Sample records for expression small interfering

  1. Intratracheal Administration of Small Interfering RNA Targeting Fas Reduces Lung Ischemia-Reperfusion Injury.

    PubMed

    Del Sorbo, Lorenzo; Costamagna, Andrea; Muraca, Giuseppe; Rotondo, Giuseppe; Civiletti, Federica; Vizio, Barbara; Bosco, Ornella; Martin Conte, Erica L; Frati, Giacomo; Delsedime, Luisa; Lupia, Enrico; Fanelli, Vito; Ranieri, V Marco

    2016-08-01

    Lung ischemia-reperfusion injury is the main cause of primary graft dysfunction after lung transplantation and results in increased morbidity and mortality. Fas-mediated apoptosis is one of the pathologic mechanisms involved in the development of ischemia-reperfusion injury. We hypothesized that the inhibition of Fas gene expression in lungs by intratracheal administration of small interfering RNA could reduce lung ischemia-reperfusion injury in an ex vivo model reproducing the procedural sequence of lung transplantation. Prospective, randomized, controlled experimental study. University research laboratory. C57/BL6 mice weighing 28-30 g. Ischemia-reperfusion injury was induced in lungs isolated from mice, 48 hours after treatment with intratracheal small interfering RNA targeting Fas, control small interfering RNA, or vehicle. Isolated lungs were exposed to 6 hours of cold ischemia (4°C), followed by 2 hours of warm (37°C) reperfusion with a solution containing 10% of fresh whole blood and mechanical ventilation with constant low driving pressure. Fas gene expression was significantly silenced at the level of messenger RNA and protein after ischemia-reperfusion in lungs treated with small interfering RNA targeting Fas compared with lungs treated with control small interfering RNA or vehicle. Silencing of Fas gene expression resulted in reduced edema formation (bronchoalveolar lavage protein concentration and lung histology) and improvement in lung compliance. These effects were associated with a significant reduction of pulmonary cell apoptosis of lungs treated with small interfering RNA targeting Fas, which did not affect cytokine release and neutrophil infiltration. Fas expression silencing in the lung by small interfering RNA is effective against ischemia-reperfusion injury. This approach represents a potential innovative strategy of organ preservation before lung transplantation.

  2. Targeting focal adhesion kinase with small interfering RNA prevents and reverses load-induced cardiac hypertrophy in mice.

    PubMed

    Clemente, Carolina F M Z; Tornatore, Thais F; Theizen, Thais H; Deckmann, Ana C; Pereira, Tiago C; Lopes-Cendes, Iscia; Souza, José Roberto M; Franchini, Kleber G

    2007-12-07

    Hypertrophy is a critical event in the onset of failure in chronically overloaded hearts. Focal adhesion kinase (FAK) has attracted particular attention as a mediator of hypertrophy induced by increased load. Here, we demonstrate increased expression and phosphorylation of FAK in the hypertrophic left ventricles (LVs) of aortic-banded mice. We used an RNA interference strategy to examine whether FAK signaling plays a role in the pathophysiology of load-induced LV hypertrophy and failure. Intrajugular delivery of specific small interfering RNA induced prolonged FAK silencing ( approximately 70%) in both normal and hypertrophic LVs. Myocardial FAK silencing was accompanied by prevention, as well as reversal, of load-induced left ventricular hypertrophy. The function of LVs was preserved and the survival rate was higher in banded mice treated with small interfering RNA targeted to FAK, despite the persistent pressure overload. Studies in cardiac myocytes and fibroblasts harvested from LVs confirmed the ability of the systemically administered specific small interfering RNA to silence FAK in both cell types. Further analysis indicated attenuation of cardiac myocyte hypertrophic growth and of the rise in the expression of beta-myosin heavy chain in overloaded LVs. Moreover, FAK silencing was demonstrated to attenuate the rise in the fibrosis, collagen content, and activity of matrix metalloproteinase-2 in overloaded LVs, as well as the rise of matrix metalloproteinase-2 protein expression in fibroblasts harvested from overloaded LVs. This study provides novel evidence that FAK may be involved in multiple aspects of the pathophysiology of cardiac hypertrophy and failure induced by pressure overload.

  3. [Effect of qinghuobaiduyin on the expression of high mobility group box chromosomal protein 1 in macrophage].

    PubMed

    Li, Ping; Xu, Dan; Luo, Chengqun

    2010-07-01

    To observe the expression of high mobility group box chromosomal protein 1(HMGB1) in RAW264.7 macrophages after interfering with burning serum and qinghuobaidu-yin (QHBDY), and to find out the endogenous protection mechanism of QHBDY resisting inflammation reaction. RT-PCR was used to detect the expression of HMGB1 in RAW264.7 macrophages after interfering RAW264.7 macrophages with normal SD rat serum, burning SD rat serum, and QHBDY feeding SD rat serum. Small quantity of HMGB1 mRNA was expressed in RAW264.7. The expression of HMGB1 mRNA fluctuated around the standard level after interfering with normal serum of SD rats. The expression of HMGB1 mRNA rose at 3 h, and then decreased to the standard level; at 18 h, it rose rapidly; at 36 h, it reached the peak; and at 48 h, it remained at the high level after interfering with burning serum. The expression of HMGB1 mRNA increased at 3 h, and then decreased to the standard level. At 24 h, it started to rise after interfering with herb serum, and was lower than that of; the burning serum group (P<0.05). Burning serum can increase the expression of HMGB1 mRNA in RAW264.7. QHBDY can decrease the high expression of HMGB1 mRNA in RAW264.7 caused by burning serum.

  4. Small heterodimer partner blocks cardiac hypertrophy by interfering with GATA6 signaling.

    PubMed

    Nam, Yoon Seok; Kim, Yoojung; Joung, Hosouk; Kwon, Duk-Hwa; Choe, Nakwon; Min, Hyun-Ki; Kim, Yong Sook; Kim, Hyung-Seok; Kim, Don-Kyu; Cho, Young Kuk; Kim, Yong-Hoon; Nam, Kwang-Il; Choi, Hyoung Chul; Park, Dong Ho; Suk, Kyoungho; Lee, In-Kyu; Ahn, Youngkeun; Lee, Chul-Ho; Choi, Hueng-Sik; Eom, Gwang Hyeon; Kook, Hyun

    2014-08-15

    Small heterodimer partner (SHP; NR0B2) is an atypical orphan nuclear receptor that lacks a conventional DNA-binding domain. Through interactions with other transcription factors, SHP regulates diverse biological events, including glucose metabolism in liver. However, the role of SHP in adult heart diseases has not yet been demonstrated. We aimed to investigate the role of SHP in adult heart in association with cardiac hypertrophy. The roles of SHP in cardiac hypertrophy were tested in primary cultured cardiomyocytes and in animal models. SHP-null mice showed a hypertrophic phenotype. Hypertrophic stresses repressed the expression of SHP, whereas forced expression of SHP blocked the development of hypertrophy in cardiomyocytes. SHP reduced the protein amount of Gata6 and, by direct physical interaction with Gata6, interfered with the binding of Gata6 to GATA-binding elements in the promoter regions of natriuretic peptide precursor type A. Metformin, an antidiabetic agent, induced SHP and suppressed cardiac hypertrophy. The metformin-induced antihypertrophic effect was attenuated either by SHP small interfering RNA in cardiomyocytes or in SHP-null mice. These results establish SHP as a novel antihypertrophic regulator that acts by interfering with GATA6 signaling. SHP may participate in the metformin-induced antihypertrophic response. © 2014 American Heart Association, Inc.

  5. An endogenous small interfering RNA pathway in Drosophila

    PubMed Central

    Czech, Benjamin; Malone, Colin D.; Zhou, Rui; Stark, Alexander; Schlingeheyde, Catherine; Dus, Monica; Perrimon, Norbert; Kellis, Manolis; Wohlschlegel, James A.; Sachidanandam, Ravi; Hannon, Gregory J.; Brennecke, Julius

    2009-01-01

    Drosophila endogenous small RNAs are categorized according to their mechanisms of biogenesis and the Argonaute protein to which they bind. MicroRNAs are a class of ubiquitously expressed RNAs of ~22 nucleotides in length, which arise from structured precursors through the action of Drosha–Pasha and Dicer-1–Loquacious complexes1–7. These join Argonaute-1 to regulate gene expression8,9. A second endogenous small RNA class, the Piwi-interacting RNAs, bind Piwi proteins and suppress transposons10,11. Piwi-interacting RNAs are restricted to the gonad, and at least a subset of these arises by Piwi-catalysed cleavage of single-stranded RNAs12,13. Here we show that Drosophila generates a third small RNA class, endogenous small interfering RNAs, in both gonadal and somatic tissues. Production of these RNAs requires Dicer-2, but a subset depends preferentially on Loquacious1,4,5 rather than the canonical Dicer-2 partner, R2D2 (ref. 14). Endogenous small interfering RNAs arise both from convergent transcription units and from structured genomic loci in a tissue-specific fashion. They predominantly join Argonaute-2 and have the capacity, as a class, to target both protein-coding genes and mobile elements. These observations expand the repertoire of small RNAs in Drosophila, adding a class that blurs distinctions based on known biogenesis mechanisms and functional roles. PMID:18463631

  6. Trans-acting small interfering RNA4: key to nutraceutical synthesis in grape development?

    PubMed

    Rock, Christopher D

    2013-11-01

    The facility and versatility of microRNAs (miRNAs) to evolve and change likely underlies how they have become dominant constituents of eukaryotic genomes. In this opinion article I propose that trans-acting small interfering RNA gene 4 (TAS4) evolution may be important for biosynthesis of polyphenolics, arbuscular symbiosis, and bacterial pathogen etiologies. Expression-based and phylogenetic evidence shows that TAS4 targets two novel grape (Vitis vinifera L.) MYB transcription factors (VvMYBA6, VvMYBA7) that spawn phased small interfering RNAs (siRNAs) which probably function in nutraceutical bioflavonoid biosynthesis and fruit development. Characterization of the molecular mechanisms of TAS4 control of plant development and integration into biotic and abiotic stress- and nutrient-signaling regulatory networks has applicability to molecular breeding and the development of strategies for engineering healthier foods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Protein arginine N-methyltransferase 1 promotes the proliferation and metastasis of hepatocellular carcinoma cells.

    PubMed

    Gou, Qing; He, ShuJiao; Zhou, ZeJian

    2017-02-01

    Hepatocellular carcinoma is the most common subtype of liver cancer. Protein arginine N-methyltransferase 1 was shown to be upregulated in various cancers. However, the role of protein arginine N-methyltransferase 1 in hepatocellular carcinoma progression remains incompletely understood. We investigated the clinical and functional significance of protein arginine N-methyltransferase 1 in a series of clinical hepatocellular carcinoma samples and a panel of hepatocellular carcinoma cell lines. We performed suppression analysis of protein arginine N-methyltransferase 1 using small interfering RNA to determine the biological roles of protein arginine N-methyltransferase 1 in hepatocellular carcinoma. In addition, the expression of epithelial-mesenchymal transition indicators was verified by western blotting in hepatocellular carcinoma cell lines after small interfering RNA treatment. Protein arginine N-methyltransferase 1 expression was found to be significantly upregulated in hepatocellular carcinoma cell lines and clinical tissues. Moreover, downregulation of protein arginine N-methyltransferase 1 in hepatocellular carcinoma cells by small interfering RNA could inhibit cell proliferation, migration, and invasion in vitro. These results indicate that protein arginine N-methyltransferase 1 may contribute to hepatocellular carcinoma progression and serves as a promising target for the treatment of hepatocellular carcinoma patients.

  8. Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC

    PubMed Central

    Castanotto, Daniela; Sakurai, Kumi; Lingeman, Robert; Li, Haitang; Shively, Louise; Aagaard, Lars; Soifer, Harris; Gatignol, Anne; Riggs, Arthur; Rossi, John J.

    2007-01-01

    Despite the great potential of RNAi, ectopic expression of shRNA or siRNAs holds the inherent risk of competition for critical RNAi components, thus altering the regulatory functions of some cellular microRNAs. In addition, specific siRNA sequences can potentially hinder incorporation of other siRNAs when used in a combinatorial approach. We show that both synthetic siRNAs and expressed shRNAs compete against each other and with the endogenous microRNAs for transport and for incorporation into the RNA induced silencing complex (RISC). The same siRNA sequences do not display competition when expressed from a microRNA backbone. We also show that TAR RNA binding protein (TRBP) is one of the sensors for selection and incorporation of the guide sequence of interfering RNAs. These findings reveal that combinatorial siRNA approaches can be problematic and have important implications for the methodology of expression and use of therapeutic interfering RNAs. PMID:17660190

  9. Gene Suppression of Mouse Testis In Vivo Using Small Interfering RNA Derived from Plasmid Vectors

    PubMed Central

    Takizawa, Takami; Ishikawa, Tomoko; Kosuge, Takuji; Mizuguchi, Yoshiaki; Sato, Yoko; Koji, Takehiko; Araki, Yoshihiko; Takizawa, Toshihiro

    2012-01-01

    We evaluated whether inhibiting gene expression by small interfering RNA (siRNA) can be used for an in vivo model using a germ cell-specific gene (Tex101) as a model target in mouse testis. We generated plasmid-based expression vectors of siRNA targeting the Tex101 gene and transfected them into postnatal day 10 mouse testes by in vivo electroporation. After optimizing the electroporation conditions using a vector transfected into the mouse testis, a combination of high- and low-voltage pulses showed excellent transfection efficiency for the vectors with minimal tissue damage, but gene suppression was transient. Gene suppression by in vivo electroporation may be helpful as an alternative approach when designing experiments to unravel the basic role of testicular molecules. PMID:22489107

  10. AAV delivery of tumor necrosis factor-α short hairpin RNA attenuates cold-induced pulmonary hypertension and pulmonary arterial remodeling.

    PubMed

    Crosswhite, Patrick; Chen, Kai; Sun, Zhongjie

    2014-11-01

    Cold temperatures are associated with increased mortality and morbidity of cardiovascular and pulmonary disease. Cold exposure causes lung inflammation, pulmonary hypertension (PH), and right ventricle hypertrophy, but there is no effective therapy because of unknown mechanism. Here, we investigated whether RNA interference silencing of tumor necrosis factor (TNF)-α decreases cold-induced macrophage infiltration, PH, and pulmonary arterial (PA) remodeling. We found for the first time that continuous cold exposure (5.0°C) increased TNF-α expression and macrophage infiltration in the lungs and PAs right before elevation of right ventricle systolic pressure. The in vivo RNA interference silencing of TNF-α was achieved by intravenous delivery of recombinant AAV-2 carrying TNF-α short hairpin small-interfering RNA 24 hours before cold exposure. Cold exposure for 8 weeks significantly increased right ventricle pressure compared with the warm controls (40.19±4.9 versus 22.9±1.1 mm Hg), indicating that cold exposure caused PH. Cold exposure increased TNF-α, interleukin-6, and phosphodiesterase-1C protein expression in the lungs and PAs and increased lung macrophage infiltration. Notably, TNF-α short hairpin small-interfering RNA prevented the cold-induced increases in TNF-α, interleukin-6, and phosphodiesterase-1C protein expression, abolished lung macrophage infiltration, and attenuated PH (26.28±1.6 mm Hg), PA remodeling, and right ventricle hypertrophy. PA smooth muscle cells isolated from cold-exposed animals showed increased intracellular superoxide levels and cell proliferation along with decreased intracellular cGMP. These cold-induced changes were prevented by TNF-α short hairpin small-interfering RNA. In conclusions, upregulation of TNF-α played a critical role in the pathogenesis of cold-induced PH by promoting pulmonary macrophage infiltration and inflammation. AAV delivery of TNF-α short hairpin small-interfering RNA may be an effective therapeutic approach for cold-induced PH and PA remodeling. © 2014 American Heart Association, Inc.

  11. Chitosan nanoparticle carrying small interfering RNA to platelet-derived growth factor B mRNA inhibits proliferation of smooth muscle cells in rabbit injured arteries.

    PubMed

    Xia, He; Jun, Ji; Wen-Ping, Ling; Yi-Feng, Pan; Xiao-Ling, Chen

    2013-10-01

    The purpose of this study was to elucidate the transfection of chitosan nanoparticle carrying small interfering RNA against platelet-derived growth factor B (PDGF-B) to inhibit the expression of PDGF-B mRNA and proliferation of smooth muscle cells. A rabbit iliac artery injury model was constructed. A small interfering RNA (siRNA) against PDGF-B mRNA expression vector was constructed and packaged by chitosan nanoparticle to transfect into the vascular smooth muscle cells (vSMCs) of balloon catheter-injured rabbit iliac artery wall, using a therapeutic ultrasound for the gene delivery. The experiment was divided into two groups: experimental group, denudation and nano-PDGF-B siRNA treated, and only single denudation as control. Effects of the siRNA on the expressions of proliferating cell nuclear antigen (PCNA) and PDGF-B mRNA by vSMCs and the proliferation of vSMCs were observed with the methods of routine pathological, immunohistochemical staining, in situ hybridization and morphometry. The nano siRNA against PDGF-B was successfully transfected. The nano siRNA significantly inhibited the expressions of PCNA and PDGF-B mRNA in intimal vSMCs. The local intimal thickness and area were also reduced remarkably. In conclusion, transfection of chitosan nanoparticle carrying siRNA against PDGF-B mRNA could inhibit proliferation of vSMCs in the rabbit iliac artery injury model. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Bcl-XL small interfering RNA suppresses the proliferation of 5-fluorouracil-resistant human colon cancer cells.

    PubMed

    Zhu, Hongbo; Guo, Wei; Zhang, Lidong; Davis, John J; Teraishi, Fuminori; Wu, Shuhong; Cao, Xiaobo; Daniel, Jonathan; Smythe, W Roy; Fang, Bingliang

    2005-03-01

    5-Fluorouracil (5-FU) is commonly used to treat human colon cancers but resistance to this compound is frequently observed in clinics. To characterize mechanisms of resistance to 5-FU and to develop new strategies for overcoming it, we established two cell lines that were resistant to 5-FU but not other chemotherapeutic agents from parental 5-FU-sensitive cell lines. Western blot analysis revealed that these resistant cells overexpressed the proteins Bcl-XL, Bcl-Xs, and Bik, and further data showed that the cells were resistant to 5-FU-induced DNA damage and cell cycle disorder. However, in parental cells, enforced expression of Bcl-XL protein provided only limited protection from 5-FU-induced apoptosis and overexpression of Bcl-XL protein did not affect 5-FU-induced DNA damage or cell cycle changes; these findings suggested that overexpression of Bcl-XL protein was not the major contributor to 5-FU resistance in any of our cells lines. Even so, knockdown of Bcl-XL protein expression by Bcl-XL-specific small interfering RNA could inhibit proliferation more effectively in 5-FU-resistant cells than in 5-FU-sensitive cells, and the combination of Bcl-XL-specific small interfering RNA and 5-FU had additive effect on the inhibition of 5-FU-resistant cells. These results suggest that down-regulation of Bcl-XL protein expression might provide a new treatment strategy for human 5-FU-resistant colon cancer therapy.

  13. Improving Small Interfering RNA Delivery In Vivo Through Lipid Conjugation.

    PubMed

    Osborn, Maire F; Khvorova, Anastasia

    2018-05-10

    RNA interference (RNAi)-based therapeutics are approaching clinical approval for genetically defined diseases. Current clinical success is a result of significant innovations in the development of chemical architectures that support sustained, multi-month efficacy in vivo following a single administration. Conjugate-mediated delivery has established itself as the most promising platform for safe and targeted small interfering RNA (siRNA) delivery. Lipophilic conjugates represent a major class of modifications that improve siRNA pharmacokinetics and enable efficacy in a broad range of tissues. Here, we review current literature and define key features and limitations of this approach for in vivo modulation of gene expression.

  14. Incorporation of osteogenic and angiogenic small interfering RNAs into chitosan sponge for bone tissue engineering

    PubMed Central

    Jia, Sen; Yang, Xinjie; Song, Wen; Wang, Lei; Fang, Kaixiu; Hu, Zhiqiang; Yang, Zihui; Shan, Chun; Lei, Delin; Lu, Bin

    2014-01-01

    Engineered bone substitutes are being extensively explored in response to growing demand. However, the angiogenesis that occurs during bone formation is often overlooked in scaffold design. In this novel study, we incorporated two small interfering RNAs (siRNAs), ie, small interfering RNA targets casein kinase 2 interaction protein 1 (siCkip-1) and small interfering RNA targets soluble VEGF receptor 1 (siFlt-1), which can promote osteogenesis and angiogenesis, into a chitosan sponge. This scaffold could maintain siRNAs for over 2 weeks in neutral phosphate-buffered saline and degraded rapidly in the presence of lysozyme. The chitosan sponge with siCkip-1 and siFlt-1 in vitro bioactivity was investigated using mesenchymal stem cells. Target genes were significantly suppressed, and osteocalcin, alkaline phosphatase, and vascular endothelial growth factor were significantly upregulated. Alizarin Red staining revealed that mineralization of the extracellular matrix was markedly enhanced by dual transfection. Further analysis by immunofluorescence confirmed that the siRNA-modified scaffold simultaneously improved the expression of osteocalcin and von Willebrand factor. In vivo testing in a skull critical-size defect model showed marked bone regeneration in rats treated with siCkip-1 and siFlt-1. In conclusion, chitosan sponge containing osteogenic and angiogenic siRNAs may be used as a scaffold for bone regeneration. The dual siRNA concept may also be useful in the biofunctionalization of other materials. PMID:25429217

  15. Ex vivo pretreatment of human vessels with siRNA nanoparticles provides protein silencing in endothelial cells.

    PubMed

    Cui, Jiajia; Qin, Lingfeng; Zhang, Junwei; Abrahimi, Parwiz; Li, Hong; Li, Guangxin; Tietjen, Gregory T; Tellides, George; Pober, Jordan S; Mark Saltzman, W

    2017-08-04

    Human endothelial cells are initiators and targets of the rejection response. Pre-operative modification of endothelial cells by small interfering RNA transfection could shape the nature of the host response post-transplantation. Ablation of endothelial cell class II major histocompatibility complex molecules by small interfering RNA targeting of class II transactivator can reduce the capacity of human endothelial cells to recruit and activate alloreactive T cells. Here, we report the development of small interfering RNA-releasing poly(amine-co-ester) nanoparticles, distinguished by their high content of a hydrophobic lactone. We show that a single transfection of small interfering RNA targeting class II transactivator attenuates major histocompatibility complex class II expression on endothelial cells for at least 4 to 6 weeks after transplantation into immunodeficient mouse hosts. Furthermore, silencing of major histocompatibility complex class II reduces allogeneic T-cell responses in vitro and in vivo. These data suggest that poly(amine-co-ester) nanoparticles, potentially administered during ex vivo normothermic machine perfusion of human organs, could be used to modify endothelial cells with a sustained effect after transplantation.The use of gene silencing techniques in the treatment of post-transplantation host rejection is not long lasting and can have systemic effects. Here, the authors utilize a nanocarrier for siRNA for treatment of arteries ex vivo prior to implantation subsequently attenuating immune reaction in vivo.

  16. The Expression and Significance of Neuronal Iconic Proteins in Podocytes

    PubMed Central

    Sun, Yu; Zhang, Hongxia; Hu, Ruimin; Sun, Jianyong; Mao, Xing; Zhao, Zhonghua; Chen, Qi; Zhang, Zhigang

    2014-01-01

    Growing evidence suggests that there are many common cell biological features shared by neurons and podocytes; however, the mechanism of podocyte foot process formation remains unclear. Comparing the mechanisms of process formation between two cell types should provide useful guidance from the progress of neuron research. Studies have shown that some mature proteins of podocytes, such as podocin, nephrin, and synaptopodin, were also expressed in neurons. In this study, using cell biological experiments and immunohistochemical techniques, we showed that some neuronal iconic molecules, such as Neuron-specific enolase, nestin and Neuron-specific nuclear protein, were also expressed in podocytes. We further inhibited the expression of Neuron-specific enolase, nestin, synaptopodin and Ubiquitin carboxy terminal hydrolase-1 by Small interfering RNA in cultured mouse podocytes and observed the significant morphological changes in treated podocytes. When podocytes were treated with Adriamycin, the protein expression of Neuron-specific enolase, nestin, synaptopodin and Ubiquitin carboxy terminal hydrolase-1 decreased over time. Meanwhile, the morphological changes in the podocytes were consistent with results of the Small interfering RNA treatment of these proteins. The data demonstrated that neuronal iconic proteins play important roles in maintaining and regulating the formation and function of podocyte processes. PMID:24699703

  17. A positive circuit of VEGF increases Glut-1 expression by increasing HIF-1α gene expression in human retinal endothelial cells.

    PubMed

    Choi, Yoon Kyung

    2017-12-01

    Treatment of human retinal microvascular endothelial cells (HRMECs) with vascular endothelial growth factor 165 (VEGF 165 ) increased hypoxia-inducible factor 1α (HIF-1α), VEGF, and glucose transporter 1 (Glut-1) mRNA expression and Glut-1 protein localization to the membrane. In contrast, treatment of human retinal pigment epithelium cells with VEGF 165 did not induce HIF-1α, VEGF, and Glut-1 gene expression. Microvascular endothelial cells are surrounded by astrocytic end feet in the retina. Astrocyte-derived A-kinase anchor protein 12 overexpression during hypoxia downregulated VEGF secretion, and this conditioned medium reduced VEGF and Glut-1 expression in HRMECs, suggesting that communications between astrocytes and endothelial cells may be the determinants of the blood vessel network. In HRMECs, HIF-1α small interfering RNA transfection blocked the VEGF 165 -mediated increase in VEGF and Glut-1 gene expression. Inhibition of protein kinase C (PKC) with inhibitor GF109203X or with a small interfering RNA targeting PKCζ attenuated the VEGF 165 -induced Glut-1 protein expression and VEGF and Glut-1 mRNA expression. In addition, results of an immunoprecipitation assay imply an interaction between VEGF receptor 2 (VEGFR2) and PKCζ in HRMECs. Therefore, VEGF secretion by hypoxic astrocytes may upregulate HIF-1α gene expression, inducing VEGF and Glut-1 expression via the VEGFR2-PKCζ axis in HRMECs.

  18. The MicroRNA390/TRANS-ACTING SHORT INTERFERING RNA3 Module Mediates Lateral Root Growth under Salt Stress via the Auxin Pathway.

    PubMed

    He, Fu; Xu, Changzheng; Fu, Xiaokang; Shen, Yun; Guo, Li; Leng, Mi; Luo, Keming

    2018-06-01

    Salt-induced developmental plasticity in a plant root system strongly depends on auxin signaling. However, the molecular events underlying this process are poorly understood. MicroRNA390 ( miR390 ), trans-actin small interfering RNA s ( tasiRNA s), and AUXIN RESPONSE FACTORs ( ARFs ) form a regulatory module involved in controlling lateral root (LR) growth. Here, we found that miR390 expression was strongly induced by exposure to salt during LR formation in poplar ( Populus spp.) plants. miR390 overexpression stimulated LR development and increased salt tolerance, whereas miR390 knockdown caused by a short tandem target mimic repressed LR growth and compromised salt resistance. ARF3.1 , ARF3.2 , and ARF4 expression was inhibited significantly by the presence of salt, and transcript abundance was decreased dramatically in the miR390 -overexpressing line but increased in the miR390 -knockdown line. Constitutive expression of ARF4m harboring mutated trans-acting small interfering ARF -binding sites removed the salt resistance of the miR390 overexpressors. miR390 positively regulated auxin signaling in LRs subjected to salt, but ARF4 inhibited auxin signaling. Salinity stabilized the poplar Aux/IAA repressor INDOLE-3-ACETIC ACID17.1, and overexpression of an auxin/salt-resistant form of this repressor suppressed LR growth in miR390 -overexpressing and ARF4 -RNA interfering lines in the presence of salt. Thus, the miR390/TAS3/ARFs module is a key regulator, via modulating the auxin pathway, of LR growth in poplar subjected to salt stress. © 2018 American Society of Plant Biologists. All rights reserved.

  19. RISC-Target Interaction: Cleavage and Translational Suppression

    PubMed Central

    van den Berg, Arjen; Mols, Johann; Han, Jiahuai

    2008-01-01

    Summary Small RNA molecules have been known and utilized to suppress gene expression for more than a decade. The discovery that these small RNA molecules are endogenously expressed in many organisms and have a critical role in controlling gene expression have led to the arising of a whole new field of research. Termed small interfering RNA (siRNA) or microRNA (miRNA) these ~22 nt RNA molecules have the capability to suppress gene expression through various mechanisms once they are incorporated in the multi-protein RNA-Induced Silencing Complex (RISC) and interact with their target mRNA. This review introduces siRNAs and microRNAs in a historical perspective and focuses on the key molecules in RISC, structural properties and mechanisms underlying the process of small RNA regulated post-transcriptional suppression of gene expression. PMID:18692607

  20. Targeting Germinal Matrix Hemorrhage-Induced Overexpression of Sodium-Coupled Bicarbonate Exchanger Reduces Posthemorrhagic Hydrocephalus Formation in Neonatal Rats.

    PubMed

    Li, Qian; Ding, Yan; Krafft, Paul; Wan, Weifeng; Yan, Feng; Wu, Guangyong; Zhang, Yixin; Zhan, Qunling; Zhang, John H

    2018-01-31

    Germinal matrix hemorrhage (GMH) is a leading cause of mortality and lifelong morbidity in preterm infants. Posthemorrhagic hydrocephalus (PHH) is a common complication of GMH. A sodium-coupled bicarbonate exchanger (NCBE) encoded by solute carrier family 4 member 10 gene is expressed on the choroid plexus basolateral membrane and may play a role in cerebrospinal fluid production and the development of PHH. Following GMH, iron degraded from hemoglobin has been linked to PHH. Choroid plexus epithelial cells also contain iron-responsive element-binding proteins (IRPs), IRP1, and IRP2 that bind to mRNA iron-responsive elements. The present study aims to resolve the following issues: (1) whether the expression of NCBE is regulated by IRPs; (2) whether NCBE regulates the formation of GMH-induced hydrocephalus; and (3) whether inhibition of NCBE reduces PHH development. GMH model was established in P7 rat pups by injecting bacterial collagenase into the right ganglionic eminence. Another group received iron trichloride injections instead of collagenase. Deferoxamine was administered intraperitoneally for 3 consecutive days after GMH/iron trichloride. Solute carrier family 4 member 10 small interfering RNA or scrambled small interfering RNA was administered by intracerebroventricular injection 24 hours before GMH and followed with an injection every 7 days over 21 days. NCBE expression increased while IRP2 expression decreased after GMH/iron trichloride. Deferoxamine ameliorated both the GMH-induced and iron trichloride-induced decrease of IRP2 and decreased NCBE expressions. Deferoxamine and solute carrier family 4 member 10 small interfering RNA improved cognitive and motor functions at 21 to 28 days post GMH and reduced cerebrospinal fluid production as well as the degree of hydrocephalus at 28 days after GMH. Targeting iron-induced overexpression of NCBE may be a translatable therapeutic strategy for the treatment of PHH following GMH. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  1. Robust Protection against Highly Virulent Foot-and-Mouth Disease Virus in Swine by Combination Treatment with Recombinant Adenoviruses Expressing Porcine Alpha and Gamma Interferons and Multiple Small Interfering RNAs

    PubMed Central

    Park, Jong-Hyeon; Lee, Kwang-Nyeong; Kim, Se-Kyung; You, Su-Hwa; Kim, Taeseong; Tark, Dongseob; Lee, Hyang-Sim; Seo, Min-Goo; Kim, Byounghan

    2015-01-01

    ABSTRACT Because the currently available vaccines against foot-and-mouth disease (FMD) provide no protection until 4 to 7 days postvaccination, the only alternative method to halt the spread of the FMD virus (FMDV) during outbreaks is the application of antiviral agents. Combination treatment strategies have been used to enhance the efficacy of antiviral agents, and such strategies may be advantageous in overcoming viral mechanisms of resistance to antiviral treatments. We have developed recombinant adenoviruses (Ads) for the simultaneous expression of porcine alpha and gamma interferons (Ad-porcine IFN-αγ) as well as 3 small interfering RNAs (Ad-3siRNA) targeting FMDV mRNAs encoding nonstructural proteins. The antiviral effects of Ad-porcine IFN-αγ and Ad-3siRNA expression were tested in combination in porcine cells, suckling mice, and swine. We observed enhanced antiviral effects in porcine cells and mice as well as robust protection against the highly pathogenic strain O/Andong/SKR/2010 and increased expression of cytokines in swine following combination treatment. In addition, we showed that combination treatment was effective against all serotypes of FMDV. Therefore, we suggest that the combined treatment with Ad-porcine IFN-αγ and Ad-3siRNA may offer fast-acting antiviral protection and be used with a vaccine during the period that the vaccine does not provide protection against FMD. IMPORTANCE The use of current foot-and-mouth disease (FMD) vaccines to induce rapid protection provides limited effectiveness because the protection does not become effective until a minimum of 4 days after vaccination. Therefore, during outbreaks antiviral agents remain the only available treatment to confer rapid protection and reduce the spread of foot-and-mouth disease virus (FMDV) in livestock until vaccine-induced protective immunity can become effective. Interferons (IFNs) and small interfering RNAs (siRNAs) have been reported to be effective antiviral agents against FMDV, although the virus has associated mechanisms of resistance to type I interferons and siRNAs. We have developed recombinant adenoviruses for the simultaneous expression of porcine alpha and gamma interferons (Ad-porcine IFN-αγ) as well as 3 small interfering RNAs (Ad-3siRNA) to enhance the inhibitory effects of these antiviral agents observed in previous studies. Here, we show enhanced antiviral effects against FMDV by combination treatment with Ad-porcine IFN-αγ and Ad-3siRNA to overcome the mechanisms of resistance of FMDV in swine. PMID:26041279

  2. Assessing delivery and quantifying efficacy of small interfering ribonucleic acid therapeutics in the skin using a dual-axis confocal microscope

    NASA Astrophysics Data System (ADS)

    Ra, Hyejun; Gonzalez-Gonzalez, Emilio; Smith, Bryan R.; Gambhir, Sanjiv S.; Kino, Gordon S.; Solgaard, Olav; Kaspar, Roger L.; Contag, Christopher H.

    2010-05-01

    Transgenic reporter mice and advances in imaging instrumentation are enabling real-time visualization of cellular mechanisms in living subjects and accelerating the development of novel therapies. Innovative confocal microscope designs are improving their utility for microscopic imaging of fluorescent reporters in living animals. We develop dual-axis confocal (DAC) microscopes for such in vivo studies and create mouse models where fluorescent proteins are expressed in the skin for the purpose of advancing skin therapeutics and transdermal delivery tools. Three-dimensional image volumes, through the different skin compartments of the epidermis and dermis, can be acquired in several seconds with the DAC microscope in living mice, and are comparable to histologic analyses of reporter protein expression patterns in skin sections. Intravital imaging with the DAC microscope further enables visualization of green fluorescent protein (GFP) reporter gene expression in the skin over time, and quantification of transdermal delivery of small interfering RNA (siRNA) and therapeutic efficacy. Visualization of transdermal delivery of nucleic acids will play an important role in the development of innovative strategies for treating skin pathologies.

  3. The influence of cyclooxygenase-1 expression on the efficacy of cyclooxygenase-2 inhibition in head and neck squamous cell carcinoma cell lines.

    PubMed

    Park, Seok-Woo; Kim, Hyo-Sun; Choi, Myung-Sun; Kim, Ji-Eun; Jeong, Woo-Jin; Heo, Dae-Seog; Sung, Myung-Whun

    2011-06-01

    We have previously observed that cyclooxygenase-2 (COX-2) inhibition blocked the production of vascular endothelial growth factor (VEGF) in some head and neck squamous cell carcinoma (HNSCC) cells. However, as some HNSCC cells showed little response to COX-2 inhibition, although they highly expressed COX-2 and prostaglandin E2, we set out to elucidate what made this difference between them and focused on the possibility of the differential expression of COX-1. In western blotting, we found that COX-1 was expressed in SNU-1041 and SNU-1066, but not in SNU-1076 and PCI-50. Only in those cell lines without expression of COX-1 was VEGF production blocked meaningfully by small interfering RNA of COX-2. However, by cotreating with small interfering RNAs of COX-2 and COX-1, VEGF synthesis and prostaglandin E2 were inhibited in SNU-1041 and SNU-1066, similarly in SNU-1076 and PCI-50 with high expression of only COX-2. We also found that there was no difference in the pattern of prostaglandin synthesis between COX-2 and COX-1 through enzyme-linked immunosorbent assay for various prostaglandins. Our study suggests that, as COX-1 and COX-2 express and affect VEGF synthesis in HNSCC cells, we should check COX-1 expression in investigations on cancer treatment by inhibiting COX-2-induced prostaglandins.

  4. Downregulation of SS18-SSX1 expression in synovial sarcoma by small interfering RNA enhances the focal adhesion pathway and inhibits anchorage-independent growth in vitro and tumor growth in vivo.

    PubMed

    Takenaka, Satoshi; Naka, Norifumi; Araki, Nobuhito; Hashimoto, Nobuyuki; Ueda, Takafumi; Yoshioka, Kiyoko; Yoshikawa, Hideki; Itoh, Kazuyuki

    2010-04-01

    Synovial sarcoma (SS) is an aggressive soft-tissue malignancy characterized by a unique t(X;18) translocation resulting in expression of SS18-SSX fusion protein. In order to investigate the biological function of this fusion protein and to develop a novel therapeutic option, we examined downregulation of SS18-SSX1 expression by small interfering RNA targeting SS18-SSX1 in three human SS cell lines. Microarray analysis comparing SS18-SSX1-silenced cells with control cells in three SS cell lines showed that SS18-SSX1 mainly affected the focal adhesion pathway. In accord with the array data, silencing of SS18-SSX1 enhances adhesion to the extracellular matrix through the induction of expression of myosin light-chain kinase. Furthermore, the silencing of SS18-SSX1 inhibits anchorage-independent growth in vitro and systemic delivery of siRNA against SS18-SSX1 using a nanoparticle system inhibited tumor growth in a nude mouse xenograft model. Our results demonstrate that siRNA targeting of SS18-SSX1 has therapeutic potential for the treatment of SS.

  5. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors.

    PubMed

    Song, Erwei; Zhu, Pengcheng; Lee, Sang-Kyung; Chowdhury, Dipanjan; Kussman, Steven; Dykxhoorn, Derek M; Feng, Yi; Palliser, Deborah; Weiner, David B; Shankar, Premlata; Marasco, Wayne A; Lieberman, Judy

    2005-06-01

    Delivery of small interfering RNAs (siRNAs) into cells is a key obstacle to their therapeutic application. We designed a protamine-antibody fusion protein to deliver siRNA to HIV-infected or envelope-transfected cells. The fusion protein (F105-P) was designed with the protamine coding sequence linked to the C terminus of the heavy chain Fab fragment of an HIV-1 envelope antibody. siRNAs bound to F105-P induced silencing only in cells expressing HIV-1 envelope. Additionally, siRNAs targeted against the HIV-1 capsid gene gag, inhibited HIV replication in hard-to-transfect, HIV-infected primary T cells. Intratumoral or intravenous injection of F105-P-complexed siRNAs into mice targeted HIV envelope-expressing B16 melanoma cells, but not normal tissue or envelope-negative B16 cells; injection of F105-P with siRNAs targeting c-myc, MDM2 and VEGF inhibited envelope-expressing subcutaneous B16 tumors. Furthermore, an ErbB2 single-chain antibody fused with protamine delivered siRNAs specifically into ErbB2-expressing cancer cells. This study demonstrates the potential for systemic, cell-type specific, antibody-mediated siRNA delivery.

  6. Endogenous small RNAs and antibacterial immunity in plants.

    PubMed

    Jin, Hailing

    2008-08-06

    Small RNAs are non-coding regulatory RNA molecules that control gene expression by mediating mRNA degradation, translational inhibition, or chromatin modification. Virus-derived small RNAs induce silencing of viral RNAs and are essential for antiviral defense in both animal and plant systems. The role of host endogenous small RNAs on antibacterial immunity has only recently been recognized. Host disease resistance and defense responses are achieved by activation and repression of a large array of genes. Certain endogenous small RNAs in plants, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are induced or repressed in response to pathogen attack and subsequently regulate the expression of genes involved in disease resistance and defense responses by mediating transcriptional or post-transcriptional gene silencing. Thus, these small RNAs play an important role in gene expression reprogramming in plant disease resistance and defense responses. This review focuses on the recent findings of plant endogenous small RNAs in antibacterial immunity.

  7. [Atelocollagen-mediated small interfering RNA delivery for effective gene silencing in rat vein grafts].

    PubMed

    Qiu, Xue-feng; Dong, Nian-guo; Sun, Zong-quan; Su, Wei; Shi, Jia-wei

    2009-07-01

    To evaluate the efficacy of using small interfering RNA targeting TF as a therapy for vein graft failure. External jugular vein to carotid artery interposition vein grafts, which were applied to a low flow condition, were made in 120 Sprague-Dawley rats weighing 260 to 300 g. These rats were randomly divided into 4 groups, 30 rats each group. Group A was atelocollagen-TF Stealth Select RNAi group. Group B was atelocollagen-TF Stealth RNAi group. Group C was atelocollagen group. Group D was control group. Small interfering RNA mixed with atelocollagen was administrated to the external wall of grafted veins. The TF protein expression of vein grafts was analyzed by Western blot at 1, 3, 7, 14, and 28 d postoperatively, and by immunochemistry at 3 d postoperatively. The proliferation index was determined at 14 d postoperatively. Neointimal hyperplasia was evaluated at 28 d postoperatively. BLOCK-iT fluorescent oligo was used to confirm its stability and successful transfer into the vein graft wall at 3 and 7 d postoperatively for another group (n=12). Fluorescence of BLOCK-iT fluorescent oligo could be detected in the graft wall even at 7 d postoperatively. Knockdown of the TF expression was achieved by perivascular application of siRNA using atelocollagen. Compared with control group, the intima thickness at 28 d after grafting was significantly reduced (P < 0.05). This phenomenon was preceded by significant reduction of cell proliferation in siRNA-treated grafts at 14 d postoperatively (P < 0.05). The expression of TF in vein grafts can be effectively inhibited by specific siRNAs using a atelocollagen-based nonviral delivery approach in vivo, so that the neointimal thickening can be prevented. Transplants;

  8. RNAi control of aflatoxins in peanut plants, a multifactorial system

    USDA-ARS?s Scientific Manuscript database

    RNA-interference (RNAi)-mediated control of aflatoxin contamination in peanut plants is a multifactorial and hyper variable system. The use of RNAi biotechnology to silence single genes in plants has inherently high-variability among transgenic events. Also the level of expression of small interfe...

  9. Small RNA profiling in two Brassica napus cultivars identifies microRNAs with oil production- and development-correlated expression and new small RNA classes.

    PubMed

    Zhao, Ying-Tao; Wang, Meng; Fu, San-Xiong; Yang, Wei-Cai; Qi, Cun-Kou; Wang, Xiu-Jie

    2012-02-01

    MicroRNAs (miRNAs) and small interfering RNAs are important regulators of plant development and seed formation, yet their population and abundance in the oil crop Brassica napus are still not well understood, especially at different developmental stages and among cultivars with varied seed oil contents. Here, we systematically analyzed the small RNA expression profiles of Brassica napus seeds at early embryonic developmental stages in high-oil-content and low-oil-content B. napus cultivars, both cultured in two environments. A total of 50 conserved miRNAs and 9 new miRNAs were identified, together with some new miRNA targets. Expression analysis revealed some miRNAs with varied expression levels in different seed oil content cultivars or at different embryonic developmental stages. A large number of 23-nucleotide small RNAs with specific nucleotide composition preferences were also identified, which may present new classes of functional small RNAs.

  10. Expression of macrophage migration inhibitory factor in footpad skin lesions with diabetic neuropathy.

    PubMed

    Up Noh, Sun; Lee, Won-Young; Kim, Won-Serk; Lee, Yong-Taek; Jae Yoon, Kyung

    2018-01-01

    Background Diabetic neuropathy originating in distal lower extremities is associated with pain early in the disease course, overwhelming in the feet. However, the pathogenesis of diabetic neuropathy remains unclear. Macrophage migration inhibitory factor has been implicated in the onset of neuropathic pain and the development of diabetes. Objective of this study was to observe pain syndromes elicited in the footpad of diabetic neuropathy rat model and to assess the contributory role of migration inhibitory factor in the pathogenesis of diabetic neuropathy. Methods Diabetic neuropathy was made in Sprague Dawley rats by streptozotocin. Pain threshold was evaluated using von Frey monofilaments for 24 weeks. On comparable experiment time after streptozotocin injection, all footpads were prepared for following procedures; glutathione assay, terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling staining, immunohistochemistry staining, real-time reverse transcription polymerase chain reaction, and Western blot. Additionally, human HaCaT skin keratinocytes were treated with methylglyoxal, transfected with migration inhibitory factor/control small interfering RNA, and prepared for real-time reverse transcription polymerase chain reaction and Western blot. Results As compared to sham group, pain threshold was significantly reduced in diabetic neuropathy group, and glutathione was decreased in footpad skin, simultaneously, cell death was increased. Over-expression of migration inhibitory factor, accompanied by low expression of glyoxalase-I and intraepidermal nerve fibers, was shown on the footpad skin lesions of diabetic neuropathy. But, there was no significance in expression of neurotransmitters and inflammatory mediators such as transient receptor potential vanilloid 1, mas-related G protein coupled receptor D, nuclear factor kappa B, tumor necrosis factor-alpha, and interleukin-6 between diabetic neuropathy group and sham group. Intriguingly, small interfering RNA-transfected knockdown of the migration inhibitory factor gene in methylglyoxal-treated skin keratinocytes increased expression of glyoxalase-I and intraepidermal nerve fibers in comparison with control small interfering RNA-transfected cells, which was decreased by induction of methylglyoxal. Conclusions Our findings suggest that migration inhibitory factor can aggravate diabetic neuropathy by suppressing glyoxalase-I and intraepidermal nerve fibers on the footpad skin lesions and provoke pain. Taken together, migration inhibitory factor might offer a pharmacological approach to alleviate pain syndromes in diabetic neuropathy.

  11. Gene silencing in primary and metastatic tumors by small interfering RNA delivery in mice: quantitative analysis using melanoma cells expressing firefly and sea pansy luciferases.

    PubMed

    Takahashi, Yuki; Nishikawa, Makiya; Kobayashi, Naoki; Takakura, Yoshinobu

    2005-07-20

    Silencing of oncogenes or other genes contributing to tumor malignancy or progression by RNA interference (RNAi) offers a promising approach to treating tumor patients. To achieve RNAi-based tumor therapy, a small interfering RNA (siRNA) or siRNA-expressing vector needs to be delivered to tumor cells, but little information about its in vivo delivery has been reported. In this study, we examined whether the expression of the target gene in tumor cells can be suppressed by the delivery of RNAi effectors to primary and metastatic tumor cells. To quantitatively evaluate the RNAi effects in tumor cells, mouse melanoma B16-BL6 cells were stably transfected with both firefly (a model target gene) and sea pansy (an internal standard gene) luciferase genes to obtain B16-BL6/dual Luc cells. The target gene expression in subcutaneous primary tumors of B16-BL6/dual Luc cells was significantly suppressed by direct injection of the RNAi effectors followed by electroporation. The expression in metastatic hepatic tumors was also significantly reduced by an intravenous injection of either RNAi effector by the hydrodynamics-based procedure. These results indicate that the both RNAi effectors have a potential to silence target gene in tumor cells in vivo when successfully delivered to tumor cells.

  12. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs.

    PubMed

    Khan, Aly A; Betel, Doron; Miller, Martin L; Sander, Chris; Leslie, Christina S; Marks, Debora S

    2009-06-01

    Transfection of small RNAs (such as small interfering RNAs (siRNAs) and microRNAs (miRNAs)) into cells typically lowers expression of many genes. Unexpectedly, increased expression of genes also occurs. We investigated whether this upregulation results from a saturation effect--that is, competition among the transfected small RNAs and the endogenous pool of miRNAs for the intracellular machinery that processes small RNAs. To test this hypothesis, we analyzed genome-wide transcript responses from 151 published transfection experiments in seven different human cell types. We show that targets of endogenous miRNAs are expressed at significantly higher levels after transfection, consistent with impaired effectiveness of endogenous miRNA repression. This effect exhibited concentration and temporal dependence. Notably, the profile of endogenous miRNAs can be largely inferred by correlating miRNA sites with gene expression changes after transfections. The competition and saturation effects have practical implications for miRNA target prediction, the design of siRNA and short hairpin RNA (shRNA) genomic screens and siRNA therapeutics.

  13. Plum pox virus (PPV) genome expression in genetically engineered RNAi plants

    USDA-ARS?s Scientific Manuscript database

    An important approach to controlling sharka disease caused by Plum pox virus (PPV) is the development of PPV resistant plants using small interfering RNAs (siRNA) technology. In order to evaluate siRNA induced gene silencing, we studied, based on knowledge of the PPV genome sequence, virus genome t...

  14. A Glu-urea-Lys Ligand-conjugated Lipid Nanoparticle/siRNA System Inhibits Androgen Receptor Expression In Vivo

    PubMed Central

    Lee, Justin B; Zhang, Kaixin; Tam, Yuen Yi C; Quick, Joslyn; Tam, Ying K; Lin, Paulo JC; Chen, Sam; Liu, Yan; Nair, Jayaprakash K; Zlatev, Ivan; Rajeev, Kallanthottathil G; Manoharan, Muthiah; Rennie, Paul S; Cullis, Pieter R

    2016-01-01

    The androgen receptor plays a critical role in the progression of prostate cancer. Here, we describe targeting the prostate-specific membrane antigen using a lipid nanoparticle formulation containing small interfering RNA designed to silence expression of the messenger RNA encoding the androgen receptor. Specifically, a Glu-urea-Lys PSMA-targeting ligand was incorporated into the lipid nanoparticle system formulated with a long alkyl chain polyethylene glycol-lipid to enhance accumulation at tumor sites and facilitate intracellular uptake into tumor cells following systemic administration. Through these features, and by using a structurally refined cationic lipid and an optimized small interfering RNA payload, a lipid nanoparticle system with improved potency and significant therapeutic potential against prostate cancer and potentially other solid tumors was developed. Decreases in serum prostate-specific antigen, tumor cellular proliferation, and androgen receptor levels were observed in a mouse xenograft model following intravenous injection. These results support the potential clinical utility of a prostate-specific membrane antigen–targeted lipid nanoparticle system to silence the androgen receptor in advanced prostate cancer. PMID:28131285

  15. Inhibition of West Nile Virus replication by retrovirus-delivered small interfering RNA in human neuroblastoma cells.

    PubMed

    Yang, Yongbo; Wu, Chengxiang; Wu, Jianguo; Nerurkar, Vivek R; Yanagihara, Richard; Lu, Yuanan

    2008-05-01

    West Nile virus (WNV) has been responsible for the largest outbreaks of arboviral encephalitis in U.S. history. No specific drug is currently available for the effective treatment of WNV infection. To exploit RNA interference as a potential therapeutic approach, a Moloney murine leukemia virus-based retrovirus vector was used to effectively deliver WNV-specific small interfering RNA (siRNA) into human neuroblastoma HTB-11 cells. Viral plaque assays demonstrated that transduced cells were significantly refractory to WNV replication, as compared to untransduced control cells (P < 0.05), which correlated with the reduced expression of target viral genes and respective viral proteins. Therefore, retrovirus-mediated delivery of siRNA for gene silencing can be used to study the specific functions of viral genes associated with replication and may have potential therapeutic applications.

  16. Trans-acting small interfering RNA4: key to nutraceutical synthesis in 1 grape development?

    PubMed Central

    Rock, Christopher D.

    2013-01-01

    The facility and versatility of microRNAs (miRNAs) to evolve and change likely underlies how they have become dominant constituents of eukaryotic genomes. In this opinion article I propose that trans-acting small interfering RNA gene 4 (TAS4) evolution may be important for biosynthesis of polyphenolics, arbuscular symbiosis, and bacterial pathogen etiologies. Expression-based and phylogenetic evidence shows that TAS4 targets two novel grape (Vitis vinifera L.) MYB transcription factors (VvMYBA6, VvMYBA7) that spawn phased siRNAs and likely function in nutraceutical bioflavonoid biosynthesis and fruit development. Characterization of the molecular mechanisms of TAS4 control of plant development and integration into biotic and abiotic stress- and nutrient signaling regulatory networks has applicability to molecular breeding and development of strategies for engineering healthier foods. PMID:23993483

  17. Rapid and Efficient Isolation of High-Quality Small RNAs from Recalcitrant Plant Species Rich in Polyphenols and Polysaccharides

    PubMed Central

    Pu, Jinji; Guo, Jianrong; Fan, Zaifeng

    2014-01-01

    Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are important regulators of plant development and gene expression. The acquisition of high-quality small RNAs is the first step in the study of its expression and function analysis, yet the extraction method of small RNAs in recalcitrant plant tissues with various secondary metabolites is not well established, especially for tropical and subtropical plant species rich in polysaccharides and polyphenols. Here, we developed a simple and efficient method for high quality small RNAs extraction from recalcitrant plant species. Prior to RNA isolation, a precursory step with a CTAB-PVPP buffer system could efficiently remove compounds and secondary metabolites interfering with RNAs from homogenized lysates. Then, total RNAs were extracted by Trizol reagents followed by a differential precipitation of high-molecular-weight (HMW) RNAs using polyethylene glycol (PEG) 8000. Finally, small RNAs could be easily recovered from supernatant by ethanol precipitation without extra elimination steps. The isolated small RNAs from papaya showed high quality through a clear background on gel and a distinct northern blotting signal with miR159a probe, compared with other published protocols. Additionally, the small RNAs extracted from papaya were successfully used for validation of both predicted miRNAs and the putative conserved tasiARFs. Furthermore, the extraction method described here was also tested with several other subtropical and tropical plant tissues. The purity of the isolated small RNAs was sufficient for such applications as end-point stem-loop RT-PCR and northern blotting analysis, respectively. The simple and feasible extraction method reported here is expected to have excellent potential for isolation of small RNAs from recalcitrant plant tissues rich in polyphenols and polysaccharides. PMID:24787387

  18. Modulation of the response of prostate cancer cell lines to cisplatin treatment using small interfering RNA.

    PubMed

    Parra, Eduardo; Ferreira, Jorge

    2013-10-01

    Cisplatin is one of the most effective and widely used chemotherapeutic agents against several types of human cancers. However, the underlying mechanisms of action are not fully understood. We aimed to investigate the possible molecular mechanism(s) of acquired chemoresistance observed in prostate cancer cells treated with cisplatin. Human LNCaP cells (bearing wild-type p53) and PC-3 cells (lacking p53) were used. The expression levels of protein were determined by western blotting, and the mRNA levels were determined by reverse transcription-polymerase chain reaction (RT-PCR). Cell viability was measured by MTT assay, and the transcriptional effect of small interfering RNA (siRNA) was measured by luciferase reporter gene. We showed that cisplatin treatment increased JNK-1 and JNK-2 activity and expression in both LNCaP and PC-3 cells. In addition, the knockdown of JNK-1 expression by siRNA-JNK-1 or siRNA-JNK-2 significantly impaired the upregulation of AP-1 luciferase reporter gene, but failed to decrease the levels of AP-1 reporter gene expression induced by TPA treatment. Our observations indicate that JNK-1 and JNK-2 may be involved in the chemoresistance observed in prostate cancer cells treated with cisplatin and that blocking the stimulation of Jun kinase (JNK) signaling may be important for regulating the susceptibility to cisplatin of prostate cancer.

  19. The Initiation of Epigenetic Silencing of Active Transposable Elements Is Triggered by RDR6 and 21-22 Nucleotide Small Interfering RNAs1[W][OA

    PubMed Central

    Nuthikattu, Saivageethi; McCue, Andrea D.; Panda, Kaushik; Fultz, Dalen; DeFraia, Christopher; Thomas, Erica N.; Slotkin, R. Keith

    2013-01-01

    Transposable elements (TEs) are mobile fragments of DNA that are repressed in both plant and animal genomes through the epigenetic inheritance of repressed chromatin and expression states. The epigenetic silencing of TEs in plants is mediated by a process of RNA-directed DNA methylation (RdDM). Two pathways of RdDM have been identified: RNA Polymerase IV (Pol IV)-RdDM, which has been shown to be responsible for the de novo initiation, corrective reestablishment, and epigenetic maintenance of TE and/or transgene silencing; and RNA-dependent RNA Polymerase6 (RDR6)-RdDM, which was recently identified as necessary for maintaining repression for a few TEs. We have further characterized RDR6-RdDM using a genome-wide search to identify TEs that generate RDR6-dependent small interfering RNAs. We have determined that TEs only produce RDR6-dependent small interfering RNAs when transcriptionally active, and we have experimentally identified two TE subfamilies as direct targets of RDR6-RdDM. We used these TEs to test the function of RDR6-RdDM in assays for the de novo initiation, corrective reestablishment, and maintenance of TE silencing. We found that RDR6-RdDM plays no role in maintaining TE silencing. Rather, we found that RDR6 and Pol IV are two independent entry points into RdDM and epigenetic silencing that perform distinct functions in the silencing of TEs: Pol IV-RdDM functions to maintain TE silencing and to initiate silencing in an RNA Polymerase II expression-independent manner, while RDR6-RdDM functions to recognize active Polymerase II-derived TE mRNA transcripts to both trigger and correctively reestablish TE methylation and epigenetic silencing. PMID:23542151

  20. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21-22 nucleotide small interfering RNAs.

    PubMed

    Nuthikattu, Saivageethi; McCue, Andrea D; Panda, Kaushik; Fultz, Dalen; DeFraia, Christopher; Thomas, Erica N; Slotkin, R Keith

    2013-05-01

    Transposable elements (TEs) are mobile fragments of DNA that are repressed in both plant and animal genomes through the epigenetic inheritance of repressed chromatin and expression states. The epigenetic silencing of TEs in plants is mediated by a process of RNA-directed DNA methylation (RdDM). Two pathways of RdDM have been identified: RNA Polymerase IV (Pol IV)-RdDM, which has been shown to be responsible for the de novo initiation, corrective reestablishment, and epigenetic maintenance of TE and/or transgene silencing; and RNA-dependent RNA Polymerase6 (RDR6)-RdDM, which was recently identified as necessary for maintaining repression for a few TEs. We have further characterized RDR6-RdDM using a genome-wide search to identify TEs that generate RDR6-dependent small interfering RNAs. We have determined that TEs only produce RDR6-dependent small interfering RNAs when transcriptionally active, and we have experimentally identified two TE subfamilies as direct targets of RDR6-RdDM. We used these TEs to test the function of RDR6-RdDM in assays for the de novo initiation, corrective reestablishment, and maintenance of TE silencing. We found that RDR6-RdDM plays no role in maintaining TE silencing. Rather, we found that RDR6 and Pol IV are two independent entry points into RdDM and epigenetic silencing that perform distinct functions in the silencing of TEs: Pol IV-RdDM functions to maintain TE silencing and to initiate silencing in an RNA Polymerase II expression-independent manner, while RDR6-RdDM functions to recognize active Polymerase II-derived TE mRNA transcripts to both trigger and correctively reestablish TE methylation and epigenetic silencing.

  1. Korean Red Ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor β-mediated phosphatidylinositol-3 kinase/Akt signaling

    PubMed Central

    Nguyen, Cuong Thach; Luong, Truc Thanh; Kim, Gyu-Lee; Pyo, Suhkneung; Rhee, Dong-Kwon

    2014-01-01

    Background Ginseng has been shown to exert antistress effects both in vitro and in vivo. However, the effects of ginseng on stress in brain cells are not well understood. This study investigated how Korean Red Ginseng (KRG) controls hydrogen peroxide-induced apoptosis via regulation of phosphatidylinositol-3 kinase (PI3K)/Akt and estrogen receptor (ER)-β signaling. Methods Human neuroblastoma SK-N-SH cells were pretreated with KRG and subsequently exposed to H2O2. The ability of KRG to inhibit oxidative stress-induced apoptosis was assessed in MTT cytotoxicity assays. Apoptotic protein expression was examined by Western blot analysis. The roles of ER-β, PI3K, and p-Akt signaling in KRG regulation of apoptosis were studied using small interfering RNAs and/or target antagonists. Results Pretreating SK-N-SH cells with KRG decreased expression of the proapoptotic proteins p-p53 and caspase-3, but increased expression of the antiapoptotic protein BCL2. KRG pretreatment was also associated with increased ER-β, PI3K, and p-Akt expression. Conversely, ER-β inhibition with small interfering RNA or inhibitor treatment increased p-p53 and caspase-3 levels, but decreased BCL2, PI3K, and p-Akt expression. Moreover, inhibition of PI3K/Akt signaling diminished p-p53 and caspase-3 levels, but increased BCL2 expression. Conclusion Collectively, the data indicate that KRG represses oxidative stress-induced apoptosis by enhancing PI3K/Akt signaling via upregulation of ER-β expression. PMID:25535479

  2. Upregulated INHBA Expression May Promote Cell Proliferation and Is Associated with Poor Survival in Lung Adenocarcinoma1

    PubMed Central

    Seder, Christopher W; Hartojo, Wibisono; Lin, Lin; Silvers, Amy L; Wang, Zhuwen; Thomas, Dafydd G; Giordano, Thomas J; Chen, Guoan; Chang, Andrew C; Orringer, Mark B; Beer, David G

    2009-01-01

    Introduction The expression, mechanisms of regulation, and functional impact of INHBA (activin A) in lung adenocarcinoma (AD) have not been fully elucidated. Methods INHBA expression was examined in 96 lung samples (86 ADs, 10 normal lung) using oligonucleotide microarrays and 187 lung samples (164 ADs, 6 bronchioalveolar carcinomas, and 17 normal lung) using immunohistochemistry. The proliferation of AD cell lines H460 and SKLU1 was examined with WST-1 assays after treatment with recombinant activin A, follistatin, and INHBA-targeting small-interfering RNA. Cells were also treated with 5-aza-2′ deoxycytidine and trichostatin A to investigate the role of epigenetic regulation in INHBA expression. Results Primary ADs expressed 3.1 times more INHBA mRNA than normal lung. In stage I AD patients, high levels of primary tumor INHBA transcripts were associated with worse prognosis. Immunohistochemistry confirmed higher inhibin βA protein expression in ADs (78.7%) and bronchioalveolar carcinomas (66.7%) compared with normal lung (11.8%). H460 and SKLU1 demonstrated increased proliferation when treated with exogenous activin A and reduced proliferation when treated with follistatin or INHBA-targeting small-interfering RNA. INHBA mRNA expression in H460 cells was upregulated after treatment with trichostatin A and 5-aza-2′ deoxycytidine. Conclusions INHBA is overexpressed in AD relative to controls. Inhibin βA may promote cell proliferation, and its overexpression is associated with worse survival in stage I AD patients. In addition, overexpression of INHBA may be affected by promoter methylation and histone acetylation in a subset of lung ADs. PMID:19308293

  3. Small Interfering RNA-Mediated Suppression of Fas Modulate Apoptosis and Proliferation in Rat Intervertebral Disc Cells.

    PubMed

    Park, Jong-Beom; Park, Chanjoo

    2017-10-01

    In vitro cell culture model. To investigate the effect of small interfering RNA (siRNA) on Fas expression, apoptosis, and proliferation in serum-deprived rat disc cells. Synthetic siRNA can trigger an RNA interference (RNAi) response in mammalian cells and precipitate the inhibition of specific gene expression. However, the potential utility of siRNA technology in downregulation of specific genes associated with disc cell apoptosis remains unclear. Rat disc cells were isolated and cultured in the presence of either 10% fetal bovine serum (FBS) (normal control) or 0% FBS (serum deprivation to induce apoptosis) for 48 hours. Fas expression, apoptosis, and proliferation were determined. Additionally, siRNA oligonucleotides against Fas (Fas siRNA) were transfected into rat disc cells to suppress Fas expression. Changes in Fas expression were assessed by reverse transcription-polymerase chain reaction and semiquantitatively analyzed using densitometry. The effect of Fas siRNA on apoptosis and proliferation of rat disc cells were also determined. Negative siRNA and transfection agent alone (Mock) were used as controls. Serum deprivation increased apoptosis by 40.3% ( p <0.001), decreased proliferation by 45.3% ( p <0.001), and upregulated Fas expression. Additionally, Fas siRNA suppressed Fas expression in serum-deprived cultures, with 68.5% reduction at the mRNA level compared to the control cultures ( p <0.001). Finally, Fas siRNA-mediated suppression of Fas expression significantly inhibited apoptosis by 9.3% and increased proliferation by 21% in serum-deprived cultures ( p <0.05 for both). The observed dual positive effect of Fas siRNA might be a powerful therapeutic approach for disc degeneration by suppression of harmful gene expression.

  4. Lysophosphatidic acid-induced ADAM12 expression mediates human adipose tissue-derived mesenchymal stem cell-stimulated tumor growth.

    PubMed

    Do, Eun Kyoung; Kim, Young Mi; Heo, Soon Chul; Kwon, Yang Woo; Shin, Sang Hun; Suh, Dong-Soo; Kim, Ki-Hyung; Yoon, Man-Soo; Kim, Jae Ho

    2012-11-01

    Lysophosphatidic acid (LPA) is involved in mesenchymal stem cell-stimulated tumor growth in vivo. However, the molecular mechanism by which mesenchymal stem cells promote tumorigenesis remains elusive. In the present study, we demonstrate that conditioned medium from A549 human lung adenocarcinoma cells (A549 CM) induced the expression of ADAM12, a disintegrin and metalloproteases family member, in human adipose tissue-derived mesenchymal stem cells (hASCs). A549 CM-stimulated ADAM12 expression was abrogated by pretreatment of hASCs with the LPA receptor 1 inhibitor Ki16425 or by small interfering RNA-mediated silencing of LPA receptor 1, suggesting a key role for the LPA-LPA receptor 1 signaling axis in A549 CM-stimulated ADAM12 expression. Silencing of ADAM12 expression using small interfering RNA or short hairpin RNA abrogated LPA-induced expression of both α-smooth muscle actin, a marker of carcinoma-associated fibroblasts, and ADAM12 in hASCs. Using a xenograft transplantation model of A549 cells, we demonstrated that silencing of ADAM12 inhibited the hASC-stimulated in vivo growth of A549 xenograft tumors and the differentiation of transplanted hASCs to α-smooth muscle actin-positive carcinoma-associated fibroblasts. LPA-conditioned medium from hASCs induced the adhesion of A549 cells and silencing of ADAM12 inhibited LPA-induced expression of extracellular matrix proteins, periostin and βig-h3, in hASCs and LPA-conditioned medium-stimulated adhesion of A549 cells. These results suggest a pivotal role for LPA-stimulated ADAM12 expression in tumor growth and the differentiation of hASCs to carcinoma-associated fibroblasts expressing α-smooth muscle actin, periostin, and βig-h3. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Therapeutic implications of small interfering RNA in cardiovascular diseases.

    PubMed

    Raghunathan, Suchi; Patel, Bhoomika M

    2013-02-01

    Cardiovascular diseases (CVDs) place a heavy burden on the economies of low- and middle-income countries. Comprehensive action requires combining approaches that seek to reduce the risks throughout the entire population with strategies that target individuals at high risk or with established disease. Small interfering RNA (siRNA) as a functional mediator for regulation of gene expression has been evaluated for potential therapeutic targets for the treatment of various cardiovascular diseases such as hypertension, atherosclerosis, heart failure etc. The present review attempts have been made to provide a brief outline of the current understanding of the mechanism of RNAi and the delivery system and describe the therapeutic application of siRNAs and their potential for treating CVDs which are taking a heavy toll on human life. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de Pharmacologie et de Thérapeutique.

  6. Small interfering ribonucleic acid induces liquid-to-ripple phase transformation in a phospholipid membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choubey, Amit; Nomura, Ken-ichi; Kalia, Rajiv K.

    Small interfering ribonucleic acid (siRNA) molecules play a pivotal role in silencing gene expression via the RNA interference mechanism. A key limitation to the widespread implementation of siRNA therapeutics is the difficulty of delivering siRNA-based drugs to cells. Here, we examine changes in the structure and dynamics of a dipalmitoylphosphatidylcholine bilayer in the presence of a siRNA molecule and mechanical barriers to siRNA transfection in the bilayer. Our all-atom molecular dynamics simulation shows that siRNA induces a liquid crystalline-to-ripple phase transformation in the bilayer. The ripple phase consists of a major region of non-interdigitated and a minor region of interdigitatedmore » lipid molecules with an intervening kink. In the ripple phase, hydrocarbon chains of lipid molecules have large compressive stresses, which present a considerable barrier to siRNA transfection.« less

  7. Effects of downregulation of S100A8 protein expression on cell cycle and apoptosis of fibroblasts derived from hypertrophic scars.

    PubMed

    Yaundong, Lv; Dongyan, Wang; Lijun, Hao; Zhibo, Xiao

    2014-01-01

    Uncontrolled growth and lack of apoptosis in fibroblasts derived from a hypertrophic scar play an important role in pathology. The authors explore the contribution of S100A8 overexpression to the phenotype of cells and discuss how the downregulation of S100A8 could inhibit the growth and induce apoptosis of fibroblasts derived from hypertrophic scars. Fibroblasts were harvested from hypertrophic scar tissue in 8 patients treated with small interfering RNA against S100A8 in an in vitro culture. The effects of silencing S100A8 were analyzed by Western blot. Cellular proliferation and apoptosis were detected by flow cytometry. Fibroblasts treated with small interfering RNA targeting S100A8 showed a significant decrease in S100A8 protein 48 hours after treatment. They also proliferated significantly slower and showed more apoptosis than control fibroblasts. Inhibition of S100A8 resulted in significant growth reduction and apoptosis acceleration in fibroblasts derived from hypertrophic scars. Manipulation of S100A8 protein expression by gene silencing may represent something new in the treatment of hypertrophic scarring.

  8. The effects of small interfering RNA–targeting tissue factor on an in vitro model of neovascularization

    PubMed Central

    Peng, Wenyan; Yu, Ying; Li, Tiejun; Zhu, Yuanyuan

    2013-01-01

    Purpose Tissue factor (TF) plays an important role in neovascularization (NV). This study aimed to determine whether small interfering RNA–targeting TF (TF-siRNA) could knock down TF expression and inhibit cell proliferation, cell migration, and tube formation in an in vitro model of NV. Methods Lipopolysaccharide (LPS) was used to stimulate human umbilical vein endothelial cell (HUVEC) lines to express TF and mimic certain phenotypes of NV in vitro. HUVECs were transfected with TF-siRNAs and control siRNAs using LipofectamineTM 2000. The inhibitory effect of the siRNAs on the expression of TF mRNA and protein was evaluated by quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) and western blot analysis. The effects on the cell viability, migration, and tube formation of siRNA-treated cells were examined by MTT assay, wound-healing assay, and Matrigel-induced capillary tube formation. Results Lipopolysaccharide treatment increased the expression of TF. TF-siRNAs effectively knocked down TF expression, with the most efficient TF-siRNA reducing 78.9% of TF expression. TF protein was also notably curtailed by TF-siRNA. The MTT and wound-healing assays showed that the TF-siRNA substantially inhibited the proliferation and migration of HUVECs. Tube formation was decreased by 47.4% and 59.4% in cells treated with the TF-siRNA and vascular endothelial growth factor–siRNA, respectively, compared with the blank control. Conclusions TF-siRNA can knockdown TF expression and inhibit cell proliferation, migration, and tube formation in vitro. TF-siRNA may provide a novel therapeutic candidate for NV-related diseases. PMID:23805036

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Zhen; Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058; Xiang, Wenqing

    Highlights: {yields} LNA-modified oligonucleotides can pass through the plasma membrane of cultured cells even without using transfection machinery. {yields} LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. {yields} LNA-oligonucleotide designed to target nuclear HBV DNA efficiently suppresses HBV replication and transcription in cultured hepatic cells. -- Abstract: Silencing target genes with small regulatory RNAs is widely used to investigate gene function and therapeutic drug development. Recently, triplex-based approaches have provided another attractive means to achieve targeted gene regulation and gene manipulation at the molecular and cellular levels. Nuclear entry ofmore » oligonucleotides and enhancement of their affinity to the DNA targets are key points of such approaches. In this study, we developed lipid-based transport of a locked-nucleic-acid (LNA)-modified oligonucleotide for hepatitis B virus (HBV) DNA interference in human hepatocytes expressing HBV genomic DNA. In these cells, the LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. The oligonucleotide specifically targeting HBV DNA clearly interfered with HBV DNA transcription as shown by a block in pregenomic RNA (pgRNA) production. The HBV DNA-targeted oligonucleotide suppressed HBV DNA replication and HBV protein production more efficiently than small interfering RNAs directed to the pgRNA. These results demonstrate that fusion with lipid can carry LNA-modified oligonucleotides to the nucleus where they regulate gene expression. Interfering with HBV DNA transcription by LNA-modified oligonucleotides has strong potential as a new strategy for HBV inhibition.« less

  10. MiR-21 suppresses the anticancer activities of curcumin by targeting PTEN gene in human non-small cell lung cancer A549 cells.

    PubMed

    Zhang, W; Bai, W; Zhang, W

    2014-08-01

    Curcumin, a natural phytochemical, exhibits potent anticancer activities. Here, we sought to determine the molecular mechanisms underlying the cytotoxic effects of curcumin against human non-small cell lung cancer (NSCLC) cells. MTT assay and annexin-V/PI staining were used to analyze the effects of curcumin on the proliferation and apoptosis of A549 cells. The expression of microRNA-21 in curcumin-treated A549 cells was measured by quantitative real-time polymerase chain reaction assay. The protein level of phosphatase and tensin homolog (PTEN), a putative target of microRNA-21, was determined by Western blot analysis. Transfection of A549 cells with microRNA-21 mimic or PTEN small interfering RNA was performed to modulate the expression of microRNA-21 and PTEN under the treatment of curcumin. Curcumin at 20-40 μM inhibited cell proliferation and induced apoptosis in A549 cells. Curcumin treatment produced a dose-dependent and significant (P < 0.05) suppression of microRNA-21 expression, compared to untreated A549 cells. Moreover, the protein level of PTEN, a putative target of microRNA-21, was significantly elevated in curcumin-treated A549 cells, as determined by Western blot analysis. Transfection of A549 cells with microRNA-21 mimic or PTEN small interfering RNA significantly (P < 0.05) reversed the growth suppression and apoptosis induction by curcumin, compared to corresponding controls. Our data suggest a novel molecular mechanism in which inhibition of microRNA-21 and upregulation of PTEN mediate the anticancer activities of curcumin in NSCLC cells. Suppression of microRNA-21 may thus have therapeutic benefits against this malignancy.

  11. Polymers in Small-Interfering RNA Delivery

    PubMed Central

    Singha, Kaushik; Namgung, Ran

    2011-01-01

    This review will cover the current strategies that are being adopted to efficiently deliver small interfering RNA using nonviral vectors, including the use of polymers such as polyethylenimine, poly(lactic-co-glycolic acid), polypeptides, chitosan, cyclodextrin, dendrimers, and polymers-containing different nanoparticles. The article will provide a brief and concise account of underlying principle of these polymeric vectors and their structural and functional modifications which were intended to serve different purposes to affect efficient therapeutic outcome of small-interfering RNA delivery. The modifications of these polymeric vectors will be discussed with reference to stimuli-responsiveness, target specific delivery, and incorporation of nanoconstructs such as carbon nanotubes, gold nanoparticles, and silica nanoparticles. The emergence of small-interfering RNA as the potential therapeutic agent and its mode of action will also be mentioned in a nutshell. PMID:21749290

  12. Inhibition effect of small interfering RNA of connective tissue growth factor on the expression of extracellular matrix molecules in cultured human renal proximal tubular cells.

    PubMed

    Liu, Yuyuan; Li, Weiwei; Liu, Hong; Peng, Youming; Yang, Qiu; Xiao, Li; Liu, Yinghong; Liu, Fuyou

    2014-03-01

    In this study, we investigated the effect of small interfering RNA (siRNA) of connective tissue growth factor (CTGF) by pRetro-Super (PRS) retrovirus vector on the expression of CTGF and related extracellular matrix molecules in human renal proximal tubular cells (HKCs) induced by high glucose, to provide help for renal tubulointerstitial fibrosis therapy. HKCs were exposed to d-glucose to observe their dose and time effect, while the mannitol as osmotic control. Retrovirus producing CTGF siRNA were constructed from the inverted oligonucleotides and transferred into packaging cell line PT67 with lipofectamine, and the virus supernatant was used to infect HKC. The expression of CTGF, fibronectin (FN) and collagen-type I (col1) were measured by semi-quantitative RT-PCR and Western blot. In response to high glucose, CTGF expression in HKCs was increased in a dose- and time-dependent manner, whereas the increase did not occur in the osmotic control. Introduction of PRS-CTGF-siRNA resulted in the significant reduction of CTGF, FN, col1 mRNA (p < 0.01, respectively) and CTGF, col1 protein (p < 0.05, respectively) expression, while PRS void vector group did not have these effects (p > 0.05). CTGF siRNA therapy can effectively reduce the levels of CTGF, FN and col1 induced by high glucose in cultured HKCs, which suggested that it may be a potential therapeutic strategy to prevent the renal interstitial fibrosis in the future.

  13. Escherichia coli K1 promotes the ligation of CD47 with thrombospondin-1 to prevent the maturation of dendritic cells in the pathogenesis of neonatal meningitis.

    PubMed

    Mittal, Rahul; Gonzalez-Gomez, Ignacio; Prasadarao, Nemani V

    2010-09-01

    Dendritic cells (DCs) are professional APCs providing a critical link between adaptive and innate immune responses. Our previous studies have shown that Escherichia coli K1 internalization of myeloid DCs suppressed the maturation of the cells for which outer membrane protein A (OmpA) expression is essential. In this study, we demonstrate that infection of DCs with OmpA(+) E. coli significantly upregulates the expression of CD47, an integrin-associated protein, and its natural ligand thrombospondin 1 (TSP-1). Pretreatment of DCs with anti-CD47 blocking Ab or knocking down the expression of CD47 or TSP-1, but not signal regulatory protein alpha by small interfering RNA, abrogated the suppressive effect of E. coli K1. Ligation of CD47 with a mAb prevented the maturation and cytokine production by DCs upon stimulation with LPS similar to the inhibitory effect induced by OmpA(+) E. coli. In agreement with the in vitro studies, suppression of CD47 or TSP-1 expression in newborn mice by a novel in vivo small interfering RNA technique protected the animals against E. coli K1 meningitis. Reconstitution of CD47 knockdown mice with CD47(+) DCs renders the animals susceptible to meningitis by E. coli K1, substantiating the role of CD47 expression in DCs for the occurrence of meningitis. Our results demonstrate a role for CD47 for the first time in bacterial pathogenesis and may be a novel target for designing preventive approaches for E. coli K1 meningitis.

  14. Identification and molecular characterization of a trans-acting small interfering RNA producing locus regulating leaf rust responsive gene expression in wheat (Triticum aestivum L.).

    PubMed

    Dutta, Summi; Kumar, Dhananjay; Jha, Shailendra; Prabhu, Kumble Vinod; Kumar, Manish; Mukhopadhyay, Kunal

    2017-11-01

    A novel leaf rust responsive ta-siRNA-producing locus was identified in wheat showing similarity to 28S rRNA and generated four differentially expressing ta-siRNAs by phasing which targeted stress responsive genes. Trans-acting-small interfering RNAs (Ta-siRNAs) are plant specific molecules generally involved in development and are also stress responsive. Ta-siRNAs identified in wheat till date are all responsive to abiotic stress only. Wheat cultivation is severely affected by rusts and leaf rust particularly affects grain filling. This study reports a novel ta-siRNA producing locus (TAS) in wheat which is a segment of 28S ribosomal RNA but shows differential expression during leaf rust infestation. Four small RNA libraries prepared from wheat Near Isogenic Lines were treated with leaf rust pathogen and compared with untreated controls. A TAS with the ability to generate four ta-siRNAs by phasing events was identified along with the microRNA TamiR16 as the phase initiator. The targets of the ta-siRNAs included α-gliadin, leucine rich repeat, trans-membrane proteins, glutathione-S-transferase, and fatty acid desaturase among others, which are either stress responsive genes or are essential for normal growth and development of plants. Expression of the TAS, its generated ta-siRNAs, and their target genes were profiled at five different time points after pathogen inoculation of susceptible and resistant wheat isolines and compared with mock-inoculated controls. Comparative analysis of expression unveiled differential and reciprocal relationship as well as discrete patterns between susceptible and resistant isolines. The expression profiles of the target genes of the identified ta-siRNAs advocate more towards effector triggered susceptibility favouring pathogenesis. The study helps in discerning the functions of wheat genes regulated by ta-siRNAs in response to leaf rust.

  15. Delivery of Small Interfering RNA by Peptide-Targeted Mesoporous Silica Nanoparticle-Supported Lipid Bilayers

    PubMed Central

    Ashley, Carlee E.; Carnes, Eric C.; Epler, Katharine E.; Padilla, David P.; Phillips, Genevieve K.; Castillo, Robert E.; Wilkinson, Dan C.; Wilkinson, Brian S.; Burgard, Cameron A.; Sewell, Robin M.; Townson, Jason L.; Chackerian, Bryce; Willman, Cheryl L.; Peabody, David S.; Wharton, Walker; Brinker, C. Jeffrey

    2012-01-01

    The therapeutic potential of small interfering RNAs (siRNAs) is severely limited by the availability of delivery platforms that protect siRNA from degradation, deliver it to the target cell with high specificity and efficiency, and promote its endosomal escape and cytosolic dispersion. Here we report that mesoporous silica nanoparticle-supported lipid bilayers (or ‘protocells’), exhibit multiple properties that overcome many of the limitations of existing delivery platforms. Protocells have a 10- to 100-fold greater capacity for siRNA than corresponding lipid nanoparticles and are markedly more stable when incubated under physiological conditions. Protocells loaded with a cocktail of siRNAs bind to cells in a manner dependent on the presence of an appropriate targeting peptide and, through an endocytic pathway followed by endosomal disruption, promote delivery of the silencing nucleotides to the cytoplasm. The expression of each of the genes targeted by the siRNAs was shown to be repressed at the protein level, resulting in a potent induction of growth arrest and apoptosis. Incubation of control cells that lack expression of the antigen recognized by the targeting peptide with siRNA-loaded protocells induced neither repression of protein expression nor apoptosis, indicating the precise specificity of cytotoxic activity. In terms of loading capacity, targeting capabilities, and potency of action, protocells provide unique attributes as a delivery platform for therapeutic oligonucleotides. PMID:22309035

  16. Making RISC.

    PubMed

    Kawamata, Tomoko; Tomari, Yukihide

    2010-07-01

    It is well established that 20- to 30-nt small RNAs, including small interfering RNAs, microRNAs and Piwi-interacting RNAs, play crucial roles in regulating gene expression and control a surprisingly diverse array of biological processes. These small RNAs cannot work alone: they must form effector ribonucleoprotein complexes - RNA-induced silencing complexes (RISCs) - to exert their function. Thus, RISC assembly is a key process in small RNA-mediated silencing. Recent biochemical analyses of RISC assembly, together with new structural studies of Argonaute, the core protein component of RISC, suggest a revised view of how mature RISC, which contains single-stranded guide RNA, is built from small RNAs that are born double-stranded. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Development of siRNA Technology to Prevent Scar Formation in Tendon Repair

    DTIC Science & Technology

    2013-12-01

    Anti-sense RNA technologies: Under normal conditions cells produce small interfering (si) RNAs that inhibit protein synthesis and stimulate...stimulation of fibroblast proliferation and migration, collagen and fibronectin synthesis , and altered tissue remodeling through regulation of MMPs...expression by an antisense oligonucleotide protects mice from fulminant hepatitis. Nat Biotechnol 2000;18:862-7. 7. Guha M, Xu ZG, Tung D, Lanting L

  18. Radiation-induced interleukin-6 expression through MAPK/p38/NF-kappaB signaling pathway and the resultant antiapoptotic effect on endothelial cells through Mcl-1 expression with sIL6-Ralpha.

    PubMed

    Chou, Chia-Hung; Chen, Shee-Uan; Cheng, Jason Chia-Hsien

    2009-12-01

    To investigate the mechanism of interleukin-6 (IL-6) activity induced by ionizing radiation. Human umbilical vascular endothelial cells (HUVECs) were irradiated with different doses to induce IL-6. The IL-6 promoter assay and reverse transcriptase-polymerase chain reaction (RT-PCR) were used to examine transcriptional regulation. Specific chemical inhibitors, decoy double-stranded oligodeoxynucleotides, and Western blotting were conducted to investigate the signal transduction pathway. Recombinant soluble human IL-6 receptor alpha-chain (sIL6-Ralpha) and specific small interfering RNA were used to evaluate the biologic function of radiation-induced IL-6. Four grays of radiation induced the highest level of IL-6 protein. The promoter assay and RT-PCR data revealed that the induction of IL-6 was mediated through transcriptional regulation. The p38 inhibitor SB203580, by blocking nuclear factor-kappaB (NF-kappaB) activation, prevented both the transcriptional and translational regulation of radiation-induced IL-6 expression. The addition of sIL6-Ralpha rescued HUVECs from radiation-induced death in an IL-6 concentratio-dependent manner. The antiapoptotic effect of combined sIL6-Ralpha and radiation-induced IL-6 was inhibited by mcl-1-specific small interfering RNA. Radiation transcriptionally induces IL-6 expression in endothelial cells through mitogen-activated protein kinase/p38-mediated NF-kappaB/IkappaB (inhibitor of NF-kappaB) complex activation. In the presence of sIL6-Ralpha, radiation-induced IL-6 expression acts through Mcl-1 expression to rescue endothelial cells from radiation-induced death.

  19. Multiple Transduction Pathways Mediate Thyrotropin Receptor Signaling in Preosteoblast-Like Cells

    PubMed Central

    Boutin, Alisa; Neumann, Susanne

    2016-01-01

    It has been shown that the TSH receptor (TSHR) couples to a number of different signaling pathways, although the Gs-cAMP pathway has been considered primary. Here, we measured the effects of TSH on bone marker mRNA and protein expression in preosteoblast-like U2OS cells stably expressing TSHRs. We determined which signaling cascades are involved in the regulation of IL-11, osteopontin (OPN), and alkaline phosphatase (ALPL). We demonstrated that TSH-induced up-regulation of IL-11 is primarily mediated via the Gs pathway as IL-11 was up-regulated by forskolin (FSK), an adenylyl cyclase activator, and inhibited by protein kinase A inhibitor H-89 and by silencing of Gαs by small interfering RNA. OPN levels were not affected by FSK, but its up-regulation was inhibited by TSHR/Gi-uncoupling by pertussis toxin. Pertussis toxin decreased p38 MAPK kinase phosphorylation, and a p38 inhibitor and small interfering RNA knockdown of p38α inhibited OPN induction by TSH. Up-regulation of ALPL expression required high doses of TSH (EC50 = 395nM), whereas low doses (EC50 = 19nM) were inhibitory. FSK-stimulated cAMP production decreased basal ALPL expression, whereas protein kinase A inhibition by H-89 and silencing of Gαs increased basal levels of ALPL. Knockdown of Gαq/11 and a protein kinase C inhibitor decreased TSH-stimulated up-regulation of ALPL, whereas a protein kinase C activator increased ALPL levels. A MAPK inhibitor and silencing of ERK1/2 inhibited TSH-stimulated ALPL expression. We conclude that TSH regulates expression of different bone markers via distinct signaling pathways. PMID:26950201

  20. Small RNA sorting: matchmaking for Argonautes

    PubMed Central

    Czech, Benjamin; Hannon, Gregory J.

    2013-01-01

    Small RNAs directly or indirectly impact nearly every biological process in eukaryotic cells. To perform their myriad roles, not only must precise small RNA species be generated, but they must also be loaded into specific effector complexes called RNA-induced silencing complexes (RISCs). Argonaute proteins form the core of RISCs and different members of this large family have specific expression patterns, protein binding partners and biochemical capabilities. In this Review, we explore the mechanisms that pair specific small RNA strands with their partner proteins, with an eye towards the substantial progress that has been recently made in understanding the sorting of the major small RNA classes — microRNAs (miRNAs) and small interfering RNAs (siRNAs) — in plants and animals. PMID:21116305

  1. Effective mRNA Inhibition in PANC-1 Cells in Vitro Mediated via an mPEG-SeSe-PEI Delivery System.

    PubMed

    Zhang, Yuefeng; Yang, Bin; Liu, Yajie; Qin, Wenjie; Li, Chao; Wang, Lantian; Zheng, Wen; Wu, Yulian

    2016-05-01

    RNA interference (RNAi)-mediated gene therapy is a promising approach to cure various diseases. However, developing an effective, safe, specific RNAi delivery system remains a major challenge. In this study, a novel redox-responsive polyetherimide (PEI)-based nanovector, mPEG-SeSe-PEI, was developed and its efficacy evaluated. We prepared three mPEG-SeSe-PEI vector candidates for small interfering glyceraldehyde-3-phosphate dehydrogenase (siGADPH) and determined their physiochemical properties and transfection efficiency using flow cytometry and PEG11.6-SeSe-PEI polymer. We investigated the silencing efficacy of GADPH mRNA expression in PANC-1 cells and observed that PEG11.6-SeSe-PEI/siGADPH (N/P ratio=10) polyplexes possessed the appropriate size and zeta-potential and exhibited excellent in vitro gene silencing effects with the least cytotoxicity in PANC-1 cells. In conclusion, we present PEG11.6-SeSe-PEI as a potential therapeutic gene delivery system for small interfering RNA (siRNA).

  2. Silencing of cytosolic NADP(+)-dependent isocitrate dehydrogenase by small interfering RNA enhances the sensitivity of HeLa cells toward staurosporine.

    PubMed

    Lee, Su-Min; Park, Sin Young; Shin, Seoung Woo; Kil, In Sup; Yang, Eun Sun; Park, Jeen-Woo

    2009-02-01

    Staurosporine induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Recently, it was demonstrated that the control of cellular redox balance and the defense against oxidative damage is one of the primary functions of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) by supplying NADPH for antioxidant systems. The present report shows that silencing of IDPc expression in HeLa cells greatly enhances apoptosis induced by staurosporine. Transfection of HeLa cells with an IDPc small interfering RNA (siRNA) markedly decreased activity of IDPc, enhancing the susceptibility of staurosporine-induced apoptosis reflected by DNA fragmentation, cellular redox status and the modulation of apoptotic marker proteins. These results indicate that IDPc may play an important role in regulating the apoptosis induced by staurosporine and the sensitizing effect of IDPc siRNA on the apoptotic cell death of HeLa cells offers the possibility of developing a modifier of cancer chemotherapy.

  3. Functionalization of carbon nanotubes enables non-covalent binding and intracellular delivery of small interfering RNA for efficient knock-down of genes.

    PubMed

    Krajcik, Rasti; Jung, Adrian; Hirsch, Andreas; Neuhuber, Winfried; Zolk, Oliver

    2008-05-02

    The lipophilic nature of biological membranes restricts the direct intracellular delivery of potential drugs and molecular probes and makes intracellular transport one of the key problems in gene therapy. Because of their ability to cross cell membranes, single walled carbon nanotubes (SWNTs) are of interest as carriers of biologically active molecules, such as small interfering RNAs (siRNAs). We developed a strategy for chemical functionalization of SWNTs with hexamethylenediamine (HMDA) and poly(diallyldimethylammonium)chloride (PDDA) to obtain a material that was able to bind negatively charged siRNA by electrostatic interactions. PDDA-HMDA-SWNTs exhibited negligible cytotoxic effects on isolated rat heart cells at concentrations up to 10mg/l. PDDA-HMDA-SWNTs loaded with extracellular signal-regulated kinase (ERK) siRNA were able to cross the cell membrane and to suppress expression of the ERK target proteins in primary cardiomyocytes by about 75%. PDDA-functionalized SWNTs thus present an effective carrier system for applications in siRNA-mediated gene silencing.

  4. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA

    NASA Astrophysics Data System (ADS)

    Woodrow, Kim A.; Cu, Yen; Booth, Carmen J.; Saucier-Sawyer, Jennifer K.; Wood, Monica J.; Mark Saltzman, W.

    2009-06-01

    Vaginal instillation of small-interfering RNA (siRNA) using liposomes has led to silencing of endogenous genes in the genital tract and protection against challenge from infectious disease. Although siRNA lipoplexes are easily formulated, several of the most effective transfection agents available commercially may be toxic to the mucosal epithelia and none are able to provide controlled or sustained release. Here, we demonstrate an alternative approach using nanoparticles composed entirely of FDA-approved materials. To render these materials effective for gene silencing, we developed novel approaches to load them with high amounts of siRNA. A single dose of siRNA-loaded nanoparticles to the mouse female reproductive tract caused efficient and sustained gene silencing. Knockdown of gene expression was observed proximal (in the vaginal lumen) and distal (in the uterine horns) to the site of topical delivery. In addition, nanoparticles penetrated deep into the epithelial tissue. This is the first report demonstrating that biodegradable polymer nanoparticles are effective delivery vehicles for siRNA to the vaginal mucosa.

  5. Netrin-1 Preserves Blood-Brain Barrier Integrity Through Deleted in Colorectal Cancer/Focal Adhesion Kinase/RhoA Signaling Pathway Following Subarachnoid Hemorrhage in Rats.

    PubMed

    Xie, Zongyi; Enkhjargal, Budbazar; Reis, Cesar; Huang, Lei; Wan, Weifeng; Tang, Jiping; Cheng, Yuan; Zhang, John H

    2017-05-19

    Netrin-1 (NTN-1) has been established to be a novel intrinsic regulator of blood-brain barrier (BBB) maintenance. This study was carried out to investigate the potential roles of exogenous NTN-1 in preserving BBB integrity after experimental subarachnoid hemorrhage (SAH) as well as the underlying mechanisms of its protective effects. A total of 309 male Sprague-Dawley rats were subjected to an endovascular perforation model of SAH. Recombinant NTN-1 was administered intravenously 1 hour after SAH induction. NTN-1 small interfering RNA or Deleted in Colorectal Cancer small interfering RNA was administered intracerebroventricular at 48 hours before SAH. Focal adhesion kinase inhibitor was administered by intraperitoneal injection at 1 hour prior to SAH. Neurological scores, brain water content, BBB permeability, RhoA activity, Western blot, and immunofluorescence staining were evaluated. The expression of endogenous NTN-1 and its receptor Deleted in Colorectal Cancer were increased after SAH. Administration of exogenous NTN-1 significantly reduced brain water content and BBB permeability and ameliorated neurological deficits at 24 and 72 hours after SAH. Exogenous NTN-1 treatment significantly promoted phosphorylated focal adhesion kinase activation and inhibited RhoA activity, as well as upregulated the expression of ZO-1 and Occludin. Conversely, depletion of endogenous NTN-1 aggravated BBB breakdown and neurological impairments at 24 hours after SAH. The protective effects of NTN-1 at 24 hours after SAH were also abolished by pretreatment with Deleted in Colorectal Cancer small interfering RNA and focal adhesion kinase inhibitor. NTN-1 treatment preserved BBB integrity and improved neurological functions through a Deleted in Colorectal Cancer/focal adhesion kinase/RhoA signaling pathway after SAH. Thus, NTN-1 may serve as a promising treatment to alleviate early brain injury following SAH. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  6. Small interfering RNA-mediated down-regulation of caveolin-1 differentially modulates signaling pathways in endothelial cells.

    PubMed

    Gonzalez, Eva; Nagiel, Aaron; Lin, Alison J; Golan, David E; Michel, Thomas

    2004-09-24

    Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules in endothelial cells. To explore the role of this protein in receptor-modulated signaling pathways, we transfected bovine aortic endothelial cells (BAEC) with small interfering RNA (siRNA) duplexes to down-regulate caveolin-1 expression. Transfection of BAEC with duplex siRNA targeted against caveolin-1 mRNA selectively "knocked-down" the expression of caveolin-1 by approximately 90%, as demonstrated by immunoblot analyses of BAEC lysates. We used discontinuous sucrose gradients to purify caveolin-containing lipid rafts from siRNA-treated endothelial cells. Despite the near-total down-regulation of caveolin-1 expression, the lipid raft targeting of diverse signaling proteins (including the endothelial isoform of nitric-oxide synthase, Src-family tyrosine kinases, Galphaq and the insulin receptor) was unchanged. We explored the consequences of caveolin-1 knockdown on kinase pathways modulated by the agonists sphingosine-1 phosphate (S1P) and vascular endothelial growth factor (VEGF). siRNA-mediated caveolin-1 knockdown enhanced basal as well as S1P- and VEGF-induced phosphorylation of the protein kinase Akt and did not modify the basal or agonist-induced phosphorylation of extracellular signal-regulated kinases 1/2. Caveolin-1 knock-down also significantly enhanced the basal and agonist-induced activity of the small GTPase Rac. We used siRNA to down-regulate Rac expression in BAEC, and we observed that Rac knockdown significantly reduced basal, S1P-, and VEGF-induced Akt phosphorylation, suggesting a role for Rac activation in the caveolin siRNA-mediated increase in Akt phosphorylation. By using siRNA to knockdown caveolin-1 and Rac expression in cultured endothelial cells, we have found that caveolin-1 does not seem to be required for the targeting of signaling molecules to caveolae/lipid rafts and that caveolin-1 differentially modulates specific kinase pathways in endothelial cells. Copyright 2004 American Society for Biochemistry and Molecular Biology, Inc.

  7. A Novel Role for SIRT3 in Regulating Mediators Involved in the Terminal Pathways of Human Labor and Delivery.

    PubMed

    Lim, Ratana; Barker, Gillian; Menon, Ramkumar; Lappas, Martha

    2016-11-01

    Preterm birth remains the major cause of neonatal mortality and morbidity, mediated largely by an inflammatory process. The sirtuin (SIRT) family of cellular regulators has been implicated as key inhibitors of inflammation. We have previously reported a role for SIRT1, SIRT2, and SIRT6 in regulating inflammation-induced prolabor mediators. In this study, we determined the effect of term labor and pro-inflammatory cytokines on SIRT3, SIRT4, SIRT5, and SIRT7 expression in human myometrium. Functional studies were also used to investigate the effect of small interfering RNA (siRNA) knockdown of SIRTs in regulating inflammation-induced prolabor mediators. Western blot analysis and qRT-PCR were used to determine SIRT3, SIRT4, SIRT5, and SIRT7 mRNA and protein expression in human myometrium. Small interfering RNA knockdown of SIRT3 in myometrial primary cells determined its role in response to inflammatory stimuli IL1B and TNF. SIRT3 mRNA and protein expression levels were significantly lower in term laboring myometrium compared with term nonlaboring myometrium. There was no effect of labor on SIRT4, SIRT5 or SIRT7 protein expression. The pro-inflammatory cytokines IL1B and TNF significantly decreased levels of SIRT3 mRNA and protein expression. SIRT3 knockdown by siRNA significantly augmented IL1B- and TNF-stimulated IL6, CXCL8, and CCL2 mRNA expression and release; PTGS2 mRNA expression and subsequent PGF 2alpha release; the mRNA expression and secretion of the adhesion molecule ICAM1 and the extracellular matrix remodeling enzyme MMP9; and nuclear factor kappa B1 (NFkappaB1) transcriptional activity. In human myometrium, SIRT3 expression decreases with term labor and regulates the mediators involved in the terminal effector pathways of human labor and delivery through the NFkappaB1 pathway. © 2016 by the Society for the Study of Reproduction, Inc.

  8. Small interfering RNA mediated Poly (ADP-ribose) Polymerase-1 inhibition upregulates the heat shock response in a murine fibroblast cell line

    PubMed Central

    2011-01-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) is a highly conserved multifunctional enzyme, and its catalytic activity is stimulated by DNA breaks. The activation of PARP-1 and subsequent depletion of nicotinamide adenine dinucleotide (NAD+) and adenosine triphosphate (ATP) contributes to significant cytotoxicity in inflammation of various etiologies. On the contrary, induction of heat shock response and production of heat shock protein 70 (HSP-70) is a cytoprotective defense mechanism in inflammation. Recent data suggests that PARP-1 modulates the expression of a number of cellular proteins at the transcriptional level. In this study, small interfering RNA (siRNA) mediated PARP-1 knockdown in murine wild-type fibroblasts augmented heat shock response as compared to untreated cells (as evaluated by quantitative analysis of HSP-70 mRNA and HSP-70 protein expression). These events were associated with increased DNA binding of the heat shock factor-1 (HSF-1), the major transcription factor of the heat shock response. Co-immunoprecipitation experiments in nuclear extracts of the wild type cells demonstrated that PARP-1directly interacted with HSF-1. These data demonstrate that, in wild type fibroblasts, PARP-1 plays a pivotal role in modulating the heat shock response both through direct interaction with HSF-1 and poly (ADP-ribosylation). PMID:21345219

  9. The high mobility group AT-hook 1 protein stimulates bovine herpesvirus 1 productive infection.

    PubMed

    Zhu, Liqian; Jones, Clinton

    2017-06-15

    Bovine herpesvirus 1 (BoHV-1) is an important pathogen of cattle that causes clinical symptoms in the upper respiratory tract and conjunctivitis. Like most alpha-herpesvirinae subfamily members, BoHV-1 establishes latency in sensory neurons. Stress consistently induces reactivation from latency, which is essential for virus transmission. Recent studies demonstrated that a viral protein (ORF2) expressed in a subset of latently infected neurons is associated with β-catenin and the high mobility group AT-hook 1 protein (HMGA1), which correlates with increased expression of these proteins in latently infected neurons. Since HMGA1 is primarily expressed in actively growing cells, binds to the minor groove of A+T rich regions in double-stranded DNA, and mediates gene transcription, we hypothesized that HMGA1 regulates BoHV-1 productive infection. Studies in this report indicated that productive infection increased HMGA1 protein levels and re-localized the protein in the nucleus. Netropsin, a small molecule that binds to the minor groove of DNA and prevents HMGA1 from interacting with DNA inhibited viral replication and interfered with the ability of BoHV-1 to induce HMGA1 re-localization. Furthermore, netropsin reduced RNA and protein expression of two viral regulatory proteins (bICP0 and bICP22) during productive infection, but increased bICP4 levels. Small interfering RNAs (siRNAs) that specifically target HMGA1 reduced HMGA1 RNA levels and virus production confirming HMGA1 stimulates productive infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Therapeutic effects of protein kinase N3 small interfering RNA and doxorubicin combination therapy on liver and lung metastases

    PubMed Central

    Hattori, Yoshiyuki; Kikuchi, Takuto; Nakamura, Mari; Ozaki, Kei-Ichi; Onishi, Hiraku

    2017-01-01

    It has been reported that suppression of protein kinase N3 (PKN3) expression in vascular and lymphatic endothelial cells results in the inhibition of tumor progression and lymph node metastasis formation. The present study investigated whether combination therapy of small interfering RNA (siRNA) against PKN3 and doxorubicin (DXR) could increase therapeutic efficacy against liver and lung metastases. In vitro transfection of PKN3 siRNA into PKN3-positive MDA-MB-231, LLC, and Colon 26 cells and PKN3-negative MCF-7 cells did not inhibit cell growth and did not increase sensitivity to DXR. However, following in vivo treatment, PKN3 siRNA suppressed the growth of liver MDA-MB-231 and lung LLC and MCF-7 metastases, although combination therapy with DXR did not increase the therapeutic efficacy. By contrast, in liver MCF-7 metastases, PKN3 siRNA or DXR alone did not exhibit significant inhibition of tumor growth, but their combination significantly improved therapeutic efficacy. Treatment of liver MDA-MB-231 metastases with PKN3 siRNA induced a change in vasculature structure via suppression of PKN3 mRNA expression. PKN3 siRNA may induce antitumor effects in lung and liver metastases by suppression of PKN3 expression in stroma cells, such as endothelial cells. From these findings, PKN3 siRNA alone or in combination with DXR may reduce the tumor growth of liver and lung metastases regardless of PKN3 expression in tumor cells. PMID:29098022

  11. HIF1α regulated expression of XPA contributes to cisplatin resistance in lung cancer

    PubMed Central

    Liu, Yanbin; Bernauer, Amanda M.; Yingling, Christin M.; Belinsky, Steven A.

    2012-01-01

    Factors regulating nucleotide excision repair probably contribute to the heterogenous response of advanced stage lung cancer patients to drugs such as cisplatin. Studies to identify the genes in the nucleotide excision repair pathway most closely associated with resistance to cisplatin have not been conclusive. We hypothesized that Xeroderma pigmentosum complementation group A (XPA), because of its dual role in sensing and recruiting other DNA repair proteins to the damaged template, would be critical in defining sensitivity to cisplatin. Studies were conducted to identify factors regulating transcription of XPA, to assess its role in modulating sensitivity to cisplatin and its expression in primary lung tumors. Hypoxia-inducible factor 1 alpha (HIF1α) subunit was found to bind with strong affinity to a hypoxia response element sequence in the promoter of XPA. Modulating expression of HIF1α by small interfering RNA or cobalt chloride markedly reduced or increased transcription of XPA in lung cancer cell lines, respectively. Protein levels of XPA were strongly correlated with sensitivity to cisplatin (r = 0.88; P < 0.001) in cell lines and sensitivity could be increased by small interfering RNA depletion of XPA. Expression of XPA determined in 54 primary lung tumors was elevated on average 5.2-fold when compared with normal bronchial epithelial cells and correlated with levels of HIF1α (r = 0.58; P < 0.01). Together, these studies identify XPA as a novel target for regulation by HIF1α whose modulation could impact lung cancer therapy. PMID:22467238

  12. Adenovirus small interfering RNA targeting ezrin induces apoptosis and inhibits metastasis of human osteosarcoma MG-63 cells.

    PubMed

    Tao, Zhi-Wei; Zou, Ping-An

    2018-06-13

    Osteosarcoma is a disease prone to recurrence and metastasis, and adenovirus expression vector is frequently studied as a therapeutic target of osteosarcoma in recent year. This study attempts to explore the effect of adenovirus-mediated small interfering RNA (siRNA) targeting ezrin on the proliferation, migration, invasion and apoptosis of human osteosarcoma MG-63 cells. Human osteosarcoma MG-63 cell line was selected for construction of recombinant adenovirus vector. The mRNA and protein levels of ezrin, Bcl2-associated X protein (Bax), B cell lymphoma-2 (Bcl-2), p21, p53, Caspase-3, matrix metalloproteinase 2 (MMP-2) and MMP-9, Cyclin D1, and cyclin-dependent kinase 4a (CDK4a) were determined. Through ELISA, the levels of Caspase-3, MMP-2 and MMP-9 were examined. Finally, human osteosarcoma MG-63 cell viability, growth, invasion, migration, and apoptosis were detected. Initially, adenovirus expression vector of ezrin was constructed by ezrin 2 siRNA sequence. Adenovirus-mediated siRNA targeting ezrin reduced expression of ezrin in MG-63 cells. The results revealed that adenovirus-mediated siRNA targeting ezrin elevated expression levels of Bax, P21, P53, and Caspase-3, Cyclin D1, and CDK4a and reduced expression levels of Bcl-2, MMP-2, and MMP-9. Furthermore, adenovirus-mediated siRNA targeting ezrin inhibited human osteosarcoma MG-63 cell viability, growth, invasion, and migration, and promoted apoptosis. Our study demonstrates that adenovirus-mediated siRNA targeting ezrin can induce apoptosis and inhibit the proliferation, migration and invasion of human osteosarcoma MG-63 cells. ©2018 The Author(s).

  13. Effects of silencing S100A8 and S100A9 with small interfering RNA on the migration of CNE1 nasopharyngeal carcinoma cells.

    PubMed

    Yan, Lin-Lin; Huang, Yuan-Jiao; Yi, Xiang; Yan, Xue-Min; Cai, Yan; He, Qin; Han, Zi-Jian

    2015-06-01

    The calcium-binding S100 proteins are involved in functions such as cell growth, differentiation, migration, adhesion and signal transduction. S100A8 and S100A9 are highly expressed in a variety of tumor cells, and are implicated in tumor development and progression. However, the role of S100A8 and S100A9 in nasopharyngeal carcinoma (NPC) cell migration is unclear. The present study investigated the effect of S100A8 and S100A9 on migration using a NPC cell line, CNE1. The CNE1 cells were transfected with S100A8 or S100A9 small interfering RNA (siRNA). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect S100A8 and S100A9 gene expression. Following the downregulation of S100A8 or S100A9, the effects on cell migration were determined using wound-healing assays. The expression of matrix metalloproteinase-7 (MMP7), a member of the MMP family that is associated with tumor cell invasion and migration, was also detected by RT-qPCR. S100A8 and S100A9 siRNAs effectively suppressed S100A8 and S100A9 gene expression, and substantially inhibited the migration of the CNE1 cells. In addition, MMP7 expression was reduced to varying extents in S100A8 and S100A9 siRNA-treated cells compared with controls. Thus, S100A8 and S100A9 promoted the migration of CNE1 NPC cells.

  14. Effects of silencing S100A8 and S100A9 with small interfering RNA on the migration of CNE1 nasopharyngeal carcinoma cells

    PubMed Central

    YAN, LIN-LIN; HUANG, YUAN-JIAO; YI, XIANG; YAN, XUE-MIN; CAI, YAN; HE, QIN; HAN, ZI-JIAN

    2015-01-01

    The calcium-binding S100 proteins are involved in functions such as cell growth, differentiation, migration, adhesion and signal transduction. S100A8 and S100A9 are highly expressed in a variety of tumor cells, and are implicated in tumor development and progression. However, the role of S100A8 and S100A9 in nasopharyngeal carcinoma (NPC) cell migration is unclear. The present study investigated the effect of S100A8 and S100A9 on migration using a NPC cell line, CNE1. The CNE1 cells were transfected with S100A8 or S100A9 small interfering RNA (siRNA). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect S100A8 and S100A9 gene expression. Following the downregulation of S100A8 or S100A9, the effects on cell migration were determined using wound-healing assays. The expression of matrix metalloproteinase-7 (MMP7), a member of the MMP family that is associated with tumor cell invasion and migration, was also detected by RT-qPCR. S100A8 and S100A9 siRNAs effectively suppressed S100A8 and S100A9 gene expression, and substantially inhibited the migration of the CNE1 cells. In addition, MMP7 expression was reduced to varying extents in S100A8 and S100A9 siRNA-treated cells compared with controls. Thus, S100A8 and S100A9 promoted the migration of CNE1 NPC cells. PMID:26137102

  15. Arterial and venous endothelia display differential functional fractalkine (CX3CL1) expression by angiotensin-II.

    PubMed

    Rius, Cristina; Piqueras, Laura; González-Navarro, Herminia; Albertos, Fernando; Company, Chantal; López-Ginés, Concha; Ludwig, Andreas; Blanes, Jose-Ignacio; Morcillo, Esteban J; Sanz, Maria-Jesus

    2013-01-01

    Angiotensin-II (Ang-II) promotes the interaction of mononuclear cells with arterioles and neutrophils with postcapillary venules. To investigate the mechanisms underlying this dissimilar response, the involvement of fractalkine (CX(3)CL1) was explored. Enhanced CX(3)CL1 expression was detected in both cremasteric arterioles and postcapillary venules 24 hours after Ang-II intrascrotal injection. Arteriolar leukocyte adhesion was the unique parameter significantly reduced (83%) in animals lacking CX(3)CL1 receptor (CX(3)CR1). Human umbilical arterial and venous endothelial cell stimulation with 1 μmol/L Ang-II increased CX(3)CL1 expression, yet neutralization of CX(3)CL1 activity only significantly inhibited Ang-II-induced mononuclear cell-human umbilical arterial endothelial cell interactions (73%) but not with human umbilical venous endothelial cells. The use of small interfering RNA revealed the involvement of tumor necrosis factor-α in Ang-II-induced CX(3)CL1 upregulation and mononuclear cell arrest. Nox5 knockdown with small interfering RNA or pharmacological inhibition of extracellular signal-regulated kinases1/2, p38 mitogen-activated protein kinase, and nuclear factor-κB also abolished these responses. Finally, when human umbilical arterial endothelial cells were costimulated with Ang-II, tumor necrosis factor-α, and interferon-γ, CX(3)CL1 expression and mononuclear cell adhesiveness were more pronounced than when each stimulus was provided alone. These results suggest that Ang-II induces functional CX(3)CL1 expression in arterial but not in venous endothelia. Thus, targeting endothelial CX(3)CL1-mononuclear leukocyte CX(3)CR1 interactions may constitute a new therapeutic strategy in the treatment of Ang-II-associated cardiovascular diseases.

  16. Deregulated expression of Cdc6 as BCR/ABL-dependent survival factor in chronic myeloid leukemia cells.

    PubMed

    Zhang, Jia-Hua; He, Yan-Li; Zhu, Rui; Du, Wen; Xiao, Jun-Hua

    2017-06-01

    Chronic myeloid leukemia is characterized by the presence of the reciprocal translocation t(9;22) and the BCR/ABL oncogene. The BCR/ABL oncogene activates multiple signaling pathways and involves the dysregulation of oncogenes during the progression of chronic myeloid leukemia. The cell division cycle protein 6, an essential regulator of DNA replication, is elevated in some human cancer cells. However, the expression of cell division cycle protein 6 in chronic myeloid leukemia and the underlying regulatory mechanism remain to be elucidated. In this study, our data showed that cell division cycle protein 6 expression was significantly upregulated in primary chronic myeloid leukemia cells and the chronic myeloid leukemia cell line K562 cells, as compared to the normal bone marrow mononuclear cells. BCR/ABL kinase inhibitor STI571 or BCR/ABL small interfering RNA could significantly downregulate cell division cycle protein 6 messenger RNA expression in K562 cells. Moreover, phosphoinositide 3-kinase/AKT pathway inhibitor LY294002 and Janus kinase/signal transducer and activator of transcription pathway inhibitor AG490 could downregulate cell division cycle protein 6 expression in K562 cells, but not RAS/mitogen-activated protein kinase pathway inhibitor PD98059 had such effect. Cell division cycle protein 6 gene silencing by small interfering RNA effectively resulted in decrease of proliferation, increase of apoptosis, and arrest of cell cycle in K562 cells. These findings have demonstrated that cell division cycle protein 6 overexpression may contribute to the high proliferation and low apoptosis in chronic myeloid leukemia cells and can be regulated by BCR/ABL signal transduction through downstream phosphoinositide 3-kinase/Akt and Janus kinase/signal transducer and activator of transcription pathways, suggesting cell division cycle protein 6 as a potential therapeutic target in chronic myeloid leukemia.

  17. Inhibition of Midkine Suppresses Prostate Cancer CD133+ Stem Cell Growth and Migration.

    PubMed

    Erdogan, Suat; Doganlar, Zeynep B; Doganlar, Oguzhan; Turkekul, Kader; Serttas, Riza

    2017-09-01

    Midkine (MDK) is a tumor-promoting factor that is often overexpressed in various human carcinomas, and the role of MDK has not yet been fully investigated in prostate cancer stem cells. Prostate cancer CD133 + stem cells (PCSCs) were isolated from human castration-resistant PC3 cells. PCSCs were treated with different concentrations of MDK inhibitor, iMDK, for 24-72 hours. The IC 50 values were determined by the MTT test. Endogenous MDK messenger RNA expression was knocked down by small interfering RNA. Quantitative reverse transcription polymerase chain reaction, Western blot analyses and image-based cytometry were used to investigate apoptosis and cell cycle progression as well as their underlying molecular mechanisms. Cell migration was evaluated by the wound healing test. iMDK caused dose- and time-dependent inhibition of PCSC survival. Similar growth inhibition was also obtained by small interfering RNA-mediated knockdown of endogenous MDK expression. iMDK was shown to preferentially induce cell cycle arrest at the S and G2/M phases. Suppressed PCSC growth was also accompanied by increases in p53 and the cell cycle inhibitor p21 genes. Combinatorial treatment of iMDK with docetaxel significantly inhibited cell proliferation versus either of the agents used alone. Inhibition of MDK expression strongly suppressed the migration of PCSCs compared to untreated and docetaxel-treated cells. iMDK and the knockdown of MDK decreased p-Akt and significantly upregulated the expression of PI3K/phosphatase/tensin homolog. Our data indicate that MDK plays a crucial role in controlling PCSC proliferation and migration. Therefore, suppression of endogenous expression of MDK would, in combination with traditional chemotherapy drugs, be a potential treatment for PCSCs. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  18. Haplodeficiency of Klotho Gene Causes Arterial Stiffening via Upregulation of Scleraxis Expression and Induction of Autophagy.

    PubMed

    Chen, Kai; Zhou, Xiaoli; Sun, Zhongjie

    2015-11-01

    The prevalence of arterial stiffness increases with age, whereas the level of the aging-suppressor protein klotho decreases with age. The objective of this study is to assess whether haplodeficiency of klotho gene causes arterial stiffness and to investigate the underlying mechanism. Pulse wave velocity, a direct measure of arterial stiffness, was increased significantly in klotho heterozygous (klotho(+/-)) mice versus their age-matched wild-type (WT) littermates, suggesting that haplodeficiency of klotho causes arterial stiffening. Notably, plasma aldosterone levels were elevated significantly in klotho(+/-) mice. Treatment with eplerenone (6 mg/kg per day IP), an aldosterone receptor blocker, abolished klotho deficiency-induced arterial stiffening in klotho(+/-) mice. Klotho deficiency was associated with increased collagen and decreased elastin contents in the media of aortas. In addition, arterial matrix metalloproteinase-2, matrix metalloproteinase-9, and transforming growth factor-β1 expression and myofibroblast differentiation were increased in klotho(+/-) mice. These klotho deficiency-related changes can be blocked by eplerenone. Protein expression of scleraxis, a transcription factor for collagen synthesis, and LC3-II/LC3-I, an index of autophagy, were upregulated in aortas of klotho(+/-) mice, which can be abolished by eplerenone. In cultured mouse aortic smooth muscle cells, aldosterone increased collagen-1 expression that can be completely eliminated by small interfering RNA knockdown of scleraxis. Interestingly, aldosterone decreased elastin levels in smooth muscle cells, which can be abolished by small interfering RNA knockdown of Beclin-1, an autophagy-related gene. In conclusion, this study demonstrated for the first time that klotho deficiency-induced arterial stiffening may involve aldosterone-mediated upregulation of scleraxis and induction of autophagy, which led to increased collagen-1 expression and decreased elastin levels, respectively. © 2015 American Heart Association, Inc.

  19. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants

    PubMed Central

    Khraiwesh, Basel; Zhu, Jian-Kang; Zhu, Jianhua

    2011-01-01

    Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. PMID:21605713

  20. MAPK regulation of IL-4/IL-13 receptors contributes to the synergistic increase in CCL11/eotaxin-1 in response to TGF-β1 and IL-13 in human airway fibroblasts.

    PubMed

    Zhou, Xiuxia; Hu, Haizhen; Balzar, Silvana; Trudeau, John B; Wenzel, Sally E

    2012-06-15

    CCL11/eotaxin-1 is a potent eosinophilic CC chemokine expressed by primary human fibroblasts. The combination of TGF-β1 and IL-13 synergistically increases CCL11 expression, but the mechanisms behind the synergy are unclear. To address this, human airway fibroblast cultures from normal and asthmatic subjects were exposed to IL-13 alone or TGF-β1 plus IL-13. Transcriptional (nuclear run-on) and posttranscriptional (mRNA stability) assays confirmed that transcriptional regulation is critical for synergistic expression of CCL11. TGF-β1 plus IL-13 synergistically increased STAT-6 phosphorylation, nuclear translocation, and binding to the CCL11 promoter as compared with IL-13 alone. STAT-6 small interfering RNA significantly knocked down both STAT-6 mRNA expression and phosphorylation and inhibited CCL11 mRNA and protein expression. Regulation of the IL-4Rα complex by TGF-β1 augmented IL-13 signaling by dampening IL-13Rα2 expression, overcoming IL-13's autoregulation of its pathway and enhancing the expression of CCL11. Our data suggest that TGF-β1 induced activation of the MEK/ERK pathway reduces IL-13Rα2 expression induced by IL-13. Thus, TGF-β1, a pleiotropic cytokine upregulated in asthmatic airways, can augment eosinophilic inflammation by interfering with IL-13's negative feedback autoregulatory loop under MEK/ERK-dependent conditions.

  1. Single-chain antibody-delivered Livin siRNA inhibits human malignant melanoma growth in vitro and in vivo.

    PubMed

    Wang, Hao; Yang, Yifei; Wang, Wei; Guan, Bing; Xun, Meng; Zhang, Hai; Wang, Ziling; Zhao, Yong

    2017-05-01

    Although gene therapy has brought new insights into the treatment of malignant melanoma, targeting delivery of nucleic acid which targets critical oncogene/anti-oncogene in vivo is still a bottleneck in the therapeutic application. Our previous in vitro studies have found that the oncogene Livin could serve as a potential molecular target by small interfering RNA for gene therapy of malignant melanoma. However, how to transport Livin small interfering RNA into malignant melanoma cells specifically and efficiently in vivo needs further investigation. Cumulative evidence has suggested that single-chain antibody-mediated small interfering RNA targeted delivery is an effective way to silence specific genes in human cancer cells. Indeed, this study designed a protamine-single-chain antibody fusion protein, anti-MM scFv-tP, to deliver Livin small interfering RNA into LiBr cells. Further experiments confirmed the induction of cell apoptosis and suppression of cell proliferation by anti-MM scFv-tP in LiBr cells, along with efficient silence of Livin gene both in vitro and in vivo. Altogether, our findings provide a feasible approach to transport Livin small interfering RNA to malignant melanoma cells which would be a new therapeutic strategy for combating malignant melanoma.

  2. Inhibition of MMP-2 gene expression with small interfering RNA in rabbit vascular smooth muscle cells.

    PubMed

    Hlawaty, Hanna; San Juan, Aurélie; Jacob, Marie-Paule; Vranckx, Roger; Letourneur, Didier; Feldman, Laurent J

    2007-12-01

    Matrix metalloproteinase-2 (MMP-2) is constitutively expressed in vascular smooth muscle cells (VSMCs). Using small interfering RNA (siRNA), we evaluated the effect of MMP-2 inhibition in VSMCs in vitro and ex vivo. Rabbit VSMCs were transfected in vitro with 50 nmol/l MMP-2 siRNA or scramble siRNA. Flow cytometry and confocal microscopy showed cellular uptake of siRNA in approximately 80% of VSMCs. MMP-2 mRNA levels evaluated by real-time RT-PCR, pro-MMP-2 activity from conditioned culture media evaluated by gelatin zymography, and VSMC migration were reduced by 44 +/- 19%, 43 +/- 14%, and 36 +/- 14%, respectively, in MMP-2 siRNA-transfected compared with scramble siRNA-transfected VSMCs (P < 0.005 for all). Ex vivo MMP-2 siRNA transfection was performed 2 wk after balloon injury of hypercholesterolemic rabbit carotid arteries. Fluorescence microscopy showed circumferential siRNA uptake in neointimal cells. Gelatin zymography of carotid artery culture medium demonstrated a significant decrease of pro-MMP-2 activity in MMP-2 siRNA-transfected compared with scramble siRNA-transfected arteries (P < 0.01). Overall, our results demonstrate that in vitro MMP-2 siRNA transfection in VSMCs markedly inhibits MMP-2 gene expression and VSMC migration and that ex vivo delivery of MMP-2 siRNA in balloon-injured arteries reduces pro-MMP-2 activity in neointimal cells, suggesting that siRNA could be used to modify arterial biology in vivo.

  3. Antifibrotic effects of Smad4 small interfering RNAs in injured skeletal muscle after acute contusion.

    PubMed

    Li, H; Chen, J; Chen, S; Zhang, Q; Chen, S

    2011-10-01

    Muscle injuries are common musculoskeletal problems encountered in sports medicine clinics. In this study, we examined the effect of lentivirus-mediated small interfering RNA (siRNA) targeting Smad4 on the suppression of the fibrosis in injured skeletal muscles. We found that Smad4-siRNA could efficiently knock down the expression of Smad4 in the C2C12 myoblast cells and in the contunded mice gastrocnemius muscle. The expression of mRNA level of Smad4 decreased to 11% and 49% compared to the control group, respectively, and the expression of protein level decreased to 13% and 57% respectively. Moreover, the lentivirus-mediated siRNA was stably transfected only into the skeletal muscle and not into the liver of the animals. In contunded mice gastrocnemius, the collagenous and vimentin-positive area in the Smad4 siRNA group reduced to 36% and 37% compared to the control group, respectively. Furthermore, compared to the scrambled Smad4 siRNA-injected mice and PBS control-injected mice, the muscle function of the mice injected with lentivirus-mediated Smad4 siRNA improved in terms of both fast-twitch and tetanic strength (P<0.05). The results suggest that the gene therapy of inhibiting Smad4 by lentivirus-mediated siRNA could be a useful approach to prevent scar tissue formation and improve the function of injured skeletal muscle. © Georg Thieme Verlag KG Stuttgart · New York.

  4. RNA Interference (RNAi) Induced Gene Silencing: A Promising Approach of Hi-Tech Plant Breeding.

    PubMed

    Younis, Adnan; Siddique, Muhammad Irfan; Kim, Chang-Kil; Lim, Ki-Byung

    2014-01-01

    RNA interference (RNAi) is a promising gene regulatory approach in functional genomics that has significant impact on crop improvement which permits down-regulation in gene expression with greater precise manner without affecting the expression of other genes. RNAi mechanism is expedited by small molecules of interfering RNA to suppress a gene of interest effectively. RNAi has also been exploited in plants for resistance against pathogens, insect/pest, nematodes, and virus that cause significant economic losses. Keeping beside the significance in the genome integrity maintenance as well as growth and development, RNAi induced gene syntheses are vital in plant stress management. Modifying the genes by the interference of small RNAs is one of the ways through which plants react to the environmental stresses. Hence, investigating the role of small RNAs in regulating gene expression assists the researchers to explore the potentiality of small RNAs in abiotic and biotic stress management. This novel approach opens new avenues for crop improvement by developing disease resistant, abiotic or biotic stress tolerant, and high yielding elite varieties.

  5. RNA Interference (RNAi) Induced Gene Silencing: A Promising Approach of Hi-Tech Plant Breeding

    PubMed Central

    Younis, Adnan; Siddique, Muhammad Irfan; Kim, Chang-Kil; Lim, Ki-Byung

    2014-01-01

    RNA interference (RNAi) is a promising gene regulatory approach in functional genomics that has significant impact on crop improvement which permits down-regulation in gene expression with greater precise manner without affecting the expression of other genes. RNAi mechanism is expedited by small molecules of interfering RNA to suppress a gene of interest effectively. RNAi has also been exploited in plants for resistance against pathogens, insect/pest, nematodes, and virus that cause significant economic losses. Keeping beside the significance in the genome integrity maintenance as well as growth and development, RNAi induced gene syntheses are vital in plant stress management. Modifying the genes by the interference of small RNAs is one of the ways through which plants react to the environmental stresses. Hence, investigating the role of small RNAs in regulating gene expression assists the researchers to explore the potentiality of small RNAs in abiotic and biotic stress management. This novel approach opens new avenues for crop improvement by developing disease resistant, abiotic or biotic stress tolerant, and high yielding elite varieties. PMID:25332689

  6. Gene regulation by noncoding RNAs

    PubMed Central

    Patil, Veena S.; Zhou, Rui; Rana, Tariq M.

    2015-01-01

    The past two decades have seen an explosion in research on noncoding RNAs and their physiological and pathological functions. Several classes of small (20–30 nucleotides) and long (>200 nucleotides) noncoding RNAs have been firmly established as key regulators of gene expression in myriad processes ranging from embryonic development to innate immunity. In this review, we focus on our current understanding of the molecular mechanisms underlying the biogenesis and function of small interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwi-interacting RNAs (piRNAs). In addition, we briefly review the relevance of small and long noncoding RNAs to human physiology and pathology and their potential to be exploited as therapeutic agents. PMID:24164576

  7. Combination of small RNAs for skeletal muscle regeneration.

    PubMed

    Kim, NaJung; Yoo, James J; Atala, Anthony; Lee, Sang Jin

    2016-03-01

    Selectively controlling the expression of the target genes through RNA interference (RNAi) has significant therapeutic potential for injuries or diseases of tissues. We used this strategy to accelerate and enhance skeletal muscle regeneration for the treatment of muscular atrophy. In this study, we used myostatin small interfering (si)RNA (siGDF-8), a major inhibitory factor in the development and postnatal regeneration of skeletal muscle and muscle-specific microRNAs (miR-1 and -206) to further accelerate muscle regeneration. This combination of 3 small RNAs significantly improved the gene expression of myogenic regulatory factors in vitro, suggesting myogenic activation. Moreover, cell proliferation and myotube formation improved without compromising each other, which indicates the myogenic potential of this combination of small RNAs. The recovery of chemically injured tibialis anterior muscles in rats was significantly accelerated, both functionally and structurally. This novel combination of siRNA and miRNAs has promising therapeutic potential to improve in situ skeletal muscle regeneration. © FASEB.

  8. The Impact of Small RNA Interference Against Homer1 on Rats with Type 2 Diabetes and ERK Phosphorylation.

    PubMed

    Lu, Jun; Gan, Jihong; Fu, Guoqiang; Ding, Lu; Zheng, Qiangsun

    2015-12-01

    The objective of the study is to evaluate Homer1 expression in rats with Type 2 diabetes mellitus (T2DM) and investigate the mechanism by which Homer1 influences the pathogenesis of diabetes through study on rat model with decreased Homer1 expression. Rat model of T2DM was constructed and blood insulin concentration was measured. Homer1 mRNA and protein expressions in rat pancreatic tissue were determined using RT-PCR as well as Western blotting. Homer1 expression in human monocytic THP-1 cells was interfered using short hairpin RNA, and its effect on phosphorylation of extracellular signal-regulated kinase (ERK) was assessed. Fasting glucose concentration in rat model of T2DM was significantly higher than that of normal rats (13.1 ± 2.4 vs 5.1 ± 1.1 mmol/L), and fasting blood insulin concentration of diabetic group was significantly lower than that of normal group (13.6 ± 1.9 18.3 ± 2.2 mIU/L) (P < 0.05). Homer1 mRNA and protein expressions in pancreatic tissue of rats with T2DM were significantly higher than those of normal rats (P < 0.05). Level of ERK phosphorylation in pancreatic tissue of rats with T2DM was significantly higher than that of normal rats. Homer1 mRNA level in rat pancreatic tissue of T2DM was positively correlated with the area of pancreatic islets (r = 0.526, P = 0.014). Homer1 mRNA level was significantly inhibited in high-glucose and high-fat stimulated human monotypic THP-1 cells with interfered Homer1. Compared with controls, P-ERK phosphorylation was significantly decreased in THP-1 cells with interfered Homer1 (P < 0.05). Homer1 can promote the progression of T2DM, which may be achieved through affecting ERK phosphorylation.

  9. Cyclin-dependent kinase 5 regulates degranulation in human eosinophils.

    PubMed

    Odemuyiwa, Solomon O; Ilarraza, Ramses; Davoine, Francis; Logan, Michael R; Shayeganpour, Anooshirvan; Wu, Yingqi; Majaesic, Carina; Adamko, Darryl J; Moqbel, Redwan; Lacy, Paige

    2015-04-01

    Degranulation from eosinophils in response to secretagogue stimulation is a regulated process that involves exocytosis of granule proteins through specific signalling pathways. One potential pathway is dependent on cyclin-dependent kinase 5 (Cdk5) and its effector molecules, p35 and p39, which play a central role in neuronal cell exocytosis by phosphorylating Munc18, a regulator of SNARE binding. Emerging evidence suggests a role for Cdk5 in exocytosis in immune cells, although its role in eosinophils is not known. We sought to examine the expression of Cdk5 and its activators in human eosinophils, and to assess the role of Cdk5 in eosinophil degranulation. We used freshly isolated human eosinophils and analysed the expression of Cdk5, p35, p39 and Munc18c by Western blot, RT-PCR, flow cytometry and immunoprecipitation. Cdk5 kinase activity was determined following eosinophil activation. Cdk5 inhibitors were used (roscovitine, AT7519 and small interfering RNA) to determine its role in eosinophil peroxidase (EPX) secretion. Cdk5 was expressed in association with Munc18c, p35 and p39, and phosphorylated following human eosinophil activation with eotaxin/CCL11, platelet-activating factor, and secretory IgA-Sepharose. Cdk5 inhibitors (roscovitine, AT7519) reduced EPX release when cells were stimulated by PMA or secretory IgA. In assays using small interfering RNA knock-down of Cdk5 expression in human eosinophils, we observed inhibition of EPX release. Our findings suggest that in activated eosinophils, Cdk5 is phosphorylated and binds to Munc18c, resulting in Munc18c release from syntaxin-4, allowing SNARE binding and vesicle fusion, with subsequent eosinophil degranulation. Our work identifies a novel role for Cdk5 in eosinophil mediator release by agonist-induced degranulation. © 2014 John Wiley & Sons Ltd.

  10. Osteo-/odontogenic differentiation of induced mesenchymal stem cells generated through epithelial-mesenchyme transition of cultured human keratinocytes.

    PubMed

    Yi, Jin-Kyu; Mehrazarin, Shebli; Oh, Ju-Eun; Bhalla, Anu; Oo, Jenessa; Chen, Wei; Lee, Min; Kim, Reuben H; Shin, Ki-Hyuk; Park, No-Hee; Kang, Mo K

    2014-11-01

    Revascularization of necrotic pulp has been successful in the resolution of periradicular inflammation; yet, several case studies suggest the need for cell-based therapies using mesenchymal stem cells (MSCs) as an alternative for de novo pulp regeneration. Because the availability of MSCs may be limited, especially in an aged population, the current study reports an alternative approach in generating MSCs from epidermal keratinocytes through a process called epithelial-mesenchymal transition (EMT). We induced EMT in primary normal human epidermal keratinocytes (NHEKs) by transient transfection of small interfering RNA targeting the p63 gene. The resulting cells were assayed for their mesenchymal marker expression, proliferation capacities as a monolayer and in a 3-dimensional collagen scaffold, and differentiation capacities. Transient transfection of p63 small-interfering RNA successfully abolished the expression of endogenous p63 in NHEKs and induced the expression of mesenchymal markers (eg, vimentin and fibronectin), whereas epithelial markers (eg, E-cadherin and involucrin) were lost. The NHEKs exhibiting the EMT phenotype acquired extended replicative potential and an increased telomere length compared with the control cells. Similar to the established MSCs, the NHEKs with p63 knockdown showed attachment onto the 3-dimensional collagen scaffold and underwent progressive proliferation and differentiation. Upon differentiation, these EMT cells expressed alkaline phosphatase activity, osteocalcin, and osteonectin and readily formed mineralized nodules detected by alizarin S red staining, showing osteo-/odontogenic differentiation. The induction of EMT in primary NHEKs by means of transient p63 knockdown allows the generation of induced MSCs from autologous sources. These cells may be used for tissues engineering purposes, including that of dental pulp. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Manipulation of Cell Physiology Enables Gene Silencing in Well-differentiated Airway Epithelia

    PubMed Central

    Krishnamurthy, Sateesh; Behlke, Mark A; Ramachandran, Shyam; Salem, Aliasger K; McCray Jr, Paul B; Davidson, Beverly L

    2012-01-01

    The application of RNA interference-based gene silencing to the airway surface epithelium holds great promise to manipulate host and pathogen gene expression for therapeutic purposes. However, well-differentiated airway epithelia display significant barriers to double-stranded small-interfering RNA (siRNA) delivery despite testing varied classes of nonviral reagents. In well-differentiated primary pig airway epithelia (PAE) or human airway epithelia (HAE) grown at the air–liquid interface (ALI), the delivery of a Dicer-substrate small-interfering RNA (DsiRNA) duplex against hypoxanthine–guanine phosphoribosyltransferase (HPRT) with several nonviral reagents showed minimal uptake and no knockdown of the target. In contrast, poorly differentiated cells (2–5-day post-seeding) exhibited significant oligonucleotide internalization and target knockdown. This finding suggested that during differentiation, the barrier properties of the epithelium are modified to an extent that impedes oligonucleotide uptake. We used two methods to overcome this inefficiency. First, we tested the impact of epidermal growth factor (EGF), a known enhancer of macropinocytosis. Treatment of the cells with EGF improved oligonucleotide uptake resulting in significant but modest levels of target knockdown. Secondly, we used the connectivity map (Cmap) database to correlate gene expression changes during small molecule treatments on various cells types with genes that change upon mucociliary differentiation. Several different drug classes were identified from this correlative assessment. Well-differentiated epithelia treated with DsiRNAs and LY294002, a PI3K inhibitor, significantly improved gene silencing and concomitantly reduced target protein levels. These novel findings reveal that well-differentiated airway epithelia, normally resistant to siRNA delivery, can be pretreated with small molecules to improve uptake of synthetic oligonucleotide and RNA interference (RNAi) responses. PMID:23344182

  12. Functional Nanostructures for Effective Delivery of Small Interfering RNA Therapeutics

    PubMed Central

    Hong, Cheol Am; Nam, Yoon Sung

    2014-01-01

    Small interfering RNA (siRNA) has proved to be a powerful tool for target-specific gene silencing via RNA interference (RNAi). Its ability to control targeted gene expression gives new hope to gene therapy as a treatment for cancers and genetic diseases. However, siRNA shows poor pharmacological properties, such as low serum stability, off-targeting, and innate immune responses, which present a significant challenge for clinical applications. In addition, siRNA cannot cross the cell membrane for RNAi activity because of its anionic property and stiff structure. Therefore, the development of a safe, stable, and efficient system for the delivery of siRNA therapeutics into the cytoplasm of targeted cells is crucial. Several nanoparticle platforms for siRNA delivery have been developed to overcome the major hurdles facing the therapeutic uses of siRNA. This review covers a broad spectrum of non-viral siRNA delivery systems developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and discusses their characteristics and opportunities for clinical applications of therapeutic siRNA. PMID:25285170

  13. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA

    PubMed Central

    Woodrow, Kim A.; Cu, Yen; Booth, Carmen J.; Saucier-Sawyer, Jennifer K.; Wood, Monica J.; Saltzman, W. Mark

    2009-01-01

    Vaginal instillation of small-interfering RNA (siRNA) using liposomes has led to silencing of endogenous genes in the genital tract and protected against challenge from infectious disease. Although siRNA lipoplexes are easily formulated, several of the most effective transfection agents available commercially may be toxic to the mucosal epithelia and none are able to provide controlled or sustained release. Here, we demonstrate an alternate approach, using nanoparticles composed entirely of FDA-approved materials. To render these materials effective for gene silencing we developed novel approaches to load them with high amounts of siRNA. A single dose of siRNA-loaded nanoparticles to the mouse female reproductive tract caused efficient and sustained gene silencing. Knockdown of gene expression was observed proximal (in the vaginal lumen) and distal (in the uterine horns) to the site of topical delivery. In addition, nanoparticles penetrated deep into the epithelial tissue. This is the first report demonstrating that biodegradable polymer nanoparticles are effective delivery vehicles for siRNA in the vaginal mucosa. PMID:19404239

  14. Contributions of 3'-overhang to the dissociation of small interfering RNAs from the PAZ domain: molecular dynamics simulation study.

    PubMed

    Lee, Hui Sun; Lee, Soo Nam; Joo, Chul Hyun; Lee, Heuiran; Lee, Han Saem; Yoon, Seung Yong; Kim, Yoo Kyum; Choe, Han

    2007-03-01

    RNA interference (RNAi) is a 'knock-down' reaction to reduce expression of a specific gene through highly regulated, enzyme-mediated processes. Small interfering RNAs (siRNAs) are RNA molecules that play an effector role in RNAi and can bind the PAZ domains present in Dicer and RISC. We investigated the interaction between the PAZ domain and the siRNA-like duplexes through dissociation molecular dynamics (DMD) simulations. Specifically, we focused on the response of the PAZ domain to various 3'-overhang structures of the siRNA-like duplexes. We found that the siRNA-like duplex with the 3' UU-overhang made relatively more stable complex with the PAZ domain compared to those with 3' CC-, AA-, and GG-overhangs. The siRNA-like duplex with UU-overhang was easily dissociated from the PAZ domain once the structural stability of the complex is impaired. Interestingly, the 3' UU-overhang spent the least time at the periphery region of the binding pocket during the dissociation process, which can be mainly attributable to UU-overhang's smallest number of hydrogen bonds.

  15. Characterization of GAB1 Expression Over the Menstrual Cycle in Women With and Without Polycystic Ovarian Syndrome Provides a New Insight Into Its Pathophysiology

    PubMed Central

    Roemer, K. L.; Young, S. L.

    2014-01-01

    Context: In a previous microarray analysis, GRB2-associated binding protein 1 (GAB1), a docking protein closely related to the insulin receptor substrate, was down-regulated in endometrium of women with polycystic ovary syndrome (PCOS). Objective: The objective of the study was to characterize the cyclic expression of endometrial GAB1 in vivo in normal women and those with PCOS as well as investigate the possible mechanisms of endometrial regulation of GAB1 expression and action in vitro. Design: This was an experimental and case-control study. Setting: The study was conducted at a tertiary university hospital. Patients: Normal proven fertile women (controls; n = 31) and women with PCOS (cases; n = 26) participated in the study. Interventions: Interventions included timed endometrial biopsies at different phases of the menstrual cycle. Ishikawa cells were cultured with β-estradiol (E2), medroxyprogesterone acetate, and E2 + medroxyprogesterone acetate. Transfection of small interfering RNA for GAB1 in Ishikawa cells incubated with or without insulin. Main Outcome Measures: GAB1 mRNA expression in Ishikawa cells and in endometrium of cases and controls was measured. Protein expression of phosphorylated MAPK by Western blot was also measured. Immunohistochemical localization and expression of phosphorylated GAB1 in endometrium was also measured, using a digital histological score. Results: In endometrial tissue, GAB1 mRNA was reduced in the proliferative phase of PCOS women, compared with controls (P = .003; ANOVA). When all the phases of the menstrual cycle were grouped, GAB1 protein expression was reduced in endometrium of PCOS women (P < .0001; Student t test). E2 increases GAB1 mRNA expression in Ishikawa cells (P = .001; ANOVA). Phosphorylated MAPK is reduced in cells transfected with small interfering RNA for GAB1 (P = .008; ANOVA) and incubated with insulin. Conclusions: GAB1 mRNA expression is positively modulated by E2. Endometrial GAB1 protein and mRNA expression are reduced in women with PCOS, suggesting that the endometrium of PCOS women have a defect in insulin signaling due to GAB1 down-regulation. PMID:25144631

  16. Successful silencing of plasminogen activator inhibitor-1 in human vascular endothelial cells using small interfering RNA.

    PubMed

    Hecke, Anneke; Brooks, Hilary; Meryet-Figuière, Matthieu; Minne, Stephanie; Konstantinides, Stavros; Hasenfuss, Gerd; Lebleu, Bernard; Schäfer, Katrin

    2006-05-01

    Clinical as well as experimental evidence suggests that vascular overexpression of plasminogen activator inhibitor (PAI)-1, the primary physiological inhibitor of both urokinase and tissue-type plasminogen activator, may be involved in the pathophysiology of atherosclerosis and cardiovascular disease. We investigated the feasibility, efficacy and functional effects of PAI-1 gene silencing in human vascular endothelial cells using small interfering RNA. Double-stranded 21 bp-RNA molecules targeted at sequences within the human PAI-1 gene were constructed. Successful siRNA transfection of HUVEC was confirmed using fluorescence microscopy and flow cytometry. One of five candidate siRNA sequences reduced PAI-1 mRNA and protein in a concentration- and time-dependent manner. Suppression of PAI-1 mRNA was detected up to 72 hours after transfection. Moreover, siRNA treatment reduced the activity of PAI-1 released from HUVEC, and prevented the oxLDL- or LPS-induced upregulation of PAI-1 secretion. Importantly, siRNA treatment did not affect the expression of other endothelial-cell markers. Moreover, downregulation of PAI-1 significantly enhanced the ability of endothelial cells to adhere to vitronectin, and this effect could be reversed upon addition of recombinant PAI-1. SiRNA-mediated reduction of PAI-1 expression may be a promising strategy for dissecting the effects of PAI-1 on vascular homeostasis.

  17. Silencing expression of the catalytic subunit of DNA-dependent protein kinase by small interfering RNA sensitizes human cells for radiation-induced chromosome damage, cell killing, and mutation

    NASA Technical Reports Server (NTRS)

    Peng, Yuanlin; Zhang, Qinming; Nagasawa, Hatsumi; Okayasu, Ryuichi; Liber, Howard L.; Bedford, Joel S.

    2002-01-01

    Targeted gene silencing in mammalian cells by RNA interference (RNAi) using small interfering RNAs (siRNAs) was recently described by Elbashir et al. (S. M. Elbashir et al., Nature (Lond.), 411: 494-498, 2001). We have used this methodology in several human cell strains to reduce expression of the Prkdc (DNA-PKcs) gene coding for the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) that is involved in the nonhomologous end joining of DNA double-strand breaks. We have also demonstrated a radiosensitization for several phenotypic endpoints of radiation damage. In low-passage normal human fibroblasts, siRNA knock-down of DNA-PKcs resulted in a reduced capacity for restitution of radiation-induced interphase chromosome breaks as measured by premature chromosome condensation, an increased yield of acentric chromosome fragments at the first postirradiation mitosis, and an increased radiosensitivity for cell killing. For three strains of related human lymphoblasts, DNA-PKcs-targeted siRNA transfection resulted in little or no increase in radiosensitivity with respect to cell killing, a 1.5-fold decrease in induced mutant yield in TK6- and p53-null NH32 cells, but about a 2-fold increase in induced mutant yield in p53-mutant WTK1 cells at both the hypoxanthine quanine phosphoribosyl transferase (hprt) and the thymidine kinase loci.

  18. Downregulation of membrane complement inhibitors CD55 and CD59 by siRNA sensitises uterine serous carcinoma overexpressing Her2/neu to complement and antibody-dependent cell cytotoxicity in vitro: implications for trastuzumab-based immunotherapy.

    PubMed

    Bellone, S; Roque, D; Cocco, E; Gasparrini, S; Bortolomai, I; Buza, N; Abu-Khalaf, M; Silasi, D-A; Ratner, E; Azodi, M; Schwartz, P E; Rutherford, T J; Pecorelli, S; Santin, A D

    2012-04-24

    We evaluated the expression of CD46, CD55 and CD59 membrane-bound complement-regulatory proteins (mCRPs) in primary uterine serous carcinoma (USC) and the ability of small interfering RNA (siRNA) against these mCRPs to sensitise USC to complement-dependent cytotoxicity (CDC) and antibody (trastuzumab)-dependent cellular cytotoxicity (ADCC) in vitro. Membrane-bound complement-regulatory proteins expression was evaluated using real-time PCR (RT-PCR) and flow cytometry, whereas Her2/neu expression and c-erbB2 gene amplification were assessed using immunohistochemistry, flow cytometry and fluorescent in-situ hybridisation. The biological effect of siRNA-mediated knockdown of mCRPs on HER2/neu-overexpressing USC cell lines was evaluated in CDC and ADCC 4-h chromium-release assays. High expression of mCRPs was found in USC cell lines when compared with normal endometrial cells (P<0.05). RT-PCR and FACS analyses demonstrated that anti-mCRP siRNAs were effective in reducing CD46, CD55 and CD59 expression on USC (P<0.05). Baseline complement-dependent cytotoxicity (CDC) against USC cell lines was low (mean ± s.e.m.=6.8 ± 0.9%) but significantly increased upon CD55 and CD59 knockdown (11.6 ± 0.8% and 10.7 ± 0.9%, respectively, P<0.05). Importantly, in the absence of complement, both CD55 and CD59, but not CD46, knockdowns significantly augmented ADCC against USC overexpressing Her2/neu. Uterine serous carcinoma express high levels of the mCRPs CD46, CD55 and CD59. Small interfering RNA inhibition of CD55 and CD59, but not CD46, sensitises USC to both CDC and ADCC in vitro, and if specifically targeted to tumour cells, may significantly increase trastuzumab-mediated therapeutic effect in vivo.

  19. Cationic star-shaped polymer as an siRNA carrier for reducing MMP-9 expression in skin fibroblast cells and promoting wound healing in diabetic rats.

    PubMed

    Li, Na; Luo, Heng-Cong; Yang, Chuan; Deng, Jun-Jie; Ren, Meng; Xie, Xiao-Ying; Lin, Diao-Zhu; Yan, Li; Zhang, Li-Ming

    2014-01-01

    Excessive expression of matrix metalloproteinase-9 (MMP-9) is deleterious to the cutaneous wound-healing process in the context of diabetes. The aim of the present study was to explore whether a cationic star-shaped polymer consisting of β-cyclodextrin (β-CD) core and poly(amidoamine) dendron arms (β-CD-[D₃]₇) could be used as the gene carrier of small interfering RNA (siRNA) to reduce MMP-9 expression for enhanced diabetic wound healing. The cytotoxicity of β-CD-(D₃)₇ was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MMT) method in the rat CRL1213 skin fibroblast cell line. The transfection efficiency of β-CD-(D₃)₇/MMP-9-small interfering RNA (siRNA) complexes was determined by confocal microscopy and flow cytometry. Quantitative real time (RT) polymerase chain reaction was performed to measure the gene expression of MMP-9 after the transfection by β-CD-(D₃)₇/MMP-9-siRNA complexes. The β-CD-(D₃)₇/MMP-9-siRNA complexes were injected on the wounds of streptozocin-induced diabetic rats. Wound closure was measured on days 4 and 7 post-wounding. β-CD-(D₃)₇ exhibited low cytotoxicity in fibroblast cells, and easily formed the complexes with MMP-9-siRNA. The β-CD-(D₃)₇/MMP-9-siRNA complexes were readily taken up by fibroblast cells, resulting in the downregulation of MMP-9 gene expression (P<0.01). Animal experiments revealed that the treatment by β-CD-(D₃)₇/MMP-9-siRNA complexes enhanced wound closure in diabetic rats on day 7 post-wounding (P<0.05). β-CD-(D₃)₇ may be used as an efficient carrier for the delivery of MMP-9-siRNA to reduce MMP-9 expression in skin fibroblast cells and promote wound healing in diabetic rats.

  20. Tumour-associated neutrophils and loss of epithelial PTEN can promote corticosteroid-insensitive MMP-9 expression in the chronically inflamed lung microenvironment

    PubMed Central

    Vannitamby, Amanda; Seow, Huei Jiunn; Anderson, Gary; Vlahos, Ross; Thompson, Michelle; Steinfort, Daniel; Irving, Louis B; Bozinovski, Steven

    2017-01-01

    Matrix metalloproteinase-9 (MMP-9) is increased in a number of pathological lung conditions, where the proteinase contributes to deleterious remodelling of the airways. While both lung cancer and COPD are associated with increased MMP-9 expression, the cellular and molecular drivers of MMP-9 remain unresolved. In this study, MMP-9 transcript measured within the tumour region from patients with non-small-cell lung cancer (NSCLC) and coexisting COPD was found to be uniformly increased relative to adjacent tumour-free tissue. MMP-9 gene expression and immunohistochemistry identified tumour-associated neutrophils, but not macrophages, as a predominant source of this proteinase. In addition, PTEN gene expression was significantly reduced in tumour and there was evidence of epithelial MMP-9 expression. To explore whether PTEN can regulate epithelial MMP-9 expression, a small interfering (si)RNA knockdown strategy was used in Beas-2B bronchial epithelial cells. PTEN knockdown by siRNA selectively increased MMP-9 expression in response to lipopolysaccharide in a corticosteroid-insensitive manner. In summary, tumour-associated neutrophils represent an important source of MMP-9 in NSCLC, and loss of epithelial PTEN may further augment steroid-insensitive expression. PMID:28202627

  1. Local matrix metalloproteinase 2 gene knockdown in balloon-injured rabbit carotid arteries using nonviral-small interfering RNA transfection.

    PubMed

    Hlawaty, Hanna; San Juan, Aurélie; Jacob, Marie-Paule; Vranckx, Roger; Letourneur, Didier; Feldman, Laurent J

    2009-01-01

    Small interfering RNA (siRNA) delivery is a promising approach for the treatment of cardiovascular diseases. Matrix metalloproteinase (MMP) 2 over-expression in the arterial wall has been implicated in restenosis after percutaneous coronary intervention, as well as in spontaneous atherosclerotic plaque rupture. We hypothesized that in vivo local delivery of siRNA targeted at MMP2 (MMP2-siRNA) in the balloon-injured carotid artery of hypercholesterolemic rabbits may lead to inhibition of MMP2 expression. Two weeks after balloon injury, 5 micromol/l of Tamra-tagged MMP2-siRNA, scramble siRNA or saline was locally injected in the carotid artery and incubated for 1 h. Fluorescent microscopy studies showed the circumferential uptake of siRNA in the superficial layers of neointimal cells. MMP2 mRNA levels, measured by the real-time reverse transcriptase-polymerase chain reaction, was decreased by 79 +/- 25% in MMP2-siRNA- versus scramble siRNA-transfected arteries (p < 0.05). MMP2 activity, measured by gelatin zymography performed on the conditioned media of MMP2-siRNA versus scramble siRNA transfected arteries, decreased by 53 +/- 29%, 50 +/- 24% and 46 +/- 14% at 24, 48 and 72 h, respectively (p < 0.005 for all). No effect was observed on MMP9, pro-MMP9 and TIMP-2 levels. The results obtained in the present study suggest that significant inhibition of gene expression can be achieved with local delivery of siRNA in the arterial wall in vivo. (c) 2008 John Wiley & Sons, Ltd.

  2. Novel small interfering RNA-containing solution protecting donor organs in heart transplantation.

    PubMed

    Zheng, Xiufen; Lian, Dameng; Wong, Arthur; Bygrave, Michael; Ichim, Thomas E; Khoshniat, Mahdieh; Zhang, Xusheng; Sun, Hongtao; De Zordo, Tobias; Lacefield, James C; Garcia, Bertha; Jevnikar, Anthony M; Min, Wei-Ping

    2009-09-22

    Ischemia/reperfusion injury is a major factor in graft quality and subsequent function in the transplantation setting. We hypothesize that the process of RNA interference may be used to "engineer" a graft to suppress expression of genes associated with inflammation, apoptosis, and complement, which are believed to cause ischemia/reperfusion injury. Such manipulation of pathological gene expression may be performed by treatment of the graft ex vivo with small interfering RNA (siRNA) as part of the preservation procedure. Heart grafts from BALB/c mice were preserved in UW solution (control) or UW solution containing siRNAs targeting tumor necrosis factor-alpha, C3, and Fas genes (siRNA solution) at 4 degrees C for 48 hours and subsequently transplanted into syngeneic recipients. Tumor necrosis factor-alpha, C3, and Fas genes were elevated by ischemia/reperfusion injury after 48 hours of preservation in UW solution. Preservation in siRNA solution knocked down gene expression at the level of messenger RNA and protein in the grafts after transplantation. All grafts preserved in siRNA solution showed strong contraction, whereas grafts preserved in control solution demonstrated no detectable contraction by high-frequency ultrasound scanning. siRNA solution-treated organs exhibited improved histology and diminished neutrophil and lymphocyte infiltration compared with control solution-treated organs. Furthermore, the treated heart grafts retained strong beating up to the end of the observation period (>100 days), whereas all control grafts lost function within 8 days. Incorporation of siRNA into organ storage solution is a feasible and effective method of attenuating ischemia/reperfusion injury, protecting cardiac function, and prolonging graft survival.

  3. Function and Evolution of a MicroRNA That Regulates a Ca2+-ATPase and Triggers the Formation of Phased Small Interfering RNAs in Tomato Reproductive Growth[W][OA

    PubMed Central

    Wang, Ying; Itaya, Asuka; Zhong, Xuehua; Wu, Yang; Zhang, Jianfeng; van der Knaap, Esther; Olmstead, Richard; Qi, Yijun; Ding, Biao

    2011-01-01

    MicroRNAs (miRNAs) regulate a wide variety of biological processes in most eukaryotes. We investigated the function and evolution of miR4376 in the family Solanaceae. We report that the 22-nucleotide miR4376 regulates the expression of an autoinhibited Ca2+-ATPase, tomato (Solanum lycopersicum) ACA10, which plays a critical role in tomato reproductive growth. Deep phylogenetic mapping suggested (1) an evolution course of MIR4376 loci and posttranscriptional processing of pre-miR4376 as a likely limiting step for the evolution of miR4376, (2) an independent phylogenetic origin of the miR4376 target site in ACA10 homologs, and (3) alternative splicing as a possible mechanism of eliminating such a target in some ACA10 homologs. Furthermore, miR4376 triggers the formation of phased small interfering RNAs (siRNAs) from Sl ACA10 and its Solanum tuberosum homolog. Together, our data provide experimental evidence of miRNA-regulated expression of universally important Ca2+-ATPases. The miR4376-regulated expression of ACA10 itself, and possibly also the associated formation of phased siRNAs, may function as a novel layer of molecular mechanisms underlying tomato reproductive growth. Finally, our data suggest that the stochastic emergence of a miRNA-target gene combination involves multiple molecular events at the genomic, transcriptional, and posttranscriptional levels that may vary drastically in even closely related species. PMID:21917547

  4. Mammalian genome-wide loss-of-function screens using arrayed small interfering RNA expression libraries.

    PubMed

    Zheng, Lianxing; Ding, Sheng

    2004-04-01

    Extract: RNA interference (RNAi), first discovered in Caenorhabdtitis elegans and now widely found and applied in a variety of organisms such as Drosophila, zebrafish and mammalian systems, has emerged to revolutionize the field of functional genomics by inducing specific and effective post-transcriptional gene silencing for loss-of-function studies. Mechanistic investigations of RNAi suggest that long double-stranded RNAs (dsRNAs) are first cleaved by the RNase III-like enzyme, Dicer, to 21-23 base pair (bp) small interfering RNAs (siRNAs). These siRNAs are resolved by ATP-dependent RNA helicase, and the resulting single-stranded RNAs are then incorporated into the RNA-induced silencing complex (RISC). The antisense strand of the siRNA duplex guides the RISC to the homologous mRNA, where the RISC-associated endoribonuclease cleaves the target mRNA, resulting in silencing of the target gene. The approach of using long dsRNA (up to 1-2 kb) in C. elegans and Drosophila to induce gene silencing cannot be similarly used in mammalian cells, where introduction of long dsRNA activates the dsRNA-dependent protein kinase PKR. PKR phosphorylates and inactivates the translation initiation factor eIF2, resulting in a non-specific gene-silencing effect. Development and implementation of the use of 21 to 23bp siRNAs, which can be prepared by chemical synthesis, in vitro transcription, or expressed in cells using siRNA expression systems, allows specific and effective gene silencing in mammalian cells to occur without activation of PKR.

  5. The Application of Clinical Lithotripter Shock Waves to RNA Nucleotide Delivery to Cells.

    PubMed

    Nwokeoha, Sandra; Carlisle, Robert; Cleveland, Robin O

    2016-10-01

    The delivery of genes into cells through the transfer of ribonucleic acids (RNAs) has been found to cause a change in the level of target protein expression. RNA-based transfection is conceptually more efficient than commonly delivered plasmid DNA because it does not require division or damage of the nuclear envelope, thereby increasing the chances of the cell remaining viable. Shock waves (SWs) have been found to induce cellular uptake by transiently altering the permeability of the plasma membrane, thereby overcoming a critical step in gene therapy. However, accompanying SW bio-effects include dose-dependent irreversible cell injury and cytotoxicity. Here, the effect of SWs generated by a clinical lithotripter on the viability and permeabilisation of three different cell lines in vitro was investigated. Comparison of RNA stability before and after SW exposure revealed no statistically significant difference. Optimal SW exposure parameters were identified to minimise cell death and maximise permeabilisation, and applied to enhanced green fluorescent protein (eGFP) messenger RNA (mRNA) or anti-eGFP small interfering RNA delivery. As a result, eGFP mRNA expression levels increased up to 52-fold in CT26 cells, whereas a 2-fold decrease in GFP expression was achieved after anti-eGFP small interfering RNA delivery to MCF-7/GFP cells. These results indicate that SW parameters can be employed to achieve effective nucleotide delivery, laying the foundation for non-invasive and high-tolerability RNA-based gene therapy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Correlation of LNCR rasiRNAs Expression with Heterochromatin Formation during Development of the Holocentric Insect Spodoptera frugiperda

    PubMed Central

    Stanojcic, Slavica; Gimenez, Sylvie; Permal, Emmanuelle; Cousserans, François; Quesneville, Hadi; Fournier, Philippe; d'Alençon, Emmanuelle

    2011-01-01

    Repeat-associated small interfering RNAs (rasiRNAs) are derived from various genomic repetitive elements and ensure genomic stability by silencing endogenous transposable elements. Here we describe a novel subset of 46 rasiRNAs named LNCR rasiRNAs due to their homology with one long non-coding RNA (LNCR) of Spodoptera frugiperda. LNCR operates as the intermediate of an unclassified transposable element (TE-LNCR). TE-LNCR is a very invasive transposable element, present in high copy numbers in the S. frugiperda genome. LNCR rasiRNAs are single-stranded RNAs without a prominent nucleotide motif, which are organized in two distinct, strand-specific clusters. The expression of LNCR and LNCR rasiRNAs is developmentally regulated. Formation of heterochromatin in the genomic region where three copies of the TE-LNCR are embedded was followed by chromatin immunoprecipitation (ChIP) and we observed this chromatin undergo dynamic changes during development. In summary, increased LNCR expression in certain developmental stages is followed by the appearance of a variety of LNCR rasiRNAs which appears to correlate with subsequent accumulation of a heterochromatic histone mark and silencing of the genomic region with TE-LNCR. These results support the notion that a repeat-associated small interfering RNA pathway is linked to heterochromatin formation and/or maintenance during development to establish repression of the TE-LNCR transposable element. This study provides insights into the rasiRNA silencing pathway and its role in the formation of fluctuating heterochromatin during the development of one holocentric organism. PMID:21980354

  7. Layer-by-layer assembly of small interfering RNA and poly(ethyleneimine) for substrate-mediated electroporation with high efficiency.

    PubMed

    Fujimoto, Hiroyuki; Kato, Koichi; Iwata, Hiroo

    2010-05-01

    Electroporation microarrays have been developed for the high-throughput transfection of expression constructs and small interfering RNAs (siRNAs) into living mammalian cells. These techniques have potential to provide a platform for the cell-based analysis of gene functions. One of the key issues associated with microarray technology is the efficiency of transfection. The capability of attaining reasonably high transfection efficiency is the basis for obtaining functional data without false negatives. In this study, we aimed at improving the transfection efficiency in the system that siRNA loaded on an electrode is electroporated into cells cultured directly on the electrode. The strategy we adopted here is to increase the surface density of siRNA loaded onto electrodes. For this purpose, the layer-by-layer assembly of siRNA and cationic polymers, branched or linear form of poly(ethyleneimine), was performed. The multilayer thus obtained was characterized by infrared reflection-adsorption spectroscopy and surface plasmon resonance analysis. Transfection efficiency was evaluated in a system that siRNA specific for enhanced green fluorescent protein (EGFP) was electroporated on the electrode into human embryonic kidney cells stably transformed with the EGFP gene. The suppression of EGFP expression was assessed by fluorescence microscopy and flow cytometry. Our data showed that the layer-by-layer assembly of siRNA with branched poly(ethyleneimine) facilitated to increase the surface density of loaded siRNA. As a result, the expression of EGFP gene in the electroporated cells was suppressed much more on the electrodes with the multilayer of siRNA than that with the monolayer.

  8. Apple miRNAs and tasiRNAs with novel regulatory networks

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) and their regulatory functions have been extensively characterized in model species but whether apple has evolved similar or unique regulatory features remains unknown. Results We performed deep small RNA-seq and identified 23 conserved, 10 less-conserved and 42 apple-specific miRNAs or families with distinct expression patterns. The identified miRNAs target 118 genes representing a wide range of enzymatic and regulatory activities. Apple also conserves two TAS gene families with similar but unique trans-acting small interfering RNA (tasiRNA) biogenesis profiles and target specificities. Importantly, we found that miR159, miR828 and miR858 can collectively target up to 81 MYB genes potentially involved in diverse aspects of plant growth and development. These miRNA target sites are differentially conserved among MYBs, which is largely influenced by the location and conservation of the encoded amino acid residues in MYB factors. Finally, we found that 10 of the 19 miR828-targeted MYBs undergo small interfering RNA (siRNA) biogenesis at the 3' cleaved, highly divergent transcript regions, generating over 100 sequence-distinct siRNAs that potentially target over 70 diverse genes as confirmed by degradome analysis. Conclusions Our work identified and characterized apple miRNAs, their expression patterns, targets and regulatory functions. We also discovered that three miRNAs and the ensuing siRNAs exploit both conserved and divergent sequence features of MYB genes to initiate distinct regulatory networks targeting a multitude of genes inside and outside the MYB family. PMID:22704043

  9. A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes

    PubMed Central

    Williams, Leor; Carles, Cristel C.; Osmont, Karen S.; Fletcher, Jennifer C.

    2005-01-01

    Two classes of small RNAs, microRNAs and short-interfering RNA (siRNAs), have been extensively studied in plants and animals. In Arabidopsis, the capacity to uncover previously uncharacterized small RNAs by means of conventional strategies seems to be reaching its limits. To discover new plant small RNAs, we developed a protocol to mine an Arabidopsis nonannotated, noncoding EST database. Using this approach, we identified an endogenous small RNA, trans-acting short-interfering RNA–auxin response factor (tasiR-ARF), that shares a 21- and 22-nt region of sequence similarity with members of the ARF gene family. tasiR-ARF has characteristics of both short-interfering RNA and microRNA, recently defined as tasiRNA. Accumulation of trans-acting siRNA depends on DICER-LIKE1 and RNA-DEPENDENT RNA POLYMERASE6 but not RNA-DEPENDENT RNA POLYMERASE2. We demonstrate that tasiR-ARF targets three ARF genes, ARF2, ARF3/ETT, and ARF4, and that both the tasiR-ARF precursor and its target genes are evolutionarily conserved. The identification of tasiRNA-ARF as a low-abundance, previously uncharacterized small RNA species proves our method to be a useful tool to uncover additional small regulatory RNAs. PMID:15980147

  10. Knocking down disease: a progress report on siRNA therapeutics

    PubMed Central

    Wittrup, Anders; Lieberman, Judy

    2016-01-01

    Small interfering RNAs (siRNAs), which downregulate gene expression guided by sequence complementarity, can be used therapeutically to block the synthesis of disease-causing proteins. The main obstacle to siRNA drugs — their delivery into the target cell cytosol — has been overcome to allow suppression of liver gene expression. Here, we review the results of recent clinical trials of siRNA therapeutics, which show efficient and durable gene knockdown in the liver, with signs of promising clinical outcomes and little toxicity. We also discuss the barriers to more widespread applications that target tissues besides the liver and the most promising avenues to overcome them. PMID:26281785

  11. Reduced expression levels of PTEN are associated with decreased sensitivity of HCC827 cells to icotinib.

    PubMed

    Zhai, Yang; Zhang, Yanjun; Nan, Kejun; Liang, Xuan

    2017-05-01

    The clinical resistance of non-small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has been linked to EGFR T790M resistance mutations or MET amplifications. Additional mechanisms underlying EGFR-TKI drug resistance remain unclear. The present study demonstrated that icotinib significantly inhibited the proliferation and increased the apoptosis rate of HCC827 cells; the cellular mRNA and protein expression levels of phosphatase and tensin homolog (PTEN) were also significantly downregulated. To investigate the effect of PTEN expression levels on the sensitivity of HCC827 cells to icotinib, PTEN expression was silenced using a PTEN-specific small interfering RNA. The current study identified that the downregulation of PTEN expression levels may promote cellular proliferation in addition to decreasing the apoptosis of HCC827 cells, and may reduce the sensitivity of HCC827 cells to icotinib. These results suggested that reduced PTEN expression levels were associated with the decreased sensitivity of HCC827 cells to icotinib. Furthermore, PTEN expression levels may be a useful marker for predicting icotinib resistance and elucidating the resistance mechanisms underlying EGFR-mutated NSCLC.

  12. Reduced expression levels of PTEN are associated with decreased sensitivity of HCC827 cells to icotinib

    PubMed Central

    Zhai, Yang; Zhang, Yanjun; Nan, Kejun; Liang, Xuan

    2017-01-01

    The clinical resistance of non-small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has been linked to EGFR T790M resistance mutations or MET amplifications. Additional mechanisms underlying EGFR-TKI drug resistance remain unclear. The present study demonstrated that icotinib significantly inhibited the proliferation and increased the apoptosis rate of HCC827 cells; the cellular mRNA and protein expression levels of phosphatase and tensin homolog (PTEN) were also significantly downregulated. To investigate the effect of PTEN expression levels on the sensitivity of HCC827 cells to icotinib, PTEN expression was silenced using a PTEN-specific small interfering RNA. The current study identified that the downregulation of PTEN expression levels may promote cellular proliferation in addition to decreasing the apoptosis of HCC827 cells, and may reduce the sensitivity of HCC827 cells to icotinib. These results suggested that reduced PTEN expression levels were associated with the decreased sensitivity of HCC827 cells to icotinib. Furthermore, PTEN expression levels may be a useful marker for predicting icotinib resistance and elucidating the resistance mechanisms underlying EGFR-mutated NSCLC. PMID:28521430

  13. Viral Infection Induces Expression of Novel Phased MicroRNAs from Conserved Cellular MicroRNA Precursors

    PubMed Central

    Zhang, Jiayao; Zhao, Shuqi; Zheng, Hong; Gao, Ge; Wei, Liping; Li, Yi

    2011-01-01

    RNA silencing, mediated by small RNAs including microRNAs (miRNAs) and small interfering RNAs (siRNAs), is a potent antiviral or antibacterial mechanism, besides regulating normal cellular gene expression critical for development and physiology. To gain insights into host small RNA metabolism under infections by different viruses, we used Solexa/Illumina deep sequencing to characterize the small RNA profiles of rice plants infected by two distinct viruses, Rice dwarf virus (RDV, dsRNA virus) and Rice stripe virus (RSV, a negative sense and ambisense RNA virus), respectively, as compared with those from non-infected plants. Our analyses showed that RSV infection enhanced the accumulation of some rice miRNA*s, but not their corresponding miRNAs, as well as accumulation of phased siRNAs from a particular precursor. Furthermore, RSV infection also induced the expression of novel miRNAs in a phased pattern from several conserved miRNA precursors. In comparison, no such changes in host small RNA expression was observed in RDV-infected rice plants. Significantly RSV infection elevated the expression levels of selective OsDCLs and OsAGOs, whereas RDV infection only affected the expression of certain OsRDRs. Our results provide a comparative analysis, via deep sequencing, of changes in the small RNA profiles and in the genes of RNA silencing machinery induced by different viruses in a natural and economically important crop host plant. They uncover new mechanisms and complexity of virus-host interactions that may have important implications for further studies on the evolution of cellular small RNA biogenesis that impact pathogen infection, pathogenesis, as well as organismal development. PMID:21901091

  14. The expression of 11β-hydroxysteroid dehydrogenase type 1 and 2 in nasal polyp-derived epithelial cells and its possible contribution to glucocorticoid activation in nasal polyp.

    PubMed

    Kook, Jin Ho; Kim, Hyun Jin; Kim, Kyung Won; Park, Se Jin; Kim, Tae Hoon; Lim, Sae Hee; Kang, Sung Hoon; Lee, Sang Hag

    2015-01-01

    The actions of glucocorticoids in target tissues depend on the local metabolism of glucocorticoids catalyzed by 11β hydroxysteroid dehydrogenase (HSD) 1 and 2. Glucocorticoids are the most effective anti-inflammatory drugs in the treatment of nasal polyps. However, the mechanisms that underlie the anti-inflammatory effects are unclear. The present study analyzed the expression of 11β-HSD1, 11β-HSD2, and steroidogenic enzymes (cytochrome P450, family 11, subfamily B, polypeptide 1 [CYP11B1]; cytochrome P450, family 11, subfamily A, polypeptide 1 [CYP11A1]) in nasal polyp tissues, and endogenous cortisol levels in nasal polyp-derived epithelial cells. The expression levels and distribution pattern of 11β-HSD1, 11β-HSD2, CYP11B1, and CYP11A1 were determined in nasal polyp tissues or nasal polyp-derived epithelial cells by using real-time polymerase chain reaction, Western blot, and immunohistochemistry testing. The expression levels of cortisol by using enzyme-linked immunosorbent assay were determined in cultured polyp-derived epithelial cells treated with adrenocorticotrophic hormone (ACTH), 11β-HSD1 inhibitor, or small interfering ribonucleic acid technique. The effect of glucocorticoids on the expression levels of these enzymes was investigated in cultured cells. Expressed in nasal polyp tissues and nasal polyp-derived epithelial cells were 11β-HSD1, 11β-HSD2, CYP11B1, and CYP11A1. Cortisol production in cultured epithelial cells was decreased in cells treated with 11β-HSD1 small interfering ribonucleic acid or inhibitor, compared with nontreated cells. Cultured cells treated with adrenocorticotropic hormone induced increased cortisol production. 11β-HSD1 expression levels were upregulated in cells treated with glucocorticoid. Analysis of these results indicated that 11β-HSD1 expressed in polyp-derived epithelial cells may be involved in the anti-inflammatory function of glucocorticoid in the treatment of nasal polyps, which contributes to increased levels of endogenous cortisol.

  15. Selective inhibition of FLICE-like inhibitory protein expression with small interfering RNA oligonucleotides is sufficient to sensitize tumor cells for TRAIL-induced apoptosis.

    PubMed Central

    Siegmund, Daniela; Hadwiger, Philipp; Pfizenmaier, Klaus; Vornlocher, Hans-Peter; Wajant, Harald

    2002-01-01

    BACKGROUND: Most tumors express death receptors and their activation represents a potential selective approach in cancer treatment. The most promising candidate for tumor selective death receptor-activation is tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L, which activates the death receptors TRAIL-R1 and TRAIL-R2, and induces apoptosis preferentially in tumor cells but not in normal tissues. However, many cancer cells are not or only moderately sensitive towards TRAIL and require cotreatment with irradiation or chemotherapy to yield a therapeutically reasonable apoptotic response. Because chemotherapy can have a broad range of unwanted side effects, more specific means for sensitizing tumor cells for TRAIL are desirable. The expression of the cellular FLICE-like inhibitory protein (cFLIP) is regarded as a major cause of TRAIL resistance. We therefore analyzed the usefulness of targeting FLIP to sensitize tumor cells for TRAIL-induced apoptosis. MATERIALS AND METHODS: To selectively interfere with expression of cFLIP short double-stranded RNA oligonucleotides (small interfering RNAs [siRNAs]) were introduced in the human cell lines SV80 and KB by electroporation. Effects of siRNA on FLIP expression were analyzed by Western blotting and RNase protection assay and correlated with TRAIL sensitivity upon stimulation with recombinant soluble TRAIL and TRAIL-R1- and TRAIL-R2-specific agonistic antibodies. RESULTS: FLIP expression can be inhibited by RNA interference using siRNAs, evident from reduced levels of FLIP-mRNA and FLIP protein. Inhibition of cFLIP expression sensitizes cells for apoptosis induction by TRAIL and other death ligands. In accordance with the presumed function of FLIP as an inhibitor of death receptor-induced caspase-8 activation, down-regulation of FLIP by siRNAs enhanced TRAIL-induced caspase-8 activation. CONCLUSION: Inhibition of FLIP expression was sufficient to sensitize tumor cells for TRAIL-induced apoptosis. The combination of TRAIL and FLIP-targeting siRNA could therefore be a useful strategy to attack cancer cells, which are resistant to TRAIL alone. PMID:12520089

  16. BMP4 and BMP7 Suppress StAR and Progesterone Production via ALK3 and SMAD1/5/8-SMAD4 in Human Granulosa-Lutein Cells.

    PubMed

    Zhang, Han; Klausen, Christian; Zhu, Hua; Chang, Hsun-Ming; Leung, Peter C K

    2015-11-01

    Adequate production of progesterone by the corpus luteum is critical to the successful establishment of pregnancy. In animal models, bone morphogenetic protein (BMP) 4 and BMP7 have been shown to suppress either basal or gonadotropin-induced progesterone production, depending on the species examined. However, the effects of BMP4 and BMP7 on progesterone production in human granulosa cells are unknown. In the present study, we used immortalized (SVOG) and primary human granulosa-lutein cells to investigate the effects of BMP4 and BMP7 on steroidogenic acute regulatory protein (StAR) expression and progesterone production and to examine the underlying molecular mechanism. Treatment of primary and immortalized human granulosa cells with recombinant BMP4 or BMP7 decreased StAR expression and progesterone accumulation. In SVOG cells, the suppressive effects of BMP4 and BMP7 on StAR expression were blocked by pretreatment with inhibitors of activin receptor-like kinase (ALK)2/3/6 (dorsomorphin) or ALK2/3 (DMH1) but not ALK4/5/7 (SB-431542). Moreover, small interfering RNA-mediated depletion of ALK3, but not ALK2 or ALK6, reversed the effects of BMP4 and BMP7 on StAR expression. Likewise, BMP4- and BMP7-induced phosphorylation of SMAD 1/5/8 was reversed by treatment with DMH1 or small interfering RNA targeting ALK3. Knockdown of SMAD4, the essential common SMAD for BMP/TGF-β signaling, abolished the effects of BMP4 and BMP7 on StAR expression. Our results suggest that BMP4 and BMP7 down-regulate StAR and progesterone production via ALK3 and SMAD1/5/8-SMAD4 signaling in human granulosa-lutein cells.

  17. Silencing expression of UO-44 (CUZD1) using small interfering RNA sensitizes human ovarian cancer cells to cisplatin in vitro.

    PubMed

    Leong, C T C; Ong, C K; Tay, S K; Huynh, H

    2007-02-08

    Ovarian cancer is currently the second leading cause of gynecological malignancy and cisplatin or cisplatin-based regimens have been the standard of care for the treatment of advance epithelial ovarian cancers. However, the efficacy of cisplatin treatment is often limited by the development of drug resistance either through the inhibition of apoptotic genes or activation of antiapoptotic genes. We have previously reported the overexpression of human UO-44 (HuUO-44) in ovarian cancers and the HuUO-44 antisera markedly inhibited NIH-OVCAR3 ovarian cancer cell attachment and proliferation (Oncogene 23: 5707-5718, 2004). In the present study, we observed through the cancer cell line profiling array that the expression of HuUO-44 was suppressed in the ovarian cancer cell line (SKOV-3) after treatment with several chemotherapeutic drugs. Similarly, this suppression in HuUO-44 expression was also correlated to the cisplatin sensitivity in two other ovarian cancer cell lines NIH-OVCAR3 and OV-90 in a dose-dependent manner. To elucidate the function of HuUO-44 in cisplatin chemoresistance in ovarian cancer cell, small interfering RNAs (siRNAs) were employed to mediate HuUO-44 silencing in ovarian cancer cell line, NIH-OVCAR3. HuUO-44 RNA interference (RNAi) resulted in the inhibition of cell growth and proliferation. Importantly, HuUO-44 RNAi significantly increased sensitivity of NIH-OVCAR3 to cytotoxic stress induced by cisplatin (P<0.01). Strikingly, we have also demonstrated that overexpression of HuUO-44 significantly conferred cisplatin resistance in NIH-OVCAR3 cells (P<0.05). Taken together, UO-44 is involved in conferring cisplatin resistance; the described HuUO-44-specific siRNA oligonucleotides that can potently silence HuUO-44 gene expression may prove to be valuable pretreatment targets for antitumor therapy or other pathological conditions that involves aberrant HuUO-44 expression.

  18. MicroRNA Superfamilies Descended from miR390 and Their Roles in Secondary Small Interfering RNA Biogenesis in Eudicots[W

    PubMed Central

    Xia, Rui; Meyers, Blake C.; Liu, Zhongchi; Beers, Eric P.; Ye, Songqing; Liu, Zongrang

    2013-01-01

    Trans-acting small interfering RNAs (tasiRNAs) are a major class of small RNAs performing essential biological functions in plants. The first reported tasiRNA pathway, that of miR173-TAS1/2, produces tasiRNAs regulating a set of pentatricopeptide repeat (PPR) genes and has been characterized only in Arabidopsis thaliana to date. Here, we demonstrate that the microRNA (miRNA)-trans-acting small interfering RNA gene (TAS)-pentatricopeptide repeat-containing gene (PPR)-small interfering RNA pathway is a highly dynamic and widespread feature of eudicots. Nine eudicot plants, representing six different plant families, have evolved similar tasiRNA pathways to initiate phased small interfering RNA (phasiRNA) production from PPR genes. The PPR phasiRNA production is triggered by different 22-nucleotide miRNAs, including miR7122, miR1509, and fve-PPRtri1/2, and through distinct mechanistic strategies exploiting miRNA direct targeting or indirect targeting through TAS-like genes (TASL), one-hit or two-hit, or even two layers of tasiRNA–TASL interactions. Intriguingly, although those miRNA triggers display high sequence divergence caused by the occurrence of frequent point mutations and splicing shifts, their corresponding MIRNA genes show pronounced identity to the Arabidopsis MIR173, implying a common origin of this group of miRNAs (super-miR7122). Further analyses reveal that super-miR7122 may have evolved from a newly defined miR4376 superfamily, which probably originated from the widely conserved miR390. The elucidation of this evolutionary path expands our understanding of the course of miRNA evolution, especially for relatively conserved miRNA families. PMID:23695981

  19. Glucose-dependent downregulation of glucagon gene expression mediated by selective interactions between ALX3 and PAX6 in mouse alpha cells.

    PubMed

    Mirasierra, Mercedes; Vallejo, Mario

    2016-04-01

    The stimulation of glucagon secretion in response to decreased glucose levels has been studied extensively. In contrast, little is known about the regulation of glucagon gene expression in response to fluctuations in glucose concentration. Paired box 6 (PAX6) is a key transcription factor that regulates the glucagon promoter by binding to the G1 and G3 elements. Here, we investigated the role of the transcription factor aristaless-like homeobox 3 (ALX3) as a glucose-dependent modulator of PAX6 activity in alpha cells. Experiments were performed in wild-type or Alx3-deficient islets and alphaTC1 cells. We used chromatin immunoprecipitations and electrophoretic mobility shift assays for DNA binding, immunoprecipitations and pull-down assays for protein interactions, transfected cells for promoter activity, and small interfering RNA and quantitative RT-PCR for gene expression. Elevated glucose concentration resulted in stimulated expression of Alx3 and decreased glucagon gene expression in wild-type islets. In ALX3-deficient islets, basal glucagon levels were non-responsive to changes in glucose concentration. In basal conditions ALX3 bound to the glucagon promoter at G3, but not at G1. ALX3 could form heterodimers with PAX6 that were permissive for binding to G3 but not to G1. Thus, increasing the levels of ALX3 in response to glucose resulted in the sequestration of PAX6 by ALX3 for binding to G1, thus reducing glucagon promoter activation and glucagon gene expression. Glucose-stimulated expression of ALX3 in alpha cells provides a regulatory mechanism for the downregulation of glucagon gene expression by interfering with PAX6-mediated transactivation on the glucagon G1 promoter element.

  20. Small interfering RNA targeting focal adhesion kinase prevents cardiac dysfunction in endotoxemia.

    PubMed

    Guido, Maria C; Clemente, Carolina F; Moretti, Ana I; Barbeiro, Hermes V; Debbas, Victor; Caldini, Elia G; Franchini, Kleber G; Soriano, Francisco G

    2012-01-01

    Sepsis and septic shock are associated with cardiac depression. Cardiovascular instability is a major cause of death in patients with sepsis. Focal adhesion kinase (FAK) is a potential mediator of cardiomyocyte responses to oxidative and mechanical stress. Myocardial collagen deposition can affect cardiac compliance and contractility. The aim of the present study was to determine whether the silencing of FAK is protective against endotoxemia-induced alterations of cardiac structure and function. In male Wistar rats, endotoxemia was induced by intraperitoneal injection of lipopolysaccharide (10 mg/kg). Cardiac morphometry and function were studied in vivo by left ventricular catheterization and histology. Intravenous injection of small interfering RNA targeting FAK was used to silence myocardial expression of the kinase. The hearts of lipopolysaccharide-injected rats showed collagen deposition, increased matrix metalloproteinase 2 activity, and myocyte hypertrophy, as well as reduced 24-h +dP/dt and -dP/dt, together with hypotension, increased left ventricular end-diastolic pressure, and elevated levels of FAK (phosphorylated and unphosphorylated). Focal adhesion kinase silencing reduced the expression and activation of the kinase in cardiac tissue, as well as protecting against the increased collagen deposition, greater matrix metalloproteinase 2 activity, and reduced cardiac contractility that occur during endotoxemia. In conclusion, FAK is activated in endotoxemia, playing a role in cardiac remodeling and in the impairment of cardiac function. This kinase represents a potential therapeutic target for the protection of cardiac function in patients with sepsis.

  1. BMPR2 inhibition induced apoptosis and autophagy via destabilization of XIAP in human chondrosarcoma cells

    PubMed Central

    Jiao, G; Guo, W; Ren, T; Lu, Q; Sun, Y; Liang, W; Ren, C; Yang, K; Sun, K

    2014-01-01

    Bone morphogenetic proteins (BMPs) are multifunctional proteins, and their receptors (BMPRs) have crucial roles in the process of signaling. However, their function in cancer is somewhat inconsistent. It has been demonstrated that more prevalent expression of bone morphogenetic protein receptor 2 (BMPR2) has been detected in dedifferentiated chondrosarcomas than conventional chondrosarcomas. Here, we find that BMPR2 inhibition induces apoptosis and autophagy of chondrosarcoma. We found that BMPR2 expression was correlated with the clinicopathological features of chondrosarcomas, and could predict the treatment outcome. Knockdown of BMPR2 by small interfering RNA results in growth inhibition in chondrosarcoma cells. Silencing BMPR2 promoted G2/M cell cycle arrest, induced chondrosarcoma cell apoptosis through caspase-3-dependent pathway via repression of X-linked inhibitor of apoptosis protein (XIAP) and induced autophagy of chondrosarcoma cells via XIAP-Mdm2-p53 pathway. Inhibition of autophagy induced by BMPR2 small interfering RNA (siBMPR2) sensitized chondrosarcoma cells to siBMPR2-induced apoptotic cell death, suggesting that autophagy has a protective role for chondrosarcoma cells in context of siBMPR2-induced apoptotic cell death. In vivo tumorigenicity assay in mice indicated that inhibition of BMPR2 reduced tumor growth. Taken together, our results suggest that BMPR2 has a significant role in the tumorigenesis of chondrosarcoma, and could be an important prognostic marker for chondrosarcoma. BMPR2 inhibition could eventually provide a promising therapy for chondrosarcoma treatment. PMID:25501832

  2. Peroxisome proliferator-activated receptor δ inhibits Porphyromonas gingivalis lipopolysaccharide-induced activation of matrix metalloproteinase-2 by downregulating NADPH oxidase 4 in human gingival fibroblasts.

    PubMed

    Yoo, T; Ham, S A; Hwang, J S; Lee, W J; Paek, K S; Oh, J W; Kim, J H; Do, J T; Han, C W; Kim, J H; Seo, H G

    2016-10-01

    We investigated the roles of peroxisome proliferator-activated receptor δ (PPARδ) in Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS)-induced activation of matrix metalloproteinase 2 (MMP-2). In human gingival fibroblasts (HGFs), activation of PPARδ by GW501516, a specific ligand of PPARδ, inhibited Pg-LPS-induced activation of MMP-2 and generation of reactive oxygen species (ROS), which was associated with reduced expression of NADPH oxidase 4 (Nox4). These effects were significantly smaller in the presence of small interfering RNA targeting PPARδ or the specific PPARδ inhibitor GSK0660, indicating that PPARδ is involved in these events. In addition, modulation of Nox4 expression by small interfering RNA influenced the effect of PPARδ on MMP-2 activity, suggesting a mechanism in which Nox4-derived ROS modulates MMP-2 activity. Furthermore, c-Jun N-terminal kinase and p38, but not extracellular signal-regulated kinase, mediated PPARδ-dependent inhibition of MMP-2 activity in HGFs treated with Pg-LPS. Concomitantly, PPARδ-mediated inhibition of MMP-2 activity was associated with the restoration of types I and III collagen to levels approaching those in HGFs not treated with Pg-LPS. These results indicate that PPARδ-mediated downregulation of Nox4 modulates cellular redox status, which in turn plays a critical role in extracellular matrix homeostasis through ROS-dependent regulation of MMP-2 activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Anti-CD22 Antibody Targeting of pH-responsive Micelles Enhances Small Interfering RNA Delivery and Gene Silencing in Lymphoma Cells

    PubMed Central

    Palanca-Wessels, Maria C; Convertine, Anthony J; Cutler-Strom, Richelle; Booth, Garrett C; Lee, Fan; Berguig, Geoffrey Y; Stayton, Patrick S; Press, Oliver W

    2011-01-01

    The application of small interfering RNA (siRNA) for cancer treatment is a promising strategy currently being explored in early phase clinical trials. However, efficient systemic delivery limits clinical implementation. We developed and tested a novel delivery system comprised of (i) an internalizing streptavidin-conjugated monoclonal antibody (mAb-SA) directed against CD22 and (ii) a biotinylated diblock copolymer containing both a positively charged siRNA condensing block and a pH-responsive block to facilitate endosome release. The modular design of the carrier facilitates the exchange of different targeting moieties and siRNAs to permit its usage in a variety of tumor types. The polymer was synthesized using the reversible addition fragmentation chain transfer (RAFT) technique and formed micelles capable of binding siRNA and mAb-SA. A hemolysis assay confirmed the predicted membrane destabilizing activity of the polymer under acidic conditions typical of the endosomal compartment. Enhanced siRNA uptake was demonstrated in DoHH2 lymphoma and transduced HeLa-R cells expressing CD22 but not in CD22 negative HeLa-R cells. Gene knockdown was significantly improved with CD22-targeted vs. nontargeted polymeric micelles. Treatment of DoHH2 cells with CD22-targeted polymeric micelles containing 15 nmol/l siRNA produced 70% reduction of gene expression. This CD22-targeted polymer carrier may be useful for siRNA delivery to lymphoma cells. PMID:21629223

  4. Anti-CD22 antibody targeting of pH-responsive micelles enhances small interfering RNA delivery and gene silencing in lymphoma cells.

    PubMed

    Palanca-Wessels, Maria C; Convertine, Anthony J; Cutler-Strom, Richelle; Booth, Garrett C; Lee, Fan; Berguig, Geoffrey Y; Stayton, Patrick S; Press, Oliver W

    2011-08-01

    The application of small interfering RNA (siRNA) for cancer treatment is a promising strategy currently being explored in early phase clinical trials. However, efficient systemic delivery limits clinical implementation. We developed and tested a novel delivery system comprised of (i) an internalizing streptavidin-conjugated monoclonal antibody (mAb-SA) directed against CD22 and (ii) a biotinylated diblock copolymer containing both a positively charged siRNA condensing block and a pH-responsive block to facilitate endosome release. The modular design of the carrier facilitates the exchange of different targeting moieties and siRNAs to permit its usage in a variety of tumor types. The polymer was synthesized using the reversible addition fragmentation chain transfer (RAFT) technique and formed micelles capable of binding siRNA and mAb-SA. A hemolysis assay confirmed the predicted membrane destabilizing activity of the polymer under acidic conditions typical of the endosomal compartment. Enhanced siRNA uptake was demonstrated in DoHH2 lymphoma and transduced HeLa-R cells expressing CD22 but not in CD22 negative HeLa-R cells. Gene knockdown was significantly improved with CD22-targeted vs. nontargeted polymeric micelles. Treatment of DoHH2 cells with CD22-targeted polymeric micelles containing 15 nmol/l siRNA produced 70% reduction of gene expression. This CD22-targeted polymer carrier may be useful for siRNA delivery to lymphoma cells.

  5. Upregulation of transferrin receptor-1 induces cholangiocarcinoma progression via induction of labile iron pool.

    PubMed

    Jamnongkan, Wassana; Thanan, Raynoo; Techasen, Anchalee; Namwat, Nisana; Loilome, Watcharin; Intarawichian, Piyapharom; Titapun, Attapol; Yongvanit, Puangrat

    2017-07-01

    Labile iron pool is a cellular source of ions available for Fenton reactions resulting in oxidative stress. Living organisms avoid an excess of free irons by a tight control of iron homeostasis. We investigated the altered expression of iron regulatory proteins and iron discrimination in the development of liver fluke-associated cholangiocarcinoma. Additionally, the levels of labile iron pool and the functions of transferrin receptor-1 on cholangiocarcinoma development were also identified. Iron deposition was determined using the Prussian blue staining method in human cholangiocarcinoma tissues. We investigated the alteration of iron regulatory proteins including transferrin, transferrin receptor-1, ferritin, ferroportin, hepcidin, and divalent metal transporter-1 in cholangiocarcinoma tissues using immunohistochemistry. The clinicopathological data of cholangiocarcinoma patients and the expressions of proteins were analyzed. Moreover, the level of intracellular labile iron pool in cholangiocarcinoma cell lines was identified by the RhoNox-1 staining method. We further demonstrated transferrin receptor-1 functions on cell proliferation and migration upon small interfering RNA for human transferrin receptor 1 transfection. Results show that Iron was strongly stained in tumor tissues, whereas negative staining was observed in normal bile ducts of healthy donors. Interestingly, high iron accumulation was significantly correlated with poor prognosis of cholangiocarcinoma patients. The expressions of iron regulatory proteins in human cholangiocarcinoma tissues and normal liver from cadaveric donors revealed that transferrin receptor-1 expression was increased in the cancer cells of cholangiocarcinoma tissues when compared with the adjacent normal bile ducts and was significantly correlated with cholangiocarcinoma metastasis. Labile iron pool level and transferrin receptor-1 expression were significantly increased in KKU-214 and KKU-213 when compared with cholangiocyte cells (MMNK1). Additionally, the suppression of transferrin receptor-1 expression significantly decreased intracellular labile iron pool, cholangiocarcinoma migration, and cell proliferation when compared with control media and control small interfering RNA. In Conclusion, high expression of transferrin receptor-1 resulting in iron uptake contributes to increase in the labile iron pool which plays roles in cholangiocarcinoma progression with aggressive clinical outcomes.

  6. Reduced transforming growth factor β1 (TGF-β1) in the repair of airway epithelial cells of children with asthma.

    PubMed

    Ling, Kak-Ming; Sutanto, Erika N; Iosifidis, Thomas; Kicic-Starcevich, Elizabeth; Looi, Kevin; Garratt, Luke W; Martinovich, Kelly M; Lannigan, Francis J; Knight, Darryl A; Stick, Stephen M; Kicic, Anthony

    2016-10-01

    Evidence into the role of TGF-β1 in airway epithelial repair in asthma is still controversial. This study tested the hypothesis that the reduced TGF-β1 levels previously observed in paediatric asthmatic airway epithelial cells directly contribute to the dysregulated repair seen in these cells. Primary airway epithelial cells (pAEC) from children with asthma (n = 16) and non-asthmatic subjects (n = 20) were isolated, and subcultured for investigation of TGF-β1 gene and protein via quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Expression of other associated genes such as integrins αvβ6, αvβ8 and MT1-MMP were also tested. Small interfering RNA (siRNA) was employed to assess the role of TGF-β1 during wound repair. TGF-β1 gene and protein expression were significantly downregulated in asthmatic pAEC over the course of repair, compared with cells from non-asthmatic children. Messenger RNA (mRNA) expression of TGF-β1 was also directly implicated in non-asthmatic and asthmatic pAEC proliferation over their quiescent counterparts. Small interfering RNA-mediated knockdown of TGF-β1 compromised repair in non-asthmatic pAEC and exacerbated the dysregulated repair seen in asthmatic pAEC. Expression of major TGF-β1 activators of epithelial cells, integrin αvβ6 and αvβ8 was also measured and there was no difference in αvβ6 gene expression between the two cohorts. Although integrin αvβ8 gene expression was significantly higher in asthmatic pAEC, the expression of MT1-MMP (MMP14) which facilitates the αvβ8 mediated TGF-β1 activation was significantly downregulated. Our data has highlighted the importance of TGF-β1 in pAEC wound repair in vitro. The significantly lower levels seen in asthmatic pAEC subsequently contributes to the dysregulated repair observed in these cells. © 2016 Asian Pacific Society of Respirology.

  7. HOXB2, an adverse prognostic indicator for stage I lung adenocarcinomas, promotes invasion by transcriptional regulation of metastasis-related genes in HOP-62 non-small cell lung cancer cells.

    PubMed

    Inamura, Kentaro; Togashi, Yuki; Ninomiya, Hironori; Shimoji, Takashi; Noda, Tetsuo; Ishikawa, Yuichi

    2008-01-01

    Previously, using microarray and real-time RT-PCR analysis, we established that HOXB2 is an adverse prognostic indicator for Stage I lung adenocarcinomas. HOXB2 is one of the homeobox master development-controlling genes regulating morphogenesis and cell differentiation. The molecular functions of HOXB2 were analyzed with a small interfering RNA (siRNA) approach in HOP-62 human non-small cell lung cancer (NSCLC) cells featuring high HOXB2 expression. Matrigel invasion assays and microarray gene expression analysis were compared between the HOXB2-siRNA cells and the control cells. The Matrigel invasion assays showed attenuation of HOXB2 expression by siRNA to result in a significant decrease of invasiveness compared to the control cells (p = 0.0013, paired t-test). On microarray gene expression analysis, up-regulation of many metastasis-related genes and others correlating with HOXB2 expression was observed in the control case. With attenuation of HOXB2 expression, downregulation was noted for laminins alpha 4 and 5, involved in enriched signaling, and for Mac-2BP (Mac-2 binding protein) and integrin beta 4 amongst the genes having an enriched glycoprotein ontology. HOXB2 promotes invasion of lung cancer cells through the regulation of metastasis-related genes.

  8. Chlorophyll Synthase under Epigenetic Surveillance Is Critical for Vitamin E Synthesis, and Altered Expression Affects Tocopherol Levels in Arabidopsis1[OPEN

    PubMed Central

    Zhang, Chunyu; Zhang, Wei; Ren, Guodong; Li, Delin; Cahoon, Rebecca E.; Chen, Ming; Zhou, Yongming; Yu, Bin

    2015-01-01

    Chlorophyll synthase catalyzes the final step in chlorophyll biosynthesis: the esterification of chlorophyllide with either geranylgeranyl diphosphate or phytyl diphosphate (PDP). Recent studies have pointed to the involvement of chlorophyll-linked reduction of geranylgeranyl by geranylgeranyl reductase as a major pathway for the synthesis of the PDP precursor of tocopherols. This indirect pathway of PDP synthesis suggests a key role of chlorophyll synthase in tocopherol production to generate the geranylgeranyl-chlorophyll substrate for geranylgeranyl reductase. In this study, contributions of chlorophyll synthase to tocopherol formation in Arabidopsis (Arabidopsis thaliana) were explored by disrupting and altering expression of the corresponding gene CHLOROPHYLL SYNTHASE (CHLSYN; At3g51820). Leaves from the homozygous chlysyn1-1 null mutant were nearly devoid of tocopherols, whereas seeds contained only approximately 25% of wild-type tocopherol levels. Leaves of RNA interference lines with partial suppression of CHLSYN displayed marked reductions in chlorophyll but up to a 2-fold increase in tocopherol concentrations. Cauliflower mosaic virus35S-mediated overexpression of CHLSYN unexpectedly caused a cosuppression phenotype at high frequencies accompanied by strongly reduced chlorophyll content and increased tocopherol levels. This phenotype and the associated detection of CHLSYN-derived small interfering RNAs were reversed with CHLSYN overexpression in rna-directed rna polymerase6 (rdr6), which is defective in RNA-dependent RNA polymerase6, a key enzyme in sense transgene-induced small interfering RNA production. CHLSYN overexpression in rdr6 had little effect on chlorophyll content but resulted in up to a 30% reduction in tocopherol levels in leaves. These findings show that altered CHLSYN expression impacts tocopherol levels and also, show a strong epigenetic surveillance of CHLSYN to control chlorophyll and tocopherol synthesis. PMID:26048882

  9. Development of recombinant adeno-associated virus vectors carrying small interfering RNA (shHec1)-mediated depletion of kinetochore Hec1 protein in tumor cells.

    PubMed

    Li, L; Yang, L; Scudiero, D A; Miller, S A; Yu, Z-X; Stukenberg, P T; Shoemaker, R H; Kotin, R M

    2007-05-01

    Transcript depletion using small interfering RNA (siRNA) technology represents a potentially valuable technique for the treatment of cancer. However, delivering therapeutic quantities of siRNA into solid tumors by chemical transfection is not feasible, whereas viral vectors efficiently transduce many human tumor cell lines. Yet producing sufficient quantities of viral vectors that elicit acute and selective cytotoxicity remains a major obstacle for preclinical and clinical trials. Using the invertebrate Spodoptera frugiperda (Sf9) cell line, we were able to produce high titer stocks of cytotoxic recombinant adeno-associated virus (rAAV) that express short hairpin RNA (shRNA) and that efficiently deplete Hec1 (highly expressed in cancer 1), or Kntc2 (kinetochore-associated protein 2), a kinetochore protein directly involved in kinetochore microtubule interactions, chromosome congression and spindle checkpoint signaling. Depletion of Hec1 protein results in persistent spindle checkpoint activation followed by cell death. Because Hec1 expression and activity are only present in mitotic cells, non-dividing cells were not affected by rAAV treatment. On the basis of the results of screening 56 human tumor cell lines with three different serotype vectors, we used a tumor xenograft model to test the effects in vivo. The effects of the shHec1 vector were evident in sectioned and stained tumors. The experiments with rAAV-shRNA vectors demonstrate the utility of producing vectors in invertebrate cells to obtain sufficient concentrations and quantities for solid tumor therapy. This addresses an important requirement for cancer gene therapy, to produce cytotoxic vectors in sufficient quantities and concentrations to enable quantitative transduction and selective killing of solid tumor cells.

  10. Chlorophyll Synthase under Epigenetic Surveillance Is Critical for Vitamin E Synthesis, and Altered Expression Affects Tocopherol Levels in Arabidopsis.

    PubMed

    Zhang, Chunyu; Zhang, Wei; Ren, Guodong; Li, Delin; Cahoon, Rebecca E; Chen, Ming; Zhou, Yongming; Yu, Bin; Cahoon, Edgar B

    2015-08-01

    Chlorophyll synthase catalyzes the final step in chlorophyll biosynthesis: the esterification of chlorophyllide with either geranylgeranyl diphosphate or phytyl diphosphate (PDP). Recent studies have pointed to the involvement of chlorophyll-linked reduction of geranylgeranyl by geranylgeranyl reductase as a major pathway for the synthesis of the PDP precursor of tocopherols. This indirect pathway of PDP synthesis suggests a key role of chlorophyll synthase in tocopherol production to generate the geranylgeranyl-chlorophyll substrate for geranylgeranyl reductase. In this study, contributions of chlorophyll synthase to tocopherol formation in Arabidopsis (Arabidopsis thaliana) were explored by disrupting and altering expression of the corresponding gene CHLOROPHYLL SYNTHASE (CHLSYN; At3g51820). Leaves from the homozygous chlysyn1-1 null mutant were nearly devoid of tocopherols, whereas seeds contained only approximately 25% of wild-type tocopherol levels. Leaves of RNA interference lines with partial suppression of CHLSYN displayed marked reductions in chlorophyll but up to a 2-fold increase in tocopherol concentrations. Cauliflower mosaic virus35S-mediated overexpression of CHLSYN unexpectedly caused a cosuppression phenotype at high frequencies accompanied by strongly reduced chlorophyll content and increased tocopherol levels. This phenotype and the associated detection of CHLSYN-derived small interfering RNAs were reversed with CHLSYN overexpression in rna-directed rna polymerase6 (rdr6), which is defective in RNA-dependent RNA polymerase6, a key enzyme in sense transgene-induced small interfering RNA production. CHLSYN overexpression in rdr6 had little effect on chlorophyll content but resulted in up to a 30% reduction in tocopherol levels in leaves. These findings show that altered CHLSYN expression impacts tocopherol levels and also, show a strong epigenetic surveillance of CHLSYN to control chlorophyll and tocopherol synthesis. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. Small interfering RNA-mediated silencing of nicotinamide phosphoribosyltransferase (NAMPT) and lysosomal trafficking regulator (LYST) induce growth inhibition and apoptosis in human multiple myeloma cells: A preliminary study

    PubMed Central

    Bong, Ivyna Pau Ni; Ng, Ching Ching; Fakiruddin, Shaik Kamal; Lim, Moon Nian; Zakaria, Zubaidah

    2016-01-01

    Multiple myeloma (MM) is a malignancy of B lymphocytes or plasma cells. Our array-based comparative genomic hybridization findings revealed chromosomal gains at 7q22.3 and 1q42.3, where nicotinamide (NAM) phosphoribosyltransferase (NAMPT) and lysosomal trafficking regulator (LYST) genes are localized, respectively. This led us to further study the fprotein expression in unctions of these genes in myeloma cells. NAMPT is a key enzyme involved in nicotinamide adenine dinucleotide salvage pathway, and it is frequently overexpressed in human cancers. In contrast, little is known about the function of LYST in cancer. The expression of LYST is shown to affect lysosomal size, granule size, and autophagy in human cells. In this study, the effects of small interfering RNA (siRNA)-mediated silencing of NAMPT and LYST on cell proliferation and apoptosis were evaluated in RPMI 8226 myeloma cells. Transfection efficiencies were determined by quantitative real time reverse transcriptase PCR. Cell proliferation was determined using MTT assay, while apoptosis was analyzed with flow cytometry using Annexin V-fluorescein isothiocyanate/propidium iodide assay. The NAMPT protein expression in siRNA-treated cells was estimated by enzyme-linked immunosorbent assay. Our results showed that NAMPT and LYST were successfully knockdown by siRNA transfection (p < 0.05). NAMPT or LYST gene silencing significantly inhibited cell proliferation and induced apoptosis in RPMI 8226 cells (p < 0.05). Silencing of NAMPT gene also decreased NAMPT protein levels (p < 0.01). Our study demonstrated that NAMPT and LYST play pivotal roles in the molecular pathogenesis of MM. This is the first report describing the possible functions of LYST in myelomagenesis and its potential role as a therapeutic target in MM. PMID:27754828

  12. Small interfering RNA-mediated silencing of G-protein-coupled receptor 137 inhibits growth of osteosarcoma cells.

    PubMed

    Li, Hao; Fu, Xiaodong; Gao, Yingjian; Li, Xiaomiao; Shen, Yi; Wang, Weili

    2018-06-01

    Osteosarcoma is the most widespread primary carcinoma in bones. Osteosarcoma cells are highly metastatic and frequently develop resistance to chemotherapy making this disease harder to treat. This identifies an urgent need of novel therapeutic strategies for osteosarcoma. G-Protein-coupled receptor 137 (GPR137) is involved in several human cancers and may be a novel therapeutic target. The expression of GPR137 was assessed in one osteoblast and three human osteosarcoma cell lines via the quantitative real-time polymerase chain reaction and western blot assays. Stable GPR137 knockdown cell lines were established using an RNA interference lentivirus system. Viability, colony formation, and flow cytometry assays were performed to measure the effects of GPR137 depletion on cell growth. The underlying molecular mechanism was determined using signaling array analysis and western blot assays. GPR137 expression was higher in the three human osteosarcoma cell lines, Saos-2, U2OS, and SW1353, than in osteoblast hFOB 1.19 cells. Lentivirus-mediated small interfering RNA targeting GPR137 successfully knocked down GPR137 mRNA and protein expression in both Saos-2 and U2OS cells. In the absence of GPR137, cell viability and colony formation ability were seriously impaired. The extent of apoptosis was also increased in both cell lines. Moreover, AMP-activated protein kinase α, proline-rich AKT substrate of 40 kDa, AKT, and extracellular signal-regulated kinase phosphorylation levels were down-regulated in GPR137 knockdown cells. The results of this study highlight the crucial role of GPR137 in promoting osteosarcoma cell growth in vitro . GPR137 could serve as a potential therapeutic target against osteosarcoma.

  13. Ibrutinib, a Bruton's tyrosine kinase inhibitor, exhibits antitumoral activity and induces autophagy in glioblastoma.

    PubMed

    Wang, Jin; Liu, Xiaoyang; Hong, Yongzhi; Wang, Songtao; Chen, Pin; Gu, Aihua; Guo, Xiaoyuan; Zhao, Peng

    2017-07-17

    Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. Ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor, is a novel anticancer drug used for treating several types of cancers. In this study, we aimed to determine the role of ibrutinib on GBM. Cell proliferation was determined by using cell viability, colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) assays. Cell cycle and cell apoptosis were analyzed by flow cytometry. Cell migratory ability was evaluated by wound healing assays and trans-well migration assays. ATG7 expression was knocked-down by transfection with Atg7-specific small interfering RNA. Overexpression of active Akt protein was achieved by transfecting the cells with a plasmid expressing constitutively active Akt (CA-Akt). Transmission electron microscopy was performed to examine the formation of autophagosomes in cells. Immunofluorescence and western blot analyses were used to analyze protein expression. Tumor xenografts in nude mice and immunohistochemistry were performed to evaluate the effect of ibrutinib on tumor growth in vivo. Ibrutinib inhibited cellular proliferation and migration, and induced apoptosis and autophagy in LN229 and U87 cells. Overexpression of the active Akt protein decreased ibrutinib-induced autophagy, while inhibiting Akt by LY294002 treatment enhanced ibrutinib-induced autophagy. Specific inhibition of autophagy by 3-methyladenine (3MA) or Atg7 targeting with small interfering RNA (si-Atg7) enhanced the anti-GBM effect of ibrutinib in vitro and in vivo. Our results indicate that ibrutinib exerts a profound antitumor effect and induces autophagy through Akt/mTOR signaling pathway in GBM cells. Autophagy inhibition promotes the antitumor activity of ibrutinib in GBM. Our findings provide important insights into the action of an anticancer agent combining with autophagy inhibitor for malignant glioma.

  14. Targeted Delivery of Small Interfering RNA Using Reconstituted High-Density Lipoprotein Nanoparticles12

    PubMed Central

    Shahzad, Mian MK; Mangala, Lingegowda S; Han, Hee Dong; Lu, Chunhua; Bottsford-Miller, Justin; Nishimura, Masato; Mora, Edna M; Lee, Jeong-Won; Stone, Rebecca L; Pecot, Chad V; Thanapprapasr, Duangmani; Roh, Ju-Won; Gaur, Puja; Nair, Maya P; Park, Yun-Yong; Sabnis, Nirupama; Deavers, Michael T; Lee, Ju-Seog; Ellis, Lee M; Lopez-Berestein, Gabriel; McConathy, Walter J; Prokai, Laszlo; Lacko, Andras G; Sood, Anil K

    2011-01-01

    RNA interference holds tremendous potential as a therapeutic approach, especially in the treatment of malignant tumors. However, efficient and biocompatible delivery methods are needed for systemic delivery of small interfering RNA (siRNA). To maintain a high level of growth, tumor cells scavenge high-density lipoprotein (HDL) particles by overexpressing its receptor: scavenger receptor type B1 (SR-B1). In this study, we exploited this cellular characteristic to achieve efficient siRNA delivery and established a novel formulation of siRNA by incorporating it into reconstituted HDL (rHDL) nanoparticles. Here, we demonstrate that rHDL nanoparticles facilitate highly efficient systemic delivery of siRNA in vivo, mediated by the SR-B1. Moreover, in therapeutic proof-of-concept studies, these nanoparticles were effective in silencing the expression of two proteins that are key to cancer growth and metastasis (signal transducer and activator of transcription 3 and focal adhesion kinase) in orthotopic mouse models of ovarian and colorectal cancer. These data indicate that an rHDL nanoparticle is a novel and highly efficient siRNA carrier, and therefore, this novel technology could serve as the foundation for new cancer therapeutic approaches. PMID:21472135

  15. Caenorhabditis elegans RSD-2 and RSD-6 promote germ cell immortality by maintaining small interfering RNA populations.

    PubMed

    Sakaguchi, Aisa; Sarkies, Peter; Simon, Matt; Doebley, Anna-Lisa; Goldstein, Leonard D; Hedges, Ashley; Ikegami, Kohta; Alvares, Stacy M; Yang, Liwei; LaRocque, Jeannine R; Hall, Julie; Miska, Eric A; Ahmed, Shawn

    2014-10-14

    Germ cells are maintained in a pristine non-aging state as they proliferate over generations. Here, we show that a novel function of the Caenorhabditis elegans RNA interference proteins RNAi spreading defective (RSD)-2 and RSD-6 is to promote germ cell immortality at high temperature. rsd mutants cultured at high temperatures became progressively sterile and displayed loss of small interfering RNAs (siRNAs) that target spermatogenesis genes, simple repeats, and transposons. Desilencing of spermatogenesis genes occurred in late-generation rsd mutants, although defective spermatogenesis was insufficient to explain the majority of sterility. Increased expression of repetitive loci occurred in both germ and somatic cells of late-generation rsd mutant adults, suggesting that desilencing of many heterochromatic segments of the genome contributes to sterility. Nuclear RNAi defective (NRDE)-2 promotes nuclear silencing in response to exogenous double-stranded RNA, and our data imply that RSD-2, RSD-6, and NRDE-2 function in a common transgenerational nuclear silencing pathway that responds to endogenous siRNAs. We propose that RSD-2 and RSD-6 promote germ cell immortality at stressful temperatures by maintaining transgenerational epigenetic inheritance of endogenous siRNA populations that promote genome silencing.

  16. Caenorhabditis elegans RSD-2 and RSD-6 promote germ cell immortality by maintaining small interfering RNA populations

    PubMed Central

    Sakaguchi, Aisa; Sarkies, Peter; Simon, Matt; Doebley, Anna-Lisa; Goldstein, Leonard D.; Hedges, Ashley; Ikegami, Kohta; Alvares, Stacy M.; Yang, Liwei; LaRocque, Jeannine R.; Hall, Julie; Miska, Eric A.; Ahmed, Shawn

    2014-01-01

    Germ cells are maintained in a pristine non-aging state as they proliferate over generations. Here, we show that a novel function of the Caenorhabditis elegans RNA interference proteins RNAi spreading defective (RSD)-2 and RSD-6 is to promote germ cell immortality at high temperature. rsd mutants cultured at high temperatures became progressively sterile and displayed loss of small interfering RNAs (siRNAs) that target spermatogenesis genes, simple repeats, and transposons. Desilencing of spermatogenesis genes occurred in late-generation rsd mutants, although defective spermatogenesis was insufficient to explain the majority of sterility. Increased expression of repetitive loci occurred in both germ and somatic cells of late-generation rsd mutant adults, suggesting that desilencing of many heterochromatic segments of the genome contributes to sterility. Nuclear RNAi defective (NRDE)-2 promotes nuclear silencing in response to exogenous double-stranded RNA, and our data imply that RSD-2, RSD-6, and NRDE-2 function in a common transgenerational nuclear silencing pathway that responds to endogenous siRNAs. We propose that RSD-2 and RSD-6 promote germ cell immortality at stressful temperatures by maintaining transgenerational epigenetic inheritance of endogenous siRNA populations that promote genome silencing. PMID:25258416

  17. Transcriptional activation of NAD+-dependent protein deacetylase SIRT1 by nuclear receptor TLX.

    PubMed

    Iwahara, Naotoshi; Hisahara, Shin; Hayashi, Takashi; Horio, Yoshiyuki

    2009-09-04

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD(+)-dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  18. Transcriptional activation of NAD{sup +}-dependent protein deacetylase SIRT1 by nuclear receptor TLX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwahara, Naotoshi; Hisahara, Shin; Hayashi, Takashi

    2009-09-04

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD{sup +}-dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  19. Application of small RNA technology for improved control of parasitic helminths.

    PubMed

    Britton, Collette; Winter, Alan D; Marks, Neil D; Gu, Henry; McNeilly, Tom N; Gillan, Victoria; Devaney, Eileen

    2015-08-15

    Over the last decade microRNAs (miRNAs) and small interfering RNAs (siRNAs) have emerged as important regulators of post-transcriptional gene expression. miRNAs are short, non-coding RNAs that regulate a variety of processes including cancer, organ development and immune function. This class of small RNAs bind with partial complementarity to their target mRNA sequences, most often in the 3'UTR, to negatively regulate gene expression. In parasitic helminths, miRNAs are being increasingly studied for their potential roles in development and host-parasite interactions. The availability of genome data, combined with small RNA sequencing, has paved the way to profile miRNAs expressed at particular developmental stages for many parasitic helminths. While some miRNAs are conserved across species, others appear to be unique to specific parasites, suggesting important roles in adaptation and survival in the host environment. Some miRNAs are released from parasites, in exosomes or in protein complexes, and the potential effects of these on host immune function are being increasingly studied. In addition, release of miRNAs from schistosome and filarial parasites into host plasma can be exploited for the development of specific and sensitive diagnostic biomarkers of infection. Interfering with miRNA function, as well as silencing key components of the pathways they regulate, will progress our understanding of parasite development and provide a novel approach to therapeutic control. RNA interference (RNAi) by siRNAs has proven to be inconsistent in parasitic nematodes. However, the recent successes reported for schistosome and liver fluke RNAi, encourage further efforts to enhance delivery of RNA and improve in vitro culture systems and assays to monitor phenotypic effects in nematodes. These improvements are important for the establishment of reliable functional genomic platforms for novel drug and vaccine development. In this review we focus on the important roles of miRNAs and siRNAs in post-transcriptional gene regulation in veterinary parasitic helminths and the potential value of these in parasite diagnosis and control. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes

    PubMed Central

    Watanabe, Toshiaki; Takeda, Atsushi; Tsukiyama, Tomoyuki; Mise, Kazuyuki; Okuno, Tetsuro; Sasaki, Hiroyuki; Minami, Naojiro; Imai, Hiroshi

    2006-01-01

    Small RNAs ranging in size between 18 and 30 nucleotides (nt) are found in many organisms including yeasts, plants, and animals. Small RNAs are involved in the regulation of gene expression through translational repression, mRNA degradation, and chromatin modification. In mammals, microRNAs (miRNAs) are the only small RNAs that have been well characterized. Here, we have identified two novel classes of small RNAs in the mouse germline. One class consists of ∼20- to 24-nt small interfering RNAs (siRNAs) from mouse oocytes, which are derived from retroelements including LINE, SINE, and LTR retrotransposons. Addition of retrotransposon-derived sequences to the 3′ untranslated region (UTR) of a reporter mRNA destabilizes the mRNA significantly when injected into full-grown oocytes. These results suggest that retrotransposons are suppressed through the RNAi pathway in mouse oocytes. The other novel class of small RNAs is 26- to 30-nt germline small RNAs (gsRNAs) from testes. gsRNAs are expressed during spermatogenesis in a developmentally regulated manner, are mapped to the genome in clusters, and have strong strand bias. These features are reminiscent of Tetrahymena ∼23- to 24-nt small RNAs and Caenorhabditis elegans X-cluster small RNAs. A conserved novel small RNA pathway may be present in diverse animals. PMID:16766679

  1. Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARα signaling and inhibiting the NF-κB and ERK1/2/AP-1/STAT3 pathways.

    PubMed

    Yang, Lichao; Guo, Han; Li, Ying; Meng, Xianglan; Yan, Lu; Dan Zhang; Wu, Sangang; Zhou, Hao; Peng, Lu; Xie, Qiang; Jin, Xin

    2016-10-10

    The present study aimed to examine the anti-inflammatory actions of oleoylethanolamide (OEA) in lipopolysaccharide (LPS)-induced THP-1 cells. The cells were stimulated with LPS (1 μg/ml) in the presence or absence of OEA (10, 20 and 40 μM). The pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. The THP-1 cells were transiently transfected with PPARα small-interfering RNA, and TLR4 activity was determined with a blocking test using anti-TLR4 antibody. Additionally, a special inhibitor was used to analyse the intracellular signaling pathway. OEA exerted a potent anti-inflammatory effect by reducing the production of pro-inflammatory cytokines and TLR4 expression, and by enhancing PPARα expression. The modulatory effects of OEA on LPS-induced inflammation depended on PPARα and TLR4. Importantly, OEA inhibited LPS-induced NF-κB activation, IκBα degradation, expression of AP-1, and the phosphorylation of ERK1/2 and STAT3. In summary, our results demonstrated that OEA exerts anti-inflammatory effects by enhancing PPARα signaling, inhibiting the TLR4-mediated NF-κB signaling pathway, and interfering with the ERK1/2-dependent signaling cascade (TLR4/ERK1/2/AP-1/STAT3), which suggests that OEA may be a therapeutic agent for inflammatory diseases.

  2. Requirement for Chloride Channel Function during the Hepatitis C Virus Life Cycle

    PubMed Central

    Igloi, Zsofia; Mohl, Bjorn-Patrick; Lippiat, Jonathan D.; Harris, Mark

    2015-01-01

    Hepatocytes express an array of plasma membrane and intracellular ion channels, yet their role during the hepatitis C virus (HCV) life cycle remains largely undefined. Here, we show that HCV increases intracellular hepatic chloride (Cl−) influx that can be inhibited by selective Cl− channel blockers. Through pharmacological and small interfering RNA (siRNA)-mediated silencing, we demonstrate that Cl− channel inhibition is detrimental to HCV replication. This represents the first observation of the involvement of Cl− channels during the HCV life cycle. PMID:25609806

  3. Analysis of RDR1/RDR2/RDR6-independent small RNAs in Arabidopsis thaliana improves MIRNA annotations and reveals unexplained types of short interfering RNA loci.

    PubMed

    Polydore, Seth; Axtell, Michael J

    2018-06-01

    Plant small RNAs (sRNAs) modulate key physiological mechanisms through post-transcriptional and transcriptional silencing of gene expression. Small RNAs fall into two major categories: those are reliant on RNA-dependent RNA polymerases (RDRs) for biogenesis and those that are not. Known RDR1/2/6-dependent sRNAs include phased and repeat-associated short interfering RNAs, while known RDR1/2/6-independent sRNAs are primarily microRNAs (miRNA) and other hairpin-derived sRNAs. In this study we produced and analyzed sRNA-seq libraries from rdr1/rdr2/rdr6 triple mutant plants. We found 58 previously annotated miRNA loci that were reliant on RDR1, -2, or -6 function, casting doubt on their classification. We also found 38 RDR1/2/6-independent sRNA loci that are not MIRNAs or otherwise hairpin-derived, and did not fit into other known paradigms for sRNA biogenesis. These 38 sRNA-producing loci have as-yet-undescribed biogenesis mechanisms, and are frequently located in the vicinity of protein-coding genes. Altogether, our analysis suggests that these 38 loci represent one or more undescribed types of sRNA in Arabidopsis thaliana. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  4. Graft-transmissible movement of inverted-repeat-induced siRNA signals into flowers.

    PubMed

    Zhang, Wenna; Kollwig, Gregor; Stecyk, Ewelina; Apelt, Federico; Dirks, Rob; Kragler, Friedrich

    2014-10-01

    In plants, small interfering RNAs (siRNA) and microRNAs move to distant tissues where they control numerous developmental and physiological processes such as morphogenesis and stress responses. Grafting techniques and transient expression systems have been employed to show that sequence-specific siRNAs with a size of 21-24 nucleotides traffic to distant organs. We used inverted-repeat constructs producing siRNA targeting the meiosis factor DISRUPTED MEIOTIC cDNA 1 (DMC1) and GFP to test whether silencing signals move into meiotically active tissues. In grafted Nicotiana tabacum, a transgenic DMC1 siRNA signal made in source tissues preferably entered the anthers formed in the first flowers. Here, the DMC1 siRNA interfered with meiotic progression and, consequently, the flowers were at least partially sterile. In agro-infiltrated N. benthamiana plants, a GFP siRNA signal produced in leaves was allocated and active in most flower tissues including anthers. In hypocotyl-grafted Arabidopsis thaliana plants, the DMC1 silencing signal consistently appeared in leaves, petioles, and stem, and only a small number of plants displayed DMC1 siRNA signals in flowers. In all three tested plant species the systemic silencing signal penetrated male sporogenic tissues suggesting that plants harbour an endogenous long-distance small RNA transport pathway facilitating siRNA signalling into meiotically active cells. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  5. Hypoxia induces mucin expression and secretion in human bronchial epithelial cells.

    PubMed

    Zhou, Xiangdong; Tu, Jing; Li, Qi; Kolosov, Victor P; Perelman, Juliy M

    2012-12-01

    The study objective was to investigate the role of hypoxia-inducible factor 1 (HIF-1) in the transcriptional activation of MUC5AC in human bronchial epithelial (HBE) 16 cells under hypoxia conditions and the effect of hypoxia on expression and secretion of MUC5AC. Cells were incubated in hypoxia medium. Serial deletions or mutations of the MUC5AC promoter were cloned in the reporter pGL3-basic plasmid (Promega Biotech Co, Ltd, Beijing, China). These reporter plasmids were cotransfected with HIF-1α small interfering RNA. Hypoxia markedly increased the level of MUC5AC secretion and the transcriptional activity of MUC5AC promoters. Western blot analysis showed that HIF-1α and MUC5AC proteins were strongly increased after HBE16 cells were exposed to hypoxic conditions. Treatment of HBE16 cells with HIF-1α inhibitor (YC-1) or HIF-1α small interfering RNA significantly inhibited the expression of HIF-1α and MUC5AC, and the secretion of MUC5AC. Depletion of the promoter sequence did not reduce the MUC5AC promoter activity to hypoxia. Luciferase assay indicated that HRE in the MUC5AC promoter was in the region from -120 to +54. Promoter sequence analysis showed that 1 HRE site at -65 plays an important role in hypoxia activation of the MUC5AC. The inactivation of the HRE site using site-directed mutagenesis led to the complete loss of induction by hypoxia, which further confirmed the key role of the HRE site. MUC5AC expression and secretion are upregulated in response to hypoxia. The HRE site at -65 in the MUC5AC promoter and the HIF-1α are the major regulators for the cellular response against hypoxia in human bronchial epithelial cells. Copyright © 2012 Mosby, Inc. All rights reserved.

  6. Advanced glycation end product 3 (AGE3) suppresses the mineralization of mouse stromal ST2 cells and human mesenchymal stem cells by increasing TGF-β expression and secretion.

    PubMed

    Notsu, Masakazu; Yamaguchi, Toru; Okazaki, Kyoko; Tanaka, Ken-ichiro; Ogawa, Noriko; Kanazawa, Ippei; Sugimoto, Toshitsugu

    2014-07-01

    In diabetic patients, advanced glycation end products (AGEs) cause bone fragility because of deterioration of bone quality. We previously showed that AGEs suppressed the mineralization of mouse stromal ST2 cells. TGF-β is abundant in bone, and enhancement of its signal causes bone quality deterioration. However, whether TGF-β signaling is involved in the AGE-induced suppression of mineralization during the osteoblast lineage remains unknown. We therefore examined the roles of TGF-β in the AGE-induced suppression of mineralization of ST2 cells and human mesenchymal stem cells. AGE3 significantly (P < .001) inhibited mineralization in both cell types, whereas transfection with small interfering RNA for the receptor for AGEs (RAGEs) significantly (P < .05) recovered this process in ST2 cells. AGE3 increased (P < .001) the expression of TGF-β mRNA and protein, which was partially antagonized by transfection with RAGE small interfering RNA. Treatment with a TGF-β type I receptor kinase inhibitor, SD208, recovered AGE3-induced decreases in osterix (P < .001) and osteocalcin (P < .05) and antagonized the AGE3-induced increase in Runx2 mRNA expression in ST2 cells (P < .001). Moreover, SD208 completely and dose dependently rescued AGE3-induced suppression of mineralization in both cell types. In contrast, SD208 intensified AGE3-induced suppression of cell proliferation as well as AGE3-induced apoptosis in proliferating ST2 cells. These findings indicate that, after cells become confluent, AGE3 partially inhibits the differentiation and mineralization of osteoblastic cells by binding to RAGE and increasing TGF-β expression and secretion. They also suggest that TGF-β adversely affects bone quality not only in primary osteoporosis but also in diabetes-related bone disorder.

  7. Interleukin-18 Enhances Vascular Calcification and Osteogenic Differentiation of Vascular Smooth Muscle Cells Through TRPM7 Activation.

    PubMed

    Zhang, Kun; Zhang, Yinyin; Feng, Weijing; Chen, Renhua; Chen, Jie; Touyz, Rhian M; Wang, Jingfeng; Huang, Hui

    2017-10-01

    Vascular calcification (VC) is an important predictor of cardiovascular morbidity and mortality. Osteogenic differentiation of vascular smooth muscle cells (VSMCs) is a key mechanism of VC. Recent studies show that IL-18 (interleukin-18) favors VC while TRPM7 (transient receptor potential melastatin 7) channel upregulation inhibits VC. However, the relationship between IL-18 and TRPM7 is unclear. We questioned whether IL-18 enhances VC and osteogenic differentiation of VSMCs through TRPM7 channel activation. Coronary artery calcification and serum IL-18 were measured in patients by computed tomographic scanning and enzyme-linked immunosorbent assay, respectively. Primary rat VSMCs calcification were induced by high inorganic phosphate and exposed to IL-18. VSMCs were also treated with TRPM7 antagonist 2-aminoethoxy-diphenylborate or TRPM7 small interfering RNA to block TRPM7 channel activity and expression. TRPM7 currents were recorded by patch-clamp. Human studies showed that serum IL-18 levels were positively associated with coronary artery calcium scores ( r =0.91; P <0.001). In VSMCs, IL-18 significantly decreased expression of contractile markers α-smooth muscle actin, smooth muscle 22 α, and increased calcium deposition, alkaline phosphatase activity, and expression of osteogenic differentiation markers bone morphogenetic protein-2, Runx2 (runt-related transcription factor 2), and osteocalcin ( P <0.05). IL-18 increased TRPM7 expression through ERK1/2 (extracellular signal-regulated kinase 1/2) signaling activation, and TRPM7 currents were augmented by IL-18 treatment. Inhibition of TRPM7 channel by 2-aminoethoxy-diphenylborate or TRPM7 small interfering RNA prevented IL-18-enhanced osteogenic differentiation and VSMCs calcification. These findings suggest that coronary artery calcification is associated with increased IL-18 levels. IL-18 enhances VSMCs osteogenic differentiation and subsequent VC induced by β-glycerophosphate via TRPM7 channel activation. Accordingly, IL-18 may contribute to VC in proinflammatory conditions. © 2017 American Heart Association, Inc.

  8. Targeted Silencing of MART-1 Gene Expression by RNA Interference Enhances the Migration Ability of Uveal Melanoma Cells

    PubMed Central

    Zhang, Yidan; Jia, Renbing; Wang, Jing; Xu, Xiaofang; Yao, Yuting; Ge, Shengfan; Fan, Xianqun

    2013-01-01

    Uveal melanoma (UM) is the most common primary intraocular malignancy and the leading potentially fatal primary intraocular disease in adults. Melanoma antigen recognized by T-cells (MART-1) has been studied extensively as a clinically important diagnostic marker for melanoma, however, its biological function remains unclear. In the present study, the UM cell line SP6.5, which showed a high level of MART-1 expression, was subjected to small interfering RNA-mediated silencing of MART-1. Silencing of MART-1 expression increased the migration ability of SP6.5 cells and down-regulated the expression of the metastasis suppressor NM23. Our results suggest that MART-1 is a candidate target for the development of therapeutic strategies for UM and in particular for the suppression of metastasis associated with this malignancy. PMID:23877836

  9. Mobile microRNAs hit the target.

    PubMed

    Gursanscky, Nial R; Searle, Iain R; Carroll, Bernard J

    2011-11-01

    MicroRNAs (miRNAs) are negative regulators of gene expression in eukaryotic organisms, whereas small interfering RNAs (siRNAs) guide host-cell defence against viruses, transposons and transgenes. A key issue in plant biology is whether miRNAs act only in cells in which they are formed, or if, like siRNAs, they also function after passive diffusion or active transportation into other cells. Recent reports show that miRNAs are indeed able to move between plant cells to direct developmental programming of gene expression. In both leaf and root development, miRNAs establish intercellular gradients of gene expression that are essential for cell and tissue differentiation. Gradients in gene expression also play crucial roles in animal development, and there is strong evidence for intercellular movement of miRNAs in animals. Thus, intercellular movement of miRNAs may be crucial to animal developmental biology as well as plants. © 2011 John Wiley & Sons A/S.

  10. Aberrant expression of the PHF14 gene in biliary tract cancer cells

    PubMed Central

    AKAZAWA, TAKAKO; YASUI, KOHICHIROH; GEN, YASUYUKI; YAMADA, NOBUHISA; TOMIE, AKIRA; DOHI, OSAMU; MITSUYOSHI, HIRONORI; YAGI, NOBUAKI; ITOH, YOSHITO; NAITO, YUJI; YOSHIKAWA, TOSHIKAZU

    2013-01-01

    DNA copy number aberrations in human biliary tract cancer (BTC) cell lines were investigated using a high-density oligonucleotide microarray. A novel homozygous deletion was detected at chromosomal region 7p21.3 in the OZ cell line. Further validation experiments using genomic PCR revealed a homozygous deletion of a single gene, plant homeodomain (PHD) finger protein 14 (PHF14). No PHF14 mRNA or protein expression was detected, thus demonstrating the absence of PHF14 expression in the OZ cell line. Although the PHD finger protein is considered to be involved in chromatin-mediated transcriptional regulation, little is known about the function of PHF14 in cancer. The present study observed that the knock down of PHF14 using small interfering RNA (siRNA) enhanced the growth of the BTC cells. These observations suggest that aberrant PHF14 expression may have a role in the tumorigenesis of BTC. PMID:23833654

  11. Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound.

    PubMed

    Kopechek, Jonathan A; Carson, Andrew R; McTiernan, Charles F; Chen, Xucai; Klein, Edwin C; Villanueva, Flordeliza S

    2016-01-01

    RNA interference has potential therapeutic value for cardiac disease, but targeted delivery of interfering RNA is a challenge. Custom designed microbubbles, in conjunction with ultrasound, can deliver small inhibitory RNA to target tissues in vivo. The efficacy of cardiac RNA interference using a microbubble-ultrasound theranostic platform has not been demonstrated in vivo. Therefore, our objective was to test the hypothesis that custom designed microbubbles and ultrasound can mediate effective delivery of small inhibitory RNA to the heart. Microbubble and ultrasound mediated cardiac RNA interference was tested in transgenic mice displaying cardiac-restricted luciferase expression. Luciferase expression was assayed in select tissues of untreated mice (n = 14). Mice received intravenous infusion of cationic microbubbles bearing small inhibitory RNA directed against luciferase (n = 9) or control RNA (n = 8) during intermittent cardiac-directed ultrasound at mechanical index of 1.6. Simultaneous echocardiography in a separate group of mice (n = 3) confirmed microbubble destruction and replenishment during treatment. Three days post treatment, cardiac luciferase messenger RNA and protein levels were significantly lower in ultrasound-treated mice receiving microbubbles loaded with small inhibitory RNA directed against luciferase compared to mice receiving microbubbles bearing control RNA (23±7% and 33±7% of control mice, p<0.01 and p = 0.03, respectively). Passive cavitation detection focused on the heart confirmed that insonification resulted in inertial cavitation. In conclusion, small inhibitory RNA-loaded microbubbles and ultrasound directed at the heart significantly reduced the expression of a reporter gene. Ultrasound-targeted destruction of RNA-loaded microbubbles may be an effective image-guided strategy for therapeutic RNA interference in cardiac disease.

  12. Tim-3 facilitates osteosarcoma proliferation and metastasis through the NF-κB pathway and epithelial-mesenchymal transition.

    PubMed

    Feng, Z M; Guo, S M

    2016-09-02

    The aim of this study was to investigate the expression of T-cell immunoglobulin mucin domain molecule-3 (Tim-3) in osteosarcoma tissues, and analyze its effect on cell proliferation and metastasis in an osteosarcoma cell line. Tim-3 mRNA and protein expression in osteosarcoma tissue was detected by reverse transcriptase-polymerase chain reaction and immunohistochemistry, respectively. Additionally, the cell viability, apoptosis rate, and invasive ability of the osteosarcoma cell line MG-63 were tested using the methyl thiazolyl tetrazolium assay, Annexin V-propidium iodide flow cytometry, and a Transwell assay, respectively, following Tim-3 interference using small interfering RNA (siRNA). We also analyzed the expression of Snail, E-cadherin, vimentin, and nuclear factor (NF)-kB in the cells by western blot. We observed that Tim-3 mRNA and protein was significantly overexpressed in osteosarcoma tissues, compared to the adjacent normal tissue (P < 0.01). Moreover, MG-63 cells transfected with the Tim-3 siRNA presented lower cell viability, a greater number of apoptotic cells, and decreased invasive ability (P < 0.01), compared to control cells. Additionally, we observed a decrease in Snail and vimentin expression, an increase in the E-cadherin level, and an increase in NF-kB p65 phosphorylation (P < 0.01) in Tim-3 siRNA-transfected MG-63 cells. Based on these results, we concluded that Tim-3 is highly expressed in osteosarcoma tissue. Moreover, we speculated that interfering in Tim-3 expression could significantly suppress osteosarcoma cell (MG-63) proliferation and metastasis via the NF-kB/Snail signaling pathway and epithelial-mesenchymal transition.

  13. Thiophenone Attenuates Enteropathogenic Escherichia coli O103:H2 Virulence by Interfering with AI-2 Signaling.

    PubMed

    Witsø, Ingun Lund; Valen Rukke, Håkon; Benneche, Tore; Aamdal Scheie, Anne

    2016-01-01

    Interference with bacterial quorum sensing communication provides an anti-virulence strategy to control pathogenic bacteria. Here, using the Enteropathogenic E. coli (EPEC) O103:H2, we showed for the first time that thiophenone TF101 reduced expression of lsrB; the gene encoding the AI-2 receptor. Combined results of transcriptional and phenotypic analyses suggested that TF101 interfere with AI-2 signalling, possibly by competing with AI-2 for binding to LsrB. This is supported by in silico docking prediction of thiophenone TF101 in the LsrB pocket. Transcriptional analyses furthermore showed that thiophenone TF101 interfered with expression of the virulence genes eae and fimH. In addition, TF101 reduced AI-2 induced E. coli adhesion to colorectal adenocarcinoma cells. TF101, on the other hand, did not affect epinephrine or norepinephrine enhanced E. coli adhesion. Overall, our results showed that thiophenone TF101 interfered with virulence expression in E. coli O103:H2, suggestedly by interfering with AI-2 mediated quorum sensing. We thus conclude that thiophenone TF101 might represent a promising future anti-virulence agent in the fight against pathogenic E. coli.

  14. Thiophenone Attenuates Enteropathogenic Escherichia coli O103:H2 Virulence by Interfering with AI-2 Signaling

    PubMed Central

    Valen Rukke, Håkon; Benneche, Tore; Aamdal Scheie, Anne

    2016-01-01

    Interference with bacterial quorum sensing communication provides an anti-virulence strategy to control pathogenic bacteria. Here, using the Enteropathogenic E. coli (EPEC) O103:H2, we showed for the first time that thiophenone TF101 reduced expression of lsrB; the gene encoding the AI-2 receptor. Combined results of transcriptional and phenotypic analyses suggested that TF101 interfere with AI-2 signalling, possibly by competing with AI-2 for binding to LsrB. This is supported by in silico docking prediction of thiophenone TF101 in the LsrB pocket. Transcriptional analyses furthermore showed that thiophenone TF101 interfered with expression of the virulence genes eae and fimH. In addition, TF101 reduced AI-2 induced E. coli adhesion to colorectal adenocarcinoma cells. TF101, on the other hand, did not affect epinephrine or norepinephrine enhanced E. coli adhesion. Overall, our results showed that thiophenone TF101 interfered with virulence expression in E. coli O103:H2, suggestedly by interfering with AI-2 mediated quorum sensing. We thus conclude that thiophenone TF101 might represent a promising future anti-virulence agent in the fight against pathogenic E. coli. PMID:27309855

  15. IBM1, a JmjC domain-containing histone demethylase, is involved in the regulation of RNA-directed DNA methylation through the epigenetic control of RDR2 and DCL3 expression in Arabidopsis

    PubMed Central

    Fan, Di; Dai, Yan; Wang, Xuncheng; Wang, Zhenjie; He, Hang; Yang, Hongchun; Cao, Ying; Deng, Xing Wang; Ma, Ligeng

    2012-01-01

    Small RNA-directed DNA methylation (RdDM) is an important epigenetic pathway in Arabidopsis that controls the expression of multiple genes and several developmental processes. RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and DICER-LIKE 3 (DCL3) are necessary factors in 24-nt small interfering RNA (siRNA) biogenesis, which is part of the RdDM pathway. Here, we found that Increase in BONSAI Methylation 1 (IBM1), a conserved JmjC family histone demethylase, is directly associated with RDR2 and DCL3 chromatin. The mutation of IBM1 induced the hypermethylation of H3K9 and DNA non-CG sites within RDR2 and DCL3, which repressed their expression. A genome-wide analysis suggested that the reduction in RDR2 and DCL3 expression affected siRNA biogenesis in a locus-specific manner and disrupted RdDM-directed gene repression. Together, our results suggest that IBM1 regulates gene expression through two distinct pathways: direct association to protect genes from silencing by preventing the coupling of histone and DNA methylation, and indirect silencing of gene expression through RdDM-directed repression. PMID:22772985

  16. Polyamidoamine Dendrimer Conjugates with Cyclodextrins as Novel Carriers for DNA, shRNA and siRNA

    PubMed Central

    Arima, Hidetoshi; Motoyama, Keiichi; Higashi, Taishi

    2012-01-01

    Gene, short hairpin RNA (shRNA) and small interfering RNA (siRNA) delivery can be particularly used for the treatment of diseases by the entry of genetic materials mammalian cells either to express new proteins or to suppress the expression of proteins, respectively. Polyamidoamine (PAMAM) StarburstTM dendrimers are used as non-viral vectors (carriers) for gene, shRNA and siRNA delivery. Recently, multifunctional PAMAM dendrimers can be used for the wide range of biomedical applications including intracellular delivery of genes and nucleic acid drugs. In this context, this review paper provides the recent findings on PAMAM dendrimer conjugates with cyclodextrins (CyDs) for gene, shRNA and siRNA delivery. PMID:24300184

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamitani, Shinya; Ohbayashi, Norihiko; Ikeda, Osamu

    Signal transducers and activators of transcription (STATs) mediate cell proliferation, differentiation, and survival in immune responses, hematopoiesis, neurogenesis, and other biological processes. Recently, we showed that KAP1 is a novel STAT-binding partner that regulates STAT3-mediated transactivation. KAP1 is a universal co-repressor protein for the KRAB zinc finger protein superfamily of transcriptional repressors. In this study, we found KAP1-dependent repression of interferon (IFN)/STAT1-mediated signaling. We also demonstrated that endogenous KAP1 associates with endogenous STAT1 in vivo. Importantly, a small-interfering RNA-mediated reduction in KAP1 expression enhanced IFN-induced STAT1-dependent IRF-1 gene expression. These results indicate that KAP1 may act as an endogenous regulatormore » of the IFN/STAT1 signaling pathway.« less

  18. Inhibition of coxsackievirus B3 replication by small interfering RNAs requires perfect sequence match in the central region of the viral positive strand.

    PubMed

    Yuan, Ji; Cheung, Paul K M; Zhang, Huifang M; Chau, David; Yang, Decheng

    2005-02-01

    Coxsackievirus B3 (CVB3) is the most common causal agent of viral myocarditis, but existing drug therapies are of limited value. Application of small interfering RNA (siRNA) in knockdown of gene expression is an emerging technology in antiviral gene therapy. To investigate whether RNA interference (RNAi) can protect against CVB3 infection, we evaluated the effects of RNAi on viral replication in HeLa cells and murine cardiomyocytes by using five CVB3-specific siRNAs targeting distinct regions of the viral genome. The most effective one is siRNA-4, targeting the viral protease 2A, achieving a 92% inhibition of CVB3 replication. The specific RNAi effects could last at least 48 h, and cell viability assay revealed that 90% of siRNA-4-pretreated cells were still alive and lacked detectable viral protein expression 48 h postinfection. Moreover, administration of siRNAs after viral infection could also effectively inhibit viral replication, indicating its therapeutic potential. Further evaluation by combination found that no enhanced inhibitory effects were observed when siRNA-4 was cotransfected with each of the other four candidates. In mutational analysis of the mechanisms of siRNA action, we found that siRNA functions by targeting the positive strand of virus and requires a perfect sequence match in the central region of the target, but mismatches were more tolerated near the 3' end than the 5' end of the antisense strand. These findings reveal an effective target for CVB3 silencing and provide a new possibility for antiviral intervention.

  19. Ubiquitin-proteasomal degradation of COX-2 in TGF-β stimulated human endometrial cells is mediated through endoplasmic reticulum mannosidase I.

    PubMed

    Singh, Mohan; Chaudhry, Parvesh; Parent, Sophie; Asselin, Eric

    2012-01-01

    Cyclooxygenase (COX)-2 is a key regulatory enzyme in the production of prostaglandins (PG) during various physiological processes. Mechanisms of COX-2 regulation in human endometrial stromal cells (human endometrial stromal cells) are not fully understood. In this study, we investigate the role of TGF-β in the regulation of COX-2 in human uterine stromal cells. Each TGF-β isoform decreases COX-2 protein level in human uterine stromal cells in Smad2/3-dependent manner. The decrease in COX-2 is accompanied by a decrease in PG synthesis. Knockdown of Smad4 using specific small interfering RNA prevents the decrease in COX-2 protein, confirming that Smad pathway is implicated in the regulation of COX-2 expression in human endometrial stromal cells. Pretreatment with 26S proteasome inhibitor, MG132, significantly restores COX-2 protein and PG synthesis, indicating that COX-2 undergoes proteasomal degradation in the presence of TGF-β. In addition, each TGF-β isoform up-regulates endoplasmic reticulum (ER)-mannosidase I (ERManI) implying that COX-2 degradation is mediated through ER-associated degradation pathway in these cells. Furthermore, inhibition of ERManI activity using the mannosidase inhibitor (kifunensine), or small interfering RNA-mediated knockdown of ERManI, prevents TGF-β-induced COX-2 degradation. Taken together, these studies suggest that TGF-β promotes COX-2 degradation in a Smad-dependent manner by up-regulating the expression of ERManI and thereby enhancing ER-associated degradation and proteasomal degradation pathways.

  20. One-pot synthesis of pH-responsive hybrid nanogel particles for the intracellular delivery of small interfering RNA

    PubMed Central

    Parodi, Alessandro; Evangelopoulos, Michael; Corbo, Claudia; Scaria, Shilpa; Hu, Ye; Haddix, Seth G.; Corradetti, Bruna; Salvatore, Francesco; Tasciotti, Ennio

    2016-01-01

    This report describes a novel, one-pot synthesis of hybrid nanoparticles formed by a nanostructured inorganic silica core and an organic pH-responsive hydrogel shell. This easy-to-perform, oil-in-water emulsion process synthesizes fluorescently-doped silica nanoparticles wrapped within a tunable coating of cationic poly(2-diethylaminoethyl methacrylate) hydrogel in one step. Transmission electron microscopy and dynamic light scattering analysis demonstrated that the hydrogel-coated nanoparticles are uniformly dispersed in the aqueous phase. The formation of covalent chemical bonds between the silica and the polymer increases the stability of the organic phase around the inorganic core as demonstrated by thermogravimetric analysis. The cationic nature of the hydrogel is responsible for the pH buffering properties of the nanostructured system and was evaluated by titration experiments. Zeta-potential analysis demonstrated that the charge of the system was reversed when transitioned from acidic to basic pH and vice versa. Consequently, small interfering RNA (siRNA) can be loaded and released in an acidic pH environment thereby enabling the hybrid particles and their payload to avoid endosomal sequestration and enzymatic degradation. These nanoparticles, loaded with specific siRNA molecules directed towards the transcript of the membrane receptor CXCR4, significantly decreased the expression of this protein in a human breast cancer cell line (i.e., MDA-MB-231). Moreover, intravenous administration of siRNA-loaded nanoparticles demonstrated a preferential accumulation at the tumor site that resulted in a reduction of CXCR4 expression. PMID:26901429

  1. Tumour-associated neutrophils and loss of epithelial PTEN can promote corticosteroid-insensitive MMP-9 expression in the chronically inflamed lung microenvironment.

    PubMed

    Vannitamby, Amanda; Seow, Huei Jiunn; Anderson, Gary; Vlahos, Ross; Thompson, Michelle; Steinfort, Daniel; Irving, Louis B; Bozinovski, Steven

    2017-12-01

    Matrix metalloproteinase-9 (MMP-9) is increased in a number of pathological lung conditions, where the proteinase contributes to deleterious remodelling of the airways. While both lung cancer and COPD are associated with increased MMP-9 expression, the cellular and molecular drivers of MMP-9 remain unresolved. In this study, MMP-9 transcript measured within the tumour region from patients with non-small-cell lung cancer (NSCLC) and coexisting COPD was found to be uniformly increased relative to adjacent tumour-free tissue. MMP-9 gene expression and immunohistochemistry identified tumour-associated neutrophils, but not macrophages, as a predominant source of this proteinase. In addition, PTEN gene expression was significantly reduced in tumour and there was evidence of epithelial MMP-9 expression. To explore whether PTEN can regulate epithelial MMP-9 expression, a small interfering (si)RNA knockdown strategy was used in Beas-2B bronchial epithelial cells. PTEN knockdown by siRNA selectively increased MMP-9 expression in response to lipopolysaccharide in a corticosteroid-insensitive manner. In summary, tumour-associated neutrophils represent an important source of MMP-9 in NSCLC, and loss of epithelial PTEN may further augment steroid-insensitive expression. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Use of high-resolution mass spectrometry to investigate a metabolite interference during liquid chromatography/tandem mass spectrometric quantification of a small molecule in toxicokinetic study samples.

    PubMed

    Furlong, Michael; Bessire, Andrew; Song, Wei; Huntington, Christopher; Groeber, Elizabeth

    2010-07-15

    During routine liquid chromatography/tandem mass spectrometric (LC/MS/MS) bioanalysis of a small molecule analyte in rat serum samples from a toxicokinetic study, an unexpected interfering peak was observed in the extracted ion chromatogram of the internal standard. No interfering peaks were observed in the extracted ion chromatogram of the analyte. The dose-dependent peak area response and peak area response versus time profiles of the interfering peak suggested that it might have been related to a metabolite of the dosed compound. Further investigation using high-resolution mass spectrometry led to unequivocal identification of the interfering peak as an N-desmethyl metabolite of the parent analyte. High-resolution mass spectrometry (HRMS) was also used to demonstrate that the interfering response of the metabolite in the multiple reaction monitoring (MRM) channel of the internal standard was due to an isobaric relationship between the (13)C-isotope of the metabolite and the internal standard (i.e., common precursor ion mass), coupled with a metabolite product ion with identical mass to the product ion used in the MRM transition of the internal standard. These results emphasize (1) the need to carefully evaluate internal standard candidates with regard to potential interferences from metabolites during LC/MS/MS method development, validation and bioanalysis of small molecule analytes in biological matrices; (2) the value of HRMS as a tool to investigate unexpected interferences encountered during LC/MS/MS analysis of small molecules in biological matrices; and (3) the potential for interference regardless of choice of IS and therefore the importance of conducting assay robustness on incurred in vitro or in vivo study samples. Copyright 2010 John Wiley & Sons, Ltd.

  3. DNA enzymes as potential therapeutics: towards clinical application of 10-23 DNAzymes.

    PubMed

    Fokina, Alesya A; Stetsenko, Dmitry A; François, Jean-Christophe

    2015-05-01

    Ongoing studies on the inhibition of gene expression at the mRNA level have identified several types of specific inhibitors such as antisense oligonucleotides, small interfering RNA, ribozymes and DNAzymes (Dz). After its discovery in 1997, the 10-23 Dz (which can cleave RNA efficiently and site-specifically, has flexible design, is independent from cell mechanisms, does not require expensive chemical modifications for effective use in vivo) has been employed to downregulate a range of therapeutically important genes. Recently, 10-23 Dzs have taken their first steps into clinical trials. This review focuses predominantly on Dz applications as potential antiviral, antibacterial, anti-cancer and anti-inflammatory agents as well as for the treatment of cardiovascular disease and diseases of CNS, summarizing results of their clinical trials up to the present day. In comparison with antisense oligonucleotides and small interfering RNAs, Dzs do not usually show off-target effects due to their high specificity and lack of immunogenicity in vivo. As more results of clinical trials carried out so far are gradually becoming available, Dzs may turn out to be safe and well-tolerated therapeutics in humans. Therefore, there is a good chance that we may witness a deoxyribozyme drug reaching the clinic in the near future.

  4. Sensitization of human carcinoma cells to alkylating agents by small interfering RNA suppression of 3-alkyladenine-DNA glycosylase.

    PubMed

    Paik, Johanna; Duncan, Tod; Lindahl, Tomas; Sedgwick, Barbara

    2005-11-15

    One of the major cytotoxic lesions generated by alkylating agents is DNA 3-alkyladenine, which can be excised by 3-alkyladenine DNA glycosylase (AAG). Inhibition of AAG may therefore result in increased cellular sensitivity to chemotherapeutic alkylating agents. To investigate this possibility, we have examined the role of AAG in protecting human tumor cells against such agents. Plasmids that express small interfering RNAs targeted to two different regions of AAG mRNA were transfected into HeLa cervical carcinoma cells and A2780-SCA ovarian carcinoma cells. Stable derivatives of both cell types with low AAG protein levels were sensitized to alkylating agents. Two HeLa cell lines with AAG protein levels reduced by at least 80% to 90% displayed a 5- to 10-fold increase in sensitivity to methyl methanesulfonate, N-methyl-N-nitrosourea, and the chemotherapeutic drugs temozolomide and 1,3-bis(2-chloroethyl)-1-nitrosourea. These cells showed no increase in sensitivity to UV light or ionizing radiation. After treatment with methyl methanesulfonate, AAG knockdown HeLa cells were delayed in S phase but accumulated in G2-M. Our data support the hypothesis that ablation of AAG activity in human tumor cells may provide a useful strategy to enhance the efficacy of current chemotherapeutic regimens that include alkylating agents.

  5. Wnt5a suppresses inflammation-driven intervertebral disc degeneration via a TNF-α/NF-κB-Wnt5a negative-feedback loop.

    PubMed

    Li, Z; Zhang, K; Li, X; Pan, H; Li, S; Chen, F; Zhang, J; Zheng, Z; Wang, J; Liu, H

    2018-04-12

    This study was to investigate the molecular role of Wnt5a on inflammation-driven intervertebral disc degeneration (IVDD). The expression of Wnt5a was analyzed in human nucleus pulposus (NP) tissues with immunohistochemical staining. The effects of Wnt5a on matrix production were assessed by RT-qPCR and western blotting. Small interfering RNAs (siRNAs), promoter deletion assay, and promoter binding site mutant were used to reveal the molecular role of Wnt5a in TNF-α-induced matrix metalloproteinase (MMP) expression. The regulatory effects of TNF-α on Wnt5a were investigated with pharmachemical inhibitors and siRNA experiment. The expression of Wnt5a was elevated in moderately degenerated human NP tissue with similar expression pattern of TNF-α. In NP cells, Wnt5a significantly increased aggrecan and collagen II expression. Inhibition of JNK or interfering Sox9 gene expression significantly suppressed Wnt5a-induced matrix production. AP-1(JunB) binding sites were located in Sox9 promoter and mutation of these sites sabotaged Wnt5a-induced Sox9 up-regulation and subsequent matrix genes expression. Notably, Wnt5a, which was induced by TNF-α, on the other way round suppressed TNF-α-NF-κB (p65) signaling and subsequent MMPs expression. In vivo studies with MR imaging confirmed the protective role of Wnt5a in IVDD. Wnt5a, which can be induced by TNF-α, increased matrix production in a Sox9-dependent manner through the activation of JNK-AP1 (JunB) signaling, and antagonized TNF-α-induced up-regulation of MMPs through the inhibition of NF-κB signaling. It indicates that Wnt5a suppresses IVDD through a TNF-α/NF-κB-Wnt5a negative-feedback loop. Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound

    PubMed Central

    McTiernan, Charles F.; Chen, Xucai; Klein, Edwin C.; Villanueva, Flordeliza S.

    2016-01-01

    RNA interference has potential therapeutic value for cardiac disease, but targeted delivery of interfering RNA is a challenge. Custom designed microbubbles, in conjunction with ultrasound, can deliver small inhibitory RNA to target tissues in vivo. The efficacy of cardiac RNA interference using a microbubble-ultrasound theranostic platform has not been demonstrated in vivo. Therefore, our objective was to test the hypothesis that custom designed microbubbles and ultrasound can mediate effective delivery of small inhibitory RNA to the heart. Microbubble and ultrasound mediated cardiac RNA interference was tested in transgenic mice displaying cardiac-restricted luciferase expression. Luciferase expression was assayed in select tissues of untreated mice (n = 14). Mice received intravenous infusion of cationic microbubbles bearing small inhibitory RNA directed against luciferase (n = 9) or control RNA (n = 8) during intermittent cardiac-directed ultrasound at mechanical index of 1.6. Simultaneous echocardiography in a separate group of mice (n = 3) confirmed microbubble destruction and replenishment during treatment. Three days post treatment, cardiac luciferase messenger RNA and protein levels were significantly lower in ultrasound-treated mice receiving microbubbles loaded with small inhibitory RNA directed against luciferase compared to mice receiving microbubbles bearing control RNA (23±7% and 33±7% of control mice, p<0.01 and p = 0.03, respectively). Passive cavitation detection focused on the heart confirmed that insonification resulted in inertial cavitation. In conclusion, small inhibitory RNA-loaded microbubbles and ultrasound directed at the heart significantly reduced the expression of a reporter gene. Ultrasound-targeted destruction of RNA-loaded microbubbles may be an effective image-guided strategy for therapeutic RNA interference in cardiac disease. PMID:27471848

  7. Native gel analysis for RISC assembly.

    PubMed

    Kawamata, Tomoko; Tomari, Yukihide

    2011-01-01

    Small-interfering RNAs (siRNAs) and microRNAs (miRNAs) regulate expression of their target mRNAs via the RNA-induced silencing complex (RISC). A core component of RISC is the Argonaute (Ago) protein, which dictates the RISC function. In Drosophila, miRNAs and siRNAs are generally loaded into Ago1-containing RISC (Ago1-RISC) and Ago2-containing RISC (Ago2-RISC), respectively. We developed a native agarose gel system to directly detect Ago1-RISC, Ago2-RISC, and their precursor complexes. Methods presented here will provide powerful tools to biochemically dissect the RISC assembly pathways.

  8. Expression of metastasis-associated lung adenocarcinoma transcript 1 long non-coding RNA in vitro and in patients with non-small cell lung cancer.

    PubMed

    Lin, Ling; Li, Haiyan; Zhu, Yefei; He, Susu; Ge, Hongfei

    2018-06-01

    The present study aimed to investigate the association between the expression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) long non-coding RNA (lncRNA) and the recurrence of non-small cell lung cancer (NSCLC) and to elucidate the potential mechanisms of MALAT1 in vitro . Between 1 June 1, 2010 and December 30, 2016, NSCLC tumor tissues and adjacent non-cancerous tissues were obtained from 120 patients with NSCLC, who had undergone surgical resection at Taizhou Hospital of Wenzhou Medical University (Linhai, China). The total RNA of tissues and cells were extracted and the expression of MALAT1 was determined using a wound healing assay and reverse transcription quantitative polymerase chain reaction. In addition, MALAT1 expression in A549 cells was silenced using small interfering RNA. The proliferation, migration and invasion of cells were then assessed using a CellTiter 96 kit and Transwell assays. MALAT1 expression was significantly increased in NSCLC samples compared with expression in adjacent non-cancerous tissues. Furthermore, the expression of MALAT1 in patients with NSCLC that exhibited recurrence was markedly higher than in those that did not. The results of the present study also demonstrated significant associations between high expression of MALAT1 and female sex, Tumor-Node-Metastasis advanced stage, vessel invasion, pathological differentiation and recurrence of patients with NSCLC. The proliferative, migratory and invasive abilities of MALAT1-silenced A549 cells were significantly decreased compared with those of control cells. MALAT1 expression was significantly increased in NSCLC tissues and was revealed to serve a role in the progression of NSCLC.

  9. Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs.

    PubMed

    Miesen, Pascal; Ivens, Alasdair; Buck, Amy H; van Rij, Ronald P

    2016-02-01

    In Aedes mosquitoes, infections with arthropod-borne viruses (arboviruses) trigger or modulate the expression of various classes of viral and host-derived small RNAs, including small interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs), and microRNAs (miRNAs). Viral siRNAs are at the core of the antiviral RNA interference machinery, one of the key pathways that limit virus replication in invertebrates. Besides siRNAs, Aedes mosquitoes and cells derived from these insects produce arbovirus-derived piRNAs, the best studied examples being viruses from the Togaviridae or Bunyaviridae families. Host miRNAs modulate the expression of a large number of genes and their levels may change in response to viral infections. In addition, some viruses, mostly with a DNA genome, express their own miRNAs to regulate host and viral gene expression. Here, we perform a comprehensive analysis of both viral and host-derived small RNAs in Aedes aegypti Aag2 cells infected with dengue virus 2 (DENV), a member of the Flaviviridae family. Aag2 cells are competent in producing all three types of small RNAs and provide a powerful tool to explore the crosstalk between arboviral infection and the distinct RNA silencing pathways. Interestingly, besides the well-characterized DENV-derived siRNAs, a specific population of viral piRNAs was identified in infected Aag2 cells. Knockdown of Piwi5, Ago3 and, to a lesser extent, Piwi6 results in reduction of vpiRNA levels, providing the first genetic evidence that Aedes PIWI proteins produce DENV-derived small RNAs. In contrast, we do not find convincing evidence for the production of virus-derived miRNAs. Neither do we find that host miRNA expression is strongly changed upon DENV2 infection. Finally, our deep-sequencing analyses detect 30 novel Aedes miRNAs, complementing the repertoire of regulatory small RNAs in this important vector species.

  10. Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs

    PubMed Central

    Miesen, Pascal; Ivens, Alasdair; Buck, Amy H.; van Rij, Ronald P.

    2016-01-01

    In Aedes mosquitoes, infections with arthropod-borne viruses (arboviruses) trigger or modulate the expression of various classes of viral and host-derived small RNAs, including small interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs), and microRNAs (miRNAs). Viral siRNAs are at the core of the antiviral RNA interference machinery, one of the key pathways that limit virus replication in invertebrates. Besides siRNAs, Aedes mosquitoes and cells derived from these insects produce arbovirus-derived piRNAs, the best studied examples being viruses from the Togaviridae or Bunyaviridae families. Host miRNAs modulate the expression of a large number of genes and their levels may change in response to viral infections. In addition, some viruses, mostly with a DNA genome, express their own miRNAs to regulate host and viral gene expression. Here, we perform a comprehensive analysis of both viral and host-derived small RNAs in Aedes aegypti Aag2 cells infected with dengue virus 2 (DENV), a member of the Flaviviridae family. Aag2 cells are competent in producing all three types of small RNAs and provide a powerful tool to explore the crosstalk between arboviral infection and the distinct RNA silencing pathways. Interestingly, besides the well-characterized DENV-derived siRNAs, a specific population of viral piRNAs was identified in infected Aag2 cells. Knockdown of Piwi5, Ago3 and, to a lesser extent, Piwi6 results in reduction of vpiRNA levels, providing the first genetic evidence that Aedes PIWI proteins produce DENV-derived small RNAs. In contrast, we do not find convincing evidence for the production of virus-derived miRNAs. Neither do we find that host miRNA expression is strongly changed upon DENV2 infection. Finally, our deep-sequencing analyses detect 30 novel Aedes miRNAs, complementing the repertoire of regulatory small RNAs in this important vector species. PMID:26914027

  11. Expression of synaptopodin in endothelial cells exposed to laminar shear stress and its role in endothelial wound healing.

    PubMed

    Mun, Gyeong In; Park, Soojin; Kremerskothen, Joachim; Boo, Yong Chool

    2014-03-18

    We examined the hypothesis that certain actin binding proteins might be upregulated by laminar shear stress (LSS) and could contribute to endothelial wound healing. Analysis of mRNA expression profiles of human umbilical vein endothelial cells under static and LSS-exposed conditions provided a list of LSS-induced actin binding proteins including synaptopodin (SYNPO) whose endothelial expression has not been previously reported. Additional studies demonstrated that SYNPO is a key mediator of endothelial wound healing because small interfering RNA-mediated suppression of SYNPO attenuated wound closure under LSS whereas overexpression of exogenous SYNPO enhanced endothelial wound closure in the absence of LSS. This study suggests that LSS-induced actin binding proteins including SYNPO may play a critical role in the endothelial wound healing stimulated by LSS. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Thrombomodulin exerts cytoprotective effect on low-dose UVB-irradiated HaCaT cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwata, Masahiro; Laboratory of Vascular Medicine, Department of Cardiovascular and Respiratory Disorders Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520; Kawahara, Ko-ichi

    Thrombomodulin (TM) is an endothelial cell surface anticoagulant glycoprotein that performs antimetastatic, angiogenic, adhesive, and anti-inflammatory functions in various tissues. It is also expressed in epidermal keratinocytes. We found that a physiological dose (10 mJ/cm{sup 2}) of mid-wavelength ultraviolet irradiation (UVB) significantly induced TM expression via the p38mitogen-activated protein kinase (MAPK)/cyclic AMP response element (CRE) signaling pathway in the epidermal keratinocyte cell line HaCaT; this shows that TM regulates the survival of HaCaT cells. SB203580, a p38MAPK inhibitor, significantly decreased TM expression and the viability of cells exposed to UVB. Furthermore, overexpression of TM markedly increased cell viability, and itmore » was abrogated by TM small interfering RNA (siRNA), suggesting that TM may play an important role in exerting cytoprotective effect on epidermal keratinocytes against low-dose UVB.« less

  13. On the effect of tilted roof reflectors in Martin-Puplett spectrometers

    NASA Astrophysics Data System (ADS)

    Schillaci, Alessandro; de Bernardis, Paolo

    2012-01-01

    In this paper we analyze theoretically and experimentally the effect of tilt of the roof mirrors in a double pendulum Martin-Puplett Polarizing Interferometer (MPI), focusing on the polarization of the interfering beams. In principle, the tilt affects the efficiency and polarimetric properties of the interferometer. The case of a moderate resolution spectrometer is analysed in detail. Using the Stokes formalism we recover the analytical expressions for the orientation angle and the ellipticity of the beam reflected from a metallic surface, and we compute these quantities for the roof-mirror of a MPI. We find that the polarization rotation and depolarization are small. Using the Jones formalism we propagate their effect on the measured interferogram and spectrum, and demonstrate that the performance degradation is small compared to other systematic effects.

  14. Novel and general approach to linear filter design for contrast-to-noise ratio enhancement of magnetic resonance images with multiple interfering features in the scene

    NASA Astrophysics Data System (ADS)

    Soltanian-Zadeh, Hamid; Windham, Joe P.

    1992-04-01

    Maximizing the minimum absolute contrast-to-noise ratios (CNRs) between a desired feature and multiple interfering processes, by linear combination of images in a magnetic resonance imaging (MRI) scene sequence, is attractive for MRI analysis and interpretation. A general formulation of the problem is presented, along with a novel solution utilizing the simple and numerically stable method of Gram-Schmidt orthogonalization. We derive explicit solutions for the case of two interfering features first, then for three interfering features, and, finally, using a typical example, for an arbitrary number of interfering feature. For the case of two interfering features, we also provide simplified analytical expressions for the signal-to-noise ratios (SNRs) and CNRs of the filtered images. The technique is demonstrated through its applications to simulated and acquired MRI scene sequences of a human brain with a cerebral infarction. For these applications, a 50 to 100% improvement for the smallest absolute CNR is obtained.

  15. Expression of 11β-hydroxysteroid dehydrogenase 1 and 2 in patients with chronic rhinosinusitis and their possible contribution to local glucocorticoid activation in sinus mucosa.

    PubMed

    Jun, Young Joon; Park, Se Jin; Kim, Tae Hoon; Lee, Seung Hoon; Lee, Ki Jeong; Hwang, Soo Min; Lee, Sang Hag

    2014-10-01

    It has been suggested that glucocorticoids might act in target tissues to increase their own intracellular availability in response to inflammatory stimuli. These mechanisms depend on the local metabolism of glucocorticoids catalyzed by 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) and 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2). This study is to investigate the effect of chronic rhinosinusitis (CRS) on expression of 11β-HSD1, 11β-HSD2, steroidogenic enzymes (cytochrome P450, family 11, subfamily B, polypeptide 1 [CYP11B1] and cytochrome P450, family 11, subfamily A, polypeptide 1 [CYP11A1]), and endogenous cortisol levels in human sinus mucosa. Expression levels were compared with those of healthy control subjects. The expression levels of 11β-HSD1, 11β-HSD2, CYP11B1, CYP11A1, and cortisol were measured in healthy control subjects, patients with CRS with nasal polyps, and patients with CRS without nasal polyps by using real-time PCR, Western blotting, immunohistochemistry, and ELISA. Expression levels of 11β-HSD1, 11β-HSD2, CYP11B1, CYP11A1, and cortisol were determined in cultured epithelial cells treated with CRS-relevant cytokines. The conversion ratio of cortisone to cortisol was evaluated by using the small interfering RNA technique, 11β-HSD1 inhibitor, and measurement of 11β-HSD1 activity. 11β-HSD1, CYP11B1, and cortisol levels increased in patients with CRS with nasal polyps and those with CRS without nasal polyps, but 11β-HSD2 expression decreased. In cultured epithelial cells treated with IL-4, IL-5, IL-13, IL-1β, TNF-α, and TGF-β1, 11β-HSD1 expression and activity increased in parallel with expression levels of CYP11B1 and cortisol, but the production of 11β-HSD2 decreased. The small interfering RNA technique or the measurement of 11β-HSD1 activity showed that the sinus epithelium activates cortisone to cortisol in an 11β-HSD-dependent manner. These results indicate that CRS-relevant cytokines can modulate the expression of 11β-HSD1, 11β-HSD2, and CYP11B1 in the sinus mucosa, resulting in increasing intracellular concentrations of bioactive glucocorticoids. Copyright © 2014. Published by Elsevier Inc.

  16. Specific beta1-adrenergic receptor silencing with small interfering RNA lowers high blood pressure and improves cardiac function in myocardial ischemia.

    PubMed

    Arnold, Anne-Sophie; Tang, Yao Liang; Qian, Keping; Shen, Leping; Valencia, Valery; Phillips, Michael Ian; Zhang, Yuan Clare

    2007-01-01

    Beta-blockers are widely used and effective for treating hypertension, acute myocardial infarction (MI) and heart failure, but they present side-effects mainly due to antagonism of beta2-adrenergic receptor (AR). Currently available beta-blockers are at best selective but not specific for beta1 or beta2-AR. To specifically inhibit the expression of the beta1-AR, we developed a small interfering RNA (siRNA) targeted to beta1-AR. Three different sequences of beta1 siRNA were delivered into C6-2B cells with 90% efficiency. One of the three sequences reduced the level of beta1-AR mRNA by 70%. The siRNA was highly specific for beta1-AR inhibition with no overlap with beta2-AR. To test this in vivo, systemic injection of beta1 siRNA complexed with liposomes resulted in efficient delivery into the heart, lung, kidney and liver, and effectively reduced beta1-AR expression in the heart without altering beta2-AR. beta1 siRNA significantly lowered blood pressure of spontaneously hypertensive rats (SHR) for at least 12 days and reduced cardiac hypertrophy following a single injection. Pretreatment with beta1 siRNA 3 days before induction of MI in Wistar rats significantly improved cardiac function, as demonstrated by dP/dt and electrocardiogram following the MI. The protective mechanism involved reduction of cardiomyocyte apoptosis in the beta1 siRNA-treated hearts. The present study demonstrates the possibility of using siRNA for treating cardiovascular diseases and may represent a novel beta-blocker specific for beta1-AR.

  17. Lidocaine attenuates lipopolysaccharide-induced inflammatory responses in microglia.

    PubMed

    Yuan, Tong; Li, Zhiwen; Li, Xinbai; Yu, Gaoqi; Wang, Na; Yang, Xige

    2014-11-01

    Lidocaine has been used as a local anesthetic with anti-inflammatory properties, but its effects on neuroinflammation have not been well defined. In the present study, we investigated the prophylactic effects of lidocaine on lipopolysaccharide (LPS)-activated microglia and explored the underlying mechanisms. Microglial cells were incubated with or without 1 μg/mL LPS in the presence or absence of lidocaine, a p38 mitogen-activated protein kinase (p38 MAPK) inhibitor (SB203580), a nuclear factor-kappa B (NF-κB) inhibitor (pyrrolidine dithiocarbamate), or small interfering RNA. The protein and expression levels of inflammatory mediators, such as monocyte chemotactic protein 1, nitric oxide, prostaglandin E2, interleukin 1β, and tumor necrosis factor α were measured using enzyme-linked immunosorbent assays and real-time polymerase chain reaction. The effect of lidocaine on NF-κB and p38 MAPK activation was evaluated using enzyme-linked immunosorbent assays, Western blot analysis, and electrophoretic mobility shift assay. Lidocaine (≥2 μg/mL) significantly inhibited the release and expression of nitric oxide, monocyte chemotactic protein 1, prostaglandin E2, interleukin 1β, and tumor necrosis factor α in LPS-activated microglia. Treatment with lidocaine also significantly inhibited the phosphorylation of p38 MAPK and the nuclear translocation of NF-κB p50/p65, increased the protein levels of inhibitor kappa B-α. Furthermore, our study shows that the LPS-induced release of inflammatory mediators was suppressed by SB203580, pyrrolidine dithiocarbamate, and small interfering RNA. Prophylactic treatment with lidocaine inhibits LPS-induced release of inflammatory mediators from microglia, and these effects may be mediated by blockade of p38 MAPK and NF-κB signaling pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Small-interfering RNAs from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley

    PubMed Central

    Held, Michael A.; Penning, Bryan; Brandt, Amanda S.; Kessans, Sarah A.; Yong, Weidong; Scofield, Steven R.; Carpita, Nicholas C.

    2008-01-01

    Small-interfering RNAs (siRNAs) from natural cis-antisense pairs derived from the 3′-coding region of the barley (Hordeum vulgare) CesA6 cellulose synthase gene substantially increase in abundance during leaf elongation. Strand-specific RT-PCR confirmed the presence of an antisense transcript of HvCesA6 that extends ≥1230 bp from the 3′ end of the CesA-coding sequence. The increases in abundance of the CesA6 antisense transcript and the 21-nt and 24-nt siRNAs derived from the transcript are coincident with the down-regulation of primary wall CesAs, several Csl genes, and GT8 glycosyl transferase genes, and are correlated with the reduction in rates of cellulose and (1 → 3),(1 → 4)-β-D-glucan synthesis. Virus induced gene silencing using unique target sequences derived from HvCesA genes attenuated expression not only of the HvCesA6 gene, but also of numerous nontarget Csls and the distantly related GT8 genes and reduced the incorporation of D-14C-Glc into cellulose and into mixed-linkage (1 → 3),(1 → 4)-β-D-glucans of the developing leaves. Unique target sequences for CslF and CslH conversely silenced the same genes and lowered rates of cellulose and (1 → 3),(1 → 4)-β-D-glucan synthesis. Our results indicate that the expression of individual members of the CesA/Csl superfamily and glycosyl transferases share common regulatory control points, and siRNAs from natural cis-antisense pairs derived from the CesA/Csl superfamily could function in this global regulation of cell-wall synthesis. PMID:19075248

  19. Small interfering RNA-mediated silencing of nicotinamide phosphoribosyltransferase (NAMPT) and lysosomal trafficking regulator (LYST) induce growth inhibition and apoptosis in human multiple myeloma cells: A preliminary study.

    PubMed

    Bong, Ivyna Pau Ni; Ng, Ching Ching; Fakiruddin, Shaik Kamal; Lim, Moon Nian; Zakaria, Zubaidah

    2016-11-10

    Multiple myeloma (MM) is a malignancy of B lymphocytes or plasma cells. Our array-based comparative genomic hybridization findings revealed chromosomal gains at 7q22.3 and 1q42.3, where nicotinamide (NAM) phosphoribosyltransferase (NAMPT) and lysosomal trafficking regulator (LYST) genes are localized, respectively. This led us to further study the functions of these genes in myeloma cells. NAMPT is a key enzyme involved in nicotinamide adenine dinucleotide salvage pathway, and it is frequently overexpressed in human cancers. In contrast, little is known about the function of LYST in cancer. The expression of LYST is shown to affect lysosomal size, granule size, and autophagy in human cells. In this study, the effects of small interfering RNA (siRNA)-mediated silencing of NAMPT and LYST on cell proliferation and apoptosis were evaluated in RPMI 8226 myeloma cells. Transfection efficiencies were determined by quantitative real time reverse transcriptase PCR. Cell proliferation was determined using MTT assay, while apoptosis was analyzed with flow cytometry using Annexin V-fluorescein isothiocyanate/propidium iodide assay. The NAMPT protein expression in siRNA-treated cells was estimated by enzyme-linked immunosorbent assay. Our results showed that NAMPT and LYST were successfully knockdown by siRNA transfection (p < 0.05). NAMPT or LYST gene silencing significantly inhibited cell proliferation and induced apoptosis in RPMI 8226 cells (p < 0.05). Silencing of NAMPT gene also decreased NAMPT protein levels (p < 0.01). Our study demonstrated that NAMPT and LYST play pivotal roles in the molecular pathogenesis of MM. This is the first report describing the possible functions of LYST in myelomagenesis and its potential role as a therapeutic target in MM.

  20. Expression of short hairpin RNAs using the compact architecture of retroviral microRNA genes.

    PubMed

    Burke, James M; Kincaid, Rodney P; Aloisio, Francesca; Welch, Nicole; Sullivan, Christopher S

    2017-09-29

    Short hairpin RNAs (shRNAs) are effective in generating stable repression of gene expression. RNA polymerase III (RNAP III) type III promoters (U6 or H1) are typically used to drive shRNA expression. While useful for some knockdown applications, the robust expression of U6/H1-driven shRNAs can induce toxicity and generate heterogeneous small RNAs with undesirable off-target effects. Additionally, typical U6/H1 promoters encompass the majority of the ∼270 base pairs (bp) of vector space required for shRNA expression. This can limit the efficacy and/or number of delivery vector options, particularly when delivery of multiple gene/shRNA combinations is required. Here, we develop a compact shRNA (cshRNA) expression system based on retroviral microRNA (miRNA) gene architecture that uses RNAP III type II promoters. We demonstrate that cshRNAs coded from as little as 100 bps of total coding space can precisely generate small interfering RNAs (siRNAs) that are active in the RNA-induced silencing complex (RISC). We provide an algorithm with a user-friendly interface to design cshRNAs for desired target genes. This cshRNA expression system reduces the coding space required for shRNA expression by >2-fold as compared to the typical U6/H1 promoters, which may facilitate therapeutic RNAi applications where delivery vector space is limiting. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. RNAi targeting GPR4 influences HMEC-1 gene expression by microarray analysis

    PubMed Central

    Ren, Juan; Zhang, Yuelang; Cai, Hui; Ma, Hongbing; Zhao, Dongli; Zhang, Xiaozhi; Li, Zongfang; Wang, Shufeng; Wang, Jiangsheng; Liu, Rui; Li, Yi; Qian, Jiansheng; Wei, Hongxia; Niu, Liying; Liu, Yan; Xiao, Lisha; Ding, Muyang; Jiang, Shiwen

    2014-01-01

    G-protein coupled receptor 4 (GPR4) belongs to a protein family comprised of 3 closely related G protein-coupled receptors. Recent studies have shown that GPR4 plays important roles in angiogenesis, proton sensing, and regulating tumor cells as an oncogenic gene. How GPR4 conducts its functions? Rare has been known. In order to detect the genes related to GPR4, microarray technology was employed. GPR4 is highly expressed in human vascular endothelial cell HMEC-1. Small interfering RNA against GPR4 was used to knockdown GPR4 expression in HMEC-1. Then RNA from the GPR4 knockdown cells and control cells were analyzed through genome microarray. Microarray results shown that among the whole genes and expressed sequence tags, 447 differentially expressed genes were identified, containing 318 up-regulated genes and 129 down-regulated genes. These genes whose expression dramatically changed may be involved in the GPR4 functions. These genes were related to cell apoptosis, cytoskeleton and signal transduction, cell proliferation, differentiation and cell-cycle regulation, gene transcription and translation and cell material and energy metabolism. PMID:24753754

  2. FASTmiR: an RNA-based sensor for in vitro quantification and live-cell localization of small RNAs

    PubMed Central

    Huang, Kun; Doyle, Francis; Wurz, Zachary E.; Tenenbaum, Scott A.; Hammond, Reza K.

    2017-01-01

    Abstract Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), play a variety of important regulatory roles in many eukaryotes. Their small size has made it challenging to study them directly in live cells. Here we describe an RNA-based fluorescent sensor for small RNA detection both in vitro and in vivo, adaptable for any small RNA. It utilizes an sxRNA switch for detection of miRNA–mRNA interactions combined with a fluorophore-binding sequence ‘Spinach’, a GFP-like RNA aptamer for which the RNA–fluorophore complex exhibits strong and consistent fluorescence under an excitation wavelength. Two example sensors, FASTmiR171 and FASTmiR122, can rapidly detect and quantify the levels of miR171 and miR122 in vitro. The sensors can determine relative levels of miRNAs in total RNA extracts with sensitivity similar to small RNA sequencing and northern blots. FASTmiR sensors were also used to estimate the copy number range of miRNAs in total RNA extracts. To localize and analyze the spatial distribution of small RNAs in live, single cells, tandem copies of FASTmiR122 were expressed in different cell lines. FASTmiR122 was able to quantitatively detect the differences in miR122 levels in Huh7 and HEK293T cells demonstrating its potential for tracking miRNA expression and localization in vivo. PMID:28586459

  3. Vector design for liver specific expression of multiple interfering RNAs that target hepatitis B virus transcripts

    PubMed Central

    Snyder, Lindsey L.; Esser, Jonathan M.; Pachuk, Catherine J.; Steel, Laura F.

    2008-01-01

    RNA interference (RNAi) is a process that can target intracellular RNAs for degradation in a highly sequence specific manner, making it a powerful tool that is being pursued in both research and therapeutic applications. Hepatitis B virus (HBV) is a serious public health problem in need of better treatment options, and aspects of its life cycle make it an excellent target for RNAi-based therapeutics. We have designed a vector that expresses interfering RNAs that target HBV transcripts, including both viral RNA replicative intermediates and mRNAs encoding viral proteins. Our vector design incorporates many features of endogenous microRNA (miRNA) gene organization that are proving useful for the development of reagents for RNAi. In particular, our vector contains an RNA pol II driven gene cassette that leads to tissue specific expression and efficient processing of multiple interfering RNAs from a single transcript, without the co-expression of any protein product. This vector shows potent silencing of HBV targets in cell culture models of HBV infection. The vector design will be applicable to silencing of additional cellular or disease-related genes. PMID:18499277

  4. Face to face: blocking facial mimicry can selectively impair recognition of emotional expressions.

    PubMed

    Oberman, Lindsay M; Winkielman, Piotr; Ramachandran, Vilayanur S

    2007-01-01

    People spontaneously mimic a variety of behaviors, including emotional facial expressions. Embodied cognition theories suggest that mimicry reflects internal simulation of perceived emotion in order to facilitate its understanding. If so, blocking facial mimicry should impair recognition of expressions, especially of emotions that are simulated using facial musculature. The current research tested this hypothesis using four expressions (happy, disgust, fear, and sad) and two mimicry-interfering manipulations (1) biting on a pen and (2) chewing gum, as well as two control conditions. Experiment 1 used electromyography over cheek, mouth, and nose regions. The bite manipulation consistently activated assessed muscles, whereas the chew manipulation activated muscles only intermittently. Further, expressing happiness generated most facial action. Experiment 2 found that the bite manipulation interfered most with recognition of happiness. These findings suggest that facial mimicry differentially contributes to recognition of specific facial expressions, thus allowing for more refined predictions from embodied cognition theories.

  5. Tumorigenicity of MCF-7 human breast cancer cells lacking the p38α mitogen-activated protein kinase

    PubMed Central

    Mendoza, Rhone A; Moody, Emily E; Enriquez, Marlene I; Mejia, Sylvia M; Thordarson, Gudmundur

    2011-01-01

    We have generated cell lines with significantly reduced expression of the p38 mitogen-activated protein kinase (p38 MAPK), Min-p38 MAPK cells, and used these cells to investigate its role in tumorigenesis of breast cancer cells. MCF-7 cells were stably transfected with a plasmid producing small interfering RNA that inhibited the expression of p38 MAPK. Control cells were stably transfected with the same plasmid producing non-interfering RNA. The reduction in the p38 MAPK activity caused a significant increase in the expressions of the estrogen receptor-α (ERα) and the progesterone receptor, but eliminated the expression of the ERβ. Min-p38 MAPK cells showed an enhanced overall growth response to 17β-estradiol (E2), whereas growth hormone plus epidermal growth factor were largely ineffective growth stimulators in these cells compared to controls. Although the long-term net growth rate of the Min-p38 MAPK cells was increased in response to E2, their proliferation rate was not different from controls in short-term cultures. However, the Min-p38 MAPK cells did show a significant decreased rate of apoptosis after E2 treatment and a reduction in the basal phosphorylation of p53 tumor suppressor protein compared to controls. When the Min-p38 MAPK cells were xenografted into E2-treated athymic nude mice, their tumorigenicity was enhanced compared to control cells. Conclusions: increased tumorigenicity of Min-p38 MAPK cells was caused mainly by a decrease in apoptosis rate indicating that the lack of the p38 MAPK caused an imbalance to increase the ERα:ERβ ratio and a reduction in the activity of the p53 tumor suppressor protein. PMID:20974639

  6. Tumorigenicity of MCF-7 human breast cancer cells lacking the p38α mitogen-activated protein kinase.

    PubMed

    Mendoza, Rhone A; Moody, Emily E; Enriquez, Marlene I; Mejia, Sylvia M; Thordarson, Gudmundur

    2011-01-01

    We have generated cell lines with significantly reduced expression of the p38 mitogen-activated protein kinase (p38 MAPK), Min-p38 MAPK cells, and used these cells to investigate p38 MAPK's role in tumorigenesis of breast cancer cells. MCF-7 cells were stably transfected with a plasmid producing small interfering RNA that inhibited the expression of p38 MAPK. Control cells were stably transfected with the same plasmid producing non-interfering RNA. The reduction in the p38 MAPK activity caused a significant increase in the expressions of estrogen receptor-α (ERα) and the progesterone receptor, but eliminated the expression of ERβ. Min-p38 MAPK cells showed an enhanced overall growth response to 17β-estradiol (E₂), whereas GH plus epidermal growth factor were largely ineffective growth stimulators in these cells compared to controls. Although the long-term net growth rate of the Min-p38 MAPK cells was increased in response to E₂, their proliferation rate was lower compared to controls in short-term cultures. However, the Min-p38 MAPK cells did show a significant decreased rate of apoptosis after E₂ treatment and a reduction in the basal phosphorylation of p53 tumor suppressor protein compared to controls. When the Min-p38 MAPK cells were xenografted into E₂-treated athymic nude mice, their tumorigenicity was enhanced compared to control cells. Increased tumorigenicity of Min-p38 MAPK cells was caused mainly by a decrease in the apoptosis rate indicating that the lack of the p38 MAPK caused an imbalance to increase the ERα:ERβ ratio and a reduction in the activity of the p53 tumor suppressor protein.

  7. Calpain 12 Function Revealed through the Study of an Atypical Case of Autosomal Recessive Congenital Ichthyosis.

    PubMed

    Bochner, Ron; Samuelov, Liat; Sarig, Ofer; Li, Qiaoli; Adase, Christopher A; Isakov, Ofer; Malchin, Natalia; Vodo, Dan; Shayevitch, Ronna; Peled, Alon; Yu, Benjamin D; Fainberg, Gilad; Warshauer, Emily; Adir, Noam; Erez, Noam; Gat, Andrea; Gottlieb, Yehonatan; Rogers, Tova; Pavlovsky, Mor; Goldberg, Ilan; Shomron, Noam; Sandilands, Aileen; Campbell, Linda E; MacCallum, Stephanie; McLean, W H Irwin; Ast, Gil; Gallo, Richard L; Uitto, Jouni; Sprecher, Eli

    2017-02-01

    Congenital erythroderma is a rare and often life-threatening condition, which has been shown to result from mutations in several genes encoding important components of the epidermal differentiation program. Using whole exome sequencing, we identified in a child with congenital exfoliative erythroderma, hypotrichosis, severe nail dystrophy and failure to thrive, two heterozygous mutations in ABCA12 (c.2956C>T, p.R986W; c.5778+2T>C, p. G1900Mfs*16), a gene known to be associated with two forms of ichthyosis, autosomal recessive congenital ichthyosis, and harlequin ichthyosis. Because the patient displayed an atypical phenotype, including severe hair and nail manifestations, we scrutinized the exome sequencing data for additional potentially deleterious genetic variations in genes of relevance to the cornification process. Two mutations were identified in CAPN12, encoding a member of the calpain proteases: a paternal missense mutation (c.1511C>A; p.P504Q) and a maternal deletion due to activation of a cryptic splice site in exon 9 of the gene (c.1090_1129del; p.Val364Lysfs*11). The calpain 12 protein was found to be expressed in both the epidermis and hair follicle of normal skin, but its expression was dramatically reduced in the patient's skin. The downregulation of capn12 expression in zebrafish was associated with abnormal epidermal morphogenesis. Small interfering RNA knockdown of CAPN12 in three-dimensional human skin models was associated with acanthosis, disorganized epidermal architecture, and downregulation of several differentiation markers, including filaggrin. Accordingly, filaggrin expression was almost absent in the patient skin. Using ex vivo live imaging, small interfering RNA knockdown of calpain 12 in skin from K14-H2B GFP mice led to significant hair follicle catagen transformation compared with controls. In summary, our results indicate that calpain 12 plays an essential role during epidermal ontogenesis and normal hair follicle cycling and that its absence may aggravate the clinical manifestations of ABCA12 mutations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. RhoA mediates the expression of acidic extracellular pH-induced matrix metalloproteinase-9 mRNA through phospholipase D1 in mouse metastatic B16-BL6 melanoma cells.

    PubMed

    Maeda, Toyonobu; Yuzawa, Satoshi; Suzuki, Atsuko; Baba, Yuh; Nishimura, Yukio; Kato, Yasumasa

    2016-03-01

    Solid tumors are characterized by acidic extracellular pH (pHe). The present study examined the contribution of small GTP-binding proteins to phospholipase D (PLD) activation of acidic pHe-induced matrix metalloproteinase-9 (MMP-9) production. Acidic pHe-induced MMP-9 production was reduced by C3 exoenzyme, which inhibits the Rho family of GTPases; cytochalasin D, which inhibits actin reorganization; and simvastatin, which inhibits geranylgeranylation of Rho. Small interfering RNA (siRNA) against RhoA, but not against Rac1 or Cdc42, significantly inhibited acidic pHe induction of MMP-9. Pull-down assays showed that acidic pHe increased the activated form of RhoA. Forced expression of constitutively active RhoA induced MMP-9 production, even at neutral pHe. RhoA siRNA also reduced acidic pHe induced PLD activity. Specific inhibition of PLD1 and Pld1 gene knockout significantly reduced acidic pHe-induced MMP-9 expression. In contrast, PLD2 inhibition or knockout had no effect on MMP-9 expression. These findings suggested that RhoA-PLD1 signaling is involved in acidic pHe induction of MMP-9.

  9. Multifunctional Envelope-Type siRNA Delivery Nanoparticle Platform for Prostate Cancer Therapy.

    PubMed

    Xu, Xiaoding; Wu, Jun; Liu, Yanlan; Saw, Phei Er; Tao, Wei; Yu, Mikyung; Zope, Harshal; Si, Michelle; Victorious, Amanda; Rasmussen, Jonathan; Ayyash, Dana; Farokhzad, Omid C; Shi, Jinjun

    2017-03-28

    With the capability of specific silencing of target gene expression, RNA interference (RNAi) technology is emerging as a promising therapeutic modality for the treatment of cancer and other diseases. One key challenge for the clinical applications of RNAi is the safe and effective delivery of RNAi agents such as small interfering RNA (siRNA) to a particular nonliver diseased tissue (e.g., tumor) and cell type with sufficient cytosolic transport. In this work, we proposed a multifunctional envelope-type nanoparticle (NP) platform for prostate cancer (PCa)-specific in vivo siRNA delivery. A library of oligoarginine-functionalized and sharp pH-responsive polymers was synthesized and used for self-assembly with siRNA into NPs with the features of long blood circulation and pH-triggered oligoarginine-mediated endosomal membrane penetration. By further modification with ACUPA, a small molecular ligand specifically recognizing prostate-specific membrane antigen (PSMA) receptor, this envelope-type nanoplatform with multifunctional properties can efficiently target PSMA-expressing PCa cells and silence target gene expression. Systemic delivery of the siRNA NPs can efficiently silence the expression of prohibitin 1 (PHB1), which is upregulated in PCa and other cancers, and significantly inhibit PCa tumor growth. These results suggest that this multifunctional envelope-type nanoplatform could become an effective tool for PCa-specific therapy.

  10. Overexpression of ZIC5 promotes proliferation in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Qi; Shi, Run; Wang, Xin

    Background: Non-small cell lung cancer (NSCLC) has become the leading cause of cancer-related deaths. It is therefore urgent that we identify new molecular targets to help cure NSCLC patients. Here, we identified ZIC5 as a potential novel oncogene. Methods: We detected the expression of ZIC5 in tumor and normal tissues of NSCLC patients using quantitative real-time PCR and explored its clinical appearance. We then knocked down ZIC5 to observe changes in NSCLC cell proliferation and metastasis. Nude mouse xenograft models were established to measure ZIC5's function in vivo. Results: Our results revealed that ZIC5 was expressed at dramatically higher levels inmore » NSCLC tumor tissues than in normal tissues. High levels of ZIC5 expression were associated with a higher primary tumor grade. ZIC5 expression was significantly inhibited by small interfering RNA. After silencing ZIC5, the metastatic capacity of NSCLC cells was clearly lower. Knocking down ZIC5 significantly inhibited the proliferation of NSCLC cells, causing the cell cycle to be arrested in G2 phase. Xenograft tumor models showed that knocking down ZIC5 also inhibited tumor growth in vivo. Q-PCR and western blot analysis revealed that ZIC5 expression was closely associated with CCNB1 and CDK1 complex expression, while other cell cycle-related genes showed no significant correlation with ZIC5. Conclusions: Our experiment show that ZIC5 is highly upregulated in NSCLC tumor tissues and suggest that ZIC5 may act as an oncogene by influencing CCNB1 and CDK1 complex expression. ZIC5 may therefore be a potential biomarker and therapeutic target for NSCLC patients.« less

  11. Bile Acid-regulated Peroxisome Proliferator-activated Receptor-α (PPARα) Activity Underlies Circadian Expression of Intestinal Peptide Absorption Transporter PepT1/Slc15a1*

    PubMed Central

    Okamura, Ayako; Koyanagi, Satoru; Dilxiat, Adila; Kusunose, Naoki; Chen, Jia Jun; Matsunaga, Naoya; Shibata, Shigenobu; Ohdo, Shigehiro

    2014-01-01

    Digested proteins are mainly absorbed as small peptides composed of two or three amino acids. The intestinal absorption of small peptides is mediated via only one transport system: the proton-coupled peptide transporter-1 (PepT1) encoded from the soluble carrier protein Slc15a1. In mammals, intestinal expression of PepT1/Slc15a1 oscillates during the daily feeding cycle. Although the oscillation in the intestinal expression of PepT1/Slc15a1 is suggested to be controlled by molecular components of circadian clock, we demonstrated here that bile acids regulated the oscillation of PepT1/Slc15a1 expression through modulating the activity of peroxisome proliferator-activated receptor α (PPARα). Nocturnally active mice mainly consumed their food during the dark phase. PPARα activated the intestinal expression of Slc15a1 mRNA during the light period, and protein levels of PepT1 peaked before the start of the dark phase. After food intake, bile acids accumulated in intestinal epithelial cells. Intestinal accumulated bile acids interfered with recruitment of co-transcriptional activator CREB-binding protein/p300 on the promoter region of Slc15a1 gene, thereby suppressing PPARα-mediated transactivation of Slc15a1. The time-dependent suppression of PPARα-mediated transactivation by bile acids caused an oscillation in the intestinal expression of PepT1/Slc15a1 during the daily feeding cycle that led to circadian changes in the intestinal absorption of small peptides. These findings suggest a molecular clock-independent mechanism by which bile acid-regulated PPARα activity governs the circadian expression of intestinal peptide transporter. PMID:25016014

  12. Synthetic Lethal Therapy for KRAS Mutant Non-small-cell Lung Carcinoma with Nanoparticle-mediated CDK4 siRNA Delivery

    PubMed Central

    Mao, Cheng-Qiong; Xiong, Meng-Hua; Liu, Yang; Shen, Song; Du, Xiao-Jiao; Yang, Xian-Zhu; Dou, Shuang; Zhang, Pei-Zhuo; Wang, Jun

    2014-01-01

    The KRAS mutation is present in ~20% of lung cancers and has not yet been effectively targeted for therapy. This mutation is associated with a poor prognosis in non-small-cell lung carcinomas (NSCLCs) and confers resistance to standard anticancer treatment drugs, including epidermal growth factor receptor tyrosine kinase inhibitors. In this study, we exploited a new therapeutic strategy based on the synthetic lethal interaction between cyclin-dependent kinase 4 (CDK4) downregulation and the KRAS mutation to deliver micellar nanoparticles (MNPs) containing small interfering RNA targeting CDK4 (MNPsiCDK4) for treatment in NSCLCs harboring the oncogenic KRAS mutation. Following MNPsiCDK4 administration, CDK4 expression was decreased, accompanied by inhibited cell proliferation, specifically in KRAS mutant NSCLCs. However, this intervention was harmless to normal KRAS wild-type cells, confirming the proposed mechanism of synthetic lethality. Moreover, systemic delivery of MNPsiCDK4 significantly inhibited tumor growth in an A549 NSCLC xenograft murine model, with depressed expression of CDK4 and mutational KRAS status, suggesting the therapeutic promise of MNPsiCDK4 delivery in KRAS mutant NSCLCs via a synthetic lethal interaction between KRAS and CDK4. PMID:24496383

  13. Characterization of small RNA populations in non-transgenic and aflatoxin-reducing-transformed peanut.

    PubMed

    Power, Imana L; Dang, Phat M; Sobolev, Victor S; Orner, Valerie A; Powell, Joseph L; Lamb, Marshall C; Arias, Renee S

    2017-04-01

    Aflatoxin contamination is a major constraint in food production worldwide. In peanut (Arachis hypogaea L.), these toxic and carcinogenic aflatoxins are mainly produced by Aspergillus flavus Link and A. parasiticus Speare. The use of RNA interference (RNAi) is a promising method to reduce or prevent the accumulation of aflatoxin in peanut seed. In this study, we performed high-throughput sequencing of small RNA populations in a control line and in two transformed peanut lines that expressed an inverted repeat targeting five genes involved in the aflatoxin-biosynthesis pathway and that showed up to 100% less aflatoxin B 1 than the controls. The objective was to determine the putative involvement of the small RNA populations in aflatoxin reduction. In total, 41 known microRNA (miRNA) families and many novel miRNAs were identified. Among those, 89 known and 10 novel miRNAs were differentially expressed in the transformed lines. We furthermore found two small interfering RNAs derived from the inverted repeat, and 39 sRNAs that mapped without mismatches to the genome of A. flavus and were present only in the transformed lines. This information will increase our understanding of the effectiveness of RNAi and enable the possible improvement of the RNAi technology for the control of aflatoxins. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The use of small interfering RNAs to inhibit adipocyte differentiation in human preadipocytes and fetal-femur-derived mesenchymal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Y.; Mirmalek-Sani, S.-H.; Yang, X.

    2006-06-10

    RNA interference (RNAi) has been used in functional genomics and offers innovative approaches in the development of novel therapeutics. Human mesenchymal stem cells offer a unique cell source for tissue engineering/regeneration strategies. The current study examined the potential of small interfering RNAs (siRNA) against human peroxisome proliferator activated receptor gamma (PPAR{gamma}) to suppress adipocyte differentiation (adipogenesis) in human preadipocytes and fetal-femur-derived mesenchymal cells. Adipogenesis was investigated using cellular and biochemical analysis. Transient transfection with PPAR{gamma}-siRNA using a liposomal-based strategy resulted in a significant inhibition of adipogenesis in human preadipocytes and fetal-femur-derived mesenchymal cells, compared to controls (cell, liposomal and negativemore » siRNA). The inhibitory effect of PPAR{gamma}-siRNA was supported by testing human PPAR{gamma} mRNA and adipogenic associated genes using reverse transcription polymerase chain reaction (RT-PCR) to adiponectin receptor 1 and 2 as well as examination of fatty acid binding protein 3 (FABP{sub 3}) expression, an adipocyte-specific marker. The current studies indicate that PPAR{gamma}-siRNA is a useful tool to study adipogenesis in human cells, with potential applications both therapeutic and in the elucidation of mesenchymal cell differentiation in the modulation of cell differentiation in human mesenchymal cells.« less

  15. RNA-induced silencing complex-bound small interfering RNA is a determinant of RNA interference-mediated gene silencing in mice.

    PubMed

    Wei, Jie; Jones, Jeffrey; Kang, Jing; Card, Ananda; Krimm, Michael; Hancock, Paula; Pei, Yi; Ason, Brandon; Payson, Elmer; Dubinina, Natalya; Cancilla, Mark; Stroh, Mark; Burchard, Julja; Sachs, Alan B; Hochman, Jerome H; Flanagan, W Michael; Kuklin, Nelly A

    2011-06-01

    Deeper knowledge of pharmacokinetic and pharmacodynamic (PK/PD) concepts for RNA therapeutics is important to streamline the drug development process and for rigorous selection of best performing drug candidates. Here we characterized the PK/PD relationship for small interfering RNAs (siRNAs) targeting luciferase by examining siRNA concentration in plasma and liver, the temporal RNA-induced silencing complex binding profiles, mRNA reduction, and protein inhibition measured by noninvasive bioluminescent imaging. A dose-dependent and time-related decrease in bioluminescence was detected over 25 days after a single treatment of a lipid nanoparticle-formulated siRNA targeting luciferase messenger RNA. A direct relationship was observed between the degree of in vivo mRNA and protein reduction and the Argonaute2 (Ago2)-bound siRNA fraction but not with the total amount of siRNA found in the liver, suggesting that the Ago2-siRNA complex is the key determinant of target inhibition. These observations were confirmed for an additional siRNA that targets endogenously expressed Sjögren syndrome antigen B (Ssb) mRNA, indicating that our observations are not limited to a transgenic mouse system. Our data provide detailed information of the temporal regulation of siRNA liver delivery, Ago2 loading, mRNA reduction, and protein inhibition that are essential for the rapid and cost-effective clinical development of siRNAs therapeutics.

  16. A High-throughput Assay for mRNA Silencing in Primary Cortical Neurons in vitro with Oligonucleotide Therapeutics.

    PubMed

    Alterman, Julia F; Coles, Andrew H; Hall, Lauren M; Aronin, Neil; Khvorova, Anastasia; Didiot, Marie-Cécile

    2017-08-20

    Primary neurons represent an ideal cellular system for the identification of therapeutic oligonucleotides for the treatment of neurodegenerative diseases. However, due to the sensitive nature of primary cells, the transfection of small interfering RNAs (siRNA) using classical methods is laborious and often shows low efficiency. Recent progress in oligonucleotide chemistry has enabled the development of stabilized and hydrophobically modified small interfering RNAs (hsiRNAs). This new class of oligonucleotide therapeutics shows extremely efficient self-delivery properties and supports potent and durable effects in vitro and in vivo . We have developed a high-throughput in vitro assay to identify and test hsiRNAs in primary neuronal cultures. To simply, rapidly, and accurately quantify the mRNA silencing of hundreds of hsiRNAs, we use the QuantiGene 2.0 quantitative gene expression assay. This high-throughput, 96-well plate-based assay can quantify mRNA levels directly from sample lysate. Here, we describe a method to prepare short-term cultures of mouse primary cortical neurons in a 96-well plate format for high-throughput testing of oligonucleotide therapeutics. This method supports the testing of hsiRNA libraries and the identification of potential therapeutics within just two weeks. We detail methodologies of our high throughput assay workflow from primary neuron preparation to data analysis. This method can help identify oligonucleotide therapeutics for treatment of various neurological diseases.

  17. The interaction between embodiment and empathy in facial expression recognition

    PubMed Central

    Jospe, Karine; Flöel, Agnes; Lavidor, Michal

    2018-01-01

    Abstract Previous research has demonstrated that the Action-Observation Network (AON) is involved in both emotional-embodiment (empathy) and action-embodiment mechanisms. In this study, we hypothesized that interfering with the AON will impair action recognition and that this impairment will be modulated by empathy levels. In Experiment 1 (n = 90), participants were asked to recognize facial expressions while their facial motion was restricted. In Experiment 2 (n = 50), we interfered with the AON by applying transcranial Direct Current Stimulation to the motor cortex. In both experiments, we found that interfering with the AON impaired the performance of participants with high empathy levels; however, for the first time, we demonstrated that the interference enhanced the performance of participants with low empathy. This novel finding suggests that the embodiment module may be flexible, and that it can be enhanced in individuals with low empathy by simple manipulation of motor activation. PMID:29378022

  18. High-Throughput Sequencing of RNA Silencing-Associated Small RNAs in Olive (Olea europaea L.)

    PubMed Central

    Donaire, Livia; Pedrola, Laia; de la Rosa, Raúl; Llave, César

    2011-01-01

    Small RNAs (sRNAs) of 20 to 25 nucleotides (nt) in length maintain genome integrity and control gene expression in a multitude of developmental and physiological processes. Despite RNA silencing has been primarily studied in model plants, the advent of high-throughput sequencing technologies has enabled profiling of the sRNA component of more than 40 plant species. Here, we used deep sequencing and molecular methods to report the first inventory of sRNAs in olive (Olea europaea L.). sRNA libraries prepared from juvenile and adult shoots revealed that the 24-nt class dominates the sRNA transcriptome and atypically accumulates to levels never seen in other plant species, suggesting an active role of heterochromatin silencing in the maintenance and integrity of its large genome. A total of 18 known miRNA families were identified in the libraries. Also, 5 other sRNAs derived from potential hairpin-like precursors remain as plausible miRNA candidates. RNA blots confirmed miRNA expression and suggested tissue- and/or developmental-specific expression patterns. Target mRNAs of conserved miRNAs were computationally predicted among the olive cDNA collection and experimentally validated through endonucleolytic cleavage assays. Finally, we use expression data to uncover genetic components of the miR156, miR172 and miR390/TAS3-derived trans-acting small interfering RNA (tasiRNA) regulatory nodes, suggesting that these interactive networks controlling developmental transitions are fully operational in olive. PMID:22140484

  19. Role of Bruton's tyrosine kinase inhibitors in HIV-1-infected cells.

    PubMed

    Guendel, Irene; Iordanskiy, Sergey; Sampey, Gavin C; Van Duyne, Rachel; Calvert, Valerie; Petricoin, Emanuel; Saifuddin, Mohammed; Kehn-Hall, Kylene; Kashanchi, Fatah

    2015-06-01

    Many cellular cofactors have been documented to be critical for various stages of viral replication. Using high-throughput proteomic assays, we have previously identified Bruton's tyrosine kinase (BTK) as a host protein that was uniquely upregulated in the plasma membrane of human immunodeficiency virus (HIV-1)-infected T cells. Here, we have further characterized the BTK expression in HIV-1 infection and show that this cellular factor is specifically expressed in infected myeloid cells. Significant upregulation of the phosphorylated form of BTK was observed in infected cells. Using size exclusion chromatography, we found BTK to be virtually absent in the uninfected U937 cells; however, new BTK protein complexes were identified and distributed in both high molecular weight (∼600 kDa) and a small molecular weight complex (∼60-120 kDa) in the infected U1 cells. BTK levels were highest in cells either chronically expressing virus or induced/infected myeloid cells and that BTK translocated to the membrane following induction of the infected cells. BTK knockdown in HIV-1-infected cells using small interfering RNA (siRNA) resulted in selective death of infected, but not uninfected, cells. Using BTK-specific antibody and small-molecule inhibitors including LFM-A13 and a FDA-approved compound, ibrutinib (PCI-32765), we have found that HIV-1-infected cells are sensitive to apoptotic cell death and result in a decrease in virus production. Overall, our data suggests that HIV-1-infected cells are sensitive to treatments targeting BTK expressed in infected cells.

  20. Northern Blot Detection of Virus-Derived Small Interfering RNAs in Caenorhabditis elegans Using Nonradioactive Oligo Probes.

    PubMed

    Long, Tianyun; Lu, Rui

    2017-01-01

    Northern blot analysis has been widely used as a tool for detection and characterization of specific RNA molecules. When coupled with radioactive probe northern blot allows for robust detection and characterization of small RNA molecules of trace amount. Here, we describe the detection and size characterization of virus-derived small interfering RNAs (vsiRNAs) in C. elegans using nonradioactive DNA oligo probes in northern blotting. Our protocol allows for the detection and characterization of not only primary vsiRNAs but also secondary vsiRNAs, a class of single-stranded vsiRNAs that has distinct migration pattern, and can be easily adapted to the detection of vsiRNAs in other organisms.

  1. Small RNAs of Sequoia sempervirens during rejuvenation and phase change.

    PubMed

    Chen, Y-T; Shen, C-H; Lin, W-D; Chu, H-A; Huang, B-L; Kuo, C-I; Yeh, K-W; Huang, L-C; Chang, I-F

    2013-01-01

    In this work, the population of small RNAs (sRNAs) was studied in the gymnosperm Sequoia sempervirens during phase changes, specifically in the juvenile, adult and rejuvenated plants obtained in vitro. The potential target genes of Sequoia sRNAs were predicted through bioinformatics. Rejuvenation is a pivotal process in woody plants that enables them to regain their growth potential, which results in the recovery of physiologic and molecular characteristics that were lost when the juveniles mature into adult plants. The results from the five repeated graftings of juvenile, adult and rejuvenated plants in vitro showed that sRNAs could be classified into structural RNAs (Group I), small interfering RNAs (Group II), annotated microRNAs (Group III, and unannotated sRNAs (Group IV). The results indicate that only 573 among 15,485,415 sRNAs (Groups III and IV) had significantly different expression patterns associated with rejuvenation and phase change. A total of 215 sRNAs exhibited up-regulated expression patterns in adult shoots, and 358 sRNAs were down-regulated. Expression profiling and prediction of possible target genes of these unique small RNAs indicate possible functions in the control of photosynthetic efficiency and rooting competence abundance during plant rejuvenation. Moreover, the increase in SsmiR156 and decrease in SsmiR172 during plant rejuvenation suggested that these two microRNAs extensively affect phase transition. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Origins and Mechanisms of miRNAs and siRNAs.

    PubMed

    Carthew, Richard W; Sontheimer, Erik J

    2009-02-20

    Over the last decade, approximately 20-30 nucleotide RNA molecules have emerged as critical regulators in the expression and function of eukaryotic genomes. Two primary categories of these small RNAs--short interfering RNAs (siRNAs) and microRNAs (miRNAs)--act in both somatic and germline lineages in a broad range of eukaryotic species to regulate endogenous genes and to defend the genome from invasive nucleic acids. Recent advances have revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access. Our understanding of siRNA- and miRNA-based regulation has direct implications for fundamental biology as well as disease etiology and treatment.

  3. Inhibition of DNA methyltransferase 1 by RNA interference reverses epithelial-mesenchymal transition in highly metastatic 95D lung cancer cells by inhibiting the Wnt signaling pathway.

    PubMed

    Bu, Xiancong; Zhang, Xiangyan; Xu, Jinhong; Yang, Heping; Zhou, Xiangdong; Wang, Haijing; Gong, Liang

    2018-06-01

    Epigenetic modifications serve important roles in non-small cell lung cancer (NSCLC) tumorigenesis; however, the role of DNA methyltransferase 1 (DNMT1) in lung cancer progression remains unclear. In the present study, the expression of DNMT1 in the human NSCLC cell lines 95D (high invasive ability) and 95C (low invasive ability) was analyzed by western blotting. The results demonstrated that the expression of DNMT1 in 95D cells was significantly higher, compared with in 95C cells and small airway epithelial cells. To further define the role of DNMT1 in tumor migration and invasion in NSCLC cells, RNA interference was used to silence DNMT1 expression. Depletion of DNMT1 significantly inhibited 95D cell invasion and migration. In addition, treatment with DNMT1 small interfering RNA resulted in compact cell morphology and significantly increased epithelial marker E-cadherin expression whilst also decreasing the expression of certain mesenchymal markers, including vimentin and fibronectin. Suppression of DNMT1 increased cytoplasmic β-catenin levels while downregulating nuclear β-catenin and Snail, an important regulator of EMT. The results from the present study suggest that the inhibition of DNMT1 reverses the epithelial-mesenchymal transition partly via the inhibition of the Wnt/β-catenin signaling pathway, and therefore inhibits cell migration and invasion. These results indicate that targeting DNMT1 may inhibit tumor metastasis and that DNMT1 is a promising target for the novel treatment of lung cancer.

  4. Transcription factor fos-related antigen-2 induces progressive peripheral vasculopathy in mice closely resembling human systemic sclerosis.

    PubMed

    Maurer, Britta; Busch, Nicole; Jüngel, Astrid; Pileckyte, Margarita; Gay, Renate E; Michel, Beat A; Schett, Georg; Gay, Steffen; Distler, Jörg; Distler, Oliver

    2009-12-08

    Microvascular damage is one of the first pathological changes in systemic sclerosis. In this study, we investigated the role of Fos-related antigen-2 (Fra-2), a transcription factor of the activator protein-1 family, in the peripheral vasculopathy of systemic sclerosis and examined the underlying mechanisms. Expression of Fra-2 protein was significantly increased in skin biopsies of systemic sclerosis patients compared with healthy controls, especially in endothelial and vascular smooth muscle cells. Fra-2 transgenic mice developed a severe loss of small blood vessels in the skin that was paralleled by progressive skin fibrosis at 12 weeks of age. The reduction in capillary density was preceded by a significant increase in apoptosis in endothelial cells at week 9 as detected by immunohistochemistry. Similarly, suppression of Fra-2 by small interfering RNA prevented human microvascular endothelial cells from staurosporine-induced apoptosis and improved both the number of tubes and the cumulative tube lengths in the tube formation assay. In addition, cell migration in the scratch assay and vascular endothelial growth factor-dependent chemotaxis in a modified Boyden chamber assay were increased after transfection of human microvascular endothelial cells with Fra-2 small interfering RNA, whereas proliferation was not affected. Fra-2 is present in human systemic sclerosis and may contribute to the development of microvasculopathy by inducing endothelial cell apoptosis and by reducing endothelial cell migration and chemotaxis. Fra-2 transgenic mice are a promising preclinical model to study the mechanisms and therapeutic approaches of the peripheral vasculopathy in systemic sclerosis.

  5. Rootstock-to-scion transfer of transgene-derived small interfering RNAs and their effect on virus resistance in nontransgenic sweet cherry.

    PubMed

    Zhao, Dongyan; Song, Guo-qing

    2014-12-01

    Small interfering RNAs (siRNAs) are silencing signals in plants. Virus-resistant transgenic rootstocks developed through siRNA-mediated gene silencing may enhance virus resistance of nontransgenic scions via siRNAs transported from the transgenic rootstocks. However, convincing evidence of rootstock-to-scion movement of siRNAs of exogenous genes in woody plants is still lacking. To determine whether exogenous siRNAs can be transferred, nontransgenic sweet cherry (scions) was grafted on transgenic cherry rootstocks (TRs), which was transformed with an RNA interference (RNAi) vector expressing short hairpin RNAs of the genomic RNA3 of Prunus necrotic ringspot virus (PNRSV-hpRNA). Small RNA sequencing was conducted using bud tissues of TRs and those of grafted (rootstock/scion) trees, locating at about 1.2 m above the graft unions. Comparison of the siRNA profiles revealed that the PNRSV-hpRNA was efficient in producing siRNAs and eliminating PNRSV in the TRs. Furthermore, our study confirmed, for the first time, the long-distance (1.2 m) transfer of PNRSV-hpRNA-derived siRNAs from the transgenic rootstock to the nontransgenic scion in woody plants. Inoculation of nontransgenic scions with PNRSV revealed that the transferred siRNAs enhanced PNRSV resistance of the scions grafted on the TRs. Collectively, these findings provide the foundation for 'using transgenic rootstocks to produce products of nontransgenic scions in fruit trees'. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Computational Prediction and Validation of BAHD1 as a Novel Molecule for Ulcerative Colitis

    NASA Astrophysics Data System (ADS)

    Zhu, Huatuo; Wan, Xingyong; Li, Jing; Han, Lu; Bo, Xiaochen; Chen, Wenguo; Lu, Chao; Shen, Zhe; Xu, Chenfu; Chen, Lihua; Yu, Chaohui; Xu, Guoqiang

    2015-07-01

    Ulcerative colitis (UC) is a common inflammatory bowel disease (IBD) producing intestinal inflammation and tissue damage. The precise aetiology of UC remains unknown. In this study, we applied a rank-based expression profile comparative algorithm, gene set enrichment analysis (GSEA), to evaluate the expression profiles of UC patients and small interfering RNA (siRNA)-perturbed cells to predict proteins that might be essential in UC from publicly available expression profiles. We used quantitative PCR (qPCR) to characterize the expression levels of those genes predicted to be the most important for UC in dextran sodium sulphate (DSS)-induced colitic mice. We found that bromo-adjacent homology domain (BAHD1), a novel heterochromatinization factor in vertebrates, was the most downregulated gene. We further validated a potential role of BAHD1 as a regulatory factor for inflammation through the TNF signalling pathway in vitro. Our findings indicate that computational approaches leveraging public gene expression data can be used to infer potential genes or proteins for diseases, and BAHD1 might act as an indispensable factor in regulating the cellular inflammatory response in UC.

  7. Low-expression of E-cadherin in leukaemia cells causes loss of homophilic adhesion and promotes cell growth.

    PubMed

    Rao, Qing; Wang, Ji-Ying; Meng, Jihong; Tang, Kejing; Wang, Yanzhong; Wang, Min; Xing, Haiyan; Tian, Zheng; Wang, Jianxiang

    2011-09-01

    E-cadherin (epithelial cadherin) belongs to the calcium-dependent adhesion molecule superfamily and is implicated in the interactions of haematopoietic progenitors and bone marrow stromal cells. Adhesion capacity to bone marrow stroma was impaired for leukaemia cells, suggesting that a breakdown of adhesive mechanisms governed by an adhesion molecule may exist in leukaemic microenvironment. We previously found that E-cadherin was low expressed in primary acute leukaemia cells compared with normal bone marrow mononuclear cells. In this study, we investigate the functional importance of low E-cadherin expression in leukaemia cell behaviours and investigate its effects in the abnormal interaction of leukaemic cells with stromal cells. After expression of E-cadherin was restored by a demethylating agent in leukaemia cells, E-cadherin-specific adhesion was enhanced. Additionally, siRNA (small interfering RNA)-mediated silencing of E-cadherin in Raji cells resulted in a reduction of cell homophilic adhesion and enhancement of cell proliferation and colony formation. These results suggest that low expression of E-cadherin contributes to the vigorous growth and transforming ability of leukaemic cells.

  8. Improved silencing properties using small internally segmented interfering RNAs

    PubMed Central

    Bramsen, Jesper B.; Laursen, Maria B.; Damgaard, Christian K.; Lena, Suzy W.; Ravindra Babu, B.; Wengel, Jesper; Kjems, Jørgen

    2007-01-01

    RNA interference is mediated by small interfering RNAs (siRNAs) that upon incorporation into the RNA-induced silencing complex (RISC) can target complementary mRNA for degradation. Standard siRNA design usually feature a 19–27 base pair contiguous double-stranded region that is believed to be important for RISC incorporation. Here, we describe a novel siRNA design composed of an intact antisense strand complemented with two shorter 10–12 nt sense strands. This three-stranded construct, termed small internally segmented interfering RNA (sisiRNA), is highly functional demonstrating that an intact sense strand is not a prerequisite for RNA interference. Moreover, when using the sisiRNA design only the antisense strand is functional in activated RISC thereby completely eliminating unintended mRNA targeting by the sense strand. Interestingly, the sisiRNA design supports the function of chemically modified antisense strands, which are non-functional within the context of standard siRNA designs. This suggests that the sisiRNA design has a clear potential of improving the pharmacokinetic properties of siRNA in vivo. PMID:17726057

  9. Transgenerational inheritance of an acquired small RNA-based antiviral response in C.elegans

    PubMed Central

    Rechavi, Oded; Minevich, Gregory; Hobert, Oliver

    2011-01-01

    Induced expression of the Flock House virus in the soma of C. elegans results in the RNAi-dependent production of virus-derived, small interfering RNAs (viRNAs), which in turn silence the viral genome. We show here that the viRNA-mediated viral silencing effect is transmitted in a non-Mendelian manner to many ensuing generations. We show that the viral silencing agents, viRNAs, are transgenerationally transmitted in a template-independent manner and work in trans to silence viral genomes present in animals that are deficient in producing their own viRNAs. These results provide evidence for the transgenerational inheritance of an acquired trait, induced by the exposure of animals to a specific, biologically relevant physiological challenge. The ability to inherit such extragenic information may provide adaptive benefits to an animal. PMID:22119442

  10. Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer.

    PubMed

    Li, Xiaolei; Zhang, Qianhui; Fan, Kai; Li, Baiyan; Li, Huifeng; Qi, Hanping; Guo, Jing; Cao, Yonggang; Sun, Hongli

    2016-03-24

    (1) BACKGROUND: Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP channels family of Ca(2+)-permeant channels. The proteins of some TRP channels are highly expressed in cancer cells. This study aimed to assess the clinical significance and biological functions of TRPV3 in non-small cell lung cancer (NSCLC); (2) METHODS: Immunohistochemistry was used to detect the expression of TRPV3 in NSCLC tissues and adjacent noncancerous lung tissues. Western blot was used to detect the protein expressions of TRPV3, CaMKII, p-CaMKII, CyclinA, CyclinD, CyclinE1, CDK2, CDK4, and P27. Small interfering RNA was used to deplete TRPV3 expression. A laser scanning confocal microscope was used to measure intracellular calcium concentration ([Ca(2+)]i). Flow cytometry was used to analyze cell cycle; (3) RESULTS: TRPV3 was overexpressed in 65 of 96 (67.7%) human lung cancer cases and correlated with differentiation (p = 0.001) and TNM stage (p = 0.004). Importantly, TRPV3 expression was associated with short overall survival. In addition, blocking or knockdown of TRPV3 could inhibit lung cancer cell proliferation. Moreover, TRPV3 inhibition could decrease [Ca(2+)]i of lung cancer cells and arrest cell cycle at the G1/S boundary. Further results revealed that TRPV3 inhibition decreased expressions of p-CaMKII, CyclinA, CyclinD1, CyclinE, and increased P27 level; (4) CONCLUSIONS: Our findings demonstrate that TRPV3 was overexpressed in NSCLC and correlated with lung cancer progression. TRPV3 activation could promote proliferation of lung cancer cells. TRPV3 might serve as a potential companion drug target in NSCLC.

  11. Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer

    PubMed Central

    Li, Xiaolei; Zhang, Qianhui; Fan, Kai; Li, Baiyan; Li, Huifeng; Qi, Hanping; Guo, Jing; Cao, Yonggang; Sun, Hongli

    2016-01-01

    (1) Background: Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP channels family of Ca2+-permeant channels. The proteins of some TRP channels are highly expressed in cancer cells. This study aimed to assess the clinical significance and biological functions of TRPV3 in non-small cell lung cancer (NSCLC); (2) Methods: Immunohistochemistry was used to detect the expression of TRPV3 in NSCLC tissues and adjacent noncancerous lung tissues. Western blot was used to detect the protein expressions of TRPV3, CaMKII, p-CaMKII, CyclinA, CyclinD, CyclinE1, CDK2, CDK4, and P27. Small interfering RNA was used to deplete TRPV3 expression. A laser scanning confocal microscope was used to measure intracellular calcium concentration ([Ca2+]i). Flow cytometry was used to analyze cell cycle; (3) Results: TRPV3 was overexpressed in 65 of 96 (67.7%) human lung cancer cases and correlated with differentiation (p = 0.001) and TNM stage (p = 0.004). Importantly, TRPV3 expression was associated with short overall survival. In addition, blocking or knockdown of TRPV3 could inhibit lung cancer cell proliferation. Moreover, TRPV3 inhibition could decrease [Ca2+]i of lung cancer cells and arrest cell cycle at the G1/S boundary. Further results revealed that TRPV3 inhibition decreased expressions of p-CaMKII, CyclinA, CyclinD1, CyclinE, and increased P27 level; (4) Conclusions: Our findings demonstrate that TRPV3 was overexpressed in NSCLC and correlated with lung cancer progression. TRPV3 activation could promote proliferation of lung cancer cells. TRPV3 might serve as a potential companion drug target in NSCLC. PMID:27023518

  12. TRIM25 blockade by RNA interference inhibited migration and invasion of gastric cancer cells through TGF-β signaling.

    PubMed

    Zhu, Zhenya; Wang, Yong; Zhang, Chunhui; Yu, Shiyong; Zhu, Qi; Hou, Kun; Yan, Bo

    2016-01-12

    Tripartite Motif Containing 25 (TRIM25), a member of TRIM proteins, has been found abnormally expressed in cancers of female reproductive system. Here, TRIM25 was conspicuously expressed in human gastric cancer (GC) tissues in which its higher expression generally correlated with the poor prognosis of patients. Small interfering RNA (siRNA)-mediated knockdown of TRIM25 expression in MGC-803 and AGS cells had no effects on cell proliferation, whereas reduced cell migration and invasion. Gene set enrichment analysis on The Cancer Genome Atlas stomach adenocarcinoma (STAD) dataset revealed that several signaling pathways, including the migration, E-cadherin and transforming growth factor-β (TGF-β) pathways, were enriched in TRIM25 higher expression patients. Moreover, ectopic expression of TRIM25 in a GC cell line with lower expression of TRIM25 significantly promoted the migration and invasion. Further experiments with TGF-β inhibitor suggested that TRIM25 may exert its function through TGF-β pathway. In summary, our results indicate that TRIM25 acts as an oncogene in GC and thus presents a novel target for the detection and treatment of GC.

  13. TRIM25 blockade by RNA interference inhibited migration and invasion of gastric cancer cells through TGF-β signaling

    PubMed Central

    Zhu, Zhenya; Wang, Yong; Zhang, Chunhui; Yu, Shiyong; Zhu, Qi; Hou, Kun; Yan, Bo

    2016-01-01

    Tripartite Motif Containing 25 (TRIM25), a member of TRIM proteins, has been found abnormally expressed in cancers of female reproductive system. Here, TRIM25 was conspicuously expressed in human gastric cancer (GC) tissues in which its higher expression generally correlated with the poor prognosis of patients. Small interfering RNA (siRNA)-mediated knockdown of TRIM25 expression in MGC-803 and AGS cells had no effects on cell proliferation, whereas reduced cell migration and invasion. Gene set enrichment analysis on The Cancer Genome Atlas stomach adenocarcinoma (STAD) dataset revealed that several signaling pathways, including the migration, E-cadherin and transforming growth factor-β (TGF-β) pathways, were enriched in TRIM25 higher expression patients. Moreover, ectopic expression of TRIM25 in a GC cell line with lower expression of TRIM25 significantly promoted the migration and invasion. Further experiments with TGF-β inhibitor suggested that TRIM25 may exert its function through TGF-β pathway. In summary, our results indicate that TRIM25 acts as an oncogene in GC and thus presents a novel target for the detection and treatment of GC. PMID:26754079

  14. Exploring the trans-acting short interfering RNAs (ta-siRNAs) technology for virus control in plants

    USDA-ARS?s Scientific Manuscript database

    Small ribonucleic acid (RNAs) (~20-24nt) processed from double-stranded RNA in plants can trigger degradation of the target mRNAs in cytoplasm or de novo DNA methylation in nucleus leading to gene silencing. Trans-acting short-interfering RNAs (ta-siRNAs) have been shown to enhance the target mRNA d...

  15. Optimizations for optical velocity measurements in narrow gaps

    NASA Astrophysics Data System (ADS)

    Schlüßler, Raimund; Blechschmidt, Christian; Czarske, Jürgen; Fischer, Andreas

    2013-09-01

    Measuring the flow velocity in small gaps or near a surface with a nonintrusive optical measurement technique is a challenging measurement task, as disturbing light reflections from the surface appear. However, these measurements are important, e.g., in order to understand and to design the leakage flow in the tip gap between the rotor blade end face and the housing of a turbomachine. Hence, methods to reduce the interfering light power and to correct measurement errors caused by it need to be developed and verified. Different alternatives of minimizing the interfering light power for optical flow measurements in small gaps are presented. By optimizing the beam shape of the applied illumination beam using a numerical diffraction simulation, the interfering light power is reduced by up to a factor of 100. In combination with a decrease of the reflection coefficient of the rotor blade surface, an additional reduction of the interfering light power below the used scattered light power is possible. Furthermore, a correction algorithm to decrease the measurement uncertainty of disturbed measurements is derived. These improvements enable optical three-dimensional three-component flow velocity measurements in submillimeter gaps or near a surface.

  16. Cell-penetrating peptide for enhanced delivery of nucleic acids and drugs to ocular tissues including retina and cornea.

    PubMed

    Johnson, Leslie N; Cashman, Siobhan M; Kumar-Singh, Rajendra

    2008-01-01

    As in other organ systems, gene and drug delivery to ocular tissues such as the retina and cornea is hampered by inefficient penetration of therapeutic molecules across the plasma membrane. We describe the use of a novel peptide for ocular delivery (POD) with protein transduction properties, for delivery of small and large molecules across the plasma membrane. POD enters cells within 5 minutes in a temperature dependent manner. POD can compact and deliver plasmid DNA, achieving transgene expression in >50% of human embryonic retinoblasts. Delivery of small interfering RNA (siRNA) duplexes to cells using POD, allowed for silencing of transgene expression by >50%. POD could also be used to deliver quantum dots in vitro and in vivo. Upon ocular delivery, POD rapidly entered neural retina and localized to retinal pigment epithelium (RPE), photoreceptor, and ganglion cells. Additionally, POD was able to enter corneal epithelium, sclera, choroid, and the dura of the optic nerve via topical application. POD also functions as a bacteriostatic, a useful property for a carrier of molecules to post mitotic neural ocular tissues.

  17. Cadherin-11 modulates cell morphology and collagen synthesis in periodontal ligament cells under mechanical stress.

    PubMed

    Feng, Lishu; Zhang, Yimei; Kou, Xiaoxing; Yang, Ruili; Liu, Dawei; Wang, Xuedong; Song, Yang; Cao, Haifeng; He, Danqing; Gan, Yehua; Zhou, Yanheng

    2017-03-01

    To examine the role of cadherin-11, an integral membrane adhesion molecule, in periodontal ligament cells (PDLCs) under mechanical stimulation. Human PDLCs were cultured and subjected to mechanical stress. Cadherin-11 expression and cell morphology of PDLCs were investigated via immunofluorescence staining. The mRNA and protein expressions of cadherin-11 and type I collagen (Col-I) of PDLCs were evaluated by quantitative real-time polymerase chain reaction and Western blot, respectively. Small interfering RNA was used to knock down cadherin-11 expression in PDLCs. The collagen matrix of PDLCs was examined using toluidine blue staining. Cadherin-11 was expressed in PDLCs. Mechanical stress suppressed cadherin-11 expression in PDLCs with prolonged force treatment time and increased force intensity, accompanied by suppressed β-catenin expression. Simultaneously, mechanical stress altered cell morphology and repressed Col-I expression in a time- and dose-dependent manner in PDLCs. Moreover, knockdown of cadherin-11 with suppressed β-catenin expression resulted in altered PDLC morphology and repressed collagen expression, which were consistent with the changes observed under mechanical stress. Results of this study suggest that cadherin-11 is expressed in PDLCs and modulates PDLC morphology and collagen synthesis in response to mechanical stress, which may play an important role in the homeostasis and remodeling of the PDL under mechanical stimulation.

  18. Interactions between insulin-like growth factor-I, estrogen receptor-α (ERα) and ERβ in regulating growth/apoptosis of MCF-7 human breast cancer cells

    PubMed Central

    Mendoza, Rhone A.; Enriquez, Marlene I; Mejia, Sylvia M; Moody, Emily E; Thordarson, Gudmundur

    2011-01-01

    Understanding of the interactions between estradiol (E2) and insulin-like growth factor-I (IGF-I) is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating non-interfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human growth hormone plus epidermal growth factor, but E2 did not cause increase in the number of the IGF-IR.low cells compared to controls. Proliferation rate of IGF-IR.low cells was only reduced in response to E2 compared to controls, whereas their basal and hormone stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E2, without affecting control cells. Further, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. Summary, suppressing the IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate. PMID:20974640

  19. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems

    PubMed Central

    Caplen, Natasha J.; Parrish, Susan; Imani, Farhad; Fire, Andrew; Morgan, Richard A.

    2001-01-01

    Short interfering RNAs (siRNAs) are double-stranded RNAs of ≈21–25 nucleotides that have been shown to function as key intermediaries in triggering sequence-specific RNA degradation during posttranscriptional gene silencing in plants and RNA interference in invertebrates. siRNAs have a characteristic structure, with 5′-phosphate/3′-hydroxyl ends and a 2-base 3′ overhang on each strand of the duplex. In this study, we present data that synthetic siRNAs can induce gene-specific inhibition of expression in Caenorhabditis elegans and in cell lines from humans and mice. In each case, the interference by siRNAs was superior to the inhibition of gene expression mediated by single-stranded antisense oligonucleotides. The siRNAs seem to avoid the well documented nonspecific effects triggered by longer double-stranded RNAs in mammalian cells. These observations may open a path toward the use of siRNAs as a reverse genetic and therapeutic tool in mammalian cells. PMID:11481446

  20. Upregulation of survivin by leptin/STAT3 signaling in MCF-7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Haiping; Tianjin Medical University Cancer Hospital, Tianjin; Yu Jinming

    2008-03-28

    Leptin and its receptors are overexpressed in breast cancer tissues and correlate with poor prognosis. Survivin, a member of the inhibitor of apoptosis protein (IAP) gene family, is generally upregulated in tumor tissues and prevents tumor cells from apoptosis. Here we showed that leptin upregulated survivin mRNA and protein expression in MCF-7 breast cancer cells. Meanwhile, leptin suppressed docetaxel-induced apoptosis by inhibiting caspase activity. Knockdown of signal transducer and activator transcription 3 (STAT3) expression by small interfering RNA (siRNA) blocked leptin-induced upregulation of survivin. TransAM ELISA showed that leptin increased nuclear translocation of active STAT3. In addition, chromatin immunoprecipitation (ChIP)more » assay detected an enhanced binding of STAT3 to survivin promoter in MCF-7 cells after treatment by leptin. Further studies showed that leptin enhanced the transcriptional activity of survivin promoter. Collectively, our findings identify leptin/STAT3 signaling as a novel pathway for survivin expression in breast cancer cells.« less

  1. The N-Methyl-D-Aspartate Receptor in Heart Development: A Gene Knockdown Model Using siRNA

    PubMed Central

    Lie, Octavian V.; Bennett, Gregory D.; Rosenquist, Thomas H

    2009-01-01

    Antagonists of the N-methyl-D-aspartate receptor (NMDAR) may disrupt the development of the cardiac neural crest (CNC) and contribute to conotruncal heart defects. To test this interaction, a loss-of-function model was generated using small interfering RNAs (siRNA) directed against the critical NR1-subunit of this receptor in avian embryos. The coding sequence of the chicken NR1-gene and predicted protein sequences were characterized and found to be homologous with other vertebrate species. Analysis of its spatiotemporal expression demonstrated its expression within the neural tube at pre-migratory CNC sites. siRNA targeted to the NR1-mRNA in pre-migratory CNC lead to a significant decrease in NR1 protein expression. However, embryo survival and heart development were not adversely affected. These results indicate that the CNC may function normally in the absence of functional NMDAR, and that NMDAR antagonists may have a complex impact upon the CNC that transcends impairment of a single receptor type. PMID:19737608

  2. si-RNA-mediated knockdown of PDLIM5 suppresses gastric cancer cell proliferation in vitro.

    PubMed

    Li, Yanliang; Gao, Yongsheng; Xu, Yue; Sun, Xianjun; Song, Xilin; Ma, Heng; Yang, Mingshan

    2015-04-01

    Gastric cancer is the second most prominent cause of cancer mortality in the world. This study was designed to identify the possible use of si-RNA-mediated PDLIM5 gene silencing as a therapeutic tool for gastric cancer. Expression levels of PDLIM5 were detected in several gastric cancer cell lines using Western blot and qRT-PCR. We found PDLIM5 is highly expressed in all cultured gastric cancer cell lines. Small interfering RNA (si-RNA) was then employed to knock down PDLIM5 expression in MGC80-3 gastric cancer cells. Knockdown of PDLIM5 significantly inhibited cell proliferation and colony formation. Moreover, the absence of PDLIM5 in MGC80-3 cells led to S phase cell cycle arrest and apoptosis. This study highlights the critical role of PDLIM5 in gastric cancer cell growth and suggests that si-RNA-mediated silencing of PDLIM5 might serve as a potential therapeutic approach for the treatment of gastric cancer. © 2014 John Wiley & Sons A/S.

  3. Small interfering RNA-mediated suppression of serum response factor, E2-promotor binding factor and survivin in non-small cell lung cancer cell lines by non-viral transfection.

    PubMed

    Walker, Tobias; Nolte, Andrea; Steger, Volker; Makowiecki, Christina; Mustafi, Migdat; Friedel, Godehard; Schlensak, Christian; Wendel, Hans-Peter

    2013-03-01

    Serum response factor (SRF), E2F1 and survivin are well-known factors involved in a multitude of cancer-related regulation processes. However, to date, no suitable means has been found to apply their potential in the therapy of non-small cell lung cancer (NSCLC). This study deals with questions of small interfering ribonucleic acid (siRNA) transfection efficiency by a non-viral transfection of NSCLC cell-lines and the power of siRNA to transiently influence cell division by specific silencing. Different NSCLC cell lines were cultured under standard conditions and transfected, with specific siRNA targeting SRF, E2F1 and survivin in a non-viral manner. Cells treated with non-specific siRNA (SCR-siRNA) served as controls. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed for messenger RNA (mRNA) expression levels. Additionally, transfection efficiency was evaluated by flow cytometry. The analysis of cell proliferation was determined with a CASY cell counter 3 days after transfection with SRF or SCR-siRNA. Transfection of the NSCLC cell lines with specific siRNAs against SRF, E2F1 and survivin resulted in a very considerable reduction of the intracellular mRNA concentration. CASY confirmation of cell viability demonstrated an excellent survival of the cell lines treated with non-specific siRNA, in contrast to with application of specific siRNA. This study reports a reliable transfectability of NSCLC-cell lines by siRNA, initially in a non-viral manner, and a reproducible knockdown of the focussed targets, consequently leading to the death of the tumour cells. This constitutes a strong candidate for a new assessment strategy in the therapy of non-small cell lung cancer.

  4. Expression of Genomic Functional Estrogen Receptor 1 in Mouse Sertoli Cells

    PubMed Central

    Lin, Jing; Zhu, Jia; Li, Xian; Li, Shengqiang; Lan, Zijian; Ko, Jay

    2014-01-01

    There is no consensus whether Sertoli cells express estrogen receptor 1 (Esr1). Reverse transcription-polymerase chain reaction, Western blot, and immunofluorescence demonstrated that mouse Sertoli cell lines, TM4, MSC-1, and 15P-1, and purified primary mouse Sertoli cells (PSCs) contained Esr1 messenger RNA and proteins. Incubation of Sertoli cells with 17β-estradiol (E2) or ESR1 agonist stimulated the expression of an estrogen responsive gene Greb1, which was prevented by ESR inhibitor or ESR1 antagonist. Overexpression of Esr1 in MSC-1 enhanced E2-induced Greb1 expression, while knockdown of Esr1 by small interfering RNA in TM4 attenuated the response. Furthermore, E2-induced Greb1 expression was abolished in the PSCs isolated from Amh-Cre/Esr1-floxed mice in which Esr1 in Sertoli cells were selectively deleted. Chromatin immunoprecipitation assays indicated that E2-induced Greb1 expression in Sertoli cells was mediated by binding of ESR1 to estrogen responsive elements. In summary, ligand-dependent nuclear ESR1 was present in mouse Sertoli cells and mediates a classical genomic action of estrogens. PMID:24615934

  5. A small RNA activates CFA synthase by isoform-specific mRNA stabilization

    PubMed Central

    Fröhlich, Kathrin Sophie; Papenfort, Kai; Fekete, Agnes; Vogel, Jörg

    2013-01-01

    Small RNAs use a diversity of well-characterized mechanisms to repress mRNAs, but how they activate gene expression at the mRNA level remains not well understood. The predominant activation mechanism of Hfq-associated small RNAs has been translational control whereby base pairing with the target prevents the formation of an intrinsic inhibitory structure in the mRNA and promotes translation initiation. Here, we report a translation-independent mechanism whereby the small RNA RydC selectively activates the longer of two isoforms of cfa mRNA (encoding cyclopropane fatty acid synthase) in Salmonella enterica. Target activation is achieved through seed pairing of the pseudoknot-exposed, conserved 5′ end of RydC to an upstream region of the cfa mRNA. The seed pairing stabilizes the messenger, likely by interfering directly with RNase E-mediated decay in the 5′ untranslated region. Intriguingly, this mechanism is generic such that the activation is equally achieved by seed pairing of unrelated small RNAs, suggesting that this mechanism may be utilized in the design of RNA-controlled synthetic circuits. Physiologically, RydC is the first small RNA known to regulate membrane stability. PMID:24141880

  6. A small RNA activates CFA synthase by isoform-specific mRNA stabilization.

    PubMed

    Fröhlich, Kathrin Sophie; Papenfort, Kai; Fekete, Agnes; Vogel, Jörg

    2013-11-13

    Small RNAs use a diversity of well-characterized mechanisms to repress mRNAs, but how they activate gene expression at the mRNA level remains not well understood. The predominant activation mechanism of Hfq-associated small RNAs has been translational control whereby base pairing with the target prevents the formation of an intrinsic inhibitory structure in the mRNA and promotes translation initiation. Here, we report a translation-independent mechanism whereby the small RNA RydC selectively activates the longer of two isoforms of cfa mRNA (encoding cyclopropane fatty acid synthase) in Salmonella enterica. Target activation is achieved through seed pairing of the pseudoknot-exposed, conserved 5' end of RydC to an upstream region of the cfa mRNA. The seed pairing stabilizes the messenger, likely by interfering directly with RNase E-mediated decay in the 5' untranslated region. Intriguingly, this mechanism is generic such that the activation is equally achieved by seed pairing of unrelated small RNAs, suggesting that this mechanism may be utilized in the design of RNA-controlled synthetic circuits. Physiologically, RydC is the first small RNA known to regulate membrane stability.

  7. Astaxanthin enhances pemetrexed-induced cytotoxicity by downregulation of thymidylate synthase expression in human lung cancer cells.

    PubMed

    Liao, Kai-Sheng; Wei, Chia-Li; Chen, Jyh-Cheng; Zheng, Hao-Yu; Chen, Wen-Ching; Wu, Chia-Hung; Wang, Tai-Jing; Peng, Yi-Shuan; Chang, Po-Yuan; Lin, Yun-Wei

    2016-11-01

    Pemetrexed, a multitargeted antifolate agent, has demonstrated clinical activity in non-small cell lung cancer (NSCLC) cells. Increased expression of thymidylate synthase (TS) is thought to be associated with resistance to pemetrexed. Astaxanthin exhibits a wide range of beneficial effects including anti-cancer and anti-inflammatory properties. In this study, we showed that down-regulating of TS expression in two NSCLC cell lines, human lung adenocarcinoma H1650 and squamous cell carcinoma H1703 cells, with astaxanthin were associated with decreased MKK1/2-ERK1/2 activity. Enforced expression of constitutively active MKK1 (MKK1-CA) vector significantly rescued the decreased TS mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with a MKK1/2 inhibitor (U0126 or PD98059) further decreased the TS expression in astaxanthin-exposed NSCLC cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting ERK1/2 activity enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Combination of pemetrexed and astaxanthin resulted in synergistic enhancing cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced activation of phospho-MKK1/2, phopho-ERK1/2, and TS expression. Overexpression of MKK1/2-CA reversed the astaxanthin and pemetrexed-induced synergistic cytotoxicity. Our findings suggested that the down-regulation of MKK1/2-ERK1/2-mediated TS expression by astaxanthin is an important regulator of enhancing the pemetrexed-induced cytotoxicity in NSCLC cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Ranolazine inhibits NaV1.5-mediated breast cancer cell invasiveness and lung colonization.

    PubMed

    Driffort, Virginie; Gillet, Ludovic; Bon, Emeline; Marionneau-Lambot, Séverine; Oullier, Thibauld; Joulin, Virginie; Collin, Christine; Pagès, Jean-Christophe; Jourdan, Marie-Lise; Chevalier, Stéphan; Bougnoux, Philippe; Le Guennec, Jean-Yves; Besson, Pierre; Roger, Sébastien

    2014-12-11

    Na(V)1.5 voltage-gated sodium channels are abnormally expressed in breast tumours and their expression level is associated with metastatic occurrence and patients' death. In breast cancer cells, Na(V)1.5 activity promotes the proteolytic degradation of the extracellular matrix and enhances cell invasiveness. In this study, we showed that the extinction of Na(V)1.5 expression in human breast cancer cells almost completely abrogated lung colonisation in immunodepressed mice (NMRI nude). Furthermore, we demonstrated that ranolazine (50 μM) inhibited Na(V)1.5 currents in breast cancer cells and reduced Na(V)1.5-related cancer cell invasiveness in vitro. In vivo, the injection of ranolazine (50 mg/kg/day) significantly reduced lung colonisation by Na(V)1.5-expressing human breast cancer cells. Taken together, our results demonstrate the importance of Na(V)1.5 in the metastatic colonisation of organs by breast cancer cells and indicate that small molecules interfering with Na(V) activity, such as ranolazine, may represent powerful pharmacological tools to inhibit metastatic development and improve cancer treatments.

  9. Strand antagonism in RNAi: an explanation of differences in potency between intracellularly expressed siRNA and shRNA

    PubMed Central

    Jin, Xin; Sun, Tingting; Zhao, Chuanke; Zheng, Yongxiang; Zhang, Yufan; Cai, Weijing; He, Qiuchen; Taira, Kaz; Zhang, Lihe; Zhou, Demin

    2012-01-01

    Strategies to regulate gene function frequently use small interfering RNAs (siRNAs) that can be made from their shRNA precursors via Dicer. However, when the duplex components of these siRNA effectors are expressed from their respective coding genes, the RNA interference (RNAi) activity is much reduced. Here, we explored the mechanisms of action of shRNA and siRNA and found the expressed siRNA, in contrast to short hairpin RNA (shRNA), exhibits strong strand antagonism, with the sense RNA negatively and unexpectedly regulating RNAi. Therefore, we altered the relative levels of strands of siRNA duplexes during their expression, increasing the level of the antisense component, reducing the level of the sense component, or both and, in this way we were able to enhance the potency of the siRNA. Such vector-delivered siRNA attacked its target effectively. These findings provide new insight into RNAi and, in particular, they demonstrate that strand antagonism is responsible for making siRNA far less potent than shRNA. PMID:22039150

  10. Tristetraprolin: A novel target of diallyl disulfide that inhibits the progression of breast cancer.

    PubMed

    Xiong, Ting; Liu, Xiao-Wang; Huang, Xue-Long; Xu, Xiong-Feng; Xie, Wei-Quan; Zhang, Su-Jun; Tu, Jian

    2018-05-01

    Diallyl disulfide (DADS), a volatile component of garlic oil, has various biological properties, including antioxidant, antiangiogenic and anticancer effects. The present study aimed to explore novel targets of DADS that may slow or stop the progression of breast cancer. First, xenograft tumor models were created by subcutaneously injecting MCF-7 and MDA-MB-231 breast cancer cells into nude mice. Subsequently, western blot analysis was performed to investigate the expression of tristetraprolin (TTP), urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) in the xenograft tumors, and cell cultures. Tablet cloning, Transwell and wound healing assays revealed that DADS treatment significantly inhibited the proliferation, invasion and migration of breast cancer cells. In addition, DADS treatment led to significant downregulation of uPA and MMP-9 protein expression, but significantly upregulated TTP expression in vivo and in vitro . Knocking down TTP expression using small interfering RNA reversed the aforementioned effects of DADS, which suggests TTP is a key target of DADS in inhibiting the progression of breast cancer.

  11. The therapeutic response of CDDO-Me in the esophageal squamous cell carcinoma (ESCC) cells is mediated by CaMKIIα.

    PubMed

    Wang, Yan-Yang; Zhou, Shun; Zhao, Ren; Hai, Ping; Zhe, Hong

    2016-01-01

    CDDO-Me has exhibited a potent anticancer effect in human esophageal squamous cell carcinoma (ESCC) cells in our previous study, but the molecular interactome remains elusive. We applied the approach of stable-isotope labeling by amino acids in cell culture (SILAC) to assess the proteomic responses of CDDO-Me treatment in human ESCC Ec109 cells. The data were subsequently validated using Western blot assay. The results of our study revealed that CDDO-Me increased the expression level of 543 protein molecules, but decreased the expression level of 709 protein molecules in Ec109 cells. Among these modulated protein molecules, calcium/calmodulin-dependent protein kinase type II subunit α (CaMKIIα) was highly expressed in all tested ESCC cell lines, whereas its expression levels were substantially lower in normal control cell line. Its silencing by small interfering RNA inhibited CDDO-Me induced apoptosis and autophagy in ESCC cells. Collectively, these data demonstrate that the therapeutic response of CDDO-Me in the human ESCC cells is mediated by CaMKIIα.

  12. CaMKII inhibition promotes neuronal apoptosis by transcriptionally upregulating Bim expression.

    PubMed

    Zhao, Yiwei; Zhu, Lin; Yu, Shaojun; Zhu, Jing; Wang, Chong

    2016-09-28

    The effects of Ca/calmodulin-dependent protein kinase II (CaMKII) on neuronal apoptosis are complex and contradictory, and the underlying mechanisms remain unclear. Bcl-2-interacting mediator of cell death (Bim) is an important proapoptotic protein under many physiological and pathophysiological conditions. However, there is no evidence that CaMKII and Bim are mechanistically linked in neuronal apoptosis. In this study, we showed that CaMKII inhibition by the inhibitors KN-62 and myristoylated autocamtide-2-related inhibitory peptide promoted apoptosis in cerebellar granule neurons in a dose-dependent manner. CaMKII inhibition increased Bim protein and messenger RNA levels. The expression of early growth response factor-1, a transcription factor of Bim, was also induced by CaMKII inhibitors. These data suggested that CaMKII repressed the transcriptional expression of Bim. Moreover, knockdown of Bim using small interfering RNAs attenuated the proapoptotic effects of CaMKII inhibition. Taken together, this is the first report to show that CaMKII inhibition transcriptionally upregulates Bim expression to promote neuronal apoptosis, providing new insights into the proapoptotic mechanism of CaMKII inhibition.

  13. The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector.

    PubMed

    Akbari, Omar S; Antoshechkin, Igor; Amrhein, Henry; Williams, Brian; Diloreto, Race; Sandler, Jeremy; Hay, Bruce A

    2013-09-04

    Mosquitoes are vectors of a number of important human and animal diseases. The development of novel vector control strategies requires a thorough understanding of mosquito biology. To facilitate this, we used RNA-seq to identify novel genes and provide the first high-resolution view of the transcriptome throughout development and in response to blood feeding in a mosquito vector of human disease, Aedes aegypti, the primary vector for Dengue and yellow fever. We characterized mRNA expression at 34 distinct time points throughout Aedes development, including adult somatic and germline tissues, by using polyA+ RNA-seq. We identify a total of 14,238 novel new transcribed regions corresponding to 12,597 new loci, as well as many novel transcript isoforms of previously annotated genes. Altogether these results increase the annotated fraction of the transcribed genome into long polyA+ RNAs by more than twofold. We also identified a number of patterns of shared gene expression, as well as genes and/or exons expressed sex-specifically or sex-differentially. Expression profiles of small RNAs in ovaries, early embryos, testes, and adult male and female somatic tissues also were determined, resulting in the identification of 38 new Aedes-specific miRNAs, and ~291,000 small RNA new transcribed regions, many of which are likely to be endogenous small-interfering RNAs and Piwi-interacting RNAs. Genes of potential interest for transgene-based vector control strategies also are highlighted. Our data have been incorporated into a user-friendly genome browser located at www.Aedes.caltech.edu, with relevant links to Vectorbase (www.vectorbase.org).

  14. RANKL-induced DC-STAMP Is Essential for Osteoclastogenesis

    PubMed Central

    Kukita, Toshio; Wada, Naohisa; Kukita, Akiko; Kakimoto, Takashi; Sandra, Ferry; Toh, Kazuko; Nagata, Kengo; Iijima, Tadahiko; Horiuchi, Madoka; Matsusaki, Hiromi; Hieshima, Kunio; Yoshie, Osamu; Nomiyama, Hisayuki

    2004-01-01

    Osteoclasts are bone-resorbing, multinucleated giant cells that are essential for bone remodeling and are formed through cell fusion of mononuclear precursor cells. Although receptor activator of nuclear factor–κB ligand (RANKL) has been demonstrated to be an important osteoclastogenic cytokine, the cell surface molecules involved in osteoclastogenesis are mostly unknown. Here, we report that the seven-transmembrane receptor-like molecule, dendritic cell–specific transmembrane protein (DC-STAMP) is involved in osteoclastogenesis. Expression of DC-STAMP is rapidly induced in osteoclast precursor cells by RANKL and other osteoclastogenic stimulations. Targeted inhibition of DC-STAMP by small interfering RNAs and specific antibody markedly suppressed the formation of multinucleated osteoclast-like cells. Overexpression of DC-STAMP enhanced osteoclastogenesis in the presence of RANKL. Furthermore, DC-STAMP directly induced the expression of the osteoclast marker tartrate-resistant acid phosphatase. These data demonstrate for the first time that DC-STAMP has an essential role in osteoclastogenesis. PMID:15452179

  15. Global effects of the CSR-1 RNA interference pathway on the transcriptional landscape.

    PubMed

    Cecere, Germano; Hoersch, Sebastian; O'Keeffe, Sean; Sachidanandam, Ravi; Grishok, Alla

    2014-04-01

    Argonaute proteins and their small RNA cofactors short interfering RNAs are known to inhibit gene expression at the transcriptional and post-transcriptional levels. In Caenorhabditis elegans, the Argonaute CSR-1 binds thousands of endogenous siRNAs (endo-siRNAs) that are antisense to germline transcripts. However, its role in gene expression regulation remains controversial. Here we used genome-wide profiling of nascent RNA transcripts and found that the CSR-1 RNA interference pathway promoted sense-oriented RNA polymerase II transcription. Moreover, a loss of CSR-1 function resulted in global increase in antisense transcription and ectopic transcription of silent chromatin domains, which led to reduced chromatin incorporation of centromere-specific histone H3. On the basis of these findings, we propose that the CSR-1 pathway helps maintain the directionality of active transcription, thereby propagating the distinction between transcriptionally active and silent genomic regions.

  16. Genetic engineering of human embryonic stem cells with lentiviral vectors.

    PubMed

    Xiong, Chen; Tang, Dong-Qi; Xie, Chang-Qing; Zhang, Li; Xu, Ke-Feng; Thompson, Winston E; Chou, Wayne; Gibbons, Gary H; Chang, Lung-Ji; Yang, Li-Jun; Chen, Yuqing E

    2005-08-01

    Human embryonic stem (hES) cells present a valuable source of cells with a vast therapeutic potential. However, the low efficiency of directed differentiation of hES cells remains a major obstacle in their uses for regenerative medicine. While differentiation may be controlled by the genetic manipulation, effective and efficient gene transfer into hES cells has been an elusive goal. Here, we show stable and efficient genetic manipulations of hES cells using lentiviral vectors. This method resulted in the establishment of stable gene expression without loss of pluripotency in hES cells. In addition, lentiviral vectors were effective in conveying the expression of an U6 promoter-driven small interfering RNA (siRNA), which was effective in silencing its specific target. Taken together, our results suggest that lentiviral gene delivery holds great promise for hES cell research and application.

  17. Novel liposomal combination treatments using dual genes knockdown in oral cancer treatment

    NASA Astrophysics Data System (ADS)

    Wu, Jyun-Sian; Yeh, Chia-Hsien; Huang, Leaf; Hsu, Yih-Chih

    2018-02-01

    Small interfering RNA (siRNA) can be used to treat tumor because it can effectively knockdown target oncoprotein expression and it leads to cancer cell death and apoptosis. Hypoxia-inducible factors-1 (HIF-1) is a transcription factor gene. Its high expression of tumor hypoxia cells, activation of transcription factor HIF-1α and angiogenesis found in most cancerous tissues. HIF-1α protein in cancer cells are critical to cell survival, tumor growth and proliferation. Epidermal growth factor receptor (EGFR) gene is another common head and neck oncogene. The dual self-designed siRNA sequences were encapsulated in the lipid-calcium-phosphate (LCP) and targeted to sigma receptors on the surface of cancer cells via binding to amino ethyl anisamide (AEAA). We used human oral cancer cells to establish the xenograft animal model to study the combination therapy for therapeutic results.

  18. Synthetic RNAs for Gene Regulation: Design Principles and Computational Tools

    PubMed Central

    Laganà, Alessandro; Shasha, Dennis; Croce, Carlo Maria

    2014-01-01

    The use of synthetic non-coding RNAs for post-transcriptional regulation of gene expression has not only become a standard laboratory tool for gene functional studies but it has also opened up new perspectives in the design of new and potentially promising therapeutic strategies. Bioinformatics has provided researchers with a variety of tools for the design, the analysis, and the evaluation of RNAi agents such as small-interfering RNA (siRNA), short-hairpin RNA (shRNA), artificial microRNA (a-miR), and microRNA sponges. More recently, a new system for genome engineering based on the bacterial CRISPR-Cas9 system (Clustered Regularly Interspaced Short Palindromic Repeats), was shown to have the potential to also regulate gene expression at both transcriptional and post-transcriptional level in a more specific way. In this mini review, we present RNAi and CRISPRi design principles and discuss the advantages and limitations of the current design approaches. PMID:25566532

  19. Gene silencing by siRNAs and antisense oligonucleotides in the laboratory and the clinic

    PubMed Central

    Watts, Jonathan K.; Corey, David R.

    2014-01-01

    Synthetic nucleic acids are commonly used laboratory tools for modulating gene expression and have the potential to be widely used in the clinic. Progress towards nucleic acid drugs, however, has been slow and many challenges remain to be overcome before their full impact on patient care can be understood. Antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) are the two most widely used strategies for silencing gene expression. We first describe these two approaches and contrast their relative strengths and weaknesses for laboratory applications. We then review the choices faced during development of clinical candidates and the current state of clinical trials. Attitudes towards clinical development of nucleic acid silencing strategies have repeatedly swung from optimism to depression during the past twenty years. Our goal is to provide the information needed to design robust studies with oligonucleotides, making use of the strengths of each oligonucleotide technology. PMID:22069063

  20. The co-chaperones Fkbp4/5 control Argonaute2 expression and facilitate RISC assembly.

    PubMed

    Martinez, Natalia J; Chang, Hao-Ming; Borrajo, Jacob de Riba; Gregory, Richard I

    2013-11-01

    Argonaute2 (Ago2) protein and associated microRNAs (miRNAs) or small interfering RNAs (siRNAs) form the RNA-induced silencing complex (RISC) for target messenger RNA cleavage and post-transcriptional gene silencing. Although Ago2 is essential for RISC activity, the mechanism of RISC assembly is not well understood, and factors controlling Ago2 protein expression are largely unknown. A role for the Hsc70/Hsp90 chaperone complex in loading small RNA duplexes into the RISC has been demonstrated in cell extracts, and unloaded Ago2 is unstable and degraded by the lysosome in mammalian cells. Here we identify the co-chaperones Fkbp4 and Fkbp5 as Ago2-associated proteins in mouse embryonic stem cells. Pharmacological inhibition of this interaction using FK506 or siRNA-mediated Fkbp4/5 depletion leads to decreased Ago2 protein levels. We find FK506 treatment inhibits, whereas Fkbp4/5 overexpression promotes, miRNA-mediated stabilization of Ago2 expression. Simultaneous treatment with a lysosome inhibitor revealed the accumulation of unloaded Ago2 complexes in FK506-treated cells. We find that, consistent with unloaded miRNAs being unstable, FK506 treatment also affects miRNA abundance, particularly nascent miRNAs. Our results support a role for Fkbp4/5 in RISC assembly.

  1. RNA-targeted therapeutics in cancer clinical trials: Current status and future directions.

    PubMed

    Barata, Pedro; Sood, Anil K; Hong, David S

    2016-11-01

    Recent advances in RNA delivery and target selection provide unprecedented opportunities for cancer treatment, especially for cancers that are particularly hard to treat with existing drugs. Small interfering RNAs, microRNAs, and antisense oligonucleotides are the most widely used strategies for silencing gene expression. In this review, we summarize how these approaches were used to develop drugs targeting RNA in human cells. Then, we review the current state of clinical trials of these agents for different types of cancer and outcomes from published data. Finally, we discuss lessons learned from completed studies and future directions for this class of drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Proprotein convertase subtilisin/kexin type 9: a new target molecule for gene therapy.

    PubMed

    Banaszewska, Anna; Piechota, Michal; Plewa, Robert

    2012-06-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a novel target for controlling plasma levels of low-density lipoprotein cholesterol (LDL-C) and decreasing the risk of cardiovascular diseases. At present it is clear that the major classes of commonly prescribed lipid-lowering medications increase serum PCSK9 levels and fail to protect a significant percentage of patients from cardiovascular events. Therefore development of new LDL-C lowering medications that either do not increase circulating PCSK9 levels or work through inhibition of PCSK9 expression and protease activity is a highly desirable approach to overcome hypercholesterolemia. Since there are several agents which are being evaluated in human preclinical and clinical trials, this review summarizes current therapeutic strategies targeting PCSK9, including specific antibodies, antisense oligonucleotides, small interfering RNAs (siRNAs) and other small-molecule inhibitors.

  3. Current Challenges in Delivery and Cytosolic Translocation of Therapeutic RNAs

    PubMed Central

    Lucchino, Marco

    2018-01-01

    RNA interference (RNAi) is a fundamental cellular process for the posttranscriptional regulation of gene expression. RNAi can exogenously be modulated by small RNA oligonucleotides, such as microRNAs (miRNAs) and small interfering RNAs (siRNAs), or by antisense oligonucleotides. These small oligonucleotides provided the scientific community with powerful and versatile tools to turn off the expression of genes of interest, and hold out the promise of new therapeutic solutions against a wide range of gene-associated pathologies. However, unmodified nucleic acids are highly instable in biological systems, and their weak interaction with plasma proteins confers an unfavorable pharmacokinetics. In this review, we first provide an overview of the most efficient chemical strategies that, over the past 30 years, have been used to significantly improve the therapeutic potential of oligonucleotides. Oligonucleotides targeting and delivery technologies are then presented, including covalent conjugates between oligonucleotides and targeting ligand, and noncovalent association with lipid or polymer nanoparticles. Finally, we specifically focus on the endosomal escape step, which represents a major stumbling block for the effective use of oligonucleotides as therapeutic agents. The need for approaches to quantitatively measure endosomal escape and cytosolic arrival of biomolecules is discussed in the context of the development of efficient oligonucleotide targeting and delivery vectors. PMID:29883296

  4. Galactosylated magnetic nanovectors for regulation of lipid metabolism based on biomarker-specific RNAi and MR imaging.

    PubMed

    Heo, Dan; Lee, Chanjoo; Ku, Minhee; Haam, Seungjoo; Suh, Jin-Suck; Huh, Yong-Min; Park, Sahng Wook; Yang, Jaemoon

    2015-08-21

    The specific delivery of ribonucleic acid (RNA) interfering molecules to disease-related cells is still a critical blockade for in vivo systemic treatment. Here, this study suggests a robust delivery carrier for targeted delivery of RNA-interfering molecules using galactosylated magnetic nanovectors (gMNVs). gMNVs are an organic-inorganic polymeric nanomaterial composed of polycationics and magnetic nanocrystal for delivery of RNA-interfering molecules and tracking via magnetic resonance (MR) imaging. In particular, the surface of gMNVs was modified by galactosylgluconic groups for targeted delivering to asialoglycoprotein receptor (ASGPR) of hepatocytes. Moreover, the small interfering RNAs were used to regulate target proteins related with low-density lipoprotein level and in vivo MR imaging was conducted for tracking of nanovectors. The obtained results show that the prepared gMNVs demonstrate potential as a systemic theragnostic nanoplatform for RNA interference and MR imaging.

  5. 11β-HSD1 Modulates LPS-Induced Innate Immune Responses in Adipocytes by Altering Expression of PTEN

    PubMed Central

    Lai, Wenfang; Tian, Xue; Xiang, Qing; Chu, Kedan; Wei, Yicong; Deng, Jingti; Zhang, Shaoping; Brown, John

    2015-01-01

    Inhibition of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) represents a therapeutic target for treating hyperglycemia in type 2 diabetes. Here, we investigate the effects of 11β-HSD1 on the innate immune response of adipocytes to produce proinflammatory cytokines. The 11β-HSD1 inhibitor emodin, or 11β-HSD1-targeted small interfering RNA, dose dependently suppressed IL-6, IL-1β, and TNF-α expression in lipopolysaccharide-treated 3T3-L1 adipocytes. Inhibiting 11β-HSD1 also reduced phosphatase and tensin homologue (PTEN) expression, a negative regulator of phosphatidylinositol 3-kinase effects, whereas 1pM cortisone or dexamethasone induced IL-6 and PTEN levels. PTEN-targeted small interfering RNA decreased IL-6, IL-1β, and TNF-α without affecting 11β-HSD1 levels. Correspondingly, emodin increased phosphorylated protein kinase B (p-PKB) (Ser473) to PKB ratio but not p-PKB (Thr308) to PKB ratio. Emodin did not increase the p-PKB (Ser473) to PKB ratio when the rapamycin-insensitive companion of mTOR was depleted, further supporting the involvement of mammalian target of rapamycin complex 2 in PKB phosphorylation. Moreover, emodin suppressed phosphorylated inhibitor of κB α (p-IκBα) to IκBα ratio and reduced nuclear factor κ B subunit p50 in the nuclear fraction. In contrast, 1pM cortisone or dexamethasone decreased p-PKB (Ser473) to PKB ratio, increased p-IκBα to IκBα ratio, and increased nuclear NF-κB subunit p50. Additionally, wortmannin had similar effects on IL-6, p-PKB (Ser473) to PKB ratio, and p-IκBα to IκBα ratio as 1pM cortisone or dexamethasone. Finally, emodin treatment of streptozotocin diabetic rats on a high-fat diet reduced levels of IL-6, PTEN, Cluster of Differentiation 68, and the ratio of p-IκBα to IκBα in visceral fat, indicating that our findings in vitro may also apply to visceral fat in vivo. Together, these results suggest that inhibiting 11β-HSD1 reduces lipopolysaccharide-induced proinflammatory innate immune responses in adipocytes by down-regulating PTEN expression, leading to activation of the PI3K/PKB pathway. PMID:25734515

  6. Kelch-like ECH-associated Protein 1-dependent Nuclear Factor-E2-related Factor 2 Activation in Relation to Antioxidation Induced by Sevoflurane Preconditioning.

    PubMed

    Cai, Min; Tong, Li; Dong, Beibei; Hou, Wugang; Shi, Likai; Dong, Hailong

    2017-03-01

    The authors have reported that antioxidative effects play a crucial role in the volatile anesthetic-induced neuroprotection. Accumulated evidence shows that endogenous antioxidation could be up-regulated by nuclear factor-E2-related factor 2 through multiple pathways. However, whether nuclear factor-E2-related factor 2 activation is modulated by sevoflurane preconditioning and, if so, what is the signaling cascade underlying upstream of this activation are still unknown. Sevoflurane preconditioning in mice was performed with sevoflurane (2.5%) 1 h per day for five consecutive days. Focal cerebral ischemia/reperfusion injury was induced by middle cerebral artery occlusion. Expression of nuclear factor-E2-related factor 2, kelch-like ECH-associated protein 1, manganese superoxide dismutase, thioredoxin-1, and nicotinamide adenine dinucleotide phosphate quinolone oxidoreductase-1 was detected (n = 6). The antioxidant activities and oxidative product expression were also examined. To determine the role of kelch-like ECH-associated protein 1 inhibition-dependent nuclear factor-E2-related factor 2 activation in sevoflurane preconditioning-induced neuroprotection, the kelch-like ECH-associated protein 1-nuclear factor-E2-related factor 2 signal was modulated by nuclear factor-E2-related factor 2 knockout, kelch-like ECH-associated protein 1 overexpression lentivirus, and kelch-like ECH-associated protein 1 deficiency small interfering RNA (n = 8). The infarct volume, neurologic scores, and cellular apoptosis were assessed. Sevoflurane preconditioning elicited neuroprotection and increased nuclear factor-E2-related factor 2 nuclear translocation, which in turn up-regulated endogenous antioxidation and reduced oxidative injury. Sevoflurane preconditioning reduced kelch-like ECH-associated protein 1 expression. Nuclear factor-E2-related factor 2 ablation abolished neuroprotection and reversed sevoflurane preconditioning by mediating the up-regulation of antioxidants. Kelch-like ECH-associated protein 1 overexpression reversed nuclear factor-E2-related factor 2 up-regulation and abolished the neuroprotection induced by sevoflurane preconditioning. Kelch-like ECH-associated protein 1 small interfering RNA administration improved nuclear factor-E2-related factor 2 expression and the outcome of mice subjected to ischemia/reperfusion injury. Kelch-like ECH-associated protein 1 down-regulation-dependent nuclear factor-E2-related factor 2 activation underlies the ability of sevoflurane preconditioning to activate the endogenous antioxidant response, which elicits its neuroprotection.

  7. AI-2 quorum-sensing inhibitors affect the starvation response and reduce virulence in several Vibrio species, most likely by interfering with LuxPQ.

    PubMed

    Brackman, Gilles; Celen, Shari; Baruah, Kartik; Bossier, Peter; Van Calenbergh, Serge; Nelis, Hans J; Coenye, Tom

    2009-12-01

    The increase of disease outbreaks caused by Vibrio species in aquatic organisms as well as in humans, together with the emergence of antibiotic resistance in Vibrio species, has led to a growing interest in alternative disease control measures. Quorum sensing (QS) is a mechanism for regulating microbial gene expression in a cell density-dependent way. While there is good evidence for the involvement of auto-inducer 2 (AI-2)-based interspecies QS in the control of virulence in multiple Vibrio species, only few inhibitors of this system are known. From the screening of a small panel of nucleoside analogues for their ability to disturb AI-2-based QS, an adenosine derivative with a p-methoxyphenylpropionamide moiety at C-3' emerged as a promising hit. Its mechanism of inhibition was elucidated by measuring the effect on bioluminescence in a series of Vibrio harveyi AI-2 QS mutants. Our results indicate that this compound, as well as a truncated analogue lacking the adenine base, block AI-2-based QS without interfering with bacterial growth. The active compounds affected neither the bioluminescence system as such nor the production of AI-2, but most likely interfered with the signal transduction pathway at the level of LuxPQ in V. harveyi. The most active nucleoside analogue (designated LMC-21) was found to reduce the Vibrio species starvation response, to affect biofilm formation in Vibrio anguillarum, Vibrio vulnificus and Vibrio cholerae, to reduce pigment and protease production in V. anguillarum, and to protect gnotobiotic Artemia from V. harveyi-induced mortality.

  8. A Transgenic Transcription Factor (TaDREB3) in Barley Affects the Expression of MicroRNAs and Other Small Non-Coding RNAs

    PubMed Central

    Hackenberg, Michael; Shi, Bu-Jun; Gustafson, Perry; Langridge, Peter

    2012-01-01

    Transcription factors (TFs), microRNAs (miRNAs), small interfering RNAs (siRNAs) and other functional non-coding small RNAs (sRNAs) are important gene regulators. Comparison of sRNA expression profiles between transgenic barley over-expressing a drought tolerant TF (TaDREB3) and non-transgenic control barley revealed many group-specific sRNAs. In addition, 42% of the shared sRNAs were differentially expressed between the two groups (|log2| >1). Furthermore, TaDREB3-derived sRNAs were only detected in transgenic barley despite the existence of homologous genes in non-transgenic barley. These results demonstrate that the TF strongly affects the expression of sRNAs and siRNAs could in turn affect the TF stability. The TF also affects size distribution and abundance of sRNAs including miRNAs. About half of the sRNAs in each group were derived from chloroplast. A sRNA derived from tRNA-His(GUG) encoded by the chloroplast genome is the most abundant sRNA, accounting for 42.2% of the total sRNAs in transgenic barley and 28.9% in non-transgenic barley. This sRNA, which targets a gene (TC245676) involved in biological processes, was only present in barley leaves but not roots. 124 and 136 miRNAs were detected in transgenic and non-transgenic barley, respectively. miR156 was the most abundant miRNA and up-regulated in transgenic barley, while miR168 was the most abundant miRNA and up-regulated in non-transgenic barley. Eight out of 20 predicted novel miRNAs were differentially expressed between the two groups. All the predicted novel miRNA targets were validated using a degradome library. Our data provide an insight into the effect of TF on the expression of sRNAs in barley. PMID:22870277

  9. Euchromatic Transposon Insertions Trigger Production of Novel Pi- and Endo-siRNAs at the Target Sites in the Drosophila Germline

    PubMed Central

    Olovnikov, Ivan; Abramov, Yuri; Kalmykova, Alla

    2014-01-01

    The control of transposable element (TE) activity in germ cells provides genome integrity over generations. A distinct small RNA–mediated pathway utilizing Piwi-interacting RNAs (piRNAs) suppresses TE expression in gonads of metazoans. In the fly, primary piRNAs derive from so-called piRNA clusters, which are enriched in damaged repeated sequences. These piRNAs launch a cycle of TE and piRNA cluster transcript cleavages resulting in the amplification of piRNA and TE silencing. Using genome-wide comparison of TE insertions and ovarian small RNA libraries from two Drosophila strains, we found that individual TEs inserted into euchromatic loci form novel dual-stranded piRNA clusters. Formation of the piRNA-generating loci by active individual TEs provides a more potent silencing response to the TE expansion. Like all piRNA clusters, individual TEs are also capable of triggering the production of endogenous small interfering (endo-si) RNAs. Small RNA production by individual TEs spreads into the flanking genomic regions including coding cellular genes. We show that formation of TE-associated small RNA clusters can down-regulate expression of nearby genes in ovaries. Integration of TEs into the 3′ untranslated region of actively transcribed genes induces piRNA production towards the 3′-end of transcripts, causing the appearance of genic piRNA clusters, a phenomenon that has been reported in different organisms. These data suggest a significant role of TE-associated small RNAs in the evolution of regulatory networks in the germline. PMID:24516406

  10. Silencing heat shock factor 1 by small interfering RNA abrogates heat shock-induced cardioprotection against ischemia-reperfusion injury in mice.

    PubMed

    Yin, Chang; Xi, Lei; Wang, Xiaoyin; Eapen, Mareen; Kukreja, Rakesh C

    2005-10-01

    Induction of heat shock factor 1 (HSF1) is known to associate with cellular response to divergent pathophysiological stresses including whole body hyperthermia (WBH) and ischemia-reperfusion. However, a direct cause-effect relationship between HSF1 activation and cytoprotection induced by myocardial preconditioning has not been conclusively established, mainly due to the limitations of available experiment tools. In the present studies, we used a novel approach to block HSF1 with small interfering RNA (siRNA) technique in vivo. Male adult ICR mice were treated intraperitoneally with amine (vehicle) or siRNA specific to HSF1 (siRNA-HSF1). Three days later, WBH preconditioning protocol (rectal temperature 42 degrees C for 15 min) was applied to these mice under light anesthesia. WBH preconditioning resulted in 2.7-fold and 3.4-fold increase in cardiac HSF1 mRNA and protein expression respectively 2 hours after WBH, which was inhibited in the siRNA-treated mice. The silencing effect of siRNA on HSF1 was associated with complete loss of the infarct- limiting protection by WBH preconditioning after 48 hours. Pretreatment with siRNA-HSF1 had no effect on infarct size in the sham control animals as compared with the amine-treated group. DNA micro-array analysis revealed that siRNA-HSF1 caused a general inhibition on multiple members of HSP family, except Hsp32, Hsp47 and Hsp60. In addition, the silencing effect of siRNA on HSF1 and HSPs gene expression was transient and its inhibitory effect disappeared by 10 days after treatment. siRNA-HSF1 also impaired the thermotolerance of the heat shocked mice as indicated by higher mortality following WBH. For the first time, we have applied siRNA technique in the field of myocardial preconditioning to demonstrate HSF1 activation as an essential step in WBH preconditioning against cardiac ischemia-reperfusion injury.

  11. Molecular-Targeted Immunotherapeutic Strategy for Melanoma via Dual-Targeting Nanoparticles Delivering Small Interfering RNA to Tumor-Associated Macrophages.

    PubMed

    Qian, Yuan; Qiao, Sha; Dai, Yanfeng; Xu, Guoqiang; Dai, Bolei; Lu, Lisen; Yu, Xiang; Luo, Qingming; Zhang, Zhihong

    2017-09-26

    Tumor-associated macrophages (TAMs) are a promising therapeutic target for cancer immunotherapy. Targeted delivery of therapeutic drugs to the tumor-promoting M2-like TAMs is challenging. Here, we developed M2-like TAM dual-targeting nanoparticles (M2NPs), whose structure and function were controlled by α-peptide (a scavenger receptor B type 1 (SR-B1) targeting peptide) linked with M2pep (an M2 macrophage binding peptide). By loading anti-colony stimulating factor-1 receptor (anti-CSF-1R) small interfering RNA (siRNA) on the M2NPs, we developed a molecular-targeted immunotherapeutic approach to specifically block the survival signal of M2-like TAMs and deplete them from melanoma tumors. We confirmed the validity of SR-B1 for M2-like TAM targeting and demonstrated the synergistic effect of the two targeting units (α-peptide and M2pep) in the fusion peptide (α-M2pep). After being administered to tumor-bearing mice, M2NPs had higher affinity to M2-like TAMs than to tissue-resident macrophages in liver, spleen, and lung. Compared with control treatment groups, M2NP-based siRNA delivery resulted in a dramatic elimination of M2-like TAMs (52%), decreased tumor size (87%), and prolonged survival. Additionally, this molecular-targeted strategy inhibited immunosuppressive IL-10 and TGF-β production and increased immunostimulatory cytokines (IL-12 and IFN-γ) expression and CD8 + T cell infiltration (2.9-fold) in the tumor microenvironment. Moreover, the siRNA-carrying M2NPs down-regulated expression of the exhaustion markers (PD-1 and Tim-3) on the infiltrating CD8 + T cells and stimulated their IFN-γ secretion (6.2-fold), indicating the restoration of T cell immune function. Thus, the dual-targeting property of M2NPs combined with RNA interference provides a potential strategy of molecular-targeted cancer immunotherapy for clinical application.

  12. Gemfibrozil, a lipid-lowering drug, upregulates IL-1 receptor antagonist in mouse cortical neurons: implications for neuronal self-defense.

    PubMed

    Corbett, Grant T; Roy, Avik; Pahan, Kalipada

    2012-07-15

    Chronic inflammation is becoming a hallmark of several neurodegenerative disorders and accordingly, IL-1β, a proinflammatory cytokine, is implicated in the pathogenesis of neurodegenerative diseases. Although IL-1β binds to its high-affinity receptor, IL-1R, and upregulates proinflammatory signaling pathways, IL-1R antagonist (IL-1Ra) adheres to the same receptor and inhibits proinflammatory cell signaling. Therefore, upregulation of IL-1Ra is considered important in attenuating inflammation. The present study underlines a novel application of gemfibrozil (gem), a Food and Drug Administration-approved lipid-lowering drug, in increasing the expression of IL-1Ra in primary mouse and human neurons. Gem alone induced an early and pronounced increase in the expression of IL-1Ra in primary mouse cortical neurons. Activation of type IA p110α PI3K and Akt by gem and abrogation of gem-induced upregulation of IL-1Ra by inhibitors of PI3K and Akt indicate a role of the PI3K-Akt pathway in the upregulation of IL-1Ra. Gem also induced the activation of CREB via the PI3K-Akt pathway, and small interfering RNA attenuation of CREB abolished the gem-mediated increase in IL-1Ra. Furthermore, gem was able to protect neurons from IL-1β insult. However, small interfering RNA knockdown of neuronal IL-1Ra abrogated the protective effect of gem against IL-1β, suggesting that this drug increases the defense mechanism of cortical neurons via upregulation of IL-1Ra. Taken together, these results highlight the importance of the PI3K-Akt-CREB pathway in mediating gem-induced upregulation of IL-1Ra in neurons and suggest gem as a possible therapeutic treatment for propagating neuronal self-defense in neuroinflammatory and neurodegenerative disorders.

  13. Intranasally delivered small interfering RNA-mediated suppression of scavenger receptor Mac-1 attenuates microglial phenotype switching and working memory impairment following hypoxia.

    PubMed

    Das, Sudeshna; Mishra, K P; Ganju, Lilly; Singh, S B

    2018-05-05

    Brain, being the highest consumer of oxygen, is prone to increased risk of hypoxia-induced neurological insults. In response to hypoxia, microglia, the major resident immune cells of brain switches to an activated phenotype and promote inflammatory responses leading to tissue damage and loss of cognitive functions including working memory impairment. Till date, no proven clinical therapeutics is available to retard the progression of neurodegenerative memory impairment. In the present study, we investigated the therapeutic potential of intranasal small interfering RNA (siRNA) delivery in a mouse model of hypoxia-induced working memory impairment using microglial receptor, Mac-1 as a target gene. Here, we implicate Mac-1 scavenger receptor in microglial phenotype switching, neurodegeneration in prefrontal cortex, hippocampus and working memory impairment. RNA mediated silencing of Mac-1 in both in vitro and in vivo model showed significant impact of it on hypoxia induced altered expression of Mac-1 endogenous ligand, signaling cascade proteins, transcription factors and NADPH oxidase pathway. Efficient degradation of Mac-1 mRNA suppressed expression of M1 phenotypic markers, inflammatory chemokines, and cytokines, but on the other hand, it upregulated M2 phenotypic markers and anti-inflammatory cytokines. Neuronal viability and synaptic plasticity markers were also modulated significantly by this strategy. Behavioral study revealed significant downregulation in the number of working memory errors at a time-dependent manner after silencing the Mac-1 gene during continuous hypoxic exposure. The novel findings of this study for the very first time, unmasked the role of Mac-1 receptor in neurodegenerative disease progression under hypoxic condition and at the same time indicated the potential therapeutic value of this non-invasive siRNA delivery approach for treating working memory loss. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Inhibition of STAT3 phosphorylation by sulforaphane reduces adhesion molecule expression in vascular endothelial cell.

    PubMed

    Cho, Young S; Kim, Chan H; Ha, Tae S; Ahn, Hee Y

    2015-11-18

    Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) play key roles in the initiation of vascular inflammation. In this study, we explored whether sulforaphane, a dietary phytochemical, can inhibit the expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS), and the mechanisms involved. Sulforaphane prevented the LPS-mediated increase in ICAM-1 and VCAM-1 expression, (P < 0.01) in HUVEC. Sulforaphane also prevented the LPS-mediated increase in the phosphorylation of signal transducer and activator of transcription 3 (STAT3) (P < 0.01). Stattic, a STAT3 inhibitor, reduced the LPS-induced expression of ICAM-1 and VCAM-1, and STAT3 phosphorylation (P < 0.01). STAT3 small interfering RNA treatment reduced the LPS-induced expression of ICAM-1, VCAM-1, and STAT3 (P < 0.01). Sulforaphane reduced LPS-mediated THP-1 monocyte adhesion to HUVEC (P < 0.01). In C57BL/6 mice, injection of LPS increased aortic ICAM-1 and VCAM-1 expression, and this effect was prevented by sulforaphane. These data provide insight into the mechanism through which sulforaphane partly reduces the expression of ICAM-1 and VCAM-1 on the vascular wall by inhibiting STAT3 phosphorylation.

  15. GPNMB promotes proliferation of developing eosinophils.

    PubMed

    Hwang, Sae Mi; Kang, Jin Hyun; Kim, Bo Kyum; Uhm, Tae Gi; Kim, Hye Jeong; Lee, Hyune-Hwan; Binas, Bert; Chung, Il Yup

    2017-08-01

    Glycoprotein non-metastatic melanoma protein B (GPNMB) is a type I transmembrane protein that is expressed in a wide variety of cell types, including haematopoietic lineages. We previously demonstrated that GPNMB is one of the most highly expressed genes at an early and intermediate stage of eosinophil development. We herein examined GPNMB expression and its possible functional effect using cord blood (CB) CD34+ haematopoietic stem cells differentiating toward eosinophils during a 24-day culture period. Western blot and confocal microscopy analyses showed that GPNMB reached its highest levels at day 12 with most GPNMB-positive cells also expressing major basic protein 1 (MBP1), an eosinophil granule protein. GPNMB declined thereafter, but was still present at an appreciable level at day 24, the time when CB eosinophils most abundantly expressed MBP1 and were thus considered fully differentiated. When the developing CB cells were cultured in the presence of a blocking anti-GPNMB antibody, cell proliferation was significantly reduced. In agreement, ectopic expression of GPNMB in heterologous cells resulted in a significant increase in cell proliferation, while small interfering RNA of GPNMB inhibited the GPNMB-mediated proliferation. Thus, GPNMB is expressed in a temporal manner during eosinophil development and delivers a proliferative signal upon activation. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  16. LncRNA FAS-AS1 promotes the degradation of extracellular matrix of cartilage in osteoarthritis.

    PubMed

    Zhu, J-K; He, T-D; Wei, Z-X; Wang, Y-M

    2018-05-01

    To investigate the expression of long non-coding RNA (lncRNA) FAS-AS1 in osteoarthritis cartilage and to explore its effect on articular cartilage cells. A total of 20 tissue samples of primary knee joint osteoarthritis and 20 tissue samples of knee joint cartilage after traumatic amputation were collected. Fluorescence quantitative polymerase chain reaction (PCR) was performed to detect the expression of FAS-AS1, MMP1, MMP13, and COL2A1 in cartilage. FAS-AS1 small interfering RNA (siRNA) was transfected to chondrocytes transiently to observe its effects on proliferation, apoptosis of chondrocytes, and the expressions of MMP1, MMP13, and COL2A1. The expressions of FAS-AS1, MMP1, and MMP13 in osteoarthritis tissues increased significantly, while COL2A1 presented a low expression. Reducing the expression of FAS-AS1 inhibited cell apoptosis and promote cell proliferation. Additionally, in vitro experiments showed that low expression of FAS-AS1 decreased the expressions of MMP1 and MMP13, but increased the expression of COL2A1. The expression of FAS-AS1 was increased in osteoarthritis, and FAS-AS1 could be involved in the development of the disease by regulating the proliferation, apoptosis of chondrocytes and promoting the degradation of extracellular matrix.

  17. Therapeutic opportunities of small interfering RNA.

    PubMed

    Goyal, Bhoomika R; Patel, Mayur M; Soni, Mithil K; Bhadada, Shraddha V

    2009-08-01

    Formation of small interfering RNA (siRNA) occurs in two steps involving binding of the RNA nucleases to a large double-stranded RNA (dsRNA) and its cleavage into fragments called siRNA. In the second step, these siRNAs join a multinuclease complex, which degrades the homologous single-stranded mRNAs. The delivery of siRNA involves viral- and non-viral-mediated delivery systems; the approaches for chemical modifications have also been developed. It has various therapeutic applications for disorders like cardiovascular diseases, central nervous system (CNS) disorders, cancer, human immunodeficiency virus (HIV), hepatic disorders, etc. The present review gives an overview of the applications of siRNA and their potential for treating many hitherto untreatable diseases.

  18. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smialowska, Agata, E-mail: smialowskaa@gmail.com; School of Life Sciences, Södertörn Högskola, Huddinge 141-89; Djupedal, Ingela

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its rolemore » in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe.« less

  19. Evaluation of role of Notch3 signaling pathway in human lung cancer cells.

    PubMed

    Hassan, Wael Abdo; Yoshida, Ryoji; Kudoh, Shinji; Motooka, Yamato; Ito, Takaaki

    2016-05-01

    There is still a debate on the extent to which Notch3 signaling is involved in lung carcinogenesis and whether such function is dependent on cancer type or not. To evaluate Notch3 expression in different types of human lung cancer cells. Notch3 was detected in human lung cancer cell lines and in tissues. Then, small interfering RNA (siRNA) was used to down-regulate the expression of Notch3 in H69AR small cell lung carcinoma (SCLC) cells; two non-small cell lung carcinoma (NSCLC) cells; A549 adenocarcinoma (ADC); and H2170 squamous cell carcinoma (SCC). In addition, Notch3 intracellular domain (N3ICD) plasmid was transfected into H1688 human SCLC cells. We observed the effect of deregulating Notch3 signaling on the following cell properties: Notch-related proteins, cell morphology, adhesion, epithelial-mesenchymal transition (EMT), motility, proliferation and neuroendocrine (NE) features of SCLC. Notch3 is mainly expressed in NSCLC, and the expression of Notch1, Hes1 and Jagged1 is affected by Notch3. Notch3 has opposite functions in SCLC and NSCLC, being a tumor suppressor in the former and tumor promoting in the latter, in the context of cell adhesion, EMT and motility. Regarding cell proliferation, we found that inhibiting Notch3 in NSCLC decreases cell proliferation and induces apoptosis in NSCLC. Notch3 has no effect on cell proliferation or NE features of SCLC. Notch3 signaling in lung carcinoma is dependent on cell type. In SCLC, Notch3 behaves as a tumor suppressor pathway, while in NSCLC it acts as a tumor-promoting pathway.

  20. Silencing of cytosolic NADP+-dependent isocitrate dehydrogenase gene enhances ethanol-induced toxicity in HepG2 cells.

    PubMed

    Yang, Eun Sun; Lee, Su-Min; Park, Jeen-Woo

    2010-07-01

    It has been shown that acute and chronic alcohol administrations increase the production of reactive oxygen species, lower cellular antioxidant levels and enhance oxidative stress in many tissues. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme by supplying NADPH to the cytosol. Upon exposure to ethanol, IDPc was susceptible to the loss of its enzyme activity in HepG2 cells. Transfection of HepG2 cells with an IDPc small interfering RNA noticeably downregulated IDPc and enhanced the cells' vulnerability to ethanol-induced cytotoxicity. Our results suggest that suppressing the expression of IDPc enhances ethanol-induced toxicity in HepG2 cells by further disruption of the cellular redox status.

  1. Conferring virus resistance in tomato by independent RNA silencing of three tomato homologs of Arabidopsis TOM1.

    PubMed

    Ali, Md Emran; Ishii, Yuko; Taniguchi, Jyun-Ichi; Waliullah, Sumyya; Kobayashi, Kappei; Yaeno, Takashi; Yamaoka, Naoto; Nishiguchi, Masamichi

    2018-05-01

    The TOM1/TOM3 genes from Arabidopsis are involved in the replication of tobamoviruses. Tomato homologs of these genes, LeTH1, LeTH2 and LeTH3, are known. In this study, we examined transgenic tomato lines where inverted repeats of either LeTH1, LeTH2 or LeTH3 were introduced by Agrobacterium. Endogenous mRNA expression for each gene was detected in non-transgenic control plants, whereas a very low level of each of the three genes was found in the corresponding line. Small interfering RNA was detected in the transgenic lines. Each silenced line showed similar levels of tobamovirus resistance, indicating that each gene is similarly involved in virus replication.

  2. Functional analysis of the DEPDC1 oncoantigen in malignant glioma and brain tumor initiating cells.

    PubMed

    Kikuchi, Ryogo; Sampetrean, Oltea; Saya, Hideyuki; Yoshida, Kazunari; Toda, Masahiro

    2017-06-01

    DEP domain containing 1 (DEPDC1) is a novel oncoantigen expressed in cancer cells, which presents oncogenic activity and high immunogenicity. Although DEPDC1 has been predicted to be a useful antigen for the development of a cancer vaccine, its pathophysiological roles in glioma have not been investigated. Here, we analyzed the expression and function of DEPDC1 in malignant glioma. DEPDC1 expression in glioma cell lines, glioma tissues, and brain tumor initiating cells (BTICs) was assessed by western blot and quantitative polymerase chain reaction (PCR). The effect of DEPDC1 downregulation on cell growth and nuclear factor kappa B (NFκB) signaling in glioma cells was investigated. Overall survival was assessed in mouse glioma models using human glioma cells and induced mouse brain tumor stem cells (imBTSCs) to determine the effect of DEPDC1 suppression in vivo. DEPDC1 expression was increased in glioma cell lines, tissues, and BTICs. Suppression of endogenous DEPDC1 expression by small interfering RNA (siRNA) inhibited glioma cell viability and induced apoptosis through NFκB signaling. In mouse glioma models using human glioma cells and imBTSCs, downregulation of DEPDC1 expression prolonged overall survival. These results suggest that DEPDC1 represents a target molecule for the treatment of glioma.

  3. Self-Delivering RNAi Targeting PD-1 Improves Tumor-Specific T Cell Functionality for Adoptive Cell Therapy of Malignant Melanoma.

    PubMed

    Ligtenberg, Maarten A; Pico de Coaña, Yago; Shmushkovich, Taisia; Yoshimoto, Yuya; Truxova, Iva; Yang, Yuan; Betancur-Boissel, Monica; Eliseev, Alexey V; Wolfson, Alexey D; Kiessling, Rolf

    2018-06-06

    Adoptive cell therapy (ACT) is becoming a prominent alternative therapeutic treatment for cancer patients relapsing on traditional therapies. In parallel, antibodies targeting immune checkpoint molecules, such as cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4) and cell death protein 1 pathway (PD-1), are rapidly being approved for multiple cancer types, including as first line therapy for PD-L1-expressing non-small-cell lung cancer. The combination of ACT and checkpoint blockade could substantially boost the efficacy of ACT. In this study, we generated a novel self-delivering small interfering RNA (siRNA) (sdRNA) that knocked down PD-1 expression on healthy donor T cells as well as patient-derived tumor-infiltrating lymphocytes (TIL). We have developed an alternative chemical modification of RNA backbone for improved stability and increased efficacy. Our results show that T cells treated with sdRNA specific for PD-1 had increased interferon γ (IFN-γ) secreting capacity and that this modality of gene expression interference could be utilized in our rapid expansion protocol for production of TIL for therapy. TIL expanded in the presence of PD-1-specific sdRNA performed with increased functionality against autologous tumor as compared to control TIL. This method of introducing RNAi into T cells to modify the expression of proteins could easily be adopted into any ACT protocol and will lead to the exploration of new combination therapies. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Progesterone receptor (PR) polyproline domain (PPD) mediates inhibition of epidermal growth factor receptor (EGFR) signaling in non-small cell lung cancer cells.

    PubMed

    Kawprasertsri, Sornsawan; Pietras, Richard J; Marquez-Garban, Diana C; Boonyaratanakornkit, Viroj

    2016-05-01

    Recent evidence has suggested a possible role for progesterone receptor (PR) in the progression of non-small cell lung cancer (NSCLC). However, little is known concerning roles of PR in NSCLC. PR contains a polyproline domain (PPD), which directly binds to the SH3 domain of signaling molecules. Because PPD-SH3 interactions are essential for EGFR signaling, we hypothesized that the presence of PR-PPD interfered with EGFR-mediated signaling and cell proliferation. We examined the role of PR-PPD in cell proliferation and signaling by stably expressing PR-B, or PR-B with disrupting mutations in the PPD (PR-BΔSH3), from a tetracycline-regulated promoter in A549 NSCLC cells. PR-B dose-dependently inhibited cell growth in the absence of ligand, and progestin (R5020) treatment further suppressed the growth. Treatment with RU486 abolished PR-B- and R5020-mediated inhibition of cell proliferation. Expression of PR-BΔSH3 and treatment with R5020 or RU486 had no effect on cell proliferation. Furthermore, PR-B expression but not PR-BΔSH3 expression reduced EGF-induced A549 proliferation and activation of ERK1/2, in the absence of ligand. Taken together, our data demonstrated the significance of PR extranuclear signaling through PPD interactions in EGFR-mediated proliferation and signaling in NSCLC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection.

    PubMed

    Qiao, Yongli; Shi, Jinxia; Zhai, Yi; Hou, Yingnan; Ma, Wenbo

    2015-05-05

    A broad range of parasites rely on the functions of effector proteins to subvert host immune response and facilitate disease development. The notorious Phytophthora pathogens evolved effectors with RNA silencing suppression activity to promote infection in plant hosts. Here we report that the Phytophthora Suppressor of RNA Silencing 1 (PSR1) can bind to an evolutionarily conserved nuclear protein containing the aspartate-glutamate-alanine-histidine-box RNA helicase domain in plants. This protein, designated PSR1-Interacting Protein 1 (PINP1), regulates the accumulation of both microRNAs and endogenous small interfering RNAs in Arabidopsis. A null mutation of PINP1 causes embryonic lethality, and silencing of PINP1 leads to developmental defects and hypersusceptibility to Phytophthora infection. These phenotypes are reminiscent of transgenic plants expressing PSR1, supporting PINP1 as a direct virulence target of PSR1. We further demonstrate that the localization of the Dicer-like 1 protein complex is impaired in the nucleus of PINP1-silenced or PSR1-expressing cells, indicating that PINP1 may facilitate small RNA processing by affecting the assembly of dicing complexes. A similar function of PINP1 homologous genes in development and immunity was also observed in Nicotiana benthamiana. These findings highlight PINP1 as a previously unidentified component of RNA silencing that regulates distinct classes of small RNAs in plants. Importantly, Phytophthora has evolved effectors to target PINP1 in order to promote infection.

  6. Long non‑coding RNA AK001796 contributes to cisplatin resistance of non‑small cell lung cancer.

    PubMed

    Liu, Bin; Pan, Chun-Feng; Ma, Teng; Wang, Jun; Yao, Guo-Liang; Wei, Ke; Chen, Yi-Jiang

    2017-10-01

    Cisplatin (DDP)‑based chemotherapy is the most widely used therapy for non‑small cell lung cancer (NSCLC). However, the existence of chemoresistance has become a major limitation in its efficacy. Long non‑coding RNAs (lncRNAs) have been shown to be involved in chemotherapy drug resistance. The aim of the present study was to investigate the biological role of lncRNA AK001796 in cisplatin‑resistant NSCLC A549/DDP cells. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis was performed to monitor the differences in the expression of AK001796 in cisplatin-resistant (A549/DDP) cells and parental A549 cells. Cellular sensitivity to cisplatin and cell viability were examined using an MTT assay. Cell apoptosis and cell cycle distribution were measured using flow cytometry. The expression levels of cell cycle proteins cyclin C (CCNC), baculoviral IAP repeat containing 5 (BIRC5), cyclin‑dependent kinase 1 (CDK1) and G2 and S phase‑expressed 1 (GTSE1) were assessed using RT‑qPCR and western blot analyses. It was found that the expression of AK001796 was increased in A549/DDP cells, compared with that in A549 cells. The knockdown of AK001796 by small interfering RNA reduced cellular cisplatin resistance and cell viability, and resulted in cell‑cycle arrest, with a marked increase in the proportion of A549/DDP cells in the G0/G1 phase. By contrast, the knockdown of AK001796 increased the number of apoptotic cancer cells during cisplatin treatment. It was also shown that the knockdown of AK001796 positively induced the expression of cell apoptosis‑associated factors, CCNC and BIRC5, and suppressed the expression of cell cycle‑associated factors, CDK1 and GTSE5. Taken together, these findings indicated that lncRNA AK001796 increased the resistance of NSCLC cells to cisplatin through regulating cell apoptosis and cell proliferation, and thus provides an attractive therapeutic target for NSCLC.

  7. Long Non-Coding RNA (LncRNA) HOXA11-AS Promotes Breast Cancer Invasion and Metastasis by Regulating Epithelial-Mesenchymal Transition

    PubMed Central

    Li, Wenlei; Jia, Guotao; Qu, Yanwen; Du, Qian; Liu, Baoguo; Liu, Bin

    2017-01-01

    Background To detect the expression of lncRNA HOXA11-AS and its biological effect in breast cancer. Material/Methods In this study, fluorescent quantitative real-time PCR (qRT-PCR), MTT assay and clone formation assay, flow cytometry, Transwell assay and wound healing assay, immunofluorescence, and Western blot analysis were conducted to detect the expression of lncRNA HOXA11-AS, cell proliferation activity, cell apoptosis rate and cell cycle distribution, the changes of cell invasion and metastasis capacity, and the expressions of molecular markers of epithelial-mesenchymal transition (EMT), respectively. Additionally, a nude mouse metastatic tumor model was established to study the influence of lncRNA HOXA11-AS on invasion and metastasis capacity of breast cancer cells. Results The qRT-PCR experiment results showed that HOXA11-AS expression in breast cancer tissue of 50 patients was relatively higher than that in tissue adjacent to cancer. MTT assay suggested that tumor cell proliferation capacity was suppressed followed by the knockdown of lncRNA HOXA11-AS expression in MDA-MB-231 and MCF-7 cells; flow cytometry results demonstrated that interfering in lncRNA HOXA11-AS could induce tumor cell apoptosis and promote cell cycle progression to be arrested in G1/G0 stage; experiments in vivo/vitro manifested that interfering in lncRNA HOXA11-AS could inhibit tumor cell invasion and migration capacity by affecting the expressions of EMT-related molecular markers (E-cadherin, N-cadherin, Vimentin). Conclusions High expression of lncRNA HOXA11-AS promotes breast cancer invasion and metastasis by affecting EMT, and interfering in lncRAN HOXA11-AS expression provides a theoretical basis and important molecular target for inhibiting the distant metastasis of breast cancer in clinical practice. PMID:28701685

  8. H19 promotes endometrial cancer progression by modulating epithelial-mesenchymal transition

    PubMed Central

    Zhao, Le; Li, Zhen; Chen, Wei; Zhai, Wen; Pan, Jingjing; Pang, Huan; Li, Xu

    2017-01-01

    Endometrial cancer is one of the most common types of gynecological malignancy worldwide. Novel biomarkers and therapeutic targets are imperative for improving patients' survival. Previous studies have suggested the long non-coding RNA H19 as a potential cancer biomarker. To investigate the role of H19 in endometrial cancer, the present study examined the expression pattern of H19 in endometrial cancer tissues by quantitative polymerase chain reaction, and characterized its function in the endometrial cancer cell line via knocking down its expression with small interfering RNAs. It was found that H19 level was significantly higher in tumor tissues than in paratumoral tissues. Knockdown of H19 did not affect the growth rate of HEC-1-B endometrial cancer cells, but significantly suppressed in vitro migration and invasion of HEC-1-B cells. Furthermore, H19 downregulation decreased Snail level and increased E-cadherin expression without affecting vimentin level, indicating partial reversion of epithelial-mesenchymal transition (EMT). The present findings suggested that H19 contributed to the aggressiveness of endometrial cancer by modulating EMT process. PMID:28123568

  9. Knockdown of Zinc Transporter ZIP5 by RNA Interference Inhibits Esophageal Cancer Growth In Vivo.

    PubMed

    Li, Qian; Jin, Jing; Liu, Jianghui; Wang, Liqun; He, Yutong

    2016-01-01

    We recently found that SLC39A5 (ZIP5), a zinc transporter, is overexpressed in esophageal cancer. Downregulation of ZIP5 inhibited the proliferation, migration, and invasion of the esophageal cancer cell line KYSE170 in vitro. In this study, we found that downregulation of SLC39A5 (ZIP5) by interference resulted in a significant reduction in esophageal cancer tumor volume and weight in vivo. COX2 (cyclooxygenase 2) expression was decreased and E-cadherin expression was increased in the KYSE170K xenografts, which was caused by the downregulation of ZIP5. However, we did not find that the downregulation of ZIP5 caused a change in the relative expressions of cyclin D1, VEGF (vascular endothelial growth factor), MMP9 (matrix metalloprotein 9), and Bcl-2 (B-cell lymphoma/leukmia-2) mRNA or an alteration in the average level of zinc in the peripheral blood and xenografts in vivo. Collectively, these findings indicate that knocking down ZIP5 by small interfering RNA (siRNA) might be a novel treatment strategy for esophageal cancer with ZIP5 overexpression.

  10. B-cell acute lymphoblastic leukemia with mature phenotype and MLL rearrangement: report of five new cases and review of the literature.

    PubMed

    Sajaroff, Elisa Olga; Mansini, Adrian; Rubio, Patricia; Alonso, Cristina Noemí; Gallego, Marta S; Coccé, Mariela C; Eandi-Eberle, Silvia; Bernasconi, Andrea Raquel; Ampatzidou, Maria; Paterakis, George; Papadhimitriou, Stefanos I; Petrikkos, Loizos; Papadakis, Vassilios; Polychronopoulou, Sophia; Rossi, Jorge G; Felice, Maria Sara

    2016-10-01

    The association between mature-B phenotype and MLL abnormalities in acute lymphoblastic leukemia (ALL) is a very unusual finding; only 14 pediatric cases have been reported so far. We describe the clinical and biological characteristics and outcome of five pediatric cases of newly diagnosed B lineage ALL with MLL abnormalities and mature immunophenotype based on light chain restriction and surface Ig expression. Blasts showed variable expression of CD10/CD34/TdT. MLL abnormalities with no MYC involvement were detected in all patients by G-banding, FISH, and/or RT-PCR. Three patients were treated according to Interfant protocol, one to ALLIC-09, and one received B-NHL-BFM-2004. All patients achieved complete remission and three of them relapsed. Despite the small cohort size, it could be postulated that B lineage ALL with MLL abnormalities and mature phenotype is a distinct entity that differs both from the typical Pro B ALL observed in infants and mature B-ALL with high MYC expression.

  11. Small Interfering RNA Pathway Modulates Initial Viral Infection in Midgut Epithelium of Insect after Ingestion of Virus.

    PubMed

    Lan, Hanhong; Chen, Hongyan; Liu, Yuyan; Jiang, Chaoyang; Mao, Qianzhuo; Jia, Dongsheng; Chen, Qian; Wei, Taiyun

    2016-01-15

    Numerous viruses are transmitted in a persistent manner by insect vectors. Persistent viruses establish their initial infection in the midgut epithelium, from where they disseminate to the midgut visceral muscles. Although propagation of viruses in insect vectors can be controlled by the small interfering RNA (siRNA) antiviral pathway, whether the siRNA pathway can control viral dissemination from the midgut epithelium is unknown. Infection by a rice virus (Southern rice black streaked dwarf virus [SRBSDV]) of its incompetent vector (the small brown planthopper [SBPH]) is restricted to the midgut epithelium. Here, we show that the siRNA pathway is triggered by SRBSDV infection in continuously cultured cells derived from the SBPH and in the midgut of the intact insect. Knockdown of the expression of the core component Dicer-2 of the siRNA pathway by RNA interference strongly increased the ability of SRBSDV to propagate in continuously cultured SBPH cells and in the midgut epithelium, allowing viral titers in the midgut epithelium to reach the threshold (1.99 × 10(9) copies of the SRBSDV P10 gene/μg of midgut RNA) needed for viral dissemination into the SBPH midgut muscles. Our results thus represent the first elucidation of the threshold for viral dissemination from the insect midgut epithelium. Silencing of Dicer-2 further facilitated the transmission of SRBSDV into rice plants by SBPHs. Taken together, our results reveal the new finding that the siRNA pathway can control the initial infection of the insect midgut epithelium by a virus, which finally affects the competence of the virus's vector. Many viral pathogens that cause significant global health and agricultural problems are transmitted via insect vectors. The first bottleneck in viral infection, the midgut epithelium, is a principal determinant of the ability of an insect species to transmit a virus. Southern rice black streaked dwarf virus (SRBSDV) is restricted exclusively to the midgut epithelium of an incompetent vector, the small brown planthopper (SBPH). Here, we show that silencing of the core component Dicer-2 of the small interfering RNA (siRNA) pathway increases viral titers in the midgut epithelium past the threshold (1.99 × 10(9) copies of the SRBSDV P10 gene/μg of midgut RNA) for viral dissemination into the midgut muscles and then into the salivary glands, allowing the SBPH to become a competent vector of SRBSDV. This result is the first evidence that the siRNA antiviral pathway has a direct role in the control of viral dissemination from the midgut epithelium and that it affects the competence of the virus's vector. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Small Interfering RNA Pathway Modulates Initial Viral Infection in Midgut Epithelium of Insect after Ingestion of Virus

    PubMed Central

    Lan, Hanhong; Chen, Hongyan; Liu, Yuyan; Jiang, Chaoyang; Mao, Qianzhuo; Jia, Dongsheng; Chen, Qian

    2015-01-01

    ABSTRACT Numerous viruses are transmitted in a persistent manner by insect vectors. Persistent viruses establish their initial infection in the midgut epithelium, from where they disseminate to the midgut visceral muscles. Although propagation of viruses in insect vectors can be controlled by the small interfering RNA (siRNA) antiviral pathway, whether the siRNA pathway can control viral dissemination from the midgut epithelium is unknown. Infection by a rice virus (Southern rice black streaked dwarf virus [SRBSDV]) of its incompetent vector (the small brown planthopper [SBPH]) is restricted to the midgut epithelium. Here, we show that the siRNA pathway is triggered by SRBSDV infection in continuously cultured cells derived from the SBPH and in the midgut of the intact insect. Knockdown of the expression of the core component Dicer-2 of the siRNA pathway by RNA interference strongly increased the ability of SRBSDV to propagate in continuously cultured SBPH cells and in the midgut epithelium, allowing viral titers in the midgut epithelium to reach the threshold (1.99 × 109 copies of the SRBSDV P10 gene/μg of midgut RNA) needed for viral dissemination into the SBPH midgut muscles. Our results thus represent the first elucidation of the threshold for viral dissemination from the insect midgut epithelium. Silencing of Dicer-2 further facilitated the transmission of SRBSDV into rice plants by SBPHs. Taken together, our results reveal the new finding that the siRNA pathway can control the initial infection of the insect midgut epithelium by a virus, which finally affects the competence of the virus's vector. IMPORTANCE Many viral pathogens that cause significant global health and agricultural problems are transmitted via insect vectors. The first bottleneck in viral infection, the midgut epithelium, is a principal determinant of the ability of an insect species to transmit a virus. Southern rice black streaked dwarf virus (SRBSDV) is restricted exclusively to the midgut epithelium of an incompetent vector, the small brown planthopper (SBPH). Here, we show that silencing of the core component Dicer-2 of the small interfering RNA (siRNA) pathway increases viral titers in the midgut epithelium past the threshold (1.99 × 109 copies of the SRBSDV P10 gene/μg of midgut RNA) for viral dissemination into the midgut muscles and then into the salivary glands, allowing the SBPH to become a competent vector of SRBSDV. This result is the first evidence that the siRNA antiviral pathway has a direct role in the control of viral dissemination from the midgut epithelium and that it affects the competence of the virus's vector. PMID:26537672

  13. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells.

    PubMed

    Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe

    2015-12-15

    Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC.

  14. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells

    PubMed Central

    Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe

    2015-01-01

    Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC. PMID:26486080

  15. Novel roles of folic acid as redox regulator: Modulation of reactive oxygen species sinker protein expression and maintenance of mitochondrial redox homeostasis on hepatocellular carcinoma.

    PubMed

    Lai, Kun-Goung; Chen, Chi-Fen; Ho, Chun-Te; Liu, Jun-Jen; Liu, Tsan-Zon; Chern, Chi-Liang

    2017-06-01

    We provide herein several lines of evidence to substantiate that folic acid (or folate) is a micronutrient capable of functioning as a novel redox regulator on hepatocellular carcinoma. First, we uncovered that folate deficiency could profoundly downregulate two prominent anti-apoptotic effectors including survivin and glucose-regulated protein-78. Silencing of either survivin or glucose-regulated protein-78 via small interfering RNA interfering technique established that both effectors could serve as reactive oxygen species sinker proteins. Second, folate deficiency-triggered oxidative-nitrosative stress could strongly induce endoplasmic reticulum stress that in turn could provoke cellular glutathione depletion through the modulation of the following two crucial events: (1) folate deficiency could strongly inhibit Bcl-2 expression leading to severe suppression of the mitochondrial glutathione pool and (2) folate deficiency could also profoundly inhibit two key enzymes that governing cellular glutathione redox regulation including γ-glutamylcysteinyl synthetase heavy chain, a catalytic enzyme for glutathione biosynthesis, and mitochondrial isocitrate dehydrogenase 2, an enzyme responsible for providing nicotinamide adenine dinucleotide phosphate necessary for regenerating oxidized glutathione disulfide back to glutathione via mitochondrial glutathione reductase. Collectively, we add to the literature new data to strengthen the notion that folate is an essential micronutrient that confers a novel role to combat reactive oxygen species insults and thus serves as a redox regulator via upregulating reactive oxygen species sinker proteins and averting mitochondrial glutathione depletion through proper maintenance of redox homeostasis via positively regulating glutathione biosynthesis, glutathione transporting system, and mitochondrial glutathione recycling process.

  16. Adaptive antenna arrays for weak interfering signals. [in satellite communication

    NASA Technical Reports Server (NTRS)

    Gupta, I. J.; Ksienski, A. A.

    1986-01-01

    It is shown that conventional adaptive arrays are unable to suppress weak interfering signals. To overcome this problem, the feedback loops controlling the array weights were modified, reducing the noise level by reducing the correlation between the noise components of the two inputs to the loop correlator. Various techniques to decorrelate these noise components are discussed. An expression is derived for the amount of noise decorrelation required to achieve a specified interference suppression. The results are of interest in connection with satellite communications.

  17. Delivery of Small Interfering RNA to Inhibit Vascular Endothelial Growth Factor in Zebrafish Using Natural Brain Endothelia Cell-Secreted Exosome Nanovesicles for the Treatment of Brain Cancer.

    PubMed

    Yang, Tianzhi; Fogarty, Brittany; LaForge, Bret; Aziz, Salma; Pham, Thuy; Lai, Leanne; Bai, Shuhua

    2017-03-01

    Although small interfering RNA (siRNA) holds great therapeutic promise, its delivery to the disease site remains a paramount obstacle. In this study, we tested whether brain endothelial cell-derived exosomes could deliver siRNA across the blood-brain barrier (BBB) in zebrafish. Natural exosomes were isolated from brain endothelial bEND.3 cell culture media and vascular endothelial growth factor (VEGF) siRNA was loaded in exosomes with the assistance of a transfection reagent. While fluorescence-activated cell flow cytometry and immunocytochemistry staining studies indicated that wild-type exosomes significantly increased the uptake of fluorescence-labeled siRNA in the autologous brain endothelial cells, decreased fluorescence intensity was observed in the cells treated with the tetraspanin CD63 antibody-blocked exosome-delivered formulation (p < 0.05). In the transport study, exosomes also enhanced the permeability of rhodamine 123 in a co-cultured monolayer of brain endothelial bEND.3 cell and astrocyte. Inhibition at the expression of VEGF RNA and protein levels was observed in glioblastoma-astrocytoma U-87 MG cells treated with exosome-delivered siRNAs. Imaging results showed that exosome delivered more siRNAs across the BBB in Tg(fli1:GFP) zebrafish. In a xenotransplanted brain tumor model, exosome-delivered VEGF siRNAs decreased the fluorescence intensity of labeled cancer cells in the brain of zebrafish. Brain endothelial cell-derived exosomes could be potentially used as a natural carrier for the brain delivery of exogenous siRNA.

  18. HEAT-INDUCED TAS1 TARGET1 Mediates Thermotolerance via HEAT STRESS TRANSCRIPTION FACTOR A1a–Directed Pathways in Arabidopsis[C][W

    PubMed Central

    Li, Shuxia; Liu, Jinxin; Liu, Zhongyuan; Li, Xiaorong; Wu, Feijie; He, Yuke

    2014-01-01

    Many heat stress transcription factors (Hsfs) and heat shock proteins (Hsps) have been identified to play important roles in the heat tolerance of plants. However, many of the key factors mediating the heat response pathways remain unknown. Here, we report that two genes, which are targets of TAS1 (trans-acting siRNA precursor 1)–derived small interfering RNAs that we named HEAT-INDUCED TAS1 TARGET1 (HTT1) and HTT2, are involved in thermotolerance. Microarray analysis revealed that the HTT1 and HTT2 genes were highly upregulated in Arabidopsis thaliana seedlings in response to heat shock. Overexpression of TAS1a, whose trans-acting small interfering RNAs target the HTT genes, elevated accumulation of TAS1-siRNAs and reduced expression levels of the HTT genes, causing weaker thermotolerance. By contrast, overexpression of HTT1 and HTT2 upregulated several Hsf genes, leading to stronger thermotolerance. In heat-tolerant plants overexpressing HsfA1a, the HTT genes were upregulated, especially at high temperatures. Meanwhile, HsfA1a directly activated HTT1 and HTT2 through binding to their promoters. HTT1 interacted with the heat shock proteins Hsp70-14 and Hsp40 and NUCLEAR FACTOR Y, SUBUNIT C2. Taken together, these results suggest that HTT1 mediates thermotolerance pathways because it is targeted by TAS1a, mainly activated by HsfA1a, and acts as cofactor of Hsp70-14 complexes. PMID:24728648

  19. Role of the Trypanosoma brucei HEN1 Family Methyltransferase in Small Interfering RNA Modification

    PubMed Central

    Shi, Huafang; Barnes, Rebecca L.; Carriero, Nicholas; Atayde, Vanessa D.

    2014-01-01

    Parasitic protozoa of the flagellate order Kinetoplastida represent one of the deepest branches of the eukaryotic tree. Among this group of organisms, the mechanism of RNA interference (RNAi) has been investigated in Trypanosoma brucei and to a lesser degree in Leishmania (Viannia) spp. The pathway is triggered by long double-stranded RNA (dsRNA) and in T. brucei requires a set of five core genes, including a single Argonaute (AGO) protein, T. brucei AGO1 (TbAGO1). The five genes are conserved in Leishmania (Viannia) spp. but are absent in other major kinetoplastid species, such as Trypanosoma cruzi and Leishmania major. In T. brucei small interfering RNAs (siRNAs) are methylated at the 3′ end, whereas Leishmania (Viannia) sp. siRNAs are not. Here we report that T. brucei HEN1, an ortholog of the metazoan HEN1 2′-O-methyltransferases, is required for methylation of siRNAs. Loss of TbHEN1 causes a reduction in the length of siRNAs. The shorter siRNAs in hen1−/− parasites are single stranded and associated with TbAGO1, and a subset carry a nontemplated uridine at the 3′ end. These findings support a model wherein TbHEN1 methylates siRNA 3′ ends after they are loaded into TbAGO1 and this methylation protects siRNAs from uridylation and 3′ trimming. Moreover, expression of TbHEN1 in Leishmania (Viannia) panamensis did not result in siRNA 3′ end methylation, further emphasizing mechanistic differences in the trypanosome and Leishmania RNAi mechanisms. PMID:24186950

  20. Activation of Parathyroid Hormone 2 Receptor Induces Decorin Expression and Promotes Wound Repair

    PubMed Central

    Sato, Emi; Zhang, Ling-juan; Dorschner, Robert A.; Adase, Christopher A.; Choudhury, Biswa P.; Gallo, Richard L.

    2018-01-01

    In this study, we report that TIP39, a parathyroid hormone ligand family member that was recently identified to be expressed in the skin, can induce decorin expression and enhance wound repair. Topical treatment of mice with TIP39 accelerated wound repair, whereas TIP39-deficient mice had delayed repair that was associated with formation of abnormal collagen bundles. To study the potential mechanism responsible for the action of TIP39 in the dermis, fibroblasts were cultured in three-dimensional collagen gels, a process that results in enhanced decorin expression unless activated to differentiate to adipocytes, whereupon these cells reduce expression of several proteoglycans, including decorin. Small interfering RNA-mediated silencing of parathyroid hormone 2 receptor (PTH2R), the receptor for TIP39, suppressed the expression of extracellular matrix-related genes, including decorin, collagens, fibronectin, and matrix metalloproteases. Skin wounds in TIP39−/− mice had decreased decorin expression, and addition of TIP39 to cultured fibroblasts induced decorin and increased phosphorylation and nuclear translocation of CREB. Fibroblasts differentiated to adipocytes and treated with TIP39 also showed increased decorin and production of chondroitin sulfate. Furthermore, the skin of PTH2R−/− mice showed abnormal extracellular matrix structure, decreased decorin expression, and skin hardness. Thus, the TIP39-PTH2R system appears to be a previously unrecognized mechanism for regulation of extracellular matrix formation and wound repair. PMID:28454729

  1. Heme oxygenase-1 is a critical regulator of nitric oxide production in enterohemorrhagic Escherichia coli-infected human enterocytes.

    PubMed

    Vareille, Marjolaine; Rannou, François; Thélier, Natacha; Glasser, Anne-Lise; de Sablet, Thibaut; Martin, Christine; Gobert, Alain P

    2008-04-15

    Enterohemorrhagic Escherichia coli (EHEC) are the causative agent of hemolytic-uremic syndrome. In the first stage of the infection, EHEC interact with human enterocytes to modulate the innate immune response. Inducible NO synthase (iNOS)-derived NO is a critical mediator of the inflammatory response of the infected intestinal mucosa. We therefore aimed to analyze the role of EHEC on iNOS induction in human epithelial cell lines. In this regard, we show that EHEC down-regulate IFN-gamma-induced iNOS mRNA expression and NO production in Hct-8, Caco-2, and T84 cells. This inhibitory effect occurs through the decrease of STAT-1 activation. In parallel, we demonstrate that EHEC stimulate the rapid inducible expression of the gene hmox-1 that encodes for the enzyme heme oxygenase-1 (HO-1). Knock-down of hmox-1 gene expression by small interfering RNA or the blockade of HO-1 activity by zinc protoporphyrin IX abrogated the EHEC-dependent inhibition of STAT-1 activation and iNOS mRNA expression in activated human enterocytes. These results highlight a new strategy elaborated by EHEC to control the host innate immune response.

  2. [RNA interference of HERC4 inhibits proliferation, apoptosis and migration of cervical cancer Hela cells].

    PubMed

    Wei, Min; Zhang, Yan-Ling; Chen, Lan; Cai, Cui-Xia; Wang, Han-Duo

    2016-02-20

    To explore the effects of silencing HERC4 on the proliferation, apoptosis, and migration of cervical cancer cell line Hela and the possible molecular mechanisms. Three HERC4-specific small interfering RNAs (siRNAs) were transfected into Hela cells, and HERC4 expression in the cells was examined with Western blotting. CCK-8 assay, annexin V-FITC/PI assay, and wound healing assay were used to assess the effect of HERC4 silencing on the proliferation, apoptosis and migration ability of Hela cells. The expression levels of cyclin D1 and Bcl-2 in the cells were detected using Western blotting. Transfection of siRNA-3 resulted in significantly decreased HERC4 protein expression (P<0.01). HERC4 silencing by siRNA-3 markedly suppressed the proliferation and migration of Hela cells, increased the apoptosis rate (P<0.01) and reduced the expression levels of cyclin D1 and Bcl-2 (P<0.01). Silencing of HERC4 efficiently inhibits the proliferation, migration, and invasion of Hela cells in vitro, and the underlying mechanisms may involve the down-regulation of cyclin D1 and Bcl-2.

  3. Forkhead box K2 inhibits the proliferation, migration, and invasion of human glioma cells and predicts a favorable prognosis.

    PubMed

    Wang, Bo; Zhang, XueBin; Wang, Wei; Zhu, ZhiZhong; Tang, Fan; Wang, Dong; Liu, Xi; Zhuang, Hao; Yan, XiaoLing

    2018-01-01

    Forkhead box K2 (FOXK2) is a member of the forkhead box family of transcription factors. Recently, researchers discovered that overexpression of FOXK2 inhibits the proliferation and metastasis of breast cancer, non-small cell lung cancer, and colorectal cancer, and is related to the clinical prognosis. However, in hepatocellular carcinoma, FOXK2 results in the opposite phenotypes. Currently, the contribution of FOXK2 to glioma pathogenesis is not clear. We evaluated the expression of FOXK2 in 151 glioma patients using immunohistochemistry assays. The associations among the expression of FOXK2, clinicopathological parameters, and the prognosis of glioma patients were statistically analyzed. We downregulated and upregulated the level of FOXK2 in glioma cells by transfections with small interfering RNA and plasmids. Then, we investigated the effects on tumor cell behavior in vitro by Cell Counting Kit-8 assays, colony-formation assay, transwell assay, and the epithelial-to-mesenchymal transition (EMT) biomarker levels. The clinical data showed that expression of FOXK2 gradually decreased with increasing World Health Organization (WHO) grades and a low level of FOXK2 indicates a poor prognosis. FOXK2 expression is negatively correlated with Ki67 expression and the WHO degree but is not correlated with other clinicopathological parameters, including sex, age, Karnofsky Performance Status, tumor diameter, O -6-methylguanine-DNA methyltransferase, and glutathione S -transferase pi. FOXK2 knockdown enhances glioma cell proliferation, migration, invasion, and EMT process, and, in contrast, FOXK2 overexpression inhibits glioma cell proliferation, migration, invasion, and the EMT process. Expression of FOXK2 gradually decreases with increasing WHO grades. FOXK2 inhibits tumor proliferation, migration, and invasion. FOXK2 is a critical mediator of the EMT process.

  4. Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice

    PubMed Central

    Wei, Liya; Gu, Lianfeng; Song, Xianwei; Cui, Xiekui; Lu, Zhike; Zhou, Ming; Wang, Lulu; Hu, Fengyi; Zhai, Jixian; Meyers, Blake C.; Cao, Xiaofeng

    2014-01-01

    Transposable elements (TEs) and repetitive sequences make up over 35% of the rice (Oryza sativa) genome. The host regulates the activity of different TEs by different epigenetic mechanisms, including DNA methylation, histone H3K9 methylation, and histone H3K4 demethylation. TEs can also affect the expression of host genes. For example, miniature inverted repeat TEs (MITEs), dispersed high copy-number DNA TEs, can influence the expression of nearby genes. In plants, 24-nt small interfering RNAs (siRNAs) are mainly derived from repeats and TEs. However, the extent to which TEs, particularly MITEs associated with 24-nt siRNAs, affect gene expression remains elusive. Here, we show that the rice Dicer-like 3 homolog OsDCL3a is primarily responsible for 24-nt siRNA processing. Impairing OsDCL3a expression by RNA interference caused phenotypes affecting important agricultural traits; these phenotypes include dwarfism, larger flag leaf angle, and fewer secondary branches. We used small RNA deep sequencing to identify 535,054 24-nt siRNA clusters. Of these clusters, ∼82% were OsDCL3a-dependent and showed significant enrichment of MITEs. Reduction of OsDCL3a function reduced the 24-nt siRNAs predominantly from MITEs and elevated expression of nearby genes. OsDCL3a directly targets genes involved in gibberellin and brassinosteroid homeostasis; OsDCL3a deficiency may affect these genes, thus causing the phenotypes of dwarfism and enlarged flag leaf angle. Our work identifies OsDCL3a-dependent 24-nt siRNAs derived from MITEs as broadly functioning regulators for fine-tuning gene expression, which may reflect a conserved epigenetic mechanism in higher plants with genomes rich in dispersed repeats or TEs. PMID:24554078

  5. Overexpression of Peroxiredoxin 6 Protects Neoplastic Cells against Apoptosis in Canine Haemangiosarcoma.

    PubMed

    Anwar, Sh; Yanai, T; Sakai, H

    2016-07-01

    Canine haemangiosarcoma (HSA), like human angiosarcoma, is an uncommon malignant vascular endothelial cell tumour associated with a poor prognosis. The peroxiredoxin (PRDX) family of peroxidases, which comprises six members in mammals (PRDX1-6), might contribute to cancer cell survival in the face of oxidative stress as these proteins exhibit frequent upregulation in cancer cells. In this study, we investigated the expression levels of PRDX6 in spontaneously arising primary canine HSAs by immunohistochemical analysis, identifying marked expression of this protein. Both PRDX6 mRNA and protein were overexpressed in HSA cell lines compared with normal canine endothelial cells, although some variation was observed between the different HSA cell lines. Small interfering RNA-induced downregulation of PRDX6 promoted apoptosis in the HSA cell lines. The observation that PRDX6 suppression increased the cytotoxicity of these cells suggests that PRDX6 might play an important cytoprotective role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Cytosolic NADP(+)-dependent isocitrate dehydrogenase regulates cadmium-induced apoptosis.

    PubMed

    Shin, Seoung Woo; Kil, In Sup; Park, Jeen-Woo

    2010-04-01

    Cadmium ions have a high affinity for thiol groups. Therefore, they may disturb many cellular functions. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme to supply NADPH, a major source of reducing equivalents to the cytosol. Cadmium decreased the activity of IDPc both as a purified enzyme and in cultured cells. In the present study, we demonstrate that the knockdown of IDPc expression in HEK293 cells greatly enhances apoptosis induced by cadmium. Transfection of HEK293 cells with an IDPc small interfering RNA significantly decreased the activity of IDPc and enhanced cellular susceptibility to cadmium-induced apoptosis as indicated by the morphological evidence of apoptosis, DNA fragmentation and condensation, cellular redox status, mitochondria redox status and function, and the modulation of apoptotic marker proteins. Taken together, our results suggest that suppressing the expression of IDPc enhances cadmium-induced apoptosis of HEK293 cells by increasing disruption of the cellular redox status. Copyright 2009 Elsevier Inc. All rights reserved.

  7. PTPL1 and PKCδ contribute to proapoptotic signalling in prostate cancer cells.

    PubMed

    Castilla, C; Chinchón, D; Medina, R; Torrubia, F J; Japón, M A; Sáez, C

    2013-04-04

    PTPL1 is a non-receptor protein tyrosine phosphatase involved in apoptosis regulation, although controversial findings have been reported in different cancer types. We report here a proapoptotic role for PTPL1 in PC3 and LNCaP prostate cancer cells, as its absence induces apoptosis resistance upon treatment with different drugs. In PC3 cells, PTPL1 silencing by small interfering RNA influences the expression levels of Bcl-xL and Mcl-1(S) proteins as well as final events in the apoptotic process such as activation of caspases and caspase-mediated cleavage of proteins like Mcl-1 or poly (ADP-ribose) polymerase. We have identified PKCδ as an intermediary of PTPL1-mediated apoptotic signalling and that phosphorylation status of NF-κB and IκBα is influenced by PTPL1 and PKCδ. Furthermore, the loss of PTPL1 and PKCδ expression in poorly differentiated, more aggressive human prostate cancers also indicate that their absence could be related to apoptosis resistance and tumour progression.

  8. PTPL1 and PKCδ contribute to proapoptotic signalling in prostate cancer cells

    PubMed Central

    Castilla, C; Chinchón, D; Medina, R; Torrubia, F J; Japón, M A; Sáez, C

    2013-01-01

    PTPL1 is a non-receptor protein tyrosine phosphatase involved in apoptosis regulation, although controversial findings have been reported in different cancer types. We report here a proapoptotic role for PTPL1 in PC3 and LNCaP prostate cancer cells, as its absence induces apoptosis resistance upon treatment with different drugs. In PC3 cells, PTPL1 silencing by small interfering RNA influences the expression levels of Bcl-xL and Mcl-1S proteins as well as final events in the apoptotic process such as activation of caspases and caspase-mediated cleavage of proteins like Mcl-1 or poly (ADP-ribose) polymerase. We have identified PKCδ as an intermediary of PTPL1-mediated apoptotic signalling and that phosphorylation status of NF-κB and IκBα is influenced by PTPL1 and PKCδ. Furthermore, the loss of PTPL1 and PKCδ expression in poorly differentiated, more aggressive human prostate cancers also indicate that their absence could be related to apoptosis resistance and tumour progression. PMID:23559010

  9. Effects of thymidine phosphorylase on tumor aggressiveness and 5-fluorouracil sensitivity in cholangiocarcinoma

    PubMed Central

    Thanasai, Jongkonnee; Limpaiboon, Temduang; Jearanaikoon, Patcharee; Sripa, Banchob; Pairojkul, Chawalit; Tantimavanich, Srisurang; Miwa, Masanao

    2010-01-01

    AIM: To evaluate the role of thymidine phosphorylase (TP) in cholangiocarcinoma using small interfering RNA (siRNA). METHODS: A human cholangiocarcinoma-derived cell line KKU-M139, which has a naturally high level of endogenous TP, had TP expression transiently knocked down using siRNA. Cell growth, migration, in vitro angiogenesis, apoptosis, and cytotoxicity were assayed in TP knockdown and wild-type cell lines. RESULTS: TP mRNA and protein expression were decreased by 87.1% ± 0.49% and 72.5% ± 3.2%, respectively, compared with control cells. Inhibition of TP significantly decreased migration of KKU-M139, and suppressed migration and tube formation of human umbilical vein endothelial cells. siRNA also reduced the ability of TP to resist hypoxia-induced apoptosis, while suppression of TP reduced the sensitivity of KKU-M139 to 5-fluorouracil. CONCLUSION: Inhibition of TP may be beneficial in decreasing angiogenesis-dependent growth and migration of cholangiocarcinoma but may diminish the response to 5-fluorouracil chemotherapy. PMID:20355241

  10. Global effects of the CSR-1 RNA interference pathway on transcriptional landscape

    PubMed Central

    Cecere, Germano; Hoersch, Sebastian; O’Keeffe, Sean; Sachidanandam, Ravi; Grishok, Alla

    2014-01-01

    Argonaute proteins and their small RNA co-factors short interfering RNAs (siRNAs) are known to inhibit gene expression at the transcriptional and post-transcriptional levels. In Caenorhabditis elegans, the Argonaute CSR-1 binds thousands of endogenous siRNAs (endo-siRNAs) antisense to germline transcripts and associates with chromatin in a siRNA-dependent manner. However, its role in gene expression regulation remains controversial. Here, we used a genome-wide profiling of nascent RNA transcripts to demonstrate that the CSR-1 RNAi pathway promotes sense-oriented Pol II transcription. Moreover, a loss of CSR-1 function resulted in global increase in antisense transcription and ectopic transcription of silent chromatin domains, which led to reduced chromatin incorporation of centromere-specific histone H3. Based on these findings, we propose that the CSR-1 pathway has a role in maintaining the directionality of active transcription thereby propagating the distinction between transcriptionally active and silent genomic regions. PMID:24681887

  11. Synthetic RNAs for Gene Regulation: Design Principles and Computational Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laganà, Alessandro, E-mail: alessandro.lagana@osumc.edu; Shasha, Dennis; Croce, Carlo Maria

    The use of synthetic non-coding RNAs for post-transcriptional regulation of gene expression has not only become a standard laboratory tool for gene functional studies but it has also opened up new perspectives in the design of new and potentially promising therapeutic strategies. Bioinformatics has provided researchers with a variety of tools for the design, the analysis, and the evaluation of RNAi agents such as small-interfering RNA (siRNA), short-hairpin RNA (shRNA), artificial microRNA (a-miR), and microRNA sponges. More recently, a new system for genome engineering based on the bacterial CRISPR-Cas9 system (Clustered Regularly Interspaced Short Palindromic Repeats), was shown to havemore » the potential to also regulate gene expression at both transcriptional and post-transcriptional level in a more specific way. In this mini review, we present RNAi and CRISPRi design principles and discuss the advantages and limitations of the current design approaches.« less

  12. siRNA-based Analysis of the Abrogation of the Protective Function of Membrane-associated Catalase of Tumor Cells.

    PubMed

    Bauer, Georg

    2017-02-01

    Tumor cells, in contrast to non-malignant cells, show sustained expression of membrane-associated NADPH oxidase-1 and therefore generate extracellular superoxide anions and their dismutation product H 2 O 2 In order to prevent intercellular reactive oxygen species/reactive nitrogen species (ROS/RNS)-dependent apoptosis-inducing signaling, tumor cells need to express membrane-associated catalase that interferes with HOCl and nitric oxide/peroxynitrite signaling. Catalase is attached to tumor cells through the activity of transglutaminase-2 and is prevented from superoxide anion-dependent inhibition through coexpression of membrane-associated superoxide dismutase. Therefore, specific inhibition of membrane-associated catalase should reactivate intercellular ROS/RNS-dependent apoptosis-inducing signaling. These processes are analyzed here through small interfering RNA-mediated knockdown of essential signaling compounds. This allows to establish a rather comprehensive picture of intercellular ROS/RNS signaling that may be instrumental for future therapeutic approaches. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. Construction of Hyaluronic Tetrasaccharide Clusters Modified Polyamidoamine siRNA Delivery System.

    PubMed

    Ma, Yingcong; Sha, Meng; Cheng, Shixuan; Yao, Wang; Li, Zhongjun; Qi, Xian-Rong

    2018-06-14

    The CD44 protein, as a predominant receptor for hyaluronan (HA), is highly expressed on the surface of multiple tumor cells. HA, as a targeting molecule for a CD44-contained delivery system, increases intracellular drug concentration in tumor tissue. However, due to the weak binding ability of hyaluronan oligosaccharide to CD44, targeting for tumor drug delivery has been restricted. In this study, we first use a HA tetrasaccharide cluster as the target ligand to enhance the binding ability to CD44. A polyamidoamine (PAMAM) dendrimer was modified by a HA tetrasaccharide cluster as a nonviral vector for small interfering RNA (siRNA) delivery. The dendrimer/siRNA nanocomplexes increased the cellular uptake capacity of siRNA through the CD44 receptor-mediated endocytosis pathway, allowing the siRNA to successfully escape the endosome/lysosome. Compared with the control group, nanocomplexes effectively reduced the expression of GFP protein and mRNA in MDA-MB-231-GFP cells. This delivery system provides a foundation to increase the clinical applications of PAMAM nanomaterials.

  14. A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria.

    PubMed Central

    Diffley, J F; Stillman, B

    1991-01-01

    ABF2 (ARS-binding factor 2), a small, basic DNA-binding protein that binds specifically to the autonomously replicating sequence ARS1, is located primarily in the mitochondria of the yeast Saccharomyces cerevisiae. The abundance of ABF2 and the phenotype of abf2- null mutants argue that this protein plays a key role in the structure, maintenance, and expression of the yeast mitochondrial genome. The predicted amino acid sequence of ABF2 is closely related to the high-mobility group proteins HMG1 and HMG2 from vertebrate cell nuclei and to several other DNA-binding proteins. Additionally, ABF2 and the other HMG-related proteins are related to a globular domain from the heat shock protein hsp70 family. ABF2 interacts with DNA both nonspecifically and in a specific manner within regulatory regions, suggesting a mechanism whereby it may aid in compacting the mitochondrial genome without interfering with expression. Images PMID:1881919

  15. CD4-CCR5 interaction in intracellular compartments contributes to receptor expression at the cell surface

    PubMed Central

    Achour, Lamia; Scott, Mark G.H.; Shirvani, Hamasseh; Thuret, Alain; Bismuth, Georges; Labbé-Jullié, Catherine; Marullo, Stefano

    2009-01-01

    The association of CD4, a glycoprotein involved in T cell development and antigen recognition, and CCR5, a chemotactic G protein-coupled receptor, which regulates trafficking and effector functions of immune cells, forms the main receptor for the human immunodeficiency virus HIV. We observed that the vast majority of CCR5 is maintained within the intracellular compartments of primary T lymphocytes and in a monocytic cell line, contrasting with its relative low density at the cell surface. The CCR5-CD4 association, which occurs in the endoplasmic reticulum, enhanced CCR5 export to the plasma membrane in a concentration–dependent manner, whereas inhibition of endogenous CD4 with small interfering RNAs decreased cell surface expression of endogenous CCR5. This effect was specific for CCR5, as CD4 did not affect cell distribution of CXCR4, the other HIV co-receptor. These results reveal a previously unappreciated role of CD4, which contributes to regulate CCR5 export to the plasma membrane. PMID:19064722

  16. Discovery of Cellular Proteins Required for the Early Steps of HCV Infection Using Integrative Genomics

    PubMed Central

    Yang, Jae-Seong; Kwon, Oh Sung; Kim, Sanguk; Jang, Sung Key

    2013-01-01

    Successful viral infection requires intimate communication between virus and host cell, a process that absolutely requires various host proteins. However, current efforts to discover novel host proteins as therapeutic targets for viral infection are difficult. Here, we developed an integrative-genomics approach to predict human genes involved in the early steps of hepatitis C virus (HCV) infection. By integrating HCV and human protein associations, co-expression data, and tight junction-tetraspanin web specific networks, we identified host proteins required for the early steps in HCV infection. Moreover, we validated the roles of newly identified proteins in HCV infection by knocking down their expression using small interfering RNAs. Specifically, a novel host factor CD63 was shown to directly interact with HCV E2 protein. We further demonstrated that an antibody against CD63 blocked HCV infection, indicating that CD63 may serve as a new therapeutic target for HCV-related diseases. The candidate gene list provides a source for identification of new therapeutic targets. PMID:23593195

  17. NF-κB– and AP-1–Mediated DNA Looping Regulates Osteopontin Transcription in Endotoxin-Stimulated Murine Macrophages

    PubMed Central

    Zhao, Wei; Wang, Lijuan; Zhang, Meng; Wang, Peng; Zhang, Lei; Yuan, Chao; Qi, Jianni; Qiao, Yu; Kuo, Paul C.; Gao, Chengjiang

    2013-01-01

    Osteopontin (OPN) is expressed by various immune cells and modulates both innate and adaptive immune responses. However, the molecular mechanisms that control opn gene expression, especially at the chromatin level, remain largely unknown. We have previously demonstrated many specific cis- and trans-regulatory elements that determine the extent of endotoxin (LPS)-mediated induction of OPN synthesis in murine macrophages. In the present study, we confirm that NF-κB also plays an important role in the setting of LPS-stimulated OPN expression through binding to a distal regulatory element. Importantly, we demonstrate that LPS stimulates chromosomal loops in the OPN promoter between NF-κB binding site and AP-1 binding site using chromosome conformation capture technology. The crucial role of NF-κB and AP-1 in LPS-stimulated DNA looping was confirmed, as small interfering RNA knock-down of NF-κB p65 and AP-1 c-Jun exhibited decreased levels of DNA looping. Furthermore, we demonstrate that p300 can form a complex with NF-κB and AP-1 and is involved in DNA looping and LPS-induced OPN expression. Therefore, we have identified an essential mechanism to remodel the local chromatin structures and spatial conformations to regulate LPS-induced OPN expression. PMID:21257959

  18. A simple and robust vector-based shRNA expression system used for RNA interference.

    PubMed

    Wang, Xue-jun; Li, Ying; Huang, Hai; Zhang, Xiu-juan; Xie, Pei-wen; Hu, Wei; Li, Dan-dan; Wang, Sheng-qi

    2013-01-01

    RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) has become a powerful genetic tool for conducting functional studies. Previously, vector-based shRNA-expression strategies capable of inducing RNAi in viable cells have been developed, however, these vector systems have some disadvantages, either because they were error-prone or cost prohibitive. In this report we described the development of a simple, robust shRNA expression system utilizing 1 long oligonucleotide or 2 short oligonucleotides for half the cost of conventional shRNA construction methods and with a >95% cloning success rate. The shRNA loop sequence and stem structure were also compared and carefully selected for better RNAi efficiency. Furthermore, an easier strategy was developed based on isocaudomers which permit rapid combination of the most efficient promoter-shRNA cassettes. Finally, using this method, the conservative target sites for hepatitis B virus (HBV) knockdown were systemically screened and HBV antigen expression shown to be successfully suppressed in the presence of connected multiple shRNAs both in vitro and in vivo. This novel design describes an inexpensive and effective way to clone and express single or multiple shRNAs from the same vector with the capacity for potent and effective silencing of target genes.

  19. Overexpression of stathmin1 in the diffuse type of gastric cancer and its roles in proliferation and migration of gastric cancer cells.

    PubMed

    Jeon, T-Y; Han, M-E; Lee, Y-W; Lee, Y-S; Kim, G-H; Song, G-A; Hur, G-Y; Kim, J-Y; Kim, H-J; Yoon, S; Baek, S-Y; Kim, B-S; Kim, J-B; Oh, S-O

    2010-02-16

    Stathmin1 is a microtubule-regulating protein that has an important role in the assembly and disassembly of the mitotic spindle. The roles of stathmin1 in carcinogenesis of various cancers, including prostate and breast cancer, have been explored. However, its expression and roles in gastric cancer have not yet been described. Stathmin1 expression in paraffin-embedded tissue sections from 226 patients was analysed by immunohistochemistry. Roles of stathmin1 were studied using a specific small interfering RNA (siRNA). The expression of stathmin1 was positively correlated with lymph node metastasis, TNM stages and vascular invasion, and negatively with recurrence-free survival, in the diffuse type of gastric cancer. The median recurrence-free survival in patients with a negative and positive expression of stathmin1 was 17.0 and 7.0 months, respectively (P=0.009). When the expression of stathmin1 was knocked down using siRNA, the proliferation, migration and invasion of poorly differentiated gastric cancer cells in vitro were significantly inhibited. Moreover, stathmin1 siRNA transfection significantly slowed the growth of xenografts in nude mice. These results suggest that stathmin1 can be a good prognostic factor for recurrence-free survival rate and is a therapeutic target in diffuse-type gastric cancer.

  20. Overexpressed BAG3 is a potential therapeutic target in chronic lymphocytic leukemia.

    PubMed

    Zhu, Huayuan; Wu, Wei; Fu, Yuan; Shen, Wenyi; Miao, Kourong; Hong, Min; Xu, Wei; Young, Ken H; Liu, Peng; Li, Jianyong

    2014-03-01

    Bcl-2-associated athanogene 3 (BAG3), a member of BAG family, is shown to sustain cell survival and underlie resistance to chemotherapy in human neoplastic cells. We aimed to determine the exact role and underlying mechanisms of BAG3 in human chronic lymphocytic leukemia (CLL). One hundred human CLL samples and 20 normal B-cell samples from healthy controls were collected. We measured the BAG3 expression in these cells and explored its relationship with known prognostic factors for CLL. The roles of BAG3 in cell apoptosis and migration were evaluated by small interfering RNA-mediated knockdown of BAG3 in primary CLL cells. We showed that BAG3 expression level was increased in CLL cells compared with normal B cells. Moreover, BAG3 expression was particularly upregulated in CD38 positive, unmutated immunoglobulin heavy-chain patients and those with lymphadenopathy and/or splenomegaly. Importantly, patients with increased BAG3 expression level have poor overall survival in subgroups with positive ZAP-70 or those without any "p53 abnormality". In addition, knocking down of BAG3 expression resulted in increased apoptotic ratio and decreased migration in primary CLL cells. Our data indicate that BAG3 is a marker of poor prognostic in specific subgroups of CLL patients and may be a potential therapeutic target for this disease.

  1. MicroRNA-93 Promotes Epithelial–Mesenchymal Transition of Endometrial Carcinoma Cells

    PubMed Central

    Sun, Kai-Xuan; Xiu, Yin-Ling; Liu, Bo-Liang; Feng, Miao-Xiao; Sang, Xiu-Bo; Zhao, Yang

    2016-01-01

    MicroRNA-93, derived from a paralog (miR-106b-25) of the miR-17-92 cluster, is involved in the tumorigenesis and progression of many cancers such as breast, colorectal, hepatocellular, lung, ovarian, and pancreatic cancer. However, the role of miR-93 in endometrial carcinoma and the potential molecular mechanisms involved remain unknown. Our results showed that miR-93 was overexpressed in endometrial carcinoma tissues than normal endometrial tissues. The endometrial carcinoma cell lines HEC-1B and Ishikawa were transfected with miR-93-5P, after which cell migration and invasion ability and the expression of relevant molecules were detected. MiR-93 overexpression promoted cell migration and invasion, and downregulated E-cadherin expression while increasing N-cadherin expression. Dual-luciferase reporter assay showed that miR-93 may directly bind to the 3′ untranslated region of forkhead box A1 (FOXA1); furthermore, miR-93 overexpression downregulated FOXA1 expression while miR-93 inhibitor transfection upregulated FOXA1 expression at both mRNA and protein level. In addition, transfection with the most effective FOXA1 small interfering RNA promoted both endometrial cancer cell migration and invasion, and downregulated E-cadherin expression while upregulating N-cadherin expression. Therefore, we suggest that miR-93 may promote the process of epithelial–mesenchymal transition in endometrial carcinoma cells by targeting FOXA1. PMID:27829043

  2. High potassium promotes mutual interaction between (pro)renin receptor and the local renin-angiotensin-aldosterone system in rat inner medullary collecting duct cells.

    PubMed

    Xu, Chuanming; Fang, Hui; Zhou, Li; Lu, Aihua; Yang, Tianxin

    2016-10-01

    (Pro)renin receptor (PRR) is predominantly expressed in the collecting duct (CD) with unclear functional implication. It is not known whether CD PRR is regulated by high potassium (HK). Here, we aimed to investigate the effect of HK on PRR expression and its role in regulation of aldosterone synthesis and release in the CD. In primary rat inner medullary CD cells, HK augmented PRR expression and soluble PPR (sPRR) release in a time- and dose-dependent manner, which was attenuated by PRR small interfering RNA (siRNA), eplerenone, and losartan. HK upregulated aldosterone release in parallel with an increase of CYP11B2 (cytochrome P-450, family 11, subfamily B, polypeptide 2) protein expression and upregulation of medium renin activity, both of which were attenuated by a PRR antagonist PRO20, PRR siRNA, eplerenone, and losartan. Similarly, prorenin upregulated aldosterone release and CYP11B2 expression, both of which were attenuated by PRR siRNA. Interestingly, a recombinant sPRR (sPRR-His) also stimulated aldosterone release and CYP11B2 expression. Taken together, we conclude that HK enhances a local renin-angiotensin-aldosterone system (RAAS), leading to increased PRR expression, which in turn amplifies the response of the RAAS, ultimately contributing to heightened aldosterone release.

  3. Involvement of TRPV1 and AQP2 in hypertonic stress by xylitol in odontoblast cells.

    PubMed

    Tokuda, M; Fujisawa, M; Miyashita, K; Kawakami, Y; Morimoto-Yamashita, Y; Torii, M

    2015-02-01

    To examine the responses of mouse odontoblast-lineage cell line (OLC) cultures to xylitol-induced hypertonic stress. OLCs were treated with xylitol, sucrose, sorbitol, mannitol, arabinose and lyxose. Cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay. The expression of transient receptor potential vanilloids (TRPV) 1, 3 and 4 was detected using a reverse transcriptase-polymerase chain reaction (RT-PCR) assay. The expression of aquaporin (AQP) 2 was detected using immunofluorescence and Western blotting analysis. The expression of interleukin-6 (IL-6) under xylitol-induced hypertonic stress was assessed using an enzyme-linked immunosorbent assay (ELISA). Small interfering ribonucleic acid (siRNA) for AQP-2 was used to inhibition assay. Xylitol-induced hypertonic stress did not decrease OLC viability, unlike the other sugars tested. OLCs expressed TRPV1, 3 and 4 as well as AQP2. Xylitol inhibited lipopolysaccharide (LPS)-induced IL-6 expression after 3 h of hypertonic stress. TRPV1 mRNA expression was upregulated by xylitol. Costimulation with HgCl2 (AQP inhibitor) and Ruthenium red (TRPV1 inhibitor) decreased cell viability with xylitol stimulation. OLCs treated with siRNA against TRPV1 exhibited decreased cell viability with xylitol stimulation. OLCs have high-cell viability under xylitol-induced hypertonic stress, which may be associated with TRPV1 and AQP2 expressions.

  4. High potassium promotes mutual interaction between (pro)renin receptor and the local renin-angiotensin-aldosterone system in rat inner medullary collecting duct cells

    PubMed Central

    Xu, Chuanming; Fang, Hui; Zhou, Li; Lu, Aihua

    2016-01-01

    (Pro)renin receptor (PRR) is predominantly expressed in the collecting duct (CD) with unclear functional implication. It is not known whether CD PRR is regulated by high potassium (HK). Here, we aimed to investigate the effect of HK on PRR expression and its role in regulation of aldosterone synthesis and release in the CD. In primary rat inner medullary CD cells, HK augmented PRR expression and soluble PPR (sPRR) release in a time- and dose-dependent manner, which was attenuated by PRR small interfering RNA (siRNA), eplerenone, and losartan. HK upregulated aldosterone release in parallel with an increase of CYP11B2 (cytochrome P-450, family 11, subfamily B, polypeptide 2) protein expression and upregulation of medium renin activity, both of which were attenuated by a PRR antagonist PRO20, PRR siRNA, eplerenone, and losartan. Similarly, prorenin upregulated aldosterone release and CYP11B2 expression, both of which were attenuated by PRR siRNA. Interestingly, a recombinant sPRR (sPRR-His) also stimulated aldosterone release and CYP11B2 expression. Taken together, we conclude that HK enhances a local renin-angiotensin-aldosterone system (RAAS), leading to increased PRR expression, which in turn amplifies the response of the RAAS, ultimately contributing to heightened aldosterone release. PMID:27534754

  5. Targeting Micrornas With Small Molecules: A Novel Approach to Treating Breast Cancer

    DTIC Science & Technology

    2010-10-01

    ribozymes and the DNAzymes, small interfering RNAs and short hairpin RNAs, and anti-miRNA agents such as antisense oligo- nucleotides, locked nucleic...of the antagomir Preclinical studies Ribozymes or DNAzymes A ribozyme , or RNA enzyme, is an RNA molecule that can catalyze a chemical reaction. A

  6. A role for small RNA in regulating innate immunity during plant growth

    PubMed Central

    Deng, Yingtian; Wang, Jubin; Tung, Jeffrey; Liu, Dan; Zhou, Yingjia; He, Shuang; Baker, Barbara

    2018-01-01

    Plant genomes encode large numbers of nucleotide-binding (NB) leucine-rich repeat (LRR) immune receptors (NLR) that mediate effector triggered immunity (ETI) and play key roles in protecting crops from diseases caused by devastating pathogens. Fitness costs are associated with plant NLR genes and regulation of NLR genes by micro(mi)RNAs and phased small interfering RNAs (phasiRNA) is proposed as a mechanism for reducing these fitness costs. However, whether NLR expression and NLR-mediated immunity are regulated during plant growth is unclear. We conducted genome-wide transcriptome analysis and showed that NLR expression gradually increased while expression of their regulatory small RNAs (sRNA) gradually decreased as plants matured, indicating that sRNAs could play a role in regulating NLR expression during plant growth. We further tested the role of miRNA in the growth regulation of NLRs using the tobacco mosaic virus (TMV) resistance gene N, which was targeted by miR6019 and miR6020. We showed that N-mediated resistance to TMV effectively restricted this virus to the infected leaves of 6-week old plants, whereas TMV infection was lethal in 1- and 3-week old seedlings due to virus-induced systemic necrosis. We further found that N transcript levels gradually increased while miR6019 levels gradually decreased during seedling maturation that occurs in the weeks after germination. Analyses of reporter genes in transgenic plants showed that growth regulation of N expression was post-transcriptionally mediated by MIR6019/6020 whereas MIR6019/6020 was regulated at the transcriptional level during plant growth. TMV infection of MIR6019/6020 transgenic plants indicated a key role for miR6019-triggered phasiRNA production for regulation of N-mediated immunity. Together our results demonstrate a mechanistic role for miRNAs in regulating innate immunity during plant growth. PMID:29293695

  7. Persistent interferon transgene expression by RNA interference-mediated silencing of interferon receptors.

    PubMed

    Takahashi, Yuki; Vikman, Elin; Nishikawa, Makiya; Ando, Mitsuru; Watanabe, Yoshihiko; Takakura, Yoshinobu

    2010-09-01

    The in vivo half-life of interferons (IFNs) is very short, and its extension would produce a better therapeutic outcome in IFN-based therapy. Delivery of IFN genes is one solution for providing a sustained supply. IFNs have a variety of functions, including the suppression of transgene expression, through interaction with IFN receptors (IFNRs). This suppression could prevent IFNs from being expressed from vectors delivered. Silencing the expression of IFNAR and IFNGR, the receptors for type I and II IFNs, respectively, in cells expressing IFNs may prolong transgene expression of IFNs. Mouse melanoma B16-BL6 cells or mouse liver were selected as a site expressing IFNs (not a target for IFN gene therapy) and IFN-expressing plasmid DNA was delivered with or without small interfering RNA (siRNA) targeting IFNRs. Transfection of B16-BL6 cells with siRNA targeting IFNAR1 subunit (IFNAR1) resulted in the reduced expression of IFNAR on the cell surface. This silencing significantly increased the IFN-beta production in cells that were transfected with IFN-beta-expressing plasmid DNA. Similar results were obtained with the combination of IFN-gamma and IFNGR. Co-injection of IFN-beta-expressing plasmid DNA with siRNA targeting IFNAR1 into mice resulted in sustained plasma concentration of IFN-beta. These results provide experimental evidence that the RNAi-mediated silencing of IFNRs in cells expressing IFN, such as hepatocytes, is an effective approach for improving transgene expression of IFNs when their therapeutic target comprises cells other than those expressing IFNs.

  8. Activation of β-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice.

    PubMed

    Tao, Junyan; Calvisi, Diego F; Ranganathan, Sarangarajan; Cigliano, Antonio; Zhou, Lili; Singh, Sucha; Jiang, Lijie; Fan, Biao; Terracciano, Luigi; Armeanu-Ebinger, Sorin; Ribback, Silvia; Dombrowski, Frank; Evert, Matthias; Chen, Xin; Monga, Satdarshan P S

    2014-09-01

    Aberrant activation of β-catenin and Yes-associated protein 1 (Yap1) signaling pathways have been associated with the development of multiple tumor types. Yap functions as a transcriptional coactivator by interacting with TEA domain DNA binding proteins. We investigated the interactions among these pathways during hepatic tumorigenesis. We used immunohistochemical analysis to determine expression of β-catenin and Yap1 in liver cancer specimens collected from patients in Europe and the United States, consisting of 104 hepatocellular carcinoma, 62 intrahepatic cholangiocarcinoma, and 94 hepatoblastoma samples. We assessed β-catenin and Yap1 signaling and interactions in hepatoblastoma cell lines ((HuH6, HepG2, HepT1, HC-AFW1, HepG2, and HC-AFW1); proteins were knocked down with small interfering RNAs, and effects on proliferation and cell death were measured. Sleeping beauty-mediated hydrodynamic transfection was used to overexpress constitutively active forms of β-catenin (ΔN90/β-catenin) and Yap1 (YapS127A) in livers of mice; tissues were collected, and histological and immunohistochemical analyses were performed. We observed nuclear localization of β-catenin and Yap1 in 79% of hepatoblastoma samples but not in most hepatocellular carcinoma or intrahepatic cholangiocarcinoma samples. Yap1 and β-catenin coprecipitated in hepatoblastoma but not hepatocellular carcinoma cells. Small interfering RNA-mediated knockdown of Yap1 or β-catenin in hepatoblastoma cells reduced proliferation in an additive manner. Knockdown of Yap1 reduced its ability to coactivate transcription with β-catenin; β-catenin inhibitors inactivated Yap1. Overexpression of constitutively active forms of Yap1 and β-catenin in mouse liver led to rapid tumorigenesis, with 100% mortality by 11 weeks. Tumor cells expressed both proteins, and human hepatoblastoma cells expressed common targets of their 2 signaling pathways. Yap1 binding of TEA domain factors was required for tumorigenesis in mice. β-catenin and the transcriptional regulator Yap1 interact physically and are activated in most human hepatoblastoma tissues; overexpression of activated forms of these proteins in livers of mice leads to rapid tumor development. Further analysis of these mice will allow further studies of these pathways in hepatoblastoma pathogenesis and could lead to the identification of new therapeutic targets. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. Cyclin D1 Determines Mitochondrial Function In Vivo†

    PubMed Central

    Sakamaki, Toshiyuki; Casimiro, Mathew C.; Ju, Xiaoming; Quong, Andrew A.; Katiyar, Sanjay; Liu, Manran; Jiao, Xuanmao; Li, Anping; Zhang, Xueping; Lu, Yinan; Wang, Chenguang; Byers, Stephen; Nicholson, Robert; Link, Todd; Shemluck, Melvin; Yang, Jianguo; Fricke, Stanley T.; Novikoff, Phyllis M.; Papanikolaou, Alexandros; Arnold, Andrew; Albanese, Christopher; Pestell, Richard

    2006-01-01

    The cyclin D1 gene encodes a regulatory subunit of the holoenzyme that phosphorylates and inactivates the pRb tumor suppressor to promote nuclear DNA synthesis. cyclin D1 is overexpressed in human breast cancers and is sufficient for the development of murine mammary tumors. Herein, cyclin D1 is shown to perform a novel function, inhibiting mitochondrial function and size. Mitochondrial activity was enhanced by genetic deletion or antisense or small interfering RNA to cyclin D1. Global gene expression profiling and functional analysis of mammary epithelial cell-targeted cyclin D1 antisense transgenics demonstrated that cyclin D1 inhibits mitochondrial activity and aerobic glycolysis in vivo. Reciprocal regulation of these genes was observed in cyclin D1-induced mammary tumors. Cyclin D1 thus integrates nuclear DNA synthesis and mitochondrial function. PMID:16809779

  10. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp; Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510; Yoshizaki, Takayuki

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytesmore » by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.« less

  11. CD36 is upregulated in mice with periodontitis and metabolic syndrome and involved in macrophage gene upregulation by palmitate.

    PubMed

    Lu, Z; Li, Y; Brinson, C W; Kirkwood, K L; Lopes-Virella, M F; Huang, Y

    2017-03-01

    We reported that high-fat diet (HFD)-induced metabolic syndrome (MetS) exacerbates lipopolysaccharide (LPS)-stimulated periodontitis and palmitate, the major saturated fatty acid in the HFD, amplified LPS-stimulated gene expression in vitro. As CD36 is a major receptor for fatty acids, we investigated periodontal CD36 expression in mice with periodontitis and MetS, and the role of CD36 in inflammatory gene expression in macrophages stimulated by palmitate. MetS and periodontitis were induced in mice by HFD and periodontal injection of LPS, respectively. The periodontal CD36 expression and its relationship with alveolar bone loss were studied using immunohistochemistry, real-time PCR, and correlation analysis. The role of CD36 in upregulation of inflammatory mediators by LPS and palmitate in macrophages was assessed using pharmacological inhibitor and small interfering RNA. Periodontal CD36 expression was higher in mice with both MetS and periodontitis than that in mice with periodontitis or MetS alone and was correlated with osteoclastogenesis and alveolar bone loss. In vitro studies showed that CD36 expression in macrophages was upregulated by LPS and palmitate, and targeting CD36 attenuated palmitate-enhanced gene expression. CD36 expression is upregulated in mice with periodontitis and MetS and involved in gene expression in macrophages stimulated by palmitate and LPS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Uterine NDRG2 expression is increased at implantation sites during early pregnancy in mice, and its down-regulation inhibits decidualization of mouse endometrial stromal cells.

    PubMed

    Gu, Yan; Zhang, Xuan; Yang, Qian; Wang, Jian-mei; He, Ya-ping; Sun, Zhao-gui; Zhang, Hui-qin; Wang, Jian

    2015-05-27

    N-myc down-regulated gene 2 (NDRG2) is a tumor suppressor involved in cell proliferation and differentiation. The aim of this study was to determine the uterine expression pattern of this gene during early pregnancy in mice. Uterine NDRG2 mRNA and protein expression levels were determined by RT-PCR and Western blot analyses, respectively, during the peri-implantation period in mice. Immunohistochemical (IHC) analysis was performed to examine the spatial localization of NDRG2 expression in mouse uterine tissues. The in vitro decidualization model of mouse endometrial stromal cells (ESCs) was used to evaluate decidualization of ESCs following NDRG2 knock down by small interfering RNA (siRNA). Statistical significance was analyzed by one-way ANOVA using SPSS 19.0 software. Uterine NDRG2 gene expression was significantly up-regulated and was predominantly localized to the secondary decidual zone on days 5 and 8 of pregnancy in mice. Its increased expression was associated with artificial decidualization as well as the activation of delayed implantation. Furthermore, uterine NDRG2 expression was induced by estrogen and progesterone treatments. The in vitro decidualization of mouse ESCs was accompanied by up-regulation of NDRG2 expression, and knock down of its expression in these cells by siRNA inhibited the decidualization process. These results suggest that NDRG2 might play an important role in the process of decidualization during early pregnancy.

  13. Inhibition of Virulence Gene Expression in Staphylococcus aureus by Novel Depsipeptides from a Marine Photobacterium

    PubMed Central

    Mansson, Maria; Nielsen, Anita; Kjærulff, Louise; Gotfredsen, Charlotte H.; Wietz, Matthias; Ingmer, Hanne; Gram, Lone; Larsen, Thomas O.

    2011-01-01

    During a global research expedition, more than five hundred marine bacterial strains capable of inhibiting the growth of pathogenic bacteria were collected. The purpose of the present study was to determine if these marine bacteria are also a source of compounds that interfere with the agr quorum sensing system that controls virulence gene expression in Staphylococcus aureus. Using a gene reporter fusion bioassay, we recorded agr interference as enhanced expression of spa, encoding Protein A, concomitantly with reduced expression of hla, encoding α-hemolysin, and rnaIII encoding RNAIII, the effector molecule of agr. A marine Photobacterium produced compounds interfering with agr in S. aureus strain 8325-4, and bioassay-guided fractionation of crude extracts led to the isolation of two novel cyclodepsipeptides, designated solonamide A and B. Northern blot analysis confirmed the agr interfering activity of pure solonamides in both S. aureus strain 8325-4 and the highly virulent, community-acquired strain USA300 (CA-MRSA). To our knowledge, this is the first report of inhibitors of the agr system by a marine bacterium. PMID:22363239

  14. Inhibition of the aquaporin 3 water channel increases the sensitivity of prostate cancer cells to cryotherapy

    PubMed Central

    Ismail, M; Bokaee, S; Davies, J; Harrington, K J; Pandha, H

    2009-01-01

    Aquaporins (AQPs) are intrinsic membrane proteins that facilitate selective water and small solute movement across the plasma membrane. In this study, we investigate the role of inhibiting AQPs in sensitising prostate cancer cells to cryotherapy. PC-3 and DU145 prostate cancer cells were cooled to 0, −5 and −10°C. The expression of AQP3 in response to freezing was determined using real-time quantitative polymerase chain reaction (RT–qPCR) and western blot analysis. Aquaporins were inhibited using mercuric chloride (HgCl2) and small interfering RNA (siRNA) duplex, and cell survival was assessed using a colorimetric assay. There was a significant increase in AQP3 expression in response to freezing. Cells treated with AQP3 siRNA were more sensitive to cryoinjury compared with control cells (P<0.001). Inhibition of the AQPs by HgCl2 also increased the sensitivity of both cell lines to cryoinjury and there was a complete loss of cell viability at −10°C (P<0.01). In conclusion, we have shown that AQP3 is involved directly in cryoinjury. Inhibition of AQP3 increases the sensitivity of prostate cancer cells to freezing. This strategy may be exploited in the clinic to improve the efficacy of prostate cryotherapy. PMID:19513079

  15. miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes.

    PubMed

    Luo, Chonglin; Tetteh, Paul W; Merz, Patrick R; Dickes, Elke; Abukiwan, Alia; Hotz-Wagenblatt, Agnes; Holland-Cunz, Stefan; Sinnberg, Tobias; Schittek, Birgit; Schadendorf, Dirk; Diederichs, Sven; Eichmüller, Stefan B

    2013-03-01

    MicroRNAs are small noncoding RNAs that regulate gene expression and have important roles in various types of cancer. Previously, miR-137 was reported to act as a tumor suppressor in different cancers, including malignant melanoma. In this study, we show that low miR-137 expression is correlated with poor survival in stage IV melanoma patients. We identified and validated two genes (c-Met and YB1) as direct targets of miR-137 and confirmed two previously known targets, namely enhancer of zeste homolog 2 (EZH2) and microphthalmia-associated transcription factor (MITF). Functional studies showed that miR-137 suppressed melanoma cell invasion through the downregulation of multiple target genes. The decreased invasion caused by miR-137 overexpression could be phenocopied by small interfering RNA knockdown of EZH2, c-Met, or Y box-binding protein 1 (YB1). Furthermore, miR-137 inhibited melanoma cell migration and proliferation. Finally, miR-137 induced apoptosis in melanoma cell lines and decreased BCL2 levels. In summary, our study confirms that miR-137 acts as a tumor suppressor in malignant melanoma and reveals that miR-137 regulates multiple targets including c-Met, YB1, EZH2, and MITF.

  16. Embedding siRNA sequences targeting Apolipoprotein B100 in shRNA and miRNA scaffolds results in differential processing and in vivo efficacy

    PubMed Central

    Maczuga, Piotr; Lubelski, Jacek; van Logtenstein, Richard; Borel, Florie; Blits, Bas; Fakkert, Erwin; Costessi, Adalberto; Butler, Derek; van Deventer, Sander; Petry, Harald; Koornneef, Annemart; Konstantinova, Pavlina

    2013-01-01

    Overexpression of short hairpin RNA (shRNA) often causes cytotoxicity and using microRNA (miRNA) scaffolds can circumvent this problem. In this study, identically predicted small interfering RNA (siRNA) sequences targeting apolipoprotein B100 (siApoB) were embedded in shRNA (shApoB) or miRNA (miApoB) scaffolds and a direct comparison of the processing and long-term in vivo efficacy was performed. Next generation sequencing of small RNAs originating from shApoB- or miApoB-transfected cells revealed substantial differences in processing, resulting in different siApoB length, 5′ and 3′ cleavage sites and abundance of the guide or passenger strands. Murine liver transduction with adeno-associated virus (AAV) vectors expressing shApoB or miApoB resulted in high levels of siApoB expression associated with strong decrease of plasma ApoB protein and cholesterol. Expression of miApoB from the liver-specific LP1 promoter was restricted to the liver, while the H1 promoter-expressed shApoB was ectopically present. Delivery of 1 × 1011 genome copies AAV-shApoB or AAV-miApoB led to a gradual loss of ApoB and plasma cholesterol inhibition, which was circumvented by delivering a 20-fold lower vector dose. In conclusion, incorporating identical siRNA sequences in shRNA or miRNA scaffolds results in differential processing patterns and in vivo efficacy that may have serious consequences for future RNAi-based therapeutics. PMID:23089734

  17. The THO Complex Non-Cell-Autonomously Represses Female Germline Specification through the TAS3-ARF3 Module.

    PubMed

    Su, Zhenxia; Zhao, Lihua; Zhao, Yuanyuan; Li, Shaofang; Won, SoYoun; Cai, Hanyang; Wang, Lulu; Li, Zhenfang; Chen, Piaojuan; Qin, Yuan; Chen, Xuemei

    2017-06-05

    In most sexually reproducing plants, a single somatic, sub-epidermal cell in an ovule is selected to differentiate into a megaspore mother cell, which is committed to giving rise to the female germline. However, it remains unclear how intercellular signaling among somatic cells results in only one cell in the sub-epidermal layer differentiating into the megaspore mother cell. Here we uncovered a role of the THO complex in restricting the megaspore mother cell fate to a single cell. Mutations in TEX1, HPR1, and THO6, components of the THO/TREX complex, led to the formation of multiple megaspore mother cells, which were able to initiate gametogenesis. We demonstrated that TEX1 repressed the megaspore mother cell fate by promoting the biogenesis of TAS3-derived trans-acting small interfering RNA (ta-siRNA), which represses ARF3 expression. The TEX1 protein was present in epidermal cells, but not in the germline, and, through TAS3-derived ta-siRNA, restricted ARF3 expression to the medio domain of ovule primordia. Expansion of ARF3 expression into lateral epidermal cells in a TAS3 ta-siRNA-insensitive mutant led to the formation of supernumerary megaspore mother cells, suggesting that TEX1- and TAS3-mediated restriction of ARF3 expression limits excessive megaspore mother cell formation non-cell-autonomously. Our findings reveal the role of a small-RNA pathway in the regulation of female germline specification in Arabidopsis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. CDK9-Dependent Transcriptional Elongation in the Innate Interferon-Stimulated Gene Response to Respiratory Syncytial Virus Infection in Airway Epithelial Cells

    PubMed Central

    Tian, Bing; Zhao, Yingxin; Kalita, Mridul; Edeh, Chukwudi B.; Paessler, Slobodan; Casola, Antonella; Teng, Michael N.; Garofalo, Roberto P.

    2013-01-01

    Respiratory syncytial virus (RSV) is a negative-sense single-stranded RNA virus responsible for lower respiratory tract infections. During infection, the presence of double-stranded RNA (dsRNA) activates the interferon (IFN) regulatory factor 3 (IRF3) transcription factor, an event triggering expression of immediate early, IFN-stimulated genes (ISGs). We examine the role of transcriptional elongation in control of IRF3-dependent ISG expression. RSV infection induces ISG54, ISG56, and CIG5 gene expression in an IRF3-dependent manner demonstrated by IRF3 small interfering RNA (siRNA) silencing in both A549 epithelial cells and IRF3−/− MEFs. ISG expression was mediated by the recruitment of IRF3, CDK9, polymerase II (Pol II), and phospho-Ser2 carboxy-terminal domain (CTD) Pol II to the IFN-stimulated response element (ISRE) binding sites of the IRF3-dependent ISG promoters in native chromatin. We find that RSV infection enhances the activated fraction of cyclin-dependent kinase 9 (CDK9) by promoting its association with bromodomain 4 (BRD4) and disrupting its association with the inhibitory 7SK small nuclear RNA. The requirement of CDK9 activity for ISG expression was shown by siRNA-mediated silencing of CDK9 and by a selective CDK9 inhibitor in A549 cells. In contrast, RSV-induced beta interferon (IFN-β) expression is not influenced by CDK9 inhibition. Using transcript-selective quantitative real-time reverse transcription-PCR (Q-RT-PCR) assays for the ISG54 gene, we observed that RSV induces transition from short to fully spliced mRNA transcripts and that this transition is blocked by CDK9 inhibition in both A549 and primary human small airway epithelial cells. These data indicate that transcription elongation plays a major role in RSV-induced ISG expression and is mediated by IRF3-dependent recruitment of activated CDK9. CDK9 activity may be a target for immunomodulation in RSV-induced lung disease. PMID:23596302

  19. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy

    PubMed Central

    Miele, Evelina; Spinelli, Gian Paolo; Miele, Ermanno; Di Fabrizio, Enzo; Ferretti, Elisabetta; Tomao, Silverio; Gulino, Alberto

    2012-01-01

    During recent decades there have been remarkable advances and profound changes in cancer therapy. Many therapeutic strategies learned at the bench, including monoclonal antibodies and small molecule inhibitors, have been used at the bedside, leading to important successes. One of the most important advances in biology has been the discovery that small interfering RNA (siRNA) is able to regulate the expression of genes, by a phenomenon known as RNA interference (RNAi). RNAi is one of the most rapidly growing fields of research in biology and therapeutics. Much research effort has gone into the application of this new discovery in the treatment of various diseases, including cancer. However, even though these molecules may have potential and strong utility, some limitations make their clinical application difficult, including delivery problems, side effects due to off-target actions, disturbance of physiological functions of the cellular machinery involved in gene silencing, and induction of the innate immune response. Many researchers have attempted to overcome these limitations and to improve the safety of potential RNAi-based therapeutics. Nanoparticles, which are nanostructured entities with tunable size, shape, and surface, as well as biological behavior, provide an ideal opportunity to modify current treatment regimens in a substantial way. These nanoparticles could be designed to surmount one or more of the barriers encountered by siRNA. Nanoparticle drug formulations afford the chance to improve drug bioavailability, exploiting superior tissue permeability, payload protection, and the “stealth” features of these entities. The main aims of this review are: to explain the siRNA mechanism with regard to potential applications in siRNA-based cancer therapy; to discuss the possible usefulness of nanoparticle-based delivery of certain molecules for overcoming present therapeutic limitations; to review the ongoing relevant clinical research with its pitfalls and promises; and to evaluate critically future perspectives and challenges in siRNA-based cancer therapy. PMID:22915840

  20. Small RNAs as important regulators for the hybrid vigour of super-hybrid rice.

    PubMed

    Zhang, Lei; Peng, Yonggang; Wei, Xiaoli; Dai, Yan; Yuan, Dawei; Lu, Yufei; Pan, Yangyang; Zhu, Zhen

    2014-11-01

    Heterosis is an important biological phenomenon; however, the role of small RNA (sRNA) in heterosis of hybrid rice remains poorly described. Here, we performed sRNA profiling of F1 super-hybrid rice LYP9 and its parents using high-throughput sequencing technology, and identified 355 distinct mature microRNAs and trans-acting small interfering RNAs, 69 of which were differentially expressed sRNAs (DES) between the hybrid and the mid-parental value. Among these, 34 DES were predicted to target 176 transcripts, of which 112 encoded 94 transcription factors. Further analysis showed that 67.6% of DES expression levels were negatively correlated with their target mRNAs either in flag leaves or panicles. The target genes of DES were significantly enriched in some important biological processes, including the auxin signalling pathway, in which existed a regulatory network mediated by DES and their targets, closely associated with plant growth and development. Overall, 20.8% of DES and their target genes were significantly enriched in quantitative trait loci of small intervals related to important rice agronomic traits including growth vigour, grain yield, and plant architecture, suggesting that the interaction between sRNAs and their targets contributes to the heterotic phenotypes of hybrid rice. Our findings revealed that sRNAs might play important roles in hybrid vigour of super-hybrid rice by regulating their target genes, especially in controlling the auxin signalling pathway. The above finding provides a novel insight into the molecular mechanism of heterosis. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Leupaxin acts as a mediator in prostate carcinoma progression through deregulation of p120catenin expression.

    PubMed

    Kaulfuss, S; von Hardenberg, S; Schweyer, S; Herr, A M; Laccone, F; Wolf, S; Burfeind, P

    2009-11-12

    Recently, we could show that the focal adhesion protein leupaxin (LPXN) is expressed in human prostate carcinomas (PCa) and induces invasiveness of androgen-independent PCa cells. In this study we show that LPXN enhanced the progression of existing PCa in vivo by breeding transgenic mice with prostate-specific LPXN expression and TRAMP mice (transgenic adenocarcinoma of mouse prostate). Double transgenic LPXN/TRAMP mice showed a significant increase in poorly differentiated PCa and distant metastases as compared with control TRAMP mice. Additional studies on primary PCa cells generated from both transgenic backgrounds confirmed the connection regarding LPXN overexpression and increased motility and invasiveness of PCa cells. One mediator of LPXN-induced invasion was found to be the cell-cell adhesion protein p120catenin (p120CTN). Both in vitro and in vivo experiments revealed that p120CTN expression negatively correlates with LPXN expression, followed by a redistribution of beta-catenin. Downregulation of LPXN using small interfering RNAs (siRNAs) resulted in a membranous localization of beta-catenin, whereas strong nuclear accumulation of beta-catenin was observed in p120CTN knockdown cells leading to enhanced transcription of the beta-catenin target gene matrix metalloprotease-7. In conclusion, the present results indicate that LPXN enhances the progression of PCa through downregulation of p120CTN expression and that LPXN could function as a marker for aggressive PCa in the future.

  2. Silencing heme oxygenase-1 gene expression in retinal pigment epithelial cells inhibits proliferation, migration and tube formation of cocultured endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenjie; Zhang, Xiaomei, E-mail: zhangxm667@163.com; Lu, Hong

    2013-05-10

    Highlights: •HO-1 is highly induced in RPE cells by hypoxia. •Inhibition of HO-1 activity and knockdown of HO-1 expression inhibit VEGF expression in RPE cells under hypoxia. •Knockdown of HO-1 in RPE cells inhibits angiogenesis of endothelial cells in vitro. -- Abstract: Heme oxygenase-1 (HO-1) plays an important role in the vasculature and in the angiogenesis of tumors, wounds and other environments. Retinal pigment epithelial (RPE) cells and choroidal endothelial cells (CECs) are the main cells involved in choroidal neovascularization (CNV), a process in which hypoxia plays an important role. Our aim was to evaluate the role of human RPE-cellmore » HO-1 in the angiogenic activities of cocultured endothelial cells under hypoxia. Small interfering RNA (siRNA) for HO-1 was transfected into human RPE cell line ARPE-19, and zinc protoporphyrin (ZnPP) was used to inhibit HO-1 activity. Knockdown of HO-1 expression and inhibition of HO-1 activity resulted in potent reduction of the expression of vascular endothelial growth factor (VEGF) under hypoxia. Furthermore, knockdown of HO-1 suppressed the proliferation, migration and tube formation of cocultured endothelial cells. These findings indicated that HO-1 might have an angiogenic effect in CNV through modulation of VEGF expression and might be a potential target for treating CNV.« less

  3. Glucocorticoid response elements and 11β-hydroxysteroid dehydrogenases in the regulation of endothelial nitric oxide synthase expression

    PubMed Central

    Liu, Yong; Mladinov, Domagoj; Pietrusz, Jennifer L.; Usa, Kristie; Liang, Mingyu

    2009-01-01

    Aims Hypertensive and other effects of excess glucocorticoids might be in part mediated by the suppression of endothelial nitric oxide synthase (eNOS) expression. We studied the transcriptional and biochemical mechanisms that mediate or modulate the suppression of eNOS expression by glucocorticoids. Methods and results We found that a mere three-fold increase in the concentration of the natural glucocorticoid cortisol (from 30 to 100 nmol/L) significantly decreased the expression level of eNOS in human endothelial cells. Deletion analysis of the eNOS promoter indicated that the segment within −119 bp upstream from the transcription start site was significantly involved in the effect of cortisol. Site-directed mutagenesis and chromatin immunoprecipitation analyses demonstrated the presence of a suppressive glucocorticoid response element (GRE) at −111 to −105 bp. 11β-hydroxysteroid dehydrogenases (11β-HSD) catalyse the interconversion of active and inactive glucocorticoids. The suppression of 11β-HSD2 using small interfering RNA markedly exacerbated the inhibition of eNOS by cortisol. The suppression of 11β-HSD1 abolished the inhibition of eNOS expression by cortisol. Conclusion We identified the first GRE in the eNOS promoter region and demonstrated that endogenous 11β-HSD1 and 11β-HSD2 play significant and distinct roles in modulating the effect of glucocorticoids on eNOS expression. PMID:18716005

  4. ING2 (inhibitor of growth protein-2) plays a crucial role in preimplantation development.

    PubMed

    Zhou, Lin; Wang, Pei; Zhang, Juanjuan; Heng, Boon Chin; Tong, Guo Qing

    2016-02-01

    ING2 (inhibitor of growth protein-2) is a member of the ING-gene family and participates in diverse cellular processes involving tumor suppression, DNA repair, cell cycle regulation, and cellular senescence. As a subunit of the Sin3 histone deacetylase complex co-repressor complex, ING2 binds to H3K4me3 to regulate chromatin modification and gene expression. Additionally, ING2 recruits histone methyltransferase (HMT) activity for gene repression, which is independent of the HDAC class I or II pathway. However, the physiological function of ING2 in mouse preimplantation embryo development has not yet been characterized previously. The expression, localization and function of ING2 during preimplantation development were investigated in this study. We showed increasing expression of ING2 within the nucleus from the 4-cell embryo stage onwards; and that down-regulation of ING2 expression by endoribonuclease-prepared small interfering RNA (esiRNA) microinjection results in developmental arrest during the morula to blastocyst transition. Embryonic cells microinjected with ING2-specific esiRNA exhibited decreased blastulation rate compared to the negative control. Further investigation of the underlying mechanism indicated that down-regulation of ING2 significantly increased expression of p21, whilst decreasing expression of HDAC1. These results suggest that ING2 may play a crucial role in the process of preimplantation embryo development through chromatin regulation.

  5. The dorsomedial prefrontal cortex plays a causal role in mediating in-group advantage in emotion recognition: A TMS study.

    PubMed

    Gamond, L; Cattaneo, Z

    2016-12-01

    Consistent evidence suggests that emotional facial expressions are better recognized when the expresser and the perceiver belong to the same social group (in-group advantage). In this study, we used transcranial magnetic stimulation (TMS) to investigate the possible causal involvement of the dorsomedial prefrontal cortex (dmPFC) and of the right temporo-parietal junction (TPJ), two main nodes of the mentalizing neural network, in mediating the in-group advantage in emotion recognition. Participants performed an emotion discrimination task in a minimal (blue/green) group paradigm. We found that interfering with activity in the dmPFC significantly interfered with the effect of minimal group-membership on emotion recognition, reducing participants' ability to discriminate emotions expressed by in-group members. In turn, rTPJ mainly affected emotion discrimination per se, irrespective of group membership. Overall, our results point to a causal role of the dmPFC in mediating the in-group advantage in emotion recognition, favoring intragroup communication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. MicroRNA superfamilies descended from miR390 and their roles in secondary small interfering RNA biogenesis in eudicots

    USDA-ARS?s Scientific Manuscript database

    MiRNAs have been demonstrated to regulate diverse biological processes through cleavage of gene transcripts. Some of miRNAs acquire additional function and their cleavage can incite production of secondary small RNAs which possibly provoke a novel regulatory cascade. In this study, we investigated...

  7. SoMART, a web server for miRNA, tasiRNA and target gene analysis in Solanaceae plants

    USDA-ARS?s Scientific Manuscript database

    Plant micro(mi)RNAs and trans-acting small interfering (tasi)RNAs mediate posttranscriptional silencing of genes and play important roles in a variety of biological processes. Although bioinformatics prediction and small (s)RNA cloning are the key approaches used for identification of miRNAs, tasiRN...

  8. Reduced ACTC1 expression might play a role in the onset of congenital heart disease by inducing cardiomyocyte apoptosis.

    PubMed

    Jiang, Hong-Kun; Qiu, Guang-Rong; Li-Ling, Jesse; Xin, Na; Sun, Kai-Lai

    2010-11-01

    The Cardiac α actin 1 gene (ACTC1) has been related to familial atrial septal defects. This study was set to explore a potential role of this gene in the formation of sporadic congenital heart disease (CHD). Assessment of cardiac tissue samples from 33 patients with sporadic CHD (gestational age (GA) 18 weeks-49 months) with real-time RT-PCR, Western blotting and immunohistochemistry has revealed a markedly decreased ACTC1 expression in the majority of samples (78.8%) compared with autopsied normal heart tissue from aged-matched subjects (GA 17 weeks-36 months). Also, as shown by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay, the proportion of apoptotic cardiomyocytes in samples featuring down-regulated ACTC1 expression (Group 1) was significantly greater than those with normal expression (Group 2) and the controls (P<0.01). The proportion of apoptotic cells strongly correlated with the expression of ACTC1 (r=-0.918, P<0.01). A study of 2 essential genes involved in apoptosis, Caspase-3 and Bcl-2, confirmed that the former has significantly increased expression, whilst the latter has decreased expression in Group 1 than in the other groups (P<0.01). Transfection of a small interfering RNA targeting, Actc1 (Actc1-siRNA), to a cardiomyocyte cell line, H9C2, also detected more apoptotic cells. Reduced ACTC1 expression might play a role in the onset of CHD through induction of cardiomyocyte apoptosis.

  9. Neutrophil elastase enhances IL-12p40 production by lipopolysaccharide-stimulated macrophages via transactivation of the PAR-2/EGFR/TLR4 signaling pathway.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2016-07-01

    Proteinase-activated receptor 2 (PAR-2) and toll-like receptor 4 (TLR4) are involved in innate immune responses and signaling cross-talk between these receptor molecules has the potential to augment an ongoing inflammatory response. The aim of this study was to evaluate the possible cooperative influence of PAR-2 and TLR4 on IL-12p40 production by macrophages after stimulation with lipopolysaccharide (LPS). During culture, GM-CSF upregulated PAR-2 expression by macrophages in a time-dependent manner. Stimulation with LPS enhanced IL-12p40 production by macrophages in a concentration-dependent manner. While human neutrophil elastase (HNE) did not induce IL-12p40 production, pretreatment of macrophages with HNE synergistically increased the IL-12p40 protein level after LPS exposure. Silencing of TLR4 with small interfering RNA blunted the synergistic enhancement of IL-12p40 by HNE combined with LPS. Silencing of β-arrestin 2, p22phox, or ERK1/2 also inhibited an increase of IL-12p40. Interestingly, transfection of macrophages with small interfering RNA duplexes for DUOX-2, EGFR, TLR4, or TRAF6 significantly blunted the increase of IL-12p40 in response to treatment with HNE plus LPS. U73122 and Rottlerin also inhibited the increased production of IL-12p40. In conclusion, HNE is involved in transactivation of TLR4 through activation of DUOX-2/EGFR and synergistically enhances IL-12p40 production by macrophages stimulated with LPS. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Gene silencing of myofibrillogenesis regulator-1 by adenovirus-delivered small interfering RNA suppresses cardiac hypertrophy induced by angiotensin II in mice.

    PubMed

    Dai, Wenjian; He, Weiqing; Shang, Guangdong; Jiang, Jiandong; Wang, Yiguang; Kong, Weijia

    2010-11-01

    Our previous studies proved that myofibrillogenesis regulator (MR)-1 has a close relationship with cardiac hypertrophy induced by ANG II. In the present study, we developed a recombinant adenoviral vector (AdSiR-MR-1) driving small interfering (si)RNA against MR-1 to evaluate its effect on cardiac hypertrophy in vivo. Cardiac hypertrophy was induced by chronic ANG II infusion in mice; AdSiR-MR-1 was administered via the jugular vein through one bolus injection. Thirteen days after the injection, viral DNA was still detectable in the heart, validating the efficiency of gene transfer. Expression levels of MR-1 mRNA and protein were increased by 2.5-fold in the heart after ANG II infusion; AdSiR-control, which contained a scrambled siRNA sequence, had no effect on them. AdSiR-MR-1 treatment abolished the upregulation of MR-1 induced by ANG II. The silencing effect of AdSiR-MR-1 was observed in many other tissues, such as the liver, lung, and kidney, except skeletal muscle. ANG II-induced cardiac hypertrophy was suppressed in mice treated with AdSiR-MR-1, as determined by echocardiography. Morphological and immnohistochemical examinations revealed that interstitial cardiac fibrosis as well as infiltrating inflammatory cells were increased after ANG II infusion; AdSiR-MR-1 greatly ameliorated these disorders. In ANG II-infused mice, MR-1 silencing also blocked the upregulation of other genes related to cardiac hypertrophy or metabolism of the extracellular matrix. In summary, our results demonstrate the feasibility of MR-1 silencing in vivo and suggest that MR-1 could be a potential new target to treat cardiac hypertrophy induced by ANG II.

  11. Small-Interfering RNA–Eluting Surfaces as a Novel Concept for Intravascular Local Gene Silencing

    PubMed Central

    Nolte, Andrea; Walker, Tobias; Schneider, Martina; Kray, Oya; Avci-Adali, Meltem; Ziemer, Gerhard; Wendel, Hans Peter

    2011-01-01

    New drug-eluting stent (DES) methods have recently been demonstrated to improve outcomes of intravascular interventions. A novel technique is the design of gene-silencing stents that elute specific small-interfering RNAs (siRNAs) for better vascular wall regeneration. Although siRNAs used to alter gene expression have surpassed expectations in in vitro experiments, the functional and local delivery of siRNAs is still the major obstacle for the in vivo application of RNA interference. In this preliminary in vitro study we investigated a surface-immobilized siRNA delivery technique that would be readily adaptable for local intravascular applications in vivo. The transfection potency of gelatin coatings consisting of a specific siRNA complexed with polyethylenimine (PEI) was examined in primary human endothelial cells by flow cytometry and quantitative real-time polymerase chain reaction. Several media conditions, such as the presence or absence of serum during cultivation, were investigated. Furthermore, different siRNA and PEI amounts, as well as nitrogen/phosphate ratios, were tested for their transfection efficiency. Gelatin coatings consisting of PEI and siRNA against an exemplary endothelial adhesion molecule receptor achieved a significant knockdown of around 70%. The transfection efficiency of the coatings was not influenced by the presence of serum. The results of this preliminary study support the expectation that this novel coating may be favorable for local in vivo gene silencing (for example, when immobilized on stents or balloons for percutanous transluminal coronary angioplasty). However, further animal experiments are needed to confirm the translation into clinical practice. This intriguing technology leads the way to more sophisticated and individualized coatings for the post-DES era, toward silencing of genes involved in the pathway of intimal hyperplasia. PMID:21792480

  12. A novel dendritic nanocarrier of polyamidoamine-polyethylene glycol-cyclic RGD for “smart” small interfering RNA delivery and in vitro antitumor effects by human ether-à-go-go-related gene silencing in anaplastic thyroid carcinoma cells

    PubMed Central

    Li, Guanhua; Hu, Zuojun; Yin, Henghui; Zhang, Yunjian; Huang, Xueling; Wang, Shenming; Li, Wen

    2013-01-01

    The application of RNA interference techniques is promising in gene therapeutic approaches, especially for cancers. To improve safety and efficiency of small interfering RNA (siRNA) delivery, a triblock dendritic nanocarrier, polyamidoamine-polyethylene glycol-cyclic RGD (PAMAM-PEG-cRGD), was developed and studied as an siRNA vector targeting the human ether-à-go-go-related gene (hERG) in human anaplastic thyroid carcinoma cells. Structure characterization, particle size, zeta potential, and gel retardation assay confirmed that complete triblock components were successfully synthesized with effective binding capacity of siRNA in this triblock nanocarrier. Cytotoxicity data indicated that conjugation of PEG significantly alleviated cytotoxicity when compared with unmodified PAMAM. PAMAM-PEG-cRGD exerted potent siRNA cellular internalization in which transfection efficiency measured by flow cytometry was up to 68% when the charge ratio (N/P ratio) was 3.5. Ligand-receptor affinity together with electrostatic interaction should be involved in the nano-siRNA endocytosis mechanism and we then proved that attachment of cRGD enhanced cellular uptake via RGD-integrin recognition. Gene silencing was evaluated by reverse transcription polymerase chain reaction and PAMAM-PEG-cRGD-siRNA complex downregulated the expression of hERG to 26.3% of the control value. Furthermore, gene knockdown of hERG elicited growth suppression as well as activated apoptosis by means of abolishing vascular endothelial growth factor secretion and triggering caspase-3 cascade in anaplastic thyroid carcinoma cells. Our study demonstrates that this novel triblock polymer, PAMAM-PEG-cRGD, exhibits negligible cytotoxicity, effective transfection, “smart” cancer targeting, and therefore is a promising siRNA nanocarrier. PMID:23569377

  13. Mechanisms of estradiol-induced insulin secretion by the G protein-coupled estrogen receptor GPR30/GPER in pancreatic beta-cells.

    PubMed

    Sharma, Geetanjali; Prossnitz, Eric R

    2011-08-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes.

  14. Delivery of small interfering RNA against Nogo-B receptor via tumor-acidity responsive nanoparticles for tumor vessel normalization and metastasis suppression.

    PubMed

    Wang, Bin; Ding, Yanping; Zhao, Xiaozheng; Han, Xuexiang; Yang, Na; Zhang, Yinlong; Zhao, Ying; Zhao, Xiao; Taleb, Mohammad; Miao, Qing Robert; Nie, Guangjun

    2018-08-01

    Nogo-B receptor (NgBR) plays fundamental roles in regulating angiogenesis, vascular development, and the epithelial-mesenchymal transition (EMT) of cancer cells. However, the therapeutic effect of NgBR blockade on tumor vasculature and malignancy is unknown, investigations on which requires an adequate delivery system for small interfering RNA against NgBR (NgBR siRNA). Here a surface charge switchable polymeric nanoparticle that was sensitive to the slightly acidic tumor microenvironment was developed for steady delivery of NgBR siRNA to tumor tissues. The nanoformulation was constructed by conjugating 2, 3-dimethylmaleic anhydride (DMMA) molecules to the surface amines of micelles formed by cationic co-polymer poly(lactic-co-glycolic acid) 2 -poly(ethylenimine) and subsequent absorption of NgBR siRNAs. The nanoparticles remained negatively charged in physiological condition and smartly converted to positive surface charge due to tumor-acidity-activated shedding of DMMA. The charge conversion facilitated cellular uptake of siRNAs and in turn efficiently depleted the expression of NgBR in tumor-bearing tissues. Silencing of NgBR suppressed endothelial cell migration and tubule formation, and reverted the EMT process of breast cancer cells. Delivery of the nanoformulation to mice bearing orthotopic breast carcinoma showed no effect on tumor growth, but led to remarkable decrease of distant metastasis by normalizing tumor vessels and suppressing the EMT of breast cancer cells. This study demonstrated that NgBR is a promising therapeutic target in abnormal tumor vasculature and aggressive cancer cells, and the tumor-responsive nanoparticle with the feature of charge transformation offers great potential for tumor-specific delivery of gene therapeutics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Unexpected role of the copper transporter ATP7A in PDGF-induced vascular smooth muscle cell migration.

    PubMed

    Ashino, Takashi; Sudhahar, Varadarajan; Urao, Norifumi; Oshikawa, Jin; Chen, Gin-Fu; Wang, Huan; Huo, Yuqing; Finney, Lydia; Vogt, Stefan; McKinney, Ronald D; Maryon, Edward B; Kaplan, Jack H; Ushio-Fukai, Masuko; Fukai, Tohru

    2010-09-17

    Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1 (copper transporter 1) but also by the copper exporter ATP7A (Menkes ATPase), whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts, which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A small interfering RNA or CTR small interfering RNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor prolysyl oxidase (Pro-LOX) in lipid raft fraction, as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based x-ray fluorescence microscopy at neointimal VSMCs in wire injury model. These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge, as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis.

  16. CD36- and GPR120-mediated Ca²⁺ signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice.

    PubMed

    Ozdener, Mehmet Hakan; Subramaniam, Selvakumar; Sundaresan, Sinju; Sery, Omar; Hashimoto, Toshihiro; Asakawa, Yoshinori; Besnard, Philippe; Abumrad, Nada A; Khan, Naim Akhtar

    2014-04-01

    It is important to increase our understanding of gustatory detection of dietary fat and its contribution to fat preference. We studied the roles of the fat taste receptors CD36 and GPR120 and their interactions via Ca(2+) signaling in fungiform taste bud cells (TBC). We measured Ca(2+) signaling in human TBC, transfected with small interfering RNAs against messenger RNAs encoding CD36 and GPR120 (or control small interfering RNAs). We also studied Ca(2+) signaling in TBC from CD36(-/-) mice and from wild-type lean and obese mice. Additional studies were conducted with mouse enteroendocrine cell line STC-1 that express GPR120 and stably transfected with human CD36. We measured release of serotonin and glucagon-like peptide-1 from human and mice TBC in response to CD36 and GPR120 activation. High concentrations of linoleic acid induced Ca(2+) signaling via CD36 and GPR120 in human and mice TBC, as well as in STC-1 cells, and low concentrations induced Ca(2+) signaling via only CD36. Incubation of human and mice fungiform TBC with lineoleic acid down-regulated CD36 and up-regulated GPR120 in membrane lipid rafts. Obese mice had decreased spontaneous preference for fat. Fungiform TBC from obese mice had reduced Ca(2+) and serotonin responses, but increased release of glucagon-like peptide-1, along with reduced levels of CD36 and increased levels of GPR120 in lipid rafts. CD36 and GPR120 have nonoverlapping roles in TBC signaling during orogustatory perception of dietary lipids; these are differentially regulated by obesity. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  17. Ursolic acid sensitizes cisplatin-resistant HepG2/DDP cells to cisplatin via inhibiting Nrf2/ARE pathway

    PubMed Central

    Wu, Shouhai; Zhang, Tianpeng; Du, Jingsheng

    2016-01-01

    Background Combinations of adjuvant sensitizers with anticancer drugs is a promising new strategy to reverse chemoresistance. Ursolic acid (UA) is one of the natural pentacyclic triterpene compounds known to have many pharmacological characteristics such as anti-inflammatory and anticancer properties. This study investigates whether UA can sensitize hepatocellular carcinoma cells to cisplatin. Materials and methods Cells were transfected with nuclear factor erythroid-2-related factor 2 (Nrf2) small interfering RNA and Nrf2 complementary DNA by using Lipofectin 2000. The cytotoxicity of cells was investigated by Cell Counting Kit 8 assay. Cell apoptosis, cell cycle, reactive oxygen species, and mitochondrial membrane potential were detected by flow cytometry fluorescence-activated cell sorting. The protein level of Nrf2, NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST), and heme oxygenase-1 (HO-1) was detected by Western blot analysis. Results The results showed that the reverse index was 2.9- and 9.69-fold by UA of 1.125 μg/mL and 2.25 μg/mL, respectively, for cisplatin to HepG2/DDP cells. UA–cisplatin combination induced cell apoptosis and reactive oxygen species, blocked the cell cycle in G0/G1 phase, and reduced the mitochondrial membrane potential. Mechanistically, UA–cisplatin dramatically decreased the expression of Nrf2 and its downstream genes. The sensibilization of UA–cisplatin combination was diminished in Nrf2 small interfering RNA-transfected HepG2/DDP cells, as well as in Nrf2 complementary DNA-transfected HepG2/DDP cells. Conclusion The results confirmed the sensibilization of UA on HepG2/DDP cells to cisplatin, which was possibly mediated via the Nrf2/antioxidant response element pathway. PMID:27822011

  18. Ligand-targeted delivery of small interfering RNAs to malignant cells and tissues.

    PubMed

    Thomas, Mini; Kularatne, Sumith A; Qi, Longwu; Kleindl, Paul; Leamon, Christopher P; Hansen, Michael J; Low, Philip S

    2009-09-01

    Potential clinical applications of small interfering RNA (siRNA) are hampered primarily by delivery issues. We have successfully addressed the delivery problems associated with off-site targeting of highly toxic chemotherapeutic agents by attaching the drugs to tumor-specific ligands that will carry the attached cargo into the desired cancer cell. Indeed, several such tumor-targeted drugs are currently undergoing human clinical trials. We now show that efficient targeting of siRNA to malignant cells and tissues can be achieved by covalent conjugation of small-molecular-weight, high-affinity ligands, such as folic acid and DUPA (2-[3-(1, 3-dicarboxy propyl)-ureido] pentanedioic acid), to siRNA. The former ligand binds a folate receptor that is overexpressed on a variety of cancers, whereas the latter ligand binds to prostate-specific membrane antigen that is overexpressed specifically on prostate cancers and the neovasculature of all solid tumors. Using these ligands, we show remarkable receptor-mediated targeting of siRNA to cancer tissues in vitro and in vivo.

  19. EGFR-L858R mutant enhances lung adenocarcinoma cell invasive ability and promotes malignant pleural effusion formation through activation of the CXCL12-CXCR4 pathway

    PubMed Central

    Tsai, Meng-Feng; Chang, Tzu-Hua; Wu, Shang-Gin; Yang, Hsiao-Yin; Hsu, Yi-Chiung; Yang, Pan-Chyr; Shih, Jin-Yuan

    2015-01-01

    Malignant pleural effusion (MPE) is a common clinical problem in non-small cell lung carcinoma (NSCLC) patients; however, the underlying mechanisms are still largely unknown. Recent studies indicate that the frequency of the L858R mutant form of the epidermal growth factor receptor (EGFR-L858R) is higher in lung adenocarcinoma with MPE than in surgically resected specimens, suggesting that lung adenocarcinoma cells harboring this mutation tend to invade the adjacent pleural cavity. The purpose of this study was to clarify the relationship between the EGFR-L858R mutation and cancer cell invasion ability and to investigate the molecular mechanisms involved in the formation of MPE. We found that expression of EGFR-L858R in lung cancer cells resulted in up-regulation of the CXCR4 in association with increased cancer cell invasive ability and MPE formation. Ectopic expression of EGFR-L858R in lung cancer cells acted through activation of ERK signaling pathways to induce the expression of CXCR4. We also indicated that Inhibition of CXCR4 with small interfering RNA, neutralizing antibody, or receptor antagonist significantly suppressed the EGFR-L858R–dependent cell invasion. These results suggest that targeting the production of CXCR4 and blocking the CXCL12-CXCR4 pathway might be effective strategies for treating NSCLCs harboring a specific type of EGFR mutation. PMID:26338423

  20. Non-coding RNAs in crop genetic modification: considerations and predictable environmental risk assessments (ERA).

    PubMed

    Ramesh, S V

    2013-09-01

    Of late non-coding RNAs (ncRNAs)-mediated gene silencing is an influential tool deliberately deployed to negatively regulate the expression of targeted genes. In addition to the widely employed small interfering RNA (siRNA)-mediated gene silencing approach, other variants like artificial miRNA (amiRNA), miRNA mimics, and artificial transacting siRNAs (tasiRNAs) are being explored and successfully deployed in developing non-coding RNA-based genetically modified plants. The ncRNA-based gene manipulations are typified with mobile nature of silencing signals, interference from viral genome-derived suppressor proteins, and an obligation for meticulous computational analysis to prevaricate any inadvertent effects. In a broad sense, risk assessment inquiries for genetically modified plants based on the expression of ncRNAs are competently addressed by the environmental risk assessment (ERA) models, currently in vogue, designed for the first generation transgenic plants which are based on the expression of heterologous proteins. Nevertheless, transgenic plants functioning on the foundation of ncRNAs warrant due attention with respect to their unique attributes like off-target or non-target gene silencing effects, small RNAs (sRNAs) persistence, food and feed safety assessments, problems in detection and tracking of sRNAs in food, impact of ncRNAs in plant protection measures, effect of mutations etc. The role of recent developments in sequencing techniques like next generation sequencing (NGS) and the ERA paradigm of the different countries in vogue are also discussed in the context of ncRNA-based gene manipulations.

  1. Establishment of lysozyme gene RNA interference systemand its involvement in salinity tolerance in sea cucumber (Apostichopus japonicus).

    PubMed

    Tian, Yi; Jiang, Yanan; Shang, Yanpeng; Zhang, Yu-Peng; Geng, Chen-Fan; Wang, Li-Qiang; Chang, Ya-Qing

    2017-06-01

    The lysozyme gene was silenced using RNA interference (RNAi) to analyze the function of lysozyme in sea cucumber under salt stress. The interfering efficiency of four lysozyme RNAi oligos ranged from 0.55 to 0.70. From the four oligos, p-miR-L245 was used for further interfering experiments because it had the best silencing efficiency. Peristomial film injection of p-miR-L245 (10 μg) was used for further interfering experiments. The lowest gene expression, determined by RT-PCR assay, in muscle, coelomic fluid, and parapodium occurred 48 h after p-miR-L245 injection, while that of body wall and tube foot was 96 h and 24 h, respectively. Lysozyme activity in muscle and body wall was significantly lower than the controls. The lowest lysozyme activity in muscle, body wall and parapodium, was found at 48, 72, and 48 h, respectively, which was consistent with the transcription expression of lysozyme. The lowest point of lysozyme activity was at 96 h in coelomic fluid and tube foot, which was laid behind lysozyme expression in transcription level. The expression profile of the lysozyme transcription level and lysozyme activity in the body wall and tube foot increased at 12 h after p-miR-L245 injection before the interference effect appeared. NKA gene expression was expressed at a high level in the positive control (PC) and negative control (NC) groups at 12, 24, and 48 h, while NKA was expressed at low levels in the lysozyme RNAi injection group at 12 and 24 h. The level of NKA gene expression recovered to the level of the PC and NC group at 48, 72, and 96 h after the lysozyme RNAi injection. NKCC1 gene expression was high in the PC and NC groups at 96 h, while the NKCC1 was expressed at a low level 96 h after lysozyme RNAi injection. The results suggest that lysozyme decay involves NKA and NKCC1 gene expression under salinity 18 psμ. The K + and Cl - concentration after lysozyme RNAi injection was lower than in the PC and NC group. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. New Type of BACE1 siRNA Delivery to Cells

    PubMed Central

    Jabłkowski, Maciej; Szemraj, Maciej; Oszajca, Katarzyna; Janiszewska, Grażyna; Bartkowiak, Jacek; Szemraj, Janusz

    2014-01-01

    Background Small interfering RNA (siRNA) gene therapy is a new molecular approach in the search for an efficient therapy for Alzheimer disease (AD), based on the principle of RNA interference. Reducing BACE activity can have great therapeutic potential for the treatment of AD. In this study, receptor-mediated delivery was used to deliver opioid peptide-conjugated BACE 1 to INR-32 human neuroblastoma cells. Material/Methods An INR-32 human neuroblastoma cell line was stably transfected to express the APP cDNA coding fragment containing the predicted sites for cleavage by α, β, or γ-secretase. This was then treated with BACE 1 siRNA to silence BACE gene expression. BACE gene transcription and translation was determined using BACE-1 siRNA cross-linked with opioid peptide, together with RT-PCR, Western blot analysis, and ELISA. Results Receptor-mediated delivery was used to introduce BACE1 siRNA to the APP – INR 32 human neuroblastoma cells. Decreased BACE mRNA and protein expression were observed after the cells were transfected with BACE1 siRNA. Conclusions Delivery of BACE1 siRNA appears to specifically reduce the cleavage of APP by inhibiting BACE1 activity. PMID:25491230

  3. Androstenediol inhibits the trauma-hemorrhage-induced increase in caspase-3 by downregulating the inducible nitric oxide synthase pathway.

    PubMed

    Kiang, Juliann G; Peckham, Russell M; Duke, Leah E; Shimizu, Tomoharu; Chaudry, Irshad H; Tsokos, George C

    2007-03-01

    Soft tissue trauma and hemorrhage (T-H) diminishes various aspects of liver function, while it increases hepatic nitrate/nitrite, inducible nitric oxide synthase (iNOS), and endothelin-1 levels. Treatment with androstenediol (AED) inhibits the T-H-induced alterations of the above parameters. We sought to identify the molecular events underlying the beneficial effect of AED. Exposure of rats to T-H significantly increased the caspase-3 activity and protein, whereas treatment with AED significantly limited these increases. AED treatment also suppressed the T-H-induced increase in iNOS by effectively altering the levels of key transcription factors involved in the regulation of iNOS expression. Immunoprecipitation and immunoblotting analyses indicate that T-H increased apoptosome formation, and AED treatment significantly decreased it. Modulating the iNOS protein by transfecting cells with iNOS gene or small interfering RNA further confirmed the correlation between iNOS and caspase-3. Our data indicate that AED limits caspase-3 expression by suppressing the expression of transcription factors involved in the production of iNOS, resulting in decreased apoptosome. AED can potentially be a useful adjuvant for limiting liver apoptosis following T-H shock.

  4. Knockdown of RNA interference pathway genes impacts the fitness of western corn rootworm.

    PubMed

    Davis-Vogel, Courtney; Ortiz, Angel; Procyk, Lisa; Robeson, Jonathan; Kassa, Adane; Wang, Yiwei; Huang, Emily; Walker, Carl; Sethi, Amit; Nelson, Mark E; Sashital, Dipali G

    2018-05-18

    Western corn rootworm (Diabrotica virgifera virgifera) is a serious agricultural pest known for its high adaptability to various management strategies, giving rise to a continual need for new control options. Transgenic maize expressing insecticidal RNAs represents a novel mode of action for rootworm management that is dependent on the RNA interference (RNAi) pathways of the insect for efficacy. Preliminary evidence suggests that western corn rootworm could develop broad resistance to all insecticidal RNAs through changes in RNAi pathway genes; however, the likelihood of field-evolved resistance occurring through this mechanism remains unclear. In the current study, eight key genes involved in facilitating interference in the microRNA and small interfering RNA pathways were targeted for knockdown in order to evaluate impact on fitness of western corn rootworm. These genes include drosha, dicer-1, dicer-2, pasha, loquacious, r2d2, argonaute 1, and argonaute 2. Depletion of targeted transcripts in rootworm larvae led to changes in microRNA expression, decreased ability to pupate, reduced adult beetle emergence, and diminished reproductive capacity. The observed effects do not support evolution of resistance through changes in expression of these eight genes due to reduced insect fitness.

  5. Tolerogenic treatment of lupus mice with consensus peptide induces Foxp3-expressing, apoptosis-resistant, TGFbeta-secreting CD8+ T cell suppressors.

    PubMed

    Hahn, Bevra H; Singh, Ram Pyare; La Cava, Antonio; Ebling, Fanny M

    2005-12-01

    Lupus-prone (NZB x NZW)F1 mice spontaneously develop elevated titers of anti-DNA Abs that contain T cell determinants in their V(H) regions. We have previously shown that tolerization with an artificial peptide based on these T cell determinants (pConsensus (pCons)) can block production of anti-DNA Abs and prolong survival of the mice. In this study, we show that this protection depends in part on the generation of peripheral TGFbeta- and Foxp3-expressing inhibitory CD8+ (Ti) cells. These CD8+ Ti cells suppress anti-DNA IgG production both in vitro and in vivo and require up-regulated expression of both Foxp3 and TGFbeta to exert their suppressive function, as indicated by microarray analyses, small interfering RNA inhibition studies, and blocking experiments. Additionally, CD8+ Ti cells from pCons-tolerized mice were longer-lived suppressors that up-regulated expression of Bcl-2 and were more resistant to apoptosis than similar cells from naive mice. These data indicate that clinical suppression of autoimmunity after administration of pCons depends in part on the generation of CD8+ Ti cells that suppress secretion of anti-DNA Ig using mechanisms that include Foxp3, TGFbeta, and resistance to apoptosis.

  6. Notch signaling sustains the expression of Mcl-1 and the activity of eIF4E to promote cell survival in CLL

    PubMed Central

    De Falco, Filomena; Sabatini, Rita; Del Papa, Beatrice; Falzetti, Franca; Di Ianni, Mauro; Sportoletti, Paolo; Baldoni, Stefano; Screpanti, Isabella; Marconi, Pierfrancesco; Rosati, Emanuela

    2015-01-01

    In chronic lymphocytic leukemia (CLL), Notch1 and Notch2 signaling is constitutively activated and contributes to apoptosis resistance. We show that genetic inhibition of either Notch1 or Notch2, through small-interfering RNA, increases apoptosis of CLL cells and is associated with decreased levels of the anti-apoptotic protein Mcl-1. Thus, Notch signaling promotes CLL cell survival at least in part by sustaining Mcl-1 expression. In CLL cells, an enhanced Notch activation also contributes to the increase in Mcl-1 expression and cell survival induced by IL-4. Mcl-1 downregulation by Notch targeting is not due to reduced transcription or degradation by caspases, but in part, to increased degradation by the proteasome. Mcl-1 downregulation by Notch targeting is also accompanied by reduced phosphorylation of eukaryotic translation initiation factor 4E (eIF4E), suggesting that this protein is another target of Notch signaling in CLL cells. Overall, we show that Notch signaling sustains CLL cell survival by promoting Mcl-1 expression and eIF4E activity, and given the oncogenic role of these factors, we underscore the therapeutic potential of Notch inhibition in CLL. PMID:26041884

  7. Silencing of decoy receptor 3 (DcR3) expression by siRNA in pancreatic carcinoma cells induces Fas ligand-mediated apoptosis in vitro and in vivo.

    PubMed

    Zhou, Jian; Song, Shiduo; He, Songbin; Wang, Zhenxin; Zhang, Bing; Li, Dechun; Zhu, Dongming

    2013-09-01

    Decoy receptor 3 (DcR3) is abundantly expressed in human tumors and protects cells from a wide range of apoptotic stimuli. In this study, we demonstrate that DcR3 is overexpressed in pancreatic carcinoma cells, and that the pancreatic carcinoma cell lines, Panc-1 and SW1990, are resistant to Fas ligand (FasL)-mediated apoptosis. To further define the function of DcR3 in cell growth and apoptosis, we used small interfering RNA (siRNA) to knockdown the expression of the DcR3 gene in Panc-1 and SW1990 cells. Our results revealed that the silencing of DcR3 expression enhanced the inhibitory effects of FasL and reduced the capabiltiy of the cells for proliferation and colony formation in vitro. In addition, the downregulation of DcR3 modulated the cell apoptotic regulators, Fas-associated death domain (FADD), caspase‑3 and caspase‑8, thus triggering cell apoptosis. Furthermore, the knockdown of DcR3 inhibited the growth of Panc-1 tumor xenografts. Taken together, our findings indicate that DcR3 is important in cancer progression and may be a used as a potential therapeutic target for the gene therapy of pancreatic carcinoma.

  8. Fine regulation of RhoA and Rock is required for skeletal muscle differentiation.

    PubMed

    Castellani, Loriana; Salvati, Erica; Alemà, Stefano; Falcone, Germana

    2006-06-02

    The RhoA GTPase controls a variety of cell functions such as cell motility, cell growth, and gene expression. Previous studies suggested that RhoA mediates signaling inputs that promote skeletal myogenic differentiation. We show here that levels and activity of RhoA protein are down-regulated in both primary avian myoblasts and mouse satellite cells undergoing differentiation, suggesting that a fine regulation of this GTPase is required. In addition, ectopic expression of activated RhoA in primary quail myocytes, but not in mouse myocytes, inhibits accumulation of muscle-specific proteins and cell fusion. By disrupting RhoA signaling with specific inhibitors, we have shown that this GTPase, although required for cell identity in proliferating myoblasts, is not essential for commitment to terminal differentiation and muscle gene expression. Ectopic expression of an activated form of its downstream effector, Rock, impairs differentiation of both avian and mouse myoblasts. Conversely, Rock inhibition with specific inhibitors and small interfering RNA-mediated gene silencing leads to accelerated progression in the lineage and enhanced cell fusion, underscoring a negative regulatory function of Rock in myogenesis. Finally, we have reported that Rock acts independently from RhoA in preventing myoblast exit from the cell cycle and commitment to differentiation and may receive signaling inputs from Raf-1 kinase.

  9. An R132H Mutation in Isocitrate Dehydrogenase 1 Enhances p21 Expression and Inhibits Phosphorylation of Retinoblastoma Protein in Glioma Cells

    PubMed Central

    Miyata, Satsuki; Urabe, Masashi; Gomi, Akira; Nagai, Mutsumi; Yamaguchi, Takashi; Tsukahara, Tomonori; Mizukami, Hiroaki; Kume, Akihiro; Ozawa, Keiya; Watanabe, Eiju

    2013-01-01

    Cytosolic isocitrate dehydrogenase 1 (IDH1) with an R132H mutation in brain tumors loses its enzymatic activity for catalyzing isocitrate to α-ketoglutarate (α-KG) and acquires new activity whereby it converts α-KG to 2-hydroxyglutarate. The IDH1 mutation induces down-regulation of tricarboxylic acid cycle intermediates and up-regulation of lipid metabolism. Sterol regulatory element-binding proteins (SREBPs) regulate not only the synthesis of cholesterol and fatty acids but also acyclin-dependent kinase inhibitor p21 that halts the cell cycle at G1. Here we show that SREBPs were up-regulated in U87 human glioblastoma cells transfected with an IDH1R132H-expression plasmid. Small interfering ribonucleic acid (siRNA) for SREBP1 specifically decreased p21 messenger RNA (mRNA) levels independent of the p53 pathway. In IDH1R132H-expressing U87 cells, phosphorylation of Retinoblastoma (Rb) protein also decreased. We propose that metabolic changes induced by the IDH1 mutation enhance p21 expression via SREBP1 and inhibit phosphorylation of Rb, which slows progressionof the cell cycle and may be associated with non-aggressive features of gliomas with an IDH1 mutation. PMID:24077277

  10. An R132H mutation in isocitrate dehydrogenase 1 enhances p21 expression and inhibits phosphorylation of retinoblastoma protein in glioma cells.

    PubMed

    Miyata, Satsuki; Urabe, Masashi; Gomi, Akira; Nagai, Mutsumi; Yamaguchi, Takashi; Tsukahara, Tomonori; Mizukami, Hiroaki; Kume, Akihiro; Ozawa, Keiya; Watanabe, Eiju

    2013-01-01

    Cytosolic isocitrate dehydrogenase 1 (IDH1) with an R132H mutation in brain tumors loses its enzymatic activity for catalyzing isocitrate to α-ketoglutarate (α-KG) and acquires new activity whereby it converts α-KG to 2-hydroxyglutarate. The IDH1 mutation induces down-regulation of tricarboxylic acid cycle intermediates and up-regulation of lipid metabolism. Sterol regulatory element-binding proteins (SREBPs) regulate not only the synthesis of cholesterol and fatty acids but also acyclin-dependent kinase inhibitor p21 that halts the cell cycle at G1. Here we show that SREBPs were up-regulated in U87 human glioblastoma cells transfected with an IDH1(R132H)-expression plasmid. Small interfering ribonucleic acid (siRNA) for SREBP1 specifically decreased p21 messenger RNA (mRNA) levels independent of the p53 pathway. In IDH1(R132H)-expressing U87 cells, phosphorylation of Retinoblastoma (Rb) protein also decreased. We propose that metabolic changes induced by the IDH1 mutation enhance p21 expression via SREBP1 and inhibit phosphorylation of Rb, which slows progression of the cell cycle and may be associated with non-aggressive features of gliomas with an IDH1 mutation.

  11. Small silencing RNAs: an expanding universe.

    PubMed

    Ghildiyal, Megha; Zamore, Phillip D

    2009-02-01

    Since the discovery in 1993 of the first small silencing RNA, a dizzying number of small RNA classes have been identified, including microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). These classes differ in their biogenesis, their modes of target regulation and in the biological pathways they regulate. There is a growing realization that, despite their differences, these distinct small RNA pathways are interconnected, and that small RNA pathways compete and collaborate as they regulate genes and protect the genome from external and internal threats.

  12. PsRobot: a web-based plant small RNA meta-analysis toolbox.

    PubMed

    Wu, Hua-Jun; Ma, Ying-Ke; Chen, Tong; Wang, Meng; Wang, Xiu-Jie

    2012-07-01

    Small RNAs (smRNAs) in plants, mainly microRNAs and small interfering RNAs, play important roles in both transcriptional and post-transcriptional gene regulation. The broad application of high-throughput sequencing technology has made routinely generation of bulk smRNA sequences in laboratories possible, thus has significantly increased the need for batch analysis tools. PsRobot is a web-based easy-to-use tool dedicated to the identification of smRNAs with stem-loop shaped precursors (such as microRNAs and short hairpin RNAs) and their target genes/transcripts. It performs fast analysis to identify smRNAs with stem-loop shaped precursors among batch input data and predicts their targets using a modified Smith-Waterman algorithm. PsRobot integrates the expression data of smRNAs in major plant smRNA biogenesis gene mutants and smRNA-associated protein complexes to give clues to the smRNA generation and functional processes. Besides improved specificity, the reliability of smRNA target prediction results can also be evaluated by mRNA cleavage (degradome) data. The cross species conservation statuses and the multiplicity of smRNA target sites are also provided. PsRobot is freely accessible at http://omicslab.genetics.ac.cn/psRobot/.

  13. New Insight into Inter-kingdom Communication: Horizontal Transfer of Mobile Small RNAs.

    PubMed

    Zhou, Geyu; Zhou, Yu; Chen, Xi

    2017-01-01

    Small RNAs (sRNAs), including small interfering RNAs (siRNAs) and microRNAs (miRNAs), are conventionally regarded as critical molecular regulators of various intracellular processes. However, recent accumulating evidence indicates that sRNAs can be transferred within cells and tissues and even across species. In plants, nematodes and microbes, these mobile sRNAs can mediate inter-kingdom communication, environmental sensing, gene expression regulation, host-parasite defense and many other biological functions. Strikingly, a recent study by our group suggested that ingested plant miRNAs are transferred to blood, accumulate in tissues and regulate transcripts in consuming animals. While our and other independent groups' subsequent studies further explored the emerging field of sRNA-mediated crosstalk between species, some groups reported negative results and questioned its general applicability. Thus, further studies carefully evaluating the horizontal transfer of exogenous sRNAs and its potential biological functions are urgently required. Here, we review the current state of knowledge in the field of the horizontal transfer of mobile sRNAs, suggest its future directions and key points for examination and discuss its potential mechanisms and application prospects in nutrition, agriculture and medicine.

  14. Peptides Used in the Delivery of Small Noncoding RNA

    PubMed Central

    2015-01-01

    RNA interference (RNAi) is an endogenous process in which small noncoding RNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs), post-transcriptionally regulate gene expressions. In general, siRNA and miRNA/miRNA mimics are similar in nature and activity except their origin and specificity. Although both siRNAs and miRNAs have been extensively studied as novel therapeutics for a wide range of diseases, the large molecular weight, anionic surface charges, instability in blood circulation, and intracellular trafficking to the RISC after cellular uptake have hindered the translation of these RNAs from bench to clinic. As a result, a great variety of delivery systems have been investigated for safe and effective delivery of small noncoding RNAs. Among these systems, peptides, especially cationic peptides, have emerged as a promising type of carrier due to their inherent ability to condense negatively charged RNAs, ease of synthesis, controllable size, and tunable structure. In this review, we will focus on three major types of cationic peptides, including poly(l-lysine) (PLL), protamine, and cell penetrating peptides (CPP), as well as peptide targeting ligands that have been extensively used in RNA delivery. The delivery strategies, applications, and limitations of these cationic peptides in siRNA/miRNA delivery will be discussed. PMID:25157701

  15. Intrinsic and Extrinsic Regulation of PD-L2 Expression in Oncogene-Driven Non-Small Cell Lung Cancer.

    PubMed

    Shibahara, Daisuke; Tanaka, Kentaro; Iwama, Eiji; Kubo, Naoki; Ota, Keiichi; Azuma, Koichi; Harada, Taishi; Fujita, Jiro; Nakanishi, Yoichi; Okamoto, Isamu

    2018-03-27

    The interaction of programmed cell death ligand 2 (PD-L2) with programmed cell death 1 is implicated in tumor immune escape. The regulation of PD-L2 expression in tumor cells has remained unclear, however. We here examined intrinsic and extrinsic regulation of PD-L2 expression in NSCLC. PD-L2 expression was evaluated by reverse transcription and real-time polymerase chain reaction analysis and by flow cytometry. BEAS-2B cells stably expressing an activated mutant form of EGFR or the echinoderm microtubule associated protein like 4 (EML4)-ALK receptor tyrosine kinase fusion oncoprotein manifested increased expression of PD-L2 at both the mRNA and protein levels. Furthermore, treatment of NSCLC cell lines that harbor such driver oncogenes with corresponding EGFR or ALK tyrosine kinase inhibitors or depletion of EGFR or ALK by small interfering RNA transfection suppressed expression of PD-L2, demonstrating that activating EGFR mutations or echinoderm microtubule associated protein like 4 gene (EML4)-ALK receptor tyrosine kinase gene (ALK) fusion intrinsically induce PD-L2 expression. We also found that interferon gamma (IFN-γ) extrinsically induced expression of PD-L2 through signal transducer and activator of transcription 1 signaling in NSCLC cells. Oncogene-driven expression of PD-L2 in NSCLC cells was inhibited by knockdown of the transcription factors signal transducer and activator of transcription 3 (STAT3) or c-FOS. IFN-γ also activated STAT3 and c-FOS, suggesting that these proteins may also contribute to the extrinsic induction of PD-L2 expression. Expression of PD-L2 is induced intrinsically by activating EGFR mutations or EML4-ALK fusion and extrinsically by IFN-γ, with STAT3 and c-FOS possibly contributing to both intrinsic and extrinsic pathways. Our results thus provide insight into the complexity of tumor immune escape in NSCLC. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  16. Using small RNA deep sequencing data to detect siRNA duplexes induced by plant viruses

    USDA-ARS?s Scientific Manuscript database

    Small interfering RNA (siRNA) duplexes are produced in plants during virus infection, which are short (usually 21 to 24-base pair) double-stranded RNAs (dsRNAs) with several overhanging nucleotides on the 5' end and 3' end. The investigation of the siRNA duplexes is useful to better understand the R...

  17. Divergent patterns of endogenous small RNA populations from seed and vegetative tissues of Glycine max

    USDA-ARS?s Scientific Manuscript database

    Background: Small non-coding RNAs (smRNAs) are known to have major roles in gene regulation in eukaryotes. In plants, knowledge of the biogenesis and mechanisms of action of smRNA classes including microRNAs (miRNAs), short interfering RNAs (siRNAs), and trans-acting siRNAs (tasiRNAs) has been gaine...

  18. Insulin Inhibits Nrf2 Gene Expression via Heterogeneous Nuclear Ribonucleoprotein F/K in Diabetic Mice

    PubMed Central

    Ghosh, Anindya; Abdo, Shaaban; Zhao, Shuiling; Wu, Chin-Han; Shi, Yixuan; Lo, Chao-Sheng; Chenier, Isabelle; Alquier, Thierry; Filep, Janos G.; Ingelfinger, Julie R.; Zhang, Shao-Ling

    2017-01-01

    Oxidative stress induces endogenous antioxidants via nuclear factor erythroid 2–related factor 2 (Nrf2), potentially preventing tissue injury. We investigated whether insulin affects renal Nrf2 expression in type 1 diabetes (T1D) and studied its underlying mechanism. Insulin normalized hyperglycemia, hypertension, oxidative stress, and renal injury; inhibited renal Nrf2 and angiotensinogen (Agt) gene expression; and upregulated heterogeneous nuclear ribonucleoprotein F and K (hnRNP F and hnRNP K) expression in Akita mice with T1D. In immortalized rat renal proximal tubular cells, insulin suppressed Nrf2 and Agt but stimulated hnRNP F and hnRNP K gene transcription in high glucose via p44/42 mitogen-activated protein kinase signaling. Transfection with small interfering RNAs of p44/42 MAPK, hnRNP F, or hnRNP K blocked insulin inhibition of Nrf2 gene transcription. Insulin curbed Nrf2 promoter activity via a specific DNA-responsive element that binds hnRNP F/K, and hnRNP F/K overexpression curtailed Nrf2 promoter activity. In hyperinsulinemic-euglycemic mice, renal Nrf2 and Agt expression was downregulated, whereas hnRNP F/K expression was upregulated. Thus, the beneficial actions of insulin in diabetic nephropathy appear to be mediated, in part, by suppressing renal Nrf2 and Agt gene transcription and preventing Nrf2 stimulation of Agt expression via hnRNP F/K. These findings identify hnRNP F/K and Nrf2 as potential therapeutic targets in diabetes. PMID:28324005

  19. Upregulation of GRAIL is associated with impaired CD4 T cell proliferation in sepsis.

    PubMed

    Aziz, Monowar; Yang, Weng-Lang; Matsuo, Shingo; Sharma, Archna; Zhou, Mian; Wang, Ping

    2014-03-01

    The loss of numbers and functionality of CD4 T cells is observed in sepsis; however, the mechanism remains elusive. Gene related to anergy in lymphocytes (GRAIL) is critical for the impairment of CD4 T cell proliferation. We therefore sought to examine the role of GRAIL in CD4 T cell proliferation during sepsis. Sepsis was induced in 10-wk-old male C57BL/6 mice by cecal ligation and puncture. Splenocytes were isolated and subjected to flow cytometry to determine CD4 T cell contents. CD4 T cell proliferation was assessed by CFSE staining, and the expression of GRAIL in splenocytes was measured by immunohistochemistry, real-time PCR, and flow cytometry. The expressions of IL-2 and early growth response-2 were determined by real-time PCR. As compared with shams, the numbers of CD4 T cells were significantly reduced in spleens. Septic CD4 T cells were less efficient in proliferation than shams. The IL-2 expression was significantly reduced, whereas the GRAIL expression was significantly increased in septic mice splenocytes as compared with shams. The small interfering RNA-mediated knockdown of GRAIL expression re-established the CD4 T cell proliferation ability ex vivo. Similarly, the treatment with recombinant murine IL-2 to the septic CD4 T cells restored their proliferation ability by downregulating GRAIL expression. Our findings reveal a novel association of the increased GRAIL expression with impaired CD4 T cell proliferation, implicating an emerging therapeutic tool in sepsis.

  20. Role of SIRT1 in heat stress- and lipopolysaccharide-induced immune and defense gene expression in human dental pulp cells.

    PubMed

    Lee, Sang-Im; Min, Kyung-San; Bae, Won-Jung; Lee, Young-Man; Lee, So-Youn; Lee, Eui-Suk; Kim, Eun-Cheol

    2011-11-01

    Although bacterial infection and heat stress are common causes of injury in human dental pulp cells (HDPCs), little is known about the potential defense mechanisms mediating their effects. This study examined the role of SIRT1 in mediating heat stress and lipopolysaccharide (LPS)-induced immune and defense gene expression in HDPCs. HDPCs were exposed to heat stress (42°C) for 30 minutes after stimulation with LPS (1 μg/mL) for 48 hours. The expression of defense genes was evaluated by reverse-transcriptase polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay. LPS and heat stress synergistically increased the expression of SIRT1 and immune and defense genes such as interleukin (IL)-8, hemeoxygenase-1 (HO-1), and human β-defensin 2 (hBD-2). Resveratrol enhanced LPS- and heat stress-induced expression of HO-1 and hBD-2 but reduced IL-8 messenger RNA levels. The stimulation of HO-1 and hBD-2 messenger RNA expression by LPS and heat stress was inhibited by sirtinol; SIRT1 small interfering RNA; and inhibitors of p38, ERK, JNK, and nuclear factor κB. These results show for the first time that SIRT1 mediates the induction of immune and defense gene expression in HDPCs by LPS and heat stress. SIRT1 may play a pivotal role in host immune defense system in HDPCS. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Aberrant calreticulin expression is involved in the dedifferentiation of dedifferentiated liposarcoma.

    PubMed

    Hisaoka, Masanori; Matsuyama, Atsuji; Nakamoto, Mitsuhiro

    2012-05-01

    Liposarcomas are a representative group of soft tissue sarcomas with variably hampered adipogenesis, which is most exemplified by its dedifferentiated subtype. However, the factor(s) responsible for inhibiting adipocyte differentiation remains unknown. A recent gene expression profiling study identified several unique genes that were highly expressed in dedifferentiated liposarcoma, and the gene encoding calreticulin (CALR), a major Ca(2+)-buffering protein that can inhibit adipocyte differentiation, was found to be overexpressed. Thus, we investigated the expression of calreticulin in 45 cases of liposarcomas, including 15 dedifferentiated tumors, at both the protein and mRNA levels. Immunohistochemically, calreticulin was consistently expressed in the dedifferentiated areas of dedifferentiated liposarcomas and commonly observed in atypical stromal cells and/or lipoblasts in the well-differentiated areas (87%), whereas large vacuolated adipocytic cells in either the tumors or normal fat were essentially negative. These results were further supported by the findings of Western blot and quantitative RT-PCR analyses. Although abnormalities in 19p13.1-13.2 where CALR is localized were uncommon in the dedifferentiated liposarcomas examined by fluorescence in situ hybridization, expression of miR-1257, a putative microRNA that targets calreticulin, was suppressed in the dedifferentiated subtype. The down-regulation of calreticulin by small-interfering RNA could induce adipogenesis in dedifferentiated liposarcoma cells and reduce cell proliferation. Our results therefore suggest that aberrantly expressed calreticulin in dedifferentiated liposarcoma is involved in its dedifferenitation and/or tumor progression. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Eotaxin-1 promotes prostate cancer cell invasion via activation of the CCR3-ERK pathway and upregulation of MMP-3 expression.

    PubMed

    Zhu, Feng; Liu, Pei; Li, Jun; Zhang, Yan

    2014-05-01

    Chemokines have been reported to play crucial roles in tumor progression. Eotaxin-1 (CCL11), a member of the CC chemokine family, is elevated in many types of human cancer. Here, to reveal the molecular mechanisms of eotaxin-1 in prostate cancer cell invasion, the expression of eotaxin-1 receptors [CC chemokine receptor (CCR)2, CCR3 and CCR5] were silenced by small interfering RNA (siRNA). The ERK pathway was inhibited by the specific MEK inhibitor U0126. The role of eotaxin-1 and the CCR3-ERK pathway in prostate cancer cell invasion was assessed by invasion and migration assays. MMP-3 expression was detected by real-time PCR and ELISA assay. The results demonstrated that eotaxin-1 promoted the invasion and migration of DU-145 cells, and increased ERK1/2 activation and MMP-3 expression. Knockdown of CCR3 inhibited the invasion and migration of prostate cancer cells, and attenuated the eotaxin-1-induced ERK1/2 activation and MMP-3 expression. Furthermore, inactivation of the ERK pathway suppressed the eotaxin‑1-promoted invasion and migration, and decreased MMP-3 expression in the prostate cancer cells. Together, the present study suggests that eotaxin-1 increases MMP-3 expression via the CCR3-ERK pathway, thereby promoting prostate cancer cell invasion and migration. Thus, therapies that block eotaxin-1 and CCR3 may be effective interventions for prostate cancer.

  3. Hypomethylation associated enhanced transcription of trefoil factor-3 mediates tamoxifen-stimulated oncogenicity of ER+ endometrial carcinoma cells.

    PubMed

    Pandey, Vijay; Zhang, Min; Chong, Qing-Yun; You, Mingliang; Raquib, Ainiah Rushdiana; Pandey, Amit K; Liu, Dong-Xu; Liu, Liang; Ma, Lan; Jha, Sudhakar; Wu, Zheng-Sheng; Zhu, Tao; Lobie, Peter E

    2017-09-29

    Tamoxifen (TAM) is widely used as an adjuvant therapy for women with breast cancer (BC). However, TAM possesses partial oestrogenic activity in the uterus and its use has been associated with an increased incidence of endometrial carcinoma (EC). The molecular mechanism for these observations is not well understood. Herein, we demonstrated that forced expression of Trefoil factor 3 ( TFF3) , in oestrogen receptor-positive (ER+) EC cells significantly increased cell cycle progression, cell survival, anchorage-independent growth, invasiveness and tumour growth in xenograft models. Clinically, elevated TFF3 protein expression was observed in EC compared with normal endometrial tissue, and its increased expression in EC was significantly associated with myometrial invasion. TAM exposure increased expression of TFF3 in ER+ EC cells and its elevated expression resulted in increased oncogenicity and invasiveness. TAM-stimulated expression of TFF3 in EC cells was associated with hypomethylation of the TFF3 promoter sequence and c-JUN/SP1-dependent transcriptional activation. In addition, small interfering ( si) RNA -mediated depletion or polyclonal antibody inhibition of TFF3 significantly abrogated oncogenicity and invasiveness in EC cells consequent to TAM induction or forced expression of TFF3. Hence, TAM-stimulated upregulation of TFF3 in EC cells was critical in promoting EC progression associated with TAM treatment. Importantly, inhibition of TFF3 function might be an attractive molecular modality to abrogate the stimulatory effects of TAM on endometrial tissue and to limit the progression of EC.

  4. Knockdown of DIXDC1 Inhibits the Proliferation and Migration of Human Glioma Cells.

    PubMed

    Chen, Jianguo; Shen, Chaoyan; Shi, Jinlong; Shen, Jianhong; Chen, Wenjuan; Sun, Jie; Fan, Shaocheng; Bei, Yuanqi; Xu, Peng; Chang, Hao; Jiang, Rui; Hua, Lu; Ji, Bin; Huang, Qingfeng

    2017-08-01

    DIX domain containing 1 (DIXDC1), the human homolog of coiled-coil-DIX1 (Ccd1), is a positive regulator of Wnt signaling pathway. Recently, it was found to act as a candidate oncogene in colon cancer, non-small-cell lung cancer, and gastric cancer. In this study, we aimed to investigate the clinical significance of DIXDC1 expression in human glioma and its biological function in glioma cells. Western blot and immunohistochemistry analysis showed that DIXDC1 was overexpressed in glioma tissues and glioma cell lines. The expression level of DIXDC1 was evidently linked to glioma pathological grade and Ki-67 expression. Kaplan-Meier curve showed that high expression of DIXDC1 may lead to poor outcome of glioma patients. Serum starvation and refeeding assay indicated that the expression of DIXDC1 was associated with cell cycle. To determine whether DIXDC1 could regulate the proliferation and migration of glioma cells, we transfected glioma cells with interfering RNA-targeting DIXDC1; investigated cell proliferation with Cell Counting Kit (CCK)-8, flow cytometry assays, and colony formation analyses; and investigated cell migration with wound healing assays and transwell assays. According to our data, knockdown of DIXDC1 significantly inhibited proliferation and migration of glioma cells. These data implied that DIXDC1 might participate in the development of glioma, suggesting that DIXDC1 can become a potential therapeutic strategy for glioma.

  5. The Nuclear Receptor Corepressor Has Organizational Effects within the Developing Amygdala on Juvenile Social Play and Anxiety-Like Behavior

    PubMed Central

    Jessen, Heather M.; Kolodkin, Mira H.; Bychowski, Meaghan E.; Auger, Catherine J.; Auger, Anthony P.

    2010-01-01

    Nuclear receptor function on DNA is regulated by the balanced recruitment of coregulatory complexes. Recruited proteins that increase gene expression are called coactivators, and those that decrease gene expression are called corepressors. Little is known about the role of corepressors, such as nuclear receptor corepressor (NCoR), on the organization of behavior. We used real-time PCR to show that NCoR mRNA levels are sexually dimorphic, that females express higher levels of NCoR mRNA within the developing amygdala and hypothalamus, and that NCoR mRNA levels are reduced by estradiol treatment. To investigate the functional role of NCoR on juvenile social behavior, we infused small interfering RNA targeted against NCoR within the developing rat amygdala and assessed the enduring impact on juvenile social play behavior, sociability, and anxiety-like behavior. As expected, control males exhibited higher levels of juvenile social play than control females. Reducing NCoR expression during development further increased juvenile play in males only. Interestingly, decreased NCoR expression within the developing amygdala had lasting effects on increasing juvenile anxiety-like behavior in males and females. These data suggest that the corepressor NCoR functions to blunt sex differences in juvenile play behavior, a sexually dimorphic and hormone-dependent behavior, and appears critical for appropriate anxiety-like behavior in juvenile males and females. PMID:20051490

  6. The nuclear receptor corepressor has organizational effects within the developing amygdala on juvenile social play and anxiety-like behavior.

    PubMed

    Jessen, Heather M; Kolodkin, Mira H; Bychowski, Meaghan E; Auger, Catherine J; Auger, Anthony P

    2010-03-01

    Nuclear receptor function on DNA is regulated by the balanced recruitment of coregulatory complexes. Recruited proteins that increase gene expression are called coactivators, and those that decrease gene expression are called corepressors. Little is known about the role of corepressors, such as nuclear receptor corepressor (NCoR), on the organization of behavior. We used real-time PCR to show that NCoR mRNA levels are sexually dimorphic, that females express higher levels of NCoR mRNA within the developing amygdala and hypothalamus, and that NCoR mRNA levels are reduced by estradiol treatment. To investigate the functional role of NCoR on juvenile social behavior, we infused small interfering RNA targeted against NCoR within the developing rat amygdala and assessed the enduring impact on juvenile social play behavior, sociability, and anxiety-like behavior. As expected, control males exhibited higher levels of juvenile social play than control females. Reducing NCoR expression during development further increased juvenile play in males only. Interestingly, decreased NCoR expression within the developing amygdala had lasting effects on increasing juvenile anxiety-like behavior in males and females. These data suggest that the corepressor NCoR functions to blunt sex differences in juvenile play behavior, a sexually dimorphic and hormone-dependent behavior, and appears critical for appropriate anxiety-like behavior in juvenile males and females.

  7. Scleraxis is a transcriptional activator that regulates the expression of Tenomodulin, a marker of mature tenocytes and ligamentocytes.

    PubMed

    Shukunami, Chisa; Takimoto, Aki; Nishizaki, Yuriko; Yoshimoto, Yuki; Tanaka, Seima; Miura, Shigenori; Watanabe, Hitomi; Sakuma, Tetsushi; Yamamoto, Takashi; Kondoh, Gen; Hiraki, Yuji

    2018-02-16

    Tenomodulin (Tnmd) is a type II transmembrane glycoprotein predominantly expressed in tendons and ligaments. We found that scleraxis (Scx), a member of the Twist-family of basic helix-loop-helix transcription factors, is a transcriptional activator of Tnmd expression in tenocytes. During embryonic development, Scx expression preceded that of Tnmd. Tnmd expression was nearly absent in tendons and ligaments of Scx-deficient mice generated by transcription activator-like effector nucleases-mediated gene disruption. Tnmd mRNA levels were dramatically decreased during serial passages of rat tenocytes. Scx silencing by small interfering RNA significantly suppressed endogenous Tnmd mRNA levels in tenocytes. Mouse Tnmd contains five E-box sites in the ~1-kb 5'-flanking region. A 174-base pair genomic fragment containing a TATA box drives transcription in tenocytes. Enhancer activity was increased in the upstream region (-1030 to -295) of Tnmd in tenocytes, but not in NIH3T3 and C3H10T1/2 cells. Preferential binding of both Scx and Twist1 as a heterodimer with E12 or E47 to CAGATG or CATCTG and transactivation of the 5'-flanking region were confirmed by electrophoresis mobility shift and dual luciferase assays, respectively. Scx directly transactivates Tnmd via these E-boxes to positively regulate tenocyte differentiation and maturation.

  8. Quantitative Proteomic Analysis of BHK-21 Cells Infected with Foot-and-Mouth Disease Virus Serotype Asia 1.

    PubMed

    Guo, Hui-Chen; Jin, Ye; Han, Shi-Chong; Sun, Shi-Qi; Wei, Yan-Quan; Liu, Xian-Ji; Feng, Xia; Liu, Ding Xiang; Liu, Xiang-Tao

    2015-01-01

    Stable isotope labeling with amino acids in cell culture (SILAC) was used to quantitatively study the host cell gene expression profile, in order to achieve an unbiased overview of the protein expression changes in BHK-21 cells infected with FMDV serotype Asia 1. The SILAC-based approach identified overall 2,141 proteins, 153 of which showed significant alteration in the expression level 6 h post FMDV infection (57 up-regulated and 96 down-regulated). Among these proteins, six cellular proteins, including three down-regulated (VPS28, PKR, EVI5) and three up-regulated (LYPLA1, SEC62 and DARs), were selected according to the significance of the changes and/or the relationship with PKR. The expression level and pattern of the selected proteins were validated by immunoblotting and confocal microscopy. Furthermore, the functions of these cellular proteins were assessed by small interfering RNA-mediated depletion, and their functional importance in the replication of FMDV was demonstrated by western blot, reverse transcript PCR (RT-PCR) and 50% Tissue Culture Infective Dose (TCID50). The results suggest that FMDV infection may have effects on the expression of specific cellular proteins to create more favorable conditions for FMDV infection. This study provides novel data that can be utilized to understand the interactions between FMDV and the host cell.

  9. Tripeptidyl peptidase II is dispensable for the generation of both proteasome-dependent and proteasome-independent ligands of HLA-B27 and other class I molecules.

    PubMed

    Marcilla, Miguel; Villasevil, Eugenia M; de Castro, José Antonio López

    2008-03-01

    A significant fraction of the HLA-B27-bound peptide repertoire is resistant to proteasome inhibitors. The possible implication of tripeptidyl peptidase II (TPPII) in generating this subset was analyzed by quantifying the surface re-expression of HLA-B*2705 after acid stripping in the presence of two TPPII inhibitors, butabindide and Ala-Ala-Phe-chloromethylketone. Neither decreased HLA-B27 re-expression under conditions in which TPPII activity was largely inhibited. This was in contrast to a significant effect of the proteasome inhibitor epoxomicin. The failure of TPPII inhibition to decrease surface re-expression was not limited to HLA-B27, since it was also observed in several HLA-B27-negative cell lines, including Mel JuSo. Actually, HLA class I re-expression in Mel JuSo cells increased as a function of butabindide concentration, which is consistent with an involvement of TPPII in destroying HLA class I ligands. Inhibition of TPPII with small interfering RNA also failed to decrease the surface expression of HLA class I molecules on 143B cells. Our results indicate that TPPII is dispensable for the generation of proteasome-dependent HLA class I ligands and, without excluding its role in producing some individual epitopes, this enzyme is not involved to any quantitatively significant extent, in generating the proteasome-independent HLA-B27-bound peptide repertoire.

  10. Infection of Hepatocytes With HCV Increases Cell Surface Levels of Heparan Sulfate Proteoglycans, Uptake of Cholesterol and Lipoprotein, and Virus Entry by Up-regulating SMAD6 and SMAD7.

    PubMed

    Zhang, Fang; Sodroski, Catherine; Cha, Helen; Li, Qisheng; Liang, T Jake

    2017-01-01

    The signaling molecule and transcriptional regulator SMAD6, which inhibits the transforming growth factor β signaling pathway, is required for infection of hepatocytes by hepatitis C virus (HCV). We investigated the mechanisms by which SMAD6 and another inhibitory SMAD (SMAD7) promote HCV infection in human hepatoma cells and hepatocytes. We infected Huh7 and Huh7.5.1 cells and primary human hepatocytes with Japanese fulminant hepatitis-1 (JFH1) HCV cell culture system (HCVcc). We then measured HCV binding, intracellular levels of HCV RNA, and expression of target genes. We examined HCV entry in HepG2/microRNA (miR) 122/CD81 cells, which support entry and replication of HCV, were transfected these cells with small interfering RNAs targeting inhibitory SMADs to analyze gene expression profiles. Uptake of labeled low-density lipoprotein (LDL) and cholesterol was measured. Cell surface proteins were quantified by flow cytometry. We obtained liver biopsy samples from 69 patients with chronic HCV infection and 19 uninfected individuals (controls) and measured levels of syndecan 1 (SDC1), SMAD7, and SMAD6 messenger RNAs (mRNAs). Small interfering RNA knockdown of SMAD6 blocked the binding and infection of hepatoma cell lines and primary human hepatocytes by HCV, whereas SMAD6 overexpression increased HCV infection. We found levels of mRNAs encoding heparan sulfate proteoglycans (HSPGs), particularly SDC1 mRNA, and cell surface levels of heparan sulfate to be reduced in cells after SMAD6 knockdown. SMAD6 knockdown also reduced transcription of genes encoding lipoprotein and cholesterol uptake receptors, including the LDL receptor (LDLR), the very LDLR, and the scavenger receptor class B member 1 in hepatocytes; knockdown of SMAD6 also inhibited cell uptake of cholesterol and lipoprotein. Overexpression of SMAD6 increased the expression of these genes. Similar effects were observed with knockdown and overexpression of SMAD7. In addition, HCV infection of cells increased the expression of SMAD6, which required the activity of nuclear factor-κB, but not transforming growth factor β. Liver tissues from patients with chronic HCV infection had significantly higher levels of SMAD6, SMAD7, and HSPG mRNAs than controls. In studies of hepatoma cell lines and primary human hepatocytes, we found that infection with HCV leads to activation of nuclear factor-κB, resulting in increased expression of SMAD6 and SMAD7. Up-regulation of SMAD6 and SMAD7 induces the expression of HSPGs, such as SDC1, as well as LDLR, very LDLR, and the scavenger receptor class B member 1, which promote HCV entry and propagation, as well as cellular uptake of cholesterol and lipoprotein. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. A Novel Method for Gene-Specific Enhancement of Protein Translation by Targeting 5’UTRs of Selected Tumor Suppressors

    PubMed Central

    Master, Adam; Wójcicka, Anna; Giżewska, Kamilla; Popławski, Piotr; Williams, Graham R.; Nauman, Alicja

    2016-01-01

    Background Translational control is a mechanism of protein synthesis regulation emerging as an important target for new therapeutics. Naturally occurring microRNAs and synthetic small inhibitory RNAs (siRNAs) are the most recognized regulatory molecules acting via RNA interference. Surprisingly, recent studies have shown that interfering RNAs may also activate gene transcription via the newly discovered phenomenon of small RNA-induced gene activation (RNAa). Thus far, the small activating RNAs (saRNAs) have only been demonstrated as promoter-specific transcriptional activators. Findings We demonstrate that oligonucleotide-based trans-acting factors can also specifically enhance gene expression at the level of protein translation by acting at sequence-specific targets within the messenger RNA 5’-untranslated region (5’UTR). We designed a set of short synthetic oligonucleotides (dGoligos), specifically targeting alternatively spliced 5’UTRs in transcripts expressed from the THRB and CDKN2A suppressor genes. The in vitro translation efficiency of reporter constructs containing alternative TRβ1 5’UTRs was increased by up to more than 55-fold following exposure to specific dGoligos. Moreover, we found that the most folded 5’UTR has higher translational regulatory potential when compared to the weakly folded TRβ1 variant. This suggests such a strategy may be especially applied to enhance translation from relatively inactive transcripts containing long 5’UTRs of complex structure. Significance This report represents the first method for gene-specific translation enhancement using selective trans-acting factors designed to target specific 5’UTR cis-acting elements. This simple strategy may be developed further to complement other available methods for gene expression regulation including gene silencing. The dGoligo-mediated translation-enhancing approach has the potential to be transferred to increase the translation efficiency of any suitable target gene and may have future application in gene therapy strategies to enhance expression of proteins including tumor suppressors. PMID:27171412

  12. Rho GTPases and Regulation of Cell Migration and Polarization in Human Corneal Epithelial Cells

    PubMed Central

    Hou, Aihua; Toh, Li Xian; Gan, Kah Hui; Lee, Khee Jin Ryan; Manser, Edward; Tong, Louis

    2013-01-01

    Purpose Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. Methods Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. Results Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. Conclusion Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells. PMID:24130842

  13. Therapeutic Oligonucleotides Targeting Liver Disease: TTR Amyloidosis.

    PubMed

    Niemietz, Christoph; Chandhok, Gursimran; Schmidt, Hartmut

    2015-09-30

    The liver has become an increasingly interesting target for oligonucleotide therapy. Mutations of the gene encoding transthyretin (TTR), expressed in vast amounts by the liver, result in a complex degenerative disease, termed familial amyloid polyneuropathy (FAP). Misfolded variants of TTR are linked to the establishment of extracellular protein deposition in various tissues, including the heart and the peripheral nervous system. Recent progress in the chemistry and formulation of antisense (ASO) and small interfering RNA (siRNA) designed for a knockdown of TTR mRNA in the liver has allowed to address the issue of gene-specific molecular therapy in a clinical setting of FAP. The two therapeutic oligonucleotides bind to RNA in a sequence specific manner but exploit different mechanisms. Here we describe major developments that have led to the advent of therapeutic oligonucleotides for treatment of TTR-related disease.

  14. HSP-enriched properties of extracellular vesicles involve survival of metastatic oral cancer cells.

    PubMed

    Ono, Kisho; Eguchi, Takanori; Sogawa, Chiharu; Calderwood, Stuart K; Futagawa, Junya; Kasai, Tomonari; Seno, Masaharu; Okamoto, Kuniaki; Sasaki, Akira; Kozaki, Ken-Ichi

    2018-05-16

    Cancer cells often secrete extracellular vesicles (EVs) that carry heat shock proteins (HSPs) with roles in tumor progression. Oral squamous cell carcinoma (OSCC) belongs to head and neck cancers (HNC) whose lymph-node-metastases often lead to poor prognosis. We have examined the EV proteome of OSCC cells and found abundant secretion of HSP90-enriched EVs in lymph-node-metastatic OSCC cells. Double knockdown of HSP90α and HSP90β, using small interfering RNA significantly reduced the survival of the metastatic OSCC cells, although single knockdown of each HSP90 was ineffective. Elevated expression of these HSP90 family members was found to correlate with poor prognosis of HNC cases. Thus, elevated HSP90 levels in secreted vesicles are potential prognostic biomarkers and therapeutic targets in metastatic OSCC. © 2018 Wiley Periodicals, Inc.

  15. Carbon nanotube-mediated siRNA delivery for gene silencing in cancer cells

    NASA Astrophysics Data System (ADS)

    Hong, Tu; Guo, Honglian; Xu, Yaqiong

    2011-10-01

    Small interfering RNA (siRNA) is potentially a promising tool in influencing gene expression with a high degree of target specificity. However, its poor intracellular uptake, instability in vivo, and non-specific immune stimulations impeded its effect in clinical applications. In this study, carbon nanotubes (CNTs) functionalized with two types of phospholipid-polyethylene glycol (PEG) have shown capabilities to stabilize siRNA in cell culture medium during the transfection and efficiently deliver siRNA into neuroblastoma and breast cancer cells. Moreover, the intrinsic optical properties of CNTs have been investigated through absorption and fluorescence measurements. We have found that the directly-functionalized groups play an important role on the fluorescence imaging of functionalized CNTs. The unique fluorescence imaging and high delivery efficiency make CNTs a promising material to deliver drugs and evaluate the treatment effect simultaneously.

  16. Cyclodextrin and Polyethylenimine Functionalized Mesoporous Silica Nanoparticles for Delivery of siRNA Cancer Therapeutics

    PubMed Central

    Shen, Jianliang; Kim, Han-Cheon; Su, Hua; Wang, Feng; Wolfram, Joy; Kirui, Dickson; Mai, Junhua; Mu, Chaofeng; Ji, Liang-Nian; Mao, Zong-Wan; Shen, Haifa

    2014-01-01

    Effective delivery holds the key to successful in vivo application of therapeutic small interfering RNA (siRNA). In this work, we have developed a universal siRNA carrier consisting of a mesoporous silica nanoparticle (MSNP) functionalized with cyclodextrin-grafted polyethylenimine (CP). CP provides positive charge for loading of siRNA through electrostatic interaction and enables effective endosomal escape of siRNA. Using intravital microscopy we were able to monitor tumor enrichment of CP-MSNP/siRNA particles in live mice bearing orthotopic MDA-MB-231 xenograft tumors. CP-MSNP delivery of siRNA targeting the M2 isoform of the glycolytic enzyme pyruvate kinase (PKM2) resulted in effective knockdown of gene expression in vitro and in vivo. Suppression of PKM2 led to inhibition of tumor cell growth, invasion, and migration. PMID:24672582

  17. Role of transposon-derived small RNAs in the interplay between genomes and parasitic DNA in rice.

    PubMed

    Nosaka, Misuzu; Itoh, Jun-Ichi; Nagato, Yasuo; Ono, Akemi; Ishiwata, Aiko; Sato, Yutaka

    2012-09-01

    RNA silencing is a defense system against "genomic parasites" such as transposable elements (TE), which are potentially harmful to host genomes. In plants, transcripts from TEs induce production of double-stranded RNAs (dsRNAs) and are processed into small RNAs (small interfering RNAs, siRNAs) that suppress TEs by RNA-directed DNA methylation. Thus, the majority of TEs are epigenetically silenced. On the other hand, most of the eukaryotic genome is composed of TEs and their remnants, suggesting that TEs have evolved countermeasures against host-mediated silencing. Under some circumstances, TEs can become active and increase in copy number. Knowledge is accumulating on the mechanisms of TE silencing by the host; however, the mechanisms by which TEs counteract silencing are poorly understood. Here, we show that a class of TEs in rice produces a microRNA (miRNA) to suppress host silencing. Members of the microRNA820 (miR820) gene family are located within CACTA DNA transposons in rice and target a de novo DNA methyltransferase gene, OsDRM2, one of the components of epigenetic silencing. We confirmed that miR820 negatively regulates the expression of OsDRM2. In addition, we found that expression levels of various TEs are increased quite sensitively in response to decreased OsDRM2 expression and DNA methylation at TE loci. Furthermore, we found that the nucleotide sequence of miR820 and its recognition site within the target gene in some Oryza species have co-evolved to maintain their base-pairing ability. The co-evolution of these sequences provides evidence for the functionality of this regulation. Our results demonstrate how parasitic elements in the genome escape the host's defense machinery. Furthermore, our analysis of the regulation of OsDRM2 by miR820 sheds light on the action of transposon-derived small RNAs, not only as a defense mechanism for host genomes but also as a regulator of interactions between hosts and their parasitic elements.

  18. An Atlas of Soybean Small RNAs Identifies Phased siRNAs from Hundreds of Coding Genes[W

    PubMed Central

    Kakrana, Atul; Huang, Kun; Zhai, Jixian; Yan, Zhe; Valdés-López, Oswaldo; Prince, Silvas; Musket, Theresa A.; Stacey, Gary

    2014-01-01

    Small RNAs are ubiquitous, versatile repressors and include (1) microRNAs (miRNAs), processed from mRNA forming stem-loops; and (2) small interfering RNAs (siRNAs), the latter derived in plants by a process typically requiring an RNA-dependent RNA polymerase. We constructed and analyzed an expression atlas of soybean (Glycine max) small RNAs, identifying over 500 loci generating 21-nucleotide phased siRNAs (phasiRNAs; from PHAS loci), of which 483 overlapped annotated protein-coding genes. Via the integration of miRNAs with parallel analysis of RNA end (PARE) data, 20 miRNA triggers of 127 PHAS loci were detected. The primary class of PHAS loci (208 or 41% of the total) corresponded to NB-LRR genes; some of these small RNAs preferentially accumulate in nodules. Among the PHAS loci, novel representatives of TAS3 and noncanonical phasing patterns were also observed. A noncoding PHAS locus, triggered by miR4392, accumulated preferentially in anthers; the phasiRNAs are predicted to target transposable elements, with their peak abundance during soybean reproductive development. Thus, phasiRNAs show tremendous diversity in dicots. We identified novel miRNAs and assessed the veracity of soybean miRNAs registered in miRBase, substantially improving the soybean miRNA annotation, facilitating an improvement of miRBase annotations and identifying at high stringency novel miRNAs and their targets. PMID:25465409

  19. Annexin A1: A new immunohistological marker of cholangiocarcinoma

    PubMed Central

    Hongsrichan, Nuttanan; Rucksaken, Rucksak; Chamgramol, Yaovalux; Pinlaor, Porntip; Techasen, Anchalee; Yongvanit, Puangrat; Khuntikeo, Narong; Pairojkul, Chawalit; Pinlaor, Somchai

    2013-01-01

    AIM: To evaluate a new immunohistological marker, annexin A1 (ANXA1), in cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC). METHODS: Expression of ANXA1 protein was investigated in liver tissues from patients with CCA and HCC by immunohistochemistry. Its expression on differences stages of tumor development was investigated in hamster CCA tissues induced by Opisthorchis viverrini and N-nitrosodimethylamine. Moreover, mRNA expression of ANXA1 was assessed in CCA cell lines by quantitative real-time polymerase chain reaction and silencing of ANXA1 gene expression using small interfering RNA. RESULTS: In human CCA tissue arrays, immunohistochemical analysis revealed that the positive expression of ANXA1 was 94.1% (64/68 cases) consisting of a high expression (66.2%, 45/68 cases) and a low expression (33.8%, 23/68 cases). However, expression of ANXA1 protein was negative in all histologic patterns for HCC (46/46 cases) and healthy individuals (6/6 cases). In hamster with opisthorchiasis-associated CCA, the expression of ANXA1 was observed in the cytoplasm of inflammatory cells, bile duct epithelia and tumor cells. Grading scores of ANXA1 expression were significantly increased with tumor progression. In addition, mRNA expression of ANXA1 significantly increased in all of the various CCA cell lines tested compared to an immortalized human cholangiocyte cell line (MMNK1). Suppressing the ANXA1 gene significantly reduced the matrix metalloproteinase (MMP) 2 and MMP9, and transforming growth factor-β genes, but increased nuclear factor-κB gene expression. CONCLUSION: ANXA1 is highly expressed in CCA, but low in HCC, suggesting it may serve as a new immunohistochemical marker of CCA. ANXA1 may play a role in opisthorchiasis-associated cholangiocarcinogenesis. PMID:23674846

  20. Notes on SAW Tag Interrogation Techniques

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2010-01-01

    We consider the problem of interrogating a single SAW RFID tag with a known ID and known range in the presence of multiple interfering tags under the following assumptions: (1) The RF propagation environment is well approximated as a simple delay channel with geometric power-decay constant alpha >/= 2. (2) The interfering tag IDs are unknown but well approximated as independent, identically distributed random samples from a probability distribution of tag ID waveforms with known second-order properties, and the tag of interest is drawn independently from the same distribution. (3) The ranges of the interfering tags are unknown but well approximated as independent, identically distributed realizations of a random variable rho with a known probability distribution f(sub rho) , and the tag ranges are independent of the tag ID waveforms. In particular, we model the tag waveforms as random impulse responses from a wide-sense-stationary, uncorrelated-scattering (WSSUS) fading channel with known bandwidth and scattering function. A brief discussion of the properties of such channels and the notation used to describe them in this document is given in the Appendix. Under these assumptions, we derive the expression for the output signal-to-noise ratio (SNR) for an arbitrary combination of transmitted interrogation signal and linear receiver filter. Based on this expression, we derive the optimal interrogator configuration (i.e., transmitted signal/receiver filter combination) in the two extreme noise/interference regimes, i.e., noise-limited and interference-limited, under the additional assumption that the coherence bandwidth of the tags is much smaller than the total tag bandwidth. Finally, we evaluate the performance of both optimal interrogators over a broad range of operating scenarios using both numerical simulation based on the assumed model and Monte Carlo simulation based on a small sample of measured tag waveforms. The performance evaluation results not only provide guidelines for proper interrogator design, but also provide some insight on the validity of the assumed signal model. It should be noted that the assumption that the impulse response of the tag of interest is known precisely implies that the temperature and range of the tag are also known precisely, which is generally not the case in practice. However, analyzing interrogator performance under this simplifying assumption is much more straightforward and still provides a great deal of insight into the nature of the problem.

  1. Conflicting Selection Pressures Will Constrain Viral Escape from Interfering Particles: Principles for Designing Resistance-Proof Antivirals.

    PubMed

    Rast, Luke I; Rouzine, Igor M; Rozhnova, Ganna; Bishop, Lisa; Weinberger, Ariel D; Weinberger, Leor S

    2016-05-01

    The rapid evolution of RNA-encoded viruses such as HIV presents a major barrier to infectious disease control using conventional pharmaceuticals and vaccines. Previously, it was proposed that defective interfering particles could be developed to indefinitely control the HIV/AIDS pandemic; in individual patients, these engineered molecular parasites were further predicted to be refractory to HIV's mutational escape (i.e., be 'resistance-proof'). However, an outstanding question has been whether these engineered interfering particles-termed Therapeutic Interfering Particles (TIPs)-would remain resistance-proof at the population-scale, where TIP-resistant HIV mutants may transmit more efficiently by reaching higher viral loads in the TIP-treated subpopulation. Here, we develop a multi-scale model to test whether TIPs will maintain indefinite control of HIV at the population-scale, as HIV ('unilaterally') evolves toward TIP resistance by limiting the production of viral proteins available for TIPs to parasitize. Model results capture the existence of two intrinsic evolutionary tradeoffs that collectively prevent the spread of TIP-resistant HIV mutants in a population. First, despite their increased transmission rates in TIP-treated sub-populations, unilateral TIP-resistant mutants are shown to have reduced transmission rates in TIP-untreated sub-populations. Second, these TIP-resistant mutants are shown to have reduced growth rates (i.e., replicative fitness) in both TIP-treated and TIP-untreated individuals. As a result of these tradeoffs, the model finds that TIP-susceptible HIV strains continually outcompete TIP-resistant HIV mutants at both patient and population scales when TIPs are engineered to express >3-fold more genomic RNA than HIV expresses. Thus, the results provide design constraints for engineering population-scale therapies that may be refractory to the acquisition of antiviral resistance.

  2. Antitheft container for instruments

    NASA Technical Reports Server (NTRS)

    Kerley, J. J., Jr.

    1979-01-01

    Antitheft container is used to prevent theft of calculators, portable computers, and other small instruments. Container design is simple and flexible enough to allow easy access to display or input systems of instruments, while not interfering with power input to device.

  3. Sumoylation of Smad3 stimulates its nuclear export during PIASy-mediated suppression of TGF-{beta} signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imoto, Seiyu; Ohbayashi, Norihiko; Ikeda, Osamu

    2008-05-30

    Sma- and MAD-related protein 3 (Smad3) plays crucial roles in the transforming growth factor-{beta} (TGF-{beta})-mediated signaling pathway, which produce a variety of cellular responses, including cell proliferation and differentiation. In our previous study, we demonstrated that protein inhibitor of activated STATy (PIASy) suppresses TGF-{beta} signaling by interacting with and sumoylating Smad3. In the present study, we examined the molecular mechanisms of Smad3 sumoylation during PIASy-mediated suppression of TGF-{beta} signaling. We found that small-interfering RNA-mediated reduction of endogenous PIASy expression enhanced TGF-{beta}-induced gene expression. Importantly, coexpression of Smad3 with PIASy and SUMO1 affected the DNA-binding activity of Smad3. Furthermore, coexpression ofmore » Smad3 with PIASy and SUMO1 stimulated the nuclear export of Smad3. Finally, fluorescence resonance energy transfer analyses revealed that Smad3 interacted with SUMO1 in the cytoplasm. These results suggest that PIASy regulates TGF-{beta}/Smad3-mediated signaling by stimulating sumoylation and nuclear export of Smad3.« less

  4. Downregulation of Id1 by small interfering RNA in gastric cancer inhibits cell growth via the Akt pathway

    PubMed Central

    YANG, GUANG; ZHANG, YAN; XIONG, JIANJUN; WU, JING; YANG, CHANGFU; HUANG, HONGBING; ZHU, ZHENYU

    2012-01-01

    Inhibitor of differentiation or DNA binding (Id1) is a member of the helix-loop-helix transcription factor family that is overexpressed in various types of cancer, including gastric carcinoma. Previous studies showed that Id1 is a prognostic marker in patients with gastric cancer. However, the role of Id1 in the proliferation of human gastric cancer cells has yet to be clarified. In the present study, we downregulated the Id1 gene in SGC-7901 gastric cancer cells by RNA interference, and we also constructed a recombinant plasmid-expressing Id1 to investigate its effects on the proliferation of SGC-7901 cells. Results showed that the downregulation of Id1 inhibited proliferation of SGC-7901 cells, while the upregulation of Id1 had no effect on SGC-7901 cell proliferation. The potential mechanism was also investigated. The changes of certain proteins associated with cell proliferation, apoptosis and the cell cycle were detected by western blotting. Furthermore, we demonstrated a positive correlation between Id1 and phospho-Akt expression in SGC-7901 cells. PMID:22245935

  5. Downregulation of protein tyrosine phosphatase PTPL1 alters cell cycle and upregulates invasion-related genes in prostate cancer cells.

    PubMed

    Castilla, Carolina; Flores, M Luz; Conde, José M; Medina, Rafael; Torrubia, Francisco J; Japón, Miguel A; Sáez, Carmen

    2012-04-01

    PTPL1, a non-receptor type protein tyrosine phosphatase, has been involved in the regulation of apoptosis and invasiveness of various tumour cell types, but its role in prostate cancer remained to be investigated. We report here that downregulation of PTPL1 by small interfering RNA in PC3 cells decreases cell proliferation and concomitantly reduces the expression of cell cycle-related proteins such as cyclins E and B1, PCNA, PTTG1 and phospho-histone H3. PTPL1 downregulation also increases the invasion ability of PC3 cells through Matrigel coated membranes. cDNA array of PTPL1-silenced PC3 cells versus control cells showed an upregulation of invasion-related genes such as uPA, uPAR, tPA, PAI-1, integrin α6 and osteopontin. This increased expression was also confirmed in PTPL1-silenced DU145 prostate cancer cells by quantitative real time PCR and western blot. These findings suggest that PTPL1 is an important mediator of central cellular processes such as proliferation and invasion.

  6. [siRNA-mediated tissue factor knockdown in porcine neonatal islet cell clusters in vitro].

    PubMed

    Ji, Ming; Yi, Shounan; Yu, Deling; Wang, Wei

    2011-12-01

    To determine the genetic modification on neonatal porcine islet cell clusters (NICC) by small interfering RNA (siRNA)-mediated tissue factor (TF) knockdown in vitro. Porcine NICC were transfected with 5 pairs of designed siRNA respectively or in different combinations with lipofectamine 2000. Transfected NICC were analyzed for TF gene by real-time PCR to select the siRNA which worked best. Meanwhile, the viability of NICC after the TF siRNA transfection was examined by FACS. The efficiency of TF gene and protein suppression was measured by real-time PCR and and FACS respectively. Real-time PCR and FACS showed that a 60% reduction in the TF gene expression and a 50% reduction in the protien level of TF on NICC were achieved by transfecting 3 pairs of selected siRNA. The siRNA transfection had no significant effect on the viability of NICC which was analyzed by FACS. The expression of TF on porcine NICC is efficiently suppressed by 3 pairs of designed siRNA in vitro.

  7. siRNA associated with immunonanoparticles directed against cd99 antigen improves gene expression inhibition in vivo in Ewing's sarcoma.

    PubMed

    Ramon, A L; Bertrand, J R; de Martimprey, H; Bernard, G; Ponchel, G; Malvy, C; Vauthier, C

    2013-07-01

    Ewing's sarcoma is a rare, mostly pediatric bone cancer that presents a chromosome abnormality called EWS/Fli-1, responsible for the development of the tumor. In vivo, tumor growth can be inhibited specifically by delivering small interfering RNA (siRNA) associated with nanoparticles. The aim of the work was to design targeted nanoparticles against the cell membrane glycoprotein cd99, which is overexpressed in Ewing's sarcoma cells to improve siRNA delivery to tumor cells. Biotinylated poly(isobutylcyanoacrylate) nanoparticles were conceived as a platform to design targeted nanoparticles with biotinylated ligands and using the biotin-streptavidin coupling method. The targeted nanoparticles were validated in vivo for the targeted delivery of siRNA after systemic administration to mice bearing a tumor model of the Ewing's sarcoma. The expression of the gene responsible of Ewing's sarcoma was inhibited at 78% ± 6% by associating the siRNA with the cd99-targeted nanoparticles compared with an inhibition of only 41% ± 9% achieved with the nontargeted nanoparticles. Copyright © 2013 John Wiley & Sons, Ltd.

  8. EphA2 affects the sensitivity of oxaliplatin by inducing EMT in oxaliplatin-resistant gastric cancer cells.

    PubMed

    Wen, Qiaocheng; Chen, Zihua; Chen, Zhikang; Chen, Jinxiang; Wang, Ran; Huang, Changhao; Yuan, Weijie

    2017-07-18

    Erythropoietin-producing hepatocellular receptor A2 (EphA2) is upregulated in gastric cancer tissues and cells, which is accompanied by epithelial-mesenchymal transition (EMT). The current study was designed to establish the oxaliplatin-resistant human gastric cancer cell line SGC-7901/L-OHP, to determine if EMT in these cells could be reversed, and to determine if the susceptibility of these cells to oxaliplatin was affected by silencing EphA2 expression. We found that EphA2 expression levels were upregulated in gastric cancer and associated with chemotherapy sensitivity. EphA2 and the EMT molecular markers N-cadherin and Snail were upregulated in SGC-7901/L-OHP cells, while silencing of EphA2 using small interfering RNA had the opposite effect. Moreover, silencing of EphA2 inhibited cell migration and invasion, and significantly enhanced the sensitivity of oxaliplatin-resistant gastric cancer cells to oxaliplatin. These observations demonstrate that EphA2 affects the sensitivity to oxaliplatin by inducing EMT in oxaliplatin-resistant gastric cancer cells.

  9. Kid depletion in mouse oocytes associated with multinucleated blastomere formation and inferior embryo development.

    PubMed

    Egashira, Akiyoshi; Yamauchi, Nobuhiko; Islam, Md Rashedul; Yamagami, Kazuki; Tanaka, Asami; Suyama, Hikaru; El-Sayed, El-Sharawy Mohamed; Tabata, Shoji; Kuramoto, Takashi

    2016-08-01

    This study investigated the knockdown (KD) of Kid on maturation developmental competence and multinucleation of mouse germinal vesicle (GV) oocytes after parthenogenetic activation. Data revealed that Kid messenger RNA (mRNA) was expressed in GV and MII stage oocyte and 1- and 2-cell embryos. Additionally, Kid mRNA expression in the Kid KD group decreased by nearly 46% compared to the control small interfering RNA (siRNA) groups. The rate of multinucleated embryos in the Kid KD group (52.4%) was significantly higher (P < 0.05) than the control siRNA group (4.7%). Finally, the developmental rates were significantly lower in the Kid siRNA group at > 4-cell stage (28.6% vs. 53.5%) and the blastocyst stage (2.4% vs. 23.3%) compared to the control siRNA groups. Suppression of Kid using siRNA caused multinucleation in early embryos with high frequency and it may increase 2- to 4-cell arrested embryos and reduce the developmental competence to blastocyst. © 2016 Japanese Society of Animal Science.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Qi; Wang, Xuedi; Zhang, Hanguang

    Highlights: Black-Right-Pointing-Pointer Cat S is highly expressed in HCC cells with high metastatic potential. Black-Right-Pointing-Pointer Knockdown of Cat S inhibits growth and invasion of HCC cells. Black-Right-Pointing-Pointer Knockdown of Cat S inhibits HCC-associated angiogenesis. Black-Right-Pointing-Pointer Cat S might be a potential target for HCC therapy. -- Abstract: Cathepsin S (Cat S) plays an important role in tumor invasion and metastasis by its ability to degrade extracellular matrix (ECM). Our previous study suggested there could be a potential association between Cat S and hepatocellular carcinoma (HCC) metastasis. The present study was designed to determine the role of Cat S in HCCmore » cell growth, invasion and angiogenesis, using RNA interference technology. Small interfering RNA (siRNA) sequences for the Cat S gene were synthesized and transfected into human HCC cell line MHCC97-H. The Cat S gene targeted siRNA-mediated knockdown of Cat S expression, leading to potent suppression of MHCC97-H cell proliferation, invasion and angiogenesis. These data suggest that Cat S might be a potential target for HCC therapy.« less

  11. Differential expression pattern of Vago in bumblebee (Bombus terrestris), induced by virulent and avirulent virus infections.

    PubMed

    Niu, Jinzhi; Meeus, Ivan; Smagghe, Guy

    2016-09-29

    Viruses are one of the main drivers of the decline of domesticated and wild bees but the mechanisms of antiviral immunity in pollinators are poorly understood. Recent work has suggested that next to the small interfering RNA (siRNA) pathway other immune-related pathways play a role in the defense of the bee hosts against viral infection. In addition, Vago plays a role in the cross-talk between the innate immune pathways in Culex mosquito cells. Here we describe the Vago orthologue in bumblebees of Bombus terrestris, and investigated its role upon the infection of two different bee viruses, the virulent Israeli acute paralysis virus (IAPV) and the avirulent slow bee paralysis virus (SBPV). Our results showed that BtVago was downregulated upon the infection of IAPV that killed all bumblebees, but not with SBPV where the workers survived the virus infection. Thus, for the first time, Vago/Vago-like expression appears to be associated with the virulence of virus and may act as a modulator of antiviral immunity.

  12. Mesoporous silica nanorods toward efficient loading and intracellular delivery of siRNA

    NASA Astrophysics Data System (ADS)

    Chen, Lijue; She, Xiaodong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2018-02-01

    The technology of RNA interference (RNAi) that uses small interfering RNA (siRNA) to silence the gene expression with complementary messenger RNA (mRNA) sequence has great potential for the treatment of cancer in which certain genes were usually found overexpressed. However, the carry and delivery of siRNA to the target site in the human body can be challenging for this technology to be used clinically to silence the cancer-related gene expression. In this work, rod shaped mesoporous silica nanoparticles (MSNs) were developed as siRNA delivery system for specific intracellular delivery. The rod MSNs with an aspect ratio of 1.5 had a high surface area of 934.28 m2/g and achieved a siRNA loading of more than 80 mg/g. With the epidermal growth factor (EGF) grafted on the surface of the MSNs, siRNA can be delivered to the epidermal growth factor receptor (EGFR) overexpressed colorectal cancer cells with high intracellular concentration compared to MSNs without EGF and lead to survivin gene knocking down to less than 30%.

  13. SMAD4 is Involved in the Development of Endotoxin Tolerance in Microglia.

    PubMed

    Liu, Xiaorong; Qin, Yongwei; Dai, Aihua; Zhang, Yu; Xue, Huaqing; Ni, Haidan; Han, Lijian; Zhu, Liang; Yuan, Debin; Tao, Tao; Cao, Maohong

    2016-07-01

    Initial exposure of macrophages to LPS induces hyporesponsiveness to a second challenge with LPS, a phenomenon termed LPS tolerance. Smad4 plays important roles in the induction of LPS tolerance. However, the function of Smad4 in microglia remains unknown. Here we show that expression of Smad4 was highly up-regulated in LPS-tolerized mouse cerebral cortex. Smad4 was mostly colocalized with microglia, rarely with neurons. Using a microglia cell line, BV2, we find that LPS activates endogenous Smad4, inducing its migration into the nucleus and increasing its expression. Smad4 significantly suppressed TLR-triggered production of proinflammatory cytokines (IL-6), increased anti-inflammatory cytokine in LPS-tolerized microglia. Moreover, IL-6 concentrations in culture supernatants after second LPS challenge are higher in SMAD4 small interfering RNA (siRNA) BV2 cells than control siRNA BV2 cells, indicating failure to induce tolerance in absence of Smad4 signaling. In our study, we conclude that both in vivo and in vitro, Smad4 signaling is required for maximal induction of endotoxin tolerance.

  14. Wheat miR9678 Affects Seed Germination by Generating Phased siRNAs and Modulating Abscisic Acid/Gibberellin Signaling[OPEN

    PubMed Central

    Sun, Fenglong; Cao, Jie; Huo, Na; Wuda, Bala; Du, Jinkun; Peng, Huiru; Ni, Zhongfu; Sun, Qixin

    2018-01-01

    Seed germination is important for grain yield and quality and rapid, near-simultaneous germination helps in cultivation; however, cultivars that germinate too readily can undergo preharvest sprouting (PHS), which causes substantial losses in areas that tend to get rain around harvest time. Moreover, our knowledge of mechanisms regulating seed germination in wheat (Triticum aestivum) remains limited. In this study, we analyzed function of a wheat-specific microRNA 9678 (miR9678), which is specifically expressed in the scutellum of developing and germinating seeds. Overexpression of miR9678 delayed germination and improved resistance to PHS in wheat through reducing bioactive gibberellin (GA) levels; miR9678 silencing enhanced germination rates. We provide evidence that miR9678 targets a long noncoding RNA (WSGAR) and triggers the generation of phased small interfering RNAs that play a role in the delay of seed germination. Finally, we found that abscisic acid (ABA) signaling proteins bind the promoter of miR9678 precursor and activate its expression, indicating that miR9678 affects germination by modulating the GA/ABA signaling. PMID:29567662

  15. Memory Enhancement by Targeting Cdk5 Regulation of NR2B

    PubMed Central

    Plattner, Florian; Hernandéz, Adan; Kistler, Tara M.; Pozo, Karine; Zhong, Ping; Yuen, Eunice Y.; Tan, Chunfeng; Hawasli, Ammar H.; Cooke, Sam F.; Nishi, Akinori; Guo, Ailan; Wiederhold, Thorsten; Yan, Zhen; Bibb, James A.

    2014-01-01

    SUMMARY Many psychiatric and neurological disorders are characterized by learning and memory deficits, for which cognitive enhancement is considered a valid treatment strategy. The N-methyl-D-aspartate receptor (NMDAR) is a prime target for the development of cognitive enhancers due to its fundamental role in learning and memory. In particular, the NMDAR subunit NR2B improves synaptic plasticity and memory when over-expressed in neurons. However, NR2B regulation is not well understood and no therapies potentiating NMDAR function have been developed. Here, we show that serine 1116 of NR2B is phosphorylated by cyclin-dependent kinase 5 (Cdk5). Cdk5-dependent NR2B phosphorylation is regulated by neuronal activity and controls the receptor’s cell surface expression. Disrupting NR2B-Cdk5 interaction using a small interfering peptide (siP) increases NR2B surface levels, facilitates synaptic transmission, and improves memory formation in vivo. Our results reveal a novel regulatory mechanism critical to NR2B function that can be targeted for the development of cognitive enhancers. PMID:24607229

  16. Scion on a Stock Producing siRNAs of Potato Spindle Tuber Viroid (PSTVd) Attenuates Accumulation of the Viroid

    PubMed Central

    Kasai, Atsushi; Sano, Teruo; Harada, Takeo

    2013-01-01

    Plants can attenuate the replication of plant viruses and viroids by RNA silencing induced by virus and viroid infection. In higher plants, silencing signals such as small interfering RNAs (siRNAs) produced by RNA silencing can be transported systemically through phloem, so it is anticipated that antiviral siRNA signals produced in a stock would have the potential to attenuate propagation of viruses or viroids in the scion. To test whether this is indeed the case, we prepared transgenic tobacco (Nicotiana benthamiana) expressing a hairpin RNA (hpRNA) of Potato spindle tuber viroid (PSTVd) in companion cells by using a strong companion cell-specific promoter. A grafting experiment of the wild type tobacco scion on the top of the transgenic tobacco stock revealed that accumulation of PSTVd challenge-inoculated into the scion was apparently attenuated compared to the control grafted plants. These results indicate that genetically modified rootstock expressing viroid-specific siRNAs can attenuate viroid accumulation in a non-genetically modified scion grafted on the stock. PMID:23469061

  17. Antibody-mediated platelet phagocytosis by human macrophages is inhibited by siRNA specific for sequences in the SH2 tyrosine kinase, Syk.

    PubMed

    Lu, Ying; Wang, Weiming; Mao, Huiming; Hu, Hai; Wu, Yanling; Chen, Bing-Guan; Liu, Zhongmin

    2011-01-01

    Immune thrombocytopenia depends upon Fc receptor-mediated phagocytosis that involves signaling through the SH2 tyrosine kinase, Syk. We designed small interfering (siRNA) sequences complementary to Syk coding regions to decrease the expression of Syk in the human macrophage cell line, THP-1. To evaluate the functional effect of siRNA on phagocytosis, we developed a new in vitro assay for antibody-mediated platelet ingestion by THP-1 cells. Incubation of THP-1 cells at 37°C with fluorescence-labeled platelets and anti-platelet antibody promoted ingestion of platelets that could be quantitated by flow cytometry. Transfection of THP-1 cells with Syk-specific siRNA resulted in a reduction in the amount of FcγRII-associated Syk protein. Coincident with decreased Syk expression, we observed inhibition of antibody-mediated platelet ingestion. These results confirm a key role for Syk in antibody-mediated phagocytosis and suggest Syk-specific siRNA as a possible therapeutic candidate for immune thrombocytopenia. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Systematic coarse-grained modeling of complexation between small interfering RNA and polycations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Zonghui; Luijten, Erik, E-mail: luijten@northwestern.edu; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208

    All-atom molecular dynamics simulations can provide insight into the properties of polymeric gene-delivery carriers by elucidating their interactions and detailed binding patterns with nucleic acids. However, to explore nanoparticle formation through complexation of these polymers and nucleic acids and study their behavior at experimentally relevant time and length scales, a reliable coarse-grained model is needed. Here, we systematically develop such a model for the complexation of small interfering RNA (siRNA) and grafted polyethyleneimine copolymers, a promising candidate for siRNA delivery. We compare the predictions of this model with all-atom simulations and demonstrate that it is capable of reproducing detailed bindingmore » patterns, charge characteristics, and water release kinetics. Since the coarse-grained model accelerates the simulations by one to two orders of magnitude, it will make it possible to quantitatively investigate nanoparticle formation involving multiple siRNA molecules and cationic copolymers.« less

  19. Cdc42 deficiency induces podocyte apoptosis by inhibiting the Nwasp/stress fibers/YAP pathway

    PubMed Central

    Huang, Z; Zhang, L; Chen, Y; Zhang, H; Zhang, Q; Li, R; Ma, J; Li, Z; Yu, C; Lai, Y; Lin, T; Zhao, X; Zhang, B; Ye, Z; Liu, S; Wang, W; Liang, X; Liao, R; Shi, W

    2016-01-01

    Podocyte apoptosis is a major mechanism that leads to proteinuria in many chronic kidney diseases. However, the concert mechanisms that cause podocyte apoptosis in these kidney diseases are not fully understood. The Rho family of small GTPases has been shown to be required in maintaining podocyte structure and function. Recent studies have indicated that podocyte-specific deletion of Cdc42 in vivo, but not of RhoA or Rac1, leads to congenital nephrotic syndrome and glomerulosclerosis. However, the underlying cellular events in podocyte controlled by Cdc42 remain unclear. Here, we assessed the cellular mechanisms by which Cdc42 regulates podocyte apoptosis. We found that the expression of Cdc42 and its activity were significantly decreased in high glucose-, lipopolysaccharide- or adriamycin-injured podocytes. Reduced Cdc42 expression in vitro and in vivo by small interfering RNA and selective Cdc42 inhibitor ML-141, respectively, caused podocyte apoptosis and proteinuria. Our results further demonstrated that insufficient Cdc42 or Nwasp, its downstream effector, could decrease the mRNA and protein expression of YAP, which had been regarded as an anti-apoptosis protein in podocyte. Moreover, our data indicated that the loss of stress fibers caused by Cdc42/Nwasp deficiency also decreased Yes-associated protein (YAP) mRNA and protein expression, and induced podocyte apoptosis. Podocyte apoptosis induced by Cdc42/Nwasp/stress fiber deficiency was significantly inhibited by overexpressing-active YAP. Thus, the Cdc42/Nwasp/stress fibers/YAP signal pathway may potentially play an important role in regulating podocyte apoptosis. Maintaining necessary Cdc42 would be one potent way to prevent proteinuria kidney diseases. PMID:26986510

  20. Inhibition of Axl improves the targeted therapy against ALK-mutated neuroblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Fei; Li, Hongling; Sun, Yong, E-mail: sunfanqi2010@163.com

    2014-11-28

    Highlights: • First reported Axl is co-expressed with ALK in neuroblastoma tissues and cell lines. • Axl activation promotes cell growth and impairs the efficiency of ALK inhibitor. • Further found silence of Axl leads to increased sensitivity to ALK inhibitors. • Axl inhibitor promotes the efficiency of targeted therapy in vitro and in vivo. • Axl activation should be considered in the clinical application of ALK inhibitors. - Abstract: Neuroblastoma (NB) patients harboring mutated ALK can be expected to potentially benefit from targeted therapy based on ALK tyrosine kinase inhibitor (TKI), such as crizotinib and ceritinib. However, the effectmore » of the treatment varies with different individuals, although with the same genic changes. Axl receptor tyrosine kinase is expressed in a variety of human cancers, but little data are reported in NB, particularly in which carrying mutated ALK. In this study, we focus on the roles of Axl in ALK-mutated NB for investigating rational therapeutic strategy. We found that Axl is expressed in ALK-positive NB tissues and cell lines, and could be effectively activated by its ligand GAS6. Ligand-dependent Axl activation obviously rescued crizotinib-mediated suppression of cell proliferation in ALK-mutated NB cells. Genetic inhibition of Axl with specific small interfering RNA markedly increased the sensitivity of cells to ALK-TKIs. Furthermore, a small-molecule inhibitor of Axl significantly enhanced ALK-targeted therapy, as an increased frequency of apoptosis was observed in NB cells co-expressing ALK and Axl. Taken together, our results demonstrated that activation of Axl could lead to insensitivity to ALK inhibitors, and dual inhibition of ALK and Axl might be a potential therapeutic strategy against ALK-mutated NB.« less

  1. Expression of Connexin 43 in Synovial Tissue of Patients With Rheumatoid Arthritis

    PubMed Central

    MATSUKI, Tomohiro; TSUCHIDA, Shinji; TERAUCHI, Ryu; ODA, Ryo; FUJIWARA, Hiroyoshi; MAZDA, Osam; KUBO, Toshikazu

    2016-01-01

    Objectives This study aims to identify the distribution and expression level of connexin 43 (Cx43) in synovial tissue in patients with rheumatoid arthritis (RA). Patients and methods The expression of Cx43 in synovial tissue from eight patients with RA (2 males, 6 females; mean age 59.5±2.7 years; range 52 to 71 years), five patients with osteoarthritis (2 males, 3 females; mean age 68.4±2.7 years; range 61 to 81 years), and one normal female subject (mean age 61 year) was analyzed by quantitative reverse transcriptase polymerase chain reaction and immunohistochemistry of tissue sections. Induction of Cx43 following stimulation of human RA synovial fibroblasts with tumor necrosis factor-alpha (TNF-a) cultures was examined by quantitative reverse transcriptase polymerase chain reaction. The effect of small interfering ribonucleic acid targeting Cx43 (siCx43) on the expression of TNF-a and interleukin-6 was examined using quantitative reverse transcriptase polymerase chain reaction and enzyme-linked immunosorbent assays. Results Connexin 43 was highly expressed in RA synovial tissue, which also expressed TNF-a, but was expressed lower in osteoarthritis and normal synovial tissue. Expression of Cx43 was markedly up-regulated in RA synovial fibroblasts after stimulation with TNF-a. The over-expression of pro- inflammatory cytokines was suppressed by transfection of siCx43. Conclusion This study shows that Cx43 is expressed in RA synovial tissue and that its expression is induced by stimulation with TNF-a. The expression of the pro-inflammatory cytokines was inhibited by transfection of siCx43. Cx43 may be a novel marker of inflammation in RA synovial tissue. PMID:29900991

  2. Pathobiologic Roles of Epstein–Barr Virus-Encoded MicroRNAs in Human Lymphomas

    PubMed Central

    Navari, Mohsen; Etebari, Maryam; Ibrahimi, Mostafa; Leoncini, Lorenzo

    2018-01-01

    Epstein–Barr virus (EBV) is a human γ-herpesvirus implicated in several human malignancies, including a wide range of lymphomas. Several molecules encoded by EBV in its latent state are believed to be related to EBV-induced lymphomagenesis, among which microRNAs—small RNAs with a posttranscriptional regulating role—are of great importance. The genome of EBV encodes 44 mature microRNAs belonging to two different classes, including BamHI-A rightward transcript (BART) and Bam HI fragment H rightward open reading frame 1 (BHRF1), with different expression levels in different EBV latency types. These microRNAs might contribute to the pathogenetic effects exerted by EBV through targeting self mRNAs and host mRNAs and interfering with several important cellular mechanisms such as immunosurveillance, cell proliferation, and apoptosis. In addition, EBV microRNAs can regulate the surrounding microenvironment of the infected cells through exosomal transportation. Moreover, these small molecules could be potentially used as molecular markers. In this review, we try to present an updated and extensive view of the role of EBV-encoded miRNAs in human lymphomas. PMID:29649101

  3. V-ATPase as an effective therapeutic target for sarcomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perut, Francesca, E-mail: francesca.perut@ior.it; Avnet, Sofia; Fotia, Caterina

    2014-01-01

    Malignant tumors show intense glycolysis and, as a consequence, high lactate production and proton efflux activity. We investigated proton dynamics in osteosarcoma, rhabdomyosarcoma, and chondrosarcoma, and evaluated the effects of esomeprazole as a therapeutic agent interfering with tumor acidic microenvironment. All sarcomas were able to survive in an acidic microenvironment (up to 5.9–6.0 pH) and abundant acidic lysosomes were found in all sarcoma subtypes. V-ATPase, a proton pump that acidifies intracellular compartments and transports protons across the plasma membrane, was detected in all cell types with a histotype-specific expression pattern. Esomeprazole administration interfered with proton compartmentalization in acidic organelles andmore » induced a significant dose-dependent toxicity. Among the different histotypes, rhabdomyosarcoma, expressing the highest levels of V-ATPase and whose lysosomes are most acidic, was mostly susceptible to ESOM treatment. - Highlights: • Osteosarcoma, rhabdomyosarcoma, and chondrosarcoma survive in acidic microenvironment. • At acidic extracellular pH, sarcoma survival is dependent on V-ATPase expression. • Esomeprazole administration induce a significant dose-dependent toxicity.« less

  4. Curcumin blocks RON tyrosine kinase-mediated invasion of breast carcinoma cells.

    PubMed

    Narasimhan, Madhusudhanan; Ammanamanchi, Sudhakar

    2008-07-01

    We have recently shown that macrophage-stimulating protein (MSP) promotes the invasion of recepteur d'origine nantais (RON), a tyrosine kinase receptor-positive MDA-MB-231, MDA-MB-468 breast cancer cells, and also identified the regulatory elements required for RON gene expression. In this report, we have analyzed the efficacy of a chemopreventive agent, curcumin, in blocking RON tyrosine kinase-mediated invasion of breast cancer cells. Reverse transcription-PCR and Western analysis indicated the down-regulation of the RON message and protein, respectively, in MDA-MB-231 and MDA-MB-468 cells. Significantly, curcumin-mediated inhibition of RON expression resulted in the blockade of RON ligand, MSP-induced invasion of breast cancer cells. We have identified two putative nuclear factor-kappaB p65 subunit binding sites on the RON promoter. Using chromatin immunoprecipitation analysis and site-directed mutagenesis of the RON promoter, we have confirmed the binding of p65 to the RON promoter. Our data show that curcumin reduces RON expression by affecting p65 protein expression and transcriptional activity. Treatment of MDA-MB-231 cells with pyrrolidine dithiocarbamate, an inhibitor of p65, or small interfering RNA knockdown of p65, blocked RON gene expression and MSP-mediated invasion of MDA-MB-231 cells. This is the first report showing the regulation of human RON gene expression by nuclear factor-kappaB and suggests a potential therapeutic role for curcumin in blocking RON tyrosine kinase-mediated invasion of carcinoma cells.

  5. Cellular microRNA miR-10a-5p inhibits replication of porcine reproductive and respiratory syndrome virus by targeting the host factor signal recognition particle 14.

    PubMed

    Zhao, Guangwei; Hou, Jianye; Xu, Gaoxiao; Xiang, Aoqi; Kang, Yanmei; Yan, Yunhuan; Zhang, Xiaobin; Yang, Gongshe; Xiao, Shuqi; Sun, Shiduo

    2017-04-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important viruses affecting the swine industry worldwide. MicroRNAs have recently been demonstrated to play vital roles in virus-host interactions. Our previous research on small RNA deep sequencing showed that the expression level of miR-10a increased during the viral life cycle. The present study sought to determine the function of miR-10a and its molecular mechanism during PRRSV infection. In the current study, the result of PRRSV infection inducing miR-10a expression was validated by quantitative reverse transcriptase PCR. Overexpression of miR-10a-5p using its mimics markedly reduced the expression level of intracellular PRRSV ORF7 mRNA and N protein. Simultaneously, overexpression of miR-10a-5p also significantly decreased the expression level of extracellular viral RNA and virus titres in the supernatants. These results demonstrated that miR-10a-5p could suppress the replication of PRRSV. A direct interaction between miR-10a-5p and signal recognition particle 14 (SRP14) was confirmed using bioinformatic prediction and experimental verification. miR-10a-5p could directly target the 3'UTR of pig SRP14 mRNA in a sequence-specific manner and decrease SRP14 expression through translational repression but not mRNA degradation. Further, knockdown of SRP14 by small interfering RNA also inhibits the replication of PRRSV. Collectively, these results suggested that miR-10a-5p inhibits PRRSV replication through suppression of SRP14 expression, which not only provides new insights into virus-host interactions during PRRSV infection but also suggests potential new antiviral strategies against PRRSV infection.

  6. Maintenance of mitochondrial DNA copy number and expression are essential for preservation of mitochondrial function and cell growth.

    PubMed

    Jeng, Jaan-Yeh; Yeh, Tien-Shun; Lee, Jing-Wen; Lin, Shyh-Hsiang; Fong, Tsorng-Han; Hsieh, Rong-Hong

    2008-02-01

    To examine whether a reduction in the mtDNA level will compromise mitochondrial biogenesis and mitochondrial function, we created a cell model with depleted mtDNA. Stable transfection of small interfering (si)RNA of mitochondrial transcription factor A (Tfam) was used to interfere with Tfam gene expression. Selected stable clones showed 60-95% reduction in Tfam gene expression and 50-90% reduction in cytochrome b (Cyt b) gene expression. Tfam gene knockdown clones also showed decreased mtDNA-encoded cytochrome c oxidase subunit I (COX I) protein expression. However, no significant differences in protein expression were observed in nuclear DNA (nDNA)-encoded mitochondrial respiratory enzyme subunits. The cell morphology changed from a rhombus-like to a spindle-like form as determined in clones with decreased expressions of Tfam, mtRNA, and mitochondrial proteins. The mitochondrial respiratory enzyme activities and ATP production in such clones were significantly lower. The proportions of mtDNA mutations including 8-hydroxy-2'-deoxyguanosine (8-OHdG), a 4,977-bp deletion, and a 3,243-point mutation were also examined in these clones. No obvious increase in mtDNA mutations was observed in mitochondrial dysfunctional cell clones. The mitochondrial respiratory activity and ATP production ability recovered in cells with increased mtDNA levels after removal of the specific siRNA treatment. These experimental results provide direct evidence to substantiate that downregulation of mtDNA copy number and expression may compromise mitochondrial function and subsequent cell growth and morphology. (c) 2007 Wiley-Liss, Inc.

  7. Leptin induces osteocalcin expression in ATDC5 cells through activation of the MAPK-ERK1/2 signaling pathway.

    PubMed

    Han, Yingchao; Xu, Guanghui; Zhang, Jingjie; Yan, Meijun; Li, Xinhua; Ma, Bin; Jun, Lili; Wang, Shan-Jin; Tan, Jun

    2016-09-27

    Both leptin and osteocalcin have been found to affect growth-plate cartilage development through regulation of the physiologic processes of endochondral bone formation. Leptin mediates bone development and osteocalcin secreted in the late stage of osteoblast differentiation. The relationship between leptin and osteocalcin expression in the chondrogenic cells line is still not clear. Thus, the aim of this study was to explore the effect of leptin on the expression of osteocalcin in chondrocytes. We used clonal mouse chondrogenic ATDC5 cells to investigate the relationship between leptin and osteocalcin. We found that both leptin and osteocalcin expression were dynamically expressed during ATDC5 cell differentiation from 4 to 21 days. We also found that leptin significantly upregulated osteocalcin mRNA and protein levels 24 h after leptin stimulation. However, different concentrations and exposure times of osteocalcin did not affect the levels of leptin protein. Furthermore, we confirmed that leptin augmented the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in a time-dependent manner but not p38 or AKT. Inhibition of pERK1/2 expression by a specific ERK1/2 inhibitor U0126 and a special small interfering RNA attenuated levels of leptin-induced osteocalcin expression, indicating that ERK1/2 mediates, in part, the effects of leptin on osteocalcin. Taken together, our results suggest that leptin regulates the expression of osteocalcin in growth plate chondrocytes via the ERK1/2 signaling pathway, while there is no effect on the phosphorylation of either p38 or AKT.

  8. High expression of glucose-regulated protein 78 (GRP78) is associated with metastasis and poor prognosis in patients with esophageal squamous cell carcinoma.

    PubMed

    Ren, Peng; Chen, Chuangui; Yue, Jie; Zhang, Jianguo; Yu, Zhentao

    2017-01-01

    Glucose-regulated protein 78 (GRP78) plays an important role in the invasion and metastasis of many human cancers. However, the role of this protein in the progression of invasion and metastasis in esophageal squamous cell carcinoma (ESCC) remains elusive. Immunohistochemistry and Western blot were performed to analyze GRP78 expression in 92 patients with primary ESCC. The correlation of GRP78 expression with clinicopathological factors was analyzed. In vitro, the expression levels of GRP78 were downregulated by small interfering RNA transfection in TE-1 and CaEs-17 ESCC lines. Cell invasion and migration assays were applied to determine the invasion and migratory abilities of ESCC cells. Compared with GRP78 in adjacent normal esophageal tissues, GRP78 was overexpressed in ESCC tissues. High GRP78 expression was significantly correlated with positive lymph node metastasis ( P =0.035) and advanced tumor stage ( P =0.017). Survival analysis revealed that high GRP78 expression was significantly associated with shorter overall survival ( P =0.037). In multivariate analysis, GRP78 overexpression was identified as an independent prognostic factor for overall survival ( P =0.011). si-GRP78 can significantly decrease the GRP78 expression level and reverse the invasion and migratory abilities of ESCC cells in TE-1 and CaEs-17 cell lines. These findings demonstrated that high expression of GRP78 was associated with disease progression and metastasis in ESCC and might serve as a novel prognostic marker for patients with ESCC.

  9. High expression of glucose-regulated protein 78 (GRP78) is associated with metastasis and poor prognosis in patients with esophageal squamous cell carcinoma

    PubMed Central

    Ren, Peng; Chen, Chuangui; Yue, Jie; Zhang, Jianguo; Yu, Zhentao

    2017-01-01

    Background Glucose-regulated protein 78 (GRP78) plays an important role in the invasion and metastasis of many human cancers. However, the role of this protein in the progression of invasion and metastasis in esophageal squamous cell carcinoma (ESCC) remains elusive. Patients and methods Immunohistochemistry and Western blot were performed to analyze GRP78 expression in 92 patients with primary ESCC. The correlation of GRP78 expression with clinicopathological factors was analyzed. In vitro, the expression levels of GRP78 were downregulated by small interfering RNA transfection in TE-1 and CaEs-17 ESCC lines. Cell invasion and migration assays were applied to determine the invasion and migratory abilities of ESCC cells. Results Compared with GRP78 in adjacent normal esophageal tissues, GRP78 was overexpressed in ESCC tissues. High GRP78 expression was significantly correlated with positive lymph node metastasis (P=0.035) and advanced tumor stage (P=0.017). Survival analysis revealed that high GRP78 expression was significantly associated with shorter overall survival (P=0.037). In multivariate analysis, GRP78 overexpression was identified as an independent prognostic factor for overall survival (P=0.011). si-GRP78 can significantly decrease the GRP78 expression level and reverse the invasion and migratory abilities of ESCC cells in TE-1 and CaEs-17 cell lines. Conclusion These findings demonstrated that high expression of GRP78 was associated with disease progression and metastasis in ESCC and might serve as a novel prognostic marker for patients with ESCC. PMID:28228658

  10. Cationic liquid crystalline nanoparticles for the delivery of synthetic RNAi-based therapeutics.

    PubMed

    Gentile, Emanuela; Oba, Taro; Lin, Jing; Shao, Ruping; Meng, Feng; Cao, Xiaobo; Lin, Heather Y; Mourad, Majidi; Pataer, Apar; Baladandayuthapani, Veerabhadran; Cai, Dong; Roth, Jack A; Ji, Lin

    2017-07-18

    RNA interference (RNAi)-based therapeutics have been used to silence the expression of targeted pathological genes. Small interfering RNA (siRNAs) and microRNA (miRNAs) inhibitor have performed this function. However, short half-life, poor cellular uptake, and nonspecific distribution of small RNAs call for the development of novel delivery systems to facilitate the use of RNAi. We developed a novel cationic liquid crystalline nanoparticle (CLCN) to efficiently deliver synthetic siRNAs and miRNAs. CLCNs were prepared by using high-speed homogenization and assembled with synthetic siRNA or miRNA molecules in nuclease-free water to create CLCN/siRNA or miRNA complexes. The homogeneous and stable CLCNs and CLCN-siRNA complexes were about 100 nm in diameter, with positively charged surfaces. CLCNs are nontoxic and are taken up by human cells though endocytosis. Significant inhibition of gene expression was detected in transiently transfected lung cancer H1299 cells treated with CLCNs/anti-GFP complexes 24 hours after transfection. Biodistribution analysis showed that the CLCNs and CLCNs-RNAi complexes were successfully delivered to various organs and into the subcutaneous human lung cancer H1299 tumor xenografts in mice 24 hours after systemic administration. These results suggest that CLCNs are a unique and advanced delivery system capable of protecting RNAi from degradation and of efficiently delivering RNAi in vitro and in vivo.

  11. Cationic liquid crystalline nanoparticles for the delivery of synthetic RNAi-based therapeutics

    PubMed Central

    Gentile, Emanuela; Oba, Taro; Lin, Jing; Shao, Ruping; Meng, Feng; Cao, Xiaobo; Lin, Heather Y.; Mourad, Majidi; Pataer, Apar; Baladandayuthapani, Veerabhadran; Cai, Dong; Roth, Jack A.; Ji, Lin

    2017-01-01

    RNA interference (RNAi)-based therapeutics have been used to silence the expression of targeted pathological genes. Small interfering RNA (siRNAs) and microRNA (miRNAs) inhibitor have performed this function. However, short half-life, poor cellular uptake, and nonspecific distribution of small RNAs call for the development of novel delivery systems to facilitate the use of RNAi. We developed a novel cationic liquid crystalline nanoparticle (CLCN) to efficiently deliver synthetic siRNAs and miRNAs. CLCNs were prepared by using high-speed homogenization and assembled with synthetic siRNA or miRNA molecules in nuclease-free water to create CLCN/siRNA or miRNA complexes. The homogeneous and stable CLCNs and CLCN-siRNA complexes were about 100 nm in diameter, with positively charged surfaces. CLCNs are nontoxic and are taken up by human cells though endocytosis. Significant inhibition of gene expression was detected in transiently transfected lung cancer H1299 cells treated with CLCNs/anti-GFP complexes 24 hours after transfection. Biodistribution analysis showed that the CLCNs and CLCNs-RNAi complexes were successfully delivered to various organs and into the subcutaneous human lung cancer H1299 tumor xenografts in mice 24 hours after systemic administration. These results suggest that CLCNs are a unique and advanced delivery system capable of protecting RNAi from degradation and of efficiently delivering RNAi in vitro and in vivo. PMID:28637023

  12. Acid ceramidase in prostate cancer radiation therapy resistance and relapse

    NASA Astrophysics Data System (ADS)

    Cheng, Joseph C.

    Prostate tumor cell escape from ionizing radiation (IR)-induced killing can lead to disease progression and relapse. Sphingolipids such as ceramide and sphingosine 1-phosphate influence signal transduction pathways that regulate stress response in cancer cells. In particular, metabolism of apoptotic ceramide constitutes an important survival adaptation. Assessments of enzyme activity, mRNA, and protein demonstrated preferential upregulation of the ceramide deacylating enzyme acid ceramidase (AC) in irradiated cancer cells. Promoter-reporter and ChIP-qPCR assays revealed AC transcription by activator protein 1 (AP-1) is sensitive to pharmacological inhibition of de novo ceramide biosynthesis, identifying a protective feedback mechanism that mitigates the effects of IR-induced ceramide. Deregulation of c-Jun, in particular, induced marked radiosensitization in vitro and in vivo, which was rescued by ectopic AC over-expression. AC over-expression in prostate cancer clonogens surviving 80 Gray fractionated irradiation was associated with increased radioresistance and proliferation, suggesting a role in radiotherapy failure and relapse. Indeed, immunohistochemical analysis of human prostate cancer tissues revealed higher levels of AC after radiotherapy failure than therapy-naive adenocarcinoma, PIN, or benign tissues. By genetically downregulating AC with small interfering RNA (siRNA), we observed radiosensitization of cells using clonogenic and cytotoxicity assays. Finally, treatment with lysosomotropic small molecule inhibitors of AC, LCL385 or LCL521, induced prostate cancer xenograft radiosensitization and long-term suppression, suggesting AC is a tractable target for adjuvant radiotherapy.

  13. Estrogen Receptor-Related Receptor α Mediates Up-Regulation of Aromatase Expression by Prostaglandin E2 in Prostate Stromal Cells

    PubMed Central

    Miao, Lin; Shi, Jiandang; Wang, Chun-Yu; Zhu, Yan; Du, Xiaoling; Jiao, Hongli; Mo, Zengnan; Klocker, Helmut; Lee, Chung; Zhang, Ju

    2010-01-01

    Estrogen receptor-related receptor α (ERRα) is an orphan member of the nuclear receptor superfamily of transcription factors. ERRα is highly expressed in the prostate, especially in prostate stromal cells. However, little is known about the regulation and function of ERRα, which may contribute to the progression of prostatic diseases. We previously found that prostaglandin E2 (PGE2) up-regulated the expression of aromatase in prostate stromal cells. Here we show that PGE2 also up-regulates the expression of ERRα, which, as a transcription factor, further mediates the regulatory effects of PGE2 on the expression of aromatase. ERRα expression was up-regulated by PGE2 in prostate stromal cell line WPMY-1, which was mediated mainly through the protein kinase A signaling pathway by PGE2 receptor EP2. Suppression of ERRα activity by chlordane (an antagonist of ERRα) or small interfering RNA knockdown of ERRα blocked the increase of expression and promoter activity of aromatase induced by PGE2. Overexpression of ERRα significantly increased aromatase expression and promoter activity, which were further augmented by PGE2. Chromatin immunoprecipitation assay demonstrated that ERRα directly bound to the aromatase promoter in vivo, and PGE2 enhanced the recruitment of ERRα and promoted transcriptional regulatory effects on aromatase expression in WPMY-1. 17β-Estradiol concentration in WPMY-1 medium was up-regulated by ERRα expression, and that was further increased by PGE2. Our results provided evidence that ERRα contributed to local estrogen production by up-regulating aromatase expression in response to PGE2 and provided further insights into the potential role of ERRα in estrogen-related prostatic diseases. PMID:20351196

  14. Upregulation of B23 promotes tumor cell proliferation and predicts poor prognosis in glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jianguo; Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province; Sun, Jie

    B23 (also known as Nucleophosmin, NPM, numatrin or NO38) is a ubiquitously expressed phosphoprotein belonging to the nucleoplasmin family of chaperones. In this study we intended to investigate the clinical significance of B23 expression in human glioma and its biological function in glioma cells. Western blot and immunohistochemistry analysis showed that B23 was overexpressed in glioma tissues and glioma cell lines. In addition, the expression level of B23 was positively correlated with glioma pathological grade and Ki-67 expression. Kaplan–Meier analysis revealed that a higher B23 expression in patients with glioma was associated with a poorer prognosis. In vitro, after the releasemore » of glioma cell lines from serum starvation, the expression of B23 was upregulated, as well as PCNA (Proliferating Cell Nuclear Antigen) and cyclin A. In addition, knockdown of B23 by small interfering RNA transfection diminished the expression of PCNA, cyclin D1 and arrested cell growth at G1 phase. Taken together, our results implied that B23 could be a candidate prognostic biomarker as well as a potential therapeutical target of glioma. - Highlights: • B23 expression increased as the malignant degree of glioma increased, which was consistent with Ki-67 expression. • High expression of B23 could be a strong determinant of poor prognosis in glioma. • B23 may be involved in the proliferation of glioma in a cell-cycle-dependent pathway. • Knockdown of B23 expression by siRNA could affect the progression of glioma. • B23 may be a potential prognosis biomarker and a possible therapeutic target for glioma.« less

  15. Tissue transglutaminase regulates focal adhesion kinase/AKT activation by modulating PTEN expression in pancreatic cancer cells.

    PubMed

    Verma, Amit; Guha, Sushovan; Wang, Huamin; Fok, Jansina Y; Koul, Dimpy; Abbruzzese, James; Mehta, Kapil

    2008-04-01

    Pancreatic ductal adenocarcinoma (PDAC) progresses rapidly and exhibits profound resistance to treatment. We recently reported that a great majority of PDAC tumors and tumor cell lines express elevated levels of tissue transglutaminase (TG2). Here, we provide first evidence that TG2 expression in PDAC cells results in constitutive activation of focal adhesion kinase/AKT by modulating the expression of the tumor suppressor phosphatase PTEN. Using PDAC cell lines, we determined the effect of TG2 overexpression on PTEN stability and functions. We confirmed the correlation between TG2 expression and PTEN levels in a few (n=51) PDAC tumor samples. We observed that expression of TG2 is inversely correlated with PTEN expression in PDAC cells. Ectopic expression of TG2 inhibited PTEN phosphorylation and promoted its degradation by ubiquitin-proteasomal pathway. Conversely, down-regulation of TG2 by small interfering RNA up-regulated PTEN expression. Clinical relevance of these results was evident in an athymic nude mouse model where down-regulation of endogenous TG2 caused a significant retardation in PDAC xenograft growth. Importantly, the analysis of 51 tumor samples from patients with stage II PDAC revealed that overexpression of TG2 was associated with loss of PTEN expression (P=0.023; odds ratio, 4.1). In multivariate analysis, TG2-mediated loss of PTEN was a prognostic factor for overall survival in patients with stage II pancreatic ductal carcinoma independent of tumor stage/lymph node status and tumor differentiation (P=0.01). TG2 expression in PDAC promotes degradation of PTEN by ubiquitin-proteasomal pathway and results in constitutive activation of focal adhesion kinase/AKT cell survival signaling.

  16. The system with zwitterionic lactose-based surfactant for complexation and delivery of small interfering ribonucleic acid—A structural and spectroscopic study

    NASA Astrophysics Data System (ADS)

    Skupin, Michalina; Sobczak, Krzysztof; Zieliński, Ryszard; Kozak, Maciej

    2016-05-01

    Systems suitable for the effective preparation of complexes with siRNA (small interfering RNA) are at the center of interest in the area of research work on the delivery of the RNA-based drugs (RNA-therapeutics). This article presents results of a study on the structural effects associated with siRNA complexation by a surfactant comprising a lactose group (N-(3-propanesulfone)-N-dodecyl-amino-beta-D-lactose hydrochloride, LA12). The double stranded siRNA oligomer (21 base pairs) used in this study is responsible for silencing a gene that can be important in the therapy of myotonic dystrophy type 1. The obtained siRNA/LA12 lipoplexes were studied using the methods of small angle scattering of synchrotron radiation, circular dichroism spectroscopy, Fourier transform infrared spectroscopy, and electrophoretic mobility tests. Lipoplexes form in solution stable lamellar or cubic phases. The surfactant selected for the study shows much lower cytotoxicity and good complexation abilities of siRNA than dicationic or polycationic surfactants.

  17. The system with zwitterionic lactose-based surfactant for complexation and delivery of small interfering ribonucleic acid—A structural and spectroscopic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skupin, Michalina; Sobczak, Krzysztof; Zieliński, Ryszard

    Systems suitable for the effective preparation of complexes with siRNA (small interfering RNA) are at the center of interest in the area of research work on the delivery of the RNA-based drugs (RNA-therapeutics). This article presents results of a study on the structural effects associated with siRNA complexation by a surfactant comprising a lactose group (N-(3-propanesulfone)-N-dodecyl-amino-beta-D-lactose hydrochloride, LA12). The double stranded siRNA oligomer (21 base pairs) used in this study is responsible for silencing a gene that can be important in the therapy of myotonic dystrophy type 1. The obtained siRNA/LA12 lipoplexes were studied using the methods of small anglemore » scattering of synchrotron radiation, circular dichroism spectroscopy, Fourier transform infrared spectroscopy, and electrophoretic mobility tests. Lipoplexes form in solution stable lamellar or cubic phases. The surfactant selected for the study shows much lower cytotoxicity and good complexation abilities of siRNA than dicationic or polycationic surfactants.« less

  18. Deconvolution of seed and RNA-binding protein crosstalk in RNAi-based functional genomics.

    PubMed

    Suzuki, Hiroshi I; Spengler, Ryan M; Grigelioniene, Giedre; Kobayashi, Tatsuya; Sharp, Phillip A

    2018-05-01

    RNA interference (RNAi) is a major, powerful platform for gene perturbations, but is restricted by off-target mechanisms. Communication between RNAs, small RNAs, and RNA-binding proteins (RBPs) is a pervasive feature of cellular RNA networks. We present a crosstalk scenario, designated as crosstalk with endogenous RBPs' (ceRBP), in which small interfering RNAs or microRNAs with seed sequences that overlap RBP motifs have extended biological effects by perturbing endogenous RBP activity. Systematic analysis of small interfering RNA (siRNA) off-target data and genome-wide RNAi cancer lethality screens using 501 human cancer cell lines, a cancer dependency map, identified that seed-to-RBP crosstalk is widespread, contributes to off-target activity, and affects RNAi performance. Specifically, deconvolution of the interactions between gene knockdown and seed-mediated silencing effects in the cancer dependency map showed widespread contributions of seed-to-RBP crosstalk to growth-phenotype modulation. These findings suggest a novel aspect of microRNA biology and offer a basis for improvement of RNAi agents and RNAi-based functional genomics.

  19. A Transcriptional Regulatory Network Containing Nuclear Receptors and Long Noncoding RNAs Controls Basal and Drug-Induced Expression of Cytochrome P450s in HepaRG Cells.

    PubMed

    Chen, Liming; Bao, Yifan; Piekos, Stephanie C; Zhu, Kexin; Zhang, Lirong; Zhong, Xiao-Bo

    2018-07-01

    Cytochrome P450 (P450) enzymes are responsible for metabolizing drugs. Expression of P450s can directly affect drug metabolism, resulting in various outcomes in therapeutic efficacy and adverse effects. Several nuclear receptors are transcription factors that can regulate expression of P450s at both basal and drug-induced levels. Some long noncoding RNAs (lncRNAs) near a transcription factor are found to participate in the regulatory functions of the transcription factors. The aim of this study is to determine whether there is a transcriptional regulatory network containing nuclear receptors and lncRNAs controlling both basal and drug-induced expression of P450s in HepaRG cells. Small interfering RNAs or small hairpin RNAs were applied to knock down four nuclear receptors [hepatocyte nuclear factor 1 α (HNF1 α ), hepatocyte nuclear factor 4 α (HNF4 α ), pregnane X receptor (PXR), and constitutive androstane receptor (CAR)] as well as two lncRNAs [HNF1 α antisense RNA 1 (HNF1 α -AS1) and HNF4 α antisense RNA 1 (HNF4 α -AS1)] in HepaRG cells with or without treatment of phenobarbital or rifampicin. Expression of eight P450 enzymes was examined in both basal and drug-induced levels. CAR and PXR mainly regulated expression of specific P450s. HNF1 α and HNF4 α affected expression of a wide range of P450s as well as other transcription factors. HNF1 α and HNF4 α controlled the expression of their neighborhood lncRNAs, HNF1 α -AS1 and HNF4 α -AS1, respectively. HNF1 α -AS1 and HNF4 α -AS1 was also involved in the regulation of P450s and transcription factors in diverse manners. Altogether, our study concludes that a transcription regulatory network containing the nuclear receptors and lncRNAs controls both basal and drug-induced expression of P450s in HepaRG cells. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  20. psRNATarget: a plant small RNA target analysis server

    PubMed Central

    Dai, Xinbin; Zhao, Patrick Xuechun

    2011-01-01

    Plant endogenous non-coding short small RNAs (20–24 nt), including microRNAs (miRNAs) and a subset of small interfering RNAs (ta-siRNAs), play important role in gene expression regulatory networks (GRNs). For example, many transcription factors and development-related genes have been reported as targets of these regulatory small RNAs. Although a number of miRNA target prediction algorithms and programs have been developed, most of them were designed for animal miRNAs which are significantly different from plant miRNAs in the target recognition process. These differences demand the development of separate plant miRNA (and ta-siRNA) target analysis tool(s). We present psRNATarget, a plant small RNA target analysis server, which features two important analysis functions: (i) reverse complementary matching between small RNA and target transcript using a proven scoring schema, and (ii) target-site accessibility evaluation by calculating unpaired energy (UPE) required to ‘open’ secondary structure around small RNA’s target site on mRNA. The psRNATarget incorporates recent discoveries in plant miRNA target recognition, e.g. it distinguishes translational and post-transcriptional inhibition, and it reports the number of small RNA/target site pairs that may affect small RNA binding activity to target transcript. The psRNATarget server is designed for high-throughput analysis of next-generation data with an efficient distributed computing back-end pipeline that runs on a Linux cluster. The server front-end integrates three simplified user-friendly interfaces to accept user-submitted or preloaded small RNAs and transcript sequences; and outputs a comprehensive list of small RNA/target pairs along with the online tools for batch downloading, key word searching and results sorting. The psRNATarget server is freely available at http://plantgrn.noble.org/psRNATarget/. PMID:21622958

  1. SMILE, a new orphan nuclear receptor SHP-interacting protein, regulates SHP-repressed estrogen receptor transactivation.

    PubMed

    Xie, Yuan-Bin; Lee, Ok-Hee; Nedumaran, Balachandar; Seong, Hyun-A; Lee, Kyeong-Min; Ha, Hyunjung; Lee, In-Kyu; Yun, Yungdae; Choi, Hueng-Sik

    2008-12-15

    SHP (small heterodimer partner) is a well-known NR (nuclear receptor) co-regulator. In the present study, we have identified a new SHP-interacting protein, termed SMILE (SHP-interacting leucine zipper protein), which was previously designated as ZF (Zhangfei) via a yeast two-hybrid system. We have determined that the SMILE gene generates two isoforms [SMILE-L (long isoform of SMILE) and SMILE-S (short isoform of SMILE)]. Mutational analysis has demonstrated that the SMILE isoforms arise from the alternative usage of initiation codons. We have confirmed the in vivo interaction and co-localization of the SMILE isoforms and SHP. Domain-mapping analysis indicates that the entire N-terminus of SHP and the middle region of SMILE-L are involved in this interaction. Interestingly, the SMILE isoforms counteract the SHP repressive effect on the transactivation of ERs (estrogen receptors) in HEK-293T cells (human embryonic kidney cells expressing the large T-antigen of simian virus 40), but enhance the SHP-repressive effect in MCF-7, T47D and MDA-MB-435 cells. Knockdown of SMILE gene expression using siRNA (small interfering RNA) in MCF-7 cells increases ER-mediated transcriptional activity. Moreover, adenovirus-mediated overexpression of SMILE and SHP down-regulates estrogen-induced mRNA expression of the critical cell-cycle regulator E2F1. Collectively, these results indicate that SMILE isoforms regulate the inhibition of ER transactivation by SHP in a cell-type-specific manner and act as a novel transcriptional co-regulator in ER signalling.

  2. Physalin A exerts anti-tumor activity in non-small cell lung cancer cell lines by suppressing JAK/STAT3 signaling

    PubMed Central

    Loo, Jacky F.C.; Xia, Dajin; Gao, Sizhi P.; Ma, Zhongjun; Chen, Zhe

    2016-01-01

    The signal transducers and activators of transcription 3 (STAT3) signaling pathway plays critical roles in the pathogenesis and progression of various human cancers, including non-small cell lung cancer (NSCLC). In this study, we aimed to evaluate the therapeutic potential of physalin A, a bioactive withanolide derived from Physalis alkekengi var. francheti used in traditional Chinese medicine, was evaluated in human NSCLC cells. Its and determined whether it effect oninhibited both constitutive and induced STAT3 activity, through repressing the phosphorylation levels of JAK2 and JAK3, resulting in anti-proliferation and pro-apoptotic effects on NSCLC cells was also determined, and. theThe antitumor effects of physalin A were also validated usingin an in vivo mouse xenograft models of NSCLC cells. Physalin A had anti-proliferative and pro-apoptotic effects in NSCLC cells with constitutively activated STAT3; it also suppressed both constitutive and induced STAT3 activity by modulating the phosphorylation of JAK2 and JAK3. Furthermore, physalin A abrogated the nuclear translocation and transcriptional activity of STAT3, thereby decreasing the expression levels of STAT3, its target genes, such as Bcl-2 and XIAP. Knockdown of STAT3 expression by small interfering RNA (siRNA) significantly enhanced the pro-apoptotic effects of physalin A in NSCLC cells. Moreover, physalin A significantly suppressed tumor xenograft growth. Thus, as an inhibitor of JAK2/3-STAT3 signaling, physalin A, has potent anti-tumor activities, which may facilitate the development of a therapeutic strategy for treating NSCLC. PMID:26843613

  3. Riding in silence: a little snowboarding, a lot of small RNAs

    PubMed Central

    2010-01-01

    The recent symposium, RNA silencing: Mechanism, Biology and Applications, organized by Phillip D. Zamore (University of Massachusetts Medical School) and Beverly Davidson (University of Iowa), and held in Keystone, Colorado, brought together scientists working on diverse aspects of RNA silencing, a field that comprises a multitude of gene regulatory pathways guided by microRNAs, small interfering RNAs and PIWI-interacting RNAs. PMID:20230614

  4. Proton receptor GPR68 expression in dendritic-cell-like S100β-positive cells of rat anterior pituitary gland: GPR68 induces interleukin-6 gene expression in extracellular acidification.

    PubMed

    Horiguchi, Kotaro; Higuchi, Masashi; Yoshida, Saishu; Nakakura, Takashi; Tateno, Kozue; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Kato, Takako; Kato, Yukio

    2014-11-01

    S100β-positive cells, which do not express the classical pituitary hormones, appear to possess multifunctional properties and are assumed to be heterogeneous in the anterior pituitary gland. The presence of several protein markers has shown that S100β-positive cells are composed of populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. Recently, we succeeded in separating S100β-positive cells into round-cell (dendritic-cell-like) and process-cell types. We also found the characteristic expression of anti-inflammatory factors (interleukin-6, Il-6) and membrane receptors (integrin β-6) in the round type. Here, we further investigate the function of the subpopulation of S100β-positive cells. Since IL-6 is also a paracrine factor that regulates hormone producing-cells, we examine whether a correlation exists among extracellular acid stress, IL-6 and hormone production by using primary cultures of anterior pituitary cells. Dendritic-cell-like S100β-positive cells notably expressed Gpr68 (proton receptor) and Il-6. Furthermore, the expression of Il-6 and proopiomelanocortin (Pomc) was up-regulated by extracellular acidification. The functional role of IL-6 and GPR68 in the gene expression of Pomc during extracellular acidification was also examined. Small interfering RNA for Il-6 up-regulated Pomc expression and that for Gpr68 reversed the down-regulation of Il-6 and up-regulated Pomc expression by extracellular acidification. Thus, S100β-positive dendritic-like cells can sense an increase in extracellular protons via GPR68 and respond by the production of IL-6 in order to suppress the up-regulation of Pomc expression.

  5. A novel long non-coding RNA, hypoxia-inducible factor-2α promoter upstream transcript, functions as an inhibitor of osteosarcoma stem cells in vitro.

    PubMed

    Wang, Yongcheng; Yao, Jie; Meng, Haoye; Yu, Zhiguo; Wang, Zhigang; Yuan, Xueling; Chen, Hong; Wang, Aiyuan

    2015-04-01

    Long non‑coding RNAs (lncRNAs) have recently been identified as novel modulators of malignant tumors. However, the function of lncRNAs in cancer stem cells (CSCs) remains to be elucidated. The present study aimed to investigate the regulating role of a novel lncRNA, hypoxia‑inducible factor‑2α (HIF‑2α) promoter upstream transcript (HIF2PUT), in osteosarcoma stem cells. The expression levels of HIF2PUT were assessed by quantitative polymerase chain reaction in 17 osteosarcoma tissue specimens, and the correlation between the expression of HIF2PUT and its host transcript‑HIF‑2α was determined. In functional experiments, HIF2PUT expression was knocked down by small interfering RNAs, or overexpressed by transfection with pcDNA‑HIF2PUT, in order to evaluate the effects of HIF2PUT on cell proliferation, migration, expression rate of osteosarcoma stem cell marker CD133, and stem sphere‑forming ability in MG63 cells. HIF2PUT expression levels were positively correlated with HIF‑2α in osteosarcoma tissues. Overexpression of HIF2PUT markedly inhibited cell proliferation and migration, decreased the percentage of CD133 expressing cells, and impaired the osteosarcoma stem sphere‑forming ability of the MG63 cells. Whereas, knockdown of HIF2PUT expression had the opposite effect. Furthermore, altering the expression of HIF2PUT resulted in a concomitant change to HIF‑2α mRNA expression. These results indicate that the lncRNA HIF2PUT may be a novel regulatory factor of osteosarcoma stem cells, which may exert its function partly by controlling HIF‑2α expression. Further studies regarding HIF2PUT may provide a novel therapeutic target of osteosarcoma in the future.

  6. Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa

    PubMed Central

    Morin, Ryan D.; Aksay, Gozde; Dolgosheina, Elena; Ebhardt, H. Alexander; Magrini, Vincent; Mardis, Elaine R.; Sahinalp, S. Cenk; Unrau, Peter J.

    2008-01-01

    The diversity of microRNAs and small-interfering RNAs has been extensively explored within angiosperms by focusing on a few key organisms such as Oryza sativa and Arabidopsis thaliana. A deeper division of the plants is defined by the radiation of the angiosperms and gymnosperms, with the latter comprising the commercially important conifers. The conifers are expected to provide important information regarding the evolution of highly conserved small regulatory RNAs. Deep sequencing provides the means to characterize and quantitatively profile small RNAs in understudied organisms such as these. Pyrosequencing of small RNAs from O. sativa revealed, as expected, ∼21- and ∼24-nt RNAs. The former contained known microRNAs, and the latter largely comprised intergenic-derived sequences likely representing heterochromatin siRNAs. In contrast, sequences from Pinus contorta were dominated by 21-nt small RNAs. Using a novel sequence-based clustering algorithm, we identified sequences belonging to 18 highly conserved microRNA families in P. contorta as well as numerous clusters of conserved small RNAs of unknown function. Using multiple methods, including expressed sequence folding and machine learning algorithms, we found a further 53 candidate novel microRNA families, 51 appearing specific to the P. contorta library. In addition, alignment of small RNA sequences to the O. sativa genome revealed six perfectly conserved classes of small RNA that included chloroplast transcripts and specific types of genomic repeats. The conservation of microRNAs and other small RNAs between the conifers and the angiosperms indicates that important RNA silencing processes were highly developed in the earliest spermatophytes. Genomic mapping of all sequences to the O. sativa genome can be viewed at http://microrna.bcgsc.ca/cgi-bin/gbrowse/rice_build_3/. PMID:18323537

  7. Effects of nicotinamide N-methyltransferase on PANC-1 cells proliferation, metastatic potential and survival under metabolic stress.

    PubMed

    Yu, Tao; Wang, Yong-Tao; Chen, Pan; Li, Yu-Hua; Chen, Yi-Xin; Zeng, Hang; Yu, Ai-Ming; Huang, Min; Bi, Hui-Chang

    2015-01-01

    Aberrant expression of Nicotinamide N-methyltransferase (NNMT) has been reported in pancreatic cancer. However, the role of NNMT in pancreatic cancer development remains elusive. Therefore, the present study was to investigate the impact of NNMT on pancreatic cancer cell proliferation, metastatic potential and survival under metabolic stress. Pancreatic cancer cell line PANC-1 was transfected with NNMT expression plasmid or small interfering RNA of NNMT to overexpress or knockdown intracellular NNMT expression, respectively. Rate of cell proliferation was monitored. Transwell migration and matrigel invasion assays were conducted to assess cell migration and invasion capacity. Resistance to glucose deprivation, sensitivity to glycolytic inhibition, mitochondrial inhibtion and resistance to rapamycin were examined to evaluate cell survival under metabolic stress. NNMT silencing markedly reduced cell proliferation, whereas NNMT overexpression promoted cell growth moderately. Knocking down NNMT also significantly suppressed the migration and invasion capacities of PANC-1 cells. Conversely, NNMT upregulation enhanced cell migration and invasion capacities. In addition, NNMT knockdown cells were much less resistant to glucose deprivation and rapamycin as well as glycolytic inhibitor 2-deoxyglucose whereas NNMT-expressing cells showed opposite effects although the effects were not so striking. These data sugguest that NNMT plays an important role in PANC-1 cell proliferation, metastatic potential and survival under metabolic stress. © 2015 S. Karger AG, Basel.

  8. Wnt5A Activates the Calpain-Mediated Cleavage of Filamin A

    PubMed Central

    O’Connell, Michael P.; Fiori, Jennifer L.; Baugher, Katherine M.; Indig, Fred E.; French, Amanda D.; Camilli, Tura C.; Frank, Brittany P.; Earley, Rachel; Hoek, Keith S.; Hasskamp, Joanne H.; Elias, E. George; Taub, Dennis D.; Bernier, Michel; Weeraratna, Ashani T.

    2009-01-01

    We have previously shown that Wnt5A and ROR2, an orphan tyrosine kinase receptor, interact to mediate melanoma cell motility. In other cell types, this can occur through the interaction of ROR2 with the cytoskeletal protein filamin A. Here, we found that filamin A protein levels correlated with Wnt5A levels in melanoma cells. Small interfering RNA (siRNA) knockdown of WNT5A decreased filamin A expression. Knockdown of filamin A also corresponded to a decrease in melanoma cell motility. In metastatic cells, filamin A expression was predominant in the cytoplasm, which western analysis indicated was due to the cleavage of filamin A in these cells. Treatment of nonmetastatic melanoma cells with recombinant Wnt5A increased filamin A cleavage, and this could be prevented by the knockdown of ROR2 expression. Further, BAPTA-AM chelation of intracellular calcium also inhibited filamin A cleavage, leading to the hypothesis that Wnt5A/ROR2 signaling could cleave filamin A through activation of calcium-activated proteases, such as calpains. Indeed, WNT5A knockdown decreased calpain 1 expression, and by inhibiting calpain 1 either pharmacologically or using siRNA, it decreased cell motility. Our results indicate that Wnt5A activates calpain-1, leading to the cleavage of filamin A, which results in a remodeling of the cytoskeleton and an increase in melanoma cell motility. PMID:19177143

  9. Luteolin, a novel natural inhibitor of tumor progression locus 2 serine/threonine kinase, inhibits tumor necrosis factor-alpha-induced cyclooxygenase-2 expression in JB6 mouse epidermis cells.

    PubMed

    Kim, Jong-Eun; Son, Joe Eun; Jang, Young Jin; Lee, Dong Eun; Kang, Nam Joo; Jung, Sung Keun; Heo, Yong-Seok; Lee, Ki Won; Lee, Hyong Joo

    2011-09-01

    Targeting tumor necrosis factor (TNF)-α-mediated signal pathways may be a promising strategy for developing chemopreventive agents, because TNF-α-mediated cyclooxygenase (COX)-2 expression plays a key role in inflammation and carcinogenesis. Luteolin [2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-chromenone] exerts anticarcinogenic effects, although little is known about the underlying molecular mechanisms and specific targets of this compound. In the present study, we found that luteolin inhibited TNF-α-induced COX-2 expression by down-regulating the transactivation of nuclear factor-κB and activator protein-1. Furthermore, luteolin inhibited TNF-α-induced phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase 1/ERK/p90(RSK), mitogen-activated protein kinase kinase 4/c-Jun N-terminal kinase/c-Jun, and Akt/p70(S6K). However, it had no effect on the phosphorylation of p38. These effects of luteolin on TNF-α-mediated signaling pathways and COX-2 expression are similar to those achieved by blocking tumor progression locus 2 serine/threonine kinase (TPL2) using pharmacologic inhibitors and small interfering RNAs. Luteolin inhibited TPL2 activity in vitro and in TPL2 immunoprecipitation kinase assays by binding directly in an ATP-competitive manner. Overall, these results indicate that luteolin exerts potent chemopreventive activities, which primarily target TPL2.

  10. Influenza A Virus Infection of Human Respiratory Cells Induces Primary MicroRNA Expression*

    PubMed Central

    Buggele, William A.; Johnson, Karen E.; Horvath, Curt M.

    2012-01-01

    The cellular response to virus infection is initiated by recognition of the invading pathogen and subsequent changes in gene expression mediated by both transcriptional and translational mechanisms. In addition to well established means of regulating antiviral gene expression, it has been demonstrated that RNA interference (RNAi) can play an important role in antiviral responses. Virus-derived small interfering RNA (siRNA) is a primary antiviral response exploited by plants and invertebrate animals, and host-encoded microRNA (miRNA) species have been clearly implicated in the regulation of innate and adaptive immune responses in mammals and other vertebrates. Examination of miRNA abundance in human lung cell lines revealed endogenous miRNAs, including miR-7, miR-132, miR-146a, miR-187, miR-200c, and miR-1275, to specifically accumulate in response to infection with two influenza A virus strains, A/Udorn/72 and A/WSN/33. Known antiviral response pathways, including Toll-like receptor, RIG-I-like receptor, and direct interferon or cytokine stimulation did not alter the abundance of the tested miRNAs to the extent of influenza A virus infection, which initiates primary miRNA transcription via a secondary response pathway. Gene expression profiling identified 26 cellular mRNAs targeted by these miRNAs, including IRAK1, MAPK3, and other components of innate immune signaling systems. PMID:22822053

  11. Overexpression of FOXO4 induces apoptosis of clear-cell renal carcinoma cells through downregulation of Bim.

    PubMed

    Wang, Wei; Zhou, Pang-Hu; Hu, Wei

    2016-03-01

    Forkhead box O4 (FOXO4) has been reported to be a novel tumor suppressor gene in gastrointestinal cancers; however, its role in clear‑cell renal carcinoma cells (ccRCC) has remained largely elusive. The present study assessed the expression levels of FOXO4 in RCC tissues and cells. Furthermore, the effects of vector‑mediated overexpression of FOXO4 on the apoptotic rate of the 786‑0 and Caki‑1 cell lines and the role of Bim in this process were investigated. The results demonstrated that the protein and mRNA expression levels of FOXO4 were decreased in renal cancer tissues and cell lines compared with those in normal tissues and cell lines. FOXO4 overexpression significantly increased the apoptotic rate of ccRCC cells in vitro, along with increased protein expression levels of Bim, cleaved‑caspase 3, B‑cell lymphoma 2 (Bcl‑2)‑associated X protein (Bax) and cytochrome c, as well as a decrease in Bcl‑2 expression. Of note, the apoptotic effects of FOXO4 overexpression in 786‑0 cells were inhibited by small interfering RNA‑mediated knockdown of Bim. The results of the present study indicated that FOXO4 has an inhibitory effect in ccRCC, at least in part through inducing apoptosis via upregulation of Bim in the mitochondria-dependent pathway.

  12. Glutathione S-transferase Pi mediates proliferation of androgen-independent prostate cancer cells

    PubMed Central

    Hokaiwado, Naomi; Takeshita, Fumitaka; Naiki-Ito, Aya; Asamoto, Makoto; Ochiya, Takahiro; Shirai, Tomoyuki

    2008-01-01

    Prostate cancers generally acquire an androgen-independent growth capacity with progression, resulting in resistance to antiandrogen therapy. Therefore, identification of the genes regulated through this process may be important for understanding the mechanisms of prostate carcinogenesis. We here utilized androgen-dependent/independent transplantable tumors, newly established with the ‘transgenic rat adenocarcinoma in prostate’ (TRAP) model, to analyze their gene expression using microarrays. Among the overexpressed genes in androgen-independent prostate cancers compared with the androgen-dependent tumors, glutathione S-transferase pi (GST-pi) was included. In line with this, human prostate cancer cell lines PC3 and DU145 (androgen independent) had higher expression of GST-pi compared with LNCaP (androgen dependent) as determined by semiquantitative reverse transcription–polymerase chain reaction analysis. To investigate the roles of GST-pi expression in androgen-independent human prostate cancers, GST-pi was knocked down by a small interfering RNA (siRNA), resulting in significant decrease of the proliferation rate in the androgen-independent PC3 cell line. In vivo, administration of GST-pi siRNA–atelocollagen complex decreased GST-pi protein expression, resulting in enhanced numbers of TdT mediated dUTP-biotin nick-end labering (TUNEL)-positive apoptotic cells. These findings suggest that GST-pi might play important roles in proliferation of androgen-independent human prostate cancer cells. PMID:18413363

  13. Immune modulation through RNA interference-mediated silencing of CD40 in dendritic cells.

    PubMed

    Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Samiee, Shahram; Ataee, Zahra; Tabei, Seyyed Ziyaoddin; Moazzeni, Seyed Mohammad

    2009-01-01

    RNA interference (RNAi) is an exciting mechanism for knocking down any target gene in transcriptional level. It is now clear that small interfering RNA (siRNA), a 19-21nt long dsRNA, can trigger a degradation process (RNAi) that specifically silences the expression of a cognate mRNA. Our findings in this study showed that down regulation of CD40 gene expression in dendritic cells (DCs) by RNAi culminated to immune modulation. Effective delivery of siRNA into DCs would be a reasonable method for the blocking of CD40 gene expression at the cell surface without any effect on other genes and cell cytotoxicity. The effects of siRNA against CD40 mRNA on the function and phenotype of DCs were investigated. The DCs were separated from the mice spleen and then cultured in vitro. By the means of Lipofectamine2000, siRNA was delivered to the cells and the efficacy of transfection was estimated by flow cytometry. By Annexine V and Propidium Iodide staining, we could evaluate the transfected cells viability. Also, the mRNA expression and protein synthesis were assessed by real-time PCR and flow cytometry, respectively. Knocking down the CD40 gene in the DCs caused an increase in IL-4 production, decrease in IL-12 production and allostimulation activity. All together, these effects would stimulate Th2 cytokines production from allogenic T-cells in vitro.

  14. Downregulation of feline sarcoma-related protein inhibits cell migration, invasion and epithelial-mesenchymal transition via the ERK/AP-1 pathway in bladder urothelial cell carcinoma.

    PubMed

    Hu, Xudong; Zhang, Zhiqiang; Liang, Zhaofeng; Xie, Dongdong; Zhang, Tao; Yu, Dexin; Zhong, Caiyun

    2017-02-01

    Feline sarcoma-related protein (Fer) is a nuclear and cytoplasmic non-receptor protein tyrosine kinase and Fer overexpression is associated with various biological processes. However, the clinicopathological characteristics and molecular mechanisms of Fer expression in bladder urothelial cell carcinoma (UCC) have yet to be elucidated. The present study demonstrated that Fer was significantly upregulated in bladder UCC tissues and cell lines. A clinicopathological analysis suggested that Fer expression was significantly associated with tumor stage, histological grade and lymph node status, and Fer expression was a prognostic factor for overall survival in a multivariate analysis. Furthermore, small interfering RNA (siRNA) was used to silence the expression of the Fer gene in human bladder UCC T24 cells, and was shown to significantly reduce the migration and invasion of the cells. It was also observed that Fer-siRNA caused the T24 cells to acquire an epithelial cobblestone phenotype, and was able to reverse the epithelial-mesenchymal transition of the cells. Subsequently, Fer-knockdown was shown to deactivate the extracellular signal-regulated kinase/activator protein-1 signaling pathway in T24 cells. These results indicated, for the first time, that Fer has a critical role in bladder UCC progression and may be a potential therapeutic target for bladder UCC metastasis.

  15. TMEPAI regulates EMT in lung cancer cells by modulating the ROS and IRS-1 signaling pathways.

    PubMed

    Hu, Ying; He, Kai; Wang, Dongmei; Yuan, Xinwang; Liu, Yi; Ji, Hongbin; Song, Jianguo

    2013-08-01

    The epithelial-mesenchymal transition (EMT) has been implicated in various pathophysiological processes, including cancer cell migration and distal metastasis. Reactive oxygen species (ROS) and insulin receptor substrate-1 (IRS-1) are important in cancer progression and regulation of EMT. To explore the biological significance and regulatory mechanism of EMT, we determined the expression, the biological function and the signaling pathway of prostate transmembrane protein, androgen induced-1 (TMEPAI), during the induction of EMT and cell migration. Transforming growth factor (TGF)-β1 significantly upregulated the expression of TMEPAI during EMT in human lung adenocarcinoma. Depletion of TMEPAI abolished TGF-β1-induced downregulation of ferritin heavy chain and the subsequent generation of ROS, thus suppressing TGF-β1-induced EMT and cell migration. In addition, increased ROS production and overexpression of TMEPAI downregulated the level of IRS-1. Both the addition of H2O2 and IRS-1 small interfering RNA rescued the ability of TGF-β1 to induce EMT in TMEPAI-depleted cells. Remarkably, the levels of TMEPAI in lung tumor tissues are very high, whereas its expression in normal lung epithelium is very low. Moreover, TMEPAI expression was positively correlated with the cell mesenchymal phenotype and migration potential. Our work reveals that TMEPAI contributes to TGF-β1-induced EMT through ROS production and IRS-1 downregulation in lung cancer cells.

  16. An siRNA-based method for efficient silencing of gene expression in mature brown adipocytes.

    PubMed

    Isidor, Marie S; Winther, Sally; Basse, Astrid L; Petersen, M Christine H; Cannon, Barbara; Nedergaard, Jan; Hansen, Jacob B

    2016-01-01

    Brown adipose tissue is a promising therapeutic target for opposing obesity, glucose intolerance and insulin resistance. The ability to modulate gene expression in mature brown adipocytes is important to understand brown adipocyte function and delineate novel regulatory mechanisms of non-shivering thermogenesis. The aim of this study was to optimize a lipofection-based small interfering RNA (siRNA) transfection protocol for efficient silencing of gene expression in mature brown adipocytes. We determined that a critical parameter was to deliver the siRNA to mature adipocytes by reverse transfection, i.e. transfection of non-adherent cells. Using this protocol, we effectively knocked down both high- and low-abundance transcripts in a model of mature brown adipocytes (WT-1) as well as in primary mature mouse brown adipocytes. A functional consequence of the knockdown was confirmed by an attenuated increase in uncoupled respiration (thermogenesis) in response to β-adrenergic stimulation of mature WT-1 brown adipocytes transfected with uncoupling protein 1 siRNA. Efficient gene silencing was also obtained in various mouse and human white adipocyte models (3T3-L1, primary mouse white adipocytes, hMADS) with the ability to undergo "browning." In summary, we report an easy and versatile reverse siRNA transfection protocol to achieve specific silencing of gene expression in various models of mature brown and browning-competent white adipocytes, including primary cells.

  17. Overexpression of xeroderma pigmentosum group C decreases the chemotherapeutic sensitivity of colorectal carcinoma cells to cisplatin.

    PubMed

    Zhang, Yi; Cao, Jia; Meng, Yanni; Qu, Chunying; Shen, Feng; Xu, Leiming

    2018-05-01

    Xeroderma pigmentosum group C (XPC) is a DNA-damage-recognition gene active at the early stage of DNA repair. XPC also participates in regulation of cell-cycle checkpoint and DNA-damage-induced apoptosis. In the present study, the expression levels of genes involved in nucleotide excision repair (NER) were assessed in human colorectal cancer (CRC) tissue. This analysis revealed that expression of XPC mRNA significantly increased in colorectal carcinoma tissues compared with matched normal controls. Expression of XPC gradually increased along with the degree of progression of CRC. In vitro , an XTT assay demonstrated that small interfering RNA (siRNA) targeting XPC significantly increased the sensitivity of CRC SW480 cells to cisplatin, whereas cells transfected with a XPC-overexpression plasmid became more resistant to cisplatin. Furthermore, flow cytometry revealed that the proportion of apoptotic cells significantly increased in XPC-knockdown cells upon cisplatin treatment. However, the overexpression XPC significantly increased the resistance of cells to cisplatin. In vivo , tumor growth was significantly reduced in tumor-bearing mice when the XPC gene was knocked down. Upregulation of the expression of pro-apoptotic Bcl-associated X and downregulation of the anti-apoptotic B-cell lymphoma 2 proteins was observed in the implanted tumor tissue. In conclusion, XPC serves a key role in chemotherapeutic sensitivity of CRC to cisplatin, meaning that it may be a potential target for chemotherapy of CRC.

  18. Mechanisms Underlying Adaptation to Life in Hydrogen Sulfide–Rich Environments

    PubMed Central

    Kelley, Joanna L.; Arias-Rodriguez, Lenin; Patacsil Martin, Dorrelyn; Yee, Muh-Ching; Bustamante, Carlos D.; Tobler, Michael

    2016-01-01

    Hydrogen sulfide (H2S) is a potent toxicant interfering with oxidative phosphorylation in mitochondria and creating extreme environmental conditions in aquatic ecosystems. The mechanistic basis of adaptation to perpetual exposure to H2S remains poorly understood. We investigated evolutionarily independent lineages of livebearing fishes that have colonized and adapted to springs rich in H2S and compared their genome-wide gene expression patterns with closely related lineages from adjacent, nonsulfidic streams. Significant differences in gene expression were uncovered between all sulfidic and nonsulfidic population pairs. Variation in the number of differentially expressed genes among population pairs corresponded to differences in divergence times and rates of gene flow, which is consistent with neutral drift driving a substantial portion of gene expression variation among populations. Accordingly, there was little evidence for convergent evolution shaping large-scale gene expression patterns among independent sulfide spring populations. Nonetheless, we identified a small number of genes that was consistently differentially expressed in the same direction in all sulfidic and nonsulfidic population pairs. Functional annotation of shared differentially expressed genes indicated upregulation of genes associated with enzymatic H2S detoxification and transport of oxidized sulfur species, oxidative phosphorylation, energy metabolism, and pathways involved in responses to oxidative stress. Overall, our results suggest that modification of processes associated with H2S detoxification and toxicity likely complement each other to mediate elevated H2S tolerance in sulfide spring fishes. Our analyses allow for the development of novel hypotheses about biochemical and physiological mechanisms of adaptation to extreme environments. PMID:26861137

  19. The RNA-Binding Protein Musashi1 Affects Medulloblastoma Growth via a Network of Cancer-Related Genes and Is an Indicator of Poor Prognosis

    PubMed Central

    Vo, Dat T.; Subramaniam, Dharmalingam; Remke, Marc; Burton, Tarea L.; Uren, Philip J.; Gelfond, Jonathan A.; de Sousa Abreu, Raquel; Burns, Suzanne C.; Qiao, Mei; Suresh, Uthra; Korshunov, Andrey; Dubuc, Adrian M.; Northcott, Paul A.; Smith, Andrew D.; Pfister, Stefan M.; Taylor, Michael D.; Janga, Sarath C.; Anant, Shrikant; Vogel, Christine; Penalva, Luiz O.F.

    2013-01-01

    Musashi1 (Msi1) is a highly conserved RNA-binding protein that is required during the development of the nervous system. Msi1 has been characterized as a stem cell marker, controlling the balance between self-renewal and differentiation, and has also been implicated in tumorigenesis, being highly expressed in multiple tumor types. We analyzed Msi1 expression in a large cohort of medulloblastoma samples and found that Msi1 is highly expressed in tumor tissue compared with normal cerebellum. Notably, high Msi1 expression levels proved to be a sign of poor prognosis. Msi1 expression was determined to be particularly high in molecular subgroups 3 and 4 of medulloblastoma. We determined that Msi1 is required for tumorigenesis because inhibition of Msi1 expression by small-interfering RNAs reduced the growth of Daoy medulloblastoma cells in xenografts. To characterize the participation of Msi1 in medulloblastoma, we conducted different high-throughput analyses. Ribonucleoprotein immunoprecipitation followed by microarray analysis (RIP-chip) was used to identify mRNA species preferentially associated with Msi1 protein in Daoy cells. We also used cluster analysis to identify genes with similar or opposite expression patterns to Msi1 in our medulloblastoma cohort. A network study identified RAC1, CTGF, SDCBP, SRC, PRL, and SHC1 as major nodes of an Msi1-associated network. Our results suggest that Msi1 functions as a regulator of multiple processes in medulloblastoma formation and could become an important therapeutic target. PMID:22985791

  20. Progress Toward In Vivo Use of siRNAs-II

    PubMed Central

    Rettig, Garrett R; Behlke, Mark A

    2012-01-01

    RNA interference (RNAi) has been extensively employed for in vivo research since its use was first demonstrated in mammalian cells 10 years ago. Design rules have improved, and it is now routinely possible to obtain reagents that suppress expression of any gene desired. At the same time, increased understanding of the molecular basis of unwanted side effects has led to the development of chemical modification strategies that mitigate these concerns. Delivery remains the single greatest hurdle to widespread adoption of in vivo RNAi methods. However, exciting advances have been made and new delivery systems under development may help to overcome these barriers. This review discusses advances in RNAi biochemistry and biology that impact in vivo use and provides an overview of select publications that demonstrate interesting applications of these principles. Emphasis is placed on work with synthetic, small interfering RNAs (siRNAs) published since the first installment of this review which appeared in 2006. PMID:22186795

  1. Nanocarriers Assisted siRNA Gene Therapy for the Management of Cardiovascular Disorders.

    PubMed

    Maheshwari, Rahul; Tekade, Muktika; Sharma, Piyoosh A; Tekade, Rakesh Kumar

    2015-01-01

    Cardiovascular diseases (CVDs), primarily myocardial infarction (MI), atherosclerosis, hypertension and congestive heart failure symbolize the foremost cause of death in almost all parts of the world. Besides the traditional therapeutic approaches for the management of CVDs, newer innovative strategies are also emerging on the horizon. Recently, gene silencing via small interfering RNA (siRNA) is one of the hot topics amongst various strategies involved in the management of CVDs. The siRNA mechanism involves natural catalytic processes to silence pathological genes that are overexpressed in a particular disease. Also the versatility of gene expression by siRNA deciphers a prospective tactic to down-regulate diseases associated gene, protein or receptor existing on a specific disease target. This article reviews the application of siRNA against CVDs with special emphasis on gene targets in combination with delivery systems such as cationic hydrogels, polyplexes, peptides, liposomes and dendrimers.

  2. Effects of small interfering RNA-mediated hepatic glucagon receptor inhibition on lipid metabolism in db/db mice.

    PubMed

    Han, Seongah; Akiyama, Taro E; Previs, Stephen F; Herath, Kithsiri; Roddy, Thomas P; Jensen, Kristian K; Guan, Hong-Ping; Murphy, Beth A; McNamara, Lesley A; Shen, Xun; Strapps, Walter; Hubbard, Brian K; Pinto, Shirly; Li, Cai; Li, Jing

    2013-10-01

    Hepatic glucose overproduction is a major characteristic of type 2 diabetes. Because glucagon is a key regulator for glucose homeostasis, antagonizing the glucagon receptor (GCGR) is a possible therapeutic strategy for the treatment of diabetes mellitus. To study the effect of hepatic GCGR inhibition on the regulation of lipid metabolism, we generated siRNA-mediated GCGR knockdown (si-GCGR) in the db/db mouse. The hepatic knockdown of GCGR markedly reduced plasma glucose levels; however, total plasma cholesterol was increased. The detailed lipid analysis showed an increase in the LDL fraction, and no change in VLDL HDL fractions. Further studies showed that the increase in LDL was the result of over-expression of hepatic lipogenic genes and elevated de novo lipid synthesis. Inhibition of hepatic glucagon signaling via siRNA-mediated GCGR knockdown had an effect on both glucose and lipid metabolism in db/db mice.

  3. [Professional strategy and institutional isomorphism: the dental health insurance industry in Brazil].

    PubMed

    Vieira, Cristine; Costa, Nilson do Rosário

    2008-01-01

    This article analyzes the organizational model of the dental health industry. The main organizational leaders in this industry are the professional cooperatives and group dental insurance companies. The theoretical basis of the article is the organizational theory developed by Di Maggio and Powell. The dental health industry consists of a great number of small and very dynamic companies, however an expressive part of clients and profit are concentrated in a few large companies. The results show that the industry has expanded the number of clients after the creation of the National Health Insurance Agency. The regulation regime has forced institutional changes in the firms with regard to the market entry, permanence or exit patterns. There was no evidence that the regulatory rules have interfered with the development and financial conditions of the industry. The average profitability of the sector, especially among the group dental insurance companies, is extremely high.

  4. Epigenetics in myeloid derived suppressor cells: a sheathed sword towards cancer

    PubMed Central

    Zhang, Chao; Wang, Shuo; Liu, Yufeng; Yang, Cheng

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs), a heterogeneous population of cells composed of progenitors and precursors to myeloid cells, are deemed to participate in the development of tumor-favoring immunosuppressive microenvironment. Thus, the regulatory strategies targeting MDSCs' expansion, differentiation, accumulation and function could possibly be effective “weapons” in anti-tumor immunotherapies. Epigenetic mechanisms, which involve DNA modification, covalent histone modification and RNA interference, result in the heritable down-regulation or silencing of gene expression without a change in DNA sequences. Epigenetic modification of MDSC's functional plasticity leads to the remodeling of its characteristics, therefore reframing the microenvironment towards countering tumor growth and metastasis. This review summarized the pertinent findings on the DNA methylation, covalent histone modification, microRNAs and small interfering RNAs targeting MDSC in cancer genesis, progression and metastasis. The potentials as well as possible obstacles in translating into anti-cancer therapeutics were also discussed. PMID:27458169

  5. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight

    NASA Astrophysics Data System (ADS)

    Dahlman, James E.; Barnes, Carmen; Khan, Omar F.; Thiriot, Aude; Jhunjunwala, Siddharth; Shaw, Taylor E.; Xing, Yiping; Sager, Hendrik B.; Sahay, Gaurav; Speciner, Lauren; Bader, Andrew; Bogorad, Roman L.; Yin, Hao; Racie, Tim; Dong, Yizhou; Jiang, Shan; Seedorf, Danielle; Dave, Apeksha; Singh Sandhu, Kamaljeet; Webber, Matthew J.; Novobrantseva, Tatiana; Ruda, Vera M.; Lytton-Jean, Abigail K. R.; Levins, Christopher G.; Kalish, Brian; Mudge, Dayna K.; Perez, Mario; Abezgauz, Ludmila; Dutta, Partha; Smith, Lynelle; Charisse, Klaus; Kieran, Mark W.; Fitzgerald, Kevin; Nahrendorf, Matthias; Danino, Dganit; Tuder, Rubin M.; von Andrian, Ulrich H.; Akinc, Akin; Panigrahy, Dipak; Schroeder, Avi; Koteliansky, Victor; Langer, Robert; Anderson, Daniel G.

    2014-08-01

    Dysfunctional endothelium contributes to more diseases than any other tissue in the body. Small interfering RNAs (siRNAs) can help in the study and treatment of endothelial cells in vivo by durably silencing multiple genes simultaneously, but efficient siRNA delivery has so far remained challenging. Here, we show that polymeric nanoparticles made of low-molecular-weight polyamines and lipids can deliver siRNA to endothelial cells with high efficiency, thereby facilitating the simultaneous silencing of multiple endothelial genes in vivo. Unlike lipid or lipid-like nanoparticles, this formulation does not significantly reduce gene expression in hepatocytes or immune cells even at the dosage necessary for endothelial gene silencing. These nanoparticles mediate the most durable non-liver silencing reported so far and facilitate the delivery of siRNAs that modify endothelial function in mouse models of vascular permeability, emphysema, primary tumour growth and metastasis.

  6. RNA interference for performance enhancement and detection in doping control.

    PubMed

    Kohler, Maxie; Schänzer, Wilhelm; Thevis, Mario

    2011-10-01

    RNA interference represents a comparably new route of regulating and manipulating specific gene expression. Promising results were obtained in experimental therapies aim at the treatment of different kinds of diseases including cancer, diabetes mellitus or Dychenne muscular dystrophy. While studies on down-regulation efficiency are often performed by analyzing the regulated protein, the direct detection of small, interfering RNA molecules and antisense oligonucleotides is of great interest for the investigation of the metabolism and degradation and also for the detection of a putative misuse of these molecules in sports. Myostatin down-regulation was shown to result in increased performance and muscle growth and the regulation of several other proteins could be relevant for performance enhancement. This mini-review summarizes current approaches for the mass spectrometric analysis of siRNA and antisense oligonucleotides from biological matrices and the available data on biodistribution, metabolism, and half-life of relevant substances are discussed. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Two suppressors of RNA silencing encoded by cereal-infecting members of the family Luteoviridae.

    PubMed

    Liu, Yan; Zhai, Hao; Zhao, Kun; Wu, Beilei; Wang, Xifeng

    2012-08-01

    Several members of the family Luteoviridae are important pathogens of cultivated plant species of the family Gramineae. In this study, we explored RNA-silencing suppressors (RSSs) encoded by two cereal-infecting luteoviruses: barley yellow dwarf virus and wheat yellow dwarf virus (BYDV and WYDV, respectively). The P0 protein of WYDV-GPV (P0(GPV)) and the P6 protein of BYDV-GAV (P6(GAV)) displayed RSS activities when expressed in agro-infiltrated leaves of Nicotiana benthamiana, by their local ability to inhibit post-transcriptional gene silencing of GFP. Analysis of GFP, mRNA and GFP-specific small interfering RNA indicated that both P0(GPV) and P6(GAV) are suppressors of silencing that can restrain not only local but also systemic gene silencing. This is the first report of RSS activity of the P6 protein in a member of the genus Luteovirus.

  8. MicroRNAs as mediators of insect host-pathogen interactions and immunity.

    PubMed

    Hussain, Mazhar; Asgari, Sassan

    2014-11-01

    Insects are the most successful group of animals on earth, owing this partly to their very effective immune responses to microbial invasion. These responses mainly include cellular and humoral responses as well as RNA interference (RNAi). Small non-coding RNAs (snRNAs) produced through RNAi are important molecules in the regulation of gene expression in almost all living organisms; contributing to important processes such as development, differentiation, immunity as well as host-microorganism interactions. The main snRNAs produced by the RNAi response include short interfering RNAs, microRNAs and piwi-interacting RNAs. In addition to the host snRNAs, some microorganisms encode snRNAs that affect the dynamics of host-pathogen interactions. In this review, we will discuss the latest developments in regards to the role of microRNA in insect host-pathogen interactions and provide some insights into this rapidly developing area of research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Troyer Syndrome Protein Spartin Is Mono-Ubiquitinated and Functions in EGF Receptor Trafficking

    PubMed Central

    Jupille, Henri; Fatheddin, Parvin; Puertollano, Rosa

    2007-01-01

    Troyer syndrome is an autosomal recessive hereditary spastic paraplegia caused by mutation in the spartin (SPG20) gene, which encodes a widely expressed protein of unknown function. This mutation results in premature protein truncation and thus might signify a loss-of-function disease mechanism. In this study, we have found that spartin is mono-ubiquitinated and functions in degradation of the epidermal growth factor receptor (EGFR). Upon EGF stimulation, spartin translocates from the cytoplasm to the plasma membrane and colocalizes with internalized EGF-Alexa. Knockdown of spartin by small interfering RNA decreases the rate of EGFR degradation and also affects EGFR internalization, recycling, or both. Furthermore, overexpression of spartin results in a prominent decrease in EGFR degradation. Taken together, our data suggest that spartin is involved in the intracellular trafficking of EGFR and that impaired endocytosis may underlie the pathogenesis of Troyer syndrome. PMID:17332501

  10. RNA interference targeting cytosolic NADP(+)-dependent isocitrate dehydrogenase exerts anti-obesity effect in vitro and in vivo.

    PubMed

    Nam, Woo Suk; Park, Kwon Moo; Park, Jeen-Woo

    2012-08-01

    A metabolic abnormality in lipid biosynthesis is frequently associated with obesity and hyperlipidemia. Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) is an essential reducing equivalent for numerous enzymes required in fat and cholesterol biosynthesis. Cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) has been proposed as a key enzyme for supplying cytosolic NADPH. We report here that knockdown of IDPc expression by Ribonucleic acid (RNA) interference (RNAi) inhibited adipocyte differentiation and lipogenesis in 3T3-L1 preadipocytes and mice. Attenuated IDPc expression by IDPc small interfering RNA (siRNA) resulted in a reduction of differentiation and triglyceride level and adipogenic protein expression as well as suppression of glucose uptake in cultured adipocytes. In addition, the attenuation of Nox activity and Reactive oxygen species (ROS) generation accompanied with knockdown of IDPc was associated with inhibition of adipogenesis and lipogenesis. The loss of body weight and the reduction of triglyceride level were also observed in diet-induced obese mice transduced with IDPc short-hairpin (shRNA). Taken together, the inhibiting effect of RNAi targeting IDPc on adipogenesis and lipid biosynthesis is considered to be of therapeutic value in the treatment and prevention of obesity and obesity-associated metabolic syndrome. © 2012 Elsevier B.V. All rights reserved.

  11. Selenium deficiency aggravates T-2 toxin-induced injury of primary neonatal rat cardiomyocytes through ER stress.

    PubMed

    Xu, Jing; Pan, Shengchi; Gan, Fang; Hao, Shu; Liu, Dandan; Xu, Haibin; Huang, Kehe

    2018-04-01

    Keshan disease is a potentially fatal cardiomyopathy in humans. Selenium deficiency, T-2 toxin, and myocarditis virus are thought to be the major factors contributing to Keshan disease. But the relationship among these three factors is poorly described. This study aims to explore whether selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury and its underlying mechanism. Cardiomyocytes were isolated from neonatal rat and cultured at the physiological (2.0 μM) or lower concentrations of selenium with different concentrations of T-2 toxin. Our results showed that selenium deficiencies aggravated T-2 toxin-induced cardiomyocyte injury in a concentration-dependent manner as demonstrated by MTT bioassay, LDH activity, reactive oxygen species levels and caspase 3 protein expressions. T-2 toxin treatment significantly increased mRNA expressions for stress proteins GRP78 and CHOP in cardiomyocytes compared with the control. Selenium deficiencies further promoted GRP78, CHOP and p-eIF2α expressions. Knockdown of CHOP by the specific small interfering RNA eliminated the effect of selenium deficiencies on T-2 toxin-induced injury. It could be concluded that selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury through initiating more aggressive endoplasmic reticulum stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Silencing hyperoxia-induced C/EBPα in neonatal mice improves lung architecture via enhanced proliferation of alveolar epithelial cells

    PubMed Central

    Yang, Guang; Hinson, Maurice D.; Bordner, Jessica E.; Lin, Qing S.; Fernando, Amal P.; La, Ping; Wright, Clyde J.

    2011-01-01

    Postnatal lung development requires proliferation and differentiation of specific cell types at precise times to promote proper alveolar formation. Hyperoxic exposure can disrupt alveolarization by inhibiting cell growth; however, it is not fully understood how this is mediated. The transcription factor CCAAT/enhancer binding protein-α (C/EBPα) is highly expressed in the lung and plays a role in cell proliferation and differentiation in many tissues. After 72 h of hyperoxia, C/EBPα expression was significantly enhanced in the lungs of newborn mice. The increased C/EBPα protein was predominantly located in alveolar type II cells. Silencing of C/EBPα with a transpulmonary injection of C/EBPα small interfering RNA (siRNA) prior to hyperoxic exposure reduced expression of markers of type I cell and differentiation typically observed after hyperoxia but did not rescue the altered lung morphology at 72 h. Nevertheless, when C/EBPα hyperoxia-exposed siRNA-injected mice were allowed to recover for 2 wk in room air, lung epithelial cell proliferation was increased and lung morphology was restored compared with hyperoxia-exposed control siRNA-injected mice. These data suggest that C/EBPα is an important regulator of postnatal alveolar epithelial cell proliferation and differentiation during injury and repair. PMID:21571903

  13. Activation of the CXCL16/CXCR6 Axis by TNF-α Contributes to Ectopic Endometrial Stromal Cells Migration and Invasion.

    PubMed

    Peng, Yaoming; Ma, Junyan; Lin, Jun

    2018-01-01

    The activation of systemic and local inflammatory mechanisms, including elevated levels of chemokines and proinflammatory cytokines in endometriosis progression, is becoming more evident in the recent years. Here, we report the involvement of CXC chemokine 16 (CXCL16) and its sole receptor, CXC chemokine receptor 6 (CXCR6), in pathophysiology of endometriosis. Expression of CXCL16, but not CXCR6, was significantly upregulated in endometriotic lesions when compared to control endometrium. Additionally, serum CXCL16 was significantly elevated in women with endometriosis when compared to control group. Moreover, blockade of the CXCL16/CXCR6 axis by CXCR6 small-interfering RNA reduced the migration and invasion of ectopic endometrial stromal cells (EESCs) followed by decreased phosphorylation of ERK1/2. Furthermore, TNF-α treatment induced the expression of CXCL16 in EESCs. In conclusion, these results suggest that CXCL16/CXCR6 axis, whose expression was enhanced by TNF-α, may be associated with the increased motility of EESCs, through regulation of ERK1/2 signaling, thus contributing to the development of endometriosis. These findings indicate that the CXCL16/CXCR6 axis may contribute to the progression of endometriosis and could be served as a potential target for diagnosis and treatment.

  14. MUC1 (CD227) interacts with lck tyrosine kinase in Jurkat lymphoma cells and normal T cells.

    PubMed

    Mukherjee, P; Tinder, T L; Basu, G D; Gendler, S J

    2005-01-01

    MUC1 (CD227) is a large transmembrane epithelial mucin glycoprotein, which is aberrantly overexpressed in most adenocarcinomas and is a target for immune therapy for epithelial tumors. Recently, MUC1 has been detected in a variety of hematopoietic cell malignancies including T and B cell lymphomas and myelomas; however, its function in these cells is not clearly defined. Using the Jurkat T cell lymphoma cell line and normal human T cells, we demonstrate that MUC1 is not only expressed in these cells but is also phosphorylated upon T cell receptor (TCR) ligation and associates with the Src-related T cell tyrosine kinase, p56lck. Upon TCR-mediated activation of Jurkat cells, MUC1 is found in the low-density membrane fractions, where linker of T cell activation is contained. Abrogation of MUC1 expression in Jurkat cells by MUC1-specific small interfering RNA resulted in defects in TCR-mediated downstream signaling events associated with T cell activation. These include reduction in Ca2+ influx and extracellular signal-regulated kinase 1/2 phosphorylation, leading to a decrease in CD69 expression, proliferation, and interleukin-2 production. These results suggest a regulatory role of MUC1 in modulating proximal signal transduction events through its interaction with proteins of the activation complex.

  15. Cancer-targeting siRNA delivery from porous silicon nanoparticles.

    PubMed

    Wan, Yuan; Apostolou, Sinoula; Dronov, Roman; Kuss, Bryone; Voelcker, Nicolas H

    2014-10-01

    Porous silicon nanoparticles (pSiNPs) with tunable pore size are biocompatible and biodegradable, suggesting that they are suitable biomaterials as vehicles for drug delivery. Loading of small interfering RNA (siRNA) into the pores of pSiNPs can protect siRNA from degradation as well as improve the cellular uptake. We aimed to deliver MRP1 siRNA loaded into pSiNPs to glioblastoma cells, and to demonstrate downregulation of MRP1 at the mRNA and protein levels. 50-220 nm pSiNPs with an average pore size of 26 nm were prepared, followed by electrostatic adsorption of siRNA into pores. Oligonucleotide loading and release profiles were investigated; MRP1 mRNA and protein expression, cell viability and cell apoptosis were studied. Approximately 7.7 µg of siRNA was loaded per mg of pSiNPs. Cells readily took up nanoparticles after 30 min incubation. siRNA-loaded pSiNPs were able to effectively downregulate target mRNA (~40%) and protein expression (31%), and induced cell apoptosis and necrosis (33%). siRNA loaded pSiNPs downregulated mRNA and protein expression and induced cell death. This novel siRNA delivery system may pave the way towards developing more effective tumor therapies.

  16. Myeloid leukemia factor 1 regulates p53 by suppressing COP1 via COP9 signalosome subunit 3.

    PubMed

    Yoneda-Kato, Noriko; Tomoda, Kiichiro; Umehara, Mari; Arata, Yukinobu; Kato, Jun-ya

    2005-05-04

    Myeloid leukemia factor 1 (MLF1) was first identified as the leukemic fusion protein NPM-MLF1 generated by the t(3;5)(q25.1;q34) chromosomal translocation. Although MLF1 expresses normally in a variety of tissues including hematopoietic stem cells and the overexpression of MLF1 correlates with malignant transformation in human cancer, little is known about how MLF1 is involved in the regulation of cell growth. Here we show that MLF1 is a negative regulator of cell cycle progression functioning upstream of the tumor suppressor p53. MLF1 induces p53-dependent cell cycle arrest in murine embryonic fibroblasts. This action requires a novel binding partner, subunit 3 of the COP9 signalosome (CSN3). A reduction in the level of CSN3 protein with small interfering RNA abrogated MLF1-induced G1 arrest and impaired the activation of p53 by genotoxic stress. Furthermore, ectopic MLF1 expression and CSN3 knockdown inversely affect the endogenous level of COP1, a ubiquitin ligase for p53. Exogenous expression of COP1 overcomes MLF1-induced growth arrest. These results indicate that MLF1 is a critical regulator of p53 and suggest its involvement in leukemogenesis through a novel CSN3-COP1 pathway.

  17. TLR8 Couples SOCS-1 and Restrains TLR7-Mediated Antiviral Immunity, Exacerbating West Nile Virus Infection in Mice.

    PubMed

    Paul, Amber M; Acharya, Dhiraj; Le, Linda; Wang, Penghua; Stokic, Dobrivoje S; Leis, A Arturo; Alexopoulou, Lena; Town, Terrence; Flavell, Richard A; Fikrig, Erol; Bai, Fengwei

    2016-12-01

    West Nile virus (WNV) is a neurotropic ssRNA flavivirus that can cause encephalitis, meningitis, and death in humans and mice. Human TLR7 and TLR8 and mouse TLR7 recognize viral ssRNA motifs and induce antiviral immunity. However, the role of mouse TLR8 in antiviral immunity is poorly understood. In this article, we report that TLR8-deficient (Tlr8 -/- ) mice were resistant to WNV infection compared with wild-type controls. Efficient WNV clearance and moderate susceptibility to WNV-mediated neuronal death in Tlr8 -/- mice were attributed to overexpression of Tlr7 and IFN-stimulated gene-56 expression, whereas reduced expression of the proapoptotic gene coding Bcl2-associated X protein was observed. Interestingly, suppressor of cytokine signaling (SOCS)-1 directly associated with TLR8, but not with TLR7, indicating a novel role for TLR8 regulation of SOCS-1 function, whereas selective small interfering RNA knockdown of Socs-1 resulted in induced IFN-stimulated gene-56 and Tlr7 expression following WNV infection. Collectively, we report that TLR8 coupling with SOCS-1 inhibits TLR7-mediated antiviral immunity during WNV infection in mice. Copyright © 2016 by The American Association of Immunologists, Inc.

  18. Long noncoding RNA myocardial infarction‑associated transcript is associated with the microRNA‑150‑5p/P300 pathway in cardiac hypertrophy.

    PubMed

    Li, Zhao; Liu, Yamin; Guo, Xiaofan; Sun, Guozhe; Ma, Qun; Dai, Ying; Zhu, Guangshuo; Sun, Yingxian

    2018-05-21

    In numerous diseases, abnormal expression of myocardial infarction‑associated transcript (MIAT) has been reported to be involved in cell proliferation, apoptosis and migration. However, whether this long non‑coding RNA MIAT has a regulatory effect on heart hypertrophy requires further investigation. To this end, the present study evaluated MIAT in hypertrophic cardiomyocytes in vitro and in vivo. Neonatal rat ventricular myocytes (NRVMs) were induced by isoproterenol (ISO) to create a cell hypertrophy model, and mice were intraperitoneally injected with ISO to establish an animal model. Echocardiography, immunofluorescence staining, western blot analysis, RNA isolation and reverse transcription‑polymerase chain reaction were applied to test the involvement of MIAT in cardiac hypertrophy. The results revealed that MIAT was upregulated under ISO stimulation at the mRNA level both in vivo and in vitro. Silencing of MIAT resulted in decreased expression levels of atrial natriuretic peptide and brain natriuretic peptide in ISO‑treated NRVM cardiomyocytes, confirming the connection between MIAT and hypertrophy. Furthermore, MIAT small interfering RNA significantly increased microRNA (miR)‑150 and decreased P300 expression in NRVMs. In conclusion, the MIAT/miR‑150‑5p axis targets P300 as a positive regulator of cardiomyocyte hypertrophy.

  19. Inhibition of Smooth Muscle Proliferation by Urea-Based Alkanoic Acids via Peroxisome Proliferator-Activated Receptor α–Dependent Repression of Cyclin D1

    PubMed Central

    Ng, Valerie Y.; Morisseau, Christophe; Falck, John R.; Hammock, Bruce D.; Kroetz, Deanna L.

    2007-01-01

    Objective Proliferation of smooth muscle cells is implicated in cardiovascular complications. Previously, a urea-based soluble epoxide hydrolase inhibitor was shown to attenuate smooth muscle cell proliferation. We examined the possibility that urea-based alkanoic acids activate the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) and the role of PPARα in smooth muscle cell proliferation. Methods and Results Alkanoic acids transactivated PPARα, induced binding of PPARα to its response element, and significantly induced the expression of PPARα-responsive genes, showing their function as PPARα agonists. Furthermore, the alkanoic acids attenuated platelet-derived growth factor–induced smooth muscle cell proliferation via repression of cyclin D1 expression. Using small interfering RNA to decrease endogenous PPARα expression, it was determined that PPARα was partially involved in the cyclin D1 repression. The antiproliferative effects of alkanoic acids may also be attributed to their inhibitory effects on soluble epoxide hydrolase, because epoxyeicosatrienoic acids alone inhibited smooth muscle cell proliferation. Conclusions These results show that attenuation of smooth muscle cell proliferation by urea-based alkanoic acids is mediated, in part, by the activation of PPARα. These acids may be useful for designing therapeutics to treat diseases characterized by excessive smooth muscle cell proliferation. PMID:16917105

  20. Binding of serum response factor to cystic fibrosis transmembrane conductance regulator CArG-like elements, as a new potential CFTR transcriptional regulation pathway

    PubMed Central

    René, Céline; Taulan, Magali; Iral, Florence; Doudement, Julien; L'Honoré, Aurore; Gerbon, Catherine; Demaille, Jacques; Claustres, Mireille; Romey, Marie-Catherine

    2005-01-01

    CFTR expression is tightly controlled by a complex network of ubiquitous and tissue-specific cis-elements and trans-factors. To better understand mechanisms that regulate transcription of CFTR, we examined transcription factors that specifically bind a CFTR CArG-like motif we have previously shown to modulate CFTR expression. Gel mobility shift assays and chromatin immunoprecipitation analyses demonstrated the CFTR CArG-like motif binds serum response factor both in vitro and in vivo. Transient co-transfections with various SRF expression vector, including dominant-negative forms and small interfering RNA, demonstrated that SRF significantly increases CFTR transcriptional activity in bronchial epithelial cells. Mutagenesis studies suggested that in addition to SRF other co-factors, such as Yin Yang 1 (YY1) previously shown to bind the CFTR promoter, are potentially involved in the CFTR regulation. Here, we show that functional interplay between SRF and YY1 might provide interesting perspectives to further characterize the underlying molecular mechanism of the basal CFTR transcriptional activity. Furthermore, the identification of multiple CArG binding sites in highly conserved CFTR untranslated regions, which form specific SRF complexes, provides direct evidence for a considerable role of SRF in the CFTR transcriptional regulation into specialized epithelial lung cells. PMID:16170155

  1. Inhibition of connective tissue growth factor (CTGF/CCN2) expression decreases the survival and myogenic differentiation of human rhabdomyosarcoma cells.

    PubMed

    Croci, Stefania; Landuzzi, Lorena; Astolfi, Annalisa; Nicoletti, Giordano; Rosolen, Angelo; Sartori, Francesca; Follo, Matilde Y; Oliver, Noelynn; De Giovanni, Carla; Nanni, Patrizia; Lollini, Pier-Luigi

    2004-03-01

    Connective tissue growth factor (CTGF/CCN2), a cysteine-rich protein of the CCN (Cyr61, CTGF, Nov) family of genes, emerged from a microarray screen of genes expressed by human rhabdomyosarcoma cells. Rhabdomyosarcoma is a soft tissue sarcoma of childhood deriving from skeletal muscle cells. In this study, we investigated the role of CTGF in rhabdomyosarcoma. Human rhabdomyosarcoma cells of the embryonal (RD/12, RD/18, CCA) and the alveolar histotype (RMZ-RC2, SJ-RH4, SJ-RH30), rhabdomyosarcoma tumor specimens, and normal skeletal muscle cells expressed CTGF. To determine the function of CTGF, we treated rhabdomyosarcoma cells with a CTGF antisense oligonucleotide or with a CTGF small interfering RNA (siRNA). Both treatments inhibited rhabdomyosarcoma cell growth, suggesting the existence of a new autocrine loop based on CTGF. CTGF antisense oligonucleotide-mediated growth inhibition was specifically due to a significant increase in apoptosis, whereas cell proliferation was unchanged. CTGF antisense oligonucleotide induced a strong decrease in the level of myogenic differentiation of rhabdomyosarcoma cells, whereas the addition of recombinant CTGF significantly increased the proportion of myosin-positive cells. CTGF emerges as a survival and differentiation factor and could be a new therapeutic target in human rhabdomyosarcoma.

  2. Screening mTOR siRNA based on bioinformatics and detecting the transcription by the gold nanoparticle beacon

    NASA Astrophysics Data System (ADS)

    Tian, Caiping; Ma, Yi; Li, Siwen; Gu, Yueqing

    2014-09-01

    Mammalian target of rapamycin (mTOR) as a key protein in PI3K-AKT-mTOR signaling pathway ,plays an important role in the tumor growth. The small interfering RNA (siRNA) of mTOR would decrease the expression of mTOR protein. In this study, we screened the mTOR siRNA sequence using MATLAB software and ascertained it based on BLAST. Then we imported it with the aid of Lipofectamine2000 into MCF-7 cancer cells where mTOR is over expression .And then we used a special hairpin deoxyribonucleic acid (DNA) for combining with the human mTOR mRNA to functionalize gold nanoparticles, which served as a molecule beacon for detecting human mTOR mRNA transcription. Laser scanning confocal microscope and Flow Cytometry data showed that the quenching efficiency was up to 90%,which are consistent with the RT-PCR measurement and Western. Compared to the previous approaches, this beacon has advantages of higher target to background ratio of detection. The strategy reported in this study is a promising approach for the intracellular measurement of the result of siRNA or protein expression in living cells, and has great potential in the study of drug screening and discovery.

  3. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-γ/LXR-α signaling pathway.

    PubMed

    Xu, Xiaolin; Li, Qian; Pang, Liewen; Huang, Guoqian; Huang, Jiechun; Shi, Meng; Sun, Xiaotian; Wang, Yiqing

    2013-11-15

    Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-density lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Suppression of the epidermal growth factor receptor inhibits epithelial-mesenchymal transition in human pancreatic cancer PANC-1 cells.

    PubMed

    Chang, Zhi-Gang; Wei, Jun-Min; Qin, Chang-Fu; Hao, Kun; Tian, Xiao-Dong; Xie, Kun; Xie, Xue-Hai; Yang, Yin-Mo

    2012-05-01

    Aberrant expression of epidermal growth factor receptor (EGFR) has been detected in pancreatic cancer; however, the mechanisms of EGFR in inducing pancreatic cancer development have not been adequately elucidated. The objective of this study was to determine the role of EGFR in mediating epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. Pancreatic cancer cell line PANC-1 was transfected with small interfering RNA of EGFR by use of a lentiviral expression vector to establish an EGFR-knockdown cell line (si-PANC-1). PANC-1 cells transfected with lentiviral vector expressing negative control sequence were used as negative control (NC-PANC-1). Scratch assay and transwell study were used to analyze cell migration and invasion. Real-time PCR and Western blotting were used to detect the expression of EMT markers E-cadherin, N-cadherin, vimentin, and fibronectin and transcription factors snail, slug, twist1, and sip1 in PANC-1, NC-PANC-1, and si-PANC-1 cells. Immunofluorescent staining with these antibodies and confocal microscopy were used to observe their cellular location and morphologic changes. After RNA interference of EGFR, the migration and invasion ability of si-PANC-1 cells decreased significantly. The expression of epithelial phenotype marker E-cadherin increased and the expression of mesenchymal phenotype markers N-cadherin, vimentin, and fibronectin decreased, indicating reversion of EMT. We also observed intracellular translocation of E-cadherin. Expression of transcription factors snail and slug in si-PANC-1 cells decreased significantly. Suppression of EGFR expression can significantly inhibit EMT of pancreatic cancer PANC-1 cells. The mechanism may be related with the down-regulation of the expression of transcription factors snail and slug.

  5. MMSET deregulation affects cell cycle progression and adhesion regulons in t(4;14) myeloma plasma cells

    PubMed Central

    Brito, Jose L.R.; Walker, Brian; Jenner, Matthew; Dickens, Nicholas J.; Brown, Nicola J.M.; Ross, Fiona M.; Avramidou, Athanasia; Irving, Julie A.E.; Gonzalez, David; Davies, Faith E.; Morgan, Gareth J.

    2009-01-01

    Background The recurrent immunoglobulin translocation, t(4;14)(p16;q32) occurs in 15% of multiple myeloma patients and is associated with poor prognosis, through an unknown mechanism. The t(4;14) up-regulates fibroblast growth factor receptor 3 (FGFR3) and multiple myeloma SET domain (MMSET) genes. The involvement of MMSET in the pathogenesis of t(4;14) multiple myeloma and the mechanism or genes deregulated by MMSET upregulation are still unclear. Design and Methods The expression of MMSET was analyzed using a novel antibody. The involvement of MMSET in t(4;14) myelomagenesis was assessed by small interfering RNA mediated knockdown combined with several biological assays. In addition, the differential gene expression of MMSET-induced knockdown was analyzed with expression microarrays. MMSET gene targets in primary patient material was analyzed by expression microarrays. Results We found that MMSET isoforms are expressed in multiple myeloma cell lines, being exclusively up-regulated in t(4;14)-positive cells. Suppression of MMSET expression affected cell proliferation by both decreasing cell viability and cell cycle progression of cells with the t(4;14) translocation. These findings were associated with reduced expression of genes involved in the regulation of cell cycle progression (e.g. CCND2, CCNG1, BRCA1, AURKA and CHEK1), apoptosis (CASP1, CASP4 and FOXO3A) and cell adhesion (ADAM9 and DSG2). Furthermore, we identified genes involved in the latter processes that were differentially expressed in t(4;14) multiple myeloma patient samples. Conclusions In conclusion, dysregulation of MMSET affects the expression of several genes involved in the regulation of cell cycle progression, cell adhesion and survival. PMID:19059936

  6. Downregulation of the c-Fes protein-tyrosine kinase inhibits the proliferation of human renal carcinoma cells

    PubMed Central

    Kanda, Shigeru; Miyata, Yasuyoshi; Kanetake, Hiroshi; Smithgall, Thomas E.

    2009-01-01

    The c-Fes protein-tyrosine kinase is associated with growth and differentiation of hematopoietic, neuronal, vascular endothelial and epithelial cell types. In this study, we investigated whether small interfering RNA (siRNA)-mediated knockdown of c-Fes expression affected proliferation of the human renal carcinoma cell lines, ACHN and VMRC-RCW. Immunofluorescence microscopy showed that c-Fes was expressed in both the cytosol and nuclei of these cells, and siRNA treatment preferentially downregulated c-Fes expression in the cytosol. Knock-down of c-Fes inhibited cellular proliferation in a dose-dependent manner with minimal increase in cell death. c-Fes siRNA treatment also downregulated the phosphorylation of Akt1 on S473 and IKKα on T23, and cyclin D1 expression, enhanced the expression of IκBα, and prevented the nuclear localization of NFκB. Treatment with an NFκB inhibitory peptide (SN50) also blocked the proliferation and nuclear localization of NFκB in these cells. The effect of SN50 treatment was not enhanced by c-Fes siRNA, suggesting that downregulation of c-Fes expression inhibited cell cycle progression through the Akt1/NFκB pathway. In contrast to siRNA-mediated knockdown, ectopic expression of either wild-type or kinase-inactive c-Fes in renal carcinoma cells failed to alter their proliferation in vitro and in vivo. Thus, suppression of proliferation resulting from siRNA-mediated knockdown may depend upon an expression of c-Fes protein rather than its kinase activity. Taken together, our results indicate that downregulation of c-Fes expression may be a potential therapeutic strategy for advanced human renal cell carcinoma and inhibition of its kinase activity as an antiangiogenic therapy does not seem to induce the growth of human renal carcinoma cells. PMID:19082481

  7. TDAG8 activation attenuates cerebral ischaemia-reperfusion injury via Akt signalling in rats.

    PubMed

    Ma, X D; Hang, L H; Shao, D H; Shu, W W; Hu, X L; Luo, H

    2017-07-01

    T-cell death-associated gene 8 (TDAG8), a member of the proton-sensitive G-protein-coupled receptor (GPCR) class with an immune-specific expression profile, was recently shown to be expressed in the rat brain; however, its role in ischaemic stroke remains unknown. We initially confirmed the time-dependent expression of TDAG8 in rat brain tissue after ischaemic stroke and reperfusion. Further evaluations were performed to increase TDAG8 expression 6h prior to middle cerebral artery occlusion (MCAO) by injecting a specific agonist, BTB09089, into the lateral ventricle to increase TDAG8 expression. Twenty-four hours before MCAO, a specific small interfering RNA (siRNA) was introduced. The infarction volume, neurological deficit score and cleaved caspase-3 and Bcl-2 expression were used to assess the effects of TDAG8 on ischaemic stroke. Finally, the effects of TDAG8 on the development of primary cortical neurons exposed to oxygen-glucose deprivation (OGD) were investigated. TDAG8 expression increased both in vivo and in vitro. Pretreatment with BTB09089 up-regulated TDAG8 and Bcl-2 expression and down-regulated cleaved caspase-3 expression, while the infarction volume was reduced, and neurological deficits were ameliorated 24 and 72h after MCAO. However, the protective effects of TDAG8 were reversed when its level was reduced in TDAG8-deficient rats. More importantly, these findings are consistent with data from neurons subjected to OGD. TDAG8 plays an important neuroprotective role through inhibition of neuronal apoptosis and alleviation of neurological deficits by activating the Akt signalling pathway in rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Comparative gene expression analysis between coronary arteries and internal mammary arteries identifies a role for the TES gene in endothelial cell functions relevant to coronary artery disease.

    PubMed

    Archacki, Stephen R; Angheloiu, George; Moravec, Christine S; Liu, Hui; Topol, Eric J; Wang, Qing Kenneth

    2012-03-15

    Coronary artery disease (CAD) is the leading cause of death worldwide. It has been established that internal mammary arteries (IMA) are resistant to the development of atherosclerosis, whereas left anterior descending (LAD) coronary arteries are athero-prone. The contrasting properties of these two arteries provide an innovative strategy to identify the genes that play important roles in the development of atherosclerosis. We carried out microarray analysis to identify genes differentially expressed between IMA and LAD. Twenty-nine genes showed significant differences in their expression levels between IMA and LAD, which included the TES gene encoding Testin. The role of TES in the cardiovascular system is unknown. Here we show that TES is involved in endothelial cell (EC) functions relevant to atherosclerosis. Western blot analysis showed higher TES expression in IMA than in LAD. Reverse transcription polymerase chain reaction and western blot analyses showed that TES was consistently and markedly down-regulated by more than 6-fold at both mRNA and protein levels in patients with CAD compared with controls without CAD (P= 0.000049). The data suggest that reduced TES expression is associated with the development of CAD. Knockdown of TES expression by small-interfering RNA promoted oxidized-LDL-mediated monocyte adhesion to ECs, EC migration and the transendothelial migration of monocytes, while the over-expression of TES in ECs blunted these processes. These results demonstrate association between reduced TES expression and CAD, establish a novel role for TES in EC functions and raise the possibility that reduced TES expression increases susceptibility to the development of CAD.

  9. Cathelicidin Signaling via the Toll-Like Receptor Protects Against Colitis in Mice

    PubMed Central

    Koon, Hon Wai; Shih, David Quan; Chen, Jeremy; Bakirtzi, Kyriaki; Hing, Tressia C; Law, Ivy; Ho, Samantha; Ichikawa, Ryan; Zhao, Dezheng; Xu, Hua; Gallo, Richard; Dempsey, Paul; Cheng, Genhong; Targan, Stephan R; Pothoulakis, Charalabos

    2011-01-01

    Background & Aims Cathelicidin (encoded by Camp) is an anti-microbial peptide in the innate immune system. We examined whether macrophages express cathelicidin in colons of mice with experimental colitis and patients with inflammatory bowel disease; we investigated its signaling mechanisms. Methods Quantitative, real-time, reverse transcription PCR, bacterial 16S PCR, immunofluorescence, and small interfering (si)RNA analyses were performed. Colitis was induced in mice using sodium dextran sulfate (DSS); levels of cathelicidin were measured in human primary monocytes. Results Expression of cathelicidin increased in the inflamed colonic mucosa of mice with DSS-induced colitis, compared with controls. Cathelicidin expression localized to mucosal macrophages in inflamed colon tissues of patients and mice. Exposure of human primary monocytes to E coli DNA induced expression of Camp mRNA, which required signaling by ERK; expression was reduced by siRNAs against toll-like receptor (TLR)9 and MyD88. Intracolonic administration of bacterial DNA to wild-type mice induced expression of cathelicidin in colons of control mice and mice with DSS-induced colitis. Colon expression of cathelicidin was significantly reduced in TLR9 −/− mice with DSS-induced colitis. Compared with wild-type mice, Camp −/− mice developed a more severe form of DSS-induced colitis, particularly after intracolonic administration of E coli DNA. Expression of cathelicidin from bone marrow-derived immune cells regulated DSS induction of colitis in transplantation studies in mice. Conclusions Cathelicidin protects against colitis induction in mice. Increased expression of cathelicidin in monocytes and experimental models of colitis involves activation of TLR9–ERK signaling by bacterial DNA. This pathway might be involved in pathogenesis of ulcerative colitis. PMID:21762664

  10. Repression of PDGF-R-α after cellular injury involves TNF-α, formation of a c-Fos-YY1 complex, and negative regulation by HDAC.

    PubMed

    Zhang, Ning; Chan, Cecilia W S; Sanchez-Guerrero, Estella; Khachigian, Levon M

    2012-06-01

    Wound healing is a complex dynamic process involving a variety of cell types, including fibroblasts that express and respond to cytokines and growth factors in the local microenvironment. The mechanisms controlling gene expression after injury at a transcriptional level are poorly understood. Here we show that decreased expression of a key receptor, PDGF-receptor (R)-α, after fibroblast injury is due to the release and paracrine activity of TNF-α. TNF-α inhibits PDGF-R-α expression and this involves formation of a c-Fos-Yin Yang 1 (YY1) complex and histone deacetylase (HDAC) activity. c-Fos, induced by TNF-α, negatively regulates PDGF-R-α transcription. Small interfering RNA (siRNA) targeting c-Fos or the zinc finger transcription factor YY1 inhibits TNF-α suppression of PDGF-R-α expression. Coimmunoprecipitation studies show that TNF-α stimulates the formation of a complex between c-Fos with YY1. Furthermore, chromatin immunoprecipitation (ChIP) analysis reveals the enrichment of c-Fos, YY1, and HDAC-1 at the PDGF-R-α promoter in cells exposed to TNF-α. With suberoylanilide hydroxamic acid (SAHA) and HDAC-1 siRNA, we demonstrate that HDAC mediates TNF-α repression of PDGF-R-α. These findings demonstrate that transcriptional repression of PDGF-R-α after fibroblast injury involves paracrine activity of endogenous TNF-α, the formation of a c-Fos-YY1 complex, and negative regulatory activity by HDAC.

  11. Mouse model for acute Epstein-Barr virus infection.

    PubMed

    Wirtz, Tristan; Weber, Timm; Kracker, Sven; Sommermann, Thomas; Rajewsky, Klaus; Yasuda, Tomoharu

    2016-11-29

    Epstein-Barr Virus (EBV) infects human B cells and drives them into continuous proliferation. Two key viral factors in this process are the latent membrane proteins LMP1 and LMP2A, which mimic constitutively activated CD40 receptor and B-cell receptor signaling, respectively. EBV-infected B cells elicit a powerful T-cell response that clears the infected B cells and leads to life-long immunity. Insufficient immune surveillance of EBV-infected B cells causes life-threatening lymphoproliferative disorders, including mostly germinal center (GC)-derived B-cell lymphomas. We have modeled acute EBV infection of naive and GC B cells in mice through timed expression of LMP1 and LMP2A. Although lethal when induced in all B cells, induction of LMP1 and LMP2A in just a small fraction of naive B cells initiated a phase of rapid B-cell expansion followed by a proliferative T-cell response, clearing the LMP-expressing B cells. Interfering with T-cell activity prevented clearance of LMP-expressing B cells. This was also true for perforin deficiency, which in the human causes a life-threatening EBV-related immunoproliferative syndrome. LMP expression in GC B cells impeded the GC reaction but, upon loss of T-cell surveillance, led to fatal B-cell expansion. Thus, timed expression of LMP1 together with LMP2A in subsets of mouse B cells allows one to study major clinically relevant features of human EBV infection in vivo, opening the way to new therapeutic approaches.

  12. EGCG evokes Nrf2 nuclear translocation and dampens PTP1B expression to ameliorate metabolic misalignment under insulin resistance condition.

    PubMed

    Mi, Yashi; Zhang, Wentong; Tian, Haoyu; Li, Runnan; Huang, Shuxian; Li, Xingyu; Qi, Guoyuan; Liu, Xuebo

    2018-03-01

    As a major nutraceutical component of green tea (-)-epigallocatechin-3-gallate (EGCG) has attracted interest from scientists due to its well-documented antioxidant and antiobesity bioactivities. In the current study, we aimed to investigate the protective effect of EGCG on metabolic misalignment and in balancing the redox status in mice liver and HepG2 cells under insulin resistance condition. Our results indicated that EGCG accelerates the glucose uptake and evokes IRS-1/Akt/GLUT2 signaling pathway via dampening the expression of protein tyrosine phosphatase 1B (PTP1B). Consistently, ectopic expression of PTP1B by Ad-PTP1B substantially impaired EGCG-elicited IRS-1/Akt/GLUT2 signaling pathway. Moreover, EGCG co-treatment stimulated nuclear translocation of Nrf2 by provoking P13K/AKT signaling pathway and thus modulated the downstream expressions of antioxidant enzymes such as HO-1 and NQO-1 in HepG2 cells. Furthermore, knockdown Nrf2 by small interfering RNA (siRNA) notably enhanced the expression of PTP1B and blunt EGCG-stimulated glucose uptake. Consistent with these results, in vivo study revealed that EGCG supplement significantly ameliorated high-fat and high-fructose diet (HFFD)-triggered insulin resistance and oxidative stress by up-regulating the IRS-1/AKT and Keap1/Nrf2 transcriptional pathways. Administration of an appropriate chemopreventive agent, such as EGCG, could potentially serve as an additional therapeutic intervention in the arsenal against obesity.

  13. Tim2 is expressed in mouse fetal hepatocytes and regulates their differentiation.

    PubMed

    Watanabe, Natsumi; Tanaka, Minoru; Suzuki, Kaori; Kumanogoh, Atsushi; Kikutani, Hitoshi; Miyajima, Atsushi

    2007-05-01

    Liver development is regulated by various extracellular molecules such as cytokines and cell surface proteins. Although several such regulators have been identified, additional molecules are likely to be involved in liver development. To identify such molecules, we employed the signal sequence trap (SST) method to screen cDNAs encoding a secreted or membrane protein from fetal liver and obtained a number of clones. Among them, we found that T cell immunoglobulin and mucin domain 2 (Tim2) was expressed specifically on immature hepatocytes in the fetal liver. Tim2 has been shown to regulate immune responses, but its role in liver development had not been studied. We have examined the possible role of Tim2 in hepatocyte differentiation. At first, we prepared a soluble Tim2 fusion protein consisting of its extracellular domain and the Fc domain of human IgG (Tim2-hFc) and found that it bound to fetal and adult hepatocytes, suggesting that there are Tim2-binding molecules on hepatocytes. Second, Tim2-hFc inhibited the differentiation of hepatocytes in fetal liver primary culture, i.e., the expression of mature hepatic enzymes and accumulation of glycogen were severely reduced. Third, Tim2-hFc also inhibited proliferation of fetal hepatocytes. Fourth, down-regulation of Tim2 expression by small interfering RNA (siRNA) enhanced the expression of liver differentiation marker genes. It is strongly suggested that Tim2 is involved in the differentiation of fetal hepatocytes.

  14. Protectin DX suppresses hepatic gluconeogenesis through AMPK-HO-1-mediated inhibition of ER stress.

    PubMed

    Jung, Tae Woo; Kim, Hyung-Chun; Abd El-Aty, A M; Jeong, Ji Hoon

    2017-06-01

    Several studies have shown that protectins, which are ω-3 fatty acid-derived proresolution mediators, may improve insulin resistance. Recently, protectin DX (PDX) was documented to attenuate insulin resistance by stimulating IL-6 expression in skeletal muscle, thereby regulating hepatic gluconeogenesis. These findings made us investigate the direct effects of PDX on hepatic glucose metabolism in the context of diabetes. In the current study, we show that PDX regulates hepatic gluconeogenesis in a manner distinct from its indirect glucoregulatory activity via IL-6. We found that PDX stimulated AMP-activated protein kinase (AMPK) phosphorylation, thereby inducing heme oxygenase 1 (HO-1) expression. This induction blocked hepatic gluconeogenesis by suppressing endoplasmic reticulum (ER) stress in hepatocytes under hyperlipidemic conditions. These effects were significantly dampened by silencing AMPK or HO-1 expression with small interfering RNA (siRNA). We also demonstrated that administration of PDX to high fat diet (HFD)-fed mice resulted in increased hepatic AMPK phosphorylation and HO-1 expression, whereas hepatic ER stress was substantially attenuated. Furthermore, PDX treatment suppressed the expression of gluconeogenic genes, thereby decreasing blood glucose levels in HFD-fed mice. In conclusion, our findings suggest that PDX inhibits hepatic gluconeogenesis via AMPK-HO-1-dependent suppression of ER stress. Thus, PDX may be an effective therapeutic target for the treatment of insulin resistance and type 2 diabetes through the regulation of hepatic gluconeogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Clinical significance and biological roles of CARMA3 in human bladder carcinoma.

    PubMed

    Man, Xiaojun; He, Jiani; Kong, Chuize; Zhu, Yuyan; Zhang, Zhe

    2014-05-01

    Caspase recruitment domain and membrane-associated guanylate kinase-like domain protein 3 (CARMA3) was reported as an oncoprotein overexpressed in several cancers. The expression pattern of CARMA3 and its clinical significance in human bladder cancer have not been well characterized. In the present study, CARMA3 expression was analyzed in 90 archived bladder cancer specimens using immunohistochemistry, and the correlation between CARMA3 expression and clinicopathological parameters was evaluated. We found that CARMA3 was overexpressed in 35 of 90 (38.8%) bladder cancer specimens. Significant association was observed between CARMA3 overexpression with tumor status (p = 0.081) and tumor grade (p = 0.027). To further explore the biological functions of CARMA3 in bladder cancer, we depleted CARMA3 in T24 and 5637 cell lines using small interfering RNA (siRNA). Using cell counting kit-8 (CCK8) assay and colony formation assay, we were able to show that CARMA3 depletion inhibited cell proliferation and colony number. Further study demonstrated that CARMA3 depletion decreased an expression of nuclear factor kappa B (NF-κB) targets cyclin D1 and Bcl-2 expression, as well as IκB phosphorylation. Luciferase reporter assay showed that CARMA3 depletion could downregulate NF-κB reporter activity. In conclusion, CARMA3 is overexpressed in bladder cancer and regulates malignant cell growth and NF-κB signaling, which makes CARMA3 a candidate therapeutic target for bladder cancer.

  16. Cell surface GRP78 facilitates hepatoma cells proliferation and migration by activating IGF-IR.

    PubMed

    Yin, Yancun; Chen, Chen; Chen, Jinliang; Zhan, Renhui; Zhang, Qiang; Xu, Xiaoyan; Li, Defang; Li, Minjing

    2017-07-01

    The 78kDa glucose regulated protein (GRP78) is a multifunctional chaperone that is involved in a variety of cellular processes. Insulin like growth factor I receptor (IGF-IR) often aberrant expresses in many types of tumor cells. The IGF-IR signaling plays key roles in carcinogenesis and maintenance of the malignant phenotype. The crosstalk between GRP78 and IGF-IR molecules has not well been illuminated. Here, we demonstrated a reciprocal regulation of GRP78 expression and IGF-IR pathway activation. IGF-I induced GRP78 expression in hepatoma cells. IGF-IR knockdown or IGF-IR inhibitor repressed GRP78 expression. Both phosphatidylinositol 3-kianase (PI3K) and mitogen-activated protein kinase (MAPK) pathways involved in IGF-I induction of GRP78 expression. Interestingly, treatment of hepatoma cells with IGF-I re-distributes GRP78 from endoplasmic reticulum (ER) to cell surface and promotes its physical interaction with IGF-IR. Also, GRP78 promotes IGF-IR phosphorylation and activation. Blocked of GRP78 by small interfering RNA or inhibition of GRP78 function by (-)-epigallocatechin gallate (EGCG) blocks IGF-I induced IGF-IR phosphorylation and its downstream signaling. Further, blocked cell surface GRP78 with antibody inhibits IGF-I stimulated cellular proliferation and migration. These data reveal an essential role for the molecular chaperone GRP78 in IGF-IR signaling and implicate the use of GRP78 inhibitors in blocking IGF-IR signaling in hepatoma cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development.

    PubMed

    Wan, Qun; Guan, Xueying; Yang, Nannan; Wu, Huaitong; Pan, Mengqiao; Liu, Bingliang; Fang, Lei; Yang, Shouping; Hu, Yan; Ye, Wenxue; Zhang, Hua; Ma, Peiyong; Chen, Jiedan; Wang, Qiong; Mei, Gaofu; Cai, Caiping; Yang, Donglei; Wang, Jiawei; Guo, Wangzhen; Zhang, Wenhua; Chen, Xiaoya; Zhang, Tianzhen

    2016-06-01

    Natural antisense transcripts (NATs) are commonly observed in eukaryotic genomes, but only a limited number of such genes have been identified as being involved in gene regulation in plants. In this research, we investigated the function of small RNA derived from a NAT in fiber cell development. Using a map-based cloning strategy for the first time in tetraploid cotton, we cloned a naked seed mutant gene (N1 ) encoding a MYBMIXTA-like transcription factor 3 (MML3)/GhMYB25-like in chromosome A12, GhMML3_A12, that is associated with fuzz fiber development. The extremely low expression of GhMML3_A12 in N1 is associated with NAT production, driven by its 3' antisense promoter, as indicated by the promoter-driven histochemical staining assay. In addition, small RNA deep sequencing analysis suggested that the bidirectional transcriptions of GhMML3_A12 form double-stranded RNAs and generate 21-22 nt small RNAs. Therefore, in a fiber-specific manner, small RNA derived from the GhMML3_A12 locus can mediate GhMML3_A12 mRNA self-cleavage and result in the production of naked seeds followed by lint fiber inhibition in N1 plants. The present research reports the first observation of gene-mediated NATs and siRNA directly controlling fiber development in cotton. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. Transforming growth factor‐β enhances Rho‐kinase activity and contraction in airway smooth muscle via the nucleotide exchange factor ARHGEF1

    PubMed Central

    Shaifta, Yasin; MacKay, Charles E.; Irechukwu, Nneka; O'Brien, Katie A.; Wright, David B.; Ward, Jeremy P. T.

    2017-01-01

    Key points Transforming growth‐factor‐β (TGF‐β) and RhoA/Rho‐kinase are independently implicated in the airway hyper‐responsiveness associated with asthma, but how these proteins interact is not fully understood.We examined the effects of pre‐treatment with TGF‐β on expression and activity of RhoA, Rho‐kinase and ARHGEF1, an activator of RhoA, as well as on bradykinin‐induced contraction, in airway smooth muscle.TGF‐β enhanced bradykinin‐induced RhoA translocation, Rho‐kinase‐dependent phosphorylation and contraction, but partially suppressed bradykinin‐induced RhoA activity (RhoA‐GTP content).TGF‐β enhanced the expression of ARHGEF1, while a small interfering RNA against ARHGEF1 and a RhoGEF inhibitor prevented the effects of TGF‐β on RhoA and Rho‐kinase activity and contraction, respectively.ARHGEF1 expression was also enhanced in airway smooth muscle from asthmatic patients and ovalbumin‐sensitized mice.ARHGEF1 is a key TGF‐β target gene, an important regulator of Rho‐kinase activity and therefore a potential therapeutic target for the treatment of asthmatic airway hyper‐responsiveness. Abstract Transforming growth factor‐β (TGF‐β), RhoA/Rho‐kinase and Src‐family kinases (SrcFK) have independently been implicated in airway hyper‐responsiveness, but how they interact to regulate airway smooth muscle contractility is not fully understood. We found that TGF‐β pre‐treatment enhanced acute contractile responses to bradykinin (BK) in isolated rat bronchioles, and inhibitors of RhoGEFs (Y16) and Rho‐kinase (Y27632), but not the SrcFK inhibitor PP2, prevented this enhancement. In cultured human airway smooth muscle cells (hASMCs), TGF‐β pre‐treatment enhanced the protein expression of the Rho guanine nucleotide exchange factor ARHGEF1, MLC20, MYPT‐1 and the actin‐severing protein cofilin, but not of RhoA, ROCK2 or c‐Src. In hASMCs, acute treatment with BK triggered subcellular translocation of ARHGEF1 and RhoA and enhanced auto‐phosphorylation of SrcFK and phosphorylation of MYPT1 and MLC20, but induced de‐phosphorylation of cofilin. TGF‐β pre‐treatment amplified the effects of BK on RhoA translocation and MYPT1/MLC20 phosphorylation, but suppressed the effects of BK on RhoA‐GTP content, SrcFK auto‐phosphorylation and cofilin de‐phosphorylation. In hASMCs, an ARHGEF1 small interfering RNA suppressed the effects of BK and TGF‐β on RhoA‐GTP content, RhoA translocation and MYPT1 and MLC20 phosphorylation, but minimally influenced the effects of TGF‐β on cofilin expression and phosphorylation. ARHGEF1 expression was also enhanced in ASMCs of asthmatic patients and in lungs of ovalbumin‐sensitized mice. Our data indicate that TGF‐β enhances BK‐induced contraction, RhoA translocation and Rho‐kinase activity in airway smooth muscle largely via ARHGEF1, but independently of SrcFK and total RhoA‐GTP content. A role for smooth muscle ARHGEF1 in asthmatic airway hyper‐responsiveness is worthy of further investigation. PMID:29071730

  19. Control of Collagen Production in Mouse Chondrocytes by Using a Combination of Bone Morphogenetic Protein-2 and Small Interfering RNA Targeting Col1a1 for Hydrogel-Based Tissue-Engineered Cartilage

    PubMed Central

    Perrier-Groult, Emeline; Pasdeloup, Marielle; Malbouyres, Marilyne; Galéra, Philippe

    2013-01-01

    Because articular cartilage does not self-repair, tissue-engineering strategies should be considered to regenerate this tissue. Autologous chondrocyte implantation is already used for treatment of focal damage of articular cartilage. Unfortunately, this technique includes a step of cell amplification, which results in dedifferentiation of chondrocytes, with expression of type I collagen, a protein characteristic of fibrotic tissues. Therefore, the risk of producing a fibrocartilage exists. The aim of this study was to propose a new strategy for authorizing the recovery of the differentiated status of the chondrocytes after their amplification on plastic. Because the bone morphogenetic protein (BMP)-2 and the transforming growth factor (TGF)-β1 are cytokines both proposed as stimulants for cartilage repair, we undertook a detailed comparative analysis of their biological effects on chondrocytes. As a cellular model, we used mouse chondrocytes after their expansion on plastic and we tested the capability of BMP-2 or TGF-β1 to drive their redifferentiation, with special attention given to the nature of the proteins synthesized by the cells. To prevent any fibrotic character of the newly synthesized extracellular matrix, we silenced type I collagen by transfecting small interfering RNA (siRNA) into the chondrocytes, before their exposure to BMP-2 or TGF-β1. Our results showed that addition of siRNA targeting the mRNA encoded by the Col1a1 gene (Col1a1 siRNA) and BMP-2 represents the most efficient combination to control the production of cartilage-characteristic collagen proteins. To go one step further toward scaffold-based cartilage engineering, Col1a1 siRNA-transfected chondrocytes were encapsulated in agarose hydrogel and cultured in vitro for 1 week. The analysis of the chondrocyte–agarose constructs by using real-time polymerase chain reaction, Western-blotting, immunohistochemistry, and electron microscopy techniques demonstrated that the BMP-2/Col1a1 siRNA combination is effective in reinitializing correct production and assembly of the cartilage-characteristic matrix in agarose hydrogel, without production of type I collagen. Because agarose is known to favor long-term expression of the chondrocyte phenotype and agarose-based hydrogels are approved for clinical trials, this strategy appears very promising to repair hyaline cartilage. PMID:23311625

  20. Chitosan layered gold nanorods as synergistic therapeutics for photothermal ablation and gene silencing in triple-negative breast cancer.

    PubMed

    Yang, Zhizhou; Liu, Tengfei; Xie, Yan; Sun, Zhaorui; Liu, Hongmei; Lin, Jinfeng; Liu, Changjing; Mao, Zong-Wan; Nie, Shinan

    2015-10-01

    Small interfering RNAs (siRNAs) are extensively studied due to their promising potential as therapeutic agents for a wide variety of diseases, including cancer. However, efficient delivery of siRNAs to target cells and tissues is problematic due to a lack of suitable delivery vehicles. In this work, we developed a layer-by-layer assembled chitosan-gold nanorods (Chit-Au NRs) siRNA delivery system to overcome biological barriers upon systemic injection. This platform was able to protect siRNAs form degradation upon exposure to ribonuclease (RNase) or serum. Confocal and intravital microscopy reveals that Chit-Au NRs/siRNAs are successfully delivered into target cells and tissue, and can efficiently escape from endosomal/lysosomal structures. Furthermore, Chit-Au NRs/siRNA were found to accumulate in high levels in tumor tissue. The delivery system was able to inhibit the oncogene expression (pyruvate kinase isozymeM2, PKM2) in MDA-MB-231 triple negative breast cancer cells, resulting in suppression of cell proliferation and migration. Moreover, the anticancer efficacy was further enhanced through NR-mediated photothermal ablation. In conclusion, the synergistic therapeutic properties of Chit-Au NRs/siRNA enable effective suppression of cancer growth. Small interfering RNA (siRNA) therapy has promising therapeutic applications, since the expression of any protein can be suppressed. However the successful implementation of siRNA has been challenging, due to rapid degradation, poor intracellular uptake and insufficient endosomal escape. Here, we have developed a gold nanorod/chitosan-based delivery vehicle for siRNA therapy. This platform successfully overcomes the afore-mentioned challenges and can simultaneously be used for photothermal therapy, due to the optical properties of gold nanorods. We show that the anticancer activity is dramatically improved by combining thermal therapy with gene silencing. Furthermore, the Au NRs carrier shows high accumulation in tumor tissue and high transfection efficiency. This manuscript has been reviewed and approved by all co-authors. The research has not been disclosed or published and is not under consideration for publication elsewhere. We would appreciate if the manuscript could be reviewed and considered for publication in Acta BIOMATERIALIA. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Simulated physiological stretch increases expression of extracellular matrix proteins in human bladder smooth muscle cells via integrin α4/αv-FAK-ERK1/2 signaling pathway.

    PubMed

    Chen, Shulian; Peng, Chuandu; Wei, Xin; Luo, Deyi; Lin, Yifei; Yang, Tongxin; Jin, Xi; Gong, Lina; Li, Hong; Wang, Kunjie

    2017-08-01

    To investigate the effect of simulated physiological stretch on the expression of extracellular matrix (ECM) proteins and the role of integrin α4/αv, focal adhesion kinase (FAK), extracellular regulated protein kinases 1/2 (ERK1/2) in the stretch-induced ECM protein expression of human bladder smooth muscle cells (HBSMCs). HBSMCs were seeded onto silicone membrane and subjected to simulated physiological stretch at the range of 5, 10, and 15% elongation. Expression of primary ECM proteins in HBSMCs was analyzed by real-time polymerase chain reaction and Western blot. Specificity of the FAK and ERK1/2 was determined by Western blot with FAK inhibitor and ERK1/2 inhibitor (PD98059). Specificity of integrin α4 and integrin αv was determined with small interfering ribonucleic acid (siRNA) transfection. The expression of collagen I (Col1), collagen III (Col3), and fibronectin (Fn) was increased significantly under the simulated physiological stretch of 10 and 15%. Integrin α4 and αv, FAK, ERK1/2 were activated by 10% simulated physiological stretch compared with the static condition. Pretreatment of ERK1/2 inhibitor, FAK inhibitor, integrin α4 siRNA, or integrin αv siRNA reduced the stretch-induced expression of ECM proteins. And FAK inhibitor decreased the stretch-induced ERK1/2 activity and ECM protein expression. Integrin α4 siRNA or integrin αv siRNA inhibited the stretch-induced activity of FAK. Simulated physiological stretch increases the expression of ECM proteins in HBSMCs, and integrin α4/αv-FAK-ERK1/2 signaling pathway partly modulates the mechano-transducing process.

  2. MCP-1-Induced Protein Promotes Endothelial-Like and Angiogenic Properties in Human Bone Marrow Monocytic Cells

    PubMed Central

    Wang, Kangkai; Zhelyabovska, Olga; Saad, Yasser; Kolattukudy, Pappachan E.

    2013-01-01

    Monocytic cells enhance neovascularization by releasing proangiogenic mediators and/or by transdifferentiating into endothelial-like cells. However, the mechanisms that govern this transdifferentiation process are largely unknown. Recently, monocyte chemotactic protein-1 (MCP-1)-induced protein (MCPIP) has been identified as a novel CCCH-type zinc-finger protein expressed primarily in monocytic cells. Here, we analyzed whether MCPIP might exert angiogenic effects by promoting differentiation of monocytic cells into endothelial cell (EC)-like phenotype. The expression of MCPIP increased during MCP-1-induced transdifferentiation in human bone marrow mononuclear cells (BMNCs). Knockdown of MCPIP with small interfering RNA (siRNA) abolished MCP-1-induced expression of EC markers Flk-1 and Tie-2 in human BMNCs. BMNCs transfected with MCPIP expression vector displayed EC-like morphology accompanied by downregulation of monocytic markers CD14 and CD11b, upregulation of EC markers Flk-1 and Tie-2, induction of cadherin (cdh)-12 and -19, activation of endoplasmic reticulum (ER) stress, and autophagy. Knockdown of cdh-12 or cdh-19 markedly inhibited MCPIP-induced enhancement of cell attachment and EC-marker expression. Inhibition of ER stress by tauroursodeoxycholate abolished MCPIP-induced expression of EC markers. Inhibition of autophagy by knockdown of Beclin-1 with siRNA or by an autophagy inhibitor 3′-methyladenine inhibited MCPIP-induced expression of EC markers. Expression of MCPIP in BMNCs enhanced uptake of acetylated low-density lipoprotein (acLDL), formation of EC-colony, incorporation of cells into capillary-like structure on Matrigel, and exhibited increased neovascularization in the ischemic hindlimb in mice. These results demonstrate that MCPIP may be an important regulator of inflammatory angiogenesis and provide novel mechanistic insights into the link between MCP-1 and cardiovascular diseases. PMID:24008336

  3. The role of annexin A1 in expression of matrix metalloproteinase-9 and invasion of breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Hyereen; Ko, Jesang; Jang, Sung-Wuk, E-mail: swjang@amc.seoul.kr

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We evaluated the effect of ANXA1 on promoting migration and invasion in MDA-MB-231 cells. Black-Right-Pointing-Pointer ANXA1 siRNA inhibits invasion and migration. Black-Right-Pointing-Pointer ANXA1 regulates MMP-9 expression and activity. Black-Right-Pointing-Pointer ANX-1 siRNA inhibits the activation of NF-{kappa}B in MDA-MB-231 cells. -- Abstract: Matrix metalloproteinase-9 (MMP-9) plays an important role in the invasion and metastasis of cancer cells. However, the regulatory mechanism of MMP-9 expression and its biological effects on breast cancer development remain obscure. In the current study, we examined the potential role of annexin A1 (ANXA1) in regulating migration and invasion in breast cancer cell lines. Both ANXA1more » mRNA and protein are expressed in the highly invasive, hormone-insensitive human breast cancer cell lines MDA-MB-231 and SKBr3, but not in the hormone-responsive cell lines MCF-7 and T47D. Downregulation of ANXA1 expression with specific small interfering RNAs (ANXA1 siRNA) in MDA-MB-231 cells resulted in decreased cancer cell migration and invasion. Ablation of ANXA1 expression decreases the expression of MMP-9 at both the mRNA and protein levels and also reduces the proteolytic activity of MMP-9 in MDA-MB-231 cells. Moreover, silencing ANXA1 also decreases the transcriptional activity of MMP-9 by the suppression of nuclear factor kappa-B (NF-{kappa}B) activity. Collectively, these results indicate that ANXA1 functions as a positive regulator of MMP-9 expression and invasion of breast cancer cells through specific activation of the NF-{kappa}B signaling pathway.« less

  4. Histone demethylase JMJD2B is required for tumor cell proliferation and survival and is overexpressed in gastric cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wenjuan; Zhao, Li; Zang, Wen

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer JMJD2B is required for cell proliferation and in vivo tumorigenesis. Black-Right-Pointing-Pointer JMJD2B depletion induces apoptosis and/or cell cycle arrest. Black-Right-Pointing-Pointer JMJD2B depletion activates DNA damage response and enhances p53 stabilization. Black-Right-Pointing-Pointer JMJD2B is overexpressed in human primary gastric cancer. -- Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Jumonji domain containing 2B (JMJD2B) is a newly identified histone demethylase that regulates chromatin structure or gene expression by removing methyl residues from trimethylated lysine 9 on histone H3. Recent observations have shown oncogenic activity of JMJD2B. We explored the functional role ofmore » JMJD2B in cancer cell proliferation, survival and tumorigenesis, and determined its expression profile in gastric cancer. Knocking down JMJD2B expression by small interfering RNA (siRNA) in gastric and other cancer cells inhibited cell proliferation and/or induced apoptosis and elevated the expression of p53 and p21{sup CIP1} proteins. The enhanced p53 expression resulted from activation of the DNA damage response pathway. JMJD2B knockdown markedly suppressed xenograft tumor growth in vivo in mice. Moreover, JMJD2B expression was increased in primary gastric-cancer tissues of humans. Thus, JMJD2B is required for sustained proliferation and survival of tumor cells in vitro and in vivo, and its aberrant expression may contribute to the pathogenesis of gastric cancer.« less

  5. Poly(alkylene oxide) Copolymers for Nucleic Acid Delivery

    DTIC Science & Technology

    2012-07-17

    biofilm infection treatments, pain control and cancer chemotherapy. Charles M. Roth is an Associate Professor in the Department of Chemical and...technology and engineering approaches to cancer . REFERENCES 1. Aigner A. Nonviral in vivo delivery of therapeutic small interfering RNAs. Curr Opin Mol Ther

  6. Fascin Overexpression Promotes Cholangiocarcinoma RBE Cell Proliferation, Migration, and Invasion.

    PubMed

    Zhao, Haiying; Yang, Fuquan; Zhao, Wenyan; Zhang, Chunjv; Liu, Jingang

    2016-04-01

    Fascin is overexpressed in various tumor tissues and is closely related to tumor metastasis and invasion. However, the role of fascin in cholangiocarcinoma RBE cells has not been clearly reported. This study aimed to establish a cholangiocarcinoma cell line with stable and high expression of fascin to observe the effect of fascin on cell proliferation, migration, and invasion. A fascin overexpression vector, pcDNA3.1-Fascin, was constructed and transfected into the human cholangiocarcinoma RBE cell line. The results of real-time polymerase chain reaction, Western blot, and immunofluorescence indicated that fascin was steadily and highly expressed in RBE cells. The results of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide and colony formation assay indicated that upregulated fascin expression could enhance cholangiocarcinoma cell proliferation. The results of wound healing assay and transwell assay indicated that fascin could promote cholangiocarcinoma cell migration and invasion, and a further study found that the nuclear factor-κB signaling pathway was activated after upregulation of fascin, whereas E-cadherin expression in these cells was significantly decreased. Additionally, E-cadherin expression was significantly increased after inhibiting nuclear factor-κB activity using inhibitor or small interfering RNA, and E-cadherin expression was decreased by fascin overexpression after nuclear factor-κB inhibition, suggesting that nuclear factor-κB signaling pathway was not involved in the regulation of E-cadherin by fascin. In summary, the results of this study demonstrated that fascin effectively promoted cholangiocarcinoma RBE cell proliferation, migration, and invasion. This study provides evidence for fascin as a potential target in the treatment of cholangiocarcinoma. © The Author(s) 2015.

  7. Histone deacetylase inhibitors selectively suppress expression of HDAC7.

    PubMed

    Dokmanovic, Milos; Perez, Gisela; Xu, Weisheng; Ngo, Lang; Clarke, Cathy; Parmigiani, Raphael B; Marks, Paul A

    2007-09-01

    There are 18 histone deacetylases (HDAC) generally divided into four classes based on homology to yeast HDACs. HDACs have many protein substrates in addition to histones that are involved in regulation of gene expression, cell proliferation, and cell death. Inhibition of HDACs can cause accumulation of acetylated forms of these proteins, thus altering their function. HDAC inhibitors (HDACi), such as the hydroxamic acid-based vorinostat (suberoylanilide hydroxamic acid), inhibit the zinc-containing classes I, II, and IV, but not the NAD(+)-dependent class III, enzymes. HDACis are a group of novel anticancer agents. Vorinostat is the first HDACi approved for clinical use in the treatment of the cancer cutaneous T-cell lymphoma. Factors affecting expression of HDACs are not well understood. This study focuses on the effect of the HDACi vorinostat on the expression of class I and class II HDACs. We found that vorinostat selectively down-regulates HDAC7 with little or no effect on the expression of other class I or class II HDACs. Fourteen cell lines were examined, including normal, immortalized, genetically transformed, and human cancer-derived cell lines. Down-regulation of HDAC7 by vorinostat is more pronounced in transformed cells sensitive to inhibitor-induced cell death than in normal cells or cancer cells resistant to induced cell death. Modulation of HDAC7 levels by small interfering RNA-mediated knockdown or by HDAC7 overexpression is associated with growth arrest but without detectable changes in acetylation of histones or p21 gene expression. Selective down-regulation of HDAC7 protein may serve as a marker of response of tumors to HDACi.

  8. HMGB1 regulates P-glycoprotein expression in status epilepticus rat brains via the RAGE/NF-κB signaling pathway

    PubMed Central

    Xie, Yuan; Yu, Nian; Chen, Yan; Zhang, Kang; Ma, Hai-Yan; Di, Qing

    2017-01-01

    Overexpression of P-glycoprotein (P-gp) in the brain is an important mechanism involved in drug-resistant epilepsy (DRE). High-mobility group box 1 (HMGB1), an inflammatory cytokine, significantly increases following seizures and may be involved in upregulation of P-gp. However, the underlying mechanisms remain elusive. The aim of the present study was to evaluate the role of HMGB1 and its downstream signaling components, receptor for advanced glycation end-product (RAGE) and nuclear factor-κB (NF-κB), on P-gp expression in rat brains during status epilepticus (SE). Small interfering RNA (siRNA) was administered to rats prior to induction of SE by pilocarpine, to block transcription of the genes encoding HMGB1 and RAGE, respectively. An inhibitor of NF-κB, pyrrolidinedithiocarbamic acid (PDTC), was utilized to inhibit activation of NF-κB. The expression levels of HMGB1, RAGE, phosphorylated-NF-κB p65 (p-p65) and P-gp were detected by western blotting. The relative mRNA expression levels of the genes encoding these proteins were measured using reverse transcription-quantitative polymerase chain reaction and the cellular localization of the proteins was determined by immunofluorescence. Pre-treatment with HMGB1 siRNA reduced the expression levels of RAGE, p-p65 and P-gp. PDTC reduced the expression levels of P-gp. These findings suggested that overexpression of P-gp during seizures may be regulated by HMGB1 via the RAGE/NF-κB signaling pathway, and may be a novel target for treating DRE. PMID:28627626

  9. Effects of siRNA-mediated suppression of HPV-11 L1 expression on the proliferation and apoptosis of vaginal epithelial cells

    PubMed Central

    Zeng, Juan; Yang, Shumei; Wang, Xiaorui; Gao, Yan; Zhang, Mei

    2017-01-01

    The aim of the present study was to investigate the effects of human papillomavirus (HPV) infection on the gynecological disease of vaginitis and to demonstrate how the small interfering RNA (siRNA) method may be used for HPV prevention in the clinic. Human vaginal epithelial cells were transfected with HPV-11 L1 expression vector and siRNA-HPV-11 L1 vectors and a control group was transfected with scrambled siRNA. Cell proliferation in each group was analyzed using the MTT assay and the expression of apoptosis-associated proteins was measured by western blot analysis. Compared with the control group, HPV-11 L1 mRNA and protein levels were significantly increased following transfection with the HPV-11 L1 expression vector in cells (P<0.05), but this result was significantly reversed by silencing of HPV-11 L1 (P<0.05). In addition, cell proliferation in the HPV-11 group was lower than that in the control group; however, cell proliferation was significantly increased in cells transfected with silenced L1 compared with that in the control group (P<0.05). Furthermore, silencing of HPV-11 L1 significantly decreased caspase-3 and caspase-9 expressions in cells, whereas the expression was increased in the HPV-11 L1 group (P<0.05). The present study suggested that siRNA-mediated silencing of HPV-11 L1 may have potential therapeutic applications for treating gynecological diseases associated with HPV-11 infection. PMID:28413509

  10. Regulation of Small Ubiquitin-Like Modifier-1, Nuclear Receptor Coreceptor, Histone Deacetylase 3, and Peroxisome Proliferator-Activated Receptor-γ in Human Adipose Tissue

    PubMed Central

    Bodles-Brakhop, Angela M.; Yao-Borengasser, Aiwei; Zhu, Beibei; Starnes, Catherine P.; McGehee, Robert E.; Peterson, Charlotte A.; Kern, Philip A.

    2012-01-01

    Abstract Background This study investigated the regulation of peroxisome proliferator-activated receptor-γ (PPARγ), the histone deacetylase 3 (HDAC3)–nuclear receptor coreceptor (NCoR) complex (a corepressor of transcription used by PPARγ), and small ubiquitin-like modifier-1 (SUMO-1) (a posttranslational modifier of PPARγ) in human adipose tissue and both adipocyte and macrophage cell lines. The objective was to determine whether there were alterations in the human adipose tissue gene expression levels of PPARγ, HDAC3, NCoR, and SUMO-1 associated either with obesity or with treatment of impaired glucose tolerance (IGT) subjects with insulin-sensitizing medications. Methods We obtained subcutaneous adipose tissue biopsies from 86 subjects with a wide range of body mass index (BMI) and insulin sensitivity (SI). Additionally, adipose tissue biopsies were obtained from a randomized subgroup of IGT subjects before and after 10 weeks of treatment with either pioglitazone or metformin. Results The adipose mRNA levels of PPARγ, NCoR, HDAC3, and SUMO-1 correlated strongly with each other (P<0.0001); however, SUMO-1, NCoR, and HDAC3 gene expression were not significantly associated with BMI or SI. Pioglitazone increased SUMO-1 expression by 23% (P<0.002) in adipose tissue and an adipocyte cell line (P<0.05), but not in macrophages. Small interfering RNA (siRNA)-mediated knockdown of SUMO-1 decreased PPARγ, HDAC3, and NCoR in THP-1 cells and increased tumor necrosis factor-α (TNF-α) induction in response to lipopolysaccharide (LPS). Conclusions These results suggest that the coordinate regulation of SUMO-1, PPARγ1/2, HDAC3, and NCoR may be more tightly controlled in macrophages than in adipocytes in human adipose and that these modulators of PPARγ activity may be particularly important in the negative regulation of macrophage-mediated adipose inflammation by pioglitazone. PMID:22651256

  11. Uncovering Small RNA-Mediated Responses to Cold Stress in a Wheat Thermosensitive Genic Male-Sterile Line by Deep Sequencing1[W][OA

    PubMed Central

    Tang, Zhonghui; Zhang, Liping; Xu, Chenguang; Yuan, Shaohua; Zhang, Fengting; Zheng, Yonglian; Zhao, Changping

    2012-01-01

    The male sterility of thermosensitive genic male sterile (TGMS) lines of wheat (Triticum aestivum) is strictly controlled by temperature. The early phase of anther development is especially susceptible to cold stress. MicroRNAs (miRNAs) play an important role in plant development and in responses to environmental stress. In this study, deep sequencing of small RNA (smRNA) libraries obtained from spike tissues of the TGMS line under cold and control conditions identified a total of 78 unique miRNA sequences from 30 families and trans-acting small interfering RNAs (tasiRNAs) derived from two TAS3 genes. To identify smRNA targets in the wheat TGMS line, we applied the degradome sequencing method, which globally and directly identifies the remnants of smRNA-directed target cleavage. We identified 26 targets of 16 miRNA families and three targets of tasiRNAs. Comparing smRNA sequencing data sets and TaqMan quantitative polymerase chain reaction results, we identified six miRNAs and one tasiRNA (tasiRNA-ARF [for Auxin-Responsive Factor]) as cold stress-responsive smRNAs in spike tissues of the TGMS line. We also determined the expression profiles of target genes that encode transcription factors in response to cold stress. Interestingly, the expression of cold stress-responsive smRNAs integrated in the auxin-signaling pathway and their target genes was largely noncorrelated. We investigated the tissue-specific expression of smRNAs using a tissue microarray approach. Our data indicated that miR167 and tasiRNA-ARF play roles in regulating the auxin-signaling pathway and possibly in the developmental response to cold stress. These data provide evidence that smRNA regulatory pathways are linked with male sterility in the TGMS line during cold stress. PMID:22508932

  12. The chance of small interfering RNAs as eligible candidates for a personalized treatment of prostate cancer.

    PubMed

    Pietschke, Katharina; Walker, Tobias; Krajewski, Stefanie; Kurz, Julia; Aufderklamm, Stefan; Schwentner, Christian; Schlensak, Christian; Stenzl, Arnulf; Wendel, Hans P; Nolte, Andrea

    2014-01-01

    Prostate cancer is one of the leading malignant tumors in men. Current therapies are associated with severe side effects making it problematic for many multi-morbid patients to receive treatment. Prostate specific antigen, serum response factor (SRF), signal transducer and activator of transcription-3 (STAT3), hypoxia-inducible factor-1α (HIF-1α), HIF-2α, E2F1 and Survivin are well known proteins being overexpressed in cancer cells, expediting cell growth and also demonstrated in prostate cancer cells. Targeting these genes using the RNA-Interference pathway could be a new approach for prostate cancer therapy with fewer side effects. Three prostate cancer cell lines were cultured under standard conditions and transfected with three different concentrations (25 nM, 50 nM, 100 nM) of specific small interfering RNAs (siRNAs) targeting SRF, STAT3, HIF1α, HIF2α, E2F1 and Survivin in a non-viral manner. Cells treated with non-specific siRNA (SCR-siRNA) served as control. Changes of messenger RNA (mRNA) levels were determined using quantitative real-time polymerase chain reaction (qRT-PCR). The analysis of the effect of siRNA on the number of cells was detected using CASY cell counter system. Transfections of the PC-3 cell line with specific siRNA especially against Survivin, E2F1, HIF1α- and HIF2α-siRNA resulted in a significant reduction of intracellular mRNA concentration together with a significant decreased number of cells. In the LnCAP and DU-145 cell lines Survivin and E2F1 showed similar effects. The impact of silencing STAT3 or SRF showed little influence on the amount of cells in all three cell lines. This study shows that RNAi succeeds in silencing gene expression and reducing the number of cells in differing dimensions depending on the transfected cell line and used siRNA.

  13. Mechanisms of Estradiol-Induced Insulin Secretion by the G Protein-Coupled Estrogen Receptor GPR30/GPER in Pancreatic β-Cells

    PubMed Central

    Sharma, Geetanjali

    2011-01-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes. PMID:21673097

  14. Plant insects and mites uptake double-stranded RNA upon its exogenous application on tomato leaves.

    PubMed

    Gogoi, Anupam; Sarmah, Nomi; Kaldis, Athanasios; Perdikis, Dionysios; Voloudakis, Andreas

    2017-12-01

    Exogenously applied double-stranded RNA (dsRNA) molecules onto tomato leaves, moved rapidly from local to systemic leaves and were uptaken by agricultural pests namely aphids, whiteflies and mites. Four small interfering RNAs, deriving from the applied dsRNA, were molecularly detected in plants, aphids and mites but not in whiteflies. Double-stranded RNA (dsRNA) acts as the elicitor molecule of the RNA silencing (RNA interference, RNAi), the endogenous and evolutionary conserved surveillance system present in all eukaryotes. DsRNAs and their subsequent degradation products, namely the small interfering RNAs (siRNAs), act in a sequence-specific manner to control gene expression. Exogenous application of dsRNAs onto plants elicits resistance against plant viruses. In the present work, exogenously applied dsRNA molecules, derived from Zucchini yellow mosaic virus (ZYMV) HC-Pro region, onto tomato plants were detected in aphids (Myzus persicae), whiteflies (Trialeurodes vaporariorum) and mites (Tetranychus urticae) that were fed on treated as well as systemic tomato leaves. Furthermore, four siRNAs, deriving from the dsRNA applied, were detected in tomato and the agricultural pests fed on treated tomato plants. More specifically, dsRNA was detected in agricultural pests at 3 and 10 dpt (days post treatment) in dsRNA-treated leaves and at 14 dpt in systemic leaves. In addition, using stem-loop RT-PCR, siRNAs were detected in agricultural pests at 3 and 10 dpt in aphids and mites. Surprisingly, in whiteflies carrying the applied dsRNA, siRNAs were not molecularly detected. Our results showed that, upon exogenous application of dsRNAs molecules, these moved rapidly within tomato and were uptaken by agricultural pests fed on treated tomato. As a result, this non-transgenic method has the potential to control important crop pests via RNA silencing of vital genes of the respective pests.

  15. Impact of epidermal growth factor receptor gene expression level on clinical outcomes in epidermal growth factor receptor mutant lung adenocarcinoma patients taking first-line epidermal growth factor receptor-tyrosine kinase inhibitors.

    PubMed

    Chang, Huang-Chih; Chen, Yu-Mu; Tseng, Chia-Cheng; Huang, Kuo-Tung; Wang, Chin-Chou; Chen, Yung-Che; Lai, Chien-Hao; Fang, Wen-Feng; Kao, Hsu-Ching; Lin, Meng-Chih

    2017-03-01

    Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) are first-choice treatments for advanced non-small-cell lung cancer patients harboring EGFR mutations. Although EGFR mutations are strongly predictive of patients' outcomes and their response to treatment with EGFR-TKIs, early failure of first-line therapy with EGFR-TKIs in patients with EGFR mutations is not rare. Besides several clinical factors influencing EGFR-TKI efficacies studied earlier such as the Eastern Cooperative Oncology Group performance status or uncommon mutation, we would like to see whether semi-quantify EGFR mutation gene expression calculated by 2 -ΔΔct was a prognostic factor in EGFR-mutant non-small cell lung cancer patients receiving first-line EGFR-TKIs. This retrospective study reviews 926 lung cancer patients diagnosed from January 2011 to October 2013 at the Kaohsiung Chang Gung Memorial Hospital in Taiwan. Of 224 EGFR-mutant adenocarcinoma patients, 148 patients who had 2 -ΔΔct data were included. The best cutoff values of 2 -ΔΔct for in-frame deletions in exon 19 (19 deletion) and a position 858 substituted from leucine (L) to an arginine (R) in exon 21 (L858R) were determined using receiver operating characteristic curves. Patients were divided into high and low 2 -ΔΔct expression based on the above cutoff level. The best cutoff point of 2 -ΔΔct value of 19 deletion and L858R was 31.1 and 104.7, respectively. In all, 92 (62.1%) patients showed high 2 -ΔΔct expression and 56 patients (37.9%) low 2 -ΔΔct expression. The mean age was 65.6 years. Progression-free survival of 19 deletion mutant patients with low versus high expression level was 17.07 versus 12.04 months (P = 0.004), respectively. Progression-free survival of L858 mutant patients was 13.75 and 7.96 months (P = 0.008), respectively. EGFR-mutant lung adenocarcinoma patients with lower EGFR gene expression had longer progression-free survival duration without interfering overall survival.

  16. Downregulation of aquaporin 9 decreases catabolic factor expression through nuclear factor‑κB signaling ins chondrocytes.

    PubMed

    Takeuchi, Kazuhiro; Hayashi, Shinya; Matumoto, Tomoyuki; Hashimoto, Shingo; Takayama, Koji; Chinzei, Nobuaki; Kihara, Shinsuke; Haneda, Masahiko; Kirizuki, Shinsuke; Kuroda, Yuichi; Tsubosaka, Masanori; Nishida, Kotaro; Kuroda, Ryosuke

    2018-06-13

    Aquaporins (AQPs) are small integral membrane proteins that are essential for water transport across membranes. AQP9, one of the 13 mammalian AQPs (including AQP0 to 12), has been reported to be highly expressed in hydrarthrosis and synovitis patients. Given that several studies have identified signal transduction as an additional function of AQPs, it is hypothesized that AQP9 may modulate inflammatory signal transduction in chondrocytes. Therefore, the present study used a model of interleukin (IL)‑1β‑induced inflammation to determine the mechanisms associated with AQP9 functions in chondrocytes. Osteoarthritis (OA) and normal cartilage samples were subjected to immunohistological analysis. In addition, matrix metalloproteinase (MMP)3, MMP13 and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS‑5) mRNA and protein analysis was conducted in normal human articular chondrocytes from the knee (NHAC‑Kn) stimulated with IL‑1β by reverse transcription‑polymerase chain reaction (RT‑qPCR) and western blotting, respectively. AQP9 knockdown was also performed by transfection of AQP9‑specific small interfering RNA using Lipofectamine. AQP1, 3, 7, 9 and 11 mRNA expression levels were detected in OA human chondrocytes and in IL‑1β‑treated normal human chondrocytes. The levels of AQP9, MMP‑3, MMP‑13 and ADAMTS‑5 mRNA were increased by treatment with 10 ng/ml IL‑1β in a time‑dependent manner, while knockdown of AQP9 expression significantly decreased the mRNA levels of the MMP3, MMP13 and ADAMTS‑5 genes, as well as the phosphorylation of IκB kinase (IKK). Treatment with a specific IKK inhibitor also significantly decreased the expression levels of MMP‑3, MMP‑13 and ADAMTS‑5 in response to IL‑1β stimulation. Furthermore, immunohistochemical analysis demonstrated that AQP9 and inflammatory markers were highly expressed in OA cartilage. In addition, the downregulation of AQP9 in cultured chondrocytes decreased the catabolic gene expression in response to IL‑1β stimulation through nuclear factor‑κB signaling. Therefore, AQP9 may be a promising target for the treatment of OA.

  17. Noncoding RNAs in DNA Repair and Genome Integrity

    PubMed Central

    Wan, Guohui; Liu, Yunhua; Han, Cecil; Zhang, Xinna

    2014-01-01

    Abstract Significance: The well-studied sequences in the human genome are those of protein-coding genes, which account for only 1%–2% of the total genome. However, with the advent of high-throughput transcriptome sequencing technology, we now know that about 90% of our genome is extensively transcribed and that the vast majority of them are transcribed into noncoding RNAs (ncRNAs). It is of great interest and importance to decipher the functions of these ncRNAs in humans. Recent Advances: In the last decade, it has become apparent that ncRNAs play a crucial role in regulating gene expression in normal development, in stress responses to internal and environmental stimuli, and in human diseases. Critical Issues: In addition to those constitutively expressed structural RNA, such as ribosomal and transfer RNAs, regulatory ncRNAs can be classified as microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), small interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), and long noncoding RNAs (lncRNAs). However, little is known about the biological features and functional roles of these ncRNAs in DNA repair and genome instability, although a number of miRNAs and lncRNAs are regulated in the DNA damage response. Future Directions: A major goal of modern biology is to identify and characterize the full profile of ncRNAs with regard to normal physiological functions and roles in human disorders. Clinically relevant ncRNAs will also be evaluated and targeted in therapeutic applications. Antioxid. Redox Signal. 20, 655–677. PMID:23879367

  18. A Medicago truncatula rdr6 allele impairs transgene silencing and endogenous phased siRNA production but not development.

    PubMed

    Bustos-Sanmamed, Pilar; Hudik, Elodie; Laffont, Carole; Reynes, Christelle; Sallet, Erika; Wen, Jiangqi; Mysore, Kirankumar S; Camproux, Anne-Claude; Hartmann, Caroline; Gouzy, Jérome; Frugier, Florian; Crespi, Martin; Lelandais-Brière, Christine

    2014-12-01

    RNA-dependent RNA polymerase 6 (RDR6) and suppressor of gene silencing 3 (SGS3) act together in post-transcriptional transgene silencing mediated by small interfering RNAs (siRNAs) and in biogenesis of various endogenous siRNAs including the tasiARFs, known regulators of auxin responses and plant development. Legumes, the third major crop family worldwide, has been widely improved through transgenic approaches. Here, we isolated rdr6 and sgs3 mutants in the model legume Medicago truncatula. Two sgs3 and one rdr6 alleles led to strong developmental defects and impaired biogenesis of tasiARFs. In contrast, the rdr6.1 homozygous plants produced sufficient amounts of tasiARFs to ensure proper development. High throughput sequencing of small RNAs from this specific mutant identified 354 potential MtRDR6 substrates, for which siRNA production was significantly reduced in the mutant. Among them, we found a large variety of novel phased loci corresponding to protein-encoding genes or transposable elements. Interestingly, measurement of GFP expression revealed that post-transcriptional transgene silencing was reduced in rdr6.1 roots. Hence, this novel mis-sense mutation, affecting a highly conserved amino acid residue in plant RDR6s, may be an interesting tool both to analyse endogenous pha-siRNA functions and to improve transgene expression, at least in legume species. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. The Use of MS-based Metabolomics to Determine Markers Associated with Endocrine Disruption in Small Fish Species

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) are exogenous substances that disrupt the physiological function of endogenous hormones. In fish, these xenobiotics are capable of interfering with the dynamic equilibrium of the hypothalamic-pituitary-gonadal (HPG) axis resulting in adverse ...

  20. Transcriptional corepressor SMILE recruits SIRT1 to inhibit nuclear receptor estrogen receptor-related receptor gamma transactivation.

    PubMed

    Xie, Yuan-Bin; Park, Jeong-Hoh; Kim, Don-Kyu; Hwang, Jung Hwan; Oh, Sangmi; Park, Seung Bum; Shong, Minho; Lee, In-Kyu; Choi, Hueng-Sik

    2009-10-16

    SMILE (small heterodimer partner interacting leucine zipper protein) has been identified as a corepressor of the glucocorticoid receptor, constitutive androstane receptor, and hepatocyte nuclear factor 4alpha. Here we show that SMILE also represses estrogen receptor-related receptor gamma (ERRgamma) transactivation. Knockdown of SMILE gene expression increases ERRgamma activity. SMILE directly interacts with ERRgamma in vitro and in vivo. Domain mapping analysis showed that SMILE binds to the AF2 domain of ERRgamma. SMILE represses ERRgamma transactivation partially through competition with coactivators PGC-1alpha, PGC-1beta, and GRIP1. Interestingly, the repression of SMILE on ERRgamma is released by SIRT1 inhibitors, a catalytically inactive SIRT1 mutant, and SIRT1 small interfering RNA but not by histone protein deacetylase inhibitor. In vivo glutathione S-transferase pulldown and coimmunoprecipitation assays validated that SMILE physically interacts with SIRT1. Furthermore, the ERRgamma inverse agonist GSK5182 enhances the interaction of SMILE with ERRgamma and SMILE-mediated repression. Knockdown of SMILE or SIRT1 blocks the repressive effect of GSK5182. Moreover, chromatin immunoprecipitation assays revealed that GSK5182 augments the association of SMILE and SIRT1 on the promoter of the ERRgamma target PDK4. GSK5182 and adenoviral overexpression of SMILE cooperate to repress ERRgamma-induced PDK4 gene expression, and this repression is released by overexpression of a catalytically defective SIRT1 mutant. Finally, we demonstrated that ERRgamma regulates SMILE gene expression, which in turn inhibits ERRgamma. Overall, these findings implicate SMILE as a novel corepressor of ERRgamma and recruitment of SIRT1 as a novel repressive mechanism for SMILE and ERRgamma inverse agonist.

Top