Science.gov

Sample records for expression specifies ovarian

  1. Ovarian steroid cell tumor, not otherwise specified: A case report and literature review

    PubMed Central

    Qian, Lili; Shen, Zhen; Zhang, Xuefen; Wu, Dabao; Zhou, Ying

    2016-01-01

    Steroid cell tumors (SCT), not otherwise specified (NOS) are particularly rare ovarian sex cord-stromal tumors, which comprise <0.1% of all ovarian tumors. These tumors are uncommon in patients' prior to puberty without any typical syndromes involving hirsutism, virilization and hypertension. We here in present the case of a 5-year-old female patient who presented with sudden abdominal pain, repeated vomiting and a pelvic mass. Our patient underwent urgent exploratory laparotomy and right salpingo-oophorectomy and the histopathological examination revealed an ovarian SCT-NOS. The patient has been followed up for 5 years since the surgery, without evidence of disease recurrence. The purpose of this study was to discuss the available information on the presentation, diagnosis and recommended treatment of ovarian SCT-NOS; and describes the immunohistochemical characteristics of these tumors. PMID:28105366

  2. Virilizing ovarian tumor of cell tumor type not otherwise specified: a case report.

    PubMed

    Faraj, G; Di Gregorio, S; Misiunas, A; Faure, E N; Villabrile, P; Stringa, I; Petroff, N; Bur, G

    1998-10-01

    Whereas ovarian tumors with overt endocrine manifestations account for less than 5% of all ovarian neoplasms, the incidence of virilizing type tumors in postmenopausal women is even lower since the average age of occurrence is 43 years. Steroid cell tumors not otherwise specified (NOS) are even more rare. We report the case of a 56-year-old woman (age of onset of menopause 43 years) who consulted our service due to a hyperandrogenic syndrome: deepening of the voice, temporal balding, hirsutism and cliteromegaly. Laboratory findings indicated hyperandrogenism in male range. The dexamethasone suppression test did not modify basal values, indicating that adrenal origin was unlikely. Transvaginal ultrasound disclosed multiple microcysts in the left ovary. Abdominal tomography was normal. Suspecting an ovarian tumor, bilateral oophorectomy was performed and a pediculate, 3 cm in diameter, was encountered in the left ovary. Histopathological studies determined it to be a virilizing ovarian tumor NOS. Postoperative recovery was fast; normal hormonal values were reached together with visible clinical improvement. This case is reported because this type of tumor is very infrequent in postmenopausal women, and because in this case it was the functional hormonal test that allowed tumor localization.

  3. Gene Expression Patterns in Ovarian Carcinomas

    PubMed Central

    Schaner, Marci E.; Ross, Douglas T.; Ciaravino, Giuseppe; Sørlie, Therese; Troyanskaya, Olga; Diehn, Maximilian; Wang, Yan C.; Duran, George E.; Sikic, Thomas L.; Caldeira, Sandra; Skomedal, Hanne; Tu, I-Ping; Hernandez-Boussard, Tina; Johnson, Steven W.; O'Dwyer, Peter J.; Fero, Michael J.; Kristensen, Gunnar B.; Børresen-Dale, Anne-Lise; Hastie, Trevor; Tibshirani, Robert; van de Rijn, Matt; Teng, Nelson N.; Longacre, Teri A.; Botstein, David; Brown, Patrick O.; Sikic, Branimir I.

    2003-01-01

    We used DNA microarrays to characterize the global gene expression patterns in surface epithelial cancers of the ovary. We identified groups of genes that distinguished the clear cell subtype from other ovarian carcinomas, grade I and II from grade III serous papillary carcinomas, and ovarian from breast carcinomas. Six clear cell carcinomas were distinguished from 36 other ovarian carcinomas (predominantly serous papillary) based on their gene expression patterns. The differences may yield insights into the worse prognosis and therapeutic resistance associated with clear cell carcinomas. A comparison of the gene expression patterns in the ovarian cancers to published data of gene expression in breast cancers revealed a large number of differentially expressed genes. We identified a group of 62 genes that correctly classified all 125 breast and ovarian cancer specimens. Among the best discriminators more highly expressed in the ovarian carcinomas were PAX8 (paired box gene 8), mesothelin, and ephrin-B1 (EFNB1). Although estrogen receptor was expressed in both the ovarian and breast cancers, genes that are coregulated with the estrogen receptor in breast cancers, including GATA-3, LIV-1, and X-box binding protein 1, did not show a similar pattern of coexpression in the ovarian cancers. PMID:12960427

  4. Symptomatic Ovarian Steroid Cell Tumor not Otherwise Specified in a Post-Menopausal Woman

    PubMed Central

    Sood, Neha; Desai, Kaniksha; Chindris, Ana-Maria; Lewis, Jason; Dinh, Tri A.

    2016-01-01

    Steroid cell tumor not otherwise specified (NOS) is a rare subtype of sex cord stromal tumor of the ovary and contributes less than 0.1% of all ovarian neoplasms. The majority of tumors occur in pre-menopausal women (mean age: 43 years), in which 56-77% of patients present with virilization due to excess testosterone. An 80-year-old woman with worsening alopecia and excessive growth of coarse hair on abdomen and genital area was found to have elevated serum testosterone level (462 ng/mL). Radiologic studies were consistent with bilateral adrenal adenomas. Bilateral adrenal venous sampling ruled out the adrenal gland as origin of hormone secretion. A diagnostic and therapeutic bilateral salpingo-oophorectomy confirmed steroid cell tumor NOS of the left ovary. Post-operatively, the patient had complete resolution of her symptoms and normalization of testosterone level. Our case emphasizes the importance of a clinical suspicion for an occult testosterone secreting ovarian tumor in a symptomatic patient without obvious ovarian mass on imaging. PMID:27441075

  5. Gene expression profiling of human ovarian tumours

    PubMed Central

    Biade, S; Marinucci, M; Schick, J; Roberts, D; Workman, G; Sage, E H; O'Dwyer, P J; LiVolsi, V A; Johnson, S W

    2006-01-01

    There is currently a lack of reliable diagnostic and prognostic markers for ovarian cancer. We established gene expression profiles for 120 human ovarian tumours to identify determinants of histologic subtype, grade and degree of malignancy. Unsupervised cluster analysis of the most variable set of expression data resulted in three major tumour groups. One consisted predominantly of benign tumours, one contained mostly malignant tumours, and one was comprised of a mixture of borderline and malignant tumours. Using two supervised approaches, we identified a set of genes that distinguished the benign, borderline and malignant phenotypes. These algorithms were unable to establish profiles for histologic subtype or grade. To validate these findings, the expression of 21 candidate genes selected from these analyses was measured by quantitative RT–PCR using an independent set of tumour samples. Hierarchical clustering of these data resulted in two major groups, one benign and one malignant, with the borderline tumours interspersed between the two groups. These results indicate that borderline ovarian tumours may be classified as either benign or malignant, and that this classifier could be useful for predicting the clinical course of borderline tumours. Immunohistochemical analysis also demonstrated increased expression of CD24 antigen in malignant versus benign tumour tissue. The data that we have generated will contribute to a growing body of expression data that more accurately define the biologic and clinical characteristics of ovarian cancers. PMID:16969345

  6. Gene expression profiling of human ovarian tumours.

    PubMed

    Biade, S; Marinucci, M; Schick, J; Roberts, D; Workman, G; Sage, E H; O'Dwyer, P J; Livolsi, V A; Johnson, S W

    2006-10-23

    There is currently a lack of reliable diagnostic and prognostic markers for ovarian cancer. We established gene expression profiles for 120 human ovarian tumours to identify determinants of histologic subtype, grade and degree of malignancy. Unsupervised cluster analysis of the most variable set of expression data resulted in three major tumour groups. One consisted predominantly of benign tumours, one contained mostly malignant tumours, and one was comprised of a mixture of borderline and malignant tumours. Using two supervised approaches, we identified a set of genes that distinguished the benign, borderline and malignant phenotypes. These algorithms were unable to establish profiles for histologic subtype or grade. To validate these findings, the expression of 21 candidate genes selected from these analyses was measured by quantitative RT-PCR using an independent set of tumour samples. Hierarchical clustering of these data resulted in two major groups, one benign and one malignant, with the borderline tumours interspersed between the two groups. These results indicate that borderline ovarian tumours may be classified as either benign or malignant, and that this classifier could be useful for predicting the clinical course of borderline tumours. Immunohistochemical analysis also demonstrated increased expression of CD24 antigen in malignant versus benign tumour tissue. The data that we have generated will contribute to a growing body of expression data that more accurately define the biologic and clinical characteristics of ovarian cancers.

  7. Selection of suitable reference genes for gene expression studies in normal human ovarian tissues, borderline ovarian tumours and ovarian cancer.

    PubMed

    Ofinran, Olumide; Bose, Ujjal; Hay, Daniel; Abdul, Summi; Tufatelli, Cristina; Khan, Raheela

    2016-12-01

    The use of reference genes is the most common method of controlling the variation in mRNA expression during quantitative polymerase chain reaction, although the use of traditional reference genes, such as β‑actin, glyceraldehyde‑3‑phosphate dehydrogenase or 18S ribosomal RNA, without validation occasionally leads to unreliable results. Therefore, the present study aimed to evaluate a set of five commonly used reference genes to determine the most suitable for gene expression studies in normal ovarian tissues, borderline ovarian and ovarian cancer tissues. The expression stabilities of these genes were ranked using two gene stability algorithms, geNorm and NormFinder. Using geNorm, the two best reference genes in ovarian cancer were β‑glucuronidase and β‑actin. Hypoxanthine phosphoribosyltransferase‑1 and β‑glucuronidase were the most stable in ovarian borderline tumours, and hypoxanthine phosphoribosyltransferase‑1 and glyceraldehyde‑3‑phosphate dehydrogenase were the most stable in normal ovarian tissues. NormFinder ranked β‑actin the most stable in ovarian cancer, and the best combination of two genes was β‑glucuronidase and β‑actin. In borderline tumours, hypoxanthine phosphoribosyltransferase‑1 was identified as the most stable, and the best combination was hypoxanthine phosphoribosyltransferase‑1 and β‑glucuronidase. In normal ovarian tissues, β‑glucuronidase was recommended as the optimum reference gene, and the most optimum pair of reference genes was hypoxanthine phosphoribosyltransferase‑1 and β‑actin. To the best of our knowledge, this is the first study to investigate the selection of a set of reference genes for normalisation in quantitative polymerase chain reactions in different ovarian tissues, and therefore it is recommended that β‑glucuronidase, β‑actin and hypoxanthine phosphoribosyltransferase‑1 are the most suitable reference genes for such analyses.

  8. Epithelial membrane protein 1 expression in ovarian serous tumors.

    PubMed

    Demirag, Guzin Gonullu; Kefeli, Mehmet; Kemal, Yasemin; Yucel, Idris

    2016-03-01

    The present study aimed to analyze the clinical significance of epithelial membrane protein 1 (EMP1) expression in ovarian serous tumors. A total of 84 cases of ovarian serous tumor (50 patients with malignant ovarian serous tumors and 34 patients with borderline and benign serous tumors) were retrospectively analyzed. Differences in the expression levels of EMP1 between the malignant and non-malignant tumor groups were evaluated by immunohistochemical staining. In addition, the association between EMP1 expression and prognostic factors in malignant ovarian serous tumors was investigated. The expression levels of EMP1 were significantly reduced in all the 50 malignant ovarian serous tumors, compared with the 34 non-malignant ovarian serous tumors (P<0.000). Reduced expression of EMP1 was correlated with high grade (P=0.009) and stage (P<0.000) of malignant tumors. EMP1 expression was not observed to be correlated with any other investigated parameters, including surgery, type of operation and chemotherapy response (P>0.005). These results indicated that EMP1 may have a significant role as a negative regulator in ovarian serous tumors, and reduced EMP1 expression in serous tumors may be associated with increased disease severity.

  9. Comparison of Expression Profiles in Ovarian Epithelium In Vivo and Ovarian Cancer Identifies Novel Candidate Genes Involved in Disease Pathogenesis

    PubMed Central

    Emmanuel, Catherine; Gava, Natalie; Kennedy, Catherine; Balleine, Rosemary L.; Sharma, Raghwa; Wain, Gerard; Brand, Alison; Hogg, Russell; Etemadmoghadam, Dariush; George, Joshy; Birrer, Michael J.; Clarke, Christine L.; Chenevix-Trench, Georgia; Bowtell, David D. L.; Harnett, Paul R.; deFazio, Anna

    2011-01-01

    Molecular events leading to epithelial ovarian cancer are poorly understood but ovulatory hormones and a high number of life-time ovulations with concomitant proliferation, apoptosis, and inflammation, increases risk. We identified genes that are regulated during the estrous cycle in murine ovarian surface epithelium and analysed these profiles to identify genes dysregulated in human ovarian cancer, using publically available datasets. We identified 338 genes that are regulated in murine ovarian surface epithelium during the estrous cycle and dysregulated in ovarian cancer. Six of seven candidates selected for immunohistochemical validation were expressed in serous ovarian cancer, inclusion cysts, ovarian surface epithelium and in fallopian tube epithelium. Most were overexpressed in ovarian cancer compared with ovarian surface epithelium and/or inclusion cysts (EpCAM, EZH2, BIRC5) although BIRC5 and EZH2 were expressed as highly in fallopian tube epithelium as in ovarian cancer. We prioritised the 338 genes for those likely to be important for ovarian cancer development by in silico analyses of copy number aberration and mutation using publically available datasets and identified genes with established roles in ovarian cancer as well as novel genes for which we have evidence for involvement in ovarian cancer. Chromosome segregation emerged as an important process in which genes from our list of 338 were over-represented including two (BUB1, NCAPD2) for which there is evidence of amplification and mutation. NUAK2, upregulated in ovarian surface epithelium in proestrus and predicted to have a driver mutation in ovarian cancer, was examined in a larger cohort of serous ovarian cancer where patients with lower NUAK2 expression had shorter overall survival. In conclusion, defining genes that are activated in normal epithelium in the course of ovulation that are also dysregulated in cancer has identified a number of pathways and novel candidate genes that may contribute

  10. Expression and Function of CD44 in Epithelial Ovarian Carcinoma

    PubMed Central

    Sacks, Joelle D.; Barbolina, Maria V.

    2015-01-01

    CD44, a cell surface glycoprotein, has been increasingly implicated in the pathogenesis and progression of epithelial ovarian cancer, the deadliest gynecologic malignancy in women. Here, we review recent reports on the expression and function of CD44 in epithelial ovarian carcinoma. Further functional data for CD44 in peritoneal adhesion and metastatic progression and its association with stem cells is highlighted. Recent studies utilizing CD44 for therapeutic targeting are also discussed. PMID:26569327

  11. Dysregulated Expression of Long Noncoding RNAs in Ovarian Cancer

    PubMed Central

    Zhong, Yancheng; Gao, Dan; He, Shiwei; Shuai, Cijun; Peng, Shuping

    2016-01-01

    Abstract Ovarian cancer is the leading cause of death among women with gynecologic malignancies. The development and progression of ovarian cancer are complex and a multiple-step process. New biomarker molecules for diagnostic and prognostic are essential for novel therapeutic targets and to extend the survival time of patients with ovarian cancer. Long noncoding RNAs (lncRNAs) are non–protein-coding transcripts longer than 200 nucleotides that have recently been found as key regulators of various biological processes and to be involved in the development and progression of many diseases including cancers. In this review, we summarized the expression pattern of several dysregulated lncRNAs (HOTAIR, H19, XIST, and HOST2) and the functional molecular mechanism of these lncRNAs on the initiation and progression of ovarian cancer. The lncRNAs as biomarkers may be used for current and future clinical diagnosis, therapeutics, and prognosis. PMID:27603915

  12. Development and application of a rat ovarian gene expression database.

    PubMed

    Jo, Misung; Gieske, Mary C; Payne, Charles E; Wheeler-Price, Sarah E; Gieske, Joseph B; Ignatius, Ignatius V; Curry, Thomas E; Ko, Chemyong

    2004-11-01

    The pituitary gonadotropins play a key role in follicular development and ovulation through the induction of specific genes. To identify these genes, we have constructed a genome-wide rat ovarian gene expression database (rOGED). The database was constructed from total RNA isolated from intact ovaries, granulosa cells, or residual ovarian tissues collected from immature pregnant mare serum gonadotropin (PMSG)/human chorionic gonadotropin-treated rats at 0 h (no PMSG), 12 h, and 48 h post PMSG, as well as 6 and 12 h post human chorionic gonadotropin. The total RNA was used for DNA microarray analysis using Affymetrix Rat Expression Arrays 230A and 230B (Affymetrix, Santa Clara, CA). The microarray data were compiled and used for display of individual gene expression profiles through specially developed software. The final rOGED provides immediate analysis of temporal gene expression profiles for over 28,000 genes in intact ovaries, granulosa cells, and residual ovarian tissue during follicular growth and the preovulatory period. The accuracy of the rOGED was validated against the gene profiles for over 20 known genes. The utility of the rOGED was demonstrated by identifying six genes that have not been described in the rat periovulatory ovary. The mRNA expression patterns and cellular localization for each of these six genes (estrogen sulfotransferase, synaptosomal-associated protein 25 kDa, runt-related transcription factor, calgranulin B, alpha1-macroglobulin, and MAPK phosphotase-3) were confirmed by Northern blot analyses and in situ hybridization, respectively. The current findings demonstrate that the rOGED can be used as an instant reference for ovarian gene expression profiles, as well as a reliable resource for identifying important yet, to date, unknown ovarian genes.

  13. Influence of Ovarian Endometrioma on Expression of Steroid Receptor RNA Activator, Estrogen Receptors, Vascular Endothelial Growth Factor, and Thrombospondin 1 in the Surrounding Ovarian Tissues

    PubMed Central

    Lin, Kaiqing; Ma, Junyan; Wu, Ruijin; Zhou, Caiyun

    2014-01-01

    This study investigates the influence of ovarian endometrioma on expression of steroid receptor RNA activator (SRA), estrogen receptors (ERs), vascular endothelial growth factor (VEGF), and thrombospondin 1 (TSP-1) in the surrounding ovarian tissues. Taken from the women with ovarian endometrioma and mature teratoma during laparoscopy, the biopsies were analyzed by real-time polymerase chain reaction and Western blot. Our results indicated that ovarian tissues surrounding endometrioma had lower SRA and ER-α levels but higher SRA protein (SRAP) and ER-β levels than ovarian endometrioma. With lower VEGF levels and higher TSP-1 levels, the surrounding ovarian tissues showed higher expression levels of SRA, SRAP, ER-α, and ER-β in the ovarian endometrioma group when compared to the controls. These data showed that ovarian endometrioma increases SRA, ERs, and TSP-1 but decreases VEGF levels in the surrounding ovarian tissues, suggesting that abnormal expression of these molecules may affect biological behaviors of ovarian endometrioma. PMID:23749764

  14. E-cadherin Expression in Ovarian Cancer in the Laying Hen, Gallus Domesticus, compared to Human Ovarian Cancer

    PubMed Central

    Ansenberger, Kristine; Zhuge, Yan; Lagman, Jo Ann J.; Richards, Cassandra; Barua, Animesh; Bahr, Janice M.; Hales, Dale Buchanan

    2010-01-01

    Objective Epithelial ovarian carcinoma (EOC) is a leading cause of cancer deaths in women. Until recently, a significant lack of an appropriate animal model has hindered the discovery of early detection markers for ovarian cancer. The aging hen serves as an animal model because it spontaneously develops ovarian adenocarcinomas similar in histological appearance to the human disease. E-cadherin is an adherens protein that is down-regulated in many cancers, but has been shown to be up-regulated in primary human ovarian cancer. Our objective was to evaluate E-cadherin expression in the hen ovary and compare its expression to human ovarian cancer. Methods White Leghorn hens aged 185 weeks (cancerous and normal) were used for sample collection. A human ovarian tumor tissue array was used for comparison to the human disease. E-cadherin mRNA and protein expression were analyzed in cancerous and normal hen ovaries by immunohistochemistry (IHC), Western blot, and quantitative real-time PCR (qRT-PCR). Tissue fixed in neutral buffered formalin was used for IHC. Protein from tissue frozen in liquid nitrogen was analyzed by Western blot. RNA was extracted from tissue preserved in RNAlater and analyzed by qRT-PCR. The human ovarian tumor tissue array was used for IHC. Results E-cadherin mRNA and protein expression were significantly increased in cancerous hen ovaries as compared to ovaries of normal hens by qRT-PCR and Western blot. Similar expression of E-cadherin was observed by IHC in both human and hen ovarian cancer tissues. Similar E-cadherin expression was also observed in primary ovarian tumor and peritoneal metastatic tissue from cancerous hens. Conclusions Our findings suggest that the up-regulation of E-cadherin is an early defining event in ovarian cancer and may play a significant role in the initial development of the primary ovarian tumor. E-cadherin also appears to be important in the development of secondary tumors within the peritoneal cavity. Our data suggest

  15. LncRNAs expression profiling in normal ovary, benign ovarian cyst and malignant epithelial ovarian cancer

    PubMed Central

    Wang, Huan; Fu, Ziyi; Dai, Chencheng; Cao, Jian; Liu, Xiaoguang; Xu, Juan; Lv, Mingming; Gu, Yun; Zhang, Jingmin; Hua, Xiangdong; Jia, Genmei; Xu, Sujuan; Jia, Xuemei; Xu, Pengfei

    2016-01-01

    Long noncoding RNA (lncRNA) has been recognized as a regulator of gene expression, and the dysregulation of lncRNAs is involved in the progression of many types of cancer, including epithelial ovarian cancer (EOC). To explore the potential roles of lncRNAs in EOC, we performed lncRNA and mRNA microarray profiling in malignant EOC, benign ovarian cyst and healthy control tissues. In this study, 663 transcripts of lncRNAs were found to be differentially expressed in malignant EOC compared with benign and normal control tissues. We also selected 18 altered lncRNAs to confirm the validity of the microarray analysis using quantitative real-time PCR (qPCR). Pathway and Gene Ontology (GO) analyses demonstrated that these altered transcripts were involved in multiple biological processes, especially the cell cycle. Furthermore, Series Test of Cluster (STC) and lncRNA-mRNA co-expression network analyses were conducted to predict lncRNA expression trends and the potential target genes of lncRNAs. We also determined that two antisense lncRNAs (RP11-597D13.9 and ADAMTS9-AS1) were associated with their nearby coding genes (FAM198B, ADAMTS9), which participated in cancer progression. This study offers helpful information to understand the initiation and development mechanisms of EOC. PMID:27941916

  16. Expression of HPIP in epithelial ovarian carcinoma: a clinicopathological study

    PubMed Central

    Wang, Yuping; Meng, Fanling; Liu, Yunduo; Chen, Xiuwei

    2017-01-01

    Objectives Hematopoietic pre-B-cell leukemia transcription factor (PBX)-interacting protein (HPIP) plays an important role in cancer invasion and metastasis. The aim of this study is to investigate the expression of HPIP in epithelial ovarian cancer (EOC). Patients and methods Immunohistochemical method was performed using 42 normal ovarian specimens and 145 specimens with EOC. The correlations of HPIP expression with the clinicopathological factors and prognosis of EOC patients were evaluated. Statistical analyses were performed using the chi-square test, multivariate Cox proportional hazard, and Kaplan–Meier method. Results HPIP expression in EOC was higher than that in normal tissues (P<0.001). HPIP expression was significantly associated with histological grade, International Federation of Gynecology and Obstetrics stage, and lymphatic metastasis of EOC (P<0.05). Patients with high HPIP expression had poorer overall survival and disease-free survival (P<0.001) compared with patients with low HPIP expression. Multivariate Cox analysis demonstrated that HPIP was an independent factor for overall survival and disease-free survival (P<0.05). Conclusion HPIP may be a valuable biomarker for predicting the prognosis of EOC patients and may serve as a potential target for cancer therapy. PMID:28053543

  17. Pcsk6 mutant mice exhibit progressive loss of ovarian function, altered gene expression, and formation of ovarian pathology.

    PubMed

    Mujoomdar, Michelle L; Hogan, Laura M; Parlow, Albert F; Nachtigal, Mark W

    2011-03-01

    Bioactivation of precursor proteins by members of the proprotein convertase (PC) family is essential for normal reproduction. The Pcsk6 gene is a member of the PC family that is expressed in numerous ovarian cell types including granulosa cells and oocytes. We hypothesized that loss of PCSK6 would produce adverse effects in the mouse ovary. Mice incapable of expressing PCSK6 (Pcsk6(tm1Rob)) were obtained, and reproductive parameters (serum hormones, whelping interval, estrus cyclicity, and fertility) were compared to Pcsk6(+/+) mice. While Pcsk6(tm1Rob) female mice are fertile, they manifest reduced reproductive capacity at an accelerated rate relative to Pcsk6(+/+) mice. Reproductive senescence is typically reached by 9 months of age and is correlated with loss of estrus cyclicity, elevated serum FSH levels, and gross alterations in ovarian morphology. A wide range of ovarian morphologies were identified encompassing mild, such as an apparent reduction in follicle number, to moderate--ovarian atrophy with a complete absence of follicles--to severe, manifesting as normal ovarian structures replaced by benign ovarian tumors, including tubulostromal adenomas. Targeted gene expression profiling highlighted changes in RNA expression of molecules involved in processes such as steroidogenesis, gonadotropin signaling, transcriptional regulation, autocrine/paracrine signaling, cholesterol handling, and proprotein bioactivation. These results show that PCSK6 activity plays a role in maintaining normal cellular and tissue homeostasis in the ovary.

  18. Differential gene expression analysis of ovarian cancer in a population isolate.

    PubMed

    Grazio, D; Pichler, I; Fuchsberger, C; Zolezzi, F; Guarnieri, P; Heidegger, H; Scherer, A; Engl, B; Messini, S; Egarter-Vigl, E; Pramstaller, P P

    2008-01-01

    Gene expression products represent candidate biomarkers with the potential for early screening and therapy of patients with ovarian serous carcinoma. The present study, using patients that originate from the population isolate of South Tyrol, Italy, substantiates the feasibility of differential gene expression analysis in a genetically isolated population for the identification of potential markers of ovarian cancer. Gene expression profiles of fresh-frozen ovarian serous papillary carcinoma samples were analyzed and compared to normal ovarian control tissues using oligonucleotide microarrays complementary to 14,500 human genes. Supervised analysis of gene expression profiling data identified 225 genes that are down-regulated and 635 that are up-regulated in malignant compared to normal ovarian tissues. Class-prediction analysis identified 40 differentially expressed genes for further investigation as potential classifiers for ovarian cancer, including 20 novel candidates. Our findings provide a glimpse into the potential of population isolate genomics in oncological research.

  19. Dub3 expression correlates with tumor progression and poor prognosis in human epithelial ovarian cancer.

    PubMed

    Zhou, Bo; Shu, Bin; Xi, Tao; Su, Ning; Liu, Jing

    2015-03-01

    Dub3 is a deubiquitinating enzyme. It is highly expressed in tumor-derived cell lines and has an established role in tumor proliferation. However, the role of Dub3 in human ovarian cancer remains unclear. Expression of Dub3 was evaluated in ovarian cancer tissues and cell lines by immunohistochemistry and Western blot analysis. The relationship between Dub3 expression and clinicopathological characteristics was analyzed. Using RNA interference, the effects of Dub3 on cell proliferation and apoptosis were investigated in ovarian cancer cell line. All normal ovary tissues exhibited very little or no Dub3 immunoreactivity. High levels of Dub3 expression were examined by immunohistochemical analysis in 13.3% of cystadenomas, in 30.0% of borderline tumors, and in 58.9% of ovarian carcinomas, respectively. Dub3 expression was significantly associated with lymph node metastasis and clinical staging (P<0.05). Multivariate survival analysis indicated that Dub3 expression was an independent prognostic indicator of the survival of patients with ovarian cancer. Furthermore, the expression of Cdc25A was closely correlated with that of Dub3 in cancer cells and tissues. Knockdown of Dub3 could inhibit the proliferation of ovarian cancer cells and increase cell apoptosis. These data indicate that the Dub3 might be a valuable biomarker for the prediction of ovarian cancer prognosis and Dub3 inhibition might be a potential strategy for ovarian cancer treatment.

  20. Loss of HSulf-1 expression enhances tumorigenicity by inhibiting Bim expression in ovarian cancer.

    PubMed

    He, Xiaoping; Khurana, Ashwani; Roy, Debarshi; Kaufmann, Scott; Shridhar, Viji

    2014-10-15

    The expression of human Sulfatase1 (HSulf-1) is downregulated in the majority of primary ovarian cancer tumors, but the functional consequence of this downregulation remains unclear. Using two different shRNAs (Sh1 and Sh2), HSulf-1 expression was stably downregulated in ovarian cancer OV202 cells. We found that HSulf-1-deficient OV202 Sh1 and Sh2 cells formed colonies in soft agar. In contrast, nontargeting control (NTC) shRNA-transduced OV202 cells did not form any colonies. Moreover, subcutaneous injection of OV202 HSulf-1-deficient cells resulted in tumor formation in nude mice, whereas OV202 NTC cells did not. Also, ectopic expression of HSulf-1 in ovarian cancer SKOV3 cells significantly suppressed tumor growth in nude mice. Here, we show that HSulf-1-deficient OV202 cells have markedly decreased expression of proapoptotic Bim protein, which can be rescued by restoring HSulf-1 expression in OV202 Sh1 cells. Enhanced expression of HSulf-1 in HSulf-1-deficient SKOV3 cells resulted in increased Bim expression. Decreased Bim levels after loss of HSulf-1 were due to increased p-ERK, because inhibition of ERK activity with PD98059 resulted in increased Bim expression. However, treatment with a PI3 kinase/AKT inhibitor, LY294002, failed to show any change in Bim protein level. Importantly, rescuing Bim expression in HSulf-1 knockdown cells significantly retarded tumor growth in nude mice. Collectively, these results suggest that loss of HSulf-1 expression promotes tumorigenicity in ovarian cancer through regulating Bim expression.

  1. The Increased Expression of Connexin and VEGF in Mouse Ovarian Tissue Vitrification by Follicle Stimulating Hormone.

    PubMed

    Yang, Yanzhou; Chen, Jie; Wu, Hao; Pei, Xiuying; Chang, Qing; Ma, Wenzhi; Ma, Huiming; Hei, Changchun; Zheng, Xiaomin; Cai, Yufang; Zhao, Chengjun; Yu, Jia; Wang, Yanrong

    2015-01-01

    Ovarian follicular damages were caused by cryoinjury during the process of ovarian vitrification and ischemia/reperfusion during the process of ovarian transplantation. And appropriate FSH plays an important role in antiapoptosis during ovarian follicle development. Therefore, in this study, 0.3 IU/mL FSH was administered into medium during mouse ovarian cryopreservation by vitrification to ascertain the function of FSH on ovarian vitrification and avascular transplantation. The results suggested that the expressions of Cx37, Cx43, apoptotic molecular caspase-3, and angiogenesis molecular VEGF were confirmed using immunohistochemistry, western blotting, and real-time PCR, and the results suggested that the treatment with FSH remarkably increased the number of morphologically normal follicles in vitrified/warmed ovaries by upregulating the expression of Cx37, Cx43, VEGF, and VEGF receptor 2, but downregulating the expression of caspase-3. In addition, the vitrified/warmed ovaries were transplanted, and the related fertility was analyzed, and the results suggested that the fertility, neoangiogenesis, and follicle reserve were remarkably increased in the FSH administrated group. Taken together, administration of 0.3 IU/mL FSH during ovarian cryopreservation by vitrification can maintain ovarian survival during ovarian vitrification and increases the blood supply with avascular transplantation via upregulation of Cx43, Cx37, and VEGF/VEGFR2, as well as through its antiapoptotic effects.

  2. Distinct prognostic values of four-Notch-receptor mRNA expression in ovarian cancer.

    PubMed

    Zhou, Xinling; Teng, Lingling; Wang, Min

    2016-05-01

    Notch signaling pathway includes ligands and Notch receptors, which are frequently deregulated in several human malignancies including ovarian cancer. Aberrant activation of Notch signaling has been linked to ovarian carcinogenesis and progression. In the current study, we used the "Kaplan-Meier plotter" (KM plotter) database, in which updated gene expression data and survival information from a total of 1306 ovarian cancer patients were used to access the prognostic value of four Notch receptors in ovarian cancer patients. Hazard ratio (HR), 95 % confidence intervals, and log-rank P were calculated. Notch1 messenger RNA (mRNA) high expression was not found to be correlated to overall survival (OS) for all ovarian cancer, as well as in serous and endometrioid cancer patients followed for 20 years. However, Notch1 mRNA high expression is significantly associated with worsen OS in TP53 wild-type ovarian cancer patients, while it is significantly associated with better OS in TP53 mutation-type ovarian cancer patients. Notch2 mRNA high expression was found to be significantly correlated to worsen OS for all ovarian cancer patients, as well as in grade II ovarian cancer patients. Notch3 mRNA high expression was found to be significantly correlated to better OS for all ovarian cancer patients, but not in serous cancer patients and endometrioid cancer patients. Notch4 mRNA high expression was not found to be significantly correlated to OS for all ovarian cancer patients, serous cancer patients, and endometrioid cancer patients. These results indicate that there are distinct prognostic values of four Notch receptors in ovarian cancer. This information will be useful for better understanding of the heterogeneity and complexity in the molecular biology of ovarian cancer and for developing tools to more accurately predict their prognosis. Based on our results, Notch1 could be a potential drug target of TP53 wild-type ovarian cancer and Notch2 could be a potential drug

  3. Expression of PCV2 antigen in the ovarian tissues of gilts

    PubMed Central

    TUMMARUK, Padet; PEARODWONG, Pachara

    2015-01-01

    The present study was performed to determine the expression of porcine circovirus type 2 (PCV2) antigen in the ovarian tissue of naturally infected gilts. Ovarian tissues were obtained from 11 culled gilts. The ovarian tissues sections were divided into two groups according to PCV2 DNA detection using PCR. PCV2 antigen was assessed in the paraffin embedded ovarian tissue sections by immunohistochemistry. A total of 2,131 ovarian follicles (i.e., 1,437 primordial, 133 primary, 353 secondary and 208 antral follicles), 66 atretic follicles and 131 corpora lutea were evaluated. It was found that PCV2 antigen was detected in 280 ovarian follicles (i.e., 239 primordial follicles, 12 primary follicles, 10 secondary follicles and 19 antral follicles), 1 atretic follicles and 3 corpora lutea (P<0.05). PCV2 antigen was detected in primordial follicles more often than in secondary follicles, atretic follicles and corpora lutea (P<0.05). The detection of PCV2 antigen was found mainly in oocytes. PCV2 antigen was found in both PCV2 DNA positive and negative ovarian tissues. It can be concluded that PCV2 antigen is expressed in all types of the ovarian follicles and corpora lutea. Further studies should be carried out to determine the influence of PCV2 on porcine ovarian function and oocyte quality. PMID:26522687

  4. ERBB4 Expression in Ovarian Serous Carcinoma Resistant to Platinum-Based Therapy.

    PubMed

    Saglam, Ozlen; Xiong, Yin; Marchion, Douglas C; Strosberg, Carolina; Wenham, Robert M; Johnson, Joseph J; Saeed-Vafa, Daryoush; Cubitt, Christopher; Hakam, Ardeshir; Magliocco, Anthony M

    2017-01-01

    Few data exist on the prognostic and predictive impact of erb-b2 receptor tyrosine kinase 4 (ERBB4) in ovarian cancer. Thus, we evaluated ERBB4 expression by immunohistochemistry in a tumor microarray consisting of 100 ovarian serous carcinoma specimens (50 complete responses [CRs] and 50 incomplete responses [IRs] to platinum-based therapy), 51 normal tissue controls, and 16 ovarian cancer cell lines. H scores were used to evaluate expression and were semiquantitatively classified into low, intermediate, and high categories. Category frequencies were compared between tumor specimens vs controls using an unpaired t test. Among tumors, category frequencies were compared between CR and IR to chemotherapy. Overall survival (OS) was stratified by category. In total, 74 ovarian serous carcinoma samples (32 CRs and 42 IRs), 28 normal controls, and 16 ovarian cancer cell lines were evaluable. High-level ERBB4 expression was observed at a significantly higher frequency in ovarian serous carcinoma compared with normal control tissue. Among tumor specimens, ERBB4 expression was significantly higher for those with an IR to chemotherapy compared with CR (P = .033). OS was inversely correlated with ERBB4 expression levels. Median rates of OS were 18, 22, and 58 months among high-, intermediate-, and low-expression tumors, respectively. Our results indicate that ERBB4 expression by immunohistochemistry may correlate with chemotherapy-resistant ovarian serous carcinoma and shortened OS.

  5. A Double Selection Approach to Achieve Specific Expression of Toxin Genes for Ovarian Cancer Gene Therapy

    DTIC Science & Technology

    2006-11-01

    specific expression of toxin genes for ovarian cancer gene therapy PRINCIPAL INVESTIGATOR: David T. Curiel, M.D., Ph.D. Gene Siegal...A double selection approach to achieve specific expression of toxin genes for ovarian cancer gene therapy 5b. GRANT NUMBER W81XWH-05-1-0035...cancer. This system should result in highly efficient and specific expression of toxin encoding genes in tumor cells, enabling these cells to be

  6. Prognostic significance of discoidin domain receptor 2 (DDR2) expression in ovarian cancer.

    PubMed

    Fan, Yi; Xu, Zhe; Fan, Jin; Huang, Liu; Ye, Ming; Shi, Kun; Huang, Zheng; Liu, Yaqiong; He, Langchi; Huang, Jiezhen; Wang, Yibin; Li, Qiufeng

    2016-01-01

    Increasing evidence has suggested that discoidin domain receptor 2 (DDR2) plays an important role in cancer development and metastasis. However, the correlation between DDR2 expression and clinical outcome in ovarian cancer has not been investigated. In this study, DDR2 expression was examined by Real-time PCR in surgically resected ovarian cancer and normal ovary tissues. Besides, DDR2 expression was analyzed immunohistochemically in 103 ovarian cancer patients, and the correlation between DDR2 expression with clinicopathologic factors was analyzed. The result showed that DDR2 mRNA expression was upregulated in ovarian cancer tissues compared with normal ovary tissues. Statistical analysis revealed that DDR2 expression correlated with tumor stage (P = 0.008) and peritoneal metastasis (P = 0.009). Patients with high DDR2 expression showed poorer 5-year overall survival (P = 0.005), and DDR2 remained an independent prognostic marker for OS (P = 0.013) in multivariate analysis. Our results suggest that DDR2 might be closely associated with ovarian cancer progression and metastasis. Its high expression may serve as a potential prognostic biomarker in human ovarian cancer.

  7. Prognostic significance of discoidin domain receptor 2 (DDR2) expression in ovarian cancer

    PubMed Central

    Fan, Yi; Xu, Zhe; Fan, Jin; Huang, Liu; Ye, Ming; Shi, Kun; Huang, Zheng; Liu, Yaqiong; He, Langchi; Huang, Jiezhen; Wang, Yibin; Li, Qiufeng

    2016-01-01

    Increasing evidence has suggested that discoidin domain receptor 2 (DDR2) plays an important role in cancer development and metastasis. However, the correlation between DDR2 expression and clinical outcome in ovarian cancer has not been investigated. In this study, DDR2 expression was examined by Real-time PCR in surgically resected ovarian cancer and normal ovary tissues. Besides, DDR2 expression was analyzed immunohistochemically in 103 ovarian cancer patients, and the correlation between DDR2 expression with clinicopathologic factors was analyzed. The result showed that DDR2 mRNA expression was upregulated in ovarian cancer tissues compared with normal ovary tissues. Statistical analysis revealed that DDR2 expression correlated with tumor stage (P = 0.008) and peritoneal metastasis (P = 0.009). Patients with high DDR2 expression showed poorer 5-year overall survival (P = 0.005), and DDR2 remained an independent prognostic marker for OS (P = 0.013) in multivariate analysis. Our results suggest that DDR2 might be closely associated with ovarian cancer progression and metastasis. Its high expression may serve as a potential prognostic biomarker in human ovarian cancer. PMID:27398168

  8. Regulation of semaphorin 4D expression and cell proliferation of ovarian cancer by ERalpha and ERbeta

    PubMed Central

    Liu, Y.; Hou, Y.; Ma, L.; Sun, C.; Pan, J.; Yang, Y.; Zhou, H.; Zhang, J.

    2017-01-01

    Ovarian cancer is one of the most common malignancies in women. Semaphorin 4D (sema 4D) is involved in the progress of multiple cancers. In the presence of estrogen-like ligands, estrogen receptors (ERα and ERβ) participate in the progress of breast and ovarian cancers by transcriptional regulation. The aim of the study was to investigate the role of sema 4D and elucidate the regulatory pattern of ERα and ERβ on sema 4D expression in ovarian cancers. Sema 4D levels were up-regulated in ovarian cancer SKOV-3 cells. Patients with malignant ovarian cancers had significantly higher sema 4D levels than controls, suggesting an oncogene role of sema 4D in ovarian cancer. ERα expressions were up-regulated in SKOV-3 cells compared with normal ovarian IOSE80 epithelial cells. Conversely, down-regulation of ERβ was observed in SKOV-3 cells. Forced over-expression of ERα and ERβ in SKOV-3 cells was manipulated to establish ERα+ and ERβ+ SKOV-3 cell lines. Incubation of ERα+ SKOV-3 cells with ERs agonist 17β-estradiol (E2) significantly enhanced sema 4D expression and rate of cell proliferation. Incubated with E2, ERβ+ SKOV-3 cells showed lower sema 4D expression and cell proliferation. Blocking ERα and ERβ activities with ICI182-780 inhibitor, sema 4D expressions and cell proliferation of ERα+ and ERβ+ SKOV-3 cells were recovered to control levels. Taken together, the data showed that sema 4D expression was positively correlated with the progress of ovarian cancer. ERα positively regulated sema 4D expression and accelerated cell proliferation. ERβ negatively regulated sema 4D expression and inhibited cell multiplication. PMID:28225892

  9. Expression and roles of Slit/Robo in human ovarian cancer.

    PubMed

    Dai, Cai Feng; Jiang, Yi Zhou; Li, Yan; Wang, Kai; Liu, Pei Shu; Patankar, Manish S; Zheng, Jing

    2011-05-01

    The Slit glycoproteins and their Roundabout (Robo) receptors regulate migration and growth of many types of cells including human cancer cells. However, little is known about the expression and roles of Slit/Robo in human ovarian cancer. Herein, we examined the expression of Slit/Robo in human normal and malignant ovarian tissues and its potential participation in regulating migration and proliferation of human ovarian cancer cells using two ovarian cancer cell lines, OVCAR-3 and SKOV-3. We demonstrated that Slit2/3 and Robo1 were immunolocalized primarily in stromal cells in human normal ovaries and in cancer cells in many histotypes of ovarian cancer tissues. Protein expression of Slit2/3 and Robo1/4 was also identified in OVCAR-3 and SKOV-3 cells. However, recombinant human Slit2 did not significantly affect SKOV-3 cell migration, and OVCAR-3 and SKOV-3 cell proliferation. Slit2 also did not induce ERK1/2 and AKT1 phosphorylation in OVCAR-3 and SKOV-3 cells. The current findings indicate that three major members (Slit2/3 and Robo1) of Slit/Robo family are widely expressed in the human normal and malignant ovarian tissues and in OVCAR-3 and SKOV-3 cells. However, Slit/Robo signaling may not play an important role in regulating human ovarian cancer cell proliferation and migration.

  10. Identification of a potential ovarian cancer stem cell gene expression profile from advanced stage papillary serous ovarian cancer.

    PubMed

    Vathipadiekal, Vinod; Saxena, Deepa; Mok, Samuel C; Hauschka, Peter V; Ozbun, Laurent; Birrer, Michael J

    2012-01-01

    Identification of gene expression profiles of cancer stem cells may have significant implications in the understanding of tumor biology and for the design of novel treatments targeted toward these cells. Here we report a potential ovarian cancer stem cell gene expression profile from isolated side population of fresh ascites obtained from women with high-grade advanced stage papillary serous ovarian adenocarcinoma. Affymetrix U133 Plus 2.0 microarrays were used to interrogate the differentially expressed genes between side population (SP) and main population (MP), and the results were analyzed by paired T-test using BRB-ArrayTools. We identified 138 up-regulated and 302 down-regulated genes that were differentially expressed between all 10 SP/MP pairs. Microarray data was validated using qRT-PCR and17/19 (89.5%) genes showed robust correlations between microarray and qRT-PCR expression data. The Pathway Studio analysis identified several genes involved in cell survival, differentiation, proliferation, and apoptosis which are unique to SP cells and a mechanism for the activation of Notch signaling is identified. To validate these findings, we have identified and isolated SP cells enriched for cancer stem cells from human ovarian cancer cell lines. The SP populations were having a higher colony forming efficiency in comparison to its MP counterpart and also capable of sustained expansion and differentiation in to SP and MP phenotypes. 50,000 SP cells produced tumor in nude mice whereas the same number of MP cells failed to give any tumor at 8 weeks after injection. The SP cells demonstrated a dose dependent sensitivity to specific γ-secretase inhibitors implicating the role of Notch signaling pathway in SP cell survival. Further the generated SP gene list was found to be enriched in recurrent ovarian cancer tumors.

  11. Decreased expression of CYP27B1 correlates with the increased aggressiveness of ovarian carcinomas

    PubMed Central

    BROŻYNA, ANNA A.; JÓŹWICKI, WOJCIECH; JOCHYMSKI, CEZARY; SLOMINSKI, ANDRZEJ T.

    2015-01-01

    CYP27B1 hydroxylates 25-hydroxyvitamin D3 in position C1α into biologically active 1,25-dihydroxyvitamin D3, calcitriol. CYP27B1 is expressed in normal tissues and tumors. Since calcitriol indicates anticancer activities and CYP27B1 expression can be deregulated during malignant progression, we analyzed its expression in ovarian cancers in relation to pathomorphological features of tumors and overall survival (OS). Expression of CYP27B1 was evaluated in 61 ovarian tumors, 18 metastases and 10 normal ovaries. Normal ovarian epithelium showed the highest levels CYP27B1 with a significant decrease in its expression in ovarian cancers. Both poorly differentiated primary tumors and metastases showed the lowest level of CYP27B1 expression, while non-metastasizing tumors showed a higher CYP27B1 level than tumors that developed metastases. The expression of CYP27B1 was positively correlated with a lower proliferation rate, lower dynamism of tumor growth and tumor infiltrating lymphocyte response. Furthermore, CYP27B1 expression was negatively correlated with tumor cell modeling of their microenvironment. CYP27B1 expression was also associated with longer OS time. In summary, our results suggest that local expression of CYP27B1 in ovarian tumor cells can modify their behavior and promote a less aggressive phenotype by affecting local concentrations of active of vitamin D levels within the tumor microenvironment. PMID:25501638

  12. Brief Report: Interpretation of Facial Expressions, Postures, and Gestures in Children with a Pervasive Developmental Disorder not Otherwise Specified.

    ERIC Educational Resources Information Center

    Serra, M.; Jackson, A. E.; van Geert, P. L. C.; Minderaa, R. B.

    1998-01-01

    A Dutch study failed to find differences in the ability of 31 normally intelligent children (ages 6-12) with pervasive developmental disorder not otherwise specified and matched controls to recognize and label emotional states in various nonverbal expressive modalities, such as facial expressions, bodily postures, and gestures. (CR)

  13. Mixed lineage kinase 3 is required for matrix metalloproteinase expression and invasion in ovarian cancer cells

    SciTech Connect

    Zhan, Yu; Abi Saab, Widian F.; Modi, Nidhi; Stewart, Amanda M.; Liu, Jinsong; Chadee, Deborah N.

    2012-08-15

    Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates MAPK signaling pathways and regulates cellular responses such as proliferation, migration and apoptosis. Here we report high levels of total and phospho-MLK3 in ovarian cancer cell lines in comparison to immortalized nontumorigenic ovarian epithelial cell lines. Using small interfering RNA (siRNA)-mediated gene silencing, we determined that MLK3 is required for the invasion of SKOV3 and HEY1B ovarian cancer cells. Furthermore, mlk3 silencing substantially reduced matrix metalloproteinase (MMP)-1, -2, -9 and -12 gene expression and MMP-2 and -9 activities in SKOV3 and HEY1B ovarian cancer cells. MMP-1, -2, -9 and-12 expression, and MLK3-induced activation of MMP-2 and MMP-9 requires both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activities. In addition, inhibition of activator protein-1 (AP-1) reduced MMP-1, MMP-9 and MMP-12 gene expression. Collectively, these findings establish MLK3 as an important regulator of MMP expression and invasion in ovarian cancer cells. -- Highlights: Black-Right-Pointing-Pointer Ovarian cancer cell lines have high levels of total and phosphorylated MLK3. Black-Right-Pointing-Pointer MLK3 is required for MMP expression and activity in ovarian cancer cells. Black-Right-Pointing-Pointer MLK3 is required for invasion of SKOV3 and HEY1B ovarian cancer cells. Black-Right-Pointing-Pointer MLK3-dependent regulation of MMP-2 and MMP-9 activities requires ERK and JNK.

  14. Association of Hormone Receptor Expression with Survival in Ovarian Endometrioid Carcinoma: Biological Validation and Clinical Implications

    PubMed Central

    Rambau, Peter; Kelemen, Linda E.; Steed, Helen; Quan, May Lynn; Ghatage, Prafull; Köbel, Martin

    2017-01-01

    This paper aims to validate whether hormone receptor expression is associated with longer survival among women diagnosed with ovarian endometrioid carcinoma (EC), and whether it identifies patients with stage IC/II tumors with excellent outcome that could be spared from toxic chemotherapy. Expression of estrogen receptor (ER) and progesterone receptor (PR) was assessed on 182 EC samples represented on tissue microarrays using the Alberta Ovarian Tumor Type (AOVT) cohort. Statistical analyses were performed to test for associations with ovarian cancer specific survival. ER or PR expression was present in 87.3% and 86.7% of cases, respectively, with co-expression present in 83.0%. Expression of each of the hormonal receptors was significantly higher in low-grade tumors and tumors with squamous differentiation. Expression of ER (Hazard Ratio (HR) = 0.18, 95% confidence interval 0.08–0.42, p = 0.0002) and of PR (HR = 0.22, 95% confidence interval 0.10–0.53, p = 0.0011) were significantly associated with longer ovarian cancer specific survival adjusted for age, grade, treatment center, stage, and residual disease. However, the five-year ovarian cancer specific survival among women with ER positive stage IC/II EC was 89.0% (standard error 3.3%) and for PR positive tumors 89.9% (standard error 3.2%), robustly below the 95% threshold where adjuvant therapy could be avoided. We validated the association of hormone receptor expression with ovarian cancer specific survival independent of standard predictors in an independent sample set of EC. The high ER/PR co-expression frequency and the survival difference support further testing of the efficacy of hormonal therapy in hormone receptor-positive ovarian EC. The clinical utility to identify a group of women diagnosed with EC at stage IC/II that could be spared from adjuvant therapy is limited. PMID:28264438

  15. Distinct cholesterogenic and lipidogenic gene expression patterns in ovarian cancer - a new pool of biomarkers

    PubMed Central

    Pampalakis, Georgios; Politi, Angeliki-Louiza; Papanastasiou, Anastasios; Sotiropoulou, Georgia

    2015-01-01

    Cancer cells display different metabolic requirements compared to nonmalignant cells imposed by their need for rapid proliferation. Alterations in cellular metabolic pathways of lipid and cholesterol synthesis have been linked to tumorigenesis and cancer progression but have not been exploited in clinical diagnosis. Here, the expression of genes related to cholesterol/lipid metabolism was measured with semiquantitative and real-time RT-PCR in RNA isolated from normal, benign and cancer ovarian tissues. We found that both SREBF2 and its target gene DHCR7 are downregulated in ovarian cancer tissues. On the contrary, SREBF1c and its target SCD1 were upregulated. The steroidogenesis regulator PDE8B was found downregulated. Oncomine analysis supported these findings, and further revealed that in ovarian cancers, the SREBF1-regulated lipidogenic pathway is activated while the SREBF2-regulated cholesterogenic pathway is repressed based on expression profiles of HMGCR and DHCR7. In conclusion, we show that ovarian cancer cells display distinct lipidogenic and cholesterogenic gene expression profiles with potential applications in the development of new biomarkers and/or treatment of ovarian cancer. Reduced cholesterol and enhanced lipid synthesis and SCD1 expression may provide an explanation for the previously reported increased membrane fluidity of ovarian cancer cells, a finding that merits further investigation. PMID:26807200

  16. BCL6 mRNA Expression Level in Invasive Duct Carcinoma not otherwise Specified

    PubMed Central

    Badr, Eman; Masoud, Eman; Eldien, Marwa Serag

    2016-01-01

    Introduction B-Cell Lymphoma 6 (BCL6) has an oncogenic role in tumourigenesis of various malignancies. It represses genes involved in terminal differentiation and plays complementary role with Signal Transducer and Activator of Transcription 3 (STAT3) in triple-negative breast cancer cellular function. Aim To evaluate the expression of BCL6 in cancer breast and determine its correlation with the clinico-pathological features including the molecular subtype of breast carcinoma. Materials and Methods This prospective case control study was carried out on 150 patients, divided into 100 cases of invasive duct carcinoma not otherwise specified and 50 benign breast lesions including fibroadenoma and fibrocystic disease. Fresh tissues were excised, which were then subjected to RNA extraction. The BCL6 mRNA level was assessed using real-time reverse transcription Polymerase Chain Reaction (PCR). Results There was a significant higher levels of BCL6 mRNA in malignant cases compared to benign ones (p<0.001). The level of BCL6 mRNA was higher in cases showing advanced tumor stage (p<0.04), triple negative subtype and associated in situ component (p<0.001) compared to cases with an early stage, luminal or Her 2-neu positive subtypes and those lacking in situ component. Conclusion BCL6 is up-regulated in breast cancer and is associated with poor prognostic features such as advanced stage and triple negative molecular subtype. BCL6 inhibitors might be considered as targeted therapy for breast cancer. PMID:28208987

  17. Expression of CD44v6 and Its Association with Prognosis in Epithelial Ovarian Carcinomas.

    PubMed

    Zhou, Dang-Xia; Liu, Yun-Xia; Xue, Ya-Hong

    2012-01-01

    The aim of this study was to evaluate CD44v6 protein expression and its prognostic value of CD44v6 in ovarian carcinoma. The expression of CD44v6 was analyzed in 62 patients with ovarian carcinoma by immunohistochemical method. The data obtained were analyzed by univariate and multivariate analyses. The present study clearly demonstrates that tumor tissues from 41 (66.1%) patients showed positive expression with CD44v6. The expression of CD44v6 was significantly correlated with histological type, FIGO stage and histological grade of ovarian carcinomas. Concerning the prognosis, the survival period of patients with CD44v6 positive was shorter than that of patients with CD44v6 negative (36.6% versus 66.7%, 5-year survival, P < 0.05). Univariate analysis showed that CD44v6 expression, histological type, FIGO stage and histological grade were associated with 5-year survival, and CD44v6 expression was associated with histological type, FIGO stage and histological grade and 5-year survival. In multivariate analysis, using the COX-regression model, CD44v6 expression was important prognostic factor. In conclusion, these results suggest that CD44v6 may be related to histological type, FIGO stage and histological grade of ovarian carcinomas, and CD44v6 may be an important molecular marker for poor prognosis in ovarian carcinomas.

  18. Stromal p16 expression is significantly increased in malignant ovarian neoplasms

    PubMed Central

    Yoon, Nara; Yoon, Gun; Park, Cheol Keun; Kim, Hyun-Soo

    2016-01-01

    Alterations in p16 protein expression have been reported to be associated with tumor development and progression. However, p16 expression status in the peritumoral stroma has been rarely investigated. We investigated the stromal p16 expression in ovarian neoplasms using immunohistochemistry, and differences in the expression status depending on the degree of malignancy and histological type were analyzed. This study included 24, 21, and 46 cases of benign, borderline, and malignant ovarian lesions, respectively, of which 29, 25, and 32 cases were serous, mucinous, and endometriosis-associated lesions. Most benign lesions showed negative or weak expression, whereas borderline lesions showed focal, moderate expression. Malignant lesions showed markedly elevated stromal p16 expression compared with benign or borderline lesions. There were significant differences in stromal p16 expression between benign and borderline lesions (P < 0.001) and between borderline and malignant lesions (P < 0.001). These significances remained when analysis was performed based on lesion classification as serous, mucinous, and endometriosis-associated. In contrast, differences in stromal p16 expression among the histological types were not significant. Stromal p16 expression in ovarian neoplasms was absent or weak in benign and focal, moderate in borderline lesions, whereas malignant lesions exhibited diffuse, moderate-to-strong p16 immunoreactivity. Our observations suggest that stromal p16 expression is involved in the development of ovarian carcinoma. Further studies are necessary to confirm our preliminary results. PMID:27572321

  19. Stromal p16 expression is significantly increased in malignant ovarian neoplasms.

    PubMed

    Yoon, Nara; Yoon, Gun; Park, Cheol Keun; Kim, Hyun-Soo

    2016-10-04

    Alterations in p16 protein expression have been reported to be associated with tumor development and progression. However, p16 expression status in the peritumoral stroma has been rarely investigated. We investigated the stromal p16 expression in ovarian neoplasms using immunohistochemistry, and differences in the expression status depending on the degree of malignancy and histological type were analyzed. This study included 24, 21, and 46 cases of benign, borderline, and malignant ovarian lesions, respectively, of which 29, 25, and 32 cases were serous, mucinous, and endometriosis-associated lesions. Most benign lesions showed negative or weak expression, whereas borderline lesions showed focal, moderate expression. Malignant lesions showed markedly elevated stromal p16 expression compared with benign or borderline lesions. There were significant differences in stromal p16 expression between benign and borderline lesions (P < 0.001) and between borderline and malignant lesions (P < 0.001). These significances remained when analysis was performed based on lesion classification as serous, mucinous, and endometriosis-associated. In contrast, differences in stromal p16 expression among the histological types were not significant. Stromal p16 expression in ovarian neoplasms was absent or weak in benign and focal, moderate in borderline lesions, whereas malignant lesions exhibited diffuse, moderate-to-strong p16 immunoreactivity. Our observations suggest that stromal p16 expression is involved in the development of ovarian carcinoma. Further studies are necessary to confirm our preliminary results.

  20. GALNT6 expression enhances aggressive phenotypes of ovarian cancer cells by regulating EGFR activity.

    PubMed

    Lin, Tzu-Chi; Chen, Syue-Ting; Huang, Min-Chuan; Huang, John; Hsu, Chia-Lang; Juan, Hsueh-Fen; Lin, Ho-Hsiung; Chen, Chi-Hau

    2017-03-28

    Ovarian cancer is the most lethal of the gynecologic malignancies. N-acetylgalactosaminyltransferase 6 (GALNT6), an enzyme that mediates the initial step of mucin type-O glycosylation, has been reported to regulate mammary carcinogenesis. However, the expression and role of GALNT6 in ovarian cancer are still unclear. Here we showed that high GALNT6 expression correlates with increased recurrence, lymph node metastasis, and chemoresistance in ovarian endometrioid and clear cell carcinomas; and higher GALNT6 levels are significantly associated with poorer patient survivals. GALNT6 knockdown with two independent siRNAs significantly suppressed viability, migration, and invasion of ovarian cancer cells. Using phospho-RTK array and Western blot analyses, we identified EGFR as a critical target of GALNT6. GALNT6 knockdown decreased phosphorylation of EGFR, whereas GALNT6 overexpression increased the phosphorylation. Lectin pull-down assays with Vicia villosa agglutinin (VVA) indicated that GALNT6 was able to modify O-glycans on EGFR. Moreover, the GALNT6-enhanced invasive behavior was significantly reversed by erlotinib, an EGFR inhibitor. Our results suggest that GALNT6 expression is associated with poor prognosis of ovarian cancer and enhances the aggressive behavior of ovarian cancer cells by regulating EGFR activity.

  1. Identification and validation of differentially expressed proteins in epithelial ovarian cancers using quantitative proteomics

    PubMed Central

    Cao, Guangming; Liu, Chongdong; Xu, Jiatong; Deng, Haiteng; Zhang, Zhenyu

    2016-01-01

    Ovarian cancer is the most lethal gynecological malignant tumor because of its high recurrence rate. In the present work, in order to find new therapeutic targets, we identified 8480 proteins in thirteen pairs of ovarian cancer tissues and normal ovary tissues through quantitative proteomics. 498 proteins were found to be differentially expressed in ovarian cancer, which involved in various cellular processes, including metabolism, response to stimulus and biosynthetic process. The expression levels of chloride intracellular channel protein 1 (CLIC1) and lectin galactoside-binding soluble 3 binding protein (LGALS3BP) in epithelial ovarian cancer tissues were significantly higher than those in normal ovary tissues as confirmed by western blotting and immunohistochemistry. The knockdown of CLIC1 in A2780 cell line downregulated expression of CTPS1, leading to the decrease of CTP and an arrest of cell cycle G1 phase, which results into a slower proliferation. CLIC1-knockdown can also slow down the tumor growth in vivo. Besides, CLIC1-knockdown cells showed an increased sensitivity to hydrogen peroxide and cisplatin, suggesting that CLIC1 was involved in regulation of redox and drug resistance in ovarian cancer cells. These results indicate CLIC1 promotes tumorgenesis, and is a potential therapeutic target in epithelial ovarian cancer treatment. PMID:27825122

  2. B7-H4 expression in ovarian serous carcinoma: a study of 306 cases.

    PubMed

    Liang, Li; Jiang, Yi; Chen, Jun-Song; Niu, Na; Piao, Jin; Ning, Jing; Zu, Youli; Zhang, Jing; Liu, Jinsong

    2016-11-01

    The B7 family of immune costimulatory ligands is a group of cell surface proteins that bind to the surface receptors of lymphocytes to fine-tune immune responses. The aberrant expression of these proteins plays a key role in tumor immune evasion. Immunotherapy targeting certain B7 family members, including programmed death ligand 1, has proven quite effective in suppressing tumor growth. However, why such therapy works in only a subgroup of tumors is unclear. We hypothesized that other B7 family members, either alone or in concert with programmed death ligand 1, play a crucial role in tumor pathogenesis and progression. We therefore examined the expression of a newly discovered B7 family member, B7-H4, in 306 cases of ovarian serous carcinoma by immunohistochemistry. We found that 91% (267/293) of the high-grade ovarian serous carcinomas and 69% (9/13) of the low-grade ovarian serous carcinomas expressed B7-H4. The difference between B7-H4 expression in high-grade and low-grade ovarian serous carcinoma was statistically significant (P=.002). Moreover, B7-H4 protein expression in high-grade serous carcinoma was associated with tumor stage (P<.01) but not overall survival or disease-free survival. In conclusion, B7-H4 is frequently expressed in ovarian serous carcinomas, especially high-grade serous carcinomas, and may represent a novel immunotherapeutic target in this cancer.

  3. FOXL2 and BMP2 Act Cooperatively to Regulate Follistatin Gene Expression during Ovarian Development

    PubMed Central

    Kashimada, Kenichi; Pelosi, Emanuele; Chen, Huijun; Schlessinger, David; Wilhelm, Dagmar; Koopman, Peter

    2011-01-01

    Follistatin is a secreted glycoprotein required for female sex determination and early ovarian development, but the precise mechanisms regulating follistatin (Fst) gene expression are not known. Here, we investigate the roles of bone morphogenetic protein 2 (BMP2) and forkhead-domain transcription factor L2 (FOXL2) in the regulation of Fst expression in the developing mouse ovary. Bmp2 and Fst showed similar temporal profiles of mRNA expression, whereas FOXL2 protein and Fst mRNA were coexpressed in the same ovarian cells. In a cell culture model, both FOXL2 and BMP2 up-regulated Fst expression. In ex vivo mouse fetal gonad culture, exogenous BMP2 increased Fst expression, but this effect was counteracted by the BMP antagonist Noggin. Moreover, in Foxl2-null mice, Fst expression was reduced throughout fetal ovarian development, and Bmp2 expression was also reduced. Our data support a model in which FOXL2 and BMP2 cooperate to ensure correct expression of Fst in the developing ovary. Further, Wnt4-knockout mice showed reduced expression of Fst limited to early ovarian development, suggesting a role for WNT4 in the initiation, but not the maintenance, of Fst expression. PMID:21084449

  4. Human chorionic gonadotropin β subunit affects the expression of apoptosis-regulating factors in ovarian cancer.

    PubMed

    Szczerba, Anna; Śliwa, Aleksandra; Kubiczak, Marta; Nowak-Markwitz, Ewa; Jankowska, Anna

    2016-01-01

    Expression of human chorionic gonadotropin, especially its free β subunit (hCGβ) were shown to play an important role in cancer growth, invasion and metastasis. It is postulated that hCGβ is one of the factors determining cancer cell survival. To test this hypothesis, we applied two models: an in vitro model of ovarian cancer using OVCAR-3 and SKOV-3 cell lines transfected with the CGB5 gene and an in vivo model of ovarian cancer tissues. The material was tested against changes in expression level of genes encoding factors involved in apoptosis: BCL2, BAX and BIRC5. Overexpression of hCGβ was found to cause a decrease in expression of the analyzed genes in the transfected cells compared with the control cells. In ovarian cancer tissues, high expression of CGB was related to significantly lower BCL2 but higher BAX and BIRC5 transcript levels. Moreover, a low BCL2/BAX ratio, characteristic of advanced stages of ovarian cancer, was revealed. Since tumors were discriminated by a significantly lower LHCGR level than the level noted in healthy fallopian tubes and ovaries, it may be stated that the effect of hCGβ on changes in the expression of apoptosis-regulating agents observed in ovarian cancer is LHCGR-independent. The results of the study suggest that the biological effects evoked by hCGβ are related to apoptosis suppression.

  5. Expression of SDF-1 and CXCR4 transcript variants and CXCR7 in epithelial ovarian cancer.

    PubMed

    Jaszczynska-Nowinka, Karolina; Rucinski, Marcin; Ziolkowska, Agnieszka; Markowska, Anna; Malendowicz, Ludwik K

    2014-05-01

    Chemokine stromal cell-derived factor-1 (SDF-1) and its receptors, CXCR4 and CXCR7, have been implicated in epithelial ovarian cancer progression and metastasis. However, limited data are available on the expression levels of SDF-1 and CXCR4 variants and CXCR7 in human epithelial ovarian cancer. The present study aimed to characterize the expression pattern and levels of SDF-1, CXCR4 and CXCR7 in normal human ovaries and epithelial ovarian cancer. The expression of SDF-1 and CXCR4 transcript variants and CXCR7 was determined by quantitative polymerase chain reaction (qPCR). Plasma SDF-1α levels were determined by commercially available EIA kits and cancer antigen 125 (CA 125) levels were quantified by automated microparticle enzyme immunosorbent assay. High expression levels of SDF-1 transcript variant 1 were identified in ovarian cancer and control ovaries. By contrast, in both groups the expression levels of SDF-1 transcript variants 3 and 4 were extremely low. Furthermore, SDF-1 variant 1 levels were notably higher in epithelial ovarian cancer than in control ovaries, while data for the remaining transcripts were similar in both groups. CXCR4 transcript variant 2 and CXCR7 expression levels in normal and neoplastic ovaries were similar. In both groups, CXCR4 transcript variant 2 was not detected. Plasma SDF-1α levels were notably higher in females with epithelial ovarian cancer than in the control ovaries. Elevated levels of blood SDF-1α were found prior to surgery, 6 days after surgery and following completion of the first chemotherapy course. These increases were independent of the type of epithelial ovarian cancer. Our results suggest that the expression of SDF-1 and the genes controlling alternative splicing are elevated in epithelial ovarian cancer, leading to an increased formation of SDF-1 variant 1. Elevated plasma SDF-1α levels in epithelial ovarian cancer patients are not associated with the presence of tumors and/or metastases, however reflect a

  6. Paclitaxel sensitivity in relation to ABCB1 expression, efflux and single nucleotide polymorphisms in ovarian cancer.

    PubMed

    Gao, Bo; Russell, Amanda; Beesley, Jonathan; Chen, Xiao Qing; Healey, Sue; Henderson, Michelle; Wong, Mark; Emmanuel, Catherine; Galletta, Laura; Johnatty, Sharon E; Bowtell, David; Haber, Michelle; Norris, Murray; Harnett, Paul; Chenevix-Trench, Georgia; Balleine, Rosemary L; deFazio, Anna

    2014-05-09

    ABCB1 (adenosine triphosphate-binding cassette transporter B1) mediates cellular elimination of many chemotherapeutic agents including paclitaxel, which is commonly used to treat ovarian cancer. A significant association between common single nucleotide polymorphisms (SNPs) in ABCB1 and progression-free survival has been reported in patients with ovarian cancer. Variable paclitaxel clearance due to genotype specific differences in ABCB1 activity in cancer cells and/or normal tissues may underlie the association. Using cell-based models, we evaluated the correlations between ABCB1 expression, polymorphisms, transporter activity and paclitaxel sensitivity in ovarian cancer (n = 10) and lymphoblastoid (n = 19) cell lines. Close associations between ABCB1 expression, transporter function and paclitaxel sensitivity were found in lymphoblastoid cell lines, although we could not demonstrate an association with common SNPs. In ovarian cancer cell lines, ABCB1 expression was low and the association between expression and function was lost. These results suggest that ABCB1 related survival difference in ovarian cancer patients is more likely to be due to differential whole body paclitaxel clearance mediated by normal cells rather than a direct effect on cancer cells.

  7. Expression of leptin receptor in endometrial biopsies of endometrial and ovarian cancer patients

    PubMed Central

    MÉNDEZ-LÓPEZ, LUIS FERNANDO; DÁVILA-RODRÍGUEZ, MARTHA IMELDA; ZAVALA-POMPA, ANGEL; TORRES-LÓPEZ, ERNESTO; GONZÁLEZ-MARTÍNEZ, BLANCA EDELIA; LÓPEZ-CABANILLAS-LOMELÍ, MANUEL

    2013-01-01

    The adipokine leptin plays a critical role in the regulation of reproductive function and there has been growing interest in its potential role in the development of cancers in which obesity is an established risk factor. Serum leptin levels were found to be higher in patients diagnosed with endometrial and ovarian cancer compared to those observed in healthy individuals. This study was conducted to determine the expression of the leptin receptor (Ob-R) in endometrial biopsies of patients diagnosed with endometrial and ovarian cancer. In this preliminary study, immunohistochemistry (IHC) and the color deconvolution method were used to assess the expression levels of the Ob-R protein in three groups of endometrial tissue: one from patients diagnosed with endometrioid endometrial carcinoma, one from patients diagnosed with ovarian cancer and one from individuals without any diagnosed gynecologic disease (control group). Our results demonstrated that the highest expression of Ob-R protein in endometrial biopsies was detected in the ovarian cancer group (P=0.000). This finding suggests that changes in Ob-R expression may be assessed through the measurement of the optical density of endometrial biopsies and may become a useful tool in preventive screening, particularly for ovarian cancer. PMID:24649005

  8. The prognostic significance of specific HOX gene expression patterns in ovarian cancer.

    PubMed

    Kelly, Zoe; Moller-Levet, Carla; McGrath, Sophie; Butler-Manuel, Simon; Kavitha Madhuri, Thumuluru; Kierzek, Andrzej M; Pandha, Hardev; Morgan, Richard; Michael, Agnieszka

    2016-10-01

    HOX genes are vital for all aspects of mammalian growth and differentiation, and their dysregulated expression is related to ovarian carcinogenesis. The aim of the current study was to establish the prognostic value of HOX dysregulation as well as its role in platinum resistance. The potential to target HOX proteins through the HOX/PBX interaction was also explored in the context of platinum resistance. HOX gene expression was determined in ovarian cancer cell lines and primary EOCs by QPCR, and compared to expression in normal ovarian epithelium and fallopian tube tissue samples. Statistical analysis included one-way ANOVA and t-tests, using statistical software R and GraphPad. The analysis identified 36 of the 39 HOX genes as being overexpressed in high grade serous EOC compared to normal tissue. We detected a molecular HOX gene-signature that predicted poor outcome. Overexpression of HOXB4 and HOXB9 was identified in high grade serous cell lines after platinum resistance developed. Targeting the HOX/PBX dimer with the HXR9 peptide enhanced the cytotoxicity of cisplatin in platinum-resistant ovarian cancer. In conclusion, this study has shown the HOX genes are highly dysregulated in ovarian cancer with high expression of HOXA13, B6, C13, D1 and D13 being predictive of poor clinical outcome. Targeting the HOX/PBX dimer in platinum-resistant cancer represents a potentially new therapeutic option that should be further developed and tested in clinical trials.

  9. Amphiregulin induces human ovarian cancer cell invasion by down-regulating E-cadherin expression.

    PubMed

    So, Wai-Kin; Fan, Qianlan; Lau, Man-Tat; Qiu, Xin; Cheng, Jung-Chien; Leung, Peter C K

    2014-11-03

    Aberrant epidermal growth factor receptor (EGFR) activation is associated with ovarian cancer progression. In this study, we report that the EGFR ligand amphiregulin (AREG) stimulates cell invasion and down-regulates E-cadherin expression in two human ovarian cancer cell lines, SKOV3 and OVCAR5. In addition, AREG increases the expression of transcriptional repressors of E-cadherin including SNAIL, SLUG and ZEB1. siRNA targeting SNAIL or SLUG abolishes AREG-induced cell invasion. Moreover, ERK1/2 and AKT pathways are involved in AREG-induced E-cadherin down-regulation and cell invasion. Finally, we show that three EGFR ligands, AREG, epidermal growth factor (EGF) and transforming growth factor-α (TGF-α), exhibit comparable effects in down-regulating E-cadherin and promoting cell invasion. This study demonstrates that AREG induces ovarian cancer cell invasion by down-regulating E-cadherin expression.

  10. Expression of Siglec-11 by human and chimpanzee ovarian stromal cells, with uniquely human ligands: implications for human ovarian physiology and pathology.

    PubMed

    Wang, Xiaoxia; Chow, Renee; Deng, Liwen; Anderson, Dan; Weidner, Noel; Godwin, Andrew K; Bewtra, Chanda; Zlotnik, Albert; Bui, Jack; Varki, Ajit; Varki, Nissi

    2011-08-01

    Siglecs (Sialic acid-binding Immunoglobulin Superfamily Lectins) are cell surface signaling receptors of the I-type lectin group that recognize sialic acid-bearing glycans. CD33-related-Siglecs are a subset with expression primarily in cells of hematopoietic origin and functional relevance to immune reactions. Earlier we reported a human-specific gene conversion event that markedly changed the coding region for the extracellular domain of Siglec-11, associated with human-specific expression in microglia (Hayakawa T, Angata T, Lewis AL, Mikkelsen TS, Varki NM, Varki A. 2005. A human-specific gene in microglia. Science. 309:1693). Analyzing human gene microarrays to define new patterns of expression, we observed high levels of SIGLEC11 transcript in the ovary and adrenal cortex. Thus, we examined human and chimpanzee tissues using a well-characterized anti-Siglec-11 mouse monoclonal antibody. Although adrenal expression was variable and confined to infiltrating macrophages in capillaries, ovarian expression of Siglec-11 in both humans and chimpanzees was on fibroblasts, the first example of Siglec expression on mesenchyme-derived stromal cells. Cytokines from such ovarian stromal fibroblasts play important roles in follicle development and ovulation. Stable transfection of SIGLEC11 into a primary human ovarian stromal fibroblast cell line altered the secretion of growth-regulated oncogene α, interleukin (IL)-10, IL-7, transforming growth factor β1 and tumor necrosis factor-α, cytokines involved in ovarian physiology. Probing for Siglec-11 ligands revealed distinct and strong mast cell expression in human ovaries, contrasting to diffuse stromal ligands in chimpanzee ovaries. Interestingly, there was a trend of increased Siglec-11 expression in post-menopausal ovaries compared with pre-menopausal ones. Siglec-11 expression was also found on human ovarian stromal tumors and in polycystic ovarian syndrome, a human-specific disease. These results indicate potential

  11. Expression of Siglec-11 by human and chimpanzee ovarian stromal cells, with uniquely human ligands: implications for human ovarian physiology and pathology

    PubMed Central

    Wang, Xiaoxia; Chow, Renee; Deng, Liwen; Anderson, Dan; Weidner, Noel; Godwin, Andrew K; Bewtra, Chanda; Zlotnik, Albert; Bui, Jack; Varki, Ajit; Varki, Nissi

    2011-01-01

    Siglecs (Sialic acid-binding Immunoglobulin Superfamily Lectins) are cell surface signaling receptors of the I-type lectin group that recognize sialic acid-bearing glycans. CD33-related-Siglecs are a subset with expression primarily in cells of hematopoietic origin and functional relevance to immune reactions. Earlier we reported a human-specific gene conversion event that markedly changed the coding region for the extracellular domain of Siglec-11, associated with human-specific expression in microglia (Hayakawa T, Angata T, Lewis AL, Mikkelsen TS, Varki NM, Varki A. 2005. A human-specific gene in microglia. Science. 309:1693). Analyzing human gene microarrays to define new patterns of expression, we observed high levels of SIGLEC11 transcript in the ovary and adrenal cortex. Thus, we examined human and chimpanzee tissues using a well-characterized anti-Siglec-11 mouse monoclonal antibody. Although adrenal expression was variable and confined to infiltrating macrophages in capillaries, ovarian expression of Siglec-11 in both humans and chimpanzees was on fibroblasts, the first example of Siglec expression on mesenchyme-derived stromal cells. Cytokines from such ovarian stromal fibroblasts play important roles in follicle development and ovulation. Stable transfection of SIGLEC11 into a primary human ovarian stromal fibroblast cell line altered the secretion of growth-regulated oncogene α, interleukin (IL)-10, IL-7, transforming growth factor β1 and tumor necrosis factor-α, cytokines involved in ovarian physiology. Probing for Siglec-11 ligands revealed distinct and strong mast cell expression in human ovaries, contrasting to diffuse stromal ligands in chimpanzee ovaries. Interestingly, there was a trend of increased Siglec-11 expression in post-menopausal ovaries compared with pre-menopausal ones. Siglec-11 expression was also found on human ovarian stromal tumors and in polycystic ovarian syndrome, a human-specific disease. These results indicate potential

  12. Expression of Leukocyte Inhibitory Immunoglobulin-like Transcript 3 Receptors by Ovarian Tumors in Laying Hen Model of Spontaneous Ovarian Cancer.

    PubMed

    Khan, Mohammad Faisal; Bahr, Janice M; Yellapa, Aparna; Bitterman, Pincas; Abramowicz, Jacques S; Edassery, Seby L; Basu, Sanjib; Rotmensch, Jacob; Barua, Animesh

    2012-04-01

    Attempts to enhance a patient's immune response and ameliorate the poor prognosis of ovarian cancer (OVCA) have largely been unsuccessful owing to the suppressive tumor microenvironment. Leukocyte immunoglobulin-like transcript 3 (ILT3) inhibitory receptors have been implicated in immunosuppression in several malignancies. The expression and role of ILT3 in the progression of ovarian tumors are unknown. This study examined the expression and association of ILT3 in ovarian tumors in laying hens, a spontaneous preclinical model of human OVCA. White Leghorn laying hens were selected by transvaginal ultrasound scanning. Serum and normal ovaries or ovarian tumors were collected. The presence of tumors and the expression of ILT3 were examined by routine histology, immunohistochemistry, Western blot analysis, and reverse transcription-polymerase chain reaction. In addition to stromal immune cell-like cells, the epithelium of the ovarian tumors also expressed ILT3 with significantly high intensity than normal ovaries. Among different subtypes of ovarian carcinomas, serous OVCA showed the highest ILT3 staining intensity, whereas endometrioid OVCA had the lowest intensity. Similar to humans, an immunoreactive protein band of approximately 55 kDa for ILT3 was detected in the ovarian tumors in hens. The patterns of ILT3 protein and messenger RNA expression by ovarian tumors in different subtypes and stages were similar to those of immunohistochemical staining. The results of this study suggest that laying hens may be useful to generate information on ILT3-associated immunosuppression in OVCA. This animal model also offers the opportunity to develop and test anti-ILT3 immunotherapy to enhance antitumor immunity against OVCA in humans.

  13. BCAT1 expression associates with ovarian cancer progression: possible implications in altered disease metabolism

    PubMed Central

    Wang, Zhi-Qiang; Faddaoui, Adnen; Bachvarova, Magdalena; Plante, Marie; Gregoire, Jean; Renaud, Marie-Claude; Sebastianelli, Alexandra; Guillemette, Chantal; Gobeil, Stéphane; Macdonald, Elizabeth; Vanderhyden, Barbara; Bachvarov, Dimcho

    2015-01-01

    Previously, we have identified the branched chain amino-acid transaminase 1 (BCAT1) gene as notably hypomethylated in low-malignant potential (LMP) and high-grade (HG) serous epithelial ovarian tumors, compared to normal ovarian tissues. Here we show that BCAT1 is strongly overexpressed in both LMP and HG serous epithelial ovarian tumors, which probably correlates with its hypomethylated status. Knockdown of the BCAT1 expression in epithelial ovarian cancer (EOC) cells led to sharp decrease of cell proliferation, migration and invasion and inhibited cell cycle progression. BCAT1 silencing was associated with the suppression of numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, and the induction of some tumor suppressor genes (TSGs). Moreover, BCAT1 suppression resulted in downregulation of numerous genes implicated in lipid production and protein synthesis, suggesting its important role in controlling EOC metabolism. Further metabolomic analyses were indicative for significant depletion of most amino acids and different phospho- and sphingolipids following BCAT1 knockdown. Finally, BCAT1 suppression led to significantly prolonged survival time in xenograft model of advanced peritoneal EOC. Taken together, our findings provide new insights about the functional role of BCAT1 in ovarian carcinogenesis and identify this transaminase as a novel EOC biomarker and putative EOC therapeutic target. PMID:26372729

  14. BCAT1 expression associates with ovarian cancer progression: possible implications in altered disease metabolism.

    PubMed

    Wang, Zhi-Qiang; Faddaoui, Adnen; Bachvarova, Magdalena; Plante, Marie; Gregoire, Jean; Renaud, Marie-Claude; Sebastianelli, Alexandra; Guillemette, Chantal; Gobeil, Stéphane; Macdonald, Elizabeth; Vanderhyden, Barbara; Bachvarov, Dimcho

    2015-10-13

    Previously, we have identified the branched chain amino-acid transaminase 1 (BCAT1) gene as notably hypomethylated in low-malignant potential (LMP) and high-grade (HG) serous epithelial ovarian tumors, compared to normal ovarian tissues. Here we show that BCAT1 is strongly overexpressed in both LMP and HG serous epithelial ovarian tumors, which probably correlates with its hypomethylated status. Knockdown of the BCAT1 expression in epithelial ovarian cancer (EOC) cells led to sharp decrease of cell proliferation, migration and invasion and inhibited cell cycle progression. BCAT1 silencing was associated with the suppression of numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, and the induction of some tumor suppressor genes (TSGs). Moreover, BCAT1 suppression resulted in downregulation of numerous genes implicated in lipid production and protein synthesis, suggesting its important role in controlling EOC metabolism. Further metabolomic analyses were indicative for significant depletion of most amino acids and different phospho- and sphingolipids following BCAT1 knockdown. Finally, BCAT1 suppression led to significantly prolonged survival time in xenograft model of advanced peritoneal EOC. Taken together, our findings provide new insights about the functional role of BCAT1 in ovarian carcinogenesis and identify this transaminase as a novel EOC biomarker and putative EOC therapeutic target.

  15. Complexity of expression of the intermediate filaments of six new human ovarian carcinoma cell lines: new expression of cytokeratin 20.

    PubMed Central

    Yanagibashi, T.; Gorai, I.; Nakazawa, T.; Miyagi, E.; Hirahara, F.; Kitamura, H.; Minaguchi, H.

    1997-01-01

    Six permanent human ovarian carcinoma cell lines (OVISE, OVTOKO, OVMANA and OVSAYO from clear cell adenocarcinoma, and OVSAHO and OVKATE from serous papillary adenocarcinoma) were established from solid tumours. The cell lines have been in culture for 5-8 years, the passage number varying from 62 to 246. Immunohistochemical analysis has shown that five of the six cell lines express at least six cytokeratin (CK) polypeptides. OVISE and OVSAYO expressed CKs 6, 7, 8, 18, 19 and 15 and/or 16. OVTOKO was positive for CKs 7, 8, 18, 19 and 15 and/or 16. OVSAHO expressed CKs 6, 7, 8, 14, 18, 19 and 15 and/or 16. OVMANA expressed CKs 6, 7, 8, 18, 19, 20 and 15 and/or 16. OVKATE expressed CKs 6, 7, 8, 13, 17, 18, 19, 20 and 15 and/or 16. The expression of CK7, additional expression of vimentin, and clinical and histopathological findings enabled us to confirm that six cell lines had been established from primary ovarian cancers. Two of the six cell lines were positive for CK20, although CK20 was not expressed in the original tumours. The heterotransplanted tumours produced by CK20-positive cells also expressed CK20. This is the first report of ovarian carcinoma cell lines that express CK20 irrespective of their histological type. CK20 has been found in all colon carcinoma cell lines, but only in the mucinous type of ovarian tumours. These new ovarian carcinoma cell lines will therefore provide a relevant experimental system for elucidating the regulatory control mechanisms of intermediate filament expression. Images Figure 1 Figure 2 Figure 3 PMID:9328139

  16. Cytochrome P450 CYP1B1 over-expression in primary and metastatic ovarian cancer

    PubMed Central

    McFadyen, M C E; Cruickshank, M E; Miller, I D; McLeod, H L; Melvin, W T; Haites, N E; Parkin, D; Murray, G I

    2001-01-01

    Ovarian cancer is the most frequent cause of death from gynaecological malignancies world wide. Little improvement has been made in the long-term outcome of this disease, with the 5-year survival of patients only 30%. This poor prognosis is due to the late presentation of the disease and to the unpredictable response of ovarian cancer to chemotherapy. The cytochrome P450 enzymes are a superfamily of haemoproteins, known to be involved in the metabolic activation and/or detoxification of a number of anti-cancer drugs. CYP1B1 is a tumour-related form of cytochrome P450 which is over expressed in a wide variety of primary tumours of different histological type. The presence of CYP1B1 may be of importance in the modulation of these tumours to anti-cancer drugs. We have conducted a comprehensive immunohistochemical investigation, into the presence of cytochrome P450 CYP1B1 in primary and metastatic ovarian cancer. The key findings of this study are the increased expression of CYP1B1 in the majority of ovarian cancers investigated (92%), with a strong correlation demonstrated between CYP1B1 expression in both primary and metastatic ovarian cancer (P= 0.005 Spearman's rank correlation test). In contrast no detectable CYP1B1 was found in normal ovary. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11461084

  17. Cytochrome P450 CYP1B1 over-expression in primary and metastatic ovarian cancer.

    PubMed

    McFadyen, M C; Cruickshank, M E; Miller, I D; McLeod, H L; Melvin, W T; Haites, N E; Parkin, D; Murray, G I

    2001-07-20

    Ovarian cancer is the most frequent cause of death from gynaecological malignancies world wide. Little improvement has been made in the long-term outcome of this disease, with the 5-year survival of patients only 30%. This poor prognosis is due to the late presentation of the disease and to the unpredictable response of ovarian cancer to chemotherapy. The cytochrome P450 enzymes are a superfamily of haemoproteins, known to be involved in the metabolic activation and/or detoxification of a number of anti-cancer drugs. CYP1B1 is a tumour-related form of cytochrome P450 which is over expressed in a wide variety of primary tumours of different histological type. The presence of CYP1B1 may be of importance in the modulation of these tumours to anti-cancer drugs. We have conducted a comprehensive immunohistochemical investigation, into the presence of cytochrome P450 CYP1B1 in primary and metastatic ovarian cancer. The key findings of this study are the increased expression of CYP1B1 in the majority of ovarian cancers investigated (92%), with a strong correlation demonstrated between CYP1B1 expression in both primary and metastatic ovarian cancer (P = 0.005 Spearman's rank correlation test). In contrast no detectable CYP1B1 was found in normal ovary.

  18. CYP1B1 expression in ovarian cancer in the laying hen Gallus domesticus

    PubMed Central

    Zhuge, Yan; Lagman, Jo Ann J.; Ansenberger, Kristine; Mahon, Cassandra J.; Daikoku, Takiko; Dey, Sudhansu K.; Bahr, Janice M.; Hales, Dale B.

    2009-01-01

    Objectives Ovarian carcinoma is the most lethal gynecological malignancy. The genetic and molecular mechanisms that cause it still remain largely unknown. CYP1B1 is a cytochrome P450 enzyme that catalyzes the conversion of estrogens to genotoxic catechol estrogens which may cause DNA mutations and initiate ovarian epithelial cancer. Our objectives were to evaluate CYP1B1 expression, distribution and localization in the hen ovary and to determine if there is an increased CYP1B1 expression associated with, and possibly involved in the initiation of ovarian cancer. Methods Two groups of hens were used: 1. young (50 weeks of age; devoid of cancer) and 2. old (165 weeks of age; divided into two groups: age-matched normal and ovarian cancer). CYP1B1 mRNA and protein expression were analyzed in cancerous ovaries, ovaries of age-matched normal and/or young hens by quantitative real-time PCR (qRT-PCR), in situ hybridization (ISH) and immunohistochemistry (IHC). RNA was extracted from tissue preserved in RNAlater for qRT-PCR. Tissue frozen in liquid nitrogen was used for ISH. Tissue fixed in neutral buffered formalin was subjected to IHC. Results Higher expression of CYP1B1 mRNA was observed in cancerous ovaries as compared to ovaries of young and age-matched normal hens by qRT-PCR. ISH and IHC confirmed that the expression of CYP1B1 was much higher in ovarian tumors compared to ovaries of age-matched normal hens. CYP1B1 mRNA and protein were distributed extensively throughout the carcinoma, while primarily localized to the granulosa layer surrounding the follicle in age-matched normal hens. IHC also showed nuclear localization of CYP1B1. Highly expressed CYP1B1 was found in POF-3 from young and age-matched normal hens as compared to POF-1 and POF-2 by qRT-PCR. No significant difference was found in the expression of CYP1B1 between the distal (site of rupture) and the proximal (site of attachment to the ovary) of POF-1 from young and age-matched normal hens. Conclusions High

  19. Decreased expression of pyruvate dehydrogenase A1 predicts an unfavorable prognosis in ovarian carcinoma

    PubMed Central

    Li, Yaqing; Huang, Ruixia; Li, Xiaoli; Li, Xiaoran; Yu, Dandan; Zhang, Mingzhi; Wen, Jianguo; Goscinski, Mariusz Adam; Trope, Claes G; Nesland, Jahn M; Suo, Zhenhe

    2016-01-01

    Pyruvate dehydrogenase A1 (PDHA1) serves as a gate-keeper enzyme link between glycolysis and the mitochondrial citric acid cycle. The inhibition of PDHA1 in cancer cells can result in an increased Warburg effect and a more aggressive phenotype in cancer cells. This study was conducted to investigate the expression of PDHA1 in ovarian cancer and the correlation between PDHA1 expression and the prognosis of patients. The PDHA1 protein expression in 3 ovarian cancer cell lines (OVCAR-3, SKOV-3 and ES-2) and 248 surgically removed ovarian carcinoma samples was immunocytochemically examined. Statistical analyses were performed to evaluate the correlations between PDHA1 expression and the clinicopathological characteristics of the patients as well as the predictive value of PDHA1. The results showed the presence of variable expression of PDHA1 in the three ovarian cancer cell lines. Of the 248 ovarian cancer tissue specimens, 45 cases (18.1%) were negative in tumor cells for PDHA1, 162 cases (65.3%) displayed a low expression level, and 41 cases (16.5%) had a relatively high PDHA1 staining. The expression of PDHA1 was associated with the histological subtype (P=0.004) and FIGO stage (P=0.002). The median OS time in the PDHA1 negative group, low expression group and high expression group were 0.939 years, 1.443 years and 9.900 years, respectively. The median PFS time in the above three groups were 0.287 years, 0.586 years and 9.900 years, respectively. Furthermore, the high expression of PDHA1 in ovarian carcinoma cells was significantly associated with better OS and PFS by statistical analyses. Multivariate analyses showed that PDHA1 expression was also an independent prognostic factor for higher OS in ovarian cancer patients (HR=0.705, 95% CI 0.541-0.918, P=0.01). Our study indicated that the decreased expression of PDHA1 might be an independent prognostic factor in unfavorable outcomes. PMID:27725912

  20. Vasohibin-1 expression inhibits advancement of ovarian cancer producing various angiogenic factors.

    PubMed

    Takahashi, Yoshifumi; Saga, Yasushi; Koyanagi, Takahiro; Takei, Yuji; Machida, Shizuo; Taneichi, Akiyo; Mizukami, Hiroaki; Sato, Yasufumi; Matsubara, Shigeki; Fujiwara, Hiroyuki

    2016-05-01

    Vasohibin-1 (VASH1) is a negative feedback regulator of angiogenesis, the first to be discovered, and was identified in vascular endothelial growth factor (VEGF)-stimulated vascular endothelial cells. Vasohibin-1 inhibits abnormal vascularization induced by various angiogenic factors including fibroblast growth factor and platelet-derived growth factor (PDGF), in addition to VEGF. By focusing on this characteristic of VASH1, we investigated the antitumor effects of VASH1 expression on ovarian cancer cells that produce different angiogenic factors. By using a high VEGF-producing ovarian cancer cell line, SHIN-3, and a high PDGF-producing ovarian cancer cell line, KOC-2S, the cells were transfected with either a VEGF antagonist, soluble VEGF receptor-1 (sVEGFR-1, or sFlt-1), or VASH1 genes to establish their respective cellular expression. The characteristics of these transfectants were compared with controls. We previously reported that the expression of sFlt-1 inhibited tumor vascularization and growth of high VEGF-producing ovarian cancer cells, reduced peritoneal dissemination and ascites development, and prolonged the survival time of the host. However, in the current study, the expression of sFlt-1 had no such effect on the high PDGF-producing ovarian cancer cells used here, whereas VASH1 expression inhibited tumor vascularization and growth, not only in high VEGF-producing cells, but also in high PDGF-producing cells, reduced their peritoneal dissemination and ascites, and prolonged the survival time of the host. These results suggest that VASH1 is an effective treatment for ovarian cancer cells that produce different angiogenic factors.

  1. Expression profiles of Fsh-regulated ovarian genes during oogenesis in coho salmon.

    PubMed

    Guzmán, José M; Luckenbach, J Adam; Yamamoto, Yoji; Swanson, Penny

    2014-01-01

    The function of follicle-stimulating hormone (Fsh) during oogenesis in fishes is poorly understood. Using coho salmon as a fish model, we recently identified a suite of genes regulated by Fsh in vitro and involved in ovarian processes mostly unexplored in fishes, like cell proliferation, differentiation, survival or extracellular matrix (ECM) remodeling. To better understand the role of these Fsh-regulated genes during oocyte growth in fishes, we characterized their mRNA levels at discrete stages of the ovarian development in coho salmon. While most of the transcripts were expressed at low levels during primary growth (perinucleolus stage), high expression of genes associated with cell proliferation (pim1, pcna, and mcm4) and survival (ddit4l) was found in follicles at this stage. The transition to secondary oocyte growth (cortical alveolus and lipid droplet stage ovarian follicles) was characterized by a marked increase in the expression of genes related to cell survival (clu1, clu2 and ivns1abpa). Expression of genes associated with cell differentiation and growth (wt2l and adh8l), growth factor signaling (inha), steroidogenesis (cyp19a1a) and the ECM (col1a1, col1a2 and dcn) peaked in vitellogenic follicles, showing a strong and positive correlation with transcripts for fshr. Other genes regulated by Fsh and associated with ECM function (ctgf, wapl and fn1) and growth factor signaling (bmp16 and smad5l) peaked in maturing follicles, along with increases in steroidogenesis-related gene transcripts. In conclusion, ovarian genes regulated by Fsh showed marked differences in their expression patterns during oogenesis in coho salmon. Our results suggest that Fsh regulates different ovarian processes at specific stages of development, likely through interaction with other intra- or extra-ovarian factors.

  2. Gene Expression Profiling of the Cephalothorax and Eyestalk in Penaeus Monodon during Ovarian Maturation

    PubMed Central

    Brady, Philip; Elizur, Abigail; Williams, Richard; Cummins, Scott F.; Knibb, Wayne

    2012-01-01

    In crustaceans, a range of physiological processes involved in ovarian maturation occurs in organs of the cephalothorax including the hepatopancrease, mandibular and Y-organ. Additionally, reproduction is regulated by neuropeptide hormones and other proteins released from secretory sites within the eyestalk. Reproductive dysfunction in captive-reared prawns, Penaeus monodon, is believed to be due to deficiencies in these factors. In this study, we investigated the expression of gene transcripts in the cephalothorax and eyestalk from wild-caught and captive-reared animals throughout ovarian maturation using custom oligonucleotide microarray screening. We have isolated numerous transcripts that appear to be differentially expressed throughout ovarian maturation and between wild-caught and captive-reared animals. In the cephalothorax, differentially expressed genes included the 1,3-β-D-glucan-binding high-density lipoprotein, 2/3-oxoacyl-CoA thiolase and vitellogenin. In the eyestalk, these include gene transcripts that encode a protein that modulates G-protein coupled receptor activity and another that encodes an architectural transcription factor. Each may regulate the expression of reproductive neuropeptides, such as the crustacean hyperglycaemic hormone and molt-inhibiting hormone. We could not identify differentially expressed transcripts encoding known reproductive neuropeptides in the eyestalk of either wild-caught or captive-reared prawns at any ovarian maturation stage, however, this result may be attributed to low relative expression levels of these transcripts. In summary, this study provides a foundation for the study of target genes involved in regulating penaeid reproduction. PMID:22355268

  3. Angiogenesis-Related Gene Expression Profile with Independent Prognostic Value in Advanced Ovarian Carcinoma

    PubMed Central

    Redondo, Andrés; Mariño-Enríquez, Adrián; Madero, Rosario; Espinosa, Enrique; Vara, Juan Ángel Fresno; Sánchez-Navarro, Iker; Hernández-Cortes, Ginés; Zamora, Pilar; Pérez-Fernández, Elia; Miguel-Martín, María; Suárez, Asunción; Palacios, José; González-Barón, Manuel; Hardisson, David

    2008-01-01

    Background Ovarian carcinoma is the most important cause of gynecological cancer-related mortality in Western societies. Despite the improved median overall survival in patients receiving chemotherapy regimens such as paclitaxel and carboplatin combination, relapse still occurs in most advanced diseased patients. Increased angiogenesis is associated with rapid recurrence and decreased survival in ovarian cancer. This study was planned to identify an angiogenesis-related gene expression profile with prognostic value in advanced ovarian carcinoma patients. Methodology/Principal Findings RNAs were collected from formalin-fixed paraffin-embedded samples of 61 patients with III/IV FIGO stage ovarian cancer who underwent surgical cytoreduction and received a carboplatin plus paclitaxel regimen. Expression levels of 82 angiogenesis related genes were measured by quantitative real-time polymerase chain reaction using TaqMan low-density arrays. A 34-gene-profile which was able to predict the overall survival of ovarian carcinoma patients was identified. After a leave-one-out cross validation, the profile distinguished two groups of patients with different outcomes. Median overall survival and progression-free survival for the high risk group was 28.3 and 15.0 months, respectively, and was not reached by patients in the low risk group at the end of follow-up. Moreover, the profile maintained an independent prognostic value in the multivariate analysis. The hazard ratio for death was 2.3 (95% CI, 1.5 to 3.2; p<0.001). Conclusions/Significance It is possible to generate a prognostic model for advanced ovarian carcinoma based on angiogenesis-related genes using formalin-fixed paraffin-embedded samples. The present results are consistent with the increasing weight of angiogenesis genes in the prognosis of ovarian carcinoma. PMID:19112514

  4. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    SciTech Connect

    Wu, Huijuan; Wang, Ke; Liu, Wenxin; Hao, Quan

    2014-02-07

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer.

  5. Expression analysis and prognostic significance of the SRA1 gene, in ovarian cancer

    SciTech Connect

    Leoutsakou, Theoni; Talieri, Maroulio; Scorilas, Andreas . E-mail: ascorilas@biol.uoa.gr

    2006-06-02

    The SR-related-CTD-associated-factors (SCAFs) have the ability to interact with the C-terminal domain of the RNA polymerase II, linking this way transcription to splicing. SRA1 (SR-A1) gene, encoding for a human high-molecular weight SCAF protein, is located on chromosome 19, between the IRF3 and the R-RAS oncogene and it has been demonstrated from members of our group that SRA1 is constitutively expressed in most of the human tissues, while it is overexpressed in a subset of ovarian tumors. In this study, we examine the expression of SRA1 gene in 111 ovarian malignant tissues and in the human ovarian carcinoma cell lines OVCAR-3, TOV21-G, and ES-2, using a semi-quantitative RT-PCR method. SRA1 gene was overexpressed in 61/111 (55%) of ovarian carcinomas. This higher expression was positively associated to the size of the tumor (p < 0.001), the grade and the stage of the disease (p = 0.003 and p = 0.006, respectively), and the debulking success (p < 0.001). Kaplan-Meier survival analysis revealed that lower SRA1 expression increases the probability of both the longer overall and the progression free survival of the patients. Multivariate Cox regression analysis revealed that SRA1 may be used as an independent prognostic biomarker in ovarian cancer. Our results suggest that SRA1 is associated with cancer progression and may possibly be characterized as a new marker of unfavorable prognosis for ovarian cancer.

  6. Clinical impact of L1CAM expression measured on the transcriptome level in ovarian cancer

    PubMed Central

    Azim, Samira Abdel; Duggan-Peer, Michaela; Sprung, Susanne; Reimer, Daniel; Fiegl, Heidi; Soleiman, Afschin; Marth, Christian; Zeimet, Alain G.

    2016-01-01

    Background High expression of L1 cell adhesion molecules (L1CAM) has been repeatedly shown to be associated with aggressive disease behavior, which translates in poor clinical outcome in various cancer entities. However, in ovarian cancer results based either on immunohistochemistry or cytosolic protein quantifications remained conflicting regarding clinical behavior. In the present work we assessed L1CAM expression on the transcriptome level with the highly sensitive quantitative real-time PCR (qRT-PCR) to define its relevance in ovarian cancer biology. Results There was a significant difference in L1CAM high and low mRNA expressing cancers with regard to disease-free (p=0.002) and overall survival (p=0.008). L1CAM proofed to be an independent predictor for disease progression (HR 1.8, p=0.01) and overall survival (HR 1.6, p=0.04). Furthermore, a significant positive correlation between the level of L1CAM and the grade of tumor differentiation (p=0.04), the FIGO stage (p=0.025) as well as the histological subtype (p= 0.002) was found. Methods This study included fresh frozen tissue samples of 138 patients with FIGO I-IV stage ovarian cancer. L1CAM mRNA expression was determined using qRT-PCR. In the calculations special attention was put on the various histological subtypes. In survival analysis median L1CAM mRNA expression obtained in the entire cohort of ovarian cancer samples was used as a cut-off to distinguish between high and low L1CAM mRNA expression. Conclusion L1CAM mRNA expression appears to play a substantial role in the pathophysiology of ovarian cancer that is translated into poor clinical outcome. Additionally humanized L1CAM antibodies, which can serve as potential future treatment options are under testing. PMID:27174921

  7. Expression and clinical role of protein of regenerating liver (PRL) phosphatases in ovarian carcinoma.

    PubMed

    Reich, Reuven; Hadar, Shany; Davidson, Ben

    2011-02-11

    The present study analyzed the expression and clinical role of the protein of regenerating liver (PRL) phosphatase family in ovarian carcinoma. PRL1-3 mRNA expression was studied in 184 tumors (100 effusions, 57 primary carcinomas, 27 solid metastases) using RT-PCR. PRL-3 protein expression was analyzed in 157 tumors by Western blotting. PRL-1 mRNA levels were significantly higher in effusions compared to solid tumors (p < 0.001), and both PRL-1 and PRL-2 were overexpressed in pleural compared to peritoneal effusions (p = 0.001). PRL-3 protein expression was significantly higher in primary diagnosis pre-chemotherapy compared to post-chemotherapy disease recurrence effusions (p = 0.003). PRL-1 mRNA expression in effusions correlated with longer overall survival (p = 0.032), and higher levels of both PRL-1 and PRL-2 mRNA correlated with longer overall survival for patients with pre-chemotherapy effusions (p = 0.022 and p = 0.02, respectively). Analysis of the effect of laminin on PRL-3 expression in ovarian carcinoma cells in vitro showed dose-dependent PRL-3 expression in response to exogenous laminin, mediated by Phospholipase D. In contrast to previous studies associating PRL-3 with poor outcome, our data show that PRL-3 expression has no clinical role in ovarian carcinoma, whereas PRL-1 and PRL-2 expression is associated with longer survival, suggesting that PRL phosphatases may be markers of improved outcome in this cancer.

  8. hGBP-1 Expression Predicts Shorter Progression-Free Survival in Ovarian Cancers, While Contributing to Paclitaxel Resistance

    PubMed Central

    Wadi, Suzan; Tipton, Aaron R.; Trendel, Jill A.; Khuder, Sadik A.; Vestal, Deborah J.

    2017-01-01

    Ovarian cancer is the gynecological cancer with the poorest prognosis. One significant reason is the development of resistance to the chemotherapeutic drugs used in its treatment. The large GTPase, hGBP-1, has been implicated in paclitaxel resistance in ovarian cell lines. Forced expression of hGBP-1 in SKOV3 ovarian cancer cells protects them from paclitaxel-induced cell death. However, prior to this study, nothing was known about whether hGBP-1 was expressed in ovarian tumors and whether its expression correlated with paclitaxel resistance. hGBP-1 is expressed in 17% of ovarian tumors from patients that have not yet received treatment. However, at least 80% of the ovarian tumors that recurred after therapies that included a tax-ane, either paclitaxel or docetaxel, were positive for hGBP-1. In addition, hGBP-1 expression predicts a significantly shorter progression-free survival in ovarian cancers. Based on these studies, hGBP-1 could prove to be a potential biomarker for paclitaxel resistance in ovarian cancer. PMID:28090373

  9. Loss of DCC gene expression during ovarian tumorigenesis: relation to tumour differentiation and progression

    PubMed Central

    Saegusa, M; Machida, D; Okayasu, I

    2000-01-01

    To clarify the possible role of DCC gene alteration in ovarian neoplasias, we immunohistochemically investigated 124 carcinomas, as well as 55 cystadenomas and 41 low malignant potential (LMP) tumours and compared the results with those for p53 protein expression, clinicopathological factors and survival. A combination of the reverse transcription polymerase chain reaction (RT-PCR) and Southern blot hybridization (SBH) for DCC mRNA levels was also carried out on 26 malignant, five LMP, eight benign and seven normal ovarian samples. Significantly decreased levels of overall DCC values in carcinomas compared with benign and LMP lesions were revealed by both immunohistochemical and RT-PCR/SBH assays. Similar findings were also noted when subdivision was into serous and mucinous categories. In carcinomas, reduction or loss of DCC expression was significantly related to the serous phenotype (serous vs non-serous, P< 0.0001), a high histological grade (grade 1 vs 2 or 3, P< 0.02) and a more advanced stage (FIGO stage I vs II/III/IV, P = 0.0083), while no association was noted with survival. Although p53 immunopositivity demonstrated significant stepwise increase from benign through to malignant lesions, there was no clear association with DCC score values. The results indicated that impaired DCC expression may play an important role in ovarian tumorigenesis. In ovarian carcinomas, the altered expression is closely linked with tumour differentiation and progression. © 2000 Cancer Research Campaign PMID:10682668

  10. A Five-Gene Expression Signature Predicts Clinical Outcome of Ovarian Serous Cystadenocarcinoma

    PubMed Central

    Guo, Wenna

    2016-01-01

    Ovarian serous cystadenocarcinoma is a common malignant tumor of female genital organs. Treatment is generally less effective as patients are usually diagnosed in the late stage. Therefore, a well-designed prognostic marker provides valuable data for optimizing therapy. In this study, we analyzed 303 samples of ovarian serous cystadenocarcinoma and the corresponding RNA-seq data. We observed the correlation between gene expression and patients' survival and eventually established a risk assessment model of five factors using Cox proportional hazards regression analysis. We found that the survival time in high-risk patients was significantly shorter than in low-risk patients in both training and testing sets after Kaplan-Meier analysis. The AUROC value was 0.67 when predicting the survival time in testing set, which indicates a relatively high specificity and sensitivity. The results suggest diagnostic and therapeutic applications of our five-gene model for ovarian serous cystadenocarcinoma. PMID:27478834

  11. Highly expressed NRSN2 is related to malignant phenotype in ovarian cancer.

    PubMed

    Tang, Wenbin; Ren, Aimin; Xiao, Hongyang; Sun, Huizhen; Li, Bin

    2017-01-01

    Neurensin-2 (NRSN2) is a 24KD protein, which is reported located in the membrane, while its biological functions remain unknown, not to mention in the field of tumor biology. In current study, we aimed to analyze the functions of NRSN2 in ovarian cancer. We screened TCGA database and surprisingly found that its copy number and mRNA level are gained and heightened respectively in parts of serous ovarian cancer patients. In current study, both loss- and gain- function assays found that NRSN2 is associated with the malignant phenotype in ovarian cancer cells, because NRSN2 plays a remarkable role in anchorage-independent colony formation, subcutaneous tumor formation, cell invasion, and chemoresistance. Furthermore, we found that the level of NRSN2 was positively correlated with the expression of stem cell marker CD133. In addition, Wnt canonical signaling and Twist/Akt/Erk axis were also regulated by NRSN2. In conclusion, we found that a poorly studied protein, NRSN2, which is associated with the malignant phenotype of serous ovarian cancer and as a membrane protein; it could be a target for serous ovarian cancer treatment.

  12. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    SciTech Connect

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  13. Trefoil factor 3 expression in epithelial ovarian cancer exerts a minor effect on clinicopathological parameters

    PubMed Central

    Hoellen, Friederike; Kostara, Athina; Karn, Thomas; Holtrich, Uwe; El-Balat, Ahmed; Otto, Mike; Rody, Achim; Hanker, Lars C.

    2016-01-01

    The role of trefoil factor 3 (intestinal) (TFF3) has been analyzed in numerous cancers, such as breast and gastrointestinal cancer, and has been associated with poor prognosis. However, the role of TFF3 in ovarian cancers is not clear. Expression analysis of TFF3 in 91 ovarian cancer patients was performed by immunohistochemistry of primary paraffin-embedded tumor samples. The results were scored according to staining intensity and percentage of positive tumor cells resulting in an immune-reactive score (IRS) of 0–12. These results were correlated with clinicopathological characteristics and survival. TFF3 expression in our patient cohort exhibited a tendency towards improved overall and progression-free survival (PFS). In TFF3-positive serous and high-grade serous ovarian cancers, the median PFS was 27.6 months [95% confidence interval (CI): 0–55.7] vs. 15.2 months in TFF3-negative tumors (95% CI: 13.8–16.6) (P=0.183). The median overall survival was 53.9 months in TFF3-positive tumors (95% CI: Non-applicable) vs. 44.4 months in TFF3-negative cases (95% CI: 30.5–58.3) (P=0.36). TFF3 negativity was significantly associated with higher tumor grade (P=0.05). Based on our results, further studies are required in order to elucidate whether survival and chemosensitivity are affected by TFF3 expression in ovarian cancer. PMID:27699037

  14. Identification of candidate growth promoting genes in ovarian cancer through integrated copy number and expression analysis.

    PubMed

    Ramakrishna, Manasa; Williams, Louise H; Boyle, Samantha E; Bearfoot, Jennifer L; Sridhar, Anita; Speed, Terence P; Gorringe, Kylie L; Campbell, Ian G

    2010-04-08

    Ovarian cancer is a disease characterised by complex genomic rearrangements but the majority of the genes that are the target of these alterations remain unidentified. Cataloguing these target genes will provide useful insights into the disease etiology and may provide an opportunity to develop novel diagnostic and therapeutic interventions. High resolution genome wide copy number and matching expression data from 68 primary epithelial ovarian carcinomas of various histotypes was integrated to identify genes in regions of most frequent amplification with the strongest correlation with expression and copy number. Regions on chromosomes 3, 7, 8, and 20 were most frequently increased in copy number (> 40% of samples). Within these regions, 703/1370 (51%) unique gene expression probesets were differentially expressed when samples with gain were compared to samples without gain. 30% of these differentially expressed probesets also showed a strong positive correlation (r > or =0.6) between expression and copy number. We also identified 21 regions of high amplitude copy number gain, in which 32 known protein coding genes showed a strong positive correlation between expression and copy number. Overall, our data validates previously known ovarian cancer genes, such as ERBB2, and also identified novel potential drivers such as MYNN, PUF60 and TPX2.

  15. Identification of Candidate Growth Promoting Genes in Ovarian Cancer through Integrated Copy Number and Expression Analysis

    PubMed Central

    Ramakrishna, Manasa; Williams, Louise H.; Boyle, Samantha E.; Bearfoot, Jennifer L.; Sridhar, Anita; Speed, Terence P.; Gorringe, Kylie L.; Campbell, Ian G.

    2010-01-01

    Ovarian cancer is a disease characterised by complex genomic rearrangements but the majority of the genes that are the target of these alterations remain unidentified. Cataloguing these target genes will provide useful insights into the disease etiology and may provide an opportunity to develop novel diagnostic and therapeutic interventions. High resolution genome wide copy number and matching expression data from 68 primary epithelial ovarian carcinomas of various histotypes was integrated to identify genes in regions of most frequent amplification with the strongest correlation with expression and copy number. Regions on chromosomes 3, 7, 8, and 20 were most frequently increased in copy number (>40% of samples). Within these regions, 703/1370 (51%) unique gene expression probesets were differentially expressed when samples with gain were compared to samples without gain. 30% of these differentially expressed probesets also showed a strong positive correlation (r≥0.6) between expression and copy number. We also identified 21 regions of high amplitude copy number gain, in which 32 known protein coding genes showed a strong positive correlation between expression and copy number. Overall, our data validates previously known ovarian cancer genes, such as ERBB2, and also identified novel potential drivers such as MYNN, PUF60 and TPX2. PMID:20386695

  16. Reduced expression of AMPK-β1 during tumor progression enhances the oncogenic capacity of advanced ovarian cancer

    PubMed Central

    2014-01-01

    AMP-activated protein kinase (AMPK) is a key energy sensor that is involved in regulating cell metabolism. Our previous study revealed that the subunits of the heterotimeric AMPK enzyme are diversely expressed during ovarian cancer progression. However, the impact of the variable expression of these AMPK subunits in ovarian cancer oncogenesis remains obscure. Here, we provide evidence to show that reduced expression of the AMPK-β1 subunit during tumor progression is associated with the increased oncogenic capacity of advanced ovarian cancer cells. Immunohistochemical analysis revealed that AMPK-β1 levels were reduced in advanced-stage (P = 0.008), high-grade (P = 0.013) and metastatic ovarian cancers (P = 0.008). Intriguingly, down-regulation of AMPK-β1 was progressively reduced from tumor stages 1 to 3 of ovarian cancer. Functionally, enforced expression of AMPK-β1 inhibited ovarian-cancer-cell proliferation, anchorage-independent cell growth, cell migration and invasion. Conversely, depletion of AMPK-β1 by siRNA enhanced the oncogenic capacities of ovarian cancer cells, suggesting that the loss of AMPK-β1 favors the aggressiveness of ovarian cancer. Mechanistically, enforced expression of AMPK-β1 increased AMPK activity, which, in turn, induced cell-cycle arrest via inhibition of AKT/ERK signaling activity as well as impaired cell migration/invasion through the suppression of JNK signaling in ovarian cancer cells. Taken together, these findings suggest that the reduced expression of AMPK-β1 confers lower AMPK activity, which enhances the oncogenic capacity of advanced-stage ovarian cancer. PMID:24602453

  17. Expression of Stem Cell Markers in Preinvasive Tubal Lesions of Ovarian Carcinoma

    PubMed Central

    Chene, G.; Ouellet, V.; Rahimi, K.; Barres, V.; Meunier, L.; De Ladurantaye, M.; Provencher, D.; Mes-Masson, A. M.

    2015-01-01

    In order to better understand the ovarian serous carcinogenic process with tubal origin, we investigated the expression of stem cell markers in premalignant tubal lesions (serous tubal intraepithelial carcinoma or STIC). We found an increased stem cell marker density in the normal fallopian tube followed by a high CD117 and a low ALDH and CD44 expression in STICs raising the question of the role of the stem cell markers in the serous carcinogenic process. PMID:26504831

  18. Differential expression of a human kallikrein 5 (KLK5) splice variant in ovarian and prostate cancer.

    PubMed

    Kurlender, Lisa; Yousef, George M; Memari, Nader; Robb, John-Desmond; Michael, Iacovos P; Borgoño, Carla; Katsaros, Dionyssios; Stephan, Carsten; Jung, Klaus; Diamandis, Eleftherios P

    2004-01-01

    The presence of more than one mRNA form is common among kallikrein genes. We identified an mRNA transcript of the human kallikrein gene 5 (KLK5), denoted KLK5 splice variant 1 (KLK5-SV1). This variant has a different 5'-splice site, but encodes the same protein as the classical KLK5 transcript. RT-PCR analysis of this variant transcript expression in 29 human tissues indicated highest expression in the cervix, salivary gland, kidney, mammary gland, and skin. Comparative analysis of the expression levels of KLK5-SV1, another splice variant named KLK5 splice variant 2 (KLK5-SV2), and the classical KLK5 form showed that out of all three mRNA transcripts, the classical form is predominantly expressed (found in more tissues and at higher expression levels) followed by KLK5-SV1. KLK5-SV1 is expressed at high levels in ovarian, pancreatic, breast and prostate cancer cell lines. KLK5-SV1 was also found to be expressed in 9/10 ovarian cancer tissues, but it was not found in one normal ovarian tissue tested. Hormonal regulation experiments suggest that KLK5-SV1 is regulated by steroid hormones in the BT-474 breast cancer cell line. Furthermore, this variant had significantly higher expression in normal prostate tissues compared to their matched cancer tissue counterparts. KLK5-SV1 may have clinical utility in various malignancies and should be further explored as a potential new biomarker for prostate and ovarian cancer.

  19. High-resolution analysis of copy number alterations and associated expression changes in ovarian tumors

    PubMed Central

    Haverty, Peter M; Hon, Lawrence S; Kaminker, Joshua S; Chant, John; Zhang, Zemin

    2009-01-01

    Background DNA copy number alterations are frequently observed in ovarian cancer, but it remains a challenge to identify the most relevant alterations and the specific causal genes in those regions. Methods We obtained high-resolution 500K SNP array data for 52 ovarian tumors and identified the most statistically significant minimal genomic regions with the most prevalent and highest-level copy number alterations (recurrent CNAs). Within a region of recurrent CNA, comparison of expression levels in tumors with a given CNA to tumors lacking that CNA and to whole normal ovary samples was used to select genes with CNA-specific expression patterns. A public expression array data set of laser capture micro-dissected (LCM) non-malignant fallopian tube epithelia and LCM ovarian serous adenocarcinoma was used to evaluate the effect of cell-type mixture biases. Results Fourteen recurrent deletions were detected on chromosomes 4, 6, 9, 12, 13, 15, 16, 17, 18, 22 and most prevalently on X and 8. Copy number and expression data suggest several apoptosis mediators as candidate drivers of the 8p deletions. Sixteen recurrent gains were identified on chromosomes 1, 2, 3, 5, 8, 10, 12, 15, 17, 19, and 20, with the most prevalent gains localized to 8q and 3q. Within the 8q amplicon, PVT1, but not MYC, was strongly over-expressed relative to tumors lacking this CNA and showed over-expression relative to normal ovary. Likewise, the cell polarity regulators PRKCI and ECT2 were identified as putative drivers of two distinct amplicons on 3q. Co-occurrence analyses suggested potential synergistic or antagonistic relationships between recurrent CNAs. Genes within regions of recurrent CNA showed an enrichment of Cancer Census genes, particularly when filtered for CNA-specific expression. Conclusion These analyses provide detailed views of ovarian cancer genomic changes and highlight the benefits of using multiple reference sample types for the evaluation of CNA-specific expression changes

  20. Expression of transcription factor AP-2α predicts survival in epithelial ovarian cancer

    PubMed Central

    Anttila, M A; Kellokoski, J K; Moisio, K I; Mitchell, P J; Saarikoski, S; Syrjänen, K; Kosma, V-M

    2000-01-01

    The 52-kDa activator protein (AP)-2 is a DNA-binding transcription factor which has been reported to have growth inhibitory effects in cancer cell lines and in human tumours. In this study the expression of AP-2α was analysed in 303 epithelial ovarian carcinomas by immunohistochemistry (IHC) with a polyclonal AP-2α antibody and its mRNA status was determined by in situ hybridization (ISH) and reverse transcriptase-polymerase chain reaction (RT-PCR). The immunohistochemical expression of AP-2α was correlated with clinicopathological variables, p21/WAF1 protein expression and survival. In normal ovaries, epithelial cells expressed AP-2α protein only in the cytoplasm. In carcinomas nuclear AP-2α expression was observed in 28% of the cases although cytoplasmic expression was more common (51%). The expression of AP-2α varied according to the histological subtype and differentiation. AP-2α and p21/WAF1 expressions did not correlate with each other. Both in univariate (P = 0.002) and multivariate analyses (relative risks (RR) 1.6, 95% confidence interval (CI) 1.13–2.18, P = 0.007) the high cytoplasmic AP-2α expression favoured the overall survival. In contrast, the nuclear AP-2α expression combined with low cytoplasmic expression increased the risk of dying of ovarian cancer (RR = 2.10, 95% CI 1.13–3.83, P = 0.018). The shift in the expression pattern of AP-2α (nuclear vs cytoplasmic) in carcinomas points out to the possibility that this transcription factor may be used by oncogenes in certain histological subtypes. Based on the mRNA analyses, the incomplete expression and translation of AP-2α in ovarian cancer may be due to post-transcriptional regulation. © 2000 Cancer Research Campaign PMID:10864206

  1. Cancer associated fibroblasts express pro-inflammatory factors in human breast and ovarian tumors.

    PubMed

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-08-02

    Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  2. Cyclooxygenases expression and distribution in the normal ovary and their role in ovarian cancer in the domestic hen (Gallus domesticus)

    PubMed Central

    Zhuge, Yan; Lagman, Jo Ann Jaen; Ansenberger, Kristine; Mahon, Cassandra; Barua, Animesh; Luborsky, Judith L.; Bahr, Janice M.

    2015-01-01

    Cyclooxygenase (COX) (PTGS) is the rate-limiting enzyme in the biosynthesis of prostaglandins. Two COX isoforms have been identified, COX-1 and COX-2, which show distinct cell-specific expression and regulation. Ovarian cancer is the most lethal gynecological malignancy and the disease is poorly understood due to the lack of suitable animal models. The laying hen spontaneously develops epithelial ovarian cancer with few or no symptoms until the cancer has progresses to a late stage, similar to the human disease. The purpose of this study was to examine the relative expression and distribution of COX-1 and COX-2 in the ovaries of normal hens and in hens with ovarian cancer. The results demonstrate that COX-1 was localized to the granulosa cell layer and cortical interstitium, ovarian surface epithelium (OSE) and postovulatory follicle (POF) of the normal ovary. In ovarian cancer, COX-1 mRNA was significantly increased and COX-1 protein was broadly distributed throughout the tumor stroma. COX-2 protein was localized to the granulosa cell layer in the follicle and the ovarian stroma. COX-2 mRNA expression did not change as a function of age or in ovarian cancer. There was significantly higher expression of COX-1 mRNA in the first POF (POF-1) compared to POF-2 and POF-3. COX-2 mRNA expression was not significantly different among POFs. There was no difference in COX-1 or COX-2 mRNA in the OSE isolated from individual follicles in the follicular hierarchy. The results confirm previous findings of the high expression of COX-1 in ovarian tumors further supporting the laying hen as a model for ovarian cancer, and demonstrate for the first time the high expression of COX-1 in POF-1 which is the source of prostaglandins needed for oviposition. PMID:18498063

  3. Cyclooxygenases expression and distribution in the normal ovary and their role in ovarian cancer in the domestic hen (Gallus domesticus).

    PubMed

    Hales, Dale Buchanan; Zhuge, Yan; Lagman, Jo Ann Jaen; Ansenberger, Kristine; Mahon, Cassandra; Barua, Animesh; Luborsky, Judith L; Bahr, Janice M

    2008-06-01

    Cyclooxygenase (COX) (PTGS) is the rate-limiting enzyme in the biosynthesis of prostaglandins. Two COX isoforms have been identified, COX-1 and COX-2, which show distinct cell-specific expression and regulation. Ovarian cancer is the most lethal gynecological malignancy and the disease is poorly understood due to the lack of suitable animal models. The laying hen spontaneously develops epithelial ovarian cancer with few or no symptoms until the cancer has progresses to a late stage, similar to the human disease. The purpose of this study was to examine the relative expression and distribution of COX-1 and COX-2 in the ovaries of normal hens and in hens with ovarian cancer. The results demonstrate that COX-1 was localized to the granulosa cell layer and cortical interstitium, ovarian surface epithelium (OSE) and postovulatory follicle (POF) of the normal ovary. In ovarian cancer, COX-1 mRNA was significantly increased and COX-1 protein was broadly distributed throughout the tumor stroma. COX-2 protein was localized to the granulosa cell layer in the follicle and the ovarian stroma. COX-2 mRNA expression did not change as a function of age or in ovarian cancer. There was significantly higher expression of COX-1 mRNA in the first POF (POF-1) compared to POF-2 and POF-3. COX-2 mRNA expression was not significantly different among POFs. There was no difference in COX-1 or COX-2 mRNA in the OSE isolated from individual follicles in the follicular hierarchy. The results confirm previous findings of the high expression of COX-1 in ovarian tumors further supporting the laying hen as a model for ovarian cancer, and demonstrate for the first time the high expression of COX-1 in POF-1 which is the source of prostaglandins needed for oviposition.

  4. Differential vimentin expression in ovarian and uterine corpus endometrioid adenocarcinomas: diagnostic utility in distinguishing double primaries from metastatic tumors.

    PubMed

    Desouki, Mohamed M; Kallas, Sarah J; Khabele, Dineo; Crispens, Marta A; Hameed, Omar; Fadare, Oluwole

    2014-05-01

    This study aimed to assess the diagnostic value of vimentin expression in differentiating endometrioid adenocarcinoma of primary uterine corpus and ovarian origin. Immunohistochemical analyses for the expression of vimentin in tumoral epithelial cells were performed on 149 endometrioid adenocarcinomas wherein the primary sites were not in question, including whole tissue sections of 27 carcinomas of uterine corpus origin (and no synchronous ovarian tumor), 7 carcinomas of ovarian origin (and no synchronous uterine corpus tumor) and a tissue microarray (TMA) containing 91 primary uterine corpus and 24 primary ovarian carcinomas. We also assessed 15 cases that synchronously involved the uterine corpus and ovary, 15 cases of metastasis to organs/tissues other than uterine corpus or ovary as well as 7 lymph node metastases. Vimentin was negative in 97% (30/31) of primary ovarian carcinomas. In contrast, 82% (97/118) of primary uterine corpus carcinomas were vimentin-positive. Vimentin expression was discordant in 53% of synchronous tumors. The sensitivity and specificity of negative vimentin staining in predicting an ovarian primary were 97% and 82%, respectively, whereas parallel values for positive vimentin staining in predicting a primary uterine tumor were 82% and 97%, respectively. The pattern of vimentin expression in all cases was maintained in their respective regional lymph nodes and distant metastases. In conclusion, ovarian and uterine corpus endometrioid adenocarcinomas have different patterns of vimentin expression. If validated in larger and/or different data sets, these findings may have diagnostic value in distinguishing metastatic lesions from double primary tumors involving both sites.

  5. Knockdown of RhoA expression alters ovarian cancer biological behavior in vitro and in nude mice.

    PubMed

    Wang, Xiaoxia; Jiang, Wenyan; Kang, Jiali; Liu, Qicai; Nie, Miaoling

    2015-08-01

    RhoA regulates cell proliferation, migration, angiogenesis and gene expression. Altered RhoA activity contributes to cancer progression. The present study investigated the effects of RhoA knockdown on the regulation of ovarian cancer biological behavior in vitro and in nude mice. The expression of RhoA was knocked down using a lentivirus carrying RhoA short hairpin RNA (shRNA) in ovarian cancer cells and was confirmed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The altered ovarian cancer biological behaviors were assayed by cell viability, terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL), migration, invasion, and nude mice tumorigenicity assays, while the altered gene expression was detected by RT-qPCR and western blot analysis. The results showed that lentivirus-carrying RhoA shRNA significantly suppressed RhoA expression in ovarian cancer cells, which suppressed tumor cell viability, migration, invasion and adhesion in vitro. RhoA silencing also inhibited the tumorigenicity of ovarian cancer cells in nude mice, which was characterized by the suppression of tumor xenograft formation and growth and induction of tumor cell apoptosis. The results of the present study demonstrated that knockdown of RhoA expression had a significant antitumor effect on ovarian cancer cells in vitro and in nude mice, suggesting that RhoA may be a target for the development of a novel therapeutic strategy in the control of ovarian cancer.

  6. CD44v6 promotes β-catenin and TGF-β expression, inducing aggression in ovarian cancer cells.

    PubMed

    Wang, Jing; Xiao, Ling; Luo, Chen-Hui; Zhou, Hui; Zeng, Liang; Zhong, Jingmin; Tang, Yan; Zhao, Xue-Heng; Zhao, Min; Zhang, Yi

    2015-05-01

    A high expression of CD44v6 has been reported in numerous malignant cancers, including stomach, prostate, lung and colon. However, the pathological role and the regulatory mechanisms of CD44v6 have yet to be elucidated. In the present study, the expression levels of CD44v6 were shown to be significantly higher in ovarian cancer tissues, as compared with adjacent normal tissues. Furthermore, the upregulated expression levels of CD44v6 were correlated with disease recurrence and poor survival in patients. The expression of CD44v6 was knocked down in the CAOV3 ovarian cell line, by transfection of a specific small hairpin RNA. The present study showed a correlation between the aggression, viability, invasion and migration of the ovarian cancer cells, with the expression of CD44v6. In addition, the expression of CD44v6 was positively correlated with the expression levels of β‑catenin and tumor growth factor‑β, which indicates that the effects of CD44v6 on ovarian cancer cell aggression may be mediated by these two signaling pathways. In conclusion, the present study provides a novel insight into the association between CD44v6 expression and ovarian cancer. CD44v6 may provide a novel target for the prognosis and treatment of ovarian cancer.

  7. Tumor associated endothelial expression of B7-H3 predicts survival in ovarian carcinomas

    PubMed Central

    Zang, Xingxing; Sullivan, Peggy S; Soslow, Robert A; Waitz, Rebecca; Reuter, Victor E; Wilton, Andrew; Thaler, Howard T; Arul, Manonmani; Slovin, Susan F; Wei, Joyce; Spriggs, David R; Dupont, Jakob; Allison, James P

    2010-01-01

    B7-H3 and B7x are members of the B7 family of immune regulatory ligands that are thought to attenuate peripheral immune responses through co-inhibition. Previous studies have correlated their overexpression with poor prognosis and decreased tumor-infiltrating lymphocytes in various carcinomas including uterine endometrioid carcinomas, and mounting evidence supports an immuno-inhibitory role in ovarian cancer prognosis. We sought to examine the expression of B7-H3 and B7x in 103 ovarian borderline tumors and carcinomas and study associations with clinical outcome. Using immunohistochemical tissue microarray analysis on tumor specimens, we found that 93 and 100% of these ovarian tumors express B7-H3 and B7x, respectively, with expression found predominantly on cell membranes and in cytoplasm. In contrast, only scattered B7-H3- and B7x-positive cells were detected in non-neoplastic ovarian tissues. B7-H3 was also expressed in the endothelium of tumor-associated vasculature in 44% of patients, including 78% of patients with high-stage tumors (FIGO stages III and IV), nearly all of which were high-grade serous carcinomas, and 26% of patients with low-stage tumors (FIGO stages I and II; P<0.001), including borderline tumors. Analysis of cumulative survival time and recurrence incidence revealed that carcinomas with B7-H3-positive tumor vasculature were associated with a significantly shorter survival time (P=0.02) and a higher incidence of recurrence (P=0.03). The association between B7-H3-positive tumor vasculature and poor clinical outcome remained significant even when the analysis was limited to the high-stage subgroup. These results show that ovarian borderline tumors and carcinomas aberrantly express B7-H3 and B7x, and that B7-H3-positive tumor vasculature is associated with high-grade serous histological subtype, increased recurrence and reduced survival. B7-H3 expression in tumor vasculature may be a reflection of tumor aggressiveness and has diagnostic and

  8. Ovarian function in mice results in abrogated skeletal muscle PPARdelta and FoxO1-mediated gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Menopause, the age-related loss of ovarian hormone production, promotes increased adiposity and associated metabolic pathology, but molecular mechanisms remain unclear. We previously reported that estrogen increases skeletal muscle PPARDelta expression in vivo, and transgenic mice overexpressing mus...

  9. Expression of wilms' tumor gene and protein localization during ovarian formation and follicular development in sheep.

    PubMed

    Logan, Kathleen A; McNatty, Kenneth P; Juengel, Jennifer L

    2003-02-01

    Wilms' tumor protein (WT1) is a transcriptional repressor essential for the development of mammalian kidneys and gonads. To gain insight into possible roles of WT1 in ovarian formation and follicular function, we studied patterns of mRNA and protein localization throughout fetal gonadal development and in ovaries of 4-wk-old and adult sheep. At Day 24 after conception, strong expression of WT1 mRNA and protein was observed in the coelomic epithelial region of the mesonephros where the gonad was forming. By Day 30, expression was observed in the surface epithelium and in many mesenchymal and endothelial cells of the gonad. Epithelial cells continued to express WT1 throughout gonadal development, as did pregranulosa cells during the process of follicular formation. However, WT1 expression was not observed in germ cells. During follicular growth, granulosa cells expressed WT1 from the type 1 (primordial) to the type 4 stages, but thereafter expression was reduced in type 5 (antral) follicles, consistent with the differentiation of granulosa cells into steroid-producing cells. The possible progenitor cells for the theca interna (i.e., the cell streams in the ovarian interstitium) expressed WT1 heterogeneously. However, differentiated theca cells in antral follicles did not express WT1. Strong expression of WT1 was observed during gonadal development, which is consistent with a role for WT1 in ovarian and follicular formation in the ewe. WT1 was identified in many cells of the neonatal and adult ovaries, including granulosa cells, suggesting that this factor is important for preantral follicular growth. However, the decline in WT1 expression in antral follicles suggests that WT1 may prevent premature differentiation of somatic cells of the follicle during early follicular growth.

  10. Proteomic dataset for altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells.

    PubMed

    Sheta, Razan; Roux-Dalvai, Florence; Woo, Christina M; Fournier, Frédéric; Bourassa, Sylvie; Bertozzi, Carolyn R; Droit, Arnaud; Bachvarov, Dimcho

    2016-09-01

    This article contains raw and processed data related to research published in "Role of the polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer progression: possible implications in abnormal mucin O-glycosylation" [1]. The data presented here was obtained with the application of a bioorthogonal chemical reporter strategy analyzing differential glycoprotein expression following the knock-down (KD) of the GALNT3 gene in the epithelial ovarian cancer (EOC) cell line A2780s. LC-MS/MS mass spectrometry analysis was then performed and the processed data related to the identified glycoproteins show that several hundred proteins are differentially expressed between control and GALNT3 KD A2780s cells. The obtained data also uncover numerous novel glycoproteins; some of which could represent new potential EOC biomarkers and/or therapeutic targets.

  11. Effect of histone deacetylase inhibitors on cell apoptosis and expression of the tumor suppressor genes RUNX3 and ARHI in ovarian tumors.

    PubMed

    Zhang, Lan; Liu, Peishu; Li, Hua; Xue, Fuying

    2013-05-01

    The aim of this study was to investigate the expression of Runt box 3 (RUNX3) and aplasia Ras homolog member I (ARHI) in ovarian tumors, and the effects of histone deacetylase inhibitors (HDACIs) on the expression of these genes and the growth of ovarian cancer cells. The mRNA expression of the RUNX3 and ARHI genes in normal ovaries and ovarian tumors was determined using reverse transcription polymerase chain reaction (RT-PCR). The effects of HDACIs on RUNX3 and ARHI expression in four ovarian cancer cell lines (SKOV3, A2780, COC1 and OC3) were determined using RT-PCR and the MTT assay. The expression of RUNX3 and ARHI in normal ovarian cells was 86 and 100%, respectively. Although the two genes were downregulated in ovarian tumors, the extent of downregulation differed. The expression of RUNX3 and ARHI was correlated with the degree of tumor malignancy (P<0.05). ARHI was expressed in all four ovarian cancer cell lines, whereas RUNX3 was expressed only in the OC3 cell line. Treatment with HDACIs upregulated the expression of ARHI and RUNX3 in the SKOV3 cell line only. In A2780 cells, HDACIs upregulated ARHI expression only in the presence of trichostatin A (TSA) plus cisplatin. HDACIs induced significant apoptosis in ovarian cancer cells, which was inversely correlated with the concentration and duration of treatment (P<0.05). In conclusion, RUNX3 and ARHI were shown to be expressed in normal ovarian cells; however, their expression was downregulated or lost in ovarian tumor cells. The combined detection of ARHI and RUNX3 expression may offer improved prediction and monitoring of ovarian malignancies. HDACIs were revealed to inhibit the growth of ovarian tumor cells and may constitute a novel therapeutic option for ovarian tumors.

  12. Bilateral ovarian carcinomas differ in the expression of metastasis-related genes

    PubMed Central

    Smebye, Marianne Lislerud; Haugom, Lisbeth; Davidson, Ben; Trope, Claes Göran; Heim, Sverre; Skotheim, Rolf Inge; Micci, Francesca

    2017-01-01

    The mechanisms behind bilaterality of ovarian carcinomas are not fully understood, as the two tumors could possibly represent two primary tumors, a primary tumor and a metastasis, or two metastases. The gene expression profiles from bilateral high-grade serous carcinomas (HGSCs) and clear cell carcinomas (CCCs) of the ovary were compared to study the association between the tumors of the two sides. A separate analysis of genes from chromosome 19 was also performed, since this chromosome is frequently rearranged in ovarian carcinomas. Tumors from four patients were included (three pairs of HGSC and one pair of CCC). The gene expression was analyzed at the exon level, and bilateral tumors were compared to identify within-pair differences. Gene expression data were also compared with genomic information on the same tumors. Similarities in gene expression were observed between the tumors within each pair, as expected if the two tumors were clonally related. However, certain genes exhibited differences in expression between the two sides, indicating metastasis involvement. Among the most differently expressed genes, one gene was common to all four pairs: Immunoglobulin J. In all HGSC pairs, serpin peptidase inhibitor, clade B (ovalbumin), member 2, serpin family E member 1 and phospholipase A2, group IIA (platelets, synovial fluid) were also among the differentially expressed genes. The specific analysis of chromosome 19 highlighted expression differences in the zinc finger protein 36 gene. These results indicate that bilateral ovarian tumors represent different stages during progression of a single clonal process. Several of the genes observed to be differently expressed are known to be metastasis-related, and are likely to be also involved in spreading from one side to the other in the bilateral cancer cases examined. PMID:28123539

  13. Synthetic genes specifying periodic polymers modelled on the repetitive domain of wheat gliadins: conception and expression.

    PubMed

    Elmorjani, K; Thiévin, M; Michon, T; Popineau, Y; Hallet, J N; Guéguen, J

    1997-10-09

    In order to optimise new polypeptide based biomaterials, we developed a procedure for producing homoblock polypeptides using recombinant DNA technology. Synthetic genes encoding periodic polypeptides modelled on the consensus sequence of wheat gliadins (a family of wheat storage proteins) were devised to be expressed in Escherichia coli. The construction strategy followed allows the construction of three genes encoding 8, 16, and 32 copies of the PQQPY module. The optimal expression conditions in the enterobacteria were established and a convenient purification procedure was shown to be useful in recovery of sizable amounts of strictly periodic polypeptides. The identities of the synthesized polypeptides were assessed using positive cross reactions to antibodies raised against a synthetic decapeptide (PQQPYPQQPA) and amino acid composition was determined as well.

  14. ABCA Transporter Gene Expression and Poor Outcome in Epithelial Ovarian Cancer

    PubMed Central

    Hedditch, Ellen L.; Gao, Bo; Russell, Amanda J.; Lu, Yi; Emmanuel, Catherine; Beesley, Jonathan; Johnatty, Sharon E.; Chen, Xiaoqing; Harnett, Paul; George, Joshy; Williams, Rebekka T.; Flemming, Claudia; Lambrechts, Diether; Despierre, Evelyn; Lambrechts, Sandrina; Vergote, Ignace; Karlan, Beth; Lester, Jenny; Orsulic, Sandra; Walsh, Christine; Fasching, Peter; Beckmann, Matthias W.; Ekici, Arif B.; Hein, Alexander; Matsuo, Keitaro; Hosono, Satoyo; Nakanishi, Toru; Yatabe, Yasushi; Pejovic, Tanja; Bean, Yukie; Heitz, Florian; Harter, Philipp; du Bois, Andreas; Schwaab, Ira; Hogdall, Estrid; Kjaer, Susan K.; Jensen, Allan; Hogdall, Claus; Lundvall, Lene; Engelholm, Svend Aage; Brown, Bob; Flanagan, James; Metcalf, Michelle D; Siddiqui, Nadeem; Sellers, Thomas; Fridley, Brooke; Cunningham, Julie; Schildkraut, Joellen; Iversen, Ed; Weber, Rachel P.; Berchuck, Andrew; Goode, Ellen; Bowtell, David D.; Chenevix-Trench, Georgia; deFazio, Anna; Norris, Murray D.; MacGregor, Stuart; Haber, Michelle; Henderson, Michelle J.

    2014-01-01

    Background ATP-binding cassette (ABC) transporters play various roles in cancer biology and drug resistance, but their association with outcomes in serous epithelial ovarian cancer (EOC) is unknown. Methods The relationship between clinical outcomes and ABC transporter gene expression in two independent cohorts of high-grade serous EOC tumors was assessed with real-time quantitative polymerase chain reaction, analysis of expression microarray data, and immunohistochemistry. Associations between clinical outcomes and ABCA transporter gene single nucleotide polymorphisms were tested in a genome-wide association study. Impact of short interfering RNA–mediated gene suppression was determined by colony forming and migration assays. Association with survival was assessed with Kaplan–Meier analysis and log-rank tests. All statistical tests were two-sided. Results Associations with outcome were observed with ABC transporters of the “A” subfamily, but not with multidrug transporters. High-level expression of ABCA1, ABCA6, ABCA8, and ABCA9 in primary tumors was statistically significantly associated with reduced survival in serous ovarian cancer patients. Low levels of ABCA5 and the C-allele of rs536009 were associated with shorter overall survival (hazard ratio for death = 1.50; 95% confidence interval [CI] =1.26 to 1.79; P = 6.5e−6). The combined expression pattern of ABCA1, ABCA5, and either ABCA8 or ABCA9 was associated with particularly poor outcome (mean overall survival in group with adverse ABCA1, ABCA5 and ABCA9 gene expression = 33.2 months, 95% CI = 26.4 to 40.1; vs 55.3 months in the group with favorable ABCA gene expression, 95% CI = 49.8 to 60.8; P = .001), independently of tumor stage or surgical debulking status. Suppression of cholesterol transporter ABCA1 inhibited ovarian cancer cell growth and migration in vitro, and statin treatment reduced ovarian cancer cell migration. Conclusions Expression of ABCA transporters was associated with poor

  15. Ovarian cancer stem cells express ROR1, which can be targeted for anti-cancer-stem-cell therapy.

    PubMed

    Zhang, Suping; Cui, Bing; Lai, Hsien; Liu, Grace; Ghia, Emanuela M; Widhopf, George F; Zhang, Zhuhong; Wu, Christina C N; Chen, Liguang; Wu, Rongrong; Schwab, Richard; Carson, Dennis A; Kipps, Thomas J

    2014-12-02

    Although initially responsive to chemotherapy, many patients with ovarian cancer subsequently develop relapsed and potentially fatal metastatic disease, which is thought to develop from cancer stem cells (CSCs) that are relatively resistant to conventional therapy. Here, we show that CSCs express a type I receptor tyrosine kinase-like orphan receptor (ROR1), which is expressed during embryogenesis and by many different cancers, but not normal postpartum tissues. Ovarian cancers with high levels of ROR1 had stem cell-like gene-expression signatures. Furthermore, patients with ovarian cancers with high levels of ROR1 had higher rates of relapse and a shorter median survival than patients with ovarian cancers that expressed low-to-negligible amounts of ROR1. We found that ROR1-positive (ROR1(+)) cells isolated from primary tumor-derived xenografts (PDXs) also expressed aldehyde dehydrogenase 1 (ALDH1) and had a greater capacity to form spheroids and to engraft immune-deficient mice than did ROR1-negative (ROR1(Neg)) ovarian cancer cells isolated from the same tumor population. Treatment with UC-961, an anti-ROR1 mAb, or shRNA silencing of ROR1 inhibited expression of the polycomb ring-finger oncogene, Bmi-1, and other genes associated with the epithelial-mesenchymal transition. Moreover, shRNA silencing of ROR1, depletion of ROR1(+) cells, or treatment with UC-961 impaired the capacity of ovarian cancer cells to form spheroids or tumor xenografts. More importantly, treatment with anti-ROR1 affected the capacity of the xenograft to reseed a virgin mouse, indicating that targeting ROR1 may affect CSC self-renewal. Collectively, these studies indicate that ovarian CSCs express ROR1, which contributes to their capacity to form tumors, making ROR1 a potential target for the therapy of patients with ovarian cancer.

  16. Increased intracellular Ca(2+) decreases cisplatin resistance by regulating iNOS expression in human ovarian cancer cells.

    PubMed

    Yu, Yang; Xie, Qi; Liu, Weimin; Guo, Yuting; Xu, Na; Xu, Lu; Liu, Shibing; Li, Songyan; Xu, Ye; Sun, Liankun

    2017-02-01

    Previous studies have reported that intracellular Ca(2+) signals and inducible nitric oxide synthase (iNOS) are involved in cell apoptosis. However, the role of iNOS in cisplatin resistance in ovarian cancer remains unclear. Here, we demonstrate that SKOV3/DDP ovarian cancer cells were more resistant to cisplatin than were SKOV3 ovarian cancer cells. The expression of intracellular Ca(2+) and iNOS was more strongly induced by cisplatin in SKOV3 cells than in SKOV3/DDP cells. TAT-conjugated IP3R-derived peptide (TAT-IDP(S)) increased cisplatin-induced iNOS expression and apoptosis in SKOV3/DDP cells. 2-Aminoethoxydiphenyl borate (2-APB) decreased cisplatin-induced iNOS expression and apoptosis in SKOV3 cells. Thus, iNOS induction may be a valuable strategy for improving the anti-tumor efficacy of cisplatin in ovarian cancer.

  17. Gene Expression Profiling Specifies Chemokine, Mitochondrial and Lipid Metabolism Signatures in Leprosy

    PubMed Central

    Guerreiro, Luana Tatiana Albuquerque; Robottom-Ferreira, Anna Beatriz; Ribeiro-Alves, Marcelo; Toledo-Pinto, Thiago Gomes; Rosa Brito, Tiana; Rosa, Patrícia Sammarco; Sandoval, Felipe Galvan; Jardim, Márcia Rodrigues; Antunes, Sérgio Gomes; Shannon, Edward J.; Sarno, Euzenir Nunes; Pessolani, Maria Cristina Vidal; Williams, Diana Lynn; Moraes, Milton Ozório

    2013-01-01

    Herein, we performed microarray experiments in Schwann cells infected with live M. leprae and identified novel differentially expressed genes (DEG) in M. leprae infected cells. Also, we selected candidate genes associated or implicated with leprosy in genetic studies and biological experiments. Forty-seven genes were selected for validation in two independent types of samples by multiplex qPCR. First, an in vitro model using THP-1 cells was infected with live Mycobacterium leprae and M. bovis bacillus Calmette-Guérin (BCG). In a second situation, mRNA obtained from nerve biopsies from patients with leprosy or other peripheral neuropathies was tested. We detected DEGs that discriminate M. bovis BCG from M. leprae infection. Specific signatures of susceptible responses after M. leprae infection when compared to BCG lead to repression of genes, including CCL2, CCL3, IL8 and SOD2. The same 47-gene set was screened in nerve biopsies, which corroborated the down-regulation of CCL2 and CCL3 in leprosy, but also evidenced the down-regulation of genes involved in mitochondrial metabolism, and the up-regulation of genes involved in lipid metabolism and ubiquitination. Finally, a gene expression signature from DEG was identified in patients confirmed of having leprosy. A classification tree was able to ascertain 80% of the cases as leprosy or non-leprous peripheral neuropathy based on the expression of only LDLR and CCL4. A general immune and mitochondrial hypo-responsive state occurs in response to M. leprae infection. Also, the most important genes and pathways have been highlighted providing new tools for early diagnosis and treatment of leprosy. PMID:23798993

  18. Embryonic Stem Cell (ES)-Specific Enhancers Specify the Expression Potential of ES Genes in Cancer

    PubMed Central

    Levy, Revital; Meron, Nurit; Toperoff, Gidon; Edrei, Yifat; Bergman, Yehudit; Hellman, Asaf

    2016-01-01

    Cancers often display gene expression profiles resembling those of undifferentiated cells. The mechanisms controlling these expression programs have yet to be identified. Exploring transcriptional enhancers throughout hematopoietic cell development and derived cancers, we uncovered a novel class of regulatory epigenetic mutations. These epimutations are particularly enriched in a group of enhancers, designated ES-specific enhancers (ESSEs) of the hematopoietic cell lineage. We found that hematopoietic ESSEs are prone to DNA methylation changes, indicative of their chromatin activity states. Strikingly, ESSE methylation is associated with gene transcriptional activity in cancer. Methylated ESSEs are hypermethylated in cancer relative to normal somatic cells and co-localized with silenced genes, whereas unmethylated ESSEs tend to be hypomethylated in cancer and associated with reactivated genes. Constitutive or hematopoietic stem cell-specific enhancers do not show these trends, suggesting selective reactivation of ESSEs in cancer. Further analyses of a hypomethylated ESSE downstream to the VEGFA gene revealed a novel regulatory circuit affecting VEGFA transcript levels across cancers and patients. We suggest that the discovered enhancer sites provide a framework for reactivation of ES genes in cancer. PMID:26886256

  19. Aberrant over-expression of COX-1 intersects multiple pro-tumorigenic pathways in high-grade serous ovarian cancer.

    PubMed

    Wilson, Andrew J; Fadare, Oluwole; Beeghly-Fadiel, Alicia; Son, Deok-Soo; Liu, Qi; Zhao, Shilin; Saskowski, Jeanette; Uddin, Md Jashim; Daniel, Cristina; Crews, Brenda; Lehmann, Brian D; Pietenpol, Jennifer A; Crispens, Marta A; Marnett, Lawrence J; Khabele, Dineo

    2015-08-28

    Cyclooxygenase-1 (COX-1) is implicated in ovarian cancer. However, patterns of COX expression and function have been unclear and controversial. In this report, patterns of COX-1 and COX-2 gene expression were obtained from RNA-seq data through The Cancer Genome Atlas. Our analysis revealed markedly higher COX-1 mRNA expression than COX-2 in high-grade serous ovarian cancers (HGSOC) and higher COX-1 expression in HGSOC tumors than 10 other tumor types. High expression of COX-1 in HGSOC tumors was confirmed in an independent tissue microarray. In contrast, lower or similar expression of COX-1 compared to COX-2 was observed in endometrioid, mucinous and clear cell tumors. Stable COX-1 knockdown in HGSOC-representative OVCAR-3 ovarian cancer cells reduced gene expression in multiple pro-tumorigenic pathways. Functional cell viability, clonogenicity, and migration/invasion assays were consistent with transcriptomic changes. These effects were reversed by stable over-expression of COX-1 in SKOV-3 cells. Our results demonstrate a distinct pattern of COX-1 over-expression in HGSOC tumors and strong association of COX-1 with multiple pro-tumorigenic pathways in ovarian cancer cells. These findings provide additional insight into the role of COX-1 in human ovarian cancer and support further development of methods to selectively target COX-1 in the management of HGSOC tumors.

  20. Aberrant over-expression of COX-1 intersects multiple pro-tumorigenic pathways in high-grade serous ovarian cancer

    PubMed Central

    Wilson, Andrew J.; Fadare, Oluwole; Beeghly-Fadiel, Alicia; Son, Deok-Soo; Liu, Qi; Zhao, Shilin; Saskowski, Jeanette; Uddin, Md. Jashim; Daniel, Cristina; Crews, Brenda; Lehmann, Brian D.; Pietenpol, Jennifer A.; Crispens, Marta A.; Marnett, Lawrence J.; Khabele, Dineo

    2015-01-01

    Cyclooxygenase-1 (COX-1) is implicated in ovarian cancer. However, patterns of COX expression and function have been unclear and controversial. In this report, patterns of COX-1 and COX-2 gene expression were obtained from RNA-seq data through The Cancer Genome Atlas. Our analysis revealed markedly higher COX-1 mRNA expression than COX-2 in high-grade serous ovarian cancers (HGSOC) and higher COX-1 expression in HGSOC tumors than 10 other tumor types. High expression of COX-1 in HGSOC tumors was confirmed in an independent tissue microarray. In contrast, lower or similar expression of COX-1 compared to COX-2 was observed in endometrioid, mucinous and clear cell tumors. Stable COX-1 knockdown in HGSOC-representative OVCAR-3 ovarian cancer cells reduced gene expression in multiple pro-tumorigenic pathways. Functional cell viability, clonogenicity, and migration/invasion assays were consistent with transcriptomic changes. These effects were reversed by stable over-expression of COX-1 in SKOV-3 cells. Our results demonstrate a distinct pattern of COX-1 over-expression in HGSOC tumors and strong association of COX-1 with multiple pro-tumorigenic pathways in ovarian cancer cells. These findings provide additional insight into the role of COX-1 in human ovarian cancer and support further development of methods to selectively target COX-1 in the management of HGSOC tumors. PMID:25972361

  1. Expression of Adiponectin Receptor-1 and Prognosis of Epithelial Ovarian Cancer Patients

    PubMed Central

    Li, Xiahui; Yu, Zhe; Fang, Liping; Liu, Fang; Jiang, Kui

    2017-01-01

    Background Adiponectin receptor-1 (AdipoR1) has been reported to be associated with the risk of obesity-associated malignancies, including epithelial ovarian cancer (EOC). The aim of this study was to determine if AdipoR1 could serve as a prognosis indicator for patients with EOC. Material/Methods In this study, expression of AdipoR1 in 73 EOC patients consecutively admitted to our hospital was detected by immunohistochemical staining. Univariate and multivariate analyses were performed to assess the relationship between AdipoR1 expression level and progression-free survival (PFS) and overall survival (OS) rates in patients. Results A relatively lower expression of AdipoR1 in the cancerous tissues was detected compared to normal ovarian tissues, but the difference was not significant (p>0.05). AdipoR1 expression level in EOC patients was negatively correlated with advanced FIGO stages in patients and tumor differentiation, but had no correlation with pathological types, presenting of ascites, shorter platinum-free interval (PFI), diabetes, preoperative and postoperative body mass index (BMI), or platelet counts (p>0.05). Moreover, patients with AdipoR1 expression had a significantly longer PFS and OS compared to the negative expression group (p<0.001). Conclusions Our findings suggest that AdipoR1 expression level in cancerous tissues might serve as an independent prognostic indicator in EOC patients and is associated with longer PFS and OS. PMID:28356549

  2. Hyperosmotic stress induces cisplatin sensitivity in ovarian cancer cells by stimulating aquaporin-5 expression

    PubMed Central

    CHEN, XUEJUN; ZHOU, CHUNXIA; YAN, CHUNXIAO; MA, JIONG; ZHENG, WEI

    2015-01-01

    Aquaporins (AQPs) are important mediators of water permeability and are closely associated with tumor cell proliferation, migration, angiogenesis and chemoresistance. Moreover, the chemosensitivity of tumor cells to cisplatin (CDDP) is potentially affected by osmotic pressure. The present study was undertaken to determine whether hyperosmosis regulates ovarian cancer cell sensitivity to CDDP in vitro and to explore whether this is associated with AQP expression. The hyperosmotic stress was induced by D-sorbitol. 3AO ovarian cancer cells were treated with different concentrations of hypertonic medium and/or CDDP for various times, followed by measuring the inhibition rate of cell proliferation using an MTT assay. In addition, AQP expression in response to osmotic pressure and/or CDDP was measured by reverse transcription-quantitative polymerase chain reaction and western blotting. Cell proliferation in response to hypertonic stress was also measured when AQP5 was knocked down by small interfering (si)RNA. 3AO cell proliferation was inhibited by hyperosmotic stress, while the expression of AQP5, but not that of AQP1, AQP3 or AQP9, was increased in a dose- and time-dependent manner in hypertonic sorbitol-containing medium. When AQP5 was silenced by siRNA, cells were susceptible to hypertonic stress. MTT analyses showed that the inhibition of cell proliferation by a low dose of CDDP increased significantly with exposure to a hyperosmotic stimulus, and this effect was reduced when a high dose of CDDP was used. AQP5 expression was induced by a low dose of CDDP, but was reduced by a high dose of CDDP. However, hyperosmosis enhanced AQP5 mRNA expression at every dose of CDDP tested, compared with isotonic medium. With prolonged treatment time, AQP5 expression was reduced by CDDP in hypertonic and isotonic culture medium. Thus, the effects of hyperosmosis on cell sensitivity to CDDP were associated with AQP5 expression. These results suggest that AQP5 expression in ovarian

  3. Highly and moderately aggressive mouse ovarian cancer cell lines exhibit differential gene expression

    PubMed Central

    Zhang, Wensheng; Kale, Shubha P.; McFerrin, Harris; Davenport, Ian; Wang, Guangdi; Skripnikova, Elena; Li, Xiao-Lin; Bowen, Nathan J.; McDaniels, Leticia B; Meng, Yuan-Xiang; Polk, Paula; Liu, Yong-Yu; Zhang, Qian-Jin

    2017-01-01

    Patients with advanced epithelial ovarian cancer often experience disease recurrence after standard therapies, a critical factor in determining their five-year survival rate. Recent reports indicated that long-term or short-term survival is associated with varied gene expression of cancer cells. Thus, identification of novel prognostic biomarkers should be considered. Since the mouse genome is similar to the human genome, we explored potential prognostic biomarkers using two groups of mouse ovarian cancer cell lines (group 1: IG-10, IG-10pw, and IG-10pw/agar; group 2: IG-10 clones 2, 3, and 11) which display highly and moderately aggressive phenotypes in vivo. Mice injected with these cell lines have different survival time and rates, capacities of tumor, and ascites formations, reflecting different prognostic potentials. Using an Affymetrix Mouse Genome 430 2.0 Array, a total of 181 genes were differentially expressed (P<0.01) by at least twofold between two groups of the cell lines. Of the 181 genes, 109 and 72 genes were overexpressed in highly and moderately aggressive cell lines, respectively. Analysis of the 109 and 72 genes using Ingenuity Pathway Analysis (IPA) tool revealed two cancer-related gene networks. One was associated with the highly aggressive cell lines and affiliated with MYC gene, and another was associated with the moderately aggressive cell lines and affiliated with the androgen receptor (AR). Finally, the gene enrichment analysis indicated that the overexpressed 89 genes (out of 109 genes) in highly aggressive cell lines had a function annotation in the David database. The cancer-relevant significant gene ontology (GO) terms included Cell cycle, DNA metabolic process, and Programmed cell death. None of the genes from a set of the 72 genes overexpressed in the moderately aggressive cell lines had a function annotation in the David database. Our results suggested that the overexpressed MYC and 109 gene set represented highly aggressive ovarian

  4. Expressed transcripts associated with high rates of egg production in chicken ovarian follicles.

    PubMed

    Yang, K T; Lin, C Y; Huang, H L; Liou, J S; Chien, C Y; Wu, C P; Huang, C W; Ou, B R; Chen, C F; Lee, Y P; Lin, E C; Tang, P C; Lee, W C; Ding, S T; Cheng, W T K; Huang, M C

    2008-02-01

    The purpose of this study was to characterize differentially expressed transcripts associated with varying rates of egg production in Taiwan country chickens. Ovarian follicles were isolated from two strains of chicken which showed low (B) or high (L2) rates of egg production, then processed for RNA extraction and cDNA library construction. Three thousand and eight forty clones were randomly selected from the cDNA library and amplified by PCR, then used in microarray analysis. Differentially expressed transcripts (P<0.05, log(2)> or = 1.75) were sequenced, and aligned using GenBank. This analysis revealed 20 non-redundant sequences which corresponded to known transcripts. Eight transcripts were expressed at a higher level in ovarian tissue prepared from chicken strain B, and 12 transcripts were expressed at a higher level in L2 birds. These differential patterns of expression were confirmed by semi-quantitative RT-PCR. We show that transcripts of cyclin B2 (cycB2), ferritin heavy polypeptide 1 (FTH1), Gag-Pol polyprotein, thymosin beta4 (TB4) and elongation factor 1 alpha1 (EEF1A1) were enriched in B strain ovarian follicles. In contrast, thioredoxin (TXN), acetyl-CoA dehydrogenase long chain (ACADL), inhibitor of growth family member 4 (ING4) and annexin II (ANXA2) were expressed in at higher levels in the L2 strain. We suggest that our approach may lead to the isolation of effective molecular markers that can be used in selection programs in Taiwan country chickens.

  5. SDF-1/CXCR7 axis enhances ovarian cancer cell invasion by MMP-9 expression through p38 MAPK pathway.

    PubMed

    Yu, Yuecheng; Li, Hongmei; Xue, Baoyao; Jiang, Xia; Huang, Kan; Ge, Junli; Zhang, Hongju; Chen, Biliang

    2014-08-01

    Ovarian cancer is an aggressive gynecological malignancy with high metastatic potential. Recently, the CXC receptor (CXCR7) has been identified as a new receptor for stromal-derived factor-1 (SDF-1), and exerts important roles in cancer development. However, its effect on ovarian cancer and the underlying mechanism remain unknown. In this study, we detected abundant CXCR7 expression in ovarian cancer tissues and cells. Moreover, SDF-1 induced dramatically upregulation of CXCR7 mRNA and protein levels, indicating that the SDF-1/CXCR7 axis existed in ovarian cancer. Further analysis confirmed that SDF-1 enhanced cell adhesion and subsequent invasion, which were significantly attenuated when pretreated with CXCR7 small interference RNA (siRNA), indicating the critical function of SDF-1/CXCR7 in cell invasion. Further mechanistic analysis indicated that SDF-1/CXCR7 enhanced cell invasion by matrix metalloproteinase (MMP)-9, as pretreatment with MMP-9 siRNA significantly abrogated a number of invading cells. Additionally, SDF-1/CXCR7 induced phosphorylation of the p38 MAPK pathway, which was accounted for MMP-9 expression as preconditioning with the p38 MAPK inhibitor SB203580 obviously decreased MMP-9 expression. Together, our data implied that SDF-1/CXCR7 enhanced ovarian cancer cell invasion by MMP-9 expression through the p38 MAPK pathway. Thus, these findings confirmed the critical role of SDF-1/CXCR7 during the pathological processes of ovarian cancer and supported its potential targets for further development of antiovarian cancer therapy.

  6. Serum folate receptor alpha as a biomarker for ovarian cancer: Implications for diagnosis, prognosis and predicting its local tumor expression.

    PubMed

    Kurosaki, Akira; Hasegawa, Kosei; Kato, Tomomi; Abe, Kenji; Hanaoka, Tatsuya; Miyara, Akiko; O'Shannessy, Daniel J; Somers, Elizabeth B; Yasuda, Masanori; Sekino, Tetsuo; Fujiwara, Keiichi

    2016-04-15

    Folate receptor alpha (FRA) is a GPI-anchored glycoprotein and encoded by the FOLR1 gene. High expression of FRA is observed in specific malignant tumors of epithelial origin, including ovarian cancer, but exhibits very limited normal tissue expression, making it as an attractive target for the ovarian cancer therapy. FRA is known to shed from the cell surface into the circulation which allows for its measurement in the serum of patients. Recently, methods to detect the soluble form of FRA have been developed and serum FRA (sFRA) is considered a highly promising biomarker for ovarian cancer. We prospectively investigated the levels of sFRA in patients clinically suspected of having malignant ovarian tumors. A total of 231 patients were enrolled in this study and analyzed for sFRA as well as tumor expression of FRA by immunohistochemistry. High sFRA was predominantly observed in epithelial ovarian cancer patients, but not in patients with benign or borderline gynecological disease or metastatic ovarian tumors from advanced colorectal cancers. Levels of sFRA were highly correlated to clinical stage, tumor grade and histological type and demonstrated superior accuracy for the detection of ovarian cancer than did serum CA125. High sFRA was significantly associated with shorter progression-free survival in both early and advanced ovarian cancer patients. Finally, tumor FRA expression status was strongly correlated with sFRA levels. Taken together, these data suggest that sFRA might be a useful noninvasive serum biomarkers for future clinical trials assessing FRA-targeted therapy.

  7. FOXL2 transcriptionally represses Sf1 expression by antagonizing WT1 during ovarian development in mice

    PubMed Central

    Takasawa, Kei; Kashimada, Kenichi; Pelosi, Emanuele; Takagi, Masatoshi; Morio, Tomohiro; Asahara, Hiroshi; Schlessinger, David; Mizutani, Shuki; Koopman, Peter

    2014-01-01

    Steroidogenic factor 1 (SF1; Ad4BP/NR5A1) plays key roles in gonadal development. Initially, the Sf1 gene is expressed in mouse fetal gonads of both sexes, but later is up-regulated in testes and down-regulated in ovaries. While Sf1 expression is activated and maintained by Wilms tumor 1 (WT1) and LIM homeobox 9 (LHX9), the mechanism of sex-specific regulation remains unclear. We hypothesized that Sf1 is repressed by the transcription factor Forkhead box L2 (FOXL2) during ovarian development. In an in vitro system (TM3 cells), up-regulation of Sf1 by the WT1 splice variant WT1-KTS was antagonized by FOXL2, as determined by quantitative RT-PCR. Using reporter assays, we localized the Sf1 proximal promoter region involved in this antagonism to a 674-bp interval. A conserved FOXL2 binding site was identified in this interval by in vitro chromatin immunoprecipitation. Introducing mutations into this site abolished negative regulation by FOXL2 in reporter assays. Finally, in Foxl2-null mice, Sf1 expression was increased 2-fold relative to wild-type XX fetal gonads. Our results support the hypothesis that FOXL2 negatively regulates Sf1 expression by antagonizing WT1-KTS during early ovarian development in mice.—Takasawa, K., Kashimada, K., Pelosi, E., Takagi, M., Morio, T., Asahara, H., Schlessinger, D., Mizutani, S., Koopman, P. FOXL2 transcriptionally represses Sf1 expression by antagonizing WT1 during ovarian development in mice. PMID:24451388

  8. Rac1 expression in epithelial ovarian cancer: effect on cell EMT and clinical outcome.

    PubMed

    Leng, Ruobing; Liao, Gang; Wang, Haixia; Kuang, Jun; Tang, Liangdan

    2015-02-01

    Ras-related C3 botulinum toxin substrate 1 (rac1) has been implicated in tumor epithelial-mesenchymal transition (EMT); however, limited information is available regarding the role of rac1 in epithelial ovarian cancer (EOC). This study aimed to evaluate the correlation of rac1 expression with EMT and EOC prognosis. Rac1 protein levels of 150 EOC specimens were evaluated by immunohistochemical staining. Survival analysis was performed to determine the correlation between rac1 expression and survival. Cellular and molecular changes were also examined after rac1 in ovarian cancer cells was silenced in vitro and in vivo. The mechanism of rac1 on EMT was investigated by Western blot analysis. Rac1 was highly expressed in EOC. Rac1 overexpression was closely associated with advanced stage based on International Federation of Gynecology and Obstetrics, poor grade, serum Ca-125, and residual tumor size. Survival analyses demonstrated that patients with high rac1 expression levels were more susceptible to early tumor recurrence with very poor prognosis. This study revealed that rac1 downregulation decreased cell EMT and proliferation capability in vitro and in vivo. Rac1 expression possibly altered cell EMT by interacting with p21-activated kinase 1 and p38 mitogen-activated protein kinase signaling pathways. The present study showed that rac1 overexpression is associated with cell EMT and poor EOC prognosis. Rac1 possibly plays an important role in predicting EOC metastasis.

  9. Correlation of cytokines and inducible nitric oxide synthase expression with prognostic factors in ovarian cancer.

    PubMed

    Martins Filho, Agrimaldo; Jammal, Millena Prata; Côbo, Eliângela de Castro; Silveira, Thales Parenti; Adad, Sheila Jorge; Murta, Eddie Fernando Candido; Nomelini, Rosekeila Simões

    2014-01-01

    The study related the immunohistochemical staining of cytokines (IL2, IL5, IL6, IL8, IL10, and TNF-alpha), and iNOS staining with clinical and pathological parameters of patients with primary ovarian malignancy. We prospectively evaluated 40 patients who underwent surgical treatment in accordance with pre-established criteria and later confirmed diagnosis of ovarian cancer. Immunohistochemistry study for cytokines (IL2, IL5, IL6, IL8, IL10, TNF-alpha) and iNOS was performed. The evaluation of prognostic factors was performed using the Fisher's exact test. The significance level was less than 0.05. Histological grade 1 was significantly correlated with strong intensity for TNF-α (p=0.0028). In addition, early stages showed strong expression intensity of TNF-α, but this was at the limit of significance (p=0.0525). Strong staining immunohistochemical IL5 was related to disease-free survival less than or equal to 24 months, suggesting that a factor of poor prognosis, but there was no statistical significance (p=0.1771). There was no statistical significance in relation at other cytokines studied. Therefore, immunohistochemical staining in strong intensity for TNF-α was related to histological grade 1 and early stages of ovarian cancer in our sample of patients.

  10. FDG-PET-positive ovarian thecoma with GLUT5 expression: Five cases.

    PubMed

    Bono, Yukiko; Mizumoto, Yasunari; Nakamura, Mitsuhiro; Iwadare, Jyunpei; Obata, Takeshi; Fujiwara, Hiroshi

    2017-03-01

    Positron emission tomography (PET) with fluorodeoxyglucose F18 ((18) F-FDG) is useful for detecting malignancies, but benign lesions occasionally have false-positive (18) F-FDG uptake. Here, we report the cases of five postmenopausal women with solid ovarian tumors suspected to be ovarian cancer on magnetic resonance imaging and (18) F-FDG uptake. Mean age of the five patients was 57 years (range, 53-65 years). Average early standardized uptake value (SUV) of (18) F-FDG was 5.76 (range, 2.2-12.0) and delayed SUV was 6.56 (range, 2.4-13.8). In all five patients, frozen section diagnosis at surgery was thecoma, and bilateral salpingo-oophorectomy was performed. On immunohistochemistry, immunoreactive glucose transporter 5 (GLUT5) expression was detected in thecoma tissues. This case shows that thecoma sometimes has positive (18) F-FDG uptake on positron emission tomography-computed tomography (PET-CT), indicating the need for caution regarding false-positive PET-CT in patients with benign solid ovarian tumor.

  11. Overexpression of GAB2 in ovarian cancer cells promotes tumor growth and angiogenesis by upregulating chemokine expression

    PubMed Central

    Duckworth, C; Zhang, L; Carroll, S L; Ethier, S P; Cheung, H W

    2016-01-01

    We previously found that the scaffold adapter GRB2-associated binding protein 2 (GAB2) is amplified and overexpressed in a subset of primary high-grade serous ovarian cancers and cell lines. Ovarian cancer cells overexpressing GAB2 are dependent on GAB2 for activation of the phosphatidylinositol 3-kinase (PI3K) pathway and are sensitive to PI3K inhibition. In this study, we show an important role of GAB2 overexpression in promoting tumor angiogenesis by upregulating expression of multiple chemokines. Specifically, we found that suppression of GAB2 by inducible small hairpin RNA in ovarian cancer cells inhibited tumor cell proliferation, angiogenesis and peritoneal tumor growth in immunodeficient mice. Overexpression of GAB2 upregulated the secretion of several chemokines from ovarian cancer cells, including CXCL1, CXCL2 and CXCL8. The secreted chemokines not only signal through endothelial CXCR2 receptor in a paracrine manner to promote endothelial tube formation, but also act as autocrine growth factors for GAB2-induced transformation of fallopian tube secretory epithelial cells and clonogenic growth of ovarian cancer cells overexpressing GAB2. Pharmacological inhibition of inhibitor of nuclear factor kappa-B kinase subunit β (IKKβ), but not PI3K, mechanistic target of rapamycin (mTOR) or mitogen-activated protein kinase (MEK), could effectively suppress GAB2-induced chemokine expression. Inhibition of IKKβ augmented the efficacy of PI3K/mTOR inhibition in suppressing clonogenic growth of ovarian cancer cells with GAB2 overexpression. Taken together, these findings suggest that overexpression of GAB2 in ovarian cancer cells promotes tumor growth and angiogenesis by upregulating expression of CXCL1, CXCL2 and CXCL8 that is IKKβ-dependent. Co-targeting IKKβ and PI3K pathways downstream of GAB2 might be a promising therapeutic strategy for ovarian cancer that overexpresses GAB2. PMID:26657155

  12. Differentially expressed genes and gene networks involved in pig ovarian follicular atresia.

    PubMed

    Terenina, Elena; Fabre, Stephane; Bonnet, Agnès; Monniaux, Danielle; Robert-Granié, Christèle; SanCristobal, Magali; Sarry, Julien; Vignoles, Florence; Gondret, Florence; Monget, Philippe; Tosser-Klopp, Gwenola

    2017-02-01

    Ovarian folliculogenesis corresponds to the development of follicles leading to either ovulation or degeneration, this latter process being called atresia. Even if atresia involves apoptosis, its mechanism is not well understood. The objective of this study was to analyze global gene expression in pig granulosa cells of ovarian follicles during atresia. The transcriptome analysis was performed on a 9,216 cDNA microarray to identify gene networks and candidate genes involved in pig ovarian follicular atresia. We found 1,684 significantly regulated genes to be differentially regulated between small healthy follicles and small atretic follicles. Among them, 287 genes had a fold-change higher than two between the two follicle groups. Eleven genes (DKK3, GADD45A, CAMTA2, CCDC80, DAPK2, ECSIT, MSMB, NUPR1, RUNX2, SAMD4A, and ZNF628) having a fold-change higher than five between groups could likely serve as markers of follicular atresia. Moreover, automatic confrontation of deregulated genes with literature data highlighted 93 genes as regulatory candidates of pig granulosa cell atresia. Among these genes known to be inhibitors of apoptosis, stimulators of apoptosis, or tumor suppressors INHBB, HNF4, CLU, different interleukins (IL5, IL24), TNF-associated receptor (TNFR1), and cytochrome-c oxidase (COX) were suggested as playing an important role in porcine atresia. The present study also enlists key upstream regulators in follicle atresia based on our results and on a literature review. The novel gene candidates and gene networks identified in the current study lead to a better understanding of the molecular regulation of ovarian follicular atresia.

  13. Extracellular matrix proteins expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line.

    PubMed

    Januchowski, Radosław; Zawierucha, Piotr; Ruciński, Marcin; Nowicki, Michał; Zabel, Maciej

    2014-01-01

    Ovarian cancer is the leading cause of death among gynaecological malignancies. Extracellular matrix (ECM) can affect drug resistance by preventing the penetration of the drug into cancer cells and increased resistance to apoptosis. This study demonstrates alterations in the expression levels of ECM components and related genes in cisplatin-, doxorubicin-, topotecan-, and paclitaxel-resistant variants of the A2780 ovarian cancer cell line. Affymetrix Gene Chip Human Genome Array Strips were used for hybridisations. The genes that had altered expression levels in drug-resistant sublines were selected and filtered by scatter plots. The genes that were up- or downregulated more than fivefold were selected and listed. Among the investigated genes, 28 genes were upregulated, 10 genes were downregulated, and two genes were down- or upregulated depending on the cell line. Between upregulated genes 12 were upregulated very significantly--over 20-fold. These genes included COL1A2, COL12A1, COL21A1, LOX, TGFBI, LAMB1, EFEMP1, GPC3, SDC2, MGP, MMP3, and TIMP3. Four genes were very significantly downregulated: COL11A1, LAMA2, GPC6, and LUM. The expression profiles of investigated genes provide a preliminary insight into the relationship between drug resistance and the expression of ECM components. Identifying correlations between investigated genes and drug resistance will require further analysis.

  14. Expression Profiling of Primary and Metastatic Ovarian Tumors Reveals Differences Indicative of Aggressive Disease

    PubMed Central

    Brodsky, Alexander S.; Fischer, Andrew; Miller, Daniel H.; Vang, Souriya; MacLaughlan, Shannon; Wu, Hsin-Ta; Yu, Jovian; Steinhoff, Margaret; Collins, Colin; Smith, Peter J. S.; Raphael, Benjamin J.; Brard, Laurent

    2014-01-01

    The behavior and genetics of serous epithelial ovarian cancer (EOC) metastasis, the form of the disease lethal to patients, is poorly understood. The unique properties of metastases are critical to understand to improve treatments of the disease that remains in patients after debulking surgery. We sought to identify the genetic and phenotypic landscape of metastatic progression of EOC to understand how metastases compare to primary tumors. DNA copy number and mRNA expression differences between matched primary human tumors and omental metastases, collected at the same time during debulking surgery before chemotherapy, were measured using microarrays. qPCR and immunohistochemistry validated findings. Pathway analysis of mRNA expression revealed metastatic cancer cells are more proliferative and less apoptotic than primary tumors, perhaps explaining the aggressive nature of these lesions. Most cases had copy number aberrations (CNAs) that differed between primary and metastatic tumors, but we did not detect CNAs that are recurrent across cases. A six gene expression signature distinguishes primary from metastatic tumors and predicts overall survival in independent datasets. The genetic differences between primary and metastatic tumors, yet common expression changes, suggest that the major clone in metastases is not the same as in primary tumors, but the cancer cells adapt to the omentum similarly. Together, these data highlight how ovarian tumors develop into a distinct, more aggressive metastatic state that should be considered for therapy development. PMID:24732363

  15. Correlation of Cytohistlogical Expression and Serum Level of Ca125 in Ovarian Neoplasm

    PubMed Central

    Das, Chhanda; Mukhopadhyay, Madhumita; Ghosh, Tarun; Saha, Ashis Kumar; Sengupta, Moumita

    2014-01-01

    Context or Background: CA125 is a biomarker that has potential utility across the spectrum: risk assessment, early detection, diagnosis, prognosis, monitoring and therapy. Aims and Objectives: This study was conducted to establish the validity and reliability of correlation of CA125 serum level with immunochemistry expression in imprint cytology and tissues for diagnostic purpose. Materials and Methods: A prospective study was done on 50 cases of clinically and radiologically diagnosed ovarian tumor. Imprint smears were made intraoperatively from fresh samples and stained with M.G.G. stain for air dried smears and Papanicoloau stain for alcohol fixed smears. Stained smear was assessed and compared with subsequent histopathology report. Preoperative blood samples were obtained from all patients and sent for the assay of serum CA125 levels. Analysis of CA125 immunochemistry expression in imprint cytology and tissue was done and correlated with preoperative serum blood CA125 levels. Results: Significant positive correlation was found between elevated serum CA125 levels and cytohistological expression of CA125. Overall sensitivity was 100%, specificity was 86%, positive predictive value was 74% and negative predictive value 100%. Diagnostic accuracy was 90% with high statistical significance (p<0.001). Conclusion: We considered 35 U/mL as the cut-off value when evaluating serum CA125 ovarian cancer. Patients with high serum levels show good cytohistological expression. PMID:24783076

  16. Mammary serine protease inhibitor and CD138 immunohistochemical expression in ovarian serous and clear cell carcinomas.

    PubMed

    Hasby, Eiman Adel

    2016-04-01

    This study aims to investigate the immunohistochemical expression of mammary serine protease inhibitor (maspin) and CD138 in primary ovarian high-grade serous carcinomas (HGSC) as compared to low-grade serous carcinomas (LGSC) and clear cell carcinomas and investigate if the studied markers have a correlation to International Federation of Gynaecology and Obstetrics (FIGO) stage, Ki67 proliferation index, and to each other. Maspin cellular location varied significantly between studied groups with only nuclear expression seen in 46.7 % of LGSC group, mixed nuclear and cytoplasmic in 13.3, 28.6, and 20 % of LGSC, HGSC, and clear cell carcinoma, respectively, and was only cytoplasmic in 26.7, 71.4, and 80 % of LGSC, HGSC, and clear cell carcinoma, respectively. Mean maspin and CD138 counts were significantly higher in HGSC and clear cell carcinoma compared to LGSC. Both maspin and CD138 scores varied significantly between studied groups and were positively correlated with adverse prognostic factors in studied carcinomas including FIGO stage and Ki67 proliferation index. Besides, both maspin and CD138 had significant correlation to each other. These findings suggest that epithelial cytoplasmic expression of maspin and CD138 may have a significant role in tumorigenesis in ovarian high-grade serous carcinomas and clear cell carcinomas; these markers may regulate tumor cell proliferation, and their significant correlation to each other may suggest that CD138 probably induces maspin expression to protect tumor growth factors from being lysed by proteolytic enzymes.

  17. High concordance of gene expression profiling-correlated immunohistochemistry algorithms in diffuse large B-cell lymphoma, not otherwise specified.

    PubMed

    Hwang, Hee Sang; Park, Chan-Sik; Yoon, Dok Hyun; Suh, Cheolwon; Huh, Jooryung

    2014-08-01

    Diffuse large B-cell lymphoma (DLBCL) is classified into prognostically distinct germinal center B-cell (GCB) and activated B-cell subtypes by gene expression profiling (GEP). Recent reports suggest the role of GEP subtypes in targeted therapy. Immunohistochemistry (IHC) algorithms have been proposed as surrogates of GEP, but their utility remains controversial. Using microarray, we examined the concordance of 4 GEP-correlated and 2 non-GEP-correlated IHC algorithms in 381 DLBCLs, not otherwise specified. Subtypes and variants of DLBCL were excluded to minimize the possible confounding effect on prognosis and phenotype. Survival was analyzed in 138 cyclophosphamide, adriamycin, vincristine, and prednisone (CHOP)-treated and 147 rituximab plus CHOP (R-CHOP)-treated patients. Of the GEP-correlated algorithms, high concordance was observed among Hans, Choi, and Visco-Young algorithms (total concordance, 87.1%; κ score: 0.726 to 0.889), whereas Tally algorithm exhibited slightly lower concordance (total concordance 77.4%; κ score: 0.502 to 0.643). Two non-GEP-correlated algorithms (Muris and Nyman) exhibited poor concordance. Compared with the Western data, incidence of the non-GCB subtype was higher in all algorithms. Univariate analysis showed prognostic significance for Hans, Choi, and Visco-Young algorithms and BCL6, GCET1, LMO2, and BCL2 in CHOP-treated patients. On multivariate analysis, Hans algorithm retained its prognostic significance. By contrast, neither the algorithms nor individual antigens predicted survival in R-CHOP treatment. The high concordance among GEP-correlated algorithms suggests their usefulness as reliable discriminators of molecular subtype in DLBCL, not otherwise specified. Our study also indicates that prognostic significance of IHC algorithms may be limited in R-CHOP-treated Asian patients because of the predominance of the non-GCB type.

  18. Aberrant expression of JNK-associated leucine-zipper protein, JLP, promotes accelerated growth of ovarian cancer

    PubMed Central

    Gomathinayagam, Rohini; Jayaraman, Muralidharan; Husain, Sanam; Liu, Jinsong; Mukherjee, Priyabrata; Reddy, E. Premkumar; Song, Yong Sang; Dhanasekaran, Danny N.

    2016-01-01

    Ovarian cancer is the most fatal gynecologic cancer with poor prognosis. Etiological factors underlying ovarian cancer genesis and progression are poorly understood. Previously, we have shown that JNK-associated Leucine zipper Protein (JLP), promotes oncogenic signaling. Investigating the role of JLP in ovarian cancer, our present study indicates that JLP is overexpressed in ovarian cancer tissue and ovarian cancer cells. Transient overexpression of JLP promotes proliferation and invasive migration of ovarian cancer cells. In addition, ectopic expression of JLP confers long-term survival and clonogenic potential to normal fallopian tube-derived epithelial cells. Coimmunoprecipitation and colocalization analyses demonstrate the in vivo interaction of JLP and JNK, which is stimulated by lysophosphatidic acid (LPA), an oncogenic lipid growth factor in ovarian cancer. We also show that LPA stimulates the translocation of JLP-JNK complex to the perinuclear region of SKOV3-ip cells. JLP-knockdown using shRNA abrogates LPA-stimulated activation of JNK as well as LPA-stimulated proliferation and invasive migration of SKOV3-ip cells. Studies using ovarian cancer xenograft mouse model indicate that the mice bearing JLP-silenced xenografts exhibits reduced tumor volume. Analysis of the xenograft tumor tissues indicate a reduction in the levels of JLP, JNK, phosphorylated-JNK, c-Jun and phosphorylated-c-Jun in JLP-silenced xenografts, thereby correlating the attenuated JLP-JNK signaling node with suppressed tumor growth. Thus, our results identify a critical role for JLP-signaling axis in ovarian cancer and provide evidence that targeting this signaling node could provide a new avenue for therapy. PMID:27655714

  19. Regulation of HSulf-1 expression by variant hepatic nuclear factor 1 (vHNF1) in ovarian cancer

    PubMed Central

    Liu, Peng; Khurana, Ashwani; Rattan, Ramandeep; He, Xiaoping; Kalloger, Steve; Dowdy, Sean; Gilks, Blake; Shridhar, Viji

    2009-01-01

    We recently identified HSulf-1 as a downregulated gene in ovarian carcinomas. Our previous analysis indicated that HSulf-1 inactivation in ovarian cancers is partly mediated by loss of heterozygosity (LOH) and epigenetic silencing. Here we demonstrate that variant hepatic nuclear factor 1 (vHNF1), encoded by transcription factor 2 gene (TCF2, HNF-1β) negatively regulates HSulf-1 expression in ovarian cancer. Immunoblot assay revealed that vHNF1 is highly expressed in HSulf-1 deficient OV207, SKOV3 and TOV-21G cell lines but not in HSulf-1 expressing OSE, OV167 and OV202 cells. By shRNA-mediated downregulation of vHNF1 in TOV21-G cells and transient enhanced vHNF1 expression in OV202 cells, we showed that vHNF1 suppresses HSulf-1 expression in ovarian cancer cell lines. Reporter assay and chromatin immunoprecipitation (ChIP) experiments showed that vHNF1 is specifically recruited to HSulf-1 promoter at two different vHNF1 responsive elements in OV207 and TOV-21G cells. Additionally, downregulation of vHNF1 expression in OV207 and TOV-21G cells increased cisplatin- or paclitaxel-mediated cytotoxicity as determined by both MTT and clonogenic assays and this effect was reversed by downregulation of HSulf-1. Moreover, nude mice bearing TOV-21G cell xenografts with stably downregulated vHNF1 were more sensitive to cisplatin-or paclitaxel-induced cytotoxicity compared to xenografts of TOV-21G clonal lines with nontargeted control shRNA. Finally, immunohistochemical analysis of 501 ovarian tumors including 140 clear cell tumors on tissue microarrays showed that vHNF1 inversely correlates to HSulf-1 expression. Collectively, these results indicate that vHNF1 acts as a repressor of HSulf-1 expression and might be a molecular target for ovarian cancer therapy. PMID:19487294

  20. Toll-Like Receptors Expression in Follicular Cells of Patients with Poor Ovarian Response

    PubMed Central

    Taghavi, Seyed Abdolvahab; Ashrafi, Mahnaz; Mehdizadeh, Mehdi; Karimian, Leili; Joghataie, Mohammad Taghi; Aflatoonian, Reza

    2014-01-01

    Background Poor ovarian response (POR) to gonadotropin stimulation has led to a significant decline in success rate of fertility treatment. The immune system may play an important role in pathophysiology of POR by dysfunctions of cytokines and the growth factor network, and the presence of ovarian auto-antibodies. The aim of this study is to investigate the expression of toll-like receptors (TLR) 1, 2, 4, 5, 6 and cyclooxygenase (COX) 2 genes in follicular cells and concentration of interleukin (IL)-6, IL-8 and macrophage migration inhibitory factor (MIF), as major parts of innate immunity, in follicular fluid (FF) obtained from POR women in comparison with normal women. Materials and Methods In this case-control study, 20 infertile POR patients and 20 normal women took part in this study and underwent controlled ovarian stimulation. The FF was obtained from the largest follicle (>18 mm). The FF was centrifuged and cellular pellet was then used for evaluation of expression of TLRs and COX2 genes by real-time PCR. FF was used for quantitative analysis for IL-6, IL-8 and MIF by enzyme-linked immunosorbent assay (ELISA). Results TLR1, 2, 4, 5, 6 and COX2 gene expression were significantly higher in POR (p<0.05). Concentration of IL-6, IL-8 and MIF proteins was significantly increased in POR compared with normal women (p<0.05). Conclusion These findings support the hypothesis that the immune system may be involved in pathophysiology of POR through TLRs. PMID:25083184

  1. Candidate Gene Expression in Bos indicus Ovarian Tissues: Prepubertal and Postpubertal Heifers in Diestrus

    PubMed Central

    Weller, Mayara Morena Del Cambre Amaral; Fortes, Marina Rufino S.; Porto-Neto, Laercio R.; Kelly, Matthew; Venus, Bronwyn; Kidd, Lisa; do Rego, João Paulo Arcelino; Edwards, Sophia; Boe-Hansen, Gry B.; Piper, Emily; Lehnert, Sigrid A.; Guimarães, Simone Eliza Facioni; Moore, Stephen Stewart

    2016-01-01

    Growth factors such as bone morphogenetic proteins 6, 7, 15, and two isoforms of transforming growth factor-beta (BMP6, BMP7, BMP15, TGFB1, and TGFB2), and insulin-like growth factor system act as local regulators of ovarian follicular development. To elucidate if these factors as well as others candidate genes, such as estrogen receptor 1 (ESR1), growth differentiation factor 9 (GDF9), follicle-stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), bone morphogenetic protein receptor, type 2 (BMPR2), type 1 insulin-like growth factor receptor (IGFR1), and key steroidogenic enzymes cytochrome P450 aromatase and 3-β-hydroxysteroid dehydrogenase (CYP19A1 and HSD3B1) could modulate or influence diestrus on the onset of puberty in Brahman heifers, their ovarian mRNA expression was measured before and after puberty (luteal phase). Six postpubertal (POST) heifers were euthanized on the luteal phase of their second cycle, confirmed by corpus luteum observation, and six prepubertal (PRE) heifers were euthanized in the same day. Quantitative real-time PCR analysis showed that the expression of FSHR, BMP7, CYP19A1, IGF1, and IGFR1 mRNA was greater in PRE heifers, when contrasted to POST heifers. The expression of LHR and HSD3B1 was lower in PRE heifers. Differential expression of ovarian genes could be associated with changes in follicular dynamics and different cell populations that have emerged as consequence of puberty and the luteal phase. The emerging hypothesis is that BMP7 and IGF1 are co-expressed and may modulate the expression of FSHR, LHR and IGFR1, and CYP19A1. BMP7 could influence the downregulation of LHR and upregulation of FSHR and CYP19A1, which mediates the follicular dynamics in heifer ovaries. Upregulation of IGF1 expression prepuberty, compared to postpuberty diestrus, correlates with increased levels FSHR and CYP19A1. Thus, BMP7 and IGF1 may play synergic roles and were predicted to interact, from the expression data (P = 0.07, r

  2. Expression and activity analysis of a new fusion protein targeting ovarian cancer cells.

    PubMed

    Su, Manman; Chang, Weiqin; Wang, Dingding; Cui, Manhua; Lin, Yang; Wu, Shuying; Xu, Tianmin

    2015-09-01

    The aim of the present study was to develop a new therapeutic drug to improve the prognosis of ovarian cancer patients. Human urokinase-type plasminogen activator (uPA)17-34-kunitz-type protease inhibitor (KPI) eukaryotic expression vector was constructed and recombinant human uPA17-34-KPI (rhuPA17-34-KPI) in P. pastoris was expressed. In the present study, the DNA sequences that encode uPA 17-34 amino acids were created according to the native amino acids sequence and inserted into the KPI-pPICZαC vector, which was constructed. Then, uPA17‑34-KPI-pPICZαC was transformed into P. pastoris X-33, and rhuPA17-34-KPI was expressed by induction of methanol. The bioactivities of a recombinant fusion protein were detected with trypsin inhibition analysis, and the inhibitory effects on the growth of ovarian cancer cells were identified using the TUNEL assay, in vitro wound‑healing assay and Matrigel model analysis. The results of the DNA sequence analysis of the recombinant vector uPA17-34-KPI‑pPICZα demonstrated that the DNA‑encoding human uPA 17-34 amino acids, 285-288 amino acids of amyloid precursor protein (APP) and 1-57 amino acids of KPI were correctly inserted into the pPICZαC vector. Following induction by methonal, the fusion protein with a molecular weight of 8.8 kDa was observed using SDS-PAGE and western blot analysis. RhuPA17-34-KPI was expressed in P. pastoris with a yield of 50 mg/l in a 50-ml tube. The recombinant fusion protein was able to inhibit the activity of trypsin, inhibit growth and induce apoptosis of SKOV3 cells, and inhibit the invasion and metastasis of ovarian cancer cells. By considering uPA17-34 amino acid specific binding uPAR as the targeted part of fusion protein and utilizing the serine protease inhibitor activity of KPI, it was found that the recombinant fusion protein uPA17-34-KPI inhibited the invasion and metastasis of ovarian tumors, and may therefore be regarded as effective in targeted treatment.

  3. High expression of S100P is associated with unfavorable prognosis and tumor progression in patients with epithelial ovarian cancer

    PubMed Central

    Wang, Xiangyu; Tian, Tian; Li, Xukun; Zhao, Meng; Lou, Yanhui; Qian, Jingfeng; Liu, Zhihua; Chen, Hongyan; Cui, Zhumei

    2015-01-01

    Accumulating evidence has demonstrated that S100P is involved in the tumorigenesis and progression of multiple cancers. In the current study, we evaluated the expression of S100P in epithelial ovarian cancer and assessed its relevance to clinicopathological characteristics. Moreover, we investigated the biological effects of S100P using A2780 and SKOV3 cells. S100P expression was significantly increased in epithelial ovarian cancer specimens compared with fallopian tube tissues and normal ovary tissues. And high expression of S100P in epithelial ovarian cancer samples was significantly associated with tumor stage (P<0.001), serum CA125 level (P=0.026), residual tumor (P<0.001), ascites (P<0.001) and lymph nodes metastasis (P<0.001). Multivariate Cox analysis showed that S100P expression was an independent prognostic factor of overall survival (OS) and progression free survival (PFS) (P=0.017 and 0.031, respectively). Functional assays showed that overexpression of S100P promoted cell proliferation and cell cycle progression but did not affect cell migration and invasion in A2780 and SKOV3 cells. These data suggest that S100P may contribute to tumor development in epithelial ovarian cancer and could be a useful marker for the prognosis of epithelial ovarian cancer patients. PMID:26396916

  4. Transcription factor AP-2γ induces early Cdx2 expression and represses HIPPO signaling to specify the trophectoderm lineage

    PubMed Central

    Cao, Zubing; Carey, Timothy S.; Ganguly, Avishek; Wilson, Catherine A.; Paul, Soumen; Knott, Jason G.

    2015-01-01

    Cell fate decisions are fundamental to the development of multicellular organisms. In mammals the first cell fate decision involves segregation of the pluripotent inner cell mass and the trophectoderm, a process regulated by cell polarity proteins, HIPPO signaling and lineage-specific transcription factors such as CDX2. However, the regulatory mechanisms that operate upstream to specify the trophectoderm lineage have not been established. Here we report that transcription factor AP-2γ (TFAP2C) functions as a novel upstream regulator of Cdx2 expression and position-dependent HIPPO signaling in mice. Loss- and gain-of-function studies and promoter analysis revealed that TFAP2C binding to an intronic enhancer is required for activation of Cdx2 expression during early development. During the 8-cell to morula transition TFAP2C potentiates cell polarity to suppress HIPPO signaling in the outside blastomeres. TFAP2C depletion triggered downregulation of PARD6B, loss of apical cell polarity, disorganization of F-actin, and activation of HIPPO signaling in the outside blastomeres. Rescue experiments using Pard6b mRNA restored cell polarity but only partially corrected position-dependent HIPPO signaling, suggesting that TFAP2C negatively regulates HIPPO signaling via multiple pathways. Several genes involved in regulation of the actin cytoskeleton (including Rock1, Rock2) were downregulated in TFAP2C-depleted embryos. Inhibition of ROCK1 and ROCK2 activity during the 8-cell to morula transition phenocopied TFAP2C knockdown, triggering a loss of position-dependent HIPPO signaling and decrease in Cdx2 expression. Altogether, these results demonstrate that TFAP2C facilitates trophectoderm lineage specification by functioning as a key regulator of Cdx2 transcription, cell polarity and position-dependent HIPPO signaling. PMID:25858457

  5. Expression of matrix metalloproteinases and ovarian morphological changes in androgenized cyclic female guinea pigs.

    PubMed

    Li, Jun-rong; Shen, Ting; Wang, Yan-li; Wei, Quan-wei; Shi, Fang-xiong

    2016-02-01

    This study was conducted to investigate expression of matrix metalloproteinases (MMPs) and ovarian morphological changes in androgenized cyclic female guinea pigs. Adult cyclic female guinea pigs were injected daily for 28 days with medium doses of testosterone propionate (TP; 1 mg/100g), high doses of TP (2 mg/100g), or saline (control). Serum concentrations of testosterone, estradiol (E2), and progesterone (P4) were measured. Histologic sections of ovaries were stained with hematoxylin-eosin and by immunohistochemistry. Expressions of steroidogenic acute regulatory protein, proliferating cell nuclear antigen, and MMP-2 and MMP-9 in the ovary were characterized by immunohistochemistry. After 28 days of TP injection, serum testosterone concentrations were increased dose-dependently. An appropriate dosage of TP could induce permanent anovulation in guinea pigs, making them a potential model for human polycystic ovary syndrome. MMP-2 and MMP-9 are jointly involved in the growth and atresia of ovarian follicles in cyclic guinea pigs. Increased numbers of atretic antral follicles in the ovary might be associated with the observed high expression of MMP-2 in androgenized cyclic guinea pigs.

  6. Regulation of copper transporter 2 expression by copper and cisplatin in human ovarian carcinoma cells.

    PubMed

    Blair, Brian G; Larson, Christopher A; Adams, Preston L; Abada, Paolo B; Safaei, Roohangiz; Howell, Stephen B

    2010-06-01

    Down-regulation of copper transporter 1 (CTR1) reduces uptake and sensitivity, whereas down-regulation of CTR2 enhances both. Cisplatin (DDP) triggers the rapid degradation of CTR1 and thus limits its own accumulation. We sought to determine the effect of DDP and copper on the expression of CTR2. Changes in CTR1 and CTR2 mRNA and protein levels in human ovarian carcinoma 2008 cells and ATOX1(+/+) and ATOX1(-/-) mouse embryo fibroblasts in response to exposure to DDP and copper were measured by quantitative reverse transcriptase-polymerase chain reaction, Western blot analysis, and deconvolution microscopy. DDP triggered rapid degradation of CTR1 in 2008 human ovarian cancer cells. However, it increased the expression of CTR2 mRNA and protein levels. Expression of CTR2 was heavily modulated by changes in intracellular copper concentration; copper depletion produced rapid disappearance of CTR2, whereas excess copper increased the level of CTR2 protein. This increase was associated with an increase in CTR2 mRNA and prolongation of the CTR2 half-life. Consistent with prior observations that short hairpin RNA interference-mediated knockdown of CTR2 enhanced DDP uptake and tumor cell kill, reduction of CTR2 by copper starvation also enhanced DDP uptake and cytotoxicity. Comparison of the ability of copper and DDP to modulate the expression of CTR1 in ATOX1(+/+) and ATOX1(-/-) indicated that ATOX1 participates in the regulation of CTR2 expression. Unlike CTR1, the expression of CTR2 is increased rather than decreased by DDP. Therefore, these two copper transporters have opposite effects on DDP sensitivity. CTR2 expression is regulated by copper availability via the copper-dependent regulator ATOX1.

  7. Regulation of Copper Transporter 2 Expression by Copper and Cisplatin in Human Ovarian Carcinoma Cells

    PubMed Central

    Blair, Brian G.; Larson, Christopher A.; Adams, Preston L.; Abada, Paolo B.; Safaei, Roohangiz

    2010-01-01

    Down-regulation of copper transporter 1 (CTR1) reduces uptake and sensitivity, whereas down-regulation of CTR2 enhances both. Cisplatin (DDP) triggers the rapid degradation of CTR1 and thus limits its own accumulation. We sought to determine the effect of DDP and copper on the expression of CTR2. Changes in CTR1 and CTR2 mRNA and protein levels in human ovarian carcinoma 2008 cells and ATOX1(+/+) and ATOX1(−/−) mouse embryo fibroblasts in response to exposure to DDP and copper were measured by quantitative reverse transcriptase-polymerase chain reaction, Western blot analysis, and deconvolution microscopy. DDP triggered rapid degradation of CTR1 in 2008 human ovarian cancer cells. However, it increased the expression of CTR2 mRNA and protein levels. Expression of CTR2 was heavily modulated by changes in intracellular copper concentration; copper depletion produced rapid disappearance of CTR2, whereas excess copper increased the level of CTR2 protein. This increase was associated with an increase in CTR2 mRNA and prolongation of the CTR2 half-life. Consistent with prior observations that short hairpin RNA interference-mediated knockdown of CTR2 enhanced DDP uptake and tumor cell kill, reduction of CTR2 by copper starvation also enhanced DDP uptake and cytotoxicity. Comparison of the ability of copper and DDP to modulate the expression of CTR1 in ATOX1(+/+) and ATOX1(−/−) indicated that ATOX1 participates in the regulation of CTR2 expression. Unlike CTR1, the expression of CTR2 is increased rather than decreased by DDP. Therefore, these two copper transporters have opposite effects on DDP sensitivity. CTR2 expression is regulated by copper availability via the copper-dependent regulator ATOX1. PMID:20194531

  8. β-Catenin Expression Pattern in Stage I and II Ovarian Carcinomas

    PubMed Central

    Gamallo, Carlos; Palacios, José; Moreno, Gema; Calvo de Mora, Jorge; Suárez, Asunción; Armas, Alvaro

    1999-01-01

    The immunohistochemical expression pattern of β-catenin has been correlated with β-catenin gene mutations, clinicopathological features, and disease outcome in 69 stage I and II ovarian carcinomas. β-Catenin expression was localized in the nuclei, in addition to the cytoplasm and membrane, in 11 tumors (16%): nine endometrioid carcinomas with widespread nuclear expression and two serous carcinomas with focal nuclear expression. The remaining 58 carcinomas (84%) only had membranous β-catenin expression. All but one of the endometrioid carcinomas with nuclear β-catenin expression had considerable squamous metaplasia, and five of these cases had large areas of endometrioid tumor of low malignant potential. In addition, β-catenin nuclear expression was observed in atypical epithelial cells in endometriotic glands adjacent to an endometrioid carcinoma. Sequencing was performed on 25 tumors and corresponding normal tissue: all 13 endometrioid tumors as well as 12 carcinomas of other histological types (four serous, two clear cell, two mucinous, and two mixed). There were oncogenic mutations in the phosphorylation sequence for GSK-3β in exon 3 of the β-catenin gene in seven endometrioid carcinomas with β-catenin nuclear expression. Three mutations affected codon 32 (D32G, D32Y, and D32Y), one affected codon 33 (S33C), two affected codon 37 (S37C and S37F), and one affected codon 41 (T41A). No mutations were observed in the other 18 carcinomas analyzed, comprising two endometrioid and two serous carcinomas with β-catenin nuclear expression, and 14 carcinomas of different histological types with only membranous expression. In the univariate and multivariate survival analyses, β-catenin nuclear expression was selected as an indicator of good prognosis, because no patient whose tumor expressed β-catenin in the nuclei showed relapses or died, in contrast to the 19 relapses and deaths among patients with tumors that only had β-catenin membranous expression

  9. Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats

    SciTech Connect

    Armenti, AnnMarie E.; Zama, Aparna Mahakali; Passantino, Lisa; Uzumcu, Mehmet

    2008-12-01

    Methoxychlor (MXC) is an organochlorine pesticide with estrogenic, anti-estrogenic, and anti-androgenic properties. To investigate whether transient developmental exposure to MXC could cause adult ovarian dysfunction, we exposed Fischer rats to 20 {mu}g/kg/day (low dose; environmentally relevant dose) or 100 mg/kg/day (high dose) MXC between 19 days post coitum and postnatal day 7. Multiple reproductive parameters, serum hormone levels, and ovarian morphology and molecular markers were examined from prepubertal through adult stages. High dose MXC accelerated pubertal onset and first estrus, reduced litter size, and increased irregular cyclicity (P < 0.05). MXC reduced superovulatory response to exogenous gonadotropins in prepubertal females (P < 0.05). Rats exposed to high dose MXC had increasing irregular estrous cyclicity beginning at 4 months of age, with all animals showing abnormal cycles by 6 months. High dose MXC reduced serum progesterone, but increased luteinizing hormone (LH). Follicular composition analysis revealed an increase in the percentage of preantral and early antral follicles and a reduction in the percentage of corpora lutea in high dose MXC-treated ovaries (P < 0.05). Immunohistochemical staining and quantification of the staining intensity showed that estrogen receptor {beta} was reduced by high dose MXC while anti-Mullerian hormone was upregulated by both low- and high dose MXC in preantral and early antral follicles (P < 0.05). High dose MXC significantly reduced LH receptor expression in large antral follicles (P < 0.01), and down-regulated cytochrome P450 side-chain cleavage. These results demonstrated that developmental MXC exposure results in reduced ovulation and fertility and premature aging, possibly by altering ovarian gene expression and folliculogenesis.

  10. Effects of deletion of the prolactin receptor on ovarian gene expression

    PubMed Central

    Grosdemouge, Isabelle; Bachelot, Anne; Lucas, Aurélie; Baran, Nathalie; Kelly, Paul A; Binart, Nadine

    2003-01-01

    Prolactin (PRL) exerts pleiotropic physiological effects in various cells and tissues, and is mainly considered as a regulator of reproduction and cell growth. Null mutation of the PRL receptor (R) gene leads to female sterility due to a complete failure of embryo implantation. Pre-implantatory egg development, implantation and decidualization in the mouse appear to be dependent on ovarian rather than uterine PRLR expression, since progesterone replacement permits the rescue of normal implantation and early pregnancy. To better understand PRL receptor deficiency, we analyzed in detail ovarian and corpora lutea development of PRLR-/- females. The present study demonstrates that the ovulation rate is not different between PRLR+/+ and PRLR-/- mice. The corpus luteum is formed but an elevated level of apoptosis and extensive inhibition of angiogenesis occur during the luteal transition in the absence of prolactin signaling. These modifications lead to the decrease of LH receptor expression and consequently to a loss of the enzymatic cascades necessary to produce adequate levels of progesterone which are required for the maintenance of pregnancy. PMID:12646063

  11. Expressed microRNA associated with high rate of egg production in chicken ovarian follicles.

    PubMed

    Wu, N; Gaur, U; Zhu, Q; Chen, B; Xu, Z; Zhao, X; Yang, M; Li, D

    2016-10-26

    MicroRNA (miRNA) is a highly conserved class of small noncoding RNA about 19-24 nucleotides in length that function in a specific manner to post-transcriptionally regulate gene expression in organisms. Tissue miRNA expression studies have discovered a myriad of functions for miRNAs in various aspects, but a role for miRNAs in chicken ovarian tissue at 300 days of age has not hitherto been reported. In this study, we performed the first miRNA analysis of ovarian tissues in chickens with low and high rates of egg production using high-throughput sequencing. By comparing low rate of egg production chickens with high rate of egg production chickens, 17 significantly differentially expressed miRNAs were found (P < 0.05), including 11 known and six novel miRNAs. We found that all 11 known miRNAs were involved mainly in pathways of reproduction regulation, such as steroid hormone biosynthesis and dopaminergic synapse. Additionally, expression profiling of six randomly selected differentially regulated miRNAs were validated by quantitative real-time polymerase chain reaction (RT-qPCR). Some miRNAs, such as gga-miR-34b, gga-miR-34c and gga-miR-216b, were reported to regulate processes such as proliferation, cell cycle, apoptosis and metastasis and were expressed differentially in ovaries of chickens with high rates of egg production, suggesting that these miRNAs have an important role in ovary development and reproductive management of chicken. Furthermore, we uncovered that a significantly up-regulated miRNA-gga-miR-200a-3p-is ubiquitous in reproduction-regulation-related pathways. This miRNA may play a special central role in the reproductive management of chicken, and needs to be further studied for confirmation.

  12. Ovarian dysgerminomas are characterised by frequent KIT mutations and abundant expression of pluripotency markers

    PubMed Central

    Hoei-Hansen, Christina E; Kraggerud, Sigrid M; Abeler, Vera M; Kærn, Janne; Rajpert-De Meyts, Ewa; Lothe, Ragnhild A

    2007-01-01

    Background Ovarian germ cell tumours (OGCTs) typically arise in young females and their pathogenesis remains poorly understood. We investigated the origin of malignant OGCTs and underlying molecular events in the development of the various histological subtypes of this neoplasia. Results We examined in situ expression of stem cell-related (NANOG, OCT-3/4, KIT, AP-2γ) and germ cell-specific proteins (MAGE-A4, NY-ESO-1, TSPY) using a tissue microarray consisting of 60 OGCT tissue samples and eight ovarian small cell carcinoma samples. Developmental pattern of expression of NANOG, TSPY, NY-ESO-1 and MAGE-A4 was determined in foetal ovaries (gestational weeks 13–40). The molecular genetic part of our study included search for the presence of Y-chromosome material by fluorescence in situ hybridisation (FISH), and mutational analysis of the KIT oncogene (exon 17, codon 816), which is often mutated in testicular GCTs, in a subset of tumour DNA samples. We detected a high expression of transcription factors related to the embryonic stem cell-like pluripotency and undifferentiated state in OGCTs, but not in small cell carcinomas, supporting the view that the latter do not arise from a germ cell progenitor. Bilateral OGCTs expressed more stem cell markers than unilateral cases. However, KIT was mutated in 5/13 unilateral dysgerminomas, whereas all bilateral dysgerminomas (n = 4) and all other histological types (n = 22) showed a wild type sequence. Furthermore, tissue from five phenotypic female patients harbouring combined dysgerminoma/gonadoblastoma expressed TSPY and contained Y-chromosome material as confirmed by FISH. Conclusion This study provides new data supporting two distinct but overlapping pathways in OGCT development; one involving spontaneous KIT mutation(s) leading to increased survival and proliferation of undifferentiated oogonia, the other related to presence of Y chromosome material and ensuing gonadal dysgenesis in phenotypic females. PMID:17274819

  13. Decreased expression of RNA interference machinery, Dicer and Drosha, is associated with poor outcome in ovarian cancer patients

    SciTech Connect

    Merritt, William M.; Lin, Yvonne G.; Han, Liz Y.; Kamat, Aparna A.; Spannuth, Whitney A.; Schmandt, Rosemarie; Urbauer, Diana; Pennacchio, Len A.; Cheng, Jan-Fang; Zeidan, Alexandra; Wang, Hua; Mueller, Peter; Lenburg, Marc E.; Gray, Joe W.; Mok, Samuel; Birrer, Michael J.; Lopez-Berestein, Gabriel; Coleman, Robert L.; Bar-Eli, Menashe; Sood, Anil K.

    2008-05-06

    The clinical and functional significance of RNA interference (RNAi) machinery, Dicer and Drosha, in ovarian cancer is not known and was examined. Dicer and Drosha expression was measured in ovarian cancer cell lines (n=8) and invasive epithelial ovarian cancer specimens (n=111) and correlated with clinical outcome. Validation was performed with previously published cohorts of ovarian, breast, and lung cancer patients. Anti-Galectin-3 siRNA and shRNA transfections were used for in vitro functional studies. Dicer and Drosha mRNA and protein levels were decreased in 37% to 63% of ovarian cancer cell lines and in 60% and 51% of human ovarian cancer specimens, respectively. Low Dicer was significantly associated with advanced tumor stage (p=0.007), and low Drosha with suboptimal surgical cytoreduction (p=0.02). Tumors with both high Dicer and Drosha were associated with increased median patient survival (>11 years vs. 2.66 years for other groups; p<0.001). In multivariate analysis, high Dicer (HR=0.48; p=0.02), high-grade histology (HR=2.46; p=0.03), and poor chemoresponse (HR=3.95; p<0.001) were identified as independent predictors of disease-specific survival. Findings of poor clinical outcome with low Dicer expression were validated in separate cohorts of cancer patients. Galectin-3 silencing with siRNA transfection was superior to shRNA in cell lines with low Dicer (78-95% vs. 4-8% compared to non-targeting sequences), and similar in cell lines with high Dicer. Our findings demonstrate the clinical and functional impact of RNAi machinery alterations in ovarian carcinoma and support the use of siRNA constructs that do not require endogenous Dicer and Drosha for therapeutic applications.

  14. Adipocyte microenvironment promotes Bclxl expression and confers chemoresistance in ovarian cancer cells.

    PubMed

    Cardenas, Carlos; Montagna, Michele K; Pitruzzello, Mary; Lima, Eydis; Mor, Gil; Alvero, Ayesha B

    2017-04-01

    Resistance to mitochondria-initiated apoptosis is a hallmark of chemoresistant cancer stem cells including CD44+/MyD88+ epithelial ovarian cancer (EOC) stem cells. This is controlled by members of the Bcl2 family of proteins, which function as rheostats of mitochondrial stability. We observed a differential expression profile of Bcl2 family members comparing the chemoresistant EOC stem cells and the chemosensitive CD44-/MyD88- EOC cells. Chemoresistant EOC stem cells surprisingly express higher levels of the pro-apoptotic members Bak and Bax compared to the chemosensitive EOC cells. In addition, whereas chemosensitive EOC cells preferentially express Bcl2, chemoresistant EOC stem cells preferentially express Bclxl. In the EOC stem cells, 40% knock-down of Bclxl expression was sufficient to induce the full activation of caspases and this can be reversed by concurrent knock-down of Puma. More importantly, we demonstrate that Bclxl expression levels in EOC cells is dynamic and can be regulated by microenvironments that are enriched with the pro-inflammatory cytokine IL-6 such as the cancer stem cell and adipocyte niches. Adipocyte-induced upregulation of Bclxl correlated with acquisition of chemoresistance and thus demonstrates how a specific microenvironment can regulate the expression of apoptotic proteins and confer chemoresistance.

  15. ST6Gal-I expression in ovarian cancer cells promotes an invasive phenotype by altering integrin glycosylation and function

    PubMed Central

    Christie, Daniel R; Shaikh, Faheem M; Lucas, John A; Lucas, John A; Bellis, Susan L

    2008-01-01

    Background Ovarian adenocarcinoma is not generally discovered in patients until there has been widespread intraperitoneal dissemination, which is why ovarian cancer is the deadliest gynecologic malignancy. Though incompletely understood, the mechanism of peritoneal metastasis relies on primary tumor cells being able to detach themselves from the tumor, escape normal apoptotic pathways while free floating, and adhere to, and eventually invade through, the peritoneal surface. Our laboratory has previously shown that the Golgi glycosyltransferase, ST6Gal-I, mediates the hypersialylation of β1 integrins in colon adenocarcinoma, which leads to a more metastatic tumor cell phenotype. Interestingly, ST6Gal-I mRNA is known to be upregulated in metastatic ovarian cancer, therefore the goal of the present study was to determine whether ST6Gal-I confers a similarly aggressive phenotype to ovarian tumor cells. Methods Three ovarian carcinoma cell lines were screened for ST6Gal-I expression, and two of these, PA-1 and SKOV3, were found to produce ST6Gal-I protein. The third cell line, OV4, lacked endogenous ST6Gal-I. In order to understand the effects of ST6Gal-I on cell behavior, OV4 cells were stably-transduced with ST6Gal-I using a lentiviral vector, and integrin-mediated responses were compared in parental and ST6Gal-I-expressing cells. Results Forced expression of ST6Gal-I in OV4 cells, resulting in sialylation of β1 integrins, induced greater cell adhesion to, and migration toward, collagen I. Similarly, ST6Gal-I expressing cells were more invasive through Matrigel. Conclusion ST6Gal-I mediated sialylation of β1 integrins in ovarian cancer cells may contribute to peritoneal metastasis by altering tumor cell adhesion and migration through extracellular matrix. PMID:19014651

  16. Specifying Specification.

    PubMed

    Paulo, Norbert

    2016-03-01

    This paper tackles the accusation that applied ethics is no serious academic enterprise because it lacks theoretical bracing. It does so in two steps. In the first step I introduce and discuss a highly acclaimed method to guarantee stability in ethical theories: Henry Richardson's specification. The discussion shows how seriously ethicists take the stability of the connection between the foundational parts of their theories and their further development as well as their "application" to particular problems or cases. A detailed scrutiny of specification leads to the second step, where I use insights from legal theory to inform the debate around stability from that point of view. This view reveals some of specification's limitations. I suggest that, once specification is sufficiently specified, it appears astonishingly similar to deduction as used in legal theory. Legal theory also provides valuable insight into the functional range of deduction and its relation to other forms of reasoning. This leads to a richer understanding of stability in normative theories and to a smart division of labor between deduction and other forms of reasoning. The comparison to legal theory thereby provides a framework for how different methods such as specification, deduction, balancing, and analogy relate to one another.

  17. Hyaluronic acid prevents immunosuppressive drug-induced ovarian damage via up-regulating PGRMC1 expression

    PubMed Central

    Zhao, Guangfeng; Yan, Guijun; Cheng, Jie; Zhou, Xue; Fang, Ting; Sun, Haixiang; Hou, Yayi; Hu, Yali

    2015-01-01

    Chemotherapy treatment in women can frequently cause damage to the ovaries, which may lead to primary ovarian insufficiency (POI). In this study, we assessed the preventative effects of hyaluronic acid (HA) in immunosuppressive drug-induced POI-like rat models and investigated the possible mechanisms. We found that HA, which was reduced in primary and immunosuppressant-induced POI patients, could protect the immunosuppressant-induced damage to granulosa cells (GCs) in vitro. Then we found that HA blocked the tripterygium glycosides (TG) induced POI-like presentations in rats, including delayed or irregular estrous cycles, reduced 17 beta-estradiol(E2) concentration, decreased number of follicles, destruction of follicle structure, and damage of reproductive ability. Furthermore, we investigated the mechanisms of HA prevention effects on POI, which was associated with promotion of GC proliferation and PGRMC1 expression. In conclusion, HA prevents chemotherapy-induced ovarian damage by promoting PGRMC1 in GCs. This study may provide a new strategy for prevention and treatment of POI. PMID:25558795

  18. Expression and function of fibroblast growth factor 18 in the ovarian follicle in cattle.

    PubMed

    Portela, Valerio M; Machado, Mariana; Buratini, Jose; Zamberlam, Gustavo; Amorim, Renee L; Goncalves, Paulo; Price, Christopher A

    2010-09-01

    Fibroblast growth factors (FGF) are involved in paracrine signaling between cell types in the ovarian follicle. FGF8, for example, is secreted by oocytes and controls cumulus cell metabolism. The closely related FGF18 is also expressed in oocytes in mice. The objective of this study was to assess the potential role of FGF18 in follicle growth in a monovulatory species, the cow. Messenger RNA encoding FGF18 was detected primarily in theca cells, and in contrast to the mouse, FGF18 was not detected in bovine oocytes. Addition of FGF18 protein to granulosa cell cultures inhibited estradiol and progesterone secretion as well as the abundance of mRNA encoding steroidogenic enzymes and the follicle-stimulating hormone receptor. In vivo, onset of atresia of the subordinate follicle was associated with increased thecal FGF18 mRNA levels and FGF18 protein in follicular fluid. In vitro, FGF18 altered cell cycle progression as measured by flow cytometry, resulting in increased numbers of dead cells (sub-G1 peak) and decreased cells in S phase. This was accompanied by decreased levels of mRNA encoding the cell cycle checkpoint regulator GADD45B. Collectively, these data point to a unique role for this FGF in signaling from theca cells to granulosa cells and suggest that FGF18 influences the process of atresia in ovarian follicles.

  19. Absence of PD-L1 on tumor cells is associated with reduced MHC I expression and PD-L1 expression increases in recurrent serous ovarian cancer

    PubMed Central

    Aust, Stefanie; Felix, Sophie; Auer, Katharina; Bachmayr-Heyda, Anna; Kenner, Lukas; Dekan, Sabine; Meier, Samuel M.; Gerner, Christopher; Grimm, Christoph; Pils, Dietmar

    2017-01-01

    Immune-evasion and immune checkpoints are promising new therapeutic targets for several cancer entities. In ovarian cancer, the clinical role of programmed cell death receptor ligand 1 (PD-L1) expression as mechanism to escape immune recognition has not been clarified yet. We analyzed PD-L1 expression of primary ovarian and peritoneal tumor tissues together with several other parameters (whole transcriptomes of isolated tumor cells, local and systemic immune cells, systemic cytokines and metabolites) and compared PD-L1 expression between primary tumor and tumor recurrences. All expressed major histocompatibility complex (MHC) I genes were negatively correlated to PD-L1 abundances on tumor tissues, indicating two mutually exclusive immune-evasion mechanisms in ovarian cancer: either down-regulation of T-cell mediated immunity by PD-L1 expression or silencing of self-antigen presentation by down-regulation of the MHC I complex. In our cohort and in most of published evidences in ovarian cancer, low PD-L1 expression is associated with unfavorable outcome. Differences in immune cell populations, cytokines, and metabolites strengthen this picture and suggest the existence of concurrent pathways for progression of this disease. Furthermore, recurrences showed significantly increased PD-L1 expression compared to the primary tumors, supporting trials of checkpoint inhibition in the recurrent setting. PMID:28266500

  20. Gene expression profiling of bovine ovarian follicular and luteal cells provides insight into cellular identities and functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After ovulation, somatic cells of the ovarian follicle (theca and granulosa cells) become the small and large luteal cells of the corpus luteum. Aside from known cell type-specific receptors and steroidogenic enzymes, little is known about the differences in the gene expression profiles of these fou...

  1. A comparison of ovarian follicular and luteal cell gene expression profiles provides insight into cellular identities and functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After ovulation, somatic cells of the ovarian follicle (theca and granulosa cells) become the small and large luteal cells of the corpus luteum. Aside from known cell type-specific receptors and steroidogenic enzymes, little is known about the differences in the gene expression profiles of these fou...

  2. Cloning and differential expression of FOXL2 during ovarian development and recrudescence of the catfish, Clarias gariepinus.

    PubMed

    Sridevi, P; Senthilkumaran, B

    2011-12-01

    FOXL2 is a member of the forkhead/HNF-3-related family of transcription factors which provides tissue-specific gene regulation. It is known to regulate ovarian aromatase, (cyp19a1a) which plays a crucial role in ovarian differentiation. To understand the role of FOXL2 in gonads and brain during ovarian development and recrudescence, we cloned the full-length cDNA of FOXL2 and analyzed its spatio-temporal expression both at transcript and protein levels in the air-breathing catfish, Clarias gariepinus. Based on its deduced amino acid sequence, an antigenic peptide conjugated with a carrier protein was synthesized which was then used for raising antibody that reacted specifically with FOXL2. Tissue distribution pattern of FOXL2 revealed its presence prominently in ovary and female brain with sexual dimorphism. Highest expression of FOXL2 was observed in ovary and brain during prespawning phase indicating an important role for this correlate in ovarian recrudescence. Human chorionic gonadotropin (hCG) treatment, in vitro and in vivo, induced FOXL2 expression in the ovary during preparatory and prespawning phases. Similar type of enhanced expression was evident in brain after hCG-induction during the prespawning phase. The ontogeny of FOXL2 showed sexual dimorphic expression pattern both in gonads and brain. Based on our previous studies, the expression pattern of FOXL2 was found to be synchronous not only with that of ovarian cyp19a1a but also with brain cyp19a1b. Present study substantiates the role of FOXL2 in the regulation of aromatase in teleosts and also designates FOXL2 as a potential ovary and brain marker during female sex development in catfish.

  3. Ovarian Clear Cell Carcinoma Sub-Typing by ARID1A Expression

    PubMed Central

    Choi, Jae Yoon; Han, Hyun Ho; Kim, Young Tae; Lee, Joo Hyun; Kim, Baek Gil; Kang, Suki

    2017-01-01

    Purpose Loss of AT-rich DNA-interacting domain 1A (ARID1A) has been identified as a driving mutation of ovarian clear cell carcinoma (O-CCC), a triple-negative ovarian cancer that is intermediary between serous and endometrioid subtypes, in regards to molecular and clinical behaviors. However, about half of O-CCCs still express BAF250a, the protein encoded by ARID1A. Herein, we aimed to identify signatures of ARID1A-positive O-CCC in comparison with its ARID1A-negative counterpart. Materials and Methods Seventy cases of O-CCC were included in this study. Histologic grades and patterns of primary tumor, molecular marker immunohistochemistry profiles, and clinical outcomes were analyzed. Results Forty-eight (69%) O-CCCs did not express BAF250a, which were designated as "ARID1A-negative." The other 22 (31%) O-CCCs were designated as "ARID1A-positive." ARID1A-positive tumors were more likely to be histologically of high grades (41% vs. 10%, p=0.003), ERβ-positive (45% vs. 17%, p=0.011), and less likely to be HNF1β-positive (77% vs. 96%, p=0.016) and E-cadherin-positive (59% vs. 83%, p=0.028) than ARID1A-negative tumors. Patient age, parity, tumor stage were not significantly different in between the two groups. Cancer-specific survival was not significantly different either. Conclusion We classified O-CCCs according to ARID1A expression status. ARID1A-positive O-CCCs exhibited distinct immunohistochemical features from ARID1A-negative tumors, suggesting a different underlying molecular event during carcinogenesis. PMID:27873496

  4. Long noncoding RNA expression signature to predict platinum-based chemotherapeutic sensitivity of ovarian cancer patients.

    PubMed

    Liu, Rong; Zeng, Ying; Zhou, Cheng-Fang; Wang, Ying; Li, Xi; Liu, Zhao-Qian; Chen, Xiao-Ping; Zhang, Wei; Zhou, Hong-Hao

    2017-12-01

    Dysregulated long noncoding RNAs (lncRNAs) are potential markers of several tumor prognoses. This study aimed to develop a lncRNA expression signature that can predict chemotherapeutic sensitivity for patients with advanced stage and high-grade serous ovarian cancer (HGS-OvCa) treated with platinum-based chemotherapy. The lncRNA expression profiles of 258 HGS-OvCa patients from The Cancer Genome Atlas were analyzed. Results revealed that an eight-lncRNA signature was significantly associated with chemosensitivity in the multivariate logistic regression model, which can accurately predict the chemosensitivity of patients [Area under curve (AUC) = 0.83]. The association of a chemosensitivity predictor with molecular subtypes indicated the excellent prognosis performance of this marker in differentiated, mesenchymal, and immunoreactive subtypes (AUC > 0.8). The significant correlation between ZFAS1 expression and chemosensitivity was confirmed in 233 HGS-OvCa patients from the Gene Expression Omnibus datasets (GSE9891, GSE63885, and GSE51373). In vitro experiments demonstrated that the ZFAS1 expression was upregulated by cisplatin in A2008, HeyA8, and HeyC2 cell lines. This finding suggested that ZFAS1 may participate in platinum resistance. Therefore, the evaluation of the eight-lncRNA signature may be clinically implicated in the selection of platinum-resistant HGS-OvCa patients. The role of ZFAS1 in platinum resistance should be further investigated.

  5. The RON and MET oncogenes are co-expressed in human ovarian carcinomas and cooperate in activating invasiveness.

    PubMed

    Maggiora, Piera; Lorenzato, Annalisa; Fracchioli, Stefano; Costa, Barbara; Castagnaro, Massimo; Arisio, Riccardo; Katsaros, Dionyssios; Massobrio, Marco; Comoglio, Paolo M; Flavia Di Renzo, Maria

    2003-08-15

    RON is a member of the receptor tyrosine kinase gene family that includes the MET oncogene, whose germline mutations have been causally related to human tumorigenesis. In vitro, RON and MET receptors cross-talk, synergize in intracellular signaling, and cooperate in inducing morphogenic responses. Here we show that the RON and MET oncogenes were expressed in 55% and 56% of human ovarian carcinomas, respectively, and were significantly coexpressed in 42% (P < 0.001). In ovarian carcinoma samples and cell lines we did not find mutations in RON and MET gene kinase domain, nor coexpression of RON and MET receptor ligands (MSP and HGF, respectively). We show that motility and invasiveness of ovarian cancer cells coexpressing MET and RON receptors were elicited by HGF and, to a lesser extent, by MSP. More interestingly, invasion of both reconstituted basement membrane and collagen gel was greatly enhanced by the simultaneous addition of the two ligands. These data suggest that coexpression of the MET and RON receptors confer a selective advantage to ovarian cancer cells and might promote ovarian cancer progression.

  6. LncRNA HOTAIR controls the expression of Rab22a by sponging miR-373 in ovarian cancer

    PubMed Central

    Zhang, Zhongbao; Cheng, Jiajing; Wu, Yi; Qiu, Jin; Sun, Yi; Tong, Xiaowen

    2016-01-01

    Increasing evidence suggests that the long non-coding RNA, HOX transcript antisense intergenic RNA (HOTAIR) is widely involved in the progression and metastasis of cancer. However, the specific role of HOTAIR in ovarian carcinogenesis remains to be fully elucidated. In the present study, the levels of HOTAIR were detected in 30 paired cancer and noncancer tissues using reverse transcription-quantitative polymerase chain reaction analysis. The effect of HOTAIR on the ovarian cancer cells was examined by overexpression or small interfering RNA interference experiments. To examine the competitive endogenous RNA (ceRNAs) mechanism, a luciferase reporter assay was used. In patients with ovarian cancer, HOTAIR was significantly upregulated. Furthermore, the upregulation of HOTAIR increased the proliferation, migration and invasion of ovarian cancer cells. By contrast, the knockdown of HOTAIR repressed cell invasion and viability. HOTAIR functioned as a ceRNA, and acted as a sink for microRNA (miR)-373, thereby regulating the expression of Rab22a. The upregulation of HOTAIR contributed to the malignant progression of ovarian cancer cells. Therefore, the positive regulation between HOTAIR and Rab22a can be partially attributed to the ceRNA regulatory network through miR-373. PMID:27484896

  7. Gene expression during ovarian differentiation in parasitic and non-parasitic lampreys: implications for fecundity and life history types.

    PubMed

    Spice, Erin K; Whyard, Steven; Docker, Margaret F

    2014-11-01

    Lampreys diverged from the jawed vertebrate lineage approximately 500million years ago. Lampreys undergo sex differentiation much later than most other vertebrates, and ovarian differentiation occurs several years before testicular differentiation. The genetic basis of lamprey sex differentiation is of particular interest both because of the phylogenetic importance of lampreys and because of their unusual pattern of sex differentiation. As well, differences between parasitic and non-parasitic lampreys may first become evident at ovarian differentiation. However, nothing is known about the genetic basis of ovarian differentiation in lampreys. This study examined potential differences in gene expression before, during, and after ovarian differentiation in parasitic chestnut lamprey Ichthyomyzon castaneus and non-parasitic northern brook lamprey Ichthyomyzonfossor. Eight target genes (17β-hydroxysteroid dehydrogenase, germ cell-less, estrogen receptor β, insulin-like growth factor 1 receptor, daz-associated protein 1, cytochrome c oxidase subunit III, Wilms' tumour suppressor protein 1, and dehydrocholesterol reductase 7) were examined. Northern brook lamprey displayed higher expression of cytochrome c oxidase subunit III, whereas chestnut lamprey displayed higher expression of insulin-like growth factor 1 receptor; these genes may be involved in apoptosis and oocyte growth, respectively. Presumptive male larvae had higher expression of Wilms' tumour suppressor protein 1, which may be involved in the undifferentiated gonad and/or later testicular development. Differentiated females had higher expression of 17β hydroxysteroid dehydrogenase and daz-associated protein 1, which may be involved in female development. This study is the first to identify genes that may be involved in ovarian differentiation and fecundity in lampreys.

  8. Expression of MAGE-C1/CT7 and selected cancer/testis antigens in ovarian borderline tumours and primary and recurrent ovarian carcinomas.

    PubMed

    Zimmermann, Anne-Katrin; Imig, Jochen; Klar, Agnes; Renner, Christoph; Korol, Dimitri; Fink, Daniel; Stadlmann, Sylvia; Singer, Gad; Knuth, Alexander; Moch, Holger; Caduff, Rosmarie

    2013-05-01

    MAGE-C1/CT7, NY-ESO-1, GAGE and MAGE-A4 are members of the cancer/testis (CT) antigen family, which have been proposed as potential targets for cancer immunotherapy. To determine the prevalence and biologic relevance of the novel CT antigen MAGE-C1/CT7 and other antigens, 36 ovarian borderline tumours (BTs), 230 primary ovarian carcinomas (OCs) and 80 recurrent OCs were immunohistochemically analysed using the monoclonal antibodies CT7-33 (MAGE-C1/CT7), E978 (NY-ESO-1), clone 26 (GAGE) and 57B (MAGE-A4). Positivity of at least one CT antigen was present in 39.5 % (81/205) of primary OC and in 50 % (26/52) of all recurrences. Expression of the novel CT antigen MAGE-C1/CT7 was most commonly seen with positivity in 24.5 % of primary and 35.1 % of recurrent OC. MAGE-A4, GAGE and NY-ESO-1 expressions were seen in 22.7, 13.9 and 7.1 % of primary and 22.6, 17.5 and 8.9 % of recurrent OC, respectively. Analysis of histological subtypes (serous, endometrioid, clear cell, mucinous and transitional) exhibited variable expression with negativity in all mucinous OC. High-grade serous OC revealed CT antigen expression in 5.6 to 28 % with MAGE-C1/CT7 being the most frequent, but without correlation with stage or overall survival. MAGE-C1/CT7 expression and coexpression of CT antigens were significantly correlated with grade of endometrioid OC. None of the BT showed CT antigen expression. No significant correlation was seen with stage, overall survival or response to chemotherapy. In summary, CT antigens are expressed in a certain subset of OC with no expression in BT or OC of mucinous histology. These findings may have implications for the design of polyvalent vaccination strategies for ovarian carcinomas.

  9. Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression.

    PubMed

    Sen, Aritro; Prizant, Hen; Light, Allison; Biswas, Anindita; Hayes, Emily; Lee, Ho-Joon; Barad, David; Gleicher, Norbert; Hammes, Stephen R

    2014-02-25

    Although androgen excess is considered detrimental to women's health and fertility, global and ovarian granulosa cell-specific androgen-receptor (AR) knockout mouse models have been used to show that androgen actions through ARs are actually necessary for normal ovarian function and female fertility. Here we describe two AR-mediated pathways in granulosa cells that regulate ovarian follicular development and therefore female fertility. First, we show that androgens attenuate follicular atresia through nuclear and extranuclear signaling pathways by enhancing expression of the microRNA (miR) miR-125b, which in turn suppresses proapoptotic protein expression. Second, we demonstrate that, independent of transcription, androgens enhance follicle-stimulating hormone (FSH) receptor expression, which then augments FSH-mediated follicle growth and development. Interestingly, we find that the scaffold molecule paxillin regulates both processes, making it a critical regulator of AR actions in the ovary. Finally, we report that low doses of exogenous androgens enhance gonadotropin-induced ovulation in mice, further demonstrating the critical role that androgens play in follicular development and fertility. These data may explain reported positive effects of androgens on ovulation rates in women with diminished ovarian reserve. Furthermore, this study demonstrates mechanisms that might contribute to the unregulated follicle growth seen in diseases of excess androgens such as polycystic ovary syndrome.

  10. Immunohistochemical Expression of Platelet-Derived Growth Factor Receptors in Ovarian Cancer Patients with Long-Term Follow-Up

    PubMed Central

    Madsen, Christine Vestergaard; Dahl Steffensen, Karina; Waldstrøm, Marianne; Jakobsen, Anders

    2012-01-01

    Introduction. The well-documented role of the PDGF system in tumor growth and angiogenesis has prompted the development of new biological agents targeting the PDGF system. The aim of the present study was to analyze the expression of the PDGF-receptors in ovarian cancer and to investigate its relation to histopathological parameters and long-term overall survival. Methods. The immunohistochemical expression of PDGFR-α and PDGFR-β was investigated in tumor and stromal cells in 170 patients with histologically verified epithelial ovarian cancer. Results. Almost half of the tumor specimens showed high expression of PDGFR-α and PDGFR-β in tumor cells (43% and 41%) and in stromal compartments (32% and 44%). There was a significant association between high expression of PDGFR-α and high expression of PDGFR-β in both tumor and stromal cells. Coexpression of PDGFR-α and PDGFR-β in stromal cells was seen more often in serous adenocarcinomas than in nonserous adenocarcinomas. No clear correlation between PDGFR expression and longterm overall survival or clinical parameters was found. Conclusions. PDGFR-α and PDGFR-β were expressed in a subset of ovarian carcinomas but did not show significant prognostic importance in this material. PMID:23094199

  11. Niche-Dependent Gene Expression Profile of Intratumoral Heterogeneous Ovarian Cancer Stem Cell Populations

    PubMed Central

    Abelson, Sagi; Shamai, Yeela; Berger, Liron; Skorecki, Karl; Tzukerman, Maty

    2013-01-01

    Intratumoral heterogeneity challenges existing paradigms for anti-cancer therapy. We have previously demonstrated that the human embryonic stem cells (hESC)-derived cellular microenvironment in immunocompromised mice, enables functional distinction of heterogeneous tumor cells, including cells which do not grow into a tumor in a conventional direct tumor xenograft platform. We have identified and characterized six cancer cell subpopulations each clonally expanded from a single cell, derived from human ovarian clear cell carcinoma of a single tumor, to demonstrate striking intratumoral phenotypic heterogeneity that is dynamically dependent on the tumor growth microenvironment. These cancer cell subpopulations, characterized as cancer stem cell subpopulations, faithfully recapitulate the full spectrum of histological phenotypic heterogeneity known for human ovarian clear cell carcinoma. Each of the six subpopulations displays a different level of morphologic and tumorigenic differentiation wherein growth in the hESC-derived microenvironment favors growth of CD44+/aldehyde dehydrogenase positive pockets of self-renewing cells that sustain tumor growth through a process of tumorigenic differentiation into CD44-/aldehyde dehydrogenase negative derivatives. Strikingly, these derivative cells display microenvironment-dependent plasticity with the capacity to restore self-renewal markers and CD44 expression. In the current study, we delineate the distinct gene expression and epigenetic profiles of two such subpopulations, representing extremes of phenotypic heterogeneity in terms of niche-dependent self-renewal and tumorigenic differentiation. By combining Gene Set Enrichment, Gene Ontology and Pathway-focused array analyses with methylation status, we propose a suite of robust differences in tumor self-renewal and differentiation pathways that underlie the striking intratumoral phenotypic heterogeneity which characterize this and other solid tumor malignancies. PMID

  12. Azidothymidine and cisplatin increase p14ARF expression in OVCAR-3 ovarian cancer cell line

    SciTech Connect

    Vaskivuo, Liisa; Rysae, Jaana; Koivuperae, Johanna; Myllynen, Paeivi; Vaskivuo, Tommi; Chvalova, Katerina; Serpi, Raisa; Savolainen, Eeva-Riitta; Puistola, Ulla; Vaehaekangas, Kirsi . E-mail: kirsi.vahakangas@uku.fi

    2006-10-01

    p14{sup ARF} tumor suppressor protein regulates p53 by interfering with mdm2-p53 interaction. p14{sup ARF} is activated in response to oncogenic stimuli but little is known of the responses of endogenous p14{sup ARF} to different types of cellular stress or DNA damage. Azidothymidine (AZT) is being tested in several clinical trials as an enhancer of anticancer chemotherapy. However, the knowledge of the relationship between AZT and cellular pathways, e.g. p53 pathway, is very limited. In this study, we show that AZT, cisplatin (CDDP) and docetaxel (DTX) all induce unique molecular responses in OVCAR-3 ovarian carcinoma cells carrying a mutated p53, while in A2780, ovarian carcinoma and MCF-7 breast carcinoma cells with wild type p53, all of these drugs cause similar p53 responses. We found that endogenous p14{sup ARF} protein in OVCAR-3 cells is down-regulated by DTX but induced by AZT and a short CDDP pulse treatment. In HT-29 colon carcinoma cells with a mutated p53, all treatments down-regulated p14{sup ARF} protein. Both CDDP and AZT increased the expression of p14ARF mRNA in OVCAR-3 cells. Differences in cell death induced by these drugs did not explain the differences in protein and mRNA expressions. No increase in the level of either c-Myc or H-ras oncoproteins was seen in OVCAR-3 cells after AZT or CDDP-treatment. These results suggest that p14{sup ARF} can respond to DNA damage without oncogene activation in cell lines without functional p53.

  13. Common and Unique Impairments in Facial-Expression Recognition in Pervasive Developmental Disorder-Not Otherwise Specified and Asperger's Disorder

    ERIC Educational Resources Information Center

    Uono, Shota; Sato, Wataru; Toichi, Motomi

    2013-01-01

    This study was designed to identify specific difficulties and associated features related to the problems with social interaction experienced by individuals with pervasive developmental disorder-not otherwise specified (PDD-NOS) using an emotion-recognition task. We compared individuals with PDD-NOS or Asperger's disorder (ASP) and typically…

  14. Prognostic impact of HER3 based on protein and mRNA expression in high-grade serous ovarian carcinoma.

    PubMed

    Unger, Ulrike; Denkert, Carsten; Braicu, Ioana; Sehouli, Jalid; Dietel, Manfred; Loibl, Sibylle; Darb-Esfahani, Silvia

    2017-02-01

    HER3 is a member of the epidermal growth factor family and was predominantly described as a negative prognostic factor in various solid tumors as well as in ovarian cancer. In this study, we investigated HER3 on protein and mRNA expression in histologically defined subtypes of ovarian cancer looking for an influence on patient's survival. Altogether, we examined HER3 in ovarian high-grade serous (HGSC, n = 320), low-grade serous (LGSC, n = 55), endometrioid (EC, n = 33), and clear cell (CCC, n = 48) carcinomas using immunohistochemistry (IHC) and quantitative real-time reverse transcription PCR (qRT-PCR). Univariate and multivariate analyses were performed to explore the association between HER3 and overall survival (OS) as well as progression-free survival (PFS). In HGSC, high HER3 mRNA expression was a favorable prognostic factor for PFS (P = 0.008) and OS (P = 0.052), while for high HER3 protein expression, a trend towards better survival was seen (OS P = 0.064; PFS P = 0.099). A subgroup of HGSC with negative HER3 staining and negative HER3 mRNA levels showed most unfavorable OS and PFS (P = 0.002 and P = 0.004, respectively). Using the multivariate Cox regression model, HER3 was predictive for prolonged PFS (HR, 0.48; 95% CI, 0.26-0.88; P = 0.018). All in all, we cannot confirm the reported negative prognostic impact of HER3 expression in high-grade serous ovarian carcinoma and moreover find a rather positive prognostic implication of HER3 in this major ovarian cancer histological subtype.

  15. IKKβ Regulates VEGF Expression and Is a Potential Therapeutic Target for Ovarian Cancer as an Antiangiogenic Treatment.

    PubMed

    Kinose, Yasuto; Sawada, Kenjiro; Makino, Hiroshi; Ogura, Tomonori; Mizuno, Tomoko; Suzuki, Noriko; Fujikawa, Tomoyuki; Morii, Eiichi; Nakamura, Koji; Sawada, Ikuko; Toda, Aska; Hashimoto, Kae; Isobe, Aki; Mabuchi, Seiji; Ohta, Tsuyoshi; Itai, Akiko; Morishige, Ken-ichirou; Kurachi, Hirohisa; Kimura, Tadashi

    2015-04-01

    The prolongation of progression-free survival (PFS) in patients with advanced ovarian cancer by antiangiogenic therapy has been shown in several clinical trials. However, although an anti-VEGF antibody (bevacizumab) is the only option currently available, its efficacy is limited and it is not cost effective for use in all patients. Therefore, the development of a novel antiangiogenic drug, especially composed of small-molecule compounds, could be a powerful armament for ovarian cancer treatment. As NF-κB signaling has the potential to regulate VEGF expression, we determined to identify whether VEGF expression is associated with NF-κB activation and to investigate the possibility of a novel IKKβ inhibitor, IMD-0354 (IMMD Inc.), as an antiangiogenic drug. Tissue microarrays from 94 ovarian cancer tissues were constructed and immunohistochemical analyses performed. We revealed that IKK phosphorylation is an independent prognostic factor (PFS: 26.1 vs. 49.8 months, P = 0.011), and is positively correlated with high VEGF expression. In in vitro analyses, IMD-0354 robustly inhibited adhesive and invasive activities of ovarian cancer cells without impairing cell viabilities. IMD-0354 significantly suppressed VEGF production from cancer cells, which led to the inhibition of angiogenesis. In a xenograft model, the treatment of IMD-0354 significantly inhibited peritoneal dissemination with a marked reduction of intratumoral blood vessel formation followed by the inhibition of VEGF expression from cancer cells. IMD-0354 is a stable small-molecule drug and has already been administered safely to humans in other trials. Antiangiogenic therapy targeting IKKβ is a potential future option to treat ovarian cancer.

  16. Evidence for a time-dependent association between FOLR1 expression and survival from ovarian carcinoma: implications for clinical testing. An Ovarian Tumour Tissue Analysis consortium study

    PubMed Central

    Köbel, M; Madore, J; Ramus, S J; Clarke, B A; Pharoah, P D P; Deen, S; Bowtell, D D; Odunsi, K; Menon, U; Morrison, C; Lele, S; Bshara, W; Sucheston, L; Beckmann, M W; Hein, A; Thiel, F C; Hartmann, A; Wachter, D L; Anglesio, M S; Høgdall, E; Jensen, A; Høgdall, C; Kalli, K R; Fridley, B L; Keeney, G L; Fogarty, Z C; Vierkant, R A; Liu, S; Cho, S; Nelson, G; Ghatage, P; Gentry-Maharaj, A; Gayther, S A; Benjamin, E; Widschwendter, M; Intermaggio, M P; Rosen, B; Bernardini, M Q; Mackay, H; Oza, A; Shaw, P; Jimenez-Linan, M; Driver, K E; Alsop, J; Mack, M; Koziak, J M; Steed, H; Ewanowich, C; DeFazio, A; Chenevix-Trench, G; Fereday, S; Gao, B; Johnatty, S E; George, J; Galletta, L; Goode, E L; Kjær, S K; Huntsman, D G; Fasching, P A; Moysich, K B; Brenton, J D; Kelemen, L E

    2014-01-01

    Background: Folate receptor 1 (FOLR1) is expressed in the majority of ovarian carcinomas (OvCa), making it an attractive target for therapy. However, clinical trials testing anti-FOLR1 therapies in OvCa show mixed results and require better understanding of the prognostic relevance of FOLR1 expression. We conducted a large study evaluating FOLR1 expression with survival in different histological types of OvCa. Methods: Tissue microarrays composed of tumour samples from 2801 patients in the Ovarian Tumour Tissue Analysis (OTTA) consortium were assessed for FOLR1 expression by centralised immunohistochemistry. We estimated associations for overall (OS) and progression-free (PFS) survival using adjusted Cox regression models. High-grade serous ovarian carcinomas (HGSC) from The Cancer Genome Atlas (TCGA) were evaluated independently for association between FOLR1 mRNA upregulation and survival. Results: FOLR1 expression ranged from 76% in HGSC to 11% in mucinous carcinomas in OTTA. For HGSC, the association between FOLR1 expression and OS changed significantly during the years following diagnosis in OTTA (Pinteraction=0.01, N=1422) and TCGA (Pinteraction=0.01, N=485). In OTTA, particularly for FIGO stage I/II tumours, patients with FOLR1-positive HGSC showed increased OS during the first 2 years only (hazard ratio=0.44, 95% confidence interval=0.20–0.96) and patients with FOLR1-positive clear cell carcinomas (CCC) showed decreased PFS independent of follow-up time (HR=1.89, 95% CI=1.10–3.25, N=259). In TCGA, FOLR1 mRNA upregulation in HGSC was also associated with increased OS during the first 2 years following diagnosis irrespective of tumour stage (HR: 0.48, 95% CI: 0.25–0.94). Conclusions: FOLR1-positive HGSC tumours were associated with an increased OS in the first 2 years following diagnosis. Patients with FOLR1-negative, poor prognosis HGSC would be unlikely to benefit from anti-FOLR1 therapies. In contrast, a decreased PFS interval was observed for FOLR1

  17. Vascular endothelial growth factor polymorphisms and a synchronized examination of plasma and tissue expression in epithelial ovarian cancers.

    PubMed

    Bhaskari, J; Premalata, C S; Shilpa, V; Rahul, B; Pallavi, V R; Ramesh, G; Krishnamoorthy, Lakshmi

    2016-01-01

    In this study, we have analyzed six genetic polymorphisms of the VEGF-A gene and correlated the genetic data with plasma and tissue expression of VEGF-A in epithelial ovarian carcinomas. A total of 130 cases including 95 malignant carcinomas, 17 low malignant potential and 18 benign tumours were studied. rs699947, rs833061, rs1570360, rs2010963, rs1413711 and rs3025039 were studied by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Plasma levels of VEGF-A were estimated by enzyme-linked immunosorbent assay (ELISA) and tissue expression of VEGF-A by immunohistochemistry (IHC). Four polymorphisms of the above excluding rs699947 and rs3025039 showed significant association with malignancy, and we observed the presence of positive correlation between haplotype CCGGCC and increased expression of VEGF-A in both plasma and tissues which also correlated with poor prognosis and recurrence suggesting a probable increase in resistance to treatment in such carriers. Highly upregulated tissue expression of VEGF-A was seen in all epithelial ovarian carcinomas with intensity of expression increasing from benign to malignant cases. ELISA data from our study showed an increase in circulating levels of VEGF-A in malignancies. VEGF-A plasma levels can be employed as a biomarker for high-grade malignancy in epithelial ovarian cancers alongside tissue expression and CA-125 levels. This study is unique due to the fact that a simultaneous analysis of plasma and tissue expression has been demonstrated and is a first such study in epithelial ovarian cancers and representing the Indian population (South-east Asian) synchronized with genetic polymorphism data as well.

  18. The MOC31PE immunotoxin reduces cell migration and induces gene expression and cell death in ovarian cancer cells

    PubMed Central

    2014-01-01

    Background The standard treatment of ovarian cancer with chemotherapy often leads to drug resistance and relapse of the disease, and the need for development of novel therapy alternatives is obvious. The MOC31PE immunotoxin binds to the cell surface antigen EpCAM, which is expressed by the majority of epithelial cancers including ovarian carcinomas, and we studied the cytotoxic effects of MOC31PE in ovarian cancer cells. Methods Investigation of the effects of MOC31PE treatment on protein synthesis, cell viability, proliferation and gene expression of the ovarian cancer cell lines B76 and HOC7. Results MOC31PE treatment for 24 h caused a dose-dependent reduction of protein synthesis with ID50 values of less than 10 ng/ml, followed by reduced cell viability. In a gene expression array monitoring the expression of 84 key genes in cancer pathways, 13 of the genes were differentially expressed by MOC31PE treatment in comparison to untreated cells. By combining MOC31PE and the immune suppressor cyclosporin A (CsA) the MOC31PE effect on protein synthesis inhibition and cell viability increased tenfold. Cell migration was also reduced, both in the individual MOC31PE and CsA treatment, but even more when combining MOC31PE and CsA. In tumor metastasis PCR arrays, 23 of 84 genes were differentially expressed comparing CsA versus MOC31PE + CsA treatment. Increased expression of the tumor suppressor KISS1 and the nuclear receptor NR4A3 was observed, and the differential candidate gene expression was confirmed in complementary qPCR analyses. For NR4A3 this was not accompanied by increased protein expression. However, a subcellular fractionation assay revealed increased mitochondrial NR4A3 in MOC31PE treated cells, suggesting a role for this protein in MOC31PE-induced apoptotic cell death. Conclusion The present study demonstrates that MOC31PE may become a new targeted therapy for ovarian cancer and that the MOC31PE anti-cancer effect is potentiated by CsA. PMID:24528603

  19. Ovarian Hormone Deprivation Reduces Oxytocin Expression in Paraventricular Nucleus Preautonomic Neurons and Correlates with Baroreflex Impairment in Rats

    PubMed Central

    De Melo, Vitor U.; Saldanha, Rayssa R. M.; Dos Santos, Carla R.; De Campos Cruz, Josiane; Lira, Vitor A.; Santana-Filho, Valter J.; Michelini, Lisete C.

    2016-01-01

    The prevalence of cardiovascular diseases including hypertension increases dramatically in women after menopause, however the mechanisms involved remain incompletely understood. Oxytocinergic (OTergic) neurons are largely present within the paraventricular nucleus of the hypothalamus (PVN). Several studies have shown that OTergic drive from PVN to brainstem increases baroreflex sensitivity and improves autonomic control of the circulation. Since preautonomic PVN neurons express different types of estrogen receptors, we hypothesize that ovarian hormone deprivation causes baroreflex impairment, autonomic imbalance and hypertension by negatively impacting OTergic drive and oxytocin levels in pre-autonomic neurons. Here, we assessed oxytocin gene and protein expression (qPCR and immunohistochemistry) within PVN subnuclei in sham-operated and ovariectomized Wistar rats. Conscious hemodynamic recordings were used to assess resting blood pressure and heart rate and the autonomic modulation of heart and vessels was estimated by power spectral analysis. We observed that the ovarian hormone deprivation in ovariectomized rats decreased baroreflex sensitivity, increased sympathetic and reduced vagal outflows to the heart and augmented the resting blood pressure. Of note, ovariectomized rats had reduced PVN oxytocin mRNA and protein expression in all pre-autonomic PVN subnuclei. Furthermore, reduced PVN oxytocin protein levels were positively correlated with decreased baroreflex sensitivity and negatively correlated with increased LF/HF ratio. These findings suggest that reduced oxytocin expression in OTergic neurons of the PVN contributes to the baroreflex dysfunction and autonomic dysregulation observed with ovarian hormone deprivation. PMID:27790154

  20. Chimeric NKG2D CAR-expressing T cell-mediated attack of human ovarian cancer is enhanced by histone deacetylase inhibition.

    PubMed

    Song, De-Gang; Ye, Qunrui; Santoro, Stephen; Fang, Chongyun; Best, Andrew; Powell, Daniel J

    2013-03-01

    NKG2D ligands (NKG2DLs) are widely expressed on ovarian cancers to various degrees, making them attractive targets for immunotherapy. Here, we applied a chimeric antigen receptor (CAR) approach for the targeting of NKG2DLs expressed on human ovarian cancer cells and evaluated the impact of pharmacological upregulation of NKG2DLs on immune recognition. Various NKG2DLs, including MICA/B and ULBP-1, -2, -3, and -4, were expressed at various levels on the surface of all established ovarian cancer cell lines and primary ovarian cancer samples tested. To redirect human T cells against NKG2DLs, an NKG2DL-specific CAR was generated by fusing the extracellular domain of the NKG2D receptor to the 4-1BB costimulatory and CD3-ζ chain signaling domains. In vitro expansion of chimeric NKG2D CAR T cells was delayed compared with untransduced T cells and control CAR T cells; the likely result of fratricide among activated T cells expressing NKG2DLs. However, NKG2D CAR T cells did expand and were selectively enriched during prolonged culture. In coculture, CD4(+) and CD8(+) NKG2D CAR T cells specifically recognized and killed NKG2DL-expressing ovarian cancer cell lines but not NKG2DL-negative cells. Notably, pretreatment of ovarian cancer cells expressing moderate to low levels of NKG2DLs with the histone deacetylase inhibitor sodium valproate (VPA) upregulated NKG2DL cell surface expression and consequently enhanced their immune recognition by chimeric NKG2D CAR T cells. Our results demonstrate that VPA-induced upregulation of NKG2DL expression enhances the immune recognition of ovarian cancer cells by engineered NKG2D CAR T cells, and rationalizes the use of VPA in combination with NKG2DL-targeted immunotherapy in ovarian cancer.

  1. Chimeric NKG2D CAR-Expressing T Cell-Mediated Attack of Human Ovarian Cancer Is Enhanced by Histone Deacetylase Inhibition

    PubMed Central

    Song, De-Gang; Ye, Qunrui; Santoro, Stephen; Fang, Chongyun; Best, Andrew

    2013-01-01

    Abstract NKG2D ligands (NKG2DLs) are widely expressed on ovarian cancers to various degrees, making them attractive targets for immunotherapy. Here, we applied a chimeric antigen receptor (CAR) approach for the targeting of NKG2DLs expressed on human ovarian cancer cells and evaluated the impact of pharmacological upregulation of NKG2DLs on immune recognition. Various NKG2DLs, including MICA/B and ULBP-1, -2, -3, and -4, were expressed at various levels on the surface of all established ovarian cancer cell lines and primary ovarian cancer samples tested. To redirect human T cells against NKG2DLs, an NKG2DL-specific CAR was generated by fusing the extracellular domain of the NKG2D receptor to the 4-1BB costimulatory and CD3-ζ chain signaling domains. In vitro expansion of chimeric NKG2D CAR T cells was delayed compared with untransduced T cells and control CAR T cells; the likely result of fratricide among activated T cells expressing NKG2DLs. However, NKG2D CAR T cells did expand and were selectively enriched during prolonged culture. In coculture, CD4+ and CD8+ NKG2D CAR T cells specifically recognized and killed NKG2DL-expressing ovarian cancer cell lines but not NKG2DL-negative cells. Notably, pretreatment of ovarian cancer cells expressing moderate to low levels of NKG2DLs with the histone deacetylase inhibitor sodium valproate (VPA) upregulated NKG2DL cell surface expression and consequently enhanced their immune recognition by chimeric NKG2D CAR T cells. Our results demonstrate that VPA-induced upregulation of NKG2DL expression enhances the immune recognition of ovarian cancer cells by engineered NKG2D CAR T cells, and rationalizes the use of VPA in combination with NKG2DL-targeted immunotherapy in ovarian cancer. PMID:23297870

  2. Gene expression profiling of epithelial ovarian cancer reveals key genes and pathways associated with chemotherapy resistance.

    PubMed

    Zhang, M; Luo, S C

    2016-01-22

    The aim of this study is to analyze gene expression data to identify key genes and pathways associated with resistance to platinum-based chemotherapy in epithelial ovarian cancer (EOC) and to improve clinical treatment strategies. The gene expression data set was downloaded from Gene Expression Omnibus and included 12 chemotherapy-resistant EOC samples and 16 chemotherapy-sensitive EOC samples. A differential analysis was performed to screen out differentially expressed genes (DEGs). A functional enrichment analysis was conducted for the DEGs using the database for annotation, visualization, and integration discovery. A protein-protein interaction (PPI) network was constructed with information from the human protein reference database. Pathway-pathway interactions were determined with a test based on the hypergeometric distribution. A total of 1564 DEGs were identified in chemotherapy-sensitive EOC, including 654 upregulated genes and 910 downregulated genes. The top three upregulated genes were HIST1H3G, AKT3, and RTN3, while the top three downregulated genes were NBLA00301, TRIM62, and EPHA5. A Gene Ontology enrichment analysis showed that cell adhesion, biological adhesion, and intracellular signaling cascades were significantly enriched in the DEGs. A KEGG pathway enrichment analysis revealed that the calcium, mitogen-activated protein kinase, and B cell receptor signaling pathways were significantly over-represented in the DEGs. A PPI network containing 101 interactions was acquired. The top three hub genes were RAC1, CAV1, and BCL2. Five modules were identified from the PPI network. Taken together, these findings could advance the understanding of the molecular mechanisms underlying intrinsic chemotherapy resistance in EOC.

  3. Existence of a photoinducible phase for ovarian development and photoperiod-related alteration of clock gene expression in a damselfish.

    PubMed

    Takeuchi, Yuki; Hada, Noriko; Imamura, Satoshi; Hur, Sung-Pyo; Bouchekioua, Selma; Takemura, Akihiro

    2015-10-01

    The sapphire devil, Chrysiptera cyanea, is a reef-associated damselfish and their ovarian development can be induced by a long photoperiod. In this study, we demonstrated the existence of a photoinducible phase for the photoperiodic ovarian development in the sapphire devil. Induction of ovarian development under night-interruption light schedules and Nanda-Hamner cycles revealed that the photoinducible phase appeared in a circadian manner between ZT12 and ZT13. To characterize the effect of photoperiod on clock gene expression in the brain of this species, we determined the expression levels of the sdPer1, sdPer2, sdCry1, and sdCry2 clock genes under constant light and dark conditions (LL and DD) and photoperiodic (short and long photoperiods). The expression of sdPer1 exhibited clear circadian oscillation under both LL and DD conditions, while sdPer2 and sdCry1 expression levels were lower under DD than under LL conditions and sdCry2 expression was lower under LL than under DD conditions. These results suggest a key role for sdPer1 in circadian clock cycling and that sdPer2, sdCry1, and sdCry2 are light-responsive clock genes in the sapphire devil. After 1 week under a long photoperiod, we observed photoperiod-related changes in sdPer1, sdPer2, and sdCry2 expression, but not in sdCry1 expression. These results suggest that the expression patterns of some clock genes exhibit seasonal variation according to seasonal changes in day length and that such seasonal alteration of clock gene expression may contribute to seasonal recognition by the sapphire devil.

  4. Analysis of wntless (WLS) expression in gastric, ovarian, and breast cancers reveals a strong association with HER2 overexpression.

    PubMed

    Stewart, Jonathan; James, Jacqueline; McCluggage, Glenn W; McQuaid, Stephen; Arthur, Kenneth; Boyle, David; Mullan, Paul; McArt, Darragh; Yan, Benedict; Irwin, Gareth; Harkin, D Paul; Zhengdeng, Lei; Ong, Chee-Wee; Yu, Jia; Virshup, David M; Salto-Tellez, Manuel

    2015-03-01

    The oncogenic role of WNT is well characterized. Wntless (WLS) (also known as GPR177, or Evi), a key modulator of WNT protein secretion, was recently found to be highly overexpressed in malignant astrocytomas. We hypothesized that this molecule may be aberrantly expressed in other cancers known to possess aberrant WNT signaling such as ovarian, gastric, and breast cancers. Immunohistochemical analysis using a TMA platform revealed WLS overexpression in a subset of ovarian, gastric, and breast tumors; this overexpression was associated with poorer clinical outcomes in gastric cancer (P=0.025). In addition, a strong correlation was observed between WLS expression and human epidermal growth factor receptor 2 (HER2) overexpression. Indeed, 100% of HER2-positive intestinal gastric carcinomas, 100% of HER2-positive serous ovarian carcinomas, and 64% of HER2-positive breast carcinomas coexpressed WLS protein. Although HER2 protein expression or gene amplification is an established predictive biomarker for trastuzumab response in breast and gastric cancers, a significant proportion of HER2-positive tumors display resistance to trastuzumab, which may be in part explainable by a possible mechanistic link between WLS and HER2.

  5. Ubiquitin-specific protease 7 expression is a prognostic factor in epithelial ovarian cancer and correlates with lymph node metastasis

    PubMed Central

    Ma, Ming; Yu, Nina

    2016-01-01

    Objective Ubiquitin-specific protease 7 (USP7) is a common target of herpesviruses and is important in the DNA damage response, which is also upregulated in several cancers, including prostate, colon, liver, and lung cancers. However, less is known about its expression in ovarian cancer tissues. The role of USP7 in epithelial ovarian cancer (EOC) has not yet been investigated. Materials and methods We recruited 141 patients from Linyi People’s Hospital between June 1999 and June 2013, all pathologically diagnosed with primary EOC. Their clinical data were collected, and the expression of USP7 in the tumor tissues was determined using immunohistochemistry. The correlations between USP7 expression and the clinicopathological variables of patients with EOC were assessed using Spearman’s rank correlation test. Kaplan–Meier analysis and Cox regression analysis were used to identify the prognosis value of USP7. The function of USP7 in the EOC cells was also detected in vitro. Results Among the 141 cases, USP7 expression was high in 59 EOC samples (41.8%), and was significantly correlated with lymphatic invasion; USP7 can act as independent prognostic indicator for the overall survival (OS) of EOC, and its high expression was associated with poor OS rate. The RNA inteference and overexpression assays indicated that USP7 can positively regulate the ovarian cell vitality and invasion process. Conclusion Patients with EOC expressing high level of USP7 have worse OS compared with those with low USP7 expression. USP7 may be involved in the proliferation and invasion of EOC cells, and USP7 expression can serve as an independent predictor of EOC. PMID:27051296

  6. BENZO(A)PYRENE DECREASES BRAIN AND OVARIAN AROMATASE mRNA EXPRESSION IN FUNDULUS HETEROCLITUS

    PubMed Central

    Dong, Wu; Wang, Lu; Thornton, Cammi; Scheffler, Brian E.; Willett, Kristine L.

    2008-01-01

    The higher molecular weight polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BaP) are typically associated with genotoxicity, however, newer evidence suggests that these compounds may also act as endocrine system disruptors. We hypothesized that altered expression of the P450 enzyme aromatase genes could be a target for reproductive or developmental dysfunction caused by BaP exposure. Aromatase is at least partially responsible for estrogen homeostasis by converting androgens into estrogens. In fish, there are two isoforms of aromatase, a predominantly ovarian form, CYP19A1, and a brain form, CYP19A2. CYP19 mRNA expression was measured following BaP exposure (0, 10, 100 µg/L waterborne for 10 or 15 days) in Fundulus adults, juveniles and embryos by in situ hybridization. The CYP19A1 expression was significantly decreased after BaP exposure in the 3 month old Fundulus immature oocytes, but BaP did not affect CYP19A1 expression at any stage in adult oocytes. In embryo brains, BaP significantly decreased CYP19A2 compared to controls by 3.6-fold at 14 days post-fertilization. In adults, CYP19A2 expression was decreased significantly in the pituitary and hypothalamus (81% and 85% of controls, respectively). Promoter regions of Fundulus CYP19s were cloned, and putative response elements in the CYP19A1 and CYP19A2 promoters such as CRE, AhR and ERE may be involved in BaP-mediated changes in CYP19 expression. In order to compare the mechanism of BaP-mediated inhibition with that of a known aromatase inhibitor, fish were also exposed to fadrozole (20 and 100 µg/L). Fadrozole did not significantly decrease the mRNA expression in embryos or adult Fundulus. However, aromatase enzyme activity was significantly decreased in adult ovary and brain tissues. These studies provide a greater molecular understanding of the mechanisms of action of BaP and its potential to impact reproduction or development. PMID:18571745

  7. Infantile 4-tert-octylphenol exposure transiently inhibits rat ovarian steroidogenesis and steroidogenic acute regulatory protein (StAR) expression

    SciTech Connect

    Myllymaeki, S.A. . E-mail: saanmy@utu.fi; Karjalainen, M.; Haavisto, T.E.; Toppari, J.; Paranko, J.

    2005-08-22

    Phenolic compounds, such as 4-tert-octylphenol (OP), have been shown to interfere with rat ovarian steroidogenesis. However, little is known about steroidogenic effects of infantile OP exposure on immature ovary. The aim of the present study was to investigate the effects of infantile OP exposure on plasma FSH, LH, estradiol, and progesterone levels in 14-day-old female rats. The effect on ovarian steroidogenic acute regulatory protein (StAR) and FSH receptor (FSHr) expression was analyzed by Western blotting. Ex vivo analysis was carried out for follicular estradiol, progesterone, testosterone, and cAMP production. Sprague-Dawley rats were given OP (0, 10, 50, or 100 mg/kg) subcutaneously on postnatal days 6, 8, 10, and 12. On postnatal day 14, plasma FSH was decreased and progesterone increased significantly at a dose of 100 mg OP/kg. In addition, the highest OP dose advanced the time of vaginal opening in puberty. OP had no effect on infantile LH and estradiol levels or ovarian FSHr content. Ovarian StAR protein content and ex vivo hormone and cAMP production were decreased at all OP doses compared to controls. However, hormone levels recovered independent on FSH and even increased above the control level during a prolonged culture. On postnatal day 35, no statistically significant differences were seen between control and OP-exposed animals in plasma FSH, LH, estradiol, and progesterone levels, or in ovarian StAR protein content. The results indicate that the effect of OP on the infantile ovary is reversible, while more permanent effects in the hypothalamus and pituitary, as described earlier, are involved in the reduction of circulating FSH levels and premature vaginal opening.

  8. Decreased Expression of Inhibitor of DNA-binding (Id) Proteins and Vascular Endothelial Growth Factor and Increased Apoptosis in Ovarian Aging.

    PubMed

    Park, Min Jung; Park, Sea Hee; Moon, Sung Eun; Koo, Ja Seong; Moon, Hwa Sook; Joo, Bo Sun

    2013-03-01

    This study examined the expression of inhibitor of DNA-binding (Id) proteins and vascular endothelial growth factor (VEGF) in the ovary according to female age using a mice model as the first step in investigating the potential role of Ids and VEGF in ovarian aging. C57BL inbred female mice of three age groups (6-9, 14-16, and 23-26 weeks) were injected with 5 IU pregnant mare's serum gonadotropin (PMSG) in order to synchronize the estrus cycle. After 48 h, ovarian expression of Ids and VEGF was analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR), western blot and immunohistochemistry. Ovarian apoptosis was examined by ovarian expression of Bcl-2 and Bcl-xL. Expression of Id-1 and VEGF was decreased with advancing female age, but not Id-2, Id-3, and Id-4. In particular, their expressions were significantly decreased in aged mice of 23-26 weeks compared with the young mice of 6-9 weeks (p < 0.05). In contrast, ovarian apoptosis was greatly increased in the aged mice compared to the young mice. This result suggests that Id-1 may have an implicated role in ovarian aging by associating with VEGF.

  9. Heterogeneity of the Mac-1 expression on peripheral blood neutrophils in patients with different types of epithelial ovarian cancer.

    PubMed

    Bednarska, Katarzyna; Klink, Magdalena; Wilczyński, Jacek R; Szyłło, Krzysztof; Malinowski, Andrzej; Sułowska, Zofia; Nowak, Marek

    2016-02-01

    The expression level of Mac-1 on the surface of neutrophils is an important indicator of neutrophil activation. Under pathological conditions, Mac-1 is believed a key adhesion molecule that facilitates cancer progression and mediates the adhesion of tumour cells to the endothelium of blood vessels. Our previous findings indicated that circulating peripheral blood neutrophils in patients with advanced epithelial ovarian cancer (EOC) expressed enhanced levels of Mac-1, which was functionally associated with an increased adhesive function of neutrophils. The objective of the current study was to analyse whether the value of individual components of the differential white cell count, including the neutrophil and lymphocyte ratios, which are markers of blood neutrophil activation, might be associated with certain types of ovarian cancer. We showed the increase in Mac-1 expression along with a parallel decrease of L-selectin and PSGL-1 on peripheral blood neutrophils of patients with EOC of early and advanced FIGO stages, which indicates an activated state of neutrophils in comparison to neutrophils of individuals without cancer. Despite a significant difference between Mac-1 expression in patients with and without cancer, a dramatic increase in Mac-1 expression was observed in the blood of patients with undifferentiated carcinomas compared with patients with other histological types of EOC. Moreover, the expression level of Mac-1 correlated with the number of neutrophils in patients with serous, endometrioid and undifferentiated EOC. The results of an ROC analysis demonstrated that the patients with the undifferentiated type of EOC form a distinct group with regard to Mac-1 expression on blood neutrophils. The results suggested a diverse biological cadre of immune cells in patients with undifferentiated ovarian carcinomas compared with patients with other histological types of EOC.

  10. Characterization of the mRNA expression of StAR and steroidogenic enzymes in zebrafish ovarian follicles.

    PubMed

    Ings, Jennifer S; Van Der Kraak, Glen J

    2006-08-01

    The objective of this study was to investigate the levels of expression of steroid biosynthetic enzymes and steroidogenic acute regulatory protein (StAR) at different stages of ovarian follicular development in zebrafish (Danio rerio), and to investigate the sites within the steroid biosynthetic pathway that may be regulated by gonadotropins. Ovarian follicles of sexually mature fish were separated into primary, previtellogenic, vitellogenic, and mature stages and the expression of StAR, P450 side chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), P450 hydroxylase/lyase (P450c17), 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), 17beta-hydroxysteroid dehydrogenase type 3 (17beta-HSD3), and P450 aromatase (P450aromA) was determined by Real time RT-PCR. The expression of all genes changed significantly as follicles grew, with a decrease in the expression of StAR, P450scc, 3beta-HSD and P450c17 with maturation, and an increase in the expression of 17beta-HSD3 during vitellogenesis and 17beta-HSD1 and P450aromA during previtellogenesis. In vitro incubation of vitellogenic follicles demonstrated that the expression of StAR, 17beta-HSD3, and P450aromA increased in response to hCG, and decreased in the absence of hCG. In contrast, the expression of P450scc, 3beta-HSD, P450c17, and 17beta-HSD1 remained constant between treatments and over time. Testosterone and estradiol production in the culture medium was stimulated by human chorionic gonadotropin (hCG). These experiments aid in the characterization of the roles and regulation of steroids throughout ovarian development, and suggest that gonadotropins play a key role in the regulation of StAR, 17beta-HSD3, and P450aromA in zebrafish.

  11. An adenovirus with enhanced infectivity mediates molecular chemotherapy of ovarian cancer cells and allows imaging of gene expression.

    PubMed

    Hemminki, A; Belousova, N; Zinn, K R; Liu, B; Wang, M; Chaudhuri, T R; Rogers, B E; Buchsbaum, D J; Siegal, G P; Barnes, M N; Gomez-Navarro, J; Curiel, D T; Alvarez, R D

    2001-09-01

    The adenovirus (Ad) is a useful vector for cancer gene therapy due to its unparalleled gene transfer efficiency to dividing and quiescent cells. Primary cancer cells, however, often have highly variable or low levels of the requisite coxsackie-adenovirus receptor (CAR). Also, assessment of gene transfer and vector persistence has been logistically difficult in human clinical trials. We describe here two novel bicistronic adenoviral (Ad) vectors, AdTKSSTR and RGDTKSSTR, which contain the herpes simplex virus thymidine kinase gene (TK) for molecular chemotherapy and bystander effect. In addition, the viruses contain the human somatostatin receptor subtype-2 gene (SSTR2), the expression of which can be noninvasively imaged. We enhanced the infectivity of RGDTKSSTR by genetically incorporating the RGD-4C motif into the HI-loop of the fiber. This allows the virus to circumvent CAR deficiency by binding to alpha(v)beta(3) and alpha(v)beta(5) integrins, which are highly expressed on most ovarian cancers. The expanded tropism of RGDTKSSTR results in increased infectivity of purified primary ovarian cancer cells and allows enhanced gene transfer in the presence of malignant ascites containing anti-Ad antibodies. RGDTKSSTR may be a useful agent for treating ovarian cancer in clinical trials.

  12. p19INK4d mRNA and protein expression as new prognostic factors in ovarian cancer patients

    PubMed Central

    Felisiak-Golabek, Anna; Dansonka-Mieszkowska, Agnieszka; Rzepecka, Iwona K; Szafron, Lukasz; Kwiatkowska, Ewa; Konopka, Bozena; Podgorska, Agnieszka; Rembiszewska, Alina; Kupryjanczyk, Jolanta

    2013-01-01

    p19INK4d (CDKN2D) is a negative regulator of the cell cycle. Little is known of its role in cancer development and prognosis. We aimed to evaluate the clinical significance of p19INK4d expression in ovarian carcinomas with respect to the TP53 accumulation status, as well as the frequency of CDKN2D mutations. p19INK4d and TP53 expression was evaluated immunohistochemically in 445 ovarian carcinomas: 246 patients were treated with platinum–cyclophosphamide (PC/PAC), while 199 were treated with taxane–platinum agents (TP). CDKN2D gene expression (mRNA) was examined in 106 carcinomas, while CDKN2D mutations in 68 tumors. Uni- and multivariate statistical analyses (logistic regression and the Cox proportional hazards model) were performed for patient groups divided according to the chemotherapeutic regimen administered, and in subgroups with and without TP53 accumulation. High p19INK4d expression increased the risk of death, but only in patients with the TP53-negative carcinomas (HR 1.61, P = 0.049 for PC/PAC-treated patients, HR 2.00, P = 0.015 for TP-treated patients). This result was confirmed by the mRNA analysis (HR 4.24, P = 0.001 for TP-treated group). High p19INK4d protein expression associated with adverse clinicopathological factors. We found no alterations in the CDKN2D gene; the c.90C>G (p.R30R; rs1968445) polymorphism was detected in 10% of tumors. Our results suggest that p19INK4d expression is a poor prognostic factor in ovarian cancer patients. Analyses of tumor groups according to the TP53 accumulation status facilitate the identification of cancer biomarkers. PMID:24022213

  13. Transforming growth factor-β stimulates human ovarian cancer cell migration by up-regulating connexin43 expression via Smad2/3 signaling.

    PubMed

    Qiu, Xin; Cheng, Jung-Chien; Zhao, Jianfang; Chang, Hsun-Ming; Leung, Peter C K

    2015-10-01

    Reduced connexin43 (Cx43) expression is frequently detected in different types of human cancer. Cx43 has been shown to regulate cancer cell migration in a cell-type dependent manner. In both primary and recurrent human ovarian cancer, overexpression of TGF-β ligand and its receptors have been detected. TGF-β can regulate Cx43 expression in other cell types and stimulate human ovarian cancer cell migration. However, whether Cx43 can be regulated by TGF-β and is involved in TGF-β-stimulated cell migration in human ovarian cancer cells remain unknown. In this study, we demonstrate that TGF-β up-regulates Cx43 in two human ovarian cancer cell lines, SKOV3 and OVCAR4. The stimulatory effect of TGF-β on Cx43 expression is blocked by inhibition of TGF-β receptor. Treatment with TGF-β activates Smad2 and Smad3 signaling pathways in both ovarian cancer cell lines. In addition, siRNA-mediated knockdown of Smad2 or Smd3 abolishes TGF-β-induced up-regulation of Cx43 expression. Moreover, knockdown of Cx43 attenuates TGF-β-stimulated cell migration. This study demonstrates an important role for Cx43 in mediating the effects of TGF-β on human ovarian cancer cell migration.

  14. Nerve Growth Factor gene ovarian expression, polymorphism identification, and association with litter size in goats.

    PubMed

    Naicy, T; Venkatachalapathy, R T; Aravindakshan, T V; Radhika, G; Raghavan, K C; Mini, M; Shyama, K

    2016-12-01

    The Nerve Growth Factor (NGF) plays an important role in reproduction by augmenting folliculogenesis. In this study, the coding regions of caprine NGF gene were analyzed to detect single-nucleotide polymorphisms (SNPs), their association with litter size, and the relative ovarian expression of NGF gene in the two indigenous goat breeds of South India viz., the prolific Malabari and less-prolific Attappady Black. The sequence analysis of the third exon containing the entire open reading frame of NGF gene was observed to be of 808 bp with one nonsynonymous mutation at 217th position. Later, polymerase chain reaction (PCR) was performed to amplify a region of 188 bp covering the region carrying the detected mutation. The genomic DNAs from the goats under study (n = 277) were subjected to PCR and single strand conformation polymorphism (SSCP). On analysis, four diplotypes viz., AA, AB, AC, and AD were observed with respective frequencies of 0.50, 0.22, 0.27, and 0.01. Sequencing of the representative samples revealed an additional synonymous mutation, i.e., g.291C>A. Statistical analysis indicated that NGF diplotypes and the SNP g.217G>A were associated with litter size in goats (P < 0.05). Relative expression of NGF gene was significantly higher in the ovaries of goats with history of multiple than single births (P < 0.05). The results of the present study suggest the significant effect of the NGF gene on litter size in goats and identified SNPs would benefit the selection of prolific animals in future marker-assisted breeding programs. The two novel PCR-restriction fragment length polymorphisms designed, based on the detected SNPs, would help in the rapid screening of large number of animals in a breeding population for identifying individual animals with desired genetic characteristics.

  15. Diagnostic and Prognostic Significance of Ki-67 Immunohistochemical Expression in Surface Epithelial Ovarian Carcinoma

    PubMed Central

    Krishna, Shruthi Mysore; Vimala, Manjunath Gubbanna

    2017-01-01

    Introduction The Surface Epithelial Ovarian Carcinoma (SEOC) at the moment of diagnosis, the disease is extended beyond the structures of the pelvis. Ki-67 is one of the prognostic marker which determines the growth fraction of a tumour and its over expression is associated with malignancy, tumour aggression, reserved prognosis and metastasis. Aim To evaluate the proliferative activity using Ki-67 immuno-staining in SEOC and to correlate with histological subtype, grade, Federation of Gynecology and Obstetrics (FIGO) stage, CA125 levels for diagnostic and prognostic purpose. Materials and Methods The study was conducted in JSS Medical College and Hospital, JSS University, Mysuru. It was a descriptive cross-sectional study involving 40 cases of SEOC over a period of two years. The proliferation expression related to Ki-67 antigen was evaluated by immunohistochemical monoclonal MIB-1 antibody. In each case, the Ki-67 labeling index (Ki-67 LI) was articulated as percentage of positively stained cells using high power objective of the microscope (x400). Results Among the 40 carcinomas, 26 were serous, five mucinous, four each of clear cell and undifferentiated and one transitional cell carcinoma. A total of 75% were high grade tumours. High Ki-67 LI was associated with high grade tumours (69.9%), high grade serous tumours (65.34%) and advanced FIGO staging (70.6%) with the p-value of <0.001. CA 125 levels did not have a significant correlation with Ki-67 LI. Conclusion Ki-67 is an exceptionally a cost effective marker to determine the growth fraction of a tumour cell population. In SEOC histological grade and FIGO stage when combined with Ki-67 LI in histopathology report would help in diagnostic differentiation of subtypes, prognostication, deciding the need for adjuvant chemotherapy and in predicting survival analysis. PMID:28384868

  16. CSIOVDB: a microarray gene expression database of epithelial ovarian cancer subtype.

    PubMed

    Tan, Tuan Zea; Yang, He; Ye, Jieru; Low, Jeffrey; Choolani, Mahesh; Tan, David Shao Peng; Thiery, Jean-Paul; Huang, Ruby Yun-Ju

    2015-12-22

    Databases pertaining to various diseases provide valuable resources on particular genes of interest but lack the molecular subtype and epithelial-mesenchymal transition status. CSIOVDB is a transcriptomic microarray database of 3,431 human ovarian cancers, including carcinoma of the ovary, fallopian tube, and peritoneum, and metastasis to the ovary. The database also comprises stroma and ovarian surface epithelium from normal ovary tissue, as well as over 400 early-stage ovarian cancers. This unique database presents the molecular subtype and epithelial-mesenchymal transition status for each ovarian cancer sample, with major ovarian cancer histologies (clear cell, endometrioid, mucinous, low-grade serous, serous) represented. Clinico-pathological parameters available include tumor grade, surgical debulking status, clinical response and age. The database has 1,868 and 1,516 samples with information pertaining to overall and disease-free survival rates, respectively. The database also provides integration with the copy number, DNA methylation and mutation data from TCGA. CSIOVDB seeks to provide a resource for biomarker and therapeutic target exploration for ovarian cancer research.

  17. HOXB13 and ALX4 induce SLUG expression for the promotion of EMT and cell invasion in ovarian cancer cells.

    PubMed

    Yuan, Hong; Kajiyama, Hiroaki; Ito, Satoko; Chen, Dan; Shibata, Kiyosumi; Hamaguchi, Michinari; Kikkawa, Fumitaka; Senga, Takeshi

    2015-05-30

    Homeoproteins, a family of transcription factors that have conserved homeobox domains, play critical roles in embryonic development in a wide range of species. Accumulating studies have revealed that homeoproteins are aberrantly expressed in multiple tumors and function as either tumor promoters or suppressors. In this study, we show that two homeoproteins, HOXB13 and ALX4, are associated with epithelial to mesenchymal transition (EMT) and invasion of ovarian cancer cells. HOXB13 and ALX4 formed a complex in cells, and exogenous expression of either protein promoted EMT and invasion. Conversely, depletion of either protein suppressed invasion and induced reversion of EMT. SLUG is a C2H2-type zinc-finger transcription factor that promotes EMT in various cell lines. Knockdown of HOXB13 or ALX4 suppressed SLUG expression, and exogenous expression of either protein promoted SLUG expression. Finally, we showed that SLUG expression was essential for the HOXB13- or ALX4-mediated EMT and invasion. Our results show that HOXB13/SLUG and ALX4/SLUG axes are novel pathways that promote EMT and invasion of ovarian cancer cells.

  18. Ovarian expressed microsomal epoxide hydrolase: Role in detoxification of 4-vinylcyclohexene diepoxide and regulation by phosphatidylinositol-3 kinase signaling

    SciTech Connect

    Bhattacharya, Poulomi; Sen, Nivedita; Hoyer, Patricia B.; Keating, Aileen F.

    2012-01-01

    4-vinylcyclohexene diepoxide (VCD) is a metabolite of 4-vinylcyclohexene (VCH) which has the potential to be formed in the ovary through CYP2E1 activity. VCD specifically destroys primordial and small primary follicles in the rodent ovary. Mouse ovaries exposed to VCD demonstrate increased mRNA and protein expression of microsomal epoxide hydrolase (mEH), and an inactive tetrol metabolite (4-(1,2-dihydroxy)ethyl-1,2-dihydroxycyclohexane) can be formed in mouse ovarian follicles, potentially through detoxification action of mEH. In contrast, mEH can bioactivate another ovotoxic chemical, 7,12-dimethylbenz[a]anthracene (DMBA) to a more toxic compound, DMBA-3,4-diol-1,2-epoxide. Thus, the present study evaluated a functional role for mEH during detoxification of VCD. Additionally, because inhibition of the phosphatidyinositol-3 kinase (PI3K) signaling pathway in a previous study protected primordial follicles from VCD-induced destruction, but accelerated DMBA-induced ovotoxicity, a role for PI3K in ovarian mEH regulation was evaluated. Using a post-natal day (PND) 4 Fischer 344 rat whole ovary culture system inhibition of mEH using cyclohexene oxide during VCD exposure resulted in a greater (P < 0.05) loss of primordial and small primary follicles relative to VCD-treated ovaries. Also, relative to controls, meh mRNA was increased (P < 0.05) on day 4 of VCD (30 μM) exposure, followed by increased (P < 0.05) mEH protein after 6 days. Furthermore, inhibition of PI3K signaling increased mEH mRNA and protein expression. Thus, these results support a functional role for mEH in the rat ovary, and demonstrate the involvement of PI3K signaling in regulation of ovarian xenobiotic metabolism by mEH. -- Highlights: ► Ovarian mEH functions to metabolize VCD to a less toxic compound. ► mEH expression is increased in a temporal pattern in response to VCD exposure. ► PI3K signaling is involved in regulation of ovarian mEH expression.

  19. Global transcriptional expression in ovarian follicles from Tsaiya ducks (Anas platyrhynchos) with a high-fertilization rate.

    PubMed

    Wu, Shyh-Jong; Cheng, Yu-Shin; Liu, Hsiao-Lung; Wang, Hsing-He; Huang, Hsiu-Lin

    2016-05-01

    Novel candidates for biomarkers of a high-fertilization rate were identified here through global transcriptional profiling of ovarian follicles. Some other differentially expressed candidate genes were first noted to influence animal reproduction in our previous cDNA microarray analysis and are now recognized as markers for marker-assisted selection. In the present study, we compared gene expression in ovarian follicles from animals with high- and low-fertilization rates using an oligonucleotide array. On the basis of a fold change of greater than 1.2 and less than -1.2, a difference of >100 Affymetrix arbitrary units between the two groups, and a P value of less than 0.05, 47 genes were found to be associated with fertilization rate. GOEAST and MetaCore software were further used to identify the functional categories of genes that were differentially expressed. Then, we focused on three interesting genes associated with a high-fertilization rate: one of these genes was discovered to participate in signaling pathways of fertilization, and two genes take roles in lipid metabolism. An oligonucleotide array showed that the levels of orthodenticle homeobox 2 (OTX2) and lecithin:cholesterol acyltransferase (LCAT) gene expression were 1.62-fold and 1.95-fold higher in the high-fertilization rate group than in the low-fertilization rate group, respectively (P < 0.05). The level of apolipoprotein A-I (APOA1) gene expression was also higher in the high-fertilization rate group, with a difference of 2.31-fold (P < 0.05). The data were validated through quantitative polymerase chain reaction analysis. These results confirm the usefulness of the array technique and data mining methods in the discovery of new biomarkers and add knowledge to our understanding of the factors affecting fertilization rates in ovarian follicles.

  20. Expression of focal adhesion kinase in endometrial stromal cells of women with endometriosis was adjusted by ovarian steroid hormones.

    PubMed

    Mu, Lin; Ma, Yan-Yan

    2015-01-01

    The aim of our study is to investigate the effects of ovarian steroid hormones on focal adhesion kinase (FAK) expression in ESCs and whether there is alteration in women with endometriosis. FAK expression was assessed by western blotting analysis. Elevated expression of FAK was seen in the cultured ESCs treated with estrogen (P < 0.05). Expression of FAK protein was not changed in ESCs after treated by progesterone or treated by estrogen and progesterone. The level of up-regulation by estrogen in endometriosis is significantly higher than that from women without endometriosis (P < 0.05). FAK expression in endometrial stromal cells from endometriosis was more sensitive to estrogen, which might contribute to the pathogenesis and progress of endometriosis.

  1. Increased expression of protein kinase CK2α correlates with poor patient prognosis in epithelial ovarian cancer

    PubMed Central

    Ma, Zebiao; Wang, Xiaojing; He, Jiehua

    2017-01-01

    Epithelial ovarian cancer (EOC) is one of the deadly gynecological malignancies. The function of protein kinase CK2α (CK2α) in EOC is still unknown. Our study aimed to investigate the relationship between the protein expression of CK2α and the tumor progression, the prognosis of human EOC. In this study, we analyzed the expression levels of CK2α through Western blot, using EOC cell lines like A2780, HO8910, COV644, OVCAR3, SKOV3, and the primary normal ovarian surface epithelial (NOSE) cells. Furthermore, OVCAR3 and SKOV3 EOC cells were employed as a cellular model to study the role of CK2α on cell growth, migration, invasion, apoptosis, and cell cycle distribution. In addition, we investigated CK2α protein expression in tumor tissues from patients with EOC by immunohistochemistry and analyzed the association between CK2α expression and clinicopathologic parameters and prognosis of EOC patients. And we found that compared with NOSE cells, CK2α protein expression was increased in A2780, HO8910, OVCAR3, and SKOV3 ovarian cancer cell lines. Decreased CK2α expression suppressed OVCAR3 and SKOV3 cell growth and induced more apoptosis. CK2α knockdown using specific siRNAs inhibited migration and invasion ability of OVCAR3 and SKOV3 cells. In addition, high CK2α protein expression was found in 68.4% (80/117) of EOC patients. Increased CK2α expression of was significantly correlated with FIGO staging and peritoneal cytology. Patients with higher CK2α expression had a significantly poorer overall survival compared with those with lower CK2α expression. Multi-variate Cox regression analysis proved that increased CK2α expression was an independent prognostic marker for EOC. Taken together, our data displayed that CK2α may play a role in tumor aggressive behavior of EOC and could be used as a marker for predicting prognosis of EOC patient. High CK2α expression might predict poor patient survival. PMID:28355289

  2. White as a Reporter Gene to Detect Transcriptional Silencers Specifying Position-Specific Gene Expression during Drosophila Melanogaster Eye Development

    PubMed Central

    Sun, Y. H.; Tsai, C. J.; Green, M. M.; Chao, J. L.; Yu, C. T.; Jaw, T. J.; Yeh, J. Y.; Bolshakov, V. N.

    1995-01-01

    The white(+) gene was used as a reporter to detect transcriptional silencer activity in the Drosophila genome. Changes in the spatial expression pattern of white were scored in the adult eye as nonuniform patterns of pigmentation. Thirty-six independent P[lacW] transposant lines were collected. These represent 12 distinct pigmentation patterns and probably 21 loci. The spatial pigmentation pattern is due to cis-acting suppression of white(+) expression, and the suppression probably depends on cell position rather than cell type. The mechanism of suppression differs from inactivation by heterochromatin. In addition, activation of lacZ in P[lacW] occurs also in specific patterns in imaginal discs and embryos in many of the lines. The expression patterns of white(+) and lacZ may reflect the activity of regulatory elements belonging to an endogenous gene near each P[lacW] insertion site. We speculate that these putative POSE (position-specific expression) genes may have a role in pattern formation of the eye as well as other imaginal structures. Three of the loci identified are optomotor-blind, engrailed and invected. teashirt is also implicated as a candidate gene. We propose that this ``silencer trap'' may be an efficient way of identifying genes involved in imaginal pattern formation. PMID:8582614

  3. Molecular characterisation and expression profiling of the ENO1 gene in the ovarian follicle of the Sichuan white goose.

    PubMed

    Kang, Bo; Jiang, Dong Mei; Bai, Lin; He, Hui; Ma, Rong

    2014-01-01

    The ENO1 gene encodes a multifunctional enzyme that has been identified as a key component of the glycolytic pathway. Our previous studies demonstrated that ENO1 gene expression was higher in the ovaries of laying geese compared with prelaying geese. However, the molecular characterisation and expression profiling of the ENO1 gene in geese tissues and ovarian follicles remain to be determined. In this study, ENO1 cDNA (1,445 bp long) of the Sichuan white goose was cloned and characterised. The ORF of ENO1 cDNA is 1,305 bp in length and encodes a 434 amino acid protein with a molecular weight of 47.27 kDa. ENO1 expression in all of the examined tissues was the highest in spleen and the lowest in breast muscle. High expression of ENO1 appeared in the kidney, liver, adrenal gland, and retina. With increasing follicle growth, ENO1 gene expression began to decrease from the small white follicle to F5, which was followed by a sharp increase in expression in F4 and then a gradual decrease in expression from F3 to F1. Furthermore, in the postovulatory follicles (POF), the levels of ENO1 gene expression decreased gradually from POF1 to POF4. In conclusion, the ENO1 transcript was widely distributed in various tissues of the Sichuan white goose, but ENO1 expression was tissue-specific. Furthermore, the results of the ENO1 expression profiling of ovarian follicles suggest that ENO1 may play an important dual role in the progress of follicular development, where ENO1 acts as a glycolytic enzyme and also mediates apoptosis.

  4. Ovarian cysteine proteinases in the teleost Fundulus heteroclitus: molecular cloning and gene expression during vitellogenesis and oocyte maturation.

    PubMed

    Fabra, Mercedes; Cerdà, Joan

    2004-03-01

    The cysteine proteinases cathepsins B and L are members of the multigene family of lysosomal proteases that have been implicated in the processing of yolk proteins (YPs) in teleost oocytes. However, the full identification of the type of cathepsins expressed in fish ovarian follicles and embryos, as well as their regulatory mechanisms and specific function(s), are not yet elucidated. In this study, cDNAs encoding cathepsins B, L, F, K, S, Z, C, and H have been isolated from the teleost Fundulus heteroclitus, and the analysis of their deduced amino acid sequences revealed highly similar structural features to vertebrate orthologs, and confirmed in this species the existence of cathepsin L-like, cathepsin B-like, and cathepsin F-like subfamilies of cysteine proteinases. While all identified cathepsins were expressed in ovarian follicles, the corresponding mRNAs showed different temporal expression patterns. Thus, similar mRNA levels of cathepsins L, F, S, B, C, and Z were found throughout the oocyte growth or vitellogenesis period, whereas those for cathepsin H and K appeared to decrease as vitellogenesis advanced. During oocyte maturation, a transient accumulation of cathepsins L, S, H, and F mRNAs, approximately a 3-, 1.5-, 1.6-, and 6-fold increase, respectively, was detected in ovarian follicles within the 20-25 hr after hormone stimulation, coincident with the maximum proteolysis of the oocyte major YPs. The specific temporal pattern of expression of these genes may indicate a potential role of cathepsin L-like and cathepsin F proteases in the YP processing events occurring during fish oocyte maturation and/or early embryogenesis.

  5. The RUNX1 transcription factor is expressed in serous epithelial ovarian carcinoma and contributes to cell proliferation, migration and invasion

    PubMed Central

    Keita, Mamadou; Bachvarova, Magdalena; Morin, Chantale; Plante, Marie; Gregoire, Jean; Renaud, Marie-Claude; Sebastianelli, Alexandra; Trinh, Xuan Bich; Bachvarov, Dimcho

    2013-01-01

    Previously, we have identified the RUNX1 gene as hypomethylated and overexpressed in post-chemotherapy (CT) primary cultures derived from epithelial ovarian cancer (EOC) patients, when compared with primary cultures derived from matched primary (prior to CT) tumors. Here we show that RUNX1 displays a trend of hypomethylation, although not significant, in omental metastases compared with primary EOC tumors. Surprisingly, RUNX1 displayed significantly higher expression not only in metastatic tissue, but also in high-grade primary tumors and even in low malignant potential tumors. The RUNX1 expression levels were almost identical in primary tumors and omental metastases, suggesting that RUNX1 hypomethylation might have a limited impact on its overexpression in advanced (metastatic) stage of the disease. Knockdown of the RUNX1 expression in EOC cells led to sharp decrease of cell proliferation and induced G1 cell cycle arrest. Moreover, RUNX1 suppression significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon RUNX1 suppression, while a number of pro-apoptotic genes and some EOC tumor suppressor genes were induced. Taken together, our data are indicative for a strong oncogenic potential of the RUNX1 gene in EOC progression and suggest that RUNX1 might be a novel EOC therapeutic target. Further studies are needed to more completely elucidate the functional implications of RUNX1 and other members of the RUNX gene family in ovarian tumorigenesis. PMID:23442798

  6. Expression of WT1, CA 125, and GCDFP-15 as useful markers in the differential diagnosis of primary ovarian carcinomas versus metastatic breast cancer to the ovary.

    PubMed

    Tornos, Carmen; Soslow, Robert; Chen, Shirley; Akram, Muzaffar; Hummer, Amanda J; Abu-Rustum, Nadeen; Norton, Larry; Tan, Lee K

    2005-11-01

    Metastatic breast carcinoma to the ovary is sometimes difficult to differentiate from primary ovarian carcinoma. This problem is often encountered in breast carcinoma patients who develop adnexal masses. ER and PR can be positive in a high percentage of breast and ovarian carcinomas, and therefore cannot be used in the differential diagnosis of these entities. WT1 and CA125 have been identified as possible markers for ovarian cancer. However, no studies have been done that specifically compare the immunophenotype of breast carcinoma metastatic to ovary with that of primary ovarian cancer. Thirty-nine cases of metastatic breast carcinoma to the ovary, 36 primary breast carcinomas, and 42 primary ovarian carcinomas were examined immunohistochemically for the expression of WT1, CA125, carcinoembryonic antigen, MUC2, MUC1, and GCDFP. The percentage of cells stained and the intensity of staining were recorded. Thirty-two ovarian carcinomas (76%) were positive for WT1, including 31 of 33 (94%) serous carcinomas. Most of them had strong and diffuse staining. None of the breast cancers either primary or metastatic to the ovary expressed WT1. Thirty-eight (90%) ovarian carcinomas were positive for CA125, most of them with strong and diffuse staining. Most breast carcinomas were negative for CA125, with only 6 (16%) of the primary ones and 5 (12%) of the metastatic showing weak and focal positivity. All ovarian carcinomas were negative for GCDFP. Five primary breast cancers (14%) and 17 (43%) metastatic to the ovary were positive for GCDFP. Nine (21%) ovarian carcinomas, 8 (22%) primary breast carcinomas, and 13 (33%) metastatic to the ovary were positive for carcinoembryonic antigen. Almost all tumors examined were positive for MUC1 (100% ovarian carcinomas, 100% primary breast carcinomas, and 95% metastatic breast carcinomas to ovary). MUC2 was positive in 10 (24%) ovarian carcinomas, 3 (8%) primary breast cancers, and 12 (30%) metastases to the ovary. The presence of

  7. VAV1 represses E-cadherin expression through the transactivation of Snail and Slug: a potential mechanism for aberrant epithelial to mesenchymal transition in human epithelial ovarian cancer.

    PubMed

    Wakahashi, Senn; Sudo, Tamotsu; Oka, Noriko; Ueno, Sayaka; Yamaguchi, Satoshi; Fujiwara, Kiyoshi; Ohbayashi, Chiho; Nishimura, Ryuichiro

    2013-09-01

    Ovarian cancer is the most lethal gynecological malignancy in the western world. Although patients with early-stage ovarian cancer generally have a good prognosis, approximately 20%-30% of patients will die of the disease, and 5-year recurrence rates are 25%-45%, highlighting the need for improved detection and treatment. We investigated the role of VAV1, a protein with guanine nucleotide exchange factor activity, which is associated with survival in patients with early-stage ovarian cancer (International of Obstetrics and Gynecology [FIGO] stages I and II). We analyzed 88 samples from patients with primary epithelial ovarian cancer, which were divided into FIGO stages I and II (n = 46), and III and IV (n = 42). Prognostic analysis revealed that upregulated VAV1 expression correlated significantly with poor prognosis in patients with early-stage epithelial ovarian cancer (P ≤ 0.05), but not with other clinicopathologic features. Stable overexpression of VAV1 in human high-grade serous ovarian cancer SKOV3 cells induced morphologic changes indicative of loss of intercellular adhesions and organized actin stress fibers. Western blotting and real-time reverse transcriptase-polymerase chain reaction demonstrated that these cells had downregulated E-cadherin protein and messenger RNA levels, respectively. This downregulation is associated with epithelial-mesenchymal transition (EMT) and invasive cancer. Furthermore, VAV1 overexpression in both SKOV3 and human ovarian surface epithelial cells demonstrated that its upregulation of an E-cadherin transcriptional repressor, Snail and Slug, was not confined to ovarian cancer cells. Conversely, knockdown of VAV1 by RNA interference reduced Snail and Slug. Our findings suggest that VAV1 may play a role in the EMT of ovarian cancer, and may serve as a potential therapeutic target.

  8. Ovarian Autoantibodies Predict Ovarian Cancer

    DTIC Science & Technology

    2010-11-01

    ovarian adenocarcinomas from laying hens. Gynecol Oncol, 2007; 104: 192-198. 506 25. Hales DB, Zhuge Y, Lagman JA, Ansenberger K, Mahon C, Barua A...Ultrasound Med 2010, 29:173-182. 479 (19) Hales DB, Zhuge Y, Lagman JA, Ansenberger K, Mahon C, Barua A et al: 480 Cyclooxygenases expression and...adenocarcinomas from laying hens. Gynecol Oncol 2007, 507 104:192-198. 508 (30) Ansenberger K, Zhuge Y, Lagman JA, Richards C, Barua A, Bahr JM

  9. Ovarian Cancer

    MedlinePlus

    ... deaths than other female reproductive cancers. The sooner ovarian cancer is found and treated, the better your chance for recovery. But ovarian cancer is hard to detect early. Women with ovarian ...

  10. Bone morphogenetic protein 1 is expressed in porcine ovarian follicles and promotes oocyte maturation and early embryonic development

    PubMed Central

    LEI, Xiaocan; CUI, Kuiqing; CAI, Xiaoyan; REN, Yanping; LIU, Qingyou; SHI, Deshun

    2016-01-01

    In the present study, we tried to determine whether bone morphogenetic protein 1 (BMP1) plays a role in ovarian follicular development and early embryo development. We systematically investigated the expression and influence of BMP1 during porcine follicle and early embryonic development. Immunohistochemistry demonstrated that the BMP1 protein is expressed in granular cells and oocytes during follicular development, from primary to pre-ovulatory follicles, including atretic follicles and the corpus luteum. The mRNA expression of BMP1 significantly increased as the porcine follicles grew. Immunofluorescence analysis indicated that BMP1 was expressed in cumulus-oocyte complexes (COCs), oocytes and porcine embryos during early in vitro culture. qPCR and western blot analysis showed that the expression of BMP1 was significantly up-regulated in mature porcine oocytes and COCs compared to immature oocytes and COCs. BMP1 is expressed in early porcine embryos, and its expression reaches a peak at the 8-cell stage. To determine the effect of BMP1 on the maturation of oocytes and the development of early embryos, various concentrations of BMP1 recombinant protein or antibody were added to the in vitro culture media, respectively. BMP1 significantly affected the porcine oocyte maturation rate, the cleavage rate and the blastocyst development rate of embryos cultured in vitro in a positive way, as well as the blastocyst cell number. In conclusion, BMP1 is expressed throughout porcine ovarian follicle development and early embryogenesis, and it promotes oocyte maturation and the developmental ability of embryos during early in vitro culture. PMID:27890905

  11. Characterization, localization, and stage-dependent gene expression of gonadotropin receptors in chub mackerel (Scomber japonicus) ovarian follicles.

    PubMed

    Nyuji, Mitsuo; Kitano, Hajime; Shimizu, Akio; Lee, Jae Man; Kusakabe, Takahiro; Yamaguchi, Akihiko; Matsuyama, Michiya

    2013-06-01

    The pituitary gonadotropins (GtHs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), are key regulators of gametogenesis in teleosts. However, little is known about the physiological mechanisms by which GtHs regulate asynchronous oocyte development in multiple-spawning marine fishes. We cloned cDNAs encoding GtH receptors (FSHR and LHR) from chub mackerel (Scomber japonicus). FSH and LH were purified by anion-exchange chromatography, gel filtration, and concanavalinA-agarose. When expressed in mammalian cells, FSHR and LHR responded strongly to their own ligands. By separating LH into two subunits by the use of reverse-phase chromatography, we found that the beta-subunit is responsible for signal transduction and the alpha-subunit may be important for holding hormone-receptor complex. In situ hybridization showed that only fshr was expressed in prefollicle and granulosa cells in oocytes at the perinucleolus and cortical alveolus stages, suggesting that FSH is involved in the primary and early secondary growth of oocytes. In ovarian follicles during vitellogenesis, both fshr and lhr were expressed in granulosa and thecal cells, and lhr was strongly expressed during germinal vesicle migration (GVM). Real-time PCR analysis of stage-dependent fshr and lhr expression showed that fshr expression was high in ovarian follicles throughout vitellogenesis and decreased during GVM, whereas lhr expression was low in early vitellogenesis, but increased markedly in the late phase of vitellogenesis, remaining high during GVM. These findings suggest that switching of the expression of FSHR to LHR controls the effects of FSH and/or LH on vitellogenesis and final oocyte maturation via steroid production in granulosa and thecal cells.

  12. Sense organ identity in the Drosophila antenna is specified by the expression of the proneural gene atonal.

    PubMed

    Jhaveri, D; Sen, A; Reddy, G V; Rodrigues, V

    2000-12-01

    We have shown that the basic helix-loop-helix transcription factor Atonal is sufficient for specification of one of the three subsets of olfactory sense organs on the Drosophila antenna. Misexpression of Atonal in all sensory precursors in the antennal disc results in their conversion to coeloconic sensilla. The mechanism by which specific sense organ fate is triggered remains unclear. We have shown that the homeodomain transcription factor Cut which acts in the chordotonal-external sense organ choice does not play a role in olfactory sense organ development. The expression of atonal in specific domains of the antennal disc is regulated by an interplay of the patterning genes, Hedgehog and Wingless, and Drosophila epidermal growth factor receptor pathway.

  13. Human epididymis protein 4 expression positively correlated with miR-21 and served as a prognostic indicator in ovarian cancer.

    PubMed

    Chen, Yong; Chen, Qingquan; Liu, Qicai; Gao, Feng

    2016-06-01

    Ovarian cancer is the most common cause of gynecological malignancy-related mortality. Human epididymis protein 4 (HE4) is a useful biomarker for ovarian cancer when either used alone or in combination with carbohydrate antigen 125 (CA125). What is more, aberrant expression of microRNA-21 (miR-21) has been shown to be involved in oncogenesis, but the relationship between miR-21 and HE4 in ovarian cancer is not clear. Tumor and adjacent tumor tissues from 43 patients with ovarian cancer were examined. Real-time polymerase chain reaction (RT-PCR) was used to detect the expression of HE4 in the carcinoma and adjacent tissues. The associations between HE4 and tumor biological characters were discussed. TaqMan(®) MicroRNA (miRNA) assays were employed to detect the expression of miR-21 in the ovarian carcinoma. In ovarian cancer, the expression of HE4 messenger RNA (mRNA) in cancer tissues was higher than adjacent tumor tissues (P < 0.0001), which was 1.299-fold of adjacent tumor tissues. And, the expression of miR-21 was also up-regulated which was significantly different in the ovarian cancer (the positive rate was 76.74 %). There was a significantly positive correlation between miR-21 and HE4 expression (r = 0.283 and P = 0.066 for HE4 mRNA, r = 0.663 and P < 0.0001 for serum HE4). There was also a significant correlation between miR-21 and tumor grade (r = 0.608, P < 0.0001). Significantly, patients with recent recurrence (less than 6 months, n = 17) have a higher miR-21 expression than those with no recent recurrence. Therefore, HE4 and miR-21 may play an important role in the development and progression of ovarian cancer and they may serve as prognostic indicators in ovarian cancer.

  14. Ovarian Transcriptome Analysis of Portunus trituberculatus Provides Insights into Genes Expressed during Phase III and IV Development

    PubMed Central

    Han, Tao; Liu, Tao; Wang, Chunlin; Xiao, Jia; Mu, Changkao; Li, Ronghua; Yu, Fangping; Shi, Huilai

    2015-01-01

    Enhancing the production of aquatic animals is crucial for fishery management and aquaculture applications. Ovaries are specialized tissues that play critical roles in producing oocytes and hormones. Significant biochemical changes take place during the sexual maturation of Portunus trituberculatus, but the genetics of this process has not been extensively studied. Transcriptome sequencing can be used to determine gene expression changes within specific periods. In the current study, we used transcriptome sequencing to produce a comprehensive transcript dataset for the ovarian development of P. trituberculatus. Approximately 100 million sequencing reads were generated, and 126,075 transcripts were assembled. Functional annotation of the obtained transcripts revealed important pathways in ovarian development, such as those involving the vitellogenin gene. Also, we performed deep sequencing of ovaries in phases III and IV of sexual maturation in P. trituberculatus. Differential analysis of gene expression identified 506 significantly differentially expressed genes, which belong to 20 pathway, transporters, development, transcription factors, metabolism of other amino acids, carbohydrate and lipid, solute carrier family members, and enzymes. Taken together, our study provides the first comprehensive transcriptomic resource for P. trituberculatus ovaries, which will strengthen understanding of the molecular mechanisms underlying the sexual maturation process and advance molecular nutritional studies of P. trituberculatus. PMID:26431399

  15. Cell-mass structures expressing the aromatase gene Cyp19a1 lead to ovarian cavities in Xenopus laevis.

    PubMed

    Mawaribuchi, Shuuji; Ikeda, Nozomi; Fujitani, Kazuko; Ito, Yuzuru; Onuma, Yasuko; Komiya, Tohru; Takamatsu, Nobuhiko; Ito, Michihiko

    2014-10-01

    The African clawed frog, Xenopus laevis, has a ZZ/ZW-type sex-determination system. We previously reported that a W-linked gene, Dm-W, can determine development as a female. However, the mechanisms of early sex differentiation remain unclear. We used microarrays to screen for genes with sexually dimorphic expression in ZZ and ZW gonads during early sex differentiation in X laevis and found several steroidogenic genes. Importantly, the steroid 17α-hydroxylase gene Cyp17a1 and the aromatase gene Cyp19a1 were highly expressed in ZZ and ZW gonads, respectively, just after sex determination. At this stage, we found that Cyp17a1, Cyp19a1, or both were expressed in the ZZ and ZW gonads in a unique mass-in-line structure, in which several masses of cells, each surrounded by a basement membrane, were aligned along the anteroposterior axis. In fact, during sex differentiation, ovarian cavities formed inside each mass of Cyp17a1- and Cyp19a1-positive cells in the ZW gonads. However, the mass-in-line structure disappeared during testicular development in the ZZ testes. These results suggested that the mass-in-line structure found in both ZZ and ZW gonads just after sex determination might be formed in advance to produce ovarian cavities and then oocytes. Consequently, we propose a view that the default sex may be female in the morphological aspect of gonads in X laevis.

  16. Cloning and expression of R-Spondin1 in different vertebrates suggests a conserved role in ovarian development

    PubMed Central

    Smith, Craig A; Shoemaker, Christina M; Roeszler, Kelly N; Queen, Joanna; Crews, David; Sinclair, Andrew H

    2008-01-01

    Background R-Spondin1 (Rspo1) is a novel regulator of the Wnt/β-catenin signalling pathway. Loss-of-function mutations in human RSPO1 cause testicular differentiation in 46, XX females, pointing to a role in ovarian development. Here we report the cloning and comparative expression analysis of R-SPONDIN1 orthologues in the mouse, chicken and red-eared slider turtle, three species with different sex-determining mechanisms. Evidence is presented that this gene is an ancient component of the vertebrate ovary-determining pathway. Results Gonadal RSPO1 gene expression is female up-regulated in the embryonic gonads in each species at the onset of sexual differentiation. In the mouse gonad, Rspo1 mRNA is expressed in the somatic cell lineage at the time of ovarian differentiation (E12.5–E15.5), with little expression in germ cells. However, the protein is localised in the cytoplasm and at the cell surface of both somatic (pre-follicular) and germ cells. In the chicken embryo, RSPO1 expression becomes elevated in females at the time of ovarian differentiation, coinciding with female-specific activation of the FOXL2 gene and estrogen synthesis. RSPO1 protein in chicken is localised in the outer cortical zone of the developing ovary, the site of primordial follicle formation and germ cell differentiation. Inhibition of estrogen synthesis with a specific aromatase inhibitor results in a decline in chicken RSPO1 expression, indicating that RSPO1 is influenced by estrogen. In the red-eared slider turtle, which exhibits temperature-dependent sex determination, up-regulation of RSPO1 occurs during the temperature-sensitive period, when gonadal development is responsive to temperature. Accordingly, RSPO1 expression is temperature-responsive, and is down-regulated in embryos shifted from female- to male-producing incubation temperatures. Conclusion These results indicate that RSPO1 is up-regulated in the embryonic gonads of female vertebrates with different sex

  17. Effects of neonatal litter size and age on ovarian gene expression and follicular development in gilts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gilts raised in small litters have greater ovulation rate, stay in the herd longer and produce more pigs. The objective was to understand how neonatal litter size affects gilt development. The hypothesis is that gilts reared in smaller litters have greater ovarian follicular development. Within 24 h...

  18. Gene Expression of Aromatases, Steroid Receptor, GnRH and GTHs in the Brain during the Formation of Ovarian Cavity in Red Spotted Grouper, Epinephelus akaara

    PubMed Central

    Kim, Hyun Kyu; Kim, Jung-Hyun; Baek, Hea Ja; Kwon, Joon Yeong

    2016-01-01

    ABSTRACT Red spotted grouper, Epinephelus akaara, is a popular aquaculture species and a protogynous hermaphrodite. Induction of artificial sex change at the time of primary sex differentiation is of interest but has not been successful due to the lack of necessary basic information. To find out the potential neuroendocrine influence on the primary sex differentiation, the expression of key genes in the brain was investigated during the formation of ovarian cavity. Expression of cyp19a1b, esr1, gnrhr1, fsh, lh and cga in the brain was positively associated with the formation of ovarian cavity, showing gradual increase as the formation proceeds. However, the expression of gnrh1 was suppressed during the early part of the ovarian cavity formation, signifying potential hypothalamic influence on the primary sex differentiation in this species. PMID:28144641

  19. Genomic and protein expression analysis reveals flap endonuclease 1 (FEN1) as a key biomarker in breast and ovarian cancer.

    PubMed

    Abdel-Fatah, Tarek M A; Russell, Roslin; Albarakati, Nada; Maloney, David J; Dorjsuren, Dorjbal; Rueda, Oscar M; Moseley, Paul; Mohan, Vivek; Sun, Hongmao; Abbotts, Rachel; Mukherjee, Abhik; Agarwal, Devika; Illuzzi, Jennifer L; Jadhav, Ajit; Simeonov, Anton; Ball, Graham; Chan, Stephen; Caldas, Carlos; Ellis, Ian O; Wilson, David M; Madhusudan, Srinivasan

    2014-10-01

    FEN1 has key roles in Okazaki fragment maturation during replication, long patch base excision repair, rescue of stalled replication forks, maintenance of telomere stability and apoptosis. FEN1 may be dysregulated in breast and ovarian cancers and have clinicopathological significance in patients. We comprehensively investigated FEN1 mRNA expression in multiple cohorts of breast cancer [training set (128), test set (249), external validation (1952)]. FEN1 protein expression was evaluated in 568 oestrogen receptor (ER) negative breast cancers, 894 ER positive breast cancers and 156 ovarian epithelial cancers. FEN1 mRNA overexpression was highly significantly associated with high grade (p = 4.89 × 10(-57)), high mitotic index (p = 5.25 × 10(-28)), pleomorphism (p = 6.31 × 10(-19)), ER negative (p = 9.02 × 10(-35)), PR negative (p = 9.24 × 10(-24)), triple negative phenotype (p = 6.67 × 10(-21)), PAM50.Her2 (p = 5.19 × 10(-13)), PAM50. Basal (p = 2.7 × 10(-41)), PAM50.LumB (p = 1.56 × 10(-26)), integrative molecular cluster 1 (intClust.1) (p = 7.47 × 10(-12)), intClust.5 (p = 4.05 × 10(-12)) and intClust. 10 (p = 7.59 × 10(-38)) breast cancers. FEN1 mRNA overexpression is associated with poor breast cancer specific survival in univariate (p = 4.4 × 10(-16)) and multivariate analysis (p = 9.19 × 10(-7)). At the protein level, in ER positive tumours, FEN1 overexpression remains significantly linked to high grade, high mitotic index and pleomorphism (ps < 0.01). In ER negative tumours, high FEN1 is significantly associated with pleomorphism, tumour type, lymphovascular invasion, triple negative phenotype, EGFR and HER2 expression (ps < 0.05). In ER positive as well as in ER negative tumours, FEN1 protein overexpression is associated with poor survival in univariate and multivariate analysis (ps < 0.01). In ovarian epithelial cancers, similarly, FEN1 overexpression is associated with high grade, high stage and poor survival (ps < 0.05). We conclude that FEN1

  20. Changes in ovarian gene expression profiles and plasma hormone levels in maturing European eel (Anguilla anguilla); Biomarkers for broodstock selection.

    PubMed

    Burgerhout, Erik; Minegishi, Yuki; Brittijn, Sebastiaan A; de Wijze, Danielle L; Henkel, Christiaan V; Jansen, Hans J; Spaink, Herman P; Dirks, Ron P; van den Thillart, Guido E E J M

    2016-01-01

    Complete sexual maturation of European eels (Anguilla anguilla) in captivity can only be achieved via injections with gonadotropins. For female eels this procedure takes 4-6months and the response ranges from "unresponsive" to final maturation and ovulation. Reproductive success could be significantly increased via early selection of responders based on predictive markers and minimally invasive sampling methods. To get a better understanding of the genetic background of ovarian maturation of the European eel we performed a pilot deep-sequencing transcriptome analysis of ovarian tissue derived from a yellow eel, a prepubertal silver eel and a post-spawning matured eel. Two key players in steroidogenesis were strongly correlated with advanced sexual maturation, namely P450c17 and liver receptor homolog-1, suggesting that blood plasma steroids might qualify as minimally invasive markers for early detection of responders. Since the predictive value of plasma sex steroid levels for final maturation of the European eel had not yet been carefully examined, we performed an extensive artificial maturation trial. Farmed silver eels were treated with pituitary extracts and sampled at multiple time intervals. Expression of steroidogenesis-related genes in ovarian tissue of responding and non-responding eels after four weekly injections with pituitary extract was compared using a custom-built microarray and RNAseq. Increased expression of 17β-hsd1 was strongly linked to sexual maturation. Blood plasma levels of sex steroids were measured using ELISAs. We show that a 2.5-fold increase in blood-plasma estradiol level after 4 weekly pituitary extract injections is a strong predictor of final sexual maturation of female European eel.

  1. Pattern of HER-2 Gene Amplification and Protein Expression in Benign, Borderline, and Malignant Ovarian Serous and Mucinous Neoplasms.

    PubMed

    Mohammed, Rabab A A; Makboul, Rania; Elsers, Dalia A H; Elsaba, Tarek M A M; Thalab, Abeer M A B; Shaaban, Omar M

    2016-06-15

    Amplification of HER-2 gene and overexpression of HER-2 receptor play a significant role in the progression of a number of malignancies such as breast cancer. Trastuzumab (anti-HER-2 therapeutic agent) has been used successfully in treatment of breast cancer. The aim of this study was to assess the pattern of HER-2 gene amplification and of HER-2 receptor expression in a spectrum of serous and mucinous ovarian tumors to determine whether HER-2 is altered in these neoplasms similar to that occurring in breast cancer. Formalin-fixed paraffin-embedded microarray tissue sections from 212 specimens were stained with HER-2 antibody using immunohistochemistry and with anti-HER-2 DNA probe using chromogenic in situ hybridization. Specimens consisted of 65 benign tumors (50 serous and 15 mucinous), 26 borderline (13 serous and 13 mucinous), 73 malignant (53 serous carcinoma and 20 mucinous carcinoma), 18 metastatic deposits (13 serous and 5 mucinous), in addition to 30 normal tissues (16 ovarian surface and 14 normal fallopian tube). HER-2 protein-positive expression was not detected in the normal or the benign tissues. Borderline neoplasms showed positive staining, but no overexpression. HER-2 overexpression was seen only in 4 carcinoma specimens: 1/53 (1.8%) primary serous carcinomas and 3/20 (15%) primary mucinous carcinomas. HER-2 gene amplification was seen in 4 specimens: 2 primary mucinous carcinomas and 2 malignant deposits of these 2 mucinous carcinomas. In conclusion, alteration of HER-2 was not detected in ovarian serous neoplasms; however, in mucinous carcinoma, HER-2 amplification and overexpression occur more frequently.

  2. Methylation and expression analysis of 15 genes and three normally-methylated genes in 13 Ovarian cancer cell lines.

    PubMed

    Imura, Masayoshi; Yamashita, Satoshi; Cai, Li-Yi; Furuta, Jun-Ichi; Wakabayashi, Mika; Yasugi, Toshiharu; Ushijima, Toshikazu

    2006-09-28

    Aberrant methylation of CpG islands (CGIs) in promoter regions of tumor-suppressor genes causes their silencing, and aberrant demethylation of normally methylated CGIs in promoter regions causes aberrant expression of cancer-testis antigens. Here, we comprehensively analyzed aberrant methylation of 15 genes and demethylation of three normally methylated genes in 13 ovarian cancer cell lines. RASSF1A was most frequently methylated (complete methylation in 7 and partial methylation in 4 cell lines), followed by ESR1 (5 and 2, respectively), FLNC (4 and 4), HAND1 (4 and 2), LOX (3 and 2), HRASLS (3 and 2), MGMT (3 and 0), CDKN2A (3 and 0), THBD (2 and 1), hMLH1 (2 and 0), CDH1 (1 and 1) and GSTP1 (1 and 0). hTERC and TIMP3 were only partially methylated in 7 and 2 cell lines, respectively. BRCA1 was not methylated at all. Aberrant demethylation of MAGE-A3, -B2 and -A1 was detected in 8, 4 and 3 cell lines, respectively. Gene expression was consistently absent in cell lines without unmethylated DNA molecules. Aberrant methylation was frequently observed in MCAS, RMUG-L (mucinous cell carcinomas), RTSG (poorly-differentiated carcinoma) and TYK-nu (undifferentiated carcinoma) while infrequent in HTOA, JHOS-2, and OV-90 (serous cell carcinomas). Aberrant demethylation was frequently observed in OV-90, OVK-18, and ES-2 cell lines. It was shown that aberrant methylation and demethylation were frequently observed in ovarian cancer cell lines, and these data will provide a basis for further epigenetic analysis in ovarian cancers.

  3. Modeling Human Epithelial Ovarian Cancer in Mice by Alteration of Expression of the BRCA1 and/or P53 Genes

    DTIC Science & Technology

    2005-02-01

    later by injection with 5 U of human chorionic gonadotropin (hormones purchased from Sigma, St. Louis, MO). 1.5 days following the last hormone...AD Award Number: W81XWH-04-1-0063 TITLE: Modeling Human Epithelial Ovarian Cancer in Mice by Alteration of Expression of the BRCA1 and/or P53 Genes...FUNDING NUMBERS Modeling Human Epithelial Ovarian Cancer in Mice by W81XWH-04-1-0063 Alteration of Expression of the BRCAI and/or P53 Genes 6. AUTHOR(S

  4. Ovarian expression and localization of a vitellogenin receptor with eight ligand binding repeats in the cutthroat trout (Oncorhynchus clarki).

    PubMed

    Mizuta, Hiroko; Luo, Wenshu; Ito, Yuta; Mushirobira, Yuji; Todo, Takashi; Hara, Akihiko; Reading, Benjamin J; Sullivan, Craig V; Hiramatsu, Naoshi

    2013-09-01

    A cDNA encoding a vitellogenin receptor with 8 ligand binding repeats (vtgr) was cloned from ovaries of the cutthroat trout, Oncorhynchus clarki. In situ hybridization and quantitative PCR analyses revealed that the main site of vtgr mRNA expression was the oocytes. Expression was strongly detected in perinucleous stage oocytes, gradually decreased as oocytes grew, and became hardly detectable in vitellogenic oocytes. A rabbit antibody (a-Vtgr) was raised against a recombinant Vtgr protein in order to immunologically detect and localize Vtgr within the ovarian follicles. Western blotting using a-Vtgr detected a bold band with an apparent mass of ~95-105kDa in an ovarian preparation that also bound Sakhalin taimen, Hucho perryi, vitellogenin in ligand blots. Immunohistochemistry using a-Vtgr revealed that the Vtgr was uniformly distributed throughout the ooplasm of perinucleolus stage oocytes, subsequently translocated to the periphery of lipid droplet stage oocytes, and became localized to the oolemma during vitellogenesis. We provide the first characterization of Vtgr at both the transcriptional and the translational levels in the cutthroat trout, and our results suggest that this receptor is involved in uptake of Vtg by oocytes of this species.

  5. Transposable element dynamics and PIWI regulation impacts lncRNA and gene expression diversity in Drosophila ovarian cell cultures

    PubMed Central

    Sytnikova, Yuliya A.; Rahman, Reazur; Chirn, Gung-wei; Clark, Josef P.

    2014-01-01

    Piwi proteins and Piwi-interacting RNAs (piRNAs) repress transposable elements (TEs) from mobilizing in gonadal cells. To determine the spectrum of piRNA-regulated targets that may extend beyond TEs, we conducted a genome-wide survey for transcripts associated with PIWI and for transcripts affected by PIWI knockdown in Drosophila ovarian somatic sheet (OSS) cells, a follicle cell line expressing the Piwi pathway. Despite the immense sequence diversity among OSS cell piRNAs, our analysis indicates that TE transcripts are the major transcripts associated with and directly regulated by PIWI. However, several coding genes were indirectly regulated by PIWI via an adjacent de novo TE insertion that generated a nascent TE transcript. Interestingly, we noticed that PIWI-regulated genes in OSS cells greatly differed from genes affected in a related follicle cell culture, ovarian somatic cells (OSCs). Therefore, we characterized the distinct genomic TE insertions across four OSS and OSC lines and discovered dynamic TE landscapes in gonadal cultures that were defined by a subset of active TEs. Particular de novo TEs appeared to stimulate the expression of novel candidate long noncoding RNAs (lncRNAs) in a cell lineage-specific manner, and some of these TE-associated lncRNAs were associated with PIWI and overlapped PIWI-regulated genes. Our analyses of OSCs and OSS cells demonstrate that despite having a Piwi pathway to suppress endogenous mobile elements, gonadal cell TE landscapes can still dramatically change and create transcriptome diversity. PMID:25267525

  6. Plakoglobin Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells Expressing N-Cadherin and Mutant p53

    PubMed Central

    Alaee, Mahsa; Danesh, Ghazal; Pasdar, Manijeh

    2016-01-01

    Aberrant expression of cadherins and catenins plays pivotal roles in ovarian cancer development and progression. Plakoglobin (PG, γ-catenin) is a paralog of β-catenin with dual adhesive and signaling functions. While β-catenin has known oncogenic function, PG generally acts as a tumor/metastasis suppressor. We recently showed that PG interacted with p53 and that its growth/metastasis inhibitory function may be mediated by this interaction. Very little is known about the role of PG in ovarian cancer. Here, we investigated the in vitro tumor/metastasis suppressor effects of PG in ovarian cancer cell lines with mutant p53 expression and different cadherin profiles. We showed that the N-cadherin expressing and E-cadherin and PG deficient ES-2 cells were highly migratory and invasive, whereas OV-90 cells that express E-cadherin, PG and very little/no N-cadherin were not. Exogenous expression of PG or E-cadherin or N-cadherin knockdown in ES-2 cells (ES-2-E-cad, ES-2-PG and ES-2-shN-cad) significantly reduced their migration and invasion. Also, PG expression or N-cadherin knockdown significantly decreased ES-2 cells growth. Furthermore, PG interacted with both cadherins and with wild type and mutant p53 in normal ovarian and ES-2-PG cell lines, respectively. PMID:27144941

  7. Effects of frutalin on early follicle morphology, ultrastructure and gene expression in cultured goat ovarian cortical tissue.

    PubMed

    Soares, Maria A A; Costa, José J N; Vasconcelos, Gisvani L; Ribeiro, Regislane P; Souza, José C; Silva, André L C; Van den Hurk, Robert; Silva, José R V

    2017-02-15

    Frutalin is a galactose-binding lectin that has an irreversible cytotoxic effect on HeLa cervical cancer cells, by inducing apoptosis and inhibiting cell proliferation. It was previously shown that after in vitro incubation, frutalin is internalized into HeLa cells nucleus, which indicates that frutalin apoptosis-inducing activity might be linked with its nuclear localization. Considering that drugs commonly used for cancer treatment have a deleterious effect on germ cells, the aim of this study was to evaluate the effect of frutalin on the activation, survival, ultrastructure and gene expression in follicles cultured within ovarian tissue. Goat ovarian fragments were cultured for 6 days in α-MEM+ alone or supplemented with frutalin (1, 10, 50, 100 or 200 µg/ml). Non-culturad and cultured tissues were processed for histological and ultrastructural analysis and they were also stored to evaluate the expression of anti- and pro-apoptotic genes by quantitative polymerase chain reaction (qPCR). The results showed that the frutalin, at all concentrations tested, reduced follicular survival when compared with control medium. Higher concentrations of frutalin (50, 100 or 200 µg/ml) also reduced follicular survival when compared with those tissues cultured with 1 or 10 µg/ml of frutalin. The ultrastructural analysis showed that atretic cultured follicles had retracted oocytes and a large number of vacuoles spread throughout the cytoplasm. In addition, signs of damage of mitochondrial membranes and cristae were observed. Moreover, although a dose-response effect on gene expression has not been observed, when compared with tissues culture in control medium, the presence of frutalin increased in mRNA expression pro-apoptotic genes. In conclusion, frutalin reduces follicular survival at all concentrations tested, its effects being more pronounced when high concentrations of this lectin (50, 100 and 200 µg/ml) are used. Gene expression profile and ultrastrutural features of

  8. Leukocyte-associated immunoglobulin-like receptor-1 expressed in epithelial ovarian cancer cells and involved in cell proliferation and invasion

    SciTech Connect

    Cao, Qizhi; Fu, Aili; Yang, Shude; He, Xiaoli; Wang, Yue; Zhang, Xiaoshu; Zhou, Jiadi; Luan, Xiying; Yu, Wenzheng; Xue, Jiangnan

    2015-03-06

    Previous studies have shown that leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is expressed on most types of hamatopoietic cells and negatively regulate immune response, but the roles of LAIR-1 in tumor of the non-hematopoietic lineage have not been determined. Despite advances in therapy of epithelial ovarian cancer (EOC), many questions relating to EOC pathogenesis remain unanswered. The aim of this study was to investigate the clinical significance of LAIR-1 expression in EOC and explore the possible association between LAIR-1 and cancer. In this study, a tissue microarray containing 78 ovarian cancer cases was stained following a standard immunohistochemical protocol for LAIR-1 and the correlation of LAIR-1 expression with clinicopathologic features was assessed. LAIR-1 was detected to express in tumor cells of ovarian cancer tissues (73.1%) and EOC cell lines COC1 and HO8910, not in normal ovarian tissues. In addition, LAIR-1 expression correlates significantly with tumor grade (p = 0.004). Furthermore, down-regulation of LAIR-1 in HO8910 cells increased cell proliferation, colony formation and cell invasion. These data suggest that LAIR-1 has a relevant impact on EOC progression and may be helpful for a better understanding of molecular pathogenesis of cancer. - Highlights: • LAIR-1 is expressed in epithelial ovarian cancer cells. • LAIR-1 expression correlates significantly with tumor grade. • Down-regulation of LAIR-1 expression increased cell proliferation and invasion. • LAIR-1 may be a novel candidate for cancer diagnosis and therapy.

  9. RhoA/ROCK pathway mediates leptin-induced uPA expression to promote cell invasion in ovarian cancer cells.

    PubMed

    Ghasemi, Ahmad; Hashemy, Seyed Isaac; Aghaei, Mahmoud; Panjehpour, Mojtaba

    2017-04-01

    Previous studies have shown that leptin, an adipocyte-secreted hormone, stimulates ovarian cancer invasion. Here, we investigated the contribution of uPA in leptin-induced ovarian cancer cell invasion. The cell invasion and migration experiments were carried out using matrigel invasion and wound healing assays in ovarian cancer cell lines (OVCAR3, SKOV3and CaoV-3). The mechanism underlying the invasive effect of leptin was examined using cell transfection with Ob-Rb siRNA, pre-treatment with a specific inhibitor of RhoA and ROCK, RhoA activation assay, OB-Rb, Rock and upA protein expression. Our results show that leptin induced ovarian cancer cell invasion via up-regulating upA in a time and dose-dependent manner, which was attenuated using knockdown of OB-Rb by siRNA. Moreover, pre-incubation with C3 (inhibitor of RhoA) and Y-27632 (inhibitor of ROCK) effectively attenuated leptin-induced upA expression and inhibited invasive ability of ovarian cancer cells. We also found that pretreatment with inhibitors of PI3K/AKT (LY294002), JAK/STAT (AG490) and NF-kB (BAY 11-7082) significantly reduced leptin-induced upA expression. Collectively, our findings demonstrate that OB-Rb, RhoA/ROCK, PI3K/AKT, JAK/STAT pathways and NF-kB activation are involved in leptin-induced upA expression. These results may provide a new mechanism that facilitates leptin-induced ovarian cancer invasion.

  10. Human Epidermal Growth Factor Receptor-3 mRNA Expression as a Prognostic Marker for Invasive Duct Carcinoma not Otherwise Specified

    PubMed Central

    Hammoda, Ghada Ezat; El-Hefnawy, Sally Mohammed; Abdallah, Rania Abdallah

    2017-01-01

    Introduction Breast cancer is the most common cancer in women and the Erythroblastosis Oncogene B(ErbB) receptor family holds crucial role in its pathogenesis. Human Epidermal Growth Factor Receptor 3 (HER-3) gene over expression in breast tissue has been associated with aggressive clinical behaviour and bad prognosis. Aim To evaluate HER-3 mRNA expression level as a prognostic marker for breast cancer and to correlate its level with other established prognostic parameters. Materials and Methods This study was carried out on specimens of 100 cases that were divided into 40 patients presented with fibroadenoma and 60 patients presented with Invasive Ductal Carcinoma (IDC) not otherwise specified and underwent modified radical mastectomy. All specimens were investigated for HER-2/neu, ER and PR expression by Immunohistochemistry (IHC) and quantitative assay of HER-3 mRNA expression using real time PCR technique. Results There was a significant high HER3 mRNA level in carcinoma cases compared to fibroadenoma. In malignant cases, HER3 mRNA level was significantly associated with advanced T stage, advanced N stage, number of positive lymph nodes, large tumour size and cases associated with an adjacent in situ component. Moreover, HER-3 mRNA level was of highest values in Her-2/neu positive group followed by triple negative cases with the lowest level in luminal group (p<0.05). Conclusion HER-3 gene is upregulated in IDC especially those carrying poor prognostic features. HER-3 mRNA level may identify a subset of patients with a poor prognosis, and who could undergo further evaluation for the efficacy of HER3 targeted anticancer therapy. PMID:28384967

  11. RNASET2 silencing affects miRNAs and target gene expression pattern in a human ovarian cancer cell model.

    PubMed

    Turconi, Giovanna; Scaldaferri, Debora; Fabbri, Marco; Monti, Laura; Lualdi, Marta; Pedrini, Edoardo; Gribaldo, Laura; Taramelli, Roberto; Acquati, Francesco

    2016-12-01

    Ribonucleases (RNases) are hydrolytic enzymes endowed with the ability to either process or degrade ribonucleic acids. Among the many biological functions assigned to RNases, a growing attention has been recently devoted to the control of cancer growth, in the attempt to bring novel therapeutic approaches to clinical oncology. Indeed, several enzymes belonging to different ribonuclease families have been reported in the last decade to display a marked oncosuppressive activity in a wide range of experimental models. The human RNASET2 gene, the only member of the highly conserved T2/Rh/S family of endoribonucleolytic enzymes described in our species, has been shown to display oncosuppressive roles in both in vitro and in vivo models representing several human malignancies. In the present study, we extend previous findings obtained in ovarian cancer models to shed further light on the cell-autonomous roles played by this gene in the context of its oncosuppresive role and to show that RNASET2 silencing can significantly affect the transcriptional output in one of the most thoroughly investigated human ovarian cancer cell lines. Moreover, we report for the first time that RNASET2-mediated changes in the cell transcriptome are in part mediated by its apparent ability to affect the cell's microRNA expression pattern.

  12. p16/MTS1 inactivation in ovarian carcinomas: high frequency of reduced protein expression associated with hyper-methylation or mutation in endometrioid and mucinous tumors.

    PubMed

    Milde-Langosch, K; Ocon, E; Becker, G; Löning, T

    1998-02-20

    Inactivation of the tumor-suppressor gene p16 (MTS1/ CDKN2/INK4a) has been described in various human malignancies. Although p16 deletion has been found in various ovarian tumor cell lines, p16 inactivation by homozygous deletion or mutation has been reported only sporadically in primary ovarian carcinomas. In a comprehensive study, we analyzed p16 protein expression by immuno-histochemistry (IHC) on paraffin sections of 94 primary ovarian carcinomas of different histological subtype. Loss of expression was detected in 19 primary tumors (20%), mainly mucinous and endometrioid carcinomas. To reveal the cause of suppressed expression, we performed (i) analysis of homozygous deletions by comparative PCR after micro-dissection, (ii) mutation analysis by single-strand conformation polymorphism analysis and subsequent direct sequencing and (iii) methylation-specific PCR to determine the methylation status of 5'-CpG islands. Loss of or weak p16 expression was caused by hyper-methylation (12/19 IHC-negative cases), somatic mutation (10 tumors) or homozygous deletion (1 case). Aberrant p 16 results by one of these methods were detected in 71-79% of endometrioid and mucinous, but in only 10% of serous-papillary, carcinomas. Our data suggest that p16 inactivation is a typical feature of certain subtypes of ovarian carcinoma.

  13. Enhanced GAB2 Expression Is Associated with Improved Survival in High-Grade Serous Ovarian Cancer and Sensitivity to PI3K Inhibition.

    PubMed

    Davis, Sally J; Sheppard, Karen E; Anglesio, Michael S; George, Joshy; Traficante, Nadia; Fereday, Sian; Intermaggio, Maria P; Menon, Usha; Gentry-Maharaj, Aleksandra; Lubinski, Jan; Gronwald, Jacek; Pearce, Celeste Leigh; Pike, Malcolm C; Wu, Anna; Kommoss, Stefan; Pfisterer, Jacobus; du Bois, Andreas; Hilpert, Felix; Ramus, Susan J; Bowtell, David D L; Huntsman, David G; Pearson, Richard B; Simpson, Kaylene J; Campbell, Ian G; Gorringe, Kylie L

    2015-06-01

    Identification of genomic alterations defining ovarian carcinoma subtypes may aid the stratification of patients to receive targeted therapies. We characterized high-grade serous ovarian carcinoma (HGSC) for the association of amplified and overexpressed genes with clinical outcome using gene expression data from 499 HGSC patients in the Ovarian Tumor Tissue Analysis cohort for 11 copy number amplified genes: ATP13A4, BMP8B, CACNA1C, CCNE1, DYRK1B, GAB2, PAK4, RAD21, TPX2, ZFP36, and URI. The Australian Ovarian Cancer Study and The Cancer Genome Atlas datasets were also used to assess the correlation between gene expression, patient survival, and tumor classification. In a multivariate analysis, high GAB2 expression was associated with improved overall and progression-free survival (P = 0.03 and 0.02), whereas high BMP8B and ATP13A4 were associated with improved progression-free survival (P = 0.004 and P = 0.02). GAB2 overexpression and copy number gain were enriched in the AOCS C4 subgroup. High GAB2 expression correlated with enhanced sensitivity in vitro to the dual PI3K/mTOR inhibitor PF-04691502 and could be used as a genomic marker for identifying patients who will respond to treatments inhibiting PI3K signaling.

  14. Hypoxia-inducible factor 1 alpha is required for the tumourigenic and aggressive phenotype associated with Rab25 expression in ovarian cancer

    PubMed Central

    Gomez-Roman, Natividad; Sahasrabudhe, Neha Mohan; McGregor, Fiona; Chalmers, Anthony J.; Cassidy, Jim; Plumb, Jane

    2016-01-01

    The small GTPase Rab25 has been functionally linked to tumour progression and aggressiveness in ovarian cancer and promotes invasion in three-dimensional environments. This type of migration has been shown to require the expression of the hypoxia-inducible factor 1 alpha (HIF-1α). In this report we demonstrate that Rab25 regulates HIF-1α protein expression in an oxygen independent manner in a panel of cancer cell lines. Regulation of HIF-1α protein expression by Rab25 did not require transcriptional upregulation, but was dependent on de novo protein synthesis through the Erbb2/ERK1/2 and p70S6K/mTOR pathways. Rab25 expression induced HIF-1 transcriptional activity, increased cisplatin resistance, and conferred intraperitoneal growth to the A2780 cell line in immunocompromised mice. Targeting HIF1 activity by silencing HIF-1β re-sensitised cells to cisplatin in vitro and reduced tumour formation of A2780-Rab25 expressing cells in vivo in a mouse ovarian peritoneal carcinomatosis model. Similar effects on cisplatin resistance in vitro and intraperitoneal tumourigenesis in vivo were obtained after HIF1b knockdown in the ovarian cancer cell line SKOV3, which expresses endogenous Rab25 and HIF-1α at atmospheric oxygen concentrations. Our results suggest that Rab25 tumourigenic potential and chemoresistance relies on HIF1 activity in aggressive and metastatic ovarian cancer. Targeting HIF-1 activity may potentially be effective either alone or in combination with standard chemotherapy for aggressive metastatic ovarian cancer. PMID:26967059

  15. High-grade fimbrial-ovarian carcinomas are unified by altered p53, PTEN and PAX2 expression.

    PubMed

    Roh, Michael H; Yassin, Yosuf; Miron, Alexander; Mehra, Karishma K; Mehrad, Mitra; Monte, Nicolas M; Mutter, George L; Nucci, Marisa R; Ning, Geng; Mckeon, Frank D; Hirsch, Michelle S; Wa, Xian; Crum, Christopher P

    2010-10-01

    High-grade endometrioid and serous carcinomas of the ovary and fallopian tube are responsible for the majority of cancer deaths and comprise a spectrum that includes early or localized (tubal intraepithelial carcinoma) and advanced (invasive or metastatic) disease. We subdivided a series of these tumors into three groups, (1) classic serous, (2) mixed serous and endometrioid and (3) endometrioid carcinomas and determined: (1) the frequencies of coexisting tubal intraepithelial carcinoma, (2) frequency of a dominant ovarian mass suggesting an ovarian origin and (3) immuno-localization of WT-1, p53, PTEN, PAX2 and p16(ink4). All tumors were analyzed for p53 mutations. Thirty six, 25 and 8% of groups 1-3 were associated with tubal intraepithelial carcinoma (P=0.09) and 34, 45 and 62% predominated in one ovary (P=0.028), respectively. Differences in frequencies of diffuse p53 immunostaining (85-93%), WT-1 (70-98%) and p16(ink4) positivity (69-75%) were not significant for all groups. Greater than 95% reduction in PAX2 and PTEN occurred in 67-75 and 5-12%, respectively; however, PAX2 and PTEN staining intensity, when present, was often heterogeneous, highlighting different tumor populations. PAX2 and PTEN expression were markedly reduced or absent in 12 of 12 and 4 of 12 tubal intraepithelial carcinomas. In summary, high-grade müllerian carcinomas share identical frequencies of altered or reduced expression of p53, PTEN and PAX2, all of which can be appreciated in tubal intraepithelial carcinomas. Because only a subset of these tumors appears to arise in the fallopian tube, attention to expression of these biomarkers in the ovary and other müllerian sites might facilitate the identification of other carcinogenic pathways. PAX2 and PTEN, in addition to p53 and p16(ink4), comprise a potentially important gene combination in high-grade pelvic carcinogenesis.

  16. Apolipoprotein A-I mimetic peptides inhibit expression and activity of hypoxia-inducible factor-1α in human ovarian cancer cell lines and a mouse ovarian cancer model.

    PubMed

    Gao, Feng; Chattopadhyay, Arnab; Navab, Mohamad; Grijalva, Victor; Su, Feng; Fogelman, Alan M; Reddy, Srinivasa T; Farias-Eisner, Robin

    2012-08-01

    Our previous results demonstrated that the apolipoprotein A-I (apoA-I) mimetic peptides L-4F and L-5F inhibit vascular endothelial growth factor production and tumor angiogenesis. The present study was designed to test whether apoA-I mimetic peptides inhibit the expression and activity of hypoxia-inducible factor-1α (HIF-1α), which plays a critical role in the production of angiogenic factors and angiogenesis. Immunohistochemistry staining was used to examine the expression of HIF-1α in tumor tissues. Immunoblotting, real-time polymerase chain reaction, immunofluorescence, and luciferase activity assays were used to determine the expression and activity of HIF-1α in human ovarian cancer cell lines. Immunohistochemistry staining demonstrated that L-4F treatment dramatically decreased HIF-1α expression in mouse ovarian tumor tissues. L-4F inhibited the expression and activity of HIF-1α induced by low oxygen concentration, cobalt chloride (CoCl(2), a hypoxia-mimic compound), lysophosphatidic acid, and insulin in two human ovarian cancer cell lines, OV2008 and CAOV-3. L-4F had no effect on the insulin-induced phosphorylation of Akt, but inhibited the activation of extracellular signal-regulated kinase and p70s6 kinase, leading to the inhibition of HIF-1α synthesis. Pretreatment with L-4F dramatically accelerated the proteasome-dependent protein degradation of HIF-1α in both insulin- and CoCl(2)-treated cells. The inhibitory effect of L-4F on HIF-1α expression is in part mediated by the reactive oxygen species-scavenging effect of L-4F. ApoA-I mimetic peptides inhibit the expression and activity of HIF-1α in both in vivo and in vitro models, suggesting the inhibition of HIF-1α may be a critical mechanism responsible for the suppression of tumor progression by apoA-I mimetic peptides.

  17. High expression of CTHRC1 promotes EMT of epithelial ovarian cancer (EOC) and is associated with poor prognosis

    PubMed Central

    He, Shanyang; Li, Yang; Pan, Yunping; Feng, Chongjin; Chen, Xinlin; Zhang, Yang; Lin, Millicent; Wang, Liantang; Ke, Zunfu

    2015-01-01

    Collagen triple helix repeat-containing 1 (CTHRC1) is aberrantly overexpressed in multiple malignant tumors. However, the expression characteristics and function of CTHRC1 in epithelial ovarian cancer (EOC) remain unclear. We found that CTHRC1 expression was up-regulated in the paraffin-embedded EOC tissues compared to borderline or benign tumor tissues. CTHRC1 expression was positively correlated with tumor size (p = 0.008), menopause (p = 0.037), clinical stage (p = 0.002) and lymph node metastasis (p < 0.001) and was also an important prognostic factor for the overall survival of EOC patients, as revealed by Kaplan-Meier analysis. CTHRC1 increased the invasive capabilities of EOC cells in vitro by activating the Wnt/β-catenin signaling pathway. We showed that ectopic transfection of CTHRC1 in EOC cells up-regulated the expression of EMT markers such as N-cadherin and vimentin, and EMT-associated transcriptional factor Snail. Knockdown of CTHRC1 expression in EOC cells resulted in down-regulation of N-cadherin, vimentin, Snail and translocation of β-catenin. Collectively, CTHRC1 may promote EOC metastasis through the induction of EMT process and serve as a potential biomarker for prognosis as well as a target for therapy. PMID:26452130

  18. HemoHIM improves ovarian morphology and decreases expression of nerve growth factor in rats with steroid-induced polycystic ovaries.

    PubMed

    Kim, Sung Ho; Lee, Hae June; Kim, Joong Sun; Moon, Changjong; Kim, Jong Choon; Bae, Chun Sik; Park, Hae Ran; Jung, Uhee; Jo, Sung Kee

    2009-12-01

    Estradiol valerate (EV)-induced polycystic ovaries (PCOs) in rats cause the anovulation and cystic ovarian morphology. We investigated whether treatment with HemoHIM influences the ovarian morphology and the expression of nerve growth factor (NGF) in an EV-induced PCO rat model. PCO was induced by a single intramuscular injection of EV (4 mg, dissolved in sesame oil) in adult cycling rats. HemoHIM was either administered orally (100 mg/kg of body weight/day) for 35 consecutive days or injected intraperitoneally (50 mg/kg of body weight) every other day after EV injection. Ovarian morphology was almost normalized, and NGF was normalized in the PCO + HemoHIM group. HemoHIM lowered the high numbers of antral follicles and increased the number of corpora lutea in PCOs. The results are consistent with a beneficial effect of HemoHIM in the prevention and treatment of PCO syndrome.

  19. Expression of nuclear receptors of gingiva in polycystic ovarian syndrome: a preliminary case study.

    PubMed

    Asnani, K P; Hingorani, D; Kheur, S; Deshmukh, Vl; Romanos, G E

    2014-06-01

    Oestrogen is mainly responsible for alterations in blood vessels and progesterone stimulates the production of inflammatory mediators. In females, during puberty, ovulation and pregnancy, there is an increase in the production of sex steroid hormones, which results in increased gingival inflammation, characterized by gingival enlargement, increased bleeding and crevicular fluid flow. This article presents a case of a patient who presented with a complaint of gingival swelling and spontaneous bleeding that persisted for more than two months. Her health history documented the recently diagnosed presence of polycystic ovarian syndrome. Clinical examination revealed enlarged painful gingival tissues, which bled when touched. After completion of Phase I therapy, the enlargement did not subside and a biopsy sample was taken. This was compared with another patient who had the same health condition but did not show any gingival enlargement. Testing of tissue samples for oestrogen and progesterone receptors showed the first patient to be positive for oestrogen receptors but negative for progesterone, whereas the control was negative for both. Positive oestrogen receptors suggest that polycystic ovarian syndrome has some effect on the periodontium. The dental consequences of this condition, highly prevalent among young females, are typically ignored. Further studies warrant establishment of a clinical association and future diagnosis.

  20. Effects of lipopolysaccharide and interleukins on the expression of avian β-defensins in hen ovarian follicular tissue.

    PubMed

    Abdelsalam, M; Isobe, N; Yoshimura, Y

    2012-11-01

    The aim of this study was to determine the mechanism by which expression of avian β-defensins (AvBD) in the follicular theca tissue was regulated. It was examined whether their expression was stimulated directly by LPS or indirectly through proinflammatory cytokines (IL-1β and IL-6) induced by LPS. Theca tissues of ovarian follicles were collected from White Leghorn hens. The specimens of those theca tissues were cultured in TCM-199 culture medium and stimulated by lipopolysaccharide from Salmonella minnesota (LPS), recombinant chicken IL-1β, or recombinant chicken IL-6. In the first experiment, changes in the expression of IL-1β, IL-6, AvBD10, and AvBD12 in response to LPS stimulation were examined by quantitative reverse-transcription PCR. The AvBD10 and 12 had been known to be expressed in the theca. In the second experiment, changes in the expression of AvBD10 and 12 in response to recombinant chicken IL-1β or IL-6 stimulation were examined by quantitative reverse-transcription PCR. Density of AvBD12 protein after IL-1β stimulation that showed changes in the gene expression was analyzed by Western blotting. In the first experiment, LPS was able to induce IL-1β and IL-6, but not AvBD10 or AvBD12. In the second experiment, IL-1β was able to upregulate significantly the expression of AvBD12 mRNA and protein. However, IL-6 did not exert significant effects on the expression of AvBD10 and AvBD12. It is suggested that LPS may stimulate theca cells to produce proinflammatory cytokines, whereas, in turn, IL-1β stimulates those cells to synthesize AvBD12, which may be able to attack infectious gram-negative bacteria.

  1. Ovarian steroid hormones modulate the expression of progesterone receptors and histone acetylation patterns in uterine leiomyoma cells.

    PubMed

    Sant'Anna, Gabriela Dos Santos; Brum, Ilma Simoni; Branchini, Gisele; Pizzolato, Lolita Schneider; Capp, Edison; Corleta, Helena von Eye

    2017-03-16

    Uterine leiomyomas are the most common benign smooth muscle cell tumors in women. Estrogen (E2), progesterone (P4) and environmental factors play important roles in the development of these tumors. New treatments, such as mifepristone, have been proposed. We evaluated the gene expression of total (PRT) and B (PRB) progesterone receptors, and the histone acetyltransferase (HAT) and deacetylase (HDAC) activity after treatment with E2, P4 and mifepristone (RU486) in primary cell cultures from uterine leiomyoma and normal myometrium. Compared to myometrium, uterine leiomyoma cells showed an increase in PRT mRNA expression when treated with E2, and increase in PRB mRNA expression when treated with E2 and P4. Treatment with mifepristone had no significant impact on mRNA expression in these cells. The HDAC activity was higher in uterine leiomyoma compared to myometrial cells after treatment with E2 and E2 + P4 + mifepristone. HAT activity was barely detectable. Our results suggest that ovarian steroid hormones modulate PR, and mifepristone was unable to decrease PRT and PRB mRNA. The higher activity of HDAC leiomyoma cells could be involved in transcriptional repression of genes implicated in normal myometrium cell function, contributing to the maintenance and growth of uterine leiomyoma.

  2. Reduced expression of FILIP1L, a novel WNT pathway inhibitor, is associated with poor survival, progression and chemoresistance in ovarian cancer

    PubMed Central

    Rybak, Yevangelina; Luna, Alex; Choi, Chel Hun; Chung, Joon-Yong; Hewitt, Stephen M.; Adem, Asha; Tubridy, Elizabeth; Lin, Juan; Libutti, Steven K.

    2016-01-01

    Filamin A interacting protein 1-like (FILIP1L) is an inhibitor of the canonical WNT pathway. WNT/β-catenin signaling and its downstream pathway, epithelial-to-mesenchymal transition (EMT), play a key role in ovarian cancer metastasis and chemoresistance. To study the clinical implications of FILIP1L in regulating the WNT/β-catenin pathway, the expression of FILIP1L, β-catenin, SNAIL and SLUG was analyzed by immunohistochemistry on tissue microarrays of 369 ovarian samples ranging from normal to metastatic. In addition, the results were validated in mouse model and in vitro cell culture. In the present study, we demonstrated that FILIP1L expression was inversely correlated with poor prognosis, stage and chemoresistance in ovarian cancer. Notably, low FILIP1L expression was independent negative prognostic factor with respect to overall and disease-free survival. FILIP1L inhibited peritoneal metastases in orthotopic mouse model. FILIP1L knockdown induced chemoresistance in ovarian cancer cells and this phenotype was rescued by simultaneous knockdown of FILIP1L and SLUG, an EMT activator. We also demonstrated that FILIP1L regulates β-catenin degradation. FILIP1L co-localizes with phospho-β-catenin and increases phospho-β-catenin at the centrosomes, destined for proteosomal degradation. Finally, we showed that FILIP1L regulates EMT. Overall, these findings suggest that FILIP1L promotes β-catenin degradation and suppresses EMT, thereby inhibiting metastases and chemoresistance. Our study provides the first clinical relevance of FILIP1L in human cancer, and suggests that FILIP1L may be a novel prognostic marker for chemotherapy in ovarian cancer patients. Further, the modulation of FILIP1L expression may have the potential to be a target for cancer therapy. PMID:27776341

  3. Reduced expression of FILIP1L, a novel WNT pathway inhibitor, is associated with poor survival, progression and chemoresistance in ovarian cancer.

    PubMed

    Kwon, Mijung; Kim, Jae-Hoon; Rybak, Yevangelina; Luna, Alex; Choi, Chel Hun; Chung, Joon-Yong; Hewitt, Stephen M; Adem, Asha; Tubridy, Elizabeth; Lin, Juan; Libutti, Steven K

    2016-11-22

    Filamin A interacting protein 1-like (FILIP1L) is an inhibitor of the canonical WNT pathway. WNT/β-catenin signaling and its downstream pathway, epithelial-to-mesenchymal transition (EMT), play a key role in ovarian cancer metastasis and chemoresistance. To study the clinical implications of FILIP1L in regulating the WNT/β-catenin pathway, the expression of FILIP1L, β-catenin, SNAIL and SLUG was analyzed by immunohistochemistry on tissue microarrays of 369 ovarian samples ranging from normal to metastatic. In addition, the results were validated in mouse model and in vitro cell culture. In the present study, we demonstrated that FILIP1L expression was inversely correlated with poor prognosis, stage and chemoresistance in ovarian cancer. Notably, low FILIP1L expression was independent negative prognostic factor with respect to overall and disease-free survival. FILIP1L inhibited peritoneal metastases in orthotopic mouse model. FILIP1L knockdown induced chemoresistance in ovarian cancer cells and this phenotype was rescued by simultaneous knockdown of FILIP1L and SLUG, an EMT activator. We also demonstrated that FILIP1L regulates β-catenin degradation. FILIP1L co-localizes with phospho-β-catenin and increases phospho-β-catenin at the centrosomes, destined for proteosomal degradation. Finally, we showed that FILIP1L regulates EMT. Overall, these findings suggest that FILIP1L promotes β-catenin degradation and suppresses EMT, thereby inhibiting metastases and chemoresistance. Our study provides the first clinical relevance of FILIP1L in human cancer, and suggests that FILIP1L may be a novel prognostic marker for chemotherapy in ovarian cancer patients. Further, the modulation of FILIP1L expression may have the potential to be a target for cancer therapy.

  4. Integrated Genome-wide DNA Copy Number and Expression Analysis Identifies Distinct Mechanisms of Primary Chemo-resistance in Ovarian Carcinomas

    PubMed Central

    Etemadmoghadam, Dariush; deFazio, Anna; Beroukhim, Rameen; Mermel, Craig; George, Joshy; Getz, Gaddy; Tothill, Richard; Okamoto, Aikou; Raeder, Maria B; Harnett, Paul; Lade, Stephen; Akslen, Lars A; Tinker, Anna; Locandro, Bianca; Alsop, Kathryn; Chiew, Yoke-Eng; Traficante, Nadia; Fereday, Sian; Johnson, Daryl; Fox, Stephen; Sellers, William; Urashima, Mitsuyoshi; Salvesen, Helga B; Meyerson, Matthew; Bowtell, David

    2009-01-01

    Purpose A significant number of women with serous ovarian cancer are intrinsically refractory to platinum-taxol based treatment. We analyzed somatic DNA copy number variation (CNV) and gene expression data to identify key mechanisms associated with primary resistance in advanced-stage serous cancers. Experimental Design Genome-wide CNV was measured in 118 ovarian tumors using high-resolution oligonucleotide microarrays. A well-defined subset of 85 advanced-stage serous tumors was then used to relate CNV to primary resistance to treatment. The discovery-based approach was complemented by quantitative-PCR copy number analysis of twelve candidate genes as independent validation of previously reported associations with clinical outcome. Likely CNV targets and tumor molecular subtypes were further characterized by gene expression profiling. Results Amplification of 19q12, containing Cyclin E (CCNE1) and 20q11.22-q13.12, mapping immediately adjacent to the steroid receptor co-activator NCOA3, were significantly associated with poor response to primary treatment. Other genes previously associated with CNV and clinical outcome in ovarian cancer were not associated with primary treatment resistance. Chemoresistant tumors with high CCNE1 copy number and protein expression were associated with increased cellular proliferation but so too were a subset of treatment responsive patients, suggesting a cell-cycle independent role for CCNE1 in modulating chemoresponse. Patients with a poor clinical outcome without CCNE1 amplification over expressed genes involved in extracellular matrix deposition. Conclusions We have identified two distinct mechanisms of primary treatment failure in serous ovarian cancer, involving CCNE1 amplification and enhanced extracellular matrix deposition. CCNE1 copy number is validated as a dominant marker of patient outcome in ovarian cancer. PMID:19193619

  5. Ovarian Cyst

    MedlinePlus

    ... accurate way to tell if a woman has ovarian cancer. For example, some women who do have ovarian cancer have a normal CA-125 level. Also, this ... for women who show signs or symptoms of ovarian cancer or who have genetic mutations that increase the ...

  6. Expression of orexins and their precursor in the porcine ovary and the influence of orexins on ovarian steroidogenesis in pigs.

    PubMed

    Nitkiewicz, Anna; Smolinska, Nina; Maleszka, Anna; Chojnowska, Katarzyna; Kaminski, Tadeusz

    2014-07-01

    Orexins A and B are hypothalamic neuropeptides associated with homeostasis and the reproductive system. The aim of the study was to compare the expression of the prepro-orexin gene and the intensity of orexins immunoreactivity in the porcine ovary (corpora lutea, granulosa and theca interna cells) during four different stages of the oestrous cycle (days: 2-3, 10-12, 14-16 and 17-19) and to examine the in vitro effect of orexins on the secretion of steroid hormones by porcine luteal, granulosa and theca interna cells. The highest expression of prepro-orexin mRNA was observed in theca interna cells on days 17-19 of the oestrous cycle. The highest content of immunoreactive orexin A was noted in corpora lutea on days 10-12 and the highest level of immunoreactive orexin B on days 14-16 of the cycle. Immunoreactive orexin A concentrations were higher in theca interna cells than in granulosa cells, whereas similar levels of immunoreactive orexin B were observed in both cell types. Under in vitro conditions, at the concentration of 10 nM, orexins A and B inhibited FSH-induced oestradiol secretion by granulosa cells. The obtained results suggest that the pattern of orexin peptide expression in the porcine ovary is related to the animals' hormonal status. Our findings imply that orexins can affect porcine reproductive functions through modulation of ovarian steroidogenesis.

  7. Follicle-stimulating hormone regulates expression and activity of epidermal growth factor receptor in the murine ovarian follicle.

    PubMed

    El-Hayek, Stephany; Demeestere, Isabelle; Clarke, Hugh J

    2014-11-25

    Fertility depends on the precise coordination of multiple events within the ovarian follicle to ensure ovulation of a fertilizable egg. FSH promotes late follicular development, including expression of luteinizing hormone (LH) receptor by the granulosa cells. Expression of its receptor permits the subsequent LH surge to trigger the release of ligands that activate EGF receptors (EGFR) on the granulosa, thereby initiating the ovulatory events. Here we identify a previously unknown role for FSH in this signaling cascade. We show that follicles of Fshb(-/-) mice, which cannot produce FSH, have a severely impaired ability to support two essential EGFR-regulated events: expansion of the cumulus granulosa cell layer that encloses the oocyte and meiotic maturation of the oocyte. These defects are not caused by an inability of Fshb(-/-) oocytes to produce essential oocyte-secreted factors or of Fshb(-/-) cumulus cells to respond. In contrast, although expression of both Egfr and EGFR increases during late folliculogenesis in Fshb(+/-) females, these increases fail to occur in Fshb(-/-) females. Remarkably, supplying a single dose of exogenous FSH activity to Fshb(-/-) females is sufficient to increase Egfr and EGFR expression and to restore EGFR-dependent cumulus expansion and oocyte maturation. These studies show that FSH induces an increase in EGFR expression during late folliculogenesis and provide evidence that the FSH-dependent increase is necessary for EGFR physiological function. Our results demonstrate an unanticipated role for FSH in establishing the signaling axis that coordinates ovulatory events and may contribute to the diagnosis and treatment of some types of human infertility.

  8. Follicle-stimulating hormone regulates expression and activity of epidermal growth factor receptor in the murine ovarian follicle

    PubMed Central

    El-Hayek, Stephany; Demeestere, Isabelle; Clarke, Hugh J.

    2014-01-01

    Fertility depends on the precise coordination of multiple events within the ovarian follicle to ensure ovulation of a fertilizable egg. FSH promotes late follicular development, including expression of luteinizing hormone (LH) receptor by the granulosa cells. Expression of its receptor permits the subsequent LH surge to trigger the release of ligands that activate EGF receptors (EGFR) on the granulosa, thereby initiating the ovulatory events. Here we identify a previously unknown role for FSH in this signaling cascade. We show that follicles of Fshb−/− mice, which cannot produce FSH, have a severely impaired ability to support two essential EGFR-regulated events: expansion of the cumulus granulosa cell layer that encloses the oocyte and meiotic maturation of the oocyte. These defects are not caused by an inability of Fshb−/− oocytes to produce essential oocyte-secreted factors or of Fshb−/− cumulus cells to respond. In contrast, although expression of both Egfr and EGFR increases during late folliculogenesis in Fshb+/− females, these increases fail to occur in Fshb−/− females. Remarkably, supplying a single dose of exogenous FSH activity to Fshb−/− females is sufficient to increase Egfr and EGFR expression and to restore EGFR-dependent cumulus expansion and oocyte maturation. These studies show that FSH induces an increase in EGFR expression during late folliculogenesis and provide evidence that the FSH-dependent increase is necessary for EGFR physiological function. Our results demonstrate an unanticipated role for FSH in establishing the signaling axis that coordinates ovulatory events and may contribute to the diagnosis and treatment of some types of human infertility. PMID:25385589

  9. Expression of preoperative KISS1 gene in tumor tissue with epithelial ovarian cancer and its prognostic value.

    PubMed

    Cao, Fang; Chen, Liping; Liu, Manhua; Lin, Weiwei; Ji, Jinlong; You, Jun; Qiao, Fenghai; Liu, Hongbin

    2016-11-01

    Our study aimed to elucidate the role of Kisspeptin (KISS1) in tumor tissues of patients with epithelial ovarian cancer (EOC) and investigate the prognostic value of this biomarker.Forty EOC patients and 20 uterine fibroids female patients with healthy ovaries undergoing cytoreductive surgery between January 2010 and January 2014 in our hospital were enrolled in this study. KISS1 expression in tumor and normal tissues was detected. Correlations between clinic-pathologic variables and KISS1 expression in EOC tissues and the prognostic value of KISS1 for overall survival were evaluated.During the follow-up of 11.2 to 62.1 months, the overall survival rate and mean survival time were 28.9% (11/38) and 38.35 ± 2.84 months. Preoperative KISS1 mRNA was higher in tumor tissue than in normal tissue (P <0.001), and it was associated with histologic grade of tumor, surgical FIGO stage, metastasis, and residual tumor size (all P <0.05). Multivariate survival analysis indicated significant influence of residual tumor size (HR = 2.357, P = 0.039) and preoperative KISS1 mRNA (HR = 0.0001, P <0.001) on mean survival time. Patients with low KISS1 mRNA expression had shorter survival time than those with high expression (P = 0.001).Preoperative KISS1 mRNA was a potential prognostic biomarker for EOC, and high preoperative KISS1 expression indicated a favorable prognosis.

  10. Expression of preoperative KISS1 gene in tumor tissue with epithelial ovarian cancer and its prognostic value

    PubMed Central

    Cao, Fang; Chen, Liping; Liu, Manhua; Lin, Weiwei; Ji, Jinlong; You, Jun; Qiao, Fenghai; Liu, Hongbin

    2016-01-01

    Abstract Our study aimed to elucidate the role of Kisspeptin (KISS1) in tumor tissues of patients with epithelial ovarian cancer (EOC) and investigate the prognostic value of this biomarker. Forty EOC patients and 20 uterine fibroids female patients with healthy ovaries undergoing cytoreductive surgery between January 2010 and January 2014 in our hospital were enrolled in this study. KISS1 expression in tumor and normal tissues was detected. Correlations between clinic-pathologic variables and KISS1 expression in EOC tissues and the prognostic value of KISS1 for overall survival were evaluated. During the follow-up of 11.2 to 62.1 months, the overall survival rate and mean survival time were 28.9% (11/38) and 38.35 ± 2.84 months. Preoperative KISS1 mRNA was higher in tumor tissue than in normal tissue (P <0.001), and it was associated with histologic grade of tumor, surgical FIGO stage, metastasis, and residual tumor size (all P <0.05). Multivariate survival analysis indicated significant influence of residual tumor size (HR = 2.357, P = 0.039) and preoperative KISS1 mRNA (HR = 0.0001, P <0.001) on mean survival time. Patients with low KISS1 mRNA expression had shorter survival time than those with high expression (P = 0.001). Preoperative KISS1 mRNA was a potential prognostic biomarker for EOC, and high preoperative KISS1 expression indicated a favorable prognosis. PMID:27861355

  11. Expression of betaglycan, an inhibin coreceptor, in normal human ovaries and ovarian sex cord-stromal tumors and its regulation in cultured human granulosa-luteal cells.

    PubMed

    Liu, Jianqi; Kuulasmaa, Tiina; Kosma, Veli-Matti; Bützow, Ralf; Vänttinen, Teemu; Hydén-Granskog, Christel; Voutilainen, Raimo

    2003-10-01

    Activins and inhibins are often antagonistic in the regulation of ovarian function. TGFbeta type III receptor, betaglycan, has been identified as a coreceptor to enhance the binding of inhibins to activin type II receptor and thus to prevent the binding of activins to their receptor. In this study we characterized the expression and regulation pattern of betaglycan gene in normal ovaries and sex cord-stromal tumors and in cultured human granulosa-luteal cells from women undergoing in vitro fertilization. Expression of betaglycan mRNA was detected by RT-PCR or Northern blotting in normal ovarian granulosa, thecal, and stroma cells as well as in granulosa-luteal cells. Immunohistochemical analysis revealed positive staining for betaglycan in antral and preovulatory follicular granulosa and thecal cells and in corpora lutea of normal ovaries. Furthermore, betaglycan expression was detected in the vast majority of granulosa cell tumors, thecomas, and fibromas, with weaker staining in granulosa cell tumors compared with fibrothecomas. In cultured granulosa-luteal cells, FSH and LH treatment increased dose-dependently the accumulation of betaglycan mRNA, as did the protein kinase A activator dibutyryl cAMP and the protein kinase C inhibitor staurosporine. In contrast, the protein kinase C activator 12-O-tetradecanoyl phorbol 13-acetate had no significant effect on betaglycan mRNA levels. Treatment with prostaglandin E(2) and with its receptor EP2 subtype agonist butaprost increased betaglycan mRNA accumulation and progesterone secretion dose- and time-dependently. In summary, betaglycan gene is expressed in normal human ovarian steroidogenic cells and sex cord-stromal ovarian tumors. The accumulation of its mRNA in cultured granulosa-luteal cells is up-regulated by gonadotropins and prostaglandin E(2), probably via the protein kinase A pathway. The specific expression and regulation pattern of betaglycan gene may be related to the functional antagonism of inhibins to

  12. Egr-1 mediates epidermal growth factor-induced downregulation of E-cadherin expression via Slug in human ovarian cancer cells.

    PubMed

    Cheng, J-C; Chang, H-M; Leung, P C K

    2013-02-21

    Loss of the cell adhesion protein E-cadherin increases the invasive capability of ovarian cancer cells. We have previously shown that epidermal growth factor (EGF) downregulates E-cadherin and induces ovarian cancer cell invasion through the H(2)O(2)/p38 MAPK-mediated upregulation of the E-cadherin transcriptional repressor Snail. However, the molecular mechanisms underlying the EGF-induced downregulation of E-cadherin are not fully understood. In the current study, we demonstrated that treatment of two ovarian cancer cell lines, SKOV3 and OVCAR5, with EGF induced the expression of the transcription factor Egr-1, and this induction was abolished by small interfering RNA (siRNA)-mediated depletion of the EGF receptor. EGF-induced Egr-1 expression required the activation of the ERK1/2 and PI3K/Akt signaling pathways and was unrelated to EGF-induced H(2)O(2) production and activation of the p38 MAPK pathway. Moreover, depletion of Egr-1 with siRNA abolished the EGF-induced downregulation of E-cadherin and increased cell invasion. Interestingly, siRNA depletion of Egr-1 attenuated the EGF-induced expression of Slug, but not that of Snail. Moreover, chromatin immunoprecipitation (ChIP) analysis showed that Slug is a target gene of Egr-1. These results provide evidence that Egr-1 is a mediator that is involved in the EGF-induced downregulation of E-cadherin and increased cell invasion. Our results also demonstrate that EGF activates two independent signaling pathways, which are the H(2)O(2)/p38 MAPK-mediated upregulation of Snail expression and the Egr-1-mediated upregulation of Slug expression. These two signaling pathways contribute to the EGF-induced downregulation of E-cadherin, which subsequently increases the invasive capability of ovarian cancer cells.

  13. Effect of high ovarian response on the expression of endocrine gland-derived vascular endothelial growth factor (EG-VEGF) in peri-implantation endometrium in IVF women

    PubMed Central

    Xu, Li-Zhen; Gao, Min-Zhi; Yao, Li-Hua; Liang, A-Juan; Zhao, Xiao-Ming; Sun, Zhao-Gui

    2015-01-01

    Objective: To investigate the effect of ovarian stimulation on the expression of EG-VEGF mRNA and protein in peri-implantation endometrium in women undergoing IVF and its relation with endometrial receptivity (ER). Design: Prospective laboratory study. Setting: University hospital. Patients: Eighteen women in stimulated cycles (SC) as study subjects and 18 women in natural cycles (NC) as controls. Women in SC group were classified with two subgroups, high ovarian response (SC1, n=9) with peak serum E2>5,000 pg/mL and moderate ovarian response (SC2, n=9) with peak serum E2 1,000-5,000 pg/mL. Intervention(s): Endometrial biopsies were collected 6 days after ovulation in NC or after oocyte retrieval in SC. Main outcome measure(s): Endometrium histological dating was observed with HE staining. EG-VEGF mRNA expression levels determined by real-time polymerase chain reaction analysis, and protein levels by immunohistochemistry. Results: All endometrial samples were in the secretory phase. The endometrial development in SC1 was 1 to 2 days advanced to NC, and with dyssynchrony between glandular and stromal tissue. Immunohistochemistry analysis showed that EG-VEGF protein was predominantly expressed in the glandular epithelial cells and endothelial cells of vessels, and also presented in the stroma. The image analysis confirmed that both the gland and stroma of endometrium in SC1 had a significantly lower EG-VEGF protein expression than that in SC2 and NC endometrium. Moreover, EG-VEGF mRNA levels were significantly lower in SC1 than in NC. Both EG-VEGF protein and mRNA levels had no significant difference between SC2 and NC. Conclusion: Decreased expression of EG-VEGF in the peri-implantation is associated with high ovarian response, which may account for the impaired ER and lower implantation rate in IVF cycles. PMID:26464631

  14. Loss of ALDH1A1 expression is an early event in the pathogenesis of ovarian high-grade serous carcinoma.

    PubMed

    Chui, M Herman; Wang, Yihong; Wu, Ren-Chin; Seidman, Jeffrey; Kurman, Robert J; Wang, Tian-Li; Shih, Ie-Ming

    2015-03-01

    Tumor-initiating cells are thought to share features with normal somatic stem cells. In mice, stem cells at the ovarian hilum have been shown to express the stem cell marker, aldehyde dehydrogenase isoform 1A1 (ALDH1A1), and are prone to malignant transformation. The potential relevance of this finding to humans has not been established. In this study, we used immunohistochemistry to assess the distribution of ALDH1A1 staining in the epithelium of human fallopian tubes, with particular reference to the transition of tubal epithelium to mesothelium (ie, tubal-mesothelial junction), ovarian surface epithelium, as well as putative precursors of ovarian high-grade serous carcinoma, namely, serous tubal intraepithelial carcinoma and 'p53 signatures,' and overt serous carcinoma. Expression of ALDH1A1 was detected in both secretory and ciliated tubal epithelial cells, tubal-mesothelial junctions and ovarian surface epithelium, but was absent in serous tubal intraepithelial carcinoma and p53 signatures. Positive staining in high-grade serous carcinoma, when present, was typically limited to rare tumor cells. In silico analyses of the mRNA expression data set from The Cancer Genome Atlas revealed downregulation of ALDH1A1 transcripts in high-grade serous carcinoma relative to normal tubal epithelium, and no association between ALDH1A1 expression levels and overall survival. Our results do not support ALDH1A1 as a specific marker of stem cells in human fallopian tube and demonstrate that its loss of expression is an early event in the development of high-grade serous carcinoma.

  15. Whole genome expression profiling of blood cells in ovarian cancer patients -prognostic impact of the CYP1B1, MTSS1, NCALD, and NOP14.

    PubMed

    Isaksson, Helena S; Sorbe, Bengt; Nilsson, Torbjörn K

    2014-06-30

    Ovarian cancer patients with different tumor stages and cell differentiation might be distinguished from each other by gene expression profiles in whole blood cell mRNA by the Affymetrix Human Gene 1.0 ST Array. We also examined if there is any association with other clinical variables, response to therapy, and residual tumor burden after surgery. Patients were divided into two groups, one with poor prognosis, advanced stage and poorly differentiated tumors (n = 22), and one group with good prognosis, early stage and well- to medium differentiated tumors (n = 11). Six genes were found to be differentially expressed: the PDIA3, LYAR, NOP14, NCALD and MTSS1 genes were down-regulated and the CYP1B1 gene expression was up-regulated in the poor prognosis group, all with p value <0.05, adjusted for mass comparison. In survival analyses, CYP1B1, MTSS1, NCALD and NOP14 remained significantly different (p<0.05). Patient groups did not differ in any transcript related to acute phase or immune responses. This minimal gene expression signature of prognostic ovarian cancer-related genes opens up an avenue for more practicable monitoring of ovarian cancer patients by simple peripheral blood tests, which may evolve into a tool to guide selection of curative and postoperative supportive therapies.

  16. Inhibition of SRY-calmodulin complex formation induces ectopic expression of ovarian cell markers in developing XY gonads.

    PubMed

    Sim, Helena; Argentaro, Anthony; Czech, Daniel P; Bagheri-Fam, Stefan; Sinclair, Andrew H; Koopman, Peter; Boizet-Bonhoure, Brigitte; Poulat, Francis; Harley, Vincent R

    2011-07-01

    The transcription factor sex-determining region of the Y chromosome (SRY) plays a key role in human sex determination, because mutations in SRY cause disorders of sex development in XY individuals. During gonadal development, Sry in pre-Sertoli cells activates Sox9 gene transcription, committing the fate of the bipotential gonad to become a testis rather than an ovary. The high-mobility group domain of human SRY contains two independent nuclear localization signals, one bound by calmodulin (CaM) and the other by importin-β. Although XY females carry SRY mutations in these nuclear localization signals that affect SRY nuclear import in transfected cells, it is not known whether these transport mechanisms are essential for gonadal development and sex determination. Here, we show that mouse Sry protein binds CaM and that a CaM antagonist reduces CaM binding, nuclear accumulation, and transcriptional activity of Sry in transfected cells. CaM antagonist treatment of cultured, sexually indifferent XY mouse fetal gonads led to reduced expression of the Sry target gene Sox9, defects in testicular cord formation, and ectopic expression of the ovarian markers Rspondin1 and forkhead box L2. These results indicate the importance of CaM for SRY nuclear import, transcriptional activity, testis differentiation, and sex determination.

  17. Association of Immunosuppression with DR6 Expression during the Development and Progression of Spontaneous Ovarian Cancer in Laying Hen Model

    PubMed Central

    McNeal, Sa'Rah; Bitterman, Pincas; Bahr, Janice M.; Edassery, Seby L.; Abramowicz, Jacques S.; Basu, Sanjib

    2016-01-01

    Ovarian cancer (OVCA) mainly disseminates in the peritoneal cavity. Immune functions are important to prevent OVCA progression and recurrence. The mechanism of immunosuppression, a hallmark of tumor progression, is not well understood. The goal of this study was to determine the immune system's responses and its suppression during OVCA development and progression in hens. Frequencies of CD8+ T cells and IgY-containing cells and expression of immunosuppressors including IRG1 and DR6 in OVCA at early and late stages in hens were examined. Frequencies of stromal but not the intratumoral CD+8 T cells and IgY-containing cells increased significantly (P < 0.01) during OVCA development and progression. Tumor progression was associated with increased expression of IRG1 and DR6 and decreased infiltration of immune cells into the tumor. Frequency of stromal but not intratumoral immune cells increases during OVCA development and progression. Tumor-induced IRG1 and DR6 may prevent immune cells from invading the tumor. PMID:27579331

  18. MiR-572 prompted cell proliferation of human ovarian cancer cells by suppressing PPP2R2C expression.

    PubMed

    Wu, Ai-Hua; Huang, Yu-ling; Zhang, Lan-Zhen; Tian, Geng; Liao, Qiong-Zhi; Chen, Shi-Ling

    2016-02-01

    Ovarian cancer (OC) remains one of the most common types of malignant cancer, and the molecular mechanism underlying its proliferation is still largely unclear. It is reported that microRNAs acted as important regulators of cell proliferation by regulating its targeted gene. In this study, our result showed that miR-572 was markedly upregulated in OC cell lines and clinical tissues. Results of both gain-of-function and loss-of-function experiments revealed that upregulation of miR-572 expression dramatically promoted OC cell proliferation, whereas decreased miR-572 expression significantly reduced cell proliferation. Bioinformatics analysis and luciferase reporter assays further revealed PPP2R2C, a putative tumor suppressor as a potential target of miR-572. Moreover, silencing of PPP2R2C using small interfering RNA (siRNA) counteracted the proliferation arrest by miR-572-in in OC cells. In sum, our data provide that miR-572 promoted cell proliferation in OC by targeting PPP2R2C and might serve as a therapeutic target of OC.

  19. Fusion-derived epithelial cancer cells express hematopoietic markers and contribute to stem cell and migratory phenotype in ovarian carcinoma.

    PubMed

    Ramakrishnan, Mallika; Mathur, Sandeep R; Mukhopadhyay, Asok

    2013-09-01

    For a long time, the external milieu of cancer cells was considered to be of secondary importance when compared with its intrinsic properties. That has changed now as the microenvironment is considered to be a major contributing factor toward the progression of tumor. In this study, we show that in human and mouse epithelial ovarian carcinoma and mouse lung carcinoma, the interaction between tumor-infiltrating hematopoietic cells and epithelial cancer cells results in their fusion. Intriguingly, even after the fusion event, cancer cells retain the expression of the pan-hematopoietic marker (CD45) and various markers of hematopoietic lineage, including those of hematopoietic stem cells, indicating that the hematopoietic genome is not completely reprogrammed. This observation may have implications on the bone marrow contribution to the cancer stem cell population. Interestingly, it was seen that in both cancer models, the expression of chemokine receptor CXCR4 was largely contributed to by the fused compartment of cancer cells. We hypothesize that the superior migratory potential gained by the cancer cells due to the fusion helps in its dissemination to various secondary organs upon activation of the CXCR4/CXCL12 axis. We are the first to report the presence of a hemato-epithelial cancer compartment, which contributes to stem cell markers and CXCR4 in epithelial carcinoma. This finding has repercussions on CXCR4-based therapeutics and opens new avenues in discovering novel molecular targets against fusion and metastasis.

  20. [Expectations of patients with ovarian cancer. Results of the European investigation EXPRESSION III in French patients from GINECO group].

    PubMed

    De Cock, Laure; Kieffer, Anne; Kurtz, Jean-Emmanuel; Joly, Florence; Weber, Béatrice

    2015-03-01

    EXPRESSION III was designed to evaluate the information, needs and expectations of patients with ovarian cancer in different European countries. This abstract focuses on specific results from French OC patients. Two hundred and fifty-seven patients filled a 27-item questionnaire during a medical visit. Median age range was 63 years (26-89). Nearly all the patients (94 %) had primary surgery and adjuvant chemotherapy (95 %), 50 % had recurrent disease. At the time of the survey, 85 % reported symptoms: fatigue: 88 %, neuropathy: 55 %, nausea/vomiting: 40 %, pain: 39 %. Patients wished for non-alopeciant treatment (52 %) and a better management of fatigue (42 %). Eighty percent of the patients knew their chemotherapy but 60 % ignored their initial disease stage and how to find more information for treatment choice (91 %). Most patients (92 %) preferred to get it directly from their physician. Sixty-six percent expressed the need for clear information about their life expectancy. Still 21 % patients did not want to get negative information. French patients need for more support and clearer information on their disease. Direct information from their physician remains the mainstay of communication.

  1. Association of Immunosuppression with DR6 Expression during the Development and Progression of Spontaneous Ovarian Cancer in Laying Hen Model.

    PubMed

    McNeal, Sa'Rah; Bitterman, Pincas; Bahr, Janice M; Edassery, Seby L; Abramowicz, Jacques S; Basu, Sanjib; Barua, Animesh

    2016-01-01

    Ovarian cancer (OVCA) mainly disseminates in the peritoneal cavity. Immune functions are important to prevent OVCA progression and recurrence. The mechanism of immunosuppression, a hallmark of tumor progression, is not well understood. The goal of this study was to determine the immune system's responses and its suppression during OVCA development and progression in hens. Frequencies of CD8+ T cells and IgY-containing cells and expression of immunosuppressors including IRG1 and DR6 in OVCA at early and late stages in hens were examined. Frequencies of stromal but not the intratumoral CD+8 T cells and IgY-containing cells increased significantly (P < 0.01) during OVCA development and progression. Tumor progression was associated with increased expression of IRG1 and DR6 and decreased infiltration of immune cells into the tumor. Frequency of stromal but not intratumoral immune cells increases during OVCA development and progression. Tumor-induced IRG1 and DR6 may prevent immune cells from invading the tumor.

  2. Desert hedgehog is a mammal-specific gene expressed during testicular and ovarian development in a marsupial

    PubMed Central

    2011-01-01

    Background Desert hedgehog (DHH) belongs to the hedgehog gene family that act as secreted intercellular signal transducers. DHH is an essential morphogen for normal testicular development and function in both mice and humans but is not present in the avian lineage. Like other hedgehog proteins, DHH signals through the patched (PTCH) receptors 1 and 2. Here we examine the expression and protein distribution of DHH, PTCH1 and PTCH2 in the developing testes of a marsupial mammal (the tammar wallaby) to determine whether DHH signalling is a conserved factor in gonadal development in all therian mammals. Results DHH, PTCH1 and PTCH2 were present in the marsupial genome and highly conserved with their eutherian orthologues. Phylogenetic analyses indicate that DHH has recently evolved and is a mammal-specific hedgehog orthologue. The marsupial PTCH2 receptor had an additional exon (exon 21a) not annotated in eutherian PTCH2 proteins. Interestingly we found evidence of this exon in humans and show that its translation would result in a truncated protein with functions similar to PTCH1. We also show that DHH expression was not restricted to the testes during gonadal development (as in mice), but was also expressed in the developing ovary. Expression of DHH, PTCH1 and PTCH2 in the adult tammar testis and ovary was consistent with findings in the adult mouse. Conclusions These data suggest that there is a highly conserved role for DHH signalling in the differentiation and function of the mammalian testis and that DHH may be necessary for marsupial ovarian development. The receptors PTCH1 and PTCH2 are highly conserved mediators of hedgehog signalling in both the developing and adult marsupial gonads. Together these findings indicate DHH is an essential therian mammal-specific morphogen in gonadal development and gametogenesis. PMID:22132805

  3. Molecular cloning and mRNA expression analysis of antizyme inhibitor 1 in the ovarian follicles of the Sichuan white goose.

    PubMed

    Ma, Rong; Jiang, Dongmei; Kang, Bo; Bai, Lin; He, Hui; Chen, Ziyu; Yi, Zhixin

    2015-08-15

    Antizyme inhibitor 1 (Azin1) plays critical roles in various cellular pathways, including ornithine decarboxylase regulation, polyamine anabolism and uptake and cell proliferation. However, the molecular characteristics of the AZIN1 gene and its expression profile in goose tissues and ovarian follicles have not been reported. In this study, the AZIN1 cDNA of the Sichuan white goose (Anser cygnoides) was cloned, and analyzed for its phylogenetic and physiochemical properties. The expression profile of AZIN1 mRNA in geese tissues and ovarian follicles were examined using quantitative real-time PCR. The results showed that the open reading frame of the AZIN1 cDNA is 1,353 bp in length, encoding a 450 amino acid protein with a molecular weight of 50 kDa. Out of all tissues examined, AZIN1 expression was highest in the adrenal gland and lowest in breast muscle. There was also a high expression of AZIN1 in the cerebellum and isthmus of oviduct. With follicular development, AZIN1 gene expression gradually increased, and its expression in F1 was significantly higher than in F5 (P<0.05). AZIN1 expression was also significantly higher in the POF1 than in the other follicles (P<0.05), and there was a low mRNA expression of AZIN1 in atretic follicles. The results of AZIN1 expression profiling in ovarian follicles suggest that AZIN1 may play an important role in the progression of follicular development, potentially through regulating polyamine levels.

  4. Co-expression of the Follicle Stimulating Hormone Receptor and Stem Cell Markers: A Novel Approach to Target Ovarian Cancer Stem Cells

    DTIC Science & Technology

    2013-09-01

    cautiously as a functional end point characteristic of ovarian cancer stem cells (Appendix I). 7 Year 2 1. Our veterinary staff has since...WTA system ® to amplify the RNA into a double stranded cDNA product. Real- time PCR using intron-spanning primers was carried out using a BioRad...mince, and digest in enzyme-free cell dissociation buffer (Gibco). This material has worked well for us with cultured cell expressing the FSHR and

  5. Molecular cloning and mRNA expression analysis of ornithine decarboxylase antizyme 2 in ovarian follicles of the Sichuan white goose (Anser cygnoides).

    PubMed

    He, Hui; Kang, Bo; Jiang, Dongmei; Ma, Rong; Bai, Lin

    2014-07-25

    The ornithine decarboxylase antizyme 2 (OAZ2) gene is a member of the antizyme gene family. Antizymes play pivotal roles in various cellular pathways, including polyamine anabolism and apoptosis. The molecular structure and expression profile of the OAZ2 in goose ovarian follicles have not been reported. In this study, the OAZ2 cDNA sequence of the Sichuan white goose was cloned (Anser cygnoides), and phylogenetic and structural analyses of the OAZ2 were performed. The expression profiling of OAZ2 mRNA in goose ovarian follicles was examined using quantitative real-time PCR. The sequence analysis showed that the 756 bp OAZ2 sequence contained two overlapping open reading frames (ORF). ORF1 was 99 bp in length, and encoded a 32 aa polypeptide. ORF2 was 477 bp in length, and encoded a 158 aa polypeptide. The frameshift site that initiates the translation of ORF2 was located at nucleotide position 97 in the OAZ2. The analysis of OAZ2 mRNA expression in hierarchical follicles showed that the level of OAZ2 mRNA was higher in the SWF and F2 follicular stages than that in the ovarian stroma (P<0.05). The lowest level of OAZ2 expression was detected in the ovarian stroma. These results suggest that the highly conserved frameshift region plays an important role in sustaining the function of OAZs. Furthermore, the significantly higher level of OAZ2 mRNA in the SWF stage indicates that OAZ2 may be involved in recruiting hierarchical follicles. Our results also suggest that OAZ2 may augment the effects of OAZ1 in follicle development.

  6. Vitellogenin and its messenger RNA during ovarian development in the female blue crab, Callinectes sapidus: gene expression, synthesis, transport, and cleavage.

    PubMed

    Zmora, Nili; Trant, John; Chan, Siu-Ming; Chung, J Sook

    2007-07-01

    Blue crab vitellogenin (VTG) cDNA encodes a precursor that, together with two other Brachyuran VTGs, forms a distinctive cluster within a phylogenetic tree of crustacean VTGs. Using quantitative RT-PCR, we found that VTG was primarily expressed in the hepatopancreas of a vitellogenic female, with minor expression in the ovary. VTG expression in the hepatopancreas correlated with ovarian growth, with a remarkable 8000-fold increase in expression from stage 3 to 4 of ovarian development. In contrast, the VTG levels in the hepatopancreas and hemolymph decreased in stage 4. Western blot analysis and N-terminal sequencing revealed that vitellin is composed of three subunits of approximately 78.5 kDa, 119.42 kDa, and 87.9 kDa. The processing pathway for VTG includes an initial hepatopancreatic cleavage of the primary precursor into approximately 78.5-kDa and 207.3-kDa subunits, both of which are found in the hemolymph. A second cleavage in the ovary splits the approximately 207.3-kDa subunit into approximately 119.4-kDa and approximately 87.9-kDa subunits. The hemolymph VTG profiles of mated and unmated females during ovarian development indicate that early vitellogenesis and ovarian development do not require mating, which may be essential for later stages, as VTG decreased to the basal level at stage 4 in the unmated group but remained high in the mated females. Our results encompass comprehensive overall temporal and spatial aspects of vitellogenesis, which may reflect the reproductive physiology of the female blue crab, e.g., single mating and anecdysis in adulthood.

  7. Cadherin-11 mRNA and protein expression in ovarian tumors of different malignancy: No evidence of oncogenic or tumor-suppressive function

    PubMed Central

    VON BÜLOW, CHARLOTTE; OLIVEIRA-FERRER, LETICIA; LÖNING, THOMAS; TRILLSCH, FABIAN; MAHNER, SVEN; MILDE-LANGOSCH, KARIN

    2015-01-01

    Cadherin-11 (CDH11, OB-cadherin) is a mesenchymal cadherin found to be upregulated in various types of tumors and implicated in tumor progression and metastasis. In order to determine the role of CDH11 expression in ovarian tumors, we performed a combined reverse transcription quantitative polymerase chain reaction (RT-qPCR), western blot analysis and immunohistochemical study on a large cohort of benign, borderline and invasive ovarian tumors. The RT-qPCR and western blot analysis demonstrated that the CDH11 expression was high in benign cystadenomas and decreased with increasing malignancy. This may be explained by the different tumor-stroma ratios, since immunohistochemistry revealed strong staining of stromal cells, particularly vascular smooth muscle cells and endothelial cells, but only weak cytoplasmic or nuclear immunoreactivity of cancer cells. Within the group of invasive carcinomas, high CDH11 protein expression, as detected by western blot analysis, was found to be significantly correlated with advanced stage and nodal involvement. However, the recurrence-free and overall survival analyses did not reveal any prognostic or predictive significance. In conclusion, in contrast to other tumor types, CDH11 does not play an important role in ovarian cancer progression. PMID:26623052

  8. Amplicon-dependent CCNE1 expression is critical for clonogenic survival after cisplatin treatment and is correlated with 20q11 gain in ovarian cancer.

    PubMed

    Etemadmoghadam, Dariush; George, Joshy; Cowin, Prue A; Cullinane, Carleen; Kansara, Maya; Gorringe, Kylie L; Smyth, Gordon K; Bowtell, David D L

    2010-11-12

    Genomic amplification of 19q12 occurs in several cancer types including ovarian cancer where it is associated with primary treatment failure. We systematically attenuated expression of genes within the minimally defined 19q12 region in ovarian cell lines using short-interfering RNAs (siRNA) to identify driver oncogene(s) within the amplicon. Knockdown of CCNE1 resulted in G1/S phase arrest, reduced cell viability and apoptosis only in amplification-carrying cells. Although CCNE1 knockdown increased cisplatin resistance in short-term assays, clonogenic survival was inhibited after treatment. Gain of 20q11 was highly correlated with 19q12 amplification and spanned a 2.5 Mb region including TPX2, a centromeric protein required for mitotic spindle function. Expression of TPX2 was highly correlated with gene amplification and with CCNE1 expression in primary tumors. siRNA inhibition of TPX2 reduced cell viability but this effect was not amplicon-dependent. These findings demonstrate that CCNE1 is a key driver in the 19q12 amplicon required for survival and clonogenicity in cells with locus amplification. Co-amplification at 19q12 and 20q11 implies the presence of a cooperative mutational network. These observations have implications for the application of targeted therapies in CCNE1 dependent ovarian cancers.

  9. Amplicon-Dependent CCNE1 Expression Is Critical for Clonogenic Survival after Cisplatin Treatment and Is Correlated with 20q11 Gain in Ovarian Cancer

    PubMed Central

    Etemadmoghadam, Dariush; George, Joshy; Cowin, Prue A.; Cullinane, Carleen; Kansara, Maya; Gorringe, Kylie L.; Smyth, Gordon K.; Bowtell, David D. L.

    2010-01-01

    Genomic amplification of 19q12 occurs in several cancer types including ovarian cancer where it is associated with primary treatment failure. We systematically attenuated expression of genes within the minimally defined 19q12 region in ovarian cell lines using short-interfering RNAs (siRNA) to identify driver oncogene(s) within the amplicon. Knockdown of CCNE1 resulted in G1/S phase arrest, reduced cell viability and apoptosis only in amplification-carrying cells. Although CCNE1 knockdown increased cisplatin resistance in short-term assays, clonogenic survival was inhibited after treatment. Gain of 20q11 was highly correlated with 19q12 amplification and spanned a 2.5 Mb region including TPX2, a centromeric protein required for mitotic spindle function. Expression of TPX2 was highly correlated with gene amplification and with CCNE1 expression in primary tumors. siRNA inhibition of TPX2 reduced cell viability but this effect was not amplicon-dependent. These findings demonstrate that CCNE1 is a key driver in the 19q12 amplicon required for survival and clonogenicity in cells with locus amplification. Co-amplification at 19q12 and 20q11 implies the presence of a cooperative mutational network. These observations have implications for the application of targeted therapies in CCNE1 dependent ovarian cancers. PMID:21103391

  10. Mouse oocytes suppress miR-322-5p expression in ovarian granulosa cells

    PubMed Central

    SUMITOMO, Jun-ichi; EMORI, Chihiro; MATSUNO, Yuta; UENO, Mizuki; KAWASAKI, Kurenai; ENDO, Takaho A.; SHIROGUCHI, Katsuyuki; FUJII, Wataru; NAITO, Kunihiko; SUGIURA, Koji

    2016-01-01

    This study tested the hypothesis that oocyte-derived paracrine factors (ODPFs) regulate miRNA expression in mouse granulosa cells. Expression of mmu-miR-322-5p (miR-322) was higher in mural granulosa cells (MGCs) than in cumulus cells of the Graafian follicles. The expression levels of miR-322 decreased when cumulus cells or MGCs were co-cultured with oocytes denuded of their cumulus cells. Inhibition of SMAD2/3 signaling by SB431542 increased miR-322 expression by cumulus-oocyte complexes (COCs). Moreover, the cumulus cells but not the MGCs in Bmp15–/–/Gdf9+/– (double-mutant) mice exhibited higher miR-322 expression than those of wild-type mice. Taken together, these results show that ODPFs suppress the expression of miR-322 in cumulus cells. Gene ontology analysis of putative miR-322 targets whose expression was detected in MGCs with RNA-sequencing suggested that multiple biological processes are affected by miR-322 in MGCs. These results demonstrate that ODPFs regulate miRNA expression in granulosa cells and that this regulation may participate in the differential control of cumulus cell versus MGC functions. Therefore, the ODPF-mediated regulation of cumulus cells takes place at both transcriptional and post-transcriptional levels. PMID:27180925

  11. PAX2, PAX8 and CDX2 Expression in Metastatic Mucinous, Primary Ovarian Mucinous and Seromucinous Tumors and Review of the Literature.

    PubMed

    Ates Ozdemir, D; Usubutun, A

    2016-07-01

    Ovarian cancer is the most common cause of gynecologic cancer death. Both morphologically and immunohistochemically, metastatic mucinous tumors are the best mimickers of mucinous ovarian tumors; its pathogenesis still remains a mystery. PAX2 and PAX8 immunohisyochemistries are useful for differentiating numerous primary tumour types from metastatic ones. There are few studies in literature about PAX expressions in mucinous and seromucinous tumors. None of these are takes into account the histologic type (whether it is seromucinous or mucinous) or the metastatic origin. With this purpose hematoxylin and eosine slides of ovarian mucinous and seromucinous tumors were re-evaluated and one block was chosen for each case. The study included 76 ovarian mucinous and seromucinous tumors of the ovary reported in Hacettepe University department of pathology between 2000 and 2013. Tissue microarray (TMA) was designed from the chosen blocks, PAX2, PAX8, CDX2 immunostains was preformed to the TMA slides. As a result, most of the metastatic cases were negative for PAX2 (91.2 %) and PAX8 (86.3 %), many were diffusely and strongly positive for CDX2 (68.2 %). Seromucinous tumors were devoid of CDX2 expression; but all cases (except one) displayed strong and diffuse positivity with PAX8. In other words differing from mucinous tumors, seromucinous tumors show strong PAX8 positivity-similar to serous tumors. This study shows that PAX8 and CDX2 could be useful in differentiating primary mucinous from metastatic tumor. Furthermore unlike the homogeneity in seromucinous tumors for PAX8 and CDX2 mucinous tumors shows heterogeneity with different expression patterns.

  12. The significance of c.690G>T polymorphism (rs34529039) and expression of the CEBPA gene in ovarian cancer outcome

    PubMed Central

    Kwiatkowska, Ewa; Podgorska, Agnieszka; Zolocinska, Aleksandra; Pienkowska-Grela, Barbara; Dansonka-Mieszkowska, Agnieszka; Balcerak, Anna; Lukasik, Martyna; Stachurska, Anna; Timorek, Agnieszka; Spiewankiewicz, Beata; El-Bahrawy, Mona; Kupryjanczyk, Jolanta

    2016-01-01

    The CEBPA gene is known to be mutated or abnormally expressed in several cancers. This is the first study assessing the clinical impact of CEBPA gene status and expression on the ovarian cancer outcome. The CEBPA gene sequence was analyzed in 118 ovarian cancer patients (44 platinum/cyclophosphamide (PC)-treated and 74 taxane/platinum (TP)-treated), both in tumors and blood samples, and in blood from 236 healthy women, using PCR-Sanger sequencing and Real-Time quantitative PCR (qPCR)-based genotyping methods, respectively. The CEBPA mRNA level was examined with Reverse Transcription quantitative PCR (RT-qPCR). The results were correlated to different clinicopathological parameters. Thirty of 118 (25.4%) tumors harbored the CEBPA synonymous c.690G>T polymorphism (rs34529039), that we showed to be related to up-regulation of CEBPA mRNA levels (p=0.0059). The presence of the polymorphism was significantly associated with poor prognosis (p=0.005) and poor response to the PC chemotherapy regimen (p=0.024). In accordance, elevated CEBPA mRNA levels negatively affected patient survival (p<0.001) and tumor response to the PC therapy (p=0.014). The rs34529039 SNP did not affect the risk of developing ovarian cancer. This is the first study providing evidence that the c.690G>T, p.(Thr230Thr) (rs34529039) polymorphism of the CEBPA gene, together with up-regulation of its mRNA expression, are negative factors worsening ovarian cancer outcome. Their adverse clinical effect depends on a therapeutic regimen used, which might make them potential prognostic and predictive biomarkers for response to DNA-damaging chemotherapy. PMID:27602952

  13. Ovarian stimulation with human chorionic gonadotropin and equine chorionic gonadotropin affects prostacyclin and its receptor expression in the porcine oviduct.

    PubMed

    Małysz-Cymborska, I; Andronowska, A

    2015-10-01

    Prostaglandins are well-known mediators of crucial events in the female reproductive tract, eg, early embryo development and implantation. Prostacyclin (PGI2) is the most synthesized prostaglandin in the human oviduct during the postovulatory period, indicating its important role in supporting and regulating the oviductal environment. The present study was undertaken to determine the influence of insemination and ovarian stimulation with human chorionic gonadotropin (hCG)/equine chorionic gonadotropin (eCG) on PGI2 synthesis in the porcine oviduct on day 3 post coitus. Mature gilts (n = 25) were assigned into 2 experiments. In experiment I, gilts were divided into cyclic (control; n = 5) and inseminated (control; n = 5) groups. In experiment II, there were 3 groups of animals: inseminated (n = 5), induced ovulation/inseminated (750 IU eCG, 500 IU hCG; n = 5), and superovulated/inseminated (1,500 IU eCG, 1,000 IU hCG; n = 5) gilts. Parts of oviducts (isthmus and ampulla) were collected 3 days after phosphate-buffered saline treatment (cyclic gilts of experiment I) or insemination (all other groups). Expression of messenger RNA for PGI2 synthase (PGIS) and its receptor (IP) was measured by real-time reverse transcription polymerase chain reaction (real-time RT PCR) and protein levels using Western blots. Concentrations of the PGI2 metabolite 6-keto PGF1α were evaluated by enzyme immunoassay and localization of PGIS and IP in the oviductal tissues using immunohistochemical staining. Insemination by itself increased PGIS protein levels in the oviductal isthmus (P < 0.05) and IP protein expression in the ampulla (P < 0.05). The concentration of 6-keto PGF1α increased significantly in the oviductal ampulla after insemination (P < 0.05). Induction of ovulation decreased IP protein levels in the oviductal ampulla (P < 0.05), whereas superovulation reduced IP levels in both parts of the oviduct (P < 0.01). Synthesis of 6-keto PGF1α was reduced by induction of ovulation

  14. Effect of ovarian hormones on the healthy equine uterus: a global gene expression analysis.

    PubMed

    Marth, Christina D; Young, Neil D; Glenton, Lisa Y; Noden, Drew M; Browning, Glenn F; Krekeler, Natali

    2015-05-20

    The physiological changes associated with the varying hormonal environment throughout the oestrous cycle are linked to the different functions the uterus needs to fulfil. The aim of the present study was to generate global gene expression profiles for the equine uterus during oestrus and Day 5 of dioestrus. To achieve this, samples were collected from five horses during oestrus (follicle >35 mm in diameter) and dioestrus (5 days after ovulation) and analysed using high-throughput RNA sequencing techniques (RNA-Seq). Differentially expressed genes between the two cycle stages were further investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The expression of 1577 genes was found to be significantly upregulated during oestrus, whereas 1864 genes were expressed at significantly higher levels in dioestrus. Most genes upregulated during oestrus were associated with the extracellular matrix, signal interaction and transduction, cell communication or immune function, whereas genes expressed at higher levels in early dioestrus were most commonly associated with metabolic or transport functions, correlating well with the physiological functions of the uterus. These results allow for a more complete understanding of the hormonal influence on gene expression in the equine uterus by functional analysis of up- and downregulated genes in oestrus and dioestrus, respectively. In addition, a valuable baseline is provided for further research, including analyses of changes associated with uterine inflammation.

  15. Oxaliplatin regulates expression of stress ligands in ovarian cancer cells and modulates their susceptibility to natural killer cell-mediated cytotoxicity.

    PubMed

    Siew, Yin-Yin; Neo, Soek-Ying; Yew, Hui-Chuing; Lim, Shun-Wei; Ng, Yi-Cheng; Lew, Si-Min; Seetoh, Wei-Guang; Seow, See-Voon; Koh, Hwee-Ling

    2015-12-01

    Selected cytotoxic chemicals can provoke the immune system to recognize and destroy malignant tumors. Most of the studies on immunogenic cell death are focused on the signals that operate on a series of receptors expressed by dendritic cells to induce tumor antigen-specific T-cell responses. Here, we explored the effects of oxaliplatin, an immunogenic cell death inducer, on the induction of stress ligands and promotion of natural killer (NK) cell-mediated cytotoxicity in human ovarian cancer cells. The results indicated that treatment of tumor cells with oxaliplatin induced the production of type I interferons and chemokines and enhanced the expression of major histocompatibility complex class I-related chains (MIC) A/B, UL16-binding protein (ULBP)-3, CD155 and TNF-related apoptosis-inducing ligand (TRAIL)-R1/R2. Furthermore, oxaliplatin but not cisplatin treatment enhanced susceptibility of ovarian cancer cells to NK cell-mediated cytolysis. In addition, activated NK cells completely abrogated the growth of cancer cells that were pretreated with oxaliplatin. However, cancer cells pretreated with the same concentration of oxaliplatin alone were capable of potentiating regrowth over a period of time. These results suggest an advantage in combining oxaliplatin and NK cell-based therapy in the treatment of ovarian cancer. Further investigation on such potential combination therapy is warranted.

  16. Seasonal variations in reproductive activity of the blue crab, Callinectes sapidus: Vitellogenin expression and levels of vitellogenin in the hemolymph during ovarian development.

    PubMed

    Thongda, Willawan; Chung, J Sook; Tsutsui, Naoaki; Zmora, Nilli; Katenta, Anna

    2015-01-01

    In general, season affects the physiology and behavior of most animals. Warmer temperatures accelerate growth and reproduction of ectotherms, whereas these processes are slowed or halted in colder temperatures. Female blue crabs, Callinectes sapidus inhabiting the Chesapeake Bay, exhibit a seasonal migratory behavior that is closely tied with spawning and the release of larvae. To better understand reproductive activities of the migratory adult females, we examined two reproductive parameters of these crabs sampled monthly (April-December, 2006): the levels of vitellogenin (VtG) in the hemolymph and VtG expression in the hepatopancreas and ovary. The full-length cDNA of VtG (CasVtG-ova) has been isolated from the ovary. The putative CasVtG sequence found in the ovary is >99% identical to that of the hepatopancreas and is related most closely to the sequences reported in other crab species. In female C. sapidus, the hepatopancreas produces over 99% of the total VtG toward the ovarian development. Ovarian stages 2 and 3 in the sampled females are characterized by significant high levels of VtG in hemolymph and VtG expression in both the hepatopancreas and ovary. However, during the southbound migration in fall, females at ovarian stages 2 and 3 have decreased VtG levels, compared to those in spring and summer. The decreased vitellogenesis activity during the fall migration suggests seasonal adaptation to ensure successful spawning and the larval release.

  17. Protein and messenger RNA expression of interleukin 1 system members in bovine ovarian follicles and effects of interleukin 1β on primordial follicle activation and survival in vitro.

    PubMed

    Passos, J R S; Costa, J J N; da Cunha, E V; Silva, A W B; Ribeiro, R P; de Souza, G B; Barroso, P A A; Dau, A M P; Saraiva, M V A; Gonçalves, P B D; van den Hurk, R; Silva, J R V

    2016-01-01

    This study aimed to investigate the expression of interleukin 1 (IL-1) system members (proteins and messenger RNA of ligands and receptors) and its distribution in ovarian follicles of cyclic cows and to evaluate the effects of IL-1β on the survival and activation of primordial follicles in vitro. The ovaries were processed for localization of IL-1 system in preantral and antral follicles by immunohistochemical, real-time polymerase chain reaction, and Western blot analysis. For in vitro studies, ovarian fragments were cultured in α-MEM(+) supplemented with IL-1β (0, 1, 10, 50, or 100 ng/mL), and after 6 d, the cultured tissues were processed for histologic analysis. Immunohistochemical results showed that the IL-1 system proteins IL-1β, IL-1RA, IL-1RI, and IL-1RII were detected in the cytoplasm of oocytes and granulosa cells from all follicular categories and theca cells of antral follicles. Variable levels of messenger RNA for the IL-1 system members were observed at different stages of development. After 6 d of culture, the presence of IL-1β (10 or 50 ng/mL) was effective in maintaining the percentage of normal follicles and in promoting primordial follicle activation. In conclusion, IL-1 system members are differentially expressed in ovarian follicles according to their stage of development. Moreover, IL-1β promotes the development of primordial follicles. These results indicate an important role of the IL-1 system in the regulation of bovine folliculogenesis.

  18. Cumulus Cells Gene Expression Profiling in Terms of Oocyte Maturity in Controlled Ovarian Hyperstimulation Using GnRH Agonist or GnRH Antagonist

    PubMed Central

    Devjak, Rok; Fon Tacer, Klementina; Juvan, Peter; Virant Klun, Irma; Rozman, Damjana; Vrtačnik Bokal, Eda

    2012-01-01

    In in vitro fertilization (IVF) cycles controlled ovarian hyperstimulation (COH) is established by gonadotropins in combination with gonadotropin-releasing hormone (GnRH) agonists or antagonists, to prevent premature luteinizing hormone (LH) surge. The aim of our study was to improve the understanding of gene expression profile of cumulus cells (CC) in terms of ovarian stimulation protocol and oocyte maturity. We applied Affymetrix gene expression profiling in CC of oocytes at different maturation stages using either GnRH agonists or GnRH antagonists. Two analyses were performed: the first involved CC of immature metaphase I (MI) and mature metaphase II (MII) oocytes where 359 genes were differentially expressed, and the second involved the two GnRH analogues where no differentially expressed genes were observed at the entire transcriptome level. A further analysis of 359 differentially genes was performed, focusing on anti-Müllerian hormone receptor 2 (AMHR2), follicle stimulating hormone receptor (FSHR), vascular endothelial growth factor C (VEGFC) and serine protease inhibitor E2 (SERPINE2). Among other differentially expressed genes we observed a marked number of new genes connected to cell adhesion and neurotransmitters such as dopamine, glycine and γ-Aminobutyric acid (GABA). No differential expression in CC between the two GnRH analogues supports the findings of clinical studies where no significant difference in live birth rates between both GnRH analogues has been proven. PMID:23082142

  19. Techniques for Specifying Bug Patterns

    SciTech Connect

    Quinlan, D J; Vuduc, R W; Misherghi, G

    2007-04-30

    We present our on-going work to develop techniques for specifying source code signatures of bug patterns. Specifically, we discuss two approaches. The first approach directly analyzes a program in the intermediate representation (IR) of the ROSE compiler infrastructure using ROSE's API. The second analyzes the program using the bddbddb system of Lam, Whaley, et al.. In this approach, we store the IR produced by ROSE as a relational database, express patterns as declarative inference rules on relations in the language Datalog, and bddbddb implements the Datalog programs using binary decision diagram (BDD) techniques. Both approaches readily apply to large-scale applications, since ROSE provides full type analysis, control flow, and other available analysis information. In this paper, we primarily consider bug patterns expressed with respect to the structure of the source code or the control flow, or both. More complex techniques to specify patterns that are functions of data flow properties may be addressed by either of the above approaches, but are not directly treated here. Our Datalog-based work includes explicit support for expressing patterns on the use of the Message Passing Interface (MPI) in parallel distributed memory programs. We show examples of this on-going work as well.

  20. Comparison of c-met Expression in Ovarian Epithelial Tumors and Normal Epithelia of the Female Reproductive Tract by Quantitative Laser Scan Microscopy

    PubMed Central

    Huntsman, David; Resau, James H.; Klineberg, Eric; Auersperg, Nelly

    1999-01-01

    The transmembrane tyrosine kinase receptor c-met with its ligand, hepatocyte growth factor/scatter factor (HGF/SF), acts as a mitogen, motogen, and morphogen in many normal epithelia. HGF/SF-met signaling has also been implicated in neoplastic progression and metastasis. In this study, immunofluorescence staining and quantitative laser scanning confocal microscopy were used to measure c-met expression in ovarian surface epithelial tumors from 17 oophorectomy specimens. These specimens were from patients aged 25 to 81 (mean age, 52) and included 10 malignant tumors, 4 borderline tumors, and five benign tumors including a Brenner tumor. For comparison, c-met expression was measured in normal tissues from the same patients, including 4 ovarian surface epithelia, 4 fallopian tube epithelia, 2 endometria, and 3 endocervical epithelia, as well as 3 cases of endometriosis. Relative pixel intensity values of c-met expression ranged from 0.4 in a normal ovarian surface epithelium to 22.3 in a borderline serous tumor. Malignant tumors (mean, 9.6) and borderline tumors (mean, 12.9) had higher average c-met expression levels than normal tissues (mean, 3.6) and endometriosis (mean, 1.8). The expression levels of benign tumors were intermediate (mean, 7.9). Among the normal tissues, c-met expression in fallopian tubes (mean, 8.2; range, 3.4–12.9) was higher than that of the other normal epithelia (mean, 1.6; range, 0.4–4.3). In eight cases where both normal and malignant tissues were sampled, c-met expression was significantly greater in malignant than in normal epithelia (P = 0.01). These findings indicate that c-met plays a role in the biology of the normal tissues examined. They confirm that its expression increases in the malignant progression of ovarian surface epithelial tumors, and suggest that increases comparable to those in frankly malignant carcinomas have already been reached in borderline lesions, ie, early in the neoplastic process. PMID:10433927

  1. Ovarian Cancer

    MedlinePlus

    ... factors may increase a woman’s risk for ovarian cancer: • Being middle-aged or older. • Having close family members (such as ... than 40, with the greatest number of ovarian cancers occurring in women aged 60 years or older. Each year, approximately 21, ...

  2. Characterization and expression profile of the ovarian cytochrome P-450 aromatase (cyp19A1) gene during thermolabile sex determination in Pejerrey, Odontesthes bonariensis

    USGS Publications Warehouse

    Karube, M.; Fernandino, J.I.; Strobl-Mazzulla, P.; Strussmann, C.A.; Yoshizaki, G.; Somoza, G.M.; Patino, R.

    2007-01-01

    Cytochrome P450 aromatase (cyp19) is an enzyme that catalyzes the conversion of androgens to estrogens and may play a role in temperature- dependent sex determination (TSD) of reptiles, amphibians, and fishes. In this study, the ovarian P450 aromatase form (cyp19A1) of pejerrey Odontesthes bonariensis, a teleost with marked TSD, was cloned and its expression profile evaluated during gonadal differentiation at feminizing (17??C, 100% females), mixed-sex producing (24 and 25??C, 73.3 and 26.7% females, respectively), and masculinizing (29??C, 0% females) temperatures. The deduced cyp19A1 amino acid sequence shared high identity (>77.8%) with that from other teleosts but had low identity (<61.8%) with brain forms (cyp19A2), including that of pejerrey itself. The tissue distribution analysis of cyp19A1 mRNA in adult fish revealed high expression in the ovary. Semi-quantitative reverse transcription polymerase chain reaction analysis of the bodies of larvae revealed that cyp19A1 expression increased before the appearance of the first histological signs of ovarian differentiation at the feminizing temperature but remained low at the masculinizing temperature. The expression levels at mixed-sex producing temperatures were bimodal rather than intermediate, showing low and high modal values similar to those at the feminizing and masculinizing temperatures, respectively. The population percentages of high and low expression levels at intermediate temperatures were proportional to the percentage of females and males, respectively, and high levels were first observed at about the time of sex differentiation of females. These results suggest that cyp19A1 is involved in the process of ovarian formation and possibly also in the TSD of pejerrey. ?? 2007 Wiley-Liss, Inc.

  3. Analysis on differential expressed genes of ovarian tissue between high- and low-yield laying hen.

    PubMed

    Chen, Wei; Song, Ling-Jun; Zeng, Yong-Qing; Yang, Yun; Wang, Hui

    2013-01-01

    In order to elucidate molecular genetic mechanism of laying hen reproduction at the transcriptional level and the structure of significantly differential genes, the mRNA differential display and reverse northern dot-blot were used to detect the differential expression of genes in the ovary tissue of low-yield laying hens and high-yield laying hens in the present study. Sixteen 32-week-old CAU-pink laying hens divided into two groups were used and the laying performance was measured. The results showed that only the egg numbers were significantly different between the two groups; and from 15 primer pairs, a total of 336 bands were displayed of which 59 cDNA bands were found to be differentially expressed in both high-yield and low-yield laying hen. The sequence analysis indicated that the expression of such bands as H-AP5, H-P5, and H-P4 was significantly potentiated in high-yield laying hen using primer pairs AP5/HT11G, P5/HT11G and P4/HT11G and these transcripts had high homology (98%) to HoxDb, HoxCa, and HoxBa, respectively. The differentially expressed gene fragments may be relevant to the progression of the high-yield hens to the egg-laying stage. And further study is required to elucidate the molecular function to improve the productivity of laying hens.

  4. BRCA1 deficiency in ovarian cancer is associated with alteration in expression of several key regulators of cell motility - A proteomics study.

    PubMed

    Gau, David M; Lesnock, Jamie L; Hood, Brian L; Bhargava, Rohit; Sun, Mai; Darcy, Kathleen; Luthra, Soumya; Chandran, Uma; Conrads, Thomas P; Edwards, Robert P; Kelley, Joseph L; Krivak, Thomas C; Roy, Partha

    2015-01-01

    Functional loss of expression of breast cancer susceptibility gene 1(BRCA1) has been implicated in genomic instability and cancer progression. There is emerging evidence that BRCA1 gene product (BRCA1) also plays a role in cancer cell migration. We performed a quantitative proteomics study of EOC patient tumor tissues and identified changes in expression of several key regulators of actin cytoskeleton/cell adhesion and cell migration (CAPN1, 14-3-3, CAPG, PFN1, SPTBN1, CFN1) associated with loss of BRCA1 function. Gene expression analyses demonstrate that several of these proteomic hits are differentially expressed between early and advanced stage EOC thus suggesting clinical relevance of these proteins to disease progression. By immunohistochemistry of ovarian tumors with BRCA1(+/+) and BRCA1(null) status, we further verified our proteomic-based finding of elevated PFN1 expression associated with BRCA1 deficiency. Finally, we established a causal link between PFN1 and BRCA1-induced changes in cell migration thus uncovering a novel mechanistic basis for BRCA1-dependent regulation of ovarian cancer cell migration. Overall, findings of this study open up multiple avenues by which BRCA1 can potentially regulate migration and metastatic phenotype of EOC cells.

  5. BRCA1 deficiency in ovarian cancer is associated with alteration in expression of several key regulators of cell motility – A proteomics study

    PubMed Central

    Gau, David M; Lesnock, Jamie L; Hood, Brian L; Bhargava, Rohit; Sun, Mai; Darcy, Kathleen; Luthra, Soumya; Chandran, Uma; Conrads, Thomas P; Edwards, Robert P; Kelley, Joseph L; Krivak, Thomas C; Roy, Partha

    2015-01-01

    Functional loss of expression of breast cancer susceptibility gene 1(BRCA1) has been implicated in genomic instability and cancer progression. There is emerging evidence that BRCA1 gene product (BRCA1) also plays a role in cancer cell migration. We performed a quantitative proteomics study of EOC patient tumor tissues and identified changes in expression of several key regulators of actin cytoskeleton/cell adhesion and cell migration (CAPN1, 14-3-3, CAPG, PFN1, SPTBN1, CFN1) associated with loss of BRCA1 function. Gene expression analyses demonstrate that several of these proteomic hits are differentially expressed between early and advanced stage EOC thus suggesting clinical relevance of these proteins to disease progression. By immunohistochemistry of ovarian tumors with BRCA1+/+ and BRCA1null status, we further verified our proteomic-based finding of elevated PFN1 expression associated with BRCA1 deficiency. Finally, we established a causal link between PFN1 and BRCA1-induced changes in cell migration thus uncovering a novel mechanistic basis for BRCA1-dependent regulation of ovarian cancer cell migration. Overall, findings of this study open up multiple avenues by which BRCA1 can potentially regulate migration and metastatic phenotype of EOC cells. PMID:25927284

  6. Leucine Leucine-37 Uses Formyl Peptide Receptor–Like 1 to Activate Signal Transduction Pathways, Stimulate Oncogenic Gene Expression, and Enhance the Invasiveness of Ovarian Cancer Cells

    PubMed Central

    Coffelt, Seth B.; Tomchuck, Suzanne L.; Zwezdaryk, Kevin J.; Danka, Elizabeth S.; Scandurro, Aline B.

    2009-01-01

    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. However, the receptor or receptors through which these processes are mediated have not been thoroughly examined. In the present study, expression of formyl peptide receptor–like 1 (FPRL1) was confirmed on ovarian cancer cells. Proliferation assays indicated that LL-37 does not signal through a G protein–coupled receptor, such as FPRL1, to promote cancer cell growth. By contrast, FPRL1 was required for LL-37–induced invasion through Matrigel. The peptide stimulated mitogen-activated protein kinase and Janus-activated kinase/signal transducers and activators of transcription signaling cascades and led to the significant activation of several transcription factors, through both FPRL1-dependent and FPRL1-independent pathways. Likewise, expression of some LL-37–stimulated genes was attenuated by the inhibition of FPRL1. Increased expression of CXCL10, EGF, and PDGF-BB as well as other soluble factors was confirmed from conditioned medium of LL-37–treated cells. Taken together, these data suggest that LL-37 potentiates a more aggressive behavior from ovarian cancer cells through its interaction with FPRL1. PMID:19491199

  7. Leucine leucine-37 uses formyl peptide receptor-like 1 to activate signal transduction pathways, stimulate oncogenic gene expression, and enhance the invasiveness of ovarian cancer cells.

    PubMed

    Coffelt, Seth B; Tomchuck, Suzanne L; Zwezdaryk, Kevin J; Danka, Elizabeth S; Scandurro, Aline B

    2009-06-01

    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. However, the receptor or receptors through which these processes are mediated have not been thoroughly examined. In the present study, expression of formyl peptide receptor-like 1 (FPRL1) was confirmed on ovarian cancer cells. Proliferation assays indicated that LL-37 does not signal through a G protein-coupled receptor, such as FPRL1, to promote cancer cell growth. By contrast, FPRL1 was required for LL-37-induced invasion through Matrigel. The peptide stimulated mitogen-activated protein kinase and Janus-activated kinase/signal transducers and activators of transcription signaling cascades and led to the significant activation of several transcription factors, through both FPRL1-dependent and FPRL1-independent pathways. Likewise, expression of some LL-37-stimulated genes was attenuated by the inhibition of FPRL1. Increased expression of CXCL10, EGF, and PDGF-BB as well as other soluble factors was confirmed from conditioned medium of LL-37-treated cells. Taken together, these data suggest that LL-37 potentiates a more aggressive behavior from ovarian cancer cells through its interaction with FPRL1.

  8. Hypoxia-inducible factor 1 alpha mediates epidermal growth factor-induced down-regulation of E-cadherin expression and cell invasion in human ovarian cancer cells.

    PubMed

    Cheng, Jung-Chien; Klausen, Christian; Leung, Peter C K

    2013-02-28

    Hypoxia-inducible factor 1α (HIF-1α) regulates the transcription of a number of genes under hypoxia and other extracellular stimulations. It has been shown that E-cadherin is down-regulated by epidermal growth factor receptor (EGF) stimulation, and that cells with low E-cadherin expression are more invasive. Our recent study demonstrated a novel mechanism by which EGF down-regulates E-cadherin expression through production of hydrogen peroxide (H(2)O(2)) and the activation of p38 MAPK in human ovarian cancer cells. In this study, we were interested in examining the potential role of HIF-1α in cell invasion under normoxic conditions, specifically when cells are treated with EGF, which is known to down-regulate E-cadherin and increase invasiveness. We show that EGF treatment induces HIF-1α expression in two human ovarian cancer cell lines (SKOV3 and OVCAR5), and that this effect is diminished by treatment with a membrane-permeable H(2)O(2) scavenger, PEG-catalase. However, the induction of HIF-1α by EGF did not require the activation of p38 MAPK. Treatment with siRNA targeting HIF-1α reduces both basal and EGF-induced HIF-1α levels. Importantly, treatment with HIF-1α siRNA diminishes the up-regulation of Snail and Slug as well as the down-regulation of E-cadherin by EGF. The involvement of HIF-1α in the down-regulation of E-cadherin was confirmed with cobalt chloride (CoCl(2)), a hypoxia-mimetic reagent. Finally, we also show that EGF-induced cell invasion is attenuated by treatment with HIF-1α siRNA. This study demonstrates an important role for HIF-1α in mediating the effects of EGF on Snail, Slug and E-cadherin expression as well as invasiveness in human ovarian cancer cells.

  9. Hydrogen peroxide mediates EGF-induced down-regulation of E-cadherin expression via p38 MAPK and snail in human ovarian cancer cells.

    PubMed

    Cheng, Jung-Chien; Klausen, Christian; Leung, Peter C K

    2010-08-01

    In ovarian cancer, it has been shown that E-cadherin is down-regulated by epidermal growth factor (EGF) receptor (EGFR) activation, and that cells with low E-cadherin expression are particularly invasive. Although it is generally believed that reactive oxygen species play important roles in intracellular signal transduction, the role of reactive oxygen species in EGF-mediated reductions in E-cadherin remains to be elucidated. In this study, we show that EGF treatment down-regulated E-cadherin by up-regulating its transcriptional repressors, Snail and Slug, in human ovarian cancer cells. Using 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester staining, we found that intracellular hydrogen peroxide (H(2)O(2)) production was increased in EGF-treated cells and could be inhibited by treatment with an EGFR inhibitor, AG1478, or an H(2)O(2) scavenger, polyethylene glycol (PEG)-catalase. In addition, PEG-catalase diminished EGF-induced p38 MAPK, but not ERK1/2 or c-Jun N-terminal kinase, phosphorylation. PEG-catalase and the p38 MAPK inhibitor SB203580 abolished EGF-induced Snail, but not Slug, expression and E-cadherin down-regulation. Furthermore, the involvement of p38 MAPK in the down-regulation of E-cadherin was confirmed using specific p38alpha MAPK small interfering RNA. Finally, we also show that EGF-induced cell invasion was abolished by treatment with PEG-catalase and SB203580, as well as p38alpha MAPK small interfering RNA, and that forced expression of E-cadherin diminished intrinsic invasiveness as well as EGF-induced cell invasion. This study demonstrates a novel mechanism in which EGF down-regulates E-cadherin expression through production of H(2)O(2), activation of p38 MAPK, and up-regulation of Snail in human ovarian cancer cells.

  10. Prognostic significance of differential expression of angiogenic genes in women with high-grade serous ovarian carcinoma

    PubMed Central

    Siamakpour-Reihani, Sharareh; Owzar, Kouros; Jiang, Chen; Turner, Taylor; Deng, Yiwen; Bean, Sarah M.; Horton, Janet K.; Berchuck, Andrew; Marks, Jeffrey R.; Dewhirst, Mark W.; Secord, Angeles Alvarez

    2015-01-01

    Objectives To identify angiogenic biomarkers associated with tumor angiogenesis and clinical outcome in high-grade serous ovarian cancer (HGSC). Methods 51 HGSC samples were analyzed using Affymetrix HG-U133A microarray. Microvessel density (MVD) counts were determined using CD31and CD105. Association between mRNA expression levels and overall survival were assessed using rank score statistic. Effect size was estimated as a hazard ratio (HR) under a proportional hazards model. The Storey q-value method was used to account for multiple testing within the false-discovery rate (FDR) framework. Publicly available databases including TCGA and GSE were used for external confirmation. Results Thirty-one angiogenic-related genes were significantly associated with survival (q ≤ 0.05). Of these 31 genes, 4 were also associated with outcome in the TCGA data: AKT1 (q=0.02; TCGA p= 0.01, HR=0.8), CD44 (q= 0.003; TCGA p=0.05, HR=0.9), EPHB2 (q= 0.01; TCGA p=0.05, HR=1.2), and ERBB2 (q= 0.02; TCGA p= 0.05, HR=1.2). While 5 were associated with outcome in the GSE database: FLT1 (q= 0.03; GSE26712 p=0.01, HR=3.1); PF4 (q= 0.02; GSE26712 p=0.01, HR=3.0), NRP1 (q= 0.02; GSE26712 p < 0.04, HR>1.4), COL4A3 (q= 0.04; GSE26712 p= 0.03, HR=1.3), ANGPTL3 (q= 0.02; GSE14764 p=0.02, HR=1.5). High AKT1 and CD44 were associated with longer survival. In contrast, high expression of EPHB2, ERBB2, FLT1; PF4, NRP1, COL4A3, and ANGPTL3 were associated with shorter survival. CD105-MVD and CD31-MVD were not significantly associated with angiogenic gene expression. Conclusions Thirty-one angiogenic-related genes were associated with survival in advanced HGSC and nine of these genes were confirmed in independent publicly available databases. PMID:26260910

  11. Quantitative analysis of γ-H2AX and p53 nuclear expression levels in ovarian and fallopian tube epithelium from risk-reducing salpingo-oophorectomies in BRCA1 and BRCA2 mutation carriers.

    PubMed

    Staff, Synnöve; Tolonen, Teemu; Laasanen, Satu-Leena; Mecklin, Jukka-Pekka; Isola, Jorma; Mäenpää, Johanna

    2014-05-01

    Mutations in BRCA1 and BRCA2 genes confer an increased lifetime risk for breast and ovarian cancer. Increased lifetime ovarian cancer risk among BRCA1/BRCA2 mutation carriers can be substantially decreased by risk-reducing salpingo-oophorectomy (RRSO), which also provides material for molecular research on early pathogenesis of serous ovarian cancer. RRSO studies have suggested fallopian tube as a primary site of serous high-grade ovarian cancer. In this study, the nuclear expression levels of γ-H2AX and p53 using immunohistochemical (IHC) study was quantitatively assessed in ovarian and fallopian tube epithelium derived from RRSOs in 29 BRCA1 and BRCA2 mutation carriers and in 1 patient with a strong family history of breast and ovarian cancer but showing an unknown BRCA status. Both p53 and γ-H2AX nuclear staining levels were significantly higher in BRCA1/2 mutation-positive fallopian tube epithelium compared with the control fallopian tube epithelium (P<0.006 and P=0.011, respectively). Nuclear expression levels of p53 and γ-H2AX were similar between the BRCA1/2 mutation-positive ovarian epithelium and controls. Both γ-H2AX and p53 showed significantly higher nuclear expression levels in BRCA1/2 mutation-positive fallopian tube epithelium compared with BRCA1/2 mutation-positive ovarian epithelium (P<0.0001 and P<0.0001, respectively). BRCA1/2 mutation-positive fallopian tube epithelium showed a positive correlation between the γ-H2AX and p53 nuclear expression levels (Pearson r=0.508, P=0.003). Our results of quantitative nuclear p53 and γ-H2AX expression levels in ovarian and fallopian tube epithelium derived from RRSO in high-risk patients support the previously suggested role of fallopian tube epithelium serving as a possible site of initial serous ovarian carcinogenesis.

  12. Effects of phenol on ovarian P450arom gene expression and aromatase activity in vivo and antioxidant metabolism in common carp Cyprinus carpio.

    PubMed

    Das, Sumana; Majumder, Suravi; Gupta, Shreyasi; Dutta, Sharmistha; Mukherjee, Dilip

    2016-02-01

    Ovarian cyp19a mRNA expression and P450 aromatase activity were measured in vivo in common carp Cyprinus carpio exposed to phenol for 96 h. Production of reactive oxygen species (ROS) and parameters of antioxidant defense system in serum ovary and liver of this fish after long-term phenol exposure were also studied. In vivo exposure of fish to sublethal dose of phenol for 96 h caused marked attenuation of ovarian cyp19a1a gene expression and P450 aromatase activity. Production of ROS like hydrogen peroxide and hydroxyl radicals in serum, liver and ovary in fish exposed to phenol for 15 days elevated significantly from day 1 to day 7 with no further significant increase thereafter compared to their respective control values. Total superoxide dismutase (SOD) and catalase activities in serum and ovary decreased gradually and significantly from day 1 to day 4, which then increased significantly for the rest of the exposure days. Liver SOD activity seemed to be distinctly responsive to phenol. SOD activity in liver of phenol-exposed fish started to increase gradually from day 1 to 4 with no further increase thereafter. Catalase activities in all the tissues showed significant inhibition up to day 4 which then increased gradually and significantly up to day 15 of phenol exposure compared to their respective control values. From our results, it appears that sublethal dose of phenol has the endocrine disruptive potential and effect is mediated via inhibition of ovarian P450arom gene expression and aromatase activity in vivo. Sublethal dose of phenol also caused oxidative stress, and antioxidant systems are very much effective to prevent the damages caused by the generation of ROS.

  13. Comparative Proteomics of Ovarian Cancer Aggregate Formation Reveals an Increased Expression of Calcium-activated Chloride Channel Regulator 1 (CLCA1)*

    PubMed Central

    Musrap, Natasha; Tuccitto, Alessandra; Karagiannis, George S.; Saraon, Punit; Batruch, Ihor; Diamandis, Eleftherios P.

    2015-01-01

    Ovarian cancer is a lethal gynecological disease that is characterized by peritoneal metastasis and increased resistance to conventional chemotherapies. This increased resistance and the ability to spread is often attributed to the formation of multicellular aggregates or spheroids in the peritoneal cavity, which seed abdominal surfaces and organs. Given that the presence of metastatic implants is a predictor of poor survival, a better understanding of how spheroids form is critical to improving patient outcome, and may result in the identification of novel therapeutic targets. Thus, we attempted to gain insight into the proteomic changes that occur during anchorage-independent cancer cell aggregation. As such, an ovarian cancer cell line, OV-90, was cultured in adherent and non-adherent conditions using stable isotope labeling with amino acids in cell culture (SILAC). Anchorage-dependent cells (OV-90AD) were grown in tissue culture flasks, whereas anchorage-independent cells (OV-90AI) were grown in suspension using the hanging-drop method. Cellular proteins from both conditions were then identified using LC-MS/MS, which resulted in the quantification of 1533 proteins. Of these, 13 and 6 proteins were up-regulated and down-regulated, respectively, in aggregate-forming cells compared with cells grown as monolayers. Relative gene expression and protein expression of candidates were examined in other cell line models of aggregate formation (TOV-112D and ES-2), which revealed an increased expression of calcium-activated chloride channel regulator 1 (CLCA1). Moreover, inhibitor and siRNA transfection studies demonstrated an apparent effect of CLCA1 on cancer cell aggregation. Further elucidation of the role of CLCA1 in the pathogenesis of ovarian cancer is warranted. PMID:26004777

  14. Comparative Proteomics of Ovarian Cancer Aggregate Formation Reveals an Increased Expression of Calcium-activated Chloride Channel Regulator 1 (CLCA1).

    PubMed

    Musrap, Natasha; Tuccitto, Alessandra; Karagiannis, George S; Saraon, Punit; Batruch, Ihor; Diamandis, Eleftherios P

    2015-07-10

    Ovarian cancer is a lethal gynecological disease that is characterized by peritoneal metastasis and increased resistance to conventional chemotherapies. This increased resistance and the ability to spread is often attributed to the formation of multicellular aggregates or spheroids in the peritoneal cavity, which seed abdominal surfaces and organs. Given that the presence of metastatic implants is a predictor of poor survival, a better understanding of how spheroids form is critical to improving patient outcome, and may result in the identification of novel therapeutic targets. Thus, we attempted to gain insight into the proteomic changes that occur during anchorage-independent cancer cell aggregation. As such, an ovarian cancer cell line, OV-90, was cultured in adherent and non-adherent conditions using stable isotope labeling with amino acids in cell culture (SILAC). Anchorage-dependent cells (OV-90AD) were grown in tissue culture flasks, whereas anchorage-independent cells (OV-90AI) were grown in suspension using the hanging-drop method. Cellular proteins from both conditions were then identified using LC-MS/MS, which resulted in the quantification of 1533 proteins. Of these, 13 and 6 proteins were up-regulated and down-regulated, respectively, in aggregate-forming cells compared with cells grown as monolayers. Relative gene expression and protein expression of candidates were examined in other cell line models of aggregate formation (TOV-112D and ES-2), which revealed an increased expression of calcium-activated chloride channel regulator 1 (CLCA1). Moreover, inhibitor and siRNA transfection studies demonstrated an apparent effect of CLCA1 on cancer cell aggregation. Further elucidation of the role of CLCA1 in the pathogenesis of ovarian cancer is warranted.

  15. Impact of maternal nutrition during pregnancy on pituitary gonadotrophin gene expression and ovarian development in growth-restricted and normally grown late gestation sheep fetuses.

    PubMed

    Da Silva, P; Aitken, R P; Rhind, S M; Racey, P A; Wallace, J M

    2002-06-01

    The influence of maternal nutrition during pregnancy on anterior pituitary gonadotrophin gene expression and ovarian development in sheep fetuses during late gestation was investigated. Embryos recovered from superovulated adult ewes that had been inseminated by a single sire were transferred, singly, into the uteri of adolescent recipients. After embryo transfer, adolescent ewes were offered a high or moderate amount of a complete diet. Pregnancies were terminated at day 131 +/- 0.6 of gestation and the fetal brain, anterior pituitary gland and gonads were collected. Gonadotrophin gene expression (LHbeta and FSHbeta subunits) in the fetal pituitary gland was examined using in situ hybridization. Ovarian follicular development was quantified in haematoxylin- and eosin-stained ovarian sections embedded in paraffin wax. Six dams that were offered a high nutrient intake carried normal-sized fetuses (weight within +/- 2 SD of mean weight for control fetuses from dams fed a moderate level of complete diet) and 13 dams carried growth-restricted fetuses (weight expression (P < 0.05) than normal-sized fetuses from dams offered a moderate nutrient intake (252 +/- 21.6 and 172 +/- 23.6 nCi g(-1), respectively). FSHbeta mRNA expression was not influenced by growth status. Fewer follicles (primarily in the resting pool) were observed in the ovaries of both growth-restricted (P < 0.002) and normal-sized fetuses from dams offered a high nutrient intake (P < 0.01) compared with normal-sized fetuses from dams offered a moderate nutrient intake. Irrespective of nutritional treatment, the total number

  16. Ovarian cysts

    MedlinePlus

    ... cysts due to hormone-related conditions such as polycystic ovary syndrome . Symptoms Ovarian cysts often cause no symptoms. An ... You may need other treatments if you have polycystic ovary syndrome or another disorder that can cause cysts. Outlook ( ...

  17. Ovarian Cancer

    MedlinePlus

    ... and getting enough rest can help combat the stress and fatigue of cancer. There's no sure way to prevent ovarian cancer. But certain factors are associated with lower risk: Use of oral contraceptives, especially for more than 10 years Previous ...

  18. Ovarian hypofunction

    MedlinePlus

    ... may be caused by genetic factors such as chromosome abnormalities. It may also occur with certain autoimmune disorders that disrupt the normal function of the ovaries. Chemotherapy and radiation therapy can also cause ovarian hypofunction.

  19. Ovarian Cysts

    MedlinePlus

    ... information Endometriosis fact sheet Ovarian cancer fact sheet Polycystic ovary syndrome fact sheet The javascript used in this widget ... ovaries make many small cysts. This is called polycystic ovary syndrome (PCOS). PCOS can cause problems with the ovaries ...

  20. Expression pattern of vascular endothelial growth factor in canine folliculogenesis and its effect on the growth and development of follicles after ovarian organ culture.

    PubMed

    Abdel-Ghani, M A; Shimizu, T; Suzuki, H

    2014-10-01

    In this study, the expressions of VEGF in dog follicles were detected by immunohistochemistry and the effects of VEGF treatment on the primordial to primary follicle transition and on subsequent follicle progression were examined using a dog ovary organ culture system. The frozen-thawed canine ovarian follicles within slices of ovarian cortical tissue were cultured for 7 and 14 days in presence or absence of VEGF. After culture, the ovaries were fixed, sectioned, stained and counted for morphologic analysis. The results showed that VEGF was expressed in the theca cells of antral follicles and in the granulosa cells nearest the oocyte in preantral follicle but not in granulosa cells of primordial and primary follicles; however, the VEGF protein was expressed in CL. After in vitro culture, VEGF caused a decrease in the number of primordial follicles and concomitant increase in the number of primary follicles that showed growth initiation and reached the secondary and preantral stages of development after 7 and 14 days. Follicular viability was also improved in the presence of VEGF after 7 and 14 days in culture. In conclusion, treatment with VEGF was found to promote the activation of primordial follicle development that could provide an alternative approach to stimulate early follicle development in dogs.

  1. Comparative Analysis of Differentially Expressed miRNAs and their Downstream mRNAs in Ovarian Cancer and its Associated Endometriosis

    PubMed Central

    Wu, Richard Licheng; Ali, Shadan; Bandyopadhyay, Sudeshna; Alosh, Baraa; Hayek, Kinda; Daaboul, MHD Fayez; Winer, Ira; Sarkar, Fazlul H; Ali-Fehmi, Rouba

    2015-01-01

    Objective There is an increased risk of developing ovarian cancer (OC) in patients with endometriosis. Hence, development of new biomarkers may provide a positive clinical outcome for early detection. MicroRNAs (miRNAs) are small non-coding RNAs that play an important role in biological and pathological process and are currently used as diagnostic and prognostic markers in various cancers. In the current study, we assessed the differential expression of miRNAs from 19 paired ovarian cancer and its associated endometriosis tissue samples. In addition we also analyzed the downstream targets of those miRNAs. Methods Nineteen paired cases of ovarian cancer and endometriosis foci were identified by a gynecologic pathologist and macro-dissected. The total RNAs were extracted and subjected to comprehensive miRNA profiling from the pooled samples of these two different entities using microarray analysis. Later, the abnormal expressions of few selected miRNAs were validated in individual cases by quantitative real-time PCR (qRT-PCR). Ingenuity pathway analysis revealed target mRNAs which were validated by qRT-PCR. Results The miRNA profiling identified deregulation of greater than 1156 miRNAs in OC, of which the top seven were further validated by qRT-PCR. The expression of miR-1, miR-133a, and miR-451 were reduced significantly (p<0.0001) in the OC patients compared to its associated endometriosis. In contrast, the expression of miR-141, miR-200a, miR-200c, and miR-3613 were elevated significantly (p<0.05) in most of the OC patients. Furthermore, among the downstream mRNAs of these miRNAs, the level of PTEN expression was significantly (p<0.05) reduced in OC compared to endometriosis while no significant difference was observed in NF-κB expression. Conclusion The expression of miRNAs and mRNAs in OC were significantly different compared to its concurrent endometriosis. These differential expressed miRNAs may serve as potential diagnostic and prognostic biomarkers for OC

  2. Development of a Novel Antibody-Drug Conjugate for the Potential Treatment of Ovarian, Lung, and Renal Cell Carcinoma Expressing TIM-1.

    PubMed

    Thomas, Lawrence J; Vitale, Laura; O'Neill, Thomas; Dolnick, Ree Y; Wallace, Paul K; Minderman, Hans; Gergel, Lauren E; Forsberg, Eric M; Boyer, James M; Storey, James R; Pilsmaker, Catherine D; Hammond, Russell A; Widger, Jenifer; Sundarapandiyan, Karuna; Crocker, Andrea; Marsh, Henry C; Keler, Tibor

    2016-12-01

    T-cell immunoglobulin and mucin domain 1 (TIM-1) is a type I transmembrane protein that was originally described as kidney injury molecule 1 (KIM-1) due to its elevated expression in kidney and urine after renal injury. TIM-1 expression is also upregulated in several human cancers, most notably in renal and ovarian carcinomas, but has very restricted expression in healthy tissues, thus representing a promising target for antibody-mediated therapy. To this end, we have developed a fully human monoclonal IgG1 antibody specific for the extracellular domain of TIM-1. This antibody was shown to bind purified recombinant chimeric TIM-1-Fc protein and TIM-1 expressed on a variety of transformed cell lines, including Caki-1 (human renal clear cell carcinoma), IGROV-1 (human ovarian adenocarcinoma), and A549 (human lung carcinoma). Internalization studies using confocal microscopy revealed the antibody was rapidly internalized by cells in vitro, and internalization was confirmed by quantitative imaging flow cytometry. An antibody-drug conjugate (ADC) was produced with the anti-TIM-1 antibody covalently linked to the potent cytotoxin, monomethyl auristatin E (MMAE), and designated CDX-014. The ADC was shown to exhibit in vitro cytostatic or cytotoxic activity against a variety of TIM-1-expressing cell lines, but not on TIM-1-negative cell lines. Using the Caki-1, IGROV-1, and A549 xenograft mouse models, CDX-014 showed significant antitumor activity in a clinically relevant dose range. Safety evaluation in nonhuman primates has demonstrated a good profile and led to the initiation of clinical studies of CDX-014 in renal cell carcinoma and potentially other TIM-1-expressing tumors. Mol Cancer Ther; 15(12); 2946-54. ©2016 AACR.

  3. Movento influences development of granulosa cells and ovarian follicles and FoxO1 and Vnn1 gene expression in BALB/c mice

    PubMed Central

    Kafshgiri, Sakineh Kaboli; Parivar, Kazem; Baharara, Javad; Kerachian, Mohammad Amin; Roodbari, Nasim Hayati

    2016-01-01

    Objective(s): Pesticides has wide range of infertility in female reproductive. This study was done to evaluate the effect of movento pesticide on development of granulosa cells and ovarian follicles and FoxO1 and Vnn1 gene expression in BALB/c mice. Materials and Methods: In this study 40 healthy BALB/c mice 5-6 weeks age were used. Animals were randomly allocated into four groups. Control (without any intervention), three experimental groups received 25, 50 and 100 mg/kg movento dissolved in PBS by gavage for 21 days. Animals scarified after three weeks. For determining the effects of movento on granulosa cells in culture, treatments were conducted to movento (125, 250, 500 μg/ml) for 24 hr. We surveyed the expression of the FoxO1 and Vnn1 in granulosa cells in vitro, and its relation to cell death by flowcytometer and DAPI. Levels of FoxO1 and Vnn1 were analyzed by real-time PCR. Results: Exposure to movento significantly decreased ovarian weight and the number of primary, secondary and antral follicles. Further, treatment with different concentration of movento induced apoptosis on granulosa cells. Gene expression analysis showed the transcriptional expression of FoxO1 and vnn1 in granulosa cells. Level of Vnn1 mRNA in granulosa cells was decreased in granulosa cells and expression of FoxO1 significantly increased in treated groups in compare to controls (P-value <0.05). Conclusion: Exposure to movento significantly reduced the number of follicles and increased apoptosis of granulosa cells leading disruption of the reproductive system. Also movento reduced expression of Vnn1 and increased FoxO1 genes in a dose dependent manner. PMID:27917277

  4. The maize regulatory gene B-Peru contains a DNA rearrangement that specifies tissue-specific expression through both positive and negative promoter elements.

    PubMed Central

    Selinger, D A; Lisch, D; Chandler, V L

    1998-01-01

    The B-Peru allele of the maize b regulatory gene is unusual relative to most b alleles in that it is expressed in the aleurone layer of the seed. It is also expressed in a subset of plant vegetative tissues. Transgenic maize plants containing the B-Peru gene with the first 710 bases of upstream sequence conferred the same levels of aleurone expression as nontransgenic B-Peru plants, but no pigment was made in vegetative tissues. Transient transformation assays in aleurone tissue localized the aleurone-specific promoter to the first 176 bases of the B-Peru upstream region and identified two critically important regions within this fragment. Mutation of either region alone reduced expression greater than fivefold. Surprisingly, the double mutation actually increased expression to twice the native promoter level. Our results suggest that these two critical sequences, which lie close together in the promoter, may form a negative regulatory element. Several lines of evidence suggest that the B-Peru promoter arose through the translocation of an existing aleurone-specific promoter to the b locus. Immediately upstream of the aleurone-specific promoter elements and in the opposite orientation to the b coding sequence is a pseudogene sequence with strong similarity to a known class of proteins. Our findings that novel aleurone-specific promoter sequences of the B-Peru transcription factor are found adjacent to part of another gene in a small insertion are quite unexpected and have interesting evolutionary implications. PMID:9611220

  5. RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2.

    PubMed Central

    Kunkel, B N; Bent, A F; Dahlbeck, D; Innes, R W; Staskawicz, B J

    1993-01-01

    A molecular genetic approach was used to identify and characterize plant genes that control bacterial disease resistance in Arabidopsis. A screen for mutants with altered resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) expressing the avirulence gene avrRpt2 resulted in the isolation of four susceptible rps (resistance to P. syringae) mutants. The rps mutants lost resistance specifically to bacterial strains expressing avrRpt2 as they retained resistance to Pst strains expressing the avirulence genes avrB or avrRpm1. Genetic analysis indicated that in each of the four rps mutants, susceptibility was due to a single mutation mapping to the same locus on chromosome 4. Identification of a resistance locus with specificity for a single bacterial avirulence gene suggests that this locus, designated RPS2, controls specific recognition of bacteria expressing the avirulence gene avrRpt2. Ecotype Wü-0, a naturally occurring line that is susceptible to Pst strains expressing avrRpt2, appears to lack a functional allele at RPS2, demonstrating that there is natural variation at the RPS2 locus among wild populations of Arabidopsis. PMID:8400869

  6. Decursin in Angelica gigas Nakai (AGN) Enhances Doxorubicin Chemosensitivity in NCI/ADR-RES Ovarian Cancer Cells via Inhibition of P-glycoprotein Expression.

    PubMed

    Choi, Hyeong Sim; Cho, Sung-Gook; Kim, Min Kyoung; Kim, Min Soo; Moon, Seung Hee; Kim, Il Hwan; Ko, Seong-Gyu

    2016-12-01

    Angelica gigas Nakai (AGN, Korean Dang-gui) is traditionally used for the treatment of various diseases including cancer. Here, we investigated multidrug-resistant phenotype-reversal activities of AGN and its compounds (decursin, ferulic acid, and nodakenin) in doxorubicin-resistant NCI/ADR-RES ovarian cancer cells. Our results showed that a combination of doxorubicin with either AGN or decursin inhibited a proliferation of NCI/ADR-RES cells. These combinations increased the number of cells at sub-G1 phase when cells were stained with Annexin V-fluorescein isothiocyanate. We also found that these combinations activated caspase-9, caspase-8, and caspase-3 and increased cleaved PARP level. Moreover, an inhibition of P-glycoprotein expression by either AGN or decursin resulted in a reduction of its activity in NCI/ADR-RES cells. Therefore, our data demonstrate that decursin in AGN inhibits doxorubicin-resistant ovarian cancer cell proliferation and induces apoptosis in the presence of doxorubicin via blocking P-glycoprotein expression. Therefore, AGN would be a potentially novel treatment option for multidrug-resistant tumors by sensitizing to anticancer agents. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Cadherin-6 type 2, K-cadherin (CDH6) is regulated by mutant p53 in the fallopian tube but is not expressed in the ovarian surface.

    PubMed

    Karthikeyan, Subbulakshmi; Lantvit, Daniel D; Chae, Dam Hee; Burdette, Joanna E

    2016-10-25

    High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy and may arise in either the fallopian tube epithelium (FTE) or ovarian surface epithelium (OSE). A mutation in p53 is reported in 96% of HGSOC, most frequently at R273 and R248. The goal of this study was to identify specific gene targets in the FTE that are altered by mutant p53, but not in the OSE. Gene analysis revealed that both R273 and R248 mutant p53 reduces CDH6 expression in the oviduct, but CDH6 was not detected in murine OSE cells. p53R273H induced SLUG and FOXM1 while p53R248W did not induce SLUG and only modestly increased FOXM1, which correlated with less migration as compared to p53R273H. An oviduct specific PAX8Cre/+/p53R270H/+ mouse model was created and confirmed that in vivo mutant p53 repressed CDH6 but was not sufficient to stabilize p53 expression alone. Overexpression of mutant p53 in the p53 null OVCAR5 cells decreased CDH6 levels indicating this was a gain-of-function. SLUG knockdown in murine oviductal cells with p53R273H restored CDH6 repression and a ChIP analysis revealed direct binding of mutant p53 on the CDH6 promoter. NSC59984, a small molecule that degrades mutant p53R273H, rescued CDH6 expression. In summary, CDH6 is expressed in the oviduct, but not the ovary, and is repressed by mutant p53. CDH6 expression with further validations may aide in establishing markers that inform upon the cell of origin of high grade serous tumors.

  8. Treatment of HER2-Expressing Breast Cancer and Ovarian Cancer Cells With Alpha Particle-Emitting {sup 227}Th-Trastuzumab

    SciTech Connect

    Heyerdahl, Helen; Krogh, Cecilie; Borrebaek, Jorgen; Larsen, Asmund; Dahle, Jostein

    2011-02-01

    Purpose: To evaluate the cytotoxic effects of low-dose-rate alpha particle-emitting radioimmunoconjugate {sup 227}Th-p-isothiocyanato-benzyl-DOTA-trastuzumab ({sup 227}Th-trastuzumab [where DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]) internalized by breast and ovarian cancer cell lines in order to assess the potential of {sup 227}Th-trastuzumab as a therapeutic agent against metastatic cancers that overexpress the HER2 oncogene. Methods and Materials: Clonogenic survival and cell growth rates of breast cancer cells treated with {sup 227}Th-trastuzumab were compared with rates of cells treated with nonbinding {sup 227}Th-rituximab, cold trastuzumab, and X-radiation. Cell growth experiments were also performed with ovarian cancer cells. Cell-associated radioactivity was measured at several time points, and the mean radiation dose to cells was calculated. Results: SKBR-3 cells got 50% of the mean absorbed radiation dose from internalized activity and 50% from cell surface-bound activity, while BT-474 and SKOV-3 cells got 75% radiation dose from internalized activity and 25% from cell surface-bound activity. Incubation of breast cancer cells with 2.5 kBq/ml {sup 227}Th-trastuzumab for 1 h at 4{sup o}C, followed by washing, resulted in mean absorbed radiation doses of 2 to 2.5 Gy. A dose-dependent inhibition of cell growth and an increase in apoptosis were induced in all cell lines. Conclusions: Clinically relevant activity concentrations of {sup 227}Th-trastuzumab induced a specific cytotoxic effect in three HER2-expressing cell lines. The cytotoxic effect of {sup 227}Th-trastuzumab was higher than that of single-dose X-radiation (relative biological effectiveness = 1.2). These results warrant further studies of treatment of breast cancer and ovarian cancer with {sup 227}Th-trastuzumab.

  9. Specifying the behavior of concurrent systems

    NASA Technical Reports Server (NTRS)

    Furtek, F. C.

    1984-01-01

    A framework for rigorously specifying the behavior of concurrent systems is proposed. It is based on the view of a concurrent system as a collection of interacting processes but no assumptions are made about the mechanisms for process synchronization and communication. A formal language is described that permits the expression of a broad range of logical and timing dependencies.

  10. A distal 594 bp ECR specifies Hmx1 expression in pinna and lateral facial morphogenesis and is regulated by the Hox-Pbx-Meis complex.

    PubMed

    Rosin, Jessica M; Li, Wenjie; Cox, Liza L; Rolfe, Sara M; Latorre, Victor; Akiyama, Jennifer A; Visel, Axel; Kuramoto, Takashi; Bobola, Nicoletta; Turner, Eric E; Cox, Timothy C

    2016-07-15

    Hmx1 encodes a homeodomain transcription factor expressed in the developing lateral craniofacial mesenchyme, retina and sensory ganglia. Mutation or mis-regulation of Hmx1 underlies malformations of the eye and external ear in multiple species. Deletion or insertional duplication of an evolutionarily conserved region (ECR) downstream of Hmx1 has recently been described in rat and cow, respectively. Here, we demonstrate that the impact of Hmx1 loss is greater than previously appreciated, with a variety of lateral cranioskeletal defects, auriculofacial nerve deficits, and duplication of the caudal region of the external ear. Using a transgenic approach, we demonstrate that a 594 bp sequence encompassing the ECR recapitulates specific aspects of the endogenous Hmx1 lateral facial expression pattern. Moreover, we show that Hoxa2, Meis and Pbx proteins act cooperatively on the ECR, via a core 32 bp sequence, to regulate Hmx1 expression. These studies highlight the conserved role for Hmx1 in BA2-derived tissues and provide an entry point for improved understanding of the causes of the frequent lateral facial birth defects in humans.

  11. Role of PCSK5 expression in mouse ovarian follicle development: identification of the inhibin α- and β-subunits as candidate substrates.

    PubMed

    Antenos, Monica; Lei, Lei; Xu, Min; Malipatil, Anjali; Kiesewetter, Sarah; Woodruff, Teresa K

    2011-03-08

    Inhibin and activin are essential dimeric glycoproteins belonging to the transforming growth factor-beta (TGFβ) superfamily. Inhibin is a heterodimer of α- and β-subunits, whereas activin is a homodimer of β-subunits. Production of inhibin is regulated during the reproductive cycle and requires the processing of pro-ligands to produce mature hormone. Furin is a subtilisin-like proprotein convertase (proconvertase) that activates precursor proteins by cleavage at basic sites during their transit through the secretory pathway and/or at the cell surface. We hypothesized that furin-like proconvertases are central regulators of inhibin α- and β-subunit processing within the ovary. We analyzed the expression of the proconvertases furin, PCSK5, PCSK6, and PCSK7 in the developing mouse ovary by real-time quantitative RT-PCR. The data showed that proconvertase enzymes are temporally expressed in ovarian cells. With the transition from two-layer secondary to pre-antral follicle, only PCSK5 mRNA was significantly elevated. Activin A selectively enhanced expression of PCSK5 mRNA and decreased expression of furin and PCSK6 in cultured two-layer secondary follicles. Inhibition of proconvertase enzyme activity by dec-RVKR-chloromethylketone (CMK), a highly specific and potent competitive inhibitor of subtilisin-like proconvertases, significantly impeded both inhibin α- and β-subunit maturation in murine granulosa cells. Overexpression of PC5/6 in furin-deficient cells led to increased inhibin α- and β(B)-subunit maturation. Our data support the role of proconvertase PCSK5 in the processing of ovarian inhibin subunits during folliculogenesis and suggest that this enzyme may be an important regulator of inhibin and activin bioavailability.

  12. Low concentrations of o,p'-DDT inhibit gene expression and prostaglandin synthesis by estrogen receptor-independent mechanism in rat ovarian cells.

    PubMed

    Liu, Jing; Zhao, Meirong; Zhuang, Shulin; Yang, Yan; Yang, Ye; Liu, Weiping

    2012-01-01

    o,p'-DDT is an infamous xenoestrogen as well as a ubiquitous and persistent pollutant. Biomonitoring studies show that women have been internally exposed to o,p'-DDT at range of 0.3-500 ng/g (8.46×10(-10) M-1.41×10(-6) M) in blood and other tissues. However, very limited studies have investigated the biological effects and mechanism(s) of o,p'-DDT at levels equal to or lower than current exposure levels in human. In this study, using primary cultures of rat ovarian granulosa cells, we determined that very low doses of o,p'-DDT (10(-12)-10(-8) M) suppressed the expression of ovarian genes and production of prostaglandin E2 (PGE2). In vivo experiments consistently demonstrated that o,p'-DDT at 0.5-1 mg/kg inhibited the gene expression and PGE2 levels in rat ovary. The surprising results from the receptor inhibitors studies showed that these inhibitory effects were exerted independently of either classical estrogen receptors (ERs) or G protein-coupled receptor 30 (GPR30). Instead, o,p'-DDT altered gene expression or hormone action via inhibiting the activation of protein kinase A (PKA), rather than protein kinase C (PKC). We further revealed that o,p'-DDT directly interfered with the PKA catalytic subunit. Our novel findings support the hypothesis that exposure to low concentrations of o,p'-DDT alters gene expression and hormone synthesis through signaling mediators beyond receptor binding, and imply that the current exposure levels of o,p'-DDT observed in the population likely poses a health risk to female reproduction.

  13. Molecular cloning and expression of the vitellogenin gene and its correlation with ovarian development in an invasive pest Octodonta nipae on two host plants.

    PubMed

    Li, Jin-Lei; Tang, Bao-Zhen; Hou, You-Ming; Xie, Yi-Xing

    2016-10-01

    There is an ongoing relationship between host plants and herbivores. The nutrient substances and secondary compounds found in the host plant can not only impact the growth and development process of herbivores, but, more importantly, may also affect their survival and reproductive fitness. Vitellogenesis is the core process of reproductive regulation and is generally considered as a reliable indicator for evaluating the degree of ovarian development in females. Vitellogenin (Vg) plays a critical role in the synthesis and secretion of yolk protein. In this study, the full-length cDNA of the Vg gene in an alien invasive species, the nipa palm hispid beetle Octodonta nipae Maulik (Coleoptera: Chrysomelidae) (OnVg) was cloned and, the effect of host plant on the OnVg expression level and ovarian development was investigated. The results revealed that the OnVg was highly and exclusively expressed in adult females, but barely detectable in larvae, pupae and adult males. The relative expression level of OnVg and egg hatchability were much higher in females fed on Phoenix canariensis (their preferred host) than those fed on Phoenix roebelenii. A positive correlation relationship between OnVg expression and egg hatchability was also detected. Additionally, the anatomy of the female reproductive system showed that the ovaries of individuals fed on P. canariensis were considerably more developed than in females fed on P. roebelenii. The results may be applicable to many pest management situations through reproductive disturbance by alternating host plant species or varieties or by reproductive regulation through vitellogenesis mediated by specific endocrine hormones.

  14. Low Concentrations of o,p’-DDT Inhibit Gene Expression and Prostaglandin Synthesis by Estrogen Receptor-Independent Mechanism in Rat Ovarian Cells

    PubMed Central

    Liu, Jing; Zhao, Meirong; Zhuang, Shulin; Yang, Yan; Yang, Ye; Liu, Weiping

    2012-01-01

    o,p’-DDT is an infamous xenoestrogen as well as a ubiquitous and persistent pollutant. Biomonitoring studies show that women have been internally exposed to o,p’-DDT at range of 0.3–500 ng/g (8.46×10−10 M−1.41×10−6 M) in blood and other tissues. However, very limited studies have investigated the biological effects and mechanism(s) of o,p’-DDT at levels equal to or lower than current exposure levels in human. In this study, using primary cultures of rat ovarian granulosa cells, we determined that very low doses of o,p’-DDT (10−12−10−8 M) suppressed the expression of ovarian genes and production of prostaglandin E2 (PGE2). In vivo experiments consistently demonstrated that o,p’-DDT at 0.5–1 mg/kg inhibited the gene expression and PGE2 levels in rat ovary. The surprising results from the receptor inhibitors studies showed that these inhibitory effects were exerted independently of either classical estrogen receptors (ERs) or G protein-coupled receptor 30 (GPR30). Instead, o,p’-DDT altered gene expression or hormone action via inhibiting the activation of protein kinase A (PKA), rather than protein kinase C (PKC). We further revealed that o,p’-DDT directly interfered with the PKA catalytic subunit. Our novel findings support the hypothesis that exposure to low concentrations of o,p’-DDT alters gene expression and hormone synthesis through signaling mediators beyond receptor binding, and imply that the current exposure levels of o,p’-DDT observed in the population likely poses a health risk to female reproduction. PMID:23209616

  15. Clinical validation of chemotherapy predictors developed on global microRNA expression in the NCI60 cell line panel tested in ovarian cancer

    PubMed Central

    Prahm, Kira Philipsen; Høgdall, Claus; Karlsen, Mona Aarenstrup; Christensen, Ib Jarle; Novotny, Guy Wayne; Knudsen, Steen; Hansen, Anker; Jensen, Peter Buhl; Jensen, Thomas; Mirza, Mansoor Raza; Ekmann-Gade, Anne Weng; Nedergaard, Lotte; Høgdall, Estrid

    2017-01-01

    Objective Ovarian cancer is the leading cause of death among gynecologic malignancies. This is partly due to a non-durable response to chemotherapy. Prediction of resistance to chemotherapy could be a key role in more personalized treatment. In the current study we aimed to examine if microRNA based predictors could predict resistance to chemotherapy in ovarian cancer, and to investigate if the predictors could be prognostic factors for progression free and overall survival. Methods Predictors of chemotherapy-resistance were developed based on correlation between miRNA expression and differences in measured growth inhibition in a variety of human cancer cell lines in the presence of Carboplatin, Paclitaxel and Docetaxel. These predictors were then, retrospectively, blindly validated in a cohort of 170 epithelial ovarian cancer patients treated with Carboplatin and Paclitaxel or Docetaxel as first line treatment. Results In a multivariate cox proportional analysis the predictors of chemotherapy-resistance were not able to predict time to progression after end of chemotherapy (hazard ratio: 0.64, 95% CI: 0.36–1.12, P = 0.117). However, in a multivariate logistic analysis, where time to progression was considered as either more or less than 6 months, the predictors match clinical observed chemotherapy-resistance (odds ratio: 0.19, 95% CI: 0.05–0.73, P = 0.015). Neither univariate nor multivariate, time-dependent, cox analysis for progression free survival (PFS) or overall survival (OS) in all 170 patients showed to match predicted resistance to chemotherapy (PFS: hazard ratio: 0.69, 95% CI: 0.40–1.19, P = 0.183, OS: hazard ratio: 0.76, 95% CI: 0.42–1.40, P = 0.386). Conclusion In the current study, microRNA based predictors of chemotherapy-resistance did not demonstrate any convincing correlation to clinical observed chemotherapy-resistance, progression free survival, or overall survival, in patients with epithelial ovarian cancer. However the predictors did

  16. Screening of the residual normal ovarian tissue adjacent to orthotopic epithelial ovarian carcinomas in nude mice.

    PubMed

    Zhu, G H; Wang, S T; Yao, M Z; Cai, J H; Chen, C Y; Yang, Z X; Hong, L; Yang, S Y

    2014-04-16

    The objective of this study was to explore the feasibility and methods of screening the residual normal ovarian tissue adjacent to orthotopic ovarian carcinomas in nude mice. Human epithelial ovarian cancer cells (OVCAR3) were subcutaneously implanted for a tumor source and ovarian orthotopic transplantation. The cancer tissue, proximal paraneoplastic tissue, middle paraneoplastic tissue, remote paraneoplastic tissue, and normal ovarian tissue were removed. CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was detected by reverse transcription polymerase chain reaction. We obtained 35 paraneoplastic residual ovarian tissues with normal biopsies from 40 cases of an orthotopic epithelial ovarian carcinoma model (87.5%). CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was lower in proximal paraneoplastic tissue than in cancer tissue (P < 0.05) and higher than in middle and remote paraneoplastic tissue (P < 0.01). There was no statistically significant difference between the expression of these genes in middle and proximal paraneoplastic tissue as well as among residual normal ovarian tissues with different severity (P > 0.05). In ovarian tissues of 20 normal nude mice, the expression of CK- 7, CA125, p53, survivin, MMP-2, and TIMP-2 was negative. Overall, the expression levels of CK-7, CA125, p53, survivin, MMP-2, TIMP-2, and other molecular markers showed a decreasing trend in the non-cancer tissue direction. The expression levels can be used as standards to screen residual normal ovarian tissue. We can obtain relatively safe normal ovarian tissues adjacent to epithelial ovarian cancer.

  17. Effects of the fish spawning inducer ovaprim on vasotocin receptor gene expression in brain and ovary of the catfish Heteropneustes fossilis with a note on differential transcript expression in ovarian follicles.

    PubMed

    Rawat, A; Chaube, R; Joy, K P

    2017-01-15

    Ovaprim (OVP), a commercial formulation of a salmon GnRH analogue and the dopamine receptor-2 blocker domperidone, is a successful spawning inducer for fish breeding. It induces a preovulatory surge in LH, which stimulates the synthesis of a maturation-inducing steroid (MIS, 17,20β-dihydroxy-4-pregnen-3-one) that initiates germinal vesicle breakdown (GVBD) and ovulation. Coincidently, the OVP treatment also stimulates vasotocin (VT) secretion in the brain and ovary of the catfish Heteropneustes fossilis that also stimulates the synthesis of the MIS. VT mediates its effect through V1- and V2-type receptors. In the present study in the catfish, we report that OVP stimulates the expression of VT receptor genes v1a1, v1a2 and v2a in the brain and ovary. A single intraperitoneal administration of OVP (0.5μL/g body weight) or incubation of post-vitellogenic ovarian follicles with 5μL/mL OVP, for 0, 4, 8, 12, 16, and 24h stimulated ovulation and GVBD, respectively, in a time-dependent manner. The OVP treatment in vivo stimulated brain VT receptor transcript levels 4h onwards. The peak expression was noticed at 12h (v1a1), 8 and 12h (v1a2), and 8, 12 and 16h (v2a), coinciding with FOM and ovulation. The VT receptor genes are expressed in the ovarian follicles compartmentally; both v1a1 and v1a2 are expressed in the isolated follicular layer (theca and granulosa) but absent in denuded oocytes. V2a is expressed in the denuded oocytes and not in the follicular layer. The OVP injection stimulated the v1a1 and v1a2 expression from 4h onwards in both intact follicle and isolated follicular layer, the peak expression was observed at 16h. The v2a expression was up-regulated in both intact follicles and denuded oocytes at 4h (denuded oocytes) or 8h (intact follicle) onwards with the peak expression at 12h and 16h (denuded oocytes) or at 16h (intact follicles). Under in vitro conditions, the OVP incubations elicited similar pattern of changes with the peak stimulation at 16h for

  18. Two genes encoding the bovine mitochondrial ATP synthase proteolipid specify precursors with different import sequences and are expressed in a tissue-specific manner.

    PubMed Central

    Gay, N J; Walker, J E

    1985-01-01

    Two cDNAs encoding different precursor proteins of the same mature proteolipid subunit of mitochondrial ATP synthase have been cloned from a bovine cDNA library. The hybridisation probe was a mixture of 17-mer oligonucleotides containing 256 discrete sequences. The coding sequences of the two cDNAs differ in 25 silent positions of codons and the 3' non-coding sequences are only weakly related. The precursor sequences, which direct the import of the proteolipid into the mitochondrion, are 61 and 68 amino acids long. They are related to each other in regions which probably are recognition signals for the processing protease. The corresponding genes are expressed differently in various tissues in a way that reflects their embryonic origin. Images Fig. 3. Fig. 6. Fig. 7. PMID:2868890

  19. Molecular and functional characterization of catfish (Heteropneustes fossilis) aquaporin-1b: changes in expression during ovarian development and hormone-induced follicular maturation.

    PubMed

    Chaube, Radha; Chauvigné, François; Tingaud-Sequeira, Angèle; Joy, Keerikkattil P; Acharjee, Arup; Singh, Varsha; Cerdà, Joan

    2011-01-01

    The oocytes of the freshwater catfish Heteropneustes fossilis hydrate during hormone-induced meiotic maturation. To investigate if this process may be mediated by aquaporins (AQPs), as it occurs in marine fish producing highly hydrated eggs, the cloning of ovarian AQPs in catfish was carried out. Using degenerate primers for conserved domains of the major intrinsic protein (MIP) family, and 5' and 3'end amplification procedures, a full-length cDNA encoding for an AQP1-like protein was isolated. The predicted protein showed the typical six transmembrane domains and two Asn-Pro-Ala (NPA) motifs conserved among the members of the AQP superfamily. Phylogenetic analysis indicated that the catfish AQP clustered with the teleost-specific aquaporin-1b subfamily, and accordingly it was termed HfAqp1b. Heterologous expression in Xenopus laevis oocytes indicated that HfAqp1b encoded for a functional AQP, water permeability being enhanced by cAMP. Site-directed mutagenesis revealed that cAMP induced the translocation of HfAqp1b into the oocyte plasma membrane most likely through the phosphorylation of HfAqp1b Ser(227). In adult catfish, hfaqp1b transcripts were detected exclusively in ovary and brain and showed significant seasonal variations; in the ovary, hfaqp1b was maximally expressed during the pre-spawning period, whereas in the brain the highest expression was detected during spawning. In vitro stimulation of isolated catfish ovarian follicles with vasotocin (VT) or human chorionic gonadotropin (hCG), which induce oocyte maturation and hydration, elevated the hfaqp1b transcript levels after 6 or 16 h of incubation, respectively. These results suggest that HfAqp1b may play a role during VT- and hCG-induced oocyte hydration in catfish, and that VT may regulate HfAqp1b at the transcriptional and post-translational level in a manner similar to the vasopressin-dependent mammalian AQP2.

  20. Gestational N-hexane inhalation alters the expression of genes related to ovarian hormone production and DNA methylation states in adult female F1 rat offspring.

    PubMed

    Li, Hong; Zhang, Chenyun; Ni, Feng; Guo, Suhua; Wang, Wenxiang; Liu, Jing; Lu, Xiaoli; Huang, Huiling; Zhang, Wenchang

    2015-12-15

    Research has revealed that n-hexane can disrupt adult female endocrine functions; however, few reports have focused on endocrine changes in adult F1 females after maternal exposure during gestation. In this study, female Wistar rats inhaled 100, 500, 2500, or 12,500 ppm n-hexane for 4 h daily during their initial 20 gestational days. The F1 female offspring exhibited abnormal oestrus cycles. Compared with the controls, the in vitro-cultured ovarian granulosa cells of the 12,500 ppm group showed significantly reduced in vitro progesterone and oestradiol secretion. Elevated progesterone secretion was observed in the 500 ppm group, and decreased and significantly upregulated mRNA expression of the Star, Cyp11a1, Cyp17a1, and Hsd3b genes was observed in the 12,500 ppm and 500 ppm groups, respectively. The protein expression levels were consistent with the mRNA expression levels. Methylation screening of the promoter regions of these genes was performed using MeDIP-chip and confirmed by methylation-sensitive high-resolution melting (MS-HRM), and the observed methylation state changes of the promoter regions were correlated with the gene expression levels. The results suggest that the hormone levels in the female offspring after gestational n-hexane inhalation correspond to the expression levels and DNA methylation states of the hormone production genes.

  1. Molecular cloning of the SMAD4 gene and its mRNA expression analysis in ovarian follicles of the Yangzhou goose (Anser cygnoides).

    PubMed

    Huang, Z; Yuan, X; Wang, M; Wu, N; Song, Y; Chen, Y; Zhang, Y; Xu, Q; Chen, G; Zhao, W

    2016-08-01

    Mothers against decapentaplegic homolog 4 (SMAD4) is an important protein in animal reproduction. It plays pivotal roles in cellular pathways, including apoptosis. The expression profile of the SMAD4 gene in goose ovarian follicles has not been reported. In this study, the SMAD4 coding sequence was cloned from the Yangzhou goose. A phylogenetic analysis was performed and mRNA expression was examined in various tissues using quantitative real-time PCR. An alternative splice form of SMAD4, SMAD4-b having 1656 bp, was identified. SMAD4-a mRNA was widely expressed in various healthy tissues, whereas SMAD4-b was very weakly expressed. SMAD4 mRNA in the ovary and oviduct was significantly higher than that in the pituitary and hypothalamus. SMAD4 mRNA expression analysis in hierarchical follicles showed that the level of SMAD4 mRNA was higher in large white follicles and post-ovulatory follicles than in the other follicles. The results indicate that SMAD4 might be involved in the recruitment of hierarchical follicles.

  2. Targeting FR-expressing cells in ovarian cancer with Fab-functionalized nanoparticles: a full study to provide the proof of principle from in vitro to in vivo.

    PubMed

    Quarta, Alessandra; Bernareggi, Davide; Benigni, Fabio; Luison, Elena; Nano, Giuseppe; Nitti, Simone; Cesta, Maria Candida; Di Ciccio, Luciano; Canevari, Silvana; Pellegrino, Teresa; Figini, Mariangela

    2015-02-14

    Efficient targeting in tumor therapies is still an open issue: systemic biodistribution and poor specific accumulation of drugs weaken efficacy of treatments. Engineered nanoparticles are expected to bring benefits by allowing specific delivery of drug to the tumor or acting themselves as localized therapeutic agents. In this study we have targeted epithelial ovarian cancer with inorganic nanoparticles conjugated to a human antibody fragment against the folate receptor over-expressed on cancer cells. The conjugation approach is generally applicable. Indeed several types of nanoparticles (either magnetic or fluorescent) were engineered with the fragment, and their biological activity was preserved as demonstrated by biochemical methods in vitro. In vivo studies with mice bearing orthotopic and subcutaneous tumors were performed. Elemental and histological analyses showed that the conjugated magnetic nanoparticles accumulated specifically and were retained at tumor sites longer than the non-conjugated nanoparticles.

  3. Sex Reversal in C57BL/6J XY Mice Caused by Increased Expression of Ovarian Genes and Insufficient Activation of the Testis Determining Pathway

    PubMed Central

    Correa, Stephanie M.; Washburn, Linda L.; Kahlon, Ravi S.; Musson, Michelle C.; Bouma, Gerrit J.; Eicher, Eva M.; Albrecht, Kenneth H.

    2012-01-01

    Sex reversal can occur in XY humans with only a single functional WT1 or SF1 allele or a duplication of the chromosome region containing WNT4. In contrast, XY mice with only a single functional Wt1, Sf1, or Wnt4 allele, or mice that over-express Wnt4 from a transgene, reportedly are not sex-reversed. Because genetic background plays a critical role in testis differentiation, particularly in C57BL/6J (B6) mice, we tested the hypothesis that Wt1, Sf1, and Wnt4 are dosage sensitive in B6 XY mice. We found that reduced Wt1 or Sf1 dosage in B6 XYB6 mice impaired testis differentiation, but no ovarian tissue developed. If, however, a YAKR chromosome replaced the YB6 chromosome, these otherwise genetically identical B6 XY mice developed ovarian tissue. In contrast, reduced Wnt4 dosage increased the amount of testicular tissue present in Sf1+/− B6 XYAKR, Wt1+/− B6 XYAKR, B6 XYPOS, and B6 XYAKR fetuses. We propose that Wt1B6 and Sf1B6 are hypomorphic alleles of testis-determining pathway genes and that Wnt4B6 is a hypermorphic allele of an ovary-determining pathway gene. The latter hypothesis is supported by the finding that expression of Wnt4 and four other genes in the ovary-determining pathway are elevated in normal B6 XX E12.5 ovaries. We propose that B6 mice are sensitive to XY sex reversal, at least in part, because they carry Wt1B6 and/or Sf1B6 alleles that compromise testis differentiation and a Wnt4B6 allele that promotes ovary differentiation and thereby antagonizes testis differentiation. Addition of a “weak” Sry allele, such as the one on the YPOS chromosome, to the sensitized B6 background results in inappropriate development of ovarian tissue. We conclude that Wt1, Sf1, and Wnt4 are dosage-sensitive in mice, this dosage-sensitivity is genetic background-dependant, and the mouse strains described here are good models for the investigation of human dosage-sensitive XY sex reversal. PMID:22496664

  4. Molecular cloning and expression of prostaglandin F2α receptor isoforms during ovulation in the ovarian follicles of Xenopus laevis.

    PubMed

    Liu, Zhiming; Su, Xiurong; Li, Taiwu; Pan, Daodong; Sena, Johnny; Dhillon, Jasvinder

    2010-11-01

    Prostaglandins F2α levels increase during ovulatory period in Xenopus laevis in response to stimulation by gonadotropins and progesterone. PGF2α exerts its effects on ovulation through interaction with its receptor (FP) in ovaries. Little is known about the characteristics of the FP receptor and its regulation during the ovulatory period in non-mammalian species. In the present study, two isoforms of prostaglandin F receptor (FP A and B) cDNAs were isolated from Xenopus laevis ovarian tissues using reverse transcription-polymerase chain reaction (RT-PCR) followed by rapid amplification of cDNA ends (RACE). The cDNAs of FP A and FP B were sequenced. In Xenopus laevis ovary, FP A and B mRNA levels were up-regulated during gonadotropin- and progresterone-induced ovulation in vitro. The mRNA level of FP B was higher than that of FP A. Moreover, FP A and FP B mRNA levels were measured in various tissues including eye, liver, lungs, heart, muscle, ovary, and skin. Overall, FP B mRNA level was approximately 10- to 100-fold higher than that of FP A, except in the muscle and skin where FP A mRNA level was comparable to that of FP B. The results suggest that in Xenopus ovarian follicles FP receptors play an important role during gonadotropin- and progesterone-induced ovulation.

  5. Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients.

    PubMed

    Odunsi, Kunle; Matsuzaki, Junko; Karbach, Julia; Neumann, Antje; Mhawech-Fauceglia, Paulette; Miller, Austin; Beck, Amy; Morrison, Carl D; Ritter, Gerd; Godoy, Heidi; Lele, Shashikant; duPont, Nefertiti; Edwards, Robert; Shrikant, Protul; Old, Lloyd J; Gnjatic, Sacha; Jäger, Elke

    2012-04-10

    Recombinant poxviruses (vaccinia and fowlpox) expressing tumor-associated antigens are currently being evaluated in clinical trials as cancer vaccines to induce tumor-specific immune responses that will improve clinical outcome. To test whether a diversified prime and boost regimen targeting NY-ESO-1 will result in clinical benefit, we conducted two parallel phase II clinical trials of recombinant vaccinia-NY-ESO-1 (rV-NY-ESO-1), followed by booster vaccinations with recombinant fowlpox-NY-ESO-1 (rF-NY-ESO-1) in 25 melanoma and 22 epithelial ovarian cancer (EOC) patients with advanced disease who were at high risk for recurrence/progression. Integrated NY-ESO-1-specific antibody and CD4(+) and CD8(+) T cells were induced in a high proportion of melanoma and EOC patients. In melanoma patients, objective response rate [complete and partial response (CR+PR)] was 14%, mixed response was 5%, and disease stabilization was 52%, amounting to a clinical benefit rate (CBR) of 72% in melanoma patients. The median PFS in the melanoma patients was 9 mo (range, 0-84 mo) and the median OS was 48 mo (range, 3-106 mo). In EOC patients, the median PFS was 21 mo (95% CI, 16-29 mo), and median OS was 48 mo (CI, not estimable). CD8(+) T cells derived from vaccinated patients were shown to lyse NY-ESO-1-expressing tumor targets. These data provide preliminary evidence of clinically meaningful benefit for diversified prime and boost recombinant pox-viral-based vaccines in melanoma and ovarian cancer and support further evaluation of this approach in these patient populations.

  6. Targeting FR-expressing cells in ovarian cancer with Fab-functionalized nanoparticles: a full study to provide the proof of principle from in vitro to in vivo

    NASA Astrophysics Data System (ADS)

    Quarta, Alessandra; Bernareggi, Davide; Benigni, Fabio; Luison, Elena; Nano, Giuseppe; Nitti, Simone; Cesta, Maria Candida; di Ciccio, Luciano; Canevari, Silvana; Pellegrino, Teresa; Figini, Mariangela

    2015-01-01

    Efficient targeting in tumor therapies is still an open issue: systemic biodistribution and poor specific accumulation of drugs weaken efficacy of treatments. Engineered nanoparticles are expected to bring benefits by allowing specific delivery of drug to the tumor or acting themselves as localized therapeutic agents. In this study we have targeted epithelial ovarian cancer with inorganic nanoparticles conjugated to a human antibody fragment against the folate receptor over-expressed on cancer cells. The conjugation approach is generally applicable. Indeed several types of nanoparticles (either magnetic or fluorescent) were engineered with the fragment, and their biological activity was preserved as demonstrated by biochemical methods in vitro. In vivo studies with mice bearing orthotopic and subcutaneous tumors were performed. Elemental and histological analyses showed that the conjugated magnetic nanoparticles accumulated specifically and were retained at tumor sites longer than the non-conjugated nanoparticles.Efficient targeting in tumor therapies is still an open issue: systemic biodistribution and poor specific accumulation of drugs weaken efficacy of treatments. Engineered nanoparticles are expected to bring benefits by allowing specific delivery of drug to the tumor or acting themselves as localized therapeutic agents. In this study we have targeted epithelial ovarian cancer with inorganic nanoparticles conjugated to a human antibody fragment against the folate receptor over-expressed on cancer cells. The conjugation approach is generally applicable. Indeed several types of nanoparticles (either magnetic or fluorescent) were engineered with the fragment, and their biological activity was preserved as demonstrated by biochemical methods in vitro. In vivo studies with mice bearing orthotopic and subcutaneous tumors were performed. Elemental and histological analyses showed that the conjugated magnetic nanoparticles accumulated specifically and were retained

  7. Modifications in Dynamic Contrast-Enhanced Magnetic Resonance Imaging Parameters After α-Particle-Emitting {sup 227}Th-trastuzumab Therapy of HER2-Expressing Ovarian Cancer Xenografts

    SciTech Connect

    Heyerdahl, Helen; Røe, Kathrine; Brevik, Ellen Mengshoel; Dahle, Jostein

    2013-09-01

    Purpose: The purpose of this study was to investigate the effect of α-particle-emitting {sup 227}Th-trastuzumab radioimmunotherapy on tumor vasculature to increase the knowledge about the mechanisms of action of {sup 227}Th-trastuzumab. Methods and Materials: Human HER2-expressing SKOV-3 ovarian cancer xenografts were grown bilaterally in athymic nude mice. Mice with tumor volumes 253 ± 36 mm{sup 3} (mean ± SEM) were treated with a single injection of either {sup 227}Th-trastuzumab at a dose of 1000 kBq/kg body weight (treated group, n=14 tumors) or 0.9% NaCl (control group, n=10 tumors). Dynamic T1-weighted contrast-enhanced magnetic resonance imaging (DCEMRI) was used to study the effect of {sup 227}Th-trastuzumab on tumor vasculature. DCEMRI was performed before treatment and 1, 2, and 3 weeks after therapy. Tumor contrast-enhancement curves were extracted voxel by voxel and fitted to the Brix pharmacokinetic model. Pharmacokinetic parameters for the tumors that underwent radioimmunotherapy were compared with the corresponding parameters of control tumors. Results: Significant increases of k{sub ep}, the rate constant of diffusion from the extravascular extracellular space to the plasma (P<.05), and k{sub el,} the rate of clearance of contrast agent from the plasma (P<.01), were seen in the radioimmunotherapy group 2 and 3 weeks after injection, compared with the control group. The product of k{sub ep} and the amplitude parameter A, associated with increased vessel permeability and perfusion, was also significantly increased in the radioimmunotherapy group 2 and 3 weeks after injection (P<.01). Conclusions: Pharmacokinetic modeling of MRI contrast-enhancement curves evidenced significant alterations in parameters associated with increased tumor vessel permeability and tumor perfusion after {sup 227}Th-trastuzumab treatment of HER2-expressing ovarian cancer xenografts.

  8. Growth differentiation factor-9 and anti-Müllerian hormone expression in cultured human follicles from frozen-thawed ovarian tissue.

    PubMed

    Sadeu, J C; Smitz, J

    2008-10-01

    In-vitro growth of frozen-thawed human follicles is perceived as a potential option for restoring women's fertility. The aims of this study were: (i) to test the usefulness of a defined serum-free medium for growth of frozen-thawed human follicles; and (ii) to evaluate the expression of growth differentiation factor-9 (GDF-9) and anti-Müllerian hormone (AMH) in cultured follicles. Frozen-thawed ovarian cortical pieces from 7-, 12-, 25- and 27-year-old women were cultured for 0, 7, 14, 21 and 28 days. Follicle developmental quality was evaluated and expression of proliferating cell nuclear antigen (PCNA) (day 21), GDF-9 (days 14 and 28) and AMH (day 21) was assessed by immunohistochemistry. Primary follicles and enclosed oocytes underwent significant growth at the end of culture (P < 0.05). Cultured follicles from all patients studied reached the early secondary stage and a few follicles from two patients developed up to the secondary stage. The rate of atresia was variable throughout the culture periods. PCNA was expressed in the granulosa cells at all the different follicular stages. AMH and GDF-9 immunostaining were found respectively in the granulosa cells and oocytes after several weeks of culture. The transition from resting to growing follicles leading to the development of secondary follicles showed the normal expression patterns of GDF-9 and AMH.

  9. The effect of androgens on ovarian follicle maturation: Dihydrotestosterone suppress FSH-stimulated granulosa cell proliferation by upregulating PPARγ-dependent PTEN expression.

    PubMed

    Chen, Mei-Jou; Chou, Chia-Hung; Chen, Shee-Uan; Yang, Wei-Shiung; Yang, Yu-Shih; Ho, Hong-Nerng

    2015-12-17

    Intraovarian hyperandrogenism is one of the determining factors of follicular arrest in women with polycystic ovary syndrome (PCOS). Using androgenized rat models, we investigated the effects of androgens on metabolism, as well as on factors involved in follicular arrest and the reduced number of estrus cycles. The dihydrotestosterone (DHT)-treated rats had fewer estrus cycles, higher numbers of large arrested follicles and an increased in body weight gain compared with the dehydroepiandrostenedione (DHEA)- and placebo-treated rats. In cultured rat granulosa cells, DHT suppressed follicle stimulating hormone (FSH)-induced granulosa cell proliferation and increased the accumulation of cells in the G2/M phase. DHT decreased phosphorylated Akt (p-Akt) and cyclin D1 levels through increasing PTEN. DHT-promoted PTEN expression was regulated by peroxisome proliferator-activated receptor gamma (PPARγ) in granulosa cells. Meanwhile, in the large follicles of the DHT-treated rats, the expressions of PPARγ and PTEN were higher, but the expression of p-Akt and proliferating cell nuclear antigen (PCNA) were lower. Conclusively, DHT and DHEA produced differential effects on metabolism in prepubertal female rats like clinical manifestations of women with PCOS. DHT treatment may affect ovarian follicular maturation by altering granulosa cell proliferation through the regulation of enhancing PPARγ dependent PTEN/p-Akt expression in the granulosa cells.

  10. The effect of androgens on ovarian follicle maturation: Dihydrotestosterone suppress FSH-stimulated granulosa cell proliferation by upregulating PPARγ-dependent PTEN expression.

    PubMed Central

    Chen, Mei-Jou; Chou, Chia-Hung; Chen, Shee-Uan; Yang, Wei-Shiung; Yang, Yu-Shih; Ho, Hong-Nerng

    2015-01-01

    Intraovarian hyperandrogenism is one of the determining factors of follicular arrest in women with polycystic ovary syndrome (PCOS). Using androgenized rat models, we investigated the effects of androgens on metabolism, as well as on factors involved in follicular arrest and the reduced number of estrus cycles. The dihydrotestosterone (DHT)-treated rats had fewer estrus cycles, higher numbers of large arrested follicles and an increased in body weight gain compared with the dehydroepiandrostenedione (DHEA)- and placebo-treated rats. In cultured rat granulosa cells, DHT suppressed follicle stimulating hormone (FSH)-induced granulosa cell proliferation and increased the accumulation of cells in the G2/M phase. DHT decreased phosphorylated Akt (p-Akt) and cyclin D1 levels through increasing PTEN. DHT-promoted PTEN expression was regulated by peroxisome proliferator-activated receptor gamma (PPARγ) in granulosa cells. Meanwhile, in the large follicles of the DHT-treated rats, the expressions of PPARγ and PTEN were higher, but the expression of p-Akt and proliferating cell nuclear antigen (PCNA) were lower. Conclusively, DHT and DHEA produced differential effects on metabolism in prepubertal female rats like clinical manifestations of women with PCOS. DHT treatment may affect ovarian follicular maturation by altering granulosa cell proliferation through the regulation of enhancing PPARγ dependent PTEN/p-Akt expression in the granulosa cells. PMID:26674985

  11. Expression of 3β-hydroxysteroid dehydrogenase in ovarian and uterine tissue during diestrus and open cervix cystic endometrial hyperplasia-pyometra in the bitch.

    PubMed

    Gultiken, Nilgun; Yarim, Murat; Yarim, Gul Fatma; Gacar, Ayhan; Mason, James Ian

    2016-07-15

    The purpose of this study was to compare the expression of 3β-hydroxystreroid dehydrogenase (3β-HSD) in the uterus and ovary of healthy dogs and those with cystic endometrial hyperplasia and/or pyometra complex (CEH-pyometra). Eighteen female dogs were included in the study. Eleven bitches with open cervix CEH-pyometra were included in the CEH-pyometra group and seven diestrus bitches in the control group. For immunostaining a rabbit polyclonal, one raised against recombinant human type 2 (adrenal/gonadal) 3β-HSD was used. Progesterone (P4) concentrations were not statistically different between the groups. Strongly stained large interstitial cell groups in the ovarian medulla were observed particularly in CEH-pyometra group although these cells in the control group were weakly or moderately stained and existed singly or paired. The expressions of 3β-HSD in luminal epithelium (42.40 ± 22.40% vs. 18.42 ± 13.15%, P < 0.05) and glandular epithelium (32.80 ± 27.05% vs. 2.94 ± 7.79%, P < 0.01) of endometrium were significantly higher in CEH-pyometra group than those in the control group. The expression of 3β-HSD in CL was higher (29.38 ± 9.58% vs. 22.94 ± 4.97%) in CEH-pyometra group than that of control group although the differences were not significant (P > 0.05). Similarly, the significant increase in the expression of 3β-HSD in ovarian interstitial cells (33.86 ± 29.44 vs. 1.13 ± 2.97, P < 0.05) was found in CEH-pyometra group compared to the control group. The study revealed that 3β-HSD expression in the endometrium of canine CEH-pyometra was significantly high.

  12. Spatio-Temporal Gene Expression Profiling during In Vivo Early Ovarian Folliculogenesis: Integrated Transcriptomic Study and Molecular Signature of Early Follicular Growth

    PubMed Central

    Bonnet, Agnes; Servin, Bertrand; Mulsant, Philippe; Mandon-Pepin, Beatrice

    2015-01-01

    Background The successful achievement of early ovarian folliculogenesis is important for fertility and reproductive life span. This complex biological process requires the appropriate expression of numerous genes at each developmental stage, in each follicular compartment. Relatively little is known at present about the molecular mechanisms that drive this process, and most gene expression studies have been performed in rodents and without considering the different follicular compartments. Results We used RNA-seq technology to explore the sheep transcriptome during early ovarian follicular development in the two main compartments: oocytes and granulosa cells. We documented the differential expression of 3,015 genes during this phase and described the gene expression dynamic specific to these compartments. We showed that important steps occurred during primary/secondary transition in sheep. We also described the in vivo molecular course of a number of pathways. In oocytes, these pathways documented the chronology of the acquisition of meiotic competence, migration and cellular organization, while in granulosa cells they concerned adhesion, the formation of cytoplasmic projections and steroid synthesis. This study proposes the involvement in this process of several members of the integrin and BMP families. The expression of genes such as Kruppel-like factor 9 (KLF9) and BMP binding endothelial regulator (BMPER) was highlighted for the first time during early follicular development, and their proteins were also predicted to be involved in gene regulation. Finally, we selected a data set of 24 biomarkers that enabled the discrimination of early follicular stages and thus offer a molecular signature of early follicular growth. This set of biomarkers includes known genes such as SPO11 meiotic protein covalently bound to DSB (SPO11), bone morphogenetic protein 15 (BMP15) and WEE1 homolog 2 (S. pombe)(WEE2) which play critical roles in follicular development but other

  13. The zinc finger gene ZIC2 has features of an oncogene and its over- expression correlates strongly with the clinical course of epithelial ovarian cancer

    PubMed Central

    Marchini, Sergio; Poynor, Elizabeth; Barakat, Richard R; Clivio, Luca; Cinquini, Michela; Fruscio, Robert; Porcu, Luca; Bussani, Cecilia; D’Incalci, Maurizio; Erba, Eugenio; Romano, Michela; Cattoretti, Giorgio; Katsaros, Dionyssios; Koff, Andrew; Luzzatto, Lucio

    2015-01-01

    Purpose Epithelial ovarian tumors (EOTs) are amongst the most lethal of malignancies in women. We have previously identified ZIC2 as expressed at a higher level in samples of a malignant form (MAL) of EOT than in samples of a form with low malignant potential (LMP). We have now investigated the role of ZIC2 in driving tumor growth and its association with clinical outcomes. Experimental Design ZIC2 expression levels were analysed in two independent tumor tissue collections of LMP and MAL. In vitro experiments aimed to test the role of ZIC2 as a transforming gene. Cox models were used to correlate ZIC2 expression with clinical endpoints. Results ZIC2 expression was about 40-fold in terms of mRNA and about 17-fold in terms of protein in MAL (n = 193) versus LMP (n = 39) tumors. ZIC2 mRNA levels were high in MAL cell lines, but undetectable in LMP cell lines. Over-expression of ZIC2 was localized to the nucleus. ZIC2 over-expression increases the growth rate and foci formation of NIH 3T3 cells, and stimulates anchorage-independent colony formation; down-regulation of ZIC2 decreases the growth rate of MAL cell lines. Zinc finger domains 1 and 2 are required for transforming activity. In stage I MAL ZIC2 expression was significantly associated with overall survival in both univariate (p = 0.046), and multivariate model (p = 0.049). Conclusions ZIC2, a transcription factor related to the sonic hedgehog pathway, is a strong discriminant between MAL and LMP tumors: it may be a major determinant of outcome of EOT. PMID:22733541

  14. Aurora Kinase A expression predicts platinum-resistance and adverse outcome in high-grade serous ovarian carcinoma patients.

    PubMed

    Mignogna, Chiara; Staropoli, Nicoletta; Botta, Cirino; De Marco, Carmela; Rizzuto, Antonia; Morelli, Michele; Di Cello, Annalisa; Franco, Renato; Camastra, Caterina; Presta, Ivan; Malara, Natalia; Salvino, Angela; Tassone, Pierfrancesco; Tagliaferri, Pierosandro; Barni, Tullio; Donato, Giuseppe; Di Vito, Anna

    2016-05-21

    High-Grade Serous Ovarian Carcinoma (HGSOC) is the predominant histotype of epithelial ovarian cancer (EOC), characterized by advanced stage at diagnosis, frequent TP53 mutation, rapid progression, and high responsiveness to platinum-based-chemotherapy. To date, standard first-line-chemotherapy in advanced EOC includes platinum salts and paclitaxel with or without bevacizumab. The major prognostic factor is the response duration from the end of the platinum-based treatment (platinum-free interval) and about 10-0 % of EOC patients bear a platinum-refractory disease or develop early resistance (platinum-free interval shorter than 6 months). On these bases, a careful selection of patients who could benefit from chemotherapy is recommended to avoid unnecessary side effects and for a better disease outcome. In this retrospective study, an immunohistochemical evaluation of Aurora Kinase A (AURKA) was performed on 41 cases of HGSOC according to platinum-status. Taking into account the number and intensity of AURKA positive cells we built a predictive score able to discriminate with high accuracy platinum-sensitive patients from platinum-resistant patients (p < 0.001). Furthermore, we observed that AURKA overexpression correlates to worse overall survival (p = 0.001; HR 0.14). We here suggest AURKA as new effective tool to predict the biological behavior of HGSOC. Particularly, our results indicate that AURKA has a role both as predictor of platinum-resistance and as prognostic factor, that deserves further investigation in prospective clinical trials. Indeed, in the era of personalized medicine, AURKA could assist the clinicians in selecting the best treatment and represent, at the same time, a promising new therapeutic target in EOC treatment.

  15. HOX genes in ovarian cancer.

    PubMed

    Kelly, Zoë L; Michael, Agnieszka; Butler-Manuel, Simon; Pandha, Hardev S; Morgan, Richard Gl

    2011-09-09

    The HOX genes are a family of homeodomain-containing transcription factors that determine cellular identity during development. Here we review a number of recent studies showing that HOX genes are strongly expressed in ovarian cancer, and that in some cases the expression of specific HOX genes is sufficient to confer a particular identity and phenotype upon cancer cells. We also review the recent advances in elucidating the different functions of HOX genes in ovarian cancer. A literature search was performed using the search terms HOX genes (including specific HOX genes), ovarian cancer and oncogenesis. Articles were accessed through searches performed in ISI Web of Knowledge, PubMed and ScienceDirect. Taken together, these studies have shown that HOX genes play a role in the oncogenesis of ovarian cancer and function in the inhibition of apoptosis, DNA repair and enhanced cell motility. The function of HOX genes in ovarian cancer oncogenesis supports their potential role as prognostic and diagnostic markers, and as therapeutic targets in this disease.

  16. Formalisms for Specifying Markovian Population Models

    NASA Astrophysics Data System (ADS)

    Henzinger, Thomas A.; Jobstmann, Barbara; Wolf, Verena

    We compare several languages for specifying Markovian population models such as queuing networks and chemical reaction networks. These languages —matrix descriptions, stochastic Petri nets, stoichiometric equations, stochastic process algebras, and guarded command models— all describe continuous-time Markov chains, but they differ according to important properties, such as compositionality, expressiveness and succinctness, executability, ease of use, and the support they provide for checking the well-formedness of a model and for analyzing a model.

  17. Ovarian steroids, mitogen-activated protein kinases, and/or aspartic proteinases cooperate to control endometrial remodeling by regulating gene expression in the stroma and glands.

    PubMed

    Gaide Chevronnay, Héloïse P; Lemoine, Pascale; Courtoy, Pierre J; Marbaix, Etienne; Henriet, Patrick

    2010-09-01

    Explants from nonmenstrual endometria cultured in the absence of ovarian hormones undergo tissue breakdown. Addition of estradiol and progesterone (EP) prevents proteolysis. Explants include stromal and epithelial compartments which play different but complementary roles in endometrial physiology, including tissue remodeling and hormonal response. In order to characterize the cell type-specific contribution to regulation of tissue breakdown, we characterized the transcriptomes of microdissected stromal and glandular areas from endometrial explants cultured with or without EP. The datasets were also compared to other published endometrial transcriptomes. Finally, the contribution of proteolysis, hypoxia, and MAPKs to the regulation of selected genes was further investigated in explant culture. This analysis identified distinct gene expression profiles in stroma and glands, with differential response to EP, but functional clustering underlined convergence in biological processes, further indicating that endometrial remodeling requires cooperation between the two compartments through expression of cell type-specific genes. Only partial overlaps were observed between lists of genes involved in different occurrences of endometrial breakdown, pointing to a limited number of potentially crucial regulators but also to the requirement for additional mechanisms controlling tissue remodeling. We identified a group of genes differentially regulated by EP in stroma and glands among which some were sensitive to MAPKs and/or aspartic proteinases and were not induced by hypoxia. In conclusion, MAPKs and/or aspartic proteinases likely act in concert with EP to locally and specifically control differential expression of genes between degrading and preserved areas of the human endometrium.

  18. Expression of ovarian microsomal epoxide hydrolase and glutathione S-transferase during onset of VCD-induced ovotoxicity in B6C3F{sub 1} mice

    SciTech Connect

    Keating, Aileen F.; Sipes, I. Glenn; Hoyer, Patricia B.

    2008-07-01

    4-vinylcyclohexene diepoxide (VCD) specifically destroys small pre-antral follicles in the rodent ovary. VCD can be detoxified to an inactive tetrol by microsomal epoxide hydrolase (mEH), or by conjugation to glutathione (GSH) by glutathione S-transferase (GST). Formation of VCD-GSH adducts in the mouse ovary 4 h after VCD exposure (0.57 mmol/kg/day) has been demonstrated. Because the mouse ovary expresses both mEH and GST, expression of mEH and GST pi and mu during a time-course of VCD-induced ovotoxicity was evaluated in a neonatal mouse ovarian culture system. Ovaries from postnatal day 4 (PND4) B6C3F{sub 1} mice were incubated with VCD (15 {mu}M) for 2, 4, 6, 8, 10, 12, or 15 days. Following incubation, ovaries were histologically evaluated, or assessed for mRNA or protein expression. VCD did not cause follicle loss (p > 0.05) on days 2, 4, or 6 of culture. At days 8, 10, 12, and 15, VCD reduced (p < 0.05) both primordial and primary follicle numbers. Increased (p < 0.05) expression of mEH, GST pi and GST mu mRNA was detected after 4 days of VCD exposure. This expression was reduced on days 6 and 8, when follicle loss was underway, but increased (p < 0.05) after 10 days of exposure. mEH and GST pi proteins were elevated (p < 0.05) following 8 days of VCD-exposure however there was no increase in GST mu protein. These findings suggest that with continuous exposure to VCD, increased expression of detoxification enzymes may participate in retarding the onset of follicle loss, but that this loss cannot ultimately be prevented.

  19. Expression of ovarian microsomal epoxide hydrolase and glutathione S-transferase during onset of VCD-induced ovotoxicity in B6C3F(1) mice.

    PubMed

    Keating, Aileen F; Sipes, I Glenn; Hoyer, Patricia B

    2008-07-01

    4-vinylcyclohexene diepoxide (VCD) specifically destroys small pre-antral follicles in the rodent ovary. VCD can be detoxified to an inactive tetrol by microsomal epoxide hydrolase (mEH), or by conjugation to glutathione (GSH) by glutathione S-transferase (GST). Formation of VCD-GSH adducts in the mouse ovary 4 h after VCD exposure (0.57 mmol/kg/day) has been demonstrated. Because the mouse ovary expresses both mEH and GST, expression of mEH and GST pi and mu during a time-course of VCD-induced ovotoxicity was evaluated in a neonatal mouse ovarian culture system. Ovaries from postnatal day 4 (PND4) B6C3F(1) mice were incubated with VCD (15 microM) for 2, 4, 6, 8, 10, 12, or 15 days. Following incubation, ovaries were histologically evaluated, or assessed for mRNA or protein expression. VCD did not cause follicle loss (p>0.05) on days 2, 4, or 6 of culture. At days 8, 10, 12, and 15, VCD reduced (p<0.05) both primordial and primary follicle numbers. Increased (p<0.05) expression of mEH, GST pi and GST mu mRNA was detected after 4 days of VCD exposure. This expression was reduced on days 6 and 8, when follicle loss was underway, but increased (p<0.05) after 10 days of exposure. mEH and GST pi proteins were elevated (p<0.05) following 8 days of VCD-exposure however there was no increase in GST mu protein. These findings suggest that with continuous exposure to VCD, increased expression of detoxification enzymes may participate in retarding the onset of follicle loss, but that this loss cannot ultimately be prevented.

  20. MicroRNA-144 is regulated by CP2 and decreases COX-2 expression and PGE2 production in mouse ovarian granulosa cells.

    PubMed

    Zhou, Jiawei; Lei, Bin; Li, Huanan; Zhu, Lihua; Wang, Lei; Tao, Hu; Mei, Shuqi; Li, Fenge

    2017-02-09

    Mammalian folliculogenesis is a complex process in which primordial follicles develop into pre-ovulatory follicles, followed by ovulation to release mature oocytes. In this study, we explored the role of miR-144 in ovulation. miR-144 was one of the differentially expressed microRNAs, which showed 5.59-fold changes, in pre-ovulatory ovarian follicles between Large White and Chinese Taihu sows detected by Solexa deep sequencing. We demonstrated that overexpression of miR-144 significantly decreased the luciferase reporter activity under the control of the cyclooxygenase-2 (COX-2) or mothers against decapentaplegic homologue 4 (Smad4) 3'-untranslated region (3'-UTR) and suppressed COX-2 and Smad4 expression. In contrast, a miR-144 inhibitor increased COX-2 and Smad4 expression in mouse granulosa cells (mGCs). Meanwhile, Smad4 upregulated COX-2 expression, but this effect was abolished when the mGCs were treated with the transforming growth factor beta signalling pathway inhibitor SB431542. Moreover, luciferase reporter, chromatin immunoprecipitation and electrophoretic mobility shift assay results showed that the transcription factor CP2 upregulated miR-144 expression, which partially contributed to the suppression of COX-2 in mGCs. Both CP2 and miR-144 alter prostaglandin E2 (PGE2) production by regulating COX-2 expression. In addition, miR-144 regulated mGC apoptosis and affected follicular atresia, but these activities did not appear to be through COX-2 and Smad4. Taken together, we revealed an important CP2/miR-144/COX-2/PGE2/ovulation pathway in mGCs.

  1. Novel Treatment Shrinks Ovarian Tumors in Mice

    Cancer.gov

    Researchers have developed a new approach for treating tumors that express mutant versions of the p53 protein, which are present in more than half of all cancers, including an aggressive and common subtype of ovarian cancer.

  2. Impact of the putative cancer stem cell markers and growth factor receptor expression on the sensitivity of ovarian cancer cells to treatment with various forms of small molecule tyrosine kinase inhibitors and cytotoxic drugs

    PubMed Central

    Puvanenthiran, Soozana; Essapen, Sharadah; Seddon, Alan M.; Modjtahedi, Helmout

    2016-01-01

    Increased expression and activation of human epidermal growth factor receptor (EGFR) and HER-2 have been reported in numerous cancers. The aim of this study was to determine the sensitivity of a large panel of human ovarian cancer cell lines (OCCLs) to treatment with various forms of small molecule tyrosine kinase inhibitors (TKIs) and cytotoxic drugs. The aim was to see if there was any association between the protein expression of various biomarkers including three putative ovarian cancer stem cell (CSC) markers (CD24, CD44, CD117/c-Kit), P-glycoprotein (P-gp), and HER family members and response to treatment with these agents. The sensitivity of 10 ovarian tumour cell lines to the treatment with various forms of HER TKIs (gefitinib, erlotinib, lapatinib, sapitinib, afatinib, canertinib, neratinib), as well as other TKIs (dasatinib, imatinib, NVP-AEW541, crizotinib) and cytotoxic agents (paclitaxel, cisplatin and doxorubicin), as single agents or in combination, was determined by SRB assay. The effect on these agents on the cell cycle distribution, and downstream signaling molecules and tumour migration were determined using flow cytometry, western blotting, and the IncuCyte Clear View cell migration assay respectively. Of the HER inhibitors, the irreversible pan-TKIs (canertinib, neratinib and afatinib) were the most effective TKIs for inhibiting the growth of all ovarian cancer cells, and for blocking the phosphorylation of EGFR, HER-2, AKT and MAPK in SKOV3 cells. Interestingly, while the majority of cancer cells were highly sensitive to treatment with dasatinib, they were relatively resistant to treatment with imatinib (i.e., IC50 >10 μM). Of the cytotoxic agents, paclitaxel was the most effective for inhibiting the growth of OCCLs, and of various combinations of these drugs, only treatment with a combination of NVP-AEW541 and paclitaxel produced a synergistic or additive anti-proliferative effect in all three cell lines examined (i.e., SKOV3, Caov3, ES2

  3. Expression of α4, αv, β1 and β3 integrins during the implantation window on blastocyst of a mouse model of polycystic ovarian syndromes

    PubMed Central

    Peyghambari, Fatemeh; Amanpour, Saeid; Fayazi, Mehri; Haddadi, Mahnaz; Muhammadnejad, Samad; Muhammadnejad, Ahad; Salimi, Mehdi; Mazaheri, Zohreh

    2014-01-01

    Background: It has been hypothesized that blastocyst integrin expression changes can affect the spontaneous miscarriage in polycystic ovarian syndromes (PCOS). Objective: In this study, the profile of integrin genes and proteins was investigated on blastocyst of the PCOS experimental mouse model. Materials and Methods: 30 NMRI female mice were equally divided into 3 groups: control, experimental [PCOS that was injected estradiol valerate (40 mg/kg)]. After 8 weeks, each group was hyper stimulated by PMSG and HCG. Vaginal plaque was checked, and mice were investigated 5 days after the test. Progesterone and estradiol levels were determined; α4, αv, β1 and β3 integrin genes and protein of blastocysts were examined by real time PCR method and immunohistochemistry, respectively. Results: Estradiol level was significantly increased (p≤0.035) in PCOS group. Based on our finding, the ratio of genes' expressions αv, β3, β1 and α4 in PCOS to control group was 0.479±0.01, 0.5±0.001, 2.7±0.4 and 1.023±0.2 respectively. Genes expression showed a great difference (p≤0.001) between β3, β1 and αv in PCOS compared to other groups. αv and β3 integrin proteins expressed in all groups but intensity of these proteins in PCOS groups, was lower than other groups. Conclusion: Pattern of αv and β3 integrins expression on the mouse blastocyst surface has an important effect during the implantation window. This pattern has changed in PCOS model and might have a great influence on implantation failure. Therefore, this experimental study suggests that a great attention to this problem may be essential in patients who are involved. PMID:25469135

  4. Platinum and PARP inhibitor resistance due to over-expression of microRNA-622 in BRCA1-mutant ovarian cancer

    PubMed Central

    Choi, Young Eun; Meghani, Khyati; Brault, Marie-Eve; Leclerc, Lucas; He, Yizhou J; Day, Tovah A; Elias, Kevin M; Drapkin, Ronny; Weinstock, David M; Dao, Fanny; Shih, Karin K.; Matulonis, Ursula; Levine, Douglas A.; Konstantinopoulos, Panagiotis A.; Chowdhury, Dipanjan

    2016-01-01

    High-grade serous ovarian carcinomas (HGSOCs) with BRCA1/2 mutations exhibit improved outcome and sensitivity to double-strand DNA break (DSB)-inducing agents [i.e. platinum and Poly(ADP-ribose) polymerase inhibitors (PARPis)] due to an underlying defect in homologous recombination (HR). However, resistance to platinum and PARPis represents a significant barrier to the long-term survival of these patients. Although, BRCA1/2-reversion mutations are a clinically validated resistance mechanism, they account for less than half of platinum resistant BRCA1/2-mutated HGSOCs. We uncover a resistance mechanism by which a microRNA, miR-622 induces resistance to PARPis and platinum in BRCA1-mutant HGSOCs by targeting the Ku complex and restoring HR-mediated DSB repair., Physiologically, miR-622 inversely correlates with Ku expression during the cell cycle, suppressing non-homologous end joining and facilitating HR-mediated DSB repair in S-phase. Importantly, high expression of miR-622 in BRCA1-deficient HGSOCs is associated with worse outcome after platinum chemotherapy, indicating microRNA-mediated resistance through HR rescue. PMID:26774475

  5. Chemotherapy induces adaptive drug resistance and metastatic potentials via phenotypic CXCR4-expressing cell state transition in ovarian cancer

    PubMed Central

    Lee, Hyun Hee; Bellat, Vanessa

    2017-01-01

    Ovarian cancer (OVC) patients who receive chemotherapy often acquire drug resistance within one year. This can lead to tumor reoccurrence and metastasis, the major causes of mortality. We report a transient increase of a small distinctive CXCR4High/CD24Low cancer stem cell population (CXCR4High) in A2780 and SKOV-3 OVC cell lines in response to cisplatin, doxorubicin, and paclitaxel, treatments. The withdrawal of the drug challenges reversed this cell-state transition. CXCR4High exhibits dormancy in drug resistance and mesenchymal-like invasion, migration, colonization, and tumor formation properties. The removal of this cell population from a doxorubicin-resistant A2780 lineage (A2780/ADR) recovered the sensitivity to drug treatments. A cytotoxic peptide (CXCR4-KLA) that can selectively target cell-surface CXCR4 receptor was further synthesized to investigate the therapeutic merits of targeting CXCR4High. This peptide was more potent than the conventional CXCR4 antagonists (AMD3100 and CTCE-9908) in eradicating the cancer stem cells. When used together with cytotoxic agents such as doxorubicin and cisplatin, the combined drug-peptide regimens exhibited a synergistic cell-killing effect on A2780, A2780/ADR, and SKOV-3. Our data suggested that chemotherapy could establish drug-resistant and tumor-initiating properties of OVC via reversible CXCR4 cell state transition. Therapeutic strategies designed to eradicate rather than antagonize CXCR4High might offer a far-reaching potential as supportive chemotherapy. PMID:28196146

  6. ELF5 in epithelial ovarian carcinoma tissues and biological behavior in ovarian carcinoma cells.

    PubMed

    Yan, Hongchao; Qiu, Linglin; Xie, Xiaolei; Yang, He; Liu, Yongli; Lin, Xiaoman; Huang, Hongxiang

    2017-03-01

    The expression of E74-like factor 5 (ELF5) in epithelial ovarian carcinoma tissues and its effects on biological behavior in ovarian carcinoma cells were assessed in search for a new approach for gene treatment of epithelial ovarian carcinoma. RT-PCR technology was applied to detect the expression of ELF5 mRNA in epithelial ovarian carcinoma (n=49), borderline ovarian epithelial tumor (n=19), benign ovarian epithelial tumor (n=31) and normal ovarian tissues (n=40). Then, we transfected recombinant plasmid pcDNA3.1‑ELF5+EGFP into human ovarian carcinoma SKOV3 cells (recombinant plasmid group) in vitro and screened out stably transfected cells to conduct multiplication culture. Western blot analysis was performed to detect the expression of ELF5 protein in the different groups. Flow cytometry was employed to detect cell apoptosis and cycles. ELF5 mRNA in epithelial ovarian carcinoma and borderline ovarian epithelial tumor tissues were significantly lower (P<0.05) than those in benign ovarian epithelial tumor and normal ovarian tissues. ELF5 protein expression in the cells of recombinant plasmid group was significantly higher compared with empty plasmid and blank control groups. The capacity of cell reproductive recombinant plasmid group at each time point decreased (P<0.05). Flow cytometry detection showed that 67.03% of cells in recombinant plasmid group was blocked in G0/G1 phase (P<0.05), compared with empty plasmid group (37.17%) and blank control group (38.24%). Apoptotic rate of recombinant plasmid group was significantly lower (31.4±1.9%; P<0.05), compared with that of empty plasmid group (9.1±2.2%) and blank control group (8.7±1.5%), and the differences were statistically significant. In conclusion, ELF5 interfered with cell cycle of human ovarian carcinoma SKOV3 cells and promoted apoptosis of human ovarian carcinoma SKOV3 cells inhibiting their growth and invasive capacity; and thus providing a new approach to gene treatment of ovarian carcinoma.

  7. ELF5 in epithelial ovarian carcinoma tissues and biological behavior in ovarian carcinoma cells

    PubMed Central

    Yan, Hongchao; Qiu, Linglin; Xie, Xiaolei; Yang, He; Liu, Yongli; Lin, Xiaoman; Huang, Hongxiang

    2017-01-01

    The expression of E74-like factor 5 (ELF5) in epithelial ovarian carcinoma tissues and its effects on biological behavior in ovarian carcinoma cells were assessed in search for a new approach for gene treatment of epithelial ovarian carcinoma. RT-PCR technology was applied to detect the expression of ELF5 mRNA in epithelial ovarian carcinoma (n=49), borderline ovarian epithelial tumor (n=19), benign ovarian epithelial tumor (n=31) and normal ovarian tissues (n=40). Then, we transfected recombinant plasmid pcDNA3.1-ELF5+EGFP into human ovarian carcinoma SKOV3 cells (recombinant plasmid group) in vitro and screened out stably transfected cells to conduct multiplication culture. Western blot analysis was performed to detect the expression of ELF5 protein in the different groups. Flow cytometry was employed to detect cell apoptosis and cycles. ELF5 mRNA in epithelial ovarian carcinoma and borderline ovarian epithelial tumor tissues were significantly lower (P<0.05) than those in benign ovarian epithelial tumor and normal ovarian tissues. ELF5 protein expression in the cells of recombinant plasmid group was significantly higher compared with empty plasmid and blank control groups. The capacity of cell reproductive recombinant plasmid group at each time point decreased (P<0.05). Flow cytometry detection showed that 67.03% of cells in recombinant plasmid group was blocked in G0/G1 phase (P<0.05), compared with empty plasmid group (37.17%) and blank control group (38.24%). Apoptotic rate of recombinant plasmid group was significantly lower (31.4±1.9%; P<0.05), compared with that of empty plasmid group (9.1±2.2%) and blank control group (8.7±1.5%), and the differences were statistically significant. In conclusion, ELF5 interfered with cell cycle of human ovarian carcinoma SKOV3 cells and promoted apoptosis of human ovarian carcinoma SKOV3 cells inhibiting their growth and invasive capacity; and thus providing a new approach to gene treatment of ovarian carcinoma. PMID

  8. Specifying spacecraft flexible appendage rigidity

    NASA Technical Reports Server (NTRS)

    Seltzer, S. M.; Shelton, H. L.

    1977-01-01

    As a method for specifying the required degree of rigidity of spacecraft flexible appendages, an analytical technique is proposed for establishing values for the frequency, damping ratio, and modal gain (deflection) of the first several bending modes. The shortcomings of the technique result from the limitations associated with the order of the equations that can be handled practically. An iterative method is prescribed for handling a system whose structural flexibility is described by more than one normal mode. The analytical technique is applied to specifying solar panel rigidity constraints for the NASA Space Telescope. The traditional nonanalytic procedure for specifying the required degree of rigidity of spacecraft flexible appendages has been to set a lower limit below which bending mode frequencies may not lie.

  9. Transcutaneous electrical acupoint stimulation alleviates the hyperandrogenism of polycystic ovarian syndrome rats by regulating the expression of P450arom and CTGF in the ovaries

    PubMed Central

    Qu, Fan; Liang, Yi; Zhou, Jue; Ma, Rui-Jie; Zhou, Jie; Wang, Fang-Fang; Wu, Yan; Fang, Jian-Qiao

    2015-01-01

    The present study was to investigate the effects of transcutaneous electrical acupoint stimulation (TEAS) in alleviating the hyperandrogenism of polycystic ovarian syndrome (PCOS) model rats induced by testosterone propionate and the possible underlying mechanism. Thirty-six female Sprague-Dawley rats were randomly divided into normal control, PCOS model and TEAS groups with twelve rats in each group. The PCOS model rats were established by single injection of testosterone propionate at 9th day after birth, and the status of estrous cyclicity for each rat was observed. When the 8-week TEAS treatment completed, the weight of body, uterus and ovaries of the rats were respectively measured. The serum levels of total testosterone (TT), sex hormone binding globulin (SHBG), androstenedione, luteinizing hormone (LH), follicle stimulating hormone (FSH) and estradiol (E2) were detected. The mRNA and protein expression levels of aromatase cytochrome P450 (P450arom) and connective tissue growth factor (CTGF) in the ovaries of the rats were respectively measured with real-time quantitative PCR and immunohistochemistry. The TEAS treatment significantly improved the estrous cycles of the PCOS rats and the TEAS group displayed significantly lower average body and ovaries weights than the PCOS model group (P < 0.05). TEAS significantly decreased the serum TT, free androgen index (FAI), androstenedione and LH/FSH levels, and increased the serum FSH levels of the PCOS rats (P < 0.05). The TEAS treatment significantly increased the P450arom mRNA as well as protein expression levels and significantly decreased the CTGF mRNA as well as protein expression levels in the ovaries of the PCOS rats (P < 0.05). We concluded that it is through regulating the P450arom and CTGF expression levels in the ovaries that TEAS significantly alleviates the hyperandrogenism of PCOS rats induced by testosterone propionate. PMID:26221326

  10. Transcutaneous electrical acupoint stimulation alleviates the hyperandrogenism of polycystic ovarian syndrome rats by regulating the expression of P450arom and CTGF in the ovaries.

    PubMed

    Qu, Fan; Liang, Yi; Zhou, Jue; Ma, Rui-Jie; Zhou, Jie; Wang, Fang-Fang; Wu, Yan; Fang, Jian-Qiao

    2015-01-01

    The present study was to investigate the effects of transcutaneous electrical acupoint stimulation (TEAS) in alleviating the hyperandrogenism of polycystic ovarian syndrome (PCOS) model rats induced by testosterone propionate and the possible underlying mechanism. Thirty-six female Sprague-Dawley rats were randomly divided into normal control, PCOS model and TEAS groups with twelve rats in each group. The PCOS model rats were established by single injection of testosterone propionate at 9th day after birth, and the status of estrous cyclicity for each rat was observed. When the 8-week TEAS treatment completed, the weight of body, uterus and ovaries of the rats were respectively measured. The serum levels of total testosterone (TT), sex hormone binding globulin (SHBG), androstenedione, luteinizing hormone (LH), follicle stimulating hormone (FSH) and estradiol (E2) were detected. The mRNA and protein expression levels of aromatase cytochrome P450 (P450arom) and connective tissue growth factor (CTGF) in the ovaries of the rats were respectively measured with real-time quantitative PCR and immunohistochemistry. The TEAS treatment significantly improved the estrous cycles of the PCOS rats and the TEAS group displayed significantly lower average body and ovaries weights than the PCOS model group (P < 0.05). TEAS significantly decreased the serum TT, free androgen index (FAI), androstenedione and LH/FSH levels, and increased the serum FSH levels of the PCOS rats (P < 0.05). The TEAS treatment significantly increased the P450arom mRNA as well as protein expression levels and significantly decreased the CTGF mRNA as well as protein expression levels in the ovaries of the PCOS rats (P < 0.05). We concluded that it is through regulating the P450arom and CTGF expression levels in the ovaries that TEAS significantly alleviates the hyperandrogenism of PCOS rats induced by testosterone propionate.

  11. Expression of PH Domain Leucine-rich Repeat Protein Phosphatase, Forkhead Homeobox Type O 3a and RAD51, and their Relationships with Clinicopathologic Features and Prognosis in Ovarian Serous Adenocarcinoma

    PubMed Central

    Zhang, Jun; Wang, Jun-Chao; Li, Yue-Hong; Wang, Rui-Xue; Fan, Xiao-Mei

    2017-01-01

    Background: Ovarian serous adenocarcinoma can be divided into low- and high-grade tumors, which exhibit substantial differences in pathogenesis, clinicopathology, and prognosis. This study aimed to investigate the differences in the PH domain leucine-rich repeat protein phosphatase (PHLPP), forkhead homeobox type O 3a (FoxO3a), and RAD51 protein expressions, and their associations with prognosis in patients with low- and high-grade ovarian serous adenocarcinomas. Methods: The PHLPP, FoxO3a, and RAD51 protein expressions were examined in 94 high- and 26 low-grade ovarian serous adenocarcinomas by immunohistochemistry. The differences in expression and their relationships with pathological features and prognosis were analyzed. Results: In high-grade serous adenocarcinomas, the positive rates of PHLPP and FoxO3a were 24.5% and 26.6%, while in low-grade tumors, they were 23.1% and 26.9%, respectively (P < 0.05 vs. the control specimens; low- vs. high-grade: P > 0.05). The positive rates of RAD51 were 70.2% and 65.4% in high- and low-grade serous adenocarcinomas, respectively (P < 0.05 vs. the control specimens; low- vs. high-grade: P > 0.05). Meanwhile, in high-grade tumors, Stage III/IV tumors and lymph node and omental metastases were significantly associated with lower PHLPP and FoxO3a and higher RAD51 expression. The 5-year survival rates of patients with PHLPP- and FoxO3a-positive high-grade tumors (43.5% and 36.0%) were significantly higher than in patients with PHLPP-negative tumors (5.6% and 7.2%, respectively; P < 0.05). Similarly, the 5-year survival rate of RAD51-positive patients (3.0%) was significantly lower than in negative patients (42.9%; P < 0.05). In low-grade tumors, the PHLPP, FoxO3a, and RAD51 expressions were not significantly correlated with lymph node metastasis, omental metastasis, Federation of Gynecology and Obstetrics stage, or prognosis. Conclusions: Abnormal PHLPP, FoxO3a, and RAD51 protein expressions may be involved in the development

  12. Comprehensive assessment of the expression of the SWI/SNF complex defines two distinct prognostic subtypes of ovarian clear cell carcinoma

    PubMed Central

    Abou-Taleb, Hisham; Yamaguchi, Ken; Matsumura, Noriomi; Murakami, Ryusuke; Nakai, Hidekatsu; Higasa, Koichiro; Amano, Yasuaki; Abiko, Kaoru; Yoshioka, Yumiko; Hamanishi, Junzo; Koshiyama, Masafumi; Baba, Tsukasa; Yamada, Ryo; Matsuda, Fumihiko; Konishi, Ikuo; Mandai, Masaki

    2016-01-01

    Somatic mutations in the ARID1A tumor-suppressor gene have been frequently identified in ovarian clear cell carcinoma (CCC) cases. BAF250a encoded by ARID1A is a member of the SWI/SNF complex, but the expression and mutation status of other SWI/SNF subunits have not been explored. The current study aimed to elucidate the biological and clinical significance of the SWI/SNF complex subunits, by assessing the expression and mutation status of SWI/SNF subunits, and distinct genomic aberrations associated with their expression. Of 82 CCC specimens, 38 samples presented no BAF250a expression, and 50 samples exhibited the loss of at least one subunit of the SWI/SNF complex. Cases which lack at least one SWI/SNF complex component exhibited significantly more advanced stages, faster growth and stronger nuclear atypia compared with SWI/SNF-positive samples (p<0.05). Although BAF250a expression is not related to poor prognosis, the group presenting the loss of at least one SWI/SNF complex subunit exhibited significantly shorter overall and progression-free survivals (p<0.05). A multivariate analysis suggested that the expression status of the SWI/SNF complex serves as an independent prognostic factor (p<0.005). The cases positive for all SWI/SNF subunits demonstrated significantly greater DNA copy number alterations, such as amplification at chromosomes 8q.24.3 and 20q.13.2-20q.13.33 (including ZNF217) and deletion at chromosomes 13q12.11-13q14.3 (including RB1), 17p13.2-17p13.1 (including TP53) and 19p13.2-19p13.12. In conclusion, the CCCs exhibiting the loss of one or multiple SWI/SNF complex subunits demonstrated aggressive behaviors and poor prognosis, whereas the CCCs with positive expression for all SWI/SNF components presented more copy number alterations and a favorable prognosis. PMID:27340867

  13. Comprehensive assessment of the expression of the SWI/SNF complex defines two distinct prognostic subtypes of ovarian clear cell carcinoma.

    PubMed

    Abou-Taleb, Hisham; Yamaguchi, Ken; Matsumura, Noriomi; Murakami, Ryusuke; Nakai, Hidekatsu; Higasa, Koichiro; Amano, Yasuaki; Abiko, Kaoru; Yoshioka, Yumiko; Hamanishi, Junzo; Koshiyama, Masafumi; Baba, Tsukasa; Yamada, Ryo; Matsuda, Fumihiko; Konishi, Ikuo; Mandai, Masaki

    2016-08-23

    Somatic mutations in the ARID1A tumor-suppressor gene have been frequently identified in ovarian clear cell carcinoma (CCC) cases. BAF250a encoded by ARID1A is a member of the SWI/SNF complex, but the expression and mutation status of other SWI/SNF subunits have not been explored. The current study aimed to elucidate the biological and clinical significance of the SWI/SNF complex subunits, by assessing the expression and mutation status of SWI/SNF subunits, and distinct genomic aberrations associated with their expression. Of 82 CCC specimens, 38 samples presented no BAF250a expression, and 50 samples exhibited the loss of at least one subunit of the SWI/SNF complex. Cases which lack at least one SWI/SNF complex component exhibited significantly more advanced stages, faster growth and stronger nuclear atypia compared with SWI/SNF-positive samples (p<0.05). Although BAF250a expression is not related to poor prognosis, the group presenting the loss of at least one SWI/SNF complex subunit exhibited significantly shorter overall and progression-free survivals (p<0.05). A multivariate analysis suggested that the expression status of the SWI/SNF complex serves as an independent prognostic factor (p<0.005). The cases positive for all SWI/SNF subunits demonstrated significantly greater DNA copy number alterations, such as amplification at chromosomes 8q.24.3 and 20q.13.2-20q.13.33 (including ZNF217) and deletion at chromosomes 13q12.11-13q14.3 (including RB1), 17p13.2-17p13.1 (including TP53) and 19p13.2-19p13.12. In conclusion, the CCCs exhibiting the loss of one or multiple SWI/SNF complex subunits demonstrated aggressive behaviors and poor prognosis, whereas the CCCs with positive expression for all SWI/SNF components presented more copy number alterations and a favorable prognosis.

  14. Prognostic impact of human leukocyte antigen class I expression and association of platinum resistance with immunologic profiles in epithelial ovarian cancer.

    PubMed

    Mariya, Tasuku; Hirohashi, Yoshihiko; Torigoe, Toshihiko; Asano, Takuya; Kuroda, Takafumi; Yasuda, Kazuyo; Mizuuchi, Masahito; Sonoda, Tomoko; Saito, Tsuyoshi; Sato, Noriyuki

    2014-12-01

    Epithelial ovarian cancer (EOC) is one of the most deadly carcinomas in females. Immune systems can recognize EOCs; however, a defect of human leukocyte antigen (HLA) class I expression is known to be a major mechanism for escape from immune systems, resulting in poor prognosis. The purpose of this study is to identify novel correlations between immunologic responses and other clinical factors. We investigated the expression of immunologic components in 122 cases of EOCs for which surgical operations were performed between 2001 and 2011. We immunohistochemically stained EOC specimens using an anti-pan HLA class I monoclonal antibody (EMR8-5) and anti-CD3, -CD4, and -CD8 antibodies, and we analyzed correlations between immunologic parameters and clinical factors. In multivariate analysis that used the Cox proportional hazards model, independent prognostic factors for overall survival in advanced EOCs included low expression level of HLA class I [risk ratio (RR), 1.97; 95% confidence interval (CI), 1.01-3.83; P = 0.046] and loss of intraepithelial cytotoxic T lymphocyte (CTL) infiltration (RR, 2.11; 95% CI, 1.06-4.20; P = 0.033). Interestingly, almost all platinum-resistant cases showed a significantly low rate of intraepithelial CTL infiltration in the χ(2) test (positive vs. negative: 9.0% vs. 97.7%; P < 0.001). Results from a logistic regression model revealed that low CTL infiltration rate was an independent factor of platinum resistance in multivariate analysis (OR, 3.77; 95% CI, 1.08-13.12; P = 0.037). Platinum-resistant EOCs show poor immunologic responses. The immune escape system of EOCs may be one of the mechanisms of platinum resistance.

  15. Magellan: a web based system for the integrated analysis of heterogeneous biological data and annotations; application to DNA copy number and expression data in ovarian cancer.

    PubMed

    Kingsley, Chris B; Kuo, Wen-Lin; Polikoff, Daniel; Berchuck, Andy; Gray, Joe W; Jain, Ajay N

    2007-02-05

    Recent advances in high throughput biological methods allow researchers to generate enormous amounts of data from a single experiment. In order to extract meaningful conclusions from this tidal wave of data, it will be necessary to develop analytical methods of sufficient power and utility. It is particularly important that biologists themselves be able to perform many of these analyses, such that their background knowledge of the experimental system under study can be used to interpret results and direct further inquiries. We have developed a web-based system, Magellan, which allows the upload, storage, and analysis of multivariate data and textual or numerical annotations. Data and annotations are treated as abstract entities, to maximize the different types of information the system can store and analyze. Annotations can be used in analyses/visualizations, as a means of subsetting data to reduce dimensionality, or as a means of projecting variables from one data type or data set to another. Analytical methods are deployed within Magellan such that new functionalities can be added in a straightforward fashion. Using Magellan, we performed an integrated analysis of genome-wide comparative genomic hybridization (CGH), mRNA expression, and clinical data from ovarian tumors. Analyses included the use of permutation-based methods to identify genes whose mRNA expression levels correlated with patient survival, a nearest neighbor classifier to predict patient survival from CGH data, and curated annotations such as genomic position and derived annotations such as statistical computations to explore the quantitative relationship between CGH and mRNA expression data.

  16. Expression of follicle-stimulating hormone receptor (FSHR) in goat ovarian follicles and the impact of sequential culture medium on in vitro development of caprine preantral follicles.

    PubMed

    Saraiva, M V A; Celestino, J J H; Araújo, V R; Chaves, R N; Almeida, A P; Lima-Verde, I B; Duarte, A B G; Silva, G M; Martins, F S; Bruno, J B; Matos, M H T; Campello, C C; Silva, J R V; Figueiredo, J R

    2011-08-01

    This study evaluated the expression of FSH receptors (FSHR) in the different stages of goat follicle development and investigated whether the addition of increasing concentrations of FSH throughout the culture period influences the survival, growth and antral formation of in vitro-cultured caprine preantral follicles. The expression of FSHR was analysed before and after culturing follicles using real-time RT-PCR. For the culture, preantral follicles (≥150 μm) were isolated from ovarian fragments and cultured for 18 days in α-MEM+ alone or associated with recombinant FSH (rFSH: 100 or 1000 ng/ml), or in α-MEM+ supplemented with increasing concentrations of FSH throughout culture periods as follows: (a) sequential medium 1: FSH 100 ng/ml (from day 0 to 6), FSH 500 ng/ml (from day 6 to 12) and FSH 1000 ng/ml (from day 12 to 18); and (b) sequential medium 2: FSH 500 ng/ml (from day 0 to 9) and 1000 ng/ml (from day 9 to 18). Follicle development was evaluated on the basis of antral cavity formation, follicular and oocyte growth, and cumulus-oocyte complex health. The expression of FSHR in isolated caprine follicles increased from the preantral to antral phase. Regarding the culture, after 18 days, sequential medium 1 promoted follicular survival, antrum formation and a reduction in oocyte extrusion. Both sequential media promoted a higher rate of meiotic resumption compared with the other treatments. In conclusion, the addition of increased concentrations of FSH (sequential medium) has a significant impact on the in vitro development of caprine preantral follicles.

  17. Coordinate patterns of estrogen receptor, progesterone receptor, and Wilms tumor 1 expression in the histopathologic distinction of ovarian from endometrial serous adenocarcinomas.

    PubMed

    Fadare, Oluwole; James, Samuel; Desouki, Mohamed M; Khabele, Dineo

    2013-10-01

    The purpose of this study is to assess whether composite or coordinate immunoexpression patterns of estrogen receptor (ER), progesterone receptor (PR), and Wilms tumor 1 (WT1) gene can significantly distinguish between endometrial serous carcinoma (ESC) and ovarian serous carcinoma (OSC). Immunohistochemical analyses were performed on whole tissue sections from 22 uterus-confined ESCs and on a tissue microarray of 140 high-grade, pan-stage OSCs, using antibodies to ER, PR, and WT-1. Estrogen receptor, PR, and WT1 expressions were present in 37%, 49%, and 81% of OSC, respectively, but these markers were also present in 18%, 27%, and 36% of ESC. The ER+/PR+/WT1+ coordinate profile was identified in 33.6% of OSC but in none of ESC (P = .0006), resulting in a calculated sensitivity and specificity of this profile for OSC of 33.6% and 100%, respectively. By contrast, the ER-/PR-/WT1- coordinate profile was identified in 41% of ESC but in only 6.4% of OSC (P = .0001), resulting in a calculated sensitivity and specificity of this profile for ESC of 50% and 94%. In summary, in the differential diagnosis between OSC and ESC, positivity for all 3 markers favors an extrauterine origin, whereas negativity for all 3 markers is supportive of an endometrial origin. The use of single markers for this purpose is not recommended, as each lacks optimal discriminatory power. Coordinate profiles, in general, have a high specificity but low sensitivity in this differential diagnosis.

  18. Establishment and characterization of a novel ovarian clear cell carcinoma cell line, TU-OC-2, with loss of ARID1A expression.

    PubMed

    Sato, Seiya; Itamochi, Hiroaki; Oumi, Nao; Chiba, Youhei; Oishi, Tetsuro; Shimada, Muneaki; Sato, Shinya; Chikumi, Jun; Nonaka, Michiko; Kudoh, Akiko; Komatsu, Hiroaki; Harada, Tasuku; Sugiyama, Toru

    2016-10-01

    A new cell line of human ovarian clear cell carcinoma (CCC), TU-OC-2, was established and characterized. The cells were polygonal in shape, grew in monolayers without contact inhibition and were arranged in islands like pieces of a jigsaw puzzle. The chromosome numbers ranged from 41 to 96. A low rate of proliferation was observed and the doubling time was 37.5 h. The IC50 values of cisplatin, 7-ethyl-10-hydroxycamptothecin (SN38), which is an active metabolite of camptothecin, and paclitaxel were 7.7 μM, 17.7 nM and 301 nM, respectively. The drug sensitivity assay indicated that TU-OC-2 was sensitive to SN38, but resistant to cisplatin and paclitaxel. Mutational analysis revealed that TU-OC-2 cells have no mutations of PIK3CA in exons 9 and 20 and of TP53 in exons 4-9. We observed the loss of ARID1A protein expression in TU-OC-2 cells by western blot analysis and in the original tumor tissue by immunohistochemistry. This cell line may be useful for studying the chemoresistant mechanisms of CCC and exploring novel therapeutic targets such as the ARID1A-related signaling pathway.

  19. Stimulatory Effect of Insulin on 5α-Reductase Type 1 (SRD5A1) Expression through an Akt-Dependent Pathway in Ovarian Granulosa Cells

    PubMed Central

    Kayampilly, Pradeep P.; Wanamaker, Brett L.; Stewart, James A.; Wagner, Carrie L.; Menon, K. M. J.

    2010-01-01

    Elevated levels of 5α-reduced androgens have been shown to be associated with hyperandrogenism and hyperinsulinemia, the leading causes of ovulatory dysfunction in women. 5α-Dihydrotestosterone reduces ovarian granulosa cell proliferation by inhibiting FSH-mediated mitogenic signaling pathways. The present study examined the effect of insulin on 5α-reductase, the enzyme that catalyses the conversion of androgens to their 5α-derivatives. Granulosa cells isolated from immature rat ovaries were cultured in serum-free, phenol red-free DMEM-F12 media and treated with different doses of insulin (0, 0.1, 1.0, and 10.0 μg/ml) for different time intervals up to 12 h. The expression of 5α-reductase type 1 mRNA, the predominant isoform found in granulosa cells, showed a significant (P < 0.05) increase in response to the insulin treatment up to 12 h compared with control. The catalytic activity of 5α-reductase enzyme was also stimulated in a dose-depended manner (P < 0.05). Inhibiting the Akt-dependent signaling pathway abolished the insulin-mediated increase in 5α-reductase mRNA expression, whereas inhibition of the ERK-dependent pathway had no effect. The dose-dependent increase in 5α-reductase mRNA expression as well as catalytic activity seen in response to insulin treatment was also demonstrated in the human granulosa cell line (KGN). In addition to increased mRNA expression, a dose-dependent increase in 5α-reductase protein expression in response to insulin was also seen in KGN cells, which corroborated well with that of mRNA expression. These results suggest that elevated levels of 5α-reduced androgens seen in hyperinsulinemic conditions might be explained on the basis of a stimulatory effect of insulin on 5α-reductase in granulosa cells. The elevated levels of these metabolites, in turn, might adversely affect growth and proliferation of granulosa cells, thereby impairing follicle growth and ovulation. PMID:20810561

  20. The expression of Steroidogenic Factor-1 and its role in bovine steroidogenic ovarian cells during the estrus cycle and first trimester of pregnancy.

    PubMed

    Mlynarczuk, J; Wrobel, M H; Rekawiecki, R; Kotwica, J

    2013-04-01

    The orphan receptor Steroidogenic Factor-1 (SF-1, NR5A1), a member of the nuclear receptor superfamily, is present in fetal and adult steroidogenic tissues and also participates in the regulation of ovarian function. In this study, the expression levels of SF-1 mRNA and protein were determined in granulosa cells (from follicles >1cm and <1cm in diameter) and luteal tissue (from days 1-5, 6-10, 11-15, and 16-19 of the estrous cycle and weeks 3-5, 6-8, and 9-12 of pregnancy). Additionally, the effects of a synthetic SF-1 stimulator (4-(heptyloxy)phenol - HxP; 1×10(-7)M) and a synthetic SF-1 inhibitor (F0160; 1×10(-5)M) on the secretion of estradiol and oxytocin (OT) from granulosa cells (from follicles>1cm) and the secretion of progesterone (P4) and OT from luteal cells (days 11-16 of the estrous cycle) were investigated. The levels of SF-1 mRNA and protein were higher in granulosa cells (P<0.05) from follicles>1cm than in cells from follicles<1cm. In luteal tissue, the mRNA abundance was the highest (P<0.05) on days 6-10 of the estrous cycle, and the amount of protein was the highest on days 6-15 (P<0.05). The lowest levels of mRNA and protein for SF-1 were observed on days 16-19 of the estrous cycle (P<0.05). The abundance of SF-1 mRNA decreased at 9-12 weeks of pregnancy (P<0.05). The stimulation of the studied cells with HxP increased P4 and estradiol secretion from luteal and granulosa cells, respectively, and OT secretion from both types of cells. The SF-1 inhibitor did not affect hormone secretion by either type of cell, but it did diminish the effect induced by the SF-1 stimulator. The obtained data revealed estrous cycle-dependent levels of mRNA and protein for SF-1 in luteal tissue, and the use of a specific SF-1 stimulator and a specific SF-1 inhibitor confirmed the involvement of this receptor in steroidogenesis and OT secretion from cultured granulosa and luteal cells. These findings suggest that the SF-1 receptor participates in the local regulation

  1. Predictive and therapeutic markers in ovarian cancer

    DOEpatents

    Gray, Joe W.; Guan, Yinghui; Kuo, Wen-Lin; Fridlyand, Jane; Mills, Gordon B.

    2013-03-26

    Cancer markers may be developed to detect diseases characterized by increased expression of apoptosis-suppressing genes, such as aggressive cancers. Genes in the human chromosomal regions, 8q24, 11q13, 20q11-q13, were found to be amplified indicating in vivo drug resistance in diseases such as ovarian cancer. Diagnosis and assessment of amplification levels certain genes shown to be amplified, including PVT1, can be useful in prediction of poor outcome of patient's response and drug resistance in ovarian cancer patients with low survival rates. Certain genes were found to be high priority therapeutic targets by the identification of recurrent aberrations involving genome sequence, copy number and/or gene expression are associated with reduced survival duration in certain diseases and cancers, specifically ovarian cancer. Therapeutics to inhibit amplification and inhibitors of one of these genes, PVT1, target drug resistance in ovarian cancer patients with low survival rates is described.

  2. Ovarian aging and premature ovarian failure

    PubMed Central

    Şükür, Yavuz Emre; Kıvançlı, İçten Balık; Özmen, Batuhan

    2014-01-01

    Physiological reproductive aging occurs as a result of a decrease in the number and quality of oocytes in ovarian cortex follicles. Although the reason for the decrease in the quality of the pool and follicular oocytes is not fully understood, endocrine, paracrine, genetic, and metabolic factors are thought to be effective. Nowadays, in order to understand the mechanisms of ovarian aging, genomic research has gained importance. The effect of co-factors, such as telomerase and ceramide, in the ovarian aging process is only getting ascertained with new research studies. The most important tests in the assessment of ovarian aging are antral follicle count and anti-Mullerian hormone. PMID:25317048

  3. Early Detection of Ovarian Cancer by Contrast-Enhanced Ultrasound-Targeted Imaging

    DTIC Science & Technology

    2012-07-01

    mean + SD in μm2 (n =8). Compared with normal ovarian surface epithelium , the nuclear area of malignant cells was significantly (Pɘ.01) greater in...DR6: Malignant ovarian tumor epithelium in OVCA hens as well as angiogenic microvessels was positive for DR6 expression (Figure 8). In normal ovaries...the ovaries with early stage OVCA (B). C-D) DR6 expression by ovarian malignant epithelial cells. Very few normal ovarian surface epithelium

  4. Functional Proteomics-Based Ovarian Cancer Biomarkers

    DTIC Science & Technology

    2010-11-01

    tissue , then incubating the samples at various time points to see the effect on RPPA –determined protein levels had already been done using breast tissue ...1985): 131. 27  Cao, Liyun, et al. " Tissue transglutaminase protects epithelial ovarian cancer cells from cisplatin-induced apoptosis by promoting...Dabholkar, Meenakshi, et al. "ERCC1 and ERCC2 expression in malignant tissues from ovarian cancer patients." Journal of the National Cancer Institute

  5. What Is Ovarian Cancer?

    MedlinePlus

    ... to be similar to widespread ovarian cancer. Fallopian tube cancer This is another rare cancer that is ... to epithelial ovarian cancer. It begins in the tube that carries an egg from the ovary to ...

  6. Prognostic impact of programmed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor-infiltrating lymphocytes in ovarian high grade serous carcinoma

    PubMed Central

    Kulbe, Hagen; Sehouli, Jalid; Wienert, Stephan; Lindner, Judith; Budczies, Jan; Bockmayr, Michael; Dietel, Manfred; Denkert, Carsten; Braicu, Ioana; Jöhrens, Korinna

    2016-01-01

    Aims Antibodies targeting the checkpoint molecules programmed cell death 1 (PD-1) and its ligand PD-L1 are emerging cancer therapeutics. We systematically investigated PD-1 and PD-L1 expression patterns in the poor-prognosis tumor entity high-grade serous ovarian carcinoma. Methods PD-1 and PD-L1 protein expression was determined by immunohistochemistry on tissue microarrays from 215 primary cancers both in cancer cells and in tumor-infiltrating lymphocytes (TILs). mRNA expression was measured by quantitative reverse transcription PCR. An in silico validation of mRNA data was performed in The Cancer Genome Atlas (TCGA) dataset. Results PD-1 and PD-L1 expression in cancer cells, CD3+, PD-1+, and PD-L1+ TILs densities as well as PD-1 and PD-L1 mRNA levels were positive prognostic factors for progression-free (PFS) and overall survival (OS), with all factors being significant for PFS (p < 0.035 each), and most being significant for OS. Most factors also had prognostic value that was independent from age, stage, and residual tumor. Moreover, high PD-1+ TILs as well as PD-L1+ TILs densities added prognostic value to CD3+TILs (PD-1+: p = 0.002,; PD-L1+: p = 0.002). The significant positive prognostic impact of PD-1 and PD-L1 mRNA expression could be reproduced in the TCGA gene expression datasets (p = 0.02 and p < 0.0001, respectively). Conclusions Despite their reported immune-modulatory function, high PD-1 and PD-L1 levels are indicators of a favorable prognosis in ovarian cancer. Our data indicate that PD-1 and PD-L1 molecules are biologically relevant regulators of the immune response in high-grade serous ovarian carcinoma, which is an argument for the evaluation of immune checkpoint inhibiting drugs in this tumor entity. PMID:26625204

  7. Effects of orexins A and B on expression of orexin receptors and progesterone release in luteal and granulosa ovarian cells.

    PubMed

    Cataldi, Natalia I; Lux-Lantos, Victoria A R; Libertun, Carlos

    2012-10-10

    Orexin-A and orexin-B are neuropeptides controlling sleep-wakefulness, feeding and neuroendocrine functions via their G protein-coupled receptors, orexin-1R and orexin-2R. They are synthesized in the lateral hypothalamus and project throughout the brain. Orexins and orexin receptors have also been described outside the brain. Previously we demonstrated the presence of both receptors in the ovary, their increased expression during proestrous afternoon and the dependence on the gonadotropins. Here we studied the effects of orexins on the mRNA expression of both receptors, by quantitative real-time PCR, on luteal cells from superovulated rat ovaries and granulosa cells from diethylstilbestrol-treated rat ovaries. Effects on progesterone secretion were also measured. In luteal cells, 1 nM of either orexin-A or orexin-B decreased progesterone secretion. Orexin-A treatment increased expression of both orexin-1R and orexin-2R mRNA. The effect on orexin-1R mRNA expression was abolished by an orexin-1R selective receptor antagonist SB-334867 and the effect on orexin-2R mRNA expression was abolished by a selective orexin-2R antagonist JNJ-10397049. Orexin-B did not modify orexin-1R mRNA expression, but increased orexin-2R mRNA expression. The effect of orexin-B on orexin-2R was abolished by a selective orexin-2R antagonist. Neither the expression of orexin receptors nor progesterone secretions by granulosa cells were affected by orexins. FSH, as positive control, increased both steroid hormones secretion, but did not induce the expression of OX receptors in granulosa cells isolated from late preantral/early antral follicles. Finally in ovaries obtained immediately after sacrifice, the expression of orexin-1R and orexin-2R was higher in superovulated rat ovaries compared to control or diethylstilbestrol treated rat ovaries. A selective presence and function of both orexinergic receptors in luteal and granulosa cells is described, suggesting that the orexinergic system may

  8. Characterization and expression of cDNAs encoding P450c17-II (cyp17a2) in Japanese eel during induced ovarian development.

    PubMed

    Su, Ting; Ijiri, Shigeho; Kanbara, Hirokazu; Hagihara, Seishi; Wang, De-Shou; Adachi, Shinji

    2015-09-15

    Estradiol-17β (E2) and maturation-inducing hormone (MIH) are two steroid hormones produced in the teleost ovary that are required for vitellogenic growth and final oocyte maturation and ovulation. During this transition, the main steroid hormone produced in the ovary shifts from estrogens to progestogens. In the commercially important Japanese eel (Anguilla japonica), the MIH 17α,20β-dihydroxy-4-pregnen-3-one (DHP) is generated from its precursor by P450c17, which has both 17α-hydroxylase and C17-20 lyase activities. In order to elucidate the regulatory mechanism underlying the steroidogenic shift from E2 to DHP and the mechanistic basis for the failure of this shift in artificially matured eels, the cDNA for cyp17a2-which encodes P450c17-II-was isolated from the ovary of wild, mature Japanese eel and characterized, and the expression patterns of cyp17a1 and cyp17a2 during induced ovarian development were investigated in cultured eel ovaries. Five cDNAs (types I-V) encoding P450c17-II were identified that had minor sequence variations. HEK293T cells transfected with all but type II P450c17-II converted exogenous progesterone to 17α-hydroxyprogesterone (17α-P), providing evidence for 17α-hydroxylase activity; however, a failure to convert 17α-P to androstenedione indicated that C17-20 lyase activity was absent. Cyp17a2 mRNA was expressed mainly in the head kidney, ovary, and testis, and quantitative PCR analysis demonstrated that expression in the ovary increased during induced vitellogenesis and oocyte maturation/ovulation. In contrast, P450c17-I showed both 17α-hydroxylase and C17-20 lyase activities, and cyp17a1 expression increased until the mid-vitellogenic stage and remained high thereafter. Considering the high level of cyp17a2 transcript in the eel ovary at the migratory nucleus stage together with our previous report demonstrating that eel ovaries have strong 17α-P-to-DHP conversion activity, the failure of artificially maturing eels to produce

  9. Expression and clinical significance of estrogen-regulated long non-coding RNAs in estrogen receptor α-positive ovarian cancer progression.

    PubMed

    Qiu, Jun-Jun; Ye, Le-Chi; Ding, Jing-Xin; Feng, Wei-Wei; Jin, Hong-Yan; Zhang, Ying; Li, Qing; Hua, Ke-Qin

    2014-04-01

    Estrogen (E2) has long been implicated in epithelial ovarian cancer (EOC) progression. The effects of E2 on cancer progression can be mediated by numerous target genes, including coding RNAs and, more recently, non-coding RNAs (ncRNAs). Among the ncRNAs, long ncRNAs (lncRNAs) have emerged as new regulators in cancer progression; therefore, our aim was to determine whether the expression of any lncRNAs is regulated by E2 and, if so, whether a subset of these lncRNAs have some clinical significance in EOC progression. A microarray was performed to identify E2-regulated lncRNAs in E2 receptor (ER) α-positive EOC cells. Bioinformatics analyses of lncRNAs were conducted, focusing on gene ontology and pathway analyses. Quantitative real-time polymerase chain reactions were performed to confirm the expression of certain lncRNAs in ERα-positive EOC tissues. The correlation between certain lncRNA expression and clinicopathological factors as well as prognosis in ERα-positive EOC patients was then analyzed. We showed that 115 lncRNAs exhibited significant changes in E2-treated SKOV3 cells compared with untreated controls. Most of these lncRNAs were predicated to have potential to contribute to cancer progression. Notably, three candidates (TC0100223, TC0101686 and TC0101441) were aberrantly expressed in ERα-positive compared to ERα-negative EOC tissues, showing correlations with some malignant cancer phenotypes such as advanced FIGO stage and/or high histological grade. Furthermore, multivariate analysis indicated that TC0101441 was an independent prognostic factor for overall survival. Taken together, these results indicate for the first time that E2 can modulate lncRNA expression in ERα-positive EOC cells and that certain lncRNAs are correlated with advanced cancer progression and suggestive of a prognostic indicator in ERα-positive EOC patients. Knowledge of these E2-regulated lncRNAs could aid in the future understanding of the estrogenic effect on EOC progression

  10. Network-based integration of GWAS and gene expression identifies a HOX-centric network associated with serous ovarian cancer risk

    PubMed Central

    Kar, Siddhartha P.; Tyrer, Jonathan P.; Li, Qiyuan; Lawrenson, Kate; Aben, Katja K.H.; Anton-Culver, Hoda; Antonenkova, Natalia; Chenevix-Trench, Georgia; Baker, Helen; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Berchuck, Andrew; Bisogna, Maria; Bjørge, Line; Bogdanova, Natalia; Brinton, Louise; Brooks-Wilson, Angela; Butzow, Ralf; Campbell, Ian; Carty, Karen; Chang-Claude, Jenny; Chen, Yian Ann; Chen, Zhihua; Cook, Linda S.; Cramer, Daniel; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas F.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goode, Ellen L.; Goodman, Marc T.; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus K.; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Paul, James; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kjaer, Susanne K.; Kelemen, Linda E.; Kellar, Melissa; Kelley, Joseph; Kiemeney, Lambertus A.; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Iain A.; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B.; Narod, Steven A.; Nedergaard, Lotte; Ness, Roberta B.; Nevanlinna, Heli; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Pearce, Celeste Leigh; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Phelan, Catherine M.; Pike, Malcolm C.; Poole, Elizabeth M.; Ramus, Susan J.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schildkraut, Joellen M.; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Sucheston-Campbell, Lara E.; Tangen, Ingvild L.; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J; Timorek, Agnieszka; Tsai, Ya-Yu; Tworoger, Shelley S.; van Altena, Anne M.; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A.; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Sellers, Thomas A.; Monteiro, Alvaro N. A.; Freedman, Matthew L.; Gayther, Simon A.; Pharoah, Paul D. P.

    2015-01-01

    Background Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by co-expression may also be enriched for additional EOC risk associations. Methods We selected TF genes within 1 Mb of the top signal at the 12 genome-wide significant risk loci. Mutual information, a form of correlation, was used to build networks of genes strongly co-expressed with each selected TF gene in the unified microarray data set of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this data set were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). Results Gene set enrichment analysis identified six networks centered on TF genes (HOXB2, HOXB5, HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes from the risk-associated end of the ranked list (P<0.05 and FDR<0.05). These results were replicated (P<0.05) using an independent association study (7,035 cases/21,693 controls). Genes underlying enrichment in the six networks were pooled into a combined network. Conclusion We identified a HOX-centric network associated with serous EOC risk containing several genes with known or emerging roles in serous EOC development. Impact Network analysis integrating large, context-specific data sets has the potential to offer mechanistic insights into cancer susceptibility and prioritize genes for experimental characterization. PMID:26209509

  11. Di-n-Butyl Phthalate Disrupts the Expression of Genes Involved in Cell Cycle and Apoptotic Pathways in Mouse Ovarian Antral Follicles1

    PubMed Central

    Craig, Zelieann R.; Hannon, Patrick R.; Wang, Wei; Ziv-Gal, Ayelet; Flaws, Jodi A.

    2012-01-01

    ABSTRACT Di-n-butyl phthalate (DBP) is present in many consumer products, such as infant, beauty, and medical products. Several studies have shown that DBP causes reproductive toxicity in rodents, but no studies have evaluated its effects on ovarian follicles. Therefore, we used a follicle culture system to evaluate the effects of DBP on antral follicle growth, cell cycle and apoptosis gene expression, cell cycle staging, atresia, and 17β-estradiol (E2) production. Antral follicles were isolated from adult CD-1 mice and exposed to DBP at 1, 10, 100, and 1000 μg/ml for 24 or 168 h. Follicles treated with vehicle or DBP at 1–100 μg/ml grew over time, but DBP at 1000 μg/ml significantly suppressed follicle growth. Regardless of effect on follicle growth, DBP-treated follicles had decreased mRNA for cyclins D2, E1, A2, and B1 and increased p21. Levels of the proapoptotic genes Bax, Bad, and Bok were not altered by DBP treatment, but DBP 1000 μg/ml increased levels of Bid and decreased levels of the antiapoptotic gene Bcl2. DBP-treated follicles contained significantly more cells in G1 phase, significantly less cells in S, and exhibited a trend for fewer cells in G2. Although DBP did not affect E2 production and atresia at 24 h, follicles treated with DBP had reduced levels of E2 at 96 h and underwent atresia at 168 h. These data suggest that DBP targets antral follicles and alters the expression of cell cycle and apoptosis factors, causes cell cycle arrest, decreases E2, and triggers atresia, depending on dose. PMID:23242528

  12. Ovarian expression of inhibin-subunits, 3β-hydroxysteroid dehydrogenase, and cytochrome P450 aromatase during the estrous cycle and pregnancy of shiba goats (Capra hircus).

    PubMed

    Kandiel, Mohamed M M; Watanabe, Gen; Taya, Kazuyoshi

    2010-01-01

    The cellular localization of the inhibin subunits (α, β(A), and β (B)), steroidogenic enzymes (3β-hydroxysteroid dehydrogenase (3βHSD) and cytochrome P450 aromatase (P450arom) were evaluated in the ovaries of cyclic (n=6) and pregnant (n=2) Shiba goats (Capra Hircus). The immunointensity of inhibin α and β(A) subunits showed an increase in the granulosa cells (GC) of developing follicles. Inhibin β(B) subunit and P450arom showed high expression in GC of antral follicles. 3βHSD immunoreactivity was uniform in preantral and antral follicles. In follicular phase and late pregnancy, there was a strong expression of inhibin α subunit in GC of antral follicles. Although in mid pregnancy, antral follicles GC showed moderate immunostaining of inhibin β subunits, the immunoreactivity of inhibin β(A) and β(B) subunits was high during the follicular and luteal stages, respectively. While, immunoreactivity of GC to P450arom was moderate during all studied stages, and 3βHSD immunoreactivity was plentiful in antral follicles during the luteal phase. The immunoreactivity to inhibin α subunit and P450arom was abundant during mid pregnancy in the luteal tissues. Immunoreaction to inhibin β subunits was faint-to-moderate in cyclic and pregnancy corpora lutea. Immunoexpression of 3βHSD was maximal in late pregnancy corpora lutea. The present results suggest that, in goats, the GC of antral follicles are the main source of dimeric inhibins and that corpora lutea may partially participate in the secretion of inhibin. Changes in ovarian hormonal levels might depend on the synthesizing capacity of hormones in the follicles and corpora lutea to regulate the goat's reproductive stages.

  13. Differential Regulation of Gene and Protein Expression by Zinc Oxide Nanoparticles in Hen’s Ovarian Granulosa Cells: Specific Roles of Nanoparticles

    PubMed Central

    Zhao, Yong; Li, Lan; Zhang, Peng-Fei; Shen, Wei; Liu, Jing; Yang, Fen-Fang; Liu, Hong-Bo; Hao, Zhi-Hui

    2015-01-01

    Annually, tons and tons of zinc oxide nanoparticles (ZnO NPs) are produced in the world. And they are applied in almost all aspects of our life. Their release from the products into environment may pose issue for human health. Although many studies have reported the adverse effects of ZnO NPs on organisms, little is known about the effects on female reproductive systems or the related mechanisms. Quantitative proteomics have not been applied although quantitative transcriptomics have been used in zinc oxide nanoparticles (ZnO NPs) research. Genes are very important players however proteins are the real actors in the biological systems. By using hen’s ovarian granulosa cells, it was found that ZnO-NP-5μg/ml and ZnSO4-10μg/ml treatments produced the same amount of intracellular Zn and resulted in similar cell growth inhibition. And NPs were found in the treated cells. However, ZnO-NP-5μg/ml specifically regulated the expression of genes and proteins compared with that in ZnSO4-10μg/ml treatment. For the first time, this investigation reports that intact NPs produce different impacts on the expression of genes and proteins involved in specific pathways compared to that by Zn2+. The findings enrich our knowledge for the molecular insights of zinc oxide nanoparticles effects on the female reproductive systems. This also may raise the health concern that ZnO NPs may adversely affect the female reproductive systems through regulation of specific signaling pathways. PMID:26460738

  14. Di-n-butyl phthalate disrupts the expression of genes involved in cell cycle and apoptotic pathways in mouse ovarian antral follicles.

    PubMed

    Craig, Zelieann R; Hannon, Patrick R; Wang, Wei; Ziv-Gal, Ayelet; Flaws, Jodi A

    2013-01-01

    Di-n-butyl phthalate (DBP) is present in many consumer products, such as infant, beauty, and medical products. Several studies have shown that DBP causes reproductive toxicity in rodents, but no studies have evaluated its effects on ovarian follicles. Therefore, we used a follicle culture system to evaluate the effects of DBP on antral follicle growth, cell cycle and apoptosis gene expression, cell cycle staging, atresia, and 17β-estradiol (E(2)) production. Antral follicles were isolated from adult CD-1 mice and exposed to DBP at 1, 10, 100, and 1000 μg/ml for 24 or 168 h. Follicles treated with vehicle or DBP at 1-100 μg/ml grew over time, but DBP at 1000 μg/ml significantly suppressed follicle growth. Regardless of effect on follicle growth, DBP-treated follicles had decreased mRNA for cyclins D2, E1, A2, and B1 and increased p21. Levels of the proapoptotic genes Bax, Bad, and Bok were not altered by DBP treatment, but DBP 1000 μg/ml increased levels of Bid and decreased levels of the antiapoptotic gene Bcl2. DBP-treated follicles contained significantly more cells in G(1) phase, significantly less cells in S, and exhibited a trend for fewer cells in G(2). Although DBP did not affect E(2) production and atresia at 24 h, follicles treated with DBP had reduced levels of E(2) at 96 h and underwent atresia at 168 h. These data suggest that DBP targets antral follicles and alters the expression of cell cycle and apoptosis factors, causes cell cycle arrest, decreases E(2), and triggers atresia, depending on dose.

  15. Expression of hypoxia-inducible factor-1α during ovarian follicular growth and development in Sprague-Dawley rats.

    PubMed

    Zhang, Z H; Chen, L Y; Wang, F; Wu, Y Q; Su, J Q; Huang, X H; Wang, Z C; Cheng, Y

    2015-06-01

    Hypoxia-inducible factor-1α (HIF-1α) has been identified as a transcription factor that is involved in diverse physiological and pathological processes in the ovary. In this study, we examined whether HIF-1α is expressed in a cell- and stage-specific manner during follicular growth and development in the mammalian ovaries. Using immunohistochemistry and Western blot analysis, HIF-1α expression was observed in granulosa cells specifically and was significantly increased during the follicular growth and development of postnatal rats. Furthermore, pregnant mare serum gonadotropin also induced HIF-1α expression in granulosa cells and ovaries during the follicular development of immature rats primed with gonadotropin. Moreover, we also examined proliferation cell nuclear antigen, a cell proliferation marker, during follicular growth and development and found that its expression pattern was similar to that of HIF-1α protein. Granulosa cell culture experiments revealed that proliferation cell nuclear antigen expression may be regulated by HIF-1α. These results indicated that HIF-1α plays an important role in the follicular growth and development of these 2 rat models. The HIF-1α-mediated signaling pathway may be an important mechanism regulating follicular growth and development in mammalian ovaries in vivo.

  16. Protein kinase C alpha-CARMA3 signaling axis links Ras to NF-kappa B for lysophosphatidic acid-induced urokinase plasminogen activator expression in ovarian cancer cells.

    PubMed

    Mahanivong, C; Chen, H M; Yee, S W; Pan, Z K; Dong, Z; Huang, S

    2008-02-21

    We reported previously that a signaling pathway consisting of G(i)-Ras-NF-kappaB mediates lysophosphatidic acid (LPA)-induced urokinase plasminogen activator (uPA) upregulation in ovarian cancer cells. However, it is not clear what signaling components link Ras to nuclear factor (NF)-kappaB for this LPA-induced event. In the present study, we found that treatment of protein kinase C (PKC) inhibitors including conventional PKC (cPKC) inhibitor Gö6976 abolished LPA-induced uPA upregulation in ovarian cancer cell lines tested, indicating the importance of cPKC activity in this LPA-induced event. Indeed, LPA stimulation led to the activation of PKCalpha and Ras-PKCalpha interaction. Although constitutively active mutants of PKCalpha (a cPKC), PKCtheta (a novel PKC (nPKC)) and PKCzeta (an atypical PKC (aPKC)) were all able to activate NF-kappaB and upregulate uPA expression, only dominant-negative PKCalpha mutant attenuated LPA-induced NF-kappaB activation and uPA upregulation. These results suggest that PKCalpha, rather than PKC isoforms in other PKC classes, participates in LPA-induced NF-kappaB activation and uPA upregulation in ovarian cancer cells. To determine the signaling components downstream of PKCalpha mediating LPA-induced uPA upregulation, we showed that forced expression of dominant-negative CARMA3 or silencing CARMA3, Bcl10 and MALT1 with specific siRNAs diminished these LPA-induced events. Furthermore, we demonstrated that PKCalpha/CARMA3 signaling axis is important in LPA-induced ovarian cancer cell in vitro invasion.

  17. Estrogen receptor beta, a possible tumor suppressor involved in ovarian carcinogenesis

    PubMed Central

    Lazennec, Gwendal

    2006-01-01

    Ovarian cancer is one of the leading cause of death from gynecological tumors in women. Several lines of evidence suggest that estrogens may play an important role in ovarian carcinogenesis, through their receptors, ERα and ERβ. Interestingly, malignant ovarian tumors originating from epithelial surface constitute about 90% of ovarian cancers and expressed low levels of ERβ, compared to normal tissues. In addition, restoration of ERβ in ovarian cancer cells, leads to strong inhibition of their proliferation and invasion, while apoptosis is enhanced. In this manuscript, recent data suggesting a possible tumor-suppressor role for ERβ in ovarian carcinogenesis are discussed. PMID:16399219

  18. Ovarian Kaleidoscope Database: Ten Years and Beyond1

    PubMed Central

    Hsueh, Aaron J.; Rauch, Rami

    2012-01-01

    ABSTRACT Ovarian Kaleidoscope database (OKdb) is an online, searchable, public database containing text-based and DNA microarray data to facilitate research by ovarian researchers. Using key words and predetermined categories, users can search ovarian gene information based on gene function, cell type of expression, cellular localization, hormonal regulation, mutant phenotypes, chromosomal location, ligand-receptor relationship, and other criteria, either alone or in combination. For individual genes, users can access more than 10 extensive DNA microarray datasets to interrogate gene expression patterns in a development-specific and cell type-specific manner. All ligand and receptor genes expressed in the ovary are matched to facilitate investigation of paracrine/autocrine signaling. More than 3500 ovarian genes in the database are matched to 185 gene pathways in the Kyoto Encyclopedia of Genes and Genomes to allow for elucidation of gene interactions and relationships. In addition to >400 genes with infertility or subfertility phenotypes when mutated in mice or humans, the OKdb also lists ∼50 and ∼40 genes associated with polycystic ovarian syndrome and primary ovarian insufficiency, respectively. The expanding OKdb is updated weekly and allows submission of new genes by ovarian researchers to allow instant access to DNA microarray datasets for newly submitted genes. The present database is a virtual community for ovarian researchers and allows users to instantaneously provide their comments for individual gene pages based on an automated Web-discussion system. In the coming years, we will continue to add new features to serve the ovarian research community. PMID:22441797

  19. Specified assurance level sampling procedure

    SciTech Connect

    Willner, O.

    1980-11-01

    In the nuclear industry design specifications for certain quality characteristics require that the final product be inspected by a sampling plan which can demonstrate product conformance to stated assurance levels. The Specified Assurance Level (SAL) Sampling Procedure has been developed to permit the direct selection of attribute sampling plans which can meet commonly used assurance levels. The SAL procedure contains sampling plans which yield the minimum sample size at stated assurance levels. The SAL procedure also provides sampling plans with acceptance numbers ranging from 0 to 10, thus, making available to the user a wide choice of plans all designed to comply with a stated assurance level.

  20. Effects of the estrous cycle and ovarian hormones on central expression of interleukin-1 evoked by stress in female rats.

    PubMed

    Arakawa, Keiko; Arakawa, Hiroyuki; Hueston, Cara M; Deak, Terrence

    2014-01-01

    Exposure to stressors such as foot shock (FS) leads to increased expression of multiple inflammatory factors, including the proinflammatory cytokine interleukin-1 (IL-1) in the brain. Studies have indicated that there are sex differences in stress reactivity, suggesting that the fluctuations in gonadal steroid levels across the estrous cycle may play a regulatory role in the stress-induced cytokine expression. The present studies were designed to investigate the role of 17-β-estradiol (E2) and progesterone (Pg) in regulating the cytokine response within the paraventricular nucleus (PVN) of the hypothalamus through analysis of gene expression with real-time RT-PCR. Regularly cycling female rats showed a stress-induced increase in PVN IL-1 levels during the diestrous, proestrous, and estrous stages. During the metestrous stage, no change in IL-1 levels was seen following FS; however, estrogen receptor (ER)-β levels did increase. Ovariectomy resulted in an increase in PVN IL-1 levels, which was attenuated by treatment with estradiol benzoate (10 or 50 µg), indicating an E2-mediated anti-inflammatory effect. Ovariectomized rats treated with Pg (500 or 1,250 µg) showed no alteration in IL-1 levels, but Pg did up-regulate ER-β gene expression. The results from the current study implicate a potential mechanism through which high availability of endogenous Pg during the metestrous stage increases ER-β sensitivity, which in turn attenuates the PVN IL-1 response to stress. Thus, the interaction between gonadal steroid hormones and their central receptors may exert a powerful inhibitory effect on neuroimmune consequences of stress throughout the estrous cycle.

  1. GnRH agonist and GnRH antagonist protocols in ovarian stimulation: differential regulation pathway of aromatase expression in human granulosa cells.

    PubMed

    Khalaf, Mohamad; Mittre, Hervé; Levallet, Jérôme; Hanoux, Vincent; Denoual, Christine; Herlicoviez, Michel; Bonnamy, Pierre-Jacques; Benhaim, Annie

    2010-07-01

    Gonadotrophin-releasing hormone (GnRH) agonists and antagonists have been widely used to prevent premature LH surge during ovarian stimulation. However, studies have shown a significantly lower serum oestradiol concentration on the day of human chorionic gonadotrophin administration for cycles using GnRH antagonist. This study compared aromatase gene expression in granulosa lutein cells from 50 women randomly assigned to receive either GnRH agonist (group 1, n=28) or GnRH antagonist (group 2, n=22). The cellular mechanism involved in the observed effects was also investigated. GnRH antagonist treatment significantly affected serum oestradiol concentration (1894+/-138 versus 1074+/-63 pg/ml; P < or = 0.001), follicular-fluid oestradiol concentration in large follicles (18,565+/-2467 versus 10,184+/-1993 pg/ml; P < or = 0.05), aromatase activity (9600+/-1179 versus 5376+/-997 fmol/10(6) cells/h; P < or = 0.05) and mRNA aromatase/mRNA glyceraldehyde 3-phosphate dehydrogenase (15+/-3 versus 6+/-1; P < 0.05). Protein kinase C (PKC) activity in granulosa lutein cells from the GnRH antagonist group was 2.5-fold higher than in the GnRH agonist group. In-vitro experiments showed that selective down-regulation of PKC was only observed in GnRH-desensitized granulosa lutein cells. This report suggests that, in granulosa lutein cells, the modulation of the FSH-induced protein kinase A pathway by PKC was different in agonist versus antagonist cycles.

  2. Establishment of an orthotopic transplantation tumor model in nude mice using a drug-resistant human ovarian cancer cell line with a high expression of c-Kit.

    PubMed

    Yi, Cunjian; Zhang, Lei; Li, Li; Liu, Xiangqiong; Ling, Shengrong; Zhang, Fayun; Liang, Wei

    2014-12-01

    The resistance of ovarian cancer to platinum-based chemotherapy is a critical issue in the clinical setting. The present study aimed to establish animal models to replicate this clinical condition, as well as to investigate the resistance mechanisms of ovarian cancer. A cisplatin (DDP)-resistant human ovarian cancer cell line, SKOV3/DDP, was screened, validated and injected subcutaneously into the neck of female nude mice. Following tumor establishment, the tumor was collected and cut into small sections, which were subsequently implanted into the ovaries of other nude mice. The growth of the orthotopic tumors was observed and the tumor-bearing mice were sacrificed and dissected. The orthotopic and metastatic tumor tissues were collected, sectioned, stained with hematoxylin and eosin and analyzed. In the present study, 16 nude mice underwent orthotopic transplantation surgery and a tumor model was successfully established in 14/16 of the mice, with an in situ tumor formation rate of 87.5%. Following euthanasia, a laparotomy demonstrated the tumor formation at the site of transplantation, as well as varying degrees of metastasis to additional organs and tissues. Therefore, the present study successfully established an orthotopic tumor transplantation model in nude mice using a c-Kit-positive DDP-resistant human ovarian cancer cell line. This model may represent a useful tool for investigating the resistance mechanism of ovarian cancer, as well as evaluating the efficacy of therapeutic strategies.

  3. Symptoms Relevant to Surveillance for Ovarian Cancer

    PubMed Central

    Ore, Robert M.; Baldwin, Lauren; Woolum, Dylan; Elliott, Erika; Wijers, Christiaan; Chen, Chieh-Yu; Miller, Rachel W.; DeSimone, Christopher P.; Ueland, Frederick R.; Kryscio, Richard J.; van Nagell, John R.; Pavlik, Edward J.

    2017-01-01

    To examine how frequently and confidently healthy women report symptoms during surveillance for ovarian cancer. A symptoms questionnaire was administered to 24,526 women over multiple visits accounting for 70,734 reports. A query of reported confidence was included as a confidence score (CS). Chi square, McNemars test, ANOVA and multivariate analyses were performed. 17,623 women completed the symptoms questionnaire more than one time and >9500 women completed it more than one four times for >43,000 serially completed questionnaires. Reporting ovarian cancer symptoms was ~245 higher than ovarian cancer incidence. The positive predictive value (0.073%) for identifying ovarian cancer based on symptoms alone would predict one malignancy for 1368 cases taken to surgery due to reported symptoms. Confidence on the first questionnaire (83.3%) decreased to 74% when more than five questionnaires were completed. Age-related decreases in confidence were significant (p < 0.0001). Women reporting at least one symptom expressed more confidence (41,984/52,379 = 80.2%) than women reporting no symptoms (11,882/18,355 = 64.7%), p < 0.0001. Confidence was unrelated to history of hormone replacement therapy or abnormal ultrasound findings (p = 0.30 and 0.89). The frequency of symptoms relevant to ovarian cancer was much higher than the occurrence of ovarian cancer. Approximately 80.1% of women expressed confidence in what they reported. PMID:28335512

  4. Evolution of specifier proteins in glucosinolate-containing plants

    PubMed Central

    2012-01-01

    Background The glucosinolate-myrosinase system is an activated chemical defense system found in plants of the Brassicales order. Glucosinolates are stored separately from their hydrolytic enzymes, the myrosinases, in plant tissues. Upon tissue damage, e.g. by herbivory, glucosinolates and myrosinases get mixed and glucosinolates are broken down to an array of biologically active compounds of which isothiocyanates are toxic to a wide range of organisms. Specifier proteins occur in some, but not all glucosinolate-containing plants and promote the formation of biologically active non-isothiocyanate products upon myrosinase-catalyzed glucosinolate breakdown. Results Based on a phytochemical screening among representatives of the Brassicales order, we selected candidate species for identification of specifier protein cDNAs. We identified ten specifier proteins from a range of species of the Brassicaceae and assigned each of them to one of the three specifier protein types (NSP, nitrile-specifier protein, ESP, epithiospecifier protein, TFP, thiocyanate-forming protein) after heterologous expression in Escherichia coli. Together with nine known specifier proteins and three putative specifier proteins found in databases, we subjected the newly identified specifier proteins to phylogenetic analyses. Specifier proteins formed three major clusters, named AtNSP5-cluster, AtNSP1-cluster, and ESP/TFP cluster. Within the ESP/TFP cluster, specifier proteins grouped according to the Brassicaceae lineage they were identified from. Non-synonymous vs. synonymous substitution rate ratios suggested purifying selection to act on specifier protein genes. Conclusions Among specifier proteins, NSPs represent the ancestral activity. The data support a monophyletic origin of ESPs from NSPs. The split between NSPs and ESPs/TFPs happened before the radiation of the core Brassicaceae. Future analyses have to show if TFP activity evolved from ESPs at least twice independently in different

  5. Incidence of serous tubal intraepithelial carcinoma (STIC) by algorithm classification in serous ovarian tumor associated with PAX8 expression in tubal epithelia: a study of single institution in Japan.

    PubMed

    Munakata, Satoru; Yamamoto, Toshiya

    2015-01-01

    Serous ovarian carcinoma is now hypothesized to originate from fallopian tube epithelium (FTE). We investigated the FTE abnormalities in the patients with epithelial ovarian tumors. Our study included 55 cases of serous tumors (24 carcinomas, 8 borderline tumors, and 23 adenomas), 14 mucinous carcinomas, 22 endometrioid carcinomas, 5 clear cell carcinomas, and 2 malignant Brenner tumors. FTE was diagnosed by the diagnostic algorithm, which combines the data of morphology, and p53, Ki-67 immunostaining, as serous tubal intraepithelial carcinoma, serous tubal intraepithelial lesion, p53 signature, and normal/reactive. Serous tubal intraepithelial carcinoma, serous tubal intraepithelial lesion, p53 signature, and normal/reactive were observed in 5, 3, 0, and 16 cases in serous carcinoma; 0, 3, 0, and 5 cases in serous borderline tumor; 0, 1, 1, and 21 cases in serous adenoma; 0, 0, 1, and 13 cases in mucinous carcinoma; 0, 0, 3, and 19 cases in endometrioid carcinoma; 0, 0, 0, and 5 cases in clear cell carcinoma; and 0, 1, 0, and 1 case in malignant Brenner tumor. Among tumors of serous histology and between carcinomas, FTE abnormalities differed significantly (P<0.05). Serous tubal intraepithelial carcinomas were only found in serous carcinoma. The incidence of secretory cell proliferation (SCP) was examined by PAX8 expression. The rate of SCP was extremely high in serous carcinoma (96%). Among tumors of serous histology and between carcinomas, an incidence of SCP differed significantly (P<0.05). Patients with SCP were significantly older (P<0.0001). Our observations were concordant with the hypothesis of serous ovarian carcinogenesis. The SCP has a meaningful association with serous ovarian cancer.

  6. Ovarian steroids regulate gene expression related to DNA repair and neurodegenerative diseases in serotonin neurons of macaques

    PubMed Central

    Bethea, Cynthia L.; Reddy, Arubala P.

    2015-01-01

    Depression often accompanies the peri-menopausal transition and it often precedes overt symptomology in common neurodegenerative diseases (NDD; Alzheimer's, Parkinson's, Huntington, ALS). Serotonin dysfunction is frequently found in the different etiologies of depression. We have shown that ovariectomized (Ovx) monkeys treated with estradiol (E) for 28 days supplement with placebo or progesterone (P) on days 14-28 had reduced DNA fragmentation in serotonin neurons of the dorsal raphe nucleus; and long-term Ovx monkeys had fewer serotonin neurons than intact controls. We questioned the effect of E alone or E+P on gene expression related to DNA repair, protein folding (chaperones), the ubiquitin proteosome, axon transport, and NDD specific genes in serotonin neurons. Ovx macaques were treated with placebo, E or E+P (n=3/group) for 1 month. Serotonin neurons were laser captured and subjected to microarray analysis and qRT-PCR. Increases were confirmed with qRT-PCR in 5 genes that code for proteins involved in repair of strand breaks and nucleotide excision. NBN1, PCNA, GADD45A, RAD23A and GTF2H5 significantly increased with E or E+P treatment (all ANOVA p< 0.01). Chaperone genes HSP70, HSP60 and HSP27 significantly increased with E or E+P treatment (all ANOVA p<0.05). HSP90 showed a similar trend. Ubiquinase coding genes UBEA5, UBE2D3 and UBE3A (Parkin) increased with E or E+P (all ANOVA p<0.003). Transport related genes coding kinesin, dynein, and dynactin increased with E or E+P (all ANOVA p<0.03). SCNA (α synuclein) and ADAM10 (α secretase) increased (both ANOVA p<0.02), but PSEN1 (presenilin1) decreased (ANOVA p<0.02) with treatment. APP decreased 10-fold with E or E+P administration. Newman-Keuls posthoc comparisons indicated variation in the response to E alone versus E+P across the different genes. In summary, E or E+P increased gene expression for DNA repair mechanisms in serotonin neurons, thereby rendering them less vulnerable to stress-induced DNA

  7. The global effect of follicle-stimulating hormone and tumour necrosis factor α on gene expression in cultured bovine ovarian granulosa cells

    PubMed Central

    2014-01-01

    Background Oocytes mature in ovarian follicles surrounded by granulosa cells. During follicle growth, granulosa cells replicate and secrete hormones, particularly steroids close to ovulation. However, most follicles cease growing and undergo atresia or regression instead of ovulating. To investigate the effects of stimulatory (follicle-stimulating hormone; FSH) and inhibitory (tumour necrosis factor alpha; TNFα) factors on the granulosa cell transcriptome, bovine ovaries were obtained from a local abattoir and pools of granulosa cells were cultured in vitro for six days under defined serum-free conditions with treatments present on days 3–6. Initially dose–response experiments (n = 4) were performed to determine the optimal concentrations of FSH (0.33 ng/ml) and TNFα (10 ng/ml) to be used for the microarray experiments. For array experiments cells were cultured under control conditions, with FSH, with TNFα, or with FSH plus TNFα (n = 4 per group) and RNA was harvested for microarray analyses. Results Statistical analysis showed primary clustering of the arrays into two groups, control/FSH and TNFα/TNFα plus FSH. The effect of TNFα on gene expression dominated that of FSH, with substantially more genes differentially regulated, and the pathways and genes regulated by TNFα being similar to those of FSH plus TNFα treatment. TNFα treatment reduced the endocrine activity of granulosa cells with reductions in expression of FST, INHA, INBA and AMH. The top-ranked canonical pathways and GO biological terms for the TNFα treatments included antigen presentation, inflammatory response and other pathways indicative of innate immune function and fibrosis. The two most significant networks also reflect this, containing molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming growth factor β signalling, and these were up regulated. Upstream regulator analyses also predicted TNF, interferons γ and

  8. Combination Chemotherapy and Peripheral Stem Cell Transplantation in Treating Patients With Stage III Ovarian Cancer

    ClinicalTrials.gov

    2016-03-17

    Malignant Ovarian Mixed Epithelial Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Primary Peritoneal Carcinoma; Stage III Ovarian Cancer; Undifferentiated Ovarian Carcinoma

  9. Litter size influences lamb weight and ovarian reserve but not reproductive tract development or expression of genes involved in early follicular development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In ruminants, development of the female reproductive tract starts before birth, and primordial follicles in the ovaries activate during the third trimester of gestation. Lambs born as twins have lower birth weights and smaller ovarian reserves than lambs born as singletons. We hypothesized that ew...

  10. Fractionated Therapy of HER2-Expressing Breast and Ovarian Cancer Xenografts in Mice with Targeted Alpha Emitting 227Th-DOTA-p-benzyl-trastuzumab

    PubMed Central

    Heyerdahl, Helen; Abbas, Nasir; Brevik, Ellen Mengshoel; Mollatt, Camilla; Dahle, Jostein

    2012-01-01

    Background The aim of this study was to investigate therapeutic efficacy and normal tissue toxicity of single dosage and fractionated targeted alpha therapy (TAT) in mice with HER2-expressing breast and ovarian cancer xenografts using the low dose rate radioimmunoconjugate 227Th-DOTA-p-benzyl-trastuzumab. Methodology/Principal Findings Nude mice carrying HER2-overexpressing subcutaneous SKOV-3 or SKBR-3 xenografts were treated with 1000 kBq/kg 227Th-trastuzumab as single injection or four injections of 250 kBq/kg with intervals of 4–5 days, 2 weeks, or 4 weeks. Control animals were treated with normal saline or unlabeled trastuzumab. In SKOV-3 xenografts tumor growth to 10-fold size was delayed (p<0.01) and survival with tumor diameter less than 16 mm was prolonged (p<0.05) in all TAT groups compared to the control groups. No statistically significant differences were seen among the treated groups. In SKBR-3 xenografts tumor growth to 10-fold size was delayed in the single injection and 4–5 days interval groups (p<0.001) and all except the 4 weeks interval TAT group showed improved survival to the control groups (p<0.05). Toxicity was assessed by blood cell counts, clinical chemistry measurements and body weight. Transient reduction in white blood cells was seen for the single injection and 4–5 days interval groups (p<0.05). No significant changes were seen in red blood cells, platelets or clinical chemistry parameters. Survival without life threatening loss of body weight was significantly prolonged in 4 weeks interval group compared to single injection group (p<0.05) for SKOV-3 animals and in 2 weeks interval group compared with the 4–5 days interval groups (p<0.05) for SKBR-3 animals. Conclusions/Significance The same concentration of radioactivity split into several fractions may improve toxicity of 227Th-radioimmunotherapy while the therapeutic effect is maintained. Thus, it might be possible to increase the cumulative absorbed radiation dose to tumor

  11. Erlotinib Plus Carboplatin and Paclitaxel in Ovarian Carcinoma

    ClinicalTrials.gov

    2015-10-29

    Brenner Tumor; Fallopian Tube Cancer; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Stage III Ovarian Epithelial Cancer; Stage IV Ovarian Epithelial Cancer

  12. An intrinsic timer specifies distal structures of the vertebrate limb.

    PubMed

    Saiz-Lopez, Patricia; Chinnaiya, Kavitha; Campa, Victor M; Delgado, Irene; Ros, Maria A; Towers, Matthew

    2015-09-18

    How the positional values along the proximo-distal axis (stylopod-zeugopod-autopod) of the limb are specified is intensely debated. Early work suggested that cells intrinsically change their proximo-distal positional values by measuring time. Recently, however, it is suggested that instructive extrinsic signals from the trunk and apical ectodermal ridge specify the stylopod and zeugopod/autopod, respectively. Here, we show that the zeugopod and autopod are specified by an intrinsic timing mechanism. By grafting green fluorescent protein-expressing cells from early to late chick wing buds, we demonstrate that distal mesenchyme cells intrinsically time Hoxa13 expression, cell cycle parameters and the duration of the overlying apical ectodermal ridge. In addition, we reveal that cell affinities intrinsically change in the distal mesenchyme, which we suggest results in a gradient of positional values along the proximo-distal axis. We propose a complete model in which a switch from extrinsic signalling to intrinsic timing patterns the vertebrate limb.

  13. Differences in risk for type 1 and type 2 ovarian cancer in a large cancer screening trial

    PubMed Central

    2016-01-01

    Objective To investigate the role of previous gynecologic surgery, hormone use, and use of non-steroidal anti-inflammatory drugs on the risk of type 1 and type 2 ovarian cancer. Methods We utilized data collected for the Prostate, Lung, Colorectal, and Ovarian cancer screening trial. All diagnosed ovarian cancers were divided into three groups: type 1, endometrioid, clear cell, mucinous, low grade serous, and low grade adenocarcinoma/not otherwise specified (NOS); type 2, high grade serous, undifferentiated, carcinosarcoma, and high grade adenocarcinoma/NOS; and other: adenocarcinoma with grade or histology not specified, borderline tumors, granulosa cell tumors. The odds ratios for type 1, type 2, and other ovarian cancers were assessed with regard to historical information for specific risk factors. Results Ibuprofen use was associated with a decrease in risk for type 1 ovarian cancer. Tubal ligation and oral contraceptive use were associated with a decrease in risk for type 2 ovarian cancer. A history of ectopic pregnancy was associated with a decreased risk for all ovarian cancers by almost 70%. Conclusion These findings support the hypothesis that carcinogenic pathways for type 1 and type 2 ovarian cancer are different and distinct. The marked reduction in all ovarian cancer risk noted with a history of ectopic pregnancy and salpingectomy implies that the fallopian tube plays a key role in carcinogenesis for both type 1 and type 2 ovarian cancer. PMID:27029746

  14. Genetics of primary ovarian insufficiency.

    PubMed

    Rossetti, R; Ferrari, I; Bonomi, M; Persani, L

    2017-02-01

    Primary ovarian insufficiency (POI) is characterized by a loss of ovarian function before the age of 40 and account for one major cause of female infertility. POI relevance is continuously growing because of the increasing number of women desiring conception beyond 30 years of age, when POI prevalence is >1%. POI is highly heterogeneous and can present with ovarian dysgenesis and primary amenorrhea, or with secondary amenorrhea, and it can be associated with other congenital or acquired abnormalities. In most cases POI remains classified as idiopathic. However, the age of menopause is an inheritable trait and POI has a strong genetic component. This is confirmed by the existence of several candidate genes, experimental and natural models. The variable expressivity of POI defect may indicate that, this disease may frequently be considered as a multifactorial or oligogenic defect. The most common genetic contributors to POI are the X chromosome-linked defects. Here, we review the principal X-linked and autosomal genes involved in syndromic and non-syndromic forms of POI with the expectation that this list will soon be upgraded, thus allowing the possibility to predict the risk of an early age at menopause in families with POI.

  15. Ovarian Cancer Stage IV

    MedlinePlus

    ... hyphen, e.g. -historical Searches are case-insensitive Ovarian Cancer Stage IV Add to My Pictures View /Download : ... 1200x1335 View Download Large: 2400x2670 View Download Title: Ovarian Cancer Stage IV Description: Drawing of stage IV shows ...

  16. Symptoms of Ovarian Cancer

    MedlinePlus

    ... Informed Cancer Home What Are the Symptoms of Ovarian Cancer? Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir Gynecologic cancer symptoms diaries Ovarian cancer may cause the following signs and symptoms— Vaginal ...

  17. Ovarian Cancer Stage IIIC

    MedlinePlus

    ... hyphen, e.g. -historical Searches are case-insensitive Ovarian Cancer Stage IIIC Add to My Pictures View /Download : ... 1530x1350 View Download Large: 3060x2700 View Download Title: Ovarian Cancer Stage IIIC Description: Drawing of stage IIIC shows ...

  18. Premature ovarian failure.

    PubMed

    Kalantaridou, S N; Davis, S R; Nelson, L M

    1998-12-01

    In 1% of women, premature ovarian failure develops by 40 years of age, a condition causing amenorrhea, infertility, sex steroid deficiency, and elevated gonadotropins. Early loss of ovarian function has significant psychosocial sequelae and major health implications. These young women have a nearly two-fold age-specific increase in mortality rate. Among women with spontaneous premature ovarian failure who have a normal karyotype, half have ovarian follicles remaining in the ovary that function intermittently. Indeed, pregnancies have occurred after the diagnosis of premature ovarian failure. Thus, premature ovarian failure should not be considered as a premature menopause. Young women with this disorder have a 5% to 10% chance for spontaneous pregnancy. Attempts at ovulation induction using various regimens fail to induce ovulation rates greater than those seen in untreated patients; however, oocyte donation for women desiring fertility is an option. Young women with premature ovarian failure need a thorough assessment, sex steroid replacement, and long-term surveillance to monitor therapy. Estrogen-progestin replacement therapy should be instituted as soon as the diagnosis is made. Androgen replacement should also be considered for women with low libido, persistent fatigue, and poor well-being despite taking adequate estrogen replacement. Women with premature ovarian failure should be followed up for the presence of associated autoimmune endocrine disorders such as hypothyroidism, adrenal insufficiency, and diabetes mellitus.

  19. Autoimmune premature ovarian failure

    PubMed Central

    2017-01-01

    Premature ovarian failure (POF), also termed as primary ovarian insufficiency (POI), is a highly heterogenous condition affecting 0.5-3.0% of women in childbearing age. These young women comprise quite a formidable group with unique physical and psychological needs that require special attention. Premature ovarian senescence (POS) in all of its forms evolves insidiously as a basically asymptomatic process, leading to complete loss of ovarian function, and POI/POF diagnoses are currently made at relatively late stages. Well-known and well-documented risk factors exist, and the presence or suspicion of autoimmune disorder should be regarded as an important one. Premature ovarian failure is to some degree predictable in its occurrence and should be considered while encountering young women with loss of menstrual regularity, especially when there is a concomitant dysfunction in the immune system. PMID:28250725

  20. DNA rearrangements located over 100 kb 5' of the Steel (Sl)-coding region in Steel-panda and Steel-contrasted mice deregulate Sl expression and cause female sterility by disrupting ovarian follicle development.

    PubMed

    Bedell, M A; Brannan, C I; Evans, E P; Copeland, N G; Jenkins, N A; Donovan, P J

    1995-02-15

    The Steel (Sl) locus is essential for the development of germ cells, hematopoietic cells, and melanocytes and encodes a growth factor (Mgf) that is the ligand for c-kit, a receptor tyrosine kinase encoded by the W locus. We have identified the molecular and germ cell defects in two mutant Sl alleles, Steel-panda (Slpan) and Steel-contrasted (Slcon), that cause sterility only in females. Unexpectedly, both mutant alleles are shown to contain DNA rearrangements, located > 100 kb 5' of Mgf-coding sequences, that lead to tissue-specific effects on Mgf mRNA expression. In Slpan embryos, decreased Mgf mRNA expression in the gonads causes a reduced number of primordial germ cells in both sexes. However, Mgf expression and spermatogenesis in the postnatal mutant tests is normal, and spermatogonial proliferation compensates for deficiencies in germ cell numbers. In Slpan and Slcon homozygous females, decreased Mgf mRNA expression causes sterility by affecting the initiation and maintenance of ovarian follicle development. Thus, regulated expression of Mgf is required for multiple stages of embryonic and postnatal germ cell development. Surprisingly, other areas of the Slcon female reproductive tract displayed ectopic expression of Mgf mRNA. We propose that the Slpan and Slcon rearrangements alter Mgf mRNA abundance through position effects on expression that act at a distance from the Sl gene.

  1. MicroRNA-595 sensitizes ovarian cancer cells to cisplatin by targeting ABCB1

    PubMed Central

    Tian, Songyu; Zhang, Mingyue; Chen, Xiuwei; Liu, Yunduo; Lou, Ge

    2016-01-01

    Ovarian cancer is among the leading cause of cancer-related deaths in females. In this study, we demonstrated that miR-595 expression was downregulated in the ovarian cancer tissues and cell lines. miR-595 expression was lower in the lymph node metastases tissues than in the primary ovarian cancer tissues and normal tissues. Furthermore, miR-595 overexpression suppressed the ovarian cancer cell proliferation, colony formation and invasion and promoted the sensitivity of ovarian cancer cell to cisplatin. We identified ABCB1 as a direct target gene of miR-595 in the ovarian cancer cell. ABCB1 expression was upregulated in the ovarian cancer tissues and cell lines. Morevoer, the expression level of ABCB1 was inversely correlated with miR-595 in the ovarian cancer tissues. In addition, overexpression of ABCB1 decreased the miR-595-overexpressing HO8910PM and SKOV-3 cell sensitivity to cisplatin. Ectopic expression of ABCB1 promoted the miR-595-overexpressing HO8910PM and SKOV-3 cell proliferation, colony formation and invasion. These data suggested that miR-595 acted a tumor suppressor role in ovarian cancer development and increased the sensitivity of ovarian cancer to cisplatin. PMID:27893429

  2. Specifying structural constraints of architectural patterns in the ARCHERY language

    SciTech Connect

    Sanchez, Alejandro; Barbosa, Luis S.; Riesco, Daniel

    2015-03-10

    ARCHERY is an architectural description language for modelling and reasoning about distributed, heterogeneous and dynamically reconfigurable systems in terms of architectural patterns. The language supports the specification of architectures and their reconfiguration. This paper introduces a language extension for precisely describing the structural design decisions that pattern instances must respect in their (re)configurations. The extension is a propositional modal logic with recursion and nominals referencing components, i.e., a hybrid µ-calculus. Its expressiveness allows specifying safety and liveness constraints, as well as paths and cycles over structures. Refinements of classic architectural patterns are specified.

  3. Specifying Rotating Polygons And Their Drive Systems

    NASA Astrophysics Data System (ADS)

    Sherman, Randy J.

    1986-07-01

    Specifying a rotating polygonal mirror and drive system involves a careful analysis of the complete optical scanning system it is used in and the specific effects of each characteristic of the beam deflector on system performance. This would appear on the surface to be straightforward, however there are subtleties that may evade the most conscientious and diligent specifier. The intent here is to identify same pitfalls the specifier should be alert to.

  4. Mechanisms and Chemoprevention of Ovarian Carcinogenesis

    DTIC Science & Technology

    2008-02-01

    2004 Apr;14(2):175-82. 10. Kabbarah O, Pinto K, Mutch DG, Goodfellow PJ. Expression profiling of mouse endometrial cancers microdissected from...Ovarian Carcinogenesis PRINCIPAL INVESTIGATOR: Dusica Cvetkovic, Ph.D. CONTRACTING ORGANIZATION: Fox Chase Cancer Center...ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Fox Chase Cancer Center Philadelphia, PA 19111 9. SPONSORING / MONITORING

  5. Histogenesis of ovarian malignant mixed mesodermal tumours.

    PubMed Central

    Clarke, T J

    1990-01-01

    The histogenesis of ovarian malignant mixed mesodermal tumours, which includes the concept of metaplastic carcinoma, is controversial. Four such tumours were examined for evidence of metaplastic transition from carcinoma to sarcoma using morphology and reticulin stains. Consecutive sections were stained immunohistochemically using cytokeratin and vimentin to determine whether cells at the interface between carcinoma and sarcoma expressed both cytokeratin and vimentin. There was no evidence of morphological, architectural, or immunohistochemical transitions from carcinoma to sarcoma in the four tumours studied. This suggests that ovarian malignant mixed mesodermal tumours are not metaplastic carcinomas but are composed of histogenetically different elements. Images PMID:2160478

  6. Polyglutamate Paclitaxel and Carboplatin in Treating Patients With Ovarian Epithelial, Peritoneal, or Fallopian Tube Cancer

    ClinicalTrials.gov

    2015-05-07

    Fallopian Tube Carcinoma; Malignant Ovarian Mixed Epithelial Tumor; Ovarian Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Primary Peritoneal Carcinoma; Stage III Ovarian Cancer; Stage IV Ovarian Cancer; Undifferentiated Ovarian Carcinoma

  7. MV-NIS Infected Mesenchymal Stem Cells in Treating Patients With Recurrent Ovarian Cancer

    ClinicalTrials.gov

    2017-03-14

    Malignant Ovarian Brenner Tumor; Ovarian Clear Cell Adenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Adenocarcinoma; Ovarian Seromucinous Carcinoma; Ovarian Serous Adenocarcinoma; Ovarian Transitional Cell Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Undifferentiated Ovarian Carcinoma

  8. Inhibitory Effect of Baicalin and Baicalein on Ovarian Cancer Cells

    PubMed Central

    Chen, Jianchu; Li, Zhaoliang; Chen, Allen Y.; Ye, Xingqian; Luo, Haitao; Rankin, Gary O.; Chen, Yi Charlie

    2013-01-01

    Ovarian cancer is one of the primary causes of death for women all through the Western world. Baicalin and baicalein are naturally occurring flavonoids that are found in the roots and leaves of some Chinese medicinal plants and are thought to have antioxidant activity and possible anti-angiogenic, anti-cancer, anxiolytic, anti-inflammatory and neuroprotective activities. Two kinds of ovarian cancer (OVCAR-3 and CP-70) cell lines and a normal ovarian cell line (IOSE-364) were selected to be investigated in the inhibitory effect of baicalin and baicalein on cancer cells. Largely, baicalin and baicalein inhibited ovarian cancer cell viability in both ovarian cancer cell lines with LD50 values in the range of 45–55 μM for baicalin and 25–40 μM for baicalein. On the other hand, both compounds had fewer inhibitory effects on normal ovarian cells viability with LD50 values of 177 μM for baicalin and 68 μM for baicalein. Baicalin decreased expression of VEGF (20 μM), cMyc (80 μM), and NFkB (20 μM); baicalein decreased expression of VEGF (10 μM), HIF-1α (20 μM), cMyc (20 μM), and NFkB (40 μM). Therefore baicalein is more effective in inhibiting cancer cell viability and expression of VEGF, HIF-1α, cMyc, and NFκB in both ovarian cancer cell lines. It seems that baicalein inhibited cancer cell viability through the inhibition of cancer promoting genes expression including VEGF, HIF-1α, cMyc, and NFκB. Overall, this study showed that baicalein and baicalin significantly inhibited the viability of ovarian cancer cells, while generally exerting less of an effect on normal cells. They have potential for chemoprevention and treatment of ovarian cancers. PMID:23502466

  9. FAU regulates carboplatin resistance in ovarian cancer.

    PubMed

    Moss, Esther L; Mourtada-Maarabouni, Mirna; Pickard, Mark R; Redman, Charles W; Williams, Gwyn T

    2010-01-01

    The development of chemotherapy resistance by cancer cells is complex, using different mechanisms and pathways. The gene FAU (Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV)-associated ubiquitously expressed gene) was identified through functional expression cloning and previous data have shown that overexpression enhances apoptosis in several cell types. We demonstrate that the expression of FAU was reduced in the A2780cis (cisplatin resistant subclone of A2780) cell line compared with the A2780 ovarian cancer cell line, and was directly related to the cell line's sensitivity to carboplatin. Downregulation of FAU in the A2780 cell line by transfection with two predesigned short-interfering RNAs (siRNAs) to FAU resulted in a significant increase in resistance to carboplatin-induced cell death. Downregulation resulted in increased cell viability and reduced apoptosis after 72 hr of drug treatment compared with the negative controls (Kruskal-Wallis P = 0.0002). Transfection of the A2780cis cell line with the pcDNA3 plasmid containing FAU was associated with increased sensitivity to carboplatin-induced apoptosis, with decreased cell viability and increased apoptosis (Mann Whitney P < 0.0001). The expression of FAU was examined by quantitative real-time reverse transcriptase polymerase chain reaction in normal and malignant ovarian tissue. A significant reduction in the expression of FAU was seen in the malignant compared with normal ovarian samples (Kruskal-Wallis P = 0.0261). These data support a role for FAU in the regulation of platinum-resistance in ovarian cancer. Further research is needed into the apoptotic pathway containing FAU to investigate the potential for targeted therapies to increase or restore the platinum sensitivity of ovarian cancer.

  10. Preclinical humanized mouse model with ectopic ovarian tissues

    PubMed Central

    FU, SHILONG; WANG, JUE; SUN, WU; XU, YI; ZHOU, XIAOYU; CHENG, WENJUN

    2014-01-01

    The aim of the present study was to establish human ovarian stroma within the mouse subcutaneously, in order for the resulting stroma to serve as a useful preclinical tool to study the progression of human ovarian cancer in a humanized ovarian microenvironment. Normal human ovarian tissues were subcutaneously implanted into severe combined immunodeficient (SCID) mice and then the implants were identified by immunohistochemistry. The implants became vascularized and retained their original morphology for about 4 weeks following implantation. Immunohistochemical staining for cytokeratin-7 confirmed the ovarian origin of the epithelial cells. CD34 staining demonstrated human-derived vessels. Positive estrogen receptor and partially-positive progesterone receptor staining indicated the estrogen and progesterone dependence of the implants. Only vascular pericytes expressed α-smooth muscle actin, indicating the normal ovarian origin of the xenografts. Human ovarian tissue successfully survived in SCID mice and retained its original properties. This humanized mouse model may be used as preclinical tool to investigate ovarian cancer. PMID:25120592

  11. Can Ovarian Cancer Be Found Early?

    MedlinePlus

    ... Ovarian Cancer Early Detection, Diagnosis, and Staging Can Ovarian Cancer Be Found Early? About 20% of ovarian cancers ... cancer in its earliest stage. Ways to find ovarian cancer early Regular women's health exams During a pelvic ...

  12. 50 CFR 216.120 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... over the 5-year period of the regulations in this subpart, (3) Aircraft flight test operations, and (4... Flight Activities § 216.120 Specified activity and specified geographical region. (a) Regulations in...

  13. 50 CFR 216.120 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in this subpart, (3) Aircraft flight test operations, and (4) Helicopter operations from Vandenberg... Flight Activities § 216.120 Specified activity and specified geographical region. (a) Regulations in...

  14. 50 CFR 216.120 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in this subpart, (3) Aircraft flight test operations, and (4) Helicopter operations from Vandenberg... Flight Activities § 216.120 Specified activity and specified geographical region. (a) Regulations in...

  15. 50 CFR 216.120 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... over the 5-year period of the regulations in this subpart, (3) Aircraft flight test operations, and (4... Flight Activities § 216.120 Specified activity and specified geographical region. (a) Regulations in...

  16. Ovarian Cancer FAQ

    MedlinePlus

    ... cancer—Stromal cell cancer occurs in the connective tissue, which provides the internal structure of the ovary. It also has a high cure rate. What are the risk factors for epithelial ovarian cancer? Certain risk factors are associated with ...

  17. Ovarian Cancer Stage II

    MedlinePlus

    ... Download Title: Ovarian Cancer Stage II Description: Three-panel drawing of stage IIA, IIB, and stage II primary peritoneal cancer; the first panel (stage IIA) shows cancer inside both ovaries that ...

  18. Primary Ovarian Insufficiency (POI)

    MedlinePlus

    ... Overview Condition Information What are common symptoms? How many people are affected/at risk? ... Ovarian Insufficiency (POI): Condition Information Skip sharing on social media links Share this: Page Content What is POI? ...

  19. High-grade serous ovarian cancer 3 years after bilateral salpingectomy: A case report

    PubMed Central

    Sato, Emi; Nakayama, Kentaro; Ishikawa, Masako; Nakamura, Kohei; Ishibashi, Tomoka; Kyo, Satoru

    2017-01-01

    Although epithelial ovarian cancer commonly originates from the ovarian surface epithelium and/or ovarian inclusion cysts, it was recently proposed that high-grade serous ovarian cancer (HGSC) develops from the Fallopian tubes. In our department, we encountered a case of HGSC that contradicts the hypothesis of a tubal origin for HGSC. A 51-year-old postmenopausal woman had undergone hysterectomy, left oophorectomy and bilateral salpingectomy for uterine myoma. Three years later, the patient was diagnosed with stage IV ovarian cancer and underwent primary debulking surgery. The pathological examination revealed HGSC, although there was no evidence of serous tubal intraepithelial carcinoma or any other type of cancer in the previously resected left ovary and bilateral Fallopian tubes. Moreover, p53 overexpression was not detected in the right ovarian cancer specimen, while paired box gene 8, a marker of Fallopian tube epithelium, was highly expressed. Therefore, HGSC may develop from an inclusion cyst with metaplasia of from the ovarian surface epithelium.

  20. Loss of E-cadherin disrupts ovarian epithelial inclusion cyst formation and collective cell movement in ovarian cancer cells

    PubMed Central

    Choi, Pui-Wah; Yang, Junzheng; Ng, Shu-Kay; Feltmate, Colleen; Muto, Michael G.; Hasselblatt, Kathleen; Lafferty-Whyte, Kyle; JeBailey, Lellean; MacConaill, Laura; Welch, William R.; Fong, Wing-Ping; Berkowitz, Ross S.; Ng, Shu-Wing

    2016-01-01

    Increased inclusion cyst formation in the ovary is associated with ovarian cancer development. We employed in vitro three-dimensional (3D) organotypic models formed by normal human ovarian surface epithelial (OSE) cells and ovarian cancer cells to study the morphologies of normal and cancerous ovarian cortical inclusion cysts and the molecular changes during their transitions into stromal microenvironment. When compared with normal cysts that expressed tenascin, the cancerous cysts expressed high levels of laminin V and demonstrated polarized structures in Matrigel; and the cancer cells migrated collectively when the cyst structures were positioned in a stromal-like collagen I matrix. The molecular markers identified in the in vitro 3D models were verified in clinical samples. Network analysis of gene expression of the 3D structures indicates concurrent downregulation of transforming growth factor beta pathway genes and high levels of E-cadherin and microRNA200 (miR200) expression in the cancerous cysts and the migrating cancer cells. Transient silencing of E-cadherin expression in ovarian cancer cells disrupted cyst structures and inhibited collective cell migration. Taken together, our studies employing 3D models have shown that E-cadherin is crucial for ovarian inclusion cyst formation and collective cancer cell migration. PMID:26684027

  1. C-type natriuretic peptide stimulates ovarian follicle development.

    PubMed

    Sato, Yorino; Cheng, Yuan; Kawamura, Kazuhiro; Takae, Seido; Hsueh, Aaron J W

    2012-07-01

    C-type natriuretic peptide (CNP) encoded by the NPPC (Natriuretic Peptide Precursor C) gene expressed in ovarian granulosa cells inhibits oocyte maturation by activating the natriuretic peptide receptor (NPR)B (NPRB) in cumulus cells. RT-PCR analyses indicated increased NPPC and NPRB expression during ovarian development and follicle growth, associated with increases in ovarian CNP peptides in mice. In cultured somatic cells from infantile ovaries and granulosa cells from prepubertal animals, treatment with CNP stimulated cGMP production. Also, treatment of cultured preantral follicles with CNP stimulated follicle growth whereas treatment of cultured ovarian explants from infantile mice with CNP, similar to FSH, increased ovarian weight gain that was associated with the development of primary and early secondary follicles to the late secondary stage. Of interest, treatment with FSH increased levels of NPPC, but not NPRB, transcripts in ovarian explants. In vivo studies further indicated that daily injections of infantile mice with CNP for 4 d promoted ovarian growth, allowing successful ovulation induction by gonadotropins. In prepubertal mice, CNP treatment alone also promoted early antral follicle growth to the preovulatory stage, leading to efficient ovulation induction by LH/human chorionic gonadotropin. Mature oocytes retrieved after CNP treatment could be fertilized in vitro and developed into blastocysts, allowing the delivery of viable offspring. Thus, CNP secreted by growing follicles is capable of stimulating preantral and antral follicle growth. In place of FSH, CNP treatment could provide an alternative therapy for female infertility.

  2. Isolation, characterization and molecular cloning of cathepsin D from lizard ovary: changes in enzyme activity and mRNA expression throughout ovarian cycle.

    PubMed

    De Stasio, R; Borrelli, L; Kille, P; Parisi, E; Filosa, S

    1999-02-01

    During vitellogenesis, the oocytes of oviparous species accumulate in the cytoplasm a large amount of proteic nutrients synthetized in the liver. Once incorporated into the oocytes, these nutrients, especially represented by vitellogenin (VTG) and very low-density lipoprotein (VLDL), are cleaved into a characteristic set of polypeptides forming yolk platelets. We have studied the molecular mechanisms involved in yolk formation in a reptilian species Podarcis sicula, a lizard characterized by a seasonal reproductive cycle. Our results demonstrate the existence in the lizard ovary of an aspartic proteinase having a maximal activity at acidic pH and a molecular mass of 40 kDa. The full-length aspartic proteinase cDNA produced from total RNA by RT-PCR is 1,442 base pairs long and encodes a protein of 403 amino acids. A comparison of the proteic sequence with aspartic proteinases from various sources demonstrates that the lizard enzyme is a cathepsin D. Lizard ovarian cathepsin D activity is maximal in June, in coincidence with vitellogenesis and ovulation, and is especially abundant in vitellogenic follicles and in eggs. Ovarian cathepsin D activity can be enhanced during the resting period by treatment with FSH in vivo. Northern blot analysis shows that cathepsin D mRNA is exceedingly abundant during the reproductive period, and accumulates preferentially in previtellogenic oocytes.

  3. Melancholia and catatonia: disorders or specifiers?

    PubMed

    Parker, Gordon; McClure, Georgia; Paterson, Amelia

    2015-01-01

    The fifth version of the Diagnostic and Statistical Manual of Mental Disorders (DSM)-5 defines mental disorders as syndromes and also introduced disorder "specifiers" with the aim of providing increased diagnostic specificity by defining more homogeneous subgroups of those with the disorder and who share certain features. While the majority of specifiers in DSM-5 define a specific aspect of the disorder such as age at onset or severity, some define syndromes that appear to meet the DSM-5 definition of a mental disorder. Specifically, melancholia is positioned in DSM-5 as a major depressive disorder (non-coded) specifier, while catatonia is listed as both a disorder secondary to a medical condition and as a specifier associated with other mental disorders such as schizophrenia, major depressive disorder, and bipolar disorder. Despite decades of research supporting melancholia's status as a categorical "disorder" (a higher-order construct than a specifier), failure to provide convincing support for its disorder status has contributed to its current positioning in DSM-5. As DSM-5 has similar symptom criteria for major depression and for its melancholia specifier, research seeking to differentiate melancholic and non-melancholic depression according to DSM-5 criteria will have limited capacity to demonstrate "melancholia" as a separate disorder and risks melancholia continuing to be reified as a low-order specifier and thus clinical marginalization. There have been few advances in catatonia research in recent years with its positioning largely relying on opinion and clinical observation rather than on empirical studies.

  4. Glucocorticoid regulation of SLIT/ROBO tumour suppressor genes in the ovarian surface epithelium and ovarian cancer cells.

    PubMed

    Dickinson, Rachel E; Fegan, K Scott; Ren, Xia; Hillier, Stephen G; Duncan, W Colin

    2011-01-01

    The three SLIT ligands and their four ROBO receptors have fundamental roles in mammalian development by promoting apoptosis and repulsing aberrant cell migration. SLITs and ROBOs have emerged as candidate tumour suppressor genes whose expression is inhibited in a variety of epithelial tumours. We demonstrated that their expression could be negatively regulated by cortisol in normal ovarian luteal cells. We hypothesised that after ovulation the locally produced cortisol would inhibit SLIT/ROBO expression in the ovarian surface epithelium (OSE) to facilitate its repair and that this regulatory pathway was still present, and could be manipulated, in ovarian epithelial cancer cells. Here we examined the expression and regulation of the SLIT/ROBO pathway in OSE, ovarian cancer epithelial cells and ovarian tumour cell lines. Basal SLIT2, SLIT3, ROBO1, ROBO2 and ROBO4 expression was lower in primary cultures of ovarian cancer epithelial cells when compared to normal OSE (P<0.05) and in poorly differentiated SKOV-3 cells compared to the more differentiated PEO-14 cells (P<0.05). Cortisol reduced the expression of certain SLITs and ROBOs in normal OSE and PEO-14 cells (P<0.05). Furthermore blocking SLIT/ROBO activity reduced apoptosis in both PEO-14 and SKOV-3 tumour cells (P<0.05). Interestingly SLIT/ROBO expression could be increased by reducing the expression of the glucocorticoid receptor using siRNA (P<0.05). Overall our findings indicate that in the post-ovulatory phase one role of cortisol may be to temporarily inhibit SLIT/ROBO expression to facilitate regeneration of the OSE. Therefore this pathway may be a target to develop strategies to manipulate the SLIT/ROBO system in ovarian cancer.

  5. Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1, and Caspase-9/-3 activation

    PubMed Central

    Sørensen, Belinda Halling; Nielsen, Dorthe; Thorsteinsdottir, Unnur Arna; Hoffmann, Else Kay

    2016-01-01

    The leucine-rich repeat containing 8A (LRRC8A) protein is an essential component of the volume-sensitive organic anion channel (VSOAC), and using pharmacological anion channel inhibitors (NS3728, DIDS) and LRRC8A siRNA we have investigated its role in development of Cisplatin resistance in human ovarian (A2780) and alveolar (A549) carcinoma cells. In Cisplatin-sensitive cells Cisplatin treatment increases p53-protein level as well as downstream signaling, e.g., expression of p21Waf1/Cip1, Bax, Noxa, MDM2, and activation of Caspase-9/-3. In contrast, Cisplatin-resistant cells do not enter apoptosis, i.e., their p53 and downstream signaling are reduced and caspase activity unaltered following Cisplatin exposure. Reduced LRRC8A expression and VSOAC activity are previously shown to correlate with Cisplatin resistance, and here we demonstrate that pharmacological inhibition and transient knockdown of LRRC8A reduce the protein level of p53, MDM2, and p21Waf1/Cip1 as well as Caspase-9/-3 activation in Cisplatin-sensitive cells. Cisplatin resistance is accompanied by reduction in total LRRC8A expression (A2780) or LRRC8A expression in the plasma membrane (A549). Activation of Caspase-3 dependent apoptosis by TNFα-exposure or hyperosmotic cell shrinkage is almost unaffected by pharmacological anion channel inhibition. Our data indicate 1) that expression/activity of LRRC8A is essential for Cisplatin-induced increase in p53 protein level and its downstream signaling, i.e., Caspase-9/-3 activation, expression of p21Waf1/Cip1 and MDM2; and 2) that downregulation of LRRC8A-dependent osmolyte transporters contributes to acquirement of Cisplatin resistance in ovarian and lung carcinoma cells. Activation of LRRC8A-containing channels is upstream to apoptotic volume decrease as hypertonic cell shrinkage induces apoptosis independent of the presence of LRRC8A. PMID:26984736

  6. CD24 and Nanog identify stem cells signature of ovarian epithelium and cysts that may develop to ovarian cancer.

    PubMed

    Schreiber, Letizia; Raanan, Calanit; Amsterdam, Abraham

    2014-03-01

    Ovarian cancer is the most lethal gynecological cancer. There is a general debate whether ovarian cancer is an intrinsic or an imported disease. We investigated whether in normal morphological appearance and in early stages of ovarian tumorgenesis typical cancer cell markers such as CD24 and Nanog are expressed. In 25% of normal appearing ovaries of post-menopausal women there was co-localization of CD24 and Nanog in the walls of the ovarian cysts, leaving the epithelial cells on the surface of these ovaries free of Nanog or CD24 expression. In benign ovarian tumors 37% of specimens were positive to CD24 and Nanog labeling while 26% of them were localized in the cyst walls. In contrast, in serous borderline tumors 79% specimens were labeled with CD24, 42% of them were localized in cysts and in 32% of them showed co-localization with CD24 and Nanog was evident: the rest were labeled in the ovarian epithelial cells. In serous ovarian carcinomas 81% specimens were labeled with CD24 antibodies. In 45% of them co-localization with Nanog was evident in the bulk of the cancerous tissue. In mucinous carcinomas no labeling with CD24 or Nanog was evident. In view of the synergistic effect of CD24 and Nanog expressed in malignant cancer development in other systems, it is suggested that such an analysis can be valuable for early detection of ovarian cancer. Moreover, the abundance of these markers in cysts in the development of ovarian cancer may suggest that they present an intrinsic source of the development of the highly malignant disease. Finally, since CD24 is exposed on the surface of the cancer cells, it may be highly beneficial to target these cells with antibodies to CD24 conjugated to cytotoxic drugs for more efficient treatment of this malignant disease.

  7. Akt isoform specific effects in ovarian cancer progression

    PubMed Central

    Linnerth-Petrik, Nicolle M.; Santry, Lisa A.; Moorehead, Roger; Jücker, Manfred

    2016-01-01

    Ovarian cancer remains a significant therapeutic problem and novel, effective therapies are needed. Akt is a serine-threonine kinase that is overexpressed in numerous cancers, including ovarian. Mammalian cells express three Akt isoforms which are encoded by distinct genes. Although there are several Akt inhibitors in clinical trials, most indiscriminately target all isoforms. Current in vitro data and animal knockout experiments suggest that the Akt isoforms may have divergent roles. In this paper, we determined the isoform-specific functions of Akt in ovarian cancer cell proliferation in vitro and in ovarian cancer progression in vivo. For in vitro experiments, murine and human ovarian cancer cells were treated with Akt inhibitors and cell viability was assessed. We used two different in vivo approaches to identify the roles of Akt isoforms in ovarian cancer progression and their influence on the primary tumor and tumor microenvironment. In one experiment, wild-type C57Bl6 mice were orthotopically injected with ID8 cells with stable knockdown of Akt isoforms. In a separate experiment, mice null for Akt 1-3 were orthotopically injected with WT ID8 cells (Figure 1). Our data show that inhibition of Akt1 significantly reduced ovarian cancer cell proliferation and inhibited tumor progression in vivo. Conversely, disruption of Akt2 increased tumor growth. Inhibition of Akt3 had an intermediate phenotype, but also increased growth of ovarian cancer cells. These data suggest that there is minimal redundancy between the Akt isoforms in ovarian cancer progression. These findings have important implications in the design of Akt inhibitors for the effective treatment of ovarian cancer. PMID:27533079

  8. Ovarian cancers overexpress the antimicrobial protein hCAP-18 and its derivative LL-37 increases ovarian cancer cell proliferation and invasion.

    PubMed

    Coffelt, Seth B; Waterman, Ruth S; Florez, Luisa; Höner zu Bentrup, Kerstin; Zwezdaryk, Kevin J; Tomchuck, Suzanne L; LaMarca, Heather L; Danka, Elizabeth S; Morris, Cindy A; Scandurro, Aline B

    2008-03-01

    The role of the pro-inflammatory peptide, LL-37, and its pro-form, human cationic antimicrobial protein 18 (hCAP-18), in cancer development and progression is poorly understood. In damaged and inflamed tissue, LL-37 functions as a chemoattractant, mitogen and pro-angiogenic factor suggesting that the peptide may potentiate tumor progression. The aim of this study was to characterize the distribution of hCAP-18/LL-37 in normal and cancerous ovarian tissue and to examine the effects of LL-37 on ovarian cancer cells. Expression of hCAP-18/LL-37 was localized to immune and granulosa cells of normal ovarian tissue. By contrast, ovarian tumors displayed significantly higher levels of hCAP-18/LL-37 where expression was observed in tumor and stromal cells. Protein expression was statistically compared to the degree of immune cell infiltration and microvessel density in epithelial-derived ovarian tumors and a significant correlation was observed for both. It was demonstrated that ovarian tumor tissue lysates and ovarian cancer cell lines express hCAP-18/LL-37. Treatment of ovarian cancer cell lines with recombinant LL-37 stimulated proliferation, chemotaxis, invasion and matrix metalloproteinase expression. These data demonstrate for the first time that hCAP-18/LL-37 is significantly overexpressed in ovarian tumors and suggest LL-37 may contribute to ovarian tumorigenesis through direct stimulation of tumor cells, initiation of angiogenesis and recruitment of immune cells. These data provide further evidence of the existing relationship between pro-inflammatory molecules and ovarian cancer progression.

  9. Role of the hedgehog/patched signaling pathway in oncogenesis: a new polymorphism in the PTCH gene in ovarian fibroma.

    PubMed

    Levanat, Sonja; Musani, Vesna; Komar, Arijana; Oreskovic, S

    2004-12-01

    We compared the expression of target genes of Hedgehog/Patched signaling in ovarian fibromas and ovarian dermoids. We noted that high levels of SHH appear almost regularly, especially in dermoids, usually accompanied by increased expression of SMO. GLI overexpression does not coincide with that of PTCH. Loss of heterozygosity findings in the PTCH locus and increased expression of several genes in the pathway strongly suggest that the pathway is involved in both ovarian fibroma and dermoids.

  10. Eating Disorder Not Otherwise Specified in Adolescents

    ERIC Educational Resources Information Center

    Eddy, Kamryn T.; Doyle, Angela Celio; Hoste, Renee Rienecke; Herzog, David B.; Le Grange, Daniel

    2008-01-01

    A study to examine the kind of eating disorders not otherwise specified (EDNOS) among adolescents encountered during treatment at an outpatient eating disorder clinic is conducted. Results indicate that EDNOS is more predominant among adolescents seeking treatment for eating disorders.

  11. Establishment of an ovarian metastasis model and possible involvement of E-cadherin down-regulation in the metastasis.

    PubMed

    Kuwabara, Yoshiko; Yamada, Taketo; Yamazaki, Ken; Du, Wen-Lin; Banno, Kouji; Aoki, Daisuke; Sakamoto, Michiie

    2008-10-01

    Clinical observations of cases of ovarian metastasis suggest that there may be a unique mechanism underlying ovarian-specific metastasis. This study was undertaken to establish an in vivo model of metastasis to the ovary, and to investigate the mechanism of ovarian-specific metastasis. We examined the capacity for ovarian metastasis in eight different human carcinoma cell lines by implantation in female NOD/SCID mice transvenously and intraperitoneally. By transvenous inoculation, only RERF-LC-AI, a poorly differentiated carcinoma cell line, frequently demonstrated ovarian metastasis. By intraperitoneal inoculation, four of the eight cell lines (HGC27, MKN-45, KATO-III, and RERF-LC-AI) metastasized to the ovary. We compared E-cadherin expression among ovarian metastatic cell lines and others. All of these four ovarian metastatic cell lines and HSKTC, a Krukenberg tumor cell line, showed E-cadherin down-regulation and others did not. E-cadherin was then forcibly expressed in RERF-LC-AI, and inhibited ovarian metastasis completely. The capacity for metastasizing to the other organs was not affected by E-cadherin expression. We also performed histological investigation of clinical ovarian-metastatic tumor cases. About half of all ovarian-metastatic tumor cases showed loss or reduction of E-cadherin expression. These data suggest that E-cadherin down-regulation may be involved in ovarian-specific metastasis.

  12. Markers of Ovarian Cancer Using a Glycoprotein/Antibody Array

    DTIC Science & Technology

    2013-05-01

    has been reported that both the expression and activity of fucosyltransferases are increased in ovarian cancers.33−35 Several fucosylated proteins...2 (1), 34−45. (33) Takahashi, T.; Ikeda, Y.; Miyoshi, E.; Yaginuma, Y.; Ishikawa, M.; Taniguchi, N. Alpha-1,6- fucosyltransferase is highly and...K. L. Elevated serum alpha(1→3)-L- fucosyltransferase activity with synthetic low molecular weight acceptor in human ovarian cancer. Cancer Lett. 1986

  13. Identifying Determinants of PARP Inhibitor Sensitivity in Ovarian Cancer

    DTIC Science & Technology

    2015-10-01

    NOTES 14. ABSTRACT 15. SUBJECT TERMS Ovarian cancer, BRCA1, RAD51, PARP inhibitors, platinum, biomarkers, drug resistance 16. SECURITY CLASSIFICATION...well as mutant BRCA1 protein stabilization in ovarian carcinomas. The expression of mutant BRCA1 or novel proteins identified to be important for drug ...BRCA1 or novel proteins identified to be important for drug resistance will be assessed for their ability to be used as biomarkers of PARP inhibitor

  14. Role of Receptor Sialylation in the Ovarian Tumor Cell Phenotype

    DTIC Science & Technology

    2012-06-01

    blocks apoptosis induced by the mammalian lectin, galectin - 3 , which our studies show is expressed in human ovarian tumor tissues and in ascitic fluid...omental cultures. • Optimized immunoblotting protocol for galectin - 3 in ascites • Determination that sialylation of Fas and TNFR1 blocks apoptotic...REPORT DATE 2. REPORT TYPE Annual report 3 . DATES COVERED 4. TITLE AND SUBTITLE Role of receptor sialylation in the ovarian tumor cell

  15. Can Ovarian Cancer Be Prevented?

    MedlinePlus

    ... a family history of ovarian cancer or BRCA mutation If your family history suggests that you (or ... are likely to have one of the gene mutations associated with an increased ovarian cancer risk. The ...

  16. Clinical and molecular comparison between borderline serous ovarian tumors and advanced serous papillary ovarian carcinomas.

    PubMed

    Halperin, R; Zehavi, S; Dar, P; Habler, L; Hadas, E; Bukovsky, I; Schneider, D

    2001-01-01

    The aim of this study was to characterize the clinical and molecular markers of borderline serous ovarian tumors (BSOT), and to study their expression in the progression from benign lesions to advanced serous papillary ovarian carcinomas (SPOC). The clinical records of 20 patients with BSOT and 22 patients with SPOC were reviewed. Specimens from all these cases and from six benign ovarian serous cystadenomas were evaluated for expression of estrogen receptors (ER), progesterone receptors (PR), p53. HER-2/neu and Ki-67 by immunohistochemical techniques. The mean patient age and the age at menarche differed significantly between the compared groups of BSOT and SPOC (p=0.0006 and p=0.0014, respectively). No difference was observed comparing the other clinical parameters. The immunohistochemical analysis demonstrated a significant increase in the expression of ER (100% vs 72.7%), and a significant decrease in the immunoreactivity for p53 (0% vs 45.4%) and Ki-67 (2% vs 26.8%) in cases of BSOT compared with those of SPOC (p=0.007, p=0.0003 and p=0.012, respectively). No significant difference was demonstrated comparing the expression of PR and HER-2/neu. The immunostaining of benign ovarian serous cystadenoma specimens did not differ significantly from immunoreactivity observed in cases of BSOT. According to immunohistochemical analysis, BSOT had much more in common with benign serous tumors than with SPOC. The main difference between BSOT and SPOC was regarding the overexpression of p53 and Ki-67.

  17. Upregulated CTHRC1 promotes human epithelial ovarian cancer invasion through activating EGFR signaling.

    PubMed

    Ye, Jun; Chen, Wei; Wu, Zhi-Yong; Zhang, Jin-Hui; Fei, He; Zhang, Li-Wen; Wang, Ya-Hui; Chen, Ya-Ping; Yang, Xiao-Mei

    2016-12-01

    Epithelial ovarian cancer (EOC) is the major cause of deaths from gynecologic malignancies, and metastasis is the main cause of cancer related death. Collagen triple helix repeat containing-1 (CTHRC1) is a secreted protein that has the ability to inhibit collagen matrix synthesis. In this study, we found that high CTHRC1 expression was associated with poor prognosis of EOC. In vitro experiments showed that CTHRC1 promoted migration and invasion of ovarian cancer cells. CTHRC1 had no effect on ovarian cancer cells viability. Additionally, EGFR inhibitors reduced the promotion effects of CTHRC1 on EOC cell invasion. After silencing of CTHRC1, downregulated expression of phosphorylation of EGFR/ERK1/2/AKT was observed in ovarian cancer cells. Taken together, our results suggest a role for CTHRC1 in the progression of ovarian cancer and identified CTHRC1 as a potentially important predictor for human ovarian cancer prognosis.

  18. TRPM7 is required for ovarian cancer cell growth, migration and invasion

    SciTech Connect

    Wang, Jing; Liao, Qian-jin; Zhang, Yi; Zhou, Hui; Luo, Chen-hui; Tang, Jie; Wang, Ying; Tang, Yan; Zhao, Min; Zhao, Xue-heng; Zhang, Qiong-yu; Xiao, Ling

    2014-11-28

    Highlights: • Silence of TRPM7 in ovarian cancer cells inhibits cell proliferation, migration and invasion. • Silence of TRPM7 decreases phosphorylation levels of Akt, Src and p38 in ovarian cancer cells. • Silence of TRPM7 increases expression of filamentous actin and number of focal adhesions in ovarian cancer cells. - Abstract: Our previous study demonstrated that the melastatin-related transient receptor potential channel 7 (TRPM7) was highly expressed in ovarian carcinomas and its overexpression was significantly associated with poor prognosis in ovarian cancer patients. However, the function of TRPM7 in ovarian cancer is mostly unknown. In this study, we examined the roles of TRPM7 in ovarian cancer cell proliferation, migration and invasion. We found that short hairpin RNA interference-mediated silence of TRPM7 significantly inhibited cell proliferation, colony formation, migration and invasion in multiple ovarian cancer cell lines. Mechanistic investigation revealed that silence of TRPM7 decreased phosphorylation levels of Akt, Src and p38 and increased filamentous actin and focal adhesion number in ovarian cancer cells. Thus, our results suggest that TRPM7 is required for proliferation, migration and invasion of ovarian cancer cells through regulating multiple signaling transduction pathways and the formation of focal adhesions.

  19. Overexpression of clusterin promotes angiogenesis via the vascular endothelial growth factor in primary ovarian cancer.

    PubMed

    Fu, Yanxia; Lai, Yingrong; Wang, Qiongjuan; Liu, Xingyang; He, Weipeng; Zhang, Haihong; Fan, Chunyang; Yang, Guofen

    2013-06-01

    Clusterin (CLU), a multifunctional glycoprotein, is ubiquitously produced in mammalian tissues. CLU has been shown to play significant roles in many of the biological behaviours of human tumors, such as cell proliferation, apoptosis, chemoresistance and angiogenesis. However, the relationship of CLU expression with angiogenesis in ovarian cancer has not been studied. A total of 275 epithelial ovarian tumors were obtained from archives of paraffin‑embedded tissues. Immunohistochemical (IHC) staining for CLU and vascular endothelial growth factor (VEGF) was performed on a tissue microarray (TMA) including 181 primary ovarian epithelial cancer, 40 borderline ovarian tumors and 54 ovarian cancer mesenteric metastasis samples. Of the 174 cases, overexpression of CLU and VEGF were detected in 107 (61.5%) and 109 (62.9%) cases of primary ovarian carcinoma, respectively. Of the 107 cases of primary ovarian carcinoma with overexpression of CLU, expression of VEGF was increased in 82 (75.2%) cases. However, in another 67 cases without CLU overexpression, overexpression of VEGF was observed in only 27 (24.8%) cases (P<0.05). Overexpression of CLU in epithelial ovarian cancer appears to be correlated with increased tumor angiogenesis, consistent with the established role of CLU as an oncogene in the biology of ovarian cancer. In the treatment of ovarian cancer, these two markers may be used in the selection of patients for targeted therapy.

  20. Previtellogenic oocyte growth in salmon: relationships among body growth, plasma insulin-like growth factor-1, estradiol-17beta, follicle-stimulating hormone and expression of ovarian genes for insulin-like growth factors, steroidogenic-acute regulatory protein and receptors for gonadotropins, growth hormone, and somatolactin.

    PubMed

    Campbell, B; Dickey, J; Beckman, B; Young, G; Pierce, A; Fukada, H; Swanson, P

    2006-07-01

    Body growth during critical periods is known to be an important factor in determining the age of maturity and fecundity in fish. However, the endocrine mechanisms controlling oogenesis in fish and the effects of growth on this process are poorly understood. In this study interactions between the growth and reproductive systems were examined by monitoring changes in various components of the FSH-ovary axis, plasma insulin-like growth factor 1 (Igf1), and ovarian gene expression in relation to body and previtellogenic oocyte growth in coho salmon. Samples were collected from females during two hypothesized critical periods when growth influences maturation in this species. Body growth during the fall-spring months was strongly related to the degree of oocyte development, with larger fish possessing more advanced oocytes than smaller, slower growing fish. The accumulation of cortical alveoli in the oocytes was associated with increases in plasma and pituitary FSH, plasma estradiol-17beta, and ovarian steroidogenic acute regulatory protein (star) gene expression, whereas ovarian transcripts for growth hormone receptor and somatolactin receptor decreased. As oocytes accumulated lipid droplets, a general increase occurred in plasma Igf1 and components of the FSH-ovary axis, including plasma FSH, estradiol-17beta, and ovarian mRNAs for gonadotropin receptors, star, igf1, and igf2. A consistent positive relationship between plasma Igf1, estradiol-17beta, and pituitary FSH during growth in the spring suggests that these factors are important links in the mechanism by which body growth influences the rate of oocyte development.

  1. Genetic Modifiers of Ovarian Cancer

    DTIC Science & Technology

    2013-06-01

    cancer suggesting the presence of genetic modifiers of ovarian cancer in this population. A genome wide association study ( GWAS ) for ovarian cancer...cancer and 1,000 age-matched unaffected BRCA1 carriers. As outlined in detail in our previous annual report, we recently conducted a GWAS of BRCA1...between ovarian cancer risk and SNPs implicated in Aim 1 by genotyping 1,500 BRCA1 ovarian cancer cases and 1,500 unaffected BRCA1 carriers. GWAS

  2. Ovarian stimulation using human chorionic gonadotrophin impairs blastocyst implantation and decidualization by altering ovarian hormone levels and downstream signaling in mice.

    PubMed

    Ezoe, Kenji; Daikoku, Takiko; Yabuuchi, Akiko; Murata, Nana; Kawano, Hiroomi; Abe, Takashi; Okuno, Takashi; Kobayashi, Tamotsu; Kato, Keiichi

    2014-11-01

    Ovarian stimulation induced by follicle-stimulating hormone and human chorionic gonadotrophin (hCG) is commonly used in assisted reproductive technology to increase embryo production. However, recent clinical and animal studies have shown that ovarian stimulation disrupts endometrial function and embryo development and adversely affects pregnancy outcomes. How ovarian stimulation impairs pregnancy establishment and the precise mechanisms by which this stimulation reduces the chances of conception remain unclear. In this study, we first demonstrated that ovarian stimulation using hCG alone impairs implantation, decidualization and fetal development of mice by generating abnormal ovarian hormone levels. We also showed that ovarian hormone levels were altered because of changes in the levels of the enzymes involved in their synthesis in the follicles and corpora lutea. Furthermore, we determined that anomalous ovarian hormone secretion induced by ovarian stimulation alters the spatiotemporal expression of progesterone receptors and their downstream genes, especially in the uterine epithelium. Epithelial estrogenic signaling and cell proliferation were promoted on the day of implantation in stimulated mice and these changes led to the failure of uterine transition from the prereceptive to the receptive state. Collectively, our findings indicate that ovarian stimulation using hCG induces an imbalance in steroid hormone secretion, which causes a failure of the development of uterine receptivity and subsequent implantation and decidualization by altering the expression of steroid receptors and their downstream signaling associated with embryo implantation.

  3. Ovarian ectopic pregnancy in adolescence

    PubMed Central

    Andrade, Ana Gonçalves; Rocha, Sara; Marques, Catarina O; Simões, Mafalda; Martins, Isabel; Biscaia, Isabel; F Barros, Carlos

    2015-01-01

    Key Clinical Message Ovarian pregnancy is one of the rarest types of extrauterine pregnancy. Its preoperative diagnosis remains a challenge since it presents quite similarly to tubal pregnancy and complicated ovarian cysts. Altho