing wnt11 did not.more » Alkaline phosphatase staining and compact colony formation were used as criteria of cells being in the undifferentiated state. ES cells maintained in medium conditioned by Wnt3a expressing cells underwent freezing and thawing while maintaining properties seen with LIF maintained ES cells. Purified wnt3a did not maintain self-renewal of ES cells for prolonged intervals. Thus, other factors in the medium conditioned by wnt3a expressing cells may have contributed to maintenance of ES cells in a self-renewal state. Pluripotency of ES cells was determined with the use of embryoid bodies in vitro. PD98059, a MEK specific inhibitor, promoted the growth of undifferentiated ES cells maintained in conditioned medium from wnt3a expressing cells. By contrast, the P38 MAPK inhibitor SB230580 did not, suggesting a role for the MEK pathway in self-renewal and differentiation of ES cells maintained in the wnt3a cell conditioned medium. Thus, our results show that conditioned medium from wnt3a but not wnt11 expressing cells can maintain ES cells in self-renewal and in a pluripotent state.« less

  15. Prohibitin 2 Regulates the Proliferation and Lineage-Specific Differentiation of Mouse Embryonic Stem Cells in Mitochondria

    PubMed Central

    Komazaki, Shinji; Enomoto, Kei; Seki, Yasuhiro; Wang, Ying Ying; Ishigaki, Yohei; Ninomiya, Naoto; Noguchi, Taka-aki K.; Kokubu, Yuko; Ohnishi, Keigoh; Nakajima, Yoshiro; Kato, Kaoru; Intoh, Atsushi; Takada, Hitomi; Yamakawa, Norio; Wang, Pi-Chao; Asashima, Makoto; Kurisaki, Akira

    2014-01-01

    Background The pluripotent state of embryonic stem (ES) cells is controlled by a network of specific transcription factors. Recent studies also suggested the significant contribution of mitochondria on the regulation of pluripotent stem cells. However, the molecules involved in these regulations are still unknown. Methodology/Principal Findings In this study, we found that prohibitin 2 (PHB2), a pleiotrophic factor mainly localized in mitochondria, is a crucial regulatory factor for the homeostasis and differentiation of ES cells. PHB2 was highly expressed in undifferentiated mouse ES cells, and the expression was decreased during the differentiation of ES cells. Knockdown of PHB2 induced significant apoptosis in pluripotent ES cells, whereas enhanced expression of PHB2 contributed to the proliferation of ES cells. However, enhanced expression of PHB2 strongly inhibited ES cell differentiation into neuronal and endodermal cells. Interestingly, only PHB2 with intact mitochondrial targeting signal showed these specific effects on ES cells. Moreover, overexpression of PHB2 enhanced the processing of a dynamin-like GTPase (OPA1) that regulates mitochondrial fusion and cristae remodeling, which could induce partial dysfunction of mitochondria. Conclusions/Significance Our results suggest that PHB2 is a crucial mitochondrial regulator for homeostasis and lineage-specific differentiation of ES cells. PMID:24709813

  16. ES1 is a mitochondrial enlarging factor contributing to form mega-mitochondria in zebrafish cones.

    PubMed

    Masuda, Takamasa; Wada, Yasutaka; Kawamura, Satoru

    2016-03-01

    Total mass of mitochondria increases during cell proliferation and differentiation through mitochondrial biogenesis, which includes mitochondrial proliferation and growth. During the mitochondrial growth, individual mitochondria have been considered to be enlarged independently of mitochondrial fusion. However, molecular basis for this enlarging process has been poorly understood. Cone photoreceptor cells in the retina possess large mitochondria, so-called mega-mitochondria that have been considered to arise via the enlarging process. Here we show that ES1 is a novel mitochondria-enlarging factor contributing to form mega-mitochondria in cones. ES1 is specifically expressed in cones and localized to mitochondria including mega-mitochondria. Knockdown of ES1 markedly reduced the mitochondrial size in cones. In contrast, ectopic expression of ES1 in rods significantly increased both the size of individual mitochondria and the total mass of the mitochondrial cluster without changing the number of them. RNA-seq analysis showed that ERRα and its downstream mitochondrial genes were significantly up-regulated in the ES1-expressing rods, suggesting facilitation of mitochondrial enlargement via ERRα-dependent processes. Furthermore, higher energy state was detected in the ES1-expressing rods, indicating that the enlarged mitochondria by ES1 are capable of producing high energy. ES1 is the mitochondrial protein that is first found to promote enlargement of individual mitochondria.

  17. Human embryonic stem cells express a unique set of microRNAs.

    PubMed

    Suh, Mi-Ra; Lee, Yoontae; Kim, Jung Yeon; Kim, Soo-Kyoung; Moon, Sung-Hwan; Lee, Ji Yeon; Cha, Kwang-Yul; Chung, Hyung Min; Yoon, Hyun Soo; Moon, Shin Yong; Kim, V Narry; Kim, Kye-Seong

    2004-06-15

    Human embryonic stem (hES) cells are pluripotent cell lines established from the explanted inner cell mass of human blastocysts. Despite their importance for human embryology and regenerative medicine, studies on hES cells, unlike those on mouse ES (mES) cells, have been hampered by difficulties in culture and by scant knowledge concerning the regulatory mechanism. Recent evidence from plants and animals indicates small RNAs of approximately 22 nucleotides (nt), collectively named microRNAs, play important roles in developmental regulation. Here we describe 36 miRNAs (from 32 stem-loops) identified by cDNA cloning in hES cells. Importantly, most of the newly cloned miRNAs are specifically expressed in hES cells and downregulated during development into embryoid bodies (EBs), while miRNAs previously reported from other human cell types are poorly expressed in hES cells. We further show that some of the ES-specific miRNA genes are highly related to each other, organized as clusters, and transcribed as polycistronic primary transcripts. These miRNA gene families have murine homologues that have similar genomic organizations and expression patterns, suggesting that they may operate key regulatory networks conserved in mammalian pluripotent stem cells. The newly identified hES-specific miRNAs may also serve as molecular markers for the early embryonic stage and for undifferentiated hES cells.

  18. Increased FOXP3 expression in tumour-associated tissues of horses affected with equine sarcoid disease.

    PubMed

    Mählmann, K; Hamza, E; Marti, E; Dolf, G; Klukowska, J; Gerber, V; Koch, C

    2014-12-01

    Recent studies suggest that regulatory T cells (Tregs) are associated with disease severity and progression in papilloma virus induced neoplasia. Bovine papilloma virus (BPV) is recognised as the most important aetiological factor in equine sarcoid (ES) disease. The aim of this study was to compare expression levels of Treg markers and associated cytokines in tissue samples of ES-affected equids with skin samples of healthy control horses. Eleven ES-affected, and 12 healthy horses were included in the study. Expression levels of forkhead box protein 3 (FOXP3), interleukin 10 (IL10), interleukin 4 (IL4) and interferon gamma (IFNG) mRNA in lesional and tumour-distant samples from ES-affected horses, as well as in dermal samples of healthy control horses were measured using quantitative reverse transcription polymerase chain reaction (PCR). Expression levels were compared between lesional and tumour-distant as well as between tumour-distant and control samples. Furthermore, BPV-1 E5 DNA in samples of ES-affected horses was quantified using quantitative PCR, and possible associations of viral load, disease severity and gene expression levels were evaluated. Expression levels of FOXP3, IL10 and IFNG mRNA and BPV-1 E5 copy numbers were significantly increased in lesional compared to tumour-distant samples. There was no difference in FOXP3 and cytokine expression in tumour-distant samples from ES- compared with control horses. In tumour-distant samples viral load was positively correlated with IL10 expression and severity score. The increased expression of Treg markers in tumour-associated tissues of ES-affected equids indicates a local, Treg-induced immune suppression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. DNA methylation restricts lineage-specific functions of transcription factor Gata4 during embryonic stem cell differentiation.

    PubMed

    Oda, Masaaki; Kumaki, Yuichi; Shigeta, Masaki; Jakt, Lars Martin; Matsuoka, Chisa; Yamagiwa, Akiko; Niwa, Hitoshi; Okano, Masaki

    2013-06-01

    DNA methylation changes dynamically during development and is essential for embryogenesis in mammals. However, how DNA methylation affects developmental gene expression and cell differentiation remains elusive. During embryogenesis, many key transcription factors are used repeatedly, triggering different outcomes depending on the cell type and developmental stage. Here, we report that DNA methylation modulates transcription-factor output in the context of cell differentiation. Using a drug-inducible Gata4 system and a mouse embryonic stem (ES) cell model of mesoderm differentiation, we examined the cellular response to Gata4 in ES and mesoderm cells. The activation of Gata4 in ES cells is known to drive their differentiation to endoderm. We show that the differentiation of wild-type ES cells into mesoderm blocks their Gata4-induced endoderm differentiation, while mesoderm cells derived from ES cells that are deficient in the DNA methyltransferases Dnmt3a and Dnmt3b can retain their response to Gata4, allowing lineage conversion from mesoderm cells to endoderm. Transcriptome analysis of the cells' response to Gata4 over time revealed groups of endoderm and mesoderm developmental genes whose expression was induced by Gata4 only when DNA methylation was lost, suggesting that DNA methylation restricts the ability of these genes to respond to Gata4, rather than controlling their transcription per se. Gata4-binding-site profiles and DNA methylation analyses suggested that DNA methylation modulates the Gata4 response through diverse mechanisms. Our data indicate that epigenetic regulation by DNA methylation functions as a heritable safeguard to prevent transcription factors from activating inappropriate downstream genes, thereby contributing to the restriction of the differentiation potential of somatic cells.

  20. In Vivo Chromatin Targets of the Transcription Factor Yin Yang 2 in Trophoblast Stem Cells

    PubMed Central

    Pérez-Palacios, Raquel; Macías-Redondo, Sofía; Climent, María; Contreras-Moreira, Bruno; Muniesa, Pedro; Schoorlemmer, Jon

    2016-01-01

    Background Yin Yang 2 (YY2) is a zinc finger protein closely related to the well-characterized Yin Yang 1 (YY1). YY1 is a DNA-binding transcription factor, with defined functions in multiple developmental processes, such as implantation, cell differentiation, X inactivation, imprinting and organogenesis. Yy2 has been treated as a largely immaterial duplication of Yy1, as they share high homology in the Zinc Finger-region and similar if not identical in vitro binding sites. In contrast to these similarities, gene expression alterations in HeLa cells with attenuated levels of either Yy1 or Yy2 were to some extent gene-specific. Moreover, the chromatin binding sites for YY2, except for its association with transposable retroviral elements (RE) and Endogenous Retroviral Elements (ERVs), remain to be identified. As a first step towards defining potential Yy2 functions matching or complementary to Yy1, we considered in vivo DNA binding sites of YY2 in trophoblast stem (TS) cells. Results We report the presence of YY2 protein in mouse-derived embryonic stem (ES) and TS cell lines. Following up on our previous report on ERV binding by YY2 in TS cells, we investigated the tissue-specificity of REX1 and YY2 binding and confirm binding to RE/ERV targets in both ES cells and TS cells. Because of the higher levels of expression, we chose TS cells to understand the role of Yy2 in gene and chromatin regulation. We used in vivo YY2 association as a measure to identify potential target genes. Sequencing of chromatin obtained in chromatin-immunoprecipitation (ChIP) assays carried out with αYY2 serum allowed us to identify a limited number of chromatin targets for YY2. Some putative binding sites were validated in regular ChIP assays and gene expression of genes nearby was altered in the absence of Yy2. Conclusions YY2 binding to ERVs is not confined to TS cells. In vivo binding sites share the presence of a consensus binding motif. Selected sites were uniquely bound by YY2 as opposed to YY1, suggesting that YY2 exerts unique contributions to gene regulation. YY2 binding was not generally associated with gene promoters. However, several YY2 binding sites are linked to long noncoding RNA (lncRNA) genes and we show that the expression levels of a few of those are Yy2-dependent. PMID:27191592

  1. Ewing's Sarcoma: An Analysis of miRNA Expression Profiles and Target Genes in Paraffin-Embedded Primary Tumor Tissue.

    PubMed

    Parafioriti, Antonina; Bason, Caterina; Armiraglio, Elisabetta; Calciano, Lucia; Daolio, Primo Andrea; Berardocco, Martina; Di Bernardo, Andrea; Colosimo, Alessia; Luksch, Roberto; Berardi, Anna C

    2016-04-30

    The molecular mechanism responsible for Ewing's Sarcoma (ES) remains largely unknown. MicroRNAs (miRNAs), a class of small non-coding RNAs able to regulate gene expression, are deregulated in tumors and may serve as a tool for diagnosis and prediction. However, the status of miRNAs in ES has not yet been thoroughly investigated. This study compared global miRNAs expression in paraffin-embedded tumor tissue samples from 20 ES patients, affected by primary untreated tumors, with miRNAs expressed in normal human mesenchymal stromal cells (MSCs) by microarray analysis. A miRTarBase database was used to identify the predicted target genes for differentially expressed miRNAs. The miRNAs microarray analysis revealed distinct patterns of miRNAs expression between ES samples and normal MSCs. 58 of the 954 analyzed miRNAs were significantly differentially expressed in ES samples compared to MSCs. Moreover, the qRT-PCR analysis carried out on three selected miRNAs showed that miR-181b, miR-1915 and miR-1275 were significantly aberrantly regulated, confirming the microarray results. Bio-database analysis identified BCL-2 as a bona fide target gene of the miR-21, miR-181a, miR-181b, miR-29a, miR-29b, miR-497, miR-195, miR-let-7a, miR-34a and miR-1915. Using paraffin-embedded tissues from ES patients, this study has identified several potential target miRNAs and one gene that might be considered a novel critical biomarker for ES pathogenesis.

  2. Sox2 regulatory region 2 sequence works as a DNA nuclear targeting sequence enhancing the efficiency of an exogenous gene expression in ES cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funabashi, Hisakage; Takatsu, Makoto; Saito, Mikako

    2010-10-01

    Research highlights: {yields} SV40-DTS worked as a DTS in ES cells as well as other types of cells. {yields} Sox2 regulatory region 2 worked as a DTS in ES cells and thus was termed as SRR2-DTS. {yields} SRR2-DTS was suggested as an ES cell-specific DTS. -- Abstract: In this report, the effects of two DNA nuclear targeting sequence (DTS) candidates on the gene expression efficiency in ES cells were investigated. Reporter plasmids containing the simian virus 40 (SV40) promoter/enhancer sequence (SV40-DTS), a DTS for various types of cells but not being reported yet for ES cells, and the 81 basemore » pairs of Sox2 regulatory region 2 (SRR2) where two transcriptional factors in ES cells, Oct3/4 and Sox2, are bound (SRR2-DTS), were introduced into cytoplasm in living cells by femtoinjection. The gene expression efficiencies of each plasmid in mouse insulinoma cell line MIN6 cells and mouse ES cells were then evaluated. Plasmids including SV40-DTS and SRR2-DTS exhibited higher gene expression efficiency comparing to plasmids without these DTSs, and thus it was concluded that both sequences work as a DTS in ES cells. In addition, it was suggested that SRR2-DTS works as an ES cell-specific DTS. To the best of our knowledge, this is the first report to confirm the function of DTSs in ES cells.« less

  3. UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity.

    PubMed

    Wang, Chaochen; Lee, Ji-Eun; Cho, Young-Wook; Xiao, Ying; Jin, Qihuang; Liu, Chengyu; Ge, Kai

    2012-09-18

    To investigate the role of histone H3K27 demethylase UTX in embryonic stem (ES) cell differentiation, we have generated UTX knockout (KO) and enzyme-dead knock-in male ES cells. Deletion of the X-chromosome-encoded UTX gene in male ES cells markedly decreases expression of the paralogous UTY gene encoded by Y chromosome, but has no effect on global H3K27me3 level, Hox gene expression, or ES cell self-renewal. However, UTX KO cells show severe defects in mesoderm differentiation and induction of Brachyury, a transcription factor essential for mesoderm development. Surprisingly, UTX regulates mesoderm differentiation and Brachyury expression independent of its enzymatic activity. UTY, which lacks detectable demethylase activity, compensates for the loss of UTX in regulating Brachyury expression. UTX and UTY bind directly to Brachyury promoter and are required for Wnt/β-catenin signaling-induced Brachyury expression in ES cells. Interestingly, male UTX KO embryos express normal levels of UTY and survive until birth. In contrast, female UTX KO mice, which lack the UTY gene, show embryonic lethality before embryonic day 11.5. Female UTX KO embryos show severe defects in both Brachyury expression and embryonic development of mesoderm-derived posterior notochord, cardiac, and hematopoietic tissues. These results indicate that UTX controls mesoderm differentiation and Brachyury expression independent of H3K27 demethylase activity, and suggest that UTX and UTY are functionally redundant in ES cell differentiation and early embryonic development.

  4. Selecting antagonistic antibodies that control differentiation through inducible expression in embryonic stem cells

    PubMed Central

    Melidoni, Anna N.; Dyson, Michael R.; Wormald, Sam; McCafferty, John

    2013-01-01

    Antibodies that modulate receptor function have great untapped potential in the control of stem cell differentiation. In contrast to many natural ligands, antibodies are stable, exquisitely specific, and are unaffected by the regulatory mechanisms that act on natural ligands. Here we describe an innovative system for identifying such antibodies by introducing and expressing antibody gene populations in ES cells. Following induced antibody expression and secretion, changes in differentiation outcomes of individual antibody-expressing ES clones are monitored using lineage-specific gene expression to identify clones that encode and express signal-modifying antibodies. This in-cell expression and reporting system was exemplified by generating blocking antibodies to FGF4 and its receptor FGFR1β, identified through delayed onset of ES cell differentiation. Functionality of the selected antibodies was confirmed by addition of exogenous antibodies to three different ES reporter cell lines, where retained expression of pluripotency markers Oct4, Nanog, and Rex1 was observed. This work demonstrates the potential for discovery and utility of functional antibodies in stem cell differentiation. This work is also unique in constituting an example of ES cells carrying an inducible antibody that causes a functional protein “knock-down” and allows temporal control of stable signaling components at the protein level. PMID:24082130

  5. Altered expression of epithelial mesenchymal transition and pluripotent associated markers by sex steroid hormones in human embryonic stem cells.

    PubMed

    Jeon, So-Ye; Hwang, Kyung-A; Kim, Cho-Won; Jeung, Eui-Bae; Choi, Kyung-Chul

    2017-07-01

    Embryonic stem (ES) cells are pluripotent stem cells derived from a developmental stage of pre‑implanted embryos. The present study investigated the effect of female sex steroid hormones on the characteristics of human ES cells by using a feeder‑free culture protocol. In a feeder‑free condition without sex hormones, human ES cells assumed the form of tightly packed cells that grow in a monolayer. The cells had clean and defined edges with no evidence of differentiation and expressed several markers specific for undifferentiated ES cells including POU class 5 homeobox 1 (POU5F1), sex determining region Y‑box 2 (SOX2) and NANOG homeobox (NANOG). It was then investigated if female sex steroid hormones including 17β‑estradiol (E2) and progesterone (P4) altered the protein expression of epithelial-mesenchymal transition (EMT) associated markers in addition to pluripotency markers including POU5F1, SOX2 and NANOG in human ES cells. The protein expression levels of N‑cadherin, Snail and Slug were increased while E‑cadherin expression was decreased by treatment of E2 or P4, and the expression levels of POU5F1, SOX2 and NANOG were decreased by the treatment of E2 or P4. When E2 and P4 were treated in combination with an estrogen receptor inhibitor (ICI 182,780) and progesterone receptor inhibitor (RU486) respectively, their effects on EMT and pluripotency of ES cells were restored to control levels. The results suggested that E2 and P4 may regulate EMT and pluripotency of human ES cells by mediating their receptors. The present study may aid in the understanding of the role of sex steroid hormones in the cellular biology of human ES cells.

  6. Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells

    PubMed Central

    Mason, Mike J; Fan, Guoping; Plath, Kathrin; Zhou, Qing; Horvath, Steve

    2009-01-01

    Background Recent work has revealed that a core group of transcription factors (TFs) regulates the key characteristics of embryonic stem (ES) cells: pluripotency and self-renewal. Current efforts focus on identifying genes that play important roles in maintaining pluripotency and self-renewal in ES cells and aim to understand the interactions among these genes. To that end, we investigated the use of unsigned and signed network analysis to identify pluripotency and differentiation related genes. Results We show that signed networks provide a better systems level understanding of the regulatory mechanisms of ES cells than unsigned networks, using two independent murine ES cell expression data sets. Specifically, using signed weighted gene co-expression network analysis (WGCNA), we found a pluripotency module and a differentiation module, which are not identified in unsigned networks. We confirmed the importance of these modules by incorporating genome-wide TF binding data for key ES cell regulators. Interestingly, we find that the pluripotency module is enriched with genes related to DNA damage repair and mitochondrial function in addition to transcriptional regulation. Using a connectivity measure of module membership, we not only identify known regulators of ES cells but also show that Mrpl15, Msh6, Nrf1, Nup133, Ppif, Rbpj, Sh3gl2, and Zfp39, among other genes, have important roles in maintaining ES cell pluripotency and self-renewal. We also report highly significant relationships between module membership and epigenetic modifications (histone modifications and promoter CpG methylation status), which are known to play a role in controlling gene expression during ES cell self-renewal and differentiation. Conclusion Our systems biologic re-analysis of gene expression, transcription factor binding, epigenetic and gene ontology data provides a novel integrative view of ES cell biology. PMID:19619308

  7. A transgenic reporter under control of an es1 promoter/enhancer marks wound epidermis and apical epithelial cap during tail regeneration in Xenopus laevis tadpole.

    PubMed

    Sato, Kentaro; Umesono, Yoshihiko; Mochii, Makoto

    2018-01-15

    Rapid wound healing and subsequent formation of the apical epithelial cap (AEC) are believed to be required for successful appendage regeneration in amphibians. Despite the significant role of AEC in limb regeneration, its role in tail regeneration and the mechanisms that regulate the wound healing and AEC formation are not well understood. We previously identified Xenopus laevis es1, which is preferentially expressed in wounded regions, including the AEC after tail regeneration. In this study we established and characterized transgenic Xenopus laevis lines harboring the enhanced green fluorescent protein (EGFP) gene under control of an es1 gene regulatory sequence (es1:egfp). The EGFP reporter expression was clearly seen in several regions of the embryo and then declined to an undetectable level in larvae, recapitulating the endogenous es1 expression. After amputation of the tadpole tail, EGFP expression was re-activated at the edge of the stump epidermis and then increased in the wound epidermis (WE) covering the amputation surface. As the stump started to regenerate, the EGFP expression became restricted to the most distal epidermal region, including the AEC. EGFP was preferentially expressed in the basal or deep cells but not in the superficial cells of the WE and AEC. We performed a small-scale pharmacological screening for chemicals that affected the expression of EGFP in the stump epidermis after tail amputation. The EGFP expression was attenuated by treatment with an inhibitor for ERK, TGF-β or reactive oxygen species (ROS) signaling. These treatments also impaired wound closure of the amputation surface, suggesting that the three signaling activities are required for es1 expression in the WE and successful wound healing after tail amputation. These findings showed that es1:egfp Xenopus laevis should be a useful tool to analyze molecular mechanisms regulating wound healing and appendage regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. [Hypoxia responsive element regulated herpes simplex virus-thymidine kinase system enhances killing effect of gancyclovir on Ewing's sarcoma cell line under hypoxic condition].

    PubMed

    Si, Ying-jian; Guang, Li-xia; Yuan, Fa-huan; Zhang, Ke-bin

    2006-08-01

    To find out a possible approach to improve the effectiveness of radiotherapy and chemotherapy for Ewing's sarcoma by constructing a eukaryotic expression vector expressing herpes simplex virus-thymidine kinase (HSV-TK) regulated by hypoxia responsive element (HRE) under hypoxia and to evaluate the effects of this HRE regulated HSV-TK system on killing effect of gancyclovir (GCV) on Ewing's sarcoma cell line SK-ES under hypoxic condition. The HRE was synthesized according to the literature and cloned into the enhancer site of pIRES(2)-EGFP vector to obtain the pHRE recombinant plasmid. The HSV-TK was amplified by PCR and cloned into the multiple clone site of pIRES(2)-EGFP and pHRE to obtain pTK and pHRE-TK recombinant plasmid. The human Ewing's sarcoma cell line SK-ES was transfected by pTK or pHRE-TK recombinant plasmid with liposome and then was exposed to normoxic (21% oxygen) or hypoxic (3% oxygen) condition. The expression of enhanced green fluorescent protein (EGFP) was monitored by fluorescent microscopy. The sensitivity of human Ewing's sarcoma cell line SK-ES transfected with pTK or pHRE-TK recombinant plasmid to the anti-tumour drug GCV was determined with the method of tetrazolium (MTT) after treating with GCV for five days. (1) The result of sequencing showed that the recombinant plasmid pHRE contained HRE, and that the recombinant plasmid pTK and pHRE-TK contained HSV-TK gene in the sense direction. (2) Comparison of fluorescent optical density (FOD) showed that (1) the EGFP FOD value of pHRE and pHRE-TK group cells exposed to hypoxia was significantly higher than those exposed to normoxia (P < 0.01); (2) when the cells were exposed to hypoxia, the EGFP FOD value of pHRE and pHRE-TK group cells was significantly higher than that of pTK and empty vector group (P < 0.01); (3) there was no significant difference among the four groups of cells when they were exposed to normoxia (P > 0.05). (3) Comparison of the sensitivity of four groups of cells to GCV showed that (1) the cells in pHRE-TK and pTK groups were much more sensitive to GCV than the cells in pHRE group under hypoxia condition (P < 0.01), the higher the GCV concentration, the greater the difference; (2) the cells of pHRE-TK group were more sensitive to GCV than those in pTK group under hypoxic condition (P < 0.01), but was almost equally sensitive under normoxic condition (P > 0.05); (3) the pHRE-TK group cells had higher sensitivity to GCV under hypoxia than normoxia (P < 0.01) while the pTK group cells had almost the same sensitivity to GCV under hypoxia and normoxia (P > 0.05). (1) The eukaryotic expression vector expressing herpes simplex virus-thymidine kinase (HSV-TK) regulated by hypoxia responsive element (HRE) under hypoxia was constructed successfully. (2) HRE could up-regulate expression of EGFP by SK-ES cells under hypoxia condition. (3) HRE could enhance the killing effect of HSV-TK/GCV system on human Ewing's sarcoma cell line SK-ES under hypoxic condition.

  9. Characterization and comparison of osteoblasts derived from mouse embryonic stem cells and induced pluripotent stem cells.

    PubMed

    Ma, Ming-San; Kannan, Vishnu; de Vries, Anneriek E; Czepiel, Marcin; Wesseling, Evelyn M; Balasubramaniyan, Veerakumar; Kuijer, Roel; Vissink, Arjan; Copray, Sjef C V M; Raghoebar, Gerry M

    2017-01-01

    New developments in stem cell biology offer alternatives for the reconstruction of critical-sized bone defects. One of these developments is the use of induced pluripotent stem (iPS) cells. These stem cells are similar to embryonic stem (ES) cells, but can be generated from adult somatic cells and therefore do not raise ethical concerns. Proper characterization of iPS-derived osteoblasts is important for future development of safe clinical applications of these cells. For this reason, we differentiated mouse ES and iPS cells toward osteoblasts using osteogenic medium and compared their functionality. Immunocytochemical analysis showed significant expression of bone markers (osteocalcin and collagen type I) in osteoblasts differentiated from ES and iPS cells on days 7 and 30. An in vitro mineralization assay confirmed the functionality of osteogenically differentiated ES and iPS cells. Gene expression arrays focusing on osteogenic differentiation were performed in order to compare the gene expression pattern in both differentiated and undifferentiated ES cells and iPS cells. We observed a significant upregulation of osteogenesis-related genes such as Runx2, osteopontin, collagen type I, Tnfsf11, Csf1, and alkaline phosphatase upon osteogenic differentiation of the ES and iPS cells. We further validated the expression of key osteogenic genes Runx2, osteopontin, osteocalcin, collagen type I, and osterix in both differentiated and undifferentiated ES and iPS cells by means of quantified real-time polymerase chain reaction. We conclude that ES and iPS cells are similar in their osteogenic differentiation capacities, as well as in their gene expression patterns.

  10. Zfp206 regulates ES cell gene expression and differentiation.

    PubMed

    Zhang, Wen; Walker, Emily; Tamplin, Owen J; Rossant, Janet; Stanford, William L; Hughes, Timothy R

    2006-01-01

    Understanding transcriptional regulation in early developmental stages is fundamental to understanding mammalian development and embryonic stem (ES) cell properties. Expression surveys suggest that the putative SCAN-Zinc finger transcription factor Zfp206 is expressed specifically in ES cells [Zhang,W., Morris,Q.D., Chang,R., Shai,O., Bakowski,M.A., Mitsakakis,N., Mohammad,N., Robinson,M.D., Zirngibl,R., Somogyi,E. et al., (2004) J. Biol., 3, 21; Brandenberger,R., Wei,H., Zhang,S., Lei,S., Murage,J., Fisk,G.J., Li,Y., Xu,C., Fang,R., Guegler,K. et al., (2004) Nat. Biotechnol., 22, 707-716]. Here, we confirm this observation, and we show that ZFP206 expression decreases rapidly upon differentiation of cultured mouse ES cells, and during development of mouse embryos. We find that there are at least six isoforms of the ZFP206 transcript, the longest being predominant. Overexpression and depletion experiments show that Zfp206 promotes formation of undifferentiated ES cell clones, and positively regulates abundance of a very small set of transcripts whose expression is also specific to ES cells and the two- to four-cell stages of preimplantation embryos. This set includes members of the Zscan4, Thoc4, Tcstv1 and eIF-1A gene families, none of which have been functionally characterized in vivo but whose members include apparent transcription factors, RNA-binding proteins and translation factors. Together, these data indicate that Zfp206 is a regulator of ES cell differentiation that controls a set of genes expressed very early in development, most of which themselves appear to be regulators.

  11. In Vitro Germ Cell Differentiation from Cynomolgus Monkey Embryonic Stem Cells

    PubMed Central

    Yamauchi, Kaori; Hasegawa, Kouichi; Chuma, Shinichiro; Nakatsuji, Norio; Suemori, Hirofumi

    2009-01-01

    Background Mouse embryonic stem (ES) cells can differentiate into female and male germ cells in vitro. Primate ES cells can also differentiate into immature germ cells in vitro. However, little is known about the differentiation markers and culture conditions for in vitro germ cell differentiation from ES cells in primates. Monkey ES cells are thus considered to be a useful model to study primate gametogenesis in vitro. Therefore, in order to obtain further information on germ cell differentiation from primate ES cells, this study examined the ability of cynomolgus monkey ES cells to differentiate into germ cells in vitro. Methods and Findings To explore the differentiation markers for detecting germ cells differentiated from ES cells, the expression of various germ cell marker genes was examined in tissues and ES cells of the cynomolgus monkey (Macaca fascicularis). VASA is a valuable gene for the detection of germ cells differentiated from ES cells. An increase of VASA expression was observed when differentiation was induced in ES cells via embryoid body (EB) formation. In addition, the expression of other germ cell markers, such as NANOS and PIWIL1 genes, was also up-regulated as the EB differentiation progressed. Immunocytochemistry identified the cells expressing stage-specific embryonic antigen (SSEA) 1, OCT-4, and VASA proteins in the EBs. These cells were detected in the peripheral region of the EBs as specific cell populations, such as SSEA1-positive, OCT-4-positive cells, OCT-4-positive, VASA-positive cells, and OCT-4-negative, VASA-positive cells. Thereafter, the effect of mouse gonadal cell-conditioned medium and growth factors on germ cell differentiation from monkey ES cells was examined, and this revealed that the addition of BMP4 to differentiating ES cells increased the expression of SCP1, a meiotic marker gene. Conclusion VASA is a valuable gene for the detection of germ cells differentiated from ES cells in monkeys, and the identification and characterization of germ cells derived from ES cells are possible by using reported germ cell markers in vivo, including SSEA1, OCT-4, and VASA, in vitro as well as in vivo. These findings are thus considered to help elucidate the germ cell developmental process in primates. PMID:19399191

  12. Germline competence of mouse ES and iPS cell lines: Chimera technologies and genetic background.

    PubMed

    Carstea, Ana Claudia; Pirity, Melinda K; Dinnyes, Andras

    2009-12-31

    In mice, gene targeting by homologous recombination continues to play an essential role in the understanding of functional genomics. This strategy allows precise location of the site of transgene integration and is most commonly used to ablate gene expression ("knock-out"), or to introduce mutant or modified alleles at the locus of interest ("knock-in"). The efficacy of producing live, transgenic mice challenges our understanding of this complex process, and of the factors which influence germline competence of embryonic stem cell lines. Increasingly, evidence indicates that culture conditions and in vitro manipulation can affect the germline-competence of Embryonic Stem cell (ES cell) lines by accumulation of chromosome abnormalities and/or epigenetic alterations of the ES cell genome. The effectiveness of ES cell derivation is greatly strain-dependent and it may also influence the germline transmission capability. Recent technical improvements in the production of germline chimeras have been focused on means of generating ES cells lines with a higher germline potential. There are a number of options for generating chimeras from ES cells (ES chimera mice); however, each method has its advantages and disadvantages. Recent developments in induced pluripotent stem (iPS) cell technology have opened new avenues for generation of animals from genetically modified somatic cells by means of chimera technologies. The aim of this review is to give a brief account of how the factors mentioned above are influencing the germline transmission capacity and the developmental potential of mouse pluripotent stem cell lines. The most recent methods for generating specifically ES and iPS chimera mice, including the advantages and disadvantages of each method are also discussed.

  13. Current and historical land use influence soil-based ecosystem services in an urban landscape.

    PubMed

    Ziter, Carly; Turner, Monica G

    2018-04-01

    Urban landscapes are increasingly recognized as providing important ecosystem services (ES) to their occupants. Yet, urban ES assessments often ignore the complex spatial heterogeneity and land-use history of cities. Soil-based services may be particularly susceptible to land-use legacy effects. We studied indicators of three soil-based ES, carbon storage, water quality regulation, and runoff regulation, in a historically agricultural urban landscape and asked (1) How do ES indicators vary with contemporary land cover and time since development? (2) Do ES indicators vary primarily among land-cover classes, within land-cover classes, or within sites? (3) What is the relative contribution of urban land-cover classes to potential citywide ES provision? We measured biophysical indicators (soil carbon [C], available phosphorus [P], and saturated hydraulic conductivity [K s ]) in 100 sites across five land-cover classes, spanning an ~125-year gradient of time since development within each land-cover class. Potential for ES provision was substantial in urban green spaces, including developed land. Runoff regulation services (high K s ) were highest in forests; water quality regulation (low P) was highest in open spaces and grasslands; and open spaces and developed land (e.g., residential yards) had the highest C storage. In developed land covers, both C and P increased with time since development, indicating effects of historical land-use on contemporary ES and trade-offs between two important ES. Among-site differences accounted for a high proportion of variance in soil properties in forests, grasslands, and open space, while residential areas had high within-site variability, underscoring the leverage city residents have to improve urban ES provision. Developed land covers contributed most ES supply at the citywide scale, even after accounting for potential impacts of impervious surfaces. Considering the full mosaic of urban green space and its history is needed to estimate the kinds and magnitude of ES provided in cities, and to augment regional ES assessments that often ignore or underestimate urban ES supply. © 2018 by the Ecological Society of America.

  14. CrxOS maintains the self-renewal capacity of murine embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Ryota; Yamasaki, Tokiwa; Nagai, Yoko

    2009-12-25

    Embryonic stem (ES) cells maintain pluripotency by self-renewal. Several homeoproteins, including Oct3/4 and Nanog, are known to be key factors in maintaining the self-renewal capacity of ES cells. However, other genes required for the mechanisms underlying this process are still unclear. Here we report the identification by in silico analysis of a homeobox-containing gene, CrxOS, that is specifically expressed in murine ES cells and is essential for their self-renewal. ES cells mainly express the short isoform of endogenous CrxOS. Using a polyoma-based episomal expression system, we demonstrate that overexpression of the CrxOS short isoform is sufficient for maintaining the undifferentiatedmore » morphology of ES cells and stimulating their proliferation. Finally, using RNA interference, we show that CrxOS is essential for the self-renewal of ES cells, and provisionally identify foxD3 as a downstream target gene of CrxOS. To our knowledge, ours is the first delineation of the physiological role of CrxOS in ES cells.« less

  15. Activation of antigen-specific cytotoxic T lymphocytes by beta 2-microglobulin or TAP1 gene disruption and the introduction of recipient-matched MHC class I gene in allogeneic embryonic stem cell-derived dendritic cells.

    PubMed

    Matsunaga, Yusuke; Fukuma, Daiki; Hirata, Shinya; Fukushima, Satoshi; Haruta, Miwa; Ikeda, Tokunori; Negishi, Izumi; Nishimura, Yasuharu; Senju, Satoru

    2008-11-01

    A method for the genetic modification of dendritic cells (DC) was previously established based on the in vitro differentiation of embryonic stem (ES) cells to DC (ES-DC). The unavailability of human ES cells genetically identical to the patients will be a problem in the future clinical application of this technology. This study attempted to establish a strategy to overcome this issue. The TAP1 or beta(2)-microglobulin (beta(2)m) gene was disrupted in 129 (H-2(b))-derived ES cells and then expression vectors for the H-2K(d) or beta(2)m-linked form of K(d) (beta2m-K(d)) were introduced, thus resulting in two types of genetically engineered ES-DC, TAP1(-/-)/K(d) ES-DC and beta(2)m(-/-)/beta(2)m-K(d) ES-DC. As intended, both of the transfectant ES-DC expressed K(d) but not the intrinsic H-2(b) haplotype-derived MHC class I. Beta(2)m(-/-)/beta(2)m-K(d) and TAP1(-/-)/K(d) ES-DC were not recognized by pre-activated H-2(b)-reactive CTL and did not prime H-2(b) reactive CTL in vitro or in vivo. Beta(2)m(-/-)/beta(2)m-K(d) ES-DC and TAP1(-/-)/K(d) ES-DC had a survival advantage in comparison to beta(2)m(+/-)/beta(2)m-K(d) ES-DC and TAP1(+/+)/K(d) ES-DC, when transferred into BALB/c mice. K(d)-restricted RSV-M2-derived peptide-loaded ES-DC could prime the epitope-specific CTL upon injection into the BALB/c mice, irrespective of the cell surface expression of intrinsic H-2(b) haplotype-encoded MHC class I. Beta(2)m(-/-)/beta(2)m-K(d) ES-DC were significantly more efficient in eliciting immunity against RSV M2 protein-expressing tumor cells than beta(2)m(+/-)/beta(2)m-K(d) ES-DC. The modification of the beta(2)m or TAP gene may therefore be an effective strategy to resolve the problem of HLA class I allele mismatch between human ES or induced pluripotent stem cells and the recipients to be treated.

  16. ROCK inhibitor Y-27632 enhances the survivability of dissociated buffalo (Bubalus bubalis) embryonic stem cell-like cells.

    PubMed

    Sharma, Ruchi; George, Aman; Chauhan, Manmohan S; Singla, Suresh; Manik, Radhey S; Palta, Prabhat

    2013-01-01

    This study investigated the effects of supplementation of culture medium with 10 μM Y-27632, a specific inhibitor of Rho kinase activity, for 6 days on self-renewal of buffalo embryonic stem (ES) cell-like cells at Passage 50-80. Y-27632 increased mean colony area (P<0.05) although it did not improve their survival. It decreased OCT4 expression (P<0.05), increased NANOG expression (P<0.05), but had no effect on SOX2 expression. It also increased expression of anti-apoptotic gene BCL-2 (P<0.05) and decreased that of pro-apoptotic genes BAX and BID (P<0.05). It increased plating efficiency of single-cell suspensions of ES cells (P<0.05). Following vitrification, the presence of Y-27632 in the vitrification solution or thawing medium or both did not improve ES cell colony survival. However, following seeding of clumps of ES cells transfected with pAcGFP1N1 carrying green fluorescent protein (GFP), Y-27632 increased colony formation rate (P<0.01). ES cell colonies that formed in all Y-27632-supplemented groups were confirmed for expression of pluripotency markers alkaline phosphatase, SSEA-4 and TRA-1-60, and for their ability to generate embryoid bodies containing cells that expressed markers of ectoderm, mesoderm and endoderm. In conclusion, Y-27632 improves survival of buffalo ES cells under unfavourable conditions such as enzymatic dissociation to single cells or antibiotic-assisted selection after transfection, without compromising their pluripotency.

  17. Establishment of rat embryonic stem-like cells from the morula using a combination of feeder layers.

    PubMed

    Sano, Chiaki; Matsumoto, Asako; Sato, Eimei; Fukui, Emiko; Yoshizawa, Midori; Matsumoto, Hiromichi

    2009-08-01

    Embryonic stem (ES) cells are characterized by pluripotency, in particular the ability to form a germline on injection into blastocysts. Despite numerous attempts, ES cell lines derived from rat embryos have not yet been established. The reason for this is unclear, although certain intrinsic biological differences among species and/or strains have been reported. Herein, using Wistar-Imamichi rats, specific characteristics of preimplantation embryos are described. At the blastocyst stage, Oct4 (also called Pou5f1) was expressed in both the inner cell mass (ICM) and the trophectoderm (TE), whereas expression of Cdx2 was localized to the TE. In contrast, at an earlier stage, expression of Oct4 was detected in all the nuclei in the morula. These stages were examined using a combination of feeder layers (rat embryonic fibroblast [REF] for primary outgrowth and SIM mouse embryo-derived thioguanine- and ouabain-resistant [STO] cells for passaging) to establish rat ES-like cell lines. The rat ES-like cell lines obtained from the morula maintained expression of Oct4 over long-term culture, whereas cell lines derived from blastocysts lost pluripotency during early passage. The morula-derived ES-like cell lines showed Oct4 expression in a long-term culture, even after cryogenic preservation, thawing and EGFP transfection. These results indicate that rat ES-like cell lines with long-term Oct4 expression can be established from the morula of Wistar-Imamichi rats using a combination of feeder layers.

  18. SC1 Promotes MiR124-3p Expression to Maintain the Self-Renewal of Mouse Embryonic Stem Cells by Inhibiting the MEK/ERK Pathway.

    PubMed

    Wei, Qing; Liu, Hongliang; Ai, Zhiying; Wu, Yongyan; Liu, Yingxiang; Shi, Zhaopeng; Ren, Xuexue; Guo, Zekun

    2017-01-01

    Self-renewal is one of the most important features of embryonic stem (ES) cells. SC1 is a small molecule modulator that effectively maintains the self-renewal of mouse ES cells in the absence of leukemia inhibitory factor (LIF), serum and feeder cells. However, the mechanism by which SC1 maintains the undifferentiated state of mouse ES cells remains unclear. In this study, microarray and small RNA deep-sequencing experiments were performed on mouse ES cells treated with or without SC1 to identify the key genes and microRNAs that contributed to self-renewal. SC1 regulates the expressions of pluripotency and differentiation factors, and antagonizes the retinoic acid (RA)-induced differentiation in the presence or absence of LIF. SC1 inhibits the MEK/ERK pathway through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and pathway reporting experiments. Small RNA deep-sequencing revealed that SC1 significantly modulates the expression of multiple microRNAs with crucial functions in ES cells. The expression of miR124-3p is upregulated in SC1-treated ES cells, which significantly inhibits the MEK/ERK pathway by targeting Grb2, Sos2 and Egr1. SC1 enhances the self-renewal capacity of mouse ES cells by modulating the expression of key regulatory genes and pluripotency-associated microRNAs. SC1 significantly upregulates miR124-3p expression to further inhibit the MEK/ ERK pathway by targeting Grb2, Sos2 and Egr1. © 2017 The Author(s). Published by S. Karger AG, Basel.

  19. [Comparative study between fast and slow induction of propofol given by target-controlled infusion: expected propofol concentration at the effect site. Randomized controlled trial].

    PubMed

    Simoni, Ricardo Francisco; Miziara, Luiz Eduardo de Paula Gomes; Esteves, Luis Otávio; Silva, Diógenes de Oliveira; Ribeiro, Cristina Alves; Smith, Mariana Oki; Paula, Leonardo Ferreira de; Cangiani, Luis Henrique

    2015-01-01

    studies have shown that rate of propofol infusion may influence the predicted propofol concentration at the effect site (Es). The aim of this study was to evaluate the Es predicted by the Marsh pharmacokinetic model (ke0 0.26min(-1)) in loss of consciousness during fast or slow induction. the study included 28 patients randomly divided into two equal groups. In slow induction group (S), target-controlled infusion (TCI) of propofol with plasma, Marsh pharmacokinetic model (ke0 0.26min(-1)) with target concentration (Tc) at 2.0-μg.mL(-1) were administered. When the predicted propofol concentration at the effect site (Es) reached half of Es value, Es was increased to previous Es + 1μg.mL(-1), successively, until loss of consciousness. In rapid induction group (R), patients were induced with TCI of propofol with plasma (6.0μg.ml(-1)) at Es, and waited until loss of consciousness. in rapid induction group, Tc for loss of consciousness was significantly lower compared to slow induction group (1.67±0.76 and 2.50±0.56μg.mL(-1), respectively, p=0.004). the predicted propofol concentration at the effect site for loss of consciousness is different for rapid induction and slow induction, even with the same pharmacokinetic model of propofol and the same balance constant between plasma and effect site. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  20. Continuous and high-level in vivo delivery of endostatin from recombinant cells encapsulated in TheraCyte immunoisolation devices.

    PubMed

    Malavasi, N V; Rodrigues, D B; Chammas, R; Chura-Chambi, R M; Barbuto, J A M; Balduino, K; Nonogaki, S; Morganti, L

    2010-01-01

    Endostatin (ES) is a potent inhibitor of angiogenesis and tumor growth. Continuous ES delivery of ES improves the efficacy and potency of the antitumoral therapy. The TheraCyte system is a polytetrafluoroethylene (PTFE) semipermeable membrane macroencapsulation system for implantation of genetically engineered cells specially designed for the in vivo delivery of therapeutic proteins, such as ES, which circumvents the problem of limited half-life and variation in circulating levels. In order to enable neovascularization at the tissues adjacent to the devices prior to ES secretion by the cells inside them, we designed a scheme in which empty TheraCyte devices were preimplanted SC into immunodeficient mice. Only after healing (17 days later) were Chinese hamster ovary cells expressing ES injected into the preimplanted devices. In another model for device implantation, the cells expressing ES where loaded into the immunoisolation devices prior to implantation into the animals, and the TheraCyte were then immediately implanted SC into the mice. Throughout the 2-month study, constant high ES levels of up to 3.7 microg/ml were detected in the plasma of the mice preimplanted with the devices, while lower but also constant levels of ES (up to 2.1 microg/ml plasma) were detected in the mice that had received devices preloaded with the ES-expressing cells. Immunohistochemistry using anti-ES antibody showed reaction within the device and outside it, demonstrating that ES, secreted by the confined recombinant cells, permeated through the membrane and reached the surrounding tissues.

  1. Mouse ES cells have a potential to differentiate into odontoblast-like cells using hanging drop method.

    PubMed

    Kawai, R; Ozeki, N; Yamaguchi, H; Tanaka, T; Nakata, K; Mogi, M; Nakamura, H

    2014-05-01

    We examined whether mouse embryonic stem (ES) cells can differentiate into odontoblast-like cells without epithelial-mesenchymal interaction. Cells were cultured by the 'hanging drop' method using a collagen type-I scaffold (CS) combined with bone morphogenetic protein (BMP)-4 (CS/BMP-4). Expression of odontoblast-related mRNA and protein, and cell proliferation were performed by reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence staining and WST-1 assay, respectively. Cells potently expressed odontoblast-related cell marker mRNAs following induction of odontoblastic differentiation. Dentin sialophosphoprotein, a marker of mature odontoblasts, was strongly expressed in differentiated ES cells. The cells also acquired an odontoblast-like functional phenotype, as evidenced by the appearance of alkaline phosphatase activity and calcification. The cell-surface expression of α2, α6, αV and αVβ3 integrin proteins was rapidly upregulated in differentiated cells. Finally, anti-α2 integrin antibody suppressed the expression of odontoblastic markers in cells grown using this culture system, suggesting that α2 integrin expression in ES cells triggers their differentiation into odontoblast-like cells. Mouse ES cells cultured by the 'hanging drop' method are able to differentiate into cells with odontoblast-specific physiological functions and cell-surface integrin protein expression. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Transforming growth factor (TGF)beta, fibroblast growth factor (FGF) and retinoid signalling pathways promote pancreatic exocrine gene expression in mouse embryonic stem cells.

    PubMed Central

    Skoudy, Anouchka; Rovira, Meritxell; Savatier, Pierre; Martin, Franz; León-Quinto, Trinidad; Soria, Bernat; Real, Francisco X

    2004-01-01

    Extracellular signalling cues play a major role in the activation of differentiation programmes. Mouse embryonic stem (ES) cells are pluripotent and can differentiate into a wide variety of specialized cells. Recently, protocols designed to induce endocrine pancreatic differentiation in vitro have been designed but little information is currently available concerning the potential of ES cells to differentiate into acinar pancreatic cells. By using conditioned media of cultured foetal pancreatic rudiments, we demonstrate that ES cells can respond in vitro to signalling pathways involved in exocrine development and differentiation. In particular, modulation of the hedgehog, transforming growth factor beta, retinoid, and fibroblast growth factor pathways in ES cell-derived embryoid bodies (EB) resulted in increased levels of transcripts encoding pancreatic transcription factors and cytodifferentiation markers, as demonstrated by RT-PCR. In EB undergoing spontaneous differentiation, expression of the majority of the acinar genes (i.e. amylase, carboxypeptidase A and elastase) was induced after the expression of endocrine genes, as occurs in vivo during development. These data indicate that ES cells can undergo exocrine pancreatic differentiation with a kinetic pattern of expression reminiscent of pancreas development in vivo and that ES cells can be coaxed to express an acinar phenotype by activation of signalling pathways known to play a role in pancreatic development and differentiation. PMID:14733613

  3. Inhibiting platelet-derived growth factor beta reduces Ewing's sarcoma growth and metastasis in a novel orthotopic human xenograft model.

    PubMed

    Wang, Yong Xin; Mandal, Deendayal; Wang, Suizhau; Hughes, Dennis; Pollock, Raphael E; Lev, Dina; Kleinerman, Eugenie; Hayes-Jordan, Andrea

    2009-01-01

    Despite aggressive therapy, Ewing's sarcoma (ES) patients have a poor five-year overall survival of only 20-40%. Pulmonary metastasis is the most common form of demise in these patients. The pathogenesis of pulmonary metastasis is poorly understood and few orthotopic models exist that allow study of spontaneous pulmonary metastasis in ES. We have developed a novel orthotopic xenograft model in which spontaneous pulmonary metastases develop. While the underlying biology of ES is incompletely understood, in addition to the EWS-FLI-1 mutation, it is known that platelet-derived growth factor receptor beta (PDGFR-beta) is highly expressed in ES. Hypothesizing that PDGFR-beta expression is indicative of a specific role for this receptor protein in ES progression, the effect of PDGFR-beta inhibition on ES growth and metastasis was assessed in this novel orthotopic ES model. Silencing PDGFR-beta reduced spontaneous growth and metastasis in ES. Preclinical therapeutically relevant findings such as these may ultimately lead to new treatment initiatives in ES.

  4. A novel transgenic chimaeric mouse system for the rapid functional evaluation of genes encoding secreted proteins

    PubMed Central

    Kakitani, Makoto; Oshima, Takeshi; Horikoshi, Kaori; Yoshitome, Tetsuo; Ueda, Akiko; Kajikawa, Miwa; Iba, Yumi; Ozone, Yoshinao; Ijima, Yuki; Yoshino, Tohko; Itoh, Mikiko; Seki, Sachiko; Aoki, Ayako; Ishihara, Toshie; Shionoya, Michiyo; Makino, Utako; Kitada, Rina; Ohguma, Atsuko; Ohta, Takami; Yoshida, Yoshimasa; Kudoh, Hiroe; Hanaoka, Kazunori; Sibuya, Kazunori; Ishida, Isao; Kakeda, Minoru; Yagi, Mikio; Yoneya, Takashi; Tomizuka, Kazuma

    2005-01-01

    A major challenge of the post-genomic era is the functional characterization of anonymous open reading frames (ORFs) identified by the Human Genome Project. In this context, there is a strong requirement for the development of technologies that enhance our ability to analyze gene functions at the level of the whole organism. Here, we describe a rapid and efficient procedure to generate transgenic chimaeric mice that continuously secrete a foreign protein into the systemic circulation. The transgene units were inserted into the genomic site adjacent to the endogenous immunoglobulin (Ig) κ locus by homologous recombination, using a modified mouse embryonic stem (ES) cell line that exhibits a high frequency of homologous recombination at the Igκ region. The resultant ES clones were injected into embryos derived from a B-cell-deficient host strain, thus producing chimaerism-independent, B-cell-specific transgene expression. This feature of the system eliminates the time-consuming breeding typically implemented in standard transgenic strategies and allows for evaluating the effect of ectopic transgene expression directly in the resulting chimaeric mice. To demonstrate the utility of this system we showed high-level protein expression in the sera and severe phenotypes in human EPO (hEPO) and murine thrombopoietin (mTPO) transgenic chimaeras. PMID:15914664

  5. E-Cadherin Acts as a Regulator of Transcripts Associated with a Wide Range of Cellular Processes in Mouse Embryonic Stem Cells

    PubMed Central

    Soncin, Francesca; Mohamet, Lisa; Ritson, Sarah; Hawkins, Kate; Bobola, Nicoletta; Zeef, Leo; Merry, Catherine L. R.; Ward, Christopher M.

    2011-01-01

    Background We have recently shown that expression of the cell adhesion molecule E-cadherin is required for LIF-dependent pluripotency of mouse embryonic stem (ES) cells. Methodology In this study, we have assessed global transcript expression in E-cadherin null (Ecad-/-) ES cells cultured in either the presence or absence of LIF and compared these to the parental cell line wtD3. Results We show that LIF has little effect on the transcript profile of Ecad-/- ES cells, with statistically significant transcript alterations observed only for Sp8 and Stat3. Comparison of Ecad-/- and wtD3 ES cells cultured in LIF demonstrated significant alterations in the transcript profile, with effects not only confined to cell adhesion and motility but also affecting, for example, primary metabolic processes, catabolism and genes associated with apoptosis. Ecad-/- ES cells share similar, although not identical, gene expression profiles to epiblast-derived pluripotent stem cells, suggesting that E-cadherin expression may inhibit inner cell mass to epiblast transition. We further show that Ecad-/- ES cells maintain a functional β-catenin pool that is able to induce β-catenin/TCF-mediated transactivation but, contrary to previous findings, do not display endogenous β-catenin/TCF-mediated transactivation. We conclude that loss of E-cadherin in mouse ES cells leads to significant transcript alterations independently of β-catenin/TCF transactivation. PMID:21779327

  6. E-cadherin acts as a regulator of transcripts associated with a wide range of cellular processes in mouse embryonic stem cells.

    PubMed

    Soncin, Francesca; Mohamet, Lisa; Ritson, Sarah; Hawkins, Kate; Bobola, Nicoletta; Zeef, Leo; Merry, Catherine L R; Ward, Christopher M

    2011-01-01

    We have recently shown that expression of the cell adhesion molecule E-cadherin is required for LIF-dependent pluripotency of mouse embryonic stem (ES) cells. In this study, we have assessed global transcript expression in E-cadherin null (Ecad-/-) ES cells cultured in either the presence or absence of LIF and compared these to the parental cell line wtD3. We show that LIF has little effect on the transcript profile of Ecad-/- ES cells, with statistically significant transcript alterations observed only for Sp8 and Stat3. Comparison of Ecad-/- and wtD3 ES cells cultured in LIF demonstrated significant alterations in the transcript profile, with effects not only confined to cell adhesion and motility but also affecting, for example, primary metabolic processes, catabolism and genes associated with apoptosis. Ecad-/- ES cells share similar, although not identical, gene expression profiles to epiblast-derived pluripotent stem cells, suggesting that E-cadherin expression may inhibit inner cell mass to epiblast transition. We further show that Ecad-/- ES cells maintain a functional β-catenin pool that is able to induce β-catenin/TCF-mediated transactivation but, contrary to previous findings, do not display endogenous β-catenin/TCF-mediated transactivation. We conclude that loss of E-cadherin in mouse ES cells leads to significant transcript alterations independently of β-catenin/TCF transactivation.

  7. Characterization and differentiation of human embryonic stem cells.

    PubMed

    Carpenter, M K; Rosler, E; Rao, M S

    2003-01-01

    Cell replacement therapies have been limited by the availability of sufficient quantities of cells for transplantation. Human ES (hES) cell lines have recently been generated by several laboratories. When maintained for over 1 year in vitro, they remain karyotypically and phenotypically stable and may therefore provide an excellent source material for cell therapies. Currently, data is available for 26 hES cell lines. Although limited characterization has been performed on most of these lines, there are remarkable similarities in expression of markers. hES cell lines derived in different laboratories show similar expression profiles of surface markers, including SSEA-4, Tra-1-60, and Tra-1-81. In addition, markers associated with pluripotent cells such as OCT-4 are expressed at in all cell lines tested. These cells express high levels of telomerase and appear to have indefinite growth potential. The generation of the large quantities of cells necessary for cell replacement therapies will require a cell population which is stable over long term culture. We have characterized the properties of multiple hES cell lines that have been maintained in culture for extended periods. Quantitative analyses demonstrate that all of the cell lines examined show consistent marker expression and retain a normal karyotype after long-term culture. hES cells have been differentiated into the derivatives of all three germ layers. Specifically this includes cardiomyocytes, neural cells, hepatocyte-like cells, endothelial cells and hematopoietic progenitor cells. These data demonstrating the karyotypic and phenotypic stability of hES cells and their extensive differentiative capacity indicate that they may be an appropriate source of cells for multiple regenerative medicine applications.

  8. Egg storage duration and hatch window affect gene expression of nutrient transporters and intestine morphological parameters of early hatched broiler chicks.

    PubMed

    Yalcin, S; Gursel, I; Bilgen, G; Izzetoglu, G T; Horuluoglu, B H; Gucluer, G

    2016-05-01

    In recent years, researchers have given emphasis on the differences in physiological parameters between early and late hatched chicks within a hatch window. Considering the importance of intestine development in newly hatched chicks, however, changes in gene expression of nutrient transporters in the jejunum of early hatched chicks within a hatch window have not been studied yet. This study was conducted to determine the effects of egg storage duration before incubation and hatch window on intestinal development and expression of PepT1 (H+-dependent peptide transporter) and SGLT1 (sodium-glucose co-transporter) genes in the jejunum of early hatched broiler chicks within a 30 h of hatch window. A total of 1218 eggs obtained from 38-week-old Ross 308 broiler breeder flocks were stored for 3 (ES3) or 14 days (ES14) and incubated at the same conditions. Eggs were checked between 475 and 480 h of incubation and 40 chicks from each egg storage duration were weighed; chick length and rectal temperature were measured. The chicks were sampled to evaluate morphological parameters and PepT1 and SGLT1 expression. The remaining chicks that hatched between 475 and 480 h were placed back in the incubator and the same measurements were conducted with those chicks at the end of hatch window at 510 h of incubation. Chick length, chick dry matter content, rectal temperature and weight of small intestine segments increased, whereas chick weight decreased during the hatch window. The increase in the jejunum length and villus width and area during the hatch window were higher for ES3 than ES14 chicks. PepT1 expression was higher for ES3 chicks compared with ES14. There was a 10.2 and 17.6-fold increase in PepT1 and SGLT1 expression of ES3 chicks at the end of hatch window, whereas it was only 2.3 and 3.3-fold, respectively, for ES14 chicks. These results suggested that egg storage duration affected development of early hatched chicks during 30 h of hatch window. It can be concluded that the ES14 chicks would be less efficiently adapted to absorption process for carbohydrates and protein than those from ES3 at the end of the hatch window.

  9. Immunohistochemical detection of FLI-1 protein expression: a study of 132 round cell tumors with emphasis on CD99-positive mimics of Ewing's sarcoma/primitive neuroectodermal tumor.

    PubMed

    Folpe, A L; Hill, C E; Parham, D M; O'Shea, P A; Weiss, S W

    2000-12-01

    The histologic and immunohistochemical differentiation of Ewing' s sarcoma/primitive neuroectodermal tumor (ES/PNET) from other small, blue, round cell tumors may be difficult. Despite initial promise, CD99 (MIC2) has not proven to be a specific marker. Approximately 90% of ES/PNET have a specific t(11; 22)(q24;q12) that results in fusion of the EWS and FLI-1 genes, and overexpression of FLI-1 protein. A recent study has shown immunohistochemical FLI-1 expression in five of seven of the ES/PNET cases tested. We evaluated FLI-1 expression in 132 well-characterized small, blue, round cell tumors. All tumors were immunostained for FLI-1 (1:40, Sc 356 polyclonal, Santa Cruz Biotechnology) using steam heat for epitope retrieval. Only nuclear staining was accepted as positive. Endothelial cells were strongly positive in all cases and served as an internal control. In many cases, a subset of lymphocytes also stained positive. No staining was seen in any other normal tissue. FLI-1 expression was seen in 29 of 41 (71%) ES/PNET, 7 of 8 (88%) lymphoblastic lymphomas, 0 of 8 poorly differentiated synovial sarcomas (PDSS), 0 of 32 rhabdomyosarcoma (RMS), 0 of 30 neuroblastomas, 0 of 8 esthesioneuroblastomas, 0 of 3 Wilms' tumors, 0 of 1 mesenchymal chondrosarcoma, and in 1 of 1 desmoplastic round cell tumor. This last case was known to have an EWS/WT-1 fusion. Although the EWS/FLI-1 fusion gene is specific for ES/PNET, FLI-1 protein expression is not. Significantly, the great majority of lymphoblastic lymphomas (also CD99-positive) are strongly FLI-1-positive. Immunohistochemical detection of FLI-1 may be valuable in confirming the diagnosis of ES/ PNET in cases in which molecular genetic evaluation is not feasible. FLI-1 protein expression is also helpful in distinguishing ES/PNET from other tumors that may be CD99-positive, such as PDSS and RMS. It is not surprising that some ES/ PNET are FLI-1-negative, because not all ES/PNET have the classic EWS/FLI-1, and some cases of ES/PNET may produce either low levels of protein or idiotypically different protein.

  10. Cyclic mechanical strain maintains Nanog expression through PI3K/Akt signaling in mouse embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horiuchi, Rie; Akimoto, Takayuki, E-mail: akimoto@m.u-tokyo.ac.jp; Institute for Biomedical Engineering, Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041

    2012-08-15

    Mechanical strain has been reported to affect the proliferation/differentiation of many cell types; however, the effects of mechanotransduction on self-renewal as well as pluripotency of embryonic stem (ES) cells remains unknown. To investigate the effects of mechanical strain on mouse ES cell fate, we examined the expression of Nanog, which is an essential regulator of self-renewal and pluripotency as well as Nanog-associated intracellular signaling during uniaxial cyclic mechanical strain. The mouse ES cell line, CCE was plated onto elastic membranes, and we applied 10% strain at 0.17 Hz. The expression of Nanog was reduced during ES cell differentiation in responsemore » to the withdrawal of leukemia inhibitory factor (LIF); however, two days of cyclic mechanical strain attenuated this reduction of Nanog expression. On the other hand, the cyclic mechanical strain promoted PI3K-Akt signaling, which is reported as an upstream of Nanog transcription. The cyclic mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor wortmannin. Furthermore, cytochalasin D, an inhibitor of actin polymerization, also inhibited the mechanical strain-induced increase in phospho-Akt. These findings imply that mechanical force plays a role in regulating Nanog expression in ES cells through the actin cytoskeleton-PI3K-Akt signaling. -- Highlights: Black-Right-Pointing-Pointer The expression of Nanog, which is an essential regulator of 'stemness' was reduced during embryonic stem (ES) cell differentiation. Black-Right-Pointing-Pointer Cyclic mechanical strain attenuated the reduction of Nanog expression. Black-Right-Pointing-Pointer Cyclic mechanical strain promoted PI3K-Akt signaling and mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor and an inhibitor of actin polymerization.« less

  11. Molecular Cloning of an Immunogenic Protein of Baylisascaris procyonis and Expression in Escherichia coli for Use in Developing Improved Serodiagnostic Assays▿

    PubMed Central

    Dangoudoubiyam, Sriveny; Vemulapalli, Ramesh; Hancock, Kathy; Kazacos, Kevin R.

    2010-01-01

    Larva migrans caused by Baylisascaris procyonis is an important zoonotic disease. Current serological diagnostic assays for this disease depend on the use of the parasite's larval excretory-secretory (ES) antigens. In order to identify genes encoding ES antigens and to generate recombinant antigens for use in diagnostic assays, construction and immunoscreening of a B. procyonis third-stage larva cDNA expression library was performed and resulted in identification of a partial-length cDNA clone encoding an ES antigen, designated repeat antigen 1 (RAG1). The full-length rag1 cDNA contained a 753-bp open reading frame that encoded a protein of 250 amino acids with 12 tandem repeats of a 12-amino-acid long sequence. The rag1 genomic DNA revealed a single intron of 837 bp that separated the 753-bp coding sequence into two exons delimited by canonical splice sites. No nucleotide or amino acid sequences present in the GenBank databases had significant similarity with those of RAG1. We have cloned, expressed, and purified the recombinant RAG1 (rRAG1) and analyzed its diagnostic potential by enzyme-linked immunosorbent assay. Anti-Baylisascaris species-specific rabbit serum showed strong reactivity to rRAG1, while only minimal to no reactivity was observed with sera against the related ascarids Toxocara canis and Ascaris suum, strongly suggesting the specificity of rRAG1. On the basis of these results, the identified RAG1 appears to be a promising diagnostic antigen for the development of serological assays for specific detection of B. procyonis larva migrans. PMID:20926699

  12. Adaptive microclimatic structural and expressional dehydrin 1 evolution in wild barley, Hordeum spontaneum, at 'Evolution Canyon', Mount Carmel, Israel.

    PubMed

    Yang, Zujun; Zhang, Tao; Bolshoy, Alexander; Beharav, Alexander; Nevo, Eviatar

    2009-05-01

    'Evolution Canyon' (ECI) at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unravelling evolution in action highlighting the twin evolutionary processes of adaptation and speciation. A major model organism in ECI is wild barley, Hordeum spontaneum, the progenitor of cultivated barley, which displays dramatic interslope adaptive and speciational divergence on the 'African' dry slope (AS) and the 'European' humid slope (ES), separated on average by 200 m. Here we examined interslope single nucleotide polymorphism (SNP) sequences and the expression diversity of the drought resistant dehydrin 1 gene (Dhn1) between the opposite slopes. We analysed 47 plants (genotypes), 4-10 individuals in each of seven stations (populations) in an area of 7000 m(2), for Dhn1 sequence diversity located in the 5' upstream flanking region of the gene. We found significant levels of Dhn1 genic diversity represented by 29 haplotypes, derived from 45 SNPs in a total of 708 bp sites. Most of the haplotypes, 25 out of 29 (= 86.2%), were represented by one genotype; hence, unique to one population. Only a single haplotype was common to both slopes. Genetic divergence of sequence and haplotype diversity was generally and significantly different among the populations and slopes. Nucleotide diversity was higher on the AS, whereas haplotype diversity was higher on the ES. Interslope divergence was significantly higher than intraslope divergence. The applied Tajima D rejected neutrality of the SNP diversity. The Dhn1 expression under dehydration indicated interslope divergent expression between AS and ES genotypes, reinforcing Dhn1 associated with drought resistance of wild barley at 'Evolution Canyon'. These results are inexplicable by mutation, gene flow, or chance effects, and support adaptive natural microclimatic selection as the major evolutionary divergent driving force.

  13. Glycogen synthase kinase-3 (GSK3) regulates TNF production and haemocyte phagocytosis in the immune response of Chinese mitten crab Eriocheir sinensis.

    PubMed

    Li, Xiaowei; Jia, Zhihao; Wang, Weilin; Wang, Lingling; Liu, Zhaoqun; Yang, Bin; Jia, Yunke; Song, Xiaorui; Yi, Qilin; Qiu, Limei; Song, Linsheng

    2017-08-01

    Glycogen synthase kinase-3 (GSK3) is a serine/threonine protein kinase firstly identified as a regulator of glycogen synthesis. Recently, it has been proved to be a key regulator of the immune reaction. In the present study, a GSK3 homolog gene (designated as EsGSK3) was cloned from Chinese mitten crab, Eriocheir sinensis. The open reading frame (ORF) was 1824 bp, which encoded a predicted polypeptide of 607 amino acids. There was a conserved Serine/Threonine Kinase domain and a DNA binding domain found in EsGSK3. Phylogenetic analysis showed that EsGSK3 was firstly clustered with GSK3-β from oriental river prawn Macrobrachium nipponense in the invertebrate branch, while GSK3s from vertebrates formed the other distinct branch. EsGSK3 mRNA transcripts could be detected in all tested tissues of the crab including haepatopancreas, eyestalk, muscle, gonad, haemocytes and haematopoietic tissue with the highest expression level in haepatopancreas. And EsGSK3 protein was mostly detected in the cytoplasm of haemocyte by immunofluorescence analysis. The expression levels of EsGSK3 mRNA increased significantly at 6 h after Aeromonas hydrophila challenge (p < 0.05) in comparison with control group, and then gradually decreased to the initial level at 48 h (p > 0.05). The mRNA expression of lipopolysaccharide-induced tumor necrosis factor (TNF)-α factor (EsLITAF) was also induced by A. hydrophila challenge. However, the mRNA expression of EsLITAF and TNF-α production was significantly suppressed after EsGSK3 was blocked in vivo with specific inhibitor lithium, while the phagocytosis of crab haemocytes was significantly promoted. These results collectively demonstrated that EsGSK3 could regulate the innate immune responses of E. sinensis by promoting TNF-α production and inhibiting haemocyte phagocytosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Restoration of degraded drylands in northern Chile: The need of local stakeholders' participation to prevent and combat desertification

    NASA Astrophysics Data System (ADS)

    Jorquera-Jaramillo, Carmen; Yáñez-Acevedo, Marcia; Gutiérrez, Julio R.; Cortés-Bugueño, José Luis; Pastén-Marambio, Víctor; Barraza-Cepeda, Claudia

    2015-04-01

    Desertification is one of the main factors determining poverty, long-term socio-economic problems, natural resources depletion and disturbances in rural communities living at the Coquimbo Region drylands (North-Central Chile). The Chilean State, along with private initiatives, have invested 473.6 Million dollars (1976 to 2008) to recover degraded areas through afforestation and soil management of 1,373,758 hectares. However, there is no information about the impact of the practices and changes experienced by the local stakeholders. Therefore, there is a need for a comprehensive evaluation considering both socioeconomic and biophysical aspects. To this end, a Protocol on Integrated Assessment (IAPro, PRACTICE project) was applied in two rural communities, involving communal afforested sites and their adjacent degraded drylands: El Sauce (ES, Limarí province) and Las Cañas (LC, Choapa province), Coquimbo Region. Participatory afforestation and soil conservation projects were implemented at both sites by the Chilean National Forestry Service (CONAF) in agreement with each local community (Jiménez y Tapia Agricultural Community at ES and Las Cañas de Choapa Peasant's Community at LC). The protocol involved 7 steps: (1) Stakeholder platform identification and engagement; (2) Baseline assessment and selection of site-specific indicators; (3) Integration and weighting of common and site-specific indicators; (4) Data collection; (5) Integrating and perspectives on a MCDA (Multi-Criteria Decision Analysis); (6) Collective Integrated assessment and knowledge sharing; (7) Dissemination. Interviews involved local and institutional stakeholders related to both sites' implementation, administration and/or local impacts. For the ES site, 5 actions were defined and assessed: No action (control); fences; mechanic and biological practices (soil stabilization, runoff control on slopes); runoff control in micro-basins, gullies and ravines; and footpath for educational and demonstration purposes. The same actions plus 'conservation and management of native forests/shrubs at strict exclosure' were identified at LC site. All of the stakeholders interviewed at both sites recognized the actions, but not all of them had specific knowledge about some of the practices. Afforestation was the most selected and valued practice, revealing deep knowledge about the actions and positive valuation of the site experience, but also a need of more support for maintenance. At ES, the main concerns were drought and derived unemployment; at LC, the main concerns were access to the site, prolonged droughts, local conflicts and lack of community commitment. At both sites, many stakeholders highlighted the need for more financial support, better management and assistance in solving local conflicts. External stakeholders value both sites as replicable models and their positive impacts in increasing afforestation and soil conservation experiences; they also identify a need for continuous financial support and the exploration of other models for site implementation and educational activities. The integrated assessment identified a match between the trends in biophysical indicators' results and the perspectives on those indicators expressed by stakeholders. It remained clear that every intervention to combat desertification requires an active involvement of local stakeholders and the implementation of educational modules to ensure the adoption of appropriate practices. Keywords: Land degradation - restoration actions - participatory approach - economic and environmental aspects - recovery of degraded drylands

  15. F5-peptide induces aspermatogenesis by disrupting organization of actin- and microtubule-based cytoskeletons in the testis

    PubMed Central

    Gao, Ying; Mruk, Dolores D.; Lui, Wing-yee; Lee, Will M.; Cheng, C. Yan

    2016-01-01

    During the release of sperm at spermiation, a biologically active F5-peptide, which can disrupt the Sertoli cell tight junction (TJ) permeability barrier, is produced at the site of the degenerating apical ES (ectoplasmic specialization). This peptide coordinates the events of spermiation and blood-testis barrier (BTB) remodeling at stage VIII of the epithelial cycle, creating a local apical ES-BTB axis to coordinate cellular events across the epithelium. The mechanism(s) by which F5-peptide perturbs BTB restructuring, and its involvement in apical ES dynamics remain unknown. F5-peptide, besides perturbing BTB integrity, was shown to induce germ cell release from the epithelium following its efficient in vivo overexpression in the testis. Overexpression of F5-peptide caused disorganization of actin- and microtubule (MT)-based cytoskeletons, mediated by altering the spatiotemporal expression of actin binding/regulatory proteins in the seminiferous epithelium. F5-peptide perturbed the ability of actin microfilaments and/or MTs from converting between their bundled and unbundled/defragmented configuration, thereby perturbing adhesion between spermatids and Sertoli cells. Since apical ES and basal ES/BTB are interconnected through the underlying cytoskeletal networks, this thus provides an efficient and novel mechanism to coordinate different cellular events across the epithelium during spermatogenesis through changes in the organization of actin microfilaments and MTs. These findings also illustrate the potential of F5-peptide being a male contraceptive peptide for men. PMID:27611949

  16. Derivation and characterization of putative embryonic stem cells from cloned rabbit embryos.

    PubMed

    Intawicha, Payungsuk; Siriboon, Chawalit; Chen, Chien-Hong; Chiu, Yung-Tsung; Lin, Tzu-An; Kere, Michel; Lo, Neng-Wen; Lee, Kun-Hsiung; Chang, Li-Yung; Chiang, Hsing-I; Ju, Jyh-Cherng

    2016-10-15

    The present study aimed to establish embryonic stem (ES) cell lines, i.e., ntES cells, using rabbit blastocyst stage embryos cloned by somatic cell nuclear transfer. First, we investigated the development of cloned rabbit embryos reconstructed with normal fibroblasts and fibroblasts transfected with enhanced green fluorescence protein (eGFP). Blastocyst rates were 27.4% and 23.9%, respectively, for the embryos reconstructed with normal fibroblasts and fibroblasts transfected with eGFP compared with that from the parthenogenetic group (43.1%). One ntES cell line was established from embryos reconstructed with eGFP-transfected fibroblasts (1 of 17, 5.9%), and three ntES cell lines were derived from those with normal fibroblasts (3 of 17, 17.6%). All the ntES cell lines retained alkaline phosphatase activity and expressed ES cell-specific markers SSEA-4, Oct-4, TRA-1-60, and TRA-1-81. The pluripotency was further confirmed by reverse transcription-polymerase chain reaction analyses of Oct-4, Nanog, and Sox-2 expressions in ntES cell lines. The differentiation capacity of ntES cells was also examined in vitro and in vivo, by which these ntES cell lines were able to differentiate into all three germ layers through embryoid bodies and teratomas. In conclusion, it is apparent that the efficiency of ntES cells derived using eGFP-transfected donor cells is lower than that with nontransfected, normal fibroblasts donor cells. Similar to those from parthenogenetic embryos, all ntES cell lines derived from cloned rabbit embryos are able to express pluripotency markers and retain their capability to differentiate into various cell lineages both in vitro and in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. HD-03/ES: A Herbal Medicine Inhibits Hepatitis B Surface Antigen Secretion in Transfected Human Hepatocarcinoma PLC/PRF/5 Cells.

    PubMed

    Varma, Sandeep R; Sundaram, R; Gopumadhavan, S; Vidyashankar, Satyakumar; Patki, Pralhad S

    2013-01-01

    HD-03/ES is a herbal formulation used for the treatment of hepatitis B. However, the molecular mechanism involved in the antihepatitis B (HBV) activity of this drug has not been studied using in vitro models. The effect of HD-03/ES on hepatitis B surface antigen (HBsAg) secretion and its gene expression was studied in transfected human hepatocarcinoma PLC/PRF/5 cells. The anti-HBV activity was tested based on the inhibition of HBsAg secretion into the culture media, as detected by HBsAg-specific antibody-mediated enzyme assay (ELISA) at concentrations ranging from 125 to 1000  μ g/mL. The effect of HD-03/ES on HBsAg gene expression was analyzed using semiquantitative multiplex RT-PCR by employing specific primers. The results showed that HD-03/ES suppressed HBsAg production with an IC50 of 380  μ g/mL in PLC/PRF/5 cells for a period of 24 h. HD-03/ES downregulated HBsAg gene expression in PLC/PRF/5 cells. In conclusion, HD-03/ES exhibits strong anti-HBV properties by inhibiting the secretion of hepatitis B surface antigen in PLC/PRF/5 cells, and this action is targeted at the transcription level. Thus, HD-03/ES could be beneficial in the treatment of acute and chronic hepatitis B infections.

  18. New TFII-I family target genes involved in embryonic development.

    PubMed

    Makeyev, Aleksandr V; Bayarsaihan, Dashzeveg

    2009-09-04

    Two members of the TFII-I family transcription factor genes, GTF2I and GTF2IRD1, are the prime candidates responsible for the craniofacial and cognitive abnormalities of Williams syndrome patients. We have previously generated mouse lines with targeted disruption of Gtf2i and Gtf2ird1. Microarray analysis revealed significant changes in the expression profile of mutant embryos. Here we described three unknown genes that were dramatically down-regulated in mutants. The 2410018M08Rik/Scand3 gene encodes a protein of unknown function with CHCH and hATC domains. Scand3 is down-regulated during mouse embryonic stem cell (ES) differentiation. 4933436H12Rik is a testis-specific gene, which encodes a protein with no known domains. It is expressed in mouse ES cells. 1110008P08Rik/Kbtbd7 encodes an adapter protein with BTB/POZ, BACK, and Kelch motifs, previously shown to recruit substrates to the enzymatic complexes of the histone modifying or E3 ubiquitin ligase activities. Based on its expression pattern Kbtbd7 may have a specific role in brain development and function. All three genes possess well-conserved TFII-I-binding consensus sites within proximal promoters. Therefore our analysis suggests that these genes can be direct targets of TFII-I proteins and their impaired expression, as a result of the GTF2I and GTF2IRD1 haploinsufficiency, could contribute to the etiology of Williams syndrome.

  19. Alternative dominance of the parental genomes in hybrid cells generated through the fusion of mouse embryonic stem cells with fibroblasts.

    PubMed

    Matveeva, Natalia M; Fishman, Veniamin S; Zakharova, Irina S; Shevchenko, Alexander I; Pristyazhnyuk, Inna E; Menzorov, Aleksei G; Serov, Oleg L

    2017-12-22

    For the first time, two types of hybrid cells with embryonic stem (ES) cell-like and fibroblast-like phenotypes were produced through the fusion of mouse ES cells with fibroblasts. Transcriptome analysis of 2,848 genes differentially expressed in the parental cells demonstrated that 34-43% of these genes are expressed in hybrid cells, consistent with their phenotypes; 25-29% of these genes display intermediate levels of expression, and 12-16% of these genes maintained expression at the parental cell level, inconsistent with the phenotype of the hybrid cell. Approximately 20% of the analyzed genes displayed unexpected expression patterns that differ from both parents. An unusual phenomenon was observed, namely, the illegitimate activation of Xist expression and the inactivation of one of two X-chromosomes in the near-tetraploid fibroblast-like hybrid cells, whereas both Xs were active before and after in vitro differentiation of the ES cell-like hybrid cells. These results and previous data obtained on heterokaryons suggest that the appearance of hybrid cells with a fibroblast-like phenotype reflects the reprogramming, rather than the induced differentiation, of the ES cell genome under the influence of a somatic partner.

  20. Angiogenesis Is Induced and Wound Size Is Reduced by Electrical Stimulation in an Acute Wound Healing Model in Human Skin

    PubMed Central

    Ud-Din, Sara; Sebastian, Anil; Giddings, Pamela; Colthurst, James; Whiteside, Sigrid; Morris, Julie; Nuccitelli, Richard; Pullar, Christine; Baguneid, Mo; Bayat, Ardeshir

    2015-01-01

    Angiogenesis is critical for wound healing. Insufficient angiogenesis can result in impaired wound healing and chronic wound formation. Electrical stimulation (ES) has been shown to enhance angiogenesis. We previously showed that ES enhanced angiogenesis in acute wounds at one time point (day 14). The aim of this study was to further evaluate the role of ES in affecting angiogenesis during the acute phase of cutaneous wound healing over multiple time points. We compared the angiogenic response to wounding in 40 healthy volunteers (divided into two groups and randomised), treated with ES (post-ES) and compared them to secondary intention wound healing (control). Biopsy time points monitored were days 0, 3, 7, 10, 14. Objective non-invasive measures and H&E analysis were performed in addition to immunohistochemistry (IHC) and Western blotting (WB). Wound volume was significantly reduced on D7, 10 and 14 post-ES (p = 0.003, p = 0.002, p<0.001 respectively), surface area was reduced on days 10 (p = 0.001) and 14 (p<0.001) and wound diameter reduced on days 10 (p = 0.009) and 14 (p = 0.002). Blood flow increased significantly post-ES on D10 (p = 0.002) and 14 (p = 0.001). Angiogenic markers were up-regulated following ES application; protein analysis by IHC showed an increase (p<0.05) in VEGF-A expression by ES treatment on days 7, 10 and 14 (39%, 27% and 35% respectively) and PLGF expression on days 3 and 7 (40% on both days), compared to normal healing. Similarly, WB demonstrated an increase (p<0.05) in PLGF on days 7 and 14 (51% and 35% respectively). WB studies showed a significant increase of 30% (p>0.05) on day 14 in VEGF-A expression post-ES compared to controls. Furthermore, organisation of granulation tissue was improved on day 14 post-ES. This randomised controlled trial has shown that ES enhanced wound healing by reduced wound dimensions and increased VEGF-A and PLGF expression in acute cutaneous wounds, which further substantiates the role of ES in up-regulating angiogenesis as observed over multiple time points. This therapeutic approach may have potential application for clinical management of delayed and chronic wounds. PMID:25928356

  1. Expression and functional analysis of the lysine decarboxylase and copper amine oxidase genes from the endophytic fungus Colletotrichum gloeosporioides ES026.

    PubMed

    Zhang, Xiangmei; Wang, Zhangqian; Jan, Saad; Yang, Qian; Wang, Mo

    2017-06-05

    Huperzine A (HupA) isolated from Huperzia serrata is an important compound used to treat Alzheimer's disease (AD). Recently, HupA was reported in various endophytic fungi, with Colletotrichum gloeosporioides ES026 previously isolated from H. serrata shown to produce HupA. In this study, we performed next-generation sequencing and de novo RNA sequencing of C. gloeosporioides ES026 to elucidate the molecular functions, biological processes, and biochemical pathways of these unique sequences. Gene ontology and Kyoto Encyclopedia of Genes and Genomes assignments allowed annotation of lysine decarboxylase (LDC) and copper amine oxidase (CAO) for their conversion of L-lysine to 5-aminopentanal during HupA biosynthesis. Additionally, we constructed a stable, high-yielding HupA-expression system resulting from the overexpression of CgLDC and CgCAO from the HupA-producing endophytic fungus C. gloeosporioides ES026 in Escherichia coli. Quantitative reverse transcription polymerase chain reaction analysis confirmed CgLDC and CgCAO expression, and quantitative determination of HupA levels was assessed by liquid chromatography high-resolution mass spectrometry, which revealed that elevated expression of CgLDC and CgCAO produced higher yields of HupA than those derived from C. gloeosporioides ES026. These results revealed CgLDC and CgCAO involvement in HupA biosynthesis and their key role in regulating HupA content in C. gloeosporioides ES026.

  2. Molecular cloning and tissue expression of the fatty acid-binding protein (Es-FABP) gene in female Chinese mitten crab (Eriocheir sinensis).

    PubMed

    Gong, Ya-Nan; Li, Wei-Wei; Sun, Jiang-Ling; Ren, Fei; He, Lin; Jiang, Hui; Wang, Qun

    2010-09-16

    Fatty acid-binding proteins (FABPs), small cytosolic proteins that function in the uptake and utilization of fatty acids, have been extensively studied in higher vertebrates while invertebrates have received little attention despite similar nutritional requirements during periods of reproductive activity. Therefore, a cDNA encoding Eriocheir sinensis FABP (Es-FABP) was cloned based upon EST analysis of a hepatopancreas cDNA library. The full length cDNA was 750 bp and encoded a 131 aa polypeptide that was highly homologous to related genes reported in shrimp. The 9108 bp Es-FABP gene contained four exons that were interrupted by three introns, a genomic organization common among FABP multigene family members in vertebrates. Gene expression analysis, as determined by RT-PCR, revealed the presence of Es-FABP transcripts in hepatopancreas, hemocytes, ovary, gills, muscle, thoracic ganglia, heart, and intestine, but not stomach or eyestalk. Real-time quantitative RT-PCR analysis revealed that Es-FABP expression in ovary, hemocytes, and hepatopancreas was dependent on the status of ovarian development, with peak expression observed in January. Evidence provided in the present report supports a role of Es-FABP in lipid transport during the period of rapid ovarian growth in E. sinensis, and indirectly confirms the participation of the hepatopancreas, ovary, and hemocytes in lipid nutrient absorption and utilization processes.

  3. Activation and Inhibition of The Wnt3A Signaling Pathway in Buffalo (Bubalus bubalis) Embryonic Stem Cells: Effects of WNT3A, Bio and Dkk1.

    PubMed

    Zandi, Mohammad; Shah, Syed Mohamad; Muzaffar, Musharifa; Kumar Singh, Manoj; Palta, Prabhat; Kumar Singla, Suresh; Sham Manik, Radhey; Chauhan, Manmohan Singh

    2015-01-01

    This research studies the effects of activation and inhibition of Wnt3A signaling pathway in buffalo (Bubalus bubalis) embryonic stem (ES) cell-like cells. To carry on this experimental study, the effects of activation and inhibition of Wnt3A signaling in buffalo ES cell-like cells were examined using Bio (0.5 mM) combined with WNT3A (200 ng/ml), as an activator, and Dickkopf-1 (Dkk1, 250 ng/ml), as an inhibitor, of the pathway. ES cells were cultured up to three weeks in ES cell medium without fibroblast growth factor-2 (FGF-2) and leukemia inhibitory factor (LIF), but in the presence of Bio, WNT3A, Bio+WNT3A and Dkk1. The effects of these supplements were measured on the mean area of ES cell colonies and on the expression levels of a number of important genes related to pluripotency (Oct4, Nanog, Sox2 and c-Myc) and the Wnt pathway (β-catenin). ES cell colonies cultured in ES cell medium that contained optimized quantities of LIF and FGF-2 were used as the control. Data were collected for week-1 and week-3 treated cultures. In addition, WNT3A-transfected ES cells were compared with the respective mock-transfected colonies, either alone or in combination with Dkk1 for expression of β-catenin and the pluripotency-related genes. Data were analyzed by ANOVA, and statistical significance was accepted at P<0.05. Among various examined concentrations of Bio (0.5-5 mM), the optimum effect was observed at the 0.5 mM dose as indicated by colony area and expressions of pluripotency-related genes at both weeks-1 and -3 culture periods. At this concentration,the expressions of Nanog, Oct3/4, Sox2, c-Myc and β-catenin genes were nonsignificantly higher compared to the controls. Expressions of these genes were highest in the Bio+WNT3A treated group, followed by the WNT3A and Bio-supplemented groups, and lowest in the Dkk1-treated group. The WNT-transfected colonies showed higher expressions compared to both mock and Dkk1-treated mock transfected colonies. WNT3A functions to maintain the pluripotency of ES cell-like cells both as an exogenous growth factor as well as an endogenously expressed gene. It complements the absence of FGF-2 and LIF, otherwise propounded essential for buffalo ES cell culture. WNT3A antagonizes the inhibitory effects of Dkk1 and acts in combination with its activator, Bio, to activate the Wnt signaling pathway.

  4. Genetic engineering of human embryonic stem cells with lentiviral vectors.

    PubMed

    Xiong, Chen; Tang, Dong-Qi; Xie, Chang-Qing; Zhang, Li; Xu, Ke-Feng; Thompson, Winston E; Chou, Wayne; Gibbons, Gary H; Chang, Lung-Ji; Yang, Li-Jun; Chen, Yuqing E

    2005-08-01

    Human embryonic stem (hES) cells present a valuable source of cells with a vast therapeutic potential. However, the low efficiency of directed differentiation of hES cells remains a major obstacle in their uses for regenerative medicine. While differentiation may be controlled by the genetic manipulation, effective and efficient gene transfer into hES cells has been an elusive goal. Here, we show stable and efficient genetic manipulations of hES cells using lentiviral vectors. This method resulted in the establishment of stable gene expression without loss of pluripotency in hES cells. In addition, lentiviral vectors were effective in conveying the expression of an U6 promoter-driven small interfering RNA (siRNA), which was effective in silencing its specific target. Taken together, our results suggest that lentiviral gene delivery holds great promise for hES cell research and application.

  5. Sall4 is essential for stabilization, but not for pluripotency, of embryonic stem cells by repressing aberrant trophectoderm gene expression.

    PubMed

    Yuri, Shunsuke; Fujimura, Sayoko; Nimura, Keisuke; Takeda, Naoki; Toyooka, Yayoi; Fujimura, Yu-Ichi; Aburatani, Hiroyuki; Ura, Kiyoe; Koseki, Haruhiko; Niwa, Hitoshi; Nishinakamura, Ryuichi

    2009-04-01

    Sall4 is a mouse homolog of a causative gene of the autosomal dominant disorder Okihiro syndrome. We previously showed that the absence of Sall4 leads to lethality during peri-implantation and that Sall4-null embryonic stem (ES) cells proliferate poorly with intact pluripotency when cultured on feeder cells. Here, we report that, in the absence of feeder cells, Sall4-null ES cells express the trophectoderm marker Cdx2, but are maintained for a long period in an undifferentiated state with minimally affected Oct3/4 expression. Feeder-free Sall4-null ES cells contribute solely to the inner cell mass and epiblast in vivo, indicating that these cells still retain pluripotency and do not fully commit to the trophectoderm. These phenotypes could arise from derepression of the Cdx2 promoter, which is normally suppressed by Sall4 and the Mi2/NuRD HDAC complex. However, proliferation was impaired and G1 phase prolonged in the absence of Sall4, suggesting another role for Sall4 in cell cycle control. Although Sall1, also a Sall family gene, is known to genetically interact with Sall4 in vivo, Sall1-null ES cells have no apparent defects and no exacerbation is observed in ES cells lacking both Sall1 and Sall4, compared with Sall4-null cells. This suggests a unique role for Sall4 in ES cells. Thus, though Sall4 does not contribute to the central machinery of the pluripotency, it stabilizes ES cells by repressing aberrant trophectoderm gene expression.

  6. Dexamethasone facilitates erythropoiesis in murine embryonic stem cells differentiating into hematopoietic cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Anand S.; Kaushal, Sharmeela; Mishra, Rangnath

    2006-07-28

    Differentiating embryonic stem (ES) cells are increasingly emerging as an important source of hematopoietic progenitors with a potential to be useful for both basic and clinical research applications. It has been suggested that dexamethasone facilitates differentiation of ES cells towards erythrocytes but the mechanism responsible for sequential expression of genes regulating this process are not well-understood. Therefore, we in vitro induced differentiation of murine ES cells towards erythropoiesis and studied the sequential expression of a set of genes during the process. We hypothesized that dexamethasone-activates its cognate nuclear receptors inducing up-regulation of erythropoietic genes such as GATA-1, Flk-1, Epo-R, andmore » direct ES cells towards erythropoietic differentiation. ES cells were cultured in primary hematopoietic differentiation media containing methyl-cellulose, IMDM, IL-3, IL-6, and SCF to promote embryoid body (EB) formation. Total RNA of day 3, 5, and 9-old EBs was isolated for gene expression studies using RT-PCR. Cells from day 9 EBs were subjected to secondary differentiation using three different cytokines and growth factors combinations: (1) SCF, EPO, dexamethasone, and IGF; (2) SCF, IL-3, IL-6, and TPO; and (3) SCF IL-3, IL-6, TPO, and EPO. Total RNA from day 12 of secondary differentiated ES cells was isolated to study the gene expression pattern during this process. Our results demonstrate an up-regulation of GATA-1, Flk-1, HoxB-4, Epo-R, and globin genes ({alpha}-globin, {beta}H-1 globin, {beta}-major globin, {epsilon} -globin, and {zeta}-globin) in the 9-day-old EBs, whereas, RNA from 5-day-old EBs showed expression of HoxB-4, {epsilon}-globin, {gamma}-globin, {beta}H1-globin, and Flk-1. Three-day-old EBs showed only HoxB-4 and Flk-1 gene expression and lacked expression of all globin genes. These findings indicate that erythropoiesis-specific genes are activated later in the course of differentiation. Gene expression studies on the ES cells of secondary EB origin cultured in media containing dexamethasone showed a down-regulation of GATA-3 and an up-regulation of GATA-1, Flk-1, and Epo-R in comparison to the two other cytokines and growth factor combinations containing media. The secondary differentiation also showed an enhanced production of erythrocytic precursors in dexamethasone containing media in comparison to that in the control media. Our results indicate that dexamethasone can prove to be an effective agent which can be employed to enhance differentiation towards erythrocytic progenitors from ES cells.« less

  7. The Central Nervous System (CNS)-independent Anti-bone-resorptive Activity of Muscle Contraction and the Underlying Molecular and Cellular Signatures*

    PubMed Central

    Qin, Weiping; Sun, Li; Cao, Jay; Peng, Yuanzhen; Collier, Lauren; Wu, Yong; Creasey, Graham; Li, Jianhua; Qin, Yiwen; Jarvis, Jonathan; Bauman, William A.; Zaidi, Mone; Cardozo, Christopher

    2013-01-01

    Muscle and bone work as a functional unit. Cellular and molecular mechanisms underlying effects of muscle activity on bone mass are largely unknown. Spinal cord injury (SCI) causes muscle paralysis and extensive sublesional bone loss and disrupts neural connections between the central nervous system (CNS) and bone. Muscle contraction elicited by electrical stimulation (ES) of nerves partially protects against SCI-related bone loss. Thus, application of ES after SCI provides an opportunity to study the effects of muscle activity on bone and roles of the CNS in this interaction, as well as the underlying mechanisms. Using a rat model of SCI, the effects on bone of ES-induced muscle contraction were characterized. The SCI-mediated increase in serum C-terminal telopeptide of type I collagen (CTX) was completely reversed by ES. In ex vivo bone marrow cell cultures, SCI increased the number of osteoclasts and their expression of mRNA for several osteoclast differentiation markers, whereas ES significantly reduced these changes; SCI decreased osteoblast numbers, but increased expression in these cells of receptor activator of NF-κB ligand (RANKL) mRNA, whereas ES increased expression of osteoprotegerin (OPG) and the OPG/RANKL ratio. A microarray analysis revealed that ES partially reversed SCI-induced alterations in expression of genes involved in signaling through Wnt, FSH, parathyroid hormone (PTH), oxytocin, and calcineurin/nuclear factor of activated T-cells (NFAT) pathways. ES mitigated SCI-mediated increases in mRNA levels for the Wnt inhibitors DKK1, sFRP2, and sclerostin in ex vivo cultured osteoblasts. Our results demonstrate an anti-bone-resorptive activity of muscle contraction by ES that develops rapidly and is independent of the CNS. The pathways involved, particularly Wnt signaling, suggest future strategies to minimize bone loss after immobilization. PMID:23530032

  8. Inhibition of IGF-1-Mediated Cellular Migration and Invasion by Migracin A in Ovarian Clear Cell Carcinoma Cells.

    PubMed

    Ukaji, Tamami; Lin, Yinzhi; Banno, Kouji; Okada, Shoshiro; Umezawa, Kazuo

    2015-01-01

    Previously we isolated migracin A from a Streptomyces culture filtrate as an inhibitor of cancer cell migration. In the present research, we found that migracin A inhibited migration and invasion of ovarian clear cell carcinoma ES-2 cells. In the course of our mechanistic study, migracin A was shown to enhance vasohibin-1 expression in an angiogenesis array. We also confirmed that it increased the mRNA expression of this protein. Moreover, overexpression of vasohibin-1 lowered the migration but not the invasion of ES-2 cells. Then, we looked for another target protein employing a motility array, and found that migracin A lowered the IGF-1 expression. Knockdown of IGF-1 by siRNA decreased the migration and invasion of ES-2 cells. Migracin A also decreased Akt phosphorylation involved in the downstream signaling. Crosstalk analysis indicated that overexpression of vasohibin-1 decreased the IGF-1 expression. On the other hand, it showed no direct anticancer activity in terms of the ES-2 growth in agar. Migracin A inhibited the migration and IGF-1 expression in not only ES-2 but also another ovarian clear cell carcinoma JHOC-5 cells. In addition, it also inhibited capillary tube formation of human umbilical vein endothelial cells. Since its cytotoxicity is very low, migracin A may be a candidate for an anti-metastasis agent not exhibiting prominent toxicity.

  9. The posterior HOXD locus: Its contribution to phenotype and malignancy of Ewing sarcoma

    PubMed Central

    von Heyking, Kristina; Schmidt, Oxana; Calzada-Wack, Julia; Neff, Frauke; Lawlor, Elizabeth R.; Burdach, Stefan; Richter, Günther H.S.

    2016-01-01

    Microarray analysis revealed genes of the posterior HOXD locus normally involved in bone formation to be over-expressed in primary Ewing sarcoma (ES). The expression of posterior HOXD genes was not influenced via ES pathognomonic EWS/ETS translocations. However, knock down of the dickkopf WNT signaling pathway inhibitor 2 (DKK2) resulted in a significant suppression of HOXD10, HOXD11 and HOXD13 while over-expression of DKK2 and stimulation with factors of the WNT signaling pathway such as WNT3a, WNT5a or WNT11 increased their expression. RNA interference demonstrated that individual HOXD genes promoted chondrogenic differentiation potential, and enhanced expression of the bone-associated gene RUNX2. Furthermore, HOXD genes increased the level of the osteoblast- and osteoclast-specific genes, osteocalcin (BGLAP) and platelet-derived growth factor beta polypeptide (PDGFB), and may further regulate endochondral bone development via induction of parathyroid hormone-like hormone (PTHLH). Additionally, HOXD11 and HOXD13 promoted contact independent growth of ES, while in vitro invasiveness of ES lines was enhanced by all 3 HOXD genes investigated and seemed mediated via matrix metallopeptidase 1 (MMP1). Consequently, knock down of HOXD11 or HOXD13 significantly suppressed lung metastasis in a xeno-transplant model in immune deficient mice, providing overall evidence that posterior HOXD genes promote clonogenicity and metastatic potential of ES. PMID:27363011

  10. Chinese mitten crab (Eriocheir sinensis) iron-sulphur cluster assembly protein 2 (EsIscA2) is differentially regulated after immune and oxidative stress challenges.

    PubMed

    Zhang, Peng; Liu, Yu; Wang, Min; Dong, Miren; Liu, Zhaoqun; Jia, Zhihao; Wang, Weilin; Zhang, Anguo; Wang, Lingling; Song, Linsheng

    2018-07-01

    Iron-sulphur clusters (ISCs), one of the oldest and most versatile cofactors of proteins, are involved in catalysis reactions, electron transport reactions, regulation processes as well as sensing of ambient conditions. Iron-sulphur cluster assembly protein (IscA) is a scaffold protein member of ISC formation system, which plays a significant role in the assembly and maturation process of ISC proteins. In the present study, the cDNA sequence of iron-sulphur cluster assembly protein 2 (designated as EsIscA2) was cloned from Eriocheir sinensis. The open reading frame (ORF) of EsIscA2 was of 507 bp, encoding a peptide of 168 amino acids with a typically conserved Fe-S domain. A tetrameric form was predicated by the SWISS-MODEL prediction algorithm, and three conserved cysteine residues (Cys-93, Cys-158, Cys-160) from each IscA monomer were predicted to form a 'cysteine pocket'. The deduced amino acid sequence of EsIscA2 shared over 50% similarity with that of other IscAs. EsIscA2 was clustered with IscA2 proteins from invertebrates and vertebrates, indicating that the protein was highly conservative in the evolution. rEsIscA2 exhibited a high iron binding affinity in the concentration ranging from 2 to 200 μM. EsIscA2 transcripts were detected in all the tested tissues including gonad, hemocytes, gill, muscle, heart, hepatopancreas and eyestalk, and EsIscA2 protein was detected in the mitochondria of hemocytes. The highest mRNA expression level of EsIscA2 was detected in muscle and hepatopancreas, which was about 34.66-fold (p < 0.05) and 27.07-fold (p < 0.05) of that in hemocytes, respectively. After Aeromonas hydrophila and lipopolysaccharide (LPS) stimulations, the mRNA expression of EsIscA2 in hemocytes was down-regulated and reached the lowest level at 24 h (0.31-fold, p < 0.05) and 48 h (0.29-fold, p < 0.05) compared to control group, respectively. And the expression of EsIscA2 mRNA in hepatopancreas was repressed from 6 h to 48 h post stimulation (p < 0.05). When the primary cultured crab hemocytes were incubated with different concentrations of H 2 O 2 for 15 min, the expression level of EsIscA2 mRNA was significantly repressed to the 0.34-0.44-fold of that in the control group. After A. hydrophila stimulation, the mRNA expression of EsGrx2 was up-regulated at 3 h (3.22-fold compared to control group, p < 0.05) and reached the peak at 12 h (4.88-fold, p < 0.05). All these results suggested that EsIscA2 had iron-binding capabilities as observed in IscA proteins from other organisms, supporting the role of EsIscA2 as a mitochondrial iron donor for ISC synthesis in Chinese mitten crab. Its differential mRNA expression after immune and oxidative stress challenges suggested the adaptations of ISC synthesis rates to these stress conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Identification, characterization, and functional studies of a Pelle gene in the Chinese mitten crab, Eriocheir sinensis.

    PubMed

    Huang, Ying; Chen, Yi-Hong; Zhang, Yu-Zhou; Feng, Jin-Ling; Zhao, Ling-Ling; Zhu, Huan-Xi; Wang, Wen; Ren, Qian

    2015-08-01

    The toll-like receptor/NF-κB signaling pathways play an important role in the innate immune system. In the present study, one Pelle gene (named EsPelle) was identified for the first time from the Chinese mitten crab Eriocheir sinensis. The full-length cDNA of EsPelle is 3797 bp with a 3156 bp-long open reading frame that encodes a 1051 amino acid protein. EsPelle protein contains a death domain at the N-terminal and a serine/threonine kinase domain at the C-terminal. A neighbor joining phylogenetic tree showed that the EsPelle protein, which is closest to those of Scylla paramamosain Pelle and Litopenaeus vannamei Pelle, was clustered to a group of crustacean Pelle proteins. EsPelle was expressed in all tested tissues of normal crabs, and its expression was regulated in hemocytes and hepatopancreas of crabs challenged with lipopolysaccharide, peptidoglycan, Staphyloccocus aureus, Vibrio parahaemolyticus, and Aeromonas hydrophila. Overexpression of EsPelle in Drosophila Schneider 2 cells could upregulate the expression of Drosophila antimicrobial peptides, namely, metchnikowin (Mtk), attacinA (Atta), drosomycin (Drs), and cecropinA (CecA). Moreover, EsPelle silencing by siRNA reduced the transcription of anti-lipopolysaccharide factor 1 and 2, crustin 2, and lysozyme in crabs challenged with V. parahaemolyticus. From the results, we speculated that EsPelle was involved in innate immune defense against V. parahaemolyticus in E. sinensis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. SETDB1 modulates PRC2 activity at developmental genes independently of H3K9 trimethylation in mouse ES cells

    PubMed Central

    Fei, Qi; Yang, Xiaoqin; Jiang, Hua; Wang, Qian; Yu, Yanyan; Yu, Yiling; Yi, Wei; Zhou, Shaolian; Chen, Taiping; Lu, Chris; Atadja, Peter; Liu, Xiaole Shirley; Li, En; Zhang, Yong; Shou, Jianyong

    2015-01-01

    SETDB1, a histone methyltransferase responsible for methylation of histone H3 lysine 9 (H3K9), is involved in maintenance of embryonic stem (ES) cells and early embryonic development of the mouse. However, how SETDB1 regulates gene expression during development is largely unknown. Here, we characterized genome-wide SETDB1 binding and H3K9 trimethylation (H3K9me3) profiles in mouse ES cells and uncovered two distinct classes of SETDB1 binding sites, termed solo and ensemble peaks. The solo peaks were devoid of H3K9me3 and enriched near developmental regulators while the ensemble peaks were associated with H3K9me3. A subset of the SETDB1 solo peaks, particularly those near neural development–related genes, was found to be associated with Polycomb Repressive Complex 2 (PRC2) as well as PRC2-interacting proteins JARID2 and MTF2. Genetic deletion of Setdb1 reduced EZH2 binding as well as histone 3 lysine 27 (H3K27) trimethylation level at SETDB1 solo peaks and facilitated neural differentiation. Furthermore, we found that H3K27me3 inhibits SETDB1 methyltransferase activity. The currently identified reciprocal action between SETDB1 and PRC2 reveals a novel mechanism underlying ES cell pluripotency and differentiation regulation. PMID:26160163

  13. [Inhibitory effect of migration-inducing gene-7-shRNA recombinant retrovirus combined with endostatin on growth and metastasis of hepatoma xenograft].

    PubMed

    Qu, B; Chen, G N; Sheng, G N; Yu, F; Lyu, Q; Gu, Y J; Guo, L; Lyu, Y

    2016-09-20

    Objective: To investigate the inhibitory effect of migration-inducing gene-7(Mig-7)interfered with retrovirus-mediated RNA(shRNA)combined with recombinant human endostatin(ES)on the growth and metastasis of subcutaneous xenograft of human hepatoma cells in nude mice. Methods: Two Mig-7-mRNA oligonucleotide sequences(Mig-7-shRNA-1 and Mig-7-shRNA-2)and one sequence as a negative control(Mig-7-shRNA-N)were designed. The specific Mig-7-shRNA recombinant retrovirus expression vector plasmid was constructed and used for the transfection of human hepatoma MHCC-97H cells with high expression of Mig-7. The subcutaneous xenograft tumor model of human hepatocellular carcinoma(HCC)in nude mice was established, and according to the condition of transfection and administration, the nude mice were divided into pSIREN-M1 group, pSIREN-MN group, ES group, and pSIREN-M1+ES group. The xenograft tumor volume, mass, and metastasis were compared between groups. Immunohistochemistry was used to observe the formation of vasculogenic mimicry(VM)in xenograft tumor and the difference in tumor microvascular density(MVD), and Western blot was used to measure the expression of Mig-7 and vascular endothelial growth factor(VEGF)in each group. A one-way analysis of variance was used for comparison between groups, and the Fisher's exact test was used for comparison of continuous data between groups. Results: Compared with the pSIREN-MN group, the pSIREN-M1 group had significantly lower xenograft tumor volume, mass, and metastasis rate, Mig-7 expression, and formation of VM( P < 0.05), as well as significantly higher VEGF expression and MVD( P < 0.05). Compared with the pSIREN-MN group, the ES group had significantly lower xenograft tumor volume, mass, and metastasis rate, VEGF expression, and MVD( P < 0.05), as well as significantly higher Mig-7 expression and formation of VM( P < 0.05). Compared with the pSIREN-M1 group and the ES group, the pSIREN-M1+ES group had significantly lower xenograft tumor volume, mass, and metastasis rate, Mig-7 expression, formation of VM, VEGF expression, and MVD( P < 0.05). Conclusion: Mig-7-shRNA recombinant retrovirus combined with ES has a better inhibitory effect on the growth and metastasis of HCC xenograft tumor than Mig-7-shRNA recombinant retrovirus or ES alone. The anti-tumor angiogenesis therapy alone, which targets vascular endothelial cells in vivo, has a limited effect, since it may promote the formation of VM.

  14. Gene Expression Analysis of Mouse Embryonic Stem Cells Following Levitation in an Ultrasound Standing Wave Trap

    PubMed Central

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-01-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08–0.85 MPa) and times (5–60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. (E-mail: Bazoud@tcd.ie) PMID:21208732

  15. Increased survival and cell cycle progression pathways are required for EWS/FLI1-induced malignant transformation.

    PubMed

    Javaheri, Tahereh; Kazemi, Zahra; Pencik, Jan; Pham, Ha Tt; Kauer, Maximilian; Noorizadeh, Rahil; Sax, Barbara; Nivarthi, Harini; Schlederer, Michaela; Maurer, Barbara; Hofbauer, Maximillian; Aryee, Dave Nt; Wiedner, Marc; Tomazou, Eleni M; Logan, Malcolm; Hartmann, Christine; Tuckermann, Jan P; Kenner, Lukas; Mikula, Mario; Dolznig, Helmut; Üren, Aykut; Richter, Günther H; Grebien, Florian; Kovar, Heinrich; Moriggl, Richard

    2016-10-13

    Ewing sarcoma (ES) is the second most frequent childhood bone cancer driven by the EWS/FLI1 (EF) fusion protein. Genetically defined ES models are needed to understand how EF expression changes bone precursor cell differentiation, how ES arises and through which mechanisms of inhibition it can be targeted. We used mesenchymal Prx1-directed conditional EF expression in mice to study bone development and to establish a reliable sarcoma model. EF expression arrested early chondrocyte and osteoblast differentiation due to changed signaling pathways such as hedgehog, WNT or growth factor signaling. Mesenchymal stem cells (MSCs) expressing EF showed high self-renewal capacity and maintained an undifferentiated state despite high apoptosis. Blocking apoptosis through enforced BCL2 family member expression in MSCs promoted efficient and rapid sarcoma formation when transplanted to immunocompromised mice. Mechanistically, high BCL2 family member and CDK4, but low P53 and INK4A protein expression synergized in Ewing-like sarcoma development. Functionally, knockdown of Mcl1 or Cdk4 or their combined pharmacologic inhibition resulted in growth arrest and apoptosis in both established human ES cell lines and EF-transformed mouse MSCs. Combinatorial targeting of survival and cell cycle progression pathways could counteract this aggressive childhood cancer.

  16. Increased survival and cell cycle progression pathways are required for EWS/FLI1-induced malignant transformation

    PubMed Central

    Javaheri, Tahereh; Kazemi, Zahra; Pencik, Jan; Pham, Ha TT; Kauer, Maximilian; Noorizadeh, Rahil; Sax, Barbara; Nivarthi, Harini; Schlederer, Michaela; Maurer, Barbara; Hofbauer, Maximillian; Aryee, Dave NT; Wiedner, Marc; Tomazou, Eleni M; Logan, Malcolm; Hartmann, Christine; Tuckermann, Jan P; Kenner, Lukas; Mikula, Mario; Dolznig, Helmut; Üren, Aykut; Richter, Günther H; Grebien, Florian; Kovar, Heinrich; Moriggl, Richard

    2016-01-01

    Ewing sarcoma (ES) is the second most frequent childhood bone cancer driven by the EWS/FLI1 (EF) fusion protein. Genetically defined ES models are needed to understand how EF expression changes bone precursor cell differentiation, how ES arises and through which mechanisms of inhibition it can be targeted. We used mesenchymal Prx1-directed conditional EF expression in mice to study bone development and to establish a reliable sarcoma model. EF expression arrested early chondrocyte and osteoblast differentiation due to changed signaling pathways such as hedgehog, WNT or growth factor signaling. Mesenchymal stem cells (MSCs) expressing EF showed high self-renewal capacity and maintained an undifferentiated state despite high apoptosis. Blocking apoptosis through enforced BCL2 family member expression in MSCs promoted efficient and rapid sarcoma formation when transplanted to immunocompromised mice. Mechanistically, high BCL2 family member and CDK4, but low P53 and INK4A protein expression synergized in Ewing-like sarcoma development. Functionally, knockdown of Mcl1 or Cdk4 or their combined pharmacologic inhibition resulted in growth arrest and apoptosis in both established human ES cell lines and EF-transformed mouse MSCs. Combinatorial targeting of survival and cell cycle progression pathways could counteract this aggressive childhood cancer. PMID:27735950

  17. Specific knockdown of Oct4 and beta2-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cells.

    PubMed

    Matin, Maryam M; Walsh, James R; Gokhale, Paul J; Draper, Jonathan S; Bahrami, Ahmad R; Morton, Ian; Moore, Harry D; Andrews, Peter W

    2004-01-01

    We have used RNA interference (RNAi) to downregulate beta2-microglobulin and Oct4 in human embryonal carcinoma (hEC) cells and embryonic stem (hES) cells, demonstrating that RNAi is an effective tool for regulating specific gene activity in these human stem cells. The knockdown of Oct4 but not beta2-microglobulin expression in both EC and ES cells resulted in their differentiation, as indicated by a marked change in morphology, growth rate, and surface antigen phenotype, with respect to SSEA1, SSEA3, and TRA-1-60 expression. Expression of hCG and Gcm1 was also induced following knockdown of Oct4 expression, in both 2102Ep hEC cells and in H7 and H14 hES cells, consistent with the conclusion that, as in the mouse, Oct4 is required to maintain the undifferentiated stem cell state, and that differentiation to trophectoderm occurs in its absence. NTERA2 hEC cells also differentiated, but not to trophectoderm, suggesting their equivalence to a later stage of embryogenesis than other hEC and hES cells.

  18. Comparing maximum rate and sustainability of pacing by mechanical vs. electrical stimulation in the Langendorff-perfused rabbit heart.

    PubMed

    Quinn, T Alexander; Kohl, Peter

    2016-12-01

    Mechanical stimulation (MS) represents a readily available, non-invasive means of pacing the asystolic or bradycardic heart in patients, but benefits of MS at higher heart rates are unclear. Our aim was to assess the maximum rate and sustainability of excitation by MS vs. electrical stimulation (ES) in the isolated heart under normal physiological conditions. Trains of local MS or ES at rates exceeding intrinsic sinus rhythm (overdrive pacing; lowest pacing rates 2.5±0.5 Hz) were applied to the same mid-left ventricular free-wall site on the epicardium of Langendorff-perfused rabbit hearts. Stimulation rates were progressively increased, with a recovery period of normal sinus rhythm between each stimulation period. Trains of MS caused repeated focal ventricular excitation from the site of stimulation. The maximum rate at which MS achieved 1:1 capture was lower than during ES (4.2±0.2 vs. 5.9±0.2 Hz, respectively). At all overdrive pacing rates for which repetitive MS was possible, 1:1 capture was reversibly lost after a finite number of cycles, even though same-site capture by ES remained possible. The number of MS cycles until loss of capture decreased with rising stimulation rate. If interspersed with ES, the number of MS to failure of capture was lower than for MS only. In this study, we demonstrate that the maximum pacing rate at which MS can be sustained is lower than that for same-site ES in isolated heart, and that, in contrast to ES, the sustainability of successful 1:1 capture by MS is limited. The mechanism(s) of differences in MS vs. ES pacing ability, potentially important for emergency heart rhythm management, are currently unknown, thus warranting further investigation. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  19. Comparing maximum rate and sustainability of pacing by mechanical vs. electrical stimulation in the Langendorff-perfused rabbit heart

    PubMed Central

    Quinn, T. Alexander; Kohl, Peter

    2016-01-01

    Aims Mechanical stimulation (MS) represents a readily available, non-invasive means of pacing the asystolic or bradycardic heart in patients, but benefits of MS at higher heart rates are unclear. Our aim was to assess the maximum rate and sustainability of excitation by MS vs. electrical stimulation (ES) in the isolated heart under normal physiological conditions. Methods and results Trains of local MS or ES at rates exceeding intrinsic sinus rhythm (overdrive pacing; lowest pacing rates 2.5±0.5 Hz) were applied to the same mid-left ventricular free-wall site on the epicardium of Langendorff-perfused rabbit hearts. Stimulation rates were progressively increased, with a recovery period of normal sinus rhythm between each stimulation period. Trains of MS caused repeated focal ventricular excitation from the site of stimulation. The maximum rate at which MS achieved 1:1 capture was lower than during ES (4.2±0.2 vs. 5.9±0.2 Hz, respectively). At all overdrive pacing rates for which repetitive MS was possible, 1:1 capture was reversibly lost after a finite number of cycles, even though same-site capture by ES remained possible. The number of MS cycles until loss of capture decreased with rising stimulation rate. If interspersed with ES, the number of MS to failure of capture was lower than for MS only. Conclusion In this study, we demonstrate that the maximum pacing rate at which MS can be sustained is lower than that for same-site ES in isolated heart, and that, in contrast to ES, the sustainability of successful 1:1 capture by MS is limited. The mechanism(s) of differences in MS vs. ES pacing ability, potentially important for emergency heart rhythm management, are currently unknown, thus warranting further investigation. PMID:28011835

  20. Mouse but not human embryonic stem cells are deficient in rejoining of ionizing radiation-induced DNA double-strand breaks.

    PubMed

    Bañuelos, C A; Banáth, J P; MacPhail, S H; Zhao, J; Eaves, C A; O'Connor, M D; Lansdorp, P M; Olive, P L

    2008-09-01

    Mouse embryonic stem (mES) cells will give rise to all of the cells of the adult mouse, but they failed to rejoin half of the DNA double-strand breaks (dsb) produced by high doses of ionizing radiation. A deficiency in DNA-PK(cs) appears to be responsible since mES cells expressed <10% of the level of mouse embryo fibroblasts (MEFs) although Ku70/80 protein levels were higher than MEFs. However, the low level of DNA-PK(cs) found in wild-type cells appeared sufficient to allow rejoining of dsb after doses <20Gy even in G1 phase cells. Inhibition of DNA-PK(cs) with wortmannin and NU7026 still sensitized mES cells to radiation confirming the importance of the residual DNA-PK(cs) at low doses. In contrast to wild-type cells, mES cells lacking H2AX, a histone protein involved in the DNA damage response, were radiosensitive but they rejoined double-strand breaks more rapidly. Consistent with more rapid dsb rejoining, H2AX(-/-) mES cells also expressed 6 times more DNA-PK(cs) than wild-type mES cells. Similar results were obtained for ATM(-/-) mES cells. Differentiation of mES cells led to an increase in DNA-PK(cs), an increase in dsb rejoining rate, and a decrease in Ku70/80. Unlike mouse ES, human ES cells were proficient in rejoining of dsb and expressed high levels of DNA-PK(cs). These results confirm the importance of homologous recombination in the accurate repair of double-strand breaks in mES cells, they help explain the chromosome abnormalities associated with deficiencies in H2AX and ATM, and they add to the growing list of differences in the way rodent and human cells deal with DNA damage.

  1. Pretreating mesenchymal stem cells with electrical stimulation causes sustained long-lasting pro-osteogenic effects.

    PubMed

    Eischen-Loges, Maria; Oliveira, Karla M C; Bhavsar, Mit B; Barker, John H; Leppik, Liudmila

    2018-01-01

    Electrical stimulation (ES) has a long history of successful use in the clinical treatment of refractory, non-healing bone fractures and has recently been proposed as an adjunct to bone tissue-engineering treatments to optimize their therapeutic potential. This idea emerged from ES's demonstrated positive effects on stem cell migration, proliferation, differentiation and adherence to scaffolds, all cell behaviors recognized to be advantageous in Bone Tissue Engineering (BTE). In previous in vitro experiments we demonstrated that direct current ES, administered daily, accelerates Mesenchymal Stem Cell (MSC) osteogenic differentiation. In the present study, we sought to define the optimal ES regimen for maximizing this pro-osteogenic effect. Rat bone marrow-derived MSC were exposed to 100 mV/mm, 1 hr/day for three, seven, and 14 days, then osteogenic differentiation was assessed at Day 14 of culture by measuring collagen production, calcium deposition, alkaline phosphatase activity and osteogenic marker gene expression. We found that exposing MSC to ES for three days had minimal effect, while seven and 14 days resulted in increased osteogenic differentiation, as indicated by significant increases in collagen and calcium deposits, and expression of osteogenic marker genes Col1a1 , Osteopontin , Osterix and Calmodulin . We also found that cells treated with ES for seven days, maintained this pro-osteogenic activity long (for at least seven days) after discontinuing ES exposure. This study showed that while three days of ES is insufficient to solicit pro-osteogenic effects, seven and 14 days significantly increases osteogenic differentiation. Importantly, we found that cells treated with ES for only seven days, maintained this pro-osteogenic activity long after discontinuing ES exposure. This sustained positive osteogenic effect is likely due to the enhanced expression of RunX2 and Calmodulin we observed. This prolonged positive osteogenic effect, long after discontinuing ES treatment, if incorporated into BTE treatment protocols, could potentially improve outcomes and in doing so help BTE achieve its full therapeutic potential.

  2. Cells differentiated from mouse embryonic stem cells via embryoid bodies express renal marker molecules.

    PubMed

    Kramer, Jan; Steinhoff, Jürgen; Klinger, Matthias; Fricke, Lutz; Rohwedel, Jürgen

    2006-03-01

    Differentiation of mouse embryonic stem (ES) cells via embryoid bodies (EB) is established as a suitable model to study cellular processes of development in vitro. ES cells are known to be pluripotent because of their capability to differentiate into cell types of all three germ layers including germ cells. Here, we show that ES cells differentiate into renal cell types in vitro. We found that genes were expressed during EB cultivation, which have been previously described to be involved in renal development. Marker molecules characteristic for terminally differentiated renal cell types were found to be expressed predominantly during late stages of EB cultivation, while marker molecules involved in the initiation of nephrogenesis were already expressed during early steps of EB development. On the cellular level--using immunostaining--we detected cells expressing podocin, nephrin and wt-1, characteristic for differentiated podocytes and other cells, which expressed Tamm-Horsfall protein, a marker for distal tubule epithelial cells of kidney tissue. Furthermore, the proximal tubule marker molecules renal-specific oxido reductase, kidney androgen-related protein and 25-hydroxyvitamin D3alpha-hydroxylase were found to be expressed in EBs. In particular, we could demonstrate that cells expressing podocyte marker molecules assemble to distinct ring-like structures within the EBs. Because the differentiation efficiency into these cell types is still relatively low, application of fibroblast growth factor (FGF)-2 in combination with leukaemia inhibitory factor was tested for induction, but did not enhance ES cell-derived renal differentiation in vitro.

  3. A galectin from Eriocheir sinensis functions as pattern recognition receptor enhancing microbe agglutination and haemocytes encapsulation.

    PubMed

    Wang, Mengqiang; Wang, Lingling; Huang, Mengmeng; Yi, Qilin; Guo, Ying; Gai, Yunchao; Wang, Hao; Zhang, Huan; Song, Linsheng

    2016-08-01

    Galectins are a family of β-galactoside binding lectins that function as pattern recognition receptors (PRRs) in innate immune system of both vertebrates and invertebrates. The cDNA of Chinese mitten crab Eriocheir sinensis galectin (designated as EsGal) was cloned via rapid amplification of cDNA ends (RACE) technique based on expressed sequence tags (ESTs) analysis. The full-length cDNA of EsGal was 999 bp. Its open reading frame encoded a polypeptide of 218 amino acids containing a GLECT/Gal-bind_lectin domain and a proline/glycine rich low complexity region. The deduced amino acid sequence and domain organization of EsGal were highly similar to those of crustacean galectins. The mRNA transcripts of EsGal were found to be constitutively expressed in a wide range of tissues and mainly in hepatopancreas, gill and haemocytes. The mRNA expression level of EsGal increased rapidly and significantly after crabs were stimulated by different microbes. The recombinant EsGal (rEsGal) could bind various pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), peptidoglycan (PGN) and glucan (GLU), and exhibited strong activity to agglutinate Escherichia coli, Vibrio anguillarum, Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus and Pichia pastoris, and such agglutinating activity could be inhibited by both d-galactose and α-lactose. The in vitro encapsulation assay revealed that rEsGal could enhance the encapsulation of haemocytes towards agarose beads. These results collectively suggested that EsGal played crucial roles in the immune recognition and elimination of pathogens and contributed to the innate immune response against various microbes in crabs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Characterization of a serine proteinase homologous (SPH) in Chinese mitten crab Eriocheir sinensis.

    PubMed

    Qin, Chuanjie; Chen, Liqiao; Qin, Jian G; Zhao, Daxian; Zhang, Hao; Wu, Ping; Li, Erchao

    2010-01-01

    The serine protease homologous (SPH) is an important cofactor of prophenoloxidase-activating enzyme (PPAE). The gene of SPH of Chinese mitten crab Eriocheir sinensis (EsSPH) in hemocytes was cloned and characterized using reverse transcript polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The SPH cDNA consisted of 1386 bp with an open reading frame (ORF) encoded a protein of 378 amino acids, 154 bp 5'-untranslated region, and 95 bp 3'-untranslated region. Sequence comparisons against the GenBank database showed that EsSPH deduced amino acids had an overall identity to the gene of serine protease family from 41% to 70% of 15 invertebrate species. The protein had the structural characteristics of SPH, including the conserved six cysteine residues in the N-terminal clip domain and the functional activity (His157, Asp209, Gly311) in the C-terminal serine proteinase-like domain. To analyze the role of EsSPH in an acute infection, the temporal expression of the EsSPH gene after the Aeromonas hydrophila challenge was measured by real-time RT-PCR. The EsSPH transcripts in hemocytes significantly increased at 6 h, 12 h and 48 h over time after the A. hydrophila injection. This expression pattern shows that EsSPH has the potential to defend against invading microorganisms. The mRNA transcripts of EsSPH were detected in all tissues with the highest in the hepatopancreas. Interestingly, the mRNA transcripts of EsSPH and proPO were found in ova and expressed in oosperms, suggesting that the maternal transfer of EsSPH and proPO may exit in crab, but this warrants confirmation in further research.

  5. Biosynthesis of ribosomal RNA in nucleoli regulates pluripotency and differentiation ability of pluripotent stem cells.

    PubMed

    Watanabe-Susaki, Kanako; Takada, Hitomi; Enomoto, Kei; Miwata, Kyoko; Ishimine, Hisako; Intoh, Atsushi; Ohtaka, Manami; Nakanishi, Mahito; Sugino, Hiromu; Asashima, Makoto; Kurisaki, Akira

    2014-12-01

    Pluripotent stem cells have been shown to have unique nuclear properties, for example, hyperdynamic chromatin and large, condensed nucleoli. However, the contribution of the latter unique nucleolar character to pluripotency has not been well understood. Here, we show that fibrillarin (FBL), a critical methyltransferase for ribosomal RNA (rRNA) processing in nucleoli, is one of the proteins highly expressed in pluripotent embryonic stem (ES) cells. Stable expression of FBL in ES cells prolonged the pluripotent state of mouse ES cells cultured in the absence of leukemia inhibitory factor (LIF). Analyses using deletion mutants and a point mutant revealed that the methyltransferase activity of FBL regulates stem cell pluripotency. Knockdown of this gene led to significant delays in rRNA processing, growth inhibition, and apoptosis in mouse ES cells. Interestingly, both partial knockdown of FBL and treatment with actinomycin D, an inhibitor of rRNA synthesis, induced the expression of differentiation markers in the presence of LIF and promoted stem cell differentiation into neuronal lineages. Moreover, we identified p53 signaling as the regulatory pathway for pluripotency and differentiation of ES cells. These results suggest that proper activity of rRNA production in nucleoli is a novel factor for the regulation of pluripotency and differentiation ability of ES cells. © 2014 AlphaMed Press.

  6. The novel Solanum tuberosum calcium dependent protein kinase, StCDPK3, is expressed in actively growing organs.

    PubMed

    Grandellis, Carolina; Giammaria, Verónica; Bialer, Magalí; Santin, Franco; Lin, Tian; Hannapel, David J; Ulloa, Rita M

    2012-12-01

    Calcium-dependent protein kinases (CDPKs) are key components of calcium regulated signaling cascades in plants. In this work, isoform StCDPK3 from Solanum tuberosum was studied and fully described. StCDPK3 encodes a 63 kDa protein with an N-terminal variable domain (NTV), rich in prolines and glutamines, which presents myristoylation and palmitoylation consensus sites and a PEST sequence indicative of rapid protein degradation. StCDPK3 gene (circa 11 kb) is localized in chromosome 3, shares the eight exons and seven introns structure with other isoforms from subgroup IIa and contains an additional intron in the 5'UTR region. StCDPK3 expression is ubiquitous being transcripts more abundant in early elongating stolons (ES), leaves and roots, however isoform specific antibodies only detected the protein in leaf particulate extracts. The recombinant 6xHis-StCDPK3 is an active kinase that differs in its kinetic parameters and calcium requirements from StCDPK1 and 2 isoforms. In vitro, StCDPK3 undergoes autophosphorylation regardless of the addition of calcium. The StCDPK3 promoter region (circa 1,800 bp) was subcloned by genome walking and fused to GUS. Light and ABRE responsive elements were identified in the promoter region as well as elements associated to expression in roots. StCDPK3 expression was enhanced by ABA while GA decreased it. Potato transgenic lines harboring StCDPK3 promoter∷GUS construct were generated by Agrobacterium tumefaciens mediated plant transformation. Promoter activity was detected in leaves, root tips and branching points, early ES, tuber eyes and developing sprouts indicating that StCDPK3 is expressed in actively growing organs.

  7. Identification of CD56 and CD57 by flow cytometry in Ewing's sarcoma or primitive neuroectodermal tumor.

    PubMed

    Gardner, L J; Polski, J M; Fallon, R; Dunphy, C H

    1998-07-01

    CD56 and CD57 are commonly considered as natural killer and neuroectodermal markers, but their expression has been identified in a wide spectrum of neoplasms including some cases of Ewing's sarcoma (ES) and primitive neuroectodermal tumor (PNET). We report two cases of small, round blue cell tumor (SRBCT), in which flow cytometry immunophenotyping (FCI) detected strong expression of CD56 and CD57 (one case). Immunohistochemical staining with Leu-19 and Leu-7 confirmed the FI results. Although CD56 and CD57 expression is consistent with ES/PNET, it can be potentially misleading if results of FCI are interpreted in the absence of other findings. These cases suggest the utility of FCI in undifferentiated SRBCT. The literature on CD56 and CD57 expression in ES/PNET is reviewed and discussed.

  8. Preliminary Assessment McGhee - Tyson ANGB, McGhee - Tyson Municipal Airport, Knoxville, Tennessee

    DTIC Science & Technology

    1988-06-01

    and assessment of sites on the Base which may have been contaminated with hazardous materials/hazardous waste. B. MAJOR FINDINGS The Air National Guard...identification of eleven (11) sites (see Figure ES.I). Of this total, seven exhibit the potential for contaminant presence and possible migration. The remaining...four sites pose no potential threat to human and environmental receptors from either surface or ground water contamination . I I ES-i Source: McGhee

  9. Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo.

    PubMed

    Marchetti, Sandrine; Gimond, Clotilde; Iljin, Kristiina; Bourcier, Christine; Alitalo, Kari; Pouysségur, Jacques; Pagès, Gilles

    2002-05-15

    Large scale purification of endothelial cells is of great interest as it could improve tissue transplantation, reperfusion of ischemic tissues and treatment of pathologies in which an endothelial cell dysfunction exists. In this study, we describe a novel genetic approach that selects for endothelial cells from differentiating embryonic stem (ES) cells. Our strategy is based on the establishment of ES-cell clones that carry an integrated puromycin resistance gene under the control of a vascular endothelium-specific promoter, tie-1. Using EGFP as a reporter gene, we first confirmed the endothelial specificity of the tie-1 promoter in the embryoid body model and in cells differentiated in 2D cultures. Subsequently, tie-1-EGFP ES cells were used as recipients for the tie-1-driven puror transgene. The resulting stable clones were expanded and differentiated for seven days in the presence of VEGF before puromycin selection. As expected, puromycin-resistant cells were positive for EGFP and also expressed several endothelial markers, including CD31, CD34, VEGFR-1, VEGFR-2, Tie-1, VE-cadherin and ICAM-2. Release from the puromycin selection resulted in the appearance of alpha-smooth muscle actin-positive cells. Such cells became more numerous when the population was cultured on laminin-1 or in the presence of TGF-beta1, two known inducers of smooth muscle cell differentiation. The hypothesis that endothelial cells or their progenitors may differentiate towards a smooth muscle cell phenotype was further supported by the presence of cells expressing both CD31 and alpha-smooth muscle actin markers. Finally, we show that purified endothelial cells can incorporate into the neovasculature of transplanted tumors in nude mice. Taken together, these results suggest that application of endothelial lineage selection to differentiating ES cells may become a useful approach for future pro-angiogenic and endothelial cell replacement therapies.

  10. The central nervous system (CNS)-independent anti-bone-resorptive activity of muscle contraction and the underlying molecular and cellular signatures.

    PubMed

    Qin, Weiping; Sun, Li; Cao, Jay; Peng, Yuanzhen; Collier, Lauren; Wu, Yong; Creasey, Graham; Li, Jianhua; Qin, Yiwen; Jarvis, Jonathan; Bauman, William A; Zaidi, Mone; Cardozo, Christopher

    2013-05-10

    Mechanisms by which muscle regulates bone are poorly understood. Electrically stimulated muscle contraction reversed elevations in bone resorption and increased Wnt signaling in bone-derived cells after spinal cord transection. Muscle contraction reduced resorption of unloaded bone independently of the CNS, through mechanical effects and, potentially, nonmechanical signals (e.g. myokines). The study provides new insights regarding muscle-bone interactions. Muscle and bone work as a functional unit. Cellular and molecular mechanisms underlying effects of muscle activity on bone mass are largely unknown. Spinal cord injury (SCI) causes muscle paralysis and extensive sublesional bone loss and disrupts neural connections between the central nervous system (CNS) and bone. Muscle contraction elicited by electrical stimulation (ES) of nerves partially protects against SCI-related bone loss. Thus, application of ES after SCI provides an opportunity to study the effects of muscle activity on bone and roles of the CNS in this interaction, as well as the underlying mechanisms. Using a rat model of SCI, the effects on bone of ES-induced muscle contraction were characterized. The SCI-mediated increase in serum C-terminal telopeptide of type I collagen (CTX) was completely reversed by ES. In ex vivo bone marrow cell cultures, SCI increased the number of osteoclasts and their expression of mRNA for several osteoclast differentiation markers, whereas ES significantly reduced these changes; SCI decreased osteoblast numbers, but increased expression in these cells of receptor activator of NF-κB ligand (RANKL) mRNA, whereas ES increased expression of osteoprotegerin (OPG) and the OPG/RANKL ratio. A microarray analysis revealed that ES partially reversed SCI-induced alterations in expression of genes involved in signaling through Wnt, FSH, parathyroid hormone (PTH), oxytocin, and calcineurin/nuclear factor of activated T-cells (NFAT) pathways. ES mitigated SCI-mediated increases in mRNA levels for the Wnt inhibitors DKK1, sFRP2, and sclerostin in ex vivo cultured osteoblasts. Our results demonstrate an anti-bone-resorptive activity of muscle contraction by ES that develops rapidly and is independent of the CNS. The pathways involved, particularly Wnt signaling, suggest future strategies to minimize bone loss after immobilization.

  11. Leaf-Like Sepals Induced by Ectopic Expression of a SHORT VEGETATIVE PHASE (SVP)-Like MADS-Box Gene from the Basal Eudicot Epimedium sagittatum

    PubMed Central

    Li, Zhineng; Zeng, Shaohua; Li, Yanbang; Li, Mingyang; Souer, Erik

    2016-01-01

    Epimedium L. (Berberidaceae, Ranales), a perennial traditional Chinese medicinal herb, has become a new popular landscape plant for ground cover and pot culture in many countries based on its excellent ornamental characteristics and, distinctive and diverse floral morphology. However, little is known about the molecular genetics of flower development in Epimedium sagittatum. Here, we describe the characterization of EsSVP that encodes a protein sharing 68, 54, and 35% similarity with SVP, AGAMOUS-like 24 (AGL24) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) in Arabidopsis, respectively. Quantitative RT-PCR (qRT-PCR) indicated that EsSVP transcripts were principally found in petiole and leaf tissues, with little expression in roots and flowers and no in fruits. The highest EsSVP expression was observed in leaves. The flowering time of 35S::EsSVP in most Arabidopsis thaliana and in all petunia plants was not affected in both photoperiod conditions, but 35S::EsSVP 5# and 35S::EsSVP 1# Arabidopsis lines induced late and early flowering under long day (LD, 14 h light/10 h dark) and short day (SD, 10 h light/14 h dark) conditions, respectively. The 35S::EsSVP Arabidopsis produced extra secondary inflorescence or floral meristems in the axils of the leaf-like sepals with excrescent trichomes, and leaf-like sepals not able to enclose the inner three whorls completely. Moreover, almost all transgenic Arabidopsis plants showed persistent sepals around the completely matured fruits. Upon ectopic expression of 35S::EsSVP in Petunia W115, sepals were enlarged, sometimes to the size of leaves; corollas were greenish and did not fully open. These results suggest that EsSVP is involved in inflorescence meristem identity and flowering time regulation in some conditions. Although, the SVP homologs might have suffered functional diversification among diverse species between core and basal eudicots, the protein functions are conserved between Arabidopsis/Petunia and Epimedium. PMID:27733858

  12. Development of an enzyme-linked immunoelectrotransfer blot (EITB) assay using two baculovirus expressed recombinant antigens for diagnosis of Taenia solium taeniasis.

    PubMed

    Levine, Min Z; Lewis, Melissa M; Rodriquez, Silvia; Jimenez, Juan A; Khan, Azra; Lin, Sehching; Garcia, Hector H; Gonzales, Armando E; Gilman, Robert H; Tsang, Victor C W

    2007-04-01

    Taeniasis diagnosis is an important step in the control and elimination of both cysticercosis and taeniasis. We report the development of 2 serological taeniasis diagnostic tests using recombinant antigens rES33 and rES38 expressed by baculovirus in insect cells in an EITB format. In laboratory testing with defined sera from nonendemic areas, rES33 has a sensitivity of 98% (n = 167) and a specificity of 99% (n = 310) (J index: 0.97); rES38 has a sensitivity of 99% (n = 146) and a specificity of 97% (n = 275) (J index: 0.96). Independent field testing in Peru showed 97% (n = 203) of the taeniasis sera were positive with rES33, and 100% of the nontaeniasis sera (n = 272) were negative with rES33; 98% (n = 198) of taeniasis sera were positive with rES38, and 91% (n = 274) of the nontaeniasis sera were negative with rES38. Among the Peruvian sera tested, 17 of 26 Peruvian Taenia saginata sera were false positive with rES38 test. Both tests were also examined with cysticercosis sera, with a positive rate ranging from 21% to 46%. rES33 and rES38 tests offer sensitive and specific diagnosis of taeniasis and easy sample collection through finger sticks that can be used in large-scale studies. They are currently being used in cysticercosis elimination programs in Peru.

  13. aGEM: an integrative system for analyzing spatial-temporal gene-expression information

    PubMed Central

    Jiménez-Lozano, Natalia; Segura, Joan; Macías, José Ramón; Vega, Juanjo; Carazo, José María

    2009-01-01

    Motivation: The work presented here describes the ‘anatomical Gene-Expression Mapping (aGEM)’ Platform, a development conceived to integrate phenotypic information with the spatial and temporal distributions of genes expressed in the mouse. The aGEM Platform has been built by extending the Distributed Annotation System (DAS) protocol, which was originally designed to share genome annotations over the WWW. DAS is a client-server system in which a single client integrates information from multiple distributed servers. Results: The aGEM Platform provides information to answer three main questions. (i) Which genes are expressed in a given mouse anatomical component? (ii) In which mouse anatomical structures are a given gene or set of genes expressed? And (iii) is there any correlation among these findings? Currently, this Platform includes several well-known mouse resources (EMAGE, GXD and GENSAT), hosting gene-expression data mostly obtained from in situ techniques together with a broad set of image-derived annotations. Availability: The Platform is optimized for Firefox 3.0 and it is accessed through a friendly and intuitive display: http://agem.cnb.csic.es Contact: natalia@cnb.csic.es Supplementary information: Supplementary data are available at http://bioweb.cnb.csic.es/VisualOmics/aGEM/home.html and http://bioweb.cnb.csic.es/VisualOmics/index_VO.html and Bioinformatics online. PMID:19592395

  14. Liver-enriched transcription factors are critical for the expression of hepatocyte marker genes in mES-derived hepatocyte-lineage cells.

    PubMed

    Kheolamai, Pakpoom; Dickson, Alan J

    2009-04-23

    Induction of stem cell differentiation toward functional hepatocytes is hampered by lack of knowledge of the hepatocyte differentiation processes. The overall objective of this project is to characterize key stages in the hepatocyte differentiation process. We established a mouse embryonic stem (mES) cell culture system which exhibited changes in gene expression profiles similar to those observed in the development of endodermal and hepatocyte-lineage cells previously described in the normal mouse embryo. Transgenic mES cells were established that permitted isolation of enriched hepatocyte-lineage populations. This approach has isolated mES-derived hepatocyte-lineage cells that express several markers of mature hepatocytes including albumin, glucose-6-phosphatase, tyrosine aminotransferase, cytochrome P450-3a, phosphoenolpyruvate carboxykinase and tryptophan 2,3-dioxygenase. In addition, our results show that the up-regulation of the expression levels of hepatocyte nuclear factor-3alpha, -4alpha, -6, and CCAAT-enhancer binding protein-beta might be critical for passage into late-stage differentiation towards functional hepatocytes. These data present important steps for definition of regulatory phenomena that direct specific cell fate determination. The mES cell culture system generated in this study provides a model for studying transition between stages of the hepatocyte development and has significant potential value for studying the molecular basis of hepatocyte differentiation in vitro.

  15. Magnetic cell sorting purification of differentiated embryonic stem cells stably expressing truncated human CD4 as surface marker.

    PubMed

    David, Robert; Groebner, Michael; Franz, Wolfgang-Michael

    2005-04-01

    Embryonic stem (ES) cells offer great potential in regenerative medicine and tissue engineering. Clinical applications are still hampered by the lack of protocols for gentle, high-yield isolation of specific cell types for transplantation expressing no immunogenic markers. We describe labeling of stably transfected ES cells expressing a human CD4 molecule lacking its intracellular domain (DeltaCD4) under control of the phosphoglycerate kinase promoter for magnetic cell sorting (MACS). To track the labeled ES cells, we fused DeltaCD4 to an intracellular enhanced green fluorescent protein domain (DeltaCD4EGFP). We showed functionality of the membrane-bound fluorescent fusion protein and its suitability for MACS leading to purities greater than 97%. Likewise, expression of DeltaCD4 yielded up to 98.5% positive cells independently of their differentiation state. Purities were not limited by the initial percentage of DeltaCD4(+) cells, ranging from 0.6%-16%. The viability of MACS-selected cells was demonstrated by reaggregation and de novo formation of embryoid bodies developing all three germ layers. Thus, expression of DeltaCD4 in differentiated ES cells may enable rapid, high-yield purification of a desired cell type for tissue engineering and transplantation studies.

  16. Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.

    PubMed

    De Cegli, Rossella; Iacobacci, Simona; Flore, Gemma; Gambardella, Gennaro; Mao, Lei; Cutillo, Luisa; Lauria, Mario; Klose, Joachim; Illingworth, Elizabeth; Banfi, Sandro; di Bernardo, Diego

    2013-01-01

    Gene expression profiles can be used to infer previously unknown transcriptional regulatory interaction among thousands of genes, via systems biology 'reverse engineering' approaches. We 'reverse engineered' an embryonic stem (ES)-specific transcriptional network from 171 gene expression profiles, measured in ES cells, to identify master regulators of gene expression ('hubs'). We discovered that E130012A19Rik (E13), highly expressed in mouse ES cells as compared with differentiated cells, was a central 'hub' of the network. We demonstrated that E13 is a protein-coding gene implicated in regulating the commitment towards the different neuronal subtypes and glia cells. The overexpression and knock-down of E13 in ES cell lines, undergoing differentiation into neurons and glia cells, caused a strong up-regulation of the glutamatergic neurons marker Vglut2 and a strong down-regulation of the GABAergic neurons marker GAD65 and of the radial glia marker Blbp. We confirmed E13 expression in the cerebral cortex of adult mice and during development. By immuno-based affinity purification, we characterized protein partners of E13, involved in the Polycomb complex. Our results suggest a role of E13 in regulating the division between glutamatergic projection neurons and GABAergic interneurons and glia cells possibly by epigenetic-mediated transcriptional regulation.

  17. Development of an advanced support system for site investigations

    NASA Astrophysics Data System (ADS)

    Mizuno, T.; Hama, K.; Iwatsuki, T.; Semba, T.

    2009-12-01

    JAEA has the responsibility for R&D to enhance reliability of High Level Waste (HLW) disposal technology and to develop safety assessment methodology with associated databases; these should support both the implementer (NUMO) and the relevant regulatory organizations. With this responsibility, JAEA has initiated development of advanced technology in the field of Knowledge Engineering. Known as the Information Synthesis and Interpretation System (ISIS), it incorporates knowledge currently being obtained in the Underground Research Laboratory (URL) projects in Expert System (ES) modules for the Japanese HLW disposal program. This knowledge includes fundamental understanding of relevant geological environments, technical know-how for the application of complex investigation techniques, experience gained in earlier site work, etc. However, much knowledge is not undocumented because the knowledge is treated as tacit knowledge and, without focused action soon, may be permanently lost. Therefore, a new approach is necessary to transfer the knowledge obtained in these URL projects to support the site characterization and subsequent safety assessment of potential repository sites by NUMO and the formulation of guidelines by regulatory organizations. In this paper, we introduce the ES for selecting tracers for borehole drilling. ES is the system built by applying electronic information technology to support the planning, conducting investigations and assessing of investigation results. Tracers are generally used for borehole drilling to monitor and quantitatively assess the degree of contamination of groundwater by drilling fluid. JAEA uses fluorescent dye as tracer in drilling fluid. When a fluorescent dye is used for drilling, suitable type and concentration must be selected. The technical points to be considered are; 1) linearity of fluorescent spectrum intensity with variations in concentration, 2) pH dependence of fluorescent spectrum intensity, 3) stability of fluorescent dye, 4) sorption/adsorption properties for rock being investigated, 5) detection limit of analyzer, 6) comparison of the fluorescent spectrum with dissolved organics and tracers used in other boreholes. In addition, costs and environmental impact are important factors to be considered. Thus, significant knowledge is needed in selecting the tracer for actual investigations. Fortunately, the ES for tracer selection already contains much knowledge needed. For example, the chemical data set for a suite of fluorescence dyes is in the ES, along with guidelines for their use. Therefore, this ES can support the use of fluorescent dye as tracer in actual investigations, even if the investigating scientists have little or no experience with it. In conclusion, the ES modules are and will be built as a support system for future researchers to perform optimized site investigations in a user-friendly manner. In this paper, we introduce the ES for selection of borehole drilling fluid tracer. Eventually, ES covering the full range of site investigation methods will be developed.

  18. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein

    NASA Technical Reports Server (NTRS)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis. Copyright 2000 Academic Press.

  19. Gene expression analysis of mouse embryonic stem cells following levitation in an ultrasound standing wave trap.

    PubMed

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-02-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08-0.85 MPa) and times (5-60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. CLOCK expression identifies developing circadian oscillator neurons in the brains of Drosophila embryos.

    PubMed

    Houl, Jerry H; Ng, Fanny; Taylor, Pete; Hardin, Paul E

    2008-12-18

    The Drosophila circadian oscillator is composed of transcriptional feedback loops in which CLOCK-CYCLE (CLK-CYC) heterodimers activate their feedback regulators period (per) and timeless (tim) via E-box mediated transcription. These feedback loop oscillators are present in distinct clusters of dorsal and lateral neurons in the adult brain, but how this pattern of expression is established during development is not known. Since CLK is required to initiate feedback loop function, defining the pattern of CLK expression in embryos and larvae will shed light on oscillator neuron development. A novel CLK antiserum is used to show that CLK expression in the larval CNS and adult brain is limited to circadian oscillator cells. CLK is initially expressed in presumptive small ventral lateral neurons (s-LNvs), dorsal neurons 2 s (DN2s), and dorsal neuron 1 s (DN1s) at embryonic stage (ES) 16, and this CLK expression pattern persists through larval development. PER then accumulates in all CLK-expressing cells except presumptive DN2s during late ES 16 and ES 17, consistent with the delayed accumulation of PER in adult oscillator neurons and antiphase cycling of PER in larval DN2s. PER is also expressed in non-CLK-expressing cells in the embryonic CNS starting at ES 12. Although PER expression in CLK-negative cells continues in ClkJrk embryos, PER expression in cells that co-express PER and CLK is eliminated. These data demonstrate that brain oscillator neurons begin development during embryogenesis, that PER expression in non-oscillator cells is CLK-independent, and that oscillator phase is an intrinsic characteristic of brain oscillator neurons. These results define the temporal and spatial coordinates of factors that initiate Clk expression, imply that circadian photoreceptors are not activated until the end of embryogenesis, and suggest that PER functions in a different capacity before oscillator cell development is initiated.

  1. Trypanosoma brucei RAP1 maintains telomere and subtelomere integrity by suppressing TERRA and telomeric RNA:DNA hybrids.

    PubMed

    Nanavaty, Vishal; Sandhu, Ranjodh; Jehi, Sanaa E; Pandya, Unnati M; Li, Bibo

    2017-06-02

    Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, thereby evading the host's immune response. VSGs are monoallelically expressed from subtelomeric expression sites (ESs), and VSG switching exploits subtelomere plasticity. However, subtelomere integrity is essential for T. brucei viability. The telomeric transcript, TERRA, was detected in T. brucei previously. We now show that the active ES-adjacent telomere is transcribed. We find that TbRAP1, a telomere protein essential for VSG silencing, suppresses VSG gene conversion-mediated switching. Importantly, TbRAP1 depletion increases the TERRA level, which appears to result from longer read-through into the telomere downstream of the active ES. Depletion of TbRAP1 also results in more telomeric RNA:DNA hybrids and more double strand breaks (DSBs) at telomeres and subtelomeres. In TbRAP1-depleted cells, expression of excessive TbRNaseH1, which cleaves the RNA strand of the RNA:DNA hybrid, brought telomeric RNA:DNA hybrids, telomeric/subtelomeric DSBs and VSG switching frequency back to WT levels. Therefore, TbRAP1-regulated appropriate levels of TERRA and telomeric RNA:DNA hybrid are fundamental to subtelomere/telomere integrity. Our study revealed for the first time an important role of a long, non-coding RNA in antigenic variation and demonstrated a link between telomeric silencing and subtelomere/telomere integrity through TbRAP1-regulated telomere transcription. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Distinct Effect of Benzalkonium Chloride on the Esterase and Aryl Acylamidase Activities of Butyrylcholinesterase.

    PubMed

    Jaganathan; Boopathy

    2000-08-01

    Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) from vertebrates, other than their predominant acylcholine hydrolase (esterase) activity, display a genuine aryl acylamidase activity (AAA) capable of hydrolyzing the synthetic substrate o-nitroacetanilide to o-nitroaniline. This AAA activity is strongly inhibited by classical cholinesterase (ChE) inhibitors. In the present study, benzalkonium chloride (BAC), a cationic detergent widely used as a preservative in pharmaceutical preparations, has been shown to distinctly modulate the esterase and AAA activities of BChEs. The detergent BAC was able to inhibit the esterase activity of human serum and horse serum BChEs and AChEs from electric eel and human erythrocyte. The remarkable property of BAC was its ability to profoundly activate the AAA activity of human serum and horse serum BChEs but not the AAA activity of AChEs. Thus BAC seem to preferentially activate the AAA activity of BChEs alone. Results of the study using the ChE active site-specific inhibitor diisopropyl phosphorofluoridate indicated that BAC binds to the active site of ChEs. Furthermore, studies using a structural homolog of BAC indicated that the alkyl group of BAC is essential not only for its interaction with ChEs but also for its distinct effect on the esterase and AAA activities of BChEs. This is the first report of a compound that inhibits the esterase activity, while simultaneously activating the AAA activity, of BChEs. Copyright 2000 Academic Press.

  3. hamlet, a binary genetic switch between single- and multiple- dendrite neuron morphology.

    PubMed

    Moore, Adrian W; Jan, Lily Yeh; Jan, Yuh Nung

    2002-08-23

    The dendritic morphology of neurons determines the number and type of inputs they receive. In the Drosophila peripheral nervous system (PNS), the external sensory (ES) neurons have a single nonbranched dendrite, whereas the lineally related multidendritic (MD) neurons have extensively branched dendritic arbors. We report that hamlet is a binary genetic switch between these contrasting morphological types. In hamlet mutants, ES neurons are converted to an MD fate, whereas ectopic hamlet expression in MD precursors results in transformation of MD neurons into ES neurons. Moreover, hamlet expression induced in MD neurons undergoing dendrite outgrowth drastically reduces arbor branching.

  4. Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides

    PubMed Central

    Nicolas, Francisco Esteban; Moxon, Simon; de Haro, Juan P.; Calo, Silvia; Grigoriev, Igor V.; Torres-Martínez, Santiago; Moulton, Vincent; Ruiz-Vázquez, Rosa M.; Dalmay, Tamas

    2010-01-01

    Endogenous short RNAs (esRNAs) play diverse roles in eukaryotes and usually are produced from double-stranded RNA (dsRNA) by Dicer. esRNAs are grouped into different classes based on biogenesis and function but not all classes are present in all three eukaryotic kingdoms. The esRNA register of fungi is poorly described compared to other eukaryotes and it is not clear what esRNA classes are present in this kingdom and whether they regulate the expression of protein coding genes. However, evidence that some dicer mutant fungi display altered phenotypes suggests that esRNAs play an important role in fungi. Here, we show that the basal fungus Mucor circinelloides produces new classes of esRNAs that map to exons and regulate the expression of many protein coding genes. The largest class of these exonic-siRNAs (ex-siRNAs) are generated by RNA-dependent RNA Polymerase 1 (RdRP1) and dicer-like 2 (DCL2) and target the mRNAs of protein coding genes from which they were produced. Our results expand the range of esRNAs in eukaryotes and reveal a new role for esRNAs in fungi. PMID:20427422

  5. Forced expression of Hnf1b/Foxa3 promotes hepatic fate of embryonic stem cells.

    PubMed

    Yahoo, Neda; Pournasr, Behshad; Rostamzadeh, Jalal; Hakhamaneshi, Mohammad Saeed; Ebadifar, Asghar; Fathi, Fardin; Baharvand, Hossein

    2016-05-20

    Embryonic stem (ES) cell-derived hepatocytes have the potential to be used for basic research, regenerative medicine, and drug discovery. Recent reports demonstrated that in addition to conventional differentiation inducers such as chemical compounds and cytokines, overexpression of lineage-specific transcription factors could induce ES cells to differentiate to a hepatic fate. Here, we hypothesized that lentivirus-mediated inducible expression of hepatic lineage transcription factors could enhance mouse ES cells to hepatocyte-like cells. We screened the effects of candidate transcription factors Hnf1b, Hnf1a, Hnf4a, Foxa1, Foxa3 and Hex, and determined that the combination of Hnf1b/Foxa3 promoted expression of several hepatic lineage-specific markers and proteins, in addition to glycogen storage, ICG uptake, and secretion of albumin and urea. The differentiated cells were engraftable and expressed albumin when transplanted into a carbon tetrachloride-injured mouse model. These results demonstrated the crucial role of Hnf1b and Foxa3 in hepatogenesis in vitro and provided a valuable tool for the efficient differentiation of HLCs from ES cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Two antibacterial C-type lectins from crustacean, Eriocheir sinensis, stimulated cellular encapsulation in vitro.

    PubMed

    Jin, Xing-Kun; Li, Shuang; Guo, Xiao-Nv; Cheng, Lin; Wu, Min-Hao; Tan, Shang-Jian; Zhu, You-Ting; Yu, Ai-Qing; Li, Wei-Wei; Wang, Qun

    2013-12-01

    The first step of host fighting against pathogens is that pattern recognition receptors recognized pathogen-associated molecular patterns. However, the specificity of recognition within the innate immune molecular of invertebrates remains largely unknown. In the present study, we investigated how invertebrate pattern recognition receptor (PRR) C-type lectins might be involved in the antimicrobial response in crustacean. Based on our previously obtained completed coding regions of EsLecA and EsLecG in Eriocheir sinensis, the recombinant EsLectin proteins were produced via prokaryotic expression system and affinity chromatography. Subsequently, both rEsLecA and rEsLecG were discovered to have wide spectrum binding activities towards microorganisms, and their microbial-binding was calcium-independent. Moreover, the binding activities of both rEsLecA and rEsLecG induced the aggregation against microbial pathogens. Both microorganism growth inhibitory activities assays and antibacterial activities assays revealed their capabilities of suppressing microorganisms growth and directly killing microorganisms respectively. Furthermore, the encapsulation assays signified that both rEsLecA and rEsLecG could stimulate the cellular encapsulation in vitro. Collectively, data presented here demonstrated the successful expression and purification of two C-type lectins proteins in the Chinese mitten crab, and their critical role in the innate immune system of an invertebrate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Ca(2+)-related signaling and protein phosphorylation abnormalities play central roles in a new experimental model of electrical storm.

    PubMed

    Tsuji, Yukiomi; Hojo, Mayumi; Voigt, Niels; El-Armouche, Ali; Inden, Yasuya; Murohara, Toyoaki; Dobrev, Dobromir; Nattel, Stanley; Kodama, Itsuo; Kamiya, Kaichiro

    2011-05-24

    Electrical storm (ES), characterized by recurrent ventricular tachycardia/fibrillation, typically occurs in implantable cardioverter-defibrillator patients and adversely affects prognosis. However, the underlying molecular basis is poorly understood. In the present study, we report a new experimental model featuring repetitive episodes of implantable cardioverter-defibrillator firing for recurrent ventricular fibrillation (VF), in which we assessed involvement of Ca(2+)-related protein alterations in ES. We studied 37 rabbits with complete atrioventricular block for ≈80 days, all with implantable cardioverter-defibrillator implantation. All rabbits showed long-QT and VF episodes. Fifty-three percent of rabbits developed ES (≥3 VF episodes per 24-hour period; 103±23 VF episodes per rabbit). Expression/phosphorylation of Ca(2+)-handling proteins was assessed in left ventricular tissues from rabbits with the following: ES; VF episodes but not ES (non-ES); and controls. Left ventricular end-diastolic diameter increased comparably in ES and non-ES rabbits, but contractile dysfunction was significantly greater in ES than in non-ES rabbits. ES rabbits showed striking hyperphosphorylation of Ca(2+)/calmodulin-dependent protein kinase II, prominent phospholamban dephosphorylation, and increased protein phosphatase 1 and 2A expression versus control and non-ES rabbits. Ryanodine receptors were similarly hyperphosphorylated at Ser2815 in ES and non-ES rabbits, but ryanodine receptor Ser2809 and L-type Ca(2+) channel α-subunit hyperphosphorylation were significantly greater in ES versus non-ES rabbits. To examine direct effects of repeated VF/defibrillation, VF was induced 10 times in control rabbits. Repeated VF tissues showed autophosphorylated Ca(2+)/calmodulin-dependent protein kinase II upregulation and phospholamban dephosphorylation like those of ES rabbit hearts. Continuous infusion of a calmodulin antagonist (W-7) to ES rabbits reduced Ca(2+)/calmodulin-dependent protein kinase II hyperphosphorylation, suppressed ventricular tachycardia/fibrillation, and rescued left ventricular dysfunction. ES causes Ca(2+)/calmodulin-dependent protein kinase II activation and phospholamban dephosphorylation, which can explain the vicious cycle of arrhythmia promotion and mechanical dysfunction that characterizes ES.

  8. Human ES cells – haematopoiesis and transplantation strategies*

    PubMed Central

    Kaufman, DS; Thomson, JA

    2002-01-01

    Human embryonic stem (ES) cells provide a novel opportunity to study early developmental events in a human system. We have used human ES cell lines, including clonally derived lines, to evaluate haematopoiesis. Co-culture of the human ES cells with irradiated bone marrow stromal cell lines in the presence of fetal bovine serum (FBS), but without other exogenous cytokines, leads to differentiation of the human ES cells within a matter of days. A portion of these differentiated cells express CD34, the best-defined marker for early haematopoietic cells. Haematopoietic colony-forming cells (CFCs) are demonstrated by methylcellulose assay. Myeloid, erythroid, megakaryocyte and multipotential CFCs can all be derived under these conditions. Enrichment of CD34+ cells derived from the human ES cells markedly increases the yield of CFCs, as would be expected for cells derived from adult bone marrow or umbilical cord blood. Transcription factors are also expressed in a manner consistent with haematopoietic differentiation. This system now presents the potential to evaluate specific conditions needed to induce or support events in early human blood development. Human ES cells are also a novel source of cells for transplantation therapies. The immunogenicity of ES cell-derived cells is unknown. The unique properties of ES cells afford the opportunity to explore novel mechanisms to prevent immune-mediated rejection. Potential strategies to overcome rejection will be presented, including creation of haematopoietic chimerism as a means to successfully transplant cells and tissues derived from human ES cells. PMID:12033728

  9. Inositol phosphate pathway controls transcription of telomeric expression sites in trypanosomes

    PubMed Central

    Cestari, Igor; Stuart, Ken

    2015-01-01

    African trypanosomes evade clearance by host antibodies by periodically changing their variant surface glycoprotein (VSG) coat. They transcribe only one VSG gene at a time from 1 of about 20 telomeric expression sites (ESs). They undergo antigenic variation by switching transcription between telomeric ESs or by recombination of the VSG gene expressed. We show that the inositol phosphate (IP) pathway controls transcription of telomeric ESs and VSG antigenic switching in Trypanosoma brucei. Conditional knockdown of phosphatidylinositol 5-kinase (TbPIP5K) or phosphatidylinositol 5-phosphatase (TbPIP5Pase) or overexpression of phospholipase C (TbPLC) derepresses numerous silent ESs in T. brucei bloodstream forms. The derepression is specific to telomeric ESs, and it coincides with an increase in the number of colocalizing telomeric and RNA polymerase I foci in the nucleus. Monoallelic VSG transcription resumes after reexpression of TbPIP5K; however, most of the resultant cells switched the VSG gene expressed. TbPIP5K, TbPLC, their substrates, and products localize to the plasma membrane, whereas TbPIP5Pase localizes to the nucleus proximal to telomeres. TbPIP5Pase associates with repressor/activator protein 1 (TbRAP1), and their telomeric silencing function is altered by TbPIP5K knockdown. These results show that specific steps in the IP pathway control ES transcription and antigenic switching in T. brucei by epigenetic regulation of telomere silencing. PMID:25964327

  10. Gene expression profiling defined pathways correlated with fibroblast cell proliferation induced by Opisthorchis viverrini excretory/secretory product.

    PubMed

    Thuwajit, Chanitra; Thuwajit, Peti; Uchida, Kazuhiko; Daorueang, Daoyot; Kaewkes, Sasithorn; Wongkham, Sopit; Miwa, Masanao

    2006-06-14

    To investigate the mechanism of fibroblast cell proliferation stimulated by the Opisthorchis viverrini excretory/secretory (ES) product. NIH-3T3, mouse fibroblast cells were treated with O. viverrini ES product by non-contact co-cultured with the adult parasites. Total RNA from NIH-3T3 treated and untreated with O. viverrini was extracted, reverse transcribed and hybridized with the mouse 15K complementary DNA (cDNA) array. The result was analyzed by ArrayVision version 5 and GeneSpring version 5 softwares. After normalization, the ratios of gene expression of parasite treated to untreated NIH-3T3 cells of 2-and more-fold upregulated was defined as the differentially expressed genes. The expression levels of the signal transduction genes were validated by semi-quantitative SYBR-based real-time RT-PCR. Among a total of 15,000 genes/ESTs, 239 genes with established cell proliferation-related function were 2 fold-and more-up-regulated by O. viverrini ES product compared to those in cells without exposure to the parasitic product. These genes were classified into groups including energy and metabolism, signal transduction, protein synthesis and translation, matrix and structural protein, transcription control, cell cycle and DNA replication. Moreover, the expressions of serine-threonine kinase receptor, receptor tyrosine kinase and collagen production-related genes were up-regulated by O. viverrini ES product. The expression level of signal transduction genes; pkC, pdgfr alpha, jak 1, eps 8, tgf beta 1i4, strap and h ras measured by real-time RT-PCR confirmed their expression levels to those obtained from cDNA array. However, only the up-regulated expression of pkC, eps 8 and tgfbeta 1i4 which are the downstream signaling molecules of either epidermal growth factor (EGF) or transforming growth factor-beta (TGF-beta) showed statistical significance (P < 0.05). O. viverrini ES product stimulates the significant changes of gene expression in several functional categories and these mainly include transcripts related to cell proliferation. The TGF-beta and EGF signal transduction pathways are indicated as the possible pathways of O. viverrini-driven cell proliferation.

  11. Multilineage differentiation of rhesus monkey embryonic stem cells in three-dimensional culture systems

    NASA Technical Reports Server (NTRS)

    Chen, Silvia S.; Revoltella, Roberto P.; Papini, Sandra; Michelini, Monica; Fitzgerald, Wendy; Zimmerberg, Joshua; Margolis, Leonid

    2003-01-01

    In the course of normal embryogenesis, embryonic stem (ES) cells differentiate along different lineages in the context of complex three-dimensional (3D) tissue structures. In order to study this phenomenon in vitro under controlled conditions, 3D culture systems are necessary. Here, we studied in vitro differentiation of rhesus monkey ES cells in 3D collagen matrixes (collagen gels and porous collagen sponges). Differentiation of ES cells in these 3D systems was different from that in monolayers. ES cells differentiated in collagen matrixes into neural, epithelial, and endothelial lineages. The abilities of ES cells to form various structures in two chemically similar but topologically different matrixes were different. In particular, in collagen gels ES cells formed gland-like circular structures, whereas in collagen sponges ES cells were scattered through the matrix or formed aggregates. Soluble factors produced by feeder cells or added to the culture medium facilitated ES cell differentiation into particular lineages. Coculture with fibroblasts in collagen gel facilitated ES cell differentiation into cells of a neural lineage expressing nestin, neural cell adhesion molecule, and class III beta-tubulin. In collagen sponges, keratinocytes facilitated ES cell differentiation into cells of an endothelial lineage expressing factor VIII. Exogenous granulocyte-macrophage colony-stimulating factor further enhanced endothelial differentiation. Thus, both soluble factors and the type of extracellular matrix seem to be critical in directing differentiation of ES cells and the formation of tissue-like structures. Three-dimensional culture systems are a valuable tool for studying the mechanisms of these phenomena.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Wenjing; Hao, Baixia; Wang, Qian

    Extracellular signal-regulated kinases (ERKs) have been implicated to be dispensable for self-renewal of mouse embryonic stem (ES) cells, and simultaneous inhibition of both ERK signaling and glycogen synthase kinase 3 (GSK3) not only allows mouse ES cells to self-renew independent of extracellular stimuli but also enables more efficient derivation of naïve ES cells from mouse and rat strains. Interestingly, some ERKs stay active in mouse ES cells which are maintained in regular medium containing leukemia inhibitory factor (LIF) and bone morphogenetic protein (BMP). Yet, the upstream signaling for ERK activation and their roles in mouse ES cells, other than promotingmore » or priming differentiation, have not been determined. Here we found that mouse ES cells express three forms of Raf kinases, A-Raf, B-Raf, and C-Raf. Knocking-down each single Raf member failed to affect the sustained ERK activity, neither did A-Raf and B-Raf double knockdown or B-Raf and C-Raf double knockdown change it in ES cells. Interestingly, B-Raf and C-Raf double knockdown, not A-Raf and B-Raf knockdown, inhibited the maximal ERK activation induced by LIF, concomitant with the slower growth of ES cells. On the other hand, A-Raf, B-Raf, and C-Raf triple knockdown markedly inhibited both the maximal and sustained ERK activity in ES cells. Moreover, Raf triple knockdown, similar to the treatment of U-0126, an MEK inhibitor, significantly inhibited the survival and proliferation of ES cells, thereby compromising the colony propagation of mouse ES cells. In summary, our data demonstrate that all three Raf members are required for ERK activation in mouse ES cells and are involved in growth and survival of mouse ES cells. - Highlights: ●Mouse ES (mES) cells express all three Raf members, A-Raf, B-Raf, and C-Raf. ●Leukemia inhibitory factor (LIF) temporally activates ERKs in mES cells. ●B-Raf and C-Raf are required for LIF-induced maximal ERKs activity in mES cells. ●All Raf members are required for LIF-induced sustained ERK activity in mES cells. ●All Raf members are required the survival and proliferation of mES cells.« less

  13. New gene targets for glucagon-like peptide-1 during embryonic development and in undifferentiated pluripotent cells.

    PubMed

    Sanz, Carmen; Blázquez, Enrique

    2011-09-01

    In humans, glucagon-like peptide (GLP-1) functions during adult life as an incretin hormone with anorexigenic and antidiabetogenic properties. Also, the therapeutic potential of GLP-1 in preventing the adipocyte hyperplasia associated with obesity and in bolstering the maintenance of human mesenchymal stem cell (hMSC) stores by promoting the proliferation and cytoprotection of hMSC seems to be relevant. Since these observations suggest a role for GLP-1 during developmental processes, the aim of the present work was to characterize GLP-1 in early development as well as its gene targets in mouse embryonic stem (mES) cells. Mouse embryos E6, E8, and E10.5 and pluripotent mES were used for the inmunodetection of GLP-1 and GLP-1 receptor. Quantitative real-time PCR was used to determine the expression levels of GLP-1R in several tissues from E12.5 mouse embryos. Additionally, GLP-1 gene targets were studied in mES by multiple gene expression analyses. GLP-1 and its receptors were identified in mES and during embryonic development. In pluripotent mES, GLP-1 modified the expression of endodermal, ectodermal, and mesodermal gene markers as well as sonic hedgehog, noggin, members of the fibroblast and hepatic growth factor families, and others involved in pancreatic development. Additionally, GLP-1 promoted the expression of the antiapoptotic gene bcl2 and at the same time reduced proapoptotic caspase genes. Our results indicate that apart from the effects and therapeutic benefits of GLP-1 in adulthood, it may have additional gene targets in mES cells during embryonic life. Furthermore, the pathophysiological implications of GLP-1 imbalance in adulthood may have a counterpart during development.

  14. IRE1α-XBP1 inhibitors exerted anti-tumor activities in Ewing’s sarcoma

    PubMed Central

    Tanabe, Yu; Suehara, Yoshiyuki; Kohsaka, Shinji; Hayashi, Takuo; Akaike, Keisuke; Mukaihara, Kenta; Kurihara, Taisei; Kim, Youngji; Okubo, Taketo; Ishii, Midori; Kazuno, Saiko; Kaneko, Kazuo; Saito, Tsuyoshi

    2018-01-01

    Ewing's sarcoma (ES) is the second-most frequent pediatric bone tumor. Chromosomal translocation t(11;22)(q24:q12) results in the formation of EWS/FLI1 gene fusion, which is detected in approximately 90% of tumors of the Ewing family. Several transcriptome studies have provided lists of genes associated with EWS/FLI1 expression. However, the protein expression profiles associated with EWS/FLI1 have yet to be elucidated. In this study, to identify the regulated proteins associated with EWS/FLI1 and therapeutic targets in ES, we conducted proteomic studies using EWS/FLI1 knockdown in four Ewing's sarcoma cell lines and human mesenchymal stem cells (hMSCs) expressing EWS/FLI1. Isobaric tags for relative and absolute quantitation (i-TRAQ) analyses identified more than 2,000 proteins regulated by the EWS/FLI1 fusion. In addition, the network analyses identified several critical pathways, including XBP1, which was ranked the highest. XBP1 is a protein well known to play an important role in the unfolded protein response (UPR) to endoplasmic reticulum (ER) stress through the IRE1α-XBP1 pathway. We confirmed the high mRNA expression of XBP1 (spliced XBP1 and unspliced XBPl) in surgical samples and cell lines in ES. The silencing of XBP1 significantly suppressed the cell viabilities in ES cell lines. In the inhibitor assays using IRE1α-XBP1 inhibitors, including toyocamycin, we confirmed that these agents significantly suppressed the cell viabilities, leading to apoptosis in ES cells both in vitro and in vivo. Our findings suggested that IRE1α-XBP1 inhibitors might be useful for developing novel therapeutic strategies in ES. PMID:29581854

  15. Identification of essential active-site residues in the cyanogenic beta-glucosidase (linamarase) from cassava (Manihot esculenta Crantz) by site-directed mutagenesis.

    PubMed Central

    Keresztessy, Z; Brown, K; Dunn, M A; Hughes, M A

    2001-01-01

    The coding sequence of the mature cyanogenic beta-glucosidase (beta-glucoside glucohydrolase, EC 3.2.1.21; linamarase) was cloned into the vector pYX243 modified to contain the SUC2 yeast secretion signal sequence and expressed in Saccharomyces cerevisiae. The recombinant enzyme is active, glycosylated and showed similar stability to the plant protein. Michaelis constants for hydrolysis of the natural substrate, linamarin (K(m)=1.06 mM) and the synthetic p-nitrophenyl beta-D-glucopyranoside (PNP-Glc; K(m)=0.36 mM), as well as apparent pK(a) values of the free enzyme and the enzyme-substrate complexes (pK(E)(1)=4.4-4.8, pK(E)(2)=6.7-7.2, pK(ES)(1)=3.9-4.4, pK(ES)(2)=8.3) were very similar to those of the plant enzyme. Site-directed mutagenesis was carried out to study the function of active-site residues based on a homology model generated for the enzyme using the MODELLER program. Changing Glu-413 to Gly destroyed enzyme activity, consistent with it being the catalytic nucleophile. The Gln-339Glu mutation also abolished activity, confirming a function in positioning the catalytic diad. The Ala-201Val mutation shifted the pK(a) of the acid/base catalyst Glu-198 from 7.22 to 7.44, reflecting a change in its hydrophobic environment. A Phe-269Asn change increased K(m) for linamarin hydrolysis 16-fold (16.1 mM) and that for PNP-Glc only 2.5-fold (0.84 mM), demonstrating that Phe-269 contributes to the cyanogenic specificity of the cassava beta-glucosidase. PMID:11139381

  16. In vitro culture of bovine embryos in murine ES cell conditioned media negatively affects expression of pluripotency-related markers OCT4, SOX2 and SSEA1.

    PubMed

    Oliveira, C S; de Souza, M M; Saraiva, N Z; Tetzner, T A D; Lima, M R; Lopes, F L; Garcia, J M

    2012-06-01

    Despite extensive efforts, establishment of bovine embryonic stem (ES) cell lines has not been successful. We hypothesized that culture conditions for in vitro-produced (IVP) embryos, the most used source of inner cell mass (ICM) to obtain ES cells, might affect their undifferentiated state. Therefore, the aim of this work was to improve pluripotency of IVP blastocysts to produce suitable ICM for further culturing. We tested KSR and foetal calf serum (FCS) supplements in SOF medium and ES cell conditioned medium (CM) on IVC (groups: KSR, KSR CM, FCS and FCS CM). Cleavage and blastocyst rates were similar between all groups. Also, embryonic quality, assessed by apoptosis rates (TUNEL assay), total cell number and ICM percentage did not differ between experimental groups. However, expression of pluripotency-related markers was affected. We detected down-regulation of OCT3/4, SOX2 and SSEA1 in ICM of FCS CM blastocysts (p < 0.05). SOX2 gene expression revealed lower levels (p < 0.05) on KSR CM blastocysts and a remarkable variation in SOX2 mRNA levels on FCS-supplemented blastocysts. In conclusion, pluripotency-related markers tend to decrease after supplementation with ES cell CM, suggesting different mechanisms regulating mouse and bovine pluripotency. KSR supplementation did not differ from FCS, but FCS replacement by KSR may produce blastocysts with stable SOX2 gene expression levels. © 2011 Blackwell Verlag GmbH.

  17. Live-cell imaging combined with immunofluorescence, RNA, or DNA FISH to study the nuclear dynamics and expression of the X-inactivation center.

    PubMed

    Pollex, Tim; Piolot, Tristan; Heard, Edith

    2013-01-01

    Differentiation of embryonic stem cells is accompanied by changes of gene expression and chromatin and chromosome dynamics. One of the most impressive examples for these changes is inactivation of one of the two X chromosomes occurring upon differentiation of mouse female embryonic stem cells. With a few exceptions, these events have been mainly studied in fixed cells. In order to better understand the dynamics, kinetics, and order of events during differentiation, one needs to employ live-cell imaging techniques. Here, we describe a combination of live-cell imaging with techniques that can be used in fixed cells (e.g., RNA FISH) to correlate locus dynamics or subnuclear localization with, e.g., gene expression. To study locus dynamics in female ES cells, we generated cell lines containing TetO arrays in the X-inactivation center, the locus on the X chromosome regulating X-inactivation, which can be visualized upon expression of TetR fused to fluorescent proteins. We will use this system to elaborate on how to generate ES cell lines for live-cell imaging of locus dynamics, how to culture ES cells prior to live-cell imaging, and to describe typical live-cell imaging conditions for ES cells using different microscopes. Furthermore, we will explain how RNA, DNA FISH, or immunofluorescence can be applied following live-cell imaging to correlate gene expression with locus dynamics.

  18. Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation

    PubMed Central

    De Cegli, Rossella; Iacobacci, Simona; Flore, Gemma; Gambardella, Gennaro; Mao, Lei; Cutillo, Luisa; Lauria, Mario; Klose, Joachim; Illingworth, Elizabeth; Banfi, Sandro; di Bernardo, Diego

    2013-01-01

    Gene expression profiles can be used to infer previously unknown transcriptional regulatory interaction among thousands of genes, via systems biology ‘reverse engineering’ approaches. We ‘reverse engineered’ an embryonic stem (ES)-specific transcriptional network from 171 gene expression profiles, measured in ES cells, to identify master regulators of gene expression (‘hubs’). We discovered that E130012A19Rik (E13), highly expressed in mouse ES cells as compared with differentiated cells, was a central ‘hub’ of the network. We demonstrated that E13 is a protein-coding gene implicated in regulating the commitment towards the different neuronal subtypes and glia cells. The overexpression and knock-down of E13 in ES cell lines, undergoing differentiation into neurons and glia cells, caused a strong up-regulation of the glutamatergic neurons marker Vglut2 and a strong down-regulation of the GABAergic neurons marker GAD65 and of the radial glia marker Blbp. We confirmed E13 expression in the cerebral cortex of adult mice and during development. By immuno-based affinity purification, we characterized protein partners of E13, involved in the Polycomb complex. Our results suggest a role of E13 in regulating the division between glutamatergic projection neurons and GABAergic interneurons and glia cells possibly by epigenetic-mediated transcriptional regulation. PMID:23180766

  19. Assessment of marine ecosystem services indicators: Experiences and lessons learned from 14 European case studies.

    PubMed

    Lillebø, Ana I; Somma, Francesca; Norén, Katja; Gonçalves, Jorge; Alves, M Fátima; Ballarini, Elisabetta; Bentes, Luis; Bielecka, Malgorzata; Chubarenko, Boris V; Heise, Susanne; Khokhlov, Valeriy; Klaoudatos, Dimitris; Lloret, Javier; Margonski, Piotr; Marín, Atucha; Matczak, Magdalena; Oen, Amy Mp; Palmieri, Maria G; Przedrzymirska, Joanna; Różyński, Grzegorz; Sousa, Ana I; Sousa, Lisa P; Tuchkovenko, Yurii; Zaucha, Jacek

    2016-10-01

    This article shares the experiences, observations, and discussions that occurred during the completing of an ecosystem services (ES) indicator framework to be used at European Union (EU) and Member States' level. The experience base was drawn from 3 European research projects and 14 associated case study sites that include 13 transitional-water bodies (specifically 8 coastal lagoons, 4 riverine estuaries, and 1 fjord) and 1 coastal-water ecosystem. The ES pertinent to each case study site were identified along with indicators of these ES and data sources that could be used for mapping. During the process, several questions and uncertainties arose, followed by discussion, leading to these main lessons learned: 1) ES identification: Some ES that do not seem important at the European scale emerge as relevant at regional or local scales; 2) ES indicators: When direct indicators are not available, proxies for indicators (indirect indicators) might be used, including combined data on monitoring requirements imposed by EU legislation and international agreements; 3) ES mapping: Boundaries and appropriate data spatial resolution must be established because ES can be mapped at different temporal and spatial scales. We also acknowledge that mapping and assessment of ES supports the dialogue between human well-being and ecological status. From an evidence-based marine planning-process point of view, mapping and assessment of marine ES are of paramount importance to sustainable use of marine natural capital and to halt the loss of marine biodiversity. Integr Environ Assess Manag 2016;12:726-734. © 2016 SETAC. © 2016 SETAC.

  20. The death-inducer obliterator 1 (Dido1) gene regulates embryonic stem cell self-renewal.

    PubMed

    Liu, Yinyin; Kim, Hyeung; Liang, Jiancong; Lu, Weisi; Ouyang, Bin; Liu, Dan; Songyang, Zhou

    2014-02-21

    The regulatory network of factors that center on master transcription factors such as Oct4, Nanog, and Sox2 help maintain embryonic stem (ES) cells and ensure their pluripotency. The target genes of these master transcription factors define the ES cell transcriptional landscape. In this study, we report our findings that Dido1, a target of canonical transcription factors such as Oct4, Sox2, and Nanog, plays an important role in regulating ES cell maintenance. We found that depletion of Dido1 in mouse ES cells led to differentiation, and ectopic expression of Dido1 inhibited differentiation induced by leukemia inhibitory factor withdrawal. We further demonstrated that whereas Nanog and Oct4 could occupy the Dido1 locus and promote its transcription, Dido1 could also target to the loci of pluripotency factors such as Nanog and Oct4 and positively regulate their expression. Through this feedback and feedforward loop, Dido1 is able to regulate self-renewal of mouse ES cells.

  1. Proposing priorities of intervention for the recovery of native fish populations using hierarchical ranking of environmental and exotic species impact.

    PubMed

    Aschonitis, V G; Gavioli, A; Lanzoni, M; Fano, E A; Feld, C; Castaldelli, G

    2018-03-15

    The freshwater populations of native fish species (Ns) have reached critical levels in many parts of the world due to combined habitat deterioration by human interventions and exotic fish species (Es) invasions. These alarming conditions require combined and well-designed interventions for restoring environmental quality and restricting Es invasion. The aim of the study is to propose a method to design spatially explicit priorities of intervention for the recovery of Ns populations in highly impacted freshwater systems by exotic multi-species invasion and water quality (WQ) degradation. WQ and Es are used as Ns descriptors, which require intervention. The method uses gradient analysis (ordination method of Canonical Correspondence Analysis) for assessing the weights of Ns descriptors' effects, which are further used to develop weighted severity indices; the severity index of WQ (Swq) and Es invasion (Se), respectively. Swq and Se are further merged to one combined total severity index St. The proposed method provides a) a ranking of the sites, based on the values of S t , which denotes the priority for combined intervention in space and can be visualized in maps, b) a ranking of the most important Ns descriptors for each site to perform site-specific interventions, and c) Es rankings based on their potential threat on Ns for species-specific interventions. WQ, Es and Ns data from 208 sampling sites located in the Emilia-Romagna Region (Northern Italy) were used as a case study for the presentation of the proposed method. The application of the method showed that the north and northwestern lowland areas of Emilia-Romagna region presented the higher priority for intervention since the Ns of these areas are the most impacted from combined Es invasions and WQ degradation. Specific Es belonging to cyprinids, which are mostly responsible for the decline of aquatic vegetation and the increase of water turbidity, and a top Es predator (Wels catfish) were mostly present in these areas. Additionally, the most important WQ stressors of Ns were found to be COD, BOD and temperature that are all connected to oxygen depletion. The aforementioned conditions in the areas described by high priority for intervention can be used as a basis for the development of specific Ns conservation practices targeting the containment of the most harmful Es, the restoration of aquatic vegetation and the improvement of oxygen conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Environmental Baseline Survey for Three Sites at TRW Capistrano Test Site, California

    DTIC Science & Technology

    1999-11-01

    by Headquarters Space and Missile Systems Center Los Angeles Air Force Base, California Report Documentation Page Report Date 00111999 Report Type N...and Address(es) Headquarters Space and Missile Systems Center Los Angeles Air Force Base, California Performing Organization Report Number...Sponsoring/Monitoring Agency Name(s) and Address(es) Department of the Air Force Headquarters Space and Missile Systems Center, Los Angeles Air Force Base

  3. The synergistic effect of beta-boswellic acid and Nurr1 overexpression on dopaminergic programming of antioxidant glutathione peroxidase-1-expressing murine embryonic stem cells.

    PubMed

    Abasi, M; Massumi, M; Riazi, G; Amini, H

    2012-10-11

    Parkinson's disease (PD) is a neurodegenerative disorder in which the nigro-striatal dopaminergic (DAergic) neurons have been selectively lost. Due to side effects of levodopa, a dopamine precursor drug, recently cell replacement therapy for PD has been considered. Lack of sufficient amounts of, embryos and ethical problems regarding the use of dopamine-rich embryonic neural cells have limited the application of these cells for PD cell therapy. Therefore, many investigators have focused on using the pluripotent stem cells to generate DAergic neurons. This study is aimed first to establish a mouse embryonic stem (mES) cell line that can stably co-express Nurr1 (Nuclear receptor subfamily 4, group A, member 2) transcription factor in order to efficiently generate DAergic neurons, and glutathione peroxidase-1 (GPX-1) to protect the differentiated DAergic-like cells against oxidative stress. In addition to genetic engineering of ES cells, the effect of Beta-boswellic acid (BBA) on DAergic differentiation course of mES cells was sought in the present study. To that end, the feeder-independent CGR8 mouse embryonic stem cells were transduced by Nurr1- and GPX-1-harboring Lentiviruses and the generated Nurr1/GPX-1-expresssing ES clones were characterized and verified. Gene expression analyses demonstrated that BBA treatment and overexpression of Nurr1 has a synergistic effect on derivation of DAergic neurons from Nurr1/GPX-1-expressing ES cells. The differentiated cells could exclusively synthesize and secrete dopamine in response to stimuli. Overexpression of GPX-1 in genetically engineered Nurr1/GPX-1-ES cells increased the viability of these cells during their differentiation into CNS stem cells. In conclusion, the results demonstrated that Nurr1-overexpressing feeder-independent ES cells like the feeder-dependent ES cells, can be efficiently programmed into functional DAergic neurons and additional treatment of cells by BBA can even augment this efficiency. GPX-1 overexpression in Nurr1/GPX-1-ES cells increases the viability of differentiated CNS stem-like cells. The result of this study may have impact on future stem cell therapy of PD. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. RNA sequencing and differential expression reveals the effects of serial oestrus synchronisation on ovarian genes in dairy goats.

    PubMed

    Sun, Shuang; Li, Cong; Liu, Shimin; Luo, Jun; Chen, Zhi; Zhang, Changhui; Zhang, Tianying; Huang, Jiangtao; Xi, Limeng

    2018-06-07

    A total of 24 female Xinong Saanen dairy goats were used to examine differentially expressed genes (DEGs) in the ovaries of goats treated once or three times for oestrus synchronisation (ES). The goats were randomly divided into two groups: one group received three ES treatments at fortnightly intervals (repeated or triple ES group), whereas the other was only treated once on the same day as the third ES treatment for the triple group (control group) during the breeding season. Ovaries of three goats in oestrus from each group were collected for morphological examination and transcriptome sequencing, while the rest of the goats were artificially inseminated twice. Litter size and fecundity rate tended (P=0.06) to be lower in the triple ES group. A total of 319 DEGs were identified, including carbohydrate sulphotransferase 8 (CHST8), corticosteroid-binding globulin (CBG), oestradiol 17-β-dehydrogenase 1 (DHB1), oestrogen receptor 1 (ESR1), progestin and adipoQ receptor family member 4 (PAQR4), PAQR9, prostacyclin synthase (PTGIS), contactin-associated protein (CNTNAP4), matrix metalloproteinase-2 (MMP-2), regulator of G-protein signalling 9-2 (RGS9-2) and sperm surface protein Sp17 (Sp17); these were the most promising novel candidate genes for reproductive performances in goats. Our study indicates that triple ES could cause DNA damage and alter gene expression in goat ovaries, potentially affecting ovary function, neural regulation and hormone secretion.

  5. Use of Direct-Infusion Electrospray Mass Spectrometry To Guide Empirical Development of Improved Conditions for Expression of Secondary Metabolites from Actinomycetes

    PubMed Central

    Zahn, James A.; Higgs, Richard E.; Hilton, Matthew D.

    2001-01-01

    A major barrier in the discovery of new secondary metabolites from microorganisms is the difficulty of distinguishing the minor fraction of productive cultures from the majority of unproductive cultures and growth conditions. In this study, a rapid, direct-infusion electrospray mass spectrometry (ES-MS) technique was used to identify chemical differences that occurred in the expression of secondary metabolites by 44 actinomycetes cultivated under six different fermentation conditions. Samples from actinomycete fermentations were prepared by solid-phase extraction, analyzed by ES-MS, and ranked according to a chemical productivity index based on the total number and relative intensity of ions present in each sample. The actinomycete cultures were tested for chemical productivity following treatments that included nutritional manipulations, autoregulator additions, and different agitation speeds and incubation temperatures. Evaluation of the ES-MS data from submerged and solid-state fermentations by paired t test analyses showed that solid-state growth significantly altered the chemical profiles of extracts from 75% of the actinomycetes evaluated. Parallel analysis of the same extracts by high-performance liquid chromatography–ES-MS–evaporative light scattering showed that the chemical differences detected by the ES-MS method were associated with growth condition-dependent changes in the yield of secondary metabolites. Our results indicate that the high-throughput ES-MS method is useful for identification of fermentation conditions that enhance expression of secondary metabolites from actinomycetes. PMID:11133469

  6. Use of direct-infusion electrospray mass spectrometry to guide empirical development of improved conditions for expression of secondary metabolites from actinomycetes.

    PubMed

    Zahn, J A; Higgs, R E; Hilton, M D

    2001-01-01

    A major barrier in the discovery of new secondary metabolites from microorganisms is the difficulty of distinguishing the minor fraction of productive cultures from the majority of unproductive cultures and growth conditions. In this study, a rapid, direct-infusion electrospray mass spectrometry (ES-MS) technique was used to identify chemical differences that occurred in the expression of secondary metabolites by 44 actinomycetes cultivated under six different fermentation conditions. Samples from actinomycete fermentations were prepared by solid-phase extraction, analyzed by ES-MS, and ranked according to a chemical productivity index based on the total number and relative intensity of ions present in each sample. The actinomycete cultures were tested for chemical productivity following treatments that included nutritional manipulations, autoregulator additions, and different agitation speeds and incubation temperatures. Evaluation of the ES-MS data from submerged and solid-state fermentations by paired t test analyses showed that solid-state growth significantly altered the chemical profiles of extracts from 75% of the actinomycetes evaluated. Parallel analysis of the same extracts by high-performance liquid chromatography-ES-MS-evaporative light scattering showed that the chemical differences detected by the ES-MS method were associated with growth condition-dependent changes in the yield of secondary metabolites. Our results indicate that the high-throughput ES-MS method is useful for identification of fermentation conditions that enhance expression of secondary metabolites from actinomycetes.

  7. Differentiation and upregulation of heat shock protein 70 induced by a subset of histone deacetylase inhibitors in mouse and human embryonic stem cells.

    PubMed

    Park, Jeong-A; Kim, Young-Eun; Seok, Hyun-Jeong; Park, Woo-Youn; Kwon, Hyung-Joo; Lee, Younghee

    2011-03-01

    Inhibiting histone deacetylase (HDAC) activity modulates the epigenetic status of cells, resulting in an alteration of gene expression and cellular function. Here, we investigated the effects of HDAC inhibitors on mouse embryonic stem (ES) cells. The HDAC inhibitors trichostatin A, suberoylanilide hydroxamic acid, sodium butyrate, and valproic acid induced early differentiation of mouse ES cells and triggered induction of heatshock protein (HSP)70. In contrast, class III HDAC inhibitors failed to induce differentiation or HSP70 expression. Transcriptional upregulation of HSP70 was confirmed by mRNA expression analysis, an inhibitor study, and chromatin immunoprecipitation. HSP70 induction was dependent on the SAPK/ JNK, p38, and PI3K/Akt pathways. Differentiation and induction of HSP70 by a subset of HDAC inhibitors was also examined in human ES cells, which suggests that the phenomenon generally occurs in ES cells. A better understanding of the effects of HDAC inhibitors may give more insight into their application in stem cell biology.

  8. Abrogation of E-cadherin-mediated cell-cell contact in mouse embryonic stem cells results in reversible LIF-independent self-renewal.

    PubMed

    Soncin, Francesca; Mohamet, Lisa; Eckardt, Dominik; Ritson, Sarah; Eastham, Angela M; Bobola, Nicoletta; Russell, Angela; Davies, Steve; Kemler, Rolf; Merry, Catherine L R; Ward, Christopher M

    2009-09-01

    We have previously demonstrated that differentiation of embryonic stem (ES) cells is associated with downregulation of cell surface E-cadherin. In this study, we assessed the function of E-cadherin in mouse ES cell pluripotency and differentiation. We show that inhibition of E-cadherin-mediated cell-cell contact in ES cells using gene knockout (Ecad(-/-)), RNA interference (EcadRNAi), or a transhomodimerization-inhibiting peptide (CHAVC) results in cellular proliferation and maintenance of an undifferentiated phenotype in fetal bovine serum-supplemented medium in the absence of leukemia inhibitory factor (LIF). Re-expression of E-cadherin in Ecad(-/-), EcadRNAi, and CHAVC-treated ES cells restores cellular dependence to LIF supplementation. Although reversal of the LIF-independent phenotype in Ecad(-/-) ES cells is dependent on the beta-catenin binding domain of E-cadherin, we show that beta-catenin null (betacat(-/-)) ES cells also remain undifferentiated in the absence of LIF. This suggests that LIF-independent self-renewal of Ecad(-/-) ES cells is unlikely to be via beta-catenin signaling. Exposure of Ecad(-/-), EcadRNAi, and CHAVC-treated ES cells to the activin receptor-like kinase inhibitor SB431542 led to differentiation of the cells, which could be prevented by re-expression of E-cadherin. To confirm the role of transforming growth factor beta family signaling in the self-renewal of Ecad(-/-) ES cells, we show that these cells maintain an undifferentiated phenotype when cultured in serum-free medium supplemented with Activin A and Nodal, with fibroblast growth factor 2 required for cellular proliferation. We conclude that transhomodimerization of E-cadherin protein is required for LIF-dependent ES cell self-renewal and that multiple self-renewal signaling networks subsist in ES cells, with activity dependent upon the cellular context.

  9. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering.

    PubMed

    Björninen, Miina; Gilmore, Kerry; Pelto, Jani; Seppänen-Kaijansinkko, Riitta; Kellomäki, Minna; Miettinen, Susanna; Wallace, Gordon; Grijpma, Dirk; Haimi, Suvi

    2017-04-01

    We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a reliable, repeatable, and cost-efficient way in a 3D environment. Long pulse (1 ms) or short pulse (0.25 ms) biphasic electric current at a frequency of 10 Hz was applied to ASCs to study the effects of ES on ASC viability and differentiation towards SMCs on the PPy-coated scaffolds. PPy-coated scaffolds promoted proliferation and induced stronger calponin, myosin heavy chain (MHC) and smooth muscle actin (SMA) expression in ASCs compared to uncoated scaffolds. ES with 1 ms pulse width increased the number of viable cells by day 7 compared to controls and remained at similar levels to controls by day 14, whereas shorter pulses significantly decreased viability compared to the other groups. Both ES protocols supported smooth muscle expression markers. Our results indicate that electrical stimulation on PPy-coated scaffolds applied through the novel 3D ES device is a valid approach for vascular smooth muscle tissue engineering.

  10. Forced expression of Hnf4a induces hepatic gene activation through directed differentiation.

    PubMed

    Yahoo, Neda; Pournasr, Behshad; Rostamzadeh, Jalal; Fathi, Fardin

    2016-08-05

    Embryonic stem (ES) cells are capable of unlimited self-renewal and have a diverse differentiation potential. These unique features make ES cells as an attractive source for developmental biology studies. Having the mature hepatocyte in the lab with functional activities is valuable in drug discovery studies. Overexpression of hepatocyte lineage-specific transcription factors (TFs) becomes a promising approach in pluripotent cell differentiation toward liver cells. Many studies generate transgenic ES cell lines to examine the effects of specific TFs overexpression in cell differentiation. In the present report, we have addressed whether a suspension or adherent model of differentiation is an appropriate way to study the role of Hnf4a overexpression. We generated ES cells that carried a doxycycline (Dox)-inducible Hnf4a using lentiviral vectors. The transduced cells were subjected to induced Hnf4a overexpression through both spontaneous and directed differentiation methods. Gene expression analysis showed substantially increased expression of hepatic gene markers, particularly Ttr and endogenous Hnf4a, in transduced cells differentiated by the directed approach. These results demonstrated that forced expression of TFs during directed differentiation would be an appropriate way to study relevant gene activation and the effects of overexpression in the context of hepatic differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Acetylcholinesterases from Elapidae snake venoms: biochemical, immunological and enzymatic characterization.

    PubMed

    Frobert, Y; Créminon, C; Cousin, X; Rémy, M H; Chatel, J M; Bon, S; Bon, C; Grassi, J

    1997-05-23

    We analyzed 45 batches of venom from 20 different species belonging to 11 genera from the 3 main families of venomous snakes (Elapidae, Viperidae and Crotalidae). We found high acetylcholinesterase (AChE) activity in all venoms from Elapidae, except in those from the Dendroaspis genus. AChE was particularly abundant in Bungarus venoms which contain up to 8 mg of enzyme per gram of dried venom. We could not detect acetylcholinesterase activity in any batch of venom from Viperidae or Crotalidae. Titration of active sites with an organophosphorous agent (MPT) revealed that the AChE of all venoms have similar turnovers (6000 to 8000 s(-1)) which are clearly higher than those of Torpedo and mammalian enzymes but lower than that of Electrophorus. AChEs from the venom of elapid snakes of the Bungarus, Naja, Ophiophagus and Haemacatus genera were purified by affinity chromatography. SDS-PAGE analysis and sucrose gradient centrifugation demonstrated that AChE is exclusively present as a nonamphiphilic monomer. These enzymes are true AChEs, hydrolyzing acetylthiocholine faster than propionylthiocholine and butyrylthiocholine and exhibiting excess substrate inhibition. Twenty-seven different monoclonal antibodies directed against AChE from Bungarus fasciatus venom were raised in mice. Half of them recognized exclusively the Bungarus enzyme while the others cross-reacted with AChEs from other venoms. Polyspecific mAbs were used to demonstrate that venoms from Dendroaspis, which contain the AChE inhibitor fasciculin but lack AChE activity, were also devoid of immunoreactive AChE protein. AChE inhibitors acting at the active site (edrophonium, tacrine) and at the peripheral site (propidium, fasciculin), as well as bis-quaternary ligands (BW284C51, decamethonium), were tested against the venom AChEs from 11 different species. All enzymes had a very similar pattern of reactivity with regard to the different inhibitors, with the exception of fasciculin. AChEs from Naja and Haemacatus venoms were relatively insensitive to fasciculin inhibition (IC50 > 10(-6) M), while Bungarus (IC50 approximately 10(-8) M) and especially Ophiophagus (IC50 < 10(-10) M) AChEs were inhibited very efficiently. Ophiophagus and Bungarus AChEs were also efficiently inhibited by a monoclonal antibody (Elec-410) previously described as a specific ligand for the Electrophorus electricus peripheral site. Taken together, these results show that the venoms of most Elapidae snakes contain large amounts of a highly active non-amphiphilic monomeric AChE. All snake venom AChEs show strong immunological similarities and possess very similar enzymatic properties. However, they present quite different sensitivity to peripheral site inhibitors, fasciculin and the monoclonal antibody Elec-410.

  12. Expression analysis of cellulose synthase and main cytoskeletal protein genes in flax (Linum usitatissimum L.).

    PubMed

    Galinousky, Dmitry; Padvitski, Tsimafei; Bayer, Galina; Pirko, Yaroslav; Pydiura, Nikolay; Anisimova, Natallia; Nikitinskaya, Tatyana; Khotyleva, Liubov; Yemets, Alla; Kilchevsky, Aleksandr; Blume, Yaroslav

    2017-08-09

    Fiber flax is an important source of natural fiber and a comprehensive model for the plant fiber biogenesis studies. Cellulose-synthase (CesA) and cytoskeletal genes are known to be important for the cell wall biogenesis in general and for the biogenesis of flax fibers in particular. Currently, knowledge about activity of these genes during the plant growth is limited. In this study, we have investigated flax fiber biogenesis by measuring expression of CesA and cytoskeletal genes at two stages of the flax development (seedlings and stems at the rapid growth stage) in several flax subspecies (elongatum, mediterraneum, crepitans). RT-qPCR has been used to quantify the expression of LusСesA1, LusСesA4, LusСesA7, LusСesA6, Actin, and α-Tubulin genes in plant samples. We report that CesA genes responsible for the secondary cell wall synthesis (LusCesA4, LusCesA7) have different expression pattern compared with CesA genes responsible for the primary cell wall synthesis (LusCesA1, LusCesA6): an average expression of LusCesA4 and LusCesA7 genes is relatively high in seedlings and further increases in stems at the rapid growth stage, whereas an average expression of LusCesA1 and LusCesA6 genes decreases. Interestingly, LusCesA1 is the only studied gene with different expression dynamics between the flax subspecies: its expression decreases by 5.2-10.7 folds in elongatum and mediterraneum but does not change in crepitans subspecies when the rapid growth stage and seedlings are compared. The expression of cytoskeleton genes (coding actin and α-tubulin) is relatively stable and significantly higher than the expression of cellulose-synthase genes in all the studied samples. © 2017 International Federation for Cell Biology.

  13. Magnolol inhibits angiogenesis by regulating ROS-mediated apoptosis and the PI3K/AKT/mTOR signaling pathway in mES/EB-derived endothelial-like cells.

    PubMed

    Kim, Gi Dae; Oh, Jedo; Park, Hyen-Joo; Bae, Kihwan; Lee, Sang Kook

    2013-08-01

    Magnolol, a neolignan from the traditional medicinal plant Magnolia obovata, has been shown to possess neuroprotective, anti-inflammatory, anticancer and anti-angiogenic activities. However, the precise mechanism of the anti-angiogenic activity of magnolol remains to be elucidated. In the present study, the anti-angiogenic effect of magnolol was evaluated in mouse embryonic stem (mES)/embryoid body (EB)-derived endothelial-like cells. The endothelial-like cells were obtained by differentiation from mES/EB cells. Magnolol (20 µM) significantly suppressed the transcriptional and translational expression of platelet endothelial cell adhesion molecule (PECAM), an endothelial biomarker, in mES/EB-derived endothelial-like cells. To further understand the molecular mechanism of the suppression of PECAM expression, signaling pathways were analyzed in the mES/EB-derived endothelial-like cells. Magnolol induced the generation of reactive oxygen species (ROS) by mitochondria, a process that was associated with the induction of apoptosis as determined by positive Annexin V staining and the activation of cleaved caspase-3. The involvement of ROS generation by magnolol was confirmed by treatment with an antioxidant, N-acetyl-cysteine (NAC). NAC inhibited the magnolol-mediated induction of ROS generation and suppression of PECAM expression. In addition, magnolol suppressed the activation of MAPKs (ERK, JNK and p38) and the PI3K/AKT/mTOR signaling pathway in mES/EB-derived endothelial-like cells. Taken together, these findings demonstrate for the first time that the anti-angiogenic activity of magnolol may be associated with ROS-mediated apoptosis and the suppression of the PI3K/AKT/mTOR signaling pathway in mES/EB-derived endothelial-like cells.

  14. REST–Mediated Recruitment of Polycomb Repressor Complexes in Mammalian Cells

    PubMed Central

    Landt, Eskild; Agrawal-Singh, Shuchi; Bak, Mads; Tommerup, Niels; Rappsilber, Juri; Södersten, Erik; Hansen, Klaus

    2012-01-01

    Polycomb Repressive Complex (PRC) 1 and PRC2 regulate genes involved in differentiation and development. However, the mechanism for how PRC1 and PRC2 are recruited to genes in mammalian cells is unclear. Here we present evidence for an interaction between the transcription factor REST, PRC1, and PRC2 and show that RNF2 and REST co-regulate a number of neuronal genes in human teratocarcinoma cells (NT2-D1). Using NT2-D1 cells as a model of neuronal differentiation, we furthermore showed that retinoic-acid stimulation led to displacement of PRC1 at REST binding sites, reduced H3K27Me3, and increased gene expression. Genome-wide analysis of Polycomb binding in Rest−/− and Eed−/− mouse embryonic stem (mES) cells showed that Rest was required for PRC1 recruitment to a subset of Polycomb regulated neuronal genes. Furthermore, we found that PRC1 can be recruited to Rest binding sites independently of CpG islands and the H3K27Me3 mark. Surprisingly, PRC2 was frequently increased around Rest binding sites located in CpG-rich regions in the Rest−/− mES cells, indicating a more complex interplay where Rest also can limit PRC2 recruitment. Therefore, we propose that Rest has context-dependent functions for PRC1- and PRC2- recruitment, which allows this transcription factor to act both as a recruiter of Polycomb as well as a limiting factor for PRC2 recruitment at CpG islands. PMID:22396653

  15. Genetic manipulation of murine embryonic stem cells with enhanced green fluorescence protein and sulfatase-modifying factor I genes.

    PubMed

    Zhao, Guoying; Karageorgos, Litsa; Hutchinson, Rhonda G; Hopwood, John J; Hemsley, Kim

    2010-05-01

    Mucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder (LSD) in which an absence of sulfamidase results in incomplete degradation and subsequent accumulation of its substrate, heparan sulfate. Most neurodegenerative LSD remain untreatable. However, therapy options, such as gene, enzyme end cell therapy, are under investigation. Previously, we have constructed an embryonic stem (ES) cell line (NS21) that over-expresses human sulphamidase as a potential treatment for murine MPS IIIA. In the present study the sulfatase-modifying factor I (SUMF1) and enhanced green fluorescence protein (eGFP) genes were co-introduced under a cytomegalovirus (CMV) promoter into NS21 cells, to enhance further sulfamidase activity and provide a marker for in vivo cell tracking, respectively. eGFP was also introduced under the control of the human elongation factor-1alpha (hEF-1alpha) promoter to compare the stability of transgene expression. During differentiation of ES cells into glial precursors, SUMF1 was down-regulated and was hardly detectable by day 18 of differentiation. Likewise, eGFP expression was heterogeneous and highly unstable. Use of a human EF-1alpha promoter resulted in more homogeneous eGFP expression, with approximately 50% of cells eGFP positive following differentiation into glial precursors. Compared with NS21 cells, the outgrowth of eGFP-expressing cells was not as confluent when differentiated into glial precursors. Our data suggest that SUMF1 enhances sulfamidase activity in ES cells, hEF-1alpha is a stronger promoter than CMV for ES cells and over-expression of eGFP may affect cell growth and contribute to unstable gene expression.

  16. Smile and laughter elicited by electrical stimulation of the frontal operculum.

    PubMed

    Caruana, F; Gozzo, F; Pelliccia, V; Cossu, M; Avanzini, P

    2016-08-01

    Laughter and smile are typical expressions of mirth and fundamental means of social communication. Despite their general interest, the current knowledge about the brain regions involved in the production of these expressions is still very limited, and the principal insights come from electrical stimulation (ES) studies in patients, in which, nevertheless, laughter or smile have been elicited very rarely. Previous studies showed that laughter is evoked by the stimulation of nodes of an emotional network encompassing the anterior cingulate, the superior frontal and basal temporal cortex. A common feature of these stimulation studies is that the facial expression was always accompanied by motor awareness and often by mirth, in line with the affective functions attributed to these regions. Little is known, in contrast, on the neural basis of the voluntary motor control of this expression. The objective of this study was to investigate the effect of ES of the frontal operculum (FO), which is considered a crucial node for the linkage of the voluntary motor system for emotional expression and limbic emotional network. We report the case of ES applied to the frontal operculum (FO) in four patients with drug-resistant focal epilepsy undergoing stereo-electroencephalographic (SEEG) implantation of intracerebral electrodes. In all patients, ES applied to the FO produced laughter or smile. Interestingly, in one patient, the production of a smiling expression was also clearly accompanied by the lack of motor awareness. Since the lack of motor awareness has been previously observed only after the stimulation of the voluntary motor network, we speculate that FO is involved in the voluntary control of facial expressions, and is placed at the interface with the emotional network, gating limbic information to the motor system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Embryoid body attachment to reconstituted basement membrane induces a genetic program of epithelial differentiation via jun N-terminal kinase signaling.

    PubMed

    Ho, Hoang-Yen; Moffat, Ryan C; Patel, Rupal V; Awah, Franklin N; Baloue, Kaitrin; Crowe, David L

    2010-09-01

    Embryonic stem (ES) cells are derived from early stage mammalian embryos and have broad developmental potential. These cells can be manipulated experimentally to generate cells of multiple tissue types which could be important in treating human diseases. The ability to produce relevant amounts of these differentiated cell populations creates the basis for clinical interventions in tissue regeneration and repair. Understanding how embryonic stem cells differentiate also can reveal important insights into cell biology. A previously reported mouse embryonic stem cell model demonstrated that differentiated epithelial cells migrated out of embryoid bodies attached to reconstituted basement membrane. We used genomic technology to profile ES cell populations in order to understand the molecular mechanisms leading to epithelial differentiation. Cells with characteristics of cultured epithelium migrated from embryoid bodies attached to reconstituted basement membrane. However, cells that comprised embryoid bodies also rapidly lost ES cell-specific gene expression and expressed proteins characteristic of stratified epithelia within hours of attachment to basement membrane. Gene expression profiling of sorted cell populations revealed upregulation of the BMP/TGFbeta signaling pathway, which was not sufficient for epithelial differentiation in the absence of basement membrane attachment. Activation of c-jun N-terminal kinase 1 (JNK1) and increased expression of Jun family transcription factors was observed during epithelial differentiation of ES cells. Inhibition of JNK signaling completely blocked epithelial differentiation in this model, revealing a key mechanism by which ES cells adopt epithelial characteristics via basement membrane attachment. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. Molecular cloning and characterization of glycogen synthase in Eriocheir sinensis.

    PubMed

    Li, Ran; Zhu, Li-Na; Ren, Li-Qi; Weng, Jie-Yang; Sun, Jin-Sheng

    2017-12-01

    Glycogen plays an important role in glucose and energy homeostasis at cellular and organismal levels. In glycogen synthesis, glycogen synthase (GS) is a rate-limiting enzyme catalysing the addition of α-1,4-linked glucose units from (UDP) 3 -glucose to a nascent glycogen chain using glycogenin (GN) as a primer. While studies on mammalian liver GS (GYS2) are numerous, enzymes from crustaceans, which also use glycogen and glucose as their main energy source, have received less attention. In the present study, we amplified full-length GS cDNA from Eriocheir sinensis. Tissue expression profiling revealed the highest expression of GS in the hepatopancreas. During moulting, GS expression and activity declined, and glycogen levels in the hepatopancreas were reduced. Recombinant GS was expressed in Escherichia coli Rosetta (DE3), and induction at 37°C or 16°C yielded EsGS in insoluble inclusion bodies (EsGS-I) or in soluble form (EsGS-S), respectively. Enzyme activity was measured in a cell-free system containing glucose-6-phosphate (G6P), and both forms possessed glycosyltransferase activity, but refolded EsGS-I was more active. Enzyme activity of both GS and EsGS-I in the hepatopancreas was optimum at 25°C, which is coincident with the optimum growth temperature of Chinese mitten crab, and higher (37°C) or lower (16°C) temperatures resulted in lower enzyme activity. Taken together, the results suggest that GS may be important for maintaining normal physiological functions such as growth and reproduction. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Evaluating mice lacking serum carboxylesterase as a behavioral model for nerve agent intoxication.

    PubMed

    Dunn, Emily N; Ferrara-Bowens, Teresa M; Chachich, Mark E; Honnold, Cary L; Rothwell, Cristin C; Hoard-Fruchey, Heidi M; Lesyna, Catherine A; Johnson, Erik A; Cerasoli, Douglas M; McDonough, John H; Cadieux, C Linn

    2018-06-07

    Mice and other rodents are typically utilized for chemical warfare nerve agent research. Rodents have large amounts of carboxylesterase in their blood, while humans do not. Carboxylesterase nonspecifically binds to and detoxifies nerve agent. The presence of this natural bioscavenger makes mice and other rodents poor models for studies identifying therapeutics to treat humans exposed to nerve agents. To obviate this problem, a serum carboxylesterase knockout (Es1 KO) mouse was created. In this study, Es1 KO and wild type (WT) mice were assessed for differences in gene expression, nerve agent (soman; GD) median lethal dose (MLD) values, and behavior prior to and following nerve agent exposure. No expression differences were detected between Es1 KO and WT mice in more than 34 000 mouse genes tested. There was a significant difference between Es1 KO and WT mice in MLD values, as the MLD for GD-exposed WT mice was significantly higher than the MLD for GD-exposed Es1 KO mice. Behavioral assessments of Es1 KO and WT mice included an open field test, a zero maze, a Barnes maze, and a sucrose preference test (SPT). While sex differences were observed in various measures of these tests, overall, Es1 KO mice behaved similarly to WT mice. The two genotypes also showed virtually identical neuropathological changes following GD exposure. Es1 KO mice appear to have an enhanced susceptibility to GD toxicity while retaining all other behavioral and physiological responses to this nerve agent, making the Es1 KO mouse a more human-like model for nerve agent research.

  20. The differentiation and isolation of mouse embryonic stem cells toward hepatocytes using galactose-carrying substrata.

    PubMed

    Meng, Qingyuan; Haque, Amranul; Hexig, Bayar; Akaike, Toshihiro

    2012-02-01

    A simple culture system to achieve the differentiation of embryonic stem (ES) cells toward hepatocytes with high efficiency is crucial in providing a cell source for the medical application. In this study, we report the effect of a matrix-dependent enrichment of ES cell-derived hepatocytes using immobilized poly(N-p-vinylbenzyl-4-O-β-D-galactopyranosyl-D-gluconamide) (PVLA) with E-cadherin-IgG Fc (E-cad-Fc) as a galactose-carrying substratum. PVLA and E-cad-Fc were confirmed to be stably co-adsorbed onto polystyrene surface by quartz crystal microbalance (QCM). We showed that the E-cad-Fc/PVLA hybrid substratum was efficient in culturing primary hepatocytes and maintaining liver functions, on which the undifferentiated ES cells also maintained high proliferative capability. Furthermore, ES cell-derived hepatocytes on this hybrid matrix expressed elevated level of liver specific genes and functions together with early expression of definitive hepatocyte marker, asialoglycoprotein receptor (ASGPR). Finally, we isolated a high percentage of cells (about 60%) with ASGPR expression after re-seeding onto PVLA-coated surface, and observed the elimination of the poorly differentiated cells (Gata6(+) and Sox17(+)) and the ones toward another cell lineage (brachyury(+) and Pdx1(+)). The system uses a glycopolymer as an extracellular substratum for isolation and enrichment of ES cell-derived hepatocytes with adequate homogeneity and functionality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Acclimation of the crucifer Eutrema salsugineum to phosphate limitation is associated with constitutively high expression of phosphate-starvation genes.

    PubMed

    Velasco, Vera Marjorie Elauria; Mansbridge, John; Bremner, Samantha; Carruthers, Kimberley; Summers, Peter S; Sung, Wilson W L; Champigny, Marc J; Weretilnyk, Elizabeth A

    2016-08-01

    Eutrema salsugineum, a halophytic relative of Arabidopsis thaliana, was subjected to varying phosphate (Pi) treatments. Arabidopsis seedlings grown on 0.05 mm Pi displayed shortened primary roots, higher lateral root density and reduced shoot biomass allocation relative to those on 0.5 mm Pi, whereas Eutrema seedlings showed no difference in lateral root density and shoot biomass allocation. While a low Fe concentration mitigated the Pi deficiency response for Arabidopsis, Eutrema root architecture was unaltered, but adding NaCl increased Eutrema lateral root density almost 2-fold. Eutrema and Arabidopsis plants grown on soil without added Pi for 4 weeks had low shoot and root Pi content. Pi-deprived, soil-grown Arabidopsis plants were stunted with senescing older leaves, whereas Eutrema plants were visually indistinguishable from 2.5 mm Pi-supplemented plants. Genes associated with Pi starvation were analysed by RT-qPCR. EsIPS2, EsPHT1;4 and EsPAP17 showed up-regulated expression in Pi-deprived Eutrema plants, while EsPHR1, EsWRKY75 and EsRNS1 showed no induction. Absolute quantification of transcripts indicated that PHR1, WRKY75 and RNS1 were expressed at higher levels in Eutrema plants relative to those in Arabidopsis regardless of external Pi. The low phenotypic plasticity Eutrema displays to Pi supply is consistent with adaptation to chronic Pi deprivation in its extreme natural habitat. © 2016 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  2. The role of ventromedial prefrontal cortex volume in the association of expressive suppression and externally oriented thinking.

    PubMed

    Li, Xu; Lu, Jiamei; Li, Bingbing; Li, Haijiang; Jin, Li; Qiu, Jiang

    2017-11-01

    Studies have suggested that expressive suppression (ES) is linked to externally oriented thinking (EOT) through the ventromedial prefrontal cortex (vmPFC), and there are gender differences in their association. The present structural magnetic resonance imaging study was to investigate the neural bases of ES and EOT and their association in females versus males in a Chinese college sample. A total of 142 participants (83 females) were enrolled, and they completed the ES subscale of the Emotion Regulation Questionnaire, 20-item Toronto Alexithymia Scale, and anatomical scanning. Voxel-based morphometry, region of interest, and whole brain analyses with peak-level significance (family-wise error corrected at p < .05) were conducted to investigate the association of gray matter volume (GMV) variations with ES and EOT. A bootstrapping analysis was conducted to examine the role of vmPFC volume in the ES-EOT association. The ES scores were positively linked to the GMV of the vmPFC in females and negatively related to right dorsolateral PFC volume in males. The EOT scores were positively correlated with the GMV of the vmPFC in females and supplementary motor area in males. Furthermore, vmPFC volume mediated the relationship between ES and EOT LIMITATIONS: The cross-sectional design limited causal conclusions. The vmPFC may be the only neural base of ES and EOT and their association. In addition, these results were sex-specific. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The 193-base pair Gsg2 (haspin) promoter region regulates germ cell-specific expression bidirectionally and synchronously.

    PubMed

    Tokuhiro, Keizo; Miyagawa, Yasushi; Yamada, Shuichi; Hirose, Mika; Ohta, Hiroshi; Nishimune, Yoshitake; Tanaka, Hiromitsu

    2007-03-01

    Haspin is a unique protein kinase expressed predominantly in haploid male germ cells. The genomic structure of haspin (Gsg2) has revealed it to be intronless, and the entire transcription unit is in an intron of the integrin alphaE (Itgae) gene. Transcription occurs from a bidirectional promoter that also generates an alternatively spliced integrin alphaE-derived mRNA (Aed). In mice, the testis-specific alternative splicing of Aed is expressed bidirectionally downstream from the Gsg2 transcription initiation site, and a segment consisting of 26 bp transcribes both genomic DNA strands between Gsg2 and the Aed transcription initiation sites. To investigate the mechanisms for this unique gene regulation, we cloned and characterized the Gsg2 promoter region. The 193-bp genomic fragment from the 5' end of the Gsg2 and Aed genes, fused with EGFP and DsRed genes, drove the expression of both proteins in haploid germ cells of transgenic mice. This promoter element contained only a GC-rich sequence, and not the previously reported DNA sequences known to bind various transcription factors--with the exception of E2F1, TCFAP2A1 (AP2), and SP1. Here, we show that the 193-bp DNA sequence is sufficient for the specific, bidirectional, and synchronous expression in germ cells in the testis. We also demonstrate the existence of germ cell nuclear factors specifically bound to the promoter sequence. This activity may be regulated by binding to the promoter sequence with germ cell-specific nuclear complex(es) without regulation via DNA methylation.

  4. T-LAK Cell-Originated Protein Kinase (TOPK) as a Prognostic Factor and a Potential Therapeutic Target in Ovarian Cancer.

    PubMed

    Ikeda, Yuji; Park, Jae-Hyun; Miyamoto, Takashi; Takamatsu, Naofumi; Kato, Taigo; Iwasa, Akiko; Okabe, Shuhei; Imai, Yuichi; Fujiwara, Keiichi; Nakamura, Yusuke; Hasegawa, Kosei

    2016-12-15

    We aimed to clarify the clinical significance of TOPK (T-lymphokine-activated killer cell-originated protein kinase) expression in ovarian cancer and evaluate the possible effect of TOPK inhibitors, OTS514 and OTS964, on ovarian cancer cells. TOPK expression was examined by immunohistochemistry using 163 samples with epithelial ovarian cancer (EOC). TOPK protein level and FOXM1 transcriptional level in ovarian cancer cell lines were examined by Western blot and RT-PCR, respectively. Half-maximum inhibitory concentration (IC 50 ) values against TOPK inhibitors were examined by the MTT assay. Using the peritoneal dissemination model of ES-2 ovarian cancer cells, we examined the in vivo efficacy of OTS514. In addition, the cytotoxic effect of OTS514 and OTS964 on 31 patient-derived primary ovarian cancer cells was examined. TOPK was expressed very highly in 84 (52%) of 163 EOC tissues, and high TOPK expression was significantly associated with poor progression-free survival and overall survival in early-stage cases of EOC (P = 0.008 and 0.006, respectively). Both OTS514 and OTS964 showed significant growth-inhibitory effect on ovarian cancer cell lines with IC 50 values of 3.0 to 46 nmol/L and 14 to 110 nmol/L, respectively. TOPK protein and transcriptional levels of FOXM1 were reduced by TOPK inhibitor treatment. Oral administration of OTS514 significantly elongated overall survival in the ES-2 abdominal dissemination xenograft model, compared with vehicle control (P < 0.001). Two drugs showed strong growth-inhibitory effect on primary ovarian cancer cells regardless of tumor sites or histological subtypes. Our results demonstrated the clinical significance of high TOPK expression and potential of TOPK inhibitors to treat ovarian cancer. Clin Cancer Res; 22(24); 6110-7. ©2016 AACR. ©2016 American Association for Cancer Research.

  5. Overexpression of EsMcsu1 from the halophytic plant Eutrema salsugineum promotes abscisic acid biosynthesis and increases drought resistance in alfalfa (Medicago sativa L.).

    PubMed

    Zhou, C; Ma, Z Y; Zhu, L; Guo, J S; Zhu, J; Wang, J F

    2015-12-17

    The stress phytohormone abscisic acid (ABA) plays pivotal roles in plants' adaptive responses to adverse environments. Molybdenum cofactor sulfurases influence aldehyde oxidase activity and ABA biosynthesis. In this study, we isolated a novel EsMcsu1 gene encoding a molybdenum cofactor sulfurase from Eutrema salsugineum. EsMcus1 transcriptional patterns varied between organs, and its expression was significantly upregulated by abiotic stress or ABA treatment. Alfalfa plants that overexpressed EsMcsu1 had a higher ABA content than wild-type (WT) plants under drought stress conditions. Furthermore, levels of reactive oxygen species (ROS), ion leakage, and malondialdehyde were lower in the transgenic plants than in the WT plants after drought treatment, suggesting that the transgenic plants experienced less ROS-mediated damage. However, the expression of several stress-responsive genes, antioxidant enzyme activity, and osmolyte (proline and total soluble sugar) levels in the transgenic plants were higher than those in the WT plants after drought treatment. Therefore, EsMcsu1 overexpression improved drought tolerance in alfalfa plants by activating a series of ABA-mediated stress responses.

  6. Sociodemographic variations in communication on sexuality and HIV/AIDS with parents, family members and teachers among in-school adolescents: a multi-site study in Tanzania and South Africa.

    PubMed

    Namisi, Francis Sande; Flisher, Alan J; Overland, Simon; Bastien, Sheri; Onya, Hans; Kaaya, Sylvia; Aarø, Leif Edvard

    2009-06-01

    To identify with whom in-school adolescents preferred to communicate about sexuality, and to study adolescents' communication on HIV/AIDS, abstinence and condoms with parents/guardians, other adult family members, and teachers. Data were obtained from a baseline questionnaire survey carried out in South Africa (Cape Town and Mankweng) and Tanzania (Dar es Salaam) in early 2004. We analysed data for 14,944 adolescents from 80 randomly selected schools. The mean ages were as follows: Cape Town, 13.38 years (standard deviation (SD) 1.15); Mankweng, 13.94 years (SD 1.35); and Dar es Salaam, 12.94 years (SD 1.31). Adolescent females preferred to receive sexuality information from their mothers, while among males there was a higher preference for fathers in two sites. Thirty-seven per cent, 41% and 29% reported never or hardly ever communicating about sexuality with parents, other adult family members, and teachers, respectively. "Silence'' was more prevalent in Dar es Salaam than in the other two sites. The odds of "never or hardly ever'' communicating with parents in Dar es Salaam were higher among girls than among boys (p < 0.01). For the two South African sites, boys had significantly higher odds of experiencing silence than did girls (both p < 0.001), and socioeconomic status was positively associated with parent-adolescent sexuality communication. In the logistic regression models, explained variation (Nagelkerke's R(2)) across sites ranged from 0.013 to 0.032. In all three sites, a substantial proportion of adolescents reported not communicating with their parents about HIV/AIDS, abstinence, or condoms. The low proportion of explained variation in sexuality communication implies that silence is common across sociodemographic subgroups.

  7. Combined treatment with electrical stimulation and insulin-like growth factor-1 promotes bone regeneration in vitro.

    PubMed

    Qi, Zhiping; Xia, Peng; Pan, Su; Zheng, Shuang; Fu, Chuan; Chang, Yuxin; Ma, Yue; Wang, Jincheng; Yang, Xiaoyu

    2018-01-01

    Electrical stimulation (ES) and insulin-like growth factor-1 (IGF-1) are widely used in bone regeneration because of their osteogenic activity. However, the combined effects of ES and supplemental IGF-1 on the whole bone formation process remain unclear. In this study, fluorescence staining and an MTT assay were first utilized to observe the influence of ES and IGF-1 on MC3T3-E1 cell proliferation and adhesion in vitro. Subsequently, osteogenic differentiation was evaluated by the alkaline phosphatase activity (ALP) and the expression of osteogenic marker genes. In addition, cell mineralization was determined by alizarin red staining and scanning electron microscopy (SEM). We demonstrated that the MC3T3-E1 cell proliferation was significantly higher for treatments combining IGF-1 and ES than for treatments with IGF-1 alone. The combination of IGF-1 and ES increased the MC3T3-E1 cell ALP activity, the expression of osteogenesis-related genes and the calcium deposition with a clear dose-dependent effect. Our data show the synergistic effect of IGF-1 and ES in promoting the proliferation, differentiation and mineralization of MC3T3-E1 cells, which suggests that it would be more effective to combine the proper dose of IGF-1 with ES to promote local bone damage repair and regeneration.

  8. Protein tyrosine phosphatase 1B (PTP1B) is required for cardiac lineage differentiation of mouse embryonic stem cells.

    PubMed

    Eshkiki, Zahra Shokati; Ghahremani, Mohammad Hossein; Shabani, Parisa; Firuzjaee, Sattar Gorgani; Sadeghi, Asie; Ghanbarian, Hossein; Meshkani, Reza

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) has been shown to regulate multiple cellular events such as differentiation, cell growth, and proliferation; however, the role of PTP1B in differentiation of embryonic stem (ES) cells into cardiomyocytes remains unexplored. In the present study, we investigated the effects of PTP1B inhibition on differentiation of ES cells into cardiomyocytes. PTP1B mRNA and protein levels were increased during the differentiation of ES cells into cardiomyocytes. Accordingly, a stable ES cell line expressing PTP1B shRNA was established. In vitro, the number and size of spontaneously beating embryoid bodies were significantly decreased in PTP1B-knockdown cells, compared with the control cells. Decreased expression of cardiac-specific markers Nkx2-5, MHC-α, cTnT, and CX43, as assessed by real-time PCR analysis, was further confirmed by immunocytochemistry of the markers. The results also showed that PTP1B inhibition induced apoptosis in both differentiated and undifferentiated ES cells, as presented by increasing the level of cleaved caspase-3, cytochrome C, and cleaved PARP. Further analyses revealed that PTP1B inhibition did not change proliferation and pluripotency of undifferentiated ES cells. Taken together, the data presented here suggest that PTP1B is essential for proper differentiation of ES cells into cardiomyocytes.

  9. Acetylcholinesterase of Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi: Gene Identification, Expression, and Biochemical Properties of Recombinant Proteins

    DTIC Science & Technology

    2013-01-01

    predicted amino acid sequences of the three encoded BmAChEs were no more closely related to one another than AChEs from different organisms and their...solely on nucleotide and amino acid sequence similarity; however, the cholinesterase gene family contains a number of related enzymes and structural...acetylcholinesterase of P. papatasi was cloned, sequenced , and expressed in the baculo- virus system to generate a recombinant enzyme for biochemical

  10. Hazardous Waste Cleanup: Veolia ES Technical Solutions, L.L.C. in Middlesex, New Jersey

    EPA Pesticide Factsheets

    Veolia ES Technical Solutions is located at 125 Factory Lane in Middlesex, New Jersey. Veolia owns and operates a solvent-reprocessing facility that is located on a four-acre site in an industrial area of Middlesex Borough.

  11. Rapid Assessment of Ecosystem Service Co-Benefits of Biodiversity Priority Areas in Madagascar

    PubMed Central

    Andriamaro, Luciano; Cano, Carlos Andres; Grantham, Hedley S.; Hole, David; Juhn, Daniel; McKinnon, Madeleine; Rasolohery, Andriambolantsoa; Steininger, Marc; Wright, Timothy Max

    2016-01-01

    The importance of ecosystems for supporting human well-being is increasingly recognized by both the conservation and development sectors. Our ability to conserve ecosystems that people rely on is often limited by a lack of spatially explicit data on the location and distribution of ecosystem services (ES), the benefits provided by nature to people. Thus there is a need to map ES to guide conservation investments, to ensure these co-benefits are maintained. To target conservation investments most effectively, ES assessments must be rigorous enough to support conservation planning, rapid enough to respond to decision-making timelines, and often must rely on existing data. We developed a framework for rapid spatial assessment of ES that relies on expert and stakeholder consultation, available data, and spatial analyses in order to rapidly identify sites providing multiple benefits. We applied the framework in Madagascar, a country with globally significant biodiversity and a high level of human dependence on ecosystems. Our objective was to identify the ES co-benefits of biodiversity priority areas in order to guide the investment strategy of a global conservation fund. We assessed key provisioning (fisheries, hunting and non-timber forest products, and water for domestic use, agriculture, and hydropower), regulating (climate mitigation, flood risk reduction and coastal protection), and cultural (nature tourism) ES. We also conducted multi-criteria analyses to identify sites providing multiple benefits. While our approach has limitations, including the reliance on proximity-based indicators for several ES, the results were useful for targeting conservation investments by the Critical Ecosystem Partnership Fund (CEPF). Because our approach relies on available data, standardized methods for linking ES provision to ES use, and expert validation, it has the potential to quickly guide conservation planning and investment decisions in other data-poor regions. PMID:28006005

  12. COUP-TF (chicken ovalbumin upstream promoter transcription factor)-interacting protein 1 (CTIP1) is a sequence-specific DNA binding protein.

    PubMed Central

    Avram, Dorina; Fields, Andrew; Senawong, Thanaset; Topark-Ngarm, Acharawan; Leid, Mark

    2002-01-01

    Chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting proteins 1 and 2 [CTIP1/Evi9/B cell leukaemia (Bcl) l1a and CTIP2/Bcl11b respectively] are highly related C(2)H(2) zinc finger proteins that are abundantly expressed in brain and the immune system, and are associated with immune system malignancies. A selection procedure was employed to isolate high-affinity DNA binding sites for CTIP1. The core binding site on DNA identified in these studies, 5'-GGCCGG-3' (upper strand), is highly related to the canonical GC box and was bound by a CTIP1 oligomeric complex(es) in vitro. Furthermore, both CTIP1 and CTIP2 repressed transcription of a reporter gene harbouring a multimerized CTIP binding site, and this repression was neither reversed by trichostatin A (an inhibitor of known class I and II histone deacetylases) nor stimulated by co-transfection of a COUP-TF family member. These results demonstrate that CTIP1 is a sequence-specific DNA binding protein and a bona fide transcriptional repressor that is capable of functioning independently of COUP-TF family members. These findings may be relevant to the physiological and/or pathological action(s) of CTIPs in cells that do not express COUP-TF family members, such as cells of the haematopoietic and immune systems. PMID:12196208

  13. Activation of the mouse Oct4 promoter in medaka embryonic stem cells and its use for ablation of spontaneous differentiation.

    PubMed

    Hong, Yunhan; Winkler, Christoph; Liu, Tongming; Chai, Guixuan; Schartl, Manfred

    2004-07-01

    The determination and maintenance of the cell fate is ultimately due to differential gene activity. In the mouse, expression of the transcription factor Oct4 is high in totipotent inner cell mass, germ cells and undifferentiated embryonic stem (ES) cells, but dramatically reduced or extinct upon differentiation. Here, we show that medaka blastula embryos and cells of the ES cell line MES1 are able to activate the Oct4 promoter. Ectopic expression of a fusion gene for beta-galactosidase and neomycin resistance from the Oct4 promoter conferred resistance to G418. G418 selection led to a homogeneous population of undifferentiated ES cells which were able to undergo induced or directed differentiation into various cell types including neuron-like cells and melanocytes. Furthermore, GFP-labeled GOF18geo-MES1 cells after differentiation ablation were able to contribute to a wide variety of organ systems derived from all the three germ layers. Most importantly, we show that drug ablation of differentiation on the basis of Oct4 promoter is a useful tool to improve ES cell cultivation and chimera formation: MES1 cells after differentiation ablation appeared to be better donors than the parental MES1 line, as the permissive number of input donor cells increases from 100 to 200, resulting in an enhanced degree of chimerism. Taken together, some transcription factors and cis-acting regulatory sequences controlling totipotency-specific gene expression appear to be conserved between mammals and fish, and medaka ES cells offer an in vitro system for characterizing the expression of totipotency-specific genes such as putative Oct4 homologs from fish.

  14. α2 Integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozeki, Nobuaki; Kawai, Rie; Hase, Naoko

    We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blotmore » and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated.« less

  15. Genetic modification of embryonic stem cells with VEGF enhances cell survival and improves cardiac function.

    PubMed

    Xie, Xiaoyan; Cao, Feng; Sheikh, Ahmad Y; Li, Zongjin; Connolly, Andrew J; Pei, Xuetao; Li, Ren-Ke; Robbins, Robert C; Wu, Joseph C

    2007-01-01

    Cardiac stem cell therapy remains hampered by acute donor cell death posttransplantation and the lack of reliable methods for tracking cell survival in vivo. We hypothesize that cells transfected with inducible vascular endothelial growth factor 165 (VEGF(165)) can improve their survival as monitored by novel molecular imaging techniques. Mouse embryonic stem (ES) cells were transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF(165) and renilla luciferase (Rluc). Addition of doxycycline induced Bi-Tet expression of VEGF(165) and Rluc significantly compared to baseline (p<0.05). Expression of VEGF(165) enhanced ES cell proliferation and inhibited apoptosis as determined by Annexin-V staining. For noninvasive imaging, ES cells were transduced with a double fusion (DF) reporter gene consisting of firefly luciferase and enhanced green fluorescence protein (Fluc-eGFP). There was a robust correlation between cell number and Fluc activity (R(2)=0.99). Analysis by immunostaining, histology, and RT-PCR confirmed that expression of Bi-Tet and DF systems did not affect ES cell self-renewal or pluripotency. ES cells were differentiated into beating embryoid bodies expressing cardiac markers such as troponin, Nkx2.5, and beta-MHC. Afterward, 5 x 10(5) cells obtained from these beating embryoid bodies or saline were injected into the myocardium of SV129 mice (n=36) following ligation of the left anterior descending (LAD) artery. Bioluminescence imaging (BLI) and echocardiography showed that VEGF(165) induction led to significant improvements in both transplanted cell survival and cardiac function (p<0.05). This is the first study to demonstrate imaging of embryonic stem cell-mediated gene therapy targeting cardiovascular disease. With further validation, this platform may have broad applications for current basic research and further clinical studies.

  16. Liver-specific expression of carboxylesterase 1g/esterase-x reduces hepatic steatosis, counteracts dyslipidemia and improves insulin signaling.

    PubMed

    Bahitham, Wesam; Watts, Russell; Nelson, Randal; Lian, Jihong; Lehner, Richard

    2016-05-01

    Ces1g/Es-x deficiency in mice results in weight gain, insulin resistance, fatty liver and hyperlipidemia through upregulation of de novo lipogenesis and oversecretion of triacylglycerol (TG)-rich lipoproteins. Here, we show that restoration of Ces1g/Es-x expression only in the liver significantly reduced hepatic TG concentration accompanied by decreased size of lipid droplets, reduced secretion of very low-density lipoproteins and improved insulin-mediated signal transduction in the liver. Collectively, these results demonstrate that hepatic Ces1g/Es-x plays a critical role in limiting hepatic steatosis, very low-density lipoprotein assembly and in augmenting insulin sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Abrogation of E-cadherin-mediated cellular aggregation allows proliferation of pluripotent mouse embryonic stem cells in shake flask bioreactors.

    PubMed

    Mohamet, Lisa; Lea, Michelle L; Ward, Christopher M

    2010-09-23

    A fundamental requirement for the exploitation of embryonic stem (ES) cells in regenerative medicine is the ability to reproducibly derive sufficient numbers of cells of a consistent quality in a cost-effective manner. However, undifferentiated ES cells are not ideally suited to suspension culture due to the formation of cellular aggregates, ultimately limiting scalability. Significant advances have been made in recent years in the culture of ES cells, including automated adherent culture and suspension microcarrier or embryoid body bioreactor culture. However, each of these methods exhibits specific disadvantages, such as high cost, additional downstream processes or reduced cell doubling times. Here we show that abrogation of the cell surface protein E-cadherin, using either gene knockout (Ecad-/-) or the neutralising antibody DECMA-1 (EcadAb), allows culture of mouse ES cells as a near-single cell suspension in scalable shake flask culture over prolonged periods without additional media supplements. Both Ecad-/- and EcadAb ES cells exhibited adaptation phases in suspension culture, with optimal doubling times of 7.3 h±0.9 and 15.6 h±4.7 respectively and mean-fold increase in viable cell number of 95.1±2.0 and 16±0.9-fold over 48 h. EcadAb ES cells propagated as a dispersed cell suspension for 15 d maintained expression of pluripotent markers, exhibited a normal karyotype and high viability. Subsequent differentiation of EcadAb ES cells resulted in expression of transcripts and proteins associated with the three primary germ layers. This is the first demonstration of the culture of pluripotent ES cells as a near-single cell suspension in a manual fed-batch shake flask bioreactor and represents a significant improvement on current ES cell culture techniques. Whilst this proof-of-principle method would be useful for the culture of human ES and iPS cells, further steps are necessary to increase cell viability of hES cells in suspension.

  18. Expression of progesterone receptor protein in the ovine uterus during the estrous cycle: Effects of nutrition, arginine and FSH.

    PubMed

    Grazul-Bilska, Anna T; Thammasiri, Jiratti; Kraisoon, Aree; Reyaz, Arshi; Bass, Casie S; Kaminski, Samantha L; Navanukraw, Chainarong; Redmer, Dale A

    2018-03-01

    To evaluate expression of progesterone receptor (PGR) AB in follicle stimulating hormone (FSH)-treated or non-treated sheep administered with arginine (Arg) or saline (Sal) fed a control (C), excess (O) or restricted (U) diet, uterine tissues were collected at the early, mid and/or late luteal phases. In exp. 1, ewes from each diet were randomly assigned to one of two treatments, Arg or Sal administration three times daily from day 0 of the first estrous cycle until uterine tissue collection. In exp. 2, ewes were injected twice daily with FSH on days 13-15 of the first estrous cycle. Uterine tissues were immunostained to detect PGR followed by image analysis. PGR were detected in luminal epithelium (LE), endometrial glands (EG), endometrial stroma (ES), myometrium (Myo), and endometrial and myometrial blood vessels. The percentage of PR-positive cells and/or intensity of staining were affected by phase of the estrous cycle, plane of nutrition, and/or FSH but not by Arg. In exp. 1, percentage of PGR-positive cells in LE and EG but not in ES and Myo was greater at the early and mid than late luteal phase, was not affected by plane of nutrition, and was similar in LE and EG. Intensity of staining was affected by phase of the estrous cycle and plane of nutrition in LE, EG and Myo, and was the greatest in LE, less in EG, and least in ES and Myo. In exp. 2, percentage of PGR-positive cells in LE, EG, ES and Myo was affected by phase of the estrous cycle, but not by plane of nutrition; was greater at the early than mid luteal phase; and was greatest in LE and EG, less in luminal (superficial) ES and Myo and least in deep ES. Intensity of staining was affected by phase of the estrous cycle and plane of nutrition in all compartments but ES, and was the greatest in LE and luminal EG, less in deep EG, and least in ES and Myo. Comparison of data for FSH (superovulated) and Sal-treated (non-superovulated) ewes demonstrated that FSH affected PR expression in all evaluated uterine compartments depending on plane of nutrition and phase of the estrous cycle. Thus, PGR are differentially distributed in uterine compartments, and PGR expression is affected by nutritional plane and FSH, but not Arg depending on phase of the estrous cycle. Such changes in dynamics of PGR expression indicate that diet plays a regulatory role and that FSH-treatment may alter uterine functions. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Rho-associated kinase inhibitors promote the cardiac differentiation of embryonic and induced pluripotent stem cells.

    PubMed

    Cheng, Ya-Ting; Yeih, Dong-Feng; Liang, Shu-Man; Chien, Chia-Ying; Yu, Yen-Ling; Ko, Bor-Sheng; Jan, Yee-Jee; Kuo, Cheng-Chin; Sung, Li-Ying; Shyue, Song-Kun; Chen, Ming-Fong; Yet, Shaw-Fang; Wu, Kenneth K; Liou, Jun-Yang

    2015-12-15

    Rho-associated kinase (ROCK) plays an important role in maintaining embryonic stem (ES) cell pluripotency. To determine whether ROCK is involved in ES cell differentiation into cardiac and hematopoietic lineages, we evaluated the effect of ROCK inhibitors, Y-27632 and fasudil on murine ES and induced pluripotent stem (iPS) cell differentiation. Gene expression levels were determined by real-time PCR, Western blot analysis and immunofluorescent confocal microscopy. Cell transplantation of induced differentiated cells were assessed in vivo in a mouse model (three groups, n=8/group) of acute myocardial infarction (MI). The cell engraftment was examined by immunohistochemical staining and the outcome was analyzed by echocardiography. Cells were cultured in hematopoietic differentiation medium in the presence or absence of ROCK inhibitor and colony formation as well as markers of ES, hematopoietic stem cells (HSC) and cells of cardiac lineages were analyzed. ROCK inhibition resulted in a drastic change in colony morphology accompanied by loss of hematopoietic markers (GATA-1, CD41 and β-Major) and expressed markers of cardiac lineages (GATA-4, Isl-1, Tbx-5, Tbx-20, MLC-2a, MLC-2v, α-MHC, cTnI and cTnT) in murine ES and iPS cells. Fasudil-induced cardiac progenitor (Mesp-1 expressing) cells were infused into a murine MI model. They engrafted into the peri-infarct and infarct regions and preserved left ventricular function. These findings provide new insights into the signaling required for ES cell differentiation into hematopoietic as well as cardiac lineages and suggest that ROCK inhibitors are useful in directing iPS cell differentiation into cardiac progenitor cells for cell therapy of cardiovascular diseases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Klf4 reverts developmentally programmed restriction of ground state pluripotency

    PubMed Central

    Guo, Ge; Yang, Jian; Nichols, Jennifer; Hall, John Simon; Eyres, Isobel; Mansfield, William; Smith, Austin

    2009-01-01

    Summary Mouse embryonic stem (ES) cells derived from pluripotent early epiblast contribute functionally differentiated progeny to all foetal lineages of chimaeras. By contrast, epistem cell (EpiSC) lines from post-implantation epithelialised epiblast are unable to colonise the embryo even though they express the core pluripotency genes Oct4, Sox2 and Nanog. We examined interconversion between these two cell types. ES cells can readily become EpiSCs in response to growth factor cues. By contrast, EpiSCs do not change into ES cells. We exploited PiggyBac transposition to introduce a single reprogramming factor, Klf4, into EpiSCs. No effect was apparent in EpiSC culture conditions, but in ground state ES cell conditions a fraction of cells formed undifferentiated colonies. These EpiSC-derived induced pluripotent stem (Epi-iPS) cells activated expression of ES cell-specific transcripts including endogenous Klf4, and downregulated markers of lineage specification. X chromosome silencing in female cells, a feature of the EpiSC state, was erased in Epi-iPS cells. They produced high-contribution chimaeras that yielded germline transmission. These properties were maintained after Cre-mediated deletion of the Klf4 transgene, formally demonstrating complete and stable reprogramming of developmental phenotype. Thus, re-expression of Klf4 in an appropriate environment can regenerate the naïve ground state from EpiSCs. Reprogramming is dependent on suppression of extrinsic growth factor stimuli and proceeds to completion in less than 1% of cells. This substantiates the argument that EpiSCs are developmentally, epigenetically and functionally differentiated from ES cells. However, because a single transgene is the minimum requirement to attain the ground state, EpiSCs offer an attractive opportunity for screening for unknown components of the reprogramming process. PMID:19224983

  1. Prognostic and therapeutic relevance of the IGF pathway in Ewing's sarcoma patients.

    PubMed

    van de Luijtgaarden, A C M; Versleijen-Jonkers, Y M H; Roeffen, M H S; Schreuder, H W B; Flucke, U E; van der Graaf, W T A

    2013-12-01

    The optimal target and timing of drugs interfering with the insulin-like growth factor (IGF) signaling system in Ewing's sarcoma (ES) remain undetermined. We examined the expression of IGF signaling proteins in ES samples taken before and after chemotherapy, and speculate about the optimal way of treating ES patients in the future. Tumor material (36 initial biopsies and 24 resection specimens after neoadjuvant chemotherapy) and follow-up data of 41 patients treated for ES at the Radboud University Nijmegen Medical Centre were analyzed. Immunohistochemical staining was done for IGF1, IGF2, IGFBP3, IGF-1R, phosphorylated AKT (pAKT), phosphorylated mTOR (pmTOR), and phosphorylated ERK (pERK), and staining intensity was scored semiquantitatively. Change of protein expression during treatment, correlations of effector cascade signaling, and influence on progression-free (PFS) and overall survival (OS) were tested. All potential targets were widely expressed at both time points. After chemotherapy, pmTOR expression decreased significantly (p = 0.021) while IGFBP3 increased (p = 0.005). Correlations exist between IGF-1R and pERK (ρ = 0.286, p = 0.031), IGF-1R and pAKT (ρ = 0.269, p = 0.045), pAKT and pERK (ρ = 0.460, p = 0.000), and pERK and pmTOR (ρ = 0.273, p = 0.038). In therapy-naive samples, combined expression of pAKT, pmTOR, and pERK predicted worse PFS (median, 11 vs. 32 months; p = 0.039) and OS (median, 18 vs. 83 months; p = 0.023). We identify an unfavorable prognostic group of ES patients with widely activated IGF-effector cascades, demonstrate cooperation between the different downstream pathways, and show how expression of IGF-related proteins may change after exposure to chemotherapy. These findings should be taken into account when designing future trials with IGF-targeting agents. We suggest the prospective exploration of chemotherapy and multi-target tyrosine kinase inhibitors in the first-line setting.

  2. A R2R3-MYB Transcription Factor from Epimedium sagittatum Regulates the Flavonoid Biosynthetic Pathway

    PubMed Central

    Lv, Haiyan; Luo, Ming; Zeng, Shaohua; Pattanaik, Sitakanta; Yuan, Ling; Wang, Ying

    2013-01-01

    Herba epimedii (Epimedium), a traditional Chinese medicine, has been widely used as a kidney tonic and antirheumatic medicine for thousands of years. The bioactive components in herba epimedii are mainly prenylated flavonol glycosides, end-products of the flavonoid pathway. Epimedium species are also used as garden plants due to the colorful flowers and leaves. Many R2R3-MYB transcription factors (TFs) have been identified to regulate the flavonoid and anthocyanin biosynthetic pathways. However, little is known about the R2R3-MYB TFs involved in regulation of the flavonoid pathway in Epimedium. Here, we reported the isolation and functional characterization of the first R2R3-MYB TF (EsMYBA1) from Epimedium sagittatum (Sieb. Et Zucc.) Maxim. Conserved domains and phylogenetic analysis showed that EsMYBA1 belonged to the subgroup 6 clade (anthocyanin-related MYB clade) of R2R3-MYB family, which includes Arabidopsis AtPAP1, apple MdMYB10 and legume MtLAP1. EsMYBA1 was preferentially expressed in leaves, especially in red leaves that contain higher content of anthocyanin. Alternative splicing of EsMYBA1 resulted in three transcripts and two of them encoded a MYB-related protein. Yeast two-hybrid and transient luciferase expression assay showed that EsMYBA1 can interact with several bHLH regulators of the flavonoid pathway and activate the promoters of dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS). In both transgenic tobacco and Arabidopsis, overexpression of EsMYBA1 induced strong anthocyanin accumulation in reproductive and/or vegetative tissues via up-regulation of the main flavonoid-related genes. Furthermore, transient expression of EsMYBA1 in E. sagittatum leaves by Agrobacterium infiltration also induced anthocyanin accumulation in the wounded area. This first functional characterization of R2R3-MYB TFs in Epimedium species will promote further studies of the flavonoid biosynthesis and regulation in medicinal plants. PMID:23936468

  3. Zscan4 restores the developmental potency of embryonic stem cells

    PubMed Central

    Amano, Tomokazu; Hirata, Tetsuya; Falco, Geppino; Monti, Manuela; Sharova, Lioudmila V.; Amano, Misa; Sheer, Sarah; Hoang, Hien G.; Piao, Yulan; Stagg, Carole A.; Yamamizu, Kohei; Akiyama, Tomohiko; Ko, Minoru S.H.

    2013-01-01

    The developmental potency of mouse embryonic stem (ES) cells, which is the ability to contribute to a whole embryo is known to deteriorate during long-term cell culture. Previously we have shown that ES cells oscillate between Zscan4- and Zscan4+ states, and the transient activation of Zscan4 is required for the maintenance of telomeres and genome stability of ES cells. Here we show that increasing the frequency of Zscan4 activation in mouse ES cells restores and maintains their developmental potency in long-term cell culture. Injection of a single ES cell with such increased potency into a tetraploid blastocyst gives rise to an entire embryo with a higher success rate. These results not only provide a means to rejuvenate ES cells by manipulating Zscan4 expression, but also indicate the active roles of Zscan4 in the long-term maintenance of ES cell potency. PMID:23739662

  4. Efficacy of ATR inhibitors as single agents in Ewing sarcoma

    PubMed Central

    Lecona, Emilio; Murga, Matilde; Callen, Elsa; Azorin, Daniel; Alonso, Javier; Lopez, Andres J.; Nussenzweig, Andre; Fernandez-Capetillo, Oscar

    2016-01-01

    Ewing sarcomas (ES) are pediatric bone tumors that arise from a driver translocation, most frequently EWS/FLI1. Current ES treatment involves DNA damaging agents, yet the basis for the sensitivity to these therapies remains unknown. Oncogene-induced replication stress (RS) is a known source of endogenous DNA damage in cancer, which is suppressed by ATR and CHK1 kinases. We here show that ES suffer from high endogenous levels of RS, rendering them particularly dependent on the ATR pathway. Accordingly, two independent ATR inhibitors show in vitro toxicity in ES cell lines as well as in vivo efficacy in ES xenografts as single agents. Expression of EWS/FLI1 or EWS/ERG oncogenic translocations sensitizes non-ES cells to ATR inhibitors. Our data shed light onto the sensitivity of ES to genotoxic agents, and identify ATR inhibitors as a potential therapy for Ewing Sarcomas. PMID:27577084

  5. The maintenance of pluripotency following laser direct-write of mouse embryonic stem cells.

    PubMed

    Raof, Nurazhani Abdul; Schiele, Nathan R; Xie, Yubing; Chrisey, Douglas B; Corr, David T

    2011-03-01

    The ability to precisely pattern embryonic stem (ES) cells in vitro into predefined arrays/geometries may allow for the recreation of a stem cell niche for better understanding of how cellular microenvironmental factors govern stem cell maintenance and differentiation. In this study, a new gelatin-based laser direct-write (LDW) technique was utilized to deposit mouse ES cells into defined arrays of spots, while maintaining stem cell pluripotency. Results obtained from these studies showed that ES cells were successfully printed into specific patterns and remained viable. Furthermore, ES cells retained the expression of Oct4 in nuclei after LDW, indicating that the laser energy did not affect their maintenance of an undifferentiated state. The differentiation potential of mouse ES cells after LDW was confirmed by their ability to form embryoid bodies (EBs) and to spontaneously become cell lineages representing all three germ layers, revealed by the expression of marker proteins of nestin (ectoderm), Myf-5 (mesoderm) and PDX-1 (endoderm), after 7 days of cultivation. Gelatin-based LDW provides a new avenue for stem cell patterning, with precision and control of the cellular microenvironment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, Desulfovibrio vulgaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Aifen; Lau, Rebecca; Baran, Richard

    ABSTRACT. Rapid genetic and phenotypic adaptation of the sulfate-reducing bacteriumDesulfovibrio vulgarisHildenborough to salt stress was observed during experimental evolution. In order to identify key metabolites important for salt tolerance, a clone, ES10-5, which was isolated from population ES10 and allowed to experimentally evolve under salt stress for 5,000 generations, was analyzed and compared to clone ES9-11, which was isolated from population ES9 and had evolved under the same conditions for 1,200 generations. These two clones were chosen because they represented the best-adapted clones among six independently evolved populations. ES10-5 acquired new mutations in genes potentially involved in salt tolerance, inmore » addition to the preexisting mutations and different mutations in the same genes as in ES9-11. Most basal abundance changes of metabolites and phospholipid fatty acids (PLFAs) were lower in ES10-5 than ES9-11, but an increase of glutamate and branched PLFA i17:1ω9c under high-salinity conditions was persistent. ES9-11 had decreased cell motility compared to the ancestor; in contrast, ES10-5 showed higher cell motility under both nonstress and high-salinity conditions. Both genotypes displayed better growth energy efficiencies than the ancestor under nonstress or high-salinity conditions. Consistently, ES10-5 did not display most of the basal transcriptional changes observed in ES9-11, but it showed increased expression of genes involved in glutamate biosynthesis, cation efflux, and energy metabolism under high salinity. These results demonstrated the role of glutamate as a key osmolyte and i17:1ω9c as the major PLFA for salt tolerance inD. vulgaris. The mechanistic changes in evolved genotypes suggested that growth energy efficiency might be a key factor for selection. IMPORTANCE. High salinity (e.g., elevated NaCl) is a stressor that affects many organisms. Salt tolerance, a complex trait involving multiple cellular pathways, is attractive for experimental evolutionary studies.Desulfovibrio vulgarisHildenborough is a model sulfate-reducing bacterium (SRB) that is important in biogeochemical cycling of sulfur, carbon, and nitrogen, potentially for bio-corrosion, and for bioremediation of toxic heavy metals and radionuclides. The coexistence of SRB and high salinity in natural habitats and heavy metal-contaminated field sites laid the foundation for the study of salt adaptation ofD. vulgarisHildenborough with experimental evolution. Here in this paper, we analyzed a clone that evolved under salt stress for 5,000 generations and compared it to a clone evolved under the same condition for 1,200 generations. The results indicated the key roles of glutamate for osmoprotection and of i17:1ω9c for increasing membrane fluidity during salt adaptation. The findings provide valuable insights about the salt adaptation mechanism changes during long-term experimental evolution.« less

  7. Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, Desulfovibrio vulgaris.

    PubMed

    Zhou, Aifen; Lau, Rebecca; Baran, Richard; Ma, Jincai; von Netzer, Frederick; Shi, Weiling; Gorman-Lewis, Drew; Kempher, Megan L; He, Zhili; Qin, Yujia; Shi, Zhou; Zane, Grant M; Wu, Liyou; Bowen, Benjamin P; Northen, Trent R; Hillesland, Kristina L; Stahl, David A; Wall, Judy D; Arkin, Adam P; Zhou, Jizhong

    2017-11-14

    Rapid genetic and phenotypic adaptation of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough to salt stress was observed during experimental evolution. In order to identify key metabolites important for salt tolerance, a clone, ES10-5, which was isolated from population ES10 and allowed to experimentally evolve under salt stress for 5,000 generations, was analyzed and compared to clone ES9-11, which was isolated from population ES9 and had evolved under the same conditions for 1,200 generations. These two clones were chosen because they represented the best-adapted clones among six independently evolved populations. ES10-5 acquired new mutations in genes potentially involved in salt tolerance, in addition to the preexisting mutations and different mutations in the same genes as in ES9-11. Most basal abundance changes of metabolites and phospholipid fatty acids (PLFAs) were lower in ES10-5 than ES9-11, but an increase of glutamate and branched PLFA i17:1ω9c under high-salinity conditions was persistent. ES9-11 had decreased cell motility compared to the ancestor; in contrast, ES10-5 showed higher cell motility under both nonstress and high-salinity conditions. Both genotypes displayed better growth energy efficiencies than the ancestor under nonstress or high-salinity conditions. Consistently, ES10-5 did not display most of the basal transcriptional changes observed in ES9-11, but it showed increased expression of genes involved in glutamate biosynthesis, cation efflux, and energy metabolism under high salinity. These results demonstrated the role of glutamate as a key osmolyte and i17:1ω9c as the major PLFA for salt tolerance in D. vulgaris The mechanistic changes in evolved genotypes suggested that growth energy efficiency might be a key factor for selection. IMPORTANCE High salinity (e.g., elevated NaCl) is a stressor that affects many organisms. Salt tolerance, a complex trait involving multiple cellular pathways, is attractive for experimental evolutionary studies. Desulfovibrio vulgaris Hildenborough is a model sulfate-reducing bacterium (SRB) that is important in biogeochemical cycling of sulfur, carbon, and nitrogen, potentially for bio-corrosion, and for bioremediation of toxic heavy metals and radionuclides. The coexistence of SRB and high salinity in natural habitats and heavy metal-contaminated field sites laid the foundation for the study of salt adaptation of D. vulgaris Hildenborough with experimental evolution. Here, we analyzed a clone that evolved under salt stress for 5,000 generations and compared it to a clone evolved under the same condition for 1,200 generations. The results indicated the key roles of glutamate for osmoprotection and of i17:1ω9c for increasing membrane fluidity during salt adaptation. The findings provide valuable insights about the salt adaptation mechanism changes during long-term experimental evolution. Copyright © 2017 Zhou et al.

  8. Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, Desulfovibrio vulgaris

    DOE PAGES

    Zhou, Aifen; Lau, Rebecca; Baran, Richard; ...

    2017-11-14

    ABSTRACT. Rapid genetic and phenotypic adaptation of the sulfate-reducing bacteriumDesulfovibrio vulgarisHildenborough to salt stress was observed during experimental evolution. In order to identify key metabolites important for salt tolerance, a clone, ES10-5, which was isolated from population ES10 and allowed to experimentally evolve under salt stress for 5,000 generations, was analyzed and compared to clone ES9-11, which was isolated from population ES9 and had evolved under the same conditions for 1,200 generations. These two clones were chosen because they represented the best-adapted clones among six independently evolved populations. ES10-5 acquired new mutations in genes potentially involved in salt tolerance, inmore » addition to the preexisting mutations and different mutations in the same genes as in ES9-11. Most basal abundance changes of metabolites and phospholipid fatty acids (PLFAs) were lower in ES10-5 than ES9-11, but an increase of glutamate and branched PLFA i17:1ω9c under high-salinity conditions was persistent. ES9-11 had decreased cell motility compared to the ancestor; in contrast, ES10-5 showed higher cell motility under both nonstress and high-salinity conditions. Both genotypes displayed better growth energy efficiencies than the ancestor under nonstress or high-salinity conditions. Consistently, ES10-5 did not display most of the basal transcriptional changes observed in ES9-11, but it showed increased expression of genes involved in glutamate biosynthesis, cation efflux, and energy metabolism under high salinity. These results demonstrated the role of glutamate as a key osmolyte and i17:1ω9c as the major PLFA for salt tolerance inD. vulgaris. The mechanistic changes in evolved genotypes suggested that growth energy efficiency might be a key factor for selection. IMPORTANCE. High salinity (e.g., elevated NaCl) is a stressor that affects many organisms. Salt tolerance, a complex trait involving multiple cellular pathways, is attractive for experimental evolutionary studies.Desulfovibrio vulgarisHildenborough is a model sulfate-reducing bacterium (SRB) that is important in biogeochemical cycling of sulfur, carbon, and nitrogen, potentially for bio-corrosion, and for bioremediation of toxic heavy metals and radionuclides. The coexistence of SRB and high salinity in natural habitats and heavy metal-contaminated field sites laid the foundation for the study of salt adaptation ofD. vulgarisHildenborough with experimental evolution. Here in this paper, we analyzed a clone that evolved under salt stress for 5,000 generations and compared it to a clone evolved under the same condition for 1,200 generations. The results indicated the key roles of glutamate for osmoprotection and of i17:1ω9c for increasing membrane fluidity during salt adaptation. The findings provide valuable insights about the salt adaptation mechanism changes during long-term experimental evolution.« less

  9. The tissue microlocalisation and cellular expression of CD163, VEGF, HLA-DR, iNOS, and MRP 8/14 is correlated to clinical outcome in NSCLC.

    PubMed

    Ohri, Chandra M; Shikotra, Aarti; Green, Ruth H; Waller, David A; Bradding, Peter

    2011-01-01

    We have previously investigated the microlocalisation of M1 and M2 macrophages in NSCLC. This study investigated the non-macrophage (NM) expression of proteins associated with M1 and M2 macrophages in NSCLC. Using immunohistochemistry, CD68(+) macrophages and proteins associated with either a cytotoxic M1 phenotype (HLA-DR, iNOS, and MRP 8/14), or a non-cytotoxic M2 phenotype (CD163 and VEGF) were identified. NM expression of the markers was analysed in the islets and stroma of surgically resected tumours from 20 patients with extended survival (ES) (median 92.7 months) and 20 patients with poor survival (PS) (median 7.7 months). The NM expression of NM-HLA-DR (p<0.001), NM-iNOS (p = 0.02) and NM-MRP 8/14 (p = 0.02) was increased in ES compared to PS patients in the tumour islets. The tumour islet expression of NM-VEGF, was decreased in ES compared to PS patients (p<0.001). There was more NM-CD163 expression (p = 0.04) but less NM-iNOS (p = 0.002) and MRP 8/14 (p = 0.01) expression in the stroma of ES patients compared with PS patients. The 5-year survival for patients with above and below median NM expression of the markers in the islets was 74.9% versus 4.7% (NM-HLA-DR p<0.001), 65.0% versus 14.6% (NM-iNOS p = 0.003), and 54.3% versus 22.2% (NM-MRP 8/14 p = 0.04), as opposed to 34.1% versus 44.4% (NM-CD163 p = 0.41) and 19.4% versus 59.0% (NM-VEGF p = 0.001). Cell proteins associated with M1 and M2 macrophages are also expressed by other cell types in the tumour islets and stroma of patients with NSCLC. Their tissue and cellular microlocalisation is associated with important differences in clinical outcome.

  10. Development of an ES-like cell culture system (RESC) from rohu, Labeo rohita (Ham.).

    PubMed

    Goswami, M; Lakra, W S; Yadav, Kamalendra; Jena, J K

    2012-12-01

    An embryonic stem (ES)-like cell culture system RESC from a commercially important freshwater carp, Labeo rohita, was developed using blastula stage embryos. The cells were cultured in Leibovitz-15 (L-15) medium in gelatin-coated cell culture flask supplemented with 15 % fetal bovine serum along with 10 ng ml(-1) basic fibroblast growth factor at 28 °C under feeder-free conditions. The ES-like cells were characterized by their unique morphology, alkaline phosphatase activity, embryoid body formation tendency, expression of transcription factor Oct4, and consistent chromosome count. The RESC cells when treated with retinoic acid differentiated into cells of different lineages. The RESC developed from mid-blastula embryos of L. rohita would be a useful tool for cellular differentiation and gene expression studies.

  11. [Effect of thalidomide combined with dexamethasone on multiple myeloma KM3 cells].

    PubMed

    He, Bin; Zhang, Yu; Zhou, Wei; Gao, Na; Gao, Bo; Gu, Jian; Li, Jian-Yong

    2009-08-01

    The purpose of this study was to investigate the effect of thalidomide (THD) combined with dexamethasone (Dx) on multiple myeloma KM3 cells and its mechanism. The effect of the different concentrations and treatment time of THD or THD + Dx on KM3 cells was assayed by cytotoxicity test (MTT method), the inhibitory ratio of THD or THD + Dx on the KM3 cell growth was detected for choosing the best intervention condition. The expression levels of IL-6, TNF-alpha, VEGF, ES, survivin in supernatant of cells treated with best intervention condition were measured by indirect ELISA. The results indicated that an enhancement of cell growth inhibition was observed in treated KM3 cells along with increasing of drug concentrations and prolonging of treatment times, at the same time the THD combined with Dx could significantly inhibit the KM3 cell growth. The combination of THD in concentration of 80 or 100 microg/ml with Dx in concentration of 4 microg/ml decreased the expression of IL-6, TNF-alpha and survivin, increased the expression of ES, while no influence on VEGF expression was found. It is concluded that THD combined with Dx shows the synergistic inhibitory effect on KM3 cells, they bring the effect resistant to multiple myeloma probably through down-regulating the expression of IL-6, TNF-alpha and survivin, and up-regulating the expression of ES in KM3 cell.

  12. Expression of endogenous retroviruses is negatively regulated by the pluripotency marker Rex1/Zfp42

    PubMed Central

    Guallar, D.; Pérez-Palacios, R.; Climent, M.; Martínez-Abadía, I.; Larraga, A.; Fernández-Juan, M.; Vallejo, C.; Muniesa, P.; Schoorlemmer, J.

    2012-01-01

    Rex1/Zfp42 is a Yy1-related zinc-finger protein whose expression is frequently used to identify pluripotent stem cells. We show that depletion of Rex1 levels notably affected self-renewal of mouse embryonic stem (ES) cells in clonal assays, in the absence of evident differences in expression of marker genes for pluripotency or differentiation. By contrast, marked differences in expression of several endogenous retroviral elements (ERVs) were evident upon Rex1 depletion. We demonstrate association of REX1 to specific elements in chromatin-immunoprecipitation assays, most strongly to muERV-L and to a lower extent to IAP and musD elements. Rex1 regulates muERV-L expression in vivo, as we show altered levels upon transient gain-and-loss of Rex1 function in pre-implantation embryos. We also find REX1 can associate with the lysine-demethylase LSD1/KDM1A, suggesting they act in concert. Similar to REX1 binding to retrotransposable elements (REs) in ES cells, we also detected binding of the REX1 related proteins YY1 and YY2 to REs, although the binding preferences of the two proteins were slightly different. Altogether, we show that Rex1 regulates ERV expression in mouse ES cells and during pre-implantation development and suggest that Rex1 and its relatives have evolved as regulators of endogenous retroviral transcription. PMID:22844087

  13. Comparison of Gene Expression in Human Embryonic Stem Cells, hESC-Derived Mesenchymal Stem Cells and Human Mesenchymal Stem Cells.

    PubMed

    Barbet, Romain; Peiffer, Isabelle; Hatzfeld, Antoinette; Charbord, Pierre; Hatzfeld, Jacques A

    2011-01-01

    We present a strategy to identify developmental/differentiation and plasma membrane marker genes of the most primitive human Mesenchymal Stem Cells (hMSCs). Using sensitive and quantitative TaqMan Low Density Arrays (TLDA) methodology, we compared the expression of 381 genes in human Embryonic Stem Cells (hESCs), hESC-derived MSCs (hES-MSCs), and hMSCs. Analysis of differentiation genes indicated that hES-MSCs express the sarcomeric muscle lineage in addition to the classical mesenchymal lineages, suggesting they are more primitive than hMSCs. Transcript analysis of membrane antigens suggests that IL1R1(low), BMPR1B(low), FLT4(low), LRRC32(low), and CD34 may be good candidates for the detection and isolation of the most primitive hMSCs. The expression in hMSCs of cytokine genes, such as IL6, IL8, or FLT3LG, without expression of the corresponding receptor, suggests a role for these cytokines in the paracrine control of stem cell niches. Our database may be shared with other laboratories in order to explore the considerable clinical potential of hES-MSCs, which appear to represent an intermediate developmental stage between hESCs and hMSCs.

  14. Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning.

    PubMed

    Siriboon, Chawalit; Lin, Yu-Hsuan; Kere, Michel; Chen, Chun-Da; Chen, Lih-Ren; Chen, Chien-Hong; Tu, Ching-Fu; Lo, Neng-Wen; Ju, Jyh-Cherng

    2015-01-01

    We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P < 0.05) attachment, outgrowth formation and primary colonization in both 2× and 3× aggregated cloned embryos (62.8, 42.6 and 12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P < 0.05) in those derived from TSA-treated 3× blastocysts (36.7 and 26.7%) than from the non-treated aggregated group (23.1 and 11.5%). These cells, remaining undifferentiated over 25 passages, had alkaline phosphatase activity and expressed ES specific markers Oct4, Nanog, Sox2, and Rex01. Moreover, these ntES cells successfully differentiated into embryoid bodies (EBs) that expressed specific genes of all three germ layers after being cultured in LIF-free medium. In conclusion, we have successfully derived putative porcine ntES cells with high efficiency from quality cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in undifferentiated state.

  15. Putative Porcine Embryonic Stem Cell Lines Derived from Aggregated Four-Celled Cloned Embryos Produced by Oocyte Bisection Cloning

    PubMed Central

    Siriboon, Chawalit; Lin, Yu-Hsuan; Kere, Michel; Chen, Chun-Da; Chen, Lih-Ren; Chen, Chien-Hong; Tu, Ching-Fu; Lo, Neng-Wen; Ju, Jyh-Cherng

    2015-01-01

    We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P < 0.05) attachment, outgrowth formation and primary colonization in both 2× and 3× aggregated cloned embryos (62.8, 42.6 and12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P < 0.05) in those derived from TSA-treated 3× blastocysts (36.7 and 26.7%) than from the non-treated aggregated group (23.1 and 11.5%). These cells, remaining undifferentiated over 25 passages, had alkaline phosphatase activity and expressed ES specific markers Oct4, Nanog, Sox2, and Rex01. Moreover, these ntES cells successfully differentiated into embryoid bodies (EBs) that expressed specific genes of all three germ layers after being cultured in LIF-free medium. In conclusion, we have successfully derived putative porcine ntES cells with high efficiency from quality cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in undifferentiated state. PMID:25680105

  16. Identification of genes involved in serum tolerance in the clinical strain Cronobacter sakazakii ES5.

    PubMed

    Schwizer, Sarah; Tasara, Taurai; Zurfluh, Katrin; Stephan, Roger; Lehner, Angelika

    2013-02-15

    Cronobacter spp. are opportunistic pathogens that can cause septicemia and infections of the central nervous system primarily in premature, low-birth weight and/or immune-compromised neonates. Serum resistance is a crucial virulence factor for the development of systemic infections, including bacteremia. It was the aim of the current study to identify genes involved in serum tolerance in a selected Cronobacter sakazakii strain of clinical origin. Screening of 2749 random transposon knock out mutants of a C. sakazakii ES 5 library for modified serum tolerance (compared to wild type) revealed 10 mutants showing significantly increased/reduced resistance to serum killing. Identification of the affected sites in mutants displaying reduced serum resistance revealed genes encoding for surface and membrane proteins as well as regulatory elements or chaperones. By this approach, the involvement of the yet undescribed Wzy_C superfamily domain containing coding region in serum tolerance was observed and experimentally confirmed. Additionally, knock out mutants with enhanced serum tolerance were observed. Examination of respective transposon insertion loci revealed regulatory (repressor) elements, coding regions for chaperones and efflux systems as well as the coding region for the protein YbaJ. Real time expression analysis experiments revealed, that knock out of the gene for this protein negatively affects the expression of the fimA gene, which is a key structural component of the formation of fimbriae. Fimbriae are structures of high immunogenic potential and it is likely that absence/truncation of the ybaJ gene resulted in a non-fimbriated phenotype accounting for the enhanced survival of this mutant in human serum. By using a transposon knock out approach we were able to identify genes involved in both increased and reduced serum tolerance in Cronobacter sakazakii ES5. This study reveals first insights in the complex nature of serum tolerance of Cronobacter spp.

  17. Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro.

    PubMed

    Rockwood, Danielle N; Akins, Robert E; Parrag, Ian C; Woodhouse, Kimberly A; Rabolt, John F

    2008-12-01

    The function of the mammalian heart depends on the functional alignment of cardiomyocytes, and controlling cell alignment is an important consideration in biomaterial design for cardiac tissue engineering and research. The physical cues that guide functional cell alignment in vitro and the impact of substrate-imposed alignment on cell phenotype, however, are only partially understood. In this report, primary cardiac ventricular cells were grown on electrospun, biodegradable polyurethane (ES-PU) with either aligned or unaligned microfibers. ES-PU scaffolds supported high-density cultures and cell subpopulations remained intact over two weeks in culture. ES-PU cultures contained electrically-coupled cardiomyocytes with connexin-43 localized to points of cell:cell contact. Multi-cellular organization correlated with microfiber orientation and aligned materials yielded highly oriented cardiomyocyte groupings. Atrial natriuretic peptide, a molecular marker that shows decreasing expression during ventricular cell maturation, was significantly lower in cultures grown on ES-PU scaffolds than in those grown on tissue culture polystyrene. Cells grown on aligned ES-PU had significantly lower steady state levels of ANP and constitutively released less ANP over time indicating that scaffold-imposed cell organization resulted in a shift in cell phenotype to a more mature state. We conclude that the physical organization of microfibers in ES-PU scaffolds impacts both multi-cellular architecture and cardiac cell phenotype in vitro.

  18. Tiger Team Assessment of the Pantex Plant, Amarillo, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-02-01

    This document contains the findings and associated root causes identified during the Tiger Team Assessment of the Department of Energy's (DOE) Pantex Plant in Amarillo, Texas. This assessment was conducted by the Department's Office of Environment, Safety and Health between October 2 and 31, 1989. The scope of the assessment of the Pantex Plant covered all areas of environment, safety and health (ES H) activities, including compliance with federal, state, and local regulations, requirements, permits, agreements, orders and consent decrees, and DOE ES H Orders. The assessment also included an evaluation of the adequacy of DOE and site contractor ESmore » H management programs. The draft findings were submitted to the Office of Defense Programs, the Albuquerque Operations Office, the Amarillo Area Office, and regulatory agencies at the conclusion of the on-site assessment activities for review and comment on technical accuracy. Final modifications and any other appropriate changes have been incorporated in the final report. The Tiger Team Assessment of the Pantex Plant is part of the larger Tiger Team Assessment program which will encompass over 100 DOE operating facilities. The assessment program is part of a 10-point initiative announced by Secretary of Energy James D. Watkins on June 27, 1989, to strengthen environmental protection and waste management activities in the Department. The results of the program will provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and site contractor ES H management programs, and DOE-wide ES H compliance trends.« less

  19. Regulation of expression of hyperalgesic priming by estrogen receptor alpha in the rat

    PubMed Central

    Ferrari, Luiz F.; Araldi, Dionéia; Levine, Jon D.

    2017-01-01

    Hyperalgesic priming, a sexually dimorphic model of transition to chronic pain, is expressed as prolongation of prostaglandin E2 (PGE2)-induced hyperalgesia by the activation of an additional pathway including an autocrine mechanism at the plasma membrane. The autocrine mechanism involves the transport of cAMP to the extracellular space, and its conversion to AMP and adenosine, by ecto-5′phosphodiesterase and ecto-5′nucleotidase, respectively. The end product, adenosine, activates A1 receptors, producing delayed onset prolongation of PGE2 hyperalgesia. We tested the hypothesis that the previously reported, estrogen-dependent, sexual dimorphism observed in the induction of priming is present in the mechanisms involved in its expression, as a regulatory effect on ecto-5′nucleotidase by estrogen receptor alpha (EsRα), in female rats. In the primed paw AMP hyperalgesia was dependent on conversion to adenosine, being prevented by ecto-5′nucleotidase inhibitor AMPCP and A1 receptor antagonist DPCPX. To investigate an interaction between EsRα and ecto-5′nucleotidase, we treated primed female rats with ODN antisense or mismatch against EsRα mRNA. While in rats treated with antisense AMP-induced hyperalgesia was abolished, the A1 receptor agonist N6-cyclopentiladenosine (CPA) still produced hyperalgesia. Thus, EsRα interacts with this autocrine pathway at the level of ecto-5′nucleotidase. These results demonstrate a sexually dimorphic mechanism for the expression of priming. Perspective This study presents evidence of an estrogen-dependent mechanism of expression of chronic pain in females, supporting the suggestion that differential targets must be considered when establishing protocols for the treatment of painful conditions in males and females. PMID:28089711

  20. Lineage specific expression of Polycomb Group Proteins in human embryonic stem cells in vitro.

    PubMed

    Pethe, Prasad; Pursani, Varsha; Bhartiya, Deepa

    2015-05-01

    Human embryonic (hES) stem cells are an excellent model to study lineage specification and differentiation into various cell types. Differentiation necessitates repression of specific genes not required for a particular lineage. Polycomb Group (PcG) proteins are key histone modifiers, whose primary function is gene repression. PcG proteins form complexes called Polycomb Repressive Complexes (PRCs), which catalyze histone modifications such as H2AK119ub1, H3K27me3, and H3K9me3. PcG proteins play a crucial role during differentiation of stem cells. The expression of PcG transcripts during differentiation of hES cells into endoderm, mesoderm, and ectoderm lineage is yet to be shown. In-house derived hES cell line KIND1 was differentiated into endoderm, mesoderm, and ectoderm lineages; followed by characterization using RT-PCR for HNF4A, CDX2, MEF2C, TBX5, SOX1, and MAP2. qRT-PCR and western blotting was performed to compare expression of PcG transcripts and proteins across all the three lineages. We observed that cells differentiated into endoderm showed upregulation of RING1B, BMI1, EZH2, and EED transcripts. Mesoderm differentiation was characterized by significant downregulation of all PcG transcripts during later stages. BMI1 and RING1B were upregulated while EZH2, SUZ12, and EED remained low during ectoderm differentiation. Western blotting also showed distinct expression of BMI1 and EZH2 during differentiation into three germ layers. Our study shows that hES cells differentiating into endoderm, mesoderm, and ectoderm lineages show distinct PcG expression profile at transcript and protein level. © 2015 International Federation for Cell Biology.

  1. Determinants of the epithelial-muscular axis on embryonic stem cell-derived gut-like structures.

    PubMed

    Luo, Yi; Takaki, Miyako; Misawa, Hiromi; Matsuyoshi, Hiroko; Sasahira, Tomonori; Chihara, Yoshitomo; Fujii, Kiyomu; Ohmori, Hitoshi; Kuniyasu, Hiroki

    2010-01-01

    Dome-like structures with epithelial-muscular layers resembling the gut have been derived from mouse embryonic stem (ES) cells. These domes have been reported to show spontaneous contractions and are called ES gut. In the present study, we examined the epithelial-muscular axis of these domes by detecting differentiation markers. A normal epithelial-muscular axis was exhibited in the domes with spontaneous motility, whereas the domes without spontaneous motility showed either an inverted or obscure axis. To investigate the factors affecting the epithelial-muscular axis, we examined the expression of hedgehog signaling factors in the domes. Expression of hedgehog family factors was detected in the epithelial components of the domes with motility, whereas this expression was inverted or obscure in the domes without motility. Out of the 25 domes, 10 of the 10 motility (+) domes showed a normal epithelial-muscular axis, whereas 14 of the 15 motility (-) domes lacked a normal epithelial-muscular axis. This implies that activin A upregulated the expression of sonic hedgehog and intestinal alkaline phosphatase in the embryoid bodies. These findings suggest that the motility of the ES gut depends on the domes' epithelial-muscular axis. Copyright © 2010 S. Karger AG, Basel.

  2. Electrical stimulation at the dorsal root ganglion preserves trabecular bone mass and microarchitecture of the tibia in hindlimb-unloaded rats.

    PubMed

    Lau, Y-C; Qian, X; Po, K-T; Li, L-M; Guo, X

    2015-02-01

    This study seeks to investigate the effect of electrical stimulation (ES) at dorsal root ganglion (DRG) on disuse bone loss in a rat model. Hindlimb unloading for 14 days resulted in significant bone loss in rat tibia while rats with ES at DRG showed a significant reduced bone loss Mechanical unloading induces osteoporosis in both human and animals. Previous studies demonstrated that electrical stimulation (ES) to dorsal root ganglion (DRG) could trigger secretion of calcitonin gene-related peptide (CGRP) which plays an important role in bone modeling and remodeling. This study seeks to investigate the effect of ES to DRG on disuse bone loss in a rat model. Twenty-four rats were randomly assigned in three experimental groups: cage control (CC), hindlimb unloading (HU), and hindlimb unloading with ES (HUES). ES was applied via implantable micro-electrical stimulators (IMES) to right DRGs at vertebral levels L4-L6 in HUES group. Hindlimb unloading for 14 days resulted in 25.9% decrease in total bone mineral content (BMC), 29.2% decrease in trabecular BMD and trabecular microarchitecture and connectivity were significantly deteriorated in the proximal tibia metaphysis in HU group, while rats with ES at DRG showed significant reduced bone loss that there was 3.8% increase in total BMC, 2.3% decrease in trabecular BMD, and significant improvement in trabecular microarchitecture. There was a concurrent enhancement of expression of CGRP in stimulated DRGs. The results confirm the effect of ES at DRG on enhancing CGRP expression and suggest potential applications of IMES for the prevention and treatment of disuse bone loss.

  3. Eighteen-Year Cryopreservation Does Not Negatively Affect the Pluripotency of Human Embryos: Evidence from Embryonic Stem Cell Derivation

    PubMed Central

    Rungsiwiwut, Ruttachuk; Numchaisrika, Pranee; Ahnonkitpanit, Vichuda; Isarasena, Nipan; Virutamasen, Pramuan

    2012-01-01

    Abstract Human embryonic stem (hES) cells are considered to be a potential source for the therapy of human diseases, drug screening, and the study of developmental biology. In the present study, we successfully derived hES cell lines from blastocysts developed from frozen and fresh embryos. Seventeen- to eighteen-year-old frozen embryos were thawed, cultured to the blastocyst stage, and induced to form hES cells using human foreskin fibroblasts. The Chula2.hES cell line and the Chula4.hES and Chula5.hES cell lines were derived from blastocysts developed from frozen and fresh embryos, respectively. The cell lines expressed pluripotent markers, including alkaline phosphatase (AP), Oct3/4, stage-specific embryonic antigen (SSEA)-4, and tumor recognition antigen (TRA)-1-60 and TRA-1-81 as detected with immunocytochemistry. The real-time polymerase chain reaction (RT-PCR) results showed that the cell lines expressed pluripotent genes, including OCT3/4, SOX2, NANOG, UTF, LIN28, REX1, NODAL, and E-Cadherin. In addition, the telomerase activities of the cell lines were higher than in the fibroblast cells. Moreover, the cell lines differentiated into all three germ layers both in vitro and in vivo. The cell lines had distinct identities, as revealed with DNA fingerprinting, and maintained their normal karyotype after a long-term culture. This study is the first to report the successful derivation of hES cell lines in Thailand and that frozen embryos maintained their pluripotency similar to fresh embryos, as shown by the success of hES cell derivation, even after years of cryopreservation. Therefore, embryos from prolonged cryopreservation could be an alternative source for embryonic stem cell research. PMID:23514952

  4. Therapeutic approaches for treating hemophilia A using embryonic stem cells.

    PubMed

    Kasuda, Shogo; Tatsumi, Kohei; Sakurai, Yoshihiko; Shima, Midori; Hatake, Katsuhiko

    2016-06-01

    Hemophilia A is an X-linked rescessive bleeding disorder that results from F8 gene aberrations. Previously, we established embryonic stem (ES) cells (tet-226aa/N6-Ainv18) that secrete human factor VIII (hFVIII) by introducing the human F8 gene in mouse Ainv18 ES cells. Here, we explored the potential of cell transplantation therapy for hemophilia A using the ES cells. Transplant tet-226aa/N6-Ainv18 ES cells were injected into the spleens of severe combined immunodeficiency (SCID) mice, carbon tetrachloride (CCl4)-pretreated wild-type mice, and CCl4-pretreated hemophilia A mice. F8 expression was induced by doxycycline in drinking water, and hFVIII-antigen production was assessed in all cell transplantation experiments. Injecting the ES cells into SCID mice resulted in an enhanced expression of the hFVIII antigen; however, teratoma generation was confirmed in the spleen. Transplantation of ES cells into wild-type mice after CCl4-induced liver injury facilitated survival and engraftment of transplanted cells without teratoma formation, resulting in hFVIII production in the plasma. Although CCl4 was lethal to most hemophilia A mice, therapeutic levels of FVIII activity, as well as the hFVIII antigen, were detected in surviving hemophilia A mice after cell transplantation. Immunolocalization results for hFVIII suggested that transplanted ES cells might be engrafted at the periportal area in the liver. Although the development of a safer induction method for liver regeneration is required, our results suggested the potential for developing an effective ES-cell transplantation therapeutic model for treating hemophilia A in the future. Copyright © 2016 King Faisal Specialist Hospital & Research Centre. Published by Elsevier Ltd. All rights reserved.

  5. Early activation of deleterious molecular pathways in the kidney in experimental heart failure with atrial remodeling.

    PubMed

    Ichiki, Tomoko; Huntley, Brenda K; Harty, Gail J; Sangaralingham, S Jeson; Burnett, John C

    2017-05-01

    Heart failure (HF) is a major health problem with worsening outcomes when renal impairment is present. Therapeutics for early phase HF may be effective for cardiorenal protection, however the detailed characteristics of the kidney in early-stage HF (ES-HF), and therefore treatment for potential renal protection, are poorly defined. We sought to determine the gene and protein expression profiles of specific maladaptive pathways of ES-HF in the kidney and heart. Experimental canine ES-HF, characterized by de-novo HF with atrial remodeling but not ventricular fibrosis, was induced by right ventricular pacing for 10 days. Kidney cortex (KC), medulla (KM), left ventricle (LV), and left atrial (LA) tissues from ES-HF versus normal canines ( n  = 4 of each) were analyzed using RT-PCR microarrays and protein assays to assess genes and proteins related to inflammation, renal injury, apoptosis, and fibrosis. ES-HF was characterized by increased circulating natriuretic peptides and components of the renin-angiotensin-aldosterone system and decreased sodium and water excretion with mild renal injury and up-regulation of CNP and renin genes in the kidney. Compared to normals, widespread genes, especially genes of the inflammatory pathways, were up-regulated in KC similar to increases seen in LA Protein expressions related to inflammatory cytokines were also augmented in the KC Gene and protein changes were less prominent in the LV and KM The ES-HF displayed mild renal injury with widespread gene changes and increased inflammatory cytokines. These changes may provide important clues into the pathophysiology of ES-HF and for therapeutic molecular targets in the kidney of ES-HF. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  6. Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa.

    PubMed

    Wang, Nan-Kai; Tosi, Joaquin; Kasanuki, Jennifer Mie; Chou, Chai Lin; Kong, Jian; Parmalee, Nancy; Wert, Katherine J; Allikmets, Rando; Lai, Chi-Chun; Chien, Chung-Liang; Nagasaki, Takayuki; Lin, Chyuan-Sheng; Tsang, Stephen H

    2010-04-27

    To study whether C57BL/6J-Tyr/J (C2J) mouse embryonic stem (ES) cells can differentiate into retinal pigment epithelial (RPE) cells in vitro and then restore retinal function in a model for retinitis pigmentosa: Rpe65/Rpe65 C57BL6 mice. Yellow fluorescent protein (YFP)-labeled C2J ES cells were induced to differentiate into RPE-like structures on PA6 feeders. RPE-specific markers are expressed from differentiated cells in vitro. After differentiation, ES cell-derived RPE-like cells were transplanted into the subretinal space of postnatal day 5 Rpe65/Rpe65 mice. Live imaging of YFP-labeled C2J ES cells demonstrated survival of the graft. Electroretinograms (ERGs) were performed on transplanted mice to evaluate the functional outcome of transplantation. RPE-like cells derived from ES cells sequentially express multiple RPE-specific markers. After transplantation, YFP-labeled cells can be tracked with live imaging for as long as 7 months. Although more than half of the mice were complicated with retinal detachments or tumor development, one fourth of the mice showed increased electroretinogram responses in the transplanted eyes. Rpe65/Rpe65 mice transplanted with RPE-like cells showed significant visual recovery during a 7-month period, whereas those injected with saline, PA6 feeders, or undifferentiated ES cells showed no rescue. ES cells can differentiate, morphologically, and functionally, into RPE-like cells. Based on these findings, differentiated ES cells have the potential for the development of new therapeutic approaches for RPE-specific diseases such as certain forms of retinitis pigmentosa and macular degeneration. Nevertheless, stringent control of retinal detachment and teratoma development will be necessary before initiation of treatment trials.

  7. A FRET-Based Method for Probing the Conformational Behavior of an Intrinsically Disordered Repeat Domain from Bordetella pertussis Adenylate Cyclase

    DTIC Science & Technology

    2009-10-22

    ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES...MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) 11. SPONSOR/MONITOR’S REPORT NUMBER( S ) 12. DISTRIBUTION/AVAILABILITY STATEMENT...fusion protein C*-BR( S )-Y* expression vector pET/C*-CyaA1488-1680-Y*, nonfluorescent CFP expression vector pET/CFP*, and the maltose binding protein-RTX

  8. EphA2 receptor is a key player in the metastatic onset of Ewing sarcoma.

    PubMed

    Garcia-Monclús, Silvia; López-Alemany, Roser; Almacellas-Rabaiget, Olga; Herrero-Martín, David; Huertas-Martinez, Juan; Lagares-Tena, Laura; Alba-Pavón, Piedad; Hontecillas-Prieto, Lourdes; Mora, Jaume; de Álava, Enrique; Rello-Varona, Santi; Giangrande, Paloma H; Tirado, Oscar M

    2018-03-26

    Ewing sarcoma (ES) is the second most common bone malignancy affecting children and young adults with poor prognosis due to high metastasis incidence. Our group previously described that EphA2, a tyrosine kinase receptor, promotes angiogenesis in Ewing sarcoma (ES) cells via ligand-dependent signaling. Now we wanted to explore EphA2 ligand-independent activity, controlled upon phosphorylation at S897 (p-EphA2 S897 ), as it has been linked to metastasis in several malignancies. By reverse genetic engineering we explored the phenotypic changes after EphA2 removal or reintroduction. Gene expression microarray was used to identify key players in EphA2 signaling. Mice were employed to reproduce metastatic processes from orthotopically implanted engineered cells. We established a correlation between ES cells aggressiveness and p-EphA2 S897 . Moreover, stable overexpression of EphA2 in low EphA2 expression ES cells enhanced proliferation and migration, but not a non-phosphorylable mutant (S987A). Consistently, silencing of EphA2 reduced tumorigenicity, migration and invasion in vitro, and lung metastasis incidence in experimental and spontaneous metastasis assays in vivo. A gene expression microarray revealed the implication of EphA2 in cell signaling, cellular movement and survival. ADAM19 knockdown by siRNA technology strongly reproduced the negative effects on cell migration observed after EphA2 silencing. Altogether, our results suggest that p-EphA2 S897 correlates with aggressiveness in ES, so blocking its function may be a promising treatment. © 2018 UICC.

  9. Establishment of goat embryonic stem cells from in vivo produced blastocyst-stage embryos.

    PubMed

    Behboodi, E; Bondareva, A; Begin, I; Rao, K; Neveu, N; Pierson, J T; Wylie, C; Piero, F D; Huang, Y J; Zeng, W; Tanco, V; Baldassarre, H; Karatzas, C N; Dobrinski, I

    2011-03-01

    Embryonic stem (ES) cells with the capacity for germ line transmission have only been verified in mouse and rat. Methods for derivation, propagation, and differentiation of ES cells from domestic animals have not been fully established. Here, we describe derivation of ES cells from goat embryos. In vivo-derived embryos were cultured on goat fetal fibroblast feeders. Embryos either attached to the feeder layer or remained floating and expanded in culture. Embryos that attached showed a prominent inner cell mass (ICM) and those that remained floating formed structures resembling ICM disks surrounded by trophectodermal cells. ICM cells and embryonic disks were isolated mechanically, cultured on feeder cells in the presence of hLIF, and outgrown into ES-like colonies. Two cell lines were cultured for 25 passages and stained positive for alkaline phosphatase, POU5F1, NANOG, SOX2, SSEA-1, and SSEA-4. Embryoid bodies formed in suspension culture without hLIF. One cell line was cultured for 2 years (over 120 passages). This cell line differentiated in vitro into epithelia and neuronal cells, and could be stably transfected and selected for expression of a fluorescent marker. When cells were injected into SCID mice, teratomas were identified 5-6 weeks after transplantation. Expression of known ES cell markers, maintenance in vitro for 2 years in an undifferentiated state, differentiation in vitro, and formation of teratomas in immunodeficient mice provide evidence that the established cell line represents goat ES cells. This also is the first report of teratoma formation from large animal ES cells. Copyright © 2011 Wiley-Liss, Inc.

  10. Meditation programs for veterans with posttraumatic stress disorder: Aggregate findings from a multi-site evaluation.

    PubMed

    Heffner, Kathi L; Crean, Hugh F; Kemp, Jan E

    2016-05-01

    Interest in meditation to manage posttraumatic stress disorder (PTSD) symptoms is increasing. Few studies have examined the effectiveness of meditation programs offered to Veterans within Department of Veterans Affairs (VA) mental health services. The current study addresses this gap using data from a multisite VA demonstration project. Evaluation data collected at 6 VA sites (N = 391 Veterans) before and after a meditation program, and a treatment-as-usual (TAU) program, were examined here using random effects meta-analyses. Site-specific and aggregate between group effect sizes comparing meditation programs to TAU were determined for PTSD severity measured by clinical interview and self-report. Additional outcomes included experiential avoidance and mindfulness. In aggregate, analyses showed medium effect sizes for meditation programs compared to TAU for PTSD severity (clinical interview: effect size (ES) = -0.32; self-report: ES = -0.39). Similarly sized effects of meditation programs were found for overall mindfulness (ES = 0.41) and 1 specific aspect of mindfulness, nonreactivity to inner experience (ES = .37). Additional findings suggested meditation type and program completion differences each moderated program effects. VA-sponsored meditation programs show promise for reducing PTSD severity in Veterans receiving mental health services. Where meditation training fits within mental health services, and for whom programs will be of interest and effective, require further clarification. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Exchange repulsive potential adaptable for electronic structure changes during chemical reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp

    2015-04-28

    Hybrid methods combining quantum mechanical (QM) and classical calculations are becoming important tools in chemistry. The popular approach to calculate the interaction between QM and classical calculations employs interatomic potentials. In most cases, the interatomic potential is constructed of an electrostatic (ES) potential and a non-ES potential. Because QM treatment is employed in the calculation of the ES potential, the electronic change can be considered in this ES potential. However, QM treatment of the non-ES potential is difficult because of high computational cost. To overcome this difficulty of evaluating the non-ES potential, we proposed an exchange repulsive potential as themore » main part of the non-ES potential on the basis of a QM approach. This potential is independent of empirical parameters and adaptable for electronic structure. We combined this potential with the reference interaction site model self-consistent field explicitly including spatial electron density distribution and successfully applied it to the chemical reactions in aqueous phase.« less

  12. Acetylcholinesterases of blood-feeding flies and ticks.

    PubMed

    Temeyer, Kevin B; Tuckow, Alexander P; Brake, Danett K; Li, Andrew Y; Pérez de León, Adalberto A

    2013-03-25

    Acetylcholinesterase (AChE) is the biochemical target of organophosphate (OP) and carbamate pesticides for invertebrates, vertebrate nerve agents, and AChE inhibitors used to reduce effects of Alzheimer's disease. Organophosphate pesticides (OPs) are widely used to control blood-feeding arthropods, including biting flies and ticks. However, resistance to OPs in pests affecting animal and human health has compromised control efficacy. OP resistance often results from mutations producing an OP-insensitive AChE. Our studies have demonstrated production of OP-insensitive AChEs in biting flies and ticks. Complementary DNA (cDNA) sequences encoding AChEs were obtained for the horn fly, stable fly, sand fly, and the southern cattle tick. The availability of cDNA sequences enables the identification of mutations, expression and characterization of recombinant proteins, gene silencing for functional studies, as well as in vitro screening of novel inhibitors. The southern cattle tick expresses at least three different genes encoding AChE in their synganglion, i.e. brain. Gene amplification for each of the three known cattle tick AChE genes and expression of multiple alleles for each gene may reduce fitness cost associated with OP-resistance. AChE hydrolyzes the neurotransmitter, acetylcholine, but may have additional roles in physiology and development. The three cattle tick AChEs possess significantly different biochemical properties, and are expressed in neural and non-neural tissues, which suggest separation of structure and function. The remarkable complexity of AChEs in ticks suggested by combining genomic data from Ixodes scapularis with our genetic and biochemical data from Rhipicephalus microplus is suggestive of previously unknown gene duplication and diversification. Comparative studies between invertebrate and vertebrate AChEs could enhance our understanding of structure-activity relationships. Research with ticks as a model system offers the opportunity to elucidate structure-activity relationships for AChE that are important for advances in targeted pest control, as well as potential applications for medicine and biosecurity. Published by Elsevier Ireland Ltd.

  13. An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers

    PubMed Central

    Cho, Lily Ting-yin; Andrews, Robert; Carroll, Thomas; Iyer, Vivek; Tate, Peri; Rosen, Barry; Stunnenberg, Hendrik G.; Fisher, Amanda G.; Skarnes, William C.

    2017-01-01

    Abstract Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC ‘knockout-first’ ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the ‘knockout-first’ allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency ‘2i’ media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors. PMID:28981838

  14. Stochastic Cell Fate Progression in Embryonic Stem Cells

    NASA Astrophysics Data System (ADS)

    Zou, Ling-Nan; Doyle, Adele; Jang, Sumin; Ramanathan, Sharad

    2013-03-01

    Studies on the directed differentiation of embryonic stem (ES) cells suggest that some early developmental decisions may be stochastic in nature. To identify the sources of this stochasticity, we analyzed the heterogeneous expression of key transcription factors in single ES cells as they adopt distinct germ layer fates. We find that under sufficiently stringent signaling conditions, the choice of lineage is unambiguous. ES cells flow into differentiated fates via diverging paths, defined by sequences of transitional states that exhibit characteristic co-expression of multiple transcription factors. These transitional states have distinct responses to morphogenic stimuli; by sequential exposure to multiple signaling conditions, ES cells are steered towards specific fates. However, the rate at which cells travel down a developmental path is stochastic: cells exposed to the same signaling condition for the same amount of time can populate different states along the same path. The heterogeneity of cell states seen in our experiments therefore does not reflect the stochastic selection of germ layer fates, but the stochastic rate of progression along a chosen developmental path. Supported in part by the Jane Coffin Childs Fund

  15. Molecular cloning and functional analysis of ESGP, an embryonic stem cell and germ cell specific protein.

    PubMed

    Chen, Yan-Mei; Du, Zhong-Wei; Yao, Zhen

    2005-12-01

    Several putative Oct-4 downstream genes from mouse embryonic stem (ES) cells have been identified using the suppression-subtractive hybridization method. In this study, one of the novel genes encoding an ES cell and germ cell specific protein (ESGP) was cloned by rapid amplification of cDNA ends. ESGP contains 801 bp encoding an 84 amino acid small protein and has no significant homology to any known genes. There is a signal peptide at the N-terminal of ESGP protein as predicted by SeqWeb (GCG) (SeqWeb version 2.0.2, http://gcg.biosino.org:8080/). The result of immunofluorescence assay suggested that ESGP might encode a secretory protein. The expression pattern of ESGP is consistent with the expression of Oct-4 during embryonic development. ESGP protein was detected in fertilized oocyte, from 3.5 day postcoital (dpc) blastocyst to 17.5 dpc embryo, and was only detected in testis and ovary tissues in adult. In vitro, ESGP was only expressed in pluripotent cell lines, such as embryonic stem cells, embryonic caoma cells and embryonic germ cells, but not in their differentiated progenies. Despite its specific expression, forced expression of ESGP is not indispensable for the effect of Oct-4 on ES cell self-renewal, and does not affect the differentiation to three germ layers.

  16. Derivation and characterization of hepatic progenitor cells from human embryonic stem cells.

    PubMed

    Zhao, Dongxin; Chen, Song; Cai, Jun; Guo, Yushan; Song, Zhihua; Che, Jie; Liu, Chun; Wu, Chen; Ding, Mingxiao; Deng, Hongkui

    2009-07-31

    The derivation of hepatic progenitor cells from human embryonic stem (hES) cells is of value both in the study of early human liver organogenesis and in the creation of an unlimited source of donor cells for hepatocyte transplantation therapy. Here, we report for the first time the generation of hepatic progenitor cells derived from hES cells. Hepatic endoderm cells were generated by activating FGF and BMP pathways and were then purified by fluorescence activated cell sorting using a newly identified surface marker, N-cadherin. After co-culture with STO feeder cells, these purified hepatic endoderm cells yielded hepatic progenitor colonies, which possessed the proliferation potential to be cultured for an extended period of more than 100 days. With extensive expansion, they co-expressed the hepatic marker AFP and the biliary lineage marker KRT7 and maintained bipotential differentiation capacity. They were able to differentiate into hepatocyte-like cells, which expressed ALB and AAT, and into cholangiocyte-like cells, which formed duct-like cyst structures, expressed KRT19 and KRT7, and acquired epithelial polarity. In conclusion, this is the first report of the generation of proliferative and bipotential hepatic progenitor cells from hES cells. These hES cell-derived hepatic progenitor cells could be effectively used as an in vitro model for studying the mechanisms of hepatic stem/progenitor cell origin, self-renewal and differentiation.

  17. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhen F.; Gai, Hui; Huang, You Z.

    2006-11-01

    Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ESmore » cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines.« less

  18. Donor Dependent Variations in Hematopoietic Differentiation among Embryonic and Induced Pluripotent Stem Cell Lines

    PubMed Central

    Féraud, Olivier; Valogne, Yannick; Melkus, Michael W.; Zhang, Yanyan; Oudrhiri, Noufissa; Haddad, Rima; Daury, Aurélie; Rocher, Corinne; Larbi, Aniya; Duquesnoy, Philippe; Divers, Dominique; Gobbo, Emilie; Brunet de la Grange, Philippe; Louache, Fawzia; Bennaceur-Griscelli, Annelise; Mitjavila-Garcia, Maria Teresa

    2016-01-01

    Hematopoiesis generated from human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) are unprecedented resources for cell therapy. We compared hematopoietic differentiation potentials from ES and iPS cell lines originated from various donors and derived them using integrative and non-integrative vectors. Significant differences in differentiation toward hematopoietic lineage were observed among ES and iPS. The ability of engraftment of iPS or ES-derived cells in NOG mice varied among the lines with low levels of chimerism. iPS generated from ES cell-derived mesenchymal stem cells (MSC) reproduce a similar hematopoietic outcome compared to their parental ES cell line. We were not able to identify any specific hematopoietic transcription factors that allow to distinguish between good versus poor hematopoiesis in undifferentiated ES or iPS cell lines. There is a relatively unpredictable variation in hematopoietic differentiation between ES and iPS cell lines that could not be predicted based on phenotype or gene expression of the undifferentiated cells. These results demonstrate the influence of genetic background in variation of hematopoietic potential rather than the reprogramming process. PMID:26938212

  19. Evaluation of an improved intermediate complexity snow scheme in the ORCHIDEE land surface model

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Ottlé, Catherine; Boone, Aaron; Ciais, Philippe; Brun, Eric; Morin, Samuel; Krinner, Gerhard; Piao, Shilong; Peng, Shushi

    2013-06-01

    Snow plays an important role in land surface models (LSM) for climate and model applied over Fran studies, but its current treatment as a single layer of constant density and thermal conductivity in ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) induces significant deficiencies. The intermediate complexity snow scheme ISBA-ES (Interaction between Soil, Biosphere and Atmosphere-Explicit Snow) that includes key snow processes has been adapted and implemented into ORCHIDEE, referred to here as ORCHIDEE-ES. In this study, the adapted scheme is evaluated against the observations from the alpine site Col de Porte (CDP) with a continuous 18 year data set and from sites distributed in northern Eurasia. At CDP, the comparisons of snow depth, snow water equivalent, surface temperature, snow albedo, and snowmelt runoff reveal that the improved scheme in ORCHIDEE is capable of simulating the internal snow processes better than the original one. Preliminary sensitivity tests indicate that snow albedo parameterization is the main cause for the large difference in snow-related variables but not for soil temperature simulated by the two models. The ability of the ORCHIDEE-ES to better simulate snow thermal conductivity mainly results in differences in soil temperatures. These are confirmed by performing sensitivity analysis of ORCHIDEE-ES parameters using the Morris method. These features can enable us to more realistically investigate interactions between snow and soil thermal regimes (and related soil carbon decomposition). When the two models are compared over sites located in northern Eurasia from 1979 to 1993, snow-related variables and 20 cm soil temperature are better reproduced by ORCHIDEE-ES than ORCHIDEE, revealing a more accurate representation of spatio-temporal variability.

  20. Optimization of culture conditions to support long-term self-renewal of buffalo (Bubalus bubalis) embryonic stem cell-like cells.

    PubMed

    Sharma, Ruchi; George, Aman; Kamble, Nitin Manchindra; Singh, Karn Pratap; Chauhan, Manmohan Singh; Singla, Suresh Kumar; Manik, Radhey Sham; Palta, Prabhat

    2011-12-01

    A culture system capable of sustaining self-renewal of buffalo embryonic stem (ES) cell-like cells in an undifferentiated state over a long period of time was developed. Inner cell masses were seeded on KO-DMEM+15% KO-serum replacer on buffalo fetal fibroblast feeder layer. Supplementation of culture medium with 5 ng/mL FGF-2 and 1000 IU/mL mLIF gave the highest (p<0.05) rate of primary colony formation. The ES cell-like cells' colony survival rate and increase in colony size were highest (p<0.05) following supplementation with FGF-2 and LIF compared to other groups examined. FGF-2 supplementation affected the quantitative expression of NANOG, SOX-2, ACTIVIN A, BMP 4, and TGFβ1, but not OCT4 and GREMLIN. Supplementation with SU5402, an FGFR inhibitor (≥20 μM) increased (p<0.05) the percentage of colonies that differentiated. FGFR1-3 and ERK1, K-RAS, E-RAS, and SHP-2, key signaling intermediates of FGF signaling, were detected in ES cell-like cells. Under culture conditions described, three ES cell lines were derived that, to date, have been maintained for 135, 95, and 85 passages for over 27, 19, and 17 months, respectively, whereas under other conditions examined, ES cell-like cells did not survive beyond passage 10. The ES cell-like cells were regularly monitored for expression of pluripotency markers and their potency to form embryoid bodies.

  1. Embryonic stem-like cells from rabbit blastocysts cultured with melatonin could differentiate into three germ layers in vitro and in vivo.

    PubMed

    Wei, Ruxue; Zhao, Xueming; Hao, Haisheng; Du, Weihua; Zhu, Huabin

    2016-11-01

    The rabbit is considered an important model animal from which to obtain embryonic stem cells because of the utility of this animal in physiology and reproductive research. Here, we derived rabbit ES-like (rES-like) cells from blastocysts of superovulated Japanese white rabbits using culture medium containing 10 -7  M melatonin, 10 ng/mL basic fibroblast growth factor, and 1,000 IU/mL human leukemia inhibitory factor. This concentration of melatonin had the most significant positive effects on the proliferation inner cell mass-derived cells (improving rates from 19.97% to 34.57%) and the longevity of passaging rES-like cells. Melatonin also enhanced the expression of pluripotent genes-including alkaline phosphatase, Pou5f1, Sox2, Klf4, c-Myc, Nanog, Line28a, and surface marker proteins-in fifth-passage rES-like cells. In vitro, these rES-like cells could spontaneously differentiate into some somatic cells, such as beating cardiomyocytes; formed embryoid bodies; expressed markers of the three germ layers after differentiation; and formed teratomas after injection into non-obese diabetic-severe combined immune deficient (NOD-SCID) mice. Thus, melatonin helped coax ES-like cells from rabbit blastocysts, which raises intriguing questions about the relationship between pluripotency and proliferation in rabbit embryonic stem cells. Mol. Reprod. Dev. 83: 1003-1014, 2016 © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Electrostatic interactions guide the active site face of a structure-specific ribonuclease to its RNA substrate.

    PubMed

    Plantinga, Matthew J; Korennykh, Alexei V; Piccirilli, Joseph A; Correll, Carl C

    2008-08-26

    Restrictocin, a member of the alpha-sarcin family of site-specific endoribonucleases, uses electrostatic interactions to bind to the ribosome and to RNA oligonucleotides, including the minimal specific substrate, the sarcin/ricin loop (SRL) of 23S-28S rRNA. Restrictocin binds to the SRL by forming a ground-state E:S complex that is stabilized predominantly by Coulomb interactions and depends on neither the sequence nor structure of the RNA, suggesting a nonspecific complex. The 22 cationic residues of restrictocin are dispersed throughout this protein surface, complicating a priori identification of a Coulomb interacting surface. Structural studies have identified an enzyme-substrate interface, which is expected to overlap with the electrostatic E:S interface. Here, we identified restrictocin residues that contribute to binding in the E:S complex by determining the salt dependence [partial differential log(k 2/ K 1/2)/ partial differential log[KCl

  3. TRAJECTORY OF ECOSYSTEM RECOVERY IN RESTORED RIPARIAN ZONES IN URBAN SETTINGS

    EPA Science Inventory

    Phase I: These results will enable an evaluation of channel incision following restoration. I expect to find that sites restored longer ago will have more stable, less incised channels than more recently restored sites, as the older sites will have had more time to es...

  4. Estrogen-anchored pH-sensitive liposomes as nanomodule designed for site-specific delivery of doxorubicin in breast cancer therapy.

    PubMed

    Paliwal, Shivani R; Paliwal, Rishi; Pal, Harish C; Saxena, Ajeet K; Sharma, Pradyumana R; Gupta, Prem N; Agrawal, Govind P; Vyas, Suresh P

    2012-01-01

    The present investigation reports the development of nanoengineered estrogen receptor (ER) targeted pH-sensitive liposome for the site-specific intracellular delivery of doxorubicin (DOX) for breast cancer therapy. Estrone, a bioligand, was anchored on the surface of pH-sensitive liposome for drug targeting to ERs. The estrone-anchored pH-sensitive liposomes (ES-pH-sensitive-SL) showed fusogenic potential at acidic pH (5.5). In vitro cytotoxicity studies carried out on ER-positive MCF-7 breast carcinoma cells revealed that ES-pH-sensitive-SL formulation was more cytotoxic than non-pH-sensitive targeted liposomes (ES-SL). The flow cytometry analysis confirmed significant enhanced uptake (p < 0.05) of ES-pH-sensitive-SL by MCF-7 cells. Intracellular delivery and nuclear localization of the DOX was confirmed by fluorescence microscopy. The mechanism for higher cytotoxicity shown by estrone-anchored pH-sensitive liposomal-DOX was elucidated using reactive oxygen species (ROS) determination. The in vivo biodistribution studies and antitumor activities of formulations were evaluated on tumor bearing female Balb/c mice followed by intravenous administration. The ES-pH-sensitive-SL efficiently suppressed the breast tumor growth in comparison to both ES-SL and free DOX. Serum enzyme activities such as LDH and CPK levels were assayed for the evaluation of DOX induced cardiotoxicity. The ES-pH-sensitive-SL accelerated the intracellular trafficking of encapsulated DOX, thus increasing the therapeutic efficacy. The findings support that estrone-anchored pH-sensitive liposomes could be one of the promising nanocarriers for the targeted intracellular delivery of anticancer agents to breast cancer with reduced systemic side effects.

  5. Plutonium working group report on environmental, safety and health vulnerabilities associated with the department`s plutonium storage. Volume II, Appendix B, Part 9: Oak Ridge site site team report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-09-01

    This report provides the input to and results of the Department of Energy (DOE) - Oak Ridge Operations (ORO) DOE Plutonium Environment, Safety and Health (ES & H) Vulnerability Assessment (VA) self-assessment performed by the Site Assessment Team (SAT) for the Oak Ridge National Laboratory (ORNL or X-10) and the Oak Ridge Y-12 Plant (Y-12) sites that are managed by Martin Marietta Energy Systems, Inc. (MMES). As initiated (March 15, 1994) by the Secretary of Energy, the objective of the VA is to identify and rank-order DOE-ES&H vulnerabilities associated for the purpose of decision making on the interim safe managementmore » and ultimate disposition of fissile materials. This assessment is directed at plutonium and other co-located transuranics in various forms.« less

  6. An Alternative Culture Method to Maintain Genomic Hypomethylation of Mouse Embryonic Stem Cells Using MEK Inhibitor PD0325901 and Vitamin C.

    PubMed

    Li, Cuiping; Lai, Weiyi; Wang, Hailin

    2018-06-01

    Embryonic stem (ES) cells have the potential to differentiate into any of the three germ layers (endoderm, mesoderm, or ectoderm), and can generate many lineages for regenerative medicine. ES cell culture in vitro has long been the subject of widespread concerns. Classically, mouse ES cells are maintained in serum and leukemia inhibitory factor (LIF)-containing medium. However, under serum/LIF conditions, cells show heterogeneity in morphology and the expression profile of pluripotency-related genes, and are mostly in a metastable state. Moreover, cultured ES cells exhibit global hypermethylation, but naïve ES cells of the inner cell mass (ICM) and primordial germ cells (PGCs) are in a state of global hypomethylation. The hypomethylated state of ICM and PGCs is closely associated with their pluripotency. To improve mouse ES cell culture methods, we have recently developed a new method based on the selectively combined utilization of two small-molecule compounds to maintain the DNA hypomethylated and pluripotent state. Here, we present that the co-treatment of vitamin C (Vc) and PD0325901 can erase about 90% of 5-methylcytosine (5mC) at 5 days in mouse ES cells. The generated 5mC content is comparable to that in PGCs. The mechanistic investigation shows that PD0325901 up-regulates Prdm14 expression to suppress Dnmt3b (de novo DNA methyltransferase) and Dnmt3l (the cofactor of Dnmt3b), by reducing de novo 5mC synthesis. Vc facilitates the conversion of 5mC to 5-hydroxymethylcytosine (5hmC) catalyzed mainly by Tet1 and Tet2, indicating the involvement of both passive and active DNA demethylations. Moreover, under Vc/PD0325901 conditions, mouse ES cells show homogeneous morphology and pluripotent state. Collectively, we propose a novel and chemical-synergy culture method for achieving DNA hypomethylation and maintenance of pluripotency in mouse ES cells. The small-molecule chemical-dependent method overcomes the major shortcomings of serum culture, and holds promise to generate homogeneous ES cells for further clinical applications and researches.

  7. Targeting aminopeptidase N (APN/CD13) with cyclic-imide peptidomimetics derivative CIP-13F inhibits the growth of human ovarian carcinoma cells.

    PubMed

    Cui, Shu-Xiang; Qu, Xian-Jun; Gao, Zu-Hua; Zhang, Yu-Sheng; Zhang, Xiao-Fan; Zhao, Cui-Rong; Xu, Wen-Fang; Li, Qian-Bin; Han, Jin-Xiang

    2010-06-28

    Aminopeptidase N (APN/CD13) is an essential peptidase involved in the process of tumor growth, metastasis and angiogenesis. Inhibition of APN/CD13 may be an effective strategy for cancer treatment. CIP-13F is a cyclic-imide peptidomimetics compound designed to fit the active pockets S1 and S'1 of APN/CD13 that act in tumor proliferation. Our aim in this study was to evaluate the efficacy of CIP-13F as a candidate compound for cancer treatment. The experiments were performed on the human ovarian carcinoma (OVCA) ES-2 and HRA cell lines, which have high and low levels of APN/CD13 respectively. CIP-13F significantly blocked APN/CD13 activity on the surface of ES-2 cells as measured by quantitating the enzymatic cleavage of the substrate l-leucine-p-nitroanilide. CIP-13F effectively inhibited ES-2 cell growth and migration without significant cytotoxic effect. In contrast, CIP-13F did not significantly inhibit HRA cell growth, indicating that CIP-13F may inhibit ES-2 cell growth via suppression of APN/CD13. The suppression of APN/CD13 was also observed by using the assays of flow cytometry and Western blot analysis. Further, the inhibitory effects of CIP-13F on APN/CD13 and on ES-2 proliferation were supported by the induction of ES-2 apoptosis. CIP-13F-treated ES-2 cells resulted apoptotic characteristics, such as induction of externalization of phosphatidylserine and DNA laddering fragment. The activation of caspase-3 and poly ADP-ribose polymerase (PARP) was also enhanced. The inhibitory effects of CIP-13F on APN/CD13 expression and on ES-2 proliferation were confirmed in mice bearing ES-2 xenografts. CIP-13F delayed the growth of ES-2 xenografts in mice after 2 weeks of vena caudalis injection. These results suggest that CIP-13F has a high inhibitory effect on the growth of OVCA cells via decreasing the activity and expression of APN/CD13. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  8. Trichinella spiralis Excretory–Secretory Products Induce Tolerogenic Properties in Human Dendritic Cells via Toll-Like Receptors 2 and 4

    PubMed Central

    Ilic, Nataša; Gruden-Movsesijan, Alisa; Cvetkovic, Jelena; Tomic, Sergej; Vucevic, Dragana Bozidar; Aranzamendi, Carmen; Colic, Miodrag; Pinelli, Elena; Sofronic-Milosavljevic, Ljiljana

    2018-01-01

    Trichinella spiralis, as well as its muscle larvae excretory–secretory products (ES L1), given either alone or via dendritic cells (DCs), induce a tolerogenic immune microenvironment in inbred rodents and successfully ameliorate experimental autoimmune encephalomyelitis. ES L1 directs the immunological balance away from T helper (Th)1, toward Th2 and regulatory responses by modulating DCs phenotype. The ultimate goal of our work is to find out if it is possible to translate knowledge obtained in animal model to humans and to generate human tolerogenic DCs suitable for therapy of autoimmune diseases through stimulation with ES L1. Here, the impact of ES L1 on the activation of human monocyte-derived DCs is explored for the first time. Under the influence of ES L1, DCs acquired tolerogenic (semi-matured) phenotype, characterized by low expression of HLA-DR, CD83, and CD86 as well as moderate expression of CD40, along with the unchanged production of interleukin (IL)-12 and elevated production of IL-10 and transforming growth factor (TGF)-β, compared to controls. The interaction with DCs involved toll-like receptors (TLR) 2 and 4, and this interaction was mainly responsible for the phenotypic and functional properties of ES L1-treated DCs. Importantly, ES L1 potentiated Th2 polarizing capacity of DCs, and impaired their allo-stimulatory and Th1/Th17 polarizing properties. Moreover, ES L1-treated DCs promoted the expansion of IL-10- and TGF-β- producing CD4+CD25hiFoxp3hi T cells in indolamine 2, 3 dioxygenase (IDO)-1-dependent manner and increased the suppressive potential of the primed T cell population. ES L1-treated DCs retained the tolerogenic properties, even after the challenge with different pro-inflammatory stimuli, including those acting via TLR3 and, especially TLR4. These results suggest that the induction of tolerogenic properties of DCs through stimulation with ES L1 could represent an innovative approach for the preparation of tolerogenic DC for treatment of inflammatory and autoimmune disorders. PMID:29416536

  9. Le(x) glycan mediates homotypic adhesion of embryonal cells independently from E-cadherin: a preliminary note.

    PubMed

    Handa, Kazuko; Takatani-Nakase, Tomoka; Larue, Lionel; Stemmler, Marc P; Kemler, Rolf; Hakomori, Sen-itiroh

    2007-06-22

    Le(x) glycan and E-cadherin (Ecad) are co-expressed at embryonal stem (ES) cells and embryonal carcinoma (EC) cells. While the structure and function of Ecad mediating homotypic adhesion of these cells have been well established, evidence that Le(x) glycan also mediates such adhesion is weak, despite the fact that Le(x) oligosaccharide inhibits the compaction process. To provide stronger evidence, we knocked out Ecad gene in EC and ES cells to establish F9 Ecad (-/-) and D3M Ecad (-/-) cells, which highly express Le(x) glycan but do not express Ecad at all. Both F9 Ecad (-/-) and D3M Ecad (-/-) cells displayed strong autoaggregation in the presence of Ca(2+), while PYS-2 cells, which express trace amount of Ecad and undetectable level of Le(x) glycan, did not display autoaggregation. In addition, F9 Ecad (-/-) and D3M Ecad (-/-) cells displayed strong adhesion to plates coated with Le(x) glycosphingolipid (III(3)FucnLc4Cer), in dose-dependent manner, in the presence of Ca(2+). Thus, ES or EC cells display autoaggregation and strong adhesion to Le(x)-coated plates in the absence of Ecad, further supporting the notion of Le(x) self-recognition (i.e., Le(x)-to-Le(x) interaction) in cell adhesion.

  10. Differentiation of embryonic stem cells into hepatocytes that coexpress coagulation factors VIII and IX.

    PubMed

    Cao, Jun; Shang, Chang-zhen; Lü, Li-hong; Qiu, De-chuan; Ren, Meng; Chen, Ya-jin; Min, Jun

    2010-11-01

    To establish an efficient culture system to support embryonic stem (ES) cell differentiation into hepatocytes that coexpress F-VIII and F-IX. Mouse E14 ES cells were cultured in differentiation medium containing sodium butyrate (SB), basic fibroblast growth factor (bFGF), and/or bone morphogenetic protein 4 (BMP4) to induce the differentiation of endoderm cells and hepatic progenitor cells. Hepatocyte growth factor, oncostatin M, and dexamethasone were then used to induce the maturation of ES cell-derived hepatocytes. The mRNA expression levels of endoderm-specific genes and hepatocyte-specific genes, including the levels of F-VIII and F-IX, were detected by RT-PCR and real-time PCR during various stages of differentiation. Protein expression was examined by immunofluorescence and Western blot. At the final stage of differentiation, flow cytometry was performed to determine the percentage of cells coexpressing F-VIII and F-IX, and ELISA was used to detect the levels of F-VIII and F-IX protein secreted into the culture medium. The expression of endoderm-specific and hepatocyte-specific markers was upregulated to highest level in response to the combination of SB, bFGF, and BMP4. Treatment with the three inducers during hepatic progenitor differentiation significantly enhanced the mRNA and protein levels of F-VIII and F-IX in ES cell-derived hepatocytes. More importantly, F-VIII and F-IX were coexpressed with high efficiency at the final stage of differentiation, and they were also secreted into the culture medium. We have established a novel in vitro differentiation protocol for ES-derived hepatocytes that coexpress F-VIII and F-IX that may provide a foundation for stem cell replacement therapy for hemophilia.

  11. Anti-angiogenic activities of snake venom CRISP isolated from Echis carinatus sochureki.

    PubMed

    Lecht, Shimon; Chiaverelli, Rachel A; Gerstenhaber, Jonathan; Calvete, Juan J; Lazarovici, Philip; Casewell, Nicholas R; Harrison, Robert; Lelkes, Peter I; Marcinkiewicz, Cezary

    2015-06-01

    Cysteine-rich secretory protein (CRISP) is present in majority of vertebrate including human. The physiological role of this protein is not characterized. We report that a CRISP isolated from Echis carinatus sochureki venom (ES-CRISP) inhibits angiogenesis. The anti-angiogenic activity of purified ES-CRISP from snake venom was investigated in vitro using endothelial cells assays such as proliferation, migration and tube formation in Matrigel, as well as in vivo in quail embryonic CAM system. The modulatory effect of ES-CRISP on the expression of major angiogenesis factors and activation of angiogenesis pathways was tested by qRT-PCR and Western blot. The amino acid sequence of ES-CRISP was found highly similar to other members of this snake venom protein family, and shares over 50% identity with human CRISP-3. ES-CRISP supported adhesion to endothelial cells, although it was also internalized into the cytoplasm in a granule-like manner. It blocked EC proliferation, migration and tube formation in Matrigel. In the embryonic quail CAM system, ES-CRISP abolished neovascularization process induced by exogenous growth factors (bFGF, vpVEGF) and by developing gliomas. CRISP modulates the expression of several factors at the mRNA level, which were characterized as regulators of angiogenesis and blocked activation of MAPK Erk1/2 induced by VEGF. ES-CRISP was characterized as a negative regulator of the angiogenesis, by direct interaction with endothelial cells. The presented work may lead to the development of novel angiostatic therapy, as well as contribute to the identification of the physiological relevance of this functionally uncharacterized protein. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Differences in alexithymia and emotional awareness in exhaustion syndrome and chronic fatigue syndrome.

    PubMed

    Maroti, Daniel; Molander, Peter; Bileviciute-Ljungar, Indre

    2017-02-01

    Symptoms of Exhaustion Syndrome (ES) and Chronic Fatigue Syndrome (CFS) are overlapping and create difficulties of differential diagnosis. Empirical studies comparing ES and CFS are scarce. This study aims to investigate if there are any emotional differences between ES and CFS. This cross-sectional study compared self-reported alexithymia and observer-rated emotional awareness in patients with ES (n = 31), CFS (n = 38) and healthy controls (HC) (n = 30). Self-reported alexithymia was measured with the Toronto Alexithymia Scale-20 (TAS-20) and emotional awareness with an observer-rated performance test, the Level of Emotional Awareness Scale (LEAS). Additionally, depression and anxiety were scored by the Hospital Anxiety and Depression Scale (HADS). Results show that patients with ES expressed higher self-reported alexithymia in the TAS-20 compared to HC, but had similar emotional awareness capacity in the observer-rated performance test, the LEAS. Patients with CFS expressed more difficulties in identifying emotions compared to HCs, and performed significantly worse in the LEAS-total and spent more time completing the LEAS as compared to HC. Correlation and multiple regressions analyses revealed that depression and anxiety positively correlated with and explained part of the variances in alexithymia scores, while age and group explained the major part of the variance in LEAS. Findings of this study indicate that emotional status is different in patients with ES and CFS with respect to both self-reported alexithymia and observer-rated emotional awareness. Emotional parameters should be approached both in clinical investigation and psychotherapy for patients with ES and CFS. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  13. Patterns and Timing of Failure for Diffuse Large B-Cell Lymphoma After Initial Therapy in a Cohort Who Underwent Autologous Bone Marrow Transplantation for Relapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhakal, Sughosh; Bates, James E.; Casulo, Carla

    Purpose: To evaluate the location and timing of initial recurrence in patients with diffuse large B-cell lymphoma (DLBCL) who subsequently underwent high-dose chemotherapy with autologous stem cell transplant (HDC/ASCT), to direct approaches for disease surveillance, elucidate the patterns of failure of contemporary treatment strategies, and guide adjuvant treatment decisions. Methods and Materials: We analyzed consecutive patients with DLBCL who underwent HDC/ASCT between May 1992 and March 2014 at our institution. Of the 187 evaluable patients, 8 had incomplete data, and 79 underwent HDC/ASCT as a component of initial treatment for de novo or refractory DLBCL and were excluded from furthermore » analysis. Results: The median age was 50.8 years; the median time to relapse was 1.3 years. Patients were segregated according to the initial stage at diagnosis, with early stage (ES) defined as stage I/II and advanced stage (AS) defined as stage III/IV. In total, 40.4% of the ES and 75.5% of the AS patients relapsed in sites of initial disease; 68.4% of those with ES disease and 75.0% of those with AS disease relapsed in sites of initial disease only. Extranodal relapses were common (44.7% in ES and 35.9% in AS) and occurred in a variety of organs, although gastrointestinal tract/liver (n=12) was most frequent. Conclusions: Most patients with DLBCL who relapse and subsequently undergo HDC/ASCT initially recur in the previously involved disease site(s). Time to recurrence is brief, suggesting that frequency of screening is most justifiably greatest in the early posttherapy years. © 2016 Elsevier Inc.« less

  14. CRISPR/Cas9-Mediated Insertion of loxP Sites in the Mouse Dock7 Gene Provides an Effective Alternative to Use of Targeted Embryonic Stem Cells.

    PubMed

    Bishop, Kathleen A; Harrington, Anne; Kouranova, Evguenia; Weinstein, Edward J; Rosen, Clifford J; Cui, Xiaoxia; Liaw, Lucy

    2016-07-07

    Targeted gene mutation in the mouse is a primary strategy to understand gene function and relation to phenotype. The Knockout Mouse Project (KOMP) had an initial goal to develop a public resource of mouse embryonic stem (ES) cell clones that carry null mutations in all genes. Indeed, many useful novel mouse models have been generated from publically accessible targeted mouse ES cell lines. However, there are limitations, including incorrect targeting or cassette structure, and difficulties with germline transmission of the allele from chimeric mice. In our experience, using a small sample of targeted ES cell clones, we were successful ∼50% of the time in generating germline transmission of a correctly targeted allele. With the advent of CRISPR/Cas9 as a mouse genome modification tool, we assessed the efficiency of creating a conditional targeted allele in one gene, dedicator of cytokinesis 7 (Dock7), for which we were unsuccessful in generating a null allele using a KOMP targeted ES cell clone. The strategy was to insert loxP sites to flank either exons 3 and 4, or exons 3 through 7. By coinjecting Cas9 mRNA, validated sgRNAs, and oligonucleotide donors into fertilized eggs from C57BL/6J mice, we obtained a variety of alleles, including mice homozygous for the null alleles mediated by nonhomologous end joining, alleles with one of the two desired loxP sites, and correctly targeted alleles with both loxP sites. We also found frequent mutations in the inserted loxP sequence, which is partly attributable to the heterogeneity in the original oligonucleotide preparation. Copyright © 2016 Bishop et al.

  15. Environmental surveillance for polioviruses in the Global Polio Eradication Initiative.

    PubMed

    Asghar, Humayun; Diop, Ousmane M; Weldegebriel, Goitom; Malik, Farzana; Shetty, Sushmitha; El Bassioni, Laila; Akande, Adefunke O; Al Maamoun, Eman; Zaidi, Sohail; Adeniji, Adekunle J; Burns, Cara C; Deshpande, Jagadish; Oberste, M Steve; Lowther, Sara A

    2014-11-01

    This article summarizes the status of environmental surveillance (ES) used by the Global Polio Eradication Initiative, provides the rationale for ES, gives examples of ES methods and findings, and summarizes how these data are used to achieve poliovirus eradication. ES complements clinical acute flaccid paralysis (AFP) surveillance for possible polio cases. ES detects poliovirus circulation in environmental sewage and is used to monitor transmission in communities. If detected, the genetic sequences of polioviruses isolated from ES are compared with those of isolates from clinical cases to evaluate the relationships among viruses. To evaluate poliovirus transmission, ES programs must be developed in a manner that is sensitive, with sufficiently frequent sampling, appropriate isolation methods, and specifically targeted sampling sites in locations at highest risk for poliovirus transmission. After poliovirus ceased to be detected in human cases, ES documented the absence of endemic WPV transmission and detected imported WPV. ES provides valuable information, particularly in high-density populations where AFP surveillance is of poor quality, persistent virus circulation is suspected, or frequent virus reintroduction is perceived. Given the benefits of ES, GPEI plans to continue and expand ES as part of its strategic plan and as a supplement to AFP surveillance. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. Assessing restoration using ecosystem service benefit indicators: An approach for decision makers

    EPA Science Inventory

    Ecological restoration can reestablish ecosystem services (ES) that provide important social benefits. Managers with limited funds and resources are forced to prioritize potential restoration sites for implementation, and prioritizing restoration sites based on ecological functio...

  17. Cloning and high level expression of gene encoding ES antigen from Trichinella spiralis muscle larvae.

    PubMed

    Yan, Y; Xu, W; Chen, H; Ma, Z; Zhu, Y; Cai, S

    1994-01-01

    The partial structure gene encoding ES antigen derived from Trichinella spiralis (TSP) muscle larvae was cloned, characterized, and expressed in E. coli. The target DNA (0.7 kb) was directly obtained from the TSP total RNA by using RNA PCR technique. Based on the analysis with the RE digestion, the fragment was cloned into the fusion expression vector pEX31C. It was shown that a kind of 37kDa fusion protein was expressed in E. coli containing the recombinant plasmid by SDS-PAGE electrophoresis. The expressed protein was over 22% of the total cell protein, and it was aggregated in the form of inclusion bodies in E. coli. The purified protein could be recognized in ELISA both by sera from swine-infected with TSP and by the monoclonal antibody against TSP. These findings suggest that the recombinant protein is a potentially valuable antigen both for immunodiagnosis and vaccine development of trichinellosis.

  18. [The mechanism of vasculogenesis: the critical role of transforming growth factor-beta 1 in the formation of vessel-like structures during the differentiation in vitro of murine embryonic stem cells].

    PubMed

    Tsung, H C; Yao, Z

    1996-09-01

    When ES-5 cells were transfected with an exogenous porcine TGF-beta 1 gene, one can obtain clones of genetically modified ES cells with over-expression of the transfected gene. We called the genetically modified ES-5 cells as ES-T cells. When ES-T cells were used to study their differentiation in vitro by all trans-retinoic acid (RA), it was soon noticed that embryoid bodies of ES-T cells can exclusively differentiate into endothelial cells and vessel-like structures, but not in their parent ES-5 cells. The above result is the first indication that the differentiation of tubular structures in embryoid bodies of ES-T cells may somehow be related to TGF-beta 1. To demonstrate further the role of TGF-beta 1 in the formation of vessel-like structures, the cultured ES-5 cells in the presence of added rhTGF-beta 1 were closely followed in the course of their differentiation. We have, thus, demonstrated the promoting effects of exogenous rhTGF-beta 1 in the formation of vessel-like structures, morphologically similar to those structures derived from ES-T6 cells, during the differentiation of ES-5 cells, both in monolayer culture, in three dimensional collagen gel and in embryoid bodies cultured on gelatin-coated tissue culture wells. Addition of suitable amount of anti-TGF-beta 1 monoclonal antibody IgG (TB21) to the culture medium of embryoid bodies of ES-T6 cells could effectively abolish the formation of vessel-like structures induced by retinoic acid. The percentage of the inhibition was very high, giving a figure comparable to that of atypical vessel-like structures formed in the control embryoid bodies from their parent ES-5 cells. The flat epithelial-like cells and round cells differentiated from embryoid bodies of ES-T6 cells were stained rather strongly for laminin and type IV collagen by immunofluorescent procedure. The above results indicate clearly that TGF-beta 1 is a crucial factor in organizing the differentiated derivatives (endothelial-like cells and their immediate progenitor cells) from ES-T6 cells to form vessel-like structures, and that the role of TGF-beta 1 in vasculogenesis might be performed, in part, through the modulation of the composition and organization of the extracellular matrix. In addition, the enhanced expression of bFGF mRNA in derivatives differentiated from both ES-5 cells treated with rhTGF-beta 1 and ES-T6 cells were detected by Northern blot analysis. Thus, aside from its effects on extracellular matrix, TGF-beta 1 might also modulate the bioactivity of bFGF in relation to the growth of vascular endothelial cells in the present system.

  19. Environmental projects. Volume 14: Removal of contaminated soil and debris

    NASA Technical Reports Server (NTRS)

    Kushner, Len

    1992-01-01

    Numerous diverse activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of six parabolic dish antennas. Some of these activities can result in possible spills or leakages of hazardous materials and wastes stored both above ground in steel drums and below ground in underground storage tanks (UST's). These possible leaks or spills, along with the past practice of burial of solid debris and waste in trenches and pits, could cause local subsurface contamination of the soil. In 1987, the Jet Propulsion Laboratory (JPL), retained Engineering-Science, Inc. (E-S), Pasadena, California, to identify the specific local areas within the GDSCC with subsurface soil contamination. The E-S study determined that some of the soils at the Apollo Site and the Mars Site were contaminated with hydrocarbons, while soil at a nonhazardous waste dumpsite at the Mojave Base site was contaminated with copper. This volume is a JPL-expanded version of the PE209 E-S report, and it also reports that all subsurface contaminated soils at the GDSCC were excavated, removed, and disposed of in an environmentally acceptable way, and the excavations were backfilled and covered in accordance with accepted Federal, State, and local environmental rules and regulations.

  20. An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers.

    PubMed

    Fisher, Cynthia L; Marks, Hendrik; Cho, Lily Ting-Yin; Andrews, Robert; Wormald, Sam; Carroll, Thomas; Iyer, Vivek; Tate, Peri; Rosen, Barry; Stunnenberg, Hendrik G; Fisher, Amanda G; Skarnes, William C

    2017-12-01

    Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca(2+) signals and an IL-6 autocrine loop.

    PubMed

    Bustamante, Mario; Fernández-Verdejo, Rodrigo; Jaimovich, Enrique; Buvinic, Sonja

    2014-04-15

    Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop.

  2. Novel joint selection methods can reduce sample size for rheumatoid arthritis clinical trials with ultrasound endpoints.

    PubMed

    Allen, John C; Thumboo, Julian; Lye, Weng Kit; Conaghan, Philip G; Chew, Li-Ching; Tan, York Kiat

    2018-03-01

    To determine whether novel methods of selecting joints through (i) ultrasonography (individualized-ultrasound [IUS] method), or (ii) ultrasonography and clinical examination (individualized-composite-ultrasound [ICUS] method) translate into smaller rheumatoid arthritis (RA) clinical trial sample sizes when compared to existing methods utilizing predetermined joint sites for ultrasonography. Cohen's effect size (ES) was estimated (ES^) and a 95% CI (ES^L, ES^U) calculated on a mean change in 3-month total inflammatory score for each method. Corresponding 95% CIs [nL(ES^U), nU(ES^L)] were obtained on a post hoc sample size reflecting the uncertainty in ES^. Sample size calculations were based on a one-sample t-test as the patient numbers needed to provide 80% power at α = 0.05 to reject a null hypothesis H 0 : ES = 0 versus alternative hypotheses H 1 : ES = ES^, ES = ES^L and ES = ES^U. We aimed to provide point and interval estimates on projected sample sizes for future studies reflecting the uncertainty in our study ES^S. Twenty-four treated RA patients were followed up for 3 months. Utilizing the 12-joint approach and existing methods, the post hoc sample size (95% CI) was 22 (10-245). Corresponding sample sizes using ICUS and IUS were 11 (7-40) and 11 (6-38), respectively. Utilizing a seven-joint approach, the corresponding sample sizes using ICUS and IUS methods were nine (6-24) and 11 (6-35), respectively. Our pilot study suggests that sample size for RA clinical trials with ultrasound endpoints may be reduced using the novel methods, providing justification for larger studies to confirm these observations. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  3. Medaka embryonic stem cells are capable of generating entire organs and embryo-like miniatures.

    PubMed

    Hong, Ni; He, Bei Ping; Schartl, Manfred; Hong, Yunhan

    2013-03-01

    Embryonic stem (ES) cells have the potency to produce many cell types of the embryo and adult body. Upon transplantation into early host embryos, ES cells are able to differentiate into various specialized cells and contribute to host tissues and organs of all germ layers. Here we present data in the fish medaka (Oryzias latipes) that ES cells have a novel ability to form extra organs and even embryo-like miniatures. Upon transplantation as individual cells according to the standard procedure, ES cells distributed widely to various organ systems of 3 germ layers. Upon transplantation as aggregates, ES cells were able to form extra organs, including the hematopoietic organ and contracting heart. We show that localized ES cell transplantation often led to the formation of extra axes that comprised essentially of either host cells or donor ES cells. These extra axes were associated with the head region of the embryo proper or formed at ectopic sites on the yolk sac. Surprisingly, certain ectopic axes were even capable of forming embryo-like miniatures. We conclude that ES cells have the ability to form entire organs and even embryo-like miniatures under proper environmental conditions. This finding points to a new possibility to generate ES cell-derived axes and organs.

  4. MED1 mediates androgen receptor splice variant induced gene expression in the absence of ligand

    PubMed Central

    Liu, Gang; Sprenger, Cynthia; Wu, Pin-Jou; Sun, Shihua; Uo, Takuma; Haugk, Kathleen; Epilepsia, Kathryn Soriano; Plymate, Stephen

    2015-01-01

    The appearance of constitutively active androgen receptor splice variants (AR-Vs) has been proposed as one of the causes of castration-resistant prostate cancer (CRPC). However, the underlying mechanism of AR-Vs in CRPC transcriptional regulation has not been defined. A distinct transcriptome enriched with cell cycle genes, e.g. UBE2C, has been associated with AR-Vs, which indicates the possibility of an altered transcriptional mechanism when compared to full-length wild-type AR (ARfl). Importantly, a recent study reported the critical role of p-MED1 in enhancing UBE2C expression through a locus looping pattern, which only occurs in CRPC but not in androgen-dependent prostate cancer (ADPC). To investigate the potential correlation between AR-V and MED1, in the present study we performed protein co-immunoprecipitation, chromatin immunoprecipitation, and cell proliferation assays and found that MED1 is necessary for ARv567es induced UBE2C up-regulation and subsequent prostate cancer cell growth. Furthermore, p-MED1 is bound to ARv567es independent of full-length AR; p-MED1 has higher recruitment to UBE2C promoter and enhancer regions in the presence of ARv567es. Our data indicate that p-MED1 serves as a key mediator in ARv567es induced gene expression and suggests a mechanism by which AR-Vs promote the development and progression of CRPC. PMID:25481872

  5. Cyclic Alternating Pattern in Obstructive Sleep Apnea Patients with versus without Excessive Sleepiness.

    PubMed

    Korkmaz, Selda; Bilecenoglu, Nedime Tugce; Aksu, Murat; Yoldas, Tahir Kurtulus

    2018-01-01

    One of the main hypotheses on the development of daytime sleepiness (ES) is increased arousal in obstructive sleep apnea (OSA). Cyclic alternating pattern (CAP) is considered to be the main expression of sleep microstructure rather than arousal. Therefore, we aimed to investigate whether there is any difference between OSA patients with versus without ES in terms of the parameters of sleep macro- and microstructure and which variables are associated with Epworth Sleepiness Scale (ESS) score. Thirty-eight male patients with moderate to severe OSA were divided into two subgroups by having been used to ESS as ES or non-ES. There was no difference between two groups in clinical characteristics and macrostructure parameters of sleep. However, ES group had significantly higher CAP rate, CAP duration, number of CAP cycles, and duration and rate of the subtypes A2 ( p = 0.033, 0.019, 0.013, and 0.019, respectively) and lower mean phase B duration ( p = 0.028) compared with non-ES group. In correlation analysis, ESS score was not correlated with any CAP measure. OSA patients with ES have increased CAP measures rather than those without ES.

  6. Properties of murine embryonic stem cells maintained on human foreskin fibroblasts without LIF.

    PubMed

    Meng, G L; Zur Nieden, N I; Liu, S Y; Cormier, J T; Kallos, M S; Rancourt, D E

    2008-04-01

    In embryonic stem (ES) cells, leukemia inhibitory factor (LIF)/STAT3, wnt and nodal/activin signaling are mainly active to control pluripotency during expansion. To maintain pluripotency, ES cells are typically cultured on feeder cells of varying origins. Murine ES cells are commonly cultured on murine embryonic fibroblasts (MEFs), which senesce early and must be frequently prepared. This process is laborious and leads to batch variation presenting a challenge for high-throughput ES cell expansion. Although some cell lines can be sustained by exogenous LIF, this method is costly. We present here a novel and inexpensive culture method for expanding murine ES cells on human foreskin fibroblast (HFF) feeders. After 20 passages on HFFs without LIF, ES cell lines showed normal expression levels of pluripotency markers, maintained a normal karyotype and retained the ability to contribute to the germline. As HFFs do not senesce for at least 62 passages, they present a vast supply of feeders. Copyright 2007 Wiley-Liss, Inc.

  7. A Flavonoid Compound Promotes Neuronal Differentiation of Embryonic Stem Cells via PPAR-β Modulating Mitochondrial Energy Metabolism.

    PubMed

    Mei, Yu-Qin; Pan, Zong-Fu; Chen, Wen-Teng; Xu, Min-Hua; Zhu, Dan-Yan; Yu, Yong-Ping; Lou, Yi-Jia

    2016-01-01

    Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a.

  8. A Flavonoid Compound Promotes Neuronal Differentiation of Embryonic Stem Cells via PPAR-β Modulating Mitochondrial Energy Metabolism

    PubMed Central

    Mei, Yu-qin; Pan, Zong-fu; Chen, Wen-teng; Xu, Min-hua; Zhu, Dan-yan; Yu, Yong-ping; Lou, Yi-jia

    2016-01-01

    Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a. PMID:27315062

  9. Potential anti-cholinesterase and β-site amyloid precursor protein cleaving enzyme 1 inhibitory activities of cornuside and gallotannins from Cornus officinalis fruits.

    PubMed

    Bhakta, Himanshu Kumar; Park, Chan Hum; Yokozawa, Takako; Tanaka, Takashi; Jung, Hyun Ah; Choi, Jae Sue

    2017-07-01

    Cholinesterase (ChE) and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors are promising agents for the treatment of Alzheimer's disease (AD). In the present study, we examined the inhibitory activity of seven compounds isolated from the fruits of Cornus officinalis, cornuside, polymeric proanthocyanidins, 1,2,3-tri-O-galloyl-β-D-glucose, 1,2,3,6-tetra-O-galloyl-β-D-glucose, tellimagrandin I, tellimagrandin II, and isoterchebin, against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and BACE1. All of the compounds displayed concentration-dependent in vitro inhibitory activity toward the ChEs and BACE1. Among them, tellimagrandin II exhibited the best inhibitory activity toward ChEs, whereas the best BACE1 inhibitor was 1,2,3,6-tetra-O-galloyl-β-D-glucose. Isoterchebin and polymeric proanthocyanidins were also significant ChE inhibitors. The kinetic and docking studies demonstrated that all compounds interacted with both the catalytic active sites and the peripheral anionic sites of the ChEs and BACE1. Tellimagrandin II, isoterchebin, and the polymeric proanthocyanidins exhibited concentration-dependent inhibition of peroxynitrite-mediated protein tyrosine nitration. In conclusion, we identified significant ChE and BACE1 inhibitors from Corni Fructus that could have value as new multi-targeted compounds for anti-AD agents.

  10. Development of a plasmid-based expression system in Clostridium thermocellum and its use to screen heterologous expression of bifunctional alcohol dehydrogenases (adhEs)

    DOE PAGES

    Hon, Shuen; Lanahan, Anthony; Tian, Liang; ...

    2016-04-22

    Clostridium thermocellum is a promising candidate for ethanol production from cellulosic biomass, but requires metabolic engineering to improve ethanol yield. A key gene in the ethanol production pathway is the bifunctional aldehyde and alcohol dehydrogenase, adhE. To explore the effects of overexpressing wild-type, mutant, and exogenous adhEs, we developed a new expression plasmid, pDGO144, that exhibited improved transformation efficiency and better gene expression than its predecessor, pDGO-66. This new expression plasmid will allow for many other metabolic engineering and basic research efforts in C. thermocellum. As proof of concept, we used this plasmid to express 12 different adhE genes (bothmore » wild type and mutant) from several organisms. Ethanol production varied between clones immediately after transformation, but tended to converge to a single value after several rounds of serial transfer. The previously described mutant C. thermocellum D494G adhE gave the best ethanol production, which is consistent with previously published results.« less

  11. Development of a plasmid-based expression system in Clostridium thermocellum and its use to screen heterologous expression of bifunctional alcohol dehydrogenases (adhEs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hon, Shuen; Lanahan, Anthony; Tian, Liang

    Clostridium thermocellum is a promising candidate for ethanol production from cellulosic biomass, but requires metabolic engineering to improve ethanol yield. A key gene in the ethanol production pathway is the bifunctional aldehyde and alcohol dehydrogenase, adhE. To explore the effects of overexpressing wild-type, mutant, and exogenous adhEs, we developed a new expression plasmid, pDGO144, that exhibited improved transformation efficiency and better gene expression than its predecessor, pDGO-66. This new expression plasmid will allow for many other metabolic engineering and basic research efforts in C. thermocellum. As proof of concept, we used this plasmid to express 12 different adhE genes (bothmore » wild type and mutant) from several organisms. Ethanol production varied between clones immediately after transformation, but tended to converge to a single value after several rounds of serial transfer. The previously described mutant C. thermocellum D494G adhE gave the best ethanol production, which is consistent with previously published results.« less

  12. Circadian clock gene plays a key role on ovarian cycle and spontaneous abortion.

    PubMed

    Li, Ruiwen; Cheng, Shuting; Wang, Zhengrong

    2015-01-01

    Circadian locomotor output cycles protein kaput (CLOCK) plays a key role in maintaining circadian rhythms and activation of downstream elements. However, its function on human female reproductive system remains unknown. To investigate the potential role of CLOCK, CLOCK-shRNAs were transfected into mouse 129 ES cells or injected into the ovaries of adult female mice. Western blotting was utilized to analyze the protein interactions and flow cytometry was used to assess apoptosis. The expression of CLOCK peaked at the 6th week in the healthy fetuses. However, an abnormal expression of CLOCK was detected in fetuses from spontaneous miscarriage. To determine the effect of CLOCK on female fertility, a small hairpin RNA (shRNA) strategy was used to specifically knockdown the CLOCK gene expression in vitro and in vivo. Knockdown of CLOCK induced apoptosis in mouse embryonic stem (mES) cells and inhibited the proliferation in mES cells in vitro. CLOCK knockdown also led to decreased release of oocytes and smaller litter size compared with control in vivo. Collectively, theses findings indicate that CLOCK plays an important role in fertility and that the CLOCK knockdown leads to reduction in reproduction and increased miscarriage risk. © 2015 S. Karger AG, Basel.

  13. A zinc finger protein Zfp521 directs neural differentiation and beyond

    PubMed Central

    2011-01-01

    Neural induction is largely considered a default process, whereas little is known about intrinsic factors that drive neural differentiation. Kamiya and colleagues now demonstrate that a transcription factor, Zfp521, is capable of directing embryonic stem (ES) cells into neural progenitors. They discovered that Zfp521 transcripts were enriched in early neural lineage of ES cell differentiation. Forced expression of Zfp521 turned ES cells into neural progenitors in culture conditions that would normally inhibit neural differentiation. Zfp521 was expressed in mouse embryos during gastrulation. The protein was shown to associate with a co-activator p300 and directly induce expression of early neural genes. Knockdown of the Zfp521 by shRNA halted cells at the epiblast stage and suppressed neural differentiation. Zfp521 is a nuclear protein with 30 Krüppel-like zinc fingers mediating multiple protein-protein interactions, and regulates transcription in diverse tissues and organs. The protein promotes proliferation, delays differentiation and reduces apoptosis. The findings by Kamiya and colleagues that Zfp521 directs and sustains early neural differentiation now opens up a series of studies to investigate roles of Zfp521 in stem cells and brain development of mice and men. PMID:21539723

  14. Needles in the EST Haystack: Large-Scale Identification and Analysis of Excretory-Secretory (ES) Proteins in Parasitic Nematodes Using Expressed Sequence Tags (ESTs)

    PubMed Central

    Nagaraj, Shivashankar H.; Gasser, Robin B.; Ranganathan, Shoba

    2008-01-01

    Background Parasitic nematodes of humans, other animals and plants continue to impose a significant public health and economic burden worldwide, due to the diseases they cause. Promising antiparasitic drug and vaccine candidates have been discovered from excreted or secreted (ES) proteins released from the parasite and exposed to the immune system of the host. Mining the entire expressed sequence tag (EST) data available from parasitic nematodes represents an approach to discover such ES targets. Methods and Findings In this study, we predicted, using EST2Secretome, a novel, high-throughput, computational workflow system, 4,710 ES proteins from 452,134 ESTs derived from 39 different species of nematodes, parasitic in animals (including humans) or plants. In total, 2,632, 786, and 1,292 ES proteins were predicted for animal-, human-, and plant-parasitic nematodes. Subsequently, we systematically analysed ES proteins using computational methods. Of these 4,710 proteins, 2,490 (52.8%) had orthologues in Caenorhabditis elegans, whereas 621 (13.8%) appeared to be novel, currently having no significant match to any molecule available in public databases. Of the C. elegans homologues, 267 had strong “loss-of-function” phenotypes by RNA interference (RNAi) in this nematode. We could functionally classify 1,948 (41.3%) sequences using the Gene Ontology (GO) terms, establish pathway associations for 573 (12.2%) sequences using Kyoto Encyclopaedia of Genes and Genomes (KEGG), and identify protein interaction partners for 1,774 (37.6%) molecules. We also mapped 758 (16.1%) proteins to protein domains including the nematode-specific protein family “transthyretin-like” and “chromadorea ALT,” considered as vaccine candidates against filariasis in humans. Conclusions We report the large-scale analysis of ES proteins inferred from EST data for a range of parasitic nematodes. This set of ES proteins provides an inventory of known and novel members of ES proteins as a foundation for studies focused on understanding the biology of parasitic nematodes and their interactions with their hosts, as well as for the development of novel drugs or vaccines for parasite intervention and control. PMID:18820748

  15. Heat shock 70-kDa protein 8 isoform 1 is expressed on the surface of human embryonic stem cells and downregulated upon differentiation.

    PubMed

    Son, Yeon Sung; Park, Jae Hyun; Kang, Young Kook; Park, Jin-Sung; Choi, Hong Seo; Lim, Ji Young; Lee, Jeoung Eun; Lee, Jung Bok; Ko, Myoung Seok; Kim, Yong-Sam; Ko, Jeong-Heon; Yoon, Hyun Soo; Lee, Kwang-Woong; Seong, Rho Hyun; Moon, Shin Yong; Ryu, Chun Jeih; Hong, Hyo Jeong

    2005-01-01

    The cell-surface markers used routinely to define the undifferentiated state and pluripotency of human embryonic stem cells (hESCs) are those used in mouse embryonic stem cells (mESCs) because of a lack of markers directly originated from hESC itself. To identify more hESC-specific cell-surface markers, we generated a panel of monoclonal antibodies (MAbs) by immunizing the irradiated cell clumps of hESC line Miz-hES1, and selected 26 MAbs that were able to bind to Miz-hES1 cells but not to mESCs, mouse embryonic fibroblast cells, and STO cells. Most antibodies did not bind to human neural progenitor cells derived from the Miz-hES1 cells, either. Of these, MAb 20-202S (IgG1, kappa) immunoprecipitated a cell-surface protein of 72-kDa from the lysate of biotin-labeled Miz-hES1 cells, which was identified to be heat shock 70-kDa protein 8 isoform 1 (HSPA8) by quadrupole time-of-flight tandem mass spectrometry. Immunocytochemical analyses proved that the HSPA8 protein was also present on the surface of hESC lines Miz-hES4, Miz-hES6, and HSF6. Two-color flow cytometric analysis of Miz-hES1 and HSF6 showed the coexpression of the HSPA8 protein with other hESC markers such as stage-specific embryonic antigen 3 (SSEA3), SSEA4, TRA-1-60, and TRA-1-81. Flow cytometric and Western blot analyses using various cells showed that MAb 20-202S specifically bound to the HSPA8 protein on the surface of Miz-hES1, contrary to other anti-HSP70 antibodies examined. Furthermore, the surface expression of the HSPA8 protein on Miz-hES1 was markedly downregulated upon differentiation. These data indicate that a novel MAb 20-202S recognizes the HSPA8 protein on the surface of hESCs and suggest that the HSPA8 protein is a putative cell-surface marker for undifferentiated hESCs.

  16. Ephedra-Treated Donor-Derived Gut Microbiota Transplantation Ameliorates High Fat Diet-Induced Obesity in Rats

    PubMed Central

    Wang, Jing-Hua; Kim, Bong-Soo; Han, Kyungsun; Kim, Hojun

    2017-01-01

    Changes in gut microbiota (GM) are closely associated with metabolic syndrome, obesity, type 2 diabetes and so on. Several medicinal herbs, including Ephedra sinica (Es), have anti-obesity effects that ameliorate metabolic disorders. Therefore, in this study we evaluated whether Es maintains its anti-obesity effect through Es-altered gut microbiota (EsM) transplantation. GM was isolated from cecal contents of Es treated and untreated rats following repeated transplants into obese rats via oral gavage over three weeks. High-fat-diet (HFD)-induced obese rats transplanted with EsM lost significant body weight, epididymal fat, and perirenal fat weight, but no remarkable changes were observed in abdominal fat, liver, cecum weight and food efficiency ratio. In addition, treatment with EsM also significantly lowered the fasting blood glucose, serum insulin level, and insulin resistance index. Meanwhile, EsM transplantation significantly reduced gene expression of proinflammatory cytokines interleukin-1 and monocyte chemotactic protein-1. Rats treated with EsM also showed changed GM composition, especially blautia, roseburia and clostridium, significantly reduced the level of endotoxin and markedly increased the acetic acid in feces. Overall, our results demonstrated that EsM ameliorates HFD-induced obesity and related metabolic disorders, like hyperglycemia and insulin resistance, and is strongly associated with modulating the distribution of GM, enterogenous endotoxin and enteral acetic acid. PMID:28545248

  17. Ephedra-Treated Donor-Derived Gut Microbiota Transplantation Ameliorates High Fat Diet-Induced Obesity in Rats.

    PubMed

    Wang, Jing-Hua; Kim, Bong-Soo; Han, Kyungsun; Kim, Hojun

    2017-05-23

    Changes in gut microbiota (GM) are closely associated with metabolic syndrome, obesity, type 2 diabetes and so on. Several medicinal herbs, including Ephedra sinica (Es), have anti-obesity effects that ameliorate metabolic disorders. Therefore, in this study we evaluated whether Es maintains its anti-obesity effect through Es-altered gut microbiota (EsM) transplantation. GM was isolated from cecal contents of Es treated and untreated rats following repeated transplants into obese rats via oral gavage over three weeks. High-fat-diet (HFD)-induced obese rats transplanted with EsM lost significant body weight, epididymal fat, and perirenal fat weight, but no remarkable changes were observed in abdominal fat, liver, cecum weight and food efficiency ratio. In addition, treatment with EsM also significantly lowered the fasting blood glucose, serum insulin level, and insulin resistance index. Meanwhile, EsM transplantation significantly reduced gene expression of proinflammatory cytokines interleukin-1 and monocyte chemotactic protein-1. Rats treated with EsM also showed changed GM composition, especially blautia, roseburia and clostridium, significantly reduced the level of endotoxin and markedly increased the acetic acid in feces. Overall, our results demonstrated that EsM ameliorates HFD-induced obesity and related metabolic disorders, like hyperglycemia and insulin resistance, and is strongly associated with modulating the distribution of GM, enterogenous endotoxin and enteral acetic acid.

  18. The p53 inhibitor, pifithrin-{alpha}, suppresses self-renewal of embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelalim, Essam Mohamed, E-mail: essam_abdelalim@yahoo.com; Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522; Tooyama, Ikuo

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer We determine the role of p53 in ES cells under unstressful conditions. Black-Right-Pointing-Pointer PFT-{alpha} suppresses ES cell proliferation. Black-Right-Pointing-Pointer PFT-{alpha} induces ES cell cycle arrest. Black-Right-Pointing-Pointer PFT-{alpha} downregulates Nanog and cyclin D1. -- Abstract: Recent studies have reported the role of p53 in suppressing the pluripotency of embryonic stem (ES) cells after DNA damage and blocking the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. However, to date no evidence has been presented to support the function of p53 in unstressed ES cells. In this study, we investigated the effect of pifithrin (PFT)-{alpha}, an inhibitor ofmore » p53-dependent transcriptional activation, on self-renewal of ES cells. Our results revealed that treatment of ES cells with PFT-{alpha} resulted in the inhibition of ES cell propagation in a dose-dependent manner, as indicated by a marked reduction in the cell number and colony size. Also, PFT-{alpha} caused a cell cycle arrest and significant reduction in DNA synthesis. In addition, inhibition of p53 activity reduced the expression levels of cyclin D1 and Nanog. These findings indicate that p53 pathway in ES cells rather than acting as an inactive gene, is required for ES cell proliferation and self-renewal under unstressful conditions.« less

  19. The Benefits of Restoration in Urbanizing Watersheds: Developing Value Indicators and Understanding Social Barriers and Opportunities

    EPA Science Inventory

    Ecological restoration can reestablish ecosystem services (ES) that provide important social benefits, but managers with limited funds and resources are forced to prioritize potential restoration sites. Prioritizing restoration sites based on ecological functioning and expected ...

  20. Exploiting Multi-Step Sample Trajectories for Approximate Value Iteration

    DTIC Science & Technology

    2013-09-01

    WORK UNIT NUMBER IH 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AFRL/ RISC 525 Brooks Road, Rome NY 13441-4505 Binghamton University...S) AND ADDRESS(ES) Air Force Research Laboratory/Information Directorate Rome Research Site/ RISC 525 Brooks Road Rome NY 13441-4505 10. SPONSOR...iteration methods for reinforcement learning (RL) generalize experience from limited samples across large state-action spaces. The function approximators

  1. A Process for Comprehensive Educational Change: The Experimental Schools Program in Rural America - A Case Study (1973-1978).

    ERIC Educational Resources Information Center

    Peters, Richard O.

    One of 10 sites chosen for multi-year funding under the National Institute of Education's rural Experimental Schools Program (ES), the New Hampshire School Supervisory Union 58 ES Project was a community-based effort, serving 3 autonomous school districts and operative between July 1973-July 1978. Serving a total population of 3,816, the project…

  2. Particle Dynamics in Linear Resonance Accelerators,

    DTIC Science & Technology

    1982-11-08

    function, which describes the defocusing action of accelerating field eS ’ dE1 Q. (,) _ as, -. .(). (2.57) Before passing to the analysis of equations (2.53...no focusing fields; therefore, according to expressions (2.55), (2.57), DOC - 82105202 PAGE|I eS dE, Q (T) 2 0y- * -N (T). Let us replace derivative of...d2.vS OU Y,-- 1 + Q X (T) X + g0- - -j = 0; d2u _ 2_d_a~g , eS ’ aU’ Let us assume that there is such-stationary distribution of phase density

  3. Survival of priceless cells: active and passive protection of embryonic stem cells against immune destruction.

    PubMed

    Utermöhlen, Olaf; Krönke, Martin

    2007-06-15

    This review focuses on our current knowledge of the mechanisms employed by embryonic stem (ES) cells to avoid destruction by cell-mediated immune responses. Recently, ES cells have been found to shield themselves against cytotoxic effector cells by expressing CD95L and serine protease inhibitor SPI-6 mediating apoptosis of the cytotoxic cells and inactivation of granzyme B, respectively. These findings are discussed in view of their implications for using ES cell-derived transplants in regenerative medicine as well as for our understanding of early embryonic stages during invasion and implantation.

  4. Promoting sexual and reproductive health among adolescents in southern and eastern Africa (PREPARE): project design and conceptual framework.

    PubMed

    Aarø, Leif Edvard; Mathews, Catherine; Kaaya, Sylvia; Katahoire, Anne Ruhweza; Onya, Hans; Abraham, Charles; Klepp, Knut-Inge; Wubs, Annegreet; Eggers, Sander Matthijs; de Vries, Hein

    2014-01-18

    Young people in sub-Saharan Africa are affected by the HIV pandemic to a greater extent than young people elsewhere and effective HIV-preventive intervention programmes are urgently needed. The present article presents the rationale behind an EU-funded research project (PREPARE) examining effects of community-based (school delivered) interventions conducted in four sites in sub-Saharan Africa. One intervention focuses on changing beliefs and cognitions related to sexual practices (Mankweng, Limpopo, South Africa). Another promotes improved parent-offspring communication on sexuality (Kampala, Uganda). Two further interventions are more comprehensive aiming to promote healthy sexual practices. One of these (Western Cape, South Africa) also aims to reduce intimate partner violence while the other (Dar es Salaam, Tanzania) utilises school-based peer education. A modified Intervention Mapping approach is used to develop all programmes. Cluster randomised controlled trials of programmes delivered to school students aged 12-14 will be conducted in each study site. Schools will be randomly allocated (after matching or stratification) to intervention and delayed intervention arms. Baseline surveys at each site are followed by interventions and then by one (Kampala and Limpopo) or two (Western Cape and Dar es Salaam) post-intervention data collections. Questionnaires include questions common for all sites and are partly based on a set of social cognition models previously applied to the study of HIV-preventive behaviours. Data from all sites will be merged in order to compare prevalence and associations across sites on core variables. Power is set to .80 or higher and significance level to .05 or lower in order to detect intervention effects. Intraclass correlations will be estimated from previous surveys carried out at each site. We expect PREPARE interventions to have an impact on hypothesized determinants of risky sexual behaviour and in Western Cape and Dar es Salaam to change sexual practices. Results from PREPARE will (i) identify modifiable cognitions and social processes related to risky sexual behaviour and (ii) identify promising intervention approaches among young adolescents in sub-Saharan cultures and contexts. Controlled Trials ISRCTN56270821 (Cape Town); Controlled Trials ISRCTN10386599 (Limpopo); Clinical Trials NCT01772628 (Kampala); Australian New Zealand Clinical Trials Registry ACTRN12613000900718 (Dar es Salaam).

  5. Promoting sexual and reproductive health among adolescents in southern and eastern Africa (PREPARE): project design and conceptual framework

    PubMed Central

    2014-01-01

    Background Young people in sub-Saharan Africa are affected by the HIV pandemic to a greater extent than young people elsewhere and effective HIV-preventive intervention programmes are urgently needed. The present article presents the rationale behind an EU-funded research project (PREPARE) examining effects of community-based (school delivered) interventions conducted in four sites in sub-Saharan Africa. One intervention focuses on changing beliefs and cognitions related to sexual practices (Mankweng, Limpopo, South Africa). Another promotes improved parent-offspring communication on sexuality (Kampala, Uganda). Two further interventions are more comprehensive aiming to promote healthy sexual practices. One of these (Western Cape, South Africa) also aims to reduce intimate partner violence while the other (Dar es Salaam, Tanzania) utilises school-based peer education. Methods/design A modified Intervention Mapping approach is used to develop all programmes. Cluster randomised controlled trials of programmes delivered to school students aged 12–14 will be conducted in each study site. Schools will be randomly allocated (after matching or stratification) to intervention and delayed intervention arms. Baseline surveys at each site are followed by interventions and then by one (Kampala and Limpopo) or two (Western Cape and Dar es Salaam) post-intervention data collections. Questionnaires include questions common for all sites and are partly based on a set of social cognition models previously applied to the study of HIV-preventive behaviours. Data from all sites will be merged in order to compare prevalence and associations across sites on core variables. Power is set to .80 or higher and significance level to .05 or lower in order to detect intervention effects. Intraclass correlations will be estimated from previous surveys carried out at each site. Discussion We expect PREPARE interventions to have an impact on hypothesized determinants of risky sexual behaviour and in Western Cape and Dar es Salaam to change sexual practices. Results from PREPARE will (i) identify modifiable cognitions and social processes related to risky sexual behaviour and (ii) identify promising intervention approaches among young adolescents in sub-Saharan cultures and contexts. Trial registrations Controlled Trials ISRCTN56270821 (Cape Town); Controlled Trials ISRCTN10386599 (Limpopo); Clinical Trials NCT01772628 (Kampala); Australian New Zealand Clinical Trials Registry ACTRN12613000900718 (Dar es Salaam). PMID:24438582

  6. Tiger Team Assessments seventeen through thirty-five: A summary and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-01

    This report provides a summary and analysis of the Department of Energy's (DOE'S) 19 Tiger Team Assessments that were conducted from October 1990 to July 1992. The sites are listed in the box below, along with their respective program offices and assessment completion dates. This analysis relied solely on the information contained in the Tiger Team Assessment Reports. The findings and concerns documented by the Tiger Teams provide a database of information about the then-current ES H programs and practice. Program Secretarial Officers (PSOS) and field managers may use this information, along with other sources (such as the Corrective Actionmore » Plans, Progress Assessments, and Self-Assessments), to address the ES H deficiencies found, prioritize and plan appropriate corrective actions, measure progress toward solving the problems, strengthen and transfer knowledge about areas where site performance exemplified the ES H mindset, and so forth. Further analyses may be suggested by the analysis presented in this report.« less

  7. Tiger Team Assessments seventeen through thirty-five: A summary and analysis. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-01

    This report provides a summary and analysis of the Department of Energy`s (DOE`S) 19 Tiger Team Assessments that were conducted from October 1990 to July 1992. The sites are listed in the box below, along with their respective program offices and assessment completion dates. This analysis relied solely on the information contained in the Tiger Team Assessment Reports. The findings and concerns documented by the Tiger Teams provide a database of information about the then-current ES&H programs and practice. Program Secretarial Officers (PSOS) and field managers may use this information, along with other sources (such as the Corrective Action Plans,more » Progress Assessments, and Self-Assessments), to address the ES&H deficiencies found, prioritize and plan appropriate corrective actions, measure progress toward solving the problems, strengthen and transfer knowledge about areas where site performance exemplified the ES&H mindset, and so forth. Further analyses may be suggested by the analysis presented in this report.« less

  8. Methylselenium and Prostate Cancer Apoptosis

    DTIC Science & Technology

    2008-02-01

    Page C , Hu C , Nunez G, BakerV. Bcl-xL is expressed in ovarian carcinoma and modu- lates chemotherapy-induced apoptosis. Gynecol Oncol1998;70:398^403...WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS( ES ) 8. PERFORMING ORGANIZATION REPORT NUMBER University of Minnesota...Austin, MN 55912 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS( ES ) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical

  9. A Stoichioproteomic Analysis of Samples from the Human Microbiome Project

    PubMed Central

    Vecchio-Pagan, Briana; Bewick, Sharon; Mainali, Kumar; Karig, David K.; Fagan, William F.

    2017-01-01

    Ecological stoichiometry (ES) uses organism-specific elemental content to explain differences in species life histories, species interactions, community organization, environmental constraints and even ecosystem function. Although ES has been successfully applied to a range of different organisms, most emphasis on microbial ecological stoichiometry focuses on lake, ocean, and soil communities. With the recent advances in human microbiome research, however, large amounts of data are being generated that describe differences in community composition across body sites and individuals. We suggest that ES may provide a framework for beginning to understand the structure, organization, and function of human microbial communities, including why certain organisms exist at certain locations, and how they interact with both the other microbes in their environment and their human host. As a first step, we undertake a stoichioproteomic analysis of microbial communities from different body sites. Specifically, we compare and contrast the elemental composition of microbial protein samples using annotated sequencing data from 690 gut, vaginal, oral, nares, and skin samples currently available through the Human Microbiome Project. Our results suggest significant differences in both the median and variance of the carbon, oxygen, nitrogen, and sulfur contents of microbial protein samples from different locations. For example, whereas proteins from vaginal sites are high in carbon, proteins from skin and nasal sites are high in nitrogen and oxygen. Meanwhile, proteins from stool (the gut) are particularly high in sulfur content. We interpret these differences in terms of the local environments at different human body sites, including atmospheric exposure and food intake rates. PMID:28769875

  10. Ensemble of surrogates-based optimization for identifying an optimal surfactant-enhanced aquifer remediation strategy at heterogeneous DNAPL-contaminated sites

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Lu, Wenxi; Hou, Zeyu; Zhao, Haiqing; Na, Jin

    2015-11-01

    The purpose of this study was to identify an optimal surfactant-enhanced aquifer remediation (SEAR) strategy for aquifers contaminated by dense non-aqueous phase liquid (DNAPL) based on an ensemble of surrogates-based optimization technique. A saturated heterogeneous medium contaminated by nitrobenzene was selected as case study. A new kind of surrogate-based SEAR optimization employing an ensemble surrogate (ES) model together with a genetic algorithm (GA) is presented. Four methods, namely radial basis function artificial neural network (RBFANN), kriging (KRG), support vector regression (SVR), and kernel extreme learning machines (KELM), were used to create four individual surrogate models, which were then compared. The comparison enabled us to select the two most accurate models (KELM and KRG) to establish an ES model of the SEAR simulation model, and the developed ES model as well as these four stand-alone surrogate models was compared. The results showed that the average relative error of the average nitrobenzene removal rates between the ES model and the simulation model for 20 test samples was 0.8%, which is a high approximation accuracy, and which indicates that the ES model provides more accurate predictions than the stand-alone surrogate models. Then, a nonlinear optimization model was formulated for the minimum cost, and the developed ES model was embedded into this optimization model as a constrained condition. Besides, GA was used to solve the optimization model to provide the optimal SEAR strategy. The developed ensemble surrogate-optimization approach was effective in seeking a cost-effective SEAR strategy for heterogeneous DNAPL-contaminated sites. This research is expected to enrich and develop the theoretical and technical implications for the analysis of remediation strategy optimization of DNAPL-contaminated aquifers.

  11. Ensemble of Surrogates-based Optimization for Identifying an Optimal Surfactant-enhanced Aquifer Remediation Strategy at Heterogeneous DNAPL-contaminated Sites

    NASA Astrophysics Data System (ADS)

    Lu, W., Sr.; Xin, X.; Luo, J.; Jiang, X.; Zhang, Y.; Zhao, Y.; Chen, M.; Hou, Z.; Ouyang, Q.

    2015-12-01

    The purpose of this study was to identify an optimal surfactant-enhanced aquifer remediation (SEAR) strategy for aquifers contaminated by dense non-aqueous phase liquid (DNAPL) based on an ensemble of surrogates-based optimization technique. A saturated heterogeneous medium contaminated by nitrobenzene was selected as case study. A new kind of surrogate-based SEAR optimization employing an ensemble surrogate (ES) model together with a genetic algorithm (GA) is presented. Four methods, namely radial basis function artificial neural network (RBFANN), kriging (KRG), support vector regression (SVR), and kernel extreme learning machines (KELM), were used to create four individual surrogate models, which were then compared. The comparison enabled us to select the two most accurate models (KELM and KRG) to establish an ES model of the SEAR simulation model, and the developed ES model as well as these four stand-alone surrogate models was compared. The results showed that the average relative error of the average nitrobenzene removal rates between the ES model and the simulation model for 20 test samples was 0.8%, which is a high approximation accuracy, and which indicates that the ES model provides more accurate predictions than the stand-alone surrogate models. Then, a nonlinear optimization model was formulated for the minimum cost, and the developed ES model was embedded into this optimization model as a constrained condition. Besides, GA was used to solve the optimization model to provide the optimal SEAR strategy. The developed ensemble surrogate-optimization approach was effective in seeking a cost-effective SEAR strategy for heterogeneous DNAPL-contaminated sites. This research is expected to enrich and develop the theoretical and technical implications for the analysis of remediation strategy optimization of DNAPL-contaminated aquifers.

  12. Considerations for applying digital soil mapping to ecological sites

    USDA-ARS?s Scientific Manuscript database

    Recent advancements in the spatial prediction of soil properties are not currently being fully utilized for ecological studies. Linking digital soil mapping (DSM) with ecological sites (ES) has the potential to better land management decisions by improving spatial resolution and precision as well as...

  13. Production of cloned and transgenic embryos using buffalo (Bubalus bubalis) embryonic stem cell-like cells isolated from in vitro fertilized and cloned blastocysts.

    PubMed

    George, Aman; Sharma, Ruchi; Singh, Karn P; Panda, Sudeepta K; Singla, Suresh K; Palta, Prabhat; Manik, Radhaysham; Chauhan, Manmohan S

    2011-06-01

    Here, we report the isolation and characterization of embryonic stem (ES) cell-like cells from cloned blastocysts, generated using fibroblasts derived from an adult buffalo (BAF). These nuclear transfer embryonic stem cell-like cells (NT-ES) grew in well-defined and dome-shaped colonies. The expression pattern of pluripotency marker genes was similar in both NT-ES and in vitro fertilization (IVF) embryo-derived embryonic stem cell-like cells (F-ES). Upon spontaneous differentiation via embryoid body formation, cells of different morphology were observed, among which predominant were endodermal-like and epithelial-like cell types. The ES cell-like cells could be passaged only mechanically and did not form colonies when plated as single cell suspension at different concentrations. When F-ES cell-like, NT-ES cell-like, and BAF cells of same genotype were used for hand-made cloning (HMC), no significant difference (p > 0.05) was observed in cleavage and blastocyst rate. Following transfer of HMC embryos to synchronized recipients, pregnancies were established only with F-ES cell-like and BAF cell-derived embryos, and one live calf was born from F-ES cell-like cells. Further, when transfected NT-ES cell-like cells and BAF were used for HMC, no significant difference (p > 0.05) was observed between cleavage and blastocyst rate. In conclusion, here we report for the first time the derivation of ES cell-like cells from an adult buffalo, and its genetic modification. We also report the birth of a live cloned calf from buffalo ES cell-like cells.

  14. Installation Restoration Program. Phase 1. Records Search, Hazardous Materials Disposal Sites, Eglin AFB, Florida

    DTIC Science & Technology

    1981-10-01

    Okaloosa Co. 3-12 Crestview South Quadrangle, Florida-Okaloosa Co. -13 Mossy ead Quadrangle, Florida-Walton Co 3-14 E-1 EGUN AFB 4,h aa V, WRAMATIO...I) Um AYPM hIN1DS SP * So". AM T 0 Tou A is a O I. h E-2 ES ENGINEERING -SCIENCE V%777-7NN7 .7-7 EGUN AFB 0.4 .m ... (1) WMg LAN DOSAMU *Y* CO u...r Oumm *p S(S Ann~ Il~~O 0*aAMa 2-3 ES ENGINEER ING - SCIENCE EGUN AFB %Tt MAR ESTHER * : . . - . - ~ - ~ r W R G H T L A N D F I L L 3 SITE 0296

  15. [Optimization of expression conditions and activity identification of hepatocyte-targeting peptide-human endostatin].

    PubMed

    Ma, Yan; Li, Wei; Li, Xiaobo; Bao, Dongmei; Lu, Jianpei

    2016-12-25

    To obtain sufficient purified and active fusion protein-hepatocyte-targeting peptide-human endostatin (HTP-rES), we studied the growth curve and the optimal induction timing of BL21/pET21b-HTP-rES. Different conditions of pH value, induction time, induction concentration and induction temperature were optimized by univariate analysis. After washing, refolding and purifying, the activity of fusion protein was identified by flow cytometry and 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT). Results show that the logarithmic growth phase of BL21/pET21b-HTP-rES was from 1.5 h to 3.5 h, the optimum expression conditions were pH 8.0, 0.06 mmol/L IPTG, at 42 ℃ for 5 h. The purity of inclusion bodies was up to 60% after washing. The purity of target protein was more than 95% after refolding and purification. Our findings provide the foundation for further biological activity and drug development.

  16. Growth factor expression pattern of homologous feeder layer for culturing buffalo embryonic stem cell-like cells.

    PubMed

    Sharma, Ruchi; George, Aman; Kamble, Nitin M; Chauhan, Manmohan S; Singla, Suresh; Manik, Radhey S; Palta, Prabhat

    2012-01-01

    The present study examined the expression profile of buffalo fetal fibroblasts (BFF) used as a feeder layer for embryonic stem (ES) cell-like cells. The expression of important growth factors was detected in cells at different passages. Mitomycin-C inactivation increased relative expression levels of ACTIVIN-A, TGF-β1, BMP-4 and GREMLIN but not of fibroblast growth factor-2 (FGF-2). The expression level of ACTIVIN-A, transforming growth factor-β1 (TGF-β1), bone morphogenetic protein-4 (BMP-4) and FGF-2 was similar in buffalo fetal fibroblast (BFF) cultured in stem cell medium (SCM), SCM+1000IU mL(-1) leukemia inhibitory factor (LIF), SCM+5 ngmL(-1) FGF-2 or SCM+LIF+FGF-2 for 24 h whereas GREMLIN expression was higher in FGF-2-supplemented groups. In spent medium, the concentration of ACTIVIN-A was higher in FGF-2-supplemented groups whereas that of TGF-β1 was similar in SCM and LIF+FGF-2, which was higher than when either LIF or FGF-2 was used alone. Following culture of ES cell-like cells on a feeder layer for 24 h, the TGF-β1 concentration was higher with LIF+FGF-2 than with LIF or FGF-2 alone which, in turn, was higher than that in SCM. In the LIF+FGF-2 group, the concentration of TGF-β1 was lower and that of ACTIVIN-A was higher in spent medium at 24 h than at 48 h of culture. These results suggest that BFF produce signalling molecules that may help in self-renewal of buffalo ES cell-like cells.

  17. BAG3 upregulates Mcl-1 through downregulation of miR-29b to induce anticancer drug resistance in ovarian cancer.

    PubMed

    Sugio, Asuka; Iwasaki, Masahiro; Habata, Shutaro; Mariya, Tasuku; Suzuki, Miwa; Osogami, Hiroyuki; Tamate, Masato; Tanaka, Ryoichi; Saito, Tsuyoshi

    2014-09-01

    Ovarian cancer is the leading cause of death from gynecologic cancer, reflecting its often late diagnosis and its chemoresistance. We identified a set of microRNAs whose expression is altered upon BAG3 knockdown. Our primary objective was to examine the relationships between BAG3, miR-29b and Mcl-1, an antiapoptotic Bcl-2 family protein, in ovarian cancer cells. Ovarian cancer cells were cultured and their responsiveness to paclitaxel was tested. Microarray analysis was performed to identify microRNAs differentially expressed in ES2 BAG3 knockdown ovarian cancer cells and their control cells. Primary ovarian cancer tissues were obtained from 56 patients operated on for ovarian cancer. The patients' clinical and pathological data were obtained from their medical records. BAG3 knockdown increased the chemosensitivity to paclitaxel of ES2 ovarian clear cell carcinoma cells to a greater degree than AMOC2 serous adenocarcinoma cells. qRT-PCR analysis showed that miR-29b expression was significantly upregulated in primary cancer tissue expressing low levels of BAG3, as compared to tissue expressing high levels. Moreover, levels of miR-29b correlated significantly with progression-free survival. Upregulation of miR-29b also reduced levels of Mcl-1 and sensitized ES2 cells to low-dose paclitaxel. BAG3 knockdown appears to downregulate expression of Mcl-1 through upregulation of miR-29b, thereby increasing the chemosensitivity of ovarian clear cell carcinoma cells. This suggests that BAG3 is a key determinant of the responsiveness of ovarian cancer cells, especially clear cell carcinoma, to paclitaxel and that BAG3 may be a useful therapeutic target for the treatment of ovarian cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Tunable engineered skin mechanics via coaxial electrospun fiber core diameter.

    PubMed

    Blackstone, Britani Nicole; Drexler, Jason William; Powell, Heather Megan

    2014-10-01

    Autologous engineered skin (ES) offers promise as a treatment for massive full thickness burns. Unfortunately, ES is orders of magnitude weaker than normal human skin causing it to be difficult to apply surgically and subject to damage by mechanical shear in the early phases of engraftment. In addition, no manufacturing strategy has been developed to tune ES biomechanics to approximate the native biomechanics at different anatomic locations. To enhance and tune ES biomechanics, a coaxial (CoA) electrospun scaffold platform was developed from polycaprolactone (PCL, core) and gelatin (shell). The ability of the coaxial fiber core diameter to control both scaffold and tissue mechanics was investigated along with the ability of the gelatin shell to facilitate cell adhesion and skin development compared to pure gelatin, pure PCL, and a gelatin-PCL blended fiber scaffold. CoA ES exhibited increased cellular adhesion and metabolism versus PCL alone or gelatin-PCL blend and promoted the development of well stratified skin with a dense dermal layer and a differentiated epidermal layer. Biomechanics of the scaffold and ES scaled linearly with core diameter suggesting that this scaffold platform could be utilized to tailor ES mechanics for their intended grafting site and reduce graft damage in vitro and in vivo.

  19. Multisite external validation of a risk prediction model for the diagnosis of blood stream infections in febrile pediatric oncology patients without severe neutropenia.

    PubMed

    Esbenshade, Adam J; Zhao, Zhiguo; Aftandilian, Catherine; Saab, Raya; Wattier, Rachel L; Beauchemin, Melissa; Miller, Tamara P; Wilkes, Jennifer J; Kelly, Michael J; Fernbach, Alison; Jeng, Michael; Schwartz, Cindy L; Dvorak, Christopher C; Shyr, Yu; Moons, Karl G M; Sulis, Maria-Luisa; Friedman, Debra L

    2017-10-01

    Pediatric oncology patients are at an increased risk of invasive bacterial infection due to immunosuppression. The risk of such infection in the absence of severe neutropenia (absolute neutrophil count ≥ 500/μL) is not well established and a validated prediction model for blood stream infection (BSI) risk offers clinical usefulness. A 6-site retrospective external validation was conducted using a previously published risk prediction model for BSI in febrile pediatric oncology patients without severe neutropenia: the Esbenshade/Vanderbilt (EsVan) model. A reduced model (EsVan2) excluding 2 less clinically reliable variables also was created using the initial EsVan model derivative cohort, and was validated using all 5 external validation cohorts. One data set was used only in sensitivity analyses due to missing some variables. From the 5 primary data sets, there were a total of 1197 febrile episodes and 76 episodes of bacteremia. The overall C statistic for predicting bacteremia was 0.695, with a calibration slope of 0.50 for the original model and a calibration slope of 1.0 when recalibration was applied to the model. The model performed better in predicting high-risk bacteremia (gram-negative or Staphylococcus aureus infection) versus BSI alone, with a C statistic of 0.801 and a calibration slope of 0.65. The EsVan2 model outperformed the EsVan model across data sets with a C statistic of 0.733 for predicting BSI and a C statistic of 0.841 for high-risk BSI. The results of this external validation demonstrated that the EsVan and EsVan2 models are able to predict BSI across multiple performance sites and, once validated and implemented prospectively, could assist in decision making in clinical practice. Cancer 2017;123:3781-3790. © 2017 American Cancer Society. © 2017 American Cancer Society.

  20. 10 CFR 850 Implementation of Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S

    2012-01-05

    10 CFR 850 defines a contractor as any entity, including affiliated entities, such as a parent corporation, under contract with DOE, including a subcontractor at any tier, with responsibility for performing work at a DOE site in furtherance of a DOE mission. The Chronic Beryllium Disease Prevention Program (CBDPP) applies to beryllium-related activities that are performed at the Lawrence Livermore National Laboratory (LLNL). The CBDPP or Beryllium Safety Program is integrated into the LLNL Worker Safety and Health Program and, thus, implementation documents and responsibilities are integrated in various documents and organizational structures. Program development and management of the CBDPPmore » is delegated to the Environment, Safety and Health (ES&H) Directorate, Worker Safety and Health Functional Area. As per 10 CFR 850, Lawrence Livermore National Security, LLC (LLNS) periodically submits a CBDPP to the National Nuclear Security Administration/Livermore Site Office (NNSA/LSO). The requirements of this plan are communicated to LLNS workers through ES&H Manual Document 14.4, 'Working Safely with Beryllium.' 10 CFR 850 is implemented by the LLNL CBDPP, which integrates the safety and health standards required by the regulation, components of the LLNL Integrated Safety Management System (ISMS), and incorporates other components of the LLNL ES&H Program. As described in the regulation, and to fully comply with the regulation, specific portions of existing programs and additional requirements are identified in the CBDPP. The CBDPP is implemented by documents that interface with the workers, principally through ES&H Manual Document 14.4. This document contains information on how the management practices prescribed by the LLNL ISMS are implemented, how beryllium hazards that are associated with LLNL work activities are controlled, and who is responsible for implementing the controls. Adherence to the requirements and processes described in the ES&H Manual ensures that ES&H practices across LLNL are developed in a consistent manner. Other implementing documents, such as the ES&H Manual, are integral in effectively implementing 10 CFR 850.« less

  1. Effective Half-Life of Caesium-137 in Various Environmental Media at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paller, M. H.; Jannik, G. T.; Baker, R. A.

    2014-05-01

    During the operational history of the Savannah River Site (SRS), many different radionuclides have been released from site facilities into the SRS environment. However, only a relatively small number of pathways, most importantly 137Cs in fish and deer, have contributed significantly to doses and risks to the public. The “effective” half-lives (T e) of 137Cs (which include both physical decay and environmental dispersion) in Savannah River floodplain soil and vegetation and in fish and white-tailed deer from the SRS were estimated using long-term monitoring data. For 1974–2011, the T es of 137Cs in Savannah River floodplain soil and vegetation weremore » 17.0 years (95% CI = 14.2–19.9) and 13.4 years (95% CI = 10.8–16.0), respectively. These T es were greater than in a previous study that used data collected only through 2005 as a likely result of changes in the flood regime of the Savannah River. Field analyses of 137Cs concentrations in deer collected during yearly controlled hunts at the SRS indicated an overall T e of 15.9 years (95% CI = 12.3–19.6) for 1965–2011; however, the T e for 1990–2011 was significantly shorter (11.8 years, 95% CI = 4.8–18.8) due to an increase in the rate of 137Cs removal. The shortest T es were for fish in SRS streams and the Savannah River (3.5–9.0 years), where dilution and dispersal resulted in rapid 137Cs removal. Long-term data show that T es are significantly shorter than the physical half-life of 137Cs in the SRS environment but that they can change over time. Therefore, it is desirable have a long period of record for calculating Tes and risky to extrapolate T es beyond this period unless the processes governing 137Cs removal are clearly understood.« less

  2. Three weeks of eccentric training combined with overspeed exercises enhances power and running speed performance gains in trained athletes.

    PubMed

    Cook, Christian J; Beaven, C Martyn; Kilduff, Liam P

    2013-05-01

    Eccentric and overspeed training modalities are effective in improving components of muscular power. Eccentric training induces specific training adaptations relating to muscular force, whereas overspeed stimuli target the velocity component of power expression. We aimed to compare the effects of traditional or eccentric training with volume-matched training that incorporated overspeed exercises. Twenty team-sport athletes performed 4 counterbalanced 3-week training blocks consecutively as part of a preseason training period: (1) traditional resistance training; (2) eccentric-only resistance training; (3) traditional resistance training with overspeed exercises; and (4) eccentric resistance training with overspeed exercises. The overspeed exercises performed were assisted countermovement jumps and downhill running. Improvements in bench press (15.0 ± 5.1 kg; effect size [ES]: 1.52), squat (19.5 ± 9.1 kg; ES: 1.12), and peak power in the countermovement jump (447 ± 248 W; ES: 0.94) were observed following the 12-week training period. Greater strength increases were observed as a result of the eccentric training modalities (ES: 0.72-1.09) with no effect of the overspeed stimuli on these measures (p > 0.05). Eccentric training with overspeed stimuli was more effective than traditional resistance training in increasing peak power in the countermovement jump (94 ± 55 W; ES: 0.95). Eccentric training induced no beneficial training response in maximal running speed (p > 0.05); however, the addition of overspeed exercises salvaged this relatively negative effect when compared with eccentric training alone (0.03 ± 0.01 seconds; ES: 1.33). These training results achieved in 3-week training blocks suggest that it is important to target-specific aspects of both force and movement velocity to enhance functional measures of power expression.

  3. Osteoprotegerin inhibits bone resorption and prevents tumor development in a xenogenic model of Ewing's sarcoma by inhibiting RANKL

    PubMed Central

    Picarda, Gaëlle; Matous, Etienne; Amiaud, Jérôme; Charrier, Céline; Lamoureux, François; Heymann, Marie-Françoise; Tirode, Franck; Pitard, Bruno; Trichet, Valérie; Heymann, Dominique; Redini, Françoise

    2013-01-01

    Ewing's sarcoma (ES) associated with high osyeolytic lesions typically arises in the bones of children and adolescents. The development of multi-disciplinary therapy has increased current long-term survival rates to greater than 50% but only 20% for high risk group patients (relapse, metastases, etc.). Among new therapeutic approaches, osteoprotegerin (OPG), an anti-bone resorption molecule may represent a promising candidate to inhibit RANKL-mediated osteolytic component of ES and consequently to limit the tumor development. Xenogenic orthotopic models of Ewing's sarcoma were induced by intra-osseous injection of human TC-71 ES cells. OPG was administered in vivo by non-viral gene transfer using an amphiphilic non ionic block copolymer. ES bearing mice were assigned to controls (no treatment, synthetic vector alone or F68/empty pcDNA3.1 plasmid) and hOPG treated groups. A substantial but not significant inhibition of tumor development was observed in the hOPG group as compared to control groups. Marked bone lesions were revealed by micro-computed tomography analyses in control groups whereas a normal bone micro-architecture was preserved in the hOPG treated group. RANKL over-expressed in ES animal model was expressed by tumor cells rather than by host cells. However, TRAIL present in the tumor microenvironment may interfere with OPG effect on tumor development and bone remodeling via RANKL inhibition. In conclusion, the use of a xenogenic model of Ewing's sarcoma allowed discriminating between the tumor and host cells responsible for the elevation of RANKL production observed in this tumor and demonstrated the relevance of blocking RANKL by OPG as a promising therapy in ES. PMID:26909278

  4. Characterization of NaCl tolerance in Desulfovibrio vulgaris Hildenborough through experimental evolution

    PubMed Central

    Zhou, Aifen; Baidoo, Edward; He, Zhili; Mukhopadhyay, Aindrila; Baumohl, Jason K; Benke, Peter; Joachimiak, Marcin P; Xie, Ming; Song, Rong; Arkin, Adam P; Hazen, Terry C; Keasling, Jay D; Wall, Judy D; Stahl, David A; Zhou, Jizhong

    2013-01-01

    Desulfovibrio vulgaris Hildenborough strains with significantly increased tolerance to NaCl were obtained via experimental evolution. A NaCl-evolved strain, ES9-11, isolated from a population cultured for 1200 generations in medium amended with 100 mM NaCl, showed better tolerance to NaCl than a control strain, EC3-10, cultured for 1200 generations in parallel but without NaCl amendment in medium. To understand the NaCl adaptation mechanism in ES9-11, we analyzed the transcriptional, metabolite and phospholipid fatty acid (PLFA) profiles of strain ES9-11 with 0, 100- or 250 mM-added NaCl in medium compared with the ancestral strain and EC3-10 as controls. In all the culture conditions, increased expressions of genes involved in amino-acid synthesis and transport, energy production, cation efflux and decreased expression of flagellar assembly genes were detected in ES9-11. Consistently, increased abundances of organic solutes and decreased cell motility were observed in ES9-11. Glutamate appears to be the most important osmoprotectant in D. vulgaris under NaCl stress, whereas, other organic solutes such as glutamine, glycine and glycine betaine might contribute to NaCl tolerance under low NaCl concentration only. Unsaturation indices of PLFA significantly increased in ES9-11. Branched unsaturated PLFAs i17:1 ω9c, a17:1 ω9c and branched saturated i15:0 might have important roles in maintaining proper membrane fluidity under NaCl stress. Taken together, these data suggest that the accumulation of osmolytes, increased membrane fluidity, decreased cell motility and possibly an increased exclusion of Na+ contribute to increased NaCl tolerance in NaCl-evolved D. vulgaris. PMID:23575373

  5. Distinct Stabilities of the Structurally Homologous Heptameric Co-Chaperonins GroES and gp31

    NASA Astrophysics Data System (ADS)

    Dyachenko, Andrey; Tamara, Sem; Heck, Albert J. R.

    2018-05-01

    The GroES heptamer is the molecular co-chaperonin that partners with the tetradecamer chaperonin GroEL, which assists in the folding of various nonnative polypeptide chains in Escherichia coli. Gp31 is a structural and functional analogue of GroES encoded by the bacteriophage T4, becoming highly expressed in T4-infected E. coli, taking over the role of GroES, favoring the folding of bacteriophage proteins. Despite being slightly larger, gp31 is quite homologous to GroES in terms of its tertiary and quaternary structure, as well as in its function and mode of interaction with the chaperonin GroEL. Here, we performed a side-by-side comparison of GroES and gp31 heptamer complexes by (ion mobility) tandem mass spectrometry. Surprisingly, we observed quite distinct fragmentation mechanisms for the GroES and gp31 heptamers, whereby GroES displays a unique and unusual bimodal charge distribution in its released monomers. Not only the gas-phase dissociation but also the gas-phase unfolding of GroES and gp31 were found to be very distinct. We rationalize these observations with the similar discrepancies we observed in the thermal unfolding characteristics and surface contacts within GroES and gp31 in the solution. From our data, we propose a model that explains the observed simultaneous dissociation pathways of GroES and the differences between GroES and gp31 gas-phase dissociation and unfolding. We conclude that, although GroES and gp31 exhibit high homology in tertiary and quaternary structure, they are quite distinct in their solution and gas-phase (un)folding characteristics and stability. [Figure not available: see fulltext.

  6. Conditional Expression of Wnt4 during Chondrogenesis Leads to Dwarfism in Mice

    PubMed Central

    Lee, Hu-Hui; Behringer, Richard R.

    2007-01-01

    Wnts are expressed in the forming long bones, suggesting roles in skeletogenesis. To examine the action of Wnts in skeleton formation, we developed a genetic system to conditionally express Wnt4 in chondrogenic tissues of the mouse. A mouse Wnt4 cDNA was introduced into the ubiquitously expressed Rosa26 (R26) locus by gene targeting in embryonic stem (ES) cells. The expression of Wnt4 from the R26 locus was blocked by a neomycin selection cassette flanked by loxP sites (floxneo) that was positioned between the Rosa26 promoter and the Wnt4 cDNA, creating the allele designated R26floxneoWnt4. Wnt4 expression was activated during chondrogenesis using Col2a1-Cre transgenic mice that express Cre recombinase in differentiating chondrocytes. R26floxneoWnt4; Col2a1-Cre double heterozygous mice exhibited a growth deficiency, beginning approximately 7 to 10 days after birth, that resulted in dwarfism. In addition, they also had craniofacial abnormalities, and delayed ossification of the lumbar vertebrae and pelvic bones. Histological analysis revealed a disruption in the organization of the growth plates and a delay in the onset of the primary and secondary ossification centers. Molecular studies showed that Wnt4 overexpression caused decreased proliferation and altered maturation of chondrocytes. In addition, R26floxneoWnt4; Col2a1-Cre mice had decreased expression of vascular endothelial growth factor (VEGF). These studies demonstrate that Wnt4 overexpression leads to dwarfism in mice. The data indicate that Wnt4 levels must be regulated in chondrocytes for normal growth plate development and skeletogenesis. Decreased VEGF expression suggests that defects in vascularization may contribute to the dwarf phenotype. PMID:17505543

  7. Effect of human cytomegalovirus infection on the expression of Hoxb2 and Hoxb4 genes in the developmental process of cord blood erythroid progenitors.

    PubMed

    Liu, Wen-Jun; Huang, Mei-Xian; Guo, Qu-Lian; Chen, Jun-Hong; Shi, Han

    2011-01-01

    The aim of the present study was to investigate the role of Hoxb2 and Hoxb4 gene expression induced by human cytomegalovirus (HCMV) and/or all-trans retinoic acid (ATRA) on the proliferation and committed differentiation process of human cord blood hematopoietic stem cells (HSCs) to colony-forming erythroid progenitor cells (CFU-Es) in vitro. Cord blood was collected from the fetal placenta umbilical vein in 12 cases and cultured using hematopoietic stem cell culture technique in vitro. The proliferation and differentiation of cord blood HSCs to CFU-Es were continuously disrupted with HCMV-AD169 and/or 6 x 10⁻⁸ mol/l of ATRA. Expression levels of the Hoxb2 and Hoxb4 genes in the blank, ATRA, HCMV-AD169 and ATRA + HCMV treatment groups of CFU-Es were detected on day 3, 7 and 10 of culture by fluorescent quantitative reverse transcriptase-polymerase chain reaction method. Hoxb2 and Hoxb4 gene expression in each group began on day 3, obviously increased on day 7 and reached a peak on day 10. The expression levels of the Hoxb2 and Hoxb4 genes in the HCMV group were obviously down-regulated compared with the level in the blank group. However, expression levels of the Hoxb2 and Hoxb4 genes were significantly up-regulated in the HCMV + ATRA group compared with the HCMV group (P<0.05). Abnormal expression of the Hoxb2 and Hoxb4 genes induced by HCMV may play important roles in abnormal hematopoietic damage. They were also correlated with the process of erythroid hematopoiesis. ATRA (6 x 10⁻⁸ mol/l) significantly up-regulated expression of the Hoxb2 and Hoxb4 genes in the normal erythroid progenitor cells and in those cells infected with HCMV as well.

  8. Mechanical strain stimulates vasculogenesis and expression of angiogenesis guidance molecules of embryonic stem cells through elevation of intracellular calcium, reactive oxygen species and nitric oxide generation.

    PubMed

    Sharifpanah, Fatemeh; Behr, Sascha; Wartenberg, Maria; Sauer, Heinrich

    2016-12-01

    Differentiation of embryonic stem (ES) cells may be regulated by mechanical strain. Herein, signaling molecules underlying mechanical stimulation of vasculogenesis and expression of angiogenesis guidance cues were investigated in ES cell-derived embryoid bodies. Treatment of embryoid bodies with 10% static mechanical strain using a Flexercell strain system significantly increased CD31-positive vascular structures and the angiogenesis guidance molecules plexinB1, ephrin B2, neuropilin1 (NRP1), semaphorin 4D (sem4D) and robo4 as well as vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-BB (PDGF-BB) as evaluated by Western blot and real time RT-PCR. In contrast ephrin type 4 receptor B (EphB4) expression was down-regulated upon mechanical strain, indicating an arterial-type differentiation. Robo1 protein expression was modestly increased with no change in mRNA expression. Mechanical strain increased intracellular calcium as well as reactive oxygen species (ROS) and nitric oxide (NO). Mechanical strain-induced vasculogenesis was abolished by the NOS inhibitor L-NAME, the NADPH oxidase inhibitor VAS2870, upon chelation of intracellular calcium by BAPTA as well as upon siRNA inactivation of ephrin B2, NRP1 and robo4. BAPTA blunted the strain-induced expression of angiogenic growth factors, the increase in NO and ROS as well as the expression of NRP1, sem4D and plexinB1, whereas ephrin B2, EphB4 as well as robo1 and robo4 expression were not impaired. Mechanical strain stimulates vasculogenesis of ES cells by the intracellular messengers ROS, NO and calcium as well as by upregulation of angiogenesis guidance molecules and the angiogenic growth factors VEGF, FGF-2 and PDGF-BB. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Current-Controlled Electrical Point-Source Stimulation of Embryonic Stem Cells

    PubMed Central

    Chen, Michael Q.; Xie, Xiaoyan; Wilson, Kitchener D.; Sun, Ning; Wu, Joseph C.; Giovangrandi, Laurent; Kovacs, Gregory T. A.

    2010-01-01

    Stem cell therapy is emerging as a promising clinical approach for myocardial repair. However, the interactions between the graft and host, resulting in inconsistent levels of integration, remain largely unknown. In particular, the influence of electrical activity of the surrounding host tissue on graft differentiation and integration is poorly understood. In order to study this influence under controlled conditions, an in vitro system was developed. Electrical pacing of differentiating murine embryonic stem (ES) cells was performed at physiologically relevant levels through direct contact with microelectrodes, simulating the local activation resulting from contact with surrounding electroactive tissue. Cells stimulated with a charged balanced voltage-controlled current source for up to 4 days were analyzed for cardiac and ES cell gene expression using real-time PCR, immunofluorescent imaging, and genome microarray analysis. Results varied between ES cells from three progressive differentiation stages and stimulation amplitudes (nine conditions), indicating a high sensitivity to electrical pacing. Conditions that maximally encouraged cardiomyocyte differentiation were found with Day 7 EBs stimulated at 30 µA. The resulting gene expression included a sixfold increase in troponin-T and a twofold increase in β-MHCwithout increasing ES cell proliferation marker Nanog. Subsequent genome microarray analysis revealed broad transcriptome changes after pacing. Concurrent to upregulation of mature gene programs including cardiovascular, neurological, and musculoskeletal systems is the apparent downregulation of important self-renewal and pluripotency genes. Overall, a robust system capable of long-term stimulation of ES cells is demonstrated, and specific conditions are outlined that most encourage cardiomyocyte differentiation. PMID:20652088

  10. Genome-wide analysis of differential transcriptional and epigenetic variability across human immune cell types.

    PubMed

    Ecker, Simone; Chen, Lu; Pancaldi, Vera; Bagger, Frederik O; Fernández, José María; Carrillo de Santa Pau, Enrique; Juan, David; Mann, Alice L; Watt, Stephen; Casale, Francesco Paolo; Sidiropoulos, Nikos; Rapin, Nicolas; Merkel, Angelika; Stunnenberg, Hendrik G; Stegle, Oliver; Frontini, Mattia; Downes, Kate; Pastinen, Tomi; Kuijpers, Taco W; Rico, Daniel; Valencia, Alfonso; Beck, Stephan; Soranzo, Nicole; Paul, Dirk S

    2017-01-26

    A healthy immune system requires immune cells that adapt rapidly to environmental challenges. This phenotypic plasticity can be mediated by transcriptional and epigenetic variability. We apply a novel analytical approach to measure and compare transcriptional and epigenetic variability genome-wide across CD14 + CD16 - monocytes, CD66b + CD16 + neutrophils, and CD4 + CD45RA + naïve T cells from the same 125 healthy individuals. We discover substantially increased variability in neutrophils compared to monocytes and T cells. In neutrophils, genes with hypervariable expression are found to be implicated in key immune pathways and are associated with cellular properties and environmental exposure. We also observe increased sex-specific gene expression differences in neutrophils. Neutrophil-specific DNA methylation hypervariable sites are enriched at dynamic chromatin regions and active enhancers. Our data highlight the importance of transcriptional and epigenetic variability for the key role of neutrophils as the first responders to inflammatory stimuli. We provide a resource to enable further functional studies into the plasticity of immune cells, which can be accessed from: http://blueprint-dev.bioinfo.cnio.es/WP10/hypervariability .

  11. Efficient Generation of β-Globin-Expressing Erythroid Cells Using Stromal Cell-Derived Induced Pluripotent Stem Cells from Patients with Sickle Cell Disease.

    PubMed

    Uchida, Naoya; Haro-Mora, Juan J; Fujita, Atsushi; Lee, Duck-Yeon; Winkler, Thomas; Hsieh, Matthew M; Tisdale, John F

    2017-03-01

    Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells represent an ideal source for in vitro modeling of erythropoiesis and a potential alternative source for red blood cell transfusions. However, iPS cell-derived erythroid cells predominantly produce ε- and γ-globin without β-globin production. We recently demonstrated that ES cell-derived sacs (ES sacs), known to express hemangioblast markers, allow for efficient erythroid cell generation with β-globin production. In this study, we generated several iPS cell lines derived from bone marrow stromal cells (MSCs) and peripheral blood erythroid progenitors (EPs) from sickle cell disease patients, and evaluated hematopoietic stem/progenitor cell (HSPC) generation after iPS sac induction as well as subsequent erythroid differentiation. MSC-derived iPS sacs yielded greater amounts of immature hematopoietic progenitors (VEGFR2 + GPA-), definitive HSPCs (CD34 + CD45+), and megakaryoerythroid progenitors (GPA + CD41a+), as compared to EP-derived iPS sacs. Erythroid differentiation from MSC-derived iPS sacs resulted in greater amounts of erythroid cells (GPA+) and higher β-globin (and βS-globin) expression, comparable to ES sac-derived cells. These data demonstrate that human MSC-derived iPS sacs allow for more efficient erythroid cell generation with higher β-globin production, likely due to heightened emergence of immature progenitors. Our findings should be important for iPS cell-derived erythroid cell generation. Stem Cells 2017;35:586-596. © 2016 AlphaMed Press.

  12. Efficient differentiation of mouse embryonic stem cells into motor neurons.

    PubMed

    Wu, Chia-Yen; Whye, Dosh; Mason, Robert W; Wang, Wenlan

    2012-06-09

    Direct differentiation of embryonic stem (ES) cells into functional motor neurons represents a promising resource to study disease mechanisms, to screen new drug compounds, and to develop new therapies for motor neuron diseases such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Many current protocols use a combination of retinoic acid (RA) and sonic hedgehog (Shh) to differentiate mouse embryonic stem (mES) cells into motor neurons. However, the differentiation efficiency of mES cells into motor neurons has only met with moderate success. We have developed a two-step differentiation protocol that significantly improves the differentiation efficiency compared with currently established protocols. The first step is to enhance the neuralization process by adding Noggin and fibroblast growth factors (FGFs). Noggin is a bone morphogenetic protein (BMP) antagonist and is implicated in neural induction according to the default model of neurogenesis and results in the formation of anterior neural patterning. FGF signaling acts synergistically with Noggin in inducing neural tissue formation by promoting a posterior neural identity. In this step, mES cells were primed with Noggin, bFGF, and FGF-8 for two days to promote differentiation towards neural lineages. The second step is to induce motor neuron specification. Noggin/FGFs exposed mES cells were incubated with RA and a Shh agonist, Smoothened agonist (SAG), for another 5 days to facilitate motor neuron generation. To monitor the differentiation of mESs into motor neurons, we used an ES cell line derived from a transgenic mouse expressing eGFP under the control of the motor neuron specific promoter Hb9. Using this robust protocol, we achieved 51 ± 0.8% of differentiation efficiency (n = 3; p < 0.01, Student's t-test). Results from immunofluorescent staining showed that GFP+ cells express the motor neuron specific markers, Islet-1 and choline acetyltransferase (ChAT). Our two-step differentiation protocol provides an efficient way to differentiate mES cells into spinal motor neurons.

  13. Human HLA-A*02:01/CHM1+ allo-restricted T cell receptor transgenic CD8+ T Cells specifically inhibit Ewing sarcoma growth in vitro and in vivo

    PubMed Central

    Kirschner, Andreas; Thiede, Melanie; Rubio, Rebeca Alba; Schirmer, David; Kirchner, Thomas; Richter, Gunther H.S.; Mall, Sabine; Klar, Richard; Riddell, Stanley; Busch, Dirk H.; Krackhardt, Angela; Grunewald, Thomas G.P.; Burdach, Stefan

    2016-01-01

    The endochondral bone protein Chondromodulin-I (CHM1) provides oncogene addiction in Ewing sarcoma (ES). We pre-clinically tested the targetability of CHM1 by TCR transgenic, allo-restricted, peptide specific T cells to treat ES. We previously generated allo-restricted wildtype CD8+ T cells directed against the ES specific antigen CHM1319 causing specific responses against ES. However, utilization of these cells in current therapy protocols is hampered due to high complexity in production, relatively low cell numbers, and rapid T cell exhaustion. In order to provide off-the-shelf products in the future, we successfully generated HLA-A*02:01-restricted T cell receptor (TCR) transgenic T cells directed against CHM1319 by retroviral transduction. After short-term expansion a 100% purified CHM1319-TCR-transgenic T cell population expressed a CD62L+/CD45RO and CD62L+/CD45RA+ phenotype. These cells displayed specific in vitro IFNg and granzyme B release in co-culture with HLA-A*02:01+ ES cell lines expressing CHM1. When co-injected with ES cells in Rag2−/−ɣc−/− mice, CHM1-specific TCR-transgenic T cells significantly inhibited the formation of lung and liver metastases in contrast to control mice. Lungs and livers of representative mice displayed CD8+ T cell infiltration in the presence (control group treated with unspecific T cells) and in the absence (study group) of metastatic disease, respectively. Furthermore, mice receiving unspecific T cells showed signs of graft-versus-host-disease in contrast to all mice, receiving CHM1319-TCR-transgenic T cells. CHM1319 specific TCR-transgenic T cells were successfully generated causing anti-ES responses in vitro and in vivo. In the future, CHM1319-TCR-transgenic T cells may control minimal residual disease rendering donor lymphocyte infusions more efficacious and less toxic. PMID:27281613

  14. TBX1 Represses Vegfr2 Gene Expression and Enhances the Cardiac Fate of VEGFR2+ Cells

    PubMed Central

    Lania, Gabriella; Ferrentino, Rosa; Baldini, Antonio

    2015-01-01

    The T-box transcription factor TBX1 has critical roles in maintaining proliferation and inhibiting differentiation of cardiac progenitor cells of the second heart field (SHF). Haploinsufficiency of the gene that encodes it is a cause of congenital heart disease. Here, we developed an embryonic stem (ES) cell-based model in which Tbx1 expression can be modulated by tetracycline. Using this model, we found that TBX1 down regulates the expression of VEGFR2, and we confirmed this finding in vivo during embryonic development. In addition, we found a Vegfr2 domain of expression, not previously described, in the posterior SHF and this expression is extended by loss of Tbx1. VEGFR2 has been previously described as a marker of a subpopulation of cardiac progenitors. Clonal analysis of ES-derived VEGFR2+ cells indicated that 12.5% of clones expressed three markers of cardiac lineage (cardiomyocyte, smooth muscle and endothelium). However, a pulse of Tbx1 expression was sufficient to increase the percentage to 20.8%. In addition, the percentage of clones expressing markers of multiple cardiac lineages increased from 41.6% to 79.1% after Tbx1 pulse. These results suggest that TBX1 plays a role in maintaining a progenitor state in VEGFR2+ cells. PMID:26382615

  15. A new perspective on origin of the East Sea Intermediate Water: Observations of Argo floats

    NASA Astrophysics Data System (ADS)

    Park, JongJin; Lim, Byunghwan

    2018-01-01

    The East Sea Intermediate Water (ESIW), defined as the salinity minimum in the East Sea (hereafter ES) (Sea of Japan), is examined with respect to its overall characteristics and its low salinity origin using historical Argo float data from 1999 to 2015. Our findings suggest that the ESIW is formed in the western Japan Basin (40-42°N, 130-133°E), especially west of the North Korean front in North Korean waters, where strong negative surface wind stress curl resides in wintertime. The core ESIW near the formation site has temperatures of 3-4 °C and less than 33.98 psu salinity, warmer and fresher than that in the southern part of the ES. In order to trace the origin of the warmer and fresher water at the sea surface in winter, we analyzed the data in three different ways: (1) spatial distribution of surface water properties using monthly climatology from the Argo float data, (2) seasonal variation of heat and salt contents at the formation site, and (3) backtracking of surface drifter trajectories. Based on these analyses, it is likely that the warmer and fresher surface water properties found in the ESIW formation site are attributed to the low-salinity surface water advected from the southern part of the ES in autumn.

  16. Regulated expression of Brachyury(T), Nkx1.1 and Pax genes in embryoid bodies.

    PubMed

    Yamada, G; Kioussi, C; Schubert, F R; Eto, Y; Chowdhury, K; Pituello, F; Gruss, P

    1994-03-15

    Embryonic stem cells (ES) can be exploited to analyze in vitro mechanisms of cellular differentiation. We have utilized ES-derived embryoid body formation in an attempt to study cell types resulting from in vitro differentiation. To this end, a variety of molecular markers, preferably those which have been associated with regulatory events during mouse embryogenesis, was employed. Specifically, Brachyury (T), Pax-3 and Pax-6 genes as well as Nkx-1.1 were used. We could demonstrate that the expression of these genes in vitro was regulated by growth factors such as activin A or bFGF. Implications of these findings and the possible applications for identifying new genes are discussed.

  17. Sirt1 Protects Stressed Adult Hematopoietic Stem Cells | Center for Cancer Research

    Cancer.gov

    The immune system relies on a stable pool of hematopoietic stem and progenitor cells (HSPCs) to respond properly to injury or stress. Maintaining genomic integrity and appropriate gene expression is essential for HSPC homeostasis, and dysregulation can result in myeloproliferative disorders or loss of immune function. Sirt1 is a histone deacetylase that can protect embryonic stem (ES) cells from accumulating DNA damage and has been linked to hematopoietic differentiation of ES cells. Satyendra Singh, Ph.D., a postdoctoral fellow working with Philipp Oberdoerffer, Ph.D., in CCR’s Laboratory of Receptor Biology and Gene Expression, and their colleagues set out to determine whether Sirt1 could play a similar protective role in adult HSPCs.

  18. Isolation and culture of rabbit embryonic stem cells.

    PubMed

    Honda, Arata

    2013-01-01

    Mammalian stem cells are invaluable research resources for the study of cell and embryonic development as well as practical tools for use in the production of genetically engineered animals and further therapeutics. It is important that we further our knowledge and understanding of a variety of stem cells from several different animal species before trials in humans commence. Here we describe methods for establishing rabbit embryonic stem (rES) cell lines with indefinite proliferation potential. rES cells attain maximum proliferation potential when cultured at a feeder cell density of one-sixth of that of full confluency. Higher and lower densities of feeder cells induced ES cell differentiation or division arrest. Fibroblast growth factor (FGF)2 can maintain the undifferentiated status of rES cells; however leukemia inhibitory factor (LIF) is dispensable. Under optimized conditions, rES cells could be passaged by trypsinization 50 times. This culture system enabled efficient gene transduction and clonal expansion from single cells. rES cells grew as flat monolayer cell colonies, as reported for monkey and human ES cells, and expressed pluripotency markers. Embryoid bodies and teratomas formed readily in vitro and in vivo, respectively. Characterization of ES cells from different species is important for establishing common features of pluripotency. We have demonstrated the similarity of ES cells between rabbit and humans. These cell lines could be applied directly using gene-targeting techniques, or in combination with induced pluripotent stem cells. Thus, rES cells are a suitable model for studying human transplantation therapy and disease treatments.

  19. Transgenic antigen-specific, HLA-A*02:01-allo-restricted cytotoxic T cells recognize tumor-associated target antigen STEAP1 with high specificity

    PubMed Central

    Schirmer, David; Grünewald, Thomas G. P.; Klar, Richard; Schmidt, Oxana; Wohlleber, Dirk; Rubío, Rebeca Alba; Uckert, Wolfgang; Thiel, Uwe; Bohne, Felix; Busch, Dirk H.; Krackhardt, Angela M.; Burdach, Stefan; Richter, Günther H. S.

    2016-01-01

    ABSTRACT Pediatric cancers, including Ewing sarcoma (ES), are only weakly immunogenic and the tumor-patients' immune system often is devoid of effector T cells for tumor elimination. Based on expression profiling technology, targetable tumor-associated antigens (TAA) are identified and exploited for engineered T-cell therapy. Here, the specific recognition and lytic potential of transgenic allo-restricted CD8+ T cells, directed against the ES-associated antigen 6-transmembrane epithelial antigen of the prostate 1 (STEAP1), was examined. Following repetitive STEAP1130 peptide-driven stimulations with HLA-A*02:01+ dendritic cells (DC), allo-restricted HLA-A*02:01− CD8+ T cells were sorted with HLA-A*02:01/peptide multimers and expanded by limiting dilution. After functional analysis of suitable T cell clones via ELISpot, flow cytometry and xCELLigence assay, T cell receptors' (TCR) α- and β-chains were identified, cloned into retroviral vectors, codon optimized, transfected into HLA-A*02:01− primary T cell populations and tested again for specificity and lytic capacity in vitro and in a Rag2−/−γc−/− mouse model. Initially generated transgenic T cells specifically recognized STEAP1130-pulsed or transfected cells in the context of HLA-A*02:01 with minimal cross-reactivity as determined by specific interferon-γ (IFNγ) release, lysed cells and inhibited growth of HLA-A*02:01+ ES lines more effectively than HLA-A*02:01− ES lines. In vivo tumor growth was inhibited more effectively with transgenic STEAP1130-specific T cells than with unspecific T cells. Our results identify TCRs capable of recognizing and inhibiting growth of STEAP1-expressing HLA-A*02:01+ ES cells in vitro and in vivo in a highly restricted manner. As STEAP1 is overexpressed in a wide variety of cancers, we anticipate these STEAP1-specific TCRs to be potentially useful for immunotherapy of other STEAP1-expressing tumors. PMID:27471654

  20. Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry.

    PubMed

    Swaney, Danielle L; Wenger, Craig D; Thomson, James A; Coon, Joshua J

    2009-01-27

    Protein phosphorylation is central to the understanding of cellular signaling, and cellular signaling is suggested to play a major role in the regulation of human embryonic stem (ES) cell pluripotency. Here, we describe the use of conventional tandem mass spectrometry-based sequencing technology--collision-activated dissociation (CAD)--and the more recently developed method electron transfer dissociation (ETD) to characterize the human ES cell phosphoproteome. In total, these experiments resulted in the identification of 11,995 unique phosphopeptides, corresponding to 10,844 nonredundant phosphorylation sites, at a 1% false discovery rate (FDR). Among these phosphorylation sites are 5 localized to 2 pluripotency critical transcription factors--OCT4 and SOX2. From these experiments, we conclude that ETD identifies a larger number of unique phosphopeptides than CAD (8,087 to 3,868), more frequently localizes the phosphorylation site to a specific residue (49.8% compared with 29.6%), and sequences whole classes of phosphopeptides previously unobserved.

  1. Fructose-bisphosphate aldolase and enolase from Echinococcus granulosus: genes, expression patterns and protein interactions of two potential moonlighting proteins.

    PubMed

    Lorenzatto, Karina Rodrigues; Monteiro, Karina Mariante; Paredes, Rodolfo; Paludo, Gabriela Prado; da Fonsêca, Marbella Maria; Galanti, Norbel; Zaha, Arnaldo; Ferreira, Henrique Bunselmeyer

    2012-09-10

    Glycolytic enzymes, such as fructose-bisphosphate aldolase (FBA) and enolase, have been described as complex multifunctional proteins that may perform non-glycolytic moonlighting functions, but little is known about such functions, especially in parasites. We have carried out in silico genomic searches in order to identify FBA and enolase coding sequences in Echinococcus granulosus, the causative agent of cystic hydatid disease. Four FBA genes and 3 enolase genes were found, and their sequences and exon-intron structures were characterized and compared to those of their orthologs in Echinococcus multilocularis, the causative agent of alveolar hydatid disease. To gather evidence of possible non-glycolytic functions, the expression profile of FBA and enolase isoforms detected in the E. granulosus pathogenic larval form (hydatid cyst) (EgFBA1 and EgEno1) was assessed. Using specific antibodies, EgFBA1 and EgEno1 were detected in protoscolex and germinal layer cells, as expected, but they were also found in the hydatid fluid, which contains parasite's excretory-secretory (ES) products. Besides, both proteins were found in protoscolex tegument and in vitro ES products, further suggesting possible non-glycolytic functions in the host-parasite interface. EgFBA1 modeled 3D structure predicted a F-actin binding site, and the ability of EgFBA1 to bind actin was confirmed experimentally, which was taken as an additional evidence of FBA multifunctionality in E. granulosus. Overall, our results represent the first experimental evidences of alternative functions performed by glycolytic enzymes in E. granulosus and provide relevant information for the understanding of their roles in host-parasite interplay. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. The role of Cdx2 as a lineage specific transcriptional repressor for pluripotent network during the first developmental cell lineage segregation.

    PubMed

    Huang, Daosheng; Guo, Guoji; Yuan, Ping; Ralston, Amy; Sun, Lingang; Huss, Mikael; Mistri, Tapan; Pinello, Luca; Ng, Huck Hui; Yuan, Guocheng; Ji, Junfeng; Rossant, Janet; Robson, Paul; Han, Xiaoping

    2017-12-07

    The first cellular differentiation event in mouse development leads to the formation of the blastocyst consisting of the inner cell mass (ICM) and trophectoderm (TE). The transcription factor CDX2 is required for proper TE specification, where it promotes expression of TE genes, and represses expression of Pou5f1 (OCT4). However its downstream network in the developing embryo is not fully characterized. Here, we performed high-throughput single embryo qPCR analysis in Cdx2 null embryos to identify CDX2-regulated targets in vivo. To identify genes likely to be regulated by CDX2 directly, we performed CDX2 ChIP-Seq on trophoblast stem (TS) cells. In addition, we examined the dynamics of gene expression changes using inducible CDX2 embryonic stem (ES) cells, so that we could predict which CDX2-bound genes are activated or repressed by CDX2 binding. By integrating these data with observations of chromatin modifications, we identify putative novel regulatory elements that repress gene expression in a lineage-specific manner. Interestingly, we found CDX2 binding sites within regulatory elements of key pluripotent genes such as Pou5f1 and Nanog, pointing to the existence of a novel mechanism by which CDX2 maintains repression of OCT4 in trophoblast. Our study proposes a general mechanism in regulating lineage segregation during mammalian development.

  3. Promotor Regions Determining Over-Expression of Metalloproteinase Genes in Breast Cancer

    DTIC Science & Technology

    1999-06-01

    G., Ph.D. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS( ES ) 8. PERFORMING ORGANIZATION REPORT NUMBER Royal Prince Alfred Hospital Camperdown, NSW...2050, Australia 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS( ES ) 10. SPONSORING / MONITORING AGENCY REPORT NUMBER U.S. Army Medical Research...BioTechniques 3 Research Reports satec , Adelaidetusralia) per reaction. Plasmids ItL of phosphate-buffered saline (PBS)When included,- co petor

  4. The role of supplementary environmental surveillance to complement acute flaccid paralysis surveillance for wild poliovirus in Pakistan - 2011-2013.

    PubMed

    Cowger, Tori L; Burns, Cara C; Sharif, Salmaan; Gary, Howard E; Iber, Jane; Henderson, Elizabeth; Malik, Farzana; Zahoor Zaidi, Syed Sohail; Shaukat, Shahzad; Rehman, Lubna; Pallansch, Mark A; Orenstein, Walter A

    2017-01-01

    More than 99% of poliovirus infections are non-paralytic and therefore, not detected by acute flaccid paralysis (AFP) surveillance. Environmental surveillance (ES) can detect circulating polioviruses from sewage without relying on clinical presentation. With extensive ES and continued circulation of polioviruses, Pakistan presents a unique opportunity to quantify the impact of ES as a supplement to AFP surveillance on overall completeness and timeliness of poliovirus detection. Genetic, geographic and temporal data were obtained for all wild poliovirus (WPV) isolates detected in Pakistan from January 2011 through December 2013. We used viral genetics to assess gaps in AFP surveillance and ES as measured by detection of 'orphan viruses' (≥1.5% different in VP1 capsid nucleotide sequence). We compared preceding detection of closely related circulating isolates (≥99% identity) detected by AFP surveillance or ES to determine which surveillance system first detected circulation before the presentation of each polio case. A total of 1,127 WPV isolates were detected by AFP surveillance and ES in Pakistan from 2011-2013. AFP surveillance and ES combined exhibited fewer gaps (i.e., % orphan viruses) in detection than AFP surveillance alone (3.3% vs. 7.7%, respectively). ES detected circulation before AFP surveillance in nearly 60% of polio cases (200 of 346). For polio cases reported from provinces conducting ES, ES detected circulation nearly four months sooner on average (117.6 days) than did AFP surveillance. Our findings suggest ES in Pakistan is providing earlier, more sensitive detection of wild polioviruses than AFP surveillance alone. Overall, targeted ES through strategic selection of sites has important implications in the eradication endgame strategy.

  5. The role of supplementary environmental surveillance to complement acute flaccid paralysis surveillance for wild poliovirus in Pakistan – 2011–2013

    PubMed Central

    Burns, Cara C.; Sharif, Salmaan; Gary, Howard E.; Iber, Jane; Henderson, Elizabeth; Malik, Farzana; Zahoor Zaidi, Syed Sohail; Shaukat, Shahzad; Rehman, Lubna; Pallansch, Mark A.; Orenstein, Walter A.

    2017-01-01

    Background More than 99% of poliovirus infections are non-paralytic and therefore, not detected by acute flaccid paralysis (AFP) surveillance. Environmental surveillance (ES) can detect circulating polioviruses from sewage without relying on clinical presentation. With extensive ES and continued circulation of polioviruses, Pakistan presents a unique opportunity to quantify the impact of ES as a supplement to AFP surveillance on overall completeness and timeliness of poliovirus detection. Methods Genetic, geographic and temporal data were obtained for all wild poliovirus (WPV) isolates detected in Pakistan from January 2011 through December 2013. We used viral genetics to assess gaps in AFP surveillance and ES as measured by detection of ‘orphan viruses’ (≥1.5% different in VP1 capsid nucleotide sequence). We compared preceding detection of closely related circulating isolates (≥99% identity) detected by AFP surveillance or ES to determine which surveillance system first detected circulation before the presentation of each polio case. Findings A total of 1,127 WPV isolates were detected by AFP surveillance and ES in Pakistan from 2011–2013. AFP surveillance and ES combined exhibited fewer gaps (i.e., % orphan viruses) in detection than AFP surveillance alone (3.3% vs. 7.7%, respectively). ES detected circulation before AFP surveillance in nearly 60% of polio cases (200 of 346). For polio cases reported from provinces conducting ES, ES detected circulation nearly four months sooner on average (117.6 days) than did AFP surveillance. Interpretation Our findings suggest ES in Pakistan is providing earlier, more sensitive detection of wild polioviruses than AFP surveillance alone. Overall, targeted ES through strategic selection of sites has important implications in the eradication endgame strategy. PMID:28742803

  6. Autisme et douleur – analyse bibliographique

    PubMed Central

    Dubois, Amandine; Rattaz, Cécile; Pry, René; Baghdadli, Amaria

    2010-01-01

    La présente analyse bibliographique a pour objectif de réaliser un bilan des travaux publiés dans le champ de la douleur et de l’autisme. L’article aborde, dans un premier temps, les études publiées concernant les modes d’expression de la douleur observés dans cette population. Différentes hypothèses permettant d’expliquer les particularités expressives des personnes avec autisme sont ensuite passées en revue : excès d’endorphines, particularités dans le traitement sensoriel, déficit sociocommunicatif. Cette analyse bibliographique aborde, pour terminer, la question de l’évaluation et de la prise en compte de la douleur chez les personnes avec autisme. Les auteurs concluent à l’absence d’homogénéité des résultats des études publiées et au besoin de poursuivre les recherches afin de parvenir à des données consensuelles sur un domaine d’étude encore peu exploité au plan scientifique. Sur un plan clinique, l’approfondissement des connaissances dans ce domaine devrait permettre de mettre au point des outils d’évaluation de la douleur et d’ainsi en assurer une meilleure prise en charge au quotidien. PMID:20808970

  7. SMYD5 regulates H4K20me3-marked heterochromatin to safeguard ES cell self-renewal and prevent spurious differentiation.

    PubMed

    Kidder, Benjamin L; Hu, Gangqing; Cui, Kairong; Zhao, Keji

    2017-01-01

    Epigenetic regulation of chromatin states is thought to control the self-renewal and differentiation of embryonic stem (ES) cells. However, the roles of repressive histone modifications such as trimethylated histone 4 lysine 20 (H4K20me3) in pluripotency and development are largely unknown. Here, we show that the histone lysine methyltransferase SMYD5 mediates H4K20me3 at heterochromatin regions. Depletion of SMYD5 leads to compromised self-renewal, including dysregulated expression of OCT4 targets, and perturbed differentiation. SMYD5-bound regions are enriched with repetitive DNA elements. Knockdown of SMYD5 results in a global decrease of H4K20me3 levels, a redistribution of heterochromatin constituents including H3K9me3/2, G9a, and HP1α, and de-repression of endogenous retroelements. A loss of SMYD5-dependent silencing of heterochromatin nearby genic regions leads to upregulated expression of lineage-specific genes, thus contributing to the decreased self-renewal and perturbed differentiation of SMYD5-depleted ES cells. Altogether, these findings implicate a role for SMYD5 in regulating ES cell self-renewal and H4K20me3-marked heterochromatin.

  8. Spodoptera frugiperda (J.E. Smith) with field-evolved resistance to Bt maize are susceptible to Bt pesticides.

    PubMed

    Jakka, S R K; Knight, V R; Jurat-Fuentes, J L

    2014-10-01

    Field-evolved resistance to maize event TC1507 expressing the Cry1Fa toxin from Bacillus thuringiensis (Bt) was detected in populations of Spodoptera frugiperda from Puerto Rico. We tested for cross-resistance to purified Cry1A toxins and commercial Bt pesticides in susceptible (Benzon) and TC1507-resistant (456) strains of S. frugiperda. Larvae from the 456 strain exhibited cross-resistance to Cry1Ab and Cry1Ac toxins, while no differences in susceptibility to XenTari WG and DiPel ES pesticides were detected. These data support cross-resistance to toxins that share binding sites with Cry1Fa and no cross-resistance to Bt pesticides in S. frugiperda with field-evolved resistance to Bt maize. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Production of human monoclonal antibody in eggs of chimeric chickens.

    PubMed

    Zhu, Lei; van de Lavoir, Marie-Cecile; Albanese, Jenny; Beenhouwer, David O; Cardarelli, Pina M; Cuison, Severino; Deng, David F; Deshpande, Shrikant; Diamond, Jennifer H; Green, Lynae; Halk, Edward L; Heyer, Babette S; Kay, Robert M; Kerchner, Allyn; Leighton, Philip A; Mather, Christine M; Morrison, Sherie L; Nikolov, Zivko L; Passmore, David B; Pradas-Monne, Alicia; Preston, Benjamin T; Rangan, Vangipuram S; Shi, Mingxia; Srinivasan, Mohan; White, Steven G; Winters-Digiacinto, Peggy; Wong, Susan; Zhou, Wen; Etches, Robert J

    2005-09-01

    The tubular gland of the chicken oviduct is an attractive system for protein expression as large quantities of proteins are deposited in the egg, the production of eggs is easily scalable and good manufacturing practices for therapeutics from eggs have been established. Here we examined the ability of upstream and downstream DNA sequences of ovalbumin, a protein produced exclusively in very high quantities in chicken egg white, to drive tissue-specific expression of human mAb in chicken eggs. To accommodate these large regulatory regions, we established and transfected lines of chicken embryonic stem (cES) cells and formed chimeras that express mAb from cES cell-derived tubular gland cells. Eggs from high-grade chimeras contained up to 3 mg of mAb that possesses enhanced antibody-dependent cellular cytotoxicity (ADCC), nonantigenic glycosylation, acceptable half-life, excellent antigen recognition and good rates of internalization.

  10. Reprogramming caspase-7 specificity by regio-specific mutations and selection provides alternate solutions for substrate recognition

    DOE PAGES

    Hill, Maureen E.; MacPherson, Derek J.; Wu, Peng; ...

    2016-03-31

    The ability to routinely engineer protease specificity can allow us to better understand and modulate their biology for expanded therapeutic and industrial applications. In this paper, we report a new approach based on a caged green fluorescent protein (CA-GFP) reporter that allows for flow-cytometry-based selection in bacteria or other cell types enabling selection of intracellular protease specificity, regardless of the compositional complexity of the protease. Here, we apply this approach to introduce the specificity of caspase-6 into caspase-7, an intracellular cysteine protease important in cellular remodeling and cell death. We found that substitution of substrate-contacting residues from caspase-6 into caspase-7more » was ineffective, yielding an inactive enzyme, whereas saturation mutagenesis at these positions and selection by directed evolution produced active caspases. The process produced a number of nonobvious mutations that enabled conversion of the caspase-7 specificity to match caspase-6. The structures of the evolved-specificity caspase-7 (esCasp-7) revealed alternate binding modes for the substrate, including reorganization of an active site loop. Profiling the entire human proteome of esCasp-7 by N-terminomics demonstrated that the global specificity toward natural protein substrates is remarkably similar to that of caspase-6. Because the esCasp-7 maintained the core of caspase-7, we were able to identify a caspase-6 substrate, lamin C, that we predict relies on an exosite for substrate recognition. These reprogrammed proteases may be the first tool built with the express intent of distinguishing exosite dependent or independent substrates. Finally, this approach to specificity reprogramming should also be generalizable across a wide range of proteases.« less

  11. Reprogramming caspase-7 specificity by regio-specific mutations and selection provides alternate solutions for substrate recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Maureen E.; MacPherson, Derek J.; Wu, Peng

    The ability to routinely engineer protease specificity can allow us to better understand and modulate their biology for expanded therapeutic and industrial applications. In this paper, we report a new approach based on a caged green fluorescent protein (CA-GFP) reporter that allows for flow-cytometry-based selection in bacteria or other cell types enabling selection of intracellular protease specificity, regardless of the compositional complexity of the protease. Here, we apply this approach to introduce the specificity of caspase-6 into caspase-7, an intracellular cysteine protease important in cellular remodeling and cell death. We found that substitution of substrate-contacting residues from caspase-6 into caspase-7more » was ineffective, yielding an inactive enzyme, whereas saturation mutagenesis at these positions and selection by directed evolution produced active caspases. The process produced a number of nonobvious mutations that enabled conversion of the caspase-7 specificity to match caspase-6. The structures of the evolved-specificity caspase-7 (esCasp-7) revealed alternate binding modes for the substrate, including reorganization of an active site loop. Profiling the entire human proteome of esCasp-7 by N-terminomics demonstrated that the global specificity toward natural protein substrates is remarkably similar to that of caspase-6. Because the esCasp-7 maintained the core of caspase-7, we were able to identify a caspase-6 substrate, lamin C, that we predict relies on an exosite for substrate recognition. These reprogrammed proteases may be the first tool built with the express intent of distinguishing exosite dependent or independent substrates. Finally, this approach to specificity reprogramming should also be generalizable across a wide range of proteases.« less

  12. Sealing of Base Wells, McClellan Air Force Base, California

    DTIC Science & Technology

    1984-02-15

    Slurry 111-16 Equipment Requirement 111-17 Inspection of the Well 111-18 Turbine Pump Repairs 111-18 Testing of the Well 111-19 Wells to be Sealed 111...hydrogeology underlying the Base, reviews the ES groundwater testing procedures and the conclusions reached by ES as a result of those tests , reviews...perform proper sealing, LSCE proposes that a preliminary engineering site investigation be conducted which would include test drilling and installation

  13. Producing primate embryonic stem cells by somatic cell nuclear transfer.

    PubMed

    Byrne, J A; Pedersen, D A; Clepper, L L; Nelson, M; Sanger, W G; Gokhale, S; Wolf, D P; Mitalipov, S M

    2007-11-22

    Derivation of embryonic stem (ES) cells genetically identical to a patient by somatic cell nuclear transfer (SCNT) holds the potential to cure or alleviate the symptoms of many degenerative diseases while circumventing concerns regarding rejection by the host immune system. However, the concept has only been achieved in the mouse, whereas inefficient reprogramming and poor embryonic development characterizes the results obtained in primates. Here, we used a modified SCNT approach to produce rhesus macaque blastocysts from adult skin fibroblasts, and successfully isolated two ES cell lines from these embryos. DNA analysis confirmed that nuclear DNA was identical to donor somatic cells and that mitochondrial DNA originated from oocytes. Both cell lines exhibited normal ES cell morphology, expressed key stem-cell markers, were transcriptionally similar to control ES cells and differentiated into multiple cell types in vitro and in vivo. Our results represent successful nuclear reprogramming of adult somatic cells into pluripotent ES cells and demonstrate proof-of-concept for therapeutic cloning in primates.

  14. Development of 89Zr-Ontuxizumab for in vivo TEM-1/endosialin PET applications

    PubMed Central

    Lange, Sara E.S.; Zheleznyak, Alex; Studer, Matthew; O'Shannessy, Daniel J.; Lapi, Suzanne E.; Van Tine, Brian A.

    2016-01-01

    Purpose The complexity of sarcoma has led to the need for patient selection via in vivo biomarkers. Tumor endothelial marker-1 (TEM-1) is a cell surface marker expressed by the tumor microenvironment. Currently MORAb-004 (Ontuxizumab), an anti-TEM-1 humanized monoclonal antibody, is in sarcoma clinical trials. Development of positron emission tomography (PET) for in vivo TEM-1 expression may allow for stratification of patients, potentially enhancing clinical outcomes seen with Ontuxizumab. Results Characterization of cell lines revealed clear differences in TEM-1 expression. One high expressing (RD-ES) and one low expressing (LUPI) cell line were xenografted, and mice were injected with 89Zr-Ontuxizumab. PET imaging post-injection revealed that TEM-1 was highly expressed and readily detectable in vivo only in RD-ES. In vivo biodistribution studies confirmed high radiopharmaceutical uptake in tumor relative to normal organs. Experimental Design Sarcoma cell lines were characterized for TEM-1 expression. Ontuxizumab was labeled with 89Zr and evaluated for immunoreactivity preservation. 89Zr-Ontuxizumab was injected into mice with high or null expressing TEM-1 xenografts. In vivo PET imaging experiments were performed. Conclusion 89Zr-Ontuxizumab can be used in vivo to determine high versus low TEM-1 expression. Reliable PET imaging of TEM-1 in sarcoma patients may allow for identification of patients that will attain the greatest benefit from anti-TEM-1 therapy. PMID:26909615

  15. Eco-hydrology: Groundwater flow and site factors in plant ecology

    NASA Astrophysics Data System (ADS)

    Klijn, Frans; Witte, Jan-Philip M.

    Résumé En écologie végétale, le site est un concept central. Un site, c'est l'endroit où une espèce végétale ou une communauté de plantes se développe le site assure un ensemble de conditions dans lesquelles elles vivent. Dans un matériau homogène à l'origine, l'écoulement gravitaire d'une nappe influence les conditions du site par l'intermédiaire de la distribution spatiale des nutriments et d'autres composés chimiques associés. Les remontées d'eau peuvent tout spécialement produire et maintenir les conditions du site essentielles pour différentes espèces et communautés de plantes relativement rares. Les écologues ont porté une attention accrue à ces remontées d'eau, en sorte qu'une coopération avec les hydrologues en a résulté, avec l'émergence d'une discipline propre, l'éco-hydrologie, à la limite des deux domaines scientifiques et liée au concept de site. Aux Pays-Bas, une classification des types d'eau, basée sur l'histoire de l'eau souterraine à proximité de la surface, a été mise en oeuvre pour constituer une base nationale de données géographiques sur les remontées d'eau d'intérêt écologique. Des analyses des correspondances des données de cette base, portant sur l'existence de certaines espèces de plantes, montrent que dans les sols sableux pauvres du Pléistocène la remontée d'eau explique très bien la présence de certaines espèces et communautés, alors que, dans les plaines fluviales et les régions de polders à sols argileux riches, l'influence de la remontée d'eau est masquée par l'importance des caractéristiques des sols. En conclusion donc, certaines espèces de plantes peuvent être utilisées comme des indicateurs de la remontée d'eau dans des diagnostiques et des levés de terrain rapides, mais à condition de prendre en permanence des précautions sur les limites de l'approche. Resumen En ecología botánica un concepto de gran importancia es el de emplazamiento, definido como el lugar que proporciona unas condiciones de vida adecuadas que permiten el crecimiento de una especie o una comunidad botánica. En un material inicialmente homogéneo, el flujo subterráneo gravífico influencia las condiciones del emplazamiento variando la distribución espacial de los nutrientes y de otros agentes químicos relevantes. En especial, el flujo ascendente puede producir y mantener una serie de condiciones que son esenciales para algunas especies y comunidades de plantas relativamente raras. La especial atención hacia este fenómeno ha dado lugar a una cooperación entre ecologistas e hidrogeólogos y a la aparición de una nueva disciplina - eco-hidrología -, en la frontera de los dos campos científicos. En Holanda, se ha usado una clasificación sencilla de tipos de agua para crear una base de datos, a nivel nacional, de lugares donde la presencia de flujos ascendentes pueda ser de interés ecológico. El análisis de correspondencias entre esta base de datos y los tipos de plantas existentes muestra que en los suelos arenosos pobres del Pleistoceno los flujos ascendentes explican la presencia de algunas especies y comunidades de plantas. Por el contrario, en las llanuras fluviales y pólders, con suelos más arcillosos, la influencia de estos flujos es despreciable frente a la relativa a las propias características de los suelos. Se concluye que las especies botánicas se pueden usar como indicadores de la presencia de flujo ascendente sólo en campañas preliminares, pero que el método presenta grandes limitaciones para su extensión a casos generales.

  16. Impact of patient selection and study characteristics on signal detection in placebo-controlled trials with antidepressants.

    PubMed

    Mancini, Michele; Wade, Alan G; Perugi, Giulio; Lenox-Smith, Alan; Schacht, Alexander

    2014-04-01

    An increasing rate of antidepressant trials fail due to large placebo responses. This analysis aimed to identify variables influencing signal detection in clinical trials of major depressive disorder. Patient-level data of randomized patients with a duloxetine dose ≥ 60 mg/day were obtained from Lilly. Total scores of the Hamilton Depression Rating scale (HAM-D) were used as efficacy endpoints. In total, 4661 patients from 14 studies were included in the analysis. The overall effect size (ES), based on the HAM-D total score at endpoint, between duloxetine and placebo was -0.272. Although no statistically significant interactions were found, the following results for factors influencing ES were seen: a very low ES (-0.157) in patients in the lowest baseline HAM-D category and in patients recruited in the last category of the recruitment period (-0.122). A higher ES in patients recruited in centers with a site-size at but not more than 2.5 times the average site-size for the study (-0.345). Study characteristics that resulted in low signal detection in our database were: <80% study completers, a HAM-D placebo response >5 points, a high variability of placebo response (SD > 7 points HAM-D), >6 post baseline visits per study, and use of an active control drug. Simpler trial designs, more homogeneous and mid-sized study sites, a primary analysis based on a higher cutoff blinded to investigators to avoid the influence of score inflation in mild patients and, if possible, studies without an active control group could lead to a better signal detection of antidepressive efficacy. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Eudragit S100-Coated Chitosan Nanoparticles Co-loading Tat for Enhanced Oral Colon Absorption of Insulin.

    PubMed

    Chen, Shuangxi; Guo, Feng; Deng, Tiantian; Zhu, Siqi; Liu, Wenyu; Zhong, Haijun; Yu, Hua; Luo, Rong; Deng, Zeyuan

    2017-05-01

    In order to improve oral absorption of insulin, especially the absorption at the colon, Eudragit S100® (ES)-coated chitosan nanoparticles loading insulin and a trans-activating transcriptional peptide (Tat) were employed as the vehicle. In vitro releases of insulin and Tat from ES-coated chitosan nanoparticles had a pH-dependant characteristic. A small amount of the contents was released from the coated nanoparticles at pH 1.2 simulated gastric fluid, while a fairly fast and complete release was observed in pH 7.4 medium. Caco-2 cell was used as the model of cellular transport and uptake studies. The results showed that the cellular transport and uptake of insulin for ES-coated chitosan nanoparticles co-loading insulin and Tat (ES-Tat-cNPs) were about 3-fold and 4-fold higher than those for the nanoparticles loading only insulin (ES-cNPs), respectively. The evaluations in vivo of ES-Tat-cNPs were conducted on diabetic rats and normal minipigs, respectively. The experimental results on rats revealed that the pharmacodynamical bioavailability of ES-Tat-cNPs had 2.16-fold increase compared with ES-cNPs. After oral administration of nanoparticle suspensions to the minipigs, insulin bioavailability of ES-Tat-cNPs was 1.73-fold higher than that of ES-cNPs, and the main absorption site of insulin was probably located in the colon for the two nanoparticles. In summary, this report provided an exploratory means for the improvement of oral absorption of insulin.

  18. Sample Fabrication and Experimental Approach for Studying Interfacial Sliding in Thin Film-Substrate Systems

    DTIC Science & Technology

    2006-09-01

    ORGANIZATION NAME(S) AND ADDRESS( ES ) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9...SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS( ES ) N/A 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed...mounted in a SATEC load frame. Figure 4 is a schematic of the diffusion bonding chamber and associated equipment. Al/Si and Cu/Quartz samples were

  19. A Bridge Over Troubled Waters: The Vital Role of Intelligence Sharing in Shaping the Anglo-American Special Relationship

    DTIC Science & Technology

    2008-12-01

    of Intelligence Sharing in Shaping the Anglo-American “Special Relationship” 6. AUTHOR( S ) LT David B. Clark 5. FUNDING NUMBERS 7. PERFORMING...ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...MONITORING AGENCY NAME( S ) AND ADDRESS(ES) N/A 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in

  20. Coastal Bathymetry Using 8-Color Multispectral Satellite Observation of Wave Motion

    DTIC Science & Technology

    2010-09-01

    Wave Motion 6. AUTHOR(S) Bradley L. McCarthy 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School...Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) N/A 10. SPONSORING...MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official

  1. Tunable Engineered Skin Mechanics via Coaxial Electrospun Fiber Core Diameter

    PubMed Central

    Blackstone, Britani Nicole; Drexler, Jason William

    2014-01-01

    Autologous engineered skin (ES) offers promise as a treatment for massive full thickness burns. Unfortunately, ES is orders of magnitude weaker than normal human skin causing it to be difficult to apply surgically and subject to damage by mechanical shear in the early phases of engraftment. In addition, no manufacturing strategy has been developed to tune ES biomechanics to approximate the native biomechanics at different anatomic locations. To enhance and tune ES biomechanics, a coaxial (CoA) electrospun scaffold platform was developed from polycaprolactone (PCL, core) and gelatin (shell). The ability of the coaxial fiber core diameter to control both scaffold and tissue mechanics was investigated along with the ability of the gelatin shell to facilitate cell adhesion and skin development compared to pure gelatin, pure PCL, and a gelatin-PCL blended fiber scaffold. CoA ES exhibited increased cellular adhesion and metabolism versus PCL alone or gelatin-PCL blend and promoted the development of well stratified skin with a dense dermal layer and a differentiated epidermal layer. Biomechanics of the scaffold and ES scaled linearly with core diameter suggesting that this scaffold platform could be utilized to tailor ES mechanics for their intended grafting site and reduce graft damage in vitro and in vivo. PMID:24712409

  2. Expression and significance of molecular biomarkers in esophageal carcinoma in different nationalities patients in Xinjiang.

    PubMed

    Zhang, L; Sun, J; Zhang, J Q; Yang, M; Bai, G; Ma, X L

    2014-07-24

    This study aimed to explore some useful biomarkers to focus on the diagnosis and therapy response judgment in esophageal squamous cell carcinoma in Xinjiang. We used enzyme-linked immunosorbent method and immunohistochemistry to detect the expression of VEGF, EGFR, ES, HER-2, and NF-κBp in the serum and tissue with esophageal squamous cell carcinoma, and to analyze the relationship between biomarkers and clinical pathology and curative effects. Our findings were as follows: 1. The serum levels of VEGF and ES in Han patients were obviously higher than those of Uygur and Kazakh patients (P < 0.05). The VEGF positive rate in patients at a later clinical stage was higher than that of the patients at an earlier clinical stage (stages II-IV were 14.29, 50.00, and 50.00%, respectively, P < 0.05), meanwhile it was higher than that of patients without lymph node metastases (78.13 vs 25.00%, P < 0.05). The curative effective rate of patients with negative expression of VEGF was higher than that of patients with positive expression of VEGF (74.67 vs 41.40%, P < 0.05). 2. The expression of EGFR protein in male patients was higher than that of female patients (69.77 vs 35.29%, P < 0.05). Before treatment, the serum EGFR level in patients was higher than the normal group (P < 0.05). 3. The serum ES level in patients before and after treatment was significantly higher than in the normal group (P < 0.05). 4. The HER-2 positive rate in higher differentiated tumor tissue was lower than that in lower differentiated tumor tissue. (The positive rate of I, II, III grade was 70.00, 30.00, and 20.00%, respectively, P < 0.05). 5. The NF-κB positive rate in patients with lymph node metastases was higher than that of patients without lymph node metastases (65.63 vs 39.27%, P < 0.05), meanwhile median survival in the latter group was higher than that of the former group (P < 0.05). Our data suggest that the expression of VEGF and ES were different in Uygur, Han, and Kazakh patients in Xinjiang. The combined detection of tumor markers in serum and tissue is of direct significance for tumor therapy.

  3. Utilization of human amniotic mesenchymal cells as feeder layers to sustain propagation of human embryonic stem cells in the undifferentiated state.

    PubMed

    Zhang, Kehua; Cai, Zhe; Li, Yang; Shu, Jun; Pan, Lin; Wan, Fang; Li, Hong; Huang, Xiaojie; He, Chun; Liu, Yanqiu; Cui, Xiaohui; Xu, Yang; Gao, Yan; Wu, Liqun; Cao, Shanxia; Li, Lingsong

    2011-08-01

    Human embryonic stem (ES) cells are usually maintained in the undifferentiated state by culturing on feeder cells layers of mouse embryonic fibroblasts (MEFs). However, MEFs are not suitable to support human ES cells used for clinical purpose because of risk of zoonosis from animal cells. Therefore, human tissue-based feeder layers need to be developed for human ES cells for clinical purpose. Hereof we report that human amniotic mesenchymal cells (hAMCs) could act as feeder cells for human ES cells, because they are easily obtained and relatively exempt from ethical problem. Like MEFs, hAMCs could act as feeder cells for human ES cells to grow well on. The self-renewal rate of human ES cells cultured on hAMCs feeders was higher than that on MEFs and human amniotic epithelial cells determined by measurement of colonial diameters and growth curve as well as cell cycle analysis. Both immunofluorescence staining and immunoblotting showed that human ES cells cultured on hAMCs expressed stem cell markers such as Oct-3/4, Sox2, and NANOG. Verified by embryoid body formation in vitro and teratoma formation in vivo, we found out that after 20 passages of culture, human ES cells grown on hAMCs feeders could still retain the potency of differentiating into three germ layers. Taken together, our data suggested hAMCs may be safe feeder cells to sustain the propagation of human ES cells in undifferentiated state for future therapeutic use.

  4. Rho kinase inhibitor Y-27632 and Accutase dramatically increase mouse embryonic stem cell derivation.

    PubMed

    Zhang, Peng; Wu, Xinglong; Hu, Chunchao; Wang, Pengbo; Li, Xiangyun

    2012-01-01

    Although it has been 30 yr since the development of derivation methods for mouse embryonic stem (ES) cells, the biology of derivation of ES cells is poorly understood and the efficiency varies dramatically between cell lines. Recently, the Rho kinase inhibitor Y-27632 and the cell dissociation reagent Accutase were reported to significantly inhibit apoptosis of human ES cells during passaging. Therefore, in the current study, C57BL/6×129/Sv mouse blastocysts were used to evaluate the effect of the combination of the two reagents instead of using the conventional 129 line in mouse ES cell derivation. The data presented in this study suggests that the combination of Y-27632 and Accutase significantly increases the efficiency of mouse ES cell derivation; furthermore, no negative side effects were observed with Y-27632 and Accutase treatment. The newly established ES cell lines retain stable karyotype, surface markers expression, formed teratomas, and contributed to viable chimeras and germline transmission by tetraploid complementation assay. In addition, Y-27632 improved embryoid body formation of ES cells. During ES cell microinjection, Y-27632 prevented the formation of dissociation-induced cell blebs and facilitates the selection and the capture of intact cells. The methods presented in this study clearly demonstrate that inhibition of Rho kinase with Y-27632 and Accutase dissociation improve the derivation efficiently and reproducibility of mouse ES cell generation which is essential for reducing variability in the results obtained from different cell lines.

  5. Basic FGF Support of Human Embryonic Stem Cell Self-Renewal

    PubMed Central

    Levenstein, Mark E.; Ludwig, Tenneille E.; Xu, Ren-He; Llanas, Rachel A.; VanDenHeuvel-Kramer, Kaitlyn; Manning, Daisy; Thomson, James A.

    2015-01-01

    Human embryonic stem (ES) cells have most commonly been cultured in the presence of basic FGF (FGF2) either on fibroblast feeder layers or in fibroblast-conditioned medium. Recently, it has been reported that elevated concentrations of FGF2 permit the culture of human ES cells in the absence of fibroblasts or fibroblast-conditioned medium. Here we compare the ability of unconditioned medium (UM) supplemented with 4, 24, 40, 80, 100 and 250 ng/ml FGF2 to sustain low-density human ES cell cultures through multiple passages. In these stringent culture conditions, 4, 24, and 40 ng/ml FGF2 failed to sustain human ES cells through three passages, but 100 ng/ml sustained human ES cells with an effectiveness comparable to conditioned medium (CM). Two human ES cell lines (H1 and H9) were maintained for up to 164 population doublings (7 and 4 months) in UM supplemented with 100 ng/ml FGF2. After prolonged culture the cells formed teratomas when injected into SCID-beige mice, and expressed markers characteristic of undifferentiated human ES cells. We also demonstrate that FGF2 is degraded more rapidly in UM than in CM, partly explaining the need for higher concentrations of FGF2 in UM. These results further facilitate the large-scale, routine culture of human ES cells, and suggest that fibroblasts and fibroblast-conditioned medium sustain human ES cells in part by stabilizing FGF signaling above a critical threshold. PMID:16282444

  6. Electrical Stimulation of Denervated Rat Skeletal Muscle Retards Capillary and Muscle Loss in Early Stages of Disuse Atrophy

    PubMed Central

    Nakagawa, Kouki; Hayao, Keishi; Yotani, Kengo; Ogita, Futoshi; Yamamoto, Noriaki; Onishi, Hideaki

    2017-01-01

    The purpose of the present study is to investigate the effects of low-frequency electrical muscle stimulation (ES) on the decrease in muscle mass, fiber size, capillary supply, and matrix metalloproteinase (MMP) immunoreactivity in the early stages of denervation-induced limb disuse. Direct ES was performed on the tibialis anterior muscle following denervation in seven-week-old male rats. The rats were divided into the following groups: control (CON), denervation (DN), and denervation with direct ES (DN + ES). Direct ES was performed at an intensity of 16 mA and a frequency of 10 Hz for 30 min per day, six days a week, for one week. We performed immunohistochemical staining to determine the expression of dystrophin, CD34, and MMP-2 in transverse sections of TA muscles. The weight, myofiber cross-sectional area (FCSA), and capillary-to-fiber (C/F) ratio of the tibialis anterior (TA) muscle were significantly reduced in the DN group compared to the control and DN + ES groups. The MMP-2 positive area was significantly greater in DN and DN + ES groups compared to the control group. These findings suggest beneficial effects of direct ES in reducing muscle atrophy and capillary regression without increasing MMP-2 immunoreactivity in the early stages of DN-induced muscle disuse in rat hind limbs. PMID:28497057

  7. Extended Self-Renewal and Accelerated Reprogramming in the Absence of Kdm5b

    PubMed Central

    Hu, Gangqing; Yu, Zu-Xi; Liu, Chengyu

    2013-01-01

    Embryonic stem (ES) cell pluripotency is thought to be regulated in part by H3K4 methylation. However, it is unclear how H3K4 demethylation contributes to ES cell function and participates in induced pluripotent stem (iPS) cell reprogramming. Here, we show that KDM5B, which demethylates H3K4, is important for ES cell differentiation and presents a barrier to the reprogramming process. Depletion of Kdm5b leads to an extension in the self-renewal of ES cells in the absence of LIF. Transcriptome analysis revealed the persistent expression of pluripotency genes and underexpression of developmental genes during differentiation in the absence of Kdm5b, suggesting that KDM5B plays a key role in cellular fate changes. We also observed accelerated reprogramming of differentiated cells in the absence of Kdm5b, demonstrating that KDM5B is a barrier to the reprogramming process. Expression analysis revealed that mesenchymal master regulators associated with the epithelial-to-mesenchymal transition (EMT) are downregulated during reprogramming in the absence of Kdm5b. Moreover, global analysis of H3K4me3/2 revealed that enhancers of fibroblast genes are rapidly deactivated in the absence of Kdm5b, and genes associated with EMT lose H3K4me3/2 during the early reprogramming process. These findings provide functional insight into the role for KDM5B in regulating ES cell differentiation and as a barrier to the reprogramming process. PMID:24100015

  8. Icariin promotes expression of junctophilin 2 and Ca2+ related function during cardiomyocyte differentiation of murine embryonic stem cells.

    PubMed

    Liang, Xingguang; Hong, Dongsheng; Huang, Yujie; Rao, Yuefeng; Ma, Kuifen; Huang, Mingzhu; Zhang, Xingguo; Lou, Yijia; Zhao, Qingwei

    2015-12-01

    Junctophilin2 (JP2) is a critical protein associated with cardiogenesis. Icariin (ICA) facilitated the directional differentiation of murine embryonic stem (ES) cells into cardiomyocytes. However, little is known about the effects of ICA on JP2 during cardiac differentiation. Here, we explored whether ICA has effects on the expression and Ca2+ related function of JP2 during cardiomyocyte differentiation of ES cells in vitro. Embryonid bodies (EBs) formed by hanging drop were treated with 10(-7) mol/L ICA from day 5 to promote the cardiac differentiation. Percentage of beating EBs and number of beating area within EBs were monitored. Cardiomyocytes were purified by discontinuous percoll gradient centrifugation from EBs. The expression of JP2, α-actinin and troponin-T within EBs or isolated cardiomyocytes were analyzed by immunocytochemistry, western blot and flow cytometry. The transient Ca2+ release was characterized in cardiomyocytes treated with/without 10 mmol/L caffeine and 8 mmol/L Ca2+. Our results showed that ES cell-derived cardiomyocytes were well characterized with JP2 proteins. ICA promoted cardiomyocyte differentiation as indicated by an increased percentage of beating EBs and number of beating area within EBs. The expression of JP2, α-actinin and troponin-T were up-regulated both in EBs and isolated cardiomyocytes from EBs. Furthermore, ICA-induced JP2 expression was accompanied by a remarkable increase of the amplitude of Ca2+ transients in cardiomyocytes before/after caffeine and Ca2+ stimulating. In conclusion, ICA promotes in cardiac differentiation partly through regulating JP2 and improved the Ca2+ modulatory function of cardiomyocytes.

  9. Systemic levels of neuropeptide Y and dipeptidyl peptidase activity in Ewing sarcoma patients – associations with tumor phenotype and survival

    PubMed Central

    Tilan, Jason U.; Krailo, Mark; Barkauskas, Donald A.; Galli, Susana; Mtaweh, Haifa; Long, Jessica; Wang, Hongkun; Hawkins, Kirsten; Lu, Congyi; Jeha, Dima; Izycka-Swieszewska, Ewa; Lawlor, Elizabeth R.; Toretsky, Jeffrey A.; Kitlinska, Joanna

    2014-01-01

    Background Ewing sarcoma (ES) is driven by fusion of the EWS gene with an ETS transcription factor, most often FLI1. Neuropeptide Y (NPY) is an EWS-FLI1 transcriptional target. NPY is highly expressed in ES and exerts opposing effects, ranging from ES cell death to angiogenesis and cancer stem cell propagation. The functions of NPY are regulated by dipeptidyl peptidase IV (DPPIV), a hypoxia-inducible enzyme that cleaves the peptide and activates its growth-promoting actions. The goal of this study was to determine clinically relevant functions of NPY by identifying the associations between its concentrations and DPP activity in patients and ES phenotype. Methods NPY concentrations and DPP activity were measured in serum samples from 223 patients with localized and 9 patients with metastatic ES provided by Children’s Oncology Group. Results Serum NPY levels were elevated in ES patients, as compared to healthy control and osteosarcoma populations, independently of the EWS-ETS translocation type. Significantly higher NPY concentrations were detected in ES patients with tumors of pelvic and bone origin. A similar trend was observed in patients with metastatic ES. There was no effect of NPY on survival in patients with localized ES. DPP activity in sera of ES patients was not significantly different from healthy control and osteosarcoma patients. However, high DPP levels were associated with improved survival. Conclusion Systemic NPY is elevated in ES patients and its high levels associate with unfavorable disease features. DPPIV in patients’ sera is derived from non-tumoral sources and its high activity correlates with improved survival. PMID:25387699

  10. Two Pore Channel 2 Differentially Modulates Neural Differentiation of Mouse Embryonic Stem Cells

    PubMed Central

    Zhang, Zhe-Hao; Lu, Ying-Ying; Yue, Jianbo

    2013-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is an endogenous Ca2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca2+ from acidic organelles through two pore channel 2 (TPC2) in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES) cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation. PMID:23776607

  11. New perspectives in ecosystem services science as instruments to understand environmental securities

    PubMed Central

    Villa, Ferdinando; Voigt, Brian; Erickson, Jon D.

    2014-01-01

    As societal demand for food, water and other life-sustaining resources grows, the science of ecosystem services (ES) is seen as a promising tool to improve our understanding, and ultimately the management, of increasingly uncertain supplies of critical goods provided or supported by natural ecosystems. This promise, however, is tempered by a relatively primitive understanding of the complex systems supporting ES, which as a result are often quantified as static resources rather than as the dynamic expression of human–natural systems. This article attempts to pinpoint the minimum level of detail that ES science needs to achieve in order to usefully inform the debate on environmental securities, and discusses both the state of the art and recent methodological developments in ES in this light. We briefly review the field of ES accounting methods and list some desiderata that we deem necessary, reachable and relevant to address environmental securities through an improved science of ES. We then discuss a methodological innovation that, while only addressing these needs partially, can improve our understanding of ES dynamics in data-scarce situations. The methodology is illustrated and discussed through an application related to water security in the semi-arid landscape of the Great Ruaha river of Tanzania. PMID:24535393

  12. Using ecological production functions to link ecological ...

    EPA Pesticide Factsheets

    Ecological production functions (EPFs) link ecosystems, stressors, and management actions to ecosystem services (ES) production. Although EPFs are acknowledged as being essential to improve environmental management, their use in ecological risk assessment has received relatively little attention. Ecological production functions may be defined as usable expressions (i.e., models) of the processes by which ecosystems produce ES, often including external influences on those processes. We identify key attributes of EPFs and discuss both actual and idealized examples of their use to inform decision making. Whenever possible, EPFs should estimate final, rather than intermediate, ES. Although various types of EPFs have been developed, we suggest that EPFs are more useful for decision making if they quantify ES outcomes, respond to ecosystem condition, respond to stressor levels or management scenarios, reflect ecological complexity, rely on data with broad coverage, have performed well previously, are practical to use, and are open and transparent. In an example using pesticides, we illustrate how EPFs with these attributes could enable the inclusion of ES in ecological risk assessment. The biggest challenges to ES inclusion are limited data sets that are easily adapted for use in modeling EPFs and generally poor understanding of linkages among ecological components and the processes that ultimately deliver the ES. We conclude by advocating for the incorporation into E

  13. Physical partner violence, women’s economic status and help-seeking behaviour in Dar es Salaam and Mbeya, Tanzania

    PubMed Central

    Vyas, Seema; Mbwambo, Jessie

    2017-01-01

    ABSTRACT Background: Women’s responses to partner violence are influenced by a complex constellation of factors including: psychological attachment to the partner; context of the abuse; and structural factors, all of which shape available options for women outside of the relationship. Objective: To describe women’s responses to physical partner violence; and to understand the role of women’s economic resources on their responses. Methods: Cross-sectional data from Dar es Salaam and Mbeya, Tanzania. Multivariate logistic regression was used to explore the relationship between women’s economic resources and their responses to violence. Results: In both sites, among physically abused women, over one-half experienced severe violence; approximately two-thirds had disclosed the violence; and approximately 40% had sought help. Abused women were more likely to have sought help from health services, the police and religious leaders in Dar es Salaam, and from local leaders in Mbeya. Economic resources did not facilitate women’s ability to leave violent partners in Dar es Salaam. In Mbeya, women who jointly owned capital assets were less likely to have left. In both sites, women’s sole ownership of capital assets facilitated help-seeking. Conclusion: Although support services are being scaled-up in Tanzania, efforts are needed to increase the acceptability of accessing such services. PMID:28485667

  14. No Further Remedial Action Planned Decision Document for Site 3.

    DTIC Science & Technology

    1998-04-01

    INSTALLATION RESTORATION PROGRAM No FURTHER REMEDIAL ACTION PLANNED DECISION DOCUMENT FOR SITE 3 FINAL MICHIGAN AIR NATIONAL GUARD ALPENA ...COMBAT READINESS TRAINING CENTER ALPENA , MICHIGAN April 1998 Air National Guard Andrews AFB, Maryland &nc QUALITY IMSmm«^ 19980519 204 XA REPORT...Document for Site 3 at Alpena CRTC, Alpena , MI. 6. AUTHOR(S) N/A 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Montgomery

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loftin, B.; Abramczyk, G.

    Destructive testing of an ES-3100 Shipping Container was completed by the Packaging Technology and Pressurized Systems organization within the Savannah River National Laboratory in order to qualify the ES-3100 as a candidate storage and transport package for applications at various facilities at the Savannah River Site. The testing consisted of the detonation of three explosive charges at separate locations on a single ES-3100. The locations for the placement were chosen based the design of the ES-3100 as well as the most likely places for the package to incur damage as a result of the detonation. The testing was completed atmore » an offsite location, which raised challenges as well as allowed for development of new partnerships for this testing and for potential future testing. The results of the testing, the methods used to complete the testing, and similar, potential future work will be discussed.« less

  16. Evaluation of desmin as a diagnostic and prognostic marker of childhood rhabdomyosarcomas and embryonal sarcomas.

    PubMed Central

    Dias, P.; Kumar, P.; Marsden, H. B.; Morris-Jones, P. H.; Birch, J.; Swindell, R.; Kumar, S.

    1987-01-01

    The diagnostic and prognostic relevance of desmin expression in 80 rhabdomyosarcomas (RMS) and 5 embryonal sarcomas (ES) was examined using a peroxidase anti-peroxidase staining procedure. Fifty-nine RMS but only one ES stained for desmin (P less than 0.05). The maximum percentage of desmin containing cells was 49 in RMS compared with only 1% in ES. Desmin positivity correlated inversely with survival (P less than 0.02) in that RMS with high proportions of desmin positive cells were associated with poorer prognoses than those containing fewer desmin positive cells. If the degree of expression of desmin is related to myogenic differentiation, then our results indicate that poorly differentiated RMS tend to have a better prognosis than the well differentiated tumours. One possible explanation is that the poorly differentiated RMS respond better to chemotherapy than to well differentiated RMS. A multivariant analysis incorporating desmin staining, treatment, histology, age and gender revealed that the two most significant independent prognostic factors were treatment and histology. Images Figure 1 PMID:3311112

  17. Characterization of axon formation in the embryonic stem cell-derived motoneuron.

    PubMed

    Pan, Hung-Chuan; Wu, Ya-Ting; Shen, Shih-Cheng; Wang, Chi-Chung; Tsai, Ming-Shiun; Cheng, Fu-Chou; Lin, Shinn-Zong; Chen, Ching-Wen; Liu, Ching-San; Su, Hong-Lin

    2011-01-01

    The developing neural cell must form a highly organized architecture to properly receive and transmit nerve signals. Neural formation from embryonic stem (ES) cells provides a novel system for studying axonogenesis, which are orchestrated by polarity-regulating molecules. Here the ES-derived motoneurons, identified by HB9 promoter-driven green fluorescent protein (GFP) expression, showed characteristics of motoneuron-specific gene expression. In the majority of motoneurons, one of the bilateral neurites developed into an axon that featured with axonal markers, including Tau1, vesicle acetylcholine transporter, and synaptophysin. Interestingly, one third of the motoneurons developed bi-axonal processes but no multiple axonal GFP cell was found. The neuronal polarity-regulating proteins, including the phosphorylated AKT and ERK, were compartmentalized into both of the bilateral axonal tips. Importantly, this aberrant axon morphology was still present after the engraftment of GFP(+) neurons into the spinal cord, suggesting that even a mature neural environment fails to provide a proper niche to guide normal axon formation. These findings underscore the necessity for evaluating the morphogenesis and functionality of neurons before the clinical trials using ES or somatic stem cells.

  18. Observational Signatures of Cloud-Cloud Collision in the Extended Star-forming Region S235

    NASA Astrophysics Data System (ADS)

    Dewangan, L. K.; Ojha, D. K.

    2017-11-01

    We present a multi-wavelength data analysis of the extended star-forming region S235 (hereafter E-S235), where two molecular clouds are present. In E-S235, using the 12CO (1-0) and 13CO (1-0) line data, a molecular cloud linked with the site “S235main” is traced in a velocity range [-24, -18] km s-1, while the other one containing the sites S235A, S235B, and S235C (hereafter “S235ABC”) is depicted in a velocity range [-18, -13] km s-1. In the velocity space, these two clouds are separated by ˜4 km s-1, and are interconnected by a lower-intensity intermediate velocity emission, tracing a broad bridge feature. In the velocity channel maps, a possible complementary molecular pair at [-21, -20] km s-1 and [-16, -15] km s-1 is also evident. The sites, “S235ABC,” east 1, and south-west, are spatially seen in the interface of two clouds. Together, these observed features are consistent with the predictions of numerical models of the cloud-cloud collision (CCC) process, favoring the onset of the CCC in E-S235 about 0.5 Myr ago. Deep UKIDSS near-infrared photometric analysis of point-like sources reveals significant clustering of young stellar populations toward the sites located at the junction, and the “S235main.” The sites “S235ABC” harbor young compact H II regions with dynamical ages of ˜0.06-0.22 Myr, and these sites (including south-west and east 1) also contain dust clumps (having M clump ˜ 40 to 635 {M}⊙ ). Our observational findings suggest that the star formation activities (including massive stars) appear to be influenced by the CCC mechanism at the junction.

  19. Electrogenic transport and K+ ion channel expression by the human endolymphatic sac epithelium

    PubMed Central

    Kim, Sung Huhn; Kim, Bo Gyung; Kim, Jin Young; Roh, Kyung Jin; Suh, Michelle J.; Jung, JinSei; Moon, In Seok; Moon, Sung K.; Choi, Jae Young

    2015-01-01

    The endolymphatic sac (ES) is a cystic organ that is a part of the inner ear and is connected to the cochlea and vestibule. The ES is thought to be involved in inner ear ion homeostasis and fluid volume regulation for the maintenance of hearing and balance function. Many ion channels, transporters, and exchangers have been identified in the ES luminal epithelium, mainly in animal studies, but there has been no functional study investigating ion transport using human ES tissue. We designed the first functional experiments on electrogenic transport in human ES and investigated the contribution of K+ channels in the electrogenic transport, which has been rarely identified, even in animal studies, using electrophysiological/pharmacological and molecular biological methods. As a result, we identified functional and molecular evidence for the essential participation of K+ channels in the electrogenic transport of human ES epithelium. The identified K+ channels involved in the electrogenic transport were KCNN2, KCNJ14, KCNK2, and KCNK6, and the K+ transports via those channels are thought to play an important role in the maintenance of the unique ionic milieu of the inner ear fluid. PMID:26655723

  20. General Use of UAS in EW Environment-EW Concepts and Tactics for Single or Multiple UAS Over the Net-Centric Battlefield

    DTIC Science & Technology

    2009-09-01

    Tactics for Single or Multiple UAS over the Net-Centric Battlefield 6. AUTHOR( S ) Mustafa Gokhan Erdemli 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION...NAME( S ) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...MONITORING AGENCY NAME( S ) AND ADDRESS(ES) N/A 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this

  1. The Dragon and Uncle Sam: Shaping the World for Prosperity or Destruction?

    DTIC Science & Technology

    2012-02-03

    student academic research paper are those of the author and do not reflect the official policy or position of the Department of the Army, Department...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER...expressed in this student academic research paper are those of the author and do not reflect the official policy or position of the Department of the Army

  2. Effects of Electrical Stimulation on Skeletal Muscle of Old Sedentary People

    PubMed Central

    Mosole, Simone; Zampieri, Sandra; Furlan, Sandra; Carraro, Ugo; Löefler, Stefan; Kern, Helmut; Volpe, Pompeo

    2018-01-01

    Physical activity plays an important role in preventing muscle atrophy and chronic diseases in adults and in the elderly. Calcium (Ca2+) cycling and activation of specific molecular pathways are essential in contraction-induced muscle adaptation. This study attains human muscle sections and total homogenates prepared from biopsies obtained before (control) and after 9 weeks of training by electrical stimulation (ES) on a group of volunteers. The aim of the study was to investigate about the molecular mechanisms that support functional muscle improvement by ES. Evidences of kinase/phosphatase pathways activation after ES were obtained. Moreover, expression of Sarcalumenin, Calsequestrin and sarco/endoplasmic reticulum Ca2+-ATPase (Serca) isoforms was regulated by training. In conclusion, this work shows that neuromuscular ES applied to vastus lateralis muscle of sedentary seniors combines fiber remodeling with activation of Ca2+-Calmodulin molecular pathways and modulation of key Ca2+-handling proteins. PMID:29662923

  3. Expression of cholinesterase gene(s) in human brain tissues: translational evidence for multiple mRNA species.

    PubMed Central

    Soreq, H; Zevin-Sonkin, D; Razon, N

    1984-01-01

    To resolve the origin(s) of the molecular heterogeneity of human nervous system cholinesterases (ChEs), we used Xenopus oocytes, which produce biologically active ChE when microinjected with unfractionated brain mRNA. The RNA was prepared from primary gliomas, meningiomas and embryonic brain, each of which expresses ChE activity with distinct substrate specificities and molecular forms. Sucrose gradient fractionation of DMSO-denatured mRNA from these sources revealed three size classes of ChE-inducing mRNAs, sedimenting at approximately 32S, 20S and 9S. The amounts of these different classes of ChE-inducing mRNAs varied between the three tissue sources examined. To distinguish between ChEs produced in oocytes and having different substrate specificities, their activity was determined in the presence of selective inhibitors. Both 'true' (acetylcholine hydrolase, EC 3.1.1.7) and 'pseudo' (acylcholine acylhydrolase, EC 3.1.1.8) multimeric cholinesterase activities were found in the mRNA-injected oocytes. Moreover, human brain mRNAs inducing 'true' and 'pseudo' ChE activities had different size distribution, indicating that different mRNAs might be translated into various types of ChEs. These findings imply that the heterogeneity of ChEs in the human nervous system is not limited to the post-translational level, but extends to the level of mRNA. PMID:6745236

  4. Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Yong; Wang Honglan; Mazzone, Theodore

    2006-08-01

    We identified stem cells from the umbilical cord blood, designated cord blood-stem cells (CB-SC). CB-SC displayed important embryonic stem (ES) cell characteristics including expression of ES-cell-specific molecular markers including transcription factors OCT-4 and Nanog, along with stage-specific embryonic antigen (SSEA)-3 and SSEA-4. CB-SC also expressed hematopoietic cell antigens including CD9, CD45 and CD117, but were negative for CD34. CB-SC displayed very low immunogenicity as indicated by expression of a very low level of major histocompatibility complex (MHC) antigens and failure to stimulate the proliferation of allogeneic lymphocytes. CB-SC could give rise to cells with endothelial-like and neuronal-like characteristics in vitro,more » as demonstrated by expression of lineage-associated markers. Notably, CB-SC could be stimulated to differentiate into functional insulin-producing cells in vivo and eliminated hyperglycemia after transplantation into a streptozotocin-induced diabetic mouse model. These findings may have significant potential to advance stem-cell-based therapeutics.« less

  5. Partition of some key regulating services in terrestrial ecosystems: Meta-analysis and review.

    PubMed

    Viglizzo, E F; Jobbágy, E G; Ricard, M F; Paruelo, J M

    2016-08-15

    Our knowledge about the functional foundations of ecosystem service (ES) provision is still limited and more research is needed to elucidate key functional mechanisms. Using a simplified eco-hydrological scheme, in this work we analyzed how land-use decisions modify the partition of some essential regulatory ES by altering basic relationships between biomass stocks and water flows. A comprehensive meta-analysis and review was conducted based on global, regional and local data from peer-reviewed publications. We analyzed five datasets comprising 1348 studies and 3948 records on precipitation (PPT), aboveground biomass (AGB), AGB change, evapotranspiration (ET), water yield (WY), WY change, runoff (R) and infiltration (I). The conceptual framework was focused on ES that are associated with the ecological functions (e.g., intermediate ES) of ET, WY, R and I. ES included soil protection, carbon sequestration, local climate regulation, water-flow regulation and water recharge. To address the problem of data normality, the analysis included both parametric and non-parametric regression analysis. Results demonstrate that PPT is a first-order biophysical factor that controls ES release at the broader scales. At decreasing scales, ES are partitioned as result of PPT interactions with other biophysical and anthropogenic factors. At intermediate scales, land-use change interacts with PPT modifying ES partition as it the case of afforestation in dry regions, where ET and climate regulation may be enhanced at the expense of R and water-flow regulation. At smaller scales, site-specific conditions such as topography interact with PPT and AGB displaying different ES partition formats. The probable implications of future land-use and climate change on some key ES production and partition are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Zoledronic acid inhibits pulmonary metastasis dissemination in a preclinical model of Ewing’s sarcoma via inhibition of cell migration

    PubMed Central

    2014-01-01

    Background Ewing’s sarcoma (ES) is the second most frequent primitive malignant bone tumor in adolescents with a very poor prognosis for high risk patients, mainly when lung metastases are detected (overall survival <15% at 5 years). Zoledronic acid (ZA) is a potent inhibitor of bone resorption which induces osteoclast apoptosis. Our previous studies showed a strong therapeutic potential of ZA as it inhibits ES cell growth in vitro and ES primary tumor growth in vivo in a mouse model developed in bone site. However, no data are available on lung metastasis. Therefore, the aim of this study was to determine the effect of ZA on ES cell invasion and metastatic properties. Methods Invasion assays were performed in vitro in Boyden’s chambers covered with Matrigel. Matrix Metalloproteinase (MMP) activity was analyzed by zymography in ES cell culture supernatant. In vivo, a relevant model of spontaneous lung metastases which disseminate from primary ES tumor was induced by the orthotopic injection of 106 human ES cells in the tibia medullar cavity of nude mice. The effect of ZA (50 μg/kg, 3x/week) was studied over a 4-week period. Lung metastases were observed macroscopically at autopsy and analysed by histology. Results ZA induced a strong inhibition of ES cell invasion, probably due to down regulation of MMP-2 and −9 activities as analyzed by zymography. In vivo, ZA inhibits the dissemination of spontaneous lung metastases from a primary ES tumor but had no effect on the growth of established lung metastases. Conclusion These results suggest that ZA could be used early in the treatment of ES to inhibit bone tumor growth but also to prevent the early metastatic events to the lungs. PMID:24612486

  7. Calreticulin reveals a critical Ca2+ checkpoint in cardiac myofibrillogenesis

    PubMed Central

    Li, Jian; Pucéat, Michel; Perez-Terzic, Carmen; Mery, Annabelle; Nakamura, Kimitoshi; Michalak, Marek; Krause, Karl-Heinz; Jaconi, Marisa E.

    2002-01-01

    Calreticulin (crt) is an ubiquitously expressed and multifunctional Ca2+-binding protein that regulates diverse vital cell functions, including Ca2+ storage in the ER and protein folding. Calreticulin deficiency in mice is lethal in utero due to defects in heart development and function. Herein, we used crt − / − embryonic stem (ES) cells differentiated in vitro into cardiac cells to investigate the molecular mechanisms underlying heart failure of knockout embryos. After 8 d of differentiation, beating areas were prominent in ES-derived wild-type (wt) embryoid bodies (EBs), but not in ES-derived crt − / − EBs, despite normal expression levels of cardiac transcription factors. Crt − / − EBs exhibited a severe decrease in expression and a lack of phosphorylation of ventricular myosin light chain 2 (MLC2v), resulting in an impaired organization of myofibrils. Crt − / − phenotype could be recreated in wt cells by chelating extracellular or cytoplasmic Ca2+ with EGTA or BAPTA, or by inhibiting Ca2+/calmodulin-dependent kinases (CaMKs). An imposed ionomycin-triggered cystolic-free Ca2+ concentration ([Ca2+]c) elevation restored the expression, phosphorylation, and insertion of MLC2v into sarcomeric structures and in turn the myofibrillogenesis. The transcription factor myocyte enhancer factor C2 failed to accumulate into nuclei of crt − / − cardiac cells in the absence of ionomycin-triggered [Ca2+]c increase. We conclude that the absence of calreticulin interferes with myofibril formation. Most importantly, calreticulin deficiency revealed the importance of a Ca2+-dependent checkpoint critical for early events during cardiac myofibrillogenesis. PMID:12105184

  8. Discovering the Deregulated Molecular Functions Involved in Malignant Transformation of Endometriosis to Endometriosis-Associated Ovarian Carcinoma Using a Data-Driven, Function-Based Analysis

    PubMed Central

    Chang, Chia-Ming; Yang, Yi-Ping; Chuang, Jen-Hua; Chuang, Chi-Mu; Lin, Tzu-Wei; Wang, Peng-Hui; Yu, Mu-Hsien

    2017-01-01

    The clinical characteristics of clear cell carcinoma (CCC) and endometrioid carcinoma EC) are concomitant with endometriosis (ES), which leads to the postulation of malignant transformation of ES to endometriosis-associated ovarian carcinoma (EAOC). Different deregulated functional areas were proposed accounting for the pathogenesis of EAOC transformation, and there is still a lack of a data-driven analysis with the accumulated experimental data in publicly-available databases to incorporate the deregulated functions involved in the malignant transformation of EOAC. We used the microarray gene expression datasets of ES, CCC and EC downloaded from the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO) database. Then, we investigated the pathogenesis of EAOC by a data-driven, function-based analytic model with the quantified molecular functions defined by 1454 Gene Ontology (GO) term gene sets. This model converts the gene expression profiles to the functionome consisting of 1454 quantified GO functions, and then, the key functions involving the malignant transformation of EOAC can be extracted by a series of filters. Our results demonstrate that the deregulated oxidoreductase activity, metabolism, hormone activity, inflammatory response, innate immune response and cell-cell signaling play the key roles in the malignant transformation of EAOC. These results provide the evidence supporting the specific molecular pathways involved in the malignant transformation of EAOC. PMID:29113136

  9. Morphogenesis and Biomechanics of Engineered Skin Cultured Under Uniaxial Strain.

    PubMed

    Blackstone, Britani N; Powell, Heather M

    2012-04-01

    Split-thickness autograft is the standard wound treatment for full-thickness burns. In large burns, sparse availability of uninjured skin prevents rapid closure of the wound, resulting in increased scar tissue formation or mortality. Tissue-engineered skin (ES) offers promise when autografts are not available. ES, constructed from a polymeric scaffold and skin cells, has been shown to reduce donor site area required to permanently close wounds, mortality, and morbidity from scarring but cannot restore all skin functions. Current generations of ES are orders of magnitude weaker than normal human skin, leading to difficulty in surgical application, greater susceptibility to mechanical damage during fabrication and application, and less elasticity and strength once engrafted. Previous studies to improve ES biomechanics focus on altering the scaffolding material, which resulted in modest improvements but often inhibited proper skin development. As the skin is naturally under static strain, adding these mechanical cues to the culture environment is hypothesized to improve ES biomechanics. ES was cultured under applied static strains ranging from 0% to 40% strain for a total of 10 days. Strain magnitudes of 10% and 20% strain resulted in significantly stronger ES than unstrained controls, showed upregulation of many genes encoding structural extracellular matrix proteins, and exhibited increased epidermal cell proliferation and differentiation. Enhanced biomechanical properties of ES can allow for facile surgical application and less damage during dressing changes. These findings suggest that mechanical cues play a significant role in skin development and should be further explored.

  10. Coordinate late expression of trefoil peptide genes (pS2/TFF1 and ITF/TFF3) in human breast, colon, and gastric tumor cells exposed to X-rays

    NASA Technical Reports Server (NTRS)

    Balcer-Kubiczek, Elizabeth K.; Harrison, George H.; Xu, Jing-Fan; Gutierrez, Peter L.

    2002-01-01

    The trefoil factors (TFFs) are pleiotropic factors involved in organization and homeostasis of the gastrointestinal tract, estrogen responsiveness, inflammatory disorders, and carcinogenesis. In an earlier study using cDNA array technologies to identify new genes expressed in irradiated cell survivors, we isolated a cDNA clone corresponding to the reported human TFF1 gene (E. K. Balcer-Kubiczek et al., Int. J. Radiat. Biol., 75: 529-541, 1999). To determine whether expression of other TFFs is altered by ionizing radiation, we quantified changes in expression of TFF3 as well as TFF1 in RNA samples obtained from irradiated and control human tumor breast, colon, and gastric tumor cells and examined expression kinetics up to 2 weeks after irradiation. X-ray-induced TFF1 and TFF3 expression profiles were compared with those induced by hydrogen peroxide (H2O2) or 17beta-estradiol (ES). The results revealed that TFF1 and TFF3 mRNA are coinduced by X-irradiation in a subset of the lines, but substantial heterogeneity in their responses was observed in cells derived from a single cell type. TFF1 and TFF3 transcriptional response to X-irradiation differed from that to H2O2 or ES in the timing of their induction as well as tissue-type dependence, i.e., their induction pattern after X-irradiation was late and sustained, whereas their induction by H2O2 or ES was early and transient. TFF1 mRNA, protein production in the cytoplasm, and secretion in the culture supernatant were coordinately regulated after X-irradiation. There was no requirement for TP53 in this induction. These results demonstrate the existence of a novel class of radiation-responsive genes that might be involved in bystander effects.

  11. Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry

    PubMed Central

    Swaney, Danielle L.; Wenger, Craig D.; Thomson, James A.; Coon, Joshua J.

    2009-01-01

    Protein phosphorylation is central to the understanding of cellular signaling, and cellular signaling is suggested to play a major role in the regulation of human embryonic stem (ES) cell pluripotency. Here, we describe the use of conventional tandem mass spectrometry-based sequencing technology—collision-activated dissociation (CAD)—and the more recently developed method electron transfer dissociation (ETD) to characterize the human ES cell phosphoproteome. In total, these experiments resulted in the identification of 11,995 unique phosphopeptides, corresponding to 10,844 nonredundant phosphorylation sites, at a 1% false discovery rate (FDR). Among these phosphorylation sites are 5 localized to 2 pluripotency critical transcription factors—OCT4 and SOX2. From these experiments, we conclude that ETD identifies a larger number of unique phosphopeptides than CAD (8,087 to 3,868), more frequently localizes the phosphorylation site to a specific residue (49.8% compared with 29.6%), and sequences whole classes of phosphopeptides previously unobserved. PMID:19144917

  12. Development of β-lactoglobulin-specific chimeric human IgEκ monoclonal antibodies for in vitro safety assessment of whey hydrolysates.

    PubMed

    Knipping, Karen; Simons, Peter J; Buelens-Sleumer, Laura S; Cox, Linda; den Hartog, Marcel; de Jong, Niels; Teshima, Reiko; Garssen, Johan; Boon, Louis; Knippels, Léon M J

    2014-01-01

    Cow's milk-derived whey hydrolysates are nutritional substitutes for allergic infants. Safety or residual allergenicity assessment of these whey hydrolysates is crucial. Currently, rat basophilic leukemia RBL-2H3 cells expressing the human IgE receptor α-chain (huFcεRIα-RBL-2H3), sensitized with serum IgE from cow's milk allergic children, are being employed to assess in vitro residual allergenicity of these whey hydrolysates. However, limited availability and inter-lot variation of these allergic sera impede standardization of whey hydrolysate safety testing in degranulation assays. An oligoclonal pool of chimeric human (chu)IgE antibodies against bovine β-lactoglobulin (a major allergen in whey) was generated to increase sensitivity, specificity, and reproducibility of existing degranulation assays. Mice were immunized with bovine β-lactoglobulin, and subsequently the variable domains of dissimilar anti-β-lactoglobulin mouse IgG antibodies were cloned and sequenced. Six chimeric antibodies were generated comprising mouse variable domains and human constant IgE/κ domains. After sensitization with this pool of anti-β-lactoglobulin chuIgEs, huFcεRIα-expressing RBL-2H3 cells demonstrated degranulation upon cross-linking with whey, native 18 kDa β-lactoglobulin, and 5-10 kDa whey hydrolysates, whereas a 3 kDa whey hydrolysate and cow's milk powder (mainly casein) showed no degranulation. In parallel, allergic serum IgEs were less sensitive. In addition, our pool anti-β-lactoglobulin chuIgEs recognized multiple allergenic immunodominant regions on β-lactoglobulin, which were also recognized by serum IgEs from cow's milk allergic children. Usage of our 'unlimited' source and well-defined pool of β-lactoglobulin-specific recombinant chuIgEs to sensitize huFcεRIα on RBL-2H3 cells showed to be a relevant and sensitive alternative for serum IgEs from cow's milk allergic patients to assess safety of whey-based non-allergic hydrolyzed formula.

  13. Live Cell Imaging of the Nascent Inactive X Chromosome during the Early Differentiation Process of Naive ES Cells towards Epiblast Stem Cells

    PubMed Central

    Guyochin, Aurélia; Maenner, Sylvain; Chu, Erin Tsi-Jia; Hentati, Asma; Attia, Mikael; Avner, Philip; Clerc, Philippe

    2014-01-01

    Random X-chromosome inactivation ensures dosage compensation in mammals through the transcriptional silencing of one of the two X chromosomes present in each female cell. Silencing is initiated in the differentiating epiblast of the mouse female embryos through coating of the nascent inactive X chromosome by the non-coding RNA Xist, which subsequently recruits the Polycomb Complex PRC2 leading to histone H3-K27 methylation. Here we examined in mouse ES cells the early steps of the transition from naive ES cells towards epiblast stem cells as a model for inducing X chromosome inactivation in vitro. We show that these conditions efficiently induce random XCI. Importantly, in a transient phase of this differentiation pathway, both X chromosomes are coated with Xist RNA in up to 15% of the XX cells. In an attempt to determine the dynamics of this process, we designed a strategy aimed at visualizing the nascent inactive X-chromosome in live cells. We generated transgenic female XX ES cells expressing the PRC2 component Ezh2 fused to the fluorescent protein Venus. The fluorescent fusion protein was expressed at sub-physiological levels and located in nuclei of ES cells. Upon differentiation of ES cell towards epiblast stem cell fate, Venus-fluorescent territories appearing in interphase nuclei were identified as nascent inactive X chromosomes by their association with Xist RNA. Imaging of Ezh2-Venus for up to 24 hours during the differentiation process showed survival of some cells with two fluorescent domains and a surprising dynamics of the fluorescent territories across cell division and in the course of the differentiation process. Our data reveal a strategy for visualizing the nascent inactive X chromosome and suggests the possibility for a large plasticity of the nascent inactive X chromosome. PMID:25546018

  14. Mouse embryonic stem cells, but not somatic cells, predominantly use homologous recombination to repair double-strand DNA breaks.

    PubMed

    Tichy, Elisia D; Pillai, Resmi; Deng, Li; Liang, Li; Tischfield, Jay; Schwemberger, Sandy J; Babcock, George F; Stambrook, Peter J

    2010-11-01

    Embryonic stem (ES) cells give rise to all cell types of an organism. Since mutations at this embryonic stage would affect all cells and be detrimental to the overall health of an organism, robust mechanisms must exist to ensure that genomic integrity is maintained. To test this proposition, we compared the capacity of murine ES cells to repair DNA double-strand breaks with that of differentiated cells. Of the 2 major pathways that repair double-strand breaks, error-prone nonhomologous end joining (NHEJ) predominated in mouse embryonic fibroblasts, whereas the high fidelity homologous recombinational repair (HRR) predominated in ES cells. Microhomology-mediated end joining, an emerging repair pathway, persisted at low levels in all cell types examined. The levels of proteins involved in HRR and microhomology-mediated end joining were highly elevated in ES cells compared with mouse embryonic fibroblasts, whereas those for NHEJ were quite variable, with DNA Ligase IV expression low in ES cells. The half-life of DNA Ligase IV protein was also low in ES cells. Attempts to increase the abundance of DNA Ligase IV protein by overexpression or inhibition of its degradation, and thereby elevate NHEJ in ES cells, were unsuccessful. When ES cells were induced to differentiate, however, the level of DNA Ligase IV protein increased, as did the capacity to repair by NHEJ. The data suggest that preferential use of HRR rather than NHEJ may lend ES cells an additional layer of genomic protection and that the limited levels of DNA Ligase IV may account for the low level of NHEJ activity.

  15. Improvements to a Major Digital Archive of Seismic Waveforms from Nuclear Explosions: Borovoye Seismogram Archive

    DTIC Science & Technology

    2008-09-30

    coda) meet expectations. We are also interpreting absolute amplitudes, for those underground nuclear explosions at the Semipalatinsk Test Site (STS...waves, coda) meet expectations. We are also interpreting absolute amplitudes, for those underground nuclear explosions at the Semipalatinsk Test Site ...Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies 4.0- Balapan Subregion Semipalatinsk Test Site n- 3.5 - (U CIO ’-3.0 ES UI

  16. AFRL Solid Propellant Laboratory Explosive Siting and Renovation Lessons Learned

    DTIC Science & Technology

    2010-05-19

    AFRL Solid Propellant Laboratory Explosive Siting and Renovation Lessons Learned Daniel F. Schwartz Air Force Research Laboratory ...9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL /RZS...provide the United States Air Force with advanced rocket propulsion technologies, the Air Force Research

  17. Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, Desulfovibrio vulgaris

    PubMed Central

    Zhou, Aifen; Lau, Rebecca; Baran, Richard; Ma, Jincai; von Netzer, Frederick; Shi, Weiling; Gorman-Lewis, Drew; Kempher, Megan L.; He, Zhili; Qin, Yujia; Shi, Zhou; Zane, Grant M.; Wu, Liyou; Bowen, Benjamin P.; Northen, Trent R.; Hillesland, Kristina L.; Stahl, David A.; Wall, Judy D.; Arkin, Adam P.

    2017-01-01

    ABSTRACT Rapid genetic and phenotypic adaptation of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough to salt stress was observed during experimental evolution. In order to identify key metabolites important for salt tolerance, a clone, ES10-5, which was isolated from population ES10 and allowed to experimentally evolve under salt stress for 5,000 generations, was analyzed and compared to clone ES9-11, which was isolated from population ES9 and had evolved under the same conditions for 1,200 generations. These two clones were chosen because they represented the best-adapted clones among six independently evolved populations. ES10-5 acquired new mutations in genes potentially involved in salt tolerance, in addition to the preexisting mutations and different mutations in the same genes as in ES9-11. Most basal abundance changes of metabolites and phospholipid fatty acids (PLFAs) were lower in ES10-5 than ES9-11, but an increase of glutamate and branched PLFA i17:1ω9c under high-salinity conditions was persistent. ES9-11 had decreased cell motility compared to the ancestor; in contrast, ES10-5 showed higher cell motility under both nonstress and high-salinity conditions. Both genotypes displayed better growth energy efficiencies than the ancestor under nonstress or high-salinity conditions. Consistently, ES10-5 did not display most of the basal transcriptional changes observed in ES9-11, but it showed increased expression of genes involved in glutamate biosynthesis, cation efflux, and energy metabolism under high salinity. These results demonstrated the role of glutamate as a key osmolyte and i17:1ω9c as the major PLFA for salt tolerance in D. vulgaris. The mechanistic changes in evolved genotypes suggested that growth energy efficiency might be a key factor for selection. PMID:29138306

  18. EARLY SENESCENCE1 Encodes a SCAR-LIKE PROTEIN2 That Affects Water Loss in Rice1[OPEN

    PubMed Central

    Rao, Yuchun; Yang, Yaolong; Xu, Jie; Li, Xiaojing; Leng, Yujia; Dai, Liping; Huang, Lichao; Shao, Guosheng; Ren, Deyong; Hu, Jiang; Guo, Longbiao; Pan, Jianwei; Zeng, Dali

    2015-01-01

    The global problem of drought threatens agricultural production and constrains the development of sustainable agricultural practices. In plants, excessive water loss causes drought stress and induces early senescence. In this study, we isolated a rice (Oryza sativa) mutant, designated as early senescence1 (es1), which exhibits early leaf senescence. The es1-1 leaves undergo water loss at the seedling stage (as reflected by whitening of the leaf margin and wilting) and display early senescence at the three-leaf stage. We used map-based cloning to identify ES1, which encodes a SCAR-LIKE PROTEIN2, a component of the suppressor of cAMP receptor/Wiskott-Aldrich syndrome protein family verprolin-homologous complex involved in actin polymerization and function. The es1-1 mutants exhibited significantly higher stomatal density. This resulted in excessive water loss and accelerated water flow in es1-1, also enhancing the water absorption capacity of the roots and the water transport capacity of the stems as well as promoting the in vivo enrichment of metal ions cotransported with water. The expression of ES1 is higher in the leaves and leaf sheaths than in other tissues, consistent with its role in controlling water loss from leaves. GREEN FLUORESCENT PROTEIN-ES1 fusion proteins were ubiquitously distributed in the cytoplasm of plant cells. Collectively, our data suggest that ES1 is important for regulating water loss in rice. PMID:26243619

  19. Unprecedented Cell-Selection Using Ultra-Quick Freezing Combined with Aquaporin Expression

    PubMed Central

    Kato, Yasuhiro; Miyauchi, Takayuki; Abe, Youichiro; Kojić, Dušan; Tanaka, Manami; Chikazawa, Nana; Nakatake, Yuhki; Ko, Shigeru B. H.; Kobayashi, Daisuke; Hazama, Akihiro; Fujiwara, Shoko; Uchida, Tatsuya; Yasui, Masato

    2014-01-01

    Freezing is usually used for preservation and storage of biological samples; however, this process may have some adverse effects such as cell membrane damage. Aquaporin (AQP), a water channel protein, has been suggested to play some roles for cryopreservation although its molecular mechanism remains unclear. Here we show that membrane damage caused by ultra-quick freezing is rescued by the expression of AQP4. We next examine if the expression of AQP combined with ultra-quick freezing can be used to select cells efficiently under freezing conditions where most cells are died. CHO cells stably expressing AQP4 were exclusively selected from mixed cell cultures. Having identified the increased expression of AQP4 during ES cell differentiation into neuro-ectoderm using bioinformatics, we confirmed the improved survival of differentiated ES cells with AQP4 expression. Finally we show that CHO cells transiently transfected with Endothelin receptor A and Aqp4 were also selected and concentrated by multiple cycles of freezing/thawing, which was confirmed with calcium imaging in response to endothelin. Furthermore, we found that the expression of AQP enables a reduction in the amount of cryoprotectants for freezing, thereby decreasing osmotic stress and cellular toxicity. Taken together, we propose that this simple but efficient and safe method may be applicable to the selection of mammalian cells for applications in regenerative medicine as well as cell-based functional assays or drug screening protocols. PMID:24558371

  20. High-yield expression and purification of isotopically labeled cytochrome P450 monooxygenases for solid-state NMR spectroscopy

    PubMed Central

    Rupasinghe, Sanjeewa G.; Duan, Hui; Frericks Schmidt, Heather L.; Berthold, Deborah A.; Rienstra, Chad M.; Schuler, Mary A.

    2008-01-01

    Cytochrome P450 monooxygenases (P450s), which represent the major group of drug metabolizing enzymes in humans, also catalyze important synthetic and detoxicative reactions in insects, plants and many microbes. Flexibilities in their catalytic sites and membrane associations are thought to play central roles in substrate binding and catalytic specificity. To date, E. coli expression strategies for structural analysis of eukaryotic membrane-bound P450s by X-ray crystallography have necessitated full or partial removal of their N-terminal signal anchor domain (SAD) and, often, replacement of residues more peripherally associated with the membrane (such as the F-G loop region). Even with these modifications, investigations of P450 structural flexibility remain challenging with multiple single crystal conditions needed to identify spatial variations between substrate-free and different substrate-bound forms. To overcome these limitations, we have developed methods for the efficient expression of 13C- and 15N-labeled P450s and analysis of their structures by magic-angle spinning solid-state NMR (SSNMR) spectroscopy. In the presence of co-expressed GroEL and GroES chaperones, full-length (53 kDa) Arabidopsis 13C,15N-labeled CYP98A3 is expressed at yields of 2–4 mg per liter of minimal media without the necessity of generating side chain modifications or N-terminal deletions. Precipitated CYP98A3 generates high quality SSNMR spectra consistent with a homogeneous, folded protein. These data highlight the potential of these methodologies to contribute to the structural analysis of membrane-bound proteins. PMID:18005930

  1. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z.; Gimzewski, James K.; Nakano, Atsushi

    2013-04-01

    While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.

  2. The Smooth Operator: Understanding Cross-Cultural Interpersonal Skills in Special Operations

    DTIC Science & Technology

    2014-12-01

    ONLY (Leave blank) I 2. REPORT DATE I 3. REPORT TYPE A ND DATES COVERED December 2014 Master’s Thesis 4. TITLE A ND SUBTITLE 5. FUNDING NUMBERS THE...ORGANIZATION NAME(S) A ND A DDRESS(ES) 8. PERFORMING ORGANIZA TION Naval Postgraduate School REPORT NUMBER Monterev. CA 93943-5000 9. SPONSORING /MONITORING...AGENCY NA ME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING N/A AGENCY REPORT NUMBER 11 . SUPPLEMENTARY NOTES The views expressed in this thesis are

  3. Characterization and Targeting of the Aldehyde Dehydrogenase Subpopulation in Ovarian Cancer

    DTIC Science & Technology

    2013-07-01

    from the A2780cp20 cell line . Task 2: Determine if ALDH1-positive cells survive chemotherapy in the tumor microenvironment. We have previously... lines . Anti- endoglin siRNAs were used to downregulate expression in ES2 and HeyA8MDR. In vitro, the effects of endoglin-knockdown individually and...ES2 or HeyA8MDR cell lines were administered chitosan-encapsulated anti- ENG siRNA or control siRNA with and without carboplatin. As described in the

  4. Teratocarcinomas induced by embryonic stem (ES) cells lacking vimentin: an approach to study the role of vimentin in tumorigenesis.

    PubMed

    Langa, F; Kress, C; Colucci-Guyon, E; Khun, H; Vandormael-Pournin, S; Huerre, M; Babinet, C

    2000-10-01

    Vimentin is a class III intermediate filament protein widely expressed in the developing embryo and in cells of mesenchymal origin in the adult. Vimentin knock-out mice develop and reproduce without any obvious defect. This is an unexpected finding in view of the high degree of conservation of the vimentin gene among vertebrates. However, it does not exclude the possibility of a role for vimentin in pathological conditions, like tumorigenesis. To address this question directly, we have used a teratocarcinoma model involving the injection of ES cells into syngeneic mice. ES cells lacking vimentin were generated from 129/Sv Vim-/- mice with high efficiency. The absence of vimentin did not affect ES cell morphology, viability or growth rate in vitro. Tumours were induced by subcutaneous injection of either Vim-/- or Vim+/+ ES cells into Vim+/+ and Vim-/- mice, in order to analyse the effect of the absence of vimentin in either the tumorigenic cells or the host mice. No significant differences were found in either tumour incidence, size or vascularization of teratocarcinomas obtained with all possible combinations. Vim-/- ES-derived tumours showed the same cellular composition typical of teratocarcinomas induced by wild-type ES cells together with a very similar apoptotic pattern. Taken together, these results demonstrate that in this model vimentin is not essential for efficient tumour growth and differentiation in vivo.

  5. Mutagenesis of diploid mammalian genes by gene entrapment

    PubMed Central

    Lin, Qing; Donahue, Sarah L.; Moore-Jarrett, Tracy; Cao, Shang; Osipovich, Anna B.; Ruley, H. Earl

    2006-01-01

    The present study describes a genome-wide method for biallelic mutagenesis in mammalian cells. Novel poly(A) gene trap vectors, which contain features for direct cloning vector–cell fusion transcripts and for post-entrapment genome engineering, were used to generate a library of 979 mutant ES cells. The entrapment mutations generally disrupted gene expression and were readily transmitted through the germline, establishing the library as a resource for constructing mutant mice. Cells homozygous for most entrapment loci could be isolated by selecting for enhanced expression of an inserted neomycin-resistance gene that resulted from losses of heterozygosity (LOH). The frequencies of LOH measured at 37 sites in the genome ranged from 1.3 × 10−5 to 1.2 × 10−4 per cell and increased with increasing distance from the centromere, implicating mitotic recombination in the process. The ease and efficiency of obtaining homozygous mutations will (i) facilitate genetic studies of gene function in cultured cells, (ii) permit genome-wide studies of recombination events that result in LOH and mediate a type of chromosomal instability important in carcinogenesis, and (iii) provide new strategies for phenotype-driven mutagenesis screens in mammalian cells. PMID:17062627

  6. Effects of varying Notch1 signal strength on embryogenesis and vasculogenesis in compound mutant heterozygotes

    PubMed Central

    2010-01-01

    Background Identifying developmental processes regulated by Notch1 can be addressed in part by characterizing mice with graded levels of Notch1 signaling strength. Here we examine development in embryos expressing various combinations of Notch1 mutant alleles. Mice homozygous for the hypomorphic Notch112f allele, which removes the single O-fucose glycan in epidermal growth factor-like repeat 12 (EGF12) of the Notch1 ligand binding domain (lbd), exhibit reduced growth after weaning and defective T cell development. Mice homozygous for the inactive Notch1lbd allele express Notch1 missing an ~20 kDa internal segment including the canonical Notch1 ligand binding domain, and die at embryonic day ~E9.5. The embryonic and vascular phenotypes of compound heterozygous Notch112f/lbd embryos were compared with Notch1+/12f, Notch112f/12f, and Notch1lbd/lbd embryos. Embryonic stem (ES) cells derived from these embryos were also examined in Notch signaling assays. While Notch1 signaling was stronger in Notch112f/lbd compound heterozygotes compared to Notch1lbd/lbd embryos and ES cells, Notch1 signaling was even stronger in embryos carrying Notch112f and a null Notch1 allele. Results Mouse embryos expressing the hypomorphic Notch112f allele, in combination with the inactive Notch1lbd allele which lacks the Notch1 ligand binding domain, died at ~E11.5-12.5. Notch112f/lbd ES cells signaled less well than Notch112f/12f ES cells but more strongly than Notch1lbd/lbd ES cells. However, vascular defects in Notch112f/lbd yolk sac were severe and similar to Notch1lbd/lbd yolk sac. By contrast, vascular disorganization was milder in Notch112f/lbd compared to Notch1lbd/lbd embryos. The expression of Notch1 target genes was low in Notch112f/lbd yolk sac and embryo head, whereas Vegf and Vegfr2 transcripts were increased. The severity of the compound heterozygous Notch112f/lbd yolk sac phenotype suggested that the allelic products may functionally interact. By contrast, compound heterozygotes with Notch112f in combination with a Notch1 null allele (Notch1tm1Con) were capable of surviving to birth. Conclusions Notch1 signaling in Notch112f/lbd compound heterozygous embryos is more defective than in compound heterozygotes expressing a hypomorphic Notch112f allele and a Notch1 null allele. The data suggest that the gene products Notch1lbd and Notch112f interact to reduce the activity of Notch112f. PMID:20346184

  7. Differential regulation of genomic imprinting by TET proteins in embryonic stem cells.

    PubMed

    Liu, Lizhi; Mao, Shi-Qing; Ray, Chelsea; Zhang, Yu; Bell, Fong T; Ng, Sheau-Fang; Xu, Guo-Liang; Li, Xiajun

    2015-09-01

    TET proteins have been found to play an important role in active demethylation at CpG sites in mammals. There are some reports implicating their functions in removal of DNA methylation imprint at the imprinted regions in the germline. However, it is not well established whether TET proteins can also be involved in demethylation of DNA methylation imprint in embryonic stem (ES) cells. Here we report that loss of TET proteins caused a significant increase in DNA methylation at the Igf2-H19 imprinted region in ES cells. We also observed a variable increase in DNA methylation at the Peg1 imprinted region in the ES clones devoid of TET proteins, in particular in the differentiated ES cells. By contrast, we did not observe a significant increase of DNA methylation imprint at the Peg3, Snrpn and Dlk1-Dio3 imprinted regions in ES cells lacking TET proteins. Interestingly, loss of TET proteins did not result in a significant increase of DNA methylation imprint at the Igf2-H19 and Peg1 imprinted regions in the embryoid bodies (EB). Therefore, TET proteins seem to be differentially involved in maintaining DNA methylation imprint at a subset of imprinted regions in ES cells and EBs. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Helminth Products Potently Modulate Experimental Autoimmune Encephalomyelitis by Downregulating Neuroinflammation and Promoting a Suppressive Microenvironment.

    PubMed

    Peón, Alberto N; Ledesma-Soto, Yadira; Olguín, Jonadab E; Bautista-Donis, Marcel; Sciutto, Edda; Terrazas, Luis I

    2017-01-01

    A negative correlation between the geographical distribution of autoimmune diseases and helminth infections has been largely associated in the last few years with a possible role for such type of parasites in the regulation of inflammatory diseases, suggesting new pathways for drug development. However, few helminth-derived immunomodulators have been tested in experimental autoimmune encephalomyelitis (EAE), an animal model of the human disease multiple sclerosis (MS). The immunomodulatory activities of Taenia crassiceps excreted/secreted products (TcES) that may suppress EAE development were sought for. Interestingly, it was discovered that TcES was able to suppress EAE development with more potency than dexamethasone; moreover, TcES treatment was still effective even when inoculated at later stages after the onset of EAE. Importantly, the TcES treatment was able to induce a range of Th2-type cytokines, while suppressing Th1 and Th17 responses. Both the polyclonal and the antigen-specific proliferative responses of lymphocytes were also inhibited in EAE-ill mice receiving TcES in association with a potent recruitment of suppressor cell populations. Peritoneal inoculation of TcES was able to direct the normal inflammatory cell traffic to the site of injection, thus modulating CNS infiltration, which may work along with Th2 immune polarization and lymphocyte activation impairment to downregulate EAE development.

  9. Adjudin disrupts spermatogenesis by targeting drug transporters

    PubMed Central

    Qian, Xiaojing; Cheng, Yan-ho; Jenardhanan, Pranitha; Mruk, Dolores D.; Mathur, Premendu P.; Xia, Weiliang; Silvestrini, Bruno; Cheng, C. Yan

    2013-01-01

    For non-hormonal male contraceptives that exert their effects in the testis locally instead of via the hypothalamic-pituitary-testicular axis, such as adjudin that disrupts germ cell adhesion, a major hurdle in their development is to improve their bioavailability so that they can be efficiently delivered to the seminiferous epithelium by transporting across the blood-testis barrier (BTB). If this can be done, it would widen the gap between their efficacy and general toxicity. However, Sertoli cells that constitute the BTB, peritubular myoid cells in the tunica propria, germ cells at different stages of their development, as well as endothelial cells that constitute the microvessels in the interstitium are all equipped with multiple drug transporters, most notably efflux drug transporters, such as P-glycoprotein, multidrug resistance-related protein 1 (MRP1) and breast cancer resistance protein (BCRP) that can actively prevent drugs (e.g., adjudin) from entering the seminiferous epithelium to exert their effects. Recent studies have shown that BCRP is highly expressed by endothelial cells of the microvessels in the interstitium in the testis and also peritubular myoid cells in tunica propria even though it is absent from Sertoli cells at the site of the BTB. Furthermore, BCRP is also expressed spatiotemporally by Sertoli cells and step 19 spermatids in the rat testis and stage-specifically, limiting to stage VII‒VIII of the epithelial cycle, and restricted to the apical ectoplasmic specialization [apical ES, a testis-specific F-actin-rich adherens junction (AJ)]. Interestingly, adjudin was recently shown to be capable of downregulating BCRP expression at the apical ES. In this Opinion article, we critically discuss the latest findings on BCRP; in particular, we provide some findings utilizing molecular modeling to define the interacting domains of BCRP with adjudin. Based on this information, it is hoped that the next generation of adjudin analogs to be synthesized can improve their efficacy in downregulating BCRP and perhaps other drug efflux transporters in the testis to improve their efficacy to traverse the BTB by modifying their interacting domains. PMID:23885306

  10. Sporadic and thermospheric enhanced sodium layers observed by a lidar chain over China

    NASA Astrophysics Data System (ADS)

    Dou, X. K.; Qiu, S. C.; Xue, X. H.; Chen, T. D.; Ning, B. Q.

    2013-10-01

    We report the statistical features of sporadic sodium layers (SSLs) and the thermospheric enhanced sodium layers (TeSLs) observed by a lidar chain located at Beijing (40.2°N, 116.2°E), Hefei (31.8°N, 117.3°E), Wuhan (30.5°N, 114.4°E), and Haikou (19.5°N, 109.1°E). The average SSL occurrence rate was approximately 46.0, 12.3, 13.8, and 15.0 h per SSL at Beijing, Hefei, Wuhan, and Haikou, respectively. However, the TeSLs occurred relatively infrequently and were more likely to appear at low and high latitudinal sites. Both the SSLs and TeSLs at four lidar sites showed evident summer enhancements and correlated well with Es (foEs>4 MHz). The coobservations of SSLs at three lidar site pairs, i.e., Hefei-Beijing, Hefei-Wuhan, and Hefei-Beijing, indicated that a large-scale SSL extended horizontally for at least a few hundred kilometers and exhibited a tidal-induced modulation. Moreover, the SSLs were better correlated for the Hefei-Wuhan and Hefei-Haikou pairs than the Hefei-Beijing pair, which suggested a difference in the dynamical/chemical process in mesosphere and lower thermosphere (MLT) between the Beijing site and the other sites.

  11. Sporadic and Thermospheric Enhanced Sodium Layers Observed by a Lidar Chain over China

    NASA Astrophysics Data System (ADS)

    Xue, X.

    2013-12-01

    We report the statistical features of sporadic sodium layers (SSLs) and the thermospheric enhanced sodium layers (TeSLs) observed by a lidar chain located at Beijing (40.2N,116.2E), Hefei (31.8N, 117.3E), Wuhan (30.5N, 114.4E), and Haikou (19.5N, 109.1E). The average SSL occurrence rate was approximately 46.0, 12.3, 13.8, and 15.0 hr per SSL at Beijing, Hefei, Wuhan, and Haikou, respectively. However, the TeSLs occurred relatively infrequently and were more likely to appear at low and high latitudinal sites. Both the SSLs and TeSLs at four lidar sites showed evident summer enhancements and correlated well with Es (foEs>4MHz). The co-observations of SSLs at three lidar site pairs, i.e., Hefei -- Beijing, Hefei -- Wuhan and Hefei -- Beijing, indicated that a large-scale SSL extended horizontally for at least a few hundred kilometers and exhibited a tidal-induced modulation. Moreover, the SSLs were better correlated for the Hefei -- Wuhan and Hefei -- Haikou pairs than the Hefei -- Beijing pair, which suggested a difference in the dynamical/chemical process in mesosphere and lower thermosphere (MLT) between the Beijing site and the other sites.

  12. Assessment and Characterisation of Ireland's Green Tides (Ulva Species)

    PubMed Central

    Wilkes, Robert J.; Heesch, Svenja; Bermejo, Ricardo; Johnson, Mark P.; Morrison, Liam

    2017-01-01

    Enrichment of nutrients and metals in seawater associated with anthropogenic activities can threaten aquatic ecosystems. Consequently, nutrient and metal concentrations are parameters used to define water quality. The European Union’s Water Framework Directive (WFD) goes further than a contaminant-based approach and utilises indices to assess the Ecological Status (ES) of transitional water bodies (e.g. estuaries and lagoons). One assessment is based upon the abundance of opportunistic Ulva species, as an indication of eutrophication. The objective of this study was to characterise Ireland’s Ulva blooms through the use of WFD assessment, metal concentrations and taxonomic identity. Furthermore, the study assessed whether the ecological assessment is related to the metal composition in the Ulva. WFD algal bloom assessment revealed that the largest surveyed blooms had an estimated biomass of 2164 metric tonnes (w/w). DNA sequences identified biomass from all locations as Ulva rigida, with the exception of New Quay, which was Ulva rotundata. Some blooms contained significant amounts of As, Cu, Cr, Pb and Sn. The results showed that all metal concentrations had a negative relationship (except Se) with the Ecological Quality Ratio (EQR). However, only in the case of Mn were these differences significant (p = 0.038). Overall, the metal composition and concentrations found in Ulva were site dependent, and not clearly related to the ES. Nevertheless, sites with a moderate or poor ES had a higher variability in the metals levels than in estuaries with a high ES. PMID:28045947

  13. AmeriFlux US-Tw2 Twitchell Corn

    DOE Data Explorer

    Baldocchi, Dennis [University of California, Berkeley

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Tw2 Twitchell Corn. Site Description - The Twitchell Corn site is a corn field on peat soil. The tower was installed on May 17, 2012 and was equipped to analyze energy, H2O and CO2 fluxes. The field was planted in early May 2012 and harvested in early November 2012. The field was fallow during the non-growing season. The variety of corn used was ES-7477 hybrid corn commercialized by Eureka seeds. The site is near US-Tw1, US-Tw3 and US-Twt sites.

  14. L’expression verbale de la douleur chez l’enfant : Comparaison intermodale entre sensation de douleur et manipulation tactile

    PubMed Central

    Bienvenu, Margaux; Jacquet, Denis; Michelutti, Marjolaine; Wood, Chantal

    2011-01-01

    HISTORIQUE: La présente étude se situe dans le contexte de l’expression verbale de la douleur chez l’enfant. Elle porte plus particulièrement sur la dimension qualitative de la sensation de douleur. OBJECTIF: Nous cherchons à repérer les particularités de l’expression verbale relativement à l’aspect qualitatif de la douleur. MÉTHODOLOGIE: La recherche a été menée auprès de 60 patients de quatre à 18 ans ressentant de la douleur, rencontrés dans un hôpital universitaire pédiatrique. Elle confirme en premier lieu l’origine des descripteurs sensoriels de la douleur, qui renvoient aux expériences perceptives passées de l’enfant, non nécessairement liées à la douleur. Ces expériences sont qualifiées de prototypiques, dans la mesure où, bien qu’elles soient liées à des contextes de vie variés, le type de rapport au monde qu’elles provoquent ne varie pas. RÉSULTATS: Dans ce cadre, le pincement, le tiraillement, le tapement, l’écrasement et l’appuiement, le picotement et le serrement constituent chacune des expériences sensorielles et motrices particulières dont la structure de base ne varie pas d’un contexte à l’autre. En second lieu, les résultats obtenus montrent que dès quatre ans, l’enfant est en mesure de comparer, puis de reconnaître une analogie entre une expérience exclusivement tactile et sa sensation de douleur. CONCLUSION: Ces résultats mettent en lumière le rôle primordial du raisonnement analogique dans l’expression verbale de la douleur, ce qui amène à affirmer que le niveau de développement cognitif de l’enfant n’est pas une variable a priori déterminante lorsqu’il s’agit de qualifier sa douleur. PMID:21766069

  15. JFACC Information Management (IM) Capability: Operational Concept

    DTIC Science & Technology

    2006-01-01

    designated by other documentation. ©2006 The MITRE Corporation. All Rights Reserved. Langley Site Operations Hampton, Virginia Report...1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty...ORGANIZATION NAME(S) AND ADDRESS(ES) MITRE Corporation,Langley Site Operations,Hampton,VA,23666 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING

  16. ESTCP Munitions Response Live Site Demonstrations, Andersen Air Force Base, Guam

    DTIC Science & Technology

    2016-04-01

    April 2016 Mr. Ryan Steigerwalt Weston Solutions , Inc. Distribution Statement A ESTCP MUNITIONS RESPONSE LIVE SITE...Steigerwalt Weston Solutions , Inc. Version 2 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Weston Solutions 1400 Weston Way West Chester, PA 19380

  17. Morphogenesis and Biomechanics of Engineered Skin Cultured Under Uniaxial Strain

    PubMed Central

    Blackstone, Britani N.; Powell, Heather M.

    2012-01-01

    Background Split-thickness autograft is the standard wound treatment for full-thickness burns. In large burns, sparse availability of uninjured skin prevents rapid closure of the wound, resulting in increased scar tissue formation or mortality. Tissue-engineered skin (ES) offers promise when autografts are not available. The Problem ES, constructed from a polymeric scaffold and skin cells, has been shown to reduce donor site area required to permanently close wounds, mortality, and morbidity from scarring but cannot restore all skin functions. Current generations of ES are orders of magnitude weaker than normal human skin, leading to difficulty in surgical application, greater susceptibility to mechanical damage during fabrication and application, and less elasticity and strength once engrafted. Basic/Clinical Science Advances Previous studies to improve ES biomechanics focus on altering the scaffolding material, which resulted in modest improvements but often inhibited proper skin development. As the skin is naturally under static strain, adding these mechanical cues to the culture environment is hypothesized to improve ES biomechanics. ES was cultured under applied static strains ranging from 0% to 40% strain for a total of 10 days. Strain magnitudes of 10% and 20% strain resulted in significantly stronger ES than unstrained controls, showed upregulation of many genes encoding structural extracellular matrix proteins, and exhibited increased epidermal cell proliferation and differentiation. Clinical Care Relevance Enhanced biomechanical properties of ES can allow for facile surgical application and less damage during dressing changes. Conclusion These findings suggest that mechanical cues play a significant role in skin development and should be further explored. PMID:24527283

  18. Electrical Stimulation of Artificial Heart Muscle: A Look Into the Electrophysiologic and Genetic Implications.

    PubMed

    Mohamed, Mohamed A; Islas, Jose F; Schwartz, Robert J; Birla, Ravi K

    Development of tissue-engineered hearts for treatment of myocardial infarction or biologic pacemakers has been hindered by the production of mostly arrhythmic or in-synergistic constructs. Electrical stimulation (ES) of these constructs has been shown to produce tissues with greater twitch force and better adrenergic response. To further our understanding of the mechanisms underlying the effect of ES, we fabricated a bioreactor capable of delivering continuous or intermittent waveforms of various types to multiple constructs simultaneously. In this study, we examined the effect of an intermittent biphasic square wave on our artificial heart muscle (AHM) composed of neonatal rat cardiac cells and fibrin gel. Twitch forces, spontaneous contraction rates, biopotentials, gene expression profiles, and histologic observations were examined for the ES protocol over a 12 day culture period. We demonstrate improved consistency between samples for twitch force and contraction rate, and higher normalized twitch force amplitudes for electrically stimulated AHMs. Improvements in electrophysiology within the AHM were noted by higher conduction velocities and lower latency in electrical response for electrically stimulated AHMs. Genes expressing key electrophysiologic and structural markers peaked at days 6 and 8 of culture, only a few days after the initiation of ES. These results may be used for optimization strategies to establish protocols for producing AHMs capable of replacing damaged heart tissue in either a contractile or electrophysiologic capacity. Optimized AHMs can lead to alternative treatments to heart failure and alleviate the limited donor supply crisis.

  19. Electrical Stimulation of Artificial Heart Muscle: a look into the electrophysiological and genetic implications

    PubMed Central

    Mohamed, Mohamed A; Islas, Jose F; Schwartz, Robert J; Birla, Ravi K

    2016-01-01

    Development of tissue-engineered hearts for treatment of myocardial infarction or biological pacemakers has been hindered by the production of mostly arrhythmic or in-synergistic constructs. Electrical stimulation (ES) of these constructs has been shown to produce tissues with greater twitch force and better adrenergic response. In order to further our understanding of the mechanisms underlying the effect of ES, we fabricated a bioreactor capable of delivering continuous or intermittent waveforms of various types to multiple constructs simultaneously. In this study, we examined the effect of an intermittent biphasic square wave on our artificial heart muscle (AHM) composed of neonatal rat cardiac cells and fibrin gel. Twitch forces, spontaneous contraction rates, biopotentials, gene expression profiles, and histological observations were examined for the ES protocol over a 12 day culture period. We demonstrate improved consistency between samples for twitch force and contraction rate, and higher normalized twitch force amplitudes for electrically stimulated AHM. Improvements in electrophysiology within the AHM was noted by higher conduction velocities and lower latency in electrical response for electrically stimulated AHM. Genes expressing key electrophysiological and structural markers peaked at days 6 and 8 of culture, only a few days after the initiation of ES. These results may be used for optimization strategies to establish protocols for producing AHM capable of replacing damaged heart tissue in either a contractile or electrophysiological capacity. Optimized AHM can lead to alternative treatments to heart failure and alleviate the limited donor supply crisis. PMID:28459744

  20. The dynamics of pyrethroid resistance in Anopheles arabiensis from Zanzibar and an assessment of the underlying genetic basis

    PubMed Central

    2013-01-01

    Background The emergence of pyrethroid resistance in the malaria vector, Anopheles arabiensis, threatens to undermine the considerable gains made towards eliminating malaria on Zanzibar. Previously, resistance was restricted to the island of Pemba while mosquitoes from Unguja, the larger of the two islands of Zanzibar, were susceptible. Here, we characterised the mechanism(s) responsible for resistance on Zanzibar using a combination of gene expression and target-site mutation assays. Methods WHO resistance bioassays were conducted using 1-5d old adult Anopheles gambiae s.l. collected between 2011 and 2013 across the archipelago. Synergist assays with the P450 inhibitor piperonyl-butoxide were performed in 2013. Members of the An. gambiae complex were PCR-identified and screened for target-site mutations (kdr and Ace-1). Gene expression in pyrethroid resistant An. arabiensis from Pemba was analysed using whole-genome microarrays. Results Pyrethroid resistance is now present across the entire Zanzibar archipelago. Survival to the pyrethroid lambda-cyhalothrin in bioassays conducted in 2013 was 23.5-54.3% on Unguja and 32.9-81.7% on Pemba. We present evidence that resistance is mediated, in part at least, by elevated P450 monoxygenases. Whole-genome microarray scans showed that the most enriched gene terms in resistant An. arabiensis from Pemba were associated with P450 activity and synergist assays with PBO completely restored susceptibility to pyrethroids in both islands. CYP4G16 was the most consistently over-expressed gene in resistant mosquitoes compared with two susceptible strains from Unguja and Dar es Salaam. Expression of this P450 is enriched in the abdomen and it is thought to play a role in hydrocarbon synthesis. Microarray and qPCR detected several additional genes putatively involved in this pathway enriched in the Pemba pyrethroid resistant population and we hypothesise that resistance may be, in part, related to alterations in the structure of the mosquito cuticle. None of the kdr target-site mutations, associated with pyrethroid/DDT resistance in An. gambiae elsewhere in Africa, were found on the islands. Conclusion The consequences of this resistance phenotype are discussed in relation to future vector control strategies on Zanzibar to support the ongoing malaria elimination efforts on the islands. PMID:24314005

  1. Fascin 1 is an actin filament-bundling protein that regulates ectoplasmic specialization dynamics in the rat testis

    PubMed Central

    Gungor-Ordueri, N. Ece; Celik-Ozenci, Ciler

    2014-01-01

    In the testis, spermatids are polarized cells, with their heads pointing toward the basement membrane during maturation. This polarity is crucial to pack the maximal number of spermatids in the seminiferous epithelium so that millions of sperms can be produced daily. A loss of spermatid polarity is detected after rodents are exposed to toxicants (e.g., cadmium) or nonhormonal male contraceptives (e.g., adjudin), which is associated with a disruption on the expression and/or localization of polarity proteins. In the rat testis, fascin 1, an actin-bundling protein found in mammalian cells, was expressed by Sertoli and germ cells. Fascin 1 was a component of the ectoplasmic specialization (ES), a testis-specific anchoring junction known to confer spermatid adhesion and polarity. Its expression in the seminiferous epithelium was stage specific. Fascin 1 was localized to the basal ES at the Sertoli cell-cell interface of the blood-testis barrier in all stages of the epithelial cycle, except it diminished considerably at late stage VIII. Fascin 1 was highly expressed at the apical ES at stage VII–early stage VIII and restricted to the step 19 spermatids. Its knockdown by RNAi that silenced fascin 1 by ∼70% in Sertoli cells cultured in vitro was found to perturb the tight junction-permeability barrier via a disruption of F-actin organization. Knockdown of fascin 1 in vivo by ∼60–70% induced defects in spermatid polarity, which was mediated by a mislocalization and/or downregulation of actin-bundling proteins Eps8 and palladin, thereby impeding F-actin organization and disrupting spermatid polarity. In summary, these findings provide insightful information on spermatid polarity regulation. PMID:25159326

  2. A Rapid Embryonic Stem Cell-Based Mouse Model for B-cell Lymphomas Driven by Epstein-Barr Virus Protein LMP1.

    PubMed

    Ba, Zhaoqing; Meng, Fei-Long; Gostissa, Monica; Huang, Pei-Yi; Ke, Qiang; Wang, Zhe; Dao, Mai N; Fujiwara, Yuko; Rajewsky, Klaus; Zhang, Baochun; Alt, Frederick W

    2015-06-01

    The Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) contributes to oncogenic human B-cell transformation. Mouse B cells conditionally expressing LMP1 are not predisposed to B-cell malignancies, as LMP1-expressing B cells are eliminated by T cells. However, mice with conditional B-cell LMP1 expression and genetic elimination of α/β and γ/δ T cells ("CLT" mice) die early in association with B-cell lymphoproliferation and lymphomagenesis. Generation of CLT mice involves in-breeding multiple independently segregating alleles. Thus, although introduction of additional activating or knockout mutations into the CLT model is desirable for further B-cell expansion and immunosurveillance studies, doing such experiments by germline breeding is time-consuming, expensive, and sometimes unfeasible. To generate a more tractable model, we generated clonal CLT embryonic stem (ES) cells from CLT embryos and injected them into RAG2-deficient blastocysts to generate chimeric mice, which, like germline CLT mice, harbor splenic CLT B cells and lack T cells. CLT chimeric mice generated by this RAG2-deficient blastocyst complementation ("RDBC") approach die rapidly in association with B-cell lymphoproliferation and lymphoma. Because CLT lymphomas routinely express the activation-induced cytidine deaminase (AID) antibody diversifier, we tested potential AID roles by eliminating the AID gene in CLT ES cells and testing them via RDBC. We found that CLT and AID-deficient CLT ES chimeras had indistinguishable phenotypes, showing that AID is not essential for LMP1-induced lymphomagenesis. Beyond expanding accessibility and utility of CLT mice as a cancer immunotherapy model, our studies provide a new approach for facilitating generation of genetically complex mouse cancer models. ©2015 American Association for Cancer Research.

  3. A Rapid Embryonic Stem Cell-Based Mouse Model for B-cell Lymphomas Driven by Epstein-Barr Virus Protein LMP1

    PubMed Central

    Ba, Zhaoqing; Meng, Fei-Long; Gostissa, Monica; Huang, Pei-Yi; Ke, Qiang; Wang, Zhe; Dao, Mai N.; Fujiwara, Yuko; Rajewsky, Klaus; Baochun, Zhang; Alt, Frederick W.

    2015-01-01

    The Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) contributes to oncogenic human B-cell transformation. Mouse B cells conditionally expressing LMP1 are not predisposed to B-cell malignancies, as LMP1-expressing B cells are eliminated by T cells. However, mice with conditional B-cell LMP1 expression and genetic elimination of α/β and γ/δ T cells (“CLT” mice) die early in association with B-cell lymphoproliferation and lymphomagenesis. Generation of CLT mice involves in-breeding multiple independently segregating alleles. Thus, while introduction of additional activating or knock-out mutations into the CLT model is desirable for further B-cell expansion and immunosurveillance studies, doing such experiments by germline breeding is time-consuming, expensive and sometimes unfeasible. To generate a more tractable model, we generated clonal CLT ES cells from CLT embryos and injected them into RAG2-deficient blastocysts to generate chimeric mice, which like germline CLT mice harbor splenic CLT B cells and lack T cells. CLT chimeric mice generated by this RAG2-deficient blastocyst complementation (“RDBC”) approach die rapidly in association with B-cell lymphoproliferation and lymphoma. As CLT lymphomas routinely express the Activation-Induced Cytidine Deaminase (AID) antibody diversifier, we tested potential AID roles by eliminating the AID gene in CLT ES cells and testing them via RDBC. We found that CLT and AID-deficient CLT ES chimeras had indistinguishable phenotypes, showing that AID is not essential for LMP1-induced lymphomagenesis. Beyond expanding accessibility and utility of CLT mice as a cancer immunotherapy model, our studies provide a new approach for facilitating generation of genetically complex mouse cancer models. PMID:25934172

  4. Expressed sequence tags from larval gut of the european corn borer (Ostrinia nubilalis): exploring candidate genes potenially involved in Bacillus thuringiensis toxicity and resistance

    USDA-ARS?s Scientific Manuscript database

    Background: Knowledge of the genes that are expressed in the insect gut are crucial for understanding basic physiology of food digestion, their interactions with Bacillus thuringiensis (Bt) toxin and for discovering new targets for novel toxins for use in pest management. This study analyzed the ES...

  5. Germ line transmission of a yeast artificial chromosome spanning the murine [alpha][sub 1](I) collagen locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, W.M.; Dausman, J.; Beard, C.

    Molecular complementation of mutant phenotypes by transgenic technology is a potentially important tool for gene identification. A technology was developed to allow the transfer of a physically intact yeast artificial chromosome (YAC) into the germ line of the mouse. A purified 150-kilobase YAC encompassing the murine gene Col1a1 was efficiently introduced into embryonic stem (ES) cells via lipofection. Chimeric founder mice were derived from two transfected ES cell clones. These chimeras transmitted the full length transgene through the germ line, generating two transgenic mouse strains. Transgene expression was visualized as nascent transcripts in interphase nuclei and quantitated by ribonuclease protectionmore » analysis. Both assays indicated that the transgene was expressed at levels comparable to the endogenous collagen gene. 32 refs., 3 figs., 1 tab.« less

  6. Maternal separation and early stress cause long-lasting effects on dopaminergic and endocannabinergic systems and alters dendritic morphology in the nucleus accumbens and frontal cortex in rats.

    PubMed

    Romano-López, Antonio; Méndez-Díaz, Mónica; García, Fabio García; Regalado-Santiago, Citlalli; Ruiz-Contreras, Alejandra E; Prospéro-García, Oscar

    2016-08-01

    A considerable amount experimental studies have shown that maternal separation (MS) is associated with adult offspring abnormal behavior and cognition disorder. Accordingly, this experimental procedure has been proposed as a predictor for alcohol and drug dependence based on the neurodevelopmental soon after birth. Endocannabinoid system (eCBs) has been implicated in reward processes, including drug abuse and dependence. MS and associated stress causes changes in the eCBs that seem to facilitate alcohol consumption. In this study, we seek to evaluate potential morphological changes in neurons of the frontal cortex (FCx) and nucleus accumbens (NAcc), in the expression of receptors and enzymes of the endocannabinoid and dopamine systems and in second messengers, such as Akt, in adult rats subjected to MS and early stress (MS + ES; 2 × 180 min daily) vs. nonseparated rats (NMS). Results showed that MS + ES induces higher D2R expression and lower D3R, FAAH, and MAGL expression compared with NMS rats. Alterations in total dendritic length were also detected and were characterized by increases in the NAcc while there were decreases in the FCx. We believe MS + ES-induced changes in the dopaminergic and endocannabinergic systems and in the neuronal microstructure might be contributing to alcohol seeking behavior and, potential vulnerability to other drugs in rats. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 819-831, 2016. © 2015 Wiley Periodicals, Inc.

  7. Stem cell regulatory function mediated by expression of a novel mouse Oct4 pseudogene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Huey; Shabbir, Arsalan; Molnar, Merced

    2007-03-30

    Multiple pseudogenes have been proposed for embryonic stem (ES) cell-specific genes, and their abundance suggests that some of these potential pseudogenes may be functional. ES cell-specific expression of Oct4 regulates stem cell pluripotency and self-renewing state. Although Oct4 expression has been reported in adult tissues during gene reprogramming, the detected Oct4 signal might be contributed by Oct4 pseudogenes. Among the multiple Oct4 transcripts characterized here is a {approx}1 kb clone derived from P19 embryonal carcinoma stem cells, which shares a {approx}87% sequence homology with the parent Oct4 gene, and has the potential of encoding an 80-amino acid product (designated asmore » Oct4P1). Adenoviral expression of Oct4P1 in mesenchymal stem cells promotes their proliferation and inhibits their osteochondral differentiation. These dual effects of Oct4P1 are reminiscent of the stem cell regulatory function of the parent Oct4, and suggest that Oct4P1 may be a functional pseudogene or a novel Oct4-related gene with a unique function in stem cells.« less

  8. Changes in protein expression after treatment with Ancylostoma caninum excretory/secretory products in a mouse model of colitis

    PubMed Central

    Sotillo, Javier; Ferreira, Ivana; Potriquet, Jeremy; Laha, Thewarach; Navarro, Severine; Loukas, Alex; Mulvenna, Jason

    2017-01-01

    Different reports have highlighted the potential use of helminths and their secretions in the treatment of inflammatory bowel disease (IBD) conditions; however, no reports have investigated their effects at a proteome level. Herein, we characterise the protein expression changes that occur in lamina propria (LP) and the intestinal epithelial cells (IEC) of mice with dextran sulfate sodium (DSS)-induced colitis treated with Ancylostoma caninum excretory/secretory (ES) products using a quantitative proteomic approach. We have shown how parasite products can significantly alter the expression of proteins involved in immune responses, cell death and with an antioxidant activity. Interestingly, significant changes in the expression levels of different mucins were observed in this study. MUC13, a mucin implicated in gastrointestinal homeostasis, was upregulated in the LP of mice with DSS-induced colitis treated with ES, while MUC2, a major component of mucus, was upregulated in the IEC. In addition, A. caninum proteins have an important effect on proteins with antioxidant functions and proteins involved in intestinal homeostasis and tissue integrity and regeneration. Understanding how parasites can ameliorate IBD pathogenesis can help us design novel treatments for autoimmune diseases. PMID:28191818

  9. Sulfur and Zinc Availability from Co-granulated Zn-Enriched Elemental Sulfur Fertilizers.

    PubMed

    Mattiello, Edson M; da Silva, Rodrigo C; Degryse, Fien; Baird, Roslyn; Gupta, Vadakattu V S R; McLaughlin, Michael J

    2017-02-15

    Acidification by oxidation of elemental sulfur (ES) can solubilize ZnO, providing slow release of both sulfur (S) and zinc (Zn) in soil. For this study, a new granular fertilizer with ES and ZnO was produced and evaluated. The effect of incorporating microorganisms or a carbon source in the granule was also evaluated. Four granulated ES-Zn fertilizers with and without S-oxidizing microorganisms, a commercial ES pastille, ZnSO 4 , and ZnO were applied to the center of Petri dishes containing two contrasting pH soils. Soil pH, CaCl 2 -extractable S and Zn, and remaining ES were evaluated at 30 and 60 days in two soil sections (0-5 and 5-9 mm from the fertilizer application site). A visualization test was performed to evaluate Zn diffusion over time. A significant pH decrease was observed in the acidic soil for all ES-Zn fertilizer treatments and in the alkaline soil for the Acidithiobacillus thiooxidans-inoculated treatment only. In agreement with Zn visualization tests, extractable-Zn concentrations were higher from the point of application in the acidic (62.9 mg dm -3 ) compared to the alkaline soil (5.5 mg dm -3 ). Elemental S oxidation was greater in the acidic soil (20.9%) than slightly alkaline soil (12%). The ES-Zn granular fertilizers increased S and Zn concentrations in soil and can provide a strategically slow release of nutrients to the soil.

  10. Reference Maps of Human ES and iPS Cell Variation Enable High-Throughput Characterization of Pluripotent Cell Lines

    PubMed Central

    Bock, Christoph; Kiskinis, Evangelos; Verstappen, Griet; Gu, Hongcang; Boulting, Gabriella; Smith, Zachary D.; Ziller, Michael; Croft, Gist F.; Amoroso, Mackenzie W.; Oakley, Derek H.; Gnirke, Andreas; Eggan, Kevin; Meissner, Alexander

    2011-01-01

    SUMMARY The developmental potential of human pluripotent stem cells suggests that they can produce disease-relevant cell types for biomedical research. However, substantial variation has been reported among pluripotent cell lines, which could affect their utility and clinical safety. Such cell-line-specific differences must be better understood before one can confidently use embryonic stem (ES) or induced pluripotent stem (iPS) cells in translational research. Toward this goal we have established genome-wide reference maps of DNA methylation and gene expression for 20 previously derived human ES lines and 12 human iPS cell lines, and we have measured the in vitro differentiation propensity of these cell lines. This resource enabled us to assess the epigenetic and transcriptional similarity of ES and iPS cells and to predict the differentiation efficiency of individual cell lines. The combination of assays yields a scorecard for quick and comprehensive characterization of pluripotent cell lines. PMID:21295703

  11. Pontin functions as an essential coactivator for Oct4-dependent lincRNA expression in mouse embryonic stem cells.

    PubMed

    Boo, Kyungjin; Bhin, Jinhyuk; Jeon, Yoon; Kim, Joomyung; Shin, Hi-Jai R; Park, Jong-Eun; Kim, Kyeongkyu; Kim, Chang Rok; Jang, Hyonchol; Kim, In-Hoo; Kim, V Narry; Hwang, Daehee; Lee, Ho; Baek, Sung Hee

    2015-04-10

    The actions of transcription factors, chromatin modifiers and noncoding RNAs are crucial for the programming of cell states. Although the importance of various epigenetic machineries for controlling pluripotency of embryonic stem (ES) cells has been previously studied, how chromatin modifiers cooperate with specific transcription factors still remains largely elusive. Here, we find that Pontin chromatin remodelling factor plays an essential role as a coactivator for Oct4 for maintenance of pluripotency in mouse ES cells. Genome-wide analyses reveal that Pontin and Oct4 share a substantial set of target genes involved in ES cell maintenance. Intriguingly, we find that the Oct4-dependent coactivator function of Pontin extends to the transcription of large intergenic noncoding RNAs (lincRNAs) and in particular linc1253, a lineage programme repressing lincRNA, is a Pontin-dependent Oct4 target lincRNA. Together, our findings demonstrate that the Oct4-Pontin module plays critical roles in the regulation of genes involved in ES cell fate determination.

  12. Metastable Pluripotent States in NOD Mouse Derived ES Cells

    PubMed Central

    Hanna, Jacob; Markoulaki, Styliani; Mitalipova, Maisam; Cheng, Albert W.; Cassady, John P.; Staerk, Judith; Carey, Bryce W.; Lengner, Christopher J.; Foreman, Ruth; Love, Jennifer; Gao, Qing; Kim, Jongpil; Jaenisch, Rudolf

    2009-01-01

    Embryonic stem (ES) cells are isolated from the inner cell mass (ICM) of blastocysts, whereas epiblast stem cells (EpiSCs) are derived from the post-implantation epiblast and display a restricted developmental potential. Here we characterize pluripotent states in the non-obese diabetic (NOD) mouse strain, which prior to this study was considered “non-permissive” for ES cell derivation. We find that NOD stem cells can be stabilized by providing constitutive expression of Klf4 or c-Myc or small molecules that can replace these factors during in vitro reprogramming. The NOD ES and iPS cells appear “metastable”, as they acquire an alternative EpiSC-like identity after removal of the exogenous factors, while their reintroduction converts the cells back to ICM-like pluripotency. Our findings suggest that stem cells from different genetic backgrounds can assume distinct states of pluripotency in vitro, the stability of which is regulated by endogenous genetic determinants and can be modified by exogenous factors. PMID:19427283

  13. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5

    PubMed Central

    Ng, Ray Kit; Dean, Wendy; Dawson, Claire; Lucifero, Diana; Madeja, Zofia; Reik, Wolf; Hemberger, Myriam

    2008-01-01

    Mouse ES cells can differentiate into all three germ layers of the embryo but are generally excluded from the trophoblast lineage. Here we show that ES cells deficient in DNA methylation can differentiate efficiently into trophoblast derivatives. In a genome-wide screen we identify the transcription factor Elf5 as methylated and repressed in ES cells, and hypomethylated and expressed in TS and methylation-deficient ES cells. Elf5 creates a positive feedback loop with TS cell determinants Cdx2 and Eomes that is restricted to the trophoblast lineage by epigenetic regulation of Elf5. Importantly, the late-acting function of Elf5 allows initial plasticity and regulation in the early blastocyst. Thus, Elf5 acts downstream of initial lineage determination as a gatekeeper to reinforce commitment to the trophoblast lineage, or to abort this pathway in epiblast cells. This epigenetic restriction of cell lineage fate provides a molecular mechanism for Waddington’s concept of canalization of developmental pathways. PMID:18836439

  14. Evaluation des indicateurs d’alerte précoce de la résistance du VIH aux ARV en Côte d’Ivoire en 2011

    PubMed Central

    Yao, Kouadio Jean; Damey, Néto Florence; Konan, Diby Jean Paul; Aka, Joseph; Aka-Konan, Sandrine; Ani, Alex; Bonle, Marguerite Te; Kouassi, Dinard

    2016-01-01

    Introduction En 2001, l'Organisation des Nations Unies recommandait de rendre disponible les médicaments antirétroviraux dans les pays à ressources limitées. Cependant, l'utilisation de ces médicaments à grande échelle s'accompagne du développement de résistance du virus. En Côte d'Ivoire, plusieurs sites prescrivent les antirétroviraux. Cette étude avait pour objectif d'évaluer les facteurs programmatiques associés à un risque élevé d'émergence de résistance du VIH aux antirétroviraux. Méthodes Il s'agit d'une cohorte rétrospective sur 20 sites de prise en charge des personnes vivant avec le VIH. La population d'étude était constituée des personnes ayant initié leur traitement antirétroviral sur les sites en 2008-2009. L'estimation de la taille de l'échantillon a été faite à partir de la stratégie d'échantillonnage de l'OMS. Résultats Sur 20 sites, 98% des prescriptions initiales étaient conformes aux directives nationales et 20% des sites avaient 100% de prescriptions conformes. Au total, 33% des patients étaient perdus de vue au cours des 12 premiers mois de traitement antirétroviral et 20% des sites avaient moins de 20% de perdus de vue. A 12 mois, 51% des patients demeuraient sous traitement de première intention approprié et 11% des sites ont atteint le seuil d'au moins 70% de patients sous traitement de première intention approprié. Un seul site n'a pas connu de rupture d'antirétroviraux sur les 12 mois. Conclusion Des insuffisances relevées dans la prise en charge des personnes vivant avec le VIH traduisent l'existence d'un risque important de résistance du virus aux antirétroviraux en 2008-2009. Pour minimiser ce risque les pratiques de prescription devraient être améliorées, un système de recherche des absents aux rendez-vous devrait être mis en place et la disponibilité constante des antirétroviraux devraient être assurée. PMID:28250876

  15. Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-02-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress inmore » increasing ES H awareness at all staff levels and in identifying ES H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES H program. 4 figs., 24 tabs.« less

  16. No Further Action Decision Under CERCLA Study Area 43Q Historic Gas Station Sites Fort Devens, Massachusetts

    DTIC Science & Technology

    1995-01-01

    the same. ,J ES C. CHAMBERS Date RAC Environmental Coordinator I U.S. ENVIRONMENTAL PROTECTION AGENCY -t JAMES P. BYR4 Date3 Fort Devens Refiedial...CERCLA STUDY AREA 43Q HISTORIC GAS STATION SITES FORT DEVENS , MASSACHUSETTS , CONTRACT DAAA15-91-D-0008 U.S. ARMY ENVIRONMENTAL CENTER ABERDEEN PROVING...ACTION DECISION UNDER CERCLA STUDY AREA 43Q HISTORIC GAS STATION SITES 5 FORT DEVENS , MASSACHUSETTS V a I i Prepared for: U.S. Army Environmental Center

  17. Remedial investigation/feasibility study badger army ammunition plant Baraboo, Wisconsin. Volume 2. Feasibility study report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-08-01

    This Feasibility Study (FS) report for the Badger Army Ammunition Plant (BAAP) in Baraboo, Wisconsin, was prepared by ABB Environmental Services, Inc. (ABB-ES) as a component of Task Order 1 of Contract DAAAl5-91-D-OOO8 with the U.S. Army Environmental Center (USAEC). This report uses the results presented in the Final Remedial Investigation (RI) report (ABB-ES, 1993a) to develop and screen alternatives for remediation of contaminated media at BAAP. The purpose of this FS report is to develop, screen, and evaluate site-specific remedial alternatives to mitigate the impact of site-derived chemicals and ultimately provide protection of human health and the environment. Preferredmore » alternatives for each site are included in this report. Based on previous environmental studies at BAAP, 11 potential hazardous waste sites were ranked according to potential contributions of hazardous chemicals to the environment. These sites were designated as Waste Management Areas because some of the sites contain multiple Solid Waste Management Units (SWMUs). The sites selected to undergo facility assessment and corrective actions are: the Propellant Burning Ground (including Landfill), Deterrent Burning Ground, existing Landfill, Settling Ponds and Spoils Disposal Area, Rocket Paste Area, Oleum Plant and Oleum Plant Pond, Nitroglycerine Pond, old Acid Area, new Acid Area, and Ballistics Pond. The USAEC added an 11th site, the Old Fuel Oil Tank, to the list in October 1989 after discovery of fuel-contaminated soils during excavation of a water line in the vicinity of the old fuel oil tank foundation.« less

  18. Remedial investigation/feasibility study badger army ammunition plant Baraboo, Wisconsin. Volume 3. Feasibility study report (Final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-08-01

    This Feasibility Study (FS) report for the Badger Army Ammunition Plant (BAAP) in Baraboo, Wisconsin, was prepared by ABB Environmental Services, Inc. (ABB-ES) as a component of Task Order 1 of Contract DAAAl5-91-D-OOO8 with the U.S. Army Environmental Center (USAEC). This report uses the results presented in the Final Remedial Investigation (RI) report (ABB-ES, 1993a) to develop and screen alternatives for remediation of contaminated media at BAAP. The purpose of this FS report is to develop, screen, and evaluate site-specific remedial alternatives to mitigate the impact of site-derived chemicals and ultimately provide protection of human health and the environment. Preferredmore » alternatives for each site are included in this report. Based on previous environmental studies at BAAP, 11 potential hazardous waste sites were ranked according to potential contributions of hazardous chemicals to the environment. These sites were designated as Waste Management Areas because some of the sites contain multiple Solid Waste Management Units (SWMUs). The sites selected to undergo facility assessment and corrective actions are: the Propellant Burning Ground (including Landfill), Deterrent Burning Ground, existing Landfill, Settling Ponds and Spoils Disposal Area, Rocket Paste Area, Oleum Plant and Oleum Plant Pond, Nitroglycerine Pond, old Acid Area, new Acid Area, and Ballistics Pond. The USAEC added an 11th site, the Old Fuel Oil Tank, to the list in October 1989 after discovery of fuel-contaminated soils during excavation of a water line in the vicinity of the old fuel oil tank foundation.« less

  19. Remedial investigation/feasibility study badger army ammunition plant Baraboo, Wisconsin. Volume 1. Feasibility study report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-08-01

    This Feasibility Study (FS) report for the Badger Army Ammunition Plant (BAAP) in Baraboo, Wisconsin, was prepared by ABB Environmental Services, Inc. (ABB-ES) as a component of Task Order 1 of Contract DAAAl5-91-D-OOO8 with the U.S. Army Environmental Center (USAEC). This report uses the results presented in the Final Remedial Investigation (RI) report (ABB-ES, 1993a) to develop and screen alternatives for remediation of contaminated media at BAAP. The purpose of this FS report is to develop, screen, and evaluate site-specific remedial alternatives to mitigate the impact of site-derived chemicals and ultimately provide protection of human health and the environment. Preferredmore » alternatives for each site are included in this report. Based on previous environmental studies at BAAP, 11 potential hazardous waste sites were ranked according to potential contributions of hazardous chemicals to the environment. These sites were designated as Waste Management Areas because some of the sites contain multiple Solid Waste Management Units (SWMUs). The sites selected to undergo facility assessment and corrective actions are: the Propellant Burning Ground (including Landfill), Deterrent Burning Ground, existing Landfill, Settling Ponds and Spoils Disposal Area, Rocket Paste Area, Oleum Plant and Oleum Plant Pond, Nitroglycerine Pond, old Acid Area, new Acid Area, and Ballistics Pond. The USAEC added an 11th site, the Old Fuel Oil Tank, to the list in October 1989 after discovery of fuel-contaminated soils during excavation of a water line in the vicinity of the old fuel oil tank foundation.« less

  20. Patterns of ecosystem services supply across farm properties: Implications for ecosystem services-based policy incentives.

    PubMed

    Nahuelhual, Laura; Benra, Felipe; Laterra, Pedro; Marin, Sandra; Arriagada, Rodrigo; Jullian, Cristobal

    2018-09-01

    In developing countries, the protection of biodiversity and ecosystem services (ES) rests on the hands of millions of small landowners that coexist with large properties, in a reality of highly unequal land distribution. Guiding the effective allocation of ES-based incentives in such contexts requires researchers and practitioners to tackle a largely overlooked question: for a given targeted area, will single large farms or several small ones provide the most ES supply? The answer to this question has important implications for conservation planning and rural development alike, which transcend efficiency to involve equity issues. We address this question by proposing and testing ES supply-area relations (ESSARs) around three basic hypothesized models, characterized by constant (model 1), increasing (model 2), and decreasing increments (model 3) of ES supply per unit of area or ES "productivity". Data to explore ESSARs came from 3384 private landholdings located in southern Chile ranging from 0.5ha to over 30,000ha and indicators of four ES (forage, timber, recreation opportunities, and water supply). Forage provision best fit model 3, which suggests that targeting several small farms to provide this ES should be a preferred choice, as compared to a single large farm. Timber provision best fit model 2, suggesting that in this case targeting a single large farm would be a more effective choice. Recreation opportunities best fit model 1, which indicates that several small or a single large farm of a comparable size would be equally effective in delivering this ES. Water provision fit model 1 or model 2 depending on the study site. The results corroborate that ES provision is not independent from property area and therefore understanding ESSARs is a necessary condition for setting conservation incentives that are both efficient (deliver the highest conservation outcome at the least cost) and fair for landowners. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Development of experimental tumors formed by mouse and human embryonic stem and teratocarcinoma cells after subcutaneous and intraperitoneal transplantations into immunodeficient and immunocompetent mice.

    PubMed

    Gordeeva, O F; Nikonova, T M

    2013-01-01

    Pluripotent stem cells represent an attractive cell source for regenerative medicine. However, the risk of teratoma formation after transplantation restricts their clinical application. Therefore, to adequately evaluate the potential risk of tumorigenicity after cell transplantation into human tissues, effective animal transplantation assays need to be developed. We performed a multiparameter (cell number, transplantation site, cell type, host) comparative analysis of the efficiency of tumor development after transplantation of mouse and human embryonic stem (ES) cells and their malignant counterparts, teratocarcinoma (EC) cells, into animal recipients and revealed several key correlations. We found that the efficiency of tumor growth was higher after intraperitoneal than after subcutaneous transplantations of all cell lines studied. The minimal cell numbers sufficient for tumor growth in immunodeficient nude mice were 100-fold lower for intraperitoneal than for subcutaneous transplantations of mouse and human ES cells (10(3) vs. 10(5) and 10(4) vs. 10(6), respectively). Moreover, mouse ES and EC cells formed tumors in immunodeficient and immunocompetent mice more effectively than human ES and EC cells. After intraperitoneal transplantation of 10(3), 10(4), and 10(5) mouse ES cells, teratomas developed in 83%, 100%, and 100% of nude mice, whereas after human ES cell transplantation, teratomas developed in 0%, 17%, and 60%, respectively. In addition, malignant mouse and human EC cells initiated tumor growth after intraperitoneal transplantation significantly faster and more effectively than ES cells. Mouse and human ES cells formed different types of teratomas containing derivatives of three germ layers but different numbers of undifferentiated cells. ES cell-like sublines with differentiation potential similar to the parental cell line were recloned only from mouse, but not from human, ES cell teratomas. These findings provide new information about the possibility and efficiency of tumor growth after transplantation of pluripotent stem cells. This information allows one to predict and possibly prevent the possible risks of tumorigenicity that could arise from stem cell therapeutics.

  2. Naive-like Conversion Overcomes the Limited Differentiation Capacity of Induced Pluripotent Stem Cells*

    PubMed Central

    Honda, Arata; Hatori, Masanori; Hirose, Michiko; Honda, Chizumi; Izu, Haruna; Inoue, Kimiko; Hirasawa, Ryutaro; Matoba, Shogo; Togayachi, Sumie; Miyoshi, Hiroyuki; Ogura, Atsuo

    2013-01-01

    Although induced pluripotent stem (iPS) cells are indistinguishable from ES cells in their expression of pluripotent markers, their differentiation into targeted cells is often limited. Here, we examined whether the limited capacity of iPS cells to differentiate into neural lineage cells could be mitigated by improving their base-line level of pluripotency, i.e. by converting them into the so-called “naive” state. In this study, we used rabbit iPS and ES cells because of the easy availability of both cell types and their typical primed state characters. Repeated passages of the iPS cells permitted their differentiation into early neural cell types (neural stem cells, neurons, and glial astrocytes) with efficiencies similar to ES cells. However, unlike ES cells, their ability to differentiate later into neural cells (oligodendrocytes) was severely compromised. In contrast, after these iPS cells had been converted to a naive-like state, they readily differentiated into mature oligodendrocytes developing characteristic ramified branches, which could not be attained even with ES cells. These results suggest that the naive-like conversion of iPS cells might endow them with a higher differentiation capacity. PMID:23880763

  3. Lattice-Gas Automata Fluids on Parallel Supercomputers

    DTIC Science & Technology

    1993-11-23

    Kelvin-Helmholtz shear instabil- ity, and the Von Karman vortex shedding instability. Performance of the two machines in terms of both site update... PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Phillips Laboratory,Hanscom Field,MA,01731 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...Helmholtz shear instability, and the Von Karman vortex shedding instability. Performance of the two machines in terms of both site update rate and

  4. Development of Posiphen, an Inhibitor of Phosphorylated Tau Expression, as a Treatment of TBI

    DTIC Science & Technology

    2015-09-01

    Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author( s ) and should not be construed as...W81xWH-13-2-0092 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER Maria Maccecchini, Ph.D 5e. TASK NUMBER E-Mail: maccecchini...qrpharma.com 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER QR Pha QR Pharma

  5. Defensin-Like ZmES4 Mediates Pollen Tube Burst in Maize via Opening of the Potassium Channel KZM1

    PubMed Central

    Márton, Mihaela L.; Debener, Thomas; Geiger, Dietmar; Becker, Dirk; Dresselhaus, Thomas

    2010-01-01

    In contrast to animals and lower plant species, sperm cells of flowering plants are non-motile and are transported to the female gametes via the pollen tube, i.e. the male gametophyte. Upon arrival at the female gametophyte two sperm cells are discharged into the receptive synergid cell to execute double fertilization. The first players involved in inter-gametophyte signaling to attract pollen tubes and to arrest their growth have been recently identified. In contrast the physiological mechanisms leading to pollen tube burst and thus sperm discharge remained elusive. Here, we describe the role of polymorphic defensin-like cysteine-rich proteins ZmES1-4 (Zea mays embryo sac) from maize, leading to pollen tube growth arrest, burst, and explosive sperm release. ZmES1-4 genes are exclusively expressed in the cells of the female gametophyte. ZmES4-GFP fusion proteins accumulate in vesicles at the secretory zone of mature synergid cells and are released during the fertilization process. Using RNAi knock-down and synthetic ZmES4 proteins, we found that ZmES4 induces pollen tube burst in a species-preferential manner. Pollen tube plasma membrane depolarization, which occurs immediately after ZmES4 application, as well as channel blocker experiments point to a role of K+-influx in the pollen tube rupture mechanism. Finally, we discovered the intrinsic rectifying K+ channel KZM1 as a direct target of ZmES4. Following ZmES4 application, KZM1 opens at physiological membrane potentials and closes after wash-out. In conclusion, we suggest that vesicles containing ZmES4 are released from the synergid cells upon male-female gametophyte signaling. Subsequent interaction between ZmES4 and KZM1 results in channel opening and K+ influx. We further suggest that K+ influx leads to water uptake and culminates in osmotic tube burst. The species-preferential activity of polymorphic ZmES4 indicates that the mechanism described represents a pre-zygotic hybridization barrier and may be a component of reproductive isolation in plants. PMID:20532241

  6. Combining poly(ADP-ribose) polymerase 1 (PARP-1) inhibition and radiation in Ewing sarcoma results in lethal DNA damage

    PubMed Central

    Lee, Hae-June; Yoon, Changhwan; Schmidt, Benjamin; Park, Do Joong; Zhang, Alexia Y.; Erkizan, Hayriye V.; Toretsky, Jeffrey A.; Kirsch, David G.; Yoon, Sam S.

    2013-01-01

    Ewing sarcomas (ES) harbor a chromosomal translocation that fuses the EWS gene to an ETS transcription factor, most commonly FLI1. The EWS-FLI1 fusion acts in a positive feedback loop to maintain expression of poly(ADP-ribose) polymerase 1 (PARP-1), which is involved in repair of DNA damage. Here, we examine the effects of PARP-1 inhibition and radiation therapy (RT) on ES. In proliferation assays, the ES cell lines RD-ES and SK-N-MC were much more sensitive than non-ES cell lines to the PARP-1 inhibitor olaparib (Ola) (IC50 0.5–1 uM vs >5 uM) and to radiation (IC50 2–4 Gy vs >6 Gy). PARP-1 inhibition with shRNA or Ola sensitized ES cells but not non-ES cells to RT in both proliferation and colony formation assays. Using the Comet assay, radiation of ES cells with Ola, compared to without Ola, resulted in more DNA damage at 1 hr (mean tail moment 36–54 vs. 26–28) and sustained DNA damage at 24 hr (24–29 vs. 6–8). This DNA damage led to a 2.9–4.0 fold increase in apoptosis and a 1.6–2.4 fold increase in cell death. The effect of PARP-1 inhibition and RT on ES cells was lost when EWS-FLI1 was silenced by shRNA. A small dose of RT (4 Gy), when combined with PARP-1 inhibition, stopped growth of SK-N-MC flank tumors xenografts. In conclusion, PARP-1 inhibition in ES amplifies the level and duration of DNA damage caused by RT leading to synergistic increases in apoptosis and cell death in a EWS-FLI1 dependent manner. PMID:23966622

  7. Ancylostoma ceylanicum Excretory-Secretory Protein 2 Adopts a Netrin-Like Fold and Defines a Novel Family of Nematode Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K Kucera; L Harrison; M Cappello

    2011-12-31

    Hookworms are human parasites that have devastating effects on global health, particularly in underdeveloped countries. Ancylostoma ceylanicum infects humans and animals, making it a useful model organism to study disease pathogenesis. A. ceylanicum excretory-secretory protein 2 (AceES-2), a highly immunoreactive molecule secreted by adult worms at the site of intestinal attachment, is partially protective when administered as a mucosal vaccine against hookworm anemia. The crystal structure of AceES-2 determined at 1.75 {angstrom} resolution shows that it adopts a netrin-like fold similar to that found in tissue inhibitors of matrix metalloproteases (TIMPs) and in complement factors C3 and C5. However, recombinantmore » AceES-2 does not significantly inhibit the 10 most abundant human matrix metalloproteases or complement-mediated cell lysis. The presence of a highly acidic surface on AceES-2 suggests that it may function as a cytokine decoy receptor. Several small nematode proteins that have been annotated as TIMPs or netrin-domain-containing proteins display sequence homology in structurally important regions of AceES-2's netrin-likefold. Together, our results suggest that AceES-2 defines a novel family of nematode netrin-like proteins, which may function to modulate the host immune response to hookworm and other parasites.« less

  8. A feasibility study of multi-site,intracellular recordings from mammalian neurons by extracellular gold mushroom-shaped microelectrodes.

    PubMed

    Ojovan, Silviya M; Rabieh, Noha; Shmoel, Nava; Erez, Hadas; Maydan, Eilon; Cohen, Ariel; Spira, Micha E

    2015-09-14

    The development of multi-electrode array platforms for large scale recording of neurons is at the forefront of neuro-engineering research efforts. Recently we demonstrated, at the proof-of-concept level, a breakthrough neuron-microelectrode interface in which cultured Aplysia neurons tightly engulf gold mushroom-shaped microelectrodes (gMμEs). While maintaining their extracellular position, the gMμEs record synaptic- and action-potentials with characteristic features of intracellular recordings. Here we examined the feasibility of using gMμEs for intracellular recordings from mammalian neurons. To that end we experimentally examined the innate size limits of cultured rat hippocampal neurons to engulf gMμEs and measured the width of the "extracellular" cleft formed between the neurons and the gold surface. Using the experimental results we next analyzed the expected range of gMμEs-neuron electrical coupling coefficients. We estimated that sufficient electrical coupling levels to record attenuated synaptic- and action-potentials can be reached using the gMμE-neuron configuration. The definition of the engulfment limits of the gMμEs caps diameter at ≤2-2.5 μm and the estimated electrical coupling coefficients from the simulations pave the way for rational development and application of the gMμE based concept for in-cell recordings from mammalian neurons.

  9. High expression of glucose-regulated protein 78 (GRP78) is associated with metastasis and poor prognosis in patients with esophageal squamous cell carcinoma.

    PubMed

    Ren, Peng; Chen, Chuangui; Yue, Jie; Zhang, Jianguo; Yu, Zhentao

    2017-01-01

    Glucose-regulated protein 78 (GRP78) plays an important role in the invasion and metastasis of many human cancers. However, the role of this protein in the progression of invasion and metastasis in esophageal squamous cell carcinoma (ESCC) remains elusive. Immunohistochemistry and Western blot were performed to analyze GRP78 expression in 92 patients with primary ESCC. The correlation of GRP78 expression with clinicopathological factors was analyzed. In vitro, the expression levels of GRP78 were downregulated by small interfering RNA transfection in TE-1 and CaEs-17 ESCC lines. Cell invasion and migration assays were applied to determine the invasion and migratory abilities of ESCC cells. Compared with GRP78 in adjacent normal esophageal tissues, GRP78 was overexpressed in ESCC tissues. High GRP78 expression was significantly correlated with positive lymph node metastasis ( P =0.035) and advanced tumor stage ( P =0.017). Survival analysis revealed that high GRP78 expression was significantly associated with shorter overall survival ( P =0.037). In multivariate analysis, GRP78 overexpression was identified as an independent prognostic factor for overall survival ( P =0.011). si-GRP78 can significantly decrease the GRP78 expression level and reverse the invasion and migratory abilities of ESCC cells in TE-1 and CaEs-17 cell lines. These findings demonstrated that high expression of GRP78 was associated with disease progression and metastasis in ESCC and might serve as a novel prognostic marker for patients with ESCC.

  10. High expression of glucose-regulated protein 78 (GRP78) is associated with metastasis and poor prognosis in patients with esophageal squamous cell carcinoma

    PubMed Central

    Ren, Peng; Chen, Chuangui; Yue, Jie; Zhang, Jianguo; Yu, Zhentao

    2017-01-01

    Background Glucose-regulated protein 78 (GRP78) plays an important role in the invasion and metastasis of many human cancers. However, the role of this protein in the progression of invasion and metastasis in esophageal squamous cell carcinoma (ESCC) remains elusive. Patients and methods Immunohistochemistry and Western blot were performed to analyze GRP78 expression in 92 patients with primary ESCC. The correlation of GRP78 expression with clinicopathological factors was analyzed. In vitro, the expression levels of GRP78 were downregulated by small interfering RNA transfection in TE-1 and CaEs-17 ESCC lines. Cell invasion and migration assays were applied to determine the invasion and migratory abilities of ESCC cells. Results Compared with GRP78 in adjacent normal esophageal tissues, GRP78 was overexpressed in ESCC tissues. High GRP78 expression was significantly correlated with positive lymph node metastasis (P=0.035) and advanced tumor stage (P=0.017). Survival analysis revealed that high GRP78 expression was significantly associated with shorter overall survival (P=0.037). In multivariate analysis, GRP78 overexpression was identified as an independent prognostic factor for overall survival (P=0.011). si-GRP78 can significantly decrease the GRP78 expression level and reverse the invasion and migratory abilities of ESCC cells in TE-1 and CaEs-17 cell lines. Conclusion These findings demonstrated that high expression of GRP78 was associated with disease progression and metastasis in ESCC and might serve as a novel prognostic marker for patients with ESCC. PMID:28228658

  11. Gene trap and gene inversion methods for conditional gene inactivation in the mouse

    PubMed Central

    Xin, Hong-Bo; Deng, Ke-Yu; Shui, Bo; Qu, Shimian; Sun, Qi; Lee, Jane; Greene, Kai Su; Wilson, Jason; Yu, Ying; Feldman, Morris; Kotlikoff, Michael I.

    2005-01-01

    Conditional inactivation of individual genes in mice using site-specific recombinases is an extremely powerful method for determining the complex roles of mammalian genes in developmental and tissue-specific contexts, a major goal of post-genomic research. However, the process of generating mice with recombinase recognition sequences placed at specific locations within a gene, while maintaining a functional allele, is time consuming, expensive and technically challenging. We describe a system that combines gene trap and site-specific DNA inversion to generate mouse embryonic stem (ES) cell clones for the rapid production of conditional knockout mice, and the use of this system in an initial gene trap screen. Gene trapping should allow the selection of thousands of ES cell clones with defined insertions that can be used to generate conditional knockout mice, thereby providing extensive parallelism that eliminates the time-consuming steps of targeting vector construction and homologous recombination for each gene. PMID:15659575

  12. Characterisation of the hydrogeology of the Augustus River catchment, Western Australia

    NASA Astrophysics Data System (ADS)

    Wilkes, Shane M.; Clement, T. Prabhakar; Otto, Claus J.

    Understanding the hydrogeology of weathered rock catchments is integral for the management of various problems related to increased salinity within the many towns of Western Australia. This paper presents the results of site characterisation investigations aimed at improving the overall understanding of the hydrogeology of the southern portion of the Augustus River catchment, an example of a weathered rock catchment. Site data have highlighted the presence of both porous media aquifers within the weathered profile and fractured rock aquifers within the basement rocks. Geophysical airborne surveys and other drilling data have identified a large number of dolerite dykes which crosscut the site. Fractured quartz veins have been found along the margins of these dolerite dykes. Detailed groundwater-level measurements and barometric efficiency estimates indicate that these dolerite dykes and fractured quartz veins are affecting groundwater flow directions, promoting a strong hydraulic connection between all aquifers, and also influencing recharge mechanisms. The hydrogeological significance of the dolerite dykes and fractured quartz veins has been assessed using a combination of high-frequency groundwater-level measurements (30-min sampling interval), rainfall measurements (5-min sampling interval) and barometric pressure fluctuations (30-min sampling interval). A conceptual model was developed for describing various hydrogeological features of the study area. The model indicates that fractured quartz veins along the margins of dolerite dykes are an important component of the hydrogeology of the weathered rock catchments. Comprendre l'hydrogéologie des bassins en roches altérées est essentiel pour la gestion de différents problèmes liés à l'augmentation de la salinité dans de nombreuses villes d'Australie occidentale. Cet article présente les résultats d'études de caractérisation de sites conduites pour améliorer la compréhension de l'hydrogéologie de la partie sud du bassin de la rivière Augustus, exemple de bassin en roches altérées. Les données concernant le site ont mis en évidence la présence simultanée d'aquifères poreux dans le profil d'altération et d'aquifères de roches fracturées dans le socle. Des campagnes de géophysique aéroportée et d'autres données de forages ont identifié de très nombreux dykes de dolérite traversant le site. Des veines de quartz fracturées ont été trouvées aux marges de ces dykes de dolérite. Des mesures détaillées de niveau des nappes et des estimations des effets barométriques indiquent que ces dykes de dolérite et les veines de quartz fracturées affectent les directions d'écoulement souterrain, favorisant une forte connexion hydraulique entre tous ces aquifères, et influençant également les mécanismes de recharge. La signification hydrogéologique des dykes de dolérite et des veines de quartz fracturées a été analysée en combinant des mesures à haute fréquence du niveau des nappes (toutes les 30 min), de la pluie (toutes les 5 min) et des variations de la pression barométrique (toutes les 30 min). Un modèle conceptuel a été établi pour décrire les différents phénomènes hydrogéologiques de la région étudiée. Ce modèle indique que les veines de quartz aux marges des dykes de dolérite sont une importante composante de l'hydrogéologie des bassins en roches altérées. Entender la hidrogeología de cuencas con rocas meteorizadas es esencial para gestionar diversos problemas relacionados con el incremento de salinidad en muchas ciudades de Australia Occidental. Este artículo presenta los resultados obtenidos en la caracterización de varios emplazamientos con el fin de mejorar el conocimiento general de la hidrogeología en la zona sur de la cuenca del Río Augustus, que sirve como ejemplo de cuenca en rocas meteorizadas. Los datos de campo resaltan la presencia tanto de medios acuíferos porosos dentro del perfil meteorizado como de acuíferos en rocas fracturadas dentro de la roca fresca. Los registros geofísicos aéreos y datos de las perforaciones han identificado un gran número de diques de dolerita que intersectan el emplazamiento. Se ha hallado venas de cuarzo fracturado a lo largo de los márgenes de los diques de dolerita. Medidas detalladas del nivel piezométrico y estimaciones de la eficiencia barométrica indican que los diques de dolerita y las venas de cuarzo fracturado afectan las direcciones del flujo de las aguas subterráneas, originando una fuerte conexión hidráulica entre todos los acuíferos e influenciando también a los mecanismos de recarga. Se ha establecido la importancia hidrogeológica de los diques de dolerita y de las venas de cuarzo fracturado mediante una combinación de medidas muy frecuentes del nivel piezométrico (cada 30 min), de la precipitación (cada 5 min) y de las fluctuaciones de la presión barométrica (cada 30 min). Se ha desarrollado un modelo conceptual para describir varias características hidrogeológicas del área de estudio. El modelo indica que las venas de cuarzo fracturado en los márgenes de los diques de dolerita constituyen un componente importante de la hidrogeología de cuencas con rocas meteorizadas.

  13. Development of β-Lactoglobulin-Specific Chimeric Human IgEκ Monoclonal Antibodies for In Vitro Safety Assessment of Whey Hydrolysates

    PubMed Central

    Buelens-Sleumer, Laura S.; Cox, Linda; den Hartog, Marcel; de Jong, Niels; Teshima, Reiko; Garssen, Johan; Boon, Louis; Knippels, Léon M. J.

    2014-01-01

    Background Cow’s milk-derived whey hydrolysates are nutritional substitutes for allergic infants. Safety or residual allergenicity assessment of these whey hydrolysates is crucial. Currently, rat basophilic leukemia RBL-2H3 cells expressing the human IgE receptor α-chain (huFcεRIα-RBL-2H3), sensitized with serum IgE from cow’s milk allergic children, are being employed to assess in vitro residual allergenicity of these whey hydrolysates. However, limited availability and inter-lot variation of these allergic sera impede standardization of whey hydrolysate safety testing in degranulation assays. Objective An oligoclonal pool of chimeric human (chu)IgE antibodies against bovine β-lactoglobulin (a major allergen in whey) was generated to increase sensitivity, specificity, and reproducibility of existing degranulation assays. Methods Mice were immunized with bovine β-lactoglobulin, and subsequently the variable domains of dissimilar anti-β-lactoglobulin mouse IgG antibodies were cloned and sequenced. Six chimeric antibodies were generated comprising mouse variable domains and human constant IgE/κ domains. Results After sensitization with this pool of anti-β-lactoglobulin chuIgEs, huFcεRIα-expressing RBL-2H3 cells demonstrated degranulation upon cross-linking with whey, native 18 kDa β-lactoglobulin, and 5–10 kDa whey hydrolysates, whereas a 3 kDa whey hydrolysate and cow’s milk powder (mainly casein) showed no degranulation. In parallel, allergic serum IgEs were less sensitive. In addition, our pool anti-β-lactoglobulin chuIgEs recognized multiple allergenic immunodominant regions on β-lactoglobulin, which were also recognized by serum IgEs from cow’s milk allergic children. Conclusion Usage of our ‘unlimited’ source and well-defined pool of β-lactoglobulin-specific recombinant chuIgEs to sensitize huFcεRIα on RBL-2H3 cells showed to be a relevant and sensitive alternative for serum IgEs from cow’s milk allergic patients to assess safety of whey-based non-allergic hydrolyzed formula. PMID:25153680

  14. Molecular and Functional Characterization of cDNAs Putatively Encoding Carboxylesterases from the Migratory Locust, Locusta migratoria

    PubMed Central

    Zhang, Jianqin; Li, Daqi; Ge, Pingting; Guo, Yaping; Zhu, Kun Yan; Ma, Enbo; Zhang, Jianzhen

    2014-01-01

    Carboxylesterases (CarEs) belong to a superfamily of metabolic enzymes encoded by a number of genes and are widely distributed in microbes, plants and animals including insects. These enzymes play important roles in detoxification of insecticides and other xenobiotics, degradation of pheromones, regulation of neurodevelopment, and control of animal development. In this study, we characterized a total of 39 full-length cDNAs putatively encoding different CarEs from the migratory locust, Locusta migratoria, one of the most severe insect pests in many regions of the world, and evaluated the role of four CarE genes in insecticide detoxification. Our phylogenetic analysis grouped the 39 CarEs into five different clades including 20 CarEs in clade A, 3 in D, 13 in E, 1 in F and 2 in I. Four CarE genes (LmCesA3, LmCesA20, LmCesD1, LmCesE1), representing three different clades (A, D and E), were selected for further analyses. The transcripts of the four genes were detectable in all the developmental stages and tissues examined. LmCesA3 and LmCesE1 were mainly expressed in the fat bodies and Malpighian tubules, whereas LmCesA20 and LmCesD1 were predominately expressed in the muscles and hemolymph, respectively. The injection of double-stranded RNA (dsRNA) synthesized from each of the four CarE genes followed by the bioassay with each of four insecticides (chlorpyrifos, malathion, carbaryl and deltamethrin) increased the nymphal mortalities by 37.2 and 28.4% in response to malathion after LmCesA20 and LmCesE1 were silenced, respectively. Thus, we proposed that both LmCesA20 and LmCesE1 played an important role in detoxification of malathion in the locust. These results are expected to help researchers reveal the characteristics of diverse CarEs and assess the risk of insecticide resistance conferred by CarEs in the locust and other insect species. PMID:24722667

  15. Transplantation of cells from eye-like structures differentiated from embryonic stem cells in vitro and in vivo regeneration of retinal ganglion-like cells.

    PubMed

    Aoki, Hitomi; Hara, Akira; Niwa, Masayuki; Motohashi, Tsutomu; Suzuki, Takashi; Kunisada, Takahiro

    2008-02-01

    An embryonic stem (ES) cell-derived eye-like structure, made up of neural retinal lineage cells, retinal pigment epithelial (RPE) cells, and lens cells was constructed in our laboratory. We have shown that cells from these eye-like structures can be integrated into the developing optic vesicle of chicks. The purpose of this study was to determine whether the cells from these eye-like structures can differentiate into retinal ganglion cells (RGCs) when transplanted into the vitreous of an injured adult mouse retina. ES cells were induced to differentiate into eye-like structures in vitro for 6 or 11 days. Recipient mouse eyes were injected with NMDA to injure the RGCs prior to the transplantation. Sham-treated eyes received the same amount of carrier vehicle. Cells were extracted from the eye-like structures and transplanted into the vitreous of damaged and control eyes. The host eyes were analyzed both qualitatively and quantitatively by immunohistochemistry 10 days or 8 weeks after transplantation. Cells from the ES cell-derived eye-like structures were integrated into the RGC layer, and differentiated into neurons when transplanted into control (non-NMDA-treated) adult eyes. However, they rarely expressed RGC markers. When they were transplanted into NMDA-treated eyes, the cells spread on the surface of the retina and covered a relatively large area of the host RGC layer that had been injured by the NMDA. The cells from the ES cell-derived eye cells frequently differentiated into cells expressing RGC-specific markers, and formed a new RGC layer. In addition, a small number of these ES cell-derived cells were observed to extend axon-like processes toward the optic disc of the host. However, visually evoked responses could not be recorded from the visual cortex. These findings suggest that ES cell-derived eye-like structures contain cells that can differentiate into RG-like cells and regenerate a new RGC layer. These cells also appeared to be integrated into the retina and extend axon-like processes toward the optic nerve head.

  16. Neural Differentiation of Embryonic Stem Cells In Vitro: A Road Map to Neurogenesis in the Embryo

    PubMed Central

    Abranches, Elsa; Silva, Margarida; Pradier, Laurent; Schulz, Herbert; Hummel, Oliver; Henrique, Domingos; Bekman, Evguenia

    2009-01-01

    Background The in vitro generation of neurons from embryonic stem (ES) cells is a promising approach to produce cells suitable for neural tissue repair and cell-based replacement therapies of the nervous system. Available methods to promote ES cell differentiation towards neural lineages attempt to replicate, in different ways, the multistep process of embryonic neural development. However, to achieve this aim in an efficient and reproducible way, a better knowledge of the cellular and molecular events that are involved in the process, from the initial specification of neuroepithelial progenitors to their terminal differentiation into neurons and glial cells, is required. Methodology/Principal Findings In this work, we characterize the main stages and transitions that occur when ES cells are driven into a neural fate, using an adherent monolayer culture system. We established improved conditions to routinely produce highly homogeneous cultures of neuroepithelial progenitors, which organize into neural tube-like rosettes when they acquire competence for neuronal production. Within rosettes, neuroepithelial progenitors display morphological and functional characteristics of their embryonic counterparts, namely, apico-basal polarity, active Notch signalling, and proper timing of production of neurons and glia. In order to characterize the global gene activity correlated with each particular stage of neural development, the full transcriptome of different cell populations that arise during the in vitro differentiation protocol was determined by microarray analysis. By using embryo-oriented criteria to cluster the differentially expressed genes, we define five gene expression signatures that correlate with successive stages in the path from ES cells to neurons. These include a gene signature for a primitive ectoderm-like stage that appears after ES cells enter differentiation, and three gene signatures for subsequent stages of neural progenitor development, from an early stage that follows neural induction to a final stage preceding terminal differentiation. Conclusions/Significance Overall, our work confirms and extends the cellular and molecular parallels between monolayer ES cell neural differentiation and embryonic neural development, revealing in addition novel aspects of the genetic network underlying the multistep process that leads from uncommitted cells to differentiated neurons. PMID:19621087

  17. AMELIORATION OF ETHANOL-INDUCED DYSMORPHOGENESIS BY ADENOVIRAL-MEDIATED CU,ZN-SOD AND MN-SOD EXPRESSION IN NEURULATION STAGED MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    AMELIORATION OF ETHANOL-INDUCED DYSMORPHOGENESIS BY ADENOVIRAL-MEDIATED Cu,Zn-SOD AND Mn-SOD EXPRESSION IN NEURULATION STAGED MOUSE EMBRYOS IN VITRO. JB Smith1, PC Hartig3, MR Blanton3, KK Sulik1,2, and ES Hunter3. 1Department of Cell and Developmental Biology and 2Bowles Cente...

  18. Habitat characterization and spatial distribution of Anopheles sp. mosquito larvae in Dar es Salaam (Tanzania) during an extended dry period

    PubMed Central

    Sattler, Michael A; Mtasiwa, Deo; Kiama, Michael; Premji, Zul; Tanner, Marcel; Killeen, Gerry F; Lengeler, Christian

    2005-01-01

    Introduction By 2030, more than 50% of the African population will live in urban areas. Controlling malaria reduces the disease burden and further improves economic development. As a complement to treated nets and prompt access to treatment, measures targeted against the larval stage of Anopheles sp. mosquitoes are a promising strategy for urban areas. However, a precise knowledge of the geographic location and potentially of ecological characteristics of breeding sites is of major importance for such interventions. Methods In total 151 km2 of central Dar es Salaam, the biggest city of Tanzania, were systematically searched for open mosquito breeding sites. Ecologic parameters, mosquito larvae density and geographic location were recorded for each site. Logistic regression analysis was used to determine the key ecological factors explaining the different densities of mosquito larvae. Results A total of 405 potential open breeding sites were examined. Large drains, swamps and puddles were associated with no or low Anopheles sp. larvae density. The probability of Anopheles sp. larvae to be present was reduced when water was identified as "turbid". Small breeding sites were more commonly colonized by Anopheles sp. larvae. Further, Anopheles gambiae s.l. larvae were found in highly organically polluted habitats. Conclusions Clear ecological characteristics of the breeding requirements of Anopheles sp. larvae could not be identified in this setting. Hence, every stagnant open water body, including very polluted ones, have to be considered as potential malaria vector breeding sites. PMID:15649333

  19. The brief negative symptom scale (BNSS): Sensitivity to treatment effects.

    PubMed

    Kirkpatrick, Brian; Saoud, Jay B; Strauss, Gregory P; Ahmed, Anthony O; Tatsumi, Kazunori; Opler, Mark; Luthringer, Remy; Davidson, Michael

    2017-12-21

    The Brief Negative Symptom Scale (BNSS) grew out of a recommendation by the NIMH-sponsored Consensus Development Conference on Negative Symptoms that a scale based on contemporary concepts be developed. We assessed sensitivity to change of the BNSS in a trial of MIN-101, which showed efficacy for negative symptoms (PANSS pentagonal model) at daily doses of 32 and 64mg/day. Using mixed-effects model for repeated measures, we examined change in BNSS total score and in the BNSS factors of anhedonia/avolition/asociality (AAA), and expressivity (EXP). Compared to placebo, the 64mg group (N=83) showed a significant decrease in BNSS total score (effect size d [ES] 0.56, p<0.01) and both factor scores (AAA ES=0.48, EXP ES=0.46, p<0.02 for both). Patients in the trial had minimal depression and positive symptom scores; covarying for disorganization, positive symptoms, or anxiety/depression did not cause a meaningful change in the significance of the BNSS total or factor scores in this group. The 32mg group (N=78) did not differ significantly from placebo (N=83) on BNSS total score (ES=0.33, p<0.09), AAA (ES=0.25, p<0.20) or EXP (ES=0.30, p<0.12) scores. These results demonstrate the BNSS is sensitive to change. Copyright © 2017. Published by Elsevier B.V.

  20. Can the activation of plasminogen/plasmin system of the host by metabolic products of Dirofilaria immitis participate in heartworm disease endarteritis?

    PubMed

    González-Miguel, Javier; Morchón, Rodrigo; Carretón, Elena; Montoya-Alonso, José Alberto; Simón, Fernando

    2015-04-01

    Proliferative endarteritis is one of the key pathological mechanisms of cardiopulmonary dirofilariosis, a cosmopolitan parasitosis caused by Dirofilaria immitis affecting dogs and cats around the world. It has been shown that the excretory/secretory antigens from D. immitis adult worms (DiES) bind plasminogen (PLG) and activate fibrinolysis, which can lead to a survival mechanism for the parasite in its intravascular environment. However, overproduction of plasmin (final product of the route) has been related to pathological processes similar to those described in proliferative endarteritis. The aim of this study is to relate the appearance of this pathological condition with the activation of the PLG/plasmin system of the host by DiES. Cell proliferation through the crystal violet technique, cell migration by wound healing assay and degradation of the extracellular matrix by measuring collagen degradation and levels of matrix metalloproteinases were studied in an "in vitro" model using canine vascular endothelial and smooth muscle cells. These cells were treated with a mixture of DiES + PLG. Untreated cells, cells only stimulated with DiES or with PLG, or with a mixture of DiES + PLG + εACA (an inhibitor of the PLG-plasmin conversion) were employed as controls. In addition, the effect of DiES on the expression of the fibrinolytic activators tPA and uPA, the inhibitor PAI-1 and the PLG receptor Annexin A2 was analyzed in both types of cultures by western blot. Plasmin generated by DiES + PLG binding produced a significant increase in the cell proliferation and migration of the endothelial and smooth muscle cells, as well as an increase in the destruction of the extracellular matrix based on a further degradation of Type I Collagen and an increased level of matrix metalloproteinase-2. DiES also induce an increase in the expression of tPA and uPA in endothelial cells in culture, as well as a decrease in the expression of PAI-1 in both types of cells. Our study reports an interrelationship between plasmin caused by fibrinolysis activation by metabolic products of D. immitis and the appearance of pathological events similar to those described in the emergence of proliferative endarteritis in the cardiopulmonary dirofilariosis.

  1. Explanation for excessive DNA single-strand breaks and endogenous repair foci in pluripotent mouse embryonic stem cells.

    PubMed

    Banáth, J P; Bañuelos, C A; Klokov, D; MacPhail, S M; Lansdorp, P M; Olive, P L

    2009-05-01

    Pluripotent mouse embryonic stem cells (mES cells) exhibit approximately 100 large gammaH2AX repair foci in the absence of measurable numbers of DNA double-strand breaks. Many of these cells also show excessive numbers of DNA single-strand breaks (>10,000 per cell) when analyzed using the alkaline comet assay. To understand the reasons for these unexpected observations, various methods for detecting DNA strand breaks were applied to wild-type mES cells and to mES cells lacking H2AX, ATM, or DNA-PKcs. H2AX phosphorylation and expression of other repair complexes were measured using flow and image analysis of antibody-stained cells. Results indicate that high numbers of endogenous gammaH2AX foci and single-strand breaks in pluripotent mES cells do not require ATM or DNA-PK kinase activity and appear to be associated with global chromatin decondensation rather than pre-existing DNA damage. This will limit applications of gammaH2AX foci analysis in mES cells to relatively high levels of initial or residual DNA damage. Excessive numbers of single-strand breaks in the alkaline comet assay can be explained by the vulnerability of replicating chromatin in mES cells to osmotic shock. This suggests that caution is needed in interpreting results with the alkaline comet assay when applied to certain cell types or after treatment with agents that make chromatin vulnerable to osmotic changes. Differentiation of mES cells caused a reduction in histone acetylation, gammaH2AX foci intensity, and DNA single-strand breakage, providing a link between chromatin structural organization, excessive gammaH2AX foci, and sensitivity of replicating mES cell chromatin to osmotic shock.

  2. Bubble performance of a novel dissolved air flotation(DAF) unit.

    PubMed

    Chen, Fu-tai; Peng, Feng-xian; Wu, Xiao-qing; Luan, Zhao-kun

    2004-01-01

    ES-DAF, a novel DAF with low cost, high reliability and easy controllability, was studied. Without a costly air saturator, ES-DAF consists of an ejector and a static mixer between the pressure side and suction side of the recycle rotary pump. The bubble size distribution in this novel unit was studied in detail by using a newly developed CCD imagination through a microscope. Compared with M-DAF under the same saturation pressure, ES-DAF can produce smaller bubble size and higher bubble volume concentration, especially in lower pressure. In addition, the bubble size decreases with the increase of reflux ratio or decrease of superficial air-water ratio. These results suggested that smaller bubbles will be formed when the initial number of nucleation sites increases by enhancing the turbulence intensity in the saturation system.

  3. Urban agriculture and Anopheles habitats in Dar es Salaam, Tanzania.

    PubMed

    Dongus, Stefan; Nyika, Dickson; Kannady, Khadija; Mtasiwa, Deo; Mshinda, Hassan; Gosoniu, Laura; Drescher, Axel W; Fillinger, Ulrike; Tanner, Marcel; Killeen, Gerry F; Castro, Marcia C

    2009-05-01

    A cross-sectional survey of agricultural areas, combined with routinely monitored mosquito larval information, was conducted in urban Dar es Salaam, Tanzania, to investigate how agricultural and geographical features may influence the presence of Anopheles larvae. Data were integrated into a geographical information systems framework, and predictors of the presence of Anopheles larvae in farming areas were assessed using multivariate logistic regression with independent random effects. It was found that more than 5% of the study area (total size 16.8 km2) was used for farming in backyard gardens and larger open spaces. The proportion of habitats containing Anopheles larvae was 1.7 times higher in agricultural areas compared to other areas (95% confidence interval = 1.56-1.92). Significant geographic predictors of the presence of Anopheles larvae in gardens included location in lowland areas, proximity to river, and relatively impermeable soils. Agriculture-related predictors comprised specific seedbed types, mid-sized gardens, irrigation by wells, as well as cultivation of sugar cane or leafy vegetables. Negative predictors included small garden size, irrigation by tap water, rainfed production and cultivation of leguminous crops or fruit trees. Although there was an increased chance of finding Anopheles larvae in agricultural sites, it was found that breeding sites originated by urban agriculture account for less than a fifth of all breeding sites of malaria vectors in Dar es Salaam. It is suggested that strategies comprising an integrated malaria control effort in malaria-endemic African cities include participatory involvement of farmers by planting shade trees near larval habitats.

  4. Production of Functional Glucagon-Secreting α-Cells From Human Embryonic Stem Cells

    PubMed Central

    Rezania, Alireza; Riedel, Michael J.; Wideman, Rhonda D.; Karanu, Francis; Ao, Ziliang; Warnock, Garth L.; Kieffer, Timothy J.

    2011-01-01

    OBJECTIVE Differentiation of human embryonic stem (hES) cells to fully developed cell types holds great therapeutic promise. Despite significant progress, the conversion of hES cells to stable, fully differentiated endocrine cells that exhibit physiologically regulated hormone secretion has not yet been achieved. Here we describe an efficient differentiation protocol for the in vitro conversion of hES cells to functional glucagon-producing α- cells. RESEARCH DESIGN AND METHODS Using a combination of small molecule screening and empirical testing, we developed a six-stage differentiation protocol for creating functional α-cells. An extensive in vitro and in vivo characterization of the differentiated cells was performed. RESULTS A high rate of synaptophysin expression (>75%) and robust expression of glucagon and the α-cell transcription factor ARX was achieved. After a transient polyhormonal state in which cells coexpress glucagon and insulin, maturation in vitro or in vivo resulted in depletion of insulin and other β-cell markers with concomitant enrichment of α-cell markers. After transplantation, these cells secreted fully processed, biologically active glucagon in response to physiologic stimuli including prolonged fasting and amino acid challenge. Moreover, glucagon release from transplanted cells was sufficient to reduce demand for pancreatic glucagon, resulting in a significant decrease in pancreatic α-cell mass. CONCLUSIONS These results indicate that fully differentiated pancreatic endocrine cells can be created via stepwise differentiation of hES cells. These cells may serve as a useful screening tool for the identification of compounds that modulate glucagon secretion as well as those that promote the transdifferentiation of α-cells to β-cells. PMID:20971966

  5. Epithelial-mesenchymal transition in colonies of rhesus monkey embryonic stem cells: a model for processes involved in gastrulation.

    PubMed

    Behr, Rüdiger; Heneweer, Carola; Viebahn, Christoph; Denker, Hans-Werner; Thie, Michael

    2005-01-01

    Rhesus monkey embryonic stem (rhES) cells were grown on mouse embryonic fibroblast (MEF) feeder layers for up to 10 days to form multilayered colonies. Within this period, stem cell colonies differentiated transiently into complex structures with a disc-like morphology. These complex colonies were characterized by morphology, immunohistochemistry, and marker mRNA expression to identify processes of epithelialization as well as epithelial-mesenchymal transition (EMT) and pattern formation. Typically, differentiated colonies were comprised of an upper and a lower ES cell layer, the former growing on top of the layer of MEF cells whereas the lower ES cell layer spread out underneath the MEF cells. Interestingly, in the central part of the colonies, a roundish pit developed. Here the feeder layer disappeared, and upper layer cells seemed to ingress and migrate through the pit downward to form the lower layer while undergoing a transition from the epithelial to the mesenchymal phenotype, which was indicated by the loss of the marker proteins E-cadherin and ZO-1 in the lower layer. In support of this, we found a concomitant 10-fold upregulation of the gene Snail2, which is a key regulator of the EMT process. Conversion of epiblast to mesoderm was also indicated by the regulated expression of the mesoderm marker Brachyury. An EMT is a characteristic process of vertebrate gastrulation. Thus, these rhES cell colonies may be an interesting model for studies on some basic processes involved in early primate embryogenesis and may open new ways to study the regulation of EMT in vitro.

  6. Unique differentiation profile of mouse embryonic stem cells in rotary and stirred tank bioreactors.

    PubMed

    Fridley, Krista M; Fernandez, Irina; Li, Mon-Tzu Alice; Kettlewell, Robert B; Roy, Krishnendu

    2010-11-01

    Embryonic stem (ES)-cell-derived lineage-specific stem cells, for example, hematopoietic stem cells, could provide a potentially unlimited source for transplantable cells, especially for cell-based therapies. However, reproducible methods must be developed to maximize and scale-up ES cell differentiation to produce clinically relevant numbers of therapeutic cells. Bioreactor-based dynamic culture conditions are amenable to large-scale cell production, but few studies have evaluated how various bioreactor types and culture parameters influence ES cell differentiation, especially hematopoiesis. Our results indicate that cell seeding density and bioreactor speed significantly affect embryoid body formation and subsequent generation of hematopoietic stem and progenitor cells in both stirred tank (spinner flask) and rotary microgravity (Synthecon™) type bioreactors. In general, high percentages of hematopoietic stem and progenitor cells were generated in both bioreactors, especially at high cell densities. In addition, Synthecon bioreactors produced more sca-1(+) progenitors and spinner flasks generated more c-Kit(+) progenitors, demonstrating their unique differentiation profiles. cDNA microarray analysis of genes involved in pluripotency, germ layer formation, and hematopoietic differentiation showed that on day 7 of differentiation, embryoid bodies from both bioreactors consisted of all three germ layers of embryonic development. However, unique gene expression profiles were observed in the two bioreactors; for example, expression of specific hematopoietic genes were significantly more upregulated in the Synthecon cultures than in spinner flasks. We conclude that bioreactor type and culture parameters can be used to control ES cell differentiation, enhance unique progenitor cell populations, and provide means for large-scale production of transplantable therapeutic cells.

  7. FGF7 and cell density are required for final differentiation of pancreatic amylase-positive cells from human ES cells.

    PubMed

    Takizawa-Shirasawa, Sakiko; Yoshie, Susumu; Yue, Fengming; Mogi, Akimi; Yokoyama, Tadayuki; Tomotsune, Daihachiro; Sasaki, Katsunori

    2013-12-01

    The major molecular signals of pancreatic exocrine development are largely unknown. We examine the role of fibroblast growth factor 7 (FGF7) in the final induction of pancreatic amylase-containing exocrine cells from induced-pancreatic progenitor cells derived from human embryonic stem (hES) cells. Our protocol consisted in three steps: Step I, differentiation of definitive endoderm (DE) by activin A treatment of hES cell colonies; Step II, differentiation of pancreatic progenitor cells by re-plating of the cells of Step I onto 24-well plates at high density and stimulation with all-trans retinoic acid; Step III, differentiation of pancreatic exocrine cells with a combination of FGF7, glucagon-like peptide 1 and nicotinamide. The expression levels of pancreatic endodermal markers such as Foxa2, Sox17 and gut tube endoderm marker HNF1β were up-regulated in both Step I and II. Moreover, in Step III, the induced cells expressed pancreatic markers such as amylase, carboxypeptidase A and chymotrypsinogen B, which were similar to those in normal human pancreas. From day 8 in Step III, cells immunohistochemically positive for amylase and for carboxypeptidase A, a pancreatic exocrine cell product, were induced by FGF7. Pancreatic progenitor Pdx1-positive cells were localized in proximity to the amylase-positive cells. In the absence of FGF7, few amylase-positive cells were identified. Thus, our three-step culture protocol for human ES cells effectively induces the differentiation of amylase- and carboxypeptidase-A-containing pancreatic exocrine cells.

  8. Isolation of Oct4-Expressing Extraembryonic Endoderm Precursor Cell Lines

    PubMed Central

    Debeb, Bisrat G.; Galat, Vasiliy; Epple-Farmer, Jessica; Iannaccone, Steve; Woodward, Wendy A.; Bader, Michael; Iannaccone, Philip; Binas, Bert

    2009-01-01

    Background The extraembryonic endoderm (ExEn) defines the yolk sac, a set of membranes that provide essential support for mammalian embryos. Recent findings suggest that the committed ExEn precursor is present already in the embryonic Inner Cell Mass (ICM) as a group of cells that intermingles with the closely related epiblast precursor. All ICM cells contain Oct4, a key transcription factor that is first expressed at the morula stage. In vitro, the epiblast precursor is most closely represented by the well-characterized embryonic stem (ES) cell lines that maintain the expression of Oct4, but analogous ExEn precursor cell lines are not known and it is unclear if they would express Oct4. Methodology/Principal Findings Here we report the isolation and characterization of permanently proliferating Oct4-expressing rat cell lines (“XEN-P cell lines”), which closely resemble the ExEn precursor. We isolated the XEN-P cell lines from blastocysts and characterized them by plating and gene expression assays as well as by injection into embryos. Like ES cells, the XEN-P cells express Oct4 and SSEA1 at high levels and their growth is stimulated by leukemia inhibitory factor, but instead of the epiblast determinant Nanog, they express the ExEn determinants Gata6 and Gata4. Further, they lack markers characteristic of the more differentiated primitive/visceral and parietal ExEn stages, but exclusively differentiate into these stages in vitro and contribute to them in vivo. Conclusions/Significance Our findings (i) suggest strongly that the ExEn precursor is a self-renewable entity, (ii) indicate that active Oct4 gene expression (transcription plus translation) is part of its molecular identity, and (iii) provide an in vitro model of early ExEn differentiation. PMID:19784378

  9. Can Diabetes Be Prevented? (For Teens)

    MedlinePlus

    ... Feelings Expert Answers Q&A Movies & More for Teens Teens site Sitio para adolescentes Body Mind Sexual Health ... English Español Can Diabetes Be Prevented? KidsHealth / For Teens / Can Diabetes Be Prevented? Print en español ¿Es ...

  10. Spatiotemporal clustering of the epigenome reveals rules of dynamic gene regulation

    PubMed Central

    Yu, Pengfei; Xiao, Shu; Xin, Xiaoyun; Song, Chun-Xiao; Huang, Wei; McDee, Darina; Tanaka, Tetsuya; Wang, Ting; He, Chuan; Zhong, Sheng

    2013-01-01

    Spatial organization of different epigenomic marks was used to infer functions of the epigenome. It remains unclear what can be learned from the temporal changes of the epigenome. Here, we developed a probabilistic model to cluster genomic sequences based on the similarity of temporal changes of multiple epigenomic marks during a cellular differentiation process. We differentiated mouse embryonic stem (ES) cells into mesendoderm cells. At three time points during this differentiation process, we used high-throughput sequencing to measure seven histone modifications and variants—H3K4me1/2/3, H3K27ac, H3K27me3, H3K36me3, and H2A.Z; two DNA modifications—5-mC and 5-hmC; and transcribed mRNAs and noncoding RNAs (ncRNAs). Genomic sequences were clustered based on the spatiotemporal epigenomic information. These clusters not only clearly distinguished gene bodies, promoters, and enhancers, but also were predictive of bidirectional promoters, miRNA promoters, and piRNAs. This suggests specific epigenomic patterns exist on piRNA genes much earlier than germ cell development. Temporal changes of H3K4me2, unmethylated CpG, and H2A.Z were predictive of 5-hmC changes, suggesting unmethylated CpG and H3K4me2 as potential upstream signals guiding TETs to specific sequences. Several rules on combinatorial epigenomic changes and their effects on mRNA expression and ncRNA expression were derived, including a simple rule governing the relationship between 5-hmC and gene expression levels. A Sox17 enhancer containing a FOXA2 binding site and a Foxa2 enhancer containing a SOX17 binding site were identified, suggesting a positive feedback loop between the two mesendoderm transcription factors. These data illustrate the power of using epigenome dynamics to investigate regulatory functions. PMID:23033340

  11. Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes.

    PubMed

    Weber, David; Heisig, Julia; Kneitz, Susanne; Wolf, Elmar; Eilers, Martin; Gessler, Manfred

    2015-02-01

    Hey bHLH transcription factors are critical effectors of Notch signaling. During mammalian heart development they are expressed in atrial and ventricular cardiomyocytes and in the developing endocardium. Hey knockout mice suffer from lethal cardiac defects, such as ventricular septum defects, valve defects and cardiomyopathy. Despite this functional relevance, little is known about the regulation of downstream targets in relevant cell types. The objective of this study was to elucidate the regulatory mechanisms by which Hey proteins affect gene expression in a cell type specific manner. We used an in vitro cardiomyocyte differentiation system with inducible Hey1 or Hey2 expression to study target gene regulation in cardiomyocytes (CM) generated from murine embryonic stem cells (ESC). The effects of Hey1 and Hey2 are largely redundant, but cell type specific. The number of regulated genes is comparable between ESC and CM, but the total number of binding sites is much higher, especially in ESC, targeting mainly genes involved in transcriptional regulation and developmental processes. Repression by Hey proteins generally correlates with the extent of Hey-binding to target promoters, Hdac recruitment and lower histone acetylation. Functionally, treatment with the Hdac inhibitor TSA abolished Hey target gene regulation. However, in CM the repressive effect of Hey-binding is lost for a subset of genes. These also lack Hey-dependent histone deacetylation in CM and are enriched for binding sites of cardiac specific activators like Srf, Nkx2-5, and Gata4. Ectopic Nkx2-5 overexpression in ESC blocks Hey-mediated repression of these genes. Thus, Hey proteins mechanistically repress target genes via Hdac recruitment and histone deacetylation. In CM Hey-repression is counteracted by cardiac activators, which recruit histone acetylases and prevent Hey mediated deacetylation and subsequent repression for a subset of genes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Exploring optimal topology of thermal cloaks by CMA-ES

    NASA Astrophysics Data System (ADS)

    Fujii, Garuda; Akimoto, Youhei; Takahashi, Masayuki

    2018-02-01

    This paper presents topology optimization for thermal cloaks expressed by level-set functions and explored using the covariance matrix adaptation evolution strategy (CMA-ES). Designed optimal configurations provide superior performances in thermal cloaks for the steady-state thermal conduction and succeed in realizing thermal invisibility, despite the structures being simply composed of iron and aluminum and without inhomogeneities caused by employing metamaterials. To design thermal cloaks, a prescribed objective function is used to evaluate the difference between the temperature field controlled by a thermal cloak and when no thermal insulator is present. The CMA-ES involves searches for optimal sets of level-set functions as design variables that minimize a regularized fitness involving a perimeter constraint. Through topology optimization subject to structural symmetries about four axes, we obtain a concept design of a thermal cloak that functions in an isotropic heat flux.

  13. Maintenance and induction of murine embryonic stem cell differentiation using E-cadherin-Fc substrata without colony formation

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Yuan; Akaike, Toshihiro

    2013-03-01

    Induced embryonic stem (ES) cells are expected to be promising cell resources for the observation of the cell behaviors in developmental biology as well as the implantation in cell treatments in human diseases. A recombinant E-cadherin substratum was developed as a cell recognizable substratum to maintain the ES cells' self-renewal and pluripotency at single cell level. Furthermore, the generation of various cell lineages in different germ layers, including hepatic or neural cells, was achieved on the chimeric protein layer precisely and effectively. The induction and isolation of specific cell population was carried out with the enhancing effect of other artificial extracellular matrices (ECMs) in enzyme-free process. The murine ES cell-derived cells showed highly morphological similarities and functional expressions to matured hepatocytes or neural progenitor cells.

  14. Characteristics of carboxylesterase genes and their expression-level between acaricide-susceptible and resistant Tetranychus cinnabarinus (Boisduval).

    PubMed

    Wei, Peng; Shi, Li; Shen, Guangmao; Xu, Zhifeng; Liu, Jialu; Pan, Yu; He, Lin

    2016-07-01

    Carboxylesterases (CarEs) play important roles in metabolism and detoxification of dietary and environmental xenobiotics in insects and mites. On the basis of the Tetranychuscinnabarinus transcriptome dataset, 23 CarE genes (6 genes are full sequence and 17 genes are partial sequence) were identified. Synergist bioassay showed that CarEs were involved in acaricide detoxification and resistance in fenpropathrin- (FeR) and cyflumetofen-resistant (CyR) strains. In order to further reveal the relationship between CarE gene's expression and acaricide-resistance in T. cinnabarinus, we profiled their expression in susceptible (SS) and resistant strains (FeR, and CyR). There were 8 and 4 over-expressed carboxylesterase genes in FeR and CyR, respectively, from which the over-expressions were detected at mRNA level, but not DNA level. Pesticide induction experiment elucidated that 4 of 8 and 2 of 4 up-regulated genes were inducible with significance in FeR and CyR strains, respectively, but they could not be induced in SS strain, which indicated that these genes became more enhanced and effective to withstand the pesticides' stress in resistant T. cinnabarinus. Most expression-changed and all inducible genes possess the Abhydrolase_3 motif, which is a catalytic domain for hydrolyzing. As a whole, these findings in current study provide clues for further elucidating the function and regulation mechanism of these carboxylesterase genes in T. cinnabarinus' resistance formation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Impact of Two Measures of Micrometastatic Disease on Clinical Outcomes in Patients with Newly Diagnosed Ewing Sarcoma: A Report from the Children’s Oncology Group

    PubMed Central

    Vo, Kieuhoa T.; Edwards, Jeremy V.; Epling, C. Lorrie; Sinclair, Elizabeth; Hawkins, Douglas S.; Grier, Holcombe E.; Janeway, Katherine A.; Barnette, Phillip; McIlvaine, Elizabeth; Krailo, Mark D.; Barkauskas, Donald A.; Matthay, Katherine K.; Womer, Richard B.; Gorlick, Richard G.; Lessnick, Stephen L.; Mackall, Crystal L.; DuBois, Steven G.

    2016-01-01

    Purpose Flow cytometry and RT-PCR can detect occult Ewing sarcoma (ES) cells in the blood and bone marrow (BM). These techniques were used to evaluate the prognostic significance of micrometastatic disease in ES. Experimental Design Newly diagnosed patients with ES were enrolled on two prospective multi-center studies. In the flow cytometry cohort, patients were defined as “positive” for BM micrometastatic disease if their CD99+/CD45− values were above the upper limit in 22 control patients. In the PCR cohort, RT-PCR on blood or BM samples classified the patients as “positive” or “negative” for EWSR1/FLI1 translocations. The association between micrometastatic disease burden with clinical features and outcome was assessed. Co-expression of IGF-1R on detected tumor cells was performed in a subset of flow cytometry samples. Results The median total BM CD99+CD45− percent was 0.0012% (range 0–1.10%) in the flow cytometry cohort, with 14/109 (12.8%) of ES patients defined as “positive.” In the PCR cohort, 19.6% (44/225) patients were “positive” for any EWSR1/FLI1 translocation in blood or BM. There were no differences in baseline clinical features or event-free or overall survival between patients classified as “positive” vs. “negative” by either method. CD99+CD45− cells had significantly higher IGF-1R expression compared to CD45+ hematopoietic cells (mean geometric mean fluorescence intensity 982.7 vs. 190.9; p<0.001). Conclusion The detection of micrometastatic disease at initial diagnosis by flow cytometry or RT-PCR is not associated with outcome in newly diagnosed patients with ES. Flow cytometry provides a tool to characterize occult micrometastatic tumor cells for proteins of interest. PMID:26861456

  16. Nat1 promotes translation of specific proteins that induce differentiation of mouse embryonic stem cells.

    PubMed

    Sugiyama, Hayami; Takahashi, Kazutoshi; Yamamoto, Takuya; Iwasaki, Mio; Narita, Megumi; Nakamura, Masahiro; Rand, Tim A; Nakagawa, Masato; Watanabe, Akira; Yamanaka, Shinya

    2017-01-10

    Novel APOBEC1 target 1 (Nat1) (also known as "p97," "Dap5," and "Eif4g2") is a ubiquitously expressed cytoplasmic protein that is homologous to the C-terminal two thirds of eukaryotic translation initiation factor 4G (Eif4g1). We previously showed that Nat1-null mouse embryonic stem cells (mES cells) are resistant to differentiation. In the current study, we found that NAT1 and eIF4G1 share many binding proteins, such as the eukaryotic translation initiation factors eIF3 and eIF4A and ribosomal proteins. However, NAT1 did not bind to eIF4E or poly(A)-binding proteins, which are critical for cap-dependent translation initiation. In contrast, compared with eIF4G1, NAT1 preferentially interacted with eIF2, fragile X mental retardation proteins (FMR), and related proteins and especially with members of the proline-rich and coiled-coil-containing protein 2 (PRRC2) family. We also found that Nat1-null mES cells possess a transcriptional profile similar, although not identical, to the ground state, which is established in wild-type mES cells when treated with inhibitors of the ERK and glycogen synthase kinase 3 (GSK3) signaling pathways. In Nat1-null mES cells, the ERK pathway is suppressed even without inhibitors. Ribosome profiling revealed that translation of mitogen-activated protein kinase kinase kinase 3 (Map3k3) and son of sevenless homolog 1 (Sos1) is suppressed in the absence of Nat1 Forced expression of Map3k3 induced differentiation of Nat1-null mES cells. These data collectively show that Nat1 is involved in the translation of proteins that are required for cell differentiation.

  17. Anti-inflammatory and immunomodulatory effects of Aquaphilus dolomiae extract on in vitro models.

    PubMed

    Aries, Marie-Françoise; Hernandez-Pigeon, Hélène; Vaissière, Clémence; Delga, Hélène; Caruana, Antony; Lévêque, Marguerite; Bourrain, Muriel; Ravard Helffer, Katia; Chol, Bertrand; Nguyen, Thien; Bessou-Touya, Sandrine; Castex-Rizzi, Nathalie

    2016-01-01

    Atopic dermatitis (AD) is a common skin disease characterized by recurrent pruritic inflammatory skin lesions resulting from structural and immune defects of the skin barrier. Previous studies have shown the clinical efficacy of Avène thermal spring water in AD, and a new microorganism, Aquaphilus dolomiae was suspected to contribute to these unique properties. The present study evaluated the anti-inflammatory, antipruritic, and immunomodulatory properties of ES0, an original biological extract of A. dolomiae , in immune and inflammatory cell models in order to assess its potential use in the treatment of AD. An ES0 extract containing periplasmic and membrane proteins, peptides, lipopolysaccharides, and exopolysaccharides was obtained from A. dolomiae. The effects of the extract on pruritus and inflammatory mediators and immune mechanisms were evaluated by using various AD cell models and assays. In a keratinocyte model, ES0 inhibited the expression of the inflammatory mediators, thymic stromal lymphopoietin, interleukin (IL)-18, IL-4R, IL-8, monocyte chemoattractant protein-3, macrophage inflammatory protein-3α, and macrophage-derived chemokine and induced the expression of involucrin, which is involved in skin barrier keratinocyte terminal differentiation. In addition, ES0 inhibited protease-activated receptor-2 activation in HaCaT human keratinocytes stimulated by stratum corneum tryptic enzyme and T helper type (Th) 1, Th2, and Th17 cytokine production in Staphylococcal enterotoxin B-stimulated CD4+ lymphocytes. Lastly, ES0 markedly activated innate immunity through toll-like receptor (TLR) 2, TLR4, and TLR5 activation (in recombinant human embryonic kidney 293 cells) and through antimicrobial peptide induction (psoriasin, human beta-defensin-2, and cathelicidin), mainly through TLR5 activation (in normal human keratinocytes). Overall, these in vitro results confirm the marked regulatory activity of this A. dolomiae extract on inflammatory and immune responses, which may be of value by virtue of its potential as an adjunctive treatment of AD inflammatory and pruritic lesions.

  18. Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Xiao-shan; Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501; Fujishiro, Masako

    In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells weremore » tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.« less

  19. Early Sign Language Experience Goes Along with an Increased Cross-modal Gain for Affective Prosodic Recognition in Congenitally Deaf CI Users.

    PubMed

    Fengler, Ineke; Delfau, Pia-Céline; Röder, Brigitte

    2018-04-01

    It is yet unclear whether congenitally deaf cochlear implant (CD CI) users' visual and multisensory emotion perception is influenced by their history in sign language acquisition. We hypothesized that early-signing CD CI users, relative to late-signing CD CI users and hearing, non-signing controls, show better facial expression recognition and rely more on the facial cues of audio-visual emotional stimuli. Two groups of young adult CD CI users-early signers (ES CI users; n = 11) and late signers (LS CI users; n = 10)-and a group of hearing, non-signing, age-matched controls (n = 12) performed an emotion recognition task with auditory, visual, and cross-modal emotionally congruent and incongruent speech stimuli. On different trials, participants categorized either the facial or the vocal expressions. The ES CI users more accurately recognized affective prosody than the LS CI users in the presence of congruent facial information. Furthermore, the ES CI users, but not the LS CI users, gained more than the controls from congruent visual stimuli when recognizing affective prosody. Both CI groups performed overall worse than the controls in recognizing affective prosody. These results suggest that early sign language experience affects multisensory emotion perception in CD CI users.

  20. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    PubMed

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  1. Tiger Team Assessment of the Sandia National Laboratories, Livermore, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-08-01

    This report provides the results of the Tiger Team Assessment of the Sandia National Laboratories (SNL) in Livermore, California, conducted from April 30 to May 18, 1990. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety and health (ES H) activities at SNL, Livermore. The assessment was conducted by a team consisting of three subteams of federal and private sector technical specialists in the disciplines of environment, safety and health, and management. On-site activities for the assessment included document reviews, observation of site operations, and discussions and interviews with DOE personnel,more » site contractor personnel, and regulators. Using these sources of information and data, the Tiger Team identified a significant number of findings and concerns having to do with the environment, safety and health, and management, as well as concerns regarding noncompliance with Occupational Safety and Health Administration (OSHA) standards. Although the Tiger Team concluded that none of the findings or concerns necessitated immediate cessation of any operations at SNL, Livermore, it does believe that a sizable number of them require prompt management attention. A special area of concern identified for the near-term health and safety of on-site personnel pertained to the on-site Trudell Auto Repair Shop site. Several significant OSHA concerns and environmental findings relating to this site prompted the Tiger Team Leader to immediately advise SNL, Livermore and AL management of the situation. A case study was prepared by the Team, because the root causes of the problems associated with this site were believed to reflect the overall root causes for the areas of ES H noncompliance at SNL, Livermore. 4 figs., 3 tabs.« less

  2. Altered gene expression and spine density in nucleus accumbens of adolescent and adult male mice exposed to emotional and physical stress

    PubMed Central

    Warren, Brandon L; Sial, Omar K.; Alcantara, Lyonna F.; Greenwood, Maria A.; Brewer, Jacob S.; Rozofsky, John P.; Parise, Eric M.; Bolaños-Guzmán, Carlos A.

    2014-01-01

    Stressful early life experiences are implicated in lifelong health. However, little is known about the consequences of emotional or physical stress on neurobiology. Therefore, the following set of experiments was designed to assess changes in transcription and translation of key proteins within the nucleus accumbens (NAc). Male adolescent (postnatal day [PD] 35) or adult (eight-week old) mice were exposed to emotional (ES) or physical stress (PS) using a vicarious social defeat paradigm. Twenty-four hours after the last stress session, we measured levels of specific mRNAs and proteins within the NAc. Spine density was also assessed in separate groups of mice. Exposure to ES or PS disrupted ERK2, reduced transcription of ΔFosB, and had no effect on CREB mRNA. Western blots revealed that exposure to ES or PS decreased ERK2 phosphorylation in adolescents, whereas the same stress regimen increased ERK2 phosphorylation in adults. Exposure to ES or PS had no effect on ΔFosB or CREB phosphorylation. ES and PS increased spine density in the NAc of adolescent-exposed mice, but only exposure to PS increased spine density in adults. Together, these findings demonstrate that exposure to ES or PS is a potent stressor in adolescent and adult mice, and can disturb the integrity of the NAc by altering transcription and translation of important signaling molecules in an age-dependent manner. Furthermore, exposure to ES and PS induces substantial synaptic plasticity of the NAc. PMID:24943326

  3. Impact of Psychological Stress on Pain Perception in an Animal Model of Endometriosis.

    PubMed

    Hernandez, Siomara; Cruz, Myrella L; Seguinot, Inevy I; Torres-Reveron, Annelyn; Appleyard, Caroline B

    2017-10-01

    Pain in patients with endometriosis is considered a significant source of stress but does not always correlate with severity of the condition. We have demonstrated that stress can worsen endometriosis in an animal model. Here, we tested the impact of a psychological stress protocol on pain thresholds and pain receptors. Endometriosis was induced in female rats by suturing uterine horn tissue next to the intestinal mesentery. Sham rats had sutures only. Rats were exposed to water avoidance stress for 7 consecutive days or handled for 5 minutes (no stress). Fecal pellets and serum corticosterone (CORT) levels were measured as an index of anxiety. Pain perception was assessed using hot plate and Von Frey tests. Substance P, enkephalin, endomorphin-2, Mu opioid receptor (MOR), and neurokinin-1 receptor expression in the spinal cord were measured by immunohistochemistry. Fecal pellets and CORT were significantly higher in the endo-stress (ES) group than endo-no stress (ENS; P < .01) and sham-no stress groups (SNS; P < .01). The ES rats had more colonic damage ( P < .001 vs SNS; P < .05 vs ENS), vesicle mast cell infiltration ( P < .01 vs ENS), and more severe vesicles than ENS. The ES developed significant hyperalgesia ( P < .05) but stress reversed the allodynic effect caused by endo ( P < .001). The MOR expression was significantly reduced in ENS versus SNS ( P < .05) and more enkephalin expression was found in endo groups. Animals subjected to stress develop more severe symptoms but interestingly stress seems to have beneficial effects on abdominal allodynia, which could be a consequence of the stress-induced analgesia phenomenon.

  4. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.

    PubMed

    Roundhill, Elizabeth; Turnbull, Doug; Burchill, Susan

    2016-05-01

    Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, <0.9). For the first time, we have demonstrated that mitochondrial MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. © FASEB.

  5. Differential effects of respiratory and electrical stimulation-induced dilator muscle contraction on mechanical properties of the pharynx in the pig.

    PubMed

    Brodsky, A; Dotan, Y; Samri, M; Schwartz, A R; Oliven, A

    2016-09-01

    Respiratory stimulation (RS) during sleep often fails to discontinue flow limitation, whereas electrical stimulation (ES) of the hypoglossus (HG) nerve frequently prevents obstruction. The present work compares the effects of RS and HG-ES on pharyngeal mechanics and the relative contribution of tongue muscles and thoracic forces to pharyngeal patency. We determined the pressure-area relationship of the collapsible segment of the pharynx in anesthetized pigs under the following three conditions: baseline (BL), RS induced by partial obstruction of the tracheostomy tube, and HG-ES. Parameters were obtained also after transection of the neck muscles and the trachea (NMT) and after additional bilateral HG transection (HGT). In addition, we measured the force produced by in situ isolated geniohyoid (GH) during RS and HG-ES. Intense RS was recognized by large negative intrathoracic pressures and triggered high phasic genioglossus and GH EMG activity. GH contraction produced during maximal RS less than a quarter of the force obtained during HG-ES. The major finding of the study was that RS and ES differed in the mechanism by which they stabilized the pharynx: RS lowered the pressure-area slope, i.e., reduced pharyngeal compliance (14.1 ± 2.9 to 9.2 ± 1.9 mm(2)/cmH2O, P < 0.01). HG-ES shifted the slope toward lower pressures, i.e., lowered the calculated extraluminal pressure (17.4 ± 5.8 to 9.2 ± 7.4 cmH2O, P < 0.01). Changes during RS and HG-ES were not affected by NMT, but the effect of RS decreased significantly after HGT. In conclusion, HG-ES and RS affect the pharyngeal site of collapse differently. Tongue muscle contraction contributes to pharyngeal stiffening during RS. Copyright © 2016 the American Physiological Society.

  6. CXCL16 and CXCR6 in Ewing sarcoma family tumor.

    PubMed

    Na, Ki Yong; Kim, Hyun-Sook; Jung, Woon-Won; Sung, Ji-Youn; Kalil, Ricardo Karam; Kim, Youn Wha; Park, Yong-Koo

    2014-04-01

    Chemokines are a family of peptide mediators that play an essential role in cellular migration and intracellular communication in tumor cells as well as immune cells. We hypothesized that the CXCL16-CXCR6 ligand-receptor system plays an important role in Ewing sarcoma (ES) family tumor (ESFT) progression. Using real-time quantitative reverse transcription-polymerase chain reaction, we investigated the mRNA expression of CXCL16, CXCR6, and ADAM 10 in various cell lines. We also investigated the expression of CXCL16, CXCR6, ADAM 10, and ADAM 17 in tissue samples from 61 ESFT patients using immunohistochemistry. The mRNA expression levels of CXCL16 and CXCR6 in the ES cell line were higher than those in the other cell lines. Immunohistochemical staining revealed that CXCL16 and CXCR6 were highly expressed in tumor cells of ESFT and showed a positive correlation between them. The expression of CXCL16 and CXCR6 was associated with the occurrence of lung metastasis. Univariate analysis revealed that CXCL16 or CXCR6 expression was associated with worse prognosis of ESFT patients. In addition, CXCL16 and CXCR6 expression was associated with shorter overall survival irrespective of other prognostic factors. Our results suggest that the CXCL16/CXCR6 axis appears to be important in the progression of ESFT, resulting in more aggressive clinical behavior. Furthermore, there may be a decrease in the overall survival in ESFT patients who have tumors that stain strongly for CXCL16 and CXCR6. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. The centrality of meta-programming in the ES-DOC eco-system

    NASA Astrophysics Data System (ADS)

    Greenslade, Mark

    2017-04-01

    The Earth System Documentation (ES-DOC) project is an international effort aiming to deliver a robust earth system model inter-comparison project documentation infrastructure. Such infrastructure both simplifies & standardizes the process of documenting (in detail) projects, experiments, models, forcings & simulations. In support of CMIP6, ES-DOC has upgraded its eco-system of tools, web-services & web-sites. The upgrade consolidates the existing infrastructure (built for CMIP5) and extends it with the introduction of new capabilities. The strategic focus of the upgrade is improvements in the documentation experience and broadening the range of scientific use-cases that the archived documentation may help deliver. Whether it is highlighting dataset errors, exploring experimental protocols, comparing forcings across ensemble runs, understanding MIP objectives, reviewing citations, exploring component properties of configured models, visualising inter-model relationships, scientists involved in CMIP6 will find the ES-DOC infrastructure helpful. This presentation underlines the centrality of meta-programming within the ES-DOC eco-system. We will demonstrate how agility is greatly enhanced by taking a meta-programming approach to representing data models and controlled vocabularies. Such an approach nicely decouples representations from encodings. Meta-models will be presented along with the associated tooling chain that forward engineers artefacts as diverse as: class hierarchies, IPython notebooks, mindmaps, configuration files, OWL & SKOS documents, spreadsheets …etc.

  8. Rotary orbital suspension culture of embryonic stem cell-derived neural stem/progenitor cells: impact of hydrodynamic culture on aggregate yield, morphology and cell phenotype.

    PubMed

    Laundos, Tiago L; Silva, Joana; Assunção, Marisa; Quelhas, Pedro; Monteiro, Cátia; Oliveira, Carla; Oliveira, Maria J; Pêgo, Ana P; Amaral, Isabel F

    2017-08-01

    Embryonic stem (ES)-derived neural stem/progenitor cells (ES-NSPCs) constitute a promising cell source for application in cell therapies for the treatment of central nervous system disorders. In this study, a rotary orbital hydrodynamic culture system was applied to single-cell suspensions of ES-NSPCs, to obtain homogeneously-sized ES-NSPC cellular aggregates (neurospheres). Hydrodynamic culture allowed the formation of ES-NSPC neurospheres with a narrower size distribution than statically cultured neurospheres, increasing orbital speeds leading to smaller-sized neurospheres and higher neurosphere yield. Neurospheres formed under hydrodynamic conditions (72 h at 55 rpm) showed higher cell compaction and comparable percentages of viable, dead, apoptotic and proliferative cells. Further characterization of cellular aggregates provided new insights into the effect of hydrodynamic shear on ES-NSPC behaviour. Rotary neurospheres exhibited reduced protein levels of N-cadherin and β-catenin, and higher deposition of laminin (without impacting fibronectin deposition), matrix metalloproteinase-2 (MMP-2) activity and percentage of neuronal cells. In line with the increased MMP-2 activity levels found, hydrodynamically-cultured neurospheres showed higher outward migration on laminin. Moreover, when cultured in a 3D fibrin hydrogel, rotary neurospheres generated an increased percentage of neuronal cells. In conclusion, the application of a constant orbital speed to single-cell suspensions of ES-NSPCs, besides allowing the formation of homogeneously-sized neurospheres, promoted ES-NSPC differentiation and outward migration, possibly by influencing the expression of cell-cell adhesion molecules and the secretion of proteases/extracellular matrix proteins. These findings are important when establishing the culture conditions needed to obtain uniformly-sized ES-NSPC aggregates, either for use in regenerative therapies or in in vitro platforms for biomaterial development or pharmacological screening. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Inhibition of Cardiomyocytes Differentiation of Mouse Embryonic Stem Cells by CD38/cADPR/Ca2+ Signaling Pathway*

    PubMed Central

    Wei, Wen-Jie; Sun, Hai-Ying; Ting, Kai Yiu; Zhang, Li-He; Lee, Hon-Cheung; Li, Gui-Rong; Yue, Jianbo

    2012-01-01

    Cyclic adenosine diphosphoribose (cADPR) is an endogenous Ca2+ mobilizing messenger that is formed by ADP-ribosyl cyclases from nicotinamide adenine dinucleotide (NAD). The main ADP-ribosyl cyclase in mammals is CD38, a multi-functional enzyme and a type II membrane protein. Here we explored the role of CD38-cADPR-Ca2+ in the cardiomyogenesis of mouse embryonic stem (ES) cells. We found that the mouse ES cells are responsive to cADPR and possess the key components of the cADPR signaling pathway. In vitro cardiomyocyte (CM) differentiation of mouse ES cells was initiated by embryoid body (EB) formation. Interestingly, beating cells appeared earlier and were more abundant in CD38 knockdown EBs than in control EBs. Real-time RT-PCR and Western blot analyses further showed that the expression of several cardiac markers, including GATA4, MEF2C, NKX2.5, and α-MLC, were increased markedly in CD38 knockdown EBs than those in control EBs. Similarly, FACS analysis showed that more cardiac Troponin T-positive CMs existed in CD38 knockdown or 8-Br-cADPR, a cADPR antagonist, treated EBs compared with that in control EBs. On the other hand, overexpression of CD38 in mouse ES cells significantly inhibited CM differentiation. Moreover, CD38 knockdown ES cell-derived CMs possess the functional properties characteristic of normal ES cell-derived CMs. Last, we showed that the CD38-cADPR pathway negatively modulated the FGF4-Erks1/2 cascade during CM differentiation of ES cells, and transiently inhibition of Erk1/2 blocked the enhanced effects of CD38 knockdown on the differentiation of CM from ES cells. Taken together, our data indicate that the CD38-cADPR-Ca2+ signaling pathway antagonizes the CM differentiation of mouse ES cells. PMID:22908234

  10. Molecular characterization of 45 kDa aspartic protease of Trichinella spiralis.

    PubMed

    Park, Jong Nam; Park, Sang Kyun; Cho, Min Kyoung; Park, Mi-Kyung; Kang, Shin Ae; Kim, Dong-Hee; Yu, Hak Sun

    2012-12-21

    In a previous study, we identified an aspartic protease gene (Ts-Asp) from the Trichinella spiralis muscle stage larva cDNA library. The gene sequence of Ts-Asp was 1281 bp long and was found to encode a protein consisting of 405 amino acids, with a molecular mass of 45.248 kD and a pI of 5.95. The deduced Ts-Asp has a conserved catalytic motif with catalytic aspartic acid residues in the active site, a common characteristic of aspartic proteases. In addition, the deduced amino acid sequence of Ts-Asp was found to possess significant homology (above 50%) with aspartic proteases from nematode parasites. Results of phylogenetic analysis indicated a close relationship of Ts-Asp with cathepsin D aspartic proteases. For production of recombinant Ts-Asp (rTs-Asp), the pGEX4T expression system was used. Like other proteases, the purified rTs-Asp was able to digest collagen matrix in vitro. Abundant expression of Ts-Asp was observed in muscle stage larva. Ts-Asp was detected in ES proteins, and was able to elicit the production of specific antibodies. It is the first report of molecular characterization of aspartic protease isolated from T. spiralis. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Optical Properties of Bound Antigen Monolayers for Biomolecular Microsensors

    DTIC Science & Technology

    2004-02-01

    Agency or the U.S. Government. AIR FORCE RESEARCH LABORATORY INFORMATION DIRECTORATE ROME RESEARCH SITE ROME, NEW YORK STINFO......REPORT NUMBER N/A 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Defense Advanced Research Projects Agency AFRL /IFTC 3701

  12. 49 CFR 604.14 - Recipient's notification to registered charter providers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... referring the requestor to FTA's charter registration Web site (http://www.fta.dot.gov/laws/leg_reg_179.html...) Whether the type of equipment requested is (are) bus(es) or van(s); and (v) Trip itinerary and approximate...

  13. Can Diabetes Be Prevented (For Kids)

    MedlinePlus

    ... First Aid & Safety Doctors & Hospitals Videos Recipes for Kids Kids site Sitio para niños How the Body Works ... English Español Can Diabetes Be Prevented? KidsHealth / For Kids / Can Diabetes Be Prevented? Print en español ¿Es ...

  14. Structural and functional features of a developmentally regulated lipopolysaccharide-binding protein.

    PubMed

    Krasity, Benjamin C; Troll, Joshua V; Lehnert, Erik M; Hackett, Kathleen T; Dillard, Joseph P; Apicella, Michael A; Goldman, William E; Weiss, Jerrold P; McFall-Ngai, Margaret J

    2015-10-13

    Mammalian lipopolysaccharide (LPS) binding proteins (LBPs) occur mainly in extracellular fluids and promote LPS delivery to specific host cell receptors. The function of LBPs has been studied principally in the context of host defense; the possible role of LBPs in nonpathogenic host-microbe interactions has not been well characterized. Using the Euprymna scolopes-Vibrio fischeri model, we analyzed the structure and function of an LBP family protein, E. scolopes LBP1 (EsLBP1), and provide evidence for its role in triggering a symbiont-induced host developmental program. Previous studies showed that, during initial host colonization, the LPS of V. fischeri synergizes with peptidoglycan (PGN) monomer to induce morphogenesis of epithelial tissues of the host animal. Computationally modeled EsLBP1 shares some but not all structural features of mammalian LBPs that are thought important for LPS binding. Similar to human LBP, recombinant EsLBP1 expressed in insect cells bound V. fischeri LPS and Neisseria meningitidis lipooligosaccharide (LOS) with nanomolar or greater affinity but bound Francisella tularensis LPS only weakly and did not bind PGN monomer. Unlike human LBP, EsLBP1 did not bind N. meningitidis LOS:CD14 complexes. The eslbp1 transcript was upregulated ~22-fold by V. fischeri at 24 h postinoculation. Surprisingly, this upregulation was not induced by exposure to LPS but, rather, to the PGN monomer alone. Hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) and immunocytochemistry (ICC) localized eslbp1 transcript and protein in crypt epithelia, where V. fischeri induces morphogenesis. The data presented here provide a window into the evolution of LBPs and the scope of their roles in animal symbioses. Mammalian lipopolysaccharide (LPS)-binding protein (LBP) is implicated in conveying LPS to host cells and potentiating its signaling activity. In certain disease states, such as obesity, the overproduction of this protein has been a reliable biomarker of chronic inflammation. Here, we describe a symbiosis-induced invertebrate LBP whose tertiary structure and LPS-binding characteristics are similar to those of mammalian LBPs; however, the primary structure of this distantly related squid protein (EsLBP1) differs in key residues previously believed to be essential for LPS binding, suggesting that an alternative strategy exists. Surprisingly, symbiotic expression of eslbp1 is induced by peptidoglycan derivatives, not LPS, a pattern converse to that of RegIIIγ, an important mammalian immunity protein that binds peptidoglycan but whose gene expression is induced by LPS. Finally, EsLBP1 occurs along the apical surfaces of all the host's epithelia, suggesting that it was recruited from a general defensive role to one that mediates specific interactions with its symbiont. Copyright © 2015 Krasity et al.

  15. Co-dependence between trypanosome nuclear lamina components in nuclear stability and control of gene expression.

    PubMed

    Maishman, Luke; Obado, Samson O; Alsford, Sam; Bart, Jean-Mathieu; Chen, Wei-Ming; Ratushny, Alexander V; Navarro, Miguel; Horn, David; Aitchison, John D; Chait, Brian T; Rout, Michael P; Field, Mark C

    2016-12-15

    The nuclear lamina is a filamentous structure subtending the nuclear envelope and required for chromatin organization, transcriptional regulation and maintaining nuclear structure. The trypanosomatid coiled-coil NUP-1 protein is a lamina component functionally analogous to lamins, the major lamina proteins of metazoa. There is little evidence for shared ancestry, suggesting the presence of a distinct lamina system in trypanosomes. To find additional trypanosomatid lamina components we identified NUP-1 interacting proteins by affinity capture and mass-spectrometry. Multiple components of the nuclear pore complex (NPC) and a second coiled-coil protein, which we termed NUP-2, were found. NUP-2 has a punctate distribution at the nuclear periphery throughout the cell cycle and is in close proximity to NUP-1, the NPCs and telomeric chromosomal regions. RNAi-mediated silencing of NUP-2 leads to severe proliferation defects, gross alterations to nuclear structure, chromosomal organization and nuclear envelope architecture. Further, transcription is altered at telomere-proximal variant surface glycoprotein (VSG) expression sites (ESs), suggesting a role in controlling ES expression, although NUP-2 silencing does not increase VSG switching. Transcriptome analysis suggests specific alterations to Pol I-dependent transcription. NUP-1 is mislocalized in NUP-2 knockdown cells and vice versa, implying that NUP-1 and NUP-2 form a co-dependent network and identifying NUP-2 as a second trypanosomatid nuclear lamina component. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Genome-wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs

    PubMed Central

    Barrera, Leah O.; Li, Zirong; Smith, Andrew D.; Arden, Karen C.; Cavenee, Webster K.; Zhang, Michael Q.; Green, Roland D.; Ren, Bing

    2008-01-01

    By integrating genome-wide maps of RNA polymerase II (Polr2a) binding with gene expression data and H3ac and H3K4me3 profiles, we characterized promoters with enriched activity in mouse embryonic stem cells (mES) as well as adult brain, heart, kidney, and liver. We identified ∼24,000 promoters across these samples, including 16,976 annotated mRNA 5′ ends and 5153 additional sites validating cap-analysis of gene expression (CAGE) 5′ end data. We showed that promoters with CpG islands are typically non-tissue specific, with the majority associated with Polr2a and the active chromatin modifications in nearly all the tissues examined. By contrast, the promoters without CpG islands are generally associated with Polr2a and the active chromatin marks in a tissue-dependent way. We defined 4396 tissue-specific promoters by adapting a quantitative index of tissue-specificity based on Polr2a occupancy. While there is a general correspondence between Polr2a occupancy and active chromatin modifications at the tissue-specific promoters, a subset of them appear to be persistently marked by active chromatin modifications in the absence of detectable Polr2a binding, highlighting the complexity of the functional relationship between chromatin modification and gene expression. Our results provide a resource for exploring promoter Polr2a binding and epigenetic states across pluripotent and differentiated cell types in mammals. PMID:18042645

  17. A resource of vectors and ES cells for targeted deletion of microRNAs in mice

    PubMed Central

    Prosser, Haydn M.; Koike-Yusa, Hiroko; Cooper, James D.; Law, Frances C.; Bradley, Allan

    2011-01-01

    The 21-23 nucleotide single-stranded RNAs classified as microRNAs (miRNA) perform fundamental roles in a wide range of cellular and developmental processes. miRNAs regulate protein expression through sequence-specific base pairing with target messenger RNAs (mRNA) reducing both their stability and the process of protein translation1, 2. At least 30% of protein coding genes appear to be conserved targets for miRNAs1. In contrast to the protein coding genes3, 4, no public resource of miRNA mouse mutant alleles exists. We have generated a library of highly germ-line transmissible C57BL/6N mouse mutant embryonic stem (ES) cells with targeted deletions for the majority of miRNA genes currently annotated within the miRBase registry5. These alleles have been designed to be highly adaptable research tools that can be efficiently altered to create reporter, conditional and other allelic variants. This ES cell resource can be searched electronically and is available from ES cell repositories for distribution to the scientific community6. PMID:21822254

  18. Negative feedback via RSK modulates Erk-dependent progression from naïve pluripotency.

    PubMed

    Nett, Isabelle Re; Mulas, Carla; Gatto, Laurent; Lilley, Kathryn S; Smith, Austin

    2018-06-12

    Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signalling is implicated in initiation of embryonic stem (ES) cell differentiation. The pathway is subject to complex feedback regulation. Here, we examined the ERK-responsive phosphoproteome in ES cells and identified the negative regulator RSK1 as a prominent target. We used CRISPR/Cas9 to create combinatorial mutations in RSK family genes. Genotypes that included homozygous null mutations in Rps6ka1, encoding RSK1, resulted in elevated ERK phosphorylation. These RSK-depleted ES cells exhibit altered kinetics of transition into differentiation, with accelerated downregulation of naïve pluripotency factors, precocious expression of transitional epiblast markers and early onset of lineage specification. We further show that chemical inhibition of RSK increases ERK phosphorylation and expedites ES cell transition without compromising multilineage potential. These findings demonstrate that the ERK activation profile influences the dynamics of pluripotency progression and highlight the role of signalling feedback in temporal control of cell state transitions. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  19. Rotating microgravity-bioreactor cultivation enhances the hepatic differentiation of mouse embryonic stem cells on biodegradable polymer scaffolds.

    PubMed

    Wang, Yingjie; Zhang, Yunping; Zhang, Shichang; Peng, Guangyong; Liu, Tao; Li, Yangxin; Xiang, Dedong; Wassler, Michael J; Shelat, Harnath S; Geng, Yongjian

    2012-11-01

    Embryonic stem (ES) cells are pluripotent cells that are capable of differentiating all the somatic cell lineages, including those in the liver tissue. We describe the generation of functional hepatic-like cells from mouse ES (mES) cells using a biodegradable polymer scaffold and a rotating bioreactor that allows simulated microgravity. Cells derived from ES cells cultured in the three-dimensional (3D) culture system with exogenous growth factors and hormones can differentiate into hepatic-like cells with morphologic characteristics of typical mature hepatocytes. Reverse-transcription polymerase chain-reaction testing, Western blot testing, immunostaining, and flow cytometric analysis show that these cells express hepatic-specific genes and proteins during differentiation. Differentiated cells on scaffolds further exhibit morphologic traits and biomarkers characteristic of liver cells, including albumin production, cytochrome P450 activity, and low-density lipoprotein uptake. When these stem cell-bearing scaffolds are transplanted into severe combined immunodeficient mice, the 3D constructs remained viable, undergoing further differentiation and maturation of hepatic-like cells in vivo. In conclusion, the growth and differentiation of ES cells in a biodegradable polymer scaffold and a rotating microgravity bioreactor can yield functional and organizational hepatocytes useful for research involving bioartificial liver and engineered liver tissue.

  20. Esterase 22 and beta-glucuronidase hydrolyze retinoids in mouse liver

    PubMed Central

    Schreiber, Renate; Taschler, Ulrike; Wolinski, Heimo; Seper, Andrea; Tamegger, Stefanie N.; Graf, Maria; Kohlwein, Sepp D.; Haemmerle, Guenter; Zimmermann, Robert; Zechner, Rudolf; Lass, Achim

    2009-01-01

    Excess dietary vitamin A is esterified with fatty acids and stored in the form of retinyl ester (RE) predominantly in the liver. According to the requirements of the body, liver RE stores are hydrolyzed and retinol is delivered to peripheral tissues. The controlled mobilization of retinol ensures a constant supply of the body with the vitamin. Currently, the enzymes catalyzing liver RE hydrolysis are unknown. In this study, we identified mouse esterase 22 (Es22) as potent RE hydrolase highly expressed in the liver, particularly in hepatocytes. The enzyme is located exclusively at the endoplasmic reticulum (ER), implying that it is not involved in the mobilization of RE present in cytosolic lipid droplets. Nevertheless, cell culture experiments revealed that overexpression of Es22 attenuated the formation of cellular RE stores, presumably by counteracting retinol esterification at the ER. Es22 was previously shown to form a complex with β-glucuronidase (Gus). Our studies revealed that Gus colocalizes with Es22 at the ER but does not affect its RE hydrolase activity. Interestingly, however, Gus was capable of hydrolyzing the naturally occurring vitamin A metabolite retinoyl β-glucuronide. In conclusion, our observations implicate that both Es22 and Gus play a role in liver retinoid metabolism. PMID:19723663

  1. Gap junctional intercellular communication is required to maintain embryonic stem cells in a non-differentiated and proliferative state.

    PubMed

    Todorova, Mariana G; Soria, Bernat; Quesada, Ivan

    2008-02-01

    Pluripotent embryonic stem (ES) cells are capable of maintaining a self-renewal state and have the potential to differentiate into derivatives of all three embryonic germ layers. Despite their importance in cell therapy and developmental biology, the mechanisms whereby ES cells remain in a proliferative and pluripotent state are still not fully understood. Here we establish a critical role of gap junctional intercellular communication (GJIC) and connexin43 (Cx43) in both processes. Pharmacological blockers of GJIC and Cx43 down-regulation by small interfering RNA (siRNA) caused a profound inhibitory effect on GJIC, as evidenced by experiments of fluorescence recovery after photobleaching. This deficient intercellular communication in ES cells induced a loss of their pluripotent state, which was manifested in morphological changes, a decrease in alkaline phosphatase activity, Oct-3/4 and Nanog expression, as well as an up-regulation of several differentiation markers. A decrease in the proliferation rate was also detected. Under these conditions, the formation of embryoid bodies from mouse ES cells was impaired, although this inhibition was reversible upon restoration of GJIC. Our findings define a major function of GJIC in the regulation of self-renewal and maintenance of pluripotency in ES cells. (c) 2007 Wiley-Liss, Inc.

  2. Use of “MGE Enhancers” for Labeling and Selection of Embryonic Stem Cell-Derived Medial Ganglionic Eminence (MGE) Progenitors and Neurons

    PubMed Central

    Chen, Ying-Jiun J.; Vogt, Daniel; Wang, Yanling; Visel, Axel; Silberberg, Shanni N.; Nicholas, Cory R.; Danjo, Teruko; Pollack, Joshua L.; Pennacchio, Len A.; Anderson, Stewart; Sasai, Yoshiki; Baraban, Scott C.; Kriegstein, Arnold R.; Alvarez-Buylla, Arturo; Rubenstein, John L. R.

    2013-01-01

    The medial ganglionic eminence (MGE) is an embryonic forebrain structure that generates the majority of cortical interneurons. MGE transplantation into specific regions of the postnatal central nervous system modifies circuit function and improves deficits in mouse models of epilepsy, Parkinson's disease, pain, and phencyclidine-induced cognitive deficits. Herein, we describe approaches to generate MGE-like progenitor cells from mouse embryonic stem (ES) cells. Using a modified embryoid body method, we provided gene expression evidence that mouse ES-derived Lhx6+ cells closely resemble immature interneurons generated from authentic MGE-derived Lhx6+ cells. We hypothesized that enhancers that are active in the mouse MGE would be useful tools in detecting when ES cells differentiate into MGE cells. Here we demonstrate the utility of enhancer elements [422 (DlxI12b), Lhx6, 692, 1056, and 1538] as tools to mark MGE-like cells in ES cell differentiation experiments. We found that enhancers DlxI12b, 692, and 1538 are active in Lhx6-GFP+ cells, while enhancer 1056 is active in Olig2+ cells. These data demonstrate unique techniques to follow and purify MGE-like derivatives from ES cells, including GABAergic cortical interneurons and oligodendrocytes, for use in stem cell-based therapeutic assays and treatments. PMID:23658702

  3. Continuity of Operations Planning (COOP): A Strategy for Implementation

    DTIC Science & Technology

    2005-03-18

    5050 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR...a position of building an alternate command and control site from ground zero , with little time or thought going into the functions, capacities and...above, there are two other approaches available to leaders in selecting a site. One option is to allow employees to telecommute and work from home

  4. The General Ensemble Biogeochemical Modeling System (GEMS) and its applications to agricultural systems in the United States: Chapter 18

    USGS Publications Warehouse

    Liu, Shuguang; Tan, Zhengxi; Chen, Mingshi; Liu, Jinxun; Wein, Anne; Li, Zhengpeng; Huang, Shengli; Oeding, Jennifer; Young, Claudia; Verma, Shashi B.; Suyker, Andrew E.; Faulkner, Stephen P.

    2012-01-01

    The General Ensemble Biogeochemical Modeling System (GEMS) was es in individual models, it uses multiple site-scale biogeochemical models to perform model simulations. Second, it adopts Monte Carlo ensemble simulations of each simulation unit (one site/pixel or group of sites/pixels with similar biophysical conditions) to incorporate uncertainties and variability (as measured by variances and covariance) of input variables into model simulations. In this chapter, we illustrate the applications of GEMS at the site and regional scales with an emphasis on incorporating agricultural practices. Challenges in modeling soil carbon dynamics and greenhouse emissions are also discussed.

  5. Decreased active vasodilator sensitivity in aged skin.

    PubMed

    Kenney, W L; Morgan, A L; Farquhar, W B; Brooks, E M; Pierzga, J M; Derr, J A

    1997-04-01

    Older men and women respond to local and reflex-mediated heat stress with an attenuated increase in cutaneous vascular conductance (CVC). This study was performed to test the hypothesis that an augmented or sustained noradrenergic vasoconstriction (VC) may play a role in this age-related difference. Fifteen young (22 +/- 1 yr) and 15 older (66 +/- 1 yr) men exercised at 50% peak oxygen uptake in a 36 degrees C environment. Skin perfusion was monitored at two sites on the right forearm by laser-Doppler flowmetry: one site pretreated with bretylium tosylate (BT) to block the local release of norepinephrine and thus VC and an adjacent control site. Blockade of reflex VC was verified during whole body cooling using a water-perfused suit. CVC (perfusion divided by mean arterial pressure) at each site was reported as a percentage of the maximal CVC (%CVCmax) induced at the end of each experiment by prolonged local heating at 42 degrees C. Neither age nor BT affected the %CVCmax (75-86%) attained at high core temperatures. During the early rise phase of CVC, the %CVCmax-change in esophageal temperature (delta T(es)) curve was shifted to the right in the older men (effective delta T(es) associated with 50% CVC response for young, 0.22 +/- 0.04 and 0.39 +/- 0.04 degrees C and for older, 0.73 +/- 0.04 and 0.85 +/- 0.04 degrees C at control and BT sites, respectively). BT had no interactive effect on this age difference, suggesting a lack of involvement of the VC system in the attenuated CVC response of individuals over the age of 60 yr. Additionally, increases in skin vascular conductance were quantitatively compared by measuring increases in total forearm vascular conductance (FVC, restricted to the forearm skin under these conditions). After the initial approximately 0.2 degrees C increase in T(es), FVC was 40-50% lower in the older men (P < 0.01) for the remainder of the exercise. Decreased active vasodilator sensitivity to increasing core temperature, coupled with structural limitations to vasodilation, appears to limit the cutaneous vascular response to exertional heat stress in older subjects.

  6. Inspiring the Next Generation of Naval Scientists and Engineers in Mississippi and Louisiana

    NASA Astrophysics Data System (ADS)

    Breland-Mensi, S.; Calantoni, J.

    2012-12-01

    In 2011, the American Institute of Physics ranked Mississippi 50th out of 50 states in preparing students for science, technology, engineering and math (STEM) careers. Louisiana placed 48th on the list. [1] The Naval Research Laboratory - Stennis Space Center detachment (NRL-SSC) is located on the Mississippi Gulf Coast, approximately 2 miles from the Louisiana state line. In response to a growing need for NRL-SSC to sustain recruitment and retention of the best and brightest scientists and engineers (S&Es), NRL-SSC became a National Defense Education Program (NDEP) site in August 2009. NDEP's mission is to support a new generation of S&Es who will apply their talents in U.S. Defense laboratories. As an NDEP site, NRL-SSC receives funding to promote STEM at K-12 institutions geographically local to NRL-SSC. NDEP funding allows present Department of Defense civilian S&Es to collaborate with teachers to enrich student learning in the classroom environment through various programs, events, training and activities. Since NRL-SSC's STEM program's inception, more than 30 S&Es have supported an array of STEM outreach activities in over 30 different local schools. An important part of the K-12 outreach from NRL-SSC is to provide professional development opportunities for local teachers. During the summer of 2012, in collaboration with STEM programs sponsored by the Office of Naval Research (ONR), we provided a series of professional development opportunities for 120 local science and mathematics teachers across K-12. The foundation of NRL-SSC STEM programs includes MATHCOUNTS, FIRST and SeaPerch—all nationally recognized, results-driven programs. We will discuss the breadth of participation in these programs and how these programs will support NRL-SSC future recruitment goals.

  7. Hyperforin inhibits cell proliferation and differentiation in mouse embryonic stem cells.

    PubMed

    Nakamura, K; Aizawa, K; Yamauchi, J; Tanoue, A

    2013-10-01

    Hyperforin, a phloroglucinol derivative of St. John's Wort, has been identified as the major molecule responsible for this plant's products anti-depressant effects. It can be expected that exposure to St. John's Wort during pregnancy occurs with some frequency although embryotoxic or teratogenic effects of St. John's Wort and hyperforin have not yet been experimentally examined in detail. In this study, to determine any embryotoxic effects of hyperforin, we have attempted to determine whether hyperforin affects growth and survival processes of employing mouse embryonic stem (mES) cells (representing embryonic tissue) and fibroblasts (representing adult tissues). We used a modified embryonic stem cell test, which has been validated as an in vitro developmental toxicity protocol, mES cells, to assess embryotoxic potential of chemicals under investigation. We have identified that high concentrations of hyperforin inhibited mouse ES cell population growth and induced apoptosis in fibroblasts. Under our cell culture conditions, ES cells mainly differentiated into cardiomyocytes, although various other cell types were also produced. In this condition, hyperforin affected ES cell differentiation into cardiomyocytes in a dose-dependent manner. Analysis of tissue-specific marker expression also revealed that hyperforin at high concentrations partially inhibited ES cell differentiation into mesodermal and endodermal lineages. Hyperforin is currently used in the clinic as a safe and effective antidepressant. Our data indicate that at typical dosages it has only a low risk of embryotoxicity; ingestion of large amounts of hyperforin by pregnant women, however, may pose embryotoxic and teratogenic risks. © 2013 John Wiley & Sons Ltd.

  8. Prévention de la transmission mère-enfant du VIH/sida au Bénin: le consentement des femmes au dépistage est-il libre et éclairé ?

    PubMed Central

    Kêdoté, N.M.; Brousselle, A.; Champagne, F.; Laudy, D.

    2016-01-01

    Résumé Introduction Dans les politiques internationales et nationales sur le VIH/sida, le consentement libre et éclairé est reconnu comme une composante essentielle des programmes de dépistage. Le consentement libre et éclairé implique pour les femmes enceintes d’obtenir des informations sur le programme de prévention de la transmission du VIH de la mère à l’enfant (PTME), de les comprendre et de faire un choix autonome après avoir évalué les risques et avantages. Cependant, aucune évaluation du programme de PTME ne s’est intéressée au consentement. L’objectif de cet article est d’explorer le caractère libre et éclairé du consentement des femmes enceintes quant au dépistage et à leurs motivations à faire le test. Méthode Nous avons utilisé des données récoltées dans le cadre d’une analyse d’implantation du programme de PTME au Bénin. Cette analyse s’appuie sur un devis d’étude de cas multiples incluant six maternités choisies parmi les 56 sites fonctionnels. Spécifiquement pour l’analyse du consentement, nous avons associé les données provenant d’une enquête à celles d’une recherche qualitative. Résultats Hormis trois cas de dépistage à l’insu, le caractère volontaire du consentement au test est respecté sur les sites de PTME. Vingt-neuf cas de refus ont été identifiés. Les raisons les plus souvent évoquées par les femmes enceintes sont la peur du résultat positif et de ses conséquences sur la vie familiale dans 55,2 % des cas et l’attente de l’accord ou du désaccord du mari dans 27,6 % des cas. Si globalement le consentement a été volontaire sur tous les sites, son caractère éclairé est moins probant. PMID:27840660

  9. A nontranscriptional role for Oct4 in the regulation of mitotic entry

    PubMed Central

    Zhao, Rui; Deibler, Richard W.; Lerou, Paul H.; Ballabeni, Andrea; Heffner, Garrett C.; Cahan, Patrick; Unternaehrer, Juli J.; Kirschner, Marc W.; Daley, George Q.

    2014-01-01

    Rapid progression through the cell cycle and a very short G1 phase are defining characteristics of embryonic stem cells. This distinct cell cycle is driven by a positive feedback loop involving Rb inactivation and reduced oscillations of cyclins and cyclin-dependent kinase (Cdk) activity. In this setting, we inquired how ES cells avoid the potentially deleterious consequences of premature mitotic entry. We found that the pluripotency transcription factor Oct4 (octamer-binding transcription factor 4) plays an unappreciated role in the ES cell cycle by forming a complex with cyclin–Cdk1 and inhibiting Cdk1 activation. Ectopic expression of Oct4 or a mutant lacking transcriptional activity recapitulated delayed mitotic entry in HeLa cells. Reduction of Oct4 levels in ES cells accelerated G2 progression, which led to increased chromosomal missegregation and apoptosis. Our data demonstrate an unexpected nontranscriptional function of Oct4 in the regulation of mitotic entry. PMID:25324523

  10. Soil fungal and bacterial responses to conversion of open land to short-rotation woody biomass crops

    DOE PAGES

    Xue, Chao; Penton, Christopher Ryan; Zhang, Bangzhou; ...

    2016-01-06

    Short-rotation woody biomass crops (SRWCs) have been proposed as an alternative feedstock for biofuel production in the northeastern US that leads to the conversion of current open land to woody plantations, potentially altering the soil microbial community structures and hence functions. We used pyrosequencing of 16S and 28S rRNA genes in soil to assess bacterial and fungal populations when ‘marginal’ grasslands were converted into willow (Salix spp.) and hybrid poplar (Populus spp.) plantations at two sites with similar soils and climate history in northern Michigan (Escanaba; ES) and Wisconsin (Rhinelander; RH). In only three growing seasons, the conversion significantly alteredmore » both the bacterial and fungal communities, which were most influenced by site and then vegetation. The fungal community showed greater change than the bacterial community in response to land conversion at both sites with substantial enrichment of putative pathogenic, ectomycorrhizal, and endophytic fungi associated with poplar and willow. Conversely, the bacterial community structures shifted, but to a lesser degree, with the new communities dissimilar at the two sites and most correlated with soil nutrient status. The bacterial phylum Nitrospirae increased after conversion and was negatively correlated to total soil nitrogen, but positively correlated to soil nitrate, and may be responsible for nitrate accumulation and the increased N 2O emissions previously reported following conversion at these sites. It was determined that the legacy effect of a much longer grassland history and a second dry summer at the ES site may have influenced the grassland (control) microbial community to remain stable while it varied at the RH site.« less

  11. Soil fungal and bacterial responses to conversion of open land to short-rotation woody biomass crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Chao; Penton, Christopher Ryan; Zhang, Bangzhou

    Short-rotation woody biomass crops (SRWCs) have been proposed as an alternative feedstock for biofuel production in the northeastern US that leads to the conversion of current open land to woody plantations, potentially altering the soil microbial community structures and hence functions. We used pyrosequencing of 16S and 28S rRNA genes in soil to assess bacterial and fungal populations when ‘marginal’ grasslands were converted into willow (Salix spp.) and hybrid poplar (Populus spp.) plantations at two sites with similar soils and climate history in northern Michigan (Escanaba; ES) and Wisconsin (Rhinelander; RH). In only three growing seasons, the conversion significantly alteredmore » both the bacterial and fungal communities, which were most influenced by site and then vegetation. The fungal community showed greater change than the bacterial community in response to land conversion at both sites with substantial enrichment of putative pathogenic, ectomycorrhizal, and endophytic fungi associated with poplar and willow. Conversely, the bacterial community structures shifted, but to a lesser degree, with the new communities dissimilar at the two sites and most correlated with soil nutrient status. The bacterial phylum Nitrospirae increased after conversion and was negatively correlated to total soil nitrogen, but positively correlated to soil nitrate, and may be responsible for nitrate accumulation and the increased N 2O emissions previously reported following conversion at these sites. It was determined that the legacy effect of a much longer grassland history and a second dry summer at the ES site may have influenced the grassland (control) microbial community to remain stable while it varied at the RH site.« less

  12. An endogenous 55 kDa TNF receptor mediates cell death in a neural cell line.

    PubMed

    Sipe, K J; Srisawasdi, D; Dantzer, R; Kelley, K W; Weyhenmeyer, J A

    1996-06-01

    Tumor necrosis factor-alpha (TNF) is associated with developmental and injury-related events in the central nervous system (CNS). In the present study, we have examined the role of TNF on neurons using the clonal murine neuroblastoma line, N1E-115 (N1E). N1E cells represent a well-defined model for studying neuronal development since they can be maintained as either undifferentiated, mitotically active neuroblasts or as differentiated, mature neurons. Northern and reverse transcription-polymerase chain reaction (RT-PCR) analyses revealed that both undifferentiated and differentiated N1Es express transcripts for the 55 kDa TNF receptor (TNFR), but not the 75 kDa TNFR. The biological activity of the expressed TNF receptor was demonstrated by a dose dependent cytotoxicity to either recombinant murine or human TNF when the cells were incubated with the transcriptional inhibitor actinomycin D. The lack of the 75 kDa receptor mRNA expression and the dose dependent response to rHuTNF, an agonist specific for the murine 55 kDa receptor, suggest that the TNF induced cytotoxicity is mediated through the 55 kDa receptor in both the undifferentiated and differentiated N1Es. Light microscopic observations, flow cytometric analysis of hypodiploid DNA, and electrophoretic analysis of nucleosomal DNA fragmentation of N1Es treated with actinomycin D and TNF revealed features characteristic of both necrotic and apoptotic cell death. These findings demonstrate that blast and mature N1E cells express the 55 kDa TNF receptor which is responsible for inducing both necrotic and apoptotic death in these cells. The observation that actinomycin D renders N1E cells susceptible to the cytotoxic effects of TNF indicates that a sensitization step, such as removal of an endogenous protective factor or viral-mediated inhibition of transcription, may be necessary for TNF cytotoxicity in neurons.

  13. RAI14 (retinoic acid induced protein 14) is an F-actin regulator

    PubMed Central

    Qian, Xiaojing; Mruk, Dolores D.; Cheng, Yan-ho; Cheng, C. Yan

    2013-01-01

    RAI14 (retinoic acid induced protein 14) is an actin-binding protein first identified in the liver. In the testis, RAI14 is expressed by both Sertoli and germ cells in the seminiferous epithelium. Besides binding to actin in the testis, RAI14 is also a binding protein for palladin, an actin cross-linking and bundling protein. A recent report has shown that RAI14 displays stage-specific and spatiotemporal expression at the ES [ectoplasmic specialization, a testis-specific filamentous (F)-actin-rich adherens junction] in the seminiferous epithelium of adult rat testes during the epithelial cycle of spermatogenesis, illustrating its likely involvement in F-actin organization at the ES. Functional studies in which RAI14 was knocked down by RNAi in Sertoli cells in vitro and also in testicular cells in vivo have illustrated its role in conferring the integrity of actin filament bundles at the ES, perturbing the Sertoli cell tight junction (TJ)-pemeability barrier function in vitro, and also spermatid polarity and adhesion in vivo, thereby regulating spermatid transport at spermiation. Herein, we critically evaluate these earlier findings and also provide a likely hypothetic model based on the functional role of RAI14 at the ES, and how RAI14 is working with palladin and other actin regulatory proteins in the testis to regulate the transport of (1) spermatids and (2) preleptotene spermatocytes across the seminiferous epithelium and the blood-testis barrier (BTB), respectively, during spermatogenesis. This model should serve as a framework upon which functional experiments can be designed to better understand the biology of RAI14 and other actin-binding and regulatory proteins in the testis. PMID:23885305

  14. "We don't know her history, her background": adoptive parents' perspectives on whole genome sequencing results.

    PubMed

    Crouch, Julia; Yu, Joon-Ho; Shankar, Aditi G; Tabor, Holly K

    2015-02-01

    Exome sequencing and whole genome sequencing (ES/WGS) can provide parents with a wide range of genetic information about their children, and adoptive parents may have unique issues to consider regarding possible access to this information. The few papers published on adoption and genetics have focused on targeted genetic testing of children in the pre-adoption context. There are no data on adoptive parents' perspectives about pediatric ES/WGS, including their preferences about different kinds of results, and the potential benefits and risks of receiving results. To explore these issues, we conducted four exploratory focus groups with adoptive parents (N = 26). The majority lacked information about their children's biological family health history and ancestry, and many viewed WGS results as a way to fill in these gaps in knowledge. Some expressed concerns about protecting their children's future privacy and autonomy, but at the same time stated that WGS results could possibly help them be proactive about their children's health. A few parents expressed concerns about the risks of WGS in a pre-adoption context, specifically about decreasing a child's chance of adoption. These results suggest that issues surrounding genetic information in the post-adoption and ES/WGS contexts need to be considered, as well as concerns about risks in the pre-adoption context. A critical challenge for ES/WGS in the context of adoption will be balancing the right to know different kinds of genetic information with the right not to know. Specific guidance for geneticists and genetic counselors may be needed to maximize benefits of WGS while minimizing harms and prohibiting misuse of the information in the adoption process.

  15. “We don’t know her history, her background”: Adoptive parents’ perspectives on whole genome sequencing results

    PubMed Central

    Crouch, Julia; Yu, Joon-Ho; Shankar, Aditi G.; Tabor, Holly K.

    2014-01-01

    Exome sequencing and whole genome sequencing (ES/WGS) can provide parents with a wide range of genetic information about their children, and adoptive parents may have unique issues to consider regarding possible access to this information. The few papers published on adoption and genetics have focused on targeted genetic testing of children in the pre-adoption context. There are no data on adoptive parent perspectives about pediatric ES/WGS, including their preferences about different kinds of results, and the potential benefits and risks of receiving results. To explore these issues, we conducted four exploratory focus groups with adoptive parents (N=26). The majority lacked information about their children’s biological family health history and ancestry, and many viewed WGS results as a way to fill in these gaps in knowledge. Some expressed concerns about protecting their children’s future privacy and autonomy, but at the same time stated that WGS results could possibly help them be proactive about their children’s health. A few parents expressed concerns about the risks of WGS in a pre-adoption context, specifically about decreasing a child’s chance of adoption. These results suggest that issues surrounding genetic information in the post-adoption and ES/WGS contexts need to be considered, as well as concerns about risks in the pre-adoption context. A critical challenge for ES/WGS in the context of adoption will be balancing the right to know different kinds of genetic information with the right not to know. Specific guidance for geneticists and genetic counselors may be needed to maximize benefits of WGS while minimizing harms and prohibiting misuse of the information in the adoption process. PMID:25011977

  16. Activation of the receptor for advanced glycation end products system in women with severe preeclampsia.

    PubMed

    Oliver, Emily A; Buhimschi, Catalin S; Dulay, Antonette T; Baumbusch, Margaret A; Abdel-Razeq, Sonya S; Lee, Sarah Y; Zhao, Guomao; Jing, Shichu; Pettker, Christian M; Buhimschi, Irina A

    2011-03-01

    Activation of the receptor for advanced glycation end products (RAGE) mediates cellular injury. Soluble forms of RAGE [soluble RAGE (sRAGE), endogenous secretory (esRAGE)] bind RAGE ligands, thereby preventing downstream signaling and damage. The objective of the study was to characterize the changes in maternal serum, amniotic fluid, and cord blood soluble receptor for advanced glycation end products (sRAGE) during physiological gestation and to provide insight into mechanisms responsible for RAGE activation in preeclampsia. This was a cross-sectional study at a tertiary university hospital. We studied 135 women in the following groups: nonpregnant controls (n = 16), healthy pregnant controls (n = 68), pregnant women with chronic hypertension (n = 13), or pregnant women with severe preeclampsia (sPE; n = 38). sRAGE and esRAGE levels were evaluated in vivo by ELISA in maternal serum, amniotic fluid, and cord blood and in vitro after stimulation of the amniochorion and placental explants with lipopolysaccharide or xanthine/xanthine oxidase. Placenta and amniochorion were immunostained for RAGE. Real-time quantitative PCR measured RAGE mRNA. Pregnant women had significantly decreased serum sRAGE compared with nonpregnant subjects (P < 0.001). sPE women had higher serum and amniotic fluid sRAGE and esRAGE relative to those expected for gestational age (P < 0.001). Cord blood sRAGE remained unaffected by sPE. RAGE immunoreactivity and mRNA expression appeared elevated in the amniochorion of sPE women. Xanthine/xanthine oxidase (but not lipopolysaccharide) significantly up-regulated the release of sRAGE (P < 0.001) in the amniochorion explant system. Fetal membranes are a rich source of sRAGE. Elevated maternal serum and amniotic fluid sRAGE and esRAGE, paralleled by increased RAGE expression in the amniochorion, suggest activation of this system in sPE.

  17. Analysis of human ES cell differentiation establishes that the dominant isoforms of the lncRNAs RMST and FIRRE are circular.

    PubMed

    Izuogu, Osagie G; Alhasan, Abd A; Mellough, Carla; Collin, Joseph; Gallon, Richard; Hyslop, Jonathon; Mastrorosa, Francesco K; Ehrmann, Ingrid; Lako, Majlinda; Elliott, David J; Santibanez-Koref, Mauro; Jackson, Michael S

    2018-04-20

    Circular RNAs (circRNAs) are predominantly derived from protein coding genes, and some can act as microRNA sponges or transcriptional regulators. Changes in circRNA levels have been identified during human development which may be functionally important, but lineage-specific analyses are currently lacking. To address this, we performed RNAseq analysis of human embryonic stem (ES) cells differentiated for 90 days towards 3D laminated retina. A transcriptome-wide increase in circRNA expression, size, and exon count was observed, with circRNA levels reaching a plateau by day 45. Parallel statistical analyses, controlling for sample and locus specific effects, identified 239 circRNAs with expression changes distinct from the transcriptome-wide pattern, but these all also increased in abundance over time. Surprisingly, circRNAs derived from long non-coding RNAs (lncRNAs) were found to account for a significantly larger proportion of transcripts from their loci of origin than circRNAs from coding genes. The most abundant, circRMST:E12-E6, showed a > 100X increase during differentiation accompanied by an isoform switch, and accounts for > 99% of RMST transcripts in many adult tissues. The second most abundant, circFIRRE:E10-E5, accounts for > 98% of FIRRE transcripts in differentiating human ES cells, and is one of 39 FIRRE circRNAs, many of which include multiple unannotated exons. Our results suggest that during human ES cell differentiation, changes in circRNA levels are primarily globally controlled. They also suggest that RMST and FIRRE, genes with established roles in neurogenesis and topological organisation of chromosomal domains respectively, are processed as circular lncRNAs with only minor linear species.

  18. Comparison of in-hospital versus 30-day mortality assessments for selected medical conditions.

    PubMed

    Borzecki, Ann M; Christiansen, Cindy L; Chew, Priscilla; Loveland, Susan; Rosen, Amy K

    2010-12-01

    In-hospital mortality measures such as the Agency for Healthcare Research and Quality (AHRQ) Inpatient Quality Indicators (IQIs) are easily derived using hospital discharge abstracts and publicly available software. However, hospital assessments based on a 30-day postadmission interval might be more accurate given potential differences in facility discharge practices. To compare in-hospital and 30-day mortality rates for 6 medical conditions using the AHRQ IQI software. We used IQI software (v3.1) and 2004-2007 Veterans Health Administration (VA) discharge and Vital Status files to derive 4-year facility-level in-hospital and 30-day observed mortality rates and observed/expected ratios (O/Es) for admissions with a principal diagnosis of acute myocardial infarction, congestive heart failure, stroke, gastrointestinal hemorrhage, hip fracture, and pneumonia. We standardized software-calculated O/Es to the VA population and compared O/Es and outlier status across sites using correlation, observed agreement, and kappas. Of 119 facilities, in-hospital versus 30-day mortality O/E correlations were generally high (median: r = 0.78; range: 0.31-0.86). Examining outlier status, observed agreement was high (median: 84.7%, 80.7%-89.1%). Kappas showed at least moderate agreement (k > 0.40) for all indicators except stroke and hip fracture (k ≤ 0.22). Across indicators, few sites changed from a high to nonoutlier or low outlier, or vice versa (median: 10, range: 7-13). The AHRQ IQI software can be easily adapted to generate 30-day mortality rates. Although 30-day mortality has better face validity as a hospital performance measure than in-hospital mortality, site assessments were similar despite the definition used. Thus, the measure selected for internal benchmarking should primarily depend on the healthcare system's data linkage capabilities.

  19. Comparison of Clinical Features and Outcomes in Patients with Extraskeletal Versus Skeletal Localized Ewing Sarcoma: A Report from the Children’s Oncology Group

    PubMed Central

    Cash, Thomas; McIlvaine, Elizabeth; Krailo, Mark D.; Lessnick, Stephen L.; Lawlor, Elizabeth R.; Laack, Nadia; Sorger, Joel; Marina, Neyssa; Grier, Holcombe E.; Granowetter, Linda; Womer, Richard B.; DuBois, Steven G.

    2016-01-01

    BACKGROUND The prognostic significance of having extraskeletal vs. skeletal Ewing sarcoma in the setting of modern chemotherapy protocols is unknown. The purpose of this study was to compare the clinical characteristics, biologic features, and outcomes for patients with extraskeletal and skeletal Ewing sarcoma. METHODS Patients had localized Ewing sarcoma (ES) and were treated on two consecutive protocols using 5-drug chemotherapy (INT-0154 and AEWS0031). Patients were analyzed based on having an extraskeletal (n=213) or skeletal (n=826) site of tumor origin. Event-free survival (EFS) was estimated using the Kaplan-Meier method, compared using the log-rank test, and modeled using Cox multivariate regression. RESULTS Patients with extraskeletal Ewing Sarcoma (EES) were more likely to have axial tumors (72% vs. 55%; P < 0.001), less likely to have tumors > 8 cm (9% vs. 17%; P < 0.01), and less likely to be white (81% vs. 87%; P < 0.001) compared to patients with skeletal ES. There was no difference in key genomic features (type of EWSR1 translocation, TP53 mutation, CDKN2A mutation/loss) between groups. After controlling for age, race, and primary site, EES was associated with superior EFS [hazard ratio = 0.69; 95% CI: 0.50–0.95; P = 0.02]. Among patients with EES, age ≥ 18 years, non-white race, and elevated baseline erythrocyte sedimentation rate (ESR) were independently associated with inferior EFS. CONCLUSION Clinical characteristics, but not key tumor genomic features, differ between EES and skeletal ES. Extraskeletal origin is a favorable prognostic factor, independent of age, race, and primary site. PMID:27297500

  20. Aquaporin 5 Plays a Role in Estrogen-Induced Ectopic Implantation of Endometrial Stromal Cells in Endometriosis

    PubMed Central

    Jiang, Xiu Xiu; Fei, Xiang Wei; Zhao, Li; Ye, Xiao Lei; Xin, Liao Bin; Qu, Yang; Xu, Kai Hong; Wu, Rui Jin; Lin, Jun

    2015-01-01

    Aquaporin 5 (AQP5) participates in the migration of endometrial cells. Elucidation of the molecular mechanisms associated with AQP5-mediated, migration of endometrial cells may contribute to a better understanding of endometriosis. Our objectives included identifying the estrogen-response element (ERE) in the promoter region of the AQP5 gene, and, investigating the effects of AQP5 on ectopic implantation of endometrial cells. Luciferase reporter assays and electrophoretic mobility shift assay (EMSA) identified the ERE-like motif in the promoter region of the AQP5 gene. After blocking and up-regulating estradiol (E2) levels, we analysed the expression of AQP5 in endometrial stromal (ES) cells. After blocking E2 /or phosphatidylinositol 3 kinase(PI3K), we analysed the role of AQP5 in signaling pathways. We constructed an AQP5, shRNA, lentiviral vector to knock out the AQP5 gene in ES cells. After knock-out of the AQP5 gene, we studied the role of AQP5 in cell invasion, proliferation, and the formation of ectopic endometrial implants in female mice. We identified an estrogen-response element in the promoter region of the AQP5 gene. Estradiol (E2) increased AQP5 expression in a dose-dependent fashion, that was blocked by ICI182,780(an estrogen receptor inhibitor). E2 activated PI3K /protein kinase B(AKT) pathway (PI3K/AKT), that, in turn, increased AQP5 expression. LY294002(PI3K inhibitor) attenuated estrogen-enhanced, AQP5 expression. Knock-out of the AQP5 gene with AQP5 shRNA lentiviral vector significantly inhibited E2-enhanced invasion, proliferation of ES cells and formation of ectopic implants. Estrogen induces AQP5 expression by activating ERE in the promoter region of the AQP5gene, activates the PI3K/AKT pathway, and, promotes endometrial cell invasion and proliferation. These results provide new insights into some of the mechanisms that may underpin the development of deposits of ectopic endometrium. PMID:26679484

  1. Effect of long-term culture of mouse embryonic stem cells under low oxygen concentration as well as on glycosaminoglycan hyaluronan on cell proliferation and differentiation.

    PubMed

    Ramírez, M Á; Pericuesta, E; Yáñez-Mó, M; Palasz, A; Gutiérrez-Adán, A

    2011-02-01

    Maintaining undifferentiated stem cells in defined conditions is of critical importance to improve their in vitro culture. We have evaluated the effects of culturing mouse stem (mES) cells under physiological oxygen concentration as well as by replacing fibroblast feeder layer (mEF) with gelatin or glycosaminoglycan hyaluronan (HA), on cell proliferation and differentiation. After 3 days culture or after long-term cell culture under different conditions, levels of apoptotic cell death were determined by cell cycle and TUNEL (TdT-mediated dUTP nick end labelling) assays and levels of cell proliferation by CFSE (5-(and-6)-carboxyfluorescein diacetate succinimidyl ester) labelling. We assessed spontaneous differentiation into cardiomyocytes and mRNA expression of pluripotency and differentiation biomarkers. After 3 days culture under hypoxic conditions, levels of proliferation and apoptosis of mES cells were higher, in correlation with increase in intracellular reactive oxygen species. However, when cells were continuously grown for 1 month under those conditions, the level of apoptosis was, in all cases, under 4%. Hypoxia reduced spontaneous differentiation of mES into cardiomyocytes. Long-term culture on HA was more effective in maintaining the pluripotent state of the mES cells when compared to that on gelatin. Level of terminal differentiation was highest on mEF, intermediate on HA and lowest on gelatin. Our data suggest that hypoxia is not necessary for maintaining pluripotency of mES cells and appeared to be detrimental during ES differentiation. Moreover, HA may offer a valuable alternative for long-term culture of mES cells in vitro. © 2010 Blackwell Publishing Ltd.

  2. Puerarin Suppresses the Self-Renewal of Murine Embryonic Stem Cells by Inhibition of REST-MiR-21 Regulatory Pathway.

    PubMed

    Yin, Mengmeng; Yuan, Yin; Cui, Yurong; Hong, Xian; Luo, Hongyan; Hu, Xinwu; Tang, Ming; Hescheler, Jurgen; Xi, Jiaoya

    2015-01-01

    Puerarin shows a wide range of biological activities, including affecting the cardiac differentiation from murine embryonic stem (mES) cells. However, little is known about its effect and mechanism of action on the self-renewal of mES cells. This study aimed to determine the effect of puerarin on the self-renewal and pluripotency of mES cells and its underlying mechanisms. RT-PCR and real-time PCR were used to detect the transcripts of core transcription factors, specific markers for multiple lineages, REST and microRNA-21 (miR-21). Colony-forming assay was performed to estimate the self-renewal capacity of mES cells. Western blotting and wortmannin were employed to explore the role of PI3K/Akt signaling pathway in the inhibitory action of puerarin on REST transcript. Transfected mES cells with antagomir21 were used to confirm the role of miR-21 in the action of puerarin on cell self-renewal. Puerarin significantly decreased the percentage of the self-renewal colonies, and suppressed the transcripts of Oct4, Nanog, Sox2, c-Myc and REST. Besides, PECAM, NCAM and miR-21 were up-regulated both under the self-renewal conditions and at day 4 of differentiation. The PI3K inhibitor wortmannin successfully reversed the mRNA expression changes of REST, Nanog and Sox2. Transfection of antagomir21 efficiently reversed the effects of puerarin on mES cells self-renewal. Inhibition of REST-miR-21 regulatory pathway may be the key mechanism of puerarin-induced suppression of mES cells self-renewal.

  3. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats.

    PubMed

    Cui, Lin; Jiang, Jun; Wei, Ling; Zhou, Xin; Fraser, Jamie L; Snider, B Joy; Yu, Shan Ping

    2008-05-01

    Extensive research has focused on transplantation of pluripotent stem cells for the treatment of central nervous system disorders, the therapeutic potential of stem cell therapy for injured peripheral nerves is largely unknown. We used a rat sciatic nerve transection model to test the ability of implanted embryonic stem (ES) cell-derived neural progenitor cells (ES-NPCs) in promoting repair of a severely injured peripheral nerve. Mouse ES cells were neurally induced in vitro; enhanced expression and/or secretion of growth factors were detected in differentiating ES cells. One hour after removal of a 1-cm segment of the left sciatic nerve, ES-NPCs were implanted into the gap between the nerve stumps with the surrounding epineurium as a natural conduit. The transplantation resulted in substantial axonal regrowth and nerve repair, which were not seen in culture medium controls. One to 3 months after axotomy, co-immunostaining with the mouse neural cell membrane specific antibody M2/M6 and the Schwann cell marker S100 suggested that transplanted ES-NPCs had survived and differentiated into myelinating cells. Regenerated axons were myelinated and showed a uniform connection between proximal and distal stumps. Nerve stumps had near normal diameter with longitudinally oriented, densely packed Schwann cell-like phenotype. Fluoro-Gold retrogradely labeled neurons were found in the spinal cord (T12-13) and DRG (L4-L6), suggesting reconnection of axons across the transection. Electrophysiological recordings showed functional activity recovered across the injury gap. These data suggest that transplanted neurally induced ES cells differentiate into myelin-forming cells and provide a potential therapy for severely injured peripheral nerves.

  4. Reverse engineering a gene network using an asynchronous parallel evolution strategy

    PubMed Central

    2010-01-01

    Background The use of reverse engineering methods to infer gene regulatory networks by fitting mathematical models to gene expression data is becoming increasingly popular and successful. However, increasing model complexity means that more powerful global optimisation techniques are required for model fitting. The parallel Lam Simulated Annealing (pLSA) algorithm has been used in such approaches, but recent research has shown that island Evolutionary Strategies can produce faster, more reliable results. However, no parallel island Evolutionary Strategy (piES) has yet been demonstrated to be effective for this task. Results Here, we present synchronous and asynchronous versions of the piES algorithm, and apply them to a real reverse engineering problem: inferring parameters in the gap gene network. We find that the asynchronous piES exhibits very little communication overhead, and shows significant speed-up for up to 50 nodes: the piES running on 50 nodes is nearly 10 times faster than the best serial algorithm. We compare the asynchronous piES to pLSA on the same test problem, measuring the time required to reach particular levels of residual error, and show that it shows much faster convergence than pLSA across all optimisation conditions tested. Conclusions Our results demonstrate that the piES is consistently faster and more reliable than the pLSA algorithm on this problem, and scales better with increasing numbers of nodes. In addition, the piES is especially well suited to further improvements and adaptations: Firstly, the algorithm's fast initial descent speed and high reliability make it a good candidate for being used as part of a global/local search hybrid algorithm. Secondly, it has the potential to be used as part of a hierarchical evolutionary algorithm, which takes advantage of modern multi-core computing architectures. PMID:20196855

  5. Chronic obstructive lung disease "expert system": validation of a predictive tool for assisting diagnosis.

    PubMed

    Braido, Fulvio; Santus, Pierachille; Corsico, Angelo Guido; Di Marco, Fabiano; Melioli, Giovanni; Scichilone, Nicola; Solidoro, Paolo

    2018-01-01

    The purposes of this study were development and validation of an expert system (ES) aimed at supporting the diagnosis of chronic obstructive lung disease (COLD). A questionnaire and a WebFlex code were developed and validated in silico. An expert panel pilot validation on 60 cases and a clinical validation on 241 cases were performed. The developed questionnaire and code validated in silico resulted in a suitable tool to support the medical diagnosis. The clinical validation of the ES was performed in an academic setting that included six different reference centers for respiratory diseases. The results of the ES expressed as a score associated with the risk of suffering from COLD were matched and compared with the final clinical diagnoses. A set of 60 patients were evaluated by a pilot expert panel validation with the aim of calculating the sample size for the clinical validation study. The concordance analysis between these preliminary ES scores and diagnoses performed by the experts indicated that the accuracy was 94.7% when both experts and the system confirmed the COLD diagnosis and 86.3% when COLD was excluded. Based on these results, the sample size of the validation set was established in 240 patients. The clinical validation, performed on 241 patients, resulted in ES accuracy of 97.5%, with confirmed COLD diagnosis in 53.6% of the cases and excluded COLD diagnosis in 32% of the cases. In 11.2% of cases, a diagnosis of COLD was made by the experts, although the imaging results showed a potential concomitant disorder. The ES presented here (COLD ES ) is a safe and robust supporting tool for COLD diagnosis in primary care settings.

  6. Can ecological land classification increase the utility of vegetation monitoring data

    USDA-ARS?s Scientific Manuscript database

    Vegetation dynamics in rangelands and other ecosystems are known to be mediated by topoedaphic properties. Vegetation monitoring programs, however, often do not consider the impact of soils and other sources of landscape heterogeneity on the temporal patterns observed. Ecological sites (ES) comprise...

  7. What's the Big Sweat about Dehydration? (For Kids)

    MedlinePlus

    ... First Aid & Safety Doctors & Hospitals Videos Recipes for Kids Kids site Sitio para niños How the Body Works ... for Educators Search English Español Dehydration KidsHealth / For Kids / Dehydration Print en español ¿Por qué es tan ...

  8. Triptolide disrupts the actin-based Sertoli-germ cells adherens junctions by inhibiting Rho GTPases expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiang; Zhao, Fang

    Triptolide (TP), derived from the medicinal plant Triterygium wilfordii Hook. f. (TWHF), is a diterpene triepoxide with variety biological and pharmacological activities. However, TP has been restricted in clinical application due to its narrow therapeutic window especially in reproductive system. During spermatogenesis, Sertoli cell cytoskeleton plays an essential role in facilitating germ cell movement and cell-cell actin-based adherens junctions (AJ). At Sertoli cell-spermatid interface, the anchoring device is a kind of AJ, known as ectoplasmic specializations (ES). In this study, we demonstrate that β-actin, an important component of cytoskeleton, has been significantly down-regulated after TP treatment. TP can inhibit themore » expression of Rho GTPase such as, RhoA, RhoB, Cdc42 and Rac1. Downstream of Rho GTPase, Rho-associated protein kinase (ROCKs) gene expressions were also suppressed by TP. F-actin immunofluorescence proved that TP disrupts Sertoli cells cytoskeleton network. As a result of β-actin down-regulation, TP treatment increased expression of testin, which indicating ES has been disassembled. In summary, this report illustrates that TP induces cytoskeleton dysfunction and disrupts cell-cell adherens junctions via inhibition of Rho GTPases. - Highlights: • Triptolide induced the disruption of Sertoli-germ cell adherens junction. • Rho GTPases expression and actin dynamics have been suppressed by triptolide. • Actin-based adherens junction is a potential antifertility target of triptolide. • Rho-Rock is involved in the regulation of actin dynamics.« less

  9. A Novel Intergenic ETnII-β Insertion Mutation Causes Multiple Malformations in Polypodia Mice

    PubMed Central

    Lehoczky, Jessica A.; Thomas, Peedikayil E.; Patrie, Kevin M.; Owens, Kailey M.; Villarreal, Lisa M.; Galbraith, Kenneth; Washburn, Joe; Johnson, Craig N.; Gavino, Bryant; Borowsky, Alexander D.; Millen, Kathleen J.; Wakenight, Paul; Law, William; Van Keuren, Margaret L.; Gavrilina, Galina; Hughes, Elizabeth D.; Saunders, Thomas L.; Brihn, Lesil; Nadeau, Joseph H.; Innis, Jeffrey W.

    2013-01-01

    Mouse early transposon insertions are responsible for ∼10% of spontaneous mutant phenotypes. We previously reported the phenotypes and genetic mapping of Polypodia, (Ppd), a spontaneous, X-linked dominant mutation with profound effects on body plan morphogenesis. Our new data shows that mutant mice are not born in expected Mendelian ratios secondary to loss after E9.5. In addition, we refined the Ppd genetic interval and discovered a novel ETnII-β early transposon insertion between the genes for Dusp9 and Pnck. The ETn inserted 1.6 kb downstream and antisense to Dusp9 and does not disrupt polyadenylation or splicing of either gene. Knock-in mice engineered to carry the ETn display Ppd characteristic ectopic caudal limb phenotypes, showing that the ETn insertion is the Ppd molecular lesion. Early transposons are actively expressed in the early blastocyst. To explore the consequences of the ETn on the genomic landscape at an early stage of development, we compared interval gene expression between wild-type and mutant ES cells. Mutant ES cell expression analysis revealed marked upregulation of Dusp9 mRNA and protein expression. Evaluation of the 5′ LTR CpG methylation state in adult mice revealed no correlation with the occurrence or severity of Ppd phenotypes at birth. Thus, the broad range of phenotypes observed in this mutant is secondary to a novel intergenic ETn insertion whose effects include dysregulation of nearby interval gene expression at early stages of development. PMID:24339789

  10. Adolescents' Communication with Parents, Other Adult Family Members and Teachers on Sexuality: Effects of School-Based Interventions in South Africa and Tanzania.

    PubMed

    Namisi, Francis; Aarø, Leif Edvard; Kaaya, Sylvia; Kajula, Lusajo J; Kilonzo, Gad P; Onya, Hans; Wubs, Annegreet; Mathews, Catherine

    2015-12-01

    Cluster-randomized controlled trials were carried out to examine effects on sexual practices of school-based interventions among adolescents in three sites in sub-Saharan Africa. In this publication, effects on communication about sexuality with significant adults (including parents) and such communication as a mediator of other outcomes were examined. Belonging to the intervention group was significantly associated with fewer reported sexual debuts in Dar es Salaam only (OR 0.648). Effects on communication with adults about sexuality issues were stronger for Dar es Salaam than for the other sites. In Dar, increase in communication with adults proved to partially mediate associations between intervention and a number of social cognition outcomes. The hypothesized mediational effect of communication on sexual debut was not confirmed. Promoting intergenerational communication on sexuality issues is associated with several positive outcomes and therefore important. Future research should search for mediating factors influencing behavior beyond those examined in the present study.

  11. A Model for Predicting Late Prehistoric Architectural Sites at the Pinon Canyon Maneuver Site in Southeastern Colorado

    DTIC Science & Technology

    2007-01-01

    Mark Owens 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES), 8. PERFORMING ORGANIZATION Department of Sociology and Anthropology REPORT NUMBER New...posit this type of behavior can be reflected in the spatial organization of architecture and to a lesser degree in artifacts. If true, by focusing the...social organization . To understand the role of architecture in larger cultural systems, several concepts, both theoretical and methodological, have to

  12. Involvement of Rictor/mTORC2 in cardiomyocyte differentiation of mouse embryonic stem cells in vitro

    PubMed Central

    Zheng, Bei; Wang, Jiadan; Tang, Leilei; Tan, Chao; Zhao, Zhe; Xiao, Yi; Ge, Renshan; Zhu, Danyan

    2017-01-01

    Rictor is a key regulatory/structural subunit of the mammalian target of rapamycin complex 2 (mTORC2) and is required for phosphorylation of Akt at serine 473. It plays an important role in cell survival, actin cytoskeleton organization and other processes in embryogenesis. However, the role of Rictor/mTORC2 in the embryonic cardiac differentiation has been uncovered. In the present study, we examined a possible link between Rictor expression and cardiomyocyte differentiation of the mouse embryonic stem (mES) cells. Knockdown of Rictor by shRNA significantly reduced the phosphorylation of Akt at serine 473 followed by a decrease in cardiomyocyte differentiation detected by beating embryoid bodies. The protein levels of brachyury (mesoderm protein), Nkx2.5 (cardiac progenitor cell protein) and α-Actinin (cardiomyocyte biomarker) decreased in Rictor knockdown group during cardiogenesis. Furthermore, knockdown of Rictor specifically inhibited the ventricular-like cells differentiation of mES cells with reduced level of ventricular-specific protein, MLC-2v. Meanwhile, patch-clamp analysis revealed that shRNA-Rictor significantly increased the number of cardiomyocytes with abnormal electrophysiology. In addition, the expressions and distribution patterns of cell-cell junction proteins (Cx43/Desmoplakin/N-cadherin) were also affected in shRNA-Rictor cardiomyocytes. Taken together, the results demonstrated that Rictor/mTORC2 might play an important role in the cardiomyocyte differentiation of mES cells. Knockdown of Rictor resulted in inhibiting ventricular-like myocytes differentiation and induced arrhythmias symptom, which was accompanied by interfering the expression and distribution patterns of cell-cell junction proteins. Rictor/mTORC2 might become a new target for regulating cardiomyocyte differentiation and a useful reference for application of the induced pluripotent stem cells. PMID:28123351

  13. CSP41b, a protein identified via FOX hunting using Eutrema salsugineum cDNAs, improves heat and salinity stress tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Ariga, Hirotaka; Tanaka, Tomoko; Ono, Hirokazu; Sakata, Yoichi; Hayashi, Takahisa; Taji, Teruaki

    2015-08-14

    Eutrema salsugineum (also known as Thellungiella salsuginea and formerly Thellungiella halophila), a species closely related to Arabidopsis thaliana, shows tolerance not only to salt stress, but also to chilling, freezing, and high temperatures. To identify genes responsible for stress tolerance, we conducted Full-length cDNA Over-eXpressing gene (FOX) hunting among a collection of E. salsugineum cDNAs that were stress-induced according to gene ontology analysis or over-expressed in E. salsugineum compared with A. thaliana. We identified E. salsugineum CSP41b (chloroplast stem-loop-binding protein of 41 kDa; also known as CRB, chloroplast RNA binding; named here as EsCSP41b) as a gene that can confer heat and salinity stress tolerance on A. thaliana. A. thaliana CSP41b is reported to play an important role in the proper functioning of the chloroplast: the atcsp41b mutant is smaller and paler than wild-type plants and shows altered chloroplast morphology and photosynthetic performance. We observed that AtCSP41b-overexpressing transgenic A. thaliana lines also exhibited marked heat tolerance and significant salinity stress tolerance. The EsCSP41b-overexpressing transgenic A. thaliana lines showed significantly higher photosynthesis activity than wild-type plants not only under normal growth conditions but also under heat stress. In wild-type plants, the expression levels of both EsCSP41b and AtCSP41b were significantly reduced under heat or salinity stress. We conclude that maintenance of CSP41b expression under abiotic stresses may alleviate photoinhibition and improve survival under such stresses. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics.

    PubMed

    Zampieri, Sandra; Mammucari, Cristina; Romanello, Vanina; Barberi, Laura; Pietrangelo, Laura; Fusella, Aurora; Mosole, Simone; Gherardi, Gaia; Höfer, Christian; Löfler, Stefan; Sarabon, Nejc; Cvecka, Jan; Krenn, Matthias; Carraro, Ugo; Kern, Helmut; Protasi, Feliciano; Musarò, Antonio; Sandri, Marco; Rizzuto, Rosario

    2016-12-01

    Age-related sarcopenia is characterized by a progressive loss of muscle mass with decline in specific force, having dramatic consequences on mobility and quality of life in seniors. The etiology of sarcopenia is multifactorial and underlying mechanisms are currently not fully elucidated. Physical exercise is known to have beneficial effects on muscle trophism and force production. Alterations of mitochondrial Ca 2+ homeostasis regulated by mitochondrial calcium uniporter (MCU) have been recently shown to affect muscle trophism in vivo in mice. To understand the relevance of MCU-dependent mitochondrial Ca 2+ uptake in aging and to investigate the effect of physical exercise on MCU expression and mitochondria dynamics, we analyzed skeletal muscle biopsies from 70-year-old subjects 9 weeks trained with either neuromuscular electrical stimulation (ES) or leg press. Here, we demonstrate that improved muscle function and structure induced by both trainings are linked to increased protein levels of MCU Ultrastructural analyses by electron microscopy showed remodeling of mitochondrial apparatus in ES-trained muscles that is consistent with an adaptation to physical exercise, a response likely mediated by an increased expression of mitochondrial fusion protein OPA1. Altogether these results indicate that the ES-dependent physiological effects on skeletal muscle size and force are associated with changes in mitochondrial-related proteins involved in Ca 2+ homeostasis and mitochondrial shape. These original findings in aging human skeletal muscle confirm the data obtained in mice and propose MCU and mitochondria-related proteins as potential pharmacological targets to counteract age-related muscle loss. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  15. Gene expression in the chicken caecum in response to infections with non-typhoid Salmonella.

    PubMed

    Rychlik, Ivan; Elsheimer-Matulova, Marta; Kyrova, Kamila

    2014-12-05

    Chickens can be infected with Salmonella enterica at any time during their life. However, infections within the first hours and days of their life are epidemiologically the most important, as newly hatched chickens are highly sensitive to Salmonella infection. Salmonella is initially recognized in the chicken caecum by TLR receptors and this recognition is followed by induction of chemokines, cytokines and many effector genes. This results in infiltration of heterophils, macrophages, B- and T-lymphocytes and changes in total gene expression in the caecal lamina propria. The highest induction in expression is observed for matrix metalloproteinase 7 (MMP7). Expression of this gene is increased in the chicken caecum over 4000 fold during the first 10 days after the infection of newly hatched chickens. Additional highly inducible genes in the caecum following S. Enteritidis infection include immune responsive gene 1 (IRG1), serum amyloid A (SAA), extracellular fatty acid binding protein (ExFABP), serine protease inhibitor (SERPINB10), trappin 6-like (TRAP6), calprotectin (MRP126), mitochondrial ES1 protein homolog (ES1), interferon-induced protein with tetratricopeptide repeats 5 (IFIT5), avidin (AVD) and transglutaminase 4 (TGM4). The induction of expression of these proteins exceeds a factor of 50. Similar induction rates are also observed for chemokines and cytokines such as IL1β, IL6, IL8, IL17, IL18, IL22, IFNγ, AH221 or iNOS. Once the infection is under control, which happens approx. 2 weeks after infection, expression of IgY and IgA increases to facilitate Salmonella elimination from the gut lumen. This review outlines the function of individual proteins expressed in chickens after infection with non-typhoid Salmonella serovars.

  16. Tiger Team Assessment of the Fermi National Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    This draft report documents the Tiger Team Assessment of the Fermi National Accelerator Laboratory (Fermilab) located in Batavia, Illinois. Fermilab is a program-dedicated national laboratory managed by the Universities Research Association, Inc. (URA) for the US Department of Energy (DOE). The Tiger Team Assessment was conducted from May 11 to June 8, 1992, under the auspices of DOE's Office of Special Projects (OSP) under the Office of the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety and health (ES H), and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations.more » Compliance with applicable Federal , State of Illinois, and local regulations; applicable DOE Orders; best management practices; and internal Fermilab requirements was addressed. In addition, an evaluation of the effectiveness of DOE and Fermilab management of the ES H/QA and self-assessment programs was conducted. The Fermilab Tiger Team Assessment is part a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary of Energy with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.« less

  17. Tiger Team Assessment of the Fermi National Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    This draft report documents the Tiger Team Assessment of the Fermi National Accelerator Laboratory (Fermilab) located in Batavia, Illinois. Fermilab is a program-dedicated national laboratory managed by the Universities Research Association, Inc. (URA) for the US Department of Energy (DOE). The Tiger Team Assessment was conducted from May 11 to June 8, 1992, under the auspices of DOE`s Office of Special Projects (OSP) under the Office of the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety and health (ES&H), and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliancemore » with applicable Federal , State of Illinois, and local regulations; applicable DOE Orders; best management practices; and internal Fermilab requirements was addressed. In addition, an evaluation of the effectiveness of DOE and Fermilab management of the ES&H/QA and self-assessment programs was conducted. The Fermilab Tiger Team Assessment is part a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary of Energy with information on the compliance status of DOE facilities with regard to ES&H requirements, root causes for noncompliance, adequacy of DOE and contractor ES&H management programs, response actions to address the identified problem areas, and DOE-wide ES&H compliance trends and root causes.« less

  18. Electrical stimulation of paralyzed vibrissal muscles reduces endplate reinnervation and does not promote motor recovery after facial nerve repair in rats.

    PubMed

    Sinis, Nektarios; Horn, Frauke; Genchev, Borislav; Skouras, Emmanouil; Merkel, Daniel; Angelova, Srebrina K; Kaidoglou, Katerina; Michael, Joern; Pavlov, Stoyan; Igelmund, Peter; Schaller, Hans-Eberhard; Irintchev, Andrey; Dunlop, Sarah A; Angelov, Doychin N

    2009-10-01

    The outcome of peripheral nerve injuries requiring surgical repair is poor. Recent work has suggested that electrical stimulation (ES) of denervated muscles could be beneficial. Here we tested whether ES has a positive influence on functional recovery after injury and surgical repair of the facial nerve. Outcomes at 2 months were compared to animals receiving sham stimulation (SS). Starting on the first day after end-to-end suture (facial-facial anastomosis), electrical stimulation (square 0.1 ms pulses at 5 Hz at an ex tempore established threshold amplitude of between 3.0 and 5.0V) was delivered to the vibrissal muscles for 5 min a day, 3 times a week. Restoration of vibrissal motor performance following ES or SS was evaluated using the video-based motion analysis and correlated with the degree of collateral axonal branching at the lesion site, the number of motor endplates in the target musculature and the quality of their reinnervation, i.e. the degree of mono- versus poly-innervation. Neither protocol reduced collateral branching. ES did not improve functional outcome, but rather reduced the number of innervated motor endplates to approximately one-fifth of normal values and failed to reduce the proportion of poly-innervated motor endplates. We conclude that ES is not beneficial for recovery of whisker function after facial nerve repair in rats.

  19. Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity.

    PubMed

    Schulze, Sebastian; Kay, Sabine; Büttner, Daniela; Egler, Monique; Eschen-Lippold, Lennart; Hause, Gerd; Krüger, Antje; Lee, Justin; Müller, Oliver; Scheel, Dierk; Szczesny, Robert; Thieme, Frank; Bonas, Ulla

    2012-09-01

    The pathogenicity of the Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) is dependent on type III effectors (T3Es) that are injected into plant cells by a type III secretion system and interfere with cellular processes to the benefit of the pathogen. In this study, we analyzed eight T3Es from Xcv strain 85-10, six of which were newly identified effectors. Genetic studies and protoplast expression assays revealed that XopB and XopS contribute to disease symptoms and bacterial growth, and suppress pathogen-associated molecular pattern (PAMP)-triggered plant defense gene expression. In addition, XopB inhibits cell death reactions induced by different T3Es, thus suppressing defense responses related to both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). XopB localizes to the Golgi apparatus and cytoplasm of the plant cell and interferes with eukaryotic vesicle trafficking. Interestingly, a XopB point mutant derivative was defective in the suppression of ETI-related responses, but still interfered with vesicle trafficking and was only slightly affected with regard to the suppression of defense gene induction. This suggests that XopB-mediated suppression of PTI and ETI is dependent on different mechanisms that can be functionally separated. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  20. SU-G-BRC-17: Using Generalized Mean for Equivalent Square Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, S; Fan, Q; Lei, Y

    Purpose: Equivalent Square (ES) is a widely used concept in radiotherapy. It enables us to determine many important quantities for a rectangular treatment field, without measurement, based on the corresponding values from its ES field. In this study, we propose a Generalized Mean (GM) type ES formula and compare it with other established formulae using benchmark datasets. Methods: Our GM approach is expressed as ES=(w•fx^α+(1-w)•fy^α)^(1/α), where fx, fy, α, and w represent field sizes, power index, and a weighting factor, respectively. When α=−1 it reduces to well-known Sterling type ES formulae. In our study, α and w are determined throughmore » least-square-fitting. Akaike Information Criterion (AIC) was used to benchmark the performance of each formula. BJR (Supplement 17) ES field table for X-ray PDDs and open field output factor tables in Varian TrueBeam representative dataset were used for validation. Results: Switching from α=−1 to α=−1.25, a 20% reduction in standard deviation of residual error in ES estimation was achieved for the BJR dataset. The maximum relative residual error was reduced from ∼3% (in Sterling formula) or ∼2% (in Vadash/Bjarngard formula) down to ∼1% in GM formula for open fields of all energies and at rectangular field sizes from 3cm to 40cm in the Varian dataset. The improvement of the GM over the Sterling type ES formulae is particularly noticeable for very elongated rectangular fields with short width. AIC analysis confirmed the superior performance of the GM formula after taking into account the expanded parameter space. Conclusion: The GM significantly outperforms Sterling type formulae at slightly increased computational cost. The GM calculation may nullify the requirement of data measurement for many rectangular fields and hence shorten the Linac commissioning process. Improved dose calculation accuracy is also expected by adopting the GM formula into treatment planning and secondary MU check systems.« less

Top