Science.gov

Sample records for expression specifies ovarian

  1. Ovarian steroid cell tumor, not otherwise specified: A case report and literature review

    PubMed Central

    Qian, Lili; Shen, Zhen; Zhang, Xuefen; Wu, Dabao; Zhou, Ying

    2016-01-01

    Steroid cell tumors (SCT), not otherwise specified (NOS) are particularly rare ovarian sex cord-stromal tumors, which comprise <0.1% of all ovarian tumors. These tumors are uncommon in patients' prior to puberty without any typical syndromes involving hirsutism, virilization and hypertension. We here in present the case of a 5-year-old female patient who presented with sudden abdominal pain, repeated vomiting and a pelvic mass. Our patient underwent urgent exploratory laparotomy and right salpingo-oophorectomy and the histopathological examination revealed an ovarian SCT-NOS. The patient has been followed up for 5 years since the surgery, without evidence of disease recurrence. The purpose of this study was to discuss the available information on the presentation, diagnosis and recommended treatment of ovarian SCT-NOS; and describes the immunohistochemical characteristics of these tumors. PMID:28105366

  2. Virilizing ovarian tumor of cell tumor type not otherwise specified: a case report.

    PubMed

    Faraj, G; Di Gregorio, S; Misiunas, A; Faure, E N; Villabrile, P; Stringa, I; Petroff, N; Bur, G

    1998-10-01

    Whereas ovarian tumors with overt endocrine manifestations account for less than 5% of all ovarian neoplasms, the incidence of virilizing type tumors in postmenopausal women is even lower since the average age of occurrence is 43 years. Steroid cell tumors not otherwise specified (NOS) are even more rare. We report the case of a 56-year-old woman (age of onset of menopause 43 years) who consulted our service due to a hyperandrogenic syndrome: deepening of the voice, temporal balding, hirsutism and cliteromegaly. Laboratory findings indicated hyperandrogenism in male range. The dexamethasone suppression test did not modify basal values, indicating that adrenal origin was unlikely. Transvaginal ultrasound disclosed multiple microcysts in the left ovary. Abdominal tomography was normal. Suspecting an ovarian tumor, bilateral oophorectomy was performed and a pediculate, 3 cm in diameter, was encountered in the left ovary. Histopathological studies determined it to be a virilizing ovarian tumor NOS. Postoperative recovery was fast; normal hormonal values were reached together with visible clinical improvement. This case is reported because this type of tumor is very infrequent in postmenopausal women, and because in this case it was the functional hormonal test that allowed tumor localization.

  3. Aromatase expression in ovarian epithelial cancers.

    PubMed

    Cunat, S; Rabenoelina, F; Daurès, J-P; Katsaros, D; Sasano, H; Miller, W R; Maudelonde, T; Pujol, P

    2005-01-01

    Our study focused on aromatase cytochrome P450 (CYP19) expression in ovarian epithelial normal and cancer cells and tissues. Aromatase mRNA expression was analyzed by real-time PCR in ovarian epithelial cancer cell lines, in human ovarian surface epithelial (HOSE) cell primary cultures, and in ovarian tissue specimens (n=94), including normal ovaries, ovarian cysts and cancers. Aromatase mRNA was found to be expressed in HOSE cells, in BG1, PEO4 and PEO14, but not in SKOV3 and NIH:OVCAR-3 ovarian cancer cell lines. Correlation analysis of aromatase expression was performed according to clinical, histological and biological parameters. Aromatase expression in ovarian tissue specimens was higher in normal ovaries and cysts than in cancers (P<0.0001). Using laser capture microdissection in normal postmenopausal ovaries, aromatase was found to be predominantly expressed in epithelial cells as compared to stromal component. Using immunohistochemistry (IHC), aromatase was also detected in the epithelium component. There was an inverse correlation between aromatase and ERalpha expression in ovarian tissues (P<0.001, r=-0.34). In the cancer group, no significant differences in aromatase expression were observed according to tumor histotype, grade, stage and survival. Aromatase activity was evaluated in ovarian epithelial cancer (OEC) cell lines by the tritiated water assay and the effects of third-generation aromatase inhibitors (AIs) on aromatase activity and growth were studied. Letrozole and exemestane were able to completely inhibit aromatase activity in BG1 and PEO14 cell lines. Interestingly, both AI showed an antiproliferative effect on the estrogen responsive BG1 cell line co-expressing aromatase and ERalpha. Aromatase expression was found in ovarian epithelial normal tissues and in some ovarian epithelial cancer cells and tissues. This finding raises the possibility that some tumors may respond to estrogen and provides a basis for ascertaining an antimitogenic

  4. Symptomatic Ovarian Steroid Cell Tumor not Otherwise Specified in a Post-Menopausal Woman

    PubMed Central

    Sood, Neha; Desai, Kaniksha; Chindris, Ana-Maria; Lewis, Jason; Dinh, Tri A.

    2016-01-01

    Steroid cell tumor not otherwise specified (NOS) is a rare subtype of sex cord stromal tumor of the ovary and contributes less than 0.1% of all ovarian neoplasms. The majority of tumors occur in pre-menopausal women (mean age: 43 years), in which 56-77% of patients present with virilization due to excess testosterone. An 80-year-old woman with worsening alopecia and excessive growth of coarse hair on abdomen and genital area was found to have elevated serum testosterone level (462 ng/mL). Radiologic studies were consistent with bilateral adrenal adenomas. Bilateral adrenal venous sampling ruled out the adrenal gland as origin of hormone secretion. A diagnostic and therapeutic bilateral salpingo-oophorectomy confirmed steroid cell tumor NOS of the left ovary. Post-operatively, the patient had complete resolution of her symptoms and normalization of testosterone level. Our case emphasizes the importance of a clinical suspicion for an occult testosterone secreting ovarian tumor in a symptomatic patient without obvious ovarian mass on imaging. PMID:27441075

  5. Gene Expression Patterns in Ovarian Carcinomas

    PubMed Central

    Schaner, Marci E.; Ross, Douglas T.; Ciaravino, Giuseppe; Sørlie, Therese; Troyanskaya, Olga; Diehn, Maximilian; Wang, Yan C.; Duran, George E.; Sikic, Thomas L.; Caldeira, Sandra; Skomedal, Hanne; Tu, I-Ping; Hernandez-Boussard, Tina; Johnson, Steven W.; O'Dwyer, Peter J.; Fero, Michael J.; Kristensen, Gunnar B.; Børresen-Dale, Anne-Lise; Hastie, Trevor; Tibshirani, Robert; van de Rijn, Matt; Teng, Nelson N.; Longacre, Teri A.; Botstein, David; Brown, Patrick O.; Sikic, Branimir I.

    2003-01-01

    We used DNA microarrays to characterize the global gene expression patterns in surface epithelial cancers of the ovary. We identified groups of genes that distinguished the clear cell subtype from other ovarian carcinomas, grade I and II from grade III serous papillary carcinomas, and ovarian from breast carcinomas. Six clear cell carcinomas were distinguished from 36 other ovarian carcinomas (predominantly serous papillary) based on their gene expression patterns. The differences may yield insights into the worse prognosis and therapeutic resistance associated with clear cell carcinomas. A comparison of the gene expression patterns in the ovarian cancers to published data of gene expression in breast cancers revealed a large number of differentially expressed genes. We identified a group of 62 genes that correctly classified all 125 breast and ovarian cancer specimens. Among the best discriminators more highly expressed in the ovarian carcinomas were PAX8 (paired box gene 8), mesothelin, and ephrin-B1 (EFNB1). Although estrogen receptor was expressed in both the ovarian and breast cancers, genes that are coregulated with the estrogen receptor in breast cancers, including GATA-3, LIV-1, and X-box binding protein 1, did not show a similar pattern of coexpression in the ovarian cancers. PMID:12960427

  6. Gene expression profiling of human ovarian tumours

    PubMed Central

    Biade, S; Marinucci, M; Schick, J; Roberts, D; Workman, G; Sage, E H; O'Dwyer, P J; LiVolsi, V A; Johnson, S W

    2006-01-01

    There is currently a lack of reliable diagnostic and prognostic markers for ovarian cancer. We established gene expression profiles for 120 human ovarian tumours to identify determinants of histologic subtype, grade and degree of malignancy. Unsupervised cluster analysis of the most variable set of expression data resulted in three major tumour groups. One consisted predominantly of benign tumours, one contained mostly malignant tumours, and one was comprised of a mixture of borderline and malignant tumours. Using two supervised approaches, we identified a set of genes that distinguished the benign, borderline and malignant phenotypes. These algorithms were unable to establish profiles for histologic subtype or grade. To validate these findings, the expression of 21 candidate genes selected from these analyses was measured by quantitative RT–PCR using an independent set of tumour samples. Hierarchical clustering of these data resulted in two major groups, one benign and one malignant, with the borderline tumours interspersed between the two groups. These results indicate that borderline ovarian tumours may be classified as either benign or malignant, and that this classifier could be useful for predicting the clinical course of borderline tumours. Immunohistochemical analysis also demonstrated increased expression of CD24 antigen in malignant versus benign tumour tissue. The data that we have generated will contribute to a growing body of expression data that more accurately define the biologic and clinical characteristics of ovarian cancers. PMID:16969345

  7. Gene expression profiling of human ovarian tumours.

    PubMed

    Biade, S; Marinucci, M; Schick, J; Roberts, D; Workman, G; Sage, E H; O'Dwyer, P J; Livolsi, V A; Johnson, S W

    2006-10-23

    There is currently a lack of reliable diagnostic and prognostic markers for ovarian cancer. We established gene expression profiles for 120 human ovarian tumours to identify determinants of histologic subtype, grade and degree of malignancy. Unsupervised cluster analysis of the most variable set of expression data resulted in three major tumour groups. One consisted predominantly of benign tumours, one contained mostly malignant tumours, and one was comprised of a mixture of borderline and malignant tumours. Using two supervised approaches, we identified a set of genes that distinguished the benign, borderline and malignant phenotypes. These algorithms were unable to establish profiles for histologic subtype or grade. To validate these findings, the expression of 21 candidate genes selected from these analyses was measured by quantitative RT-PCR using an independent set of tumour samples. Hierarchical clustering of these data resulted in two major groups, one benign and one malignant, with the borderline tumours interspersed between the two groups. These results indicate that borderline ovarian tumours may be classified as either benign or malignant, and that this classifier could be useful for predicting the clinical course of borderline tumours. Immunohistochemical analysis also demonstrated increased expression of CD24 antigen in malignant versus benign tumour tissue. The data that we have generated will contribute to a growing body of expression data that more accurately define the biologic and clinical characteristics of ovarian cancers.

  8. Selection of suitable reference genes for gene expression studies in normal human ovarian tissues, borderline ovarian tumours and ovarian cancer.

    PubMed

    Ofinran, Olumide; Bose, Ujjal; Hay, Daniel; Abdul, Summi; Tufatelli, Cristina; Khan, Raheela

    2016-12-01

    The use of reference genes is the most common method of controlling the variation in mRNA expression during quantitative polymerase chain reaction, although the use of traditional reference genes, such as β‑actin, glyceraldehyde‑3‑phosphate dehydrogenase or 18S ribosomal RNA, without validation occasionally leads to unreliable results. Therefore, the present study aimed to evaluate a set of five commonly used reference genes to determine the most suitable for gene expression studies in normal ovarian tissues, borderline ovarian and ovarian cancer tissues. The expression stabilities of these genes were ranked using two gene stability algorithms, geNorm and NormFinder. Using geNorm, the two best reference genes in ovarian cancer were β‑glucuronidase and β‑actin. Hypoxanthine phosphoribosyltransferase‑1 and β‑glucuronidase were the most stable in ovarian borderline tumours, and hypoxanthine phosphoribosyltransferase‑1 and glyceraldehyde‑3‑phosphate dehydrogenase were the most stable in normal ovarian tissues. NormFinder ranked β‑actin the most stable in ovarian cancer, and the best combination of two genes was β‑glucuronidase and β‑actin. In borderline tumours, hypoxanthine phosphoribosyltransferase‑1 was identified as the most stable, and the best combination was hypoxanthine phosphoribosyltransferase‑1 and β‑glucuronidase. In normal ovarian tissues, β‑glucuronidase was recommended as the optimum reference gene, and the most optimum pair of reference genes was hypoxanthine phosphoribosyltransferase‑1 and β‑actin. To the best of our knowledge, this is the first study to investigate the selection of a set of reference genes for normalisation in quantitative polymerase chain reactions in different ovarian tissues, and therefore it is recommended that β‑glucuronidase, β‑actin and hypoxanthine phosphoribosyltransferase‑1 are the most suitable reference genes for such analyses.

  9. Epithelial membrane protein 1 expression in ovarian serous tumors.

    PubMed

    Demirag, Guzin Gonullu; Kefeli, Mehmet; Kemal, Yasemin; Yucel, Idris

    2016-03-01

    The present study aimed to analyze the clinical significance of epithelial membrane protein 1 (EMP1) expression in ovarian serous tumors. A total of 84 cases of ovarian serous tumor (50 patients with malignant ovarian serous tumors and 34 patients with borderline and benign serous tumors) were retrospectively analyzed. Differences in the expression levels of EMP1 between the malignant and non-malignant tumor groups were evaluated by immunohistochemical staining. In addition, the association between EMP1 expression and prognostic factors in malignant ovarian serous tumors was investigated. The expression levels of EMP1 were significantly reduced in all the 50 malignant ovarian serous tumors, compared with the 34 non-malignant ovarian serous tumors (P<0.000). Reduced expression of EMP1 was correlated with high grade (P=0.009) and stage (P<0.000) of malignant tumors. EMP1 expression was not observed to be correlated with any other investigated parameters, including surgery, type of operation and chemotherapy response (P>0.005). These results indicated that EMP1 may have a significant role as a negative regulator in ovarian serous tumors, and reduced EMP1 expression in serous tumors may be associated with increased disease severity.

  10. Localisation and expression of aquaporin subtypes in epithelial ovarian tumours.

    PubMed

    Yang, Jian-Hua; Yu, Yu-Qun; Yan, Chun-xiao

    2011-09-01

    To characterise AQP subtype localisation and expression in epithelial ovarian tumours, immunohistochemistry was used to assess the localisation and expression of AQP1-9 in 30 benign tumour cases, 30 borderline tumour cases, 50 malignant tumour cases and 20 normal ovarian tissue cases. Multiple AQP subtypes were expressed in epithelial ovarian tumours, with each AQP subtype displaying a different pattern of localisation and expression. AQP1 was mainly expressed in the microvascular endothelium, and AQP 2-9 were mainly expressed in tumour cells. Most AQP subtypes co-localised in the basolateral membranes of the epithelia of benign tumours and plasma membranes of malignant tumour cells. The positive rates for AQP1, 5, 6, 7, 8, and 9 were over 50%, but those for AQP2, 3 and 4 were only 10-40%. The expression of AQP1, 5 and 9 in malignant and borderline tumours was significantly higher than that in benign tumours (P<0.05) and normal ovarian tissue (P<0.05). However, AQP6 expression in ovarian malignant and borderline tumours was significantly lower than that in benign tumours (P<0.01) or normal ovarian tissue (P<0.01). AQP1 expression was increased in cases with ascites volumes greater than 1000 mL (P<0.05), AQP5 expression was greater in cases with lymph node metastasis (P<0.05), and more AQP9 expression was observed in G3 cases versus G1 and G2 cases (P<0.01). These results suggest that changes in the distribution and expression of AQP subtypes may be involved in ovarian carcinogenesis. This study presents a novel avenue of research that could illuminate the mechanism of ovarian carcinogenesis and treatment.

  11. Over-Specified Referring Expressions Impair Comprehension: An ERP Study

    ERIC Educational Resources Information Center

    Engelhardt, Paul E.; Demiral, S. Baris; Ferreira, Fernanda

    2011-01-01

    Speakers often include extra information when producing referring expressions, which is inconsistent with the Maxim of Quantity (Grice, 1975). In this study, we investigated how comprehension is affected by unnecessary information. The literature is mixed: some studies have found that extra information facilitates comprehension and others reported…

  12. Comparison of Expression Profiles in Ovarian Epithelium In Vivo and Ovarian Cancer Identifies Novel Candidate Genes Involved in Disease Pathogenesis

    PubMed Central

    Emmanuel, Catherine; Gava, Natalie; Kennedy, Catherine; Balleine, Rosemary L.; Sharma, Raghwa; Wain, Gerard; Brand, Alison; Hogg, Russell; Etemadmoghadam, Dariush; George, Joshy; Birrer, Michael J.; Clarke, Christine L.; Chenevix-Trench, Georgia; Bowtell, David D. L.; Harnett, Paul R.; deFazio, Anna

    2011-01-01

    Molecular events leading to epithelial ovarian cancer are poorly understood but ovulatory hormones and a high number of life-time ovulations with concomitant proliferation, apoptosis, and inflammation, increases risk. We identified genes that are regulated during the estrous cycle in murine ovarian surface epithelium and analysed these profiles to identify genes dysregulated in human ovarian cancer, using publically available datasets. We identified 338 genes that are regulated in murine ovarian surface epithelium during the estrous cycle and dysregulated in ovarian cancer. Six of seven candidates selected for immunohistochemical validation were expressed in serous ovarian cancer, inclusion cysts, ovarian surface epithelium and in fallopian tube epithelium. Most were overexpressed in ovarian cancer compared with ovarian surface epithelium and/or inclusion cysts (EpCAM, EZH2, BIRC5) although BIRC5 and EZH2 were expressed as highly in fallopian tube epithelium as in ovarian cancer. We prioritised the 338 genes for those likely to be important for ovarian cancer development by in silico analyses of copy number aberration and mutation using publically available datasets and identified genes with established roles in ovarian cancer as well as novel genes for which we have evidence for involvement in ovarian cancer. Chromosome segregation emerged as an important process in which genes from our list of 338 were over-represented including two (BUB1, NCAPD2) for which there is evidence of amplification and mutation. NUAK2, upregulated in ovarian surface epithelium in proestrus and predicted to have a driver mutation in ovarian cancer, was examined in a larger cohort of serous ovarian cancer where patients with lower NUAK2 expression had shorter overall survival. In conclusion, defining genes that are activated in normal epithelium in the course of ovulation that are also dysregulated in cancer has identified a number of pathways and novel candidate genes that may contribute

  13. Expression and Function of CD44 in Epithelial Ovarian Carcinoma

    PubMed Central

    Sacks, Joelle D.; Barbolina, Maria V.

    2015-01-01

    CD44, a cell surface glycoprotein, has been increasingly implicated in the pathogenesis and progression of epithelial ovarian cancer, the deadliest gynecologic malignancy in women. Here, we review recent reports on the expression and function of CD44 in epithelial ovarian carcinoma. Further functional data for CD44 in peritoneal adhesion and metastatic progression and its association with stem cells is highlighted. Recent studies utilizing CD44 for therapeutic targeting are also discussed. PMID:26569327

  14. Expression and Function of CD44 in Epithelial Ovarian Carcinoma.

    PubMed

    Sacks, Joelle D; Barbolina, Maria V

    2015-11-11

    CD44, a cell surface glycoprotein, has been increasingly implicated in the pathogenesis and progression of epithelial ovarian cancer, the deadliest gynecologic malignancy in women. Here, we review recent reports on the expression and function of CD44 in epithelial ovarian carcinoma. Further functional data for CD44 in peritoneal adhesion and metastatic progression and its association with stem cells is highlighted. Recent studies utilizing CD44 for therapeutic targeting are also discussed.

  15. Dysregulated Expression of Long Noncoding RNAs in Ovarian Cancer

    PubMed Central

    Zhong, Yancheng; Gao, Dan; He, Shiwei; Shuai, Cijun; Peng, Shuping

    2016-01-01

    Abstract Ovarian cancer is the leading cause of death among women with gynecologic malignancies. The development and progression of ovarian cancer are complex and a multiple-step process. New biomarker molecules for diagnostic and prognostic are essential for novel therapeutic targets and to extend the survival time of patients with ovarian cancer. Long noncoding RNAs (lncRNAs) are non–protein-coding transcripts longer than 200 nucleotides that have recently been found as key regulators of various biological processes and to be involved in the development and progression of many diseases including cancers. In this review, we summarized the expression pattern of several dysregulated lncRNAs (HOTAIR, H19, XIST, and HOST2) and the functional molecular mechanism of these lncRNAs on the initiation and progression of ovarian cancer. The lncRNAs as biomarkers may be used for current and future clinical diagnosis, therapeutics, and prognosis. PMID:27603915

  16. Over-expression of nicotinamide phosphoribosyltransferase in ovarian cancers.

    PubMed

    Shackelford, Rodney E; Bui, Marilyn M; Coppola, Domenico; Hakam, Ardeshir

    2010-06-12

    Nicotinamide phosphoribosyltransferase (Nampt) catalyzes the rate-limiting step of nicotinamide adenine dinucleotide (NAD(+)) synthesis and is required for cell growth, survival, DNA replication and repair, and angiogenesis. Nampt expression increases gene expression which promotes cell survival and increases SirT1 activity, promoting angiogenesis, and it is increased in several human malignancies. Recently, others have shown that ovarian serous adenocarcinomas (OSAs) express high levels of activated Stat3. Since Nampt expression is increased by Stat3, we hypothesized that Nampt protein might be highly expressed in OSAs. Using tissue microarray (TMA) and the avidin-biotin complex immunohistochemical technique we examined Nampt expression in 47 samples of benign ovarian tissue and 49 samples of ovarian serous adenoacarcinomas. Our data show that Nampt protein expression is significantly increased in OSAs as compared to benign ovarian tissue (0.49+/-0.12 benign vs. 4.78+/-0.46 malignant; +/-standard error of the mean). This is the first report demonstrating Nampt overexpression in OSA, which may shed light on the pathogenesis of OSA. Further studies of the role of Nampt overexpresion in OSA may shed light on the prognosis and clinical course of OSA. Last, since an effective pharmacologic Nampt inhibitor is currently in clinical use, further studies of Nampt overexpression in OSA may be used in selecting patients for Nampt inhibitor therapy.

  17. Associations between hormone receptor expression and ovarian cancer survival: an Ovarian Tumor Tissue Analysis consortium study

    PubMed Central

    Sieh, Weiva; Köbel, Martin; Longacre, Teri A.; Bowtell, David D.; deFazio, Anna; Goodman, Marc T.; Høgdall, Estrid; Deen, Suha; Wentzensen, Nicolas; Moysich, Kirsten B.; Brenton, James D.; Clarke, Blaise; Menon, Usha; Gilks, C. Blake; Kim, Andre; Madore, Jason; Fereday, Sian; George, Joshy; Galletta, Laura; Lurie, Galina; Wilkens, Lynne R.; Carney, Michael E.; Thompson, Pamela J.; Matsuno, Rayna K.; Kjær, Susanne Krüger; Jensen, Allan; Høgdall, Claus; Kalli, Kimberly R.; Fridley, Brooke L.; Keeney, Gary L.; Vierkant, Robert A.; Cunningham, Julie M.; Brinton, Louise A.; Yang, Hannah P.; Sherman, Mark E.; Garcia-Closas, Montserrat; Lissowska, Jolanta; Odunsi, Kunle; Morrison, Carl; Lele, Shashikant; Bshara, Wiam; Sucheston, Lara; Jimenez-Linan, Mercedes; Blows, Fiona M.; Alsop, Jennifer; Mack, Marie; McGuire, Valerie; Rothstein, Joseph H.; Rosen, Barry P.; Bernardini, Marcus Q.; Mackay, Helen; Oza, Amit; Wozniak, Eva L.; Benjamin, Elizabeth; Gentry-Maharaj, Aleksandra; Gayther, Simon A.; Tinker, Anna V.; Prentice, Leah M.; Chow, Christine; Anglesio, Michael S.; Johnatty, Sharon E.; Chenevix-Trench, Georgia; Whittemore, Alice S.; Pharoah, Paul D. P.; Goode, Ellen L.; Huntsman, David G.; Ramus, Susan J.

    2014-01-01

    Background Ovarian cancer is a lethal disease comprised of distinct histopathological types. There are few established biomarkers of ovarian cancer prognosis, in part because subtype-specific associations may have been obscured in studies combining all subtypes. We examined whether progesterone receptor (PR) and estrogen receptor (ER) protein expression were associated with subtype-specific survival in the international Ovarian Tumor Tissue Analysis (OTTA) consortium. Methods PR and ER were assessed by central immunohistochemical analysis of tissue microarrays for 2933 women with invasive epithelial ovarian cancer from 12 study sites. Negative, weak, and strong expression were defined as positive staining in <1%, 1–50%, and ≥50% of tumor cell nuclei, respectively. Hazard ratios (HRs) for ovarian cancer death were estimated using Cox regression stratified by site and adjusted for age, stage, and grade. Results PR expression was associated with improved survival for endometrioid (EC; p<0·0001) and high-grade serous carcinoma (HGSC; p=0·0006), and ER expression was associated with improved EC survival (p<0·0001); no significant associations were found for mucinous, clear cell, or low-grade serous carcinoma. EC patients with hormone receptor (PR and/or ER) positive (weak or strong) versus negative tumors had significantly reduced risk of dying from their disease, independent of clinical factors (HR, 0·33; 95% CI, 0·21–0·51; p<0·0001). HGSC patients with strong versus weak or negative tumor PR expression had significantly reduced risk of dying from their disease, independent of clinical factors (HR, 0·71; 95% CI, 0·55–0·91; p=0·0061). Interpretation PR and ER are prognostic biomarkers for endometrioid and high-grade serous ovarian cancers. Clinical trials, stratified by subtype and biomarker status, are needed to determine whether hormone receptor status predicts response to endocrine therapy, and can guide personalized treatment for ovarian cancer

  18. Development and application of a rat ovarian gene expression database.

    PubMed

    Jo, Misung; Gieske, Mary C; Payne, Charles E; Wheeler-Price, Sarah E; Gieske, Joseph B; Ignatius, Ignatius V; Curry, Thomas E; Ko, Chemyong

    2004-11-01

    The pituitary gonadotropins play a key role in follicular development and ovulation through the induction of specific genes. To identify these genes, we have constructed a genome-wide rat ovarian gene expression database (rOGED). The database was constructed from total RNA isolated from intact ovaries, granulosa cells, or residual ovarian tissues collected from immature pregnant mare serum gonadotropin (PMSG)/human chorionic gonadotropin-treated rats at 0 h (no PMSG), 12 h, and 48 h post PMSG, as well as 6 and 12 h post human chorionic gonadotropin. The total RNA was used for DNA microarray analysis using Affymetrix Rat Expression Arrays 230A and 230B (Affymetrix, Santa Clara, CA). The microarray data were compiled and used for display of individual gene expression profiles through specially developed software. The final rOGED provides immediate analysis of temporal gene expression profiles for over 28,000 genes in intact ovaries, granulosa cells, and residual ovarian tissue during follicular growth and the preovulatory period. The accuracy of the rOGED was validated against the gene profiles for over 20 known genes. The utility of the rOGED was demonstrated by identifying six genes that have not been described in the rat periovulatory ovary. The mRNA expression patterns and cellular localization for each of these six genes (estrogen sulfotransferase, synaptosomal-associated protein 25 kDa, runt-related transcription factor, calgranulin B, alpha1-macroglobulin, and MAPK phosphotase-3) were confirmed by Northern blot analyses and in situ hybridization, respectively. The current findings demonstrate that the rOGED can be used as an instant reference for ovarian gene expression profiles, as well as a reliable resource for identifying important yet, to date, unknown ovarian genes.

  19. Specifying the ovarian cancer risk threshold of 'premenopausal risk-reducing salpingo-oophorectomy' for ovarian cancer prevention: a cost-effectiveness analysis.

    PubMed

    Manchanda, Ranjit; Legood, Rosa; Antoniou, Antonis C; Gordeev, Vladimir S; Menon, Usha

    2016-09-01

    Risk-reducing salpingo-oophorectomy (RRSO) is the most effective intervention to prevent ovarian cancer (OC). It is only available to high-risk women with >10% lifetime OC risk. This threshold has not been formally tested for cost-effectiveness. To specify the OC risk thresholds for RRSO being cost-effective for preventing OC in premenopausal women. The costs as well as effects of surgical prevention ('RRSO') were compared over a lifetime with 'no RRSO' using a decision analysis model. RRSO was undertaken in premenopausal women >40 years. The model was evaluated at lifetime OC risk levels: 2%, 4%, 5%, 6%, 8% and 10%. Costs and outcomes are discounted at 3.5%. Uncertainty in the model was assessed using both deterministic sensitivity analysis and probabilistic sensitivity analysis (PSA). Outcomes included in the analyses were OC, breast cancer (BC) and additional deaths from coronary heart disease. Total costs and effects were estimated in terms of quality-adjusted life-years (QALYs); incidence of OC and BC; as well as incremental cost-effectiveness ratio (ICER). Published literature, Nurses Health Study, British National Formulary, Cancer Research UK, National Institute for Health and Care Excellence guidelines and National Health Service reference costs. The time horizon is lifetime and perspective: payer. Premenopausal RRSO is cost-effective at 4% OC risk (life expectancy gained=42.7 days, ICER=£19 536/QALY) with benefits largely driven by reduction in BC risk. RRSO remains cost-effective at >8.2% OC risk without hormone replacement therapy (ICER=£29 071/QALY, life expectancy gained=21.8 days) or 6%if BC risk reduction=0 (ICER=£27 212/QALY, life expectancy gained=35.3 days). Sensitivity analysis indicated results are not impacted much by costs of surgical prevention or treatment of OC/ BC or cardiovascular disease. However, results were sensitive to RRSO utility scores. Additionally, 37%, 61%, 74%, 84%, 96% and 99.5% simulations on PSA are cost

  20. Influence of Ovarian Endometrioma on Expression of Steroid Receptor RNA Activator, Estrogen Receptors, Vascular Endothelial Growth Factor, and Thrombospondin 1 in the Surrounding Ovarian Tissues

    PubMed Central

    Lin, Kaiqing; Ma, Junyan; Wu, Ruijin; Zhou, Caiyun

    2014-01-01

    This study investigates the influence of ovarian endometrioma on expression of steroid receptor RNA activator (SRA), estrogen receptors (ERs), vascular endothelial growth factor (VEGF), and thrombospondin 1 (TSP-1) in the surrounding ovarian tissues. Taken from the women with ovarian endometrioma and mature teratoma during laparoscopy, the biopsies were analyzed by real-time polymerase chain reaction and Western blot. Our results indicated that ovarian tissues surrounding endometrioma had lower SRA and ER-α levels but higher SRA protein (SRAP) and ER-β levels than ovarian endometrioma. With lower VEGF levels and higher TSP-1 levels, the surrounding ovarian tissues showed higher expression levels of SRA, SRAP, ER-α, and ER-β in the ovarian endometrioma group when compared to the controls. These data showed that ovarian endometrioma increases SRA, ERs, and TSP-1 but decreases VEGF levels in the surrounding ovarian tissues, suggesting that abnormal expression of these molecules may affect biological behaviors of ovarian endometrioma. PMID:23749764

  1. E-cadherin Expression in Ovarian Cancer in the Laying Hen, Gallus Domesticus, compared to Human Ovarian Cancer

    PubMed Central

    Ansenberger, Kristine; Zhuge, Yan; Lagman, Jo Ann J.; Richards, Cassandra; Barua, Animesh; Bahr, Janice M.; Hales, Dale Buchanan

    2010-01-01

    Objective Epithelial ovarian carcinoma (EOC) is a leading cause of cancer deaths in women. Until recently, a significant lack of an appropriate animal model has hindered the discovery of early detection markers for ovarian cancer. The aging hen serves as an animal model because it spontaneously develops ovarian adenocarcinomas similar in histological appearance to the human disease. E-cadherin is an adherens protein that is down-regulated in many cancers, but has been shown to be up-regulated in primary human ovarian cancer. Our objective was to evaluate E-cadherin expression in the hen ovary and compare its expression to human ovarian cancer. Methods White Leghorn hens aged 185 weeks (cancerous and normal) were used for sample collection. A human ovarian tumor tissue array was used for comparison to the human disease. E-cadherin mRNA and protein expression were analyzed in cancerous and normal hen ovaries by immunohistochemistry (IHC), Western blot, and quantitative real-time PCR (qRT-PCR). Tissue fixed in neutral buffered formalin was used for IHC. Protein from tissue frozen in liquid nitrogen was analyzed by Western blot. RNA was extracted from tissue preserved in RNAlater and analyzed by qRT-PCR. The human ovarian tumor tissue array was used for IHC. Results E-cadherin mRNA and protein expression were significantly increased in cancerous hen ovaries as compared to ovaries of normal hens by qRT-PCR and Western blot. Similar expression of E-cadherin was observed by IHC in both human and hen ovarian cancer tissues. Similar E-cadherin expression was also observed in primary ovarian tumor and peritoneal metastatic tissue from cancerous hens. Conclusions Our findings suggest that the up-regulation of E-cadherin is an early defining event in ovarian cancer and may play a significant role in the initial development of the primary ovarian tumor. E-cadherin also appears to be important in the development of secondary tumors within the peritoneal cavity. Our data suggest

  2. LncRNAs expression profiling in normal ovary, benign ovarian cyst and malignant epithelial ovarian cancer

    PubMed Central

    Wang, Huan; Fu, Ziyi; Dai, Chencheng; Cao, Jian; Liu, Xiaoguang; Xu, Juan; Lv, Mingming; Gu, Yun; Zhang, Jingmin; Hua, Xiangdong; Jia, Genmei; Xu, Sujuan; Jia, Xuemei; Xu, Pengfei

    2016-01-01

    Long noncoding RNA (lncRNA) has been recognized as a regulator of gene expression, and the dysregulation of lncRNAs is involved in the progression of many types of cancer, including epithelial ovarian cancer (EOC). To explore the potential roles of lncRNAs in EOC, we performed lncRNA and mRNA microarray profiling in malignant EOC, benign ovarian cyst and healthy control tissues. In this study, 663 transcripts of lncRNAs were found to be differentially expressed in malignant EOC compared with benign and normal control tissues. We also selected 18 altered lncRNAs to confirm the validity of the microarray analysis using quantitative real-time PCR (qPCR). Pathway and Gene Ontology (GO) analyses demonstrated that these altered transcripts were involved in multiple biological processes, especially the cell cycle. Furthermore, Series Test of Cluster (STC) and lncRNA-mRNA co-expression network analyses were conducted to predict lncRNA expression trends and the potential target genes of lncRNAs. We also determined that two antisense lncRNAs (RP11-597D13.9 and ADAMTS9-AS1) were associated with their nearby coding genes (FAM198B, ADAMTS9), which participated in cancer progression. This study offers helpful information to understand the initiation and development mechanisms of EOC. PMID:27941916

  3. SATB2 Expression Distinguishes Ovarian Metastases of Colorectal and Appendiceal Origin From Primary Ovarian Tumors of Mucinous or Endometrioid Type.

    PubMed

    Moh, Michelle; Krings, Gregor; Ates, Deniz; Aysal, Anil; Kim, Grace E; Rabban, Joseph T

    2016-03-01

    The primary origin of some ovarian mucinous tumors may be challenging to determine, because some metastases of extraovarian origin may exhibit gross, microscopic, and immunohistochemical features that are shared by some primary ovarian mucinous tumors. Metastases of primary colorectal, appendiceal, gastric, pancreatic, and endocervical adenocarcinomas may simulate primary ovarian mucinous cystadenoma, mucinous borderline tumor, or mucinous adenocarcinoma. Recently, immunohistochemical expression of SATB2, a transcriptional regulator involved in osteoblastic and neuronal differentiation, has been shown to be a highly sensitive marker of normal colorectal epithelium and of colorectal adenocarcinoma. SATB2 expression has not been reported in normal epithelium of the female reproductive tract. Therefore, we hypothesized that SATB2 may be of value in distinguishing ovarian metastases of colorectal adenocarcinoma from primary ovarian mucinous tumors and from primary ovarian endometrioid tumors. Among primary ovarian tumors, SATB2 staining was observed in 0/22 mucinous cystadenomas that lacked a component of mature teratoma, 4/12 mucinous cystadenomas with mature teratoma, 1/60 mucinous borderline tumors, 0/17 mucinous adenocarcinomas, 0/3 endometrioid borderline tumors, and 0/72 endometrioid adenocarcinomas. Among ovarian metastases, SATB2 staining was observed in 24/32 (75%) colorectal adenocarcinomas; 8/10 (80%) low-grade appendiceal mucinous neoplasms; and 4/4 (100%) high-grade appendiceal adenocarcinomas. No SATB2 staining was observed in any ovarian metastasis of pancreatic, gastric, gallbladder, or endocervical origin. Evaluation of primary extraovarian tumors showed the highest incidences of SATB2 staining among primary colorectal adenocarcinomas (71%), primary appendiceal low-grade mucinous neoplasms (100%), and primary appendiceal high-grade adenocarcinomas (100%). Similar to their metastatic counterparts, none of the primary pancreatic or gastric

  4. Expression of HPIP in epithelial ovarian carcinoma: a clinicopathological study

    PubMed Central

    Wang, Yuping; Meng, Fanling; Liu, Yunduo; Chen, Xiuwei

    2017-01-01

    Objectives Hematopoietic pre-B-cell leukemia transcription factor (PBX)-interacting protein (HPIP) plays an important role in cancer invasion and metastasis. The aim of this study is to investigate the expression of HPIP in epithelial ovarian cancer (EOC). Patients and methods Immunohistochemical method was performed using 42 normal ovarian specimens and 145 specimens with EOC. The correlations of HPIP expression with the clinicopathological factors and prognosis of EOC patients were evaluated. Statistical analyses were performed using the chi-square test, multivariate Cox proportional hazard, and Kaplan–Meier method. Results HPIP expression in EOC was higher than that in normal tissues (P<0.001). HPIP expression was significantly associated with histological grade, International Federation of Gynecology and Obstetrics stage, and lymphatic metastasis of EOC (P<0.05). Patients with high HPIP expression had poorer overall survival and disease-free survival (P<0.001) compared with patients with low HPIP expression. Multivariate Cox analysis demonstrated that HPIP was an independent factor for overall survival and disease-free survival (P<0.05). Conclusion HPIP may be a valuable biomarker for predicting the prognosis of EOC patients and may serve as a potential target for cancer therapy. PMID:28053543

  5. Differential co-expression analysis reveals a novel prognostic gene module in ovarian cancer.

    PubMed

    Gov, Esra; Arga, Kazim Yalcin

    2017-07-10

    Ovarian cancer is one of the most significant disease among gynecological disorders that women suffered from over the centuries. However, disease-specific and effective biomarkers were still not available, since studies have focused on individual genes associated with ovarian cancer, ignoring the interactions and associations among the gene products. Here, ovarian cancer differential co-expression networks were reconstructed via meta-analysis of gene expression data and co-expressed gene modules were identified in epithelial cells from ovarian tumor and healthy ovarian surface epithelial samples to propose ovarian cancer associated genes and their interactions. We propose a novel, highly interconnected, differentially co-expressed, and co-regulated gene module in ovarian cancer consisting of 84 prognostic genes. Furthermore, the specificity of the module to ovarian cancer was shown through analyses of datasets in nine other cancers. These observations underscore the importance of transcriptome based systems biomarkers research in deciphering the elusive pathophysiology of ovarian cancer, and here, we present reciprocal interplay between candidate ovarian cancer genes and their transcriptional regulatory dynamics. The corresponding gene module might provide new insights on ovarian cancer prognosis and treatment strategies that continue to place a significant burden on global health.

  6. Pcsk6 mutant mice exhibit progressive loss of ovarian function, altered gene expression, and formation of ovarian pathology.

    PubMed

    Mujoomdar, Michelle L; Hogan, Laura M; Parlow, Albert F; Nachtigal, Mark W

    2011-03-01

    Bioactivation of precursor proteins by members of the proprotein convertase (PC) family is essential for normal reproduction. The Pcsk6 gene is a member of the PC family that is expressed in numerous ovarian cell types including granulosa cells and oocytes. We hypothesized that loss of PCSK6 would produce adverse effects in the mouse ovary. Mice incapable of expressing PCSK6 (Pcsk6(tm1Rob)) were obtained, and reproductive parameters (serum hormones, whelping interval, estrus cyclicity, and fertility) were compared to Pcsk6(+/+) mice. While Pcsk6(tm1Rob) female mice are fertile, they manifest reduced reproductive capacity at an accelerated rate relative to Pcsk6(+/+) mice. Reproductive senescence is typically reached by 9 months of age and is correlated with loss of estrus cyclicity, elevated serum FSH levels, and gross alterations in ovarian morphology. A wide range of ovarian morphologies were identified encompassing mild, such as an apparent reduction in follicle number, to moderate--ovarian atrophy with a complete absence of follicles--to severe, manifesting as normal ovarian structures replaced by benign ovarian tumors, including tubulostromal adenomas. Targeted gene expression profiling highlighted changes in RNA expression of molecules involved in processes such as steroidogenesis, gonadotropin signaling, transcriptional regulation, autocrine/paracrine signaling, cholesterol handling, and proprotein bioactivation. These results show that PCSK6 activity plays a role in maintaining normal cellular and tissue homeostasis in the ovary.

  7. Differential gene expression analysis of ovarian cancer in a population isolate.

    PubMed

    Grazio, D; Pichler, I; Fuchsberger, C; Zolezzi, F; Guarnieri, P; Heidegger, H; Scherer, A; Engl, B; Messini, S; Egarter-Vigl, E; Pramstaller, P P

    2008-01-01

    Gene expression products represent candidate biomarkers with the potential for early screening and therapy of patients with ovarian serous carcinoma. The present study, using patients that originate from the population isolate of South Tyrol, Italy, substantiates the feasibility of differential gene expression analysis in a genetically isolated population for the identification of potential markers of ovarian cancer. Gene expression profiles of fresh-frozen ovarian serous papillary carcinoma samples were analyzed and compared to normal ovarian control tissues using oligonucleotide microarrays complementary to 14,500 human genes. Supervised analysis of gene expression profiling data identified 225 genes that are down-regulated and 635 that are up-regulated in malignant compared to normal ovarian tissues. Class-prediction analysis identified 40 differentially expressed genes for further investigation as potential classifiers for ovarian cancer, including 20 novel candidates. Our findings provide a glimpse into the potential of population isolate genomics in oncological research.

  8. NUCKS nuclear elevated expression indicates progression and prognosis of ovarian cancer.

    PubMed

    Shi, Ce; Qin, Ling; Gao, Hongyu; Gu, Lina; Yang, Chang; Liu, Hebing; Liu, Tianbo

    2017-09-01

    NUCKS (nuclear, casein kinase, and cyclin-dependent kinase substrate) is implicated in the tumorigenesis of several human malignancies, but its role in ovarian cancer remains unknown. We aim to investigate NUCKS expression and its clinical significance in ovarian cancer. The messenger RNA expression of NUCKS was determined in normal and malignant ovarian tissues using quantitative polymerase chain reaction assay. Immunohistochemistry was applied to detect the status of NUCKS protein expression in 121 ovarian cancer tissues. NUCKS protein high expression was detected in 52 (43.0%) of 121 patients. NUCKS messenger RNA expression was gradually upregulated in non-metastatic ovarian cancers ( n = 20), metastatic ovarian cancers ( n = 20), and its matched metastatic lesions ( n = 20) in comparison with that in normal ovarian tissues ( n = 10; p < 0.05). Elevated expression of NUCKS in ovarian cancer was associated significantly with the Federation of Gynecology and Obstetrics stage ( p = 0.037), histological grade ( p = 0.003), residual disease ( p = 0.013), lymph node metastasis ( p = 0.002), response to chemotherapy ( p < 0.001), and recurrence ( p = 0.013). In the multivariate Cox analysis, NUCKS expression was an independent prognostic marker for overall survival and disease-free survival in ovarian cancer with p values of <0.001 for both. Especially, NUCKS overexpression had prognostic potential for overall survival and disease-free survival ( p < 0.001 for both) in advanced ovarian cancers and only for disease-free survival in early ovarian cancers ( p = 0.017). Our data suggest that NUCKS overexpression may contribute to progression and poor prognosis in ovarian cancer especially in advanced ovarian cancer.

  9. Dub3 expression correlates with tumor progression and poor prognosis in human epithelial ovarian cancer.

    PubMed

    Zhou, Bo; Shu, Bin; Xi, Tao; Su, Ning; Liu, Jing

    2015-03-01

    Dub3 is a deubiquitinating enzyme. It is highly expressed in tumor-derived cell lines and has an established role in tumor proliferation. However, the role of Dub3 in human ovarian cancer remains unclear. Expression of Dub3 was evaluated in ovarian cancer tissues and cell lines by immunohistochemistry and Western blot analysis. The relationship between Dub3 expression and clinicopathological characteristics was analyzed. Using RNA interference, the effects of Dub3 on cell proliferation and apoptosis were investigated in ovarian cancer cell line. All normal ovary tissues exhibited very little or no Dub3 immunoreactivity. High levels of Dub3 expression were examined by immunohistochemical analysis in 13.3% of cystadenomas, in 30.0% of borderline tumors, and in 58.9% of ovarian carcinomas, respectively. Dub3 expression was significantly associated with lymph node metastasis and clinical staging (P<0.05). Multivariate survival analysis indicated that Dub3 expression was an independent prognostic indicator of the survival of patients with ovarian cancer. Furthermore, the expression of Cdc25A was closely correlated with that of Dub3 in cancer cells and tissues. Knockdown of Dub3 could inhibit the proliferation of ovarian cancer cells and increase cell apoptosis. These data indicate that the Dub3 might be a valuable biomarker for the prediction of ovarian cancer prognosis and Dub3 inhibition might be a potential strategy for ovarian cancer treatment.

  10. Loss of HSulf-1 expression enhances tumorigenicity by inhibiting Bim expression in ovarian cancer.

    PubMed

    He, Xiaoping; Khurana, Ashwani; Roy, Debarshi; Kaufmann, Scott; Shridhar, Viji

    2014-10-15

    The expression of human Sulfatase1 (HSulf-1) is downregulated in the majority of primary ovarian cancer tumors, but the functional consequence of this downregulation remains unclear. Using two different shRNAs (Sh1 and Sh2), HSulf-1 expression was stably downregulated in ovarian cancer OV202 cells. We found that HSulf-1-deficient OV202 Sh1 and Sh2 cells formed colonies in soft agar. In contrast, nontargeting control (NTC) shRNA-transduced OV202 cells did not form any colonies. Moreover, subcutaneous injection of OV202 HSulf-1-deficient cells resulted in tumor formation in nude mice, whereas OV202 NTC cells did not. Also, ectopic expression of HSulf-1 in ovarian cancer SKOV3 cells significantly suppressed tumor growth in nude mice. Here, we show that HSulf-1-deficient OV202 cells have markedly decreased expression of proapoptotic Bim protein, which can be rescued by restoring HSulf-1 expression in OV202 Sh1 cells. Enhanced expression of HSulf-1 in HSulf-1-deficient SKOV3 cells resulted in increased Bim expression. Decreased Bim levels after loss of HSulf-1 were due to increased p-ERK, because inhibition of ERK activity with PD98059 resulted in increased Bim expression. However, treatment with a PI3 kinase/AKT inhibitor, LY294002, failed to show any change in Bim protein level. Importantly, rescuing Bim expression in HSulf-1 knockdown cells significantly retarded tumor growth in nude mice. Collectively, these results suggest that loss of HSulf-1 expression promotes tumorigenicity in ovarian cancer through regulating Bim expression.

  11. Transgenics identify distal 5'- and 3'-sequences specifying gonadotropin-releasing hormone expression in adult mice.

    PubMed

    Pape, J R; Skynner, M J; Allen, N D; Herbison, A E

    1999-12-01

    GnRH neurons play a critical role in regulating gonadotropin secretion, but their scattered distribution has prevented detailed understanding of their molecular and cellular properties in vivo. Using GnRH promoter-driven transgenics we have examined here the role of 5'- and 3'-murine GnRH sequences in specifying GnRH expression in the adult mouse. Transgenic mice bearing a lacZ construct incorporating 5.5 kb of 5'-, all the introns and exons, and 3.5 kb of 3'-murine GnRH sequence were found to express beta-galactosidase (betagal) immunoreactivity in approximately 85% of all GnRH neurons. Deletion of GnRH sequence 3' to exon II had no effect upon transgene expression in the GnRH population (89%) but resulted in the appearance of ectopic betagal immunoreactivity in several regions of the brain. The production of additional mice in which 5'-elements were deleted to leave only -2.1 kb of sequence resulted in an approximately 40% reduction in the number of GnRH neurons expressing betagal. Mice in which further deletion of 400 bp allowed only -1.7 kb of 5'-sequence to remain exhibited a complete absence of betagal immunoreactivity within GnRH and other neurons. These results suggest that elements 3' to exon II of the GnRH gene have little role in enabling GnRH expression within the GnRH phenotype but, instead, are particularly important in repressing the GnRH gene in non-GnRH neurons. In contrast, elements located between -2.1 and -1.7 kb of distal 5'-sequence appear to be critical for the in vivo activation of GnRH expression within GnRH neurons in the adult brain.

  12. Ascites Increases Expression/Function of Multidrug Resistance Proteins in Ovarian Cancer Cells

    PubMed Central

    Huang, Zhiqing; Murphy, Susan K.; Payne, Sturgis; Wang, Fang; Kennedy, Margaret; Cianciolo, George J.; Bryja, Vitezslav; Pizzo, Salvatore V.; Bachelder, Robin E.

    2015-01-01

    Chemotherapy resistance is the major reason for the failure of ovarian cancer treatment. One mechanism behind chemo-resistance involves the upregulation of multidrug resistance (MDR) genes (ABC transporters) that effectively transport (efflux) drugs out of the tumor cells. As a common symptom in stage III/IV ovarian cancer patients, ascites is associated with cancer progression. However, whether ascites drives multidrug resistance in ovarian cancer cells awaits elucidation. Here, we demonstrate that when cultured with ascites derived from ovarian cancer-bearing mice, a murine ovarian cancer cell line became less sensitive to paclitaxel, a first line chemotherapeutic agent for ovarian cancer patients. Moreover, incubation of murine ovarian cancer cells in vitro with ascites drives efflux function in these cells. Functional studies show ascites-driven efflux is suppressible by specific inhibitors of either of two ABC transporters [Multidrug Related Protein (MRP1); Breast Cancer Related Protein (BCRP)]. To demonstrate relevance of our findings to ovarian cancer patients, we studied relative efflux in human ovarian cancer cells obtained from either patient ascites or from primary tumor. Immortalized cell lines developed from human ascites show increased susceptibility to efflux inhibitors (MRP1, BCRP) compared to a cell line derived from a primary ovarian cancer, suggesting an association between ascites and efflux function in human ovarian cancer. Efflux in ascites-derived human ovarian cancer cells is associated with increased expression of ABC transporters compared to that in primary tumor-derived human ovarian cancer cells. Collectively, our findings identify a novel activity for ascites in promoting ovarian cancer multidrug resistance. PMID:26148191

  13. The Increased Expression of Connexin and VEGF in Mouse Ovarian Tissue Vitrification by Follicle Stimulating Hormone.

    PubMed

    Yang, Yanzhou; Chen, Jie; Wu, Hao; Pei, Xiuying; Chang, Qing; Ma, Wenzhi; Ma, Huiming; Hei, Changchun; Zheng, Xiaomin; Cai, Yufang; Zhao, Chengjun; Yu, Jia; Wang, Yanrong

    2015-01-01

    Ovarian follicular damages were caused by cryoinjury during the process of ovarian vitrification and ischemia/reperfusion during the process of ovarian transplantation. And appropriate FSH plays an important role in antiapoptosis during ovarian follicle development. Therefore, in this study, 0.3 IU/mL FSH was administered into medium during mouse ovarian cryopreservation by vitrification to ascertain the function of FSH on ovarian vitrification and avascular transplantation. The results suggested that the expressions of Cx37, Cx43, apoptotic molecular caspase-3, and angiogenesis molecular VEGF were confirmed using immunohistochemistry, western blotting, and real-time PCR, and the results suggested that the treatment with FSH remarkably increased the number of morphologically normal follicles in vitrified/warmed ovaries by upregulating the expression of Cx37, Cx43, VEGF, and VEGF receptor 2, but downregulating the expression of caspase-3. In addition, the vitrified/warmed ovaries were transplanted, and the related fertility was analyzed, and the results suggested that the fertility, neoangiogenesis, and follicle reserve were remarkably increased in the FSH administrated group. Taken together, administration of 0.3 IU/mL FSH during ovarian cryopreservation by vitrification can maintain ovarian survival during ovarian vitrification and increases the blood supply with avascular transplantation via upregulation of Cx43, Cx37, and VEGF/VEGFR2, as well as through its antiapoptotic effects.

  14. Distinct prognostic values of four-Notch-receptor mRNA expression in ovarian cancer.

    PubMed

    Zhou, Xinling; Teng, Lingling; Wang, Min

    2016-05-01

    Notch signaling pathway includes ligands and Notch receptors, which are frequently deregulated in several human malignancies including ovarian cancer. Aberrant activation of Notch signaling has been linked to ovarian carcinogenesis and progression. In the current study, we used the "Kaplan-Meier plotter" (KM plotter) database, in which updated gene expression data and survival information from a total of 1306 ovarian cancer patients were used to access the prognostic value of four Notch receptors in ovarian cancer patients. Hazard ratio (HR), 95 % confidence intervals, and log-rank P were calculated. Notch1 messenger RNA (mRNA) high expression was not found to be correlated to overall survival (OS) for all ovarian cancer, as well as in serous and endometrioid cancer patients followed for 20 years. However, Notch1 mRNA high expression is significantly associated with worsen OS in TP53 wild-type ovarian cancer patients, while it is significantly associated with better OS in TP53 mutation-type ovarian cancer patients. Notch2 mRNA high expression was found to be significantly correlated to worsen OS for all ovarian cancer patients, as well as in grade II ovarian cancer patients. Notch3 mRNA high expression was found to be significantly correlated to better OS for all ovarian cancer patients, but not in serous cancer patients and endometrioid cancer patients. Notch4 mRNA high expression was not found to be significantly correlated to OS for all ovarian cancer patients, serous cancer patients, and endometrioid cancer patients. These results indicate that there are distinct prognostic values of four Notch receptors in ovarian cancer. This information will be useful for better understanding of the heterogeneity and complexity in the molecular biology of ovarian cancer and for developing tools to more accurately predict their prognosis. Based on our results, Notch1 could be a potential drug target of TP53 wild-type ovarian cancer and Notch2 could be a potential drug

  15. ERBB4 Expression in Ovarian Serous Carcinoma Resistant to Platinum-Based Therapy.

    PubMed

    Saglam, Ozlen; Xiong, Yin; Marchion, Douglas C; Strosberg, Carolina; Wenham, Robert M; Johnson, Joseph J; Saeed-Vafa, Daryoush; Cubitt, Christopher; Hakam, Ardeshir; Magliocco, Anthony M

    2017-01-01

    Few data exist on the prognostic and predictive impact of erb-b2 receptor tyrosine kinase 4 (ERBB4) in ovarian cancer. Thus, we evaluated ERBB4 expression by immunohistochemistry in a tumor microarray consisting of 100 ovarian serous carcinoma specimens (50 complete responses [CRs] and 50 incomplete responses [IRs] to platinum-based therapy), 51 normal tissue controls, and 16 ovarian cancer cell lines. H scores were used to evaluate expression and were semiquantitatively classified into low, intermediate, and high categories. Category frequencies were compared between tumor specimens vs controls using an unpaired t test. Among tumors, category frequencies were compared between CR and IR to chemotherapy. Overall survival (OS) was stratified by category. In total, 74 ovarian serous carcinoma samples (32 CRs and 42 IRs), 28 normal controls, and 16 ovarian cancer cell lines were evaluable. High-level ERBB4 expression was observed at a significantly higher frequency in ovarian serous carcinoma compared with normal control tissue. Among tumor specimens, ERBB4 expression was significantly higher for those with an IR to chemotherapy compared with CR (P = .033). OS was inversely correlated with ERBB4 expression levels. Median rates of OS were 18, 22, and 58 months among high-, intermediate-, and low-expression tumors, respectively. Our results indicate that ERBB4 expression by immunohistochemistry may correlate with chemotherapy-resistant ovarian serous carcinoma and shortened OS.

  16. Expression of PCV2 antigen in the ovarian tissues of gilts

    PubMed Central

    TUMMARUK, Padet; PEARODWONG, Pachara

    2015-01-01

    The present study was performed to determine the expression of porcine circovirus type 2 (PCV2) antigen in the ovarian tissue of naturally infected gilts. Ovarian tissues were obtained from 11 culled gilts. The ovarian tissues sections were divided into two groups according to PCV2 DNA detection using PCR. PCV2 antigen was assessed in the paraffin embedded ovarian tissue sections by immunohistochemistry. A total of 2,131 ovarian follicles (i.e., 1,437 primordial, 133 primary, 353 secondary and 208 antral follicles), 66 atretic follicles and 131 corpora lutea were evaluated. It was found that PCV2 antigen was detected in 280 ovarian follicles (i.e., 239 primordial follicles, 12 primary follicles, 10 secondary follicles and 19 antral follicles), 1 atretic follicles and 3 corpora lutea (P<0.05). PCV2 antigen was detected in primordial follicles more often than in secondary follicles, atretic follicles and corpora lutea (P<0.05). The detection of PCV2 antigen was found mainly in oocytes. PCV2 antigen was found in both PCV2 DNA positive and negative ovarian tissues. It can be concluded that PCV2 antigen is expressed in all types of the ovarian follicles and corpora lutea. Further studies should be carried out to determine the influence of PCV2 on porcine ovarian function and oocyte quality. PMID:26522687

  17. Nerve growth factor induces the expression of chaperone protein calreticulin in human epithelial ovarian cells.

    PubMed

    Vera, C; Tapia, V; Kohan, K; Gabler, F; Ferreira, A; Selman, A; Vega, M; Romero, C

    2012-07-01

    Epithelial ovarian cancer is highly angiogenic and high expression of Nerve Growth Factor (NGF), a proangiogenic protein. Calreticulin is a multifunctional protein with anti-angiogenic properties and its translocation to the tumor cell membrane promotes recognition and engulfment by dendritic cells. The aim of this work was to evaluate calreticulin expression in human normal ovaries, benign and borderline tumors, and epithelial ovarian cancer samples and to evaluate whether NGF regulates calreticulin expression in human ovarian surface epithelium and in epithelial ovarian cancer cell lines. Calreticulin mRNA and protein levels were analyzed using RT-PCR, Western blot and immunohistochemistry in 67 human ovarian samples obtained from our Institution. Calreticulin expression induced by NGF stimulation in cell lines was evaluated using RT-PCR, Western blot and immunocytochemistry. We found a significant increase of calreticulin mRNA levels in epithelial ovarian cancer samples as compared to normal ovaries, benign tumors, and borderline tumors. Calreticulin protein levels, evaluated by Western blot, were also increased in epithelial ovarian cancer with respect to benign and borderline tumors. When HOSE and A2780 cell lines were stimulated with Nerve Growth Factor, we found an increase in calreticulin protein levels compared to controls. This effect was reverted by GW441756, a TRKA specific inhibitor. These results suggest that NGF regulates calreticulin protein levels in epithelial ovarian cells through TRKA receptor activation. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Brief Report: Interpretation of Facial Expressions, Postures, and Gestures in Children with a Pervasive Developmental Disorder not Otherwise Specified.

    ERIC Educational Resources Information Center

    Serra, M.; Jackson, A. E.; van Geert, P. L. C.; Minderaa, R. B.

    1998-01-01

    A Dutch study failed to find differences in the ability of 31 normally intelligent children (ages 6-12) with pervasive developmental disorder not otherwise specified and matched controls to recognize and label emotional states in various nonverbal expressive modalities, such as facial expressions, bodily postures, and gestures. (CR)

  19. BCL6 mRNA Expression Level in Invasive Duct Carcinoma not otherwise Specified

    PubMed Central

    Badr, Eman; Masoud, Eman; Eldien, Marwa Serag

    2016-01-01

    Introduction B-Cell Lymphoma 6 (BCL6) has an oncogenic role in tumourigenesis of various malignancies. It represses genes involved in terminal differentiation and plays complementary role with Signal Transducer and Activator of Transcription 3 (STAT3) in triple-negative breast cancer cellular function. Aim To evaluate the expression of BCL6 in cancer breast and determine its correlation with the clinico-pathological features including the molecular subtype of breast carcinoma. Materials and Methods This prospective case control study was carried out on 150 patients, divided into 100 cases of invasive duct carcinoma not otherwise specified and 50 benign breast lesions including fibroadenoma and fibrocystic disease. Fresh tissues were excised, which were then subjected to RNA extraction. The BCL6 mRNA level was assessed using real-time reverse transcription Polymerase Chain Reaction (PCR). Results There was a significant higher levels of BCL6 mRNA in malignant cases compared to benign ones (p<0.001). The level of BCL6 mRNA was higher in cases showing advanced tumor stage (p<0.04), triple negative subtype and associated in situ component (p<0.001) compared to cases with an early stage, luminal or Her 2-neu positive subtypes and those lacking in situ component. Conclusion BCL6 is up-regulated in breast cancer and is associated with poor prognostic features such as advanced stage and triple negative molecular subtype. BCL6 inhibitors might be considered as targeted therapy for breast cancer. PMID:28208987

  20. Syngeneic murine ovarian cancer model reveals that ascites enriches for ovarian cancer stem-like cells expressing membrane GRP78

    PubMed Central

    Mo, Lihong; Bachelder, Robin E.; Kennedy, Margaret; Chen, Po-Han; Chi, Jen-Tsan; Berchuck, Andrew; Cianciolo, George; Pizzo, Salvatore V.

    2016-01-01

    Ovarian cancer patients are generally diagnosed at FIGO (International Federation of Gynecology and Obstetrics) stage III/IV, when ascites is common. The volume of ascites correlates positively with the extent of metastasis and negatively with prognosis. Membrane GRP78, a stress-inducible endoplasmic reticulum chaperone that is also expressed on the plasma membrane (memGRP78) of aggressive cancer cells, plays a crucial role in the embryonic stem cell maintenance. We studied ascites effects on ovarian cancer stem-like cells using a syngeneic mouse model. Our study demonstrates that ascites-derived tumor cells from mice injected intraperitoneally with murine ovarian cancer cells (ID8) express increased memGRP78 levels compared to ID8 cells from normal culture. We hypothesized that these ascites associated memGRP78+ cells are cancer stem-like cells (CSC). Supporting this hypothesis, we show that memGRP78+ cells isolated from murine ascites exhibit increased sphere forming and tumor initiating abilities compared to memGRP78− cells. When the tumor microenvironment is recapitulated by adding ascites fluid to cell culture, ID8 cells express more memGRP78 and increased self-renewing ability compared to those cultured in medium alone. Moreover, compared to their counterparts cultured in normal medium, ID8 cells cultured in ascites, or isolated from ascites, show increased stem cell marker expression. Antibodies directed against the carboxy-terminal domain of GRP78: 1) reduce self-renewing ability of murine and human ovarian cancer cells pre-incubated with ascites and 2) suppress a GSK3α-AKT/SNAI1 signaling axis in these cells. Based on these data, we suggest that memGRP78 is a logical therapeutic target for late stage ovarian cancer. PMID:25589495

  1. [Expression Level of Membrane-associated Proteins Numb in Epithelial Ovarian Carcinoma and Its Relationship with Ovarian Cancer Stem Cell Markers CD117, CD133, ALDH1.

    PubMed

    Jing, Hong; Liu, Xiao-Yu; Chen, Ya-Li; Bai, Li-Ping; Zheng, Ai

    2016-11-01

    To explore the expression level of membrane-associated protein Numb in epithelial ovarian carcinoma and its relationship with ovarian cancer stem cell markers CD117,CD133,acetaldehyde dehydrogenase 1(ALDH1). A total of 136 patients who had ovarian tumors and 22 patients who had not ovarian tumors in Department of Gynaecology and Obstetrics,West China Second University Hospital,Sichuan University were chosen as the study subjects.According to the histopathologic examination results,they were divided into epithelial ovarian carcinoma group (n=92),ovarian borderline tumor group (n=23),ovarian benign tumor group (n=21) and normal ovary group (n=22).Expression levels of Numb protein,CD117,CD133 and ALDH1 in ovarian tissue were detected by immunohistochemical SP method and these several kinds of protein expression differences and correlation statistical analysis were performend. 1 The positive expression rate of Numb protein in epithelial ovarian carcinoma group was higher than that in benign tumor or normal ovary group,also Numb protein positive expression rate in ovarian borderline tumor group was higher than that in normal ovary group,and the differences were statistically significant (P<0.05).2 Numb protein positive expression rate in ovarian tissue in patients with epithelial ovarian carcinoma FIGO stage1-2 was lower than that in stage 3-4,also the same in no lymph nodes metastasis compared with lymph nodes invasion,and the differences of positive expression rate were statistically significant (P<0.05).While there were no significant differences among different age,histopathological types,pathological grades and residual tumor size (P>0.05).3 There was no correlation between Numb protein and CD117 and CD133 positive expression rate in epithelial ovarian carcinoma tissue [correlation coefficient (r)=0.116,P=0.261; r=0.083,P=0.425].However,the positive expression rate of Numb protein and ALDH1 was positively correlated (r=0.296,P=0.261). The expression of Numb protein

  2. Prognostic significance of discoidin domain receptor 2 (DDR2) expression in ovarian cancer.

    PubMed

    Fan, Yi; Xu, Zhe; Fan, Jin; Huang, Liu; Ye, Ming; Shi, Kun; Huang, Zheng; Liu, Yaqiong; He, Langchi; Huang, Jiezhen; Wang, Yibin; Li, Qiufeng

    2016-01-01

    Increasing evidence has suggested that discoidin domain receptor 2 (DDR2) plays an important role in cancer development and metastasis. However, the correlation between DDR2 expression and clinical outcome in ovarian cancer has not been investigated. In this study, DDR2 expression was examined by Real-time PCR in surgically resected ovarian cancer and normal ovary tissues. Besides, DDR2 expression was analyzed immunohistochemically in 103 ovarian cancer patients, and the correlation between DDR2 expression with clinicopathologic factors was analyzed. The result showed that DDR2 mRNA expression was upregulated in ovarian cancer tissues compared with normal ovary tissues. Statistical analysis revealed that DDR2 expression correlated with tumor stage (P = 0.008) and peritoneal metastasis (P = 0.009). Patients with high DDR2 expression showed poorer 5-year overall survival (P = 0.005), and DDR2 remained an independent prognostic marker for OS (P = 0.013) in multivariate analysis. Our results suggest that DDR2 might be closely associated with ovarian cancer progression and metastasis. Its high expression may serve as a potential prognostic biomarker in human ovarian cancer.

  3. Prognostic significance of discoidin domain receptor 2 (DDR2) expression in ovarian cancer

    PubMed Central

    Fan, Yi; Xu, Zhe; Fan, Jin; Huang, Liu; Ye, Ming; Shi, Kun; Huang, Zheng; Liu, Yaqiong; He, Langchi; Huang, Jiezhen; Wang, Yibin; Li, Qiufeng

    2016-01-01

    Increasing evidence has suggested that discoidin domain receptor 2 (DDR2) plays an important role in cancer development and metastasis. However, the correlation between DDR2 expression and clinical outcome in ovarian cancer has not been investigated. In this study, DDR2 expression was examined by Real-time PCR in surgically resected ovarian cancer and normal ovary tissues. Besides, DDR2 expression was analyzed immunohistochemically in 103 ovarian cancer patients, and the correlation between DDR2 expression with clinicopathologic factors was analyzed. The result showed that DDR2 mRNA expression was upregulated in ovarian cancer tissues compared with normal ovary tissues. Statistical analysis revealed that DDR2 expression correlated with tumor stage (P = 0.008) and peritoneal metastasis (P = 0.009). Patients with high DDR2 expression showed poorer 5-year overall survival (P = 0.005), and DDR2 remained an independent prognostic marker for OS (P = 0.013) in multivariate analysis. Our results suggest that DDR2 might be closely associated with ovarian cancer progression and metastasis. Its high expression may serve as a potential prognostic biomarker in human ovarian cancer. PMID:27398168

  4. Inhibition of Hec1 expression enhances the sensitivity of human ovarian cancer cells to paclitaxel

    PubMed Central

    Mo, Qing-qing; Chen, Ping-bo; Jin, Xin; Chen, Qian; Tang, Lan; Wang, Bei-bei; Li, Ke-zhen; Wu, Peng; Fang, Yong; Wang, Shi-xuan; Zhou, Jian-feng; Ma, Ding; Chen, Gang

    2013-01-01

    Aim: Hec1, a member of the Ndc80 kinetochore complex, is highly expressed in cancers. The aim of this study was to explore the role and mechanism of action of Hec1 with respect to the cytotoxicity of paclitaxel in ovarian cancer. Methods: Thirty ovarian cancer samples and 6 normal ovarian samples were collected. Hec1 expression in these samples was determined with immunohistochemistry. Ovarian cancer cell lines A2780, OV2008, C13K, SKOV3, and CAOV3 and A2780/Taxol were examined. Cell apoptosis and cell cycle analysis were detected with flow cytometric technique. siRNA was used to delete Hec1 in the cells. The expression of related mRNAs and proteins was measured using RT-PCR and Western blot analysis, respectively. Results: Hec1 expression was significantly higher in ovarian cancer samples than in normal ovarian samples, and was associated with paclitaxel-resistance and poor prognosis. Among the 6 ovarian cancer cell lines examined, Hec1 expression was highest in paclitaxel-resistant A2780/Taxol cells, and lowest in A2780 cells. Depleting Hec1 in A2780/Taxol cells with siRNA decreased the IC50 value of paclitaxel by more than 10-fold (from 590±26.7 to 45.6±19.4 nmol/L). Depleting Hec1 in A2780 cells had no significant effect on the paclitaxel sensitivity. In paclitaxel-treated A2780/Taxol cells, depleting Hec1 significantly increased the cleaved PARP and Bax protein levels, and decreased the Bcl-xL protein level. Conclusion: Hec1 overexpression is associated with the progression and poor prognosis of ovarian cancer. Inhibition of Hec1 expression can sensitize ovarian cancer cells to paclitaxel. PMID:23474708

  5. Regulation of semaphorin 4D expression and cell proliferation of ovarian cancer by ERalpha and ERbeta

    PubMed Central

    Liu, Y.; Hou, Y.; Ma, L.; Sun, C.; Pan, J.; Yang, Y.; Zhou, H.; Zhang, J.

    2017-01-01

    Ovarian cancer is one of the most common malignancies in women. Semaphorin 4D (sema 4D) is involved in the progress of multiple cancers. In the presence of estrogen-like ligands, estrogen receptors (ERα and ERβ) participate in the progress of breast and ovarian cancers by transcriptional regulation. The aim of the study was to investigate the role of sema 4D and elucidate the regulatory pattern of ERα and ERβ on sema 4D expression in ovarian cancers. Sema 4D levels were up-regulated in ovarian cancer SKOV-3 cells. Patients with malignant ovarian cancers had significantly higher sema 4D levels than controls, suggesting an oncogene role of sema 4D in ovarian cancer. ERα expressions were up-regulated in SKOV-3 cells compared with normal ovarian IOSE80 epithelial cells. Conversely, down-regulation of ERβ was observed in SKOV-3 cells. Forced over-expression of ERα and ERβ in SKOV-3 cells was manipulated to establish ERα+ and ERβ+ SKOV-3 cell lines. Incubation of ERα+ SKOV-3 cells with ERs agonist 17β-estradiol (E2) significantly enhanced sema 4D expression and rate of cell proliferation. Incubated with E2, ERβ+ SKOV-3 cells showed lower sema 4D expression and cell proliferation. Blocking ERα and ERβ activities with ICI182-780 inhibitor, sema 4D expressions and cell proliferation of ERα+ and ERβ+ SKOV-3 cells were recovered to control levels. Taken together, the data showed that sema 4D expression was positively correlated with the progress of ovarian cancer. ERα positively regulated sema 4D expression and accelerated cell proliferation. ERβ negatively regulated sema 4D expression and inhibited cell multiplication. PMID:28225892

  6. Expression and roles of Slit/Robo in human ovarian cancer.

    PubMed

    Dai, Cai Feng; Jiang, Yi Zhou; Li, Yan; Wang, Kai; Liu, Pei Shu; Patankar, Manish S; Zheng, Jing

    2011-05-01

    The Slit glycoproteins and their Roundabout (Robo) receptors regulate migration and growth of many types of cells including human cancer cells. However, little is known about the expression and roles of Slit/Robo in human ovarian cancer. Herein, we examined the expression of Slit/Robo in human normal and malignant ovarian tissues and its potential participation in regulating migration and proliferation of human ovarian cancer cells using two ovarian cancer cell lines, OVCAR-3 and SKOV-3. We demonstrated that Slit2/3 and Robo1 were immunolocalized primarily in stromal cells in human normal ovaries and in cancer cells in many histotypes of ovarian cancer tissues. Protein expression of Slit2/3 and Robo1/4 was also identified in OVCAR-3 and SKOV-3 cells. However, recombinant human Slit2 did not significantly affect SKOV-3 cell migration, and OVCAR-3 and SKOV-3 cell proliferation. Slit2 also did not induce ERK1/2 and AKT1 phosphorylation in OVCAR-3 and SKOV-3 cells. The current findings indicate that three major members (Slit2/3 and Robo1) of Slit/Robo family are widely expressed in the human normal and malignant ovarian tissues and in OVCAR-3 and SKOV-3 cells. However, Slit/Robo signaling may not play an important role in regulating human ovarian cancer cell proliferation and migration.

  7. Association of Vasculogenic Mimicry Formation and CD133 Expression with Poor Prognosis in Ovarian Cancer.

    PubMed

    Liang, Jun; Yang, Bo; Cao, Qinying; Wu, Xiaohua

    2016-01-01

    This study was conducted to investigate the association of vasculogenic mimicry (VM) formation and CD133 expression with the clinical outcomes of patients with ovarian cancer. This retrospective study was performed in 120 ovarian carcinoma samples. VM formation and CD133 expression was identified with CD31/periodic acid-Schiff double-staining and CD133 immunohistochemical staining. Collected clinical and pathological data included age at diagnosis, histologic type, tumor grade, tumor stage, lymph node metastases and response to chemotherapy. The overall survival time was calculated. VM was identified in 52 (43%) of 120 ovarian carcinoma tissues and CD133 expression was found in 56 (47%) cases. Both VM formation and CD133 expression were associated with advanced tumor stage, high-grade carcinoma and non-response to chemotherapy (p < 0.05). They were also associated with shorter overall survival time (p < 0.05) by log-rank test. Combined marker of VM formation and CD133 expression was associated with high-grade ovarian carcinoma, late-stage disease, non-response to chemotherapy and shorter overall survival time (p < 0.05). VM formation and CD133 expression can provide additional prognostic information for patients with ovarian cancer. Combined marker of VM formation and CD133 expression may be a potent predictor for poor prognosis for patients with ovarian cancer. © 2016 S. Karger AG, Basel.

  8. Expression of the tumor suppressor gene p16, and lymph node metastasis in patients with ovarian cancer.

    PubMed

    Wang, Hongyan; Zheng, Jingfang; Li, Qiang; Zhou, Min; Ai, Dongmei; Zhang, Hui

    2017-10-01

    This study examined the relationship between the expression of p16, a tumor suppressor gene, and lymph node metastasis, as well as patient prognosis, in cases with ovarian cancer. SKOV-3, an ovarian cancer cell line, and IOSE80, a normal human ovarian cell line, were selected for testing. Western blot analysis was used to detect the p16 expression in ovarian cell culture samples. In the study, 20 cases with normal ovarian tissue and 64 cases with ovarian cancer tissue, including 38 cases with lymph node metastasis and 26 cases without lymph node metastasis, were also selected for testing. Immunohistochemical techniques were used to detect the expression of p16 protein in ovarian tissue samples. The influence of p16 protein on SKOV-3 cell invasion ability was studied using p16 gene high-expression vector transfection. Clinical and prognosis data were summarized and the influence of p16 on patient prognosis was analyzed through Kaplan-Meier single-factor survival analysis. The results showed that p16 expression in SKOV-3 was decreased significantly compared with that in IOSE80. The positive rate of p16 protein expression in ovarian cancer tissue was notably decreased compared with that in normal ovarian tissue. The positive rate of p16 protein expression in ovarian cancer tissue of patients with lymph node metastasis was significantly decreased compared with that of patients without lymph node metastasis. Therefore, transfection of the p16 gene significantly inhibited the protein expression and invasion ability of p16 in SKOV-3. Correlation analyses between p16 and survival prognosis demonstrated that lower expression of p16 was negatively correlated with the prognosis of patients with ovarian cancer. Overall, the abnormal expression of p16 in ovarian cancer is associated with an increased invasion ability of ovarian cancer and the lower expression of p16 in tissue samples indicates a poor prognosis in patients with ovarian cancer.

  9. Expression of the tumor suppressor gene p16, and lymph node metastasis in patients with ovarian cancer

    PubMed Central

    Wang, Hongyan; Zheng, Jingfang; Li, Qiang; Zhou, Min; Ai, Dongmei; Zhang, Hui

    2017-01-01

    This study examined the relationship between the expression of p16, a tumor suppressor gene, and lymph node metastasis, as well as patient prognosis, in cases with ovarian cancer. SKOV-3, an ovarian cancer cell line, and IOSE80, a normal human ovarian cell line, were selected for testing. Western blot analysis was used to detect the p16 expression in ovarian cell culture samples. In the study, 20 cases with normal ovarian tissue and 64 cases with ovarian cancer tissue, including 38 cases with lymph node metastasis and 26 cases without lymph node metastasis, were also selected for testing. Immunohistochemical techniques were used to detect the expression of p16 protein in ovarian tissue samples. The influence of p16 protein on SKOV-3 cell invasion ability was studied using p16 gene high-expression vector transfection. Clinical and prognosis data were summarized and the influence of p16 on patient prognosis was analyzed through Kaplan-Meier single-factor survival analysis. The results showed that p16 expression in SKOV-3 was decreased significantly compared with that in IOSE80. The positive rate of p16 protein expression in ovarian cancer tissue was notably decreased compared with that in normal ovarian tissue. The positive rate of p16 protein expression in ovarian cancer tissue of patients with lymph node metastasis was significantly decreased compared with that of patients without lymph node metastasis. Therefore, transfection of the p16 gene significantly inhibited the protein expression and invasion ability of p16 in SKOV-3. Correlation analyses between p16 and survival prognosis demonstrated that lower expression of p16 was negatively correlated with the prognosis of patients with ovarian cancer. Overall, the abnormal expression of p16 in ovarian cancer is associated with an increased invasion ability of ovarian cancer and the lower expression of p16 in tissue samples indicates a poor prognosis in patients with ovarian cancer. PMID:28943963

  10. Identification of a potential ovarian cancer stem cell gene expression profile from advanced stage papillary serous ovarian cancer.

    PubMed

    Vathipadiekal, Vinod; Saxena, Deepa; Mok, Samuel C; Hauschka, Peter V; Ozbun, Laurent; Birrer, Michael J

    2012-01-01

    Identification of gene expression profiles of cancer stem cells may have significant implications in the understanding of tumor biology and for the design of novel treatments targeted toward these cells. Here we report a potential ovarian cancer stem cell gene expression profile from isolated side population of fresh ascites obtained from women with high-grade advanced stage papillary serous ovarian adenocarcinoma. Affymetrix U133 Plus 2.0 microarrays were used to interrogate the differentially expressed genes between side population (SP) and main population (MP), and the results were analyzed by paired T-test using BRB-ArrayTools. We identified 138 up-regulated and 302 down-regulated genes that were differentially expressed between all 10 SP/MP pairs. Microarray data was validated using qRT-PCR and17/19 (89.5%) genes showed robust correlations between microarray and qRT-PCR expression data. The Pathway Studio analysis identified several genes involved in cell survival, differentiation, proliferation, and apoptosis which are unique to SP cells and a mechanism for the activation of Notch signaling is identified. To validate these findings, we have identified and isolated SP cells enriched for cancer stem cells from human ovarian cancer cell lines. The SP populations were having a higher colony forming efficiency in comparison to its MP counterpart and also capable of sustained expansion and differentiation in to SP and MP phenotypes. 50,000 SP cells produced tumor in nude mice whereas the same number of MP cells failed to give any tumor at 8 weeks after injection. The SP cells demonstrated a dose dependent sensitivity to specific γ-secretase inhibitors implicating the role of Notch signaling pathway in SP cell survival. Further the generated SP gene list was found to be enriched in recurrent ovarian cancer tumors.

  11. Cancer-testis antigen expression is shared between epithelial ovarian cancer tumors.

    PubMed

    Garcia-Soto, Arlene E; Schreiber, Taylor; Strbo, Natasa; Ganjei-Azar, Parvin; Miao, Feng; Koru-Sengul, Tulay; Simpkins, Fiona; Nieves-Neira, Wilberto; Lucci, Joseph; Podack, Eckhard R

    2017-06-01

    Cancer-testis (CT) antigens have been proposed as potential targets for cancer immunotherapy. Our objective was to evaluate the expression of a panel of CT antigens in epithelial ovarian cancer (EOC) tumor specimens, and to determine if antigen sharing occurs between tumors. RNA was isolated from EOC tumor specimens, EOC cell lines and benign ovarian tissue specimens. Real time-PCR analysis was performed to determine the expression level of 20 CT antigens. A total of 62 EOC specimens, 8 ovarian cancer cell lines and 3 benign ovarian tissues were evaluated for CT antigen expression. The majority of the specimens were: high grade (62%), serous (68%) and advanced stage (74%). 58 (95%) of the EOC tumors analyzed expressed at least one of the CT antigens evaluated. The mean number of CT antigen expressed was 4.5 (0-17). The most frequently expressed CT antigen was MAGE A4 (65%). Antigen sharing analysis showed the following: 9 tumors shared only one antigen with 62% of the evaluated specimens, while 37 tumors shared 4 or more antigens with 82%. 5 tumors expressed over 10 CT antigens, which were shared with 90% of the tumor panel. CT antigens are expressed in 95% of EOC tumor specimens. However, not a single antigen was universally expressed across all samples. The degree of antigen sharing between tumors increased with the total number of antigens expressed. These data suggest a multi-epitope approach for development of immunotherapy for ovarian cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Decreased expression of CYP27B1 correlates with the increased aggressiveness of ovarian carcinomas

    PubMed Central

    BROŻYNA, ANNA A.; JÓŹWICKI, WOJCIECH; JOCHYMSKI, CEZARY; SLOMINSKI, ANDRZEJ T.

    2015-01-01

    CYP27B1 hydroxylates 25-hydroxyvitamin D3 in position C1α into biologically active 1,25-dihydroxyvitamin D3, calcitriol. CYP27B1 is expressed in normal tissues and tumors. Since calcitriol indicates anticancer activities and CYP27B1 expression can be deregulated during malignant progression, we analyzed its expression in ovarian cancers in relation to pathomorphological features of tumors and overall survival (OS). Expression of CYP27B1 was evaluated in 61 ovarian tumors, 18 metastases and 10 normal ovaries. Normal ovarian epithelium showed the highest levels CYP27B1 with a significant decrease in its expression in ovarian cancers. Both poorly differentiated primary tumors and metastases showed the lowest level of CYP27B1 expression, while non-metastasizing tumors showed a higher CYP27B1 level than tumors that developed metastases. The expression of CYP27B1 was positively correlated with a lower proliferation rate, lower dynamism of tumor growth and tumor infiltrating lymphocyte response. Furthermore, CYP27B1 expression was negatively correlated with tumor cell modeling of their microenvironment. CYP27B1 expression was also associated with longer OS time. In summary, our results suggest that local expression of CYP27B1 in ovarian tumor cells can modify their behavior and promote a less aggressive phenotype by affecting local concentrations of active of vitamin D levels within the tumor microenvironment. PMID:25501638

  13. Expression of the zinc finger gene EVI-1 in ovarian and other cancers.

    PubMed

    Brooks, D J; Woodward, S; Thompson, F H; Dos Santos, B; Russell, M; Yang, J M; Guan, X Y; Trent, J; Alberts, D S; Taetle, R

    1996-11-01

    The EVI-1 gene was originally detected as an ectopic viral insertion site and encodes a nuclear zinc finger DNA-binding protein. Previous studies showed restricted EVI-1 RNA or protein expression during ontogeny; in a kidney and an endometrial carcinoma cell line; and in normal murine oocytes and kidney cells. EVI-1 expression was also detected in a subset of acute myeloid leukaemias (AMLs) and myelodysplasia. Because EVI-1 is expressed in the urogenital tract during development, we examined ovarian cancers and normal ovaries for EVI-1 RNA expression using reverse transcription polymerase chain reaction (RT-PCR) and RNAase protection. Chromosome abnormalities were examined using karyotypes and whole chromosome 3 and 3q26 fluorescence in situ hybridisation (FISH). RNA from six primary ovarian tumours, five normal ovaries and 47 tumour cell lines (25 ovarian, seven melanoma, three prostate, seven breast and one each of bladder, endometrial, lung, epidermoid and histiocytic lymphoma) was studied. Five of six primary ovarian tumours, three of five normal ovaries and 22 of 25 ovarian cell lines expressed EVI-1 RNA. A variety of other non-haematological cancers also expressed EVI-1 RNA. Immunostaining of ovarian cancer cell lines revealed nuclear EVI-1 protein. In contrast, normal ovary stained primarily within oocytes and faintly in stroma. Primary ovarian tumours showed nuclear and intense, diffuse cytoplasmic staining. Quantitation of EVI-1 RNA, performed using RNAase protection, showed ovarian carcinoma cells expressed 0 to 40 times the EVI-1 RNA in normal ovary, and 0-6 times the levels in leukaemia cell lines. Southern analyses of ovarian carcinoma cell lines showed no amplification or rearrangements involving EVI-1. In some acute leukaemias, activation of EVI-1 transcription is associated with translocations involving 3q26, the site of the EVI-1 gene. Ovarian carcinoma karyotypes showed one line with quadruplication 3(q24q27), but no other clonal structural

  14. Expression of the zinc finger gene EVI-1 in ovarian and other cancers.

    PubMed Central

    Brooks, D. J.; Woodward, S.; Thompson, F. H.; Dos Santos, B.; Russell, M.; Yang, J. M.; Guan, X. Y.; Trent, J.; Alberts, D. S.; Taetle, R.

    1996-01-01

    The EVI-1 gene was originally detected as an ectopic viral insertion site and encodes a nuclear zinc finger DNA-binding protein. Previous studies showed restricted EVI-1 RNA or protein expression during ontogeny; in a kidney and an endometrial carcinoma cell line; and in normal murine oocytes and kidney cells. EVI-1 expression was also detected in a subset of acute myeloid leukaemias (AMLs) and myelodysplasia. Because EVI-1 is expressed in the urogenital tract during development, we examined ovarian cancers and normal ovaries for EVI-1 RNA expression using reverse transcription polymerase chain reaction (RT-PCR) and RNAase protection. Chromosome abnormalities were examined using karyotypes and whole chromosome 3 and 3q26 fluorescence in situ hybridisation (FISH). RNA from six primary ovarian tumours, five normal ovaries and 47 tumour cell lines (25 ovarian, seven melanoma, three prostate, seven breast and one each of bladder, endometrial, lung, epidermoid and histiocytic lymphoma) was studied. Five of six primary ovarian tumours, three of five normal ovaries and 22 of 25 ovarian cell lines expressed EVI-1 RNA. A variety of other non-haematological cancers also expressed EVI-1 RNA. Immunostaining of ovarian cancer cell lines revealed nuclear EVI-1 protein. In contrast, normal ovary stained primarily within oocytes and faintly in stroma. Primary ovarian tumours showed nuclear and intense, diffuse cytoplasmic staining. Quantitation of EVI-1 RNA, performed using RNAase protection, showed ovarian carcinoma cells expressed 0 to 40 times the EVI-1 RNA in normal ovary, and 0-6 times the levels in leukaemia cell lines. Southern analyses of ovarian carcinoma cell lines showed no amplification or rearrangements involving EVI-1. In some acute leukaemias, activation of EVI-1 transcription is associated with translocations involving 3q26, the site of the EVI-1 gene. Ovarian carcinoma karyotypes showed one line with quadruplication 3(q24q27), but no other clonal structural

  15. Effect of AURKA Gene Expression Knockdown on Angiogenesis and Tumorigenesis of Human Ovarian Cancer Cell Lines.

    PubMed

    Wang, Cong; Yan, Qin; Hu, Minmin; Qin, Di; Feng, Zhenqing

    2016-12-01

    Ovarian cancer is one of the most common malignant gynecological cancers. Higher expression of AURKA has been found in immortalized human ovarian epithelial cells in previous studies, implying the relationship between AURKA and ovarian cancer pathogenesis. We investigated the effect of AURKA on angiogenesis and tumorigenesis of human ovarian cancer cells. Firstly, the expression of AURKA in HO8910 and SKOV3 ovarian cancer cell lines was knocked down using a vector expressing a short hairpin small interfering RNA (shRNA). Next, the effect of knockdown of AURKA on cell angiogenesis, proliferation, migration, and invasion was determined by microtubule formation assay, proliferation assay, transwell migration, and invasion assays. In addition, the effect of AURKA knockdown on angiogenesis and tumorigenesis was also determined in a chicken chorioallantoic membrane (CAM) model and in nude mice. The results of the microtubule formation assay indicated that knockdown of AURKA significantly inhibited ovarian cancer cell-induced angiogenesis of endothelial cells compared to its control (P < 0.001). Knockdown of AURKA also significantly inhibited cell proliferation, migration, and invasion of HO8910 and SKOV3 cells in vitro. Furthermore, the Matrigel plug assay showed that knockdown of AURKA significantly repressed ovarian cancer cell-induced angiogenesis in nude mice (P < 0.05), and the CAMs model also showed that AURKA knockdown significantly attenuated the angiogenesis (P < 0.001) and tumorigenesis (P < 0.001) of HO8910 cells compared to the control. Finally, the tumorigenicity assay in vivo further indicated that AURKA shRNA reduced tumorigenesis in nude mice inoculated with ovarian cancer cells (P < 0.001). These results suggest the potential role of AURKA in angiogenesis and tumorigenesis of ovarian cancer, which may provide a potential therapeutic target for the disease.

  16. Expression of AQP6 and AQP8 in epithelial ovarian tumor.

    PubMed

    Ma, Jiong; Zhou, Chunxia; Yang, Jianhua; Ding, Xiaoyan; Zhu, Yunshan; Chen, Xuejun

    2016-04-01

    Aquaporins (AQPs), the rapid transition pores for water molecules, play an important role in maintenance of intracellular water balance. Studies showed that AQPs were also involved in occurrence, development, invasion and metastasis of tumors. In this study, we aimed to explore the distribution and expression differences of aquaporin 6 (AQP6) and aquaporin 8 (AQP8) in epithelial ovarian tumors. The expression of AQP6 and AQP8 in 47 cases of epithelial ovarian tumors were measured by immunochemical technique and Western blotting. AQP6 was strongly expressed in benign ovarian tumors, but weak signal was shown in malignant tumors. The difference was not statistically significant (P > 0.05). Compared with serous adenoma and normal tissues, AQP6 expression in serous carcinoma was obviously decreased (P < 0.05). AQP8 expressions were both identified in benign and malignant tumors, but there was no significantly statistical difference (P > 0.05). For patients with large volume of malignant ascites (>1000 ml), AQP8 expression was increased (P < 0.05). AQP8 expression in malignant tumors was not related to different clinical stages, presence of lymphatic metastasis, and differentiation degrees (P > 0.05). These data showed that AQP6 and AQP8 had different expression degrees in epithelial ovarian tissues, which suggests that AQP6 and AQP8 may play certain roles in epithelial ovarian tumors.

  17. Claudin 4 Is Differentially Expressed between Ovarian Cancer Subtypes and Plays a Role in Spheroid Formation

    PubMed Central

    Boylan, Kristin L. M.; Misemer, Benjamin; DeRycke, Melissa S.; Andersen, John D.; Harrington, Katherine M.; Kalloger, Steve E.; Gilks, C. Blake; Pambuccian, Stefan E.; Skubitz, Amy P. N.

    2011-01-01

    Claudin 4 is a cellular adhesion molecule that is frequently overexpressed in ovarian cancer and other epithelial cancers. In this study, we sought to determine whether the expression of claudin 4 is associated with outcome in ovarian cancer patients and may be involved in tumor progression. We examined claudin 4 expression in ovarian cancer tissues and cell lines, as well as by immunohistochemical staining of tissue microarrays (TMAs; n = 500), spheroids present in patients’ ascites, and spheroids formed in vitro. Claudin 4 was expressed in nearly 70% of the ovarian cancer tissues examined and was differentially expressed across ovarian cancer subtypes, with the lowest expression in clear cell subtype. No association was found between claudin 4 expression and disease-specific survival in any subtype. Claudin 4 expression was also observed in multicellular spheroids obtained from patients’ ascites. Using an in vitro spheroid formation assay, we found that NIH:OVCAR5 cells treated with shRNA against claudin 4 required a longer time to form compact spheroids compared to control NIH:OVCAR5 cells that expressed high levels of claudin 4. The inability of the NIH:OVCAR5 cells treated with claudin 4 shRNA to form compact spheroids was verified by FITC-dextran exclusion. These results demonstrate a role for claudin 4 and tight junctions in spheroid formation and integrity. PMID:21541062

  18. Maximal expression of Foxl2 in pituitary gonadotropes requires ovarian hormones.

    PubMed

    Herndon, Maria K; Nilson, John H

    2015-01-01

    Gonadotropin-releasing hormone (GnRH) and activin regulate synthesis of FSH and ultimately fertility. Recent in vivo studies cast SMAD4 and FOXL2 as master transcriptional mediators of activin signaling that act together and independently of GnRH to regulate Fshb gene expression and female fertility. Ovarian hormones regulate GnRH and its receptor (GNRHR) through negative and positive feedback loops. In contrast, the role of ovarian hormones in regulating activin, activin receptors, and components of the activin signaling pathway, including SMAD4 and FOXL2, remains understudied. The widespread distribution of activin and many of its signaling intermediates complicates analysis of the effects of ovarian hormones on their synthesis in gonadotropes, one of five pituitary cell types. We circumvented this complication by using a transgenic model that allows isolation of polyribosomes selectively from gonadotropes of intact females and ovariectomized females treated with or without a GnRH antagonist. This paradigm allows assessment of ovarian hormonal feedback and distinguishes responses that are either independent or dependent on GnRH. Surprisingly, our results indicate that Foxl2 levels in gonadotropes decline significantly in the absence of ovarian input and independently of GnRH. Expression of the genes encoding other members of the activin signaling pathway are unaffected by loss of ovarian hormonal feedback, highlighting their selective effect on Foxl2. Expression of Gnrhr, a known target of FOXL2, also declines upon ovariectomy consistent with reduced expression of Foxl2 and loss of ovarian hormones. In contrast, Fshb mRNA increases dramatically post-ovariectomy due to increased compensatory input from GnRH. Together these data suggest that ovarian hormones regulate expression of Foxl2 thereby expanding the number of genes controlled by the hypothalamic-pituitary-gonadal axis that ultimately dictate reproductive fitness.

  19. Maximal Expression of Foxl2 in Pituitary Gonadotropes Requires Ovarian Hormones

    PubMed Central

    Herndon, Maria K.; Nilson, John H.

    2015-01-01

    Gonadotropin-releasing hormone (GnRH) and activin regulate synthesis of FSH and ultimately fertility. Recent in vivo studies cast SMAD4 and FOXL2 as master transcriptional mediators of activin signaling that act together and independently of GnRH to regulate Fshb gene expression and female fertility. Ovarian hormones regulate GnRH and its receptor (GNRHR) through negative and positive feedback loops. In contrast, the role of ovarian hormones in regulating activin, activin receptors, and components of the activin signaling pathway, including SMAD4 and FOXL2, remains understudied. The widespread distribution of activin and many of its signaling intermediates complicates analysis of the effects of ovarian hormones on their synthesis in gonadotropes, one of five pituitary cell types. We circumvented this complication by using a transgenic model that allows isolation of polyribosomes selectively from gonadotropes of intact females and ovariectomized females treated with or without a GnRH antagonist. This paradigm allows assessment of ovarian hormonal feedback and distinguishes responses that are either independent or dependent on GnRH. Surprisingly, our results indicate that Foxl2 levels in gonadotropes decline significantly in the absence of ovarian input and independently of GnRH. Expression of the genes encoding other members of the activin signaling pathway are unaffected by loss of ovarian hormonal feedback, highlighting their selective effect on Foxl2. Expression of Gnrhr, a known target of FOXL2, also declines upon ovariectomy consistent with reduced expression of Foxl2 and loss of ovarian hormones. In contrast, Fshb mRNA increases dramatically post-ovariectomy due to increased compensatory input from GnRH. Together these data suggest that ovarian hormones regulate expression of Foxl2 thereby expanding the number of genes controlled by the hypothalamic-pituitary-gonadal axis that ultimately dictate reproductive fitness. PMID:25955311

  20. Mixed lineage kinase 3 is required for matrix metalloproteinase expression and invasion in ovarian cancer cells

    SciTech Connect

    Zhan, Yu; Abi Saab, Widian F.; Modi, Nidhi; Stewart, Amanda M.; Liu, Jinsong; Chadee, Deborah N.

    2012-08-15

    Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates MAPK signaling pathways and regulates cellular responses such as proliferation, migration and apoptosis. Here we report high levels of total and phospho-MLK3 in ovarian cancer cell lines in comparison to immortalized nontumorigenic ovarian epithelial cell lines. Using small interfering RNA (siRNA)-mediated gene silencing, we determined that MLK3 is required for the invasion of SKOV3 and HEY1B ovarian cancer cells. Furthermore, mlk3 silencing substantially reduced matrix metalloproteinase (MMP)-1, -2, -9 and -12 gene expression and MMP-2 and -9 activities in SKOV3 and HEY1B ovarian cancer cells. MMP-1, -2, -9 and-12 expression, and MLK3-induced activation of MMP-2 and MMP-9 requires both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activities. In addition, inhibition of activator protein-1 (AP-1) reduced MMP-1, MMP-9 and MMP-12 gene expression. Collectively, these findings establish MLK3 as an important regulator of MMP expression and invasion in ovarian cancer cells. -- Highlights: Black-Right-Pointing-Pointer Ovarian cancer cell lines have high levels of total and phosphorylated MLK3. Black-Right-Pointing-Pointer MLK3 is required for MMP expression and activity in ovarian cancer cells. Black-Right-Pointing-Pointer MLK3 is required for invasion of SKOV3 and HEY1B ovarian cancer cells. Black-Right-Pointing-Pointer MLK3-dependent regulation of MMP-2 and MMP-9 activities requires ERK and JNK.

  1. Association of Hormone Receptor Expression with Survival in Ovarian Endometrioid Carcinoma: Biological Validation and Clinical Implications

    PubMed Central

    Rambau, Peter; Kelemen, Linda E.; Steed, Helen; Quan, May Lynn; Ghatage, Prafull; Köbel, Martin

    2017-01-01

    This paper aims to validate whether hormone receptor expression is associated with longer survival among women diagnosed with ovarian endometrioid carcinoma (EC), and whether it identifies patients with stage IC/II tumors with excellent outcome that could be spared from toxic chemotherapy. Expression of estrogen receptor (ER) and progesterone receptor (PR) was assessed on 182 EC samples represented on tissue microarrays using the Alberta Ovarian Tumor Type (AOVT) cohort. Statistical analyses were performed to test for associations with ovarian cancer specific survival. ER or PR expression was present in 87.3% and 86.7% of cases, respectively, with co-expression present in 83.0%. Expression of each of the hormonal receptors was significantly higher in low-grade tumors and tumors with squamous differentiation. Expression of ER (Hazard Ratio (HR) = 0.18, 95% confidence interval 0.08–0.42, p = 0.0002) and of PR (HR = 0.22, 95% confidence interval 0.10–0.53, p = 0.0011) were significantly associated with longer ovarian cancer specific survival adjusted for age, grade, treatment center, stage, and residual disease. However, the five-year ovarian cancer specific survival among women with ER positive stage IC/II EC was 89.0% (standard error 3.3%) and for PR positive tumors 89.9% (standard error 3.2%), robustly below the 95% threshold where adjuvant therapy could be avoided. We validated the association of hormone receptor expression with ovarian cancer specific survival independent of standard predictors in an independent sample set of EC. The high ER/PR co-expression frequency and the survival difference support further testing of the efficacy of hormonal therapy in hormone receptor-positive ovarian EC. The clinical utility to identify a group of women diagnosed with EC at stage IC/II that could be spared from adjuvant therapy is limited. PMID:28264438

  2. Effect of Human Ovarian Tissue Vitrification/Warming on the Expression of Genes Related to Folliculogenesis.

    PubMed

    Shams Mofarahe, Zahra; Ghaffari Novin, Marefat; Jafarabadi, Mina; Salehnia, Mojdeh; Noroozian, Mohsen; Ghorbanmehr, Nassim

    2015-01-01

    Ovarian tissue cryopreservation is an alternative strategy to preserve the fertility of women predicted to undergo premature ovarian failure. This study was designed to evaluate the expression of folliculogenesis-related genes, including factor in the germline alpha (FIGLA), growth differentiation factor-9 (GDF-9), follicle-stimulating hormone receptor (FSHR), and KIT LIGAND after vitrification/warming of human ovarian tissue. Human ovarian tissue samples were collected from five transsexual women. In the laboratory, the ovarian medullary part was removed by a surgical blade, and the cortical tissue was cut into small pieces. Some pieces were vitrified and warmed and the others were considered as non-vitrified group (control). Follicular normality was assessed with morphological observation by a light microscope, and the expression of FIGLA, KIT LIGAND, GDF-9,, and FSHR genes was examined using real-time RT-PCR in both the vitrified and non-vitrified groups. Overall, 85% of the follicles preserved their normal morphologic feature after warming. The percentage of normal follicles and the expression of FIGLA, KIT LIGAND, GDF-9, and FSHR genes were similar in both vitrified and non-vitrified groups (P > 0.05). Vitrification/warming of human ovarian tissue had no remarkable effect on the expression of folliculogenesis-related genes.

  3. Production of nitric oxide and expression of inducible nitric oxide synthase in ovarian cystic tumors.

    PubMed

    Nomelini, Rosekeila Simões; de Abreu Ribeiro, Lívia Carolina; Tavares-Murta, Beatriz Martins; Adad, Sheila Jorge; Murta, Eddie Fernando Candido

    2008-01-01

    Tumor sections from nonneoplastic (n = 15), benign (n = 28), and malignant ovarian tumors (n = 20) were obtained from 63 women. Immunohistochemistry of the tumor sections demonstrated that inducible nitric oxide synthase (iNOS) expression was increased in ovarian cancer samples compared to nonneoplastic or benign tumor samples. Using the Griess method, nitric oxide (NO) metabolite levels were also found to be elevated in malignant tumor samples compared to benign tumor samples (P < .05). For stage I ovarian cancer, intracystic NO levels >80 microM were more frequent than NO levels <80 microM, and iNOS expression in well-differentiated carcinomas was greater than in moderately/poorly differentiated carcinomas (P < .05). These data suggest an important role for NO in ovarian carcinogenesis.

  4. Production of Nitric Oxide and Expression of Inducible Nitric Oxide Synthase in Ovarian Cystic Tumors

    PubMed Central

    Nomelini, Rosekeila Simões; Ribeiro, Lívia Carolina de Abreu; Tavares-Murta, Beatriz Martins; Adad, Sheila Jorge; Murta, Eddie Fernando Candido

    2008-01-01

    Tumor sections from nonneoplastic (n = 15), benign (n = 28), and malignant ovarian tumors (n = 20) were obtained from 63 women. Immunohistochemistry of the tumor sections demonstrated that inducible nitric oxide synthase (iNOS) expression was increased in ovarian cancer samples compared to nonneoplastic or benign tumor samples. Using the Griess method, nitric oxide (NO) metabolite levels were also found to be elevated in malignant tumor samples compared to benign tumor samples (P < .05). For stage I ovarian cancer, intracystic NO levels >80 μM were more frequent than NO levels <80 μM, and iNOS expression in well-differentiated carcinomas was greater than in moderately/poorly differentiated carcinomas (P < .05). These data suggest an important role for NO in ovarian carcinogenesis. PMID:19132106

  5. Acellular fraction of ovarian cancer ascites induce apoptosis by activating JNK and inducing BRCA1, Fas and FasL expression in ovarian cancer cells

    PubMed Central

    Cohen, Marie; Pierredon, Sandra; Wuillemin, Christine; Delie, Florence; Petignat, Patrick

    2014-01-01

    Acellular fraction of ascites might play an active role in tumor development. Nevertheless the mechanisms involved in the tumor-modulating properties are still controversial. Here, we demonstrate that malignant ascites from 8 patients with epithelial ovarian cancer did not influence proliferative or invasive properties of ovarian cancer cells, but promoted H2O2-induced apoptosis and increased sensitivity to paclitaxel. Malignant ascites induced BRCA1, Fas and FasL expression and phosphorylation of JNK, but not the activation of caspase pathway. Ascites-induced apoptosis of ovarian cancer cells was strongly inhibited by a JNK inhibitor suggesting a critical role of JNK pathway in ascite-induced apoptosis. The use of siRNA JNK confirmed the importance of JNK in ascites-induced Fas and FasL expression. These results demonstrate that malignant ascites induce apoptosis of ovarian cancer cells and encourage us to think about the clinical management of ovarian cancer patients with malignant ascites. PMID:25594018

  6. Expression of CD44v6 and Its Association with Prognosis in Epithelial Ovarian Carcinomas.

    PubMed

    Zhou, Dang-Xia; Liu, Yun-Xia; Xue, Ya-Hong

    2012-01-01

    The aim of this study was to evaluate CD44v6 protein expression and its prognostic value of CD44v6 in ovarian carcinoma. The expression of CD44v6 was analyzed in 62 patients with ovarian carcinoma by immunohistochemical method. The data obtained were analyzed by univariate and multivariate analyses. The present study clearly demonstrates that tumor tissues from 41 (66.1%) patients showed positive expression with CD44v6. The expression of CD44v6 was significantly correlated with histological type, FIGO stage and histological grade of ovarian carcinomas. Concerning the prognosis, the survival period of patients with CD44v6 positive was shorter than that of patients with CD44v6 negative (36.6% versus 66.7%, 5-year survival, P < 0.05). Univariate analysis showed that CD44v6 expression, histological type, FIGO stage and histological grade were associated with 5-year survival, and CD44v6 expression was associated with histological type, FIGO stage and histological grade and 5-year survival. In multivariate analysis, using the COX-regression model, CD44v6 expression was important prognostic factor. In conclusion, these results suggest that CD44v6 may be related to histological type, FIGO stage and histological grade of ovarian carcinomas, and CD44v6 may be an important molecular marker for poor prognosis in ovarian carcinomas.

  7. Effect of estradiol on the expression of angiogenic factors in epithelial ovarian cancer.

    PubMed

    Valladares, Macarena; Plaza-Parrochia, Francisca; Lépez, Macarena; López, Daniela; Gabler, Fernando; Gayan, Patricio; Selman, Alberto; Vega, Margarita; Romero, Carmen

    2017-11-01

    Ovarian cancer presents a high angiogenesis (formation of new blood vessels) regulated by pro-angiogenic factors, mainly vascular endothelial growth factor (VEGF) and nerve growth factor (NGF). An association between endogenous levels of estrogen and increased risk of developing ovarian cancer has been reported. Estrogen action is mediated by the binding to its specific receptors (ERα and ERβ), altered ERα/ERβ ratio may constitute a marker of ovarian carcinogenesis progression. To determine the effect of estradiol through ERα on the expression of NGF and VEGF in epithelial ovarian cancer (EOC). Levels of phosphorylated estrogen receptor alpha (pERα) were evaluated in well, moderate and poorly differentiated EOC samples (EOC-I, EOC-II, EOC-III). Additionally, ovarian cancer explants were stimulated with NGF (0, 10 and 100 ng/ml) and ERα, ERβ and pERα levels were detected. Finally, human ovarian surface epithelial (HOSE) and epithelial ovarian cancer (A2780) cell lines were stimulated with estradiol, where NGF and VEGF protein levels were evaluated. In tissues, ERs were detected being pERα levels significantly increased in EOC-III samples compared with EOC-I (p<0.05). Additionally, ovarian explants treated with NGF increased pERα levels meanwhile total ERα and ERβ levels did not change. Cell lines stimulated with estradiol revealed an increase of NGF and VEGF protein levels (p<0.05). Estradiol has a positive effect on pro-angiogenic factors such as NGF and VEGF expression in EOC, probably through the activation of ERα; generating a positive loop induced by NGF increasing pERα levels in epithelial ovarian cells.

  8. High expression of HO-1 predicts poor prognosis of ovarian cancer patients and promotes proliferation and aggressiveness of ovarian cancer cells.

    PubMed

    Zhao, Z; Xu, Y; Lu, J; Xue, J; Liu, P

    2017-08-14

    HO-1 has been proved to be associated with tumor aggressivity and poor prognosis in various cancers. Our study provides the first study to demonstrate the relationship of HO-1 expression and clinical characteristics in ovarian cancer patients. Immunohistochemistry and western blotting were used to examine the expression of HO-1 in tissue species and fresh tissues. CCK-8 was used to investigate cell viability. Transwell chamber was performed to estimate migration and invasion capacities in A2780 and Skov-3 cells. Immunohistochemistry and western blotting showed that the expression of HO-1 was higher in ovarian cancer tissues than normal ovarian tissues. High expression of HO-1 was significantly associated with serous ovarian cancer, high FIGO stage, lymph node metastasis, and non-optimal debulking. Patients with high expression of HO-1 exhibited an unfavorable prognosis. In vitro inducing the expression of HO-1 promoted the proliferation and metastasis of A2780 and Skov-3 cells, with the increased expressions of mesenchymal marker (Vimentin), epithelial-mesenchymal transition-associated transcript factor (Zeb-1), anti-apoptotic protein (Bcl-2), and the decreased expressions of epithelial marker (Keratin) and pro-apoptotic protein (Bax). Meanwhile, after incubating A2780 and Skov-3 together with HO-1 inhibitor, above results could be reversed. HO-1 might be a potential marker for prediction of ovarian cancer prognosis and a target for ovarian cancer treatment.

  9. Stromal p16 expression is significantly increased in malignant ovarian neoplasms

    PubMed Central

    Yoon, Nara; Yoon, Gun; Park, Cheol Keun; Kim, Hyun-Soo

    2016-01-01

    Alterations in p16 protein expression have been reported to be associated with tumor development and progression. However, p16 expression status in the peritumoral stroma has been rarely investigated. We investigated the stromal p16 expression in ovarian neoplasms using immunohistochemistry, and differences in the expression status depending on the degree of malignancy and histological type were analyzed. This study included 24, 21, and 46 cases of benign, borderline, and malignant ovarian lesions, respectively, of which 29, 25, and 32 cases were serous, mucinous, and endometriosis-associated lesions. Most benign lesions showed negative or weak expression, whereas borderline lesions showed focal, moderate expression. Malignant lesions showed markedly elevated stromal p16 expression compared with benign or borderline lesions. There were significant differences in stromal p16 expression between benign and borderline lesions (P < 0.001) and between borderline and malignant lesions (P < 0.001). These significances remained when analysis was performed based on lesion classification as serous, mucinous, and endometriosis-associated. In contrast, differences in stromal p16 expression among the histological types were not significant. Stromal p16 expression in ovarian neoplasms was absent or weak in benign and focal, moderate in borderline lesions, whereas malignant lesions exhibited diffuse, moderate-to-strong p16 immunoreactivity. Our observations suggest that stromal p16 expression is involved in the development of ovarian carcinoma. Further studies are necessary to confirm our preliminary results. PMID:27572321

  10. Stromal p16 expression is significantly increased in malignant ovarian neoplasms.

    PubMed

    Yoon, Nara; Yoon, Gun; Park, Cheol Keun; Kim, Hyun-Soo

    2016-10-04

    Alterations in p16 protein expression have been reported to be associated with tumor development and progression. However, p16 expression status in the peritumoral stroma has been rarely investigated. We investigated the stromal p16 expression in ovarian neoplasms using immunohistochemistry, and differences in the expression status depending on the degree of malignancy and histological type were analyzed. This study included 24, 21, and 46 cases of benign, borderline, and malignant ovarian lesions, respectively, of which 29, 25, and 32 cases were serous, mucinous, and endometriosis-associated lesions. Most benign lesions showed negative or weak expression, whereas borderline lesions showed focal, moderate expression. Malignant lesions showed markedly elevated stromal p16 expression compared with benign or borderline lesions. There were significant differences in stromal p16 expression between benign and borderline lesions (P < 0.001) and between borderline and malignant lesions (P < 0.001). These significances remained when analysis was performed based on lesion classification as serous, mucinous, and endometriosis-associated. In contrast, differences in stromal p16 expression among the histological types were not significant. Stromal p16 expression in ovarian neoplasms was absent or weak in benign and focal, moderate in borderline lesions, whereas malignant lesions exhibited diffuse, moderate-to-strong p16 immunoreactivity. Our observations suggest that stromal p16 expression is involved in the development of ovarian carcinoma. Further studies are necessary to confirm our preliminary results.

  11. Identification and validation of differentially expressed proteins in epithelial ovarian cancers using quantitative proteomics

    PubMed Central

    Cao, Guangming; Liu, Chongdong; Xu, Jiatong; Deng, Haiteng; Zhang, Zhenyu

    2016-01-01

    Ovarian cancer is the most lethal gynecological malignant tumor because of its high recurrence rate. In the present work, in order to find new therapeutic targets, we identified 8480 proteins in thirteen pairs of ovarian cancer tissues and normal ovary tissues through quantitative proteomics. 498 proteins were found to be differentially expressed in ovarian cancer, which involved in various cellular processes, including metabolism, response to stimulus and biosynthetic process. The expression levels of chloride intracellular channel protein 1 (CLIC1) and lectin galactoside-binding soluble 3 binding protein (LGALS3BP) in epithelial ovarian cancer tissues were significantly higher than those in normal ovary tissues as confirmed by western blotting and immunohistochemistry. The knockdown of CLIC1 in A2780 cell line downregulated expression of CTPS1, leading to the decrease of CTP and an arrest of cell cycle G1 phase, which results into a slower proliferation. CLIC1-knockdown can also slow down the tumor growth in vivo. Besides, CLIC1-knockdown cells showed an increased sensitivity to hydrogen peroxide and cisplatin, suggesting that CLIC1 was involved in regulation of redox and drug resistance in ovarian cancer cells. These results indicate CLIC1 promotes tumorgenesis, and is a potential therapeutic target in epithelial ovarian cancer treatment. PMID:27825122

  12. GALNT6 expression enhances aggressive phenotypes of ovarian cancer cells by regulating EGFR activity.

    PubMed

    Lin, Tzu-Chi; Chen, Syue-Ting; Huang, Min-Chuan; Huang, John; Hsu, Chia-Lang; Juan, Hsueh-Fen; Lin, Ho-Hsiung; Chen, Chi-Hau

    2017-03-28

    Ovarian cancer is the most lethal of the gynecologic malignancies. N-acetylgalactosaminyltransferase 6 (GALNT6), an enzyme that mediates the initial step of mucin type-O glycosylation, has been reported to regulate mammary carcinogenesis. However, the expression and role of GALNT6 in ovarian cancer are still unclear. Here we showed that high GALNT6 expression correlates with increased recurrence, lymph node metastasis, and chemoresistance in ovarian endometrioid and clear cell carcinomas; and higher GALNT6 levels are significantly associated with poorer patient survivals. GALNT6 knockdown with two independent siRNAs significantly suppressed viability, migration, and invasion of ovarian cancer cells. Using phospho-RTK array and Western blot analyses, we identified EGFR as a critical target of GALNT6. GALNT6 knockdown decreased phosphorylation of EGFR, whereas GALNT6 overexpression increased the phosphorylation. Lectin pull-down assays with Vicia villosa agglutinin (VVA) indicated that GALNT6 was able to modify O-glycans on EGFR. Moreover, the GALNT6-enhanced invasive behavior was significantly reversed by erlotinib, an EGFR inhibitor. Our results suggest that GALNT6 expression is associated with poor prognosis of ovarian cancer and enhances the aggressive behavior of ovarian cancer cells by regulating EGFR activity.

  13. B7-H4 expression in ovarian serous carcinoma: a study of 306 cases.

    PubMed

    Liang, Li; Jiang, Yi; Chen, Jun-Song; Niu, Na; Piao, Jin; Ning, Jing; Zu, Youli; Zhang, Jing; Liu, Jinsong

    2016-11-01

    The B7 family of immune costimulatory ligands is a group of cell surface proteins that bind to the surface receptors of lymphocytes to fine-tune immune responses. The aberrant expression of these proteins plays a key role in tumor immune evasion. Immunotherapy targeting certain B7 family members, including programmed death ligand 1, has proven quite effective in suppressing tumor growth. However, why such therapy works in only a subgroup of tumors is unclear. We hypothesized that other B7 family members, either alone or in concert with programmed death ligand 1, play a crucial role in tumor pathogenesis and progression. We therefore examined the expression of a newly discovered B7 family member, B7-H4, in 306 cases of ovarian serous carcinoma by immunohistochemistry. We found that 91% (267/293) of the high-grade ovarian serous carcinomas and 69% (9/13) of the low-grade ovarian serous carcinomas expressed B7-H4. The difference between B7-H4 expression in high-grade and low-grade ovarian serous carcinoma was statistically significant (P=.002). Moreover, B7-H4 protein expression in high-grade serous carcinoma was associated with tumor stage (P<.01) but not overall survival or disease-free survival. In conclusion, B7-H4 is frequently expressed in ovarian serous carcinomas, especially high-grade serous carcinomas, and may represent a novel immunotherapeutic target in this cancer.

  14. Cyclin A1 expression and paclitaxel resistance in human ovarian cancer cells.

    PubMed

    Huang, Kuan-Chun; Yang, Junzheng; Ng, Michelle C; Ng, Shu-Kay; Welch, William R; Muto, Michael G; Berkowitz, Ross S; Ng, Shu-Wing

    2016-11-01

    The development of intrinsic and acquired resistance to antineoplastic agents is a major obstacle to successful chemotherapy in ovarian cancers. Identification and characterisation of chemoresponse-associated biomarkers are of paramount importance for novel therapeutic development. Global RNA expression profiles were obtained by high-throughput microarray analysis. Cell cycle, proliferation rate, and paclitaxel sensitivity of ovarian cancer cells harbouring cyclin A1-inducible expression construct were compared with and without tetracycline induction, as well as when the cyclin A1 expression was suppressed by short inhibiting RNA (siRNA). Cellular senescence was evaluated by β-galactosidase activity staining. Global RNA expression profiling and subsequent correlation studies of gene expression level and drug response has identified that elevated expression of cyclin A1 (CCNA1) was significantly associated with cellular resistance to paclitaxel, doxorubicin and 5-fluorouracil. The role of cyclin A1 in paclitaxel resistance was confirmed in ovarian cancer cells that harbour an inducible cyclin A1 expression construct, which showed reduced paclitaxel-mediated growth inhibition and apoptosis when cyclin A1 expression was induced, whereas downregulation of cyclin A1 expression in the same cell lines using cyclin A1-specific siRNAs sensitised the cells to paclitaxel toxicity. However, ovarian cancer cells with ectopic expression of cyclin A1 demonstrated slowdown of proliferation and senescence-associated β-galactosidase activity. Our profiling and correlation studies have identified cyclin A1 as one chemoresistance-associated biomarker in ovarian cancer. The results of the characterisation studies suggest that cyclin A1 functions as an oncogene that controls proliferative and survival activities in tumourigenesis and chemoresistance of ovarian cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Enhanced expression of peroxisome proliferator-activated receptor gamma in epithelial ovarian carcinoma.

    PubMed

    Zhang, G Y; Ahmed, N; Riley, C; Oliva, K; Barker, G; Quinn, M A; Rice, G E

    2005-01-17

    The peroxisome proliferator-activated receptors (PPARs) belong to a subclass of nuclear hormone receptor that executes important cellular transcriptional functions. Previous studies have demonstrated the expression of PPARgamma in several tumours including colon, breast, bladder, prostate, lung and stomach. This study demonstrates the relative expression of PPARgamma in normal ovaries and different pathological grades of ovarian tumours of serous, mucinous, endometrioid, clear cell and mixed subtypes. A total of 56 ovarian specimens including 10 normal, eight benign, 10 borderline, seven grade 1, nine grade 2 and 12 grade 3 were analysed using immunohistochemistry. Immunoreactive PPARgamma was not expressed in normal ovaries. Out of eight benign and 10 borderline tumours, only one tumour in each group showed weak cytoplasmic PPARgamma expression. In contrast, 26 out of 28 carcinomas studied were positive for PPARgamma expression with staining confined to cytoplasmic and nuclear regions. An altered staining pattern of PPARgamma was observed in high-grade ovarian tumours with PPARgamma being mostly localized in the nuclei with little cytoplasmic immunoreactivity. On the other hand, predominant cytoplasmic staining was observed in lower-grade tumours. Significantly increased PPARgamma immunoreactivity was observed in malignant ovarian tumours (grade 1, 2 and 3) compared to benign and borderline tumours (chi2 = 48.80, P < 0.001). Western blot analyses showed significant elevation in the expression of immunoreactive PPARgamma in grade 3 ovarian tumours compared with that of normal ovaries and benign ovarian tumours (P < 0.01). These findings suggest an involvement of PPARgamma in the onset and development of ovarian carcinoma and provide an insight into the regulation of this molecule in the progression of the disease.

  16. FOXL2 and BMP2 Act Cooperatively to Regulate Follistatin Gene Expression during Ovarian Development

    PubMed Central

    Kashimada, Kenichi; Pelosi, Emanuele; Chen, Huijun; Schlessinger, David; Wilhelm, Dagmar; Koopman, Peter

    2011-01-01

    Follistatin is a secreted glycoprotein required for female sex determination and early ovarian development, but the precise mechanisms regulating follistatin (Fst) gene expression are not known. Here, we investigate the roles of bone morphogenetic protein 2 (BMP2) and forkhead-domain transcription factor L2 (FOXL2) in the regulation of Fst expression in the developing mouse ovary. Bmp2 and Fst showed similar temporal profiles of mRNA expression, whereas FOXL2 protein and Fst mRNA were coexpressed in the same ovarian cells. In a cell culture model, both FOXL2 and BMP2 up-regulated Fst expression. In ex vivo mouse fetal gonad culture, exogenous BMP2 increased Fst expression, but this effect was counteracted by the BMP antagonist Noggin. Moreover, in Foxl2-null mice, Fst expression was reduced throughout fetal ovarian development, and Bmp2 expression was also reduced. Our data support a model in which FOXL2 and BMP2 cooperate to ensure correct expression of Fst in the developing ovary. Further, Wnt4-knockout mice showed reduced expression of Fst limited to early ovarian development, suggesting a role for WNT4 in the initiation, but not the maintenance, of Fst expression. PMID:21084449

  17. Human chorionic gonadotropin β subunit affects the expression of apoptosis-regulating factors in ovarian cancer.

    PubMed

    Szczerba, Anna; Śliwa, Aleksandra; Kubiczak, Marta; Nowak-Markwitz, Ewa; Jankowska, Anna

    2016-01-01

    Expression of human chorionic gonadotropin, especially its free β subunit (hCGβ) were shown to play an important role in cancer growth, invasion and metastasis. It is postulated that hCGβ is one of the factors determining cancer cell survival. To test this hypothesis, we applied two models: an in vitro model of ovarian cancer using OVCAR-3 and SKOV-3 cell lines transfected with the CGB5 gene and an in vivo model of ovarian cancer tissues. The material was tested against changes in expression level of genes encoding factors involved in apoptosis: BCL2, BAX and BIRC5. Overexpression of hCGβ was found to cause a decrease in expression of the analyzed genes in the transfected cells compared with the control cells. In ovarian cancer tissues, high expression of CGB was related to significantly lower BCL2 but higher BAX and BIRC5 transcript levels. Moreover, a low BCL2/BAX ratio, characteristic of advanced stages of ovarian cancer, was revealed. Since tumors were discriminated by a significantly lower LHCGR level than the level noted in healthy fallopian tubes and ovaries, it may be stated that the effect of hCGβ on changes in the expression of apoptosis-regulating agents observed in ovarian cancer is LHCGR-independent. The results of the study suggest that the biological effects evoked by hCGβ are related to apoptosis suppression.

  18. Expressions of lysophosphatidic acid receptors in the development of human ovarian carcinoma

    PubMed Central

    Si, Jinge; Su, Yuanyuan; Wang, Yifeng; Yan, You-Liang; Tang, Ya-Ling

    2015-01-01

    Aim: To investigate the associations between the expressions of three lysophosphatidic acid (LPA) receptors (LPA1-3) and the development of ovarian carcinoma (OC). Method: Ovarian tissue specimens, including normal ovarian epithelium tissues, benign ovarian tumor tissues and OC tissues were collected from patients who underwent surgical resections between March 2012 and December 2014. Immunohistochemical staining was used to detect LPA receptor expressions in ovarian tissues. Reverse transcription-polymerase chain reaction and Western blotting were used to detect mRNA and protein expression of LPA receptors, respectively. Association analysis between LPA receptors protein expression and clinical pathological characteristics was conducted. The value of LPA2 and LPA3 in discriminating OC was confirmed by receiver-operator characteristic (ROC) curves analysis. Results: The positive expression rates of LPA2 and LPA3 in OC group was obviously higher than normal control and benign groups. The LPA2 and LPA3 mRNA and protein levels in OC group were higher than in normal control and benign groups. LPA2 and LPA3 mRNA expression levels were positively correlated with LPA2 and LPA3 protein expression in OC group. ROC curve analysis revealed that LPA2 yield a specificity of 96.3% and a sensitivity of 97.9%, and LPA3 yield a specificity of 98.5% and a sensitivity of 97.9% for the detection of OC. Conclusion: LPA2 and LPA3 were highly expressed in OC tissues, which may be involved in the development of OC. Further, LPA2 and LPA3 had higher sensitivity and specificity in distinguishing the OC from benign ovarian tumors, which could be potential diagnostic indictors in OC. PMID:26770382

  19. Expression of SDF-1 and CXCR4 transcript variants and CXCR7 in epithelial ovarian cancer.

    PubMed

    Jaszczynska-Nowinka, Karolina; Rucinski, Marcin; Ziolkowska, Agnieszka; Markowska, Anna; Malendowicz, Ludwik K

    2014-05-01

    Chemokine stromal cell-derived factor-1 (SDF-1) and its receptors, CXCR4 and CXCR7, have been implicated in epithelial ovarian cancer progression and metastasis. However, limited data are available on the expression levels of SDF-1 and CXCR4 variants and CXCR7 in human epithelial ovarian cancer. The present study aimed to characterize the expression pattern and levels of SDF-1, CXCR4 and CXCR7 in normal human ovaries and epithelial ovarian cancer. The expression of SDF-1 and CXCR4 transcript variants and CXCR7 was determined by quantitative polymerase chain reaction (qPCR). Plasma SDF-1α levels were determined by commercially available EIA kits and cancer antigen 125 (CA 125) levels were quantified by automated microparticle enzyme immunosorbent assay. High expression levels of SDF-1 transcript variant 1 were identified in ovarian cancer and control ovaries. By contrast, in both groups the expression levels of SDF-1 transcript variants 3 and 4 were extremely low. Furthermore, SDF-1 variant 1 levels were notably higher in epithelial ovarian cancer than in control ovaries, while data for the remaining transcripts were similar in both groups. CXCR4 transcript variant 2 and CXCR7 expression levels in normal and neoplastic ovaries were similar. In both groups, CXCR4 transcript variant 2 was not detected. Plasma SDF-1α levels were notably higher in females with epithelial ovarian cancer than in the control ovaries. Elevated levels of blood SDF-1α were found prior to surgery, 6 days after surgery and following completion of the first chemotherapy course. These increases were independent of the type of epithelial ovarian cancer. Our results suggest that the expression of SDF-1 and the genes controlling alternative splicing are elevated in epithelial ovarian cancer, leading to an increased formation of SDF-1 variant 1. Elevated plasma SDF-1α levels in epithelial ovarian cancer patients are not associated with the presence of tumors and/or metastases, however reflect a

  20. Paclitaxel sensitivity in relation to ABCB1 expression, efflux and single nucleotide polymorphisms in ovarian cancer.

    PubMed

    Gao, Bo; Russell, Amanda; Beesley, Jonathan; Chen, Xiao Qing; Healey, Sue; Henderson, Michelle; Wong, Mark; Emmanuel, Catherine; Galletta, Laura; Johnatty, Sharon E; Bowtell, David; Haber, Michelle; Norris, Murray; Harnett, Paul; Chenevix-Trench, Georgia; Balleine, Rosemary L; deFazio, Anna

    2014-05-09

    ABCB1 (adenosine triphosphate-binding cassette transporter B1) mediates cellular elimination of many chemotherapeutic agents including paclitaxel, which is commonly used to treat ovarian cancer. A significant association between common single nucleotide polymorphisms (SNPs) in ABCB1 and progression-free survival has been reported in patients with ovarian cancer. Variable paclitaxel clearance due to genotype specific differences in ABCB1 activity in cancer cells and/or normal tissues may underlie the association. Using cell-based models, we evaluated the correlations between ABCB1 expression, polymorphisms, transporter activity and paclitaxel sensitivity in ovarian cancer (n = 10) and lymphoblastoid (n = 19) cell lines. Close associations between ABCB1 expression, transporter function and paclitaxel sensitivity were found in lymphoblastoid cell lines, although we could not demonstrate an association with common SNPs. In ovarian cancer cell lines, ABCB1 expression was low and the association between expression and function was lost. These results suggest that ABCB1 related survival difference in ovarian cancer patients is more likely to be due to differential whole body paclitaxel clearance mediated by normal cells rather than a direct effect on cancer cells.

  1. Expression of leptin receptor in endometrial biopsies of endometrial and ovarian cancer patients

    PubMed Central

    MÉNDEZ-LÓPEZ, LUIS FERNANDO; DÁVILA-RODRÍGUEZ, MARTHA IMELDA; ZAVALA-POMPA, ANGEL; TORRES-LÓPEZ, ERNESTO; GONZÁLEZ-MARTÍNEZ, BLANCA EDELIA; LÓPEZ-CABANILLAS-LOMELÍ, MANUEL

    2013-01-01

    The adipokine leptin plays a critical role in the regulation of reproductive function and there has been growing interest in its potential role in the development of cancers in which obesity is an established risk factor. Serum leptin levels were found to be higher in patients diagnosed with endometrial and ovarian cancer compared to those observed in healthy individuals. This study was conducted to determine the expression of the leptin receptor (Ob-R) in endometrial biopsies of patients diagnosed with endometrial and ovarian cancer. In this preliminary study, immunohistochemistry (IHC) and the color deconvolution method were used to assess the expression levels of the Ob-R protein in three groups of endometrial tissue: one from patients diagnosed with endometrioid endometrial carcinoma, one from patients diagnosed with ovarian cancer and one from individuals without any diagnosed gynecologic disease (control group). Our results demonstrated that the highest expression of Ob-R protein in endometrial biopsies was detected in the ovarian cancer group (P=0.000). This finding suggests that changes in Ob-R expression may be assessed through the measurement of the optical density of endometrial biopsies and may become a useful tool in preventive screening, particularly for ovarian cancer. PMID:24649005

  2. Expression of teneurins is associated with tumor differentiation and patient survival in ovarian cancer.

    PubMed

    Graumann, Rebecca; Di Capua, Gabriella A; Oyarzún, Juan E; Vásquez, Marcos A; Liao, Christine; Brañes, Jorge A; Roa, Iván; Casanello, Paola; Corvalán, Alejandro H; Owen, Gareth I; Delgado, Iris; Zangemeister-Wittke, Uwe; Ziegler, Annemarie

    2017-01-01

    Teneurins are a family of highly conserved pair-rule proteins involved in morphogenesis and development of the central nervous system. Their function in adult tissues and in disease is largely unknown. Recent evidence suggests a role for dysregulated expression of Teneurins in human tumors, but systematic investigations are missing. Here, we investigated Teneurin-2 and Teneurin-4 expression in various cancer cell lines and in ovarian tumor tissues. Teneurin-2 and Teneurin-4 were expressed in most of the breast cancer cell lines tested. Teneurin-4 was also detected in ovarian cancer cell lines, and throughout ovarian tumors and normal ovary tissue. Ovarian tumors with low Teneurin-4 expression showed less differentiated phenotypes and these patients had shorter mean overall survival. Similarly, Teneurin-2 expression correlated with overall survival as well, especially in patients with serous tumors. In the various cell lines, 5-Aza-cytidine-induced changes in DNA methylation did not alter expression of Teneurin-2 and Teneurin-4, despite the existence of predicted CpG islands in both genes. Interestingly, however, we found evidence for the control of Teneurin-2 expression by the oncogenic growth factor FGF8. Furthermore, we identified multiple transcript splicing variants for Teneurin-2 and Teneurin-4, indicating complex gene expression patterns in malignant cells. Finally, downregulation of Teneurin-4 expression using siRNA caused a cell-type dependent increase in proliferation and resistance to cisplatin. Altogether, our data suggest that low Teneurin-4 expression provides a growth advantage to cancer cells and marks an undifferentiated state characterized by increased drug resistance and clinical aggressiveness. We conclude that Teneurin-2 and Teneurin-4 expression levels could be of prognostic value in ovarian cancer.

  3. Expression of teneurins is associated with tumor differentiation and patient survival in ovarian cancer

    PubMed Central

    Graumann, Rebecca; Di Capua, Gabriella A.; Oyarzún, Juan E.; Vásquez, Marcos A.; Liao, Christine; Brañes, Jorge A.; Roa, Iván; Casanello, Paola; Corvalán, Alejandro H.; Owen, Gareth I.; Delgado, Iris; Zangemeister-Wittke, Uwe

    2017-01-01

    Teneurins are a family of highly conserved pair-rule proteins involved in morphogenesis and development of the central nervous system. Their function in adult tissues and in disease is largely unknown. Recent evidence suggests a role for dysregulated expression of Teneurins in human tumors, but systematic investigations are missing. Here, we investigated Teneurin-2 and Teneurin-4 expression in various cancer cell lines and in ovarian tumor tissues. Teneurin-2 and Teneurin-4 were expressed in most of the breast cancer cell lines tested. Teneurin-4 was also detected in ovarian cancer cell lines, and throughout ovarian tumors and normal ovary tissue. Ovarian tumors with low Teneurin-4 expression showed less differentiated phenotypes and these patients had shorter mean overall survival. Similarly, Teneurin-2 expression correlated with overall survival as well, especially in patients with serous tumors. In the various cell lines, 5-Aza-cytidine-induced changes in DNA methylation did not alter expression of Teneurin-2 and Teneurin-4, despite the existence of predicted CpG islands in both genes. Interestingly, however, we found evidence for the control of Teneurin-2 expression by the oncogenic growth factor FGF8. Furthermore, we identified multiple transcript splicing variants for Teneurin-2 and Teneurin-4, indicating complex gene expression patterns in malignant cells. Finally, downregulation of Teneurin-4 expression using siRNA caused a cell-type dependent increase in proliferation and resistance to cisplatin. Altogether, our data suggest that low Teneurin-4 expression provides a growth advantage to cancer cells and marks an undifferentiated state characterized by increased drug resistance and clinical aggressiveness. We conclude that Teneurin-2 and Teneurin-4 expression levels could be of prognostic value in ovarian cancer. PMID:28472127

  4. Amphiregulin induces human ovarian cancer cell invasion by down-regulating E-cadherin expression.

    PubMed

    So, Wai-Kin; Fan, Qianlan; Lau, Man-Tat; Qiu, Xin; Cheng, Jung-Chien; Leung, Peter C K

    2014-11-03

    Aberrant epidermal growth factor receptor (EGFR) activation is associated with ovarian cancer progression. In this study, we report that the EGFR ligand amphiregulin (AREG) stimulates cell invasion and down-regulates E-cadherin expression in two human ovarian cancer cell lines, SKOV3 and OVCAR5. In addition, AREG increases the expression of transcriptional repressors of E-cadherin including SNAIL, SLUG and ZEB1. siRNA targeting SNAIL or SLUG abolishes AREG-induced cell invasion. Moreover, ERK1/2 and AKT pathways are involved in AREG-induced E-cadherin down-regulation and cell invasion. Finally, we show that three EGFR ligands, AREG, epidermal growth factor (EGF) and transforming growth factor-α (TGF-α), exhibit comparable effects in down-regulating E-cadherin and promoting cell invasion. This study demonstrates that AREG induces ovarian cancer cell invasion by down-regulating E-cadherin expression.

  5. Expression of Siglec-11 by human and chimpanzee ovarian stromal cells, with uniquely human ligands: implications for human ovarian physiology and pathology.

    PubMed

    Wang, Xiaoxia; Chow, Renee; Deng, Liwen; Anderson, Dan; Weidner, Noel; Godwin, Andrew K; Bewtra, Chanda; Zlotnik, Albert; Bui, Jack; Varki, Ajit; Varki, Nissi

    2011-08-01

    Siglecs (Sialic acid-binding Immunoglobulin Superfamily Lectins) are cell surface signaling receptors of the I-type lectin group that recognize sialic acid-bearing glycans. CD33-related-Siglecs are a subset with expression primarily in cells of hematopoietic origin and functional relevance to immune reactions. Earlier we reported a human-specific gene conversion event that markedly changed the coding region for the extracellular domain of Siglec-11, associated with human-specific expression in microglia (Hayakawa T, Angata T, Lewis AL, Mikkelsen TS, Varki NM, Varki A. 2005. A human-specific gene in microglia. Science. 309:1693). Analyzing human gene microarrays to define new patterns of expression, we observed high levels of SIGLEC11 transcript in the ovary and adrenal cortex. Thus, we examined human and chimpanzee tissues using a well-characterized anti-Siglec-11 mouse monoclonal antibody. Although adrenal expression was variable and confined to infiltrating macrophages in capillaries, ovarian expression of Siglec-11 in both humans and chimpanzees was on fibroblasts, the first example of Siglec expression on mesenchyme-derived stromal cells. Cytokines from such ovarian stromal fibroblasts play important roles in follicle development and ovulation. Stable transfection of SIGLEC11 into a primary human ovarian stromal fibroblast cell line altered the secretion of growth-regulated oncogene α, interleukin (IL)-10, IL-7, transforming growth factor β1 and tumor necrosis factor-α, cytokines involved in ovarian physiology. Probing for Siglec-11 ligands revealed distinct and strong mast cell expression in human ovaries, contrasting to diffuse stromal ligands in chimpanzee ovaries. Interestingly, there was a trend of increased Siglec-11 expression in post-menopausal ovaries compared with pre-menopausal ones. Siglec-11 expression was also found on human ovarian stromal tumors and in polycystic ovarian syndrome, a human-specific disease. These results indicate potential

  6. Expression of Siglec-11 by human and chimpanzee ovarian stromal cells, with uniquely human ligands: implications for human ovarian physiology and pathology

    PubMed Central

    Wang, Xiaoxia; Chow, Renee; Deng, Liwen; Anderson, Dan; Weidner, Noel; Godwin, Andrew K; Bewtra, Chanda; Zlotnik, Albert; Bui, Jack; Varki, Ajit; Varki, Nissi

    2011-01-01

    Siglecs (Sialic acid-binding Immunoglobulin Superfamily Lectins) are cell surface signaling receptors of the I-type lectin group that recognize sialic acid-bearing glycans. CD33-related-Siglecs are a subset with expression primarily in cells of hematopoietic origin and functional relevance to immune reactions. Earlier we reported a human-specific gene conversion event that markedly changed the coding region for the extracellular domain of Siglec-11, associated with human-specific expression in microglia (Hayakawa T, Angata T, Lewis AL, Mikkelsen TS, Varki NM, Varki A. 2005. A human-specific gene in microglia. Science. 309:1693). Analyzing human gene microarrays to define new patterns of expression, we observed high levels of SIGLEC11 transcript in the ovary and adrenal cortex. Thus, we examined human and chimpanzee tissues using a well-characterized anti-Siglec-11 mouse monoclonal antibody. Although adrenal expression was variable and confined to infiltrating macrophages in capillaries, ovarian expression of Siglec-11 in both humans and chimpanzees was on fibroblasts, the first example of Siglec expression on mesenchyme-derived stromal cells. Cytokines from such ovarian stromal fibroblasts play important roles in follicle development and ovulation. Stable transfection of SIGLEC11 into a primary human ovarian stromal fibroblast cell line altered the secretion of growth-regulated oncogene α, interleukin (IL)-10, IL-7, transforming growth factor β1 and tumor necrosis factor-α, cytokines involved in ovarian physiology. Probing for Siglec-11 ligands revealed distinct and strong mast cell expression in human ovaries, contrasting to diffuse stromal ligands in chimpanzee ovaries. Interestingly, there was a trend of increased Siglec-11 expression in post-menopausal ovaries compared with pre-menopausal ones. Siglec-11 expression was also found on human ovarian stromal tumors and in polycystic ovarian syndrome, a human-specific disease. These results indicate potential

  7. Complexity of expression of the intermediate filaments of six new human ovarian carcinoma cell lines: new expression of cytokeratin 20.

    PubMed Central

    Yanagibashi, T.; Gorai, I.; Nakazawa, T.; Miyagi, E.; Hirahara, F.; Kitamura, H.; Minaguchi, H.

    1997-01-01

    Six permanent human ovarian carcinoma cell lines (OVISE, OVTOKO, OVMANA and OVSAYO from clear cell adenocarcinoma, and OVSAHO and OVKATE from serous papillary adenocarcinoma) were established from solid tumours. The cell lines have been in culture for 5-8 years, the passage number varying from 62 to 246. Immunohistochemical analysis has shown that five of the six cell lines express at least six cytokeratin (CK) polypeptides. OVISE and OVSAYO expressed CKs 6, 7, 8, 18, 19 and 15 and/or 16. OVTOKO was positive for CKs 7, 8, 18, 19 and 15 and/or 16. OVSAHO expressed CKs 6, 7, 8, 14, 18, 19 and 15 and/or 16. OVMANA expressed CKs 6, 7, 8, 18, 19, 20 and 15 and/or 16. OVKATE expressed CKs 6, 7, 8, 13, 17, 18, 19, 20 and 15 and/or 16. The expression of CK7, additional expression of vimentin, and clinical and histopathological findings enabled us to confirm that six cell lines had been established from primary ovarian cancers. Two of the six cell lines were positive for CK20, although CK20 was not expressed in the original tumours. The heterotransplanted tumours produced by CK20-positive cells also expressed CK20. This is the first report of ovarian carcinoma cell lines that express CK20 irrespective of their histological type. CK20 has been found in all colon carcinoma cell lines, but only in the mucinous type of ovarian tumours. These new ovarian carcinoma cell lines will therefore provide a relevant experimental system for elucidating the regulatory control mechanisms of intermediate filament expression. Images Figure 1 Figure 2 Figure 3 PMID:9328139

  8. Expression of Leukocyte Inhibitory Immunoglobulin-like Transcript 3 Receptors by Ovarian Tumors in Laying Hen Model of Spontaneous Ovarian Cancer.

    PubMed

    Khan, Mohammad Faisal; Bahr, Janice M; Yellapa, Aparna; Bitterman, Pincas; Abramowicz, Jacques S; Edassery, Seby L; Basu, Sanjib; Rotmensch, Jacob; Barua, Animesh

    2012-04-01

    Attempts to enhance a patient's immune response and ameliorate the poor prognosis of ovarian cancer (OVCA) have largely been unsuccessful owing to the suppressive tumor microenvironment. Leukocyte immunoglobulin-like transcript 3 (ILT3) inhibitory receptors have been implicated in immunosuppression in several malignancies. The expression and role of ILT3 in the progression of ovarian tumors are unknown. This study examined the expression and association of ILT3 in ovarian tumors in laying hens, a spontaneous preclinical model of human OVCA. White Leghorn laying hens were selected by transvaginal ultrasound scanning. Serum and normal ovaries or ovarian tumors were collected. The presence of tumors and the expression of ILT3 were examined by routine histology, immunohistochemistry, Western blot analysis, and reverse transcription-polymerase chain reaction. In addition to stromal immune cell-like cells, the epithelium of the ovarian tumors also expressed ILT3 with significantly high intensity than normal ovaries. Among different subtypes of ovarian carcinomas, serous OVCA showed the highest ILT3 staining intensity, whereas endometrioid OVCA had the lowest intensity. Similar to humans, an immunoreactive protein band of approximately 55 kDa for ILT3 was detected in the ovarian tumors in hens. The patterns of ILT3 protein and messenger RNA expression by ovarian tumors in different subtypes and stages were similar to those of immunohistochemical staining. The results of this study suggest that laying hens may be useful to generate information on ILT3-associated immunosuppression in OVCA. This animal model also offers the opportunity to develop and test anti-ILT3 immunotherapy to enhance antitumor immunity against OVCA in humans.

  9. BCAT1 expression associates with ovarian cancer progression: possible implications in altered disease metabolism

    PubMed Central

    Wang, Zhi-Qiang; Faddaoui, Adnen; Bachvarova, Magdalena; Plante, Marie; Gregoire, Jean; Renaud, Marie-Claude; Sebastianelli, Alexandra; Guillemette, Chantal; Gobeil, Stéphane; Macdonald, Elizabeth; Vanderhyden, Barbara; Bachvarov, Dimcho

    2015-01-01

    Previously, we have identified the branched chain amino-acid transaminase 1 (BCAT1) gene as notably hypomethylated in low-malignant potential (LMP) and high-grade (HG) serous epithelial ovarian tumors, compared to normal ovarian tissues. Here we show that BCAT1 is strongly overexpressed in both LMP and HG serous epithelial ovarian tumors, which probably correlates with its hypomethylated status. Knockdown of the BCAT1 expression in epithelial ovarian cancer (EOC) cells led to sharp decrease of cell proliferation, migration and invasion and inhibited cell cycle progression. BCAT1 silencing was associated with the suppression of numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, and the induction of some tumor suppressor genes (TSGs). Moreover, BCAT1 suppression resulted in downregulation of numerous genes implicated in lipid production and protein synthesis, suggesting its important role in controlling EOC metabolism. Further metabolomic analyses were indicative for significant depletion of most amino acids and different phospho- and sphingolipids following BCAT1 knockdown. Finally, BCAT1 suppression led to significantly prolonged survival time in xenograft model of advanced peritoneal EOC. Taken together, our findings provide new insights about the functional role of BCAT1 in ovarian carcinogenesis and identify this transaminase as a novel EOC biomarker and putative EOC therapeutic target. PMID:26372729

  10. BCAT1 expression associates with ovarian cancer progression: possible implications in altered disease metabolism.

    PubMed

    Wang, Zhi-Qiang; Faddaoui, Adnen; Bachvarova, Magdalena; Plante, Marie; Gregoire, Jean; Renaud, Marie-Claude; Sebastianelli, Alexandra; Guillemette, Chantal; Gobeil, Stéphane; Macdonald, Elizabeth; Vanderhyden, Barbara; Bachvarov, Dimcho

    2015-10-13

    Previously, we have identified the branched chain amino-acid transaminase 1 (BCAT1) gene as notably hypomethylated in low-malignant potential (LMP) and high-grade (HG) serous epithelial ovarian tumors, compared to normal ovarian tissues. Here we show that BCAT1 is strongly overexpressed in both LMP and HG serous epithelial ovarian tumors, which probably correlates with its hypomethylated status. Knockdown of the BCAT1 expression in epithelial ovarian cancer (EOC) cells led to sharp decrease of cell proliferation, migration and invasion and inhibited cell cycle progression. BCAT1 silencing was associated with the suppression of numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, and the induction of some tumor suppressor genes (TSGs). Moreover, BCAT1 suppression resulted in downregulation of numerous genes implicated in lipid production and protein synthesis, suggesting its important role in controlling EOC metabolism. Further metabolomic analyses were indicative for significant depletion of most amino acids and different phospho- and sphingolipids following BCAT1 knockdown. Finally, BCAT1 suppression led to significantly prolonged survival time in xenograft model of advanced peritoneal EOC. Taken together, our findings provide new insights about the functional role of BCAT1 in ovarian carcinogenesis and identify this transaminase as a novel EOC biomarker and putative EOC therapeutic target.

  11. Mesenchymal gene program–expressing ovarian cancer spheroids exhibit enhanced mesothelial clearance

    PubMed Central

    Davidowitz, Rachel A.; Selfors, Laura M.; Iwanicki, Marcin P.; Elias, Kevin M.; Karst, Alison; Piao, Huiying; Ince, Tan A.; Drage, Michael G.; Dering, Judy; Konecny, Gottfried E.; Matulonis, Ursula; Mills, Gordon B.; Slamon, Dennis J.; Drapkin, Ronny; Brugge, Joan S.

    2014-01-01

    Metastatic dissemination of ovarian tumors involves the invasion of tumor cell clusters into the mesothelial cell lining of peritoneal cavity organs; however, the tumor-specific factors that allow ovarian cancer cells to spread are unclear. We used an in vitro assay that models the initial step of ovarian cancer metastasis, clearance of the mesothelial cell layer, to examine the clearance ability of a large panel of both established and primary ovarian tumor cells. Comparison of the gene and protein expression profiles of clearance-competent and clearance-incompetent cells revealed that mesenchymal genes are enriched in tumor populations that display strong clearance activity, while epithelial genes are enriched in those with weak or undetectable activity. Overexpression of transcription factors SNAI1, TWIST1, and ZEB1, which regulate the epithelial-to-mesenchymal transition (EMT), promoted mesothelial clearance in cell lines with weak activity, while knockdown of the EMT-regulatory transcription factors TWIST1 and ZEB1 attenuated mesothelial clearance in ovarian cancer cell lines with strong activity. These findings provide important insights into the mechanisms associated with metastatic progression of ovarian cancer and suggest that inhibiting pathways that drive mesenchymal programs may suppress tumor cell invasion of peritoneal tissues. PMID:24762435

  12. Cytochrome P450 CYP1B1 over-expression in primary and metastatic ovarian cancer

    PubMed Central

    McFadyen, M C E; Cruickshank, M E; Miller, I D; McLeod, H L; Melvin, W T; Haites, N E; Parkin, D; Murray, G I

    2001-01-01

    Ovarian cancer is the most frequent cause of death from gynaecological malignancies world wide. Little improvement has been made in the long-term outcome of this disease, with the 5-year survival of patients only 30%. This poor prognosis is due to the late presentation of the disease and to the unpredictable response of ovarian cancer to chemotherapy. The cytochrome P450 enzymes are a superfamily of haemoproteins, known to be involved in the metabolic activation and/or detoxification of a number of anti-cancer drugs. CYP1B1 is a tumour-related form of cytochrome P450 which is over expressed in a wide variety of primary tumours of different histological type. The presence of CYP1B1 may be of importance in the modulation of these tumours to anti-cancer drugs. We have conducted a comprehensive immunohistochemical investigation, into the presence of cytochrome P450 CYP1B1 in primary and metastatic ovarian cancer. The key findings of this study are the increased expression of CYP1B1 in the majority of ovarian cancers investigated (92%), with a strong correlation demonstrated between CYP1B1 expression in both primary and metastatic ovarian cancer (P= 0.005 Spearman's rank correlation test). In contrast no detectable CYP1B1 was found in normal ovary. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11461084

  13. Copper nanoparticle-induced ovarian injury, follicular atresia, apoptosis, and gene expression alterations in female rats

    PubMed Central

    Rao, Meng; Hu, Lixia; Lei, Hui; Wu, Yanqing; Wang, Yingying; Ke, Dandan; Xia, Wei; Zhu, Chang-hong

    2017-01-01

    Numerous studies have reported the accumulation of copper nanoparticles (Cu NPs) in organs and the corresponding damage, although whether Cu NPs can be translocated to the ovaries and their ovarian toxicity are still unknown. In this study, three groups of female rats were injected with 3.12, 6.25, or 12.5 mg/kg Cu NPs for 14 consecutive days. The pathological changes, hormone levels, apoptosis and apoptotic proteins, oxidative stress, and gene expression characteristics in the ovaries were then investigated. The results demonstrated that the Cu NPs exhibited obvious accumulation in the rat ovaries, leading to ovarian injury, an imbalance of sex hormones, and ovarian cell apoptosis. Cu NP exposure activated caspase 3, caspase 8, caspase 9, and tBid, decreased the protein levels of Bcl-2, increased the expression levels of the proteins Bax and cytochrome c, and promoted malondialdehyde (MDA) accumulation and superoxide dismutase (SOD) reduction. Furthermore, gene microarray analysis showed that Cu NPs (12.5 mg/kg/d) caused 321 differentially expressed genes. Of these, 180 and 141 genes were upregulated and downregulated, respectively. Hsd17b1, Hsd3b1, Hsd3b6, and Hsd3b were involved in steroid and hormone metabolism, whereas Mt3 and Cebpb were associated with apoptosis. Overall, these findings provide strong evidence that Cu NPs trigger both intrinsic and extrinsic apoptotic pathways and regulate key ovarian genes in oxidative stress-mediated ovarian dysfunction. PMID:28860760

  14. Cytochrome P450 CYP1B1 over-expression in primary and metastatic ovarian cancer.

    PubMed

    McFadyen, M C; Cruickshank, M E; Miller, I D; McLeod, H L; Melvin, W T; Haites, N E; Parkin, D; Murray, G I

    2001-07-20

    Ovarian cancer is the most frequent cause of death from gynaecological malignancies world wide. Little improvement has been made in the long-term outcome of this disease, with the 5-year survival of patients only 30%. This poor prognosis is due to the late presentation of the disease and to the unpredictable response of ovarian cancer to chemotherapy. The cytochrome P450 enzymes are a superfamily of haemoproteins, known to be involved in the metabolic activation and/or detoxification of a number of anti-cancer drugs. CYP1B1 is a tumour-related form of cytochrome P450 which is over expressed in a wide variety of primary tumours of different histological type. The presence of CYP1B1 may be of importance in the modulation of these tumours to anti-cancer drugs. We have conducted a comprehensive immunohistochemical investigation, into the presence of cytochrome P450 CYP1B1 in primary and metastatic ovarian cancer. The key findings of this study are the increased expression of CYP1B1 in the majority of ovarian cancers investigated (92%), with a strong correlation demonstrated between CYP1B1 expression in both primary and metastatic ovarian cancer (P = 0.005 Spearman's rank correlation test). In contrast no detectable CYP1B1 was found in normal ovary.

  15. Decreased expression of pyruvate dehydrogenase A1 predicts an unfavorable prognosis in ovarian carcinoma

    PubMed Central

    Li, Yaqing; Huang, Ruixia; Li, Xiaoli; Li, Xiaoran; Yu, Dandan; Zhang, Mingzhi; Wen, Jianguo; Goscinski, Mariusz Adam; Trope, Claes G; Nesland, Jahn M; Suo, Zhenhe

    2016-01-01

    Pyruvate dehydrogenase A1 (PDHA1) serves as a gate-keeper enzyme link between glycolysis and the mitochondrial citric acid cycle. The inhibition of PDHA1 in cancer cells can result in an increased Warburg effect and a more aggressive phenotype in cancer cells. This study was conducted to investigate the expression of PDHA1 in ovarian cancer and the correlation between PDHA1 expression and the prognosis of patients. The PDHA1 protein expression in 3 ovarian cancer cell lines (OVCAR-3, SKOV-3 and ES-2) and 248 surgically removed ovarian carcinoma samples was immunocytochemically examined. Statistical analyses were performed to evaluate the correlations between PDHA1 expression and the clinicopathological characteristics of the patients as well as the predictive value of PDHA1. The results showed the presence of variable expression of PDHA1 in the three ovarian cancer cell lines. Of the 248 ovarian cancer tissue specimens, 45 cases (18.1%) were negative in tumor cells for PDHA1, 162 cases (65.3%) displayed a low expression level, and 41 cases (16.5%) had a relatively high PDHA1 staining. The expression of PDHA1 was associated with the histological subtype (P=0.004) and FIGO stage (P=0.002). The median OS time in the PDHA1 negative group, low expression group and high expression group were 0.939 years, 1.443 years and 9.900 years, respectively. The median PFS time in the above three groups were 0.287 years, 0.586 years and 9.900 years, respectively. Furthermore, the high expression of PDHA1 in ovarian carcinoma cells was significantly associated with better OS and PFS by statistical analyses. Multivariate analyses showed that PDHA1 expression was also an independent prognostic factor for higher OS in ovarian cancer patients (HR=0.705, 95% CI 0.541-0.918, P=0.01). Our study indicated that the decreased expression of PDHA1 might be an independent prognostic factor in unfavorable outcomes. PMID:27725912

  16. CYP1B1 expression in ovarian cancer in the laying hen Gallus domesticus

    PubMed Central

    Zhuge, Yan; Lagman, Jo Ann J.; Ansenberger, Kristine; Mahon, Cassandra J.; Daikoku, Takiko; Dey, Sudhansu K.; Bahr, Janice M.; Hales, Dale B.

    2009-01-01

    Objectives Ovarian carcinoma is the most lethal gynecological malignancy. The genetic and molecular mechanisms that cause it still remain largely unknown. CYP1B1 is a cytochrome P450 enzyme that catalyzes the conversion of estrogens to genotoxic catechol estrogens which may cause DNA mutations and initiate ovarian epithelial cancer. Our objectives were to evaluate CYP1B1 expression, distribution and localization in the hen ovary and to determine if there is an increased CYP1B1 expression associated with, and possibly involved in the initiation of ovarian cancer. Methods Two groups of hens were used: 1. young (50 weeks of age; devoid of cancer) and 2. old (165 weeks of age; divided into two groups: age-matched normal and ovarian cancer). CYP1B1 mRNA and protein expression were analyzed in cancerous ovaries, ovaries of age-matched normal and/or young hens by quantitative real-time PCR (qRT-PCR), in situ hybridization (ISH) and immunohistochemistry (IHC). RNA was extracted from tissue preserved in RNAlater for qRT-PCR. Tissue frozen in liquid nitrogen was used for ISH. Tissue fixed in neutral buffered formalin was subjected to IHC. Results Higher expression of CYP1B1 mRNA was observed in cancerous ovaries as compared to ovaries of young and age-matched normal hens by qRT-PCR. ISH and IHC confirmed that the expression of CYP1B1 was much higher in ovarian tumors compared to ovaries of age-matched normal hens. CYP1B1 mRNA and protein were distributed extensively throughout the carcinoma, while primarily localized to the granulosa layer surrounding the follicle in age-matched normal hens. IHC also showed nuclear localization of CYP1B1. Highly expressed CYP1B1 was found in POF-3 from young and age-matched normal hens as compared to POF-1 and POF-2 by qRT-PCR. No significant difference was found in the expression of CYP1B1 between the distal (site of rupture) and the proximal (site of attachment to the ovary) of POF-1 from young and age-matched normal hens. Conclusions High

  17. Expression of Par3 polarity protein correlates with poor prognosis in ovarian cancer.

    PubMed

    Nakamura, Hiroe; Nagasaka, Kazunori; Kawana, Kei; Taguchi, Ayumi; Uehara, Yuriko; Yoshida, Mitsuyo; Sato, Masakazu; Nishida, Haruka; Fujimoto, Asaha; Inoue, Tomoko; Adachi, Katsuyuki; Nagamatsu, Takeshi; Arimoto, Takahide; Oda, Katsutoshi; Osuga, Yutaka; Fujii, Tomoyuki

    2016-11-17

    Previous studies have shown that the cell polarity protein partitioning defective 3 (Par3) plays an essential role in the formation of tight junctions and definition of apical-basal polarity. Aberrant function of this protein has been reported to be involved in epithelial-mesenchymal transition (EMT) and cancer invasion. The aim of this study was to examine the functional mechanism of Par3 in ovarian cancer. First, we investigated the association between Par3 expression level and survival of 50 ovarian cancer patients. Next, we conducted an in vitro analysis of ovarian cancer cell lines, focusing on the cell line JHOC5, to investigate Par3 function. To investigate the function of Par3 in invasion, the IL-6/STAT3 pathway was analyzed upon Par3 knockdown with siRNA. The effect of siRNA treatment was assessed by qPCR, ELISA, and western blotting. Invasiveness and cell proliferation following treatment with siRNA against Par3 were investigated using Matrigel chamber, wound healing, and cell proliferation assays. Expression array data for ovarian cancer patient samples revealed low Par3 expression was significantly associated with good prognosis. Univariate analysis of clinicopathological factors revealed significant association between high Par3 levels and peritoneal dissemination at the time of diagnosis. Knockdown of Par3 in JHOC5 cells suppressed cell invasiveness, migration, and cell proliferation with deregulation of IL-6/STAT3 activity. Taken together, these results suggest that Par3 expression is likely involved in ovarian cancer progression, especially in peritoneal metastasis. The underlying mechanism may be that Par3 modulates IL-6 /STAT3 signaling. Here, we propose that the expression of Par3 in ovarian cancer may control disease outcome.

  18. Vasohibin-1 expression inhibits advancement of ovarian cancer producing various angiogenic factors.

    PubMed

    Takahashi, Yoshifumi; Saga, Yasushi; Koyanagi, Takahiro; Takei, Yuji; Machida, Shizuo; Taneichi, Akiyo; Mizukami, Hiroaki; Sato, Yasufumi; Matsubara, Shigeki; Fujiwara, Hiroyuki

    2016-05-01

    Vasohibin-1 (VASH1) is a negative feedback regulator of angiogenesis, the first to be discovered, and was identified in vascular endothelial growth factor (VEGF)-stimulated vascular endothelial cells. Vasohibin-1 inhibits abnormal vascularization induced by various angiogenic factors including fibroblast growth factor and platelet-derived growth factor (PDGF), in addition to VEGF. By focusing on this characteristic of VASH1, we investigated the antitumor effects of VASH1 expression on ovarian cancer cells that produce different angiogenic factors. By using a high VEGF-producing ovarian cancer cell line, SHIN-3, and a high PDGF-producing ovarian cancer cell line, KOC-2S, the cells were transfected with either a VEGF antagonist, soluble VEGF receptor-1 (sVEGFR-1, or sFlt-1), or VASH1 genes to establish their respective cellular expression. The characteristics of these transfectants were compared with controls. We previously reported that the expression of sFlt-1 inhibited tumor vascularization and growth of high VEGF-producing ovarian cancer cells, reduced peritoneal dissemination and ascites development, and prolonged the survival time of the host. However, in the current study, the expression of sFlt-1 had no such effect on the high PDGF-producing ovarian cancer cells used here, whereas VASH1 expression inhibited tumor vascularization and growth, not only in high VEGF-producing cells, but also in high PDGF-producing cells, reduced their peritoneal dissemination and ascites, and prolonged the survival time of the host. These results suggest that VASH1 is an effective treatment for ovarian cancer cells that produce different angiogenic factors. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  19. Expression profiles of Fsh-regulated ovarian genes during oogenesis in coho salmon.

    PubMed

    Guzmán, José M; Luckenbach, J Adam; Yamamoto, Yoji; Swanson, Penny

    2014-01-01

    The function of follicle-stimulating hormone (Fsh) during oogenesis in fishes is poorly understood. Using coho salmon as a fish model, we recently identified a suite of genes regulated by Fsh in vitro and involved in ovarian processes mostly unexplored in fishes, like cell proliferation, differentiation, survival or extracellular matrix (ECM) remodeling. To better understand the role of these Fsh-regulated genes during oocyte growth in fishes, we characterized their mRNA levels at discrete stages of the ovarian development in coho salmon. While most of the transcripts were expressed at low levels during primary growth (perinucleolus stage), high expression of genes associated with cell proliferation (pim1, pcna, and mcm4) and survival (ddit4l) was found in follicles at this stage. The transition to secondary oocyte growth (cortical alveolus and lipid droplet stage ovarian follicles) was characterized by a marked increase in the expression of genes related to cell survival (clu1, clu2 and ivns1abpa). Expression of genes associated with cell differentiation and growth (wt2l and adh8l), growth factor signaling (inha), steroidogenesis (cyp19a1a) and the ECM (col1a1, col1a2 and dcn) peaked in vitellogenic follicles, showing a strong and positive correlation with transcripts for fshr. Other genes regulated by Fsh and associated with ECM function (ctgf, wapl and fn1) and growth factor signaling (bmp16 and smad5l) peaked in maturing follicles, along with increases in steroidogenesis-related gene transcripts. In conclusion, ovarian genes regulated by Fsh showed marked differences in their expression patterns during oogenesis in coho salmon. Our results suggest that Fsh regulates different ovarian processes at specific stages of development, likely through interaction with other intra- or extra-ovarian factors.

  20. Fractalkine receptor is expressed in mature ovarian teratomas and required for epidermal lineage differentiation

    PubMed Central

    2013-01-01

    Background The goal of this study was to determine a predominant cell type expressing fractalkine receptor (CX3CR1) in mature ovarian teratomas and to establish functional significance of its expression in cell differentiation. Methods Specimens of ovarian teratoma and human fetal tissues were analyzed by immunohistochemistry for CX3CR1expression. Ovarian teratocarcinoma cell line PA-1 was used as a model for cell differentiation. Results We found that the majority of the specimens contained CX3CR1-positive cells of epidermal lineage. Skin keratinocytes in fetal tissues were also CX3CR1- positive. PA-1 cells with downregulated CX3CR1 failed to express a skin keratinocyte marker cytokeratin 14 when cultured on Matrigel in the presence of a morphogen, bone morphogenic protein 4 (BMP-4), as compared to those expressing scrambled shRNA. Conclusions Here we demonstrate that CX3CR1 is expressed in both normally (fetal skin) and abnormally (ovarian teratoma) differentiated keratinocytes and is required for cell differentiation into epidermal lineage. PMID:23958497

  1. Gene Expression Profiling of the Cephalothorax and Eyestalk in Penaeus Monodon during Ovarian Maturation

    PubMed Central

    Brady, Philip; Elizur, Abigail; Williams, Richard; Cummins, Scott F.; Knibb, Wayne

    2012-01-01

    In crustaceans, a range of physiological processes involved in ovarian maturation occurs in organs of the cephalothorax including the hepatopancrease, mandibular and Y-organ. Additionally, reproduction is regulated by neuropeptide hormones and other proteins released from secretory sites within the eyestalk. Reproductive dysfunction in captive-reared prawns, Penaeus monodon, is believed to be due to deficiencies in these factors. In this study, we investigated the expression of gene transcripts in the cephalothorax and eyestalk from wild-caught and captive-reared animals throughout ovarian maturation using custom oligonucleotide microarray screening. We have isolated numerous transcripts that appear to be differentially expressed throughout ovarian maturation and between wild-caught and captive-reared animals. In the cephalothorax, differentially expressed genes included the 1,3-β-D-glucan-binding high-density lipoprotein, 2/3-oxoacyl-CoA thiolase and vitellogenin. In the eyestalk, these include gene transcripts that encode a protein that modulates G-protein coupled receptor activity and another that encodes an architectural transcription factor. Each may regulate the expression of reproductive neuropeptides, such as the crustacean hyperglycaemic hormone and molt-inhibiting hormone. We could not identify differentially expressed transcripts encoding known reproductive neuropeptides in the eyestalk of either wild-caught or captive-reared prawns at any ovarian maturation stage, however, this result may be attributed to low relative expression levels of these transcripts. In summary, this study provides a foundation for the study of target genes involved in regulating penaeid reproduction. PMID:22355268

  2. Angiogenesis-Related Gene Expression Profile with Independent Prognostic Value in Advanced Ovarian Carcinoma

    PubMed Central

    Redondo, Andrés; Mariño-Enríquez, Adrián; Madero, Rosario; Espinosa, Enrique; Vara, Juan Ángel Fresno; Sánchez-Navarro, Iker; Hernández-Cortes, Ginés; Zamora, Pilar; Pérez-Fernández, Elia; Miguel-Martín, María; Suárez, Asunción; Palacios, José; González-Barón, Manuel; Hardisson, David

    2008-01-01

    Background Ovarian carcinoma is the most important cause of gynecological cancer-related mortality in Western societies. Despite the improved median overall survival in patients receiving chemotherapy regimens such as paclitaxel and carboplatin combination, relapse still occurs in most advanced diseased patients. Increased angiogenesis is associated with rapid recurrence and decreased survival in ovarian cancer. This study was planned to identify an angiogenesis-related gene expression profile with prognostic value in advanced ovarian carcinoma patients. Methodology/Principal Findings RNAs were collected from formalin-fixed paraffin-embedded samples of 61 patients with III/IV FIGO stage ovarian cancer who underwent surgical cytoreduction and received a carboplatin plus paclitaxel regimen. Expression levels of 82 angiogenesis related genes were measured by quantitative real-time polymerase chain reaction using TaqMan low-density arrays. A 34-gene-profile which was able to predict the overall survival of ovarian carcinoma patients was identified. After a leave-one-out cross validation, the profile distinguished two groups of patients with different outcomes. Median overall survival and progression-free survival for the high risk group was 28.3 and 15.0 months, respectively, and was not reached by patients in the low risk group at the end of follow-up. Moreover, the profile maintained an independent prognostic value in the multivariate analysis. The hazard ratio for death was 2.3 (95% CI, 1.5 to 3.2; p<0.001). Conclusions/Significance It is possible to generate a prognostic model for advanced ovarian carcinoma based on angiogenesis-related genes using formalin-fixed paraffin-embedded samples. The present results are consistent with the increasing weight of angiogenesis genes in the prognosis of ovarian carcinoma. PMID:19112514

  3. Lewis(y) antigen promotes the progression of epithelial ovarian cancer by stimulating MUC1 expression.

    PubMed

    Hou, Rui; Jiang, Luo; Liu, Dawo; Lin, Bei; Hu, Zhenhua; Gao, Jian; Zhang, Danye; Zhang, Shulan; Iwamori, Masao

    2017-08-01

    MUC1 is a type I transmembrane glycoprotein and is overexpressed in various epithelial tumor tissues. Some researchers have demonstrated that the glycosylation status of MUC1 can affect MUC1-mediated tumor growth and cell differentiation. In our previous study, we proved that the abilities of cell proliferation, adhesion, invasion and metastasis, and drug resistance were enhanced in ovarian cancer cells stably expressing Lewis(y). Therefore, we hypothesized that Lewis(y) antigen may play a central role in regulating MUC1 expression, and MUC1-mediated cell growth and differentiation may be closely associated with Lewis(y) antigen. This study aimed to examine the correlation between MUC1 expression and Lewis(y) antigen levels in ovarian cancer cell lines and tissue samples. A series of techniques, including RT-qPCR, western blot anlaysis, immunoprecipitation, immunohistochemistry and double-labeling immunofluorescence were applied to detect the expression of Lewis(y) and MUC1. In malignant epithelial ovarian tumors, the positive expression rates of Lewis(y) antigen and MUC1 were 88.33 and 86.67%, respectively, which were markedly higher than those in borderline (60.00 and 53.33%, P<0.05), benign (33.33 and 30%, P<0.01) and normal (0 and 25%, P<0.01) ovarian samples. There was no correlation between the positive expression rates of Lewis(y) or MUC1 and clinicopathological parameters in ovarian cancers (P>0.05). The expression levels of Lewis(y) and MUC1 correlated with the clinical FIGO stage (P<0.05). Both MUC1 and Lewis(y) were highly expressed in ovarian cancer tissues, and their expression levels were positively correlated (P<0.01). In α1,2-fucosyltransferase (α1,2-FT)-transfected cells, the gene and protein expression levels of MUC1 were significantly upregulated compared with the cells that did not overexpress α1,2-FT (P<0.05). The ratio of Lewis(y) immunoprecipitated with MUC1 to total MUC1 increased 1.55-fold in α1,2-FT-overexpressing cells

  4. Distinct Patterns of Stromal and Tumor Expression of ROR1 and ROR2 in Histological Subtypes of Epithelial Ovarian Cancer.

    PubMed

    Henry, C E; Emmanuel, C; Lambie, N; Loo, C; Kan, B; Kennedy, C J; de Fazio, A; Hacker, N F; Ford, C E

    2017-06-01

    The ROR1 and ROR2 receptor tyrosine kinases have both been implicated in ovarian cancer progression and have been shown to drive migration and invasion. There is an increasing importance of the role of stroma in ovarian cancer metastasis; however, neither ROR1 nor ROR2 expression in tumor or stromal cells has been analyzed in the same clinical cohort. To determine ROR1 and ROR2 expression in ovarian cancer and surrounding microenvironment and examine associations with clinicopathological characteristics. Immunohistochemistry for ROR1 and ROR2 was used to assess receptor expression in a cohort of epithelial ovarian cancer patients (n=178). Results were analyzed in relation to clinical and histopathological characteristics and survival. Matched patient sample case studies of normal, primary, and metastatic lesions were used to examine ROR expression in relation to ovarian cancer progression. ROR1 and ROR2 are abnormally expressed in malignant ovarian epithelium and stroma. Higher ROR2 tumor expression was found in early-stage, low-grade endometrioid carcinomas. ROR2 stromal expression was highest in the serous subtype. In matched patient case studies, metastatic samples had higher expression of ROR2 in the stroma, and a recurrent sample had the highest expression of ROR2 in both tumor and stroma. ROR1 and ROR2 are expressed in tumor-associated stroma in all histological subtypes of ovarian cancer and hold potential as therapeutic targets which may disrupt tumor and stroma interactions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Ovarian Surface Epithelium in Patients with Severe Ovarian Infertility: A Potential Source of Cells Expressing Markers of Pluripotent/Multipotent Stem Cells

    PubMed Central

    Virant-Klun, Irma; Skutella, Thomas; Stimpfel, Martin; Sinkovec, Jasna

    2011-01-01

    The aim of this study was to confirm the presence of stem cells in the ovarian surface epithelium of patients with premature ovarian failure and no mature follicles and oocytes. In these patients, small round cells of unknown origin expressing SOX-2 marker of pluripotency were observed among the epithelial cells just after the ovarian surface epithelium scraping. These cells were an integral part of the ovarian surface epithelium. When the scraped cells were cultured in a medium with added follicular fluid to provide some ovarian niche, primitive oocyte-like cells and typical round-shaped cell clusters positively stained on alkaline phosphatase, and markers of pluripotency, such as SOX-2 and SSEA-4, were developed. These markers were expressed early and also later in the culture. Single oocyte-like cells expressed genes OCT4A, SOX-2, NANOG, NANOS, STELLA, CD9, LIN28, KLF4, GDF3, and MYC, characteristic for pluripotent stem cells. The results of this study confirmed the presence of putative stem cells in the ovarian surface epithelium of these patients and provided some basis to create a stem cell line in the future. PMID:22187524

  6. The expression of FOXL2 in pancreatic, hepatobiliary, and renal tumors with ovarian-type stroma.

    PubMed

    Westerhoff, Maria; Tretiakova, Maria; Hart, John; Gwin, Katja; Liu, Xiuli; Zhou, Ming; Yeh, Matthew M; Antic, Tatjana

    2014-05-01

    FOXL2, a gene encoding a member of the fork-head-winged-helix family of transcription factors, is one of the earliest expressed genes during female gonadal development. It is expressed in normal ovarian stroma and ovarian neoplasms with granulosa cell lineage. Nonovarian tumors such as pancreatic mucinous cystic neoplasms (PMCs), hepatobiliary cystadenomas (HBCs), and mixed epithelial and stromal tumor of the kidney (MEST) have ovarian-type stroma. Immunohistochemical staining with FOXL2, estrogen receptor, and progesterone receptor was performed on 21 PMCs, 13 HBCs, and 10 MESTs and assessed for nuclear immunohistochemical positivity in the tumor stroma. All cases of PMC and HBC demonstrated nuclear reactivity for FOXL2 in the subepithelial stromal cells. Ninety percent of MEST demonstrated nuclear FOXL2 positivity. Estrogen receptor nuclear positivity was demonstrated in 57% of PMC, 77% of HBC, and 80% of MEST. Progesterone receptor nuclear positivity was present in 67% of PMC, 100% of HBC, and 90% of MEST. Clinical information was available for 37 patients. Seventy-eight percent of the patients had a history of obesity, heavy alcohol use, or hormone-related therapy. The 2 male patients had histories significant for morbid obesity and chronic alcoholism. FOXL2 is expressed from the early stages of ovarian development and has been shown to be mandatory for normal ovarian function. We have shown that it is also expressed in the aberrant ovarian-type stroma characteristic of PMC, HBC, and MEST. Most of such patients, including the rare male patients, have risk factors for hormonal abnormalities such as obesity and hormonal replacement therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    SciTech Connect

    Wu, Huijuan; Wang, Ke; Liu, Wenxin; Hao, Quan

    2014-02-07

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer.

  8. Developmental Programming: Gestational Bisphenol-A Treatment Alters Trajectory of Fetal Ovarian Gene Expression

    PubMed Central

    Veiga-Lopez, Almudena; Luense, Lacey J.; Christenson, Lane K.

    2013-01-01

    Bisphenol-A (BPA), a ubiquitous environmental endocrine disrupting chemical, is a component of polycarbonate plastic and epoxy resins. Because of its estrogenic properties, there is increasing concern relative to risks from exposures during critical periods of early organ differentiation. Prenatal BPA treatment in sheep results in low birth weight, hypergonadotropism, and ovarian cycle disruptions. This study tested the hypothesis that gestational exposure to bisphenol A, at an environmentally relevant dose, induces early perturbations in the ovarian transcriptome (mRNA and microRNA). Pregnant Suffolk ewes were treated with bisphenol A (0.5 mg/kg, sc, daily, produced ∼2.6 ng/mL of unconjugated BPA in umbilical arterial samples of BPA treated fetuses approaching median levels of BPA measured in maternal circulation) from days 30 to 90 of gestation. Expression of steroidogenic enzymes, steroid/gonadotropin receptors, key ovarian regulators, and microRNA biogenesis components were measured by RT-PCR using RNA derived from fetal ovaries collected on gestational days 65 and 90. An age-dependent effect was evident in most steroidogenic enzymes, steroid receptors, and key ovarian regulators. Prenatal BPA increased Cyp19 and 5α-reductase expression in day 65, but not day 90, ovaries. Fetal ovarian microRNA expression was altered by prenatal BPA with 45 down-regulated (>1.5-fold) at day 65 and 11 down-regulated at day 90 of gestation. These included microRNAs targeting Sry-related high-mobility-group box (SOX) family genes, kit ligand, and insulin-related genes. The results of this study demonstrate that exposure to BPA at an environmentally relevant dose alters fetal ovarian steroidogenic gene and microRNA expression of relevance to gonadal differentiation, folliculogenesis, and insulin homeostasis. PMID:23525218

  9. Expression analysis and prognostic significance of the SRA1 gene, in ovarian cancer

    SciTech Connect

    Leoutsakou, Theoni; Talieri, Maroulio; Scorilas, Andreas . E-mail: ascorilas@biol.uoa.gr

    2006-06-02

    The SR-related-CTD-associated-factors (SCAFs) have the ability to interact with the C-terminal domain of the RNA polymerase II, linking this way transcription to splicing. SRA1 (SR-A1) gene, encoding for a human high-molecular weight SCAF protein, is located on chromosome 19, between the IRF3 and the R-RAS oncogene and it has been demonstrated from members of our group that SRA1 is constitutively expressed in most of the human tissues, while it is overexpressed in a subset of ovarian tumors. In this study, we examine the expression of SRA1 gene in 111 ovarian malignant tissues and in the human ovarian carcinoma cell lines OVCAR-3, TOV21-G, and ES-2, using a semi-quantitative RT-PCR method. SRA1 gene was overexpressed in 61/111 (55%) of ovarian carcinomas. This higher expression was positively associated to the size of the tumor (p < 0.001), the grade and the stage of the disease (p = 0.003 and p = 0.006, respectively), and the debulking success (p < 0.001). Kaplan-Meier survival analysis revealed that lower SRA1 expression increases the probability of both the longer overall and the progression free survival of the patients. Multivariate Cox regression analysis revealed that SRA1 may be used as an independent prognostic biomarker in ovarian cancer. Our results suggest that SRA1 is associated with cancer progression and may possibly be characterized as a new marker of unfavorable prognosis for ovarian cancer.

  10. Clinical impact of L1CAM expression measured on the transcriptome level in ovarian cancer

    PubMed Central

    Azim, Samira Abdel; Duggan-Peer, Michaela; Sprung, Susanne; Reimer, Daniel; Fiegl, Heidi; Soleiman, Afschin; Marth, Christian; Zeimet, Alain G.

    2016-01-01

    Background High expression of L1 cell adhesion molecules (L1CAM) has been repeatedly shown to be associated with aggressive disease behavior, which translates in poor clinical outcome in various cancer entities. However, in ovarian cancer results based either on immunohistochemistry or cytosolic protein quantifications remained conflicting regarding clinical behavior. In the present work we assessed L1CAM expression on the transcriptome level with the highly sensitive quantitative real-time PCR (qRT-PCR) to define its relevance in ovarian cancer biology. Results There was a significant difference in L1CAM high and low mRNA expressing cancers with regard to disease-free (p=0.002) and overall survival (p=0.008). L1CAM proofed to be an independent predictor for disease progression (HR 1.8, p=0.01) and overall survival (HR 1.6, p=0.04). Furthermore, a significant positive correlation between the level of L1CAM and the grade of tumor differentiation (p=0.04), the FIGO stage (p=0.025) as well as the histological subtype (p= 0.002) was found. Methods This study included fresh frozen tissue samples of 138 patients with FIGO I-IV stage ovarian cancer. L1CAM mRNA expression was determined using qRT-PCR. In the calculations special attention was put on the various histological subtypes. In survival analysis median L1CAM mRNA expression obtained in the entire cohort of ovarian cancer samples was used as a cut-off to distinguish between high and low L1CAM mRNA expression. Conclusion L1CAM mRNA expression appears to play a substantial role in the pathophysiology of ovarian cancer that is translated into poor clinical outcome. Additionally humanized L1CAM antibodies, which can serve as potential future treatment options are under testing. PMID:27174921

  11. Expression and clinical role of protein of regenerating liver (PRL) phosphatases in ovarian carcinoma.

    PubMed

    Reich, Reuven; Hadar, Shany; Davidson, Ben

    2011-02-11

    The present study analyzed the expression and clinical role of the protein of regenerating liver (PRL) phosphatase family in ovarian carcinoma. PRL1-3 mRNA expression was studied in 184 tumors (100 effusions, 57 primary carcinomas, 27 solid metastases) using RT-PCR. PRL-3 protein expression was analyzed in 157 tumors by Western blotting. PRL-1 mRNA levels were significantly higher in effusions compared to solid tumors (p < 0.001), and both PRL-1 and PRL-2 were overexpressed in pleural compared to peritoneal effusions (p = 0.001). PRL-3 protein expression was significantly higher in primary diagnosis pre-chemotherapy compared to post-chemotherapy disease recurrence effusions (p = 0.003). PRL-1 mRNA expression in effusions correlated with longer overall survival (p = 0.032), and higher levels of both PRL-1 and PRL-2 mRNA correlated with longer overall survival for patients with pre-chemotherapy effusions (p = 0.022 and p = 0.02, respectively). Analysis of the effect of laminin on PRL-3 expression in ovarian carcinoma cells in vitro showed dose-dependent PRL-3 expression in response to exogenous laminin, mediated by Phospholipase D. In contrast to previous studies associating PRL-3 with poor outcome, our data show that PRL-3 expression has no clinical role in ovarian carcinoma, whereas PRL-1 and PRL-2 expression is associated with longer survival, suggesting that PRL phosphatases may be markers of improved outcome in this cancer.

  12. Lysophosphatidic acid expression in theca cells depends on the type of bovine ovarian follicle.

    PubMed

    Sinderewicz, E; Grycmacher, K; Boruszewska, D; Kowalczyk-Zięba, I; Woclawek-Potocka, I

    2017-02-01

    Lysophosphatidic acid (LPA) exerts various actions on the mammalian reproductive system. In cows, LPA stimulates the synthesis and secretion of luteotropic factors in the ovary, which affects the growth and development of ovarian follicles. The role of LPA in granulosa cells, oocyte and oocyte-cumulus complex (COC) has previously been investigated; but its role in the theca layer, which is an important structural and functional component of the ovarian follicle, is still unclear. The goal of this study was to investigate the expression of LPA in theca cells originating from different bovine ovarian follicle types. Theca cells were separated from healthy, transitional and atretic ovarian follicles, based on intrafollicular estradiol: progesterone ratios. LPA concentration in the follicular fluid (FF) in different follicle types was measured, and expression of the enzymes responsible for LPA synthesis (autotaxin [AX], phospholipase A2 [PLA2]) and receptors for LPA (LPAR1-4) were determined. The obtained results confirmed the follicle-type dependent presence of LPA in the FF of the bovine ovarian follicles. The highest concentration of LPA was detected in follicles classified as healthy and dominant. LPAR1-4, PLA2 and AX expression in theca cells in all of the types of follicles examined were detected at mRNA and protein level. These results suggest that theca cells can be a source of LPA synthesis other than granulosa cells and COCs, as well as the target for its action in the bovine ovarian follicle, with PLA2 and LPAR4 playing major roles in LPA synthesis and action. © 2016 Blackwell Verlag GmbH.

  13. Loss of DCC gene expression during ovarian tumorigenesis: relation to tumour differentiation and progression

    PubMed Central

    Saegusa, M; Machida, D; Okayasu, I

    2000-01-01

    To clarify the possible role of DCC gene alteration in ovarian neoplasias, we immunohistochemically investigated 124 carcinomas, as well as 55 cystadenomas and 41 low malignant potential (LMP) tumours and compared the results with those for p53 protein expression, clinicopathological factors and survival. A combination of the reverse transcription polymerase chain reaction (RT-PCR) and Southern blot hybridization (SBH) for DCC mRNA levels was also carried out on 26 malignant, five LMP, eight benign and seven normal ovarian samples. Significantly decreased levels of overall DCC values in carcinomas compared with benign and LMP lesions were revealed by both immunohistochemical and RT-PCR/SBH assays. Similar findings were also noted when subdivision was into serous and mucinous categories. In carcinomas, reduction or loss of DCC expression was significantly related to the serous phenotype (serous vs non-serous, P< 0.0001), a high histological grade (grade 1 vs 2 or 3, P< 0.02) and a more advanced stage (FIGO stage I vs II/III/IV, P = 0.0083), while no association was noted with survival. Although p53 immunopositivity demonstrated significant stepwise increase from benign through to malignant lesions, there was no clear association with DCC score values. The results indicated that impaired DCC expression may play an important role in ovarian tumorigenesis. In ovarian carcinomas, the altered expression is closely linked with tumour differentiation and progression. © 2000 Cancer Research Campaign PMID:10682668

  14. Downregulation of glypican-3 expression increases migration, invasion, and tumorigenicity of human ovarian cancer cells.

    PubMed

    Liu, Ying; Zheng, Dongping; Liu, Mingming; Bai, Jiao; Zhou, Xi; Gong, Baolan; Lü, Jieyu; Zhang, Yi; Huang, Hui; Luo, Wenying; Huang, Guangrong

    2015-09-01

    Glypican-3 (GPC3) is a membrane of heparan sulfate proteoglycan family involved in cell proliferation, adhesion, migration, invasion, and differentiation during the development of the majority of mesodermal tissues and organs. GPC3 is explored as a potential biomarker for hepatocellular carcinoma screening. However, as a tumor-associated antigen, its role in ovarian cancer remains elusive. In this report, the expression levels of GPC3 in the various ovarian cancer cells were determined with quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and GPC3 expression in ovarian cancer UCI 101 and A2780 cells was knocked down by siRNA transfection, and the effects of GPC3 knockdown on in vitro cell proliferation, migration, and invasion were respectively analyzed by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay and Transwell migration assay. Additionally, the effect of GPC3 knockdown on in vivo tumorigenesis were investigated in athymic nude mice. The results indicated that GPC3 knockdown significantly promoted cell proliferation and increased cell migration and invasion by upregulation of matrix metalloproteinase (MMP)-2 and MMP-9 expression and downregulation of tissue inhibitor of metalloproteinase-1 expression. Additionally, GPC3 knockdown also increased in vivo tumorigenicity of UCI 101 and A2780 cells and final tumor weights and volumes after subcutaneous cell injection in the nude mice. The results of immunohistochemical staining and Western blotting both demonstrated a lower expression of GPC3 antigen in the tumors of GPC3 knockdown groups than that of negative control groups. Moreover, transforming growth factor-β2 protein expression in the tumors of GPC3 knockdown groups was significantly increased, which at least contributed to tumor growth in the nude mice. Taken together, these findings suggest that GPC3 knockdown promotes the progression of human ovarian cancer cells by increasing their migration, invasion

  15. hGBP-1 Expression Predicts Shorter Progression-Free Survival in Ovarian Cancers, While Contributing to Paclitaxel Resistance

    PubMed Central

    Wadi, Suzan; Tipton, Aaron R.; Trendel, Jill A.; Khuder, Sadik A.; Vestal, Deborah J.

    2017-01-01

    Ovarian cancer is the gynecological cancer with the poorest prognosis. One significant reason is the development of resistance to the chemotherapeutic drugs used in its treatment. The large GTPase, hGBP-1, has been implicated in paclitaxel resistance in ovarian cell lines. Forced expression of hGBP-1 in SKOV3 ovarian cancer cells protects them from paclitaxel-induced cell death. However, prior to this study, nothing was known about whether hGBP-1 was expressed in ovarian tumors and whether its expression correlated with paclitaxel resistance. hGBP-1 is expressed in 17% of ovarian tumors from patients that have not yet received treatment. However, at least 80% of the ovarian tumors that recurred after therapies that included a tax-ane, either paclitaxel or docetaxel, were positive for hGBP-1. In addition, hGBP-1 expression predicts a significantly shorter progression-free survival in ovarian cancers. Based on these studies, hGBP-1 could prove to be a potential biomarker for paclitaxel resistance in ovarian cancer. PMID:28090373

  16. Synthetic genes specifying periodic polymers modelled on the repetitive domain of wheat gliadins: conception and expression.

    PubMed

    Elmorjani, K; Thiévin, M; Michon, T; Popineau, Y; Hallet, J N; Guéguen, J

    1997-10-09

    In order to optimise new polypeptide based biomaterials, we developed a procedure for producing homoblock polypeptides using recombinant DNA technology. Synthetic genes encoding periodic polypeptides modelled on the consensus sequence of wheat gliadins (a family of wheat storage proteins) were devised to be expressed in Escherichia coli. The construction strategy followed allows the construction of three genes encoding 8, 16, and 32 copies of the PQQPY module. The optimal expression conditions in the enterobacteria were established and a convenient purification procedure was shown to be useful in recovery of sizable amounts of strictly periodic polypeptides. The identities of the synthesized polypeptides were assessed using positive cross reactions to antibodies raised against a synthetic decapeptide (PQQPYPQQPA) and amino acid composition was determined as well.

  17. A Five-Gene Expression Signature Predicts Clinical Outcome of Ovarian Serous Cystadenocarcinoma

    PubMed Central

    Guo, Wenna

    2016-01-01

    Ovarian serous cystadenocarcinoma is a common malignant tumor of female genital organs. Treatment is generally less effective as patients are usually diagnosed in the late stage. Therefore, a well-designed prognostic marker provides valuable data for optimizing therapy. In this study, we analyzed 303 samples of ovarian serous cystadenocarcinoma and the corresponding RNA-seq data. We observed the correlation between gene expression and patients' survival and eventually established a risk assessment model of five factors using Cox proportional hazards regression analysis. We found that the survival time in high-risk patients was significantly shorter than in low-risk patients in both training and testing sets after Kaplan-Meier analysis. The AUROC value was 0.67 when predicting the survival time in testing set, which indicates a relatively high specificity and sensitivity. The results suggest diagnostic and therapeutic applications of our five-gene model for ovarian serous cystadenocarcinoma. PMID:27478834

  18. Highly expressed NRSN2 is related to malignant phenotype in ovarian cancer.

    PubMed

    Tang, Wenbin; Ren, Aimin; Xiao, Hongyang; Sun, Huizhen; Li, Bin

    2017-01-01

    Neurensin-2 (NRSN2) is a 24KD protein, which is reported located in the membrane, while its biological functions remain unknown, not to mention in the field of tumor biology. In current study, we aimed to analyze the functions of NRSN2 in ovarian cancer. We screened TCGA database and surprisingly found that its copy number and mRNA level are gained and heightened respectively in parts of serous ovarian cancer patients. In current study, both loss- and gain- function assays found that NRSN2 is associated with the malignant phenotype in ovarian cancer cells, because NRSN2 plays a remarkable role in anchorage-independent colony formation, subcutaneous tumor formation, cell invasion, and chemoresistance. Furthermore, we found that the level of NRSN2 was positively correlated with the expression of stem cell marker CD133. In addition, Wnt canonical signaling and Twist/Akt/Erk axis were also regulated by NRSN2. In conclusion, we found that a poorly studied protein, NRSN2, which is associated with the malignant phenotype of serous ovarian cancer and as a membrane protein; it could be a target for serous ovarian cancer treatment.

  19. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    SciTech Connect

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  20. Comparison of the ovarian and uterine reproductive parameters, and the ovarian mRNA and protein expression of LHR and FSHR between the prepubertal and adult female cats.

    PubMed

    Mehl, N S; Khalid, M; Srisuwatanasagul, S; Swangchan-Uthai, T; Sirivaidyapong, S

    2017-04-01

    This study aimed to evaluate and compare the ovarian and uterine characteristics along with the ovarian mRNA and protein expression of LHR and FSHR between the pre-pubertal and adult female cats. The uterine horns and ovaries were collected from pre-pubertal and adult female cats at their follicular, luteal and interoestrous stages of the oestrous cycle (n = 6/group). Endometrial and myometrial thickness, uterine gland diameter, ovarian weight and type of follicles were analysed. The mRNA and protein expression of LHR and FSHR was analysed by IHC and qPCR, respectively. The ovarian weight of pre-pubertal cats was significantly lower than that of adult cats. No differences were recorded in the numbers of primordial and primary follicles between the study groups, while adult luteal cats had significantly lower numbers of antral follicles compared to pre-pubertal cats. No differences in the ovarian expression of FSHR mRNA, LHR protein or mRNA were found between the pre-pubertal and adult cats, but significantly lower FSHR protein expression was found in pre-pubertal cats compared to adult luteal cats. © 2017 Blackwell Verlag GmbH.

  1. Embryonic Stem Cell (ES)-Specific Enhancers Specify the Expression Potential of ES Genes in Cancer

    PubMed Central

    Levy, Revital; Meron, Nurit; Toperoff, Gidon; Edrei, Yifat; Bergman, Yehudit; Hellman, Asaf

    2016-01-01

    Cancers often display gene expression profiles resembling those of undifferentiated cells. The mechanisms controlling these expression programs have yet to be identified. Exploring transcriptional enhancers throughout hematopoietic cell development and derived cancers, we uncovered a novel class of regulatory epigenetic mutations. These epimutations are particularly enriched in a group of enhancers, designated ES-specific enhancers (ESSEs) of the hematopoietic cell lineage. We found that hematopoietic ESSEs are prone to DNA methylation changes, indicative of their chromatin activity states. Strikingly, ESSE methylation is associated with gene transcriptional activity in cancer. Methylated ESSEs are hypermethylated in cancer relative to normal somatic cells and co-localized with silenced genes, whereas unmethylated ESSEs tend to be hypomethylated in cancer and associated with reactivated genes. Constitutive or hematopoietic stem cell-specific enhancers do not show these trends, suggesting selective reactivation of ESSEs in cancer. Further analyses of a hypomethylated ESSE downstream to the VEGFA gene revealed a novel regulatory circuit affecting VEGFA transcript levels across cancers and patients. We suggest that the discovered enhancer sites provide a framework for reactivation of ES genes in cancer. PMID:26886256

  2. Regulation of angiotensin II type 1 receptor expression in ovarian cancer: a potential role for BRCA1.

    PubMed

    Bi, Fang-Fang; Li, Da; Cao, Chen; Li, Chun-Yan; Yang, Qing

    2013-12-09

    Both BRCA1 and angiotensin II type 1 receptor (AGTR1) play a critical role in ovarian cancer progression. However, the crosstalk between BRCA1 and AGTR1 signaling pathways remains largely unknown. BRCA1 promoter methylation was analyzed by bisulfite sequence using primers focused on the core promoter region. Expression levels of BRCA1 and AGTR1 were assessed by immunohistochemistry and real-time PCR. Regression analysis was used to examine the possible relationship between BRCA1 and AGTR1 protein levels. Knockdown or overexpression of BRCA1 was achieved by using a lentiviral vector in 293 T cells and SKOV3 ovarian carcinoma cells, and primary non-mutated and BRCA1-mutated ovarian cancer cells. BRCA1 dysfunction (BRCA1 mutation or hypermethylated BRCA1 promoter) ovarian cancer showed decreased AGTR1 levels compared to normal tissue. In contrast, AGTR1 expression was increased in non-BRCA1-mutated ovarian cancer. Notably, BRCA1 activation was an effective way to induce AGTR1 expression in primary ovarian cancer cells and a positive correlation exists between BRCA1 and AGTR1 expression in human ovarian cancer specimens. These results indicate that BRCA1 may be a potential trigger involved in the transcriptional regulation of AGTR1 in the development of ovarian cancer.

  3. Regulation of angiotensin II type 1 receptor expression in ovarian cancer: a potential role for BRCA1

    PubMed Central

    2013-01-01

    Background Both BRCA1 and angiotensin II type 1 receptor (AGTR1) play a critical role in ovarian cancer progression. However, the crosstalk between BRCA1 and AGTR1 signaling pathways remains largely unknown. Methods BRCA1 promoter methylation was analyzed by bisulfite sequence using primers focused on the core promoter region. Expression levels of BRCA1 and AGTR1 were assessed by immunohistochemistry and real-time PCR. Regression analysis was used to examine the possible relationship between BRCA1 and AGTR1 protein levels. Knockdown or overexpression of BRCA1 was achieved by using a lentiviral vector in 293 T cells and SKOV3 ovarian carcinoma cells, and primary non-mutated and BRCA1-mutated ovarian cancer cells. Results BRCA1 dysfunction (BRCA1 mutation or hypermethylated BRCA1 promoter) ovarian cancer showed decreased AGTR1 levels compared to normal tissue. In contrast, AGTR1 expression was increased in non-BRCA1-mutated ovarian cancer. Notably, BRCA1 activation was an effective way to induce AGTR1 expression in primary ovarian cancer cells and a positive correlation exists between BRCA1 and AGTR1 expression in human ovarian cancer specimens. Conclusions These results indicate that BRCA1 may be a potential trigger involved in the transcriptional regulation of AGTR1 in the development of ovarian cancer. PMID:24321324

  4. Trefoil factor 3 expression in epithelial ovarian cancer exerts a minor effect on clinicopathological parameters

    PubMed Central

    Hoellen, Friederike; Kostara, Athina; Karn, Thomas; Holtrich, Uwe; El-Balat, Ahmed; Otto, Mike; Rody, Achim; Hanker, Lars C.

    2016-01-01

    The role of trefoil factor 3 (intestinal) (TFF3) has been analyzed in numerous cancers, such as breast and gastrointestinal cancer, and has been associated with poor prognosis. However, the role of TFF3 in ovarian cancers is not clear. Expression analysis of TFF3 in 91 ovarian cancer patients was performed by immunohistochemistry of primary paraffin-embedded tumor samples. The results were scored according to staining intensity and percentage of positive tumor cells resulting in an immune-reactive score (IRS) of 0–12. These results were correlated with clinicopathological characteristics and survival. TFF3 expression in our patient cohort exhibited a tendency towards improved overall and progression-free survival (PFS). In TFF3-positive serous and high-grade serous ovarian cancers, the median PFS was 27.6 months [95% confidence interval (CI): 0–55.7] vs. 15.2 months in TFF3-negative tumors (95% CI: 13.8–16.6) (P=0.183). The median overall survival was 53.9 months in TFF3-positive tumors (95% CI: Non-applicable) vs. 44.4 months in TFF3-negative cases (95% CI: 30.5–58.3) (P=0.36). TFF3 negativity was significantly associated with higher tumor grade (P=0.05). Based on our results, further studies are required in order to elucidate whether survival and chemosensitivity are affected by TFF3 expression in ovarian cancer. PMID:27699037

  5. Identification of candidate growth promoting genes in ovarian cancer through integrated copy number and expression analysis.

    PubMed

    Ramakrishna, Manasa; Williams, Louise H; Boyle, Samantha E; Bearfoot, Jennifer L; Sridhar, Anita; Speed, Terence P; Gorringe, Kylie L; Campbell, Ian G

    2010-04-08

    Ovarian cancer is a disease characterised by complex genomic rearrangements but the majority of the genes that are the target of these alterations remain unidentified. Cataloguing these target genes will provide useful insights into the disease etiology and may provide an opportunity to develop novel diagnostic and therapeutic interventions. High resolution genome wide copy number and matching expression data from 68 primary epithelial ovarian carcinomas of various histotypes was integrated to identify genes in regions of most frequent amplification with the strongest correlation with expression and copy number. Regions on chromosomes 3, 7, 8, and 20 were most frequently increased in copy number (> 40% of samples). Within these regions, 703/1370 (51%) unique gene expression probesets were differentially expressed when samples with gain were compared to samples without gain. 30% of these differentially expressed probesets also showed a strong positive correlation (r > or =0.6) between expression and copy number. We also identified 21 regions of high amplitude copy number gain, in which 32 known protein coding genes showed a strong positive correlation between expression and copy number. Overall, our data validates previously known ovarian cancer genes, such as ERBB2, and also identified novel potential drivers such as MYNN, PUF60 and TPX2.

  6. Identification of Candidate Growth Promoting Genes in Ovarian Cancer through Integrated Copy Number and Expression Analysis

    PubMed Central

    Ramakrishna, Manasa; Williams, Louise H.; Boyle, Samantha E.; Bearfoot, Jennifer L.; Sridhar, Anita; Speed, Terence P.; Gorringe, Kylie L.; Campbell, Ian G.

    2010-01-01

    Ovarian cancer is a disease characterised by complex genomic rearrangements but the majority of the genes that are the target of these alterations remain unidentified. Cataloguing these target genes will provide useful insights into the disease etiology and may provide an opportunity to develop novel diagnostic and therapeutic interventions. High resolution genome wide copy number and matching expression data from 68 primary epithelial ovarian carcinomas of various histotypes was integrated to identify genes in regions of most frequent amplification with the strongest correlation with expression and copy number. Regions on chromosomes 3, 7, 8, and 20 were most frequently increased in copy number (>40% of samples). Within these regions, 703/1370 (51%) unique gene expression probesets were differentially expressed when samples with gain were compared to samples without gain. 30% of these differentially expressed probesets also showed a strong positive correlation (r≥0.6) between expression and copy number. We also identified 21 regions of high amplitude copy number gain, in which 32 known protein coding genes showed a strong positive correlation between expression and copy number. Overall, our data validates previously known ovarian cancer genes, such as ERBB2, and also identified novel potential drivers such as MYNN, PUF60 and TPX2. PMID:20386695

  7. Reduced expression of AMPK-β1 during tumor progression enhances the oncogenic capacity of advanced ovarian cancer

    PubMed Central

    2014-01-01

    AMP-activated protein kinase (AMPK) is a key energy sensor that is involved in regulating cell metabolism. Our previous study revealed that the subunits of the heterotimeric AMPK enzyme are diversely expressed during ovarian cancer progression. However, the impact of the variable expression of these AMPK subunits in ovarian cancer oncogenesis remains obscure. Here, we provide evidence to show that reduced expression of the AMPK-β1 subunit during tumor progression is associated with the increased oncogenic capacity of advanced ovarian cancer cells. Immunohistochemical analysis revealed that AMPK-β1 levels were reduced in advanced-stage (P = 0.008), high-grade (P = 0.013) and metastatic ovarian cancers (P = 0.008). Intriguingly, down-regulation of AMPK-β1 was progressively reduced from tumor stages 1 to 3 of ovarian cancer. Functionally, enforced expression of AMPK-β1 inhibited ovarian-cancer-cell proliferation, anchorage-independent cell growth, cell migration and invasion. Conversely, depletion of AMPK-β1 by siRNA enhanced the oncogenic capacities of ovarian cancer cells, suggesting that the loss of AMPK-β1 favors the aggressiveness of ovarian cancer. Mechanistically, enforced expression of AMPK-β1 increased AMPK activity, which, in turn, induced cell-cycle arrest via inhibition of AKT/ERK signaling activity as well as impaired cell migration/invasion through the suppression of JNK signaling in ovarian cancer cells. Taken together, these findings suggest that the reduced expression of AMPK-β1 confers lower AMPK activity, which enhances the oncogenic capacity of advanced-stage ovarian cancer. PMID:24602453

  8. High-resolution analysis of copy number alterations and associated expression changes in ovarian tumors

    PubMed Central

    Haverty, Peter M; Hon, Lawrence S; Kaminker, Joshua S; Chant, John; Zhang, Zemin

    2009-01-01

    Background DNA copy number alterations are frequently observed in ovarian cancer, but it remains a challenge to identify the most relevant alterations and the specific causal genes in those regions. Methods We obtained high-resolution 500K SNP array data for 52 ovarian tumors and identified the most statistically significant minimal genomic regions with the most prevalent and highest-level copy number alterations (recurrent CNAs). Within a region of recurrent CNA, comparison of expression levels in tumors with a given CNA to tumors lacking that CNA and to whole normal ovary samples was used to select genes with CNA-specific expression patterns. A public expression array data set of laser capture micro-dissected (LCM) non-malignant fallopian tube epithelia and LCM ovarian serous adenocarcinoma was used to evaluate the effect of cell-type mixture biases. Results Fourteen recurrent deletions were detected on chromosomes 4, 6, 9, 12, 13, 15, 16, 17, 18, 22 and most prevalently on X and 8. Copy number and expression data suggest several apoptosis mediators as candidate drivers of the 8p deletions. Sixteen recurrent gains were identified on chromosomes 1, 2, 3, 5, 8, 10, 12, 15, 17, 19, and 20, with the most prevalent gains localized to 8q and 3q. Within the 8q amplicon, PVT1, but not MYC, was strongly over-expressed relative to tumors lacking this CNA and showed over-expression relative to normal ovary. Likewise, the cell polarity regulators PRKCI and ECT2 were identified as putative drivers of two distinct amplicons on 3q. Co-occurrence analyses suggested potential synergistic or antagonistic relationships between recurrent CNAs. Genes within regions of recurrent CNA showed an enrichment of Cancer Census genes, particularly when filtered for CNA-specific expression. Conclusion These analyses provide detailed views of ovarian cancer genomic changes and highlight the benefits of using multiple reference sample types for the evaluation of CNA-specific expression changes

  9. Expression of Stem Cell Markers in Preinvasive Tubal Lesions of Ovarian Carcinoma

    PubMed Central

    Chene, G.; Ouellet, V.; Rahimi, K.; Barres, V.; Meunier, L.; De Ladurantaye, M.; Provencher, D.; Mes-Masson, A. M.

    2015-01-01

    In order to better understand the ovarian serous carcinogenic process with tubal origin, we investigated the expression of stem cell markers in premalignant tubal lesions (serous tubal intraepithelial carcinoma or STIC). We found an increased stem cell marker density in the normal fallopian tube followed by a high CD117 and a low ALDH and CD44 expression in STICs raising the question of the role of the stem cell markers in the serous carcinogenic process. PMID:26504831

  10. Differential expression of a human kallikrein 5 (KLK5) splice variant in ovarian and prostate cancer.

    PubMed

    Kurlender, Lisa; Yousef, George M; Memari, Nader; Robb, John-Desmond; Michael, Iacovos P; Borgoño, Carla; Katsaros, Dionyssios; Stephan, Carsten; Jung, Klaus; Diamandis, Eleftherios P

    2004-01-01

    The presence of more than one mRNA form is common among kallikrein genes. We identified an mRNA transcript of the human kallikrein gene 5 (KLK5), denoted KLK5 splice variant 1 (KLK5-SV1). This variant has a different 5'-splice site, but encodes the same protein as the classical KLK5 transcript. RT-PCR analysis of this variant transcript expression in 29 human tissues indicated highest expression in the cervix, salivary gland, kidney, mammary gland, and skin. Comparative analysis of the expression levels of KLK5-SV1, another splice variant named KLK5 splice variant 2 (KLK5-SV2), and the classical KLK5 form showed that out of all three mRNA transcripts, the classical form is predominantly expressed (found in more tissues and at higher expression levels) followed by KLK5-SV1. KLK5-SV1 is expressed at high levels in ovarian, pancreatic, breast and prostate cancer cell lines. KLK5-SV1 was also found to be expressed in 9/10 ovarian cancer tissues, but it was not found in one normal ovarian tissue tested. Hormonal regulation experiments suggest that KLK5-SV1 is regulated by steroid hormones in the BT-474 breast cancer cell line. Furthermore, this variant had significantly higher expression in normal prostate tissues compared to their matched cancer tissue counterparts. KLK5-SV1 may have clinical utility in various malignancies and should be further explored as a potential new biomarker for prostate and ovarian cancer.

  11. The prognostic significance of specific HOX gene expression patterns in ovarian cancer.

    PubMed

    Kelly, Zoe; Moller-Levet, Carla; McGrath, Sophie; Butler-Manuel, Simon; Kavitha Madhuri, Thumuluru; Kierzek, Andrzej M; Pandha, Hardev; Morgan, Richard; Michael, Agnieszka

    2016-10-01

    HOX genes are vital for all aspects of mammalian growth and differentiation, and their dysregulated expression is related to ovarian carcinogenesis. The aim of the current study was to establish the prognostic value of HOX dysregulation as well as its role in platinum resistance. The potential to target HOX proteins through the HOX/PBX interaction was also explored in the context of platinum resistance. HOX gene expression was determined in ovarian cancer cell lines and primary EOCs by QPCR, and compared to expression in normal ovarian epithelium and fallopian tube tissue samples. Statistical analysis included one-way ANOVA and t-tests, using statistical software R and GraphPad. The analysis identified 36 of the 39 HOX genes as being overexpressed in high grade serous EOC compared to normal tissue. We detected a molecular HOX gene-signature that predicted poor outcome. Overexpression of HOXB4 and HOXB9 was identified in high grade serous cell lines after platinum resistance developed. Targeting the HOX/PBX dimer with the HXR9 peptide enhanced the cytotoxicity of cisplatin in platinum-resistant ovarian cancer. In conclusion, this study has shown the HOX genes are highly dysregulated in ovarian cancer with high expression of HOXA13, B6, C13, D1 and D13 being predictive of poor clinical outcome. Targeting the HOX/PBX dimer in platinum-resistant cancer represents a potentially new therapeutic option that should be further developed and tested in clinical trials. © 2016 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  12. Expression of transcription factor AP-2α predicts survival in epithelial ovarian cancer

    PubMed Central

    Anttila, M A; Kellokoski, J K; Moisio, K I; Mitchell, P J; Saarikoski, S; Syrjänen, K; Kosma, V-M

    2000-01-01

    The 52-kDa activator protein (AP)-2 is a DNA-binding transcription factor which has been reported to have growth inhibitory effects in cancer cell lines and in human tumours. In this study the expression of AP-2α was analysed in 303 epithelial ovarian carcinomas by immunohistochemistry (IHC) with a polyclonal AP-2α antibody and its mRNA status was determined by in situ hybridization (ISH) and reverse transcriptase-polymerase chain reaction (RT-PCR). The immunohistochemical expression of AP-2α was correlated with clinicopathological variables, p21/WAF1 protein expression and survival. In normal ovaries, epithelial cells expressed AP-2α protein only in the cytoplasm. In carcinomas nuclear AP-2α expression was observed in 28% of the cases although cytoplasmic expression was more common (51%). The expression of AP-2α varied according to the histological subtype and differentiation. AP-2α and p21/WAF1 expressions did not correlate with each other. Both in univariate (P = 0.002) and multivariate analyses (relative risks (RR) 1.6, 95% confidence interval (CI) 1.13–2.18, P = 0.007) the high cytoplasmic AP-2α expression favoured the overall survival. In contrast, the nuclear AP-2α expression combined with low cytoplasmic expression increased the risk of dying of ovarian cancer (RR = 2.10, 95% CI 1.13–3.83, P = 0.018). The shift in the expression pattern of AP-2α (nuclear vs cytoplasmic) in carcinomas points out to the possibility that this transcription factor may be used by oncogenes in certain histological subtypes. Based on the mRNA analyses, the incomplete expression and translation of AP-2α in ovarian cancer may be due to post-transcriptional regulation. © 2000 Cancer Research Campaign PMID:10864206

  13. Cancer associated fibroblasts express pro-inflammatory factors in human breast and ovarian tumors.

    PubMed

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-08-02

    Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  14. Cyclooxygenases expression and distribution in the normal ovary and their role in ovarian cancer in the domestic hen (Gallus domesticus)

    PubMed Central

    Zhuge, Yan; Lagman, Jo Ann Jaen; Ansenberger, Kristine; Mahon, Cassandra; Barua, Animesh; Luborsky, Judith L.; Bahr, Janice M.

    2015-01-01

    Cyclooxygenase (COX) (PTGS) is the rate-limiting enzyme in the biosynthesis of prostaglandins. Two COX isoforms have been identified, COX-1 and COX-2, which show distinct cell-specific expression and regulation. Ovarian cancer is the most lethal gynecological malignancy and the disease is poorly understood due to the lack of suitable animal models. The laying hen spontaneously develops epithelial ovarian cancer with few or no symptoms until the cancer has progresses to a late stage, similar to the human disease. The purpose of this study was to examine the relative expression and distribution of COX-1 and COX-2 in the ovaries of normal hens and in hens with ovarian cancer. The results demonstrate that COX-1 was localized to the granulosa cell layer and cortical interstitium, ovarian surface epithelium (OSE) and postovulatory follicle (POF) of the normal ovary. In ovarian cancer, COX-1 mRNA was significantly increased and COX-1 protein was broadly distributed throughout the tumor stroma. COX-2 protein was localized to the granulosa cell layer in the follicle and the ovarian stroma. COX-2 mRNA expression did not change as a function of age or in ovarian cancer. There was significantly higher expression of COX-1 mRNA in the first POF (POF-1) compared to POF-2 and POF-3. COX-2 mRNA expression was not significantly different among POFs. There was no difference in COX-1 or COX-2 mRNA in the OSE isolated from individual follicles in the follicular hierarchy. The results confirm previous findings of the high expression of COX-1 in ovarian tumors further supporting the laying hen as a model for ovarian cancer, and demonstrate for the first time the high expression of COX-1 in POF-1 which is the source of prostaglandins needed for oviposition. PMID:18498063

  15. Cyclooxygenases expression and distribution in the normal ovary and their role in ovarian cancer in the domestic hen (Gallus domesticus).

    PubMed

    Hales, Dale Buchanan; Zhuge, Yan; Lagman, Jo Ann Jaen; Ansenberger, Kristine; Mahon, Cassandra; Barua, Animesh; Luborsky, Judith L; Bahr, Janice M

    2008-06-01

    Cyclooxygenase (COX) (PTGS) is the rate-limiting enzyme in the biosynthesis of prostaglandins. Two COX isoforms have been identified, COX-1 and COX-2, which show distinct cell-specific expression and regulation. Ovarian cancer is the most lethal gynecological malignancy and the disease is poorly understood due to the lack of suitable animal models. The laying hen spontaneously develops epithelial ovarian cancer with few or no symptoms until the cancer has progresses to a late stage, similar to the human disease. The purpose of this study was to examine the relative expression and distribution of COX-1 and COX-2 in the ovaries of normal hens and in hens with ovarian cancer. The results demonstrate that COX-1 was localized to the granulosa cell layer and cortical interstitium, ovarian surface epithelium (OSE) and postovulatory follicle (POF) of the normal ovary. In ovarian cancer, COX-1 mRNA was significantly increased and COX-1 protein was broadly distributed throughout the tumor stroma. COX-2 protein was localized to the granulosa cell layer in the follicle and the ovarian stroma. COX-2 mRNA expression did not change as a function of age or in ovarian cancer. There was significantly higher expression of COX-1 mRNA in the first POF (POF-1) compared to POF-2 and POF-3. COX-2 mRNA expression was not significantly different among POFs. There was no difference in COX-1 or COX-2 mRNA in the OSE isolated from individual follicles in the follicular hierarchy. The results confirm previous findings of the high expression of COX-1 in ovarian tumors further supporting the laying hen as a model for ovarian cancer, and demonstrate for the first time the high expression of COX-1 in POF-1 which is the source of prostaglandins needed for oviposition.

  16. Knockdown of RhoA expression alters ovarian cancer biological behavior in vitro and in nude mice.

    PubMed

    Wang, Xiaoxia; Jiang, Wenyan; Kang, Jiali; Liu, Qicai; Nie, Miaoling

    2015-08-01

    RhoA regulates cell proliferation, migration, angiogenesis and gene expression. Altered RhoA activity contributes to cancer progression. The present study investigated the effects of RhoA knockdown on the regulation of ovarian cancer biological behavior in vitro and in nude mice. The expression of RhoA was knocked down using a lentivirus carrying RhoA short hairpin RNA (shRNA) in ovarian cancer cells and was confirmed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The altered ovarian cancer biological behaviors were assayed by cell viability, terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL), migration, invasion, and nude mice tumorigenicity assays, while the altered gene expression was detected by RT-qPCR and western blot analysis. The results showed that lentivirus-carrying RhoA shRNA significantly suppressed RhoA expression in ovarian cancer cells, which suppressed tumor cell viability, migration, invasion and adhesion in vitro. RhoA silencing also inhibited the tumorigenicity of ovarian cancer cells in nude mice, which was characterized by the suppression of tumor xenograft formation and growth and induction of tumor cell apoptosis. The results of the present study demonstrated that knockdown of RhoA expression had a significant antitumor effect on ovarian cancer cells in vitro and in nude mice, suggesting that RhoA may be a target for the development of a novel therapeutic strategy in the control of ovarian cancer.

  17. Differential vimentin expression in ovarian and uterine corpus endometrioid adenocarcinomas: diagnostic utility in distinguishing double primaries from metastatic tumors.

    PubMed

    Desouki, Mohamed M; Kallas, Sarah J; Khabele, Dineo; Crispens, Marta A; Hameed, Omar; Fadare, Oluwole

    2014-05-01

    This study aimed to assess the diagnostic value of vimentin expression in differentiating endometrioid adenocarcinoma of primary uterine corpus and ovarian origin. Immunohistochemical analyses for the expression of vimentin in tumoral epithelial cells were performed on 149 endometrioid adenocarcinomas wherein the primary sites were not in question, including whole tissue sections of 27 carcinomas of uterine corpus origin (and no synchronous ovarian tumor), 7 carcinomas of ovarian origin (and no synchronous uterine corpus tumor) and a tissue microarray (TMA) containing 91 primary uterine corpus and 24 primary ovarian carcinomas. We also assessed 15 cases that synchronously involved the uterine corpus and ovary, 15 cases of metastasis to organs/tissues other than uterine corpus or ovary as well as 7 lymph node metastases. Vimentin was negative in 97% (30/31) of primary ovarian carcinomas. In contrast, 82% (97/118) of primary uterine corpus carcinomas were vimentin-positive. Vimentin expression was discordant in 53% of synchronous tumors. The sensitivity and specificity of negative vimentin staining in predicting an ovarian primary were 97% and 82%, respectively, whereas parallel values for positive vimentin staining in predicting a primary uterine tumor were 82% and 97%, respectively. The pattern of vimentin expression in all cases was maintained in their respective regional lymph nodes and distant metastases. In conclusion, ovarian and uterine corpus endometrioid adenocarcinomas have different patterns of vimentin expression. If validated in larger and/or different data sets, these findings may have diagnostic value in distinguishing metastatic lesions from double primary tumors involving both sites.

  18. [Effect of Foxo3a gene over-expression on the development of rat ovarian granulose cells and in prevention of cisplatin-induced ovarian damage in rats].

    PubMed

    Yang, Yue; Fang, Li-Hong; Wang, Xue-Feng

    2016-06-01

    To evaluate the effect of Foxo3a gene over-expression on the development of rat ovarian granulosa cells and in prevention of cisplatin-induced ovarian damage in rats. Rat ovarian granulose cells released mechanically from the ovaries were cultured in vitro and identified with HE staining and immunohistochemical staining for FSHR. A recombinant adenovirus carrying Foxo3a gene was constructed for infecting the granulose cells, and the cell growth and expressions of cyclin D1, p27, Bax, and Bim were detected; the cell apoptosis and cell cycle changes were detected using Hoechst/PI 33342 staining and flow cytometry, respectively. The transfected cells were challenged with cisplatin and the cell apoptosis was detected with flow cytometry. Over 90% of the cultured cells survived and contained more than 95% ovarian granulose cells. Infection of the cells with the recombinant adenovirus resulted in over-expressions of Foxo3a at the mRNA and protein levels at 36 h and 48 h after the infection, respectively. The infected cells showed suppressed proliferation, increased apoptotic rate and cell cycle arrest in G1 phase with increased expressions of Bim, p27, and cyclin D1 but without significant changes in Bax expression. Cisplatin exposure caused a significantly higher apoptosis rate in the infected cells than in the control cells. Over-expression of Foxo3a gene can promote granulose cell apoptosis by increasing Bim expression and cause cell cycle arrest in G1 phase by increasing cyclin D1 and p27 expressions, but can not prevent the toxic effects of cisplatin on ovarian granulosa cells.

  19. Tumor associated endothelial expression of B7-H3 predicts survival in ovarian carcinomas

    PubMed Central

    Zang, Xingxing; Sullivan, Peggy S; Soslow, Robert A; Waitz, Rebecca; Reuter, Victor E; Wilton, Andrew; Thaler, Howard T; Arul, Manonmani; Slovin, Susan F; Wei, Joyce; Spriggs, David R; Dupont, Jakob; Allison, James P

    2010-01-01

    B7-H3 and B7x are members of the B7 family of immune regulatory ligands that are thought to attenuate peripheral immune responses through co-inhibition. Previous studies have correlated their overexpression with poor prognosis and decreased tumor-infiltrating lymphocytes in various carcinomas including uterine endometrioid carcinomas, and mounting evidence supports an immuno-inhibitory role in ovarian cancer prognosis. We sought to examine the expression of B7-H3 and B7x in 103 ovarian borderline tumors and carcinomas and study associations with clinical outcome. Using immunohistochemical tissue microarray analysis on tumor specimens, we found that 93 and 100% of these ovarian tumors express B7-H3 and B7x, respectively, with expression found predominantly on cell membranes and in cytoplasm. In contrast, only scattered B7-H3- and B7x-positive cells were detected in non-neoplastic ovarian tissues. B7-H3 was also expressed in the endothelium of tumor-associated vasculature in 44% of patients, including 78% of patients with high-stage tumors (FIGO stages III and IV), nearly all of which were high-grade serous carcinomas, and 26% of patients with low-stage tumors (FIGO stages I and II; P<0.001), including borderline tumors. Analysis of cumulative survival time and recurrence incidence revealed that carcinomas with B7-H3-positive tumor vasculature were associated with a significantly shorter survival time (P=0.02) and a higher incidence of recurrence (P=0.03). The association between B7-H3-positive tumor vasculature and poor clinical outcome remained significant even when the analysis was limited to the high-stage subgroup. These results show that ovarian borderline tumors and carcinomas aberrantly express B7-H3 and B7x, and that B7-H3-positive tumor vasculature is associated with high-grade serous histological subtype, increased recurrence and reduced survival. B7-H3 expression in tumor vasculature may be a reflection of tumor aggressiveness and has diagnostic and

  20. CD44v6 promotes β-catenin and TGF-β expression, inducing aggression in ovarian cancer cells.

    PubMed

    Wang, Jing; Xiao, Ling; Luo, Chen-Hui; Zhou, Hui; Zeng, Liang; Zhong, Jingmin; Tang, Yan; Zhao, Xue-Heng; Zhao, Min; Zhang, Yi

    2015-05-01

    A high expression of CD44v6 has been reported in numerous malignant cancers, including stomach, prostate, lung and colon. However, the pathological role and the regulatory mechanisms of CD44v6 have yet to be elucidated. In the present study, the expression levels of CD44v6 were shown to be significantly higher in ovarian cancer tissues, as compared with adjacent normal tissues. Furthermore, the upregulated expression levels of CD44v6 were correlated with disease recurrence and poor survival in patients. The expression of CD44v6 was knocked down in the CAOV3 ovarian cell line, by transfection of a specific small hairpin RNA. The present study showed a correlation between the aggression, viability, invasion and migration of the ovarian cancer cells, with the expression of CD44v6. In addition, the expression of CD44v6 was positively correlated with the expression levels of β‑catenin and tumor growth factor‑β, which indicates that the effects of CD44v6 on ovarian cancer cell aggression may be mediated by these two signaling pathways. In conclusion, the present study provides a novel insight into the association between CD44v6 expression and ovarian cancer. CD44v6 may provide a novel target for the prognosis and treatment of ovarian cancer.

  1. Ovarian function in mice results in abrogated skeletal muscle PPARdelta and FoxO1-mediated gene expression

    USDA-ARS?s Scientific Manuscript database

    Menopause, the age-related loss of ovarian hormone production, promotes increased adiposity and associated metabolic pathology, but molecular mechanisms remain unclear. We previously reported that estrogen increases skeletal muscle PPARDelta expression in vivo, and transgenic mice overexpressing mus...

  2. Expression of wilms' tumor gene and protein localization during ovarian formation and follicular development in sheep.

    PubMed

    Logan, Kathleen A; McNatty, Kenneth P; Juengel, Jennifer L

    2003-02-01

    Wilms' tumor protein (WT1) is a transcriptional repressor essential for the development of mammalian kidneys and gonads. To gain insight into possible roles of WT1 in ovarian formation and follicular function, we studied patterns of mRNA and protein localization throughout fetal gonadal development and in ovaries of 4-wk-old and adult sheep. At Day 24 after conception, strong expression of WT1 mRNA and protein was observed in the coelomic epithelial region of the mesonephros where the gonad was forming. By Day 30, expression was observed in the surface epithelium and in many mesenchymal and endothelial cells of the gonad. Epithelial cells continued to express WT1 throughout gonadal development, as did pregranulosa cells during the process of follicular formation. However, WT1 expression was not observed in germ cells. During follicular growth, granulosa cells expressed WT1 from the type 1 (primordial) to the type 4 stages, but thereafter expression was reduced in type 5 (antral) follicles, consistent with the differentiation of granulosa cells into steroid-producing cells. The possible progenitor cells for the theca interna (i.e., the cell streams in the ovarian interstitium) expressed WT1 heterogeneously. However, differentiated theca cells in antral follicles did not express WT1. Strong expression of WT1 was observed during gonadal development, which is consistent with a role for WT1 in ovarian and follicular formation in the ewe. WT1 was identified in many cells of the neonatal and adult ovaries, including granulosa cells, suggesting that this factor is important for preantral follicular growth. However, the decline in WT1 expression in antral follicles suggests that WT1 may prevent premature differentiation of somatic cells of the follicle during early follicular growth.

  3. Correlation between gene expression and mutator phenotype predicts homologous recombination deficiency and outcome in ovarian cancer.

    PubMed

    Lu, Jianping; Wu, Di; Li, Chuanxing; Zhou, Meng; Hao, Dapeng

    2014-11-01

    New strategies are needed to predict response to platinum-based chemotherapy and outcome of ovarian cancers. We hypothesized that the mutator phenotype in the cancer genome represents the overuse of alternative DNA repair mechanisms, which might be a sign of homologous recombination (HR) deficiency and can be captured by gene expression. Multidimensional data of ovarian cancer patients and breast cancer patients from The Cancer Genome Atlas (TCGA) database were used for the development and validation of a potential clinical information-independent score that correlates with HR deficiency and predicts outcome. Correlation of the score with platinum response, outcome, and BRCA mutations was assessed. The score correlated with increased genomic mutation rate in both ovarian cancer and breast cancer cases that harbored a substantial subset of HR-deficient samples. Significantly improved outcomes were observed in the high-scoring group versus the low-scoring group in the TCGA dataset and in three large gene expression microarray datasets. A strong correlation was found between the score and the likelihood of achieving complete response to chemotherapy. The score was also found to be highly robust to noises in genomic mutations. Sixty-four patients harboring BRCA mutations were successfully divided into two groups based on scores, with the high-scoring group showing significantly improved outcomes compared with wild-type cases and the low-scoring group showing no significance in all the same analyses. The score was significantly correlated with the response to platinum therapy and outcome. Evaluation of the score as a prognostic tool in ovarian cancer patients is warranted. We develop a diagnostic signature for the HR-deficiency based on a novel hypothesis. HR-deficiency score is significantly correlated to platinum therapy and outcomes. HRDS was validated by its association with OS, PFS, DFS and CR in validation datasets. Evaluation of the score as a prognostic tool in

  4. Expression of cyclin D1 correlates with malignancy in human ovarian tumours.

    PubMed Central

    Barbieri, F.; Cagnoli, M.; Ragni, N.; Pedullà, F.; Foglia, G.; Alama, A.

    1997-01-01

    Cyclin D1 is a cell cycle regulator of G1 progression that has been suggested to play a relevant role in the pathogenesis of several human cancer types. In the current study, the expression of cyclin D1 has been investigated in a series of 33 patients, with benign (10 patients), borderline (five patients) and malignant (18 patients) ovarian disease. Cyclin D1 protein and mRNA content were analysed by Western blotting and reverse transcriptase polymerase chain reaction respectively. The levels of cyclin D1 protein were undetectable in patients with benign disease, detectable in the majority of patients with borderline disease and elevated in those with ovarian carcinomas, being significantly related to the degree of malignancy (carcinoma vs benign, P = 0.0001; benign vs borderline, P = 0.0238). A significant relationship between cyclin D1 expression and tumour proliferative activity was also found (P = 0.000001). Moreover, eight benign lesions, two borderline tumours and 11 carcinomas proved to be suitable for the analysis of cyclin D1 transcript, and emerging data demonstrated significant agreement between protein abundance and mRNA expression. Results from the current study suggest that cyclin D1 expression is associated with the degree of transformation and most probably plays a role in the early development of ovarian malignancy. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:9155044

  5. Proteomic dataset for altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells.

    PubMed

    Sheta, Razan; Roux-Dalvai, Florence; Woo, Christina M; Fournier, Frédéric; Bourassa, Sylvie; Bertozzi, Carolyn R; Droit, Arnaud; Bachvarov, Dimcho

    2016-09-01

    This article contains raw and processed data related to research published in "Role of the polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer progression: possible implications in abnormal mucin O-glycosylation" [1]. The data presented here was obtained with the application of a bioorthogonal chemical reporter strategy analyzing differential glycoprotein expression following the knock-down (KD) of the GALNT3 gene in the epithelial ovarian cancer (EOC) cell line A2780s. LC-MS/MS mass spectrometry analysis was then performed and the processed data related to the identified glycoproteins show that several hundred proteins are differentially expressed between control and GALNT3 KD A2780s cells. The obtained data also uncover numerous novel glycoproteins; some of which could represent new potential EOC biomarkers and/or therapeutic targets.

  6. Bilateral ovarian carcinomas differ in the expression of metastasis-related genes

    PubMed Central

    Smebye, Marianne Lislerud; Haugom, Lisbeth; Davidson, Ben; Trope, Claes Göran; Heim, Sverre; Skotheim, Rolf Inge; Micci, Francesca

    2017-01-01

    The mechanisms behind bilaterality of ovarian carcinomas are not fully understood, as the two tumors could possibly represent two primary tumors, a primary tumor and a metastasis, or two metastases. The gene expression profiles from bilateral high-grade serous carcinomas (HGSCs) and clear cell carcinomas (CCCs) of the ovary were compared to study the association between the tumors of the two sides. A separate analysis of genes from chromosome 19 was also performed, since this chromosome is frequently rearranged in ovarian carcinomas. Tumors from four patients were included (three pairs of HGSC and one pair of CCC). The gene expression was analyzed at the exon level, and bilateral tumors were compared to identify within-pair differences. Gene expression data were also compared with genomic information on the same tumors. Similarities in gene expression were observed between the tumors within each pair, as expected if the two tumors were clonally related. However, certain genes exhibited differences in expression between the two sides, indicating metastasis involvement. Among the most differently expressed genes, one gene was common to all four pairs: Immunoglobulin J. In all HGSC pairs, serpin peptidase inhibitor, clade B (ovalbumin), member 2, serpin family E member 1 and phospholipase A2, group IIA (platelets, synovial fluid) were also among the differentially expressed genes. The specific analysis of chromosome 19 highlighted expression differences in the zinc finger protein 36 gene. These results indicate that bilateral ovarian tumors represent different stages during progression of a single clonal process. Several of the genes observed to be differently expressed are known to be metastasis-related, and are likely to be also involved in spreading from one side to the other in the bilateral cancer cases examined. PMID:28123539

  7. High concordance of gene expression profiling-correlated immunohistochemistry algorithms in diffuse large B-cell lymphoma, not otherwise specified.

    PubMed

    Hwang, Hee Sang; Park, Chan-Sik; Yoon, Dok Hyun; Suh, Cheolwon; Huh, Jooryung

    2014-08-01

    Diffuse large B-cell lymphoma (DLBCL) is classified into prognostically distinct germinal center B-cell (GCB) and activated B-cell subtypes by gene expression profiling (GEP). Recent reports suggest the role of GEP subtypes in targeted therapy. Immunohistochemistry (IHC) algorithms have been proposed as surrogates of GEP, but their utility remains controversial. Using microarray, we examined the concordance of 4 GEP-correlated and 2 non-GEP-correlated IHC algorithms in 381 DLBCLs, not otherwise specified. Subtypes and variants of DLBCL were excluded to minimize the possible confounding effect on prognosis and phenotype. Survival was analyzed in 138 cyclophosphamide, adriamycin, vincristine, and prednisone (CHOP)-treated and 147 rituximab plus CHOP (R-CHOP)-treated patients. Of the GEP-correlated algorithms, high concordance was observed among Hans, Choi, and Visco-Young algorithms (total concordance, 87.1%; κ score: 0.726 to 0.889), whereas Tally algorithm exhibited slightly lower concordance (total concordance 77.4%; κ score: 0.502 to 0.643). Two non-GEP-correlated algorithms (Muris and Nyman) exhibited poor concordance. Compared with the Western data, incidence of the non-GCB subtype was higher in all algorithms. Univariate analysis showed prognostic significance for Hans, Choi, and Visco-Young algorithms and BCL6, GCET1, LMO2, and BCL2 in CHOP-treated patients. On multivariate analysis, Hans algorithm retained its prognostic significance. By contrast, neither the algorithms nor individual antigens predicted survival in R-CHOP treatment. The high concordance among GEP-correlated algorithms suggests their usefulness as reliable discriminators of molecular subtype in DLBCL, not otherwise specified. Our study also indicates that prognostic significance of IHC algorithms may be limited in R-CHOP-treated Asian patients because of the predominance of the non-GCB type.

  8. Increased Expression of Several Collagen Genes is Associated with Drug Resistance in Ovarian Cancer Cell Lines

    PubMed Central

    Januchowski, Radosław; Świerczewska, Monika; Sterzyńska, Karolina; Wojtowicz, Karolina; Nowicki, Michał; Zabel, Maciej

    2016-01-01

    Ovarian cancer is the most lethal gynaecological cancer. The main reason for the high mortality among ovarian cancer patients is the development of drug resistance. The expression of collagen genes by cancer cells can increase drug resistance by inhibiting the penetration of the drug into the cancer tissue as well as increase apoptosis resistance. In this study, we present data that shows differential expression levels of collagen genes and proteins in cisplatin- (CIS), paclitaxel- (PAC), doxorubicin- (DOX), topotecan- (TOP), vincristine- (VIN) and methotrexate- (MTX) resistant ovarian cancer cell lines. Quantitative real-time polymerase chain reactions were performed to determine the mRNA levels. Protein expression was detected using Western blot and immunocytochemistry assays. In the drug resistant cell lines, we observed the upregulation of eight collagen genes at the mRNA level and based on these expression levels, we divided the collagen genes into the following three groups: 1. Genes with less than a 50-fold increase in expression: COL1A1, COL5A2, COL12A1 and COL17A1. 2. Genes with greater than a 50-fold increase in expression: COL1A2, COL15A1 and COL21A1. 3. Gene with a very high level of expression: COL3A1. Expression of collagen (COL) proteins from groups 2 and 3 were also confirmed using immunocytochemistry. Western blot analysis showed very high expression levels of COL3A1 protein, and immunocytochemistry analysis showed the presence of extracellular COL3A1 in the W1TR cell line. The cells mainly responsible for the extracellular COL3A1 production are aldehyde dehydrogenase-1A1 (ALDH1A1) positive cells. All correlations between the types of cytostatic drugs and the expression levels of different COL genes were studied, and our results suggest that the expression of fibrillar collagens may be involved in the TOP and PAC resistance of the ovarian cancer cells. The expression pattern of COL genes provide a preliminary view into the role of these proteins in

  9. ABCA Transporter Gene Expression and Poor Outcome in Epithelial Ovarian Cancer

    PubMed Central

    Hedditch, Ellen L.; Gao, Bo; Russell, Amanda J.; Lu, Yi; Emmanuel, Catherine; Beesley, Jonathan; Johnatty, Sharon E.; Chen, Xiaoqing; Harnett, Paul; George, Joshy; Williams, Rebekka T.; Flemming, Claudia; Lambrechts, Diether; Despierre, Evelyn; Lambrechts, Sandrina; Vergote, Ignace; Karlan, Beth; Lester, Jenny; Orsulic, Sandra; Walsh, Christine; Fasching, Peter; Beckmann, Matthias W.; Ekici, Arif B.; Hein, Alexander; Matsuo, Keitaro; Hosono, Satoyo; Nakanishi, Toru; Yatabe, Yasushi; Pejovic, Tanja; Bean, Yukie; Heitz, Florian; Harter, Philipp; du Bois, Andreas; Schwaab, Ira; Hogdall, Estrid; Kjaer, Susan K.; Jensen, Allan; Hogdall, Claus; Lundvall, Lene; Engelholm, Svend Aage; Brown, Bob; Flanagan, James; Metcalf, Michelle D; Siddiqui, Nadeem; Sellers, Thomas; Fridley, Brooke; Cunningham, Julie; Schildkraut, Joellen; Iversen, Ed; Weber, Rachel P.; Berchuck, Andrew; Goode, Ellen; Bowtell, David D.; Chenevix-Trench, Georgia; deFazio, Anna; Norris, Murray D.; MacGregor, Stuart; Haber, Michelle; Henderson, Michelle J.

    2014-01-01

    Background ATP-binding cassette (ABC) transporters play various roles in cancer biology and drug resistance, but their association with outcomes in serous epithelial ovarian cancer (EOC) is unknown. Methods The relationship between clinical outcomes and ABC transporter gene expression in two independent cohorts of high-grade serous EOC tumors was assessed with real-time quantitative polymerase chain reaction, analysis of expression microarray data, and immunohistochemistry. Associations between clinical outcomes and ABCA transporter gene single nucleotide polymorphisms were tested in a genome-wide association study. Impact of short interfering RNA–mediated gene suppression was determined by colony forming and migration assays. Association with survival was assessed with Kaplan–Meier analysis and log-rank tests. All statistical tests were two-sided. Results Associations with outcome were observed with ABC transporters of the “A” subfamily, but not with multidrug transporters. High-level expression of ABCA1, ABCA6, ABCA8, and ABCA9 in primary tumors was statistically significantly associated with reduced survival in serous ovarian cancer patients. Low levels of ABCA5 and the C-allele of rs536009 were associated with shorter overall survival (hazard ratio for death = 1.50; 95% confidence interval [CI] =1.26 to 1.79; P = 6.5e−6). The combined expression pattern of ABCA1, ABCA5, and either ABCA8 or ABCA9 was associated with particularly poor outcome (mean overall survival in group with adverse ABCA1, ABCA5 and ABCA9 gene expression = 33.2 months, 95% CI = 26.4 to 40.1; vs 55.3 months in the group with favorable ABCA gene expression, 95% CI = 49.8 to 60.8; P = .001), independently of tumor stage or surgical debulking status. Suppression of cholesterol transporter ABCA1 inhibited ovarian cancer cell growth and migration in vitro, and statin treatment reduced ovarian cancer cell migration. Conclusions Expression of ABCA transporters was associated with poor

  10. ABCA transporter gene expression and poor outcome in epithelial ovarian cancer.

    PubMed

    Hedditch, Ellen L; Gao, Bo; Russell, Amanda J; Lu, Yi; Emmanuel, Catherine; Beesley, Jonathan; Johnatty, Sharon E; Chen, Xiaoqing; Harnett, Paul; George, Joshy; Williams, Rebekka T; Flemming, Claudia; Lambrechts, Diether; Despierre, Evelyn; Lambrechts, Sandrina; Vergote, Ignace; Karlan, Beth; Lester, Jenny; Orsulic, Sandra; Walsh, Christine; Fasching, Peter; Beckmann, Matthias W; Ekici, Arif B; Hein, Alexander; Matsuo, Keitaro; Hosono, Satoyo; Nakanishi, Toru; Yatabe, Yasushi; Pejovic, Tanja; Bean, Yukie; Heitz, Florian; Harter, Philipp; du Bois, Andreas; Schwaab, Ira; Hogdall, Estrid; Kjaer, Susan K; Jensen, Allan; Hogdall, Claus; Lundvall, Lene; Engelholm, Svend Aage; Brown, Bob; Flanagan, James; Metcalf, Michelle D; Siddiqui, Nadeem; Sellers, Thomas; Fridley, Brooke; Cunningham, Julie; Schildkraut, Joellen; Iversen, Ed; Weber, Rachel P; Berchuck, Andrew; Goode, Ellen; Bowtell, David D; Chenevix-Trench, Georgia; deFazio, Anna; Norris, Murray D; MacGregor, Stuart; Haber, Michelle; Henderson, Michelle J

    2014-07-01

    ATP-binding cassette (ABC) transporters play various roles in cancer biology and drug resistance, but their association with outcomes in serous epithelial ovarian cancer (EOC) is unknown. The relationship between clinical outcomes and ABC transporter gene expression in two independent cohorts of high-grade serous EOC tumors was assessed with real-time quantitative polymerase chain reaction, analysis of expression microarray data, and immunohistochemistry. Associations between clinical outcomes and ABCA transporter gene single nucleotide polymorphisms were tested in a genome-wide association study. Impact of short interfering RNA-mediated gene suppression was determined by colony forming and migration assays. Association with survival was assessed with Kaplan-Meier analysis and log-rank tests. All statistical tests were two-sided. Associations with outcome were observed with ABC transporters of the "A" subfamily, but not with multidrug transporters. High-level expression of ABCA1, ABCA6, ABCA8, and ABCA9 in primary tumors was statistically significantly associated with reduced survival in serous ovarian cancer patients. Low levels of ABCA5 and the C-allele of rs536009 were associated with shorter overall survival (hazard ratio for death = 1.50; 95% confidence interval [CI] =1.26 to 1.79; P = 6.5e-6). The combined expression pattern of ABCA1, ABCA5, and either ABCA8 or ABCA9 was associated with particularly poor outcome (mean overall survival in group with adverse ABCA1, ABCA5 and ABCA9 gene expression = 33.2 months, 95% CI = 26.4 to 40.1; vs 55.3 months in the group with favorable ABCA gene expression, 95% CI = 49.8 to 60.8; P = .001), independently of tumor stage or surgical debulking status. Suppression of cholesterol transporter ABCA1 inhibited ovarian cancer cell growth and migration in vitro, and statin treatment reduced ovarian cancer cell migration. Expression of ABCA transporters was associated with poor outcome in serous ovarian cancer, implicating lipid

  11. Ovarian cancer stem cells express ROR1, which can be targeted for anti-cancer-stem-cell therapy.

    PubMed

    Zhang, Suping; Cui, Bing; Lai, Hsien; Liu, Grace; Ghia, Emanuela M; Widhopf, George F; Zhang, Zhuhong; Wu, Christina C N; Chen, Liguang; Wu, Rongrong; Schwab, Richard; Carson, Dennis A; Kipps, Thomas J

    2014-12-02

    Although initially responsive to chemotherapy, many patients with ovarian cancer subsequently develop relapsed and potentially fatal metastatic disease, which is thought to develop from cancer stem cells (CSCs) that are relatively resistant to conventional therapy. Here, we show that CSCs express a type I receptor tyrosine kinase-like orphan receptor (ROR1), which is expressed during embryogenesis and by many different cancers, but not normal postpartum tissues. Ovarian cancers with high levels of ROR1 had stem cell-like gene-expression signatures. Furthermore, patients with ovarian cancers with high levels of ROR1 had higher rates of relapse and a shorter median survival than patients with ovarian cancers that expressed low-to-negligible amounts of ROR1. We found that ROR1-positive (ROR1(+)) cells isolated from primary tumor-derived xenografts (PDXs) also expressed aldehyde dehydrogenase 1 (ALDH1) and had a greater capacity to form spheroids and to engraft immune-deficient mice than did ROR1-negative (ROR1(Neg)) ovarian cancer cells isolated from the same tumor population. Treatment with UC-961, an anti-ROR1 mAb, or shRNA silencing of ROR1 inhibited expression of the polycomb ring-finger oncogene, Bmi-1, and other genes associated with the epithelial-mesenchymal transition. Moreover, shRNA silencing of ROR1, depletion of ROR1(+) cells, or treatment with UC-961 impaired the capacity of ovarian cancer cells to form spheroids or tumor xenografts. More importantly, treatment with anti-ROR1 affected the capacity of the xenograft to reseed a virgin mouse, indicating that targeting ROR1 may affect CSC self-renewal. Collectively, these studies indicate that ovarian CSCs express ROR1, which contributes to their capacity to form tumors, making ROR1 a potential target for the therapy of patients with ovarian cancer.

  12. Molecular Characterization of Three Gonadotropin Subunits and Their Expression Patterns during Ovarian Maturation in Cynoglossus semilaevis

    PubMed Central

    Shi, Bao; Liu, Xuezhou; Xu, Yongjiang; Wang, Shanshan

    2015-01-01

    The endocrine regulation of reproduction in a multiple spawning flatfish with an ovary of asynchronous development remains largely unknown. The objectives of this study were to monitor changes in mRNA expression patterns of three gonadotropin hormone (GTH) subunits (FSHβ, LHβ and CGα) and plasma GTH levels during ovarian maturation of half-smooth tongue sole Cynoglossus semilaevis. Cloning and sequence analysis revealed that the cDNAs of FSHβ, LHβ and CGα were 541, 670 and 685 bp in length, and encode for peptides of 130, 158 and 127 amino acids, respectively. The number of cysteine residues and potential N-linked glycosylation sites of the flatfish GTHs were conserved among teleosts. However, the primary structure of GTHs in Pleuronectiformes appeared to be highly divergent. The FSHβ transcriptional level in the pituitary remained high during the vitellogenic stage while plasma levels of FSH peaked and oocyte development was stimulated. The LHβ expression in the pituitary and ovary reached the maximum level during oocyte maturation stages when the plasma levels of LH peaked. The brain GTHs were expressed at the different ovarian stages. These results suggested that FSH and LH may simultaneously regulate ovarian development and maturation through the brain-pituitary-ovary axis endocrine system in tongue sole. PMID:25633101

  13. Increased intracellular Ca(2+) decreases cisplatin resistance by regulating iNOS expression in human ovarian cancer cells.

    PubMed

    Yu, Yang; Xie, Qi; Liu, Weimin; Guo, Yuting; Xu, Na; Xu, Lu; Liu, Shibing; Li, Songyan; Xu, Ye; Sun, Liankun

    2017-02-01

    Previous studies have reported that intracellular Ca(2+) signals and inducible nitric oxide synthase (iNOS) are involved in cell apoptosis. However, the role of iNOS in cisplatin resistance in ovarian cancer remains unclear. Here, we demonstrate that SKOV3/DDP ovarian cancer cells were more resistant to cisplatin than were SKOV3 ovarian cancer cells. The expression of intracellular Ca(2+) and iNOS was more strongly induced by cisplatin in SKOV3 cells than in SKOV3/DDP cells. TAT-conjugated IP3R-derived peptide (TAT-IDP(S)) increased cisplatin-induced iNOS expression and apoptosis in SKOV3/DDP cells. 2-Aminoethoxydiphenyl borate (2-APB) decreased cisplatin-induced iNOS expression and apoptosis in SKOV3 cells. Thus, iNOS induction may be a valuable strategy for improving the anti-tumor efficacy of cisplatin in ovarian cancer.

  14. Aberrant over-expression of COX-1 intersects multiple pro-tumorigenic pathways in high-grade serous ovarian cancer

    PubMed Central

    Wilson, Andrew J.; Fadare, Oluwole; Beeghly-Fadiel, Alicia; Son, Deok-Soo; Liu, Qi; Zhao, Shilin; Saskowski, Jeanette; Uddin, Md. Jashim; Daniel, Cristina; Crews, Brenda; Lehmann, Brian D.; Pietenpol, Jennifer A.; Crispens, Marta A.; Marnett, Lawrence J.; Khabele, Dineo

    2015-01-01

    Cyclooxygenase-1 (COX-1) is implicated in ovarian cancer. However, patterns of COX expression and function have been unclear and controversial. In this report, patterns of COX-1 and COX-2 gene expression were obtained from RNA-seq data through The Cancer Genome Atlas. Our analysis revealed markedly higher COX-1 mRNA expression than COX-2 in high-grade serous ovarian cancers (HGSOC) and higher COX-1 expression in HGSOC tumors than 10 other tumor types. High expression of COX-1 in HGSOC tumors was confirmed in an independent tissue microarray. In contrast, lower or similar expression of COX-1 compared to COX-2 was observed in endometrioid, mucinous and clear cell tumors. Stable COX-1 knockdown in HGSOC-representative OVCAR-3 ovarian cancer cells reduced gene expression in multiple pro-tumorigenic pathways. Functional cell viability, clonogenicity, and migration/invasion assays were consistent with transcriptomic changes. These effects were reversed by stable over-expression of COX-1 in SKOV-3 cells. Our results demonstrate a distinct pattern of COX-1 over-expression in HGSOC tumors and strong association of COX-1 with multiple pro-tumorigenic pathways in ovarian cancer cells. These findings provide additional insight into the role of COX-1 in human ovarian cancer and support further development of methods to selectively target COX-1 in the management of HGSOC tumors. PMID:25972361

  15. Aberrant over-expression of COX-1 intersects multiple pro-tumorigenic pathways in high-grade serous ovarian cancer.

    PubMed

    Wilson, Andrew J; Fadare, Oluwole; Beeghly-Fadiel, Alicia; Son, Deok-Soo; Liu, Qi; Zhao, Shilin; Saskowski, Jeanette; Uddin, Md Jashim; Daniel, Cristina; Crews, Brenda; Lehmann, Brian D; Pietenpol, Jennifer A; Crispens, Marta A; Marnett, Lawrence J; Khabele, Dineo

    2015-08-28

    Cyclooxygenase-1 (COX-1) is implicated in ovarian cancer. However, patterns of COX expression and function have been unclear and controversial. In this report, patterns of COX-1 and COX-2 gene expression were obtained from RNA-seq data through The Cancer Genome Atlas. Our analysis revealed markedly higher COX-1 mRNA expression than COX-2 in high-grade serous ovarian cancers (HGSOC) and higher COX-1 expression in HGSOC tumors than 10 other tumor types. High expression of COX-1 in HGSOC tumors was confirmed in an independent tissue microarray. In contrast, lower or similar expression of COX-1 compared to COX-2 was observed in endometrioid, mucinous and clear cell tumors. Stable COX-1 knockdown in HGSOC-representative OVCAR-3 ovarian cancer cells reduced gene expression in multiple pro-tumorigenic pathways. Functional cell viability, clonogenicity, and migration/invasion assays were consistent with transcriptomic changes. These effects were reversed by stable over-expression of COX-1 in SKOV-3 cells. Our results demonstrate a distinct pattern of COX-1 over-expression in HGSOC tumors and strong association of COX-1 with multiple pro-tumorigenic pathways in ovarian cancer cells. These findings provide additional insight into the role of COX-1 in human ovarian cancer and support further development of methods to selectively target COX-1 in the management of HGSOC tumors.

  16. Malignant transformation rate and p53, and p16 expression in teratomatous skin of ovarian mature cystic teratoma.

    PubMed

    Zhu, Hai-Li; Zou, Zhen-Ning; Lin, Pei-Xin; Li, Wen-Xia; Huang, Ye-En; Shi, Xiao-Xin; Shen, Hong

    2015-01-01

    To investigate the incidence of malignant transformation and P53 and P16 expression in teratomatous skin of ovarian mature cystic teratoma. Data on ovarian teratoma specimens in nearly 10 years were reviewed. P53 and P16 expression were detected by immunohistochemistry in 25 cases of teratomatous skin of ovarian mature cystic teratoma, 20 cases of squamous cell carcinoma and 2 cases of squamous cell carcinoma originated from teratomatous skin. Of 1913 cases of ovarian mature cystic teratoma in nearly 10 years, only two cases of squamous cell carcinoma were found in teratomatous skin, with malignant transformation rate of 0.1045%. P53 expression was detected in 2 cases squamous cell carcinoma originated from teratomatous skin and P16 overexpression in one. There were no expressions of P53 and P16 in 25 cases of teratomatous skin of ovarian mature cystic teratoma. Of 20 cases of squamous cell carcinoma P53 overexpression (positive rate of 55%) was detected in 11 cases, P16 overexpression (positive rate of 35%) in 7 cases. The positive rates of P53 and P16 expression in squamous cell carcinomas were significantly higher than that in the teratomatous skins (p< 0.001, p= 0.002). There was low risk of malignant transformation in teratomatous skin of ovarian mature cystic teratoma which can be explained by lower P53 and P16 expressionin teratomas than that in squamous cell carcinoma.

  17. Transcription factor AP-2γ induces early Cdx2 expression and represses HIPPO signaling to specify the trophectoderm lineage

    PubMed Central

    Cao, Zubing; Carey, Timothy S.; Ganguly, Avishek; Wilson, Catherine A.; Paul, Soumen; Knott, Jason G.

    2015-01-01

    Cell fate decisions are fundamental to the development of multicellular organisms. In mammals the first cell fate decision involves segregation of the pluripotent inner cell mass and the trophectoderm, a process regulated by cell polarity proteins, HIPPO signaling and lineage-specific transcription factors such as CDX2. However, the regulatory mechanisms that operate upstream to specify the trophectoderm lineage have not been established. Here we report that transcription factor AP-2γ (TFAP2C) functions as a novel upstream regulator of Cdx2 expression and position-dependent HIPPO signaling in mice. Loss- and gain-of-function studies and promoter analysis revealed that TFAP2C binding to an intronic enhancer is required for activation of Cdx2 expression during early development. During the 8-cell to morula transition TFAP2C potentiates cell polarity to suppress HIPPO signaling in the outside blastomeres. TFAP2C depletion triggered downregulation of PARD6B, loss of apical cell polarity, disorganization of F-actin, and activation of HIPPO signaling in the outside blastomeres. Rescue experiments using Pard6b mRNA restored cell polarity but only partially corrected position-dependent HIPPO signaling, suggesting that TFAP2C negatively regulates HIPPO signaling via multiple pathways. Several genes involved in regulation of the actin cytoskeleton (including Rock1, Rock2) were downregulated in TFAP2C-depleted embryos. Inhibition of ROCK1 and ROCK2 activity during the 8-cell to morula transition phenocopied TFAP2C knockdown, triggering a loss of position-dependent HIPPO signaling and decrease in Cdx2 expression. Altogether, these results demonstrate that TFAP2C facilitates trophectoderm lineage specification by functioning as a key regulator of Cdx2 transcription, cell polarity and position-dependent HIPPO signaling. PMID:25858457

  18. Herpes virus microRNA expression and significance in serous ovarian cancer.

    PubMed

    Pandya, Deep; Mariani, Marisa; McHugh, Mark; Andreoli, Mirko; Sieber, Steven; He, Shiquan; Dowell-Martino, Candice; Fiedler, Paul; Scambia, Giovanni; Ferlini, Cristiano

    2014-01-01

    Serous ovarian cancer (SEOC) is the deadliest gynecologic malignancy. MicroRNAs (miRNAs) are a class of small noncoding RNAs which regulate gene expression and protein translation. MiRNAs are also encoded by viruses with the intent of regulating their own genes and those of the infected cells. This is the first study assessing viral miRNAs in SEOC. MiRNAs sequencing data from 487 SEOC patients were downloaded from the TCGA website and analyzed through in-house sequencing pipeline. To cross-validate TCGA analysis, we measured the expression of miR-H25 by quantitative immunofluorescence in an additional cohort of 161 SEOC patients. Gene, miRNA expression, and cytotoxicity assay were performed on multiple ovarian cancer cell lines transfected with miR-H25 and miR-BART7. Outcome analysis was performed using multivariate Cox and Kaplan-Meier method. Viral miRNAs are more expressed in SEOC than in normal tissues. Moreover, Herpetic viral miRNAs (miR-BART7 from EBV and miR-H25 from HSV-2) are significant and predictive biomarkers of outcome in multivariate Cox analysis. MiR-BART7 correlates with resistance to first line chemotherapy and early death, whereas miR-H25 appears to impart a protective effect and long term survival. Integrated analysis of gene and viral miRNAs expression suggests that miR-BART7 induces directly cisplatin-resistance, while miR-H25 alters RNA processing and affects the expression of noxious human miRNAs such as miR-143. This is the first investigation linking viral miRNA expression to ovarian cancer outcome. Viral miRNAs can be useful to develop biomarkers for early diagnosis and as a potential therapeutic tool to reduce SEOC lethality.

  19. Ovarian reserve status in young women is associated with altered gene expression in membrana granulosa cells.

    PubMed

    Skiadas, Christine C; Duan, Shenghua; Correll, Mick; Rubio, Renee; Karaca, Nilay; Ginsburg, Elizabeth S; Quackenbush, John; Racowsky, Catherine

    2012-07-01

    Diminished ovarian reserve (DOR) is a challenging diagnosis of infertility, as there are currently no tests to predict who may become affected with this condition, or at what age. We designed the present study to compare the gene expression profile of membrana granulosa cells from young women affected with DOR with those from egg donors of similar age and to determine if distinct genetic patterns could be identified to provide insight into the etiology of DOR. Young women with DOR were identified based on FSH level in conjunction with poor follicular development during an IVF cycle (n = 13). Egg donors with normal ovarian reserve (NOR) comprised the control group (n = 13). Granulosa cells were collected following retrieval, RNA was extracted and microarray analysis was conducted to evaluate genetic differences between the groups. Confirmatory studies were undertaken with quantitative RT-PCR (qRT-PCR). Multiple significant differences in gene expression were observed between the DOR patients and egg donors. Two genes linked with ovarian function, anti-Mullerian hormone (AMH) and luteinizing hormone receptor (LHCGR), were further analyzed with qRT-PCR in all patients. The average expression of AMH was significantly higher in egg donors (adjusted P-value = 0.01), and the average expression of LHCGR was significantly higher in DOR patients (adjusted P-value = 0.005). Expression levels for four additional genes, progesterone receptor membrane component 2 (PGRMC2), prostaglandin E receptor 3 (subtype EP3) (PTGER3), steroidogenic acute regulatory protein (StAR), and StAR-related lipid transfer domain containing 4 (StarD4), were validated in a group consisting of five NOR and five DOR patients. We conclude that gene expression analysis has substantial potential to determine which young women may be affected with DOR. More importantly, our analysis suggests that DOR patients fall into two distinct subgroups based on gene expression profiles, indicating that different

  20. Ovarian reserve status in young women is associated with altered gene expression in membrana granulosa cells

    PubMed Central

    Skiadas, Christine C.; Duan, Shenghua; Correll, Mick; Rubio, Renee; Karaca, Nilay; Ginsburg, Elizabeth S.; Quackenbush, John; Racowsky, Catherine

    2012-01-01

    Diminished ovarian reserve (DOR) is a challenging diagnosis of infertility, as there are currently no tests to predict who may become affected with this condition, or at what age. We designed the present study to compare the gene expression profile of membrana granulosa cells from young women affected with DOR with those from egg donors of similar age and to determine if distinct genetic patterns could be identified to provide insight into the etiology of DOR. Young women with DOR were identified based on FSH level in conjunction with poor follicular development during an IVF cycle (n = 13). Egg donors with normal ovarian reserve (NOR) comprised the control group (n = 13). Granulosa cells were collected following retrieval, RNA was extracted and microarray analysis was conducted to evaluate genetic differences between the groups. Confirmatory studies were undertaken with quantitative RT–PCR (qRT–PCR). Multiple significant differences in gene expression were observed between the DOR patients and egg donors. Two genes linked with ovarian function, anti-Mullerian hormone (AMH) and luteinizing hormone receptor (LHCGR), were further analyzed with qRT–PCR in all patients. The average expression of AMH was significantly higher in egg donors (adjusted P-value = 0.01), and the average expression of LHCGR was significantly higher in DOR patients (adjusted P-value = 0.005). Expression levels for four additional genes, progesterone receptor membrane component 2 (PGRMC2), prostaglandin E receptor 3 (subtype EP3) (PTGER3), steroidogenic acute regulatory protein (StAR), and StAR-related lipid transfer domain containing 4 (StarD4), were validated in a group consisting of five NOR and five DOR patients. We conclude that gene expression analysis has substantial potential to determine which young women may be affected with DOR. More importantly, our analysis suggests that DOR patients fall into two distinct subgroups based on gene expression profiles, indicating that different

  1. Expression of Adiponectin Receptor-1 and Prognosis of Epithelial Ovarian Cancer Patients

    PubMed Central

    Li, Xiahui; Yu, Zhe; Fang, Liping; Liu, Fang; Jiang, Kui

    2017-01-01

    Background Adiponectin receptor-1 (AdipoR1) has been reported to be associated with the risk of obesity-associated malignancies, including epithelial ovarian cancer (EOC). The aim of this study was to determine if AdipoR1 could serve as a prognosis indicator for patients with EOC. Material/Methods In this study, expression of AdipoR1 in 73 EOC patients consecutively admitted to our hospital was detected by immunohistochemical staining. Univariate and multivariate analyses were performed to assess the relationship between AdipoR1 expression level and progression-free survival (PFS) and overall survival (OS) rates in patients. Results A relatively lower expression of AdipoR1 in the cancerous tissues was detected compared to normal ovarian tissues, but the difference was not significant (p>0.05). AdipoR1 expression level in EOC patients was negatively correlated with advanced FIGO stages in patients and tumor differentiation, but had no correlation with pathological types, presenting of ascites, shorter platinum-free interval (PFI), diabetes, preoperative and postoperative body mass index (BMI), or platelet counts (p>0.05). Moreover, patients with AdipoR1 expression had a significantly longer PFS and OS compared to the negative expression group (p<0.001). Conclusions Our findings suggest that AdipoR1 expression level in cancerous tissues might serve as an independent prognostic indicator in EOC patients and is associated with longer PFS and OS. PMID:28356549

  2. High glucocorticoid receptor expression predicts short progression-free survival in ovarian cancer.

    PubMed

    Veneris, Jennifer Taylor; Darcy, Kathleen M; Mhawech-Fauceglia, Paulette; Tian, Chunqiao; Lengyel, Ernst; Lastra, Ricardo R; Pejovic, Tanja; Conzen, Suzanne D; Fleming, Gini F

    2017-07-01

    To investigate the association of tumor glucocorticoid receptor (GR) expression and patient outcome in ovarian cancer. GR expression was evaluated by immunohistochemistry using tissue microarrays of specimens from 481 patients with ovarian cancer and 4 patients with benign conditions. Low GR expression was defined as an intensity of 0 or 1+ and high GR as 2+ or 3+ in >1% of tumor cells. Analyses were performed to evaluate the relationship of GR expression with clinical characteristics, progression-free survival (PFS) and overall survival (OS). GR protein was highly expressed in 133 of 341 (39.0%) tumors from patients who underwent upfront cytoreduction surgery followed by adjuvant chemotherapy. High GR expression was more common in serous tumors (p<0.001), high grade tumors (p<0.001), and advanced stage tumors (p=0.037). Median PFS was significantly decreased in cases with high GR (20.4months) compared to those with low GR (36.0months, HR=1.66, 95% CI 1.29-2.14, p<0.001). GR remained an independent prognostic factor for PFS in multivariate analysis. OS was not associated with GR status. These data suggest that high GR expression correlates with poor prognosis and support the hypothesis that modulating GR activity in combination with chemotherapy may improve outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Hyperosmotic stress induces cisplatin sensitivity in ovarian cancer cells by stimulating aquaporin-5 expression

    PubMed Central

    CHEN, XUEJUN; ZHOU, CHUNXIA; YAN, CHUNXIAO; MA, JIONG; ZHENG, WEI

    2015-01-01

    Aquaporins (AQPs) are important mediators of water permeability and are closely associated with tumor cell proliferation, migration, angiogenesis and chemoresistance. Moreover, the chemosensitivity of tumor cells to cisplatin (CDDP) is potentially affected by osmotic pressure. The present study was undertaken to determine whether hyperosmosis regulates ovarian cancer cell sensitivity to CDDP in vitro and to explore whether this is associated with AQP expression. The hyperosmotic stress was induced by D-sorbitol. 3AO ovarian cancer cells were treated with different concentrations of hypertonic medium and/or CDDP for various times, followed by measuring the inhibition rate of cell proliferation using an MTT assay. In addition, AQP expression in response to osmotic pressure and/or CDDP was measured by reverse transcription-quantitative polymerase chain reaction and western blotting. Cell proliferation in response to hypertonic stress was also measured when AQP5 was knocked down by small interfering (si)RNA. 3AO cell proliferation was inhibited by hyperosmotic stress, while the expression of AQP5, but not that of AQP1, AQP3 or AQP9, was increased in a dose- and time-dependent manner in hypertonic sorbitol-containing medium. When AQP5 was silenced by siRNA, cells were susceptible to hypertonic stress. MTT analyses showed that the inhibition of cell proliferation by a low dose of CDDP increased significantly with exposure to a hyperosmotic stimulus, and this effect was reduced when a high dose of CDDP was used. AQP5 expression was induced by a low dose of CDDP, but was reduced by a high dose of CDDP. However, hyperosmosis enhanced AQP5 mRNA expression at every dose of CDDP tested, compared with isotonic medium. With prolonged treatment time, AQP5 expression was reduced by CDDP in hypertonic and isotonic culture medium. Thus, the effects of hyperosmosis on cell sensitivity to CDDP were associated with AQP5 expression. These results suggest that AQP5 expression in ovarian

  4. Highly and moderately aggressive mouse ovarian cancer cell lines exhibit differential gene expression

    PubMed Central

    Zhang, Wensheng; Kale, Shubha P.; McFerrin, Harris; Davenport, Ian; Wang, Guangdi; Skripnikova, Elena; Li, Xiao-Lin; Bowen, Nathan J.; McDaniels, Leticia B; Meng, Yuan-Xiang; Polk, Paula; Liu, Yong-Yu; Zhang, Qian-Jin

    2017-01-01

    Patients with advanced epithelial ovarian cancer often experience disease recurrence after standard therapies, a critical factor in determining their five-year survival rate. Recent reports indicated that long-term or short-term survival is associated with varied gene expression of cancer cells. Thus, identification of novel prognostic biomarkers should be considered. Since the mouse genome is similar to the human genome, we explored potential prognostic biomarkers using two groups of mouse ovarian cancer cell lines (group 1: IG-10, IG-10pw, and IG-10pw/agar; group 2: IG-10 clones 2, 3, and 11) which display highly and moderately aggressive phenotypes in vivo. Mice injected with these cell lines have different survival time and rates, capacities of tumor, and ascites formations, reflecting different prognostic potentials. Using an Affymetrix Mouse Genome 430 2.0 Array, a total of 181 genes were differentially expressed (P<0.01) by at least twofold between two groups of the cell lines. Of the 181 genes, 109 and 72 genes were overexpressed in highly and moderately aggressive cell lines, respectively. Analysis of the 109 and 72 genes using Ingenuity Pathway Analysis (IPA) tool revealed two cancer-related gene networks. One was associated with the highly aggressive cell lines and affiliated with MYC gene, and another was associated with the moderately aggressive cell lines and affiliated with the androgen receptor (AR). Finally, the gene enrichment analysis indicated that the overexpressed 89 genes (out of 109 genes) in highly aggressive cell lines had a function annotation in the David database. The cancer-relevant significant gene ontology (GO) terms included Cell cycle, DNA metabolic process, and Programmed cell death. None of the genes from a set of the 72 genes overexpressed in the moderately aggressive cell lines had a function annotation in the David database. Our results suggested that the overexpressed MYC and 109 gene set represented highly aggressive ovarian

  5. High expression of orphan nuclear receptor NR4A1 in a subset of ovarian tumors with worse outcome.

    PubMed

    Delgado, Evan; Boisen, Michelle M; Laskey, Robin; Chen, Rui; Song, Chi; Sallit, Jad; Yochum, Zachary A; Andersen, Courtney L; Sikora, Matthew J; Wagner, Jacob; Safe, Stephen; Elishaev, Esther; Lee, Adrian; Edwards, Robert P; Haluska, Paul; Tseng, George; Schurdak, Mark; Oesterreich, Steffi

    2016-05-01

    Nuclear receptors (NRs) play a vital role in the development and progression of several cancers including breast and prostate. Using TCGA data, we sought to identify critical nuclear receptors in high grade serous ovarian cancers (HGSOC) and to confirm these findings using in vitro approaches. In silico analysis of TCGA data was performed to identify relevant NRs in HGSOC. Ovarian cancer cell lines were screened for NR expression and functional studies were performed to determine the significance of these NRs in ovarian cancers. NR expression was analyzed in ovarian cancer tissue samples using immunohistochemistry to identify correlations with histology and stage of disease. The NR4A family of NRs was identified as a potential driver of ovarian cancer pathogenesis. Overexpression of NR4A1 in particular correlated with worse progression free survival. Endogenous expression of NR4A1 in normal ovarian samples was relatively high compared to that of other tissue types, suggesting a unique role for this orphan receptor in the ovary. Expression of NR4A1 in HGSOC cell lines as well as in patient samples was variable. NR4A1 primarily localized to the nucleus in normal ovarian tissue while co-localization within the cytoplasm and nucleus was noted in ovarian cancer cell lines and patient tissues. NR4A1 is highly expressed in a subset of HGSOC samples from patients that have a worse progression free survival. Studies to target NR4A1 for therapeutic intervention should include HGSOC. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Expressed transcripts associated with high rates of egg production in chicken ovarian follicles.

    PubMed

    Yang, K T; Lin, C Y; Huang, H L; Liou, J S; Chien, C Y; Wu, C P; Huang, C W; Ou, B R; Chen, C F; Lee, Y P; Lin, E C; Tang, P C; Lee, W C; Ding, S T; Cheng, W T K; Huang, M C

    2008-02-01

    The purpose of this study was to characterize differentially expressed transcripts associated with varying rates of egg production in Taiwan country chickens. Ovarian follicles were isolated from two strains of chicken which showed low (B) or high (L2) rates of egg production, then processed for RNA extraction and cDNA library construction. Three thousand and eight forty clones were randomly selected from the cDNA library and amplified by PCR, then used in microarray analysis. Differentially expressed transcripts (P<0.05, log(2)> or = 1.75) were sequenced, and aligned using GenBank. This analysis revealed 20 non-redundant sequences which corresponded to known transcripts. Eight transcripts were expressed at a higher level in ovarian tissue prepared from chicken strain B, and 12 transcripts were expressed at a higher level in L2 birds. These differential patterns of expression were confirmed by semi-quantitative RT-PCR. We show that transcripts of cyclin B2 (cycB2), ferritin heavy polypeptide 1 (FTH1), Gag-Pol polyprotein, thymosin beta4 (TB4) and elongation factor 1 alpha1 (EEF1A1) were enriched in B strain ovarian follicles. In contrast, thioredoxin (TXN), acetyl-CoA dehydrogenase long chain (ACADL), inhibitor of growth family member 4 (ING4) and annexin II (ANXA2) were expressed in at higher levels in the L2 strain. We suggest that our approach may lead to the isolation of effective molecular markers that can be used in selection programs in Taiwan country chickens.

  7. SDF-1/CXCR7 axis enhances ovarian cancer cell invasion by MMP-9 expression through p38 MAPK pathway.

    PubMed

    Yu, Yuecheng; Li, Hongmei; Xue, Baoyao; Jiang, Xia; Huang, Kan; Ge, Junli; Zhang, Hongju; Chen, Biliang

    2014-08-01

    Ovarian cancer is an aggressive gynecological malignancy with high metastatic potential. Recently, the CXC receptor (CXCR7) has been identified as a new receptor for stromal-derived factor-1 (SDF-1), and exerts important roles in cancer development. However, its effect on ovarian cancer and the underlying mechanism remain unknown. In this study, we detected abundant CXCR7 expression in ovarian cancer tissues and cells. Moreover, SDF-1 induced dramatically upregulation of CXCR7 mRNA and protein levels, indicating that the SDF-1/CXCR7 axis existed in ovarian cancer. Further analysis confirmed that SDF-1 enhanced cell adhesion and subsequent invasion, which were significantly attenuated when pretreated with CXCR7 small interference RNA (siRNA), indicating the critical function of SDF-1/CXCR7 in cell invasion. Further mechanistic analysis indicated that SDF-1/CXCR7 enhanced cell invasion by matrix metalloproteinase (MMP)-9, as pretreatment with MMP-9 siRNA significantly abrogated a number of invading cells. Additionally, SDF-1/CXCR7 induced phosphorylation of the p38 MAPK pathway, which was accounted for MMP-9 expression as preconditioning with the p38 MAPK inhibitor SB203580 obviously decreased MMP-9 expression. Together, our data implied that SDF-1/CXCR7 enhanced ovarian cancer cell invasion by MMP-9 expression through the p38 MAPK pathway. Thus, these findings confirmed the critical role of SDF-1/CXCR7 during the pathological processes of ovarian cancer and supported its potential targets for further development of antiovarian cancer therapy.

  8. Pathological and prognostic significance of matrix metalloproteinase-2 expression in ovarian cancer: a meta-analysis.

    PubMed

    Liu, Chao

    2016-08-01

    Matrix metalloproteinase-2 (MMP-2) has been linked with tumor invasion and metastasis. However, the role of MMP-2 expression in ovarian cancer remains controversial. By searching the PubMed, Embase, Wanfang, and China National Knowledge Infrastructure databases, we conducted a meta-analysis to evaluate the pathological and prognostic significance of MMP-2 in ovarian cancer. Studies were pooled, and the odds ratio (OR) and its corresponding 95 % confidence interval (CI) were calculated. Version 11.0 STATA software was used for statistical analysis. Twenty-seven relevant articles were included for this meta-analysis study. The expression of MMP-2 in cancer tissue was significantly higher than that in benign or normal ovarian tissue [cancer vs. benign, OR 10.09 (95 % CI 6.95-14.64); P < 0.001; cancer vs. normal, OR 30.48 (95 % CI 17.19-54.05); P < 0.001; benign vs. normal, OR 1.88 (95 % CI 1.08-3.29); P = 0.025]. The expression of MMP-2 in stage III-IV or lymph node metastasis was significantly higher than that in stage I-II or that without metastasis, respectively [OR 5.83 (95 % CI 4.32-7.85); P < 0.001; OR 7.20 (95 % CI 4.75-10.91); P < 0.001]. MMP-2 was associated with histological types and grade of ovarian cancer [serous vs. mucinous, OR 1.67 (95 % CI 1.17-2.39); P = 0.004; grade 3 vs. 1, 2, OR 3.23 (95 % CI 2.29-4.55); P < 0.001]. However, the age of patients was not associated with MMP-2 expression [OR 1.25 (95 % CI 0.61-2.58); P = 0.546]. In conclusion, MMP-2 is related to the malignant degree, FIGO stage, histological types and grade, and lymph node metastasis of ovarian cancer. It may play a significant role in clinical guidelines for the treatment and prognostic evaluation.

  9. Downregulation of vimentin expression increased drug resistance in ovarian cancer cells.

    PubMed

    Huo, Yi; Zheng, Zhiguo; Chen, Yuling; Wang, Qingtao; Zhang, Zhenyu; Deng, Haiteng

    2016-07-19

    Cisplatin and other platinum-based drugs have been widely used in the treatment of ovarian cancer, but most patients acquire the drug resistance that greatly compromises the efficacy of drugs. Understanding the mechanism of drug resistance is important for finding new therapeutic approaches. In the present study, we found that the expression of vimentin was downregulated in drug-resistant ovarian cancer cell lines A2780-DR and HO-8910 as compared to their respective control cells. Overexpression of vimentin in A2780-DR cells markedly increased their sensitivity to cisplatin, whereas knockdown of vimentin in A2780, HO-8910-PM and HO-8910 cells increased the resistance to cisplatin, demonstrating that vimentin silencing enhanced cisplatin resistance in ovarian cancer cells. Quantitative proteomic analysis identified 95 differentially expressed proteins between the vimentin silenced A2780 cells (A2780-VIM-KN) and the control cells, in which downregulation of endocytic proteins and the upregulation of exocytotic proteins CHMP2B and PDZK1 were proposed to contribute the decreased cisplatin accumulation in vimentin knockdown cells. Silencing of vimentin induced upregulation of cancer stem cell markers and both A2780-DR and A2780-VIM-KN cells were more facile to form spheroids than control cells under serum-free culture condition. Our results also revealed that vimentin knockdown increased the 14-3-3 mediated retention of Cdc25C in the cytoplasm, leading to inactivation of Cdk1 and the prolonged G2 phase arrest that allowed the longer period of time for cells to repair cisplatin-damaged DNA. Taken together, we demonstrated that vimentin silencing enhanced cells' resistance to cisplatin via prolonged G2 arrest and increased exocytosis, suggesting that vimentin is a potential target for treatment of drug resistant ovarian cancer.

  10. Downregulation of vimentin expression increased drug resistance in ovarian cancer cells

    PubMed Central

    Huo, Yi; Zheng, Zhiguo; Chen, Yuling; Wang, Qingtao; Zhang, Zhenyu; Deng, Haiteng

    2016-01-01

    Cisplatin and other platinum-based drugs have been widely used in the treatment of ovarian cancer, but most patients acquire the drug resistance that greatly compromises the efficacy of drugs. Understanding the mechanism of drug resistance is important for finding new therapeutic approaches. In the present study, we found that the expression of vimentin was downregulated in drug-resistant ovarian cancer cell lines A2780-DR and HO-8910 as compared to their respective control cells. Overexpression of vimentin in A2780-DR cells markedly increased their sensitivity to cisplatin, whereas knockdown of vimentin in A2780, HO-8910-PM and HO-8910 cells increased the resistance to cisplatin, demonstrating that vimentin silencing enhanced cisplatin resistance in ovarian cancer cells. Quantitative proteomic analysis identified 95 differentially expressed proteins between the vimentin silenced A2780 cells (A2780-VIM-KN) and the control cells, in which downregulation of endocytic proteins and the upregulation of exocytotic proteins CHMP2B and PDZK1 were proposed to contribute the decreased cisplatin accumulation in vimentin knockdown cells. Silencing of vimentin induced upregulation of cancer stem cell markers and both A2780-DR and A2780-VIM-KN cells were more facile to form spheroids than control cells under serum-free culture condition. Our results also revealed that vimentin knockdown increased the 14-3-3 mediated retention of Cdc25C in the cytoplasm, leading to inactivation of Cdk1 and the prolonged G2 phase arrest that allowed the longer period of time for cells to repair cisplatin-damaged DNA. Taken together, we demonstrated that vimentin silencing enhanced cells' resistance to cisplatin via prolonged G2 arrest and increased exocytosis, suggesting that vimentin is a potential target for treatment of drug resistant ovarian cancer. PMID:27322682

  11. Specifying Specification.

    PubMed

    Paulo, Norbert

    2016-03-01

    This paper tackles the accusation that applied ethics is no serious academic enterprise because it lacks theoretical bracing. It does so in two steps. In the first step I introduce and discuss a highly acclaimed method to guarantee stability in ethical theories: Henry Richardson's specification. The discussion shows how seriously ethicists take the stability of the connection between the foundational parts of their theories and their further development as well as their "application" to particular problems or cases. A detailed scrutiny of specification leads to the second step, where I use insights from legal theory to inform the debate around stability from that point of view. This view reveals some of specification's limitations. I suggest that, once specification is sufficiently specified, it appears astonishingly similar to deduction as used in legal theory. Legal theory also provides valuable insight into the functional range of deduction and its relation to other forms of reasoning. This leads to a richer understanding of stability in normative theories and to a smart division of labor between deduction and other forms of reasoning. The comparison to legal theory thereby provides a framework for how different methods such as specification, deduction, balancing, and analogy relate to one another.

  12. FOXL2 transcriptionally represses Sf1 expression by antagonizing WT1 during ovarian development in mice

    PubMed Central

    Takasawa, Kei; Kashimada, Kenichi; Pelosi, Emanuele; Takagi, Masatoshi; Morio, Tomohiro; Asahara, Hiroshi; Schlessinger, David; Mizutani, Shuki; Koopman, Peter

    2014-01-01

    Steroidogenic factor 1 (SF1; Ad4BP/NR5A1) plays key roles in gonadal development. Initially, the Sf1 gene is expressed in mouse fetal gonads of both sexes, but later is up-regulated in testes and down-regulated in ovaries. While Sf1 expression is activated and maintained by Wilms tumor 1 (WT1) and LIM homeobox 9 (LHX9), the mechanism of sex-specific regulation remains unclear. We hypothesized that Sf1 is repressed by the transcription factor Forkhead box L2 (FOXL2) during ovarian development. In an in vitro system (TM3 cells), up-regulation of Sf1 by the WT1 splice variant WT1-KTS was antagonized by FOXL2, as determined by quantitative RT-PCR. Using reporter assays, we localized the Sf1 proximal promoter region involved in this antagonism to a 674-bp interval. A conserved FOXL2 binding site was identified in this interval by in vitro chromatin immunoprecipitation. Introducing mutations into this site abolished negative regulation by FOXL2 in reporter assays. Finally, in Foxl2-null mice, Sf1 expression was increased 2-fold relative to wild-type XX fetal gonads. Our results support the hypothesis that FOXL2 negatively regulates Sf1 expression by antagonizing WT1-KTS during early ovarian development in mice.—Takasawa, K., Kashimada, K., Pelosi, E., Takagi, M., Morio, T., Asahara, H., Schlessinger, D., Mizutani, S., Koopman, P. FOXL2 transcriptionally represses Sf1 expression by antagonizing WT1 during ovarian development in mice. PMID:24451388

  13. Serum folate receptor alpha as a biomarker for ovarian cancer: Implications for diagnosis, prognosis and predicting its local tumor expression.

    PubMed

    Kurosaki, Akira; Hasegawa, Kosei; Kato, Tomomi; Abe, Kenji; Hanaoka, Tatsuya; Miyara, Akiko; O'Shannessy, Daniel J; Somers, Elizabeth B; Yasuda, Masanori; Sekino, Tetsuo; Fujiwara, Keiichi

    2016-04-15

    Folate receptor alpha (FRA) is a GPI-anchored glycoprotein and encoded by the FOLR1 gene. High expression of FRA is observed in specific malignant tumors of epithelial origin, including ovarian cancer, but exhibits very limited normal tissue expression, making it as an attractive target for the ovarian cancer therapy. FRA is known to shed from the cell surface into the circulation which allows for its measurement in the serum of patients. Recently, methods to detect the soluble form of FRA have been developed and serum FRA (sFRA) is considered a highly promising biomarker for ovarian cancer. We prospectively investigated the levels of sFRA in patients clinically suspected of having malignant ovarian tumors. A total of 231 patients were enrolled in this study and analyzed for sFRA as well as tumor expression of FRA by immunohistochemistry. High sFRA was predominantly observed in epithelial ovarian cancer patients, but not in patients with benign or borderline gynecological disease or metastatic ovarian tumors from advanced colorectal cancers. Levels of sFRA were highly correlated to clinical stage, tumor grade and histological type and demonstrated superior accuracy for the detection of ovarian cancer than did serum CA125. High sFRA was significantly associated with shorter progression-free survival in both early and advanced ovarian cancer patients. Finally, tumor FRA expression status was strongly correlated with sFRA levels. Taken together, these data suggest that sFRA might be a useful noninvasive serum biomarkers for future clinical trials assessing FRA-targeted therapy. © 2015 UICC.

  14. Rac1 expression in epithelial ovarian cancer: effect on cell EMT and clinical outcome.

    PubMed

    Leng, Ruobing; Liao, Gang; Wang, Haixia; Kuang, Jun; Tang, Liangdan

    2015-02-01

    Ras-related C3 botulinum toxin substrate 1 (rac1) has been implicated in tumor epithelial-mesenchymal transition (EMT); however, limited information is available regarding the role of rac1 in epithelial ovarian cancer (EOC). This study aimed to evaluate the correlation of rac1 expression with EMT and EOC prognosis. Rac1 protein levels of 150 EOC specimens were evaluated by immunohistochemical staining. Survival analysis was performed to determine the correlation between rac1 expression and survival. Cellular and molecular changes were also examined after rac1 in ovarian cancer cells was silenced in vitro and in vivo. The mechanism of rac1 on EMT was investigated by Western blot analysis. Rac1 was highly expressed in EOC. Rac1 overexpression was closely associated with advanced stage based on International Federation of Gynecology and Obstetrics, poor grade, serum Ca-125, and residual tumor size. Survival analyses demonstrated that patients with high rac1 expression levels were more susceptible to early tumor recurrence with very poor prognosis. This study revealed that rac1 downregulation decreased cell EMT and proliferation capability in vitro and in vivo. Rac1 expression possibly altered cell EMT by interacting with p21-activated kinase 1 and p38 mitogen-activated protein kinase signaling pathways. The present study showed that rac1 overexpression is associated with cell EMT and poor EOC prognosis. Rac1 possibly plays an important role in predicting EOC metastasis.

  15. Immunohistochemical expression of VEGF predicts response to platinum based chemotherapy in patients with epithelial ovarian cancer.

    PubMed

    Siddiqui, G K; Maclean, A B; Elmasry, K; Wong te Fong, A; Morris, R W; Rashid, M; Begent, R H J; Boxer, G M

    2011-05-01

    For patients with epithelial ovarian cancer (EOC) cytoreduction, with a combination of taxane and platinum, is the standard of care. Despite this, approximately 50% of patients with advanced disease will relapse and moreover 15-20% of cases of EOC are resistant to platinum based chemotherapy. Vascular Endothelial Growth Factor (VEGF), an angiogenic factor, is associated with poor prognosis. This study was undertaken to examine whether there is an association between VEGF-A expression in the tumour of EOC patients and their response to platinum based chemotherapy. The study cohort consisted of 66 patients with advanced stage EOC (FIGO III-IV). Ovarian cancer tissue was analysed for VEGF-A expression immunohistochemically. Protein expression was measured and correlated, with platinum sensitivity and overall patient survival. Median age of patients was 53 years, 45 patients had platinum sensitive disease (68%), the remaining patients being platinum resistant (32%). Of the platinum resistant group, 18 (86%) patients had high VEGF score compared to only 1 (2%) with high VEGF score in the platinum sensitive group. Median survival was 11 months in the patient group with high VEGF score versus 32 months in that cohort with low VEGF score. VEGF expression was significantly inversely correlated with overall survival (P < 0.0001). We demonstrated that tumours of patients with platinum resistant EOC exhibit higher levels of VEGF expression compared to the platinum sensitive group. VEGF in EOC, may be of clinical and therapeutic relevance and suggests a role for first line anti-angiogenic therapy.

  16. p14 expression differences in ovarian benign, borderline and malignant epithelial tumors.

    PubMed

    Cabral, Vinicius Duarte; Cerski, Marcelle Reesink; Sa Brito, Ivana Trindade; Kliemann, Lucia Maria

    2016-10-22

    Abnormalities in tumor suppressors p14, p16 and p53 are reported in several human cancers. In ovarian epithelial carcinogenesis, p16 and p53 show higher immunohistochemical staining frequencies in malignant tumors and are associated with poor prognoses. p14 was only analyzed in carcinomas, with conflicting results. There are no reports on its expression in benign and borderline tumors. This study aims to determine p14, p16 and p53 expression frequencies in ovarian benign, borderline and malignant tumors and their associations with clinical parameters. A cross-sectional study utilizing immunohistochemistry was performed on paraffin-embedded ovarian epithelial tumor samples. Clinical data were collected from medical records. Fisher's exact test and the Bonferroni correction were performed for frequency associations. Survival comparisons utilized Kaplan-Meier and log rank testing. Associations were considered significant when p < 0.05. p14 absent expression was associated with malignant tumors (60 % positive) (p = 0.000), while 93 % and 94 % of benign and borderline tumors, respectively, were positive. p16 was positive in 94.6 % of carcinomas, 75 % of borderline and 45.7 % of benign tumors (p = 0.000). p53 negative staining was associated with benign tumors (2.9 % positive) (p = 0.016) but no difference was observed between borderline (16.7 %) and malignant tumors (29.7 %) (p = 0.560). No associations were found between expression rates, disease-free survival times or clinical variables. Carcinoma subtypes showed no difference in expression. This is the first description of p14 expression in benign and borderline tumors. It remains stable in benign and borderline tumors, while carcinomas show a significant absence of staining. This may indicate that p14 abnormalities occur later in carcinogenesis. p16 and p53 frequencies increase from benign to borderline and malignant tumors, similarly to previous reports, possibly reflecting the

  17. Hormone receptor expression profile of low-grade serous ovarian cancers.

    PubMed

    Buttarelli, Marianna; Mascilini, Floriana; Zannoni, Gian Franco; Ciucci, Alessandra; Martinelli, Enrica; Filippetti, Flavia; Scambia, Giovanni; Ferrandina, Gabriella; Gallo, Daniela

    2017-05-01

    Low-grade serous ovarian carcinomas (LGSOCs) are a histological subtype of epithelial ovarian tumors, accounting for fewer than 5% of all cases of ovarian carcinoma. Due to the chemoresistant nature of this subtype a search for more effective systemic therapies is actively ongoing, hormonal therapy showing some degree of activity in this clinical setting. The present study ought to investigate the hormone receptor status of LGSOCs, as a strategy to provide molecular support for patient-tailored hormonal treatments. Estrogen receptor α (ERα), ERβ isoforms (i.e. ERβ1, ERβ2 and ERβ5), progesterone and androgen receptor (PR, AR) expression was evaluated by immunohistochemistry in 25 untreated LGSOC primary tumors, 6 matched metastases and 6 micropapillary variant of serous borderline tumors (micropapillary SBOTs). In vitro cellular models were used to provide insights into clinical observations. Our results showed prominent expression of nuclear ERα, ERβ2, ERβ5 and PR in LGSOC primary tissues, while metastatic lesions also exhibit considerable cytoplasmic ERβ2 levels. Notably, a higher expression of ERβ1 protein was determined in micropapillary SBOTs compared to LGSOCs. In vitro experiments on LGSOC cell lines (i.e. HOC-7 and VOA-1056) revealed low/absent ERα, PR and AR protein expression, whereas the three ERβ isoforms were all present. Proliferation of HOC-7 and VOA-1056 was not modulated by either the endogenous or the selective synthetic ligands. These novel findings highlight the need of assessing relative levels of ERα and ERβ isoforms in the total receptor pool in future clinical studies investigating molecular predictors of response to hormonal therapy in LGSOC. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. In vivo effect of growth hormone on the expression of connexin-43 in bovine ovarian follicles.

    PubMed

    Kaiser, Germán G; Kölle, Sabine; Boie, Gudrun; Sinowatz, Fred; Palma, Gustavo A; Alberio, Ricardo H

    2006-05-01

    This study assessed the in vivo effects of recombinant growth hormone (rGH) administration on the expression of connexin-43 (Cx43) in bovine ovarian follicles. Two independent experiments were carried out using either estrous unsynchronized or synchronized multiparous Aberdeen Angus cows. rGH-treated animals were inoculated with a single dose of hormone (500 mg, intramuscular) while control animals were inoculated with hormone diluent. Five and 14 days after treatment (Experiments 1 and 2, respectively), ovarian Cx43 and apoptosis expression were assessed using immunohistochemistry. In both experiments primary, secondary, and tertiary follicles from rGH-treated and control groups distinctly expressed Cx43 protein. Primordial and atretic follicles were Cx43-negative. Interestingly, the number of Cx43 dots per granulosa cell did not show significant variation at different folliculogenesis stages neither in the rGH-treated nor in the control group. In unsynchronized animals, Cx43-positive follicles per total number of follicles ratio showed an interaction between stage of folliculogenesis and treatment due to significant differences between treatment groups in the early secondary follicle stage. In synchronized animals, there were significant differences between treatment groups and folliculogenesis stage. In both experiments, atretic follicles showed apoptosis-related DNA-fragmentation as determined by terminal uridin nick end labeling (TUNEL) assay. Tertiary follicles presented moderate TUNEL staining. Our results show significant increment in the number of ovarian follicles expressing the gap junction subunit Cx43 after in vivo rGH treatment. Therefore, we conclude that growth hormone can modulate in vivo gap junction assembly at early stages of folliculogenesis. Mol. Reprod. Dev. (c) 2006 Wiley-Liss, Inc.

  19. Correlation of cytokines and inducible nitric oxide synthase expression with prognostic factors in ovarian cancer.

    PubMed

    Martins Filho, Agrimaldo; Jammal, Millena Prata; Côbo, Eliângela de Castro; Silveira, Thales Parenti; Adad, Sheila Jorge; Murta, Eddie Fernando Candido; Nomelini, Rosekeila Simões

    2014-01-01

    The study related the immunohistochemical staining of cytokines (IL2, IL5, IL6, IL8, IL10, and TNF-alpha), and iNOS staining with clinical and pathological parameters of patients with primary ovarian malignancy. We prospectively evaluated 40 patients who underwent surgical treatment in accordance with pre-established criteria and later confirmed diagnosis of ovarian cancer. Immunohistochemistry study for cytokines (IL2, IL5, IL6, IL8, IL10, TNF-alpha) and iNOS was performed. The evaluation of prognostic factors was performed using the Fisher's exact test. The significance level was less than 0.05. Histological grade 1 was significantly correlated with strong intensity for TNF-α (p=0.0028). In addition, early stages showed strong expression intensity of TNF-α, but this was at the limit of significance (p=0.0525). Strong staining immunohistochemical IL5 was related to disease-free survival less than or equal to 24 months, suggesting that a factor of poor prognosis, but there was no statistical significance (p=0.1771). There was no statistical significance in relation at other cytokines studied. Therefore, immunohistochemical staining in strong intensity for TNF-α was related to histological grade 1 and early stages of ovarian cancer in our sample of patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. FDG-PET-positive ovarian thecoma with GLUT5 expression: Five cases.

    PubMed

    Bono, Yukiko; Mizumoto, Yasunari; Nakamura, Mitsuhiro; Iwadare, Jyunpei; Obata, Takeshi; Fujiwara, Hiroshi

    2017-03-01

    Positron emission tomography (PET) with fluorodeoxyglucose F18 ((18) F-FDG) is useful for detecting malignancies, but benign lesions occasionally have false-positive (18) F-FDG uptake. Here, we report the cases of five postmenopausal women with solid ovarian tumors suspected to be ovarian cancer on magnetic resonance imaging and (18) F-FDG uptake. Mean age of the five patients was 57 years (range, 53-65 years). Average early standardized uptake value (SUV) of (18) F-FDG was 5.76 (range, 2.2-12.0) and delayed SUV was 6.56 (range, 2.4-13.8). In all five patients, frozen section diagnosis at surgery was thecoma, and bilateral salpingo-oophorectomy was performed. On immunohistochemistry, immunoreactive glucose transporter 5 (GLUT5) expression was detected in thecoma tissues. This case shows that thecoma sometimes has positive (18) F-FDG uptake on positron emission tomography-computed tomography (PET-CT), indicating the need for caution regarding false-positive PET-CT in patients with benign solid ovarian tumor.

  1. Overexpression of GAB2 in ovarian cancer cells promotes tumor growth and angiogenesis by upregulating chemokine expression

    PubMed Central

    Duckworth, C; Zhang, L; Carroll, S L; Ethier, S P; Cheung, H W

    2016-01-01

    We previously found that the scaffold adapter GRB2-associated binding protein 2 (GAB2) is amplified and overexpressed in a subset of primary high-grade serous ovarian cancers and cell lines. Ovarian cancer cells overexpressing GAB2 are dependent on GAB2 for activation of the phosphatidylinositol 3-kinase (PI3K) pathway and are sensitive to PI3K inhibition. In this study, we show an important role of GAB2 overexpression in promoting tumor angiogenesis by upregulating expression of multiple chemokines. Specifically, we found that suppression of GAB2 by inducible small hairpin RNA in ovarian cancer cells inhibited tumor cell proliferation, angiogenesis and peritoneal tumor growth in immunodeficient mice. Overexpression of GAB2 upregulated the secretion of several chemokines from ovarian cancer cells, including CXCL1, CXCL2 and CXCL8. The secreted chemokines not only signal through endothelial CXCR2 receptor in a paracrine manner to promote endothelial tube formation, but also act as autocrine growth factors for GAB2-induced transformation of fallopian tube secretory epithelial cells and clonogenic growth of ovarian cancer cells overexpressing GAB2. Pharmacological inhibition of inhibitor of nuclear factor kappa-B kinase subunit β (IKKβ), but not PI3K, mechanistic target of rapamycin (mTOR) or mitogen-activated protein kinase (MEK), could effectively suppress GAB2-induced chemokine expression. Inhibition of IKKβ augmented the efficacy of PI3K/mTOR inhibition in suppressing clonogenic growth of ovarian cancer cells with GAB2 overexpression. Taken together, these findings suggest that overexpression of GAB2 in ovarian cancer cells promotes tumor growth and angiogenesis by upregulating expression of CXCL1, CXCL2 and CXCL8 that is IKKβ-dependent. Co-targeting IKKβ and PI3K pathways downstream of GAB2 might be a promising therapeutic strategy for ovarian cancer that overexpresses GAB2. PMID:26657155

  2. Differentially expressed genes and gene networks involved in pig ovarian follicular atresia.

    PubMed

    Terenina, Elena; Fabre, Stephane; Bonnet, Agnès; Monniaux, Danielle; Robert-Granié, Christèle; SanCristobal, Magali; Sarry, Julien; Vignoles, Florence; Gondret, Florence; Monget, Philippe; Tosser-Klopp, Gwenola

    2017-02-01

    Ovarian folliculogenesis corresponds to the development of follicles leading to either ovulation or degeneration, this latter process being called atresia. Even if atresia involves apoptosis, its mechanism is not well understood. The objective of this study was to analyze global gene expression in pig granulosa cells of ovarian follicles during atresia. The transcriptome analysis was performed on a 9,216 cDNA microarray to identify gene networks and candidate genes involved in pig ovarian follicular atresia. We found 1,684 significantly regulated genes to be differentially regulated between small healthy follicles and small atretic follicles. Among them, 287 genes had a fold-change higher than two between the two follicle groups. Eleven genes (DKK3, GADD45A, CAMTA2, CCDC80, DAPK2, ECSIT, MSMB, NUPR1, RUNX2, SAMD4A, and ZNF628) having a fold-change higher than five between groups could likely serve as markers of follicular atresia. Moreover, automatic confrontation of deregulated genes with literature data highlighted 93 genes as regulatory candidates of pig granulosa cell atresia. Among these genes known to be inhibitors of apoptosis, stimulators of apoptosis, or tumor suppressors INHBB, HNF4, CLU, different interleukins (IL5, IL24), TNF-associated receptor (TNFR1), and cytochrome-c oxidase (COX) were suggested as playing an important role in porcine atresia. The present study also enlists key upstream regulators in follicle atresia based on our results and on a literature review. The novel gene candidates and gene networks identified in the current study lead to a better understanding of the molecular regulation of ovarian follicular atresia. Copyright © 2017 the American Physiological Society.

  3. FOXL2 transcriptionally represses Sf1 expression by antagonizing WT1 during ovarian development in mice.

    PubMed

    Takasawa, Kei; Kashimada, Kenichi; Pelosi, Emanuele; Takagi, Masatoshi; Morio, Tomohiro; Asahara, Hiroshi; Schlessinger, David; Mizutani, Shuki; Koopman, Peter

    2014-05-01

    Steroidogenic factor 1 (SF1; Ad4BP/NR5A1) plays key roles in gonadal development. Initially, the Sf1 gene is expressed in mouse fetal gonads of both sexes, but later is up-regulated in testes and down-regulated in ovaries. While Sf1 expression is activated and maintained by Wilms tumor 1 (WT1) and LIM homeobox 9 (LHX9), the mechanism of sex-specific regulation remains unclear. We hypothesized that Sf1 is repressed by the transcription factor Forkhead box L2 (FOXL2) during ovarian development. In an in vitro system (TM3 cells), up-regulation of Sf1 by the WT1 splice variant WT1-KTS was antagonized by FOXL2, as determined by quantitative RT-PCR. Using reporter assays, we localized the Sf1 proximal promoter region involved in this antagonism to a 674-bp interval. A conserved FOXL2 binding site was identified in this interval by in vitro chromatin immunoprecipitation. Introducing mutations into this site abolished negative regulation by FOXL2 in reporter assays. Finally, in Foxl2-null mice, Sf1 expression was increased 2-fold relative to wild-type XX fetal gonads. Our results support the hypothesis that FOXL2 negatively regulates Sf1 expression by antagonizing WT1-KTS during early ovarian development in mice.

  4. Mammary serine protease inhibitor and CD138 immunohistochemical expression in ovarian serous and clear cell carcinomas.

    PubMed

    Hasby, Eiman Adel

    2016-04-01

    This study aims to investigate the immunohistochemical expression of mammary serine protease inhibitor (maspin) and CD138 in primary ovarian high-grade serous carcinomas (HGSC) as compared to low-grade serous carcinomas (LGSC) and clear cell carcinomas and investigate if the studied markers have a correlation to International Federation of Gynaecology and Obstetrics (FIGO) stage, Ki67 proliferation index, and to each other. Maspin cellular location varied significantly between studied groups with only nuclear expression seen in 46.7 % of LGSC group, mixed nuclear and cytoplasmic in 13.3, 28.6, and 20 % of LGSC, HGSC, and clear cell carcinoma, respectively, and was only cytoplasmic in 26.7, 71.4, and 80 % of LGSC, HGSC, and clear cell carcinoma, respectively. Mean maspin and CD138 counts were significantly higher in HGSC and clear cell carcinoma compared to LGSC. Both maspin and CD138 scores varied significantly between studied groups and were positively correlated with adverse prognostic factors in studied carcinomas including FIGO stage and Ki67 proliferation index. Besides, both maspin and CD138 had significant correlation to each other. These findings suggest that epithelial cytoplasmic expression of maspin and CD138 may have a significant role in tumorigenesis in ovarian high-grade serous carcinomas and clear cell carcinomas; these markers may regulate tumor cell proliferation, and their significant correlation to each other may suggest that CD138 probably induces maspin expression to protect tumor growth factors from being lysed by proteolytic enzymes.

  5. Correlation of Cytohistlogical Expression and Serum Level of Ca125 in Ovarian Neoplasm

    PubMed Central

    Das, Chhanda; Mukhopadhyay, Madhumita; Ghosh, Tarun; Saha, Ashis Kumar; Sengupta, Moumita

    2014-01-01

    Context or Background: CA125 is a biomarker that has potential utility across the spectrum: risk assessment, early detection, diagnosis, prognosis, monitoring and therapy. Aims and Objectives: This study was conducted to establish the validity and reliability of correlation of CA125 serum level with immunochemistry expression in imprint cytology and tissues for diagnostic purpose. Materials and Methods: A prospective study was done on 50 cases of clinically and radiologically diagnosed ovarian tumor. Imprint smears were made intraoperatively from fresh samples and stained with M.G.G. stain for air dried smears and Papanicoloau stain for alcohol fixed smears. Stained smear was assessed and compared with subsequent histopathology report. Preoperative blood samples were obtained from all patients and sent for the assay of serum CA125 levels. Analysis of CA125 immunochemistry expression in imprint cytology and tissue was done and correlated with preoperative serum blood CA125 levels. Results: Significant positive correlation was found between elevated serum CA125 levels and cytohistological expression of CA125. Overall sensitivity was 100%, specificity was 86%, positive predictive value was 74% and negative predictive value 100%. Diagnostic accuracy was 90% with high statistical significance (p<0.001). Conclusion: We considered 35 U/mL as the cut-off value when evaluating serum CA125 ovarian cancer. Patients with high serum levels show good cytohistological expression. PMID:24783076

  6. Extracellular matrix proteins expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line.

    PubMed

    Januchowski, Radosław; Zawierucha, Piotr; Ruciński, Marcin; Nowicki, Michał; Zabel, Maciej

    2014-01-01

    Ovarian cancer is the leading cause of death among gynaecological malignancies. Extracellular matrix (ECM) can affect drug resistance by preventing the penetration of the drug into cancer cells and increased resistance to apoptosis. This study demonstrates alterations in the expression levels of ECM components and related genes in cisplatin-, doxorubicin-, topotecan-, and paclitaxel-resistant variants of the A2780 ovarian cancer cell line. Affymetrix Gene Chip Human Genome Array Strips were used for hybridisations. The genes that had altered expression levels in drug-resistant sublines were selected and filtered by scatter plots. The genes that were up- or downregulated more than fivefold were selected and listed. Among the investigated genes, 28 genes were upregulated, 10 genes were downregulated, and two genes were down- or upregulated depending on the cell line. Between upregulated genes 12 were upregulated very significantly--over 20-fold. These genes included COL1A2, COL12A1, COL21A1, LOX, TGFBI, LAMB1, EFEMP1, GPC3, SDC2, MGP, MMP3, and TIMP3. Four genes were very significantly downregulated: COL11A1, LAMA2, GPC6, and LUM. The expression profiles of investigated genes provide a preliminary insight into the relationship between drug resistance and the expression of ECM components. Identifying correlations between investigated genes and drug resistance will require further analysis.

  7. Expression Profiling of Primary and Metastatic Ovarian Tumors Reveals Differences Indicative of Aggressive Disease

    PubMed Central

    Brodsky, Alexander S.; Fischer, Andrew; Miller, Daniel H.; Vang, Souriya; MacLaughlan, Shannon; Wu, Hsin-Ta; Yu, Jovian; Steinhoff, Margaret; Collins, Colin; Smith, Peter J. S.; Raphael, Benjamin J.; Brard, Laurent

    2014-01-01

    The behavior and genetics of serous epithelial ovarian cancer (EOC) metastasis, the form of the disease lethal to patients, is poorly understood. The unique properties of metastases are critical to understand to improve treatments of the disease that remains in patients after debulking surgery. We sought to identify the genetic and phenotypic landscape of metastatic progression of EOC to understand how metastases compare to primary tumors. DNA copy number and mRNA expression differences between matched primary human tumors and omental metastases, collected at the same time during debulking surgery before chemotherapy, were measured using microarrays. qPCR and immunohistochemistry validated findings. Pathway analysis of mRNA expression revealed metastatic cancer cells are more proliferative and less apoptotic than primary tumors, perhaps explaining the aggressive nature of these lesions. Most cases had copy number aberrations (CNAs) that differed between primary and metastatic tumors, but we did not detect CNAs that are recurrent across cases. A six gene expression signature distinguishes primary from metastatic tumors and predicts overall survival in independent datasets. The genetic differences between primary and metastatic tumors, yet common expression changes, suggest that the major clone in metastases is not the same as in primary tumors, but the cancer cells adapt to the omentum similarly. Together, these data highlight how ovarian tumors develop into a distinct, more aggressive metastatic state that should be considered for therapy development. PMID:24732363

  8. Expression of p16 and Retinoblastoma Determines Response to CDK4/6 Inhibition in Ovarian Cancer

    PubMed Central

    Konecny, Gottfried E.; Winterhoff, Boris; Kolarova, Teodora; Qi, Jingwei; Manivong, Kanthinh; Dering, Judy; Yang, Guorong; Chalukya, Meenal; Wang, He-Jing; Anderson, Lee; Kalli, Kimberly R.; Finn, Richard S.; Ginther, Charles; Jones, Siân; Velculescu, Victor E.; Riehle, Darren; Cliby, William A.; Randolph, Sophia; Koehler, Maria; Hartmann, Lynn C.; Slamon, Dennis J.

    2015-01-01

    Purpose PD-0332991 is a selective inhibitor of the CDK4/6 kinases with the ability to block retinoblastoma (Rb) phosphorylation in the low nanomolar range. Here we investigate the role of CDK4/6 inhibition in human ovarian cancer. Experimental Design We examined the effects of PD-0332991 on proliferation, cell-cycle, apoptosis, and Rb phosphorylation using a panel of 40 established human ovarian cancer cell lines. Molecular markers for response prediction, including p16 and Rb, were studied using gene expression profiling, Western blot, and array CGH. Multiple drug effect analysis was used to study interactions with chemotherapeutic drugs. Expression of p16 and Rb was studied using immunohistochemistry in a large clinical cohort of ovarian cancer patients. Results Concentration-dependent antiproliferative effects of PD-0332991 were seen in all ovarian cancer cell lines, but varied significantly between individual lines. Rb-proficient cell lines with low p16 expression were most responsive to CDK4/6 inhibition. Copy number variations of CDKN2A, RB, CCNE1, and CCND1 were associated with response to PD-0332991. CDK4/6 inhibition induced G0/G1 cell cycle arrest, blocked Rb phosphorylation in a concentration-and time-dependent manner, and enhanced the effects of chemotherapy. Rb-proficiency with low p16 expression was seen in 97/262 (37%) of ovarian cancer patients and was independently associated with poor progression-free survival (adjusted relative risk 1.49, 95% CI 1.00 –2.24, P = 0.052). Conclusions PD-0332991 shows promising biologic activity in ovarian cancer cell lines. Assessment of Rb and p16 expression may help select patients most likely to benefit from CDK4/6 inhibition in ovarian cancer. PMID:21278246

  9. Aberrant expression of JNK-associated leucine-zipper protein, JLP, promotes accelerated growth of ovarian cancer

    PubMed Central

    Gomathinayagam, Rohini; Jayaraman, Muralidharan; Husain, Sanam; Liu, Jinsong; Mukherjee, Priyabrata; Reddy, E. Premkumar; Song, Yong Sang; Dhanasekaran, Danny N.

    2016-01-01

    Ovarian cancer is the most fatal gynecologic cancer with poor prognosis. Etiological factors underlying ovarian cancer genesis and progression are poorly understood. Previously, we have shown that JNK-associated Leucine zipper Protein (JLP), promotes oncogenic signaling. Investigating the role of JLP in ovarian cancer, our present study indicates that JLP is overexpressed in ovarian cancer tissue and ovarian cancer cells. Transient overexpression of JLP promotes proliferation and invasive migration of ovarian cancer cells. In addition, ectopic expression of JLP confers long-term survival and clonogenic potential to normal fallopian tube-derived epithelial cells. Coimmunoprecipitation and colocalization analyses demonstrate the in vivo interaction of JLP and JNK, which is stimulated by lysophosphatidic acid (LPA), an oncogenic lipid growth factor in ovarian cancer. We also show that LPA stimulates the translocation of JLP-JNK complex to the perinuclear region of SKOV3-ip cells. JLP-knockdown using shRNA abrogates LPA-stimulated activation of JNK as well as LPA-stimulated proliferation and invasive migration of SKOV3-ip cells. Studies using ovarian cancer xenograft mouse model indicate that the mice bearing JLP-silenced xenografts exhibits reduced tumor volume. Analysis of the xenograft tumor tissues indicate a reduction in the levels of JLP, JNK, phosphorylated-JNK, c-Jun and phosphorylated-c-Jun in JLP-silenced xenografts, thereby correlating the attenuated JLP-JNK signaling node with suppressed tumor growth. Thus, our results identify a critical role for JLP-signaling axis in ovarian cancer and provide evidence that targeting this signaling node could provide a new avenue for therapy. PMID:27655714

  10. Petunia AGAMOUS enhancer-derived chimeric promoters specify a carpel-, stamen- and petal-specific expression pattern sufficient for engineering male and female sterility in tobacco

    USDA-ARS?s Scientific Manuscript database

    Previous studies have shown that the AtAGIP promoter derived from the Arabidopsis AGAMOUS (AG) second intron/enhancer specifies a carpel- and stamen-specific pattern of expression in its native host species but not in heterologous species, such as tobacco which restricts its application in the engin...

  11. Regulation of HSulf-1 expression by variant hepatic nuclear factor 1 (vHNF1) in ovarian cancer

    PubMed Central

    Liu, Peng; Khurana, Ashwani; Rattan, Ramandeep; He, Xiaoping; Kalloger, Steve; Dowdy, Sean; Gilks, Blake; Shridhar, Viji

    2009-01-01

    We recently identified HSulf-1 as a downregulated gene in ovarian carcinomas. Our previous analysis indicated that HSulf-1 inactivation in ovarian cancers is partly mediated by loss of heterozygosity (LOH) and epigenetic silencing. Here we demonstrate that variant hepatic nuclear factor 1 (vHNF1), encoded by transcription factor 2 gene (TCF2, HNF-1β) negatively regulates HSulf-1 expression in ovarian cancer. Immunoblot assay revealed that vHNF1 is highly expressed in HSulf-1 deficient OV207, SKOV3 and TOV-21G cell lines but not in HSulf-1 expressing OSE, OV167 and OV202 cells. By shRNA-mediated downregulation of vHNF1 in TOV21-G cells and transient enhanced vHNF1 expression in OV202 cells, we showed that vHNF1 suppresses HSulf-1 expression in ovarian cancer cell lines. Reporter assay and chromatin immunoprecipitation (ChIP) experiments showed that vHNF1 is specifically recruited to HSulf-1 promoter at two different vHNF1 responsive elements in OV207 and TOV-21G cells. Additionally, downregulation of vHNF1 expression in OV207 and TOV-21G cells increased cisplatin- or paclitaxel-mediated cytotoxicity as determined by both MTT and clonogenic assays and this effect was reversed by downregulation of HSulf-1. Moreover, nude mice bearing TOV-21G cell xenografts with stably downregulated vHNF1 were more sensitive to cisplatin-or paclitaxel-induced cytotoxicity compared to xenografts of TOV-21G clonal lines with nontargeted control shRNA. Finally, immunohistochemical analysis of 501 ovarian tumors including 140 clear cell tumors on tissue microarrays showed that vHNF1 inversely correlates to HSulf-1 expression. Collectively, these results indicate that vHNF1 acts as a repressor of HSulf-1 expression and might be a molecular target for ovarian cancer therapy. PMID:19487294

  12. Toll-Like Receptors Expression in Follicular Cells of Patients with Poor Ovarian Response

    PubMed Central

    Taghavi, Seyed Abdolvahab; Ashrafi, Mahnaz; Mehdizadeh, Mehdi; Karimian, Leili; Joghataie, Mohammad Taghi; Aflatoonian, Reza

    2014-01-01

    Background Poor ovarian response (POR) to gonadotropin stimulation has led to a significant decline in success rate of fertility treatment. The immune system may play an important role in pathophysiology of POR by dysfunctions of cytokines and the growth factor network, and the presence of ovarian auto-antibodies. The aim of this study is to investigate the expression of toll-like receptors (TLR) 1, 2, 4, 5, 6 and cyclooxygenase (COX) 2 genes in follicular cells and concentration of interleukin (IL)-6, IL-8 and macrophage migration inhibitory factor (MIF), as major parts of innate immunity, in follicular fluid (FF) obtained from POR women in comparison with normal women. Materials and Methods In this case-control study, 20 infertile POR patients and 20 normal women took part in this study and underwent controlled ovarian stimulation. The FF was obtained from the largest follicle (>18 mm). The FF was centrifuged and cellular pellet was then used for evaluation of expression of TLRs and COX2 genes by real-time PCR. FF was used for quantitative analysis for IL-6, IL-8 and MIF by enzyme-linked immunosorbent assay (ELISA). Results TLR1, 2, 4, 5, 6 and COX2 gene expression were significantly higher in POR (p<0.05). Concentration of IL-6, IL-8 and MIF proteins was significantly increased in POR compared with normal women (p<0.05). Conclusion These findings support the hypothesis that the immune system may be involved in pathophysiology of POR through TLRs. PMID:25083184

  13. Candidate Gene Expression in Bos indicus Ovarian Tissues: Prepubertal and Postpubertal Heifers in Diestrus

    PubMed Central

    Weller, Mayara Morena Del Cambre Amaral; Fortes, Marina Rufino S.; Porto-Neto, Laercio R.; Kelly, Matthew; Venus, Bronwyn; Kidd, Lisa; do Rego, João Paulo Arcelino; Edwards, Sophia; Boe-Hansen, Gry B.; Piper, Emily; Lehnert, Sigrid A.; Guimarães, Simone Eliza Facioni; Moore, Stephen Stewart

    2016-01-01

    Growth factors such as bone morphogenetic proteins 6, 7, 15, and two isoforms of transforming growth factor-beta (BMP6, BMP7, BMP15, TGFB1, and TGFB2), and insulin-like growth factor system act as local regulators of ovarian follicular development. To elucidate if these factors as well as others candidate genes, such as estrogen receptor 1 (ESR1), growth differentiation factor 9 (GDF9), follicle-stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), bone morphogenetic protein receptor, type 2 (BMPR2), type 1 insulin-like growth factor receptor (IGFR1), and key steroidogenic enzymes cytochrome P450 aromatase and 3-β-hydroxysteroid dehydrogenase (CYP19A1 and HSD3B1) could modulate or influence diestrus on the onset of puberty in Brahman heifers, their ovarian mRNA expression was measured before and after puberty (luteal phase). Six postpubertal (POST) heifers were euthanized on the luteal phase of their second cycle, confirmed by corpus luteum observation, and six prepubertal (PRE) heifers were euthanized in the same day. Quantitative real-time PCR analysis showed that the expression of FSHR, BMP7, CYP19A1, IGF1, and IGFR1 mRNA was greater in PRE heifers, when contrasted to POST heifers. The expression of LHR and HSD3B1 was lower in PRE heifers. Differential expression of ovarian genes could be associated with changes in follicular dynamics and different cell populations that have emerged as consequence of puberty and the luteal phase. The emerging hypothesis is that BMP7 and IGF1 are co-expressed and may modulate the expression of FSHR, LHR and IGFR1, and CYP19A1. BMP7 could influence the downregulation of LHR and upregulation of FSHR and CYP19A1, which mediates the follicular dynamics in heifer ovaries. Upregulation of IGF1 expression prepuberty, compared to postpuberty diestrus, correlates with increased levels FSHR and CYP19A1. Thus, BMP7 and IGF1 may play synergic roles and were predicted to interact, from the expression data (P = 0.07, r

  14. Expression and activity analysis of a new fusion protein targeting ovarian cancer cells.

    PubMed

    Su, Manman; Chang, Weiqin; Wang, Dingding; Cui, Manhua; Lin, Yang; Wu, Shuying; Xu, Tianmin

    2015-09-01

    The aim of the present study was to develop a new therapeutic drug to improve the prognosis of ovarian cancer patients. Human urokinase-type plasminogen activator (uPA)17-34-kunitz-type protease inhibitor (KPI) eukaryotic expression vector was constructed and recombinant human uPA17-34-KPI (rhuPA17-34-KPI) in P. pastoris was expressed. In the present study, the DNA sequences that encode uPA 17-34 amino acids were created according to the native amino acids sequence and inserted into the KPI-pPICZαC vector, which was constructed. Then, uPA17‑34-KPI-pPICZαC was transformed into P. pastoris X-33, and rhuPA17-34-KPI was expressed by induction of methanol. The bioactivities of a recombinant fusion protein were detected with trypsin inhibition analysis, and the inhibitory effects on the growth of ovarian cancer cells were identified using the TUNEL assay, in vitro wound‑healing assay and Matrigel model analysis. The results of the DNA sequence analysis of the recombinant vector uPA17-34-KPI‑pPICZα demonstrated that the DNA‑encoding human uPA 17-34 amino acids, 285-288 amino acids of amyloid precursor protein (APP) and 1-57 amino acids of KPI were correctly inserted into the pPICZαC vector. Following induction by methonal, the fusion protein with a molecular weight of 8.8 kDa was observed using SDS-PAGE and western blot analysis. RhuPA17-34-KPI was expressed in P. pastoris with a yield of 50 mg/l in a 50-ml tube. The recombinant fusion protein was able to inhibit the activity of trypsin, inhibit growth and induce apoptosis of SKOV3 cells, and inhibit the invasion and metastasis of ovarian cancer cells. By considering uPA17-34 amino acid specific binding uPAR as the targeted part of fusion protein and utilizing the serine protease inhibitor activity of KPI, it was found that the recombinant fusion protein uPA17-34-KPI inhibited the invasion and metastasis of ovarian tumors, and may therefore be regarded as effective in targeted treatment.

  15. Retracted: Differential expression of microRNAs in myometrium and leiomyomas and regulation by ovarian steroids.

    PubMed

    2015-10-01

    The above article, published online on 20 December 2007 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Professor L Popescu and John Wiley and Sons Ltd. The retraction has been requested by the University of Florida, Office of Research, in response to their investigation which concluded fabrication of data in Figures 2, 3 and 4. Reference Pan Q, Luo X, Chegini N. Retracted: differential expression of microRNAs in myometrium and leiomyomas and regulation by ovarian steroids. J Cell Mol Med 12: 227-240. Doi: 10.1111/j.1582-4934.2007.00207.x.

  16. hMSH2 and GTBP expression in advanced stage epithelial ovarian cancer

    PubMed Central

    Ercoli, A; Ferrandina, G; Raspaglio, G; Marone, M; Maggiano, N; Mastro, P Del; Panici, P Benedetti; Mancuso, S; Scambia, G

    1999-01-01

    Defects in DNA mismatch repair have been associated with both hereditary and sporadic forms of human cancer. Most of the attention has been focused on the incidence and genetics of mismatch repair defects, while little is known about the expression levels of the mismatch repair proteins and their significance in cancer cell biology. In this study, both the expression levels of hMSH2 and GTBP proteins were investigated by Western blotting in 20 untreated epithelial ovarian cancers. For these analyses, a commercial anti-hMSH2 monoclonal antibody and a newly generated mouse monoclonal anti-GTBP antibody were used. hMSH2 and GTBP proteins were detected by Western blotting in 19 out of 20 (95%) samples analysed and were found to be directly correlated (r = +0.51, P = 0.025). hMSH2 expression was significantly higher in ovarian cancer cells originating from solid tumours than from ascites (H = 4.5, P = 0.033), whereas GTBP content did not significantly differ according to the origin of cancer cells. No statistically significant differences were found in the distribution of hMSH2 and GTBP levels according to the age of the patients, grade of differentiation, histotype and extent of surgical debulking. The amount of hMSH2 protein was demonstrated to be significantly lower in stage IV than in stage III patients (H = 7.35, P = 0.007). Moreover, significantly lower hMSH2 levels were observed in non-responding patients compared to patients who achieved complete or partial response to cisplatin-based chemotherapy (H = 4.88, P = 0.027). Conversely, GTBP levels were not distributed differently according to stage of disease and chemotherapy response. Our study suggests a possible involvement of hMSH2 in ovarian cancer cell biology and susceptibility to chemotherapy. The possible biological and/or clinical role of GTBP expression in ovarian cancer patients remains to be elucidated. © 1999 Cancer Research Campaign PMID:10408416

  17. Expression of matrix metalloproteinases and ovarian morphological changes in androgenized cyclic female guinea pigs.

    PubMed

    Li, Jun-rong; Shen, Ting; Wang, Yan-li; Wei, Quan-wei; Shi, Fang-xiong

    2016-02-01

    This study was conducted to investigate expression of matrix metalloproteinases (MMPs) and ovarian morphological changes in androgenized cyclic female guinea pigs. Adult cyclic female guinea pigs were injected daily for 28 days with medium doses of testosterone propionate (TP; 1 mg/100g), high doses of TP (2 mg/100g), or saline (control). Serum concentrations of testosterone, estradiol (E2), and progesterone (P4) were measured. Histologic sections of ovaries were stained with hematoxylin-eosin and by immunohistochemistry. Expressions of steroidogenic acute regulatory protein, proliferating cell nuclear antigen, and MMP-2 and MMP-9 in the ovary were characterized by immunohistochemistry. After 28 days of TP injection, serum testosterone concentrations were increased dose-dependently. An appropriate dosage of TP could induce permanent anovulation in guinea pigs, making them a potential model for human polycystic ovary syndrome. MMP-2 and MMP-9 are jointly involved in the growth and atresia of ovarian follicles in cyclic guinea pigs. Increased numbers of atretic antral follicles in the ovary might be associated with the observed high expression of MMP-2 in androgenized cyclic guinea pigs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. High expression of S100P is associated with unfavorable prognosis and tumor progression in patients with epithelial ovarian cancer

    PubMed Central

    Wang, Xiangyu; Tian, Tian; Li, Xukun; Zhao, Meng; Lou, Yanhui; Qian, Jingfeng; Liu, Zhihua; Chen, Hongyan; Cui, Zhumei

    2015-01-01

    Accumulating evidence has demonstrated that S100P is involved in the tumorigenesis and progression of multiple cancers. In the current study, we evaluated the expression of S100P in epithelial ovarian cancer and assessed its relevance to clinicopathological characteristics. Moreover, we investigated the biological effects of S100P using A2780 and SKOV3 cells. S100P expression was significantly increased in epithelial ovarian cancer specimens compared with fallopian tube tissues and normal ovary tissues. And high expression of S100P in epithelial ovarian cancer samples was significantly associated with tumor stage (P<0.001), serum CA125 level (P=0.026), residual tumor (P<0.001), ascites (P<0.001) and lymph nodes metastasis (P<0.001). Multivariate Cox analysis showed that S100P expression was an independent prognostic factor of overall survival (OS) and progression free survival (PFS) (P=0.017 and 0.031, respectively). Functional assays showed that overexpression of S100P promoted cell proliferation and cell cycle progression but did not affect cell migration and invasion in A2780 and SKOV3 cells. These data suggest that S100P may contribute to tumor development in epithelial ovarian cancer and could be a useful marker for the prognosis of epithelial ovarian cancer patients. PMID:26396916

  19. High expression of S100P is associated with unfavorable prognosis and tumor progression in patients with epithelial ovarian cancer.

    PubMed

    Wang, Xiangyu; Tian, Tian; Li, Xukun; Zhao, Meng; Lou, Yanhui; Qian, Jingfeng; Liu, Zhihua; Chen, Hongyan; Cui, Zhumei

    2015-01-01

    Accumulating evidence has demonstrated that S100P is involved in the tumorigenesis and progression of multiple cancers. In the current study, we evaluated the expression of S100P in epithelial ovarian cancer and assessed its relevance to clinicopathological characteristics. Moreover, we investigated the biological effects of S100P using A2780 and SKOV3 cells. S100P expression was significantly increased in epithelial ovarian cancer specimens compared with fallopian tube tissues and normal ovary tissues. And high expression of S100P in epithelial ovarian cancer samples was significantly associated with tumor stage (P<0.001), serum CA125 level (P=0.026), residual tumor (P<0.001), ascites (P<0.001) and lymph nodes metastasis (P<0.001). Multivariate Cox analysis showed that S100P expression was an independent prognostic factor of overall survival (OS) and progression free survival (PFS) (P=0.017 and 0.031, respectively). Functional assays showed that overexpression of S100P promoted cell proliferation and cell cycle progression but did not affect cell migration and invasion in A2780 and SKOV3 cells. These data suggest that S100P may contribute to tumor development in epithelial ovarian cancer and could be a useful marker for the prognosis of epithelial ovarian cancer patients.

  20. α-SNAP is expressed in mouse ovarian granulosa cells and plays a key role in folliculogenesis and female fertility.

    PubMed

    Arcos, Alexis; Paola, Matilde de; Gianetti, Diego; Acuña, Diego; Velásquez, Zahady D; Miró, María Paz; Toro, Gabriela; Hinrichsen, Bryan; Muñoz, Rosa Iris; Lin, Yimo; Mardones, Gonzalo A; Ehrenfeld, Pamela; Rivera, Francisco J; Michaut, Marcela A; Batiz, Luis Federico

    2017-09-18

    The balance between ovarian folliculogenesis and follicular atresia is critical for female fertility and is strictly regulated by a complex network of neuroendocrine and intra-ovarian signals. Despite the numerous functions executed by granulosa cells (GCs) in ovarian physiology, the role of multifunctional proteins able to simultaneously coordinate/modulate several cellular pathways is unclear. Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (α-SNAP) is a multifunctional protein that participates in SNARE-mediated membrane fusion events. In addition, it regulates cell-to-cell adhesion, AMPK signaling, autophagy and apoptosis in different cell types. In this study we examined the expression pattern of α-SNAP in ovarian tissue and the consequences of α-SNAP (M105I) mutation (hyh mutation) in folliculogenesis and female fertility. Our results showed that α-SNAP protein is highly expressed in GCs and its expression is modulated by gonadotropin stimuli. On the other hand, α-SNAP-mutant mice show a reduction in α-SNAP protein levels. Moreover, increased apoptosis of GCs and follicular atresia, reduced ovulation rate, and a dramatic decline in fertility is observed in α-SNAP-mutant females. In conclusion, α-SNAP plays a critical role in the balance between follicular development and atresia. Consequently, a reduction in its expression/function (M105I mutation) causes early depletion of ovarian follicles and female subfertility.

  1. Suppression of RNA interference on expression of c-myc of SKOV3 ovarian carcinoma cell line.

    PubMed

    Ai, Z-H; Wang, J; Xu, Y-L; Zhu, X-L; Teng, Y-C

    2013-11-01

    To investigate suppression of RNA interference (RNAi) on expression of c-myc of SKOV3 ovarian carcinoma cell line. The c-myc -siRNA was designed and synthesized, then transfected to SKOV3 ovarian carcinoma cell lines. The cell lines were divided into four groups, including the blank control group, the siRNA transfection group, the mock transfection group and the negative control group. The expression level of c-myc mRNA and protein were detected by RT-PCR and Western blotting, respectively. The growth and proliferation of SKOV3 ovarian carcinoma cell lines were observed with CCK-8 assay. After transfected with c-myc -siRNA, the expression level of c-myc mRNA and protein were down-regulated, the growth and proliferation of SKOV3 ovarian carcinoma cell line were inhibited in the siRNA transfection group. There were significant differences between the siRNA transfection group and the blank control group (p < 0.05). The silencing efficiency was 77.78%, the protein suppression rate was 67.78%, and the inhibition ratio was 56.35% by CCK-8 assay in siRNA transfection group. The down-regulation of c-myc expression of SKOV3 ovarian carcinoma cell line by c-myc -siRNA can lead to the suppression of cancer cell proliferation. The small interfering RNAs technique can inhibit the proliferation of carcinoma cell by oncogene silencing.

  2. miR-92a inhibits peritoneal dissemination of ovarian cancer cells by inhibiting integrin α5 expression.

    PubMed

    Ohyagi-Hara, Chifumi; Sawada, Kenjiro; Kamiura, Shoji; Tomita, Yasuhiko; Isobe, Aki; Hashimoto, Kae; Kinose, Yasuto; Mabuchi, Seiji; Hisamatsu, Takeshi; Takahashi, Toshifumi; Kumasawa, Keiichi; Nagata, Shigenori; Morishige, Ken-Ichirou; Lengyel, Ernst; Kurachi, Hirohisa; Kimura, Tadashi

    2013-05-01

    Ovarian cancer is characterized by widespread peritoneal dissemination and ascites and has a cure rate of only 30%. As has been previously reported, integrin α5 plays a key role in the peritoneal dissemination of ovarian cancer. Our aim was to identify a new miRNA that regulates integrin α5 expression and analyze the therapeutic potential of targeting this miRNA. By using an IHC analysis, we proved that high integrin α5 expression correlates with a poor prognosis in Japanese patients with International Federation of Gynecology and Obstetrics stage III ovarian cancer. Based on an miRNA algorithm search, we identified hsa-mir-92a (miR-92a) as a candidate. The level of miR-92a expression was significantly inversely correlated with ITGA5 expression in various cancer cells. Transfection of precursor miR-92a reduced integrin α5 expression in ovarian cancer cells, which was accompanied by the inhibition of cancer cell adhesion, invasion, and proliferation. miR-92a overexpression reduced the luciferase activity of the ITGA5 3'-untranslated region, suggesting that ITGA5 mRNA is a direct target of miR-92a. In in vivo ovarian cancer xenografts, the enforced expression of miR-92a in HeyA-8 cells suppressed peritoneal dissemination. Although we still have a long way to go before an effective and nontoxic miRNA-based cancer therapy can be introduced into the clinic, the inhibition of integrin α5 expression by targeting miR-92a needs to be explored further for future applications in ovarian cancer treatment. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Regulation of copper transporter 2 expression by copper and cisplatin in human ovarian carcinoma cells.

    PubMed

    Blair, Brian G; Larson, Christopher A; Adams, Preston L; Abada, Paolo B; Safaei, Roohangiz; Howell, Stephen B

    2010-06-01

    Down-regulation of copper transporter 1 (CTR1) reduces uptake and sensitivity, whereas down-regulation of CTR2 enhances both. Cisplatin (DDP) triggers the rapid degradation of CTR1 and thus limits its own accumulation. We sought to determine the effect of DDP and copper on the expression of CTR2. Changes in CTR1 and CTR2 mRNA and protein levels in human ovarian carcinoma 2008 cells and ATOX1(+/+) and ATOX1(-/-) mouse embryo fibroblasts in response to exposure to DDP and copper were measured by quantitative reverse transcriptase-polymerase chain reaction, Western blot analysis, and deconvolution microscopy. DDP triggered rapid degradation of CTR1 in 2008 human ovarian cancer cells. However, it increased the expression of CTR2 mRNA and protein levels. Expression of CTR2 was heavily modulated by changes in intracellular copper concentration; copper depletion produced rapid disappearance of CTR2, whereas excess copper increased the level of CTR2 protein. This increase was associated with an increase in CTR2 mRNA and prolongation of the CTR2 half-life. Consistent with prior observations that short hairpin RNA interference-mediated knockdown of CTR2 enhanced DDP uptake and tumor cell kill, reduction of CTR2 by copper starvation also enhanced DDP uptake and cytotoxicity. Comparison of the ability of copper and DDP to modulate the expression of CTR1 in ATOX1(+/+) and ATOX1(-/-) indicated that ATOX1 participates in the regulation of CTR2 expression. Unlike CTR1, the expression of CTR2 is increased rather than decreased by DDP. Therefore, these two copper transporters have opposite effects on DDP sensitivity. CTR2 expression is regulated by copper availability via the copper-dependent regulator ATOX1.

  4. Regulation of Copper Transporter 2 Expression by Copper and Cisplatin in Human Ovarian Carcinoma Cells

    PubMed Central

    Blair, Brian G.; Larson, Christopher A.; Adams, Preston L.; Abada, Paolo B.; Safaei, Roohangiz

    2010-01-01

    Down-regulation of copper transporter 1 (CTR1) reduces uptake and sensitivity, whereas down-regulation of CTR2 enhances both. Cisplatin (DDP) triggers the rapid degradation of CTR1 and thus limits its own accumulation. We sought to determine the effect of DDP and copper on the expression of CTR2. Changes in CTR1 and CTR2 mRNA and protein levels in human ovarian carcinoma 2008 cells and ATOX1(+/+) and ATOX1(−/−) mouse embryo fibroblasts in response to exposure to DDP and copper were measured by quantitative reverse transcriptase-polymerase chain reaction, Western blot analysis, and deconvolution microscopy. DDP triggered rapid degradation of CTR1 in 2008 human ovarian cancer cells. However, it increased the expression of CTR2 mRNA and protein levels. Expression of CTR2 was heavily modulated by changes in intracellular copper concentration; copper depletion produced rapid disappearance of CTR2, whereas excess copper increased the level of CTR2 protein. This increase was associated with an increase in CTR2 mRNA and prolongation of the CTR2 half-life. Consistent with prior observations that short hairpin RNA interference-mediated knockdown of CTR2 enhanced DDP uptake and tumor cell kill, reduction of CTR2 by copper starvation also enhanced DDP uptake and cytotoxicity. Comparison of the ability of copper and DDP to modulate the expression of CTR1 in ATOX1(+/+) and ATOX1(−/−) indicated that ATOX1 participates in the regulation of CTR2 expression. Unlike CTR1, the expression of CTR2 is increased rather than decreased by DDP. Therefore, these two copper transporters have opposite effects on DDP sensitivity. CTR2 expression is regulated by copper availability via the copper-dependent regulator ATOX1. PMID:20194531

  5. Changes in ovarian protein expression during primordial follicle formation in the hamster.

    PubMed

    Mukherjee, Anindit; Reisdorph, Nichole; Guda, Chttibabu; Pandey, Sanjit; Roy, Shyamal K

    2012-01-02

    Although many proteins have been shown to affect the transition of primordial follicles to the primary stage, factors regulating the formation of primordial follicles remains sketchy at best. Differentiation of somatic cells into early granulosa cells during ovarian morphogenesis is the hallmark of primordial follicle formation; hence, critical changes are expected in protein expression. We wanted to identify proteins, the expression of which would correlate with the formation of primordial follicles as a first step to determine their biological function in folliculogenesis. Proteins were extracted from embryonic (E15) and 8-day-old (P8) hamster ovaries and fractionated by two-dimensional gel electrophoresis. Gels were stained with Proteosilver, and images of protein profiles corresponding to E15 and P8 ovaries were overlayed to identify protein spots showing altered expression. Some of the protein spots were extracted from SyproRuby-stained preparative gels, digested with trypsin, and analyzed by mass spectrometry. Both E15 and P8 ovaries had high molecular weight proteins at acidic, basic, and neutral ranges; however, we focused on small molecular weight proteins at 4-7 pH range. Many of those spots might represent post-translational modification. Mass spectrometric analysis revealed the identity of these proteins. The formation of primordial follicles on P8 correlated with many differentially and newly expressed proteins. Whereas Ebp1 expression was downregulated in ovarian somatic cells, Sfrs3 expression was specifically upregulated in newly formed granulosa cells of primordial follicles on P8. The results show for the first time that the morphogenesis of primordial follicles in the hamster coincides with altered and novel expression of proteins involved in cell proliferation, transcriptional regulation, and metabolism. Therefore, formation of primordial follicles is an active process requiring differentiation of somatic cells into early granulosa cells and

  6. β-Catenin Expression Pattern in Stage I and II Ovarian Carcinomas

    PubMed Central

    Gamallo, Carlos; Palacios, José; Moreno, Gema; Calvo de Mora, Jorge; Suárez, Asunción; Armas, Alvaro

    1999-01-01

    The immunohistochemical expression pattern of β-catenin has been correlated with β-catenin gene mutations, clinicopathological features, and disease outcome in 69 stage I and II ovarian carcinomas. β-Catenin expression was localized in the nuclei, in addition to the cytoplasm and membrane, in 11 tumors (16%): nine endometrioid carcinomas with widespread nuclear expression and two serous carcinomas with focal nuclear expression. The remaining 58 carcinomas (84%) only had membranous β-catenin expression. All but one of the endometrioid carcinomas with nuclear β-catenin expression had considerable squamous metaplasia, and five of these cases had large areas of endometrioid tumor of low malignant potential. In addition, β-catenin nuclear expression was observed in atypical epithelial cells in endometriotic glands adjacent to an endometrioid carcinoma. Sequencing was performed on 25 tumors and corresponding normal tissue: all 13 endometrioid tumors as well as 12 carcinomas of other histological types (four serous, two clear cell, two mucinous, and two mixed). There were oncogenic mutations in the phosphorylation sequence for GSK-3β in exon 3 of the β-catenin gene in seven endometrioid carcinomas with β-catenin nuclear expression. Three mutations affected codon 32 (D32G, D32Y, and D32Y), one affected codon 33 (S33C), two affected codon 37 (S37C and S37F), and one affected codon 41 (T41A). No mutations were observed in the other 18 carcinomas analyzed, comprising two endometrioid and two serous carcinomas with β-catenin nuclear expression, and 14 carcinomas of different histological types with only membranous expression. In the univariate and multivariate survival analyses, β-catenin nuclear expression was selected as an indicator of good prognosis, because no patient whose tumor expressed β-catenin in the nuclei showed relapses or died, in contrast to the 19 relapses and deaths among patients with tumors that only had β-catenin membranous expression

  7. Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats

    SciTech Connect

    Armenti, AnnMarie E.; Zama, Aparna Mahakali; Passantino, Lisa; Uzumcu, Mehmet

    2008-12-01

    Methoxychlor (MXC) is an organochlorine pesticide with estrogenic, anti-estrogenic, and anti-androgenic properties. To investigate whether transient developmental exposure to MXC could cause adult ovarian dysfunction, we exposed Fischer rats to 20 {mu}g/kg/day (low dose; environmentally relevant dose) or 100 mg/kg/day (high dose) MXC between 19 days post coitum and postnatal day 7. Multiple reproductive parameters, serum hormone levels, and ovarian morphology and molecular markers were examined from prepubertal through adult stages. High dose MXC accelerated pubertal onset and first estrus, reduced litter size, and increased irregular cyclicity (P < 0.05). MXC reduced superovulatory response to exogenous gonadotropins in prepubertal females (P < 0.05). Rats exposed to high dose MXC had increasing irregular estrous cyclicity beginning at 4 months of age, with all animals showing abnormal cycles by 6 months. High dose MXC reduced serum progesterone, but increased luteinizing hormone (LH). Follicular composition analysis revealed an increase in the percentage of preantral and early antral follicles and a reduction in the percentage of corpora lutea in high dose MXC-treated ovaries (P < 0.05). Immunohistochemical staining and quantification of the staining intensity showed that estrogen receptor {beta} was reduced by high dose MXC while anti-Mullerian hormone was upregulated by both low- and high dose MXC in preantral and early antral follicles (P < 0.05). High dose MXC significantly reduced LH receptor expression in large antral follicles (P < 0.01), and down-regulated cytochrome P450 side-chain cleavage. These results demonstrated that developmental MXC exposure results in reduced ovulation and fertility and premature aging, possibly by altering ovarian gene expression and folliculogenesis.

  8. Telmisartan prevents proliferation and promotes apoptosis of human ovarian cancer cells through upregulating PPARγ and downregulating MMP‑9 expression.

    PubMed

    Pu, Zhichen; Zhu, Min; Kong, Fandou

    2016-01-01

    The mortality rate of ovarian cancer is the highest of all gynecological malignancies. Telmisartan is a commonly used clinical angiotensin receptor blocker, which has antihypertensive, anti‑inflammatory and antithrombotic effects. In the present study, it was investigated whether telmisartan could exert anticancer effects on ovarian cancer cells through upregulating peroxisome proliferator‑activated receptor γ (PPARγ) and downregulating matrix metalloproteinase‑9 (MMP‑9) expression. A 3.3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was conducted to analyze the proliferation of HEY cells. A Caspase‑3 Activity Assay kit and an Annexin V‑fluorescein isothiocyanate/propidium iodide kit were used to analyze the apoptosis of HEY cells. In addition, a gelatin zymography assay and reverse trancription‑quantitative polymerase chain reaction were included to analyze the expression of PPARγ and MMP‑9 in HEY cells. The data showed that telmisartan could significantly decrease cell viability and induce the apoptosis of HEY cells in a time‑ and dose‑dependent manner. Furthermore, telmisartan could also dose‑dependently increase the expression of PPARγ and decrease the expression of MMP‑9 in HEY cells. In addition, downregulation of the expression of PPARγ by small interfering (si)RNA could reduce the effect of telmisartan on ovarian cancer cells and increase the expression of MMP‑9. In conclusion, the results indicated that telmisartan prevents proliferation and promotes apoptosis of human ovarian cancer cells by upregulating PPARγ and downregulating MMP‑9 expression.

  9. Clinical Use of Programmed Cell Death-1 and Its Ligand Expression as Discriminatory and Predictive Markers in Ovarian Cancer.

    PubMed

    Chatterjee, Jayanta; Dai, Wei; Aziz, Nor Haslinda Abd; Teo, Pei Yun; Wahba, John; Phelps, David L; Maine, Christian J; Whilding, Lynsey M; Dina, Roberto; Trevisan, Giorgia; Flower, Kirsty J; George, Andrew J T; Ghaem-Maghami, Sadaf

    2017-07-01

    Purpose: We aimed to establish whether programmed cell death-1 (PD-1) and programmed cell death ligand 1 (PD-L1) expression, in ovarian cancer tumor tissue and blood, could be used as biomarkers for discrimination of tumor histology and prognosis of ovarian cancer.Experimental Design: Immune cells were separated from blood, ascites, and tumor tissue obtained from women with suspected ovarian cancer and studied for the differential expression of possible immune biomarkers using flow cytometry. PD-L1 expression on tumor-associated inflammatory cells was assessed by immunohistochemistry and tissue microarray. Plasma soluble PD-L1 was measured using sandwich ELISA. The relationships among immune markers were explored using hierarchical cluster analyses.Results: Biomarkers from the discovery cohort that associated with PD-L1(+) cells were found. PD-L1(+) CD14(+) cells and PD-L1(+) CD11c(+) cells in the monocyte gate showed a distinct expression pattern when comparing benign tumors and epithelial ovarian cancers (EOCs)-confirmed in the validation cohort. Receiver operating characteristic curves showed PD-L1(+) and PD-L1(+) CD14(+) cells in the monocyte gate performed better than the well-established tumor marker CA-125 alone. Plasma soluble PD-L1 was elevated in patients with EOC compared with healthy women and patients with benign ovarian tumors. Low total PD-1(+) expression on lymphocytes was associated with improved survival.Conclusions: Differential expression of immunological markers relating to the PD-1/PD-L1 pathway in blood can be used as potential diagnostic and prognostic markers in EOC. These data have implications for the development and trial of anti-PD-1/PD-L1 therapy in ovarian cancer. Clin Cancer Res; 23(13); 3453-60. ©2016 AACR. ©2016 American Association for Cancer Research.

  10. Common and Unique Impairments in Facial-Expression Recognition in Pervasive Developmental Disorder-Not Otherwise Specified and Asperger's Disorder

    ERIC Educational Resources Information Center

    Uono, Shota; Sato, Wataru; Toichi, Motomi

    2013-01-01

    This study was designed to identify specific difficulties and associated features related to the problems with social interaction experienced by individuals with pervasive developmental disorder-not otherwise specified (PDD-NOS) using an emotion-recognition task. We compared individuals with PDD-NOS or Asperger's disorder (ASP) and typically…

  11. Common and Unique Impairments in Facial-Expression Recognition in Pervasive Developmental Disorder-Not Otherwise Specified and Asperger's Disorder

    ERIC Educational Resources Information Center

    Uono, Shota; Sato, Wataru; Toichi, Motomi

    2013-01-01

    This study was designed to identify specific difficulties and associated features related to the problems with social interaction experienced by individuals with pervasive developmental disorder-not otherwise specified (PDD-NOS) using an emotion-recognition task. We compared individuals with PDD-NOS or Asperger's disorder (ASP) and typically…

  12. NY-ESO-1 expression predicts an aggressive phenotype of ovarian cancer.

    PubMed

    Szender, J Brian; Papanicolau-Sengos, Antonios; Eng, Kevin H; Miliotto, Anthony J; Lugade, Amit A; Gnjatic, Sacha; Matsuzaki, Junko; Morrison, Carl D; Odunsi, Kunle

    2017-06-01

    NY-ESO-1 is a cancer testis antigen and a promising target for immunotherapy. The purpose of this study was to determine the expression frequency, immunogenicity, and clinical impact of NY-ESO-1 in ovarian cancer. Immunohistochemistry (IHC), reverse-transcription polymerase chain reaction (RT-PCR), and quantitative-PCR (qRT-PCR) were utilized in an ovarian cancer (including Fallopian tube and primary peritoneal cancers) patient cohort; humoral responses against NY-ESO-1 were determined by ELISA. Clinicopathologic outcomes including progression-free (PFS) and overall (OS) survival were evaluated based on NY-ESO-1 expression. Cohen's kappa (κ) tested agreement between expression tests. NY-ESO-1 expression was detected by any method in 40.7% of 1002 patients' tumors (NY-ESO-1+) and baseline humoral response was identified in 19.0% of 689 tested patients. NY-ESO-1+ patients were older (p<0.001), higher stage (85% stage III/IV vs. 76.4%, p=0.015), less likely to have a complete response to initial therapy (53.9% vs. 68.9%, p=0.002), had more serous histotype (74.5% vs. 66.9%, p=0.011), and had more grade 3 tumors (83.7% vs. 70.8%, p<0.001). There was a trend towards shorter PFS (22.2 vs. 25.0months, p=0.07) and significantly shorter OS (42.9 vs. 50.0months, p=0.003) among NY-ESO-1+ patients. A subset analysis of NY-ESO-1+ patients that received immunotherapy demonstrated improved OS by >2years (52.6 vs. 27.2months, p<0.001). This study is the first demonstration of an association between NY-ESO-1 expression and an aggressive cancer phenotype. The relatively high expression frequency of NY-ESO-1 in ovarian cancer patients coupled with the poor clinical outcomes in NY-ESO-1+ patients reveals an underappreciated need for targeted therapy against this antigen. In support, our study reveals that NY-ESO-1+ patients enrolled on immunotherapy trials targeting the antigen exhibited an improvement in OS. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effects of deletion of the prolactin receptor on ovarian gene expression

    PubMed Central

    Grosdemouge, Isabelle; Bachelot, Anne; Lucas, Aurélie; Baran, Nathalie; Kelly, Paul A; Binart, Nadine

    2003-01-01

    Prolactin (PRL) exerts pleiotropic physiological effects in various cells and tissues, and is mainly considered as a regulator of reproduction and cell growth. Null mutation of the PRL receptor (R) gene leads to female sterility due to a complete failure of embryo implantation. Pre-implantatory egg development, implantation and decidualization in the mouse appear to be dependent on ovarian rather than uterine PRLR expression, since progesterone replacement permits the rescue of normal implantation and early pregnancy. To better understand PRL receptor deficiency, we analyzed in detail ovarian and corpora lutea development of PRLR-/- females. The present study demonstrates that the ovulation rate is not different between PRLR+/+ and PRLR-/- mice. The corpus luteum is formed but an elevated level of apoptosis and extensive inhibition of angiogenesis occur during the luteal transition in the absence of prolactin signaling. These modifications lead to the decrease of LH receptor expression and consequently to a loss of the enzymatic cascades necessary to produce adequate levels of progesterone which are required for the maintenance of pregnancy. PMID:12646063

  14. High fat diet induced obesity alters ovarian phosphatidylinositol-3 kinase signaling gene expression.

    PubMed

    Nteeba, J; Ross, J W; Perfield, J W; Keating, A F

    2013-12-01

    Insulin regulates ovarian phosphatidylinositol-3-kinase (PI3 K) signaling, important for primordial follicle viability and growth activation. This study investigated diet-induced obesity impacts on: (1) insulin receptor (Insr) and insulin receptor substrate 1 (Irs1); (2) PI3K components (Kit ligand (Kitlg), kit (c-Kit), protein kinase B alpha (Akt1) and forkhead transcription factor subfamily 3 (Foxo3a)); (3) xenobiotic biotransformation (microsomal epoxide hydrolase (Ephx1), Cytochrome P450 isoform 2E1 (Cyp2e1), Glutathione S-transferase (Gst) isoforms mu (Gstm) and pi (Gstp)) and (4) microRNA's 184, 205, 103 and 21 gene expression. INSR, GSTM and GSTP protein levels were also measured. Obese mouse ovaries had decreased Irs1, Foxo3a, Cyp2e1, MiR-103, and MiR-21 but increased Kitlg, Akt1, and miR-184 levels relative to lean littermates. These results support that diet-induced obesity potentially impairs ovarian function through aberrant gene expression. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. High fat diet induced obesity alters ovarian phosphatidylinositol-3 kinase signaling gene expression

    PubMed Central

    Nteeba, J.; Ross, J.W.; Perfield, J.W.; Keating, A.F.

    2013-01-01

    Insulin regulates ovarian phosphatidylinositol-3-kinase (PI3K) signaling, important for primordial follicle viability and growth activation. This study investigated diet-induced obesity impacts on: 1) insulin receptor (Insr) and insulin receptor substrate 1 (Irs1); 2) PI3K components (Kit ligand (Kitlg), kit (c-Kit), protein kinase B alpha (Akt1) and forkhead transcription factor subfamily 3 (Foxo3a)); 3) xenobiotic biotransformation (microsomal epoxide hydrolase (Ephx1), Cytochrome P450 isoform 2E1 (Cyp2e1), Glutathione S-transferase (Gst) isoforms mu (Gstm) and pi (Gstp)) and 4) microRNA’s 184, 205, 103 and 21 gene expression. INSR, GSTM and GSTP protein levels were also measured. Obese mouse ovaries had decreased Irs1, Foxo3a, Cyp2e1, MiR-103, and MiR-21 but increased Kitlg, Akt1, and miR-184 levels relative to lean littermates. These results support that diet-induced obesity potentially impairs ovarian function through aberrant gene expression. PMID:23954404

  16. Expression of USP7 and MARCH7 Is Correlated with Poor Prognosis in Epithelial Ovarian Cancer.

    PubMed

    Zhang, Li; Wang, Hua; Tian, Lin; Li, Haixia

    2016-07-01

    Epithelial ovarian cancer (EOC) is one of the worst malignancies in females with poor overall survival due to the rapid metastasis and the absence of ideal biomarkers. Ubiquitin-specific protease 7 (USP7), an important deubiquitinating enzyme, was reported to be upregulated in several cancers, including liver, prostate and colon cancers. Membrane associated RING-CH protein 7 (MARCH7) belongs to the member of the E3 ubiquitin ligases. In addition, MARCH7 regulates T cell proliferation and the neuronal development and participates in the membrane trafficking and protein degradation. Importantly, MARCH7 itself is ubiquitinated and acts as a potential substrate of USP7. However, the roles of USP7 and MARCH7 in EOC remain to be investigated. We collected 121 EOC patients and analyzed the expression levels of USP7 and MARCH7 in tumor tissues with immunohistochemical staining. We found that the high expression of the two proteins was correlated with lymph node metastasis in EOC patients. Univariate and multivariate analyses revealed that the patients with high expression of the two proteins showed poorer prognosis compared with other patients. Subsequently, using SKOV3 human ovarian adenocarcinoma cells, we showed that either USP7 or MARCH7 enhanced the proliferation and invasion abilities. Moreover, USP7 could regulate the expression levels of E-cadherin and β-catenin through the MARCH7 signaling pathway. Our findings indicate that USP7 and MARCH7 are involved in the progression of EOC. In conclusion, analyzing the expression of USP7 and MARCH7 has high prognostic value in predicting EOC prognosis.

  17. Transcriptome and gene expression profile of ovarian follicle tissue of the triatomine bug Rhodnius prolixus

    PubMed Central

    Medeiros, Marcelo N.; Logullo, Raquel; Ramos, Isabela B.; Sorgine, Marcos H. F.; Paiva-Silva, Gabriela O.; Mesquita, Rafael D.; Machado, Ednildo Alcantara; Coutinho, Maria Alice; Masuda, Hatisaburo; Capurro, Margareth L.; Ribeiro, José M.C.; Cardoso Braz, Glória Regina; Oliveira, Pedro L

    2013-01-01

    Insect oocytes grow in close association with the ovarian follicular epithelium (OFE), which escorts the oocyte during oogenesis and is responsible for synthesis and secretion of the eggshell. We describe a transcriptome of OFE of the triatomine bug Rhodnius prolixus, a vector of Chagas disease, to increase our knowledge of the role of FE in egg development. Random clones were sequenced from a cDNA library of different stages of follicle development. The transcriptome showed high commitment to transcription, protein synthesis, and secretion. The most abundant cDNA was a secreted (S) small, proline-rich protein with maximal expression in the vitellogenic follicle, suggesting a role in oocyte maturation. We also found Rp45, a chorion protein already described, and a putative chitin-associated cuticle protein that was an eggshell component candidate. Six transcripts coding for proteins related to the unfolded protein response (UPR) by were chosen and their expression analyzed. Surprisingly, transcripts related to UPR showed higher expression during early stages of development and downregulation during late stages, when transcripts coding for S proteins participating in chorion formation were highly expressed. Several transcripts with potential roles in oogenesis and embryo development are also discussed. We propose that intense protein synthesis at the FE results in reticulum stress (RS) and that lowering expression of a set of genes related to cell survival should lead to degeneration of follicular cells at oocyte maturation. This paradoxical suppression of UPR suggests that ovarian follicles may represent an interesting model for studying control of RS and cell survival in professional S cell types. PMID:21736942

  18. Expressed microRNA associated with high rate of egg production in chicken ovarian follicles.

    PubMed

    Wu, N; Gaur, U; Zhu, Q; Chen, B; Xu, Z; Zhao, X; Yang, M; Li, D

    2016-10-26

    MicroRNA (miRNA) is a highly conserved class of small noncoding RNA about 19-24 nucleotides in length that function in a specific manner to post-transcriptionally regulate gene expression in organisms. Tissue miRNA expression studies have discovered a myriad of functions for miRNAs in various aspects, but a role for miRNAs in chicken ovarian tissue at 300 days of age has not hitherto been reported. In this study, we performed the first miRNA analysis of ovarian tissues in chickens with low and high rates of egg production using high-throughput sequencing. By comparing low rate of egg production chickens with high rate of egg production chickens, 17 significantly differentially expressed miRNAs were found (P < 0.05), including 11 known and six novel miRNAs. We found that all 11 known miRNAs were involved mainly in pathways of reproduction regulation, such as steroid hormone biosynthesis and dopaminergic synapse. Additionally, expression profiling of six randomly selected differentially regulated miRNAs were validated by quantitative real-time polymerase chain reaction (RT-qPCR). Some miRNAs, such as gga-miR-34b, gga-miR-34c and gga-miR-216b, were reported to regulate processes such as proliferation, cell cycle, apoptosis and metastasis and were expressed differentially in ovaries of chickens with high rates of egg production, suggesting that these miRNAs have an important role in ovary development and reproductive management of chicken. Furthermore, we uncovered that a significantly up-regulated miRNA-gga-miR-200a-3p-is ubiquitous in reproduction-regulation-related pathways. This miRNA may play a special central role in the reproductive management of chicken, and needs to be further studied for confirmation.

  19. Ovarian dysgerminomas are characterised by frequent KIT mutations and abundant expression of pluripotency markers

    PubMed Central

    Hoei-Hansen, Christina E; Kraggerud, Sigrid M; Abeler, Vera M; Kærn, Janne; Rajpert-De Meyts, Ewa; Lothe, Ragnhild A

    2007-01-01

    Background Ovarian germ cell tumours (OGCTs) typically arise in young females and their pathogenesis remains poorly understood. We investigated the origin of malignant OGCTs and underlying molecular events in the development of the various histological subtypes of this neoplasia. Results We examined in situ expression of stem cell-related (NANOG, OCT-3/4, KIT, AP-2γ) and germ cell-specific proteins (MAGE-A4, NY-ESO-1, TSPY) using a tissue microarray consisting of 60 OGCT tissue samples and eight ovarian small cell carcinoma samples. Developmental pattern of expression of NANOG, TSPY, NY-ESO-1 and MAGE-A4 was determined in foetal ovaries (gestational weeks 13–40). The molecular genetic part of our study included search for the presence of Y-chromosome material by fluorescence in situ hybridisation (FISH), and mutational analysis of the KIT oncogene (exon 17, codon 816), which is often mutated in testicular GCTs, in a subset of tumour DNA samples. We detected a high expression of transcription factors related to the embryonic stem cell-like pluripotency and undifferentiated state in OGCTs, but not in small cell carcinomas, supporting the view that the latter do not arise from a germ cell progenitor. Bilateral OGCTs expressed more stem cell markers than unilateral cases. However, KIT was mutated in 5/13 unilateral dysgerminomas, whereas all bilateral dysgerminomas (n = 4) and all other histological types (n = 22) showed a wild type sequence. Furthermore, tissue from five phenotypic female patients harbouring combined dysgerminoma/gonadoblastoma expressed TSPY and contained Y-chromosome material as confirmed by FISH. Conclusion This study provides new data supporting two distinct but overlapping pathways in OGCT development; one involving spontaneous KIT mutation(s) leading to increased survival and proliferation of undifferentiated oogonia, the other related to presence of Y chromosome material and ensuing gonadal dysgenesis in phenotypic females. PMID:17274819

  20. Loss of estrogen receptor beta isoform expression and its correlation with aberrant DNA methylation of the 5'-untranslated region in human epithelial ovarian carcinoma.

    PubMed

    Suzuki, Fumihiko; Akahira, Jun-Ichi; Miura, Ikumi; Suzuki, Takashi; Ito, Kiyoshi; Hayashi, Shin-Ichi; Sasano, Hironobu; Yaegashi, Nobuo

    2008-12-01

    Evidence exists that sex steroids such as estrogens affect epithelial ovarian cancer. The expression profiles of the estrogen receptors (ER) and ERbeta in particular have not been fully described. Therefore, in our present study, we examined the methylation status of the promoters 0K and 0N, and the expression of ERbeta isoforms in human epithelial ovarian carcinoma. We then correlated methylation status with ER expression status. Twelve ovarian carcinoma cell lines, six primary cultures of ovarian surface epithelial cells (OSE), and 64 cases of ovarian carcinoma tissues were examined. Bisulfite sequencing and quantitative reverse transcription-polymerase chain reaction were used to evaluate methylation status and expression of ERbeta isoforms. The relative abundance of exon 0N, ERbeta1, ERbeta2, and ERbeta4 mRNA was significantly lower in ovarian cancer cell lines and tissues than in their corresponding normal counterparts. However, ERbeta5 mRNA level was relatively higher in the cancers, in clear cell adenocarcinoma in particular, than in the normal ovary. Bisulfite sequencing analysis demonstrated that the two promoters of the ERbeta gene exhibited distinct methylation patterns. Promoter 0N was unmethylated in OSE, rarely methylated in normal ovarian tissues, and extensively methylated in ovarian cancer cell lines and tissues (11/15 cell lines and 18/32 cancer tissues were extensively methylated). The promoter 0K was, however, unmethylated in both normal and malignant ovarian cells and tissues. A significant correlation between promoter 0N hypermethylation and the loss of exon 0N, ERbeta1, ERbeta2, and ERbeta4 mRNA expression was detected in ovarian carcinoma cells and tissues. Treatment of ovarian carcinoma cells with 5-aza-2' deoxycytidine resulted in reexpression of the ERbeta gene. The results of our present study suggest that ERbeta is inactivated mainly through aberrant DNA methylation. This process may play an important role in the pathogenesis of

  1. Decreased expression of RNA interference machinery, Dicer and Drosha, is associated with poor outcome in ovarian cancer patients

    SciTech Connect

    Merritt, William M.; Lin, Yvonne G.; Han, Liz Y.; Kamat, Aparna A.; Spannuth, Whitney A.; Schmandt, Rosemarie; Urbauer, Diana; Pennacchio, Len A.; Cheng, Jan-Fang; Zeidan, Alexandra; Wang, Hua; Mueller, Peter; Lenburg, Marc E.; Gray, Joe W.; Mok, Samuel; Birrer, Michael J.; Lopez-Berestein, Gabriel; Coleman, Robert L.; Bar-Eli, Menashe; Sood, Anil K.

    2008-05-06

    The clinical and functional significance of RNA interference (RNAi) machinery, Dicer and Drosha, in ovarian cancer is not known and was examined. Dicer and Drosha expression was measured in ovarian cancer cell lines (n=8) and invasive epithelial ovarian cancer specimens (n=111) and correlated with clinical outcome. Validation was performed with previously published cohorts of ovarian, breast, and lung cancer patients. Anti-Galectin-3 siRNA and shRNA transfections were used for in vitro functional studies. Dicer and Drosha mRNA and protein levels were decreased in 37% to 63% of ovarian cancer cell lines and in 60% and 51% of human ovarian cancer specimens, respectively. Low Dicer was significantly associated with advanced tumor stage (p=0.007), and low Drosha with suboptimal surgical cytoreduction (p=0.02). Tumors with both high Dicer and Drosha were associated with increased median patient survival (>11 years vs. 2.66 years for other groups; p<0.001). In multivariate analysis, high Dicer (HR=0.48; p=0.02), high-grade histology (HR=2.46; p=0.03), and poor chemoresponse (HR=3.95; p<0.001) were identified as independent predictors of disease-specific survival. Findings of poor clinical outcome with low Dicer expression were validated in separate cohorts of cancer patients. Galectin-3 silencing with siRNA transfection was superior to shRNA in cell lines with low Dicer (78-95% vs. 4-8% compared to non-targeting sequences), and similar in cell lines with high Dicer. Our findings demonstrate the clinical and functional impact of RNAi machinery alterations in ovarian carcinoma and support the use of siRNA constructs that do not require endogenous Dicer and Drosha for therapeutic applications.

  2. Adipocyte microenvironment promotes Bclxl expression and confers chemoresistance in ovarian cancer cells.

    PubMed

    Cardenas, Carlos; Montagna, Michele K; Pitruzzello, Mary; Lima, Eydis; Mor, Gil; Alvero, Ayesha B

    2017-04-01

    Resistance to mitochondria-initiated apoptosis is a hallmark of chemoresistant cancer stem cells including CD44+/MyD88+ epithelial ovarian cancer (EOC) stem cells. This is controlled by members of the Bcl2 family of proteins, which function as rheostats of mitochondrial stability. We observed a differential expression profile of Bcl2 family members comparing the chemoresistant EOC stem cells and the chemosensitive CD44-/MyD88- EOC cells. Chemoresistant EOC stem cells surprisingly express higher levels of the pro-apoptotic members Bak and Bax compared to the chemosensitive EOC cells. In addition, whereas chemosensitive EOC cells preferentially express Bcl2, chemoresistant EOC stem cells preferentially express Bclxl. In the EOC stem cells, 40% knock-down of Bclxl expression was sufficient to induce the full activation of caspases and this can be reversed by concurrent knock-down of Puma. More importantly, we demonstrate that Bclxl expression levels in EOC cells is dynamic and can be regulated by microenvironments that are enriched with the pro-inflammatory cytokine IL-6 such as the cancer stem cell and adipocyte niches. Adipocyte-induced upregulation of Bclxl correlated with acquisition of chemoresistance and thus demonstrates how a specific microenvironment can regulate the expression of apoptotic proteins and confer chemoresistance.

  3. ST6Gal-I expression in ovarian cancer cells promotes an invasive phenotype by altering integrin glycosylation and function

    PubMed Central

    Christie, Daniel R; Shaikh, Faheem M; Lucas, John A; Lucas, John A; Bellis, Susan L

    2008-01-01

    Background Ovarian adenocarcinoma is not generally discovered in patients until there has been widespread intraperitoneal dissemination, which is why ovarian cancer is the deadliest gynecologic malignancy. Though incompletely understood, the mechanism of peritoneal metastasis relies on primary tumor cells being able to detach themselves from the tumor, escape normal apoptotic pathways while free floating, and adhere to, and eventually invade through, the peritoneal surface. Our laboratory has previously shown that the Golgi glycosyltransferase, ST6Gal-I, mediates the hypersialylation of β1 integrins in colon adenocarcinoma, which leads to a more metastatic tumor cell phenotype. Interestingly, ST6Gal-I mRNA is known to be upregulated in metastatic ovarian cancer, therefore the goal of the present study was to determine whether ST6Gal-I confers a similarly aggressive phenotype to ovarian tumor cells. Methods Three ovarian carcinoma cell lines were screened for ST6Gal-I expression, and two of these, PA-1 and SKOV3, were found to produce ST6Gal-I protein. The third cell line, OV4, lacked endogenous ST6Gal-I. In order to understand the effects of ST6Gal-I on cell behavior, OV4 cells were stably-transduced with ST6Gal-I using a lentiviral vector, and integrin-mediated responses were compared in parental and ST6Gal-I-expressing cells. Results Forced expression of ST6Gal-I in OV4 cells, resulting in sialylation of β1 integrins, induced greater cell adhesion to, and migration toward, collagen I. Similarly, ST6Gal-I expressing cells were more invasive through Matrigel. Conclusion ST6Gal-I mediated sialylation of β1 integrins in ovarian cancer cells may contribute to peritoneal metastasis by altering tumor cell adhesion and migration through extracellular matrix. PMID:19014651

  4. PGE2-Induced CXCL12 Production and CXCR4 Expression Controls the Accumulation of Human MDSCs in Ovarian Cancer Environment

    PubMed Central

    Obermajer, Nataša; Muthuswamy, Ravikumar; Odunsi, Kunle; Edwards, Robert P.; Kalinski, Pawel

    2016-01-01

    Signals mediated by CXCL12 (SDF1) and its receptor CXCR4 are centrally involved in cancer progression, both directly by activating cancer cells and indirectly by inducing angiogenesis plus recruiting T regulatory and plasmacytoid dendritic immune cells. Here, we show that in ascites isolated from ovarian cancer patients, both CXCL12 and CXCR4 are controlled by the tumor-associated inflammatory mediator prostaglandin E2 (PGE2), which attracts myeloid-derived suppressor cells (MDSC) into the ascites microenvironment. In this setting, PGE2 was essential both for expression of functional CXCR4 in cancer-associated MDSCs and for production of its ligand CXCL12. Frequencies of CD11b+CD14+CD33+CXCR4+ MDSCs closely correlated with CXCL12 and PGE2 levels in patient ascites. MDSCs migrated toward ovarian cancer ascites in a CXCR4-dependent manner that required COX2 activity and autocrine PGE2 production. Inhibition of COX2 or the PGE2 receptors EP2/EP4 in MDSCs suppressed expression of CXCR4 and MDSC responsiveness to CXCL12 or ovarian cancer ascites. Similarly, COX2 inhibition also blocked CXCL12 production in the ovarian cancer environment and its ability to attract MDSCs. Together, our findings elucidate a central role for PGE2 in MDSC accumulation triggered by the CXCL12-CXCR4 pathway, providing a powerful rationale to target PGE2 signaling in ovarian cancer therapy. PMID:22025564

  5. Tetranectin positive expression in tumour tissue leads to longer survival in Danish women with ovarian cancer. Results from the 'Malova' ovarian cancer study.

    PubMed

    Heeran, Mel C; Rask, Lene; Høgdall, Claus K; Kjaer, Susanne K; Christensen, Lise; Jensen, Allan; Blaakaer, Jan; Jarle Christensen, I B; Høgdall, Estrid V S

    2015-05-01

    The primary objective of this study was to analyse Tetranectin (TN) expression in tumour tissues and TN serum concentration in 758 women with epithelial ovarian tumours. The second was to evaluate, whether TN tissue expression levels correlate with clinico-pathological parameters and prognosis of the disease. Using tissue arrays we analysed the expression levels in tissues from 166 women with borderline ovarian tumours (BOTs) and 592 women with ovarian cancer (OC). A panel of three antibodies was used for immunohistochemistry: a polyclonal and two monoclonal antibodies. Serum TN was measured using the polyclonal antibody A-371. Univariate survival analyses stratified for chemotherapy showed that positive tissue TN as demonstrated by the polyclonal antibody indicated a significantly longer overall survival (OS) (p = 0.0001) as well as cancer specific survival (CSS) (p < 0.0001). High serum TN was likewise found to imply longer OS (p < 0.0001) and CSS (p < 0.0001), whereas tissue staining with the two monoclonal antibodies failed to demonstrate any significant correlation with either survival type. Univariate Kaplan-Meier survival analysis performed on all OC cases showed a significantly longer OS (p = 0.0009) and CSS (p = 0.0006) for women with TN positive tumour tissue and in women with high serum TN levels (p < 0.0001 for both). However, in the multivariate Cox regression analysis, only serum TN was found to be an independent prognostic factor for OS (p = 0.01) and not for CSS (p = 0.08). In conclusion, our results predict that a positive TN expression of both tumour tissue and serum points to a more favourable outcome for OC patients. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  6. Expression and function of fibroblast growth factor 18 in the ovarian follicle in cattle.

    PubMed

    Portela, Valerio M; Machado, Mariana; Buratini, Jose; Zamberlam, Gustavo; Amorim, Renee L; Goncalves, Paulo; Price, Christopher A

    2010-09-01

    Fibroblast growth factors (FGF) are involved in paracrine signaling between cell types in the ovarian follicle. FGF8, for example, is secreted by oocytes and controls cumulus cell metabolism. The closely related FGF18 is also expressed in oocytes in mice. The objective of this study was to assess the potential role of FGF18 in follicle growth in a monovulatory species, the cow. Messenger RNA encoding FGF18 was detected primarily in theca cells, and in contrast to the mouse, FGF18 was not detected in bovine oocytes. Addition of FGF18 protein to granulosa cell cultures inhibited estradiol and progesterone secretion as well as the abundance of mRNA encoding steroidogenic enzymes and the follicle-stimulating hormone receptor. In vivo, onset of atresia of the subordinate follicle was associated with increased thecal FGF18 mRNA levels and FGF18 protein in follicular fluid. In vitro, FGF18 altered cell cycle progression as measured by flow cytometry, resulting in increased numbers of dead cells (sub-G1 peak) and decreased cells in S phase. This was accompanied by decreased levels of mRNA encoding the cell cycle checkpoint regulator GADD45B. Collectively, these data point to a unique role for this FGF in signaling from theca cells to granulosa cells and suggest that FGF18 influences the process of atresia in ovarian follicles.

  7. Hyaluronic acid prevents immunosuppressive drug-induced ovarian damage via up-regulating PGRMC1 expression

    PubMed Central

    Zhao, Guangfeng; Yan, Guijun; Cheng, Jie; Zhou, Xue; Fang, Ting; Sun, Haixiang; Hou, Yayi; Hu, Yali

    2015-01-01

    Chemotherapy treatment in women can frequently cause damage to the ovaries, which may lead to primary ovarian insufficiency (POI). In this study, we assessed the preventative effects of hyaluronic acid (HA) in immunosuppressive drug-induced POI-like rat models and investigated the possible mechanisms. We found that HA, which was reduced in primary and immunosuppressant-induced POI patients, could protect the immunosuppressant-induced damage to granulosa cells (GCs) in vitro. Then we found that HA blocked the tripterygium glycosides (TG) induced POI-like presentations in rats, including delayed or irregular estrous cycles, reduced 17 beta-estradiol(E2) concentration, decreased number of follicles, destruction of follicle structure, and damage of reproductive ability. Furthermore, we investigated the mechanisms of HA prevention effects on POI, which was associated with promotion of GC proliferation and PGRMC1 expression. In conclusion, HA prevents chemotherapy-induced ovarian damage by promoting PGRMC1 in GCs. This study may provide a new strategy for prevention and treatment of POI. PMID:25558795

  8. BMP15 Mutations Associated With Primary Ovarian Insufficiency Reduce Expression, Activity, or Synergy With GDF9.

    PubMed

    Patiño, Liliana C; Walton, Kelly L; Mueller, Thomas D; Johnson, Katharine E; Stocker, William; Richani, Dulama; Agapiou, David; Gilchrist, Robert B; Laissue, Paul; Harrison, Craig A

    2017-03-01

    Bone morphogenetic protein (BMP)15 is an oocyte-specific growth factor, which, together with growth differentiation factor (GDF) 9, regulates folliculogenesis and ovulation rate. Multiple mutations in BMP15 have been identified in women with primary ovarian insufficiency (POI), supporting a pathogenic role; however, the underlying biological mechanism of many of these mutants remains unresolved. To determine how mutations associated with ovarian dysfunction alter the biological activity of human BMP15. The effects of 10 mutations in BMP15 on protein production, activation of granulosa cells, and synergy with GDF9 were assessed. Sequencing of 35 patients with POI identified both an unrecognized BMP15 variant (c.986G>A, R329H) and a variant (c.581T>C, F194S) previously associated with the condition. Assessing expression and activity of these and 8 other BMP15 mutants identified: (1) multiple variants, including L148P, F194S, and Y235C, with reduced mature protein production; (2) three variants (R138H, A180T, and R329H) with ∼fourfold lower activity than wild-type BMP15; and (3) 3 variants (R68W, F194S, and N196K) with a significantly reduced ability to synergize with GDF9. Mutations in BMP15 associated with POI reduce mature protein production, activity, or synergy with GDF9. The latter effect is perhaps most interesting given that interactions with GDF9 most likely underlie the physiology of BMP15 in the human ovary.

  9. Chicken Pleiotrophin: Regulation of Tissue Specific Expression by Estrogen in the Oviduct and Distinct Expression Pattern in the Ovarian Carcinomas

    PubMed Central

    Lim, Whasun; Kim, Jinyoung; Bazer, Fuller W.; Han, Jae Yong; Song, Gwonhwa

    2012-01-01

    Pleiotrophin (PTN) is a developmentally-regulated growth factor which is widely distributed in various tissues and also detected in many kinds of carcinomas. However, little is known about the PTN gene in chickens. In the present study, we found chicken PTN to be highly conserved with respect to mammalian PTN genes (91–92.6%) and its mRNA was most abundant in brain, heart and oviduct. This study focused on the PTN gene in the oviduct where it was detected in the glandular (GE) and luminal (LE) epithelial cells. Treatment of young chicks with diethylstilbesterol induced PTN mRNA and protein in GE and LE, but not in other cell types of the oviduct. Further, several microRNAs, specifically miR-499 and miR-1709 were discovered to influence PTN expression via its 3′-UTR which suggests that post-transcriptional regulation influences PTN expression in chickens. We also compared expression patterns and CpG methylation status of the PTN gene in normal and cancerous ovaries from chickens. Our results indicated that PTN is most abundant in the GE of adenocarcinoma of cancerous, but not normal ovaries of hens. Bisulfite sequencing revealed that 30- and 40% of −1311 and −1339 CpG sites are demethylated in ovarian cancer cells, respectively. Collectively, these results indicate that chicken PTN is a novel estrogen-induced gene expressed mainly in the oviductal epithelia implicating PTN regulation of oviduct development and egg formation, and also suggest that PTN is a biomarker for epithelial ovarian carcinoma that could be used for diagnosis and monitoring effects of therapies for the disease. PMID:22496782

  10. Absence of PD-L1 on tumor cells is associated with reduced MHC I expression and PD-L1 expression increases in recurrent serous ovarian cancer

    PubMed Central

    Aust, Stefanie; Felix, Sophie; Auer, Katharina; Bachmayr-Heyda, Anna; Kenner, Lukas; Dekan, Sabine; Meier, Samuel M.; Gerner, Christopher; Grimm, Christoph; Pils, Dietmar

    2017-01-01

    Immune-evasion and immune checkpoints are promising new therapeutic targets for several cancer entities. In ovarian cancer, the clinical role of programmed cell death receptor ligand 1 (PD-L1) expression as mechanism to escape immune recognition has not been clarified yet. We analyzed PD-L1 expression of primary ovarian and peritoneal tumor tissues together with several other parameters (whole transcriptomes of isolated tumor cells, local and systemic immune cells, systemic cytokines and metabolites) and compared PD-L1 expression between primary tumor and tumor recurrences. All expressed major histocompatibility complex (MHC) I genes were negatively correlated to PD-L1 abundances on tumor tissues, indicating two mutually exclusive immune-evasion mechanisms in ovarian cancer: either down-regulation of T-cell mediated immunity by PD-L1 expression or silencing of self-antigen presentation by down-regulation of the MHC I complex. In our cohort and in most of published evidences in ovarian cancer, low PD-L1 expression is associated with unfavorable outcome. Differences in immune cell populations, cytokines, and metabolites strengthen this picture and suggest the existence of concurrent pathways for progression of this disease. Furthermore, recurrences showed significantly increased PD-L1 expression compared to the primary tumors, supporting trials of checkpoint inhibition in the recurrent setting. PMID:28266500

  11. REDD1 and p-AKT over-expression may predict poor prognosis in ovarian cancer.

    PubMed

    Jia, Wei; Chang, Bin; Sun, Lili; Zhu, Huimin; Pang, Lijuan; Tao, Lin; Zou, Hong; Du, Jinze; Dong, Yuling; Qi, Yan; Jiang, Jinfang; Liang, Weihua; Li, Feng; Zhao, Xia

    2014-01-01

    We investigated the clinical significance of regulated in development and DNA damage response (REDD1) and p-AKT expression in human ovarian cancer (OC), explored the correlation of KRAS mutations with REDD1 expression, and assessed the therapeutic relevance of REDD1 in OC. We collected and immunohistochemically analyzed 118 formalin-fixed paraffin-embedded tumor tissue samples (100 primary OC and 18 borderline tumors) and 14 normal fallopian tubes, for REDD1 and p-AKT expression. Direct DNA sequencing for KRAS mutations and quantitative real-time polymerase chain reaction for detecting REDD1 mRNA expression were performed. REDD1 and p-AKT expressions were significantly higher in serous adenocarcinoma than other histological types, and this increase positively correlated with late-stage disease. REDD1 expression correlated with ascites formation, while p-AKT expression correlated with higher histological grade and chemoresistance. Kaplan Meier survival analysis showed significantly reduced disease-free survival (DFS) and overall survival (OS) in OC patients with both REDD1 and p-AKT overexpression. Patients with KRAS mutations had a longer DFS and OS. However, KRAS mutation and REDD1 over-expression was not correlated. Together, REDD1 and p-AKT over-expression may serve as a prognostic biomarker in OC, but KRAS mutations and REDD1 protein over-expression were not correlated in OC. We believe that with increasing knowledge of the role of REDD1 in cell migration, invasion, and proliferation pathways, the potential of REDD1 as a therapeutic target in OC may be uncovered.

  12. Ovarian Clear Cell Carcinoma Sub-Typing by ARID1A Expression

    PubMed Central

    Choi, Jae Yoon; Han, Hyun Ho; Kim, Young Tae; Lee, Joo Hyun; Kim, Baek Gil; Kang, Suki

    2017-01-01

    Purpose Loss of AT-rich DNA-interacting domain 1A (ARID1A) has been identified as a driving mutation of ovarian clear cell carcinoma (O-CCC), a triple-negative ovarian cancer that is intermediary between serous and endometrioid subtypes, in regards to molecular and clinical behaviors. However, about half of O-CCCs still express BAF250a, the protein encoded by ARID1A. Herein, we aimed to identify signatures of ARID1A-positive O-CCC in comparison with its ARID1A-negative counterpart. Materials and Methods Seventy cases of O-CCC were included in this study. Histologic grades and patterns of primary tumor, molecular marker immunohistochemistry profiles, and clinical outcomes were analyzed. Results Forty-eight (69%) O-CCCs did not express BAF250a, which were designated as "ARID1A-negative." The other 22 (31%) O-CCCs were designated as "ARID1A-positive." ARID1A-positive tumors were more likely to be histologically of high grades (41% vs. 10%, p=0.003), ERβ-positive (45% vs. 17%, p=0.011), and less likely to be HNF1β-positive (77% vs. 96%, p=0.016) and E-cadherin-positive (59% vs. 83%, p=0.028) than ARID1A-negative tumors. Patient age, parity, tumor stage were not significantly different in between the two groups. Cancer-specific survival was not significantly different either. Conclusion We classified O-CCCs according to ARID1A expression status. ARID1A-positive O-CCCs exhibited distinct immunohistochemical features from ARID1A-negative tumors, suggesting a different underlying molecular event during carcinogenesis. PMID:27873496

  13. Quercetin induces the apoptosis of human ovarian carcinoma cells by upregulating the expression of microRNA-145.

    PubMed

    Zhou, Junbo; Gong, Jian; Ding, Chun; Chen, Guiqin

    2015-08-01

    Ovarian cancer is one of the most malignant types of cancer of the female human reproductive track, posing a severe threat to the health of the female population. Numerous previous studies have demonstrated that microRNA (miR)-145 is downregulated in ovarian cancer, and that quercetin can inhibit the growth of cancer cells via regulating the expression of miRs. Therefore, the present study investigated the effect of quercetin on the expression of miR-145 in SKOV-3 and A2780 human ovarian cancer cell lines. The results revealed that the expression levels of cleaved caspase-3 in the SKOV-3 and A2780 cells were significantly increased following treatment to induce overexpression of miR-145 compared with treatment with quercetin alone (P<0.01). However, the expression of cleaved caspase-3 in the anti-miR-145 (miR-145 inhibitor) group of cells was markedly decreased compared with that in the miR-145 overexpression group (P<0.01). Taken together, the results suggested that treatment with quercetin induced the apoptosis of human ovarian carcinoma cells through activation of the extrinsic death receptor mediated and intrinsic mitochondrial apoptotic pathways.

  14. Gene expression profiling of bovine ovarian follicular and luteal cells provides insight into cellular identities and functions

    USDA-ARS?s Scientific Manuscript database

    After ovulation, somatic cells of the ovarian follicle (theca and granulosa cells) become the small and large luteal cells of the corpus luteum. Aside from known cell type-specific receptors and steroidogenic enzymes, little is known about the differences in the gene expression profiles of these fou...

  15. A comparison of ovarian follicular and luteal cell gene expression profiles provides insight into cellular identities and functions

    USDA-ARS?s Scientific Manuscript database

    After ovulation, somatic cells of the ovarian follicle (theca and granulosa cells) become the small and large luteal cells of the corpus luteum. Aside from known cell type-specific receptors and steroidogenic enzymes, little is known about the differences in the gene expression profiles of these fou...

  16. Cloning and differential expression of FOXL2 during ovarian development and recrudescence of the catfish, Clarias gariepinus.

    PubMed

    Sridevi, P; Senthilkumaran, B

    2011-12-01

    FOXL2 is a member of the forkhead/HNF-3-related family of transcription factors which provides tissue-specific gene regulation. It is known to regulate ovarian aromatase, (cyp19a1a) which plays a crucial role in ovarian differentiation. To understand the role of FOXL2 in gonads and brain during ovarian development and recrudescence, we cloned the full-length cDNA of FOXL2 and analyzed its spatio-temporal expression both at transcript and protein levels in the air-breathing catfish, Clarias gariepinus. Based on its deduced amino acid sequence, an antigenic peptide conjugated with a carrier protein was synthesized which was then used for raising antibody that reacted specifically with FOXL2. Tissue distribution pattern of FOXL2 revealed its presence prominently in ovary and female brain with sexual dimorphism. Highest expression of FOXL2 was observed in ovary and brain during prespawning phase indicating an important role for this correlate in ovarian recrudescence. Human chorionic gonadotropin (hCG) treatment, in vitro and in vivo, induced FOXL2 expression in the ovary during preparatory and prespawning phases. Similar type of enhanced expression was evident in brain after hCG-induction during the prespawning phase. The ontogeny of FOXL2 showed sexual dimorphic expression pattern both in gonads and brain. Based on our previous studies, the expression pattern of FOXL2 was found to be synchronous not only with that of ovarian cyp19a1a but also with brain cyp19a1b. Present study substantiates the role of FOXL2 in the regulation of aromatase in teleosts and also designates FOXL2 as a potential ovary and brain marker during female sex development in catfish.

  17. Long noncoding RNA expression signature to predict platinum-based chemotherapeutic sensitivity of ovarian cancer patients.

    PubMed

    Liu, Rong; Zeng, Ying; Zhou, Cheng-Fang; Wang, Ying; Li, Xi; Liu, Zhao-Qian; Chen, Xiao-Ping; Zhang, Wei; Zhou, Hong-Hao

    2017-12-01

    Dysregulated long noncoding RNAs (lncRNAs) are potential markers of several tumor prognoses. This study aimed to develop a lncRNA expression signature that can predict chemotherapeutic sensitivity for patients with advanced stage and high-grade serous ovarian cancer (HGS-OvCa) treated with platinum-based chemotherapy. The lncRNA expression profiles of 258 HGS-OvCa patients from The Cancer Genome Atlas were analyzed. Results revealed that an eight-lncRNA signature was significantly associated with chemosensitivity in the multivariate logistic regression model, which can accurately predict the chemosensitivity of patients [Area under curve (AUC) = 0.83]. The association of a chemosensitivity predictor with molecular subtypes indicated the excellent prognosis performance of this marker in differentiated, mesenchymal, and immunoreactive subtypes (AUC > 0.8). The significant correlation between ZFAS1 expression and chemosensitivity was confirmed in 233 HGS-OvCa patients from the Gene Expression Omnibus datasets (GSE9891, GSE63885, and GSE51373). In vitro experiments demonstrated that the ZFAS1 expression was upregulated by cisplatin in A2008, HeyA8, and HeyC2 cell lines. This finding suggested that ZFAS1 may participate in platinum resistance. Therefore, the evaluation of the eight-lncRNA signature may be clinically implicated in the selection of platinum-resistant HGS-OvCa patients. The role of ZFAS1 in platinum resistance should be further investigated.

  18. Selecting bioactive phenolic compounds as potential agents to inhibit proliferation and VEGF expression in human ovarian cancer cells

    PubMed Central

    HE, ZHIPING; LI, BO; RANKIN, GARY O.; ROJANASAKUL, YON; CHEN, YI CHARLIE

    2015-01-01

    Ovarian cancer is a disease that continues to cause mortality in female individuals worldwide. Ovarian cancer is challenging to treat due to emerging resistance to chemotherapy, therefore, the identification of effective novel chemotherapeutic agents is important. Polyphenols have demonstrated potential in reducing the risk of developing numerous types of cancer, as well reducing the risk of cancer progression, due to their ability to reduce cell viability and vascular endothelial growth factor (VEGF) expression. In the present study, eight phenolic compounds were screened in two human ovarian cancer cell lines (OVCAR-3 and A2780/CP70) to determine their effect on proliferation suppression and VEGF protein secretion inhibition, in comparison to cisplatin, a conventional chemotherapeutic agent. The current study identified that 40 μM gallic acid (GA) exhibited the greatest inhibitory effect on OVCAR-3 cell viability, compared with all of the phenolic compounds investigated. Similarly to cisplatin, baicalein, GA, nobiletin, tangeretin and baicalin were all identified to exhibit significant VEGF inhibitory effects from ELISA results. Furthermore, western blot analysis indicated that GA effectively decreased the level of the VEGF-binding protein hypoxia-inducible factor-1α in the ovarian cancer cell line. Considering the results of the present study, GA appears to inhibit cell proliferation and, thus, is a potential agent for the treatment of ovarian cancer. PMID:25663929

  19. The RON and MET oncogenes are co-expressed in human ovarian carcinomas and cooperate in activating invasiveness.

    PubMed

    Maggiora, Piera; Lorenzato, Annalisa; Fracchioli, Stefano; Costa, Barbara; Castagnaro, Massimo; Arisio, Riccardo; Katsaros, Dionyssios; Massobrio, Marco; Comoglio, Paolo M; Flavia Di Renzo, Maria

    2003-08-15

    RON is a member of the receptor tyrosine kinase gene family that includes the MET oncogene, whose germline mutations have been causally related to human tumorigenesis. In vitro, RON and MET receptors cross-talk, synergize in intracellular signaling, and cooperate in inducing morphogenic responses. Here we show that the RON and MET oncogenes were expressed in 55% and 56% of human ovarian carcinomas, respectively, and were significantly coexpressed in 42% (P < 0.001). In ovarian carcinoma samples and cell lines we did not find mutations in RON and MET gene kinase domain, nor coexpression of RON and MET receptor ligands (MSP and HGF, respectively). We show that motility and invasiveness of ovarian cancer cells coexpressing MET and RON receptors were elicited by HGF and, to a lesser extent, by MSP. More interestingly, invasion of both reconstituted basement membrane and collagen gel was greatly enhanced by the simultaneous addition of the two ligands. These data suggest that coexpression of the MET and RON receptors confer a selective advantage to ovarian cancer cells and might promote ovarian cancer progression.

  20. LncRNA HOTAIR controls the expression of Rab22a by sponging miR-373 in ovarian cancer

    PubMed Central

    Zhang, Zhongbao; Cheng, Jiajing; Wu, Yi; Qiu, Jin; Sun, Yi; Tong, Xiaowen

    2016-01-01

    Increasing evidence suggests that the long non-coding RNA, HOX transcript antisense intergenic RNA (HOTAIR) is widely involved in the progression and metastasis of cancer. However, the specific role of HOTAIR in ovarian carcinogenesis remains to be fully elucidated. In the present study, the levels of HOTAIR were detected in 30 paired cancer and noncancer tissues using reverse transcription-quantitative polymerase chain reaction analysis. The effect of HOTAIR on the ovarian cancer cells was examined by overexpression or small interfering RNA interference experiments. To examine the competitive endogenous RNA (ceRNAs) mechanism, a luciferase reporter assay was used. In patients with ovarian cancer, HOTAIR was significantly upregulated. Furthermore, the upregulation of HOTAIR increased the proliferation, migration and invasion of ovarian cancer cells. By contrast, the knockdown of HOTAIR repressed cell invasion and viability. HOTAIR functioned as a ceRNA, and acted as a sink for microRNA (miR)-373, thereby regulating the expression of Rab22a. The upregulation of HOTAIR contributed to the malignant progression of ovarian cancer cells. Therefore, the positive regulation between HOTAIR and Rab22a can be partially attributed to the ceRNA regulatory network through miR-373. PMID:27484896

  1. Gene expression during ovarian differentiation in parasitic and non-parasitic lampreys: implications for fecundity and life history types.

    PubMed

    Spice, Erin K; Whyard, Steven; Docker, Margaret F

    2014-11-01

    Lampreys diverged from the jawed vertebrate lineage approximately 500million years ago. Lampreys undergo sex differentiation much later than most other vertebrates, and ovarian differentiation occurs several years before testicular differentiation. The genetic basis of lamprey sex differentiation is of particular interest both because of the phylogenetic importance of lampreys and because of their unusual pattern of sex differentiation. As well, differences between parasitic and non-parasitic lampreys may first become evident at ovarian differentiation. However, nothing is known about the genetic basis of ovarian differentiation in lampreys. This study examined potential differences in gene expression before, during, and after ovarian differentiation in parasitic chestnut lamprey Ichthyomyzon castaneus and non-parasitic northern brook lamprey Ichthyomyzonfossor. Eight target genes (17β-hydroxysteroid dehydrogenase, germ cell-less, estrogen receptor β, insulin-like growth factor 1 receptor, daz-associated protein 1, cytochrome c oxidase subunit III, Wilms' tumour suppressor protein 1, and dehydrocholesterol reductase 7) were examined. Northern brook lamprey displayed higher expression of cytochrome c oxidase subunit III, whereas chestnut lamprey displayed higher expression of insulin-like growth factor 1 receptor; these genes may be involved in apoptosis and oocyte growth, respectively. Presumptive male larvae had higher expression of Wilms' tumour suppressor protein 1, which may be involved in the undifferentiated gonad and/or later testicular development. Differentiated females had higher expression of 17β hydroxysteroid dehydrogenase and daz-associated protein 1, which may be involved in female development. This study is the first to identify genes that may be involved in ovarian differentiation and fecundity in lampreys. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Expression of MAGE-C1/CT7 and selected cancer/testis antigens in ovarian borderline tumours and primary and recurrent ovarian carcinomas.

    PubMed

    Zimmermann, Anne-Katrin; Imig, Jochen; Klar, Agnes; Renner, Christoph; Korol, Dimitri; Fink, Daniel; Stadlmann, Sylvia; Singer, Gad; Knuth, Alexander; Moch, Holger; Caduff, Rosmarie

    2013-05-01

    MAGE-C1/CT7, NY-ESO-1, GAGE and MAGE-A4 are members of the cancer/testis (CT) antigen family, which have been proposed as potential targets for cancer immunotherapy. To determine the prevalence and biologic relevance of the novel CT antigen MAGE-C1/CT7 and other antigens, 36 ovarian borderline tumours (BTs), 230 primary ovarian carcinomas (OCs) and 80 recurrent OCs were immunohistochemically analysed using the monoclonal antibodies CT7-33 (MAGE-C1/CT7), E978 (NY-ESO-1), clone 26 (GAGE) and 57B (MAGE-A4). Positivity of at least one CT antigen was present in 39.5 % (81/205) of primary OC and in 50 % (26/52) of all recurrences. Expression of the novel CT antigen MAGE-C1/CT7 was most commonly seen with positivity in 24.5 % of primary and 35.1 % of recurrent OC. MAGE-A4, GAGE and NY-ESO-1 expressions were seen in 22.7, 13.9 and 7.1 % of primary and 22.6, 17.5 and 8.9 % of recurrent OC, respectively. Analysis of histological subtypes (serous, endometrioid, clear cell, mucinous and transitional) exhibited variable expression with negativity in all mucinous OC. High-grade serous OC revealed CT antigen expression in 5.6 to 28 % with MAGE-C1/CT7 being the most frequent, but without correlation with stage or overall survival. MAGE-C1/CT7 expression and coexpression of CT antigens were significantly correlated with grade of endometrioid OC. None of the BT showed CT antigen expression. No significant correlation was seen with stage, overall survival or response to chemotherapy. In summary, CT antigens are expressed in a certain subset of OC with no expression in BT or OC of mucinous histology. These findings may have implications for the design of polyvalent vaccination strategies for ovarian carcinomas.

  3. Individuality in FGF1 expression significantly influences platinum resistance and progression-free survival in ovarian cancer

    PubMed Central

    Smith, G; Ng, M T H; Shepherd, L; Herrington, C S; Gourley, C; Ferguson, M J; Wolf, C R

    2012-01-01

    Background: Ovarian cancer is frequently advanced at presentation when treatment is rarely curative. Response to first-line platinum-based chemotherapy significantly influences survival, but clinical response is unpredictable and is frequently limited by the development of drug-resistant disease. Methods: We used qRT–PCR analysis to assess intertumour differences in the expression of fibroblast growth factor 1 (FGF1) and additional candidate genes in human ovarian tumours (n=187), and correlated individuality in gene expression with tumour histology, chemotherapy response and survival. We used MTT assays to assess platinum chemosensitivity in drug-sensitive and drug-resistant ovarian cell lines. Results: Marked intertumour differences in gene expression were observed, with each tumour having a unique gene expression profile. Nine genes, including FGF1 (P=1.7 × 10−5) and FGFR2 (P=0.003), were differentially expressed in serous and nonserous tumours. MDM2 (P=0.032) and ERBB2 (P=0.064) expression was increased in platinum-sensitive patients, and FGF1 (adjusted log-rank test P=0.006), FGFR2 (P=0.04) and PDRFRB expression (P=0.037) significantly inversely influenced progression-free survival. Stable FGF1 gene knockdown in platinum-resistant A2780DPP cells re-sensitised cells to both cisplatin and carboplatin. Conclusion: We show for the first time that FGF1 is differentially expressed in high-grade serous ovarian tumours, and that individuality in FGF1 expression significantly influences progression-free survival and response to platinum-based chemotherapy. PMID:22990650

  4. High LIN28A Expressing Ovarian Cancer Cells Secrete Exosomes That Induce Invasion and Migration in HEK293 Cells.

    PubMed

    Enriquez, Vanessa A; Cleys, Ellane R; Da Silveira, Juliano C; Spillman, Monique A; Winger, Quinton A; Bouma, Gerrit J

    2015-01-01

    Epithelial ovarian cancer is the most aggressive and deadly form of ovarian cancer and is the most lethal gynecological malignancy worldwide; therefore, efforts to elucidate the molecular factors that lead to epithelial ovarian cancer are essential to better understand this disease. Recent studies reveal that tumor cells release cell-secreted vesicles called exosomes and these exosomes can transfer RNAs and miRNAs to distant sites, leading to cell transformation and tumor development. The RNA-binding protein LIN28 is a known marker of stem cells and when expressed in cancer, it is associated with poor tumor outcome. We hypothesized that high LIN28 expressing ovarian cancer cells secrete exosomes that can be taken up by nontumor cells and cause changes in gene expression and cell behavior associated with tumor development. IGROV1 cells were found to contain high LIN28A and secrete exosomes that were taken up by HEK293 cells. Moreover, exposure to these IGROV1 secreted exosomes led to significant increases in genes involved in Epithelial-to-Mesenchymal Transition (EMT), induced HEK293 cell invasion and migration. These changes were not observed with exosomes secreted by OV420 cells, which contain no detectable amounts of LIN28A or LIN28B. No evidence was found of LIN28A transfer from IGROV1 exosomes to HEK293 cells.

  5. Meta-Analysis of Microarray Data Identifies GAS6 Expression as an Independent Predictor of Poor Survival in Ovarian Cancer

    PubMed Central

    Tse, Brian; Jacob, Francis; Caduff, Rosmarie; Fink, Daniel; Goldstein, Darlene R.; Heinzelmann-Schwarz, Viola

    2013-01-01

    Seeking new biomarkers for epithelial ovarian cancer, the fifth most common cause of death from all cancers in women and the leading cause of death from gynaecological malignancies, we performed a meta-analysis of three independent studies and compared the results in regard to clinicopathological parameters. This analysis revealed that GAS6 was highly expressed in ovarian cancer and therefore was selected as our candidate of choice. GAS6 encodes a secreted protein involved in physiological processes including cell proliferation, chemotaxis, and cell survival. We performed immunohistochemistry on various ovarian cancer tissues and found that GAS6 expression was elevated in tumour tissue samples compared to healthy control samples (P < 0.0001). In addition, GAS6 expression was also higher in tumours from patients with residual disease compared to those without. Our data propose GAS6 as an independent predictor of poor survival, suggesting GAS6, both on the mRNA and on the protein level, as a potential biomarker for ovarian cancer. In clinical practice, the staining of a tumour biopsy for GAS6 may be useful to assess cancer prognosis and/or to monitor disease progression. PMID:23878800

  6. Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression.

    PubMed

    Sen, Aritro; Prizant, Hen; Light, Allison; Biswas, Anindita; Hayes, Emily; Lee, Ho-Joon; Barad, David; Gleicher, Norbert; Hammes, Stephen R

    2014-02-25

    Although androgen excess is considered detrimental to women's health and fertility, global and ovarian granulosa cell-specific androgen-receptor (AR) knockout mouse models have been used to show that androgen actions through ARs are actually necessary for normal ovarian function and female fertility. Here we describe two AR-mediated pathways in granulosa cells that regulate ovarian follicular development and therefore female fertility. First, we show that androgens attenuate follicular atresia through nuclear and extranuclear signaling pathways by enhancing expression of the microRNA (miR) miR-125b, which in turn suppresses proapoptotic protein expression. Second, we demonstrate that, independent of transcription, androgens enhance follicle-stimulating hormone (FSH) receptor expression, which then augments FSH-mediated follicle growth and development. Interestingly, we find that the scaffold molecule paxillin regulates both processes, making it a critical regulator of AR actions in the ovary. Finally, we report that low doses of exogenous androgens enhance gonadotropin-induced ovulation in mice, further demonstrating the critical role that androgens play in follicular development and fertility. These data may explain reported positive effects of androgens on ovulation rates in women with diminished ovarian reserve. Furthermore, this study demonstrates mechanisms that might contribute to the unregulated follicle growth seen in diseases of excess androgens such as polycystic ovary syndrome.

  7. Niche-Dependent Gene Expression Profile of Intratumoral Heterogeneous Ovarian Cancer Stem Cell Populations

    PubMed Central

    Abelson, Sagi; Shamai, Yeela; Berger, Liron; Skorecki, Karl; Tzukerman, Maty

    2013-01-01

    Intratumoral heterogeneity challenges existing paradigms for anti-cancer therapy. We have previously demonstrated that the human embryonic stem cells (hESC)-derived cellular microenvironment in immunocompromised mice, enables functional distinction of heterogeneous tumor cells, including cells which do not grow into a tumor in a conventional direct tumor xenograft platform. We have identified and characterized six cancer cell subpopulations each clonally expanded from a single cell, derived from human ovarian clear cell carcinoma of a single tumor, to demonstrate striking intratumoral phenotypic heterogeneity that is dynamically dependent on the tumor growth microenvironment. These cancer cell subpopulations, characterized as cancer stem cell subpopulations, faithfully recapitulate the full spectrum of histological phenotypic heterogeneity known for human ovarian clear cell carcinoma. Each of the six subpopulations displays a different level of morphologic and tumorigenic differentiation wherein growth in the hESC-derived microenvironment favors growth of CD44+/aldehyde dehydrogenase positive pockets of self-renewing cells that sustain tumor growth through a process of tumorigenic differentiation into CD44-/aldehyde dehydrogenase negative derivatives. Strikingly, these derivative cells display microenvironment-dependent plasticity with the capacity to restore self-renewal markers and CD44 expression. In the current study, we delineate the distinct gene expression and epigenetic profiles of two such subpopulations, representing extremes of phenotypic heterogeneity in terms of niche-dependent self-renewal and tumorigenic differentiation. By combining Gene Set Enrichment, Gene Ontology and Pathway-focused array analyses with methylation status, we propose a suite of robust differences in tumor self-renewal and differentiation pathways that underlie the striking intratumoral phenotypic heterogeneity which characterize this and other solid tumor malignancies. PMID

  8. Azidothymidine and cisplatin increase p14ARF expression in OVCAR-3 ovarian cancer cell line

    SciTech Connect

    Vaskivuo, Liisa; Rysae, Jaana; Koivuperae, Johanna; Myllynen, Paeivi; Vaskivuo, Tommi; Chvalova, Katerina; Serpi, Raisa; Savolainen, Eeva-Riitta; Puistola, Ulla; Vaehaekangas, Kirsi . E-mail: kirsi.vahakangas@uku.fi

    2006-10-01

    p14{sup ARF} tumor suppressor protein regulates p53 by interfering with mdm2-p53 interaction. p14{sup ARF} is activated in response to oncogenic stimuli but little is known of the responses of endogenous p14{sup ARF} to different types of cellular stress or DNA damage. Azidothymidine (AZT) is being tested in several clinical trials as an enhancer of anticancer chemotherapy. However, the knowledge of the relationship between AZT and cellular pathways, e.g. p53 pathway, is very limited. In this study, we show that AZT, cisplatin (CDDP) and docetaxel (DTX) all induce unique molecular responses in OVCAR-3 ovarian carcinoma cells carrying a mutated p53, while in A2780, ovarian carcinoma and MCF-7 breast carcinoma cells with wild type p53, all of these drugs cause similar p53 responses. We found that endogenous p14{sup ARF} protein in OVCAR-3 cells is down-regulated by DTX but induced by AZT and a short CDDP pulse treatment. In HT-29 colon carcinoma cells with a mutated p53, all treatments down-regulated p14{sup ARF} protein. Both CDDP and AZT increased the expression of p14ARF mRNA in OVCAR-3 cells. Differences in cell death induced by these drugs did not explain the differences in protein and mRNA expressions. No increase in the level of either c-Myc or H-ras oncoproteins was seen in OVCAR-3 cells after AZT or CDDP-treatment. These results suggest that p14{sup ARF} can respond to DNA damage without oncogene activation in cell lines without functional p53.

  9. Immunohistochemical Expression of Platelet-Derived Growth Factor Receptors in Ovarian Cancer Patients with Long-Term Follow-Up

    PubMed Central

    Madsen, Christine Vestergaard; Dahl Steffensen, Karina; Waldstrøm, Marianne; Jakobsen, Anders

    2012-01-01

    Introduction. The well-documented role of the PDGF system in tumor growth and angiogenesis has prompted the development of new biological agents targeting the PDGF system. The aim of the present study was to analyze the expression of the PDGF-receptors in ovarian cancer and to investigate its relation to histopathological parameters and long-term overall survival. Methods. The immunohistochemical expression of PDGFR-α and PDGFR-β was investigated in tumor and stromal cells in 170 patients with histologically verified epithelial ovarian cancer. Results. Almost half of the tumor specimens showed high expression of PDGFR-α and PDGFR-β in tumor cells (43% and 41%) and in stromal compartments (32% and 44%). There was a significant association between high expression of PDGFR-α and high expression of PDGFR-β in both tumor and stromal cells. Coexpression of PDGFR-α and PDGFR-β in stromal cells was seen more often in serous adenocarcinomas than in nonserous adenocarcinomas. No clear correlation between PDGFR expression and longterm overall survival or clinical parameters was found. Conclusions. PDGFR-α and PDGFR-β were expressed in a subset of ovarian carcinomas but did not show significant prognostic importance in this material. PMID:23094199

  10. Leptin siRNA promotes ovarian granulosa cell apoptosis and affects steroidogenesis by increasing NPY2 receptor expression.

    PubMed

    Ding, Xiaomeng; Kou, Xinxin; Zhang, Ye; Zhang, Xiaoli; Cheng, Guomei; Jia, Tianming

    2017-10-30

    Leptin has been found to be involved in the ovarian granulosa cell apoptosis and steroidogenesis. Loss of neuropeptide Y (NPY) can correct the obesity syndrome of mutant mice lacking of leptin (ob/ob). However, the association of NPY and leptin in ovarian granulosa cells and ovarian steroidogenesis has not been investigated. Here, C57BL/6J ob/ob mice and C57BL/6J (control) mice were intraperitoneally injected with PBS, leptin (0.4μg/g bodyweight) or BIIE0246 (NPY2 receptor [NPY2R] antagonist, 30μg/kg bodyweight) every day for 15days. We found that NPY2R mRNA expression in mouse ovary was suppressed by leptin treatment, but increased by leptin deficiency. Leptin or BIIE0246 treatment significantly increased E2, but notably decreased progesterone in both mice. A lower level of E2 and a higher level of progesterone was observed in ob/ob mice than in control mice. Further, we then knocked down leptin expression in human ovarian granulosa cells by siRNA transfection and treated the cells with DMSO or BIIE0246. In vitro experiments confirmed the findings in mice. siLeptin treatment decreased the secretion of E2, anti-Mullerian hormone (AMH), insulin-like growth factor (IGF)-1 and transforming growth factor (TGF)-β, and the cell proliferation, but increased the secretion of progesterone and cell apoptosis. Western blotting analysis of PCNA, Bcl-2 and Bax confirmed the results of cell proliferation and apoptosis. Activation of JAK2 and STAT3 was also suppressed by knocking down leptin. All the effects of siLeptin on ovarian granulosa cells were partially reversed by BIIE0246. In conclusion, knockdown of leptin significantly affected ovarian steroidogenesis and ovarian function through NPY. siLeptin transfection impaired the activation of JAK2/STAT3 and contributed to ovarian granulosa cell apoptosis partially through up-regulating NPY2R expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Prognostic impact of HER3 based on protein and mRNA expression in high-grade serous ovarian carcinoma.

    PubMed

    Unger, Ulrike; Denkert, Carsten; Braicu, Ioana; Sehouli, Jalid; Dietel, Manfred; Loibl, Sibylle; Darb-Esfahani, Silvia

    2017-02-01

    HER3 is a member of the epidermal growth factor family and was predominantly described as a negative prognostic factor in various solid tumors as well as in ovarian cancer. In this study, we investigated HER3 on protein and mRNA expression in histologically defined subtypes of ovarian cancer looking for an influence on patient's survival. Altogether, we examined HER3 in ovarian high-grade serous (HGSC, n = 320), low-grade serous (LGSC, n = 55), endometrioid (EC, n = 33), and clear cell (CCC, n = 48) carcinomas using immunohistochemistry (IHC) and quantitative real-time reverse transcription PCR (qRT-PCR). Univariate and multivariate analyses were performed to explore the association between HER3 and overall survival (OS) as well as progression-free survival (PFS). In HGSC, high HER3 mRNA expression was a favorable prognostic factor for PFS (P = 0.008) and OS (P = 0.052), while for high HER3 protein expression, a trend towards better survival was seen (OS P = 0.064; PFS P = 0.099). A subgroup of HGSC with negative HER3 staining and negative HER3 mRNA levels showed most unfavorable OS and PFS (P = 0.002 and P = 0.004, respectively). Using the multivariate Cox regression model, HER3 was predictive for prolonged PFS (HR, 0.48; 95% CI, 0.26-0.88; P = 0.018). All in all, we cannot confirm the reported negative prognostic impact of HER3 expression in high-grade serous ovarian carcinoma and moreover find a rather positive prognostic implication of HER3 in this major ovarian cancer histological subtype.

  12. IKKβ Regulates VEGF Expression and Is a Potential Therapeutic Target for Ovarian Cancer as an Antiangiogenic Treatment.

    PubMed

    Kinose, Yasuto; Sawada, Kenjiro; Makino, Hiroshi; Ogura, Tomonori; Mizuno, Tomoko; Suzuki, Noriko; Fujikawa, Tomoyuki; Morii, Eiichi; Nakamura, Koji; Sawada, Ikuko; Toda, Aska; Hashimoto, Kae; Isobe, Aki; Mabuchi, Seiji; Ohta, Tsuyoshi; Itai, Akiko; Morishige, Ken-ichirou; Kurachi, Hirohisa; Kimura, Tadashi

    2015-04-01

    The prolongation of progression-free survival (PFS) in patients with advanced ovarian cancer by antiangiogenic therapy has been shown in several clinical trials. However, although an anti-VEGF antibody (bevacizumab) is the only option currently available, its efficacy is limited and it is not cost effective for use in all patients. Therefore, the development of a novel antiangiogenic drug, especially composed of small-molecule compounds, could be a powerful armament for ovarian cancer treatment. As NF-κB signaling has the potential to regulate VEGF expression, we determined to identify whether VEGF expression is associated with NF-κB activation and to investigate the possibility of a novel IKKβ inhibitor, IMD-0354 (IMMD Inc.), as an antiangiogenic drug. Tissue microarrays from 94 ovarian cancer tissues were constructed and immunohistochemical analyses performed. We revealed that IKK phosphorylation is an independent prognostic factor (PFS: 26.1 vs. 49.8 months, P = 0.011), and is positively correlated with high VEGF expression. In in vitro analyses, IMD-0354 robustly inhibited adhesive and invasive activities of ovarian cancer cells without impairing cell viabilities. IMD-0354 significantly suppressed VEGF production from cancer cells, which led to the inhibition of angiogenesis. In a xenograft model, the treatment of IMD-0354 significantly inhibited peritoneal dissemination with a marked reduction of intratumoral blood vessel formation followed by the inhibition of VEGF expression from cancer cells. IMD-0354 is a stable small-molecule drug and has already been administered safely to humans in other trials. Antiangiogenic therapy targeting IKKβ is a potential future option to treat ovarian cancer.

  13. BORIS/CTCFL mRNA isoform expression and epigenetic regulation in epithelial ovarian cancer.

    PubMed

    Link, Petra A; Zhang, Wa; Odunsi, Kunle; Karpf, Adam R

    2013-01-01

    Cancer germline (CG) genes are normally expressed in germ cells and aberrantly expressed in a variety of cancers; their immunogenicity has led to the widespread development of cancer vaccines targeting these antigens. BORIS/CTCFL is an autosomal CG antigen and promising cancer vaccine target. BORIS is the only known paralog of CTCF, a gene intimately involved in genomic imprinting, chromatin insulation, and nuclear regulation. We have previously shown that BORIS is expressed in epithelial ovarian cancer (EOC) and that its expression coincides with promoter and global DNA hypomethylation. Recently, 23 different BORIS mRNA variants have been described, and have been functionally grouped into six BORIS isoform families (sf1-sf6). In the present study, we have characterized the expression of BORIS isoform families in normal ovary (NO) and EOC, the latter of which were selected to include two groups with widely varying global DNA methylation status. We find selective expression of BORIS isoform families in NO, which becomes altered in EOC, primarily by the activation of BORIS sf1 in EOC. When comparing EOC samples based on methylation status, we find that BORIS sf1 and sf2 isoform families are selectively activated in globally hypomethylated tumors. In contrast, CTCF is downregulated in EOC, and the ratio of BORIS sf1, sf2, and sf6 isoform families as a function of CTCF is elevated in hypomethylated tumors. Finally, the expression of all BORIS isoform families was induced to varying extents by epigenetic modulatory drugs in EOC cell lines, particularly when DNMT and HDAC inhibitors were used in combination.

  14. Evidence for a time-dependent association between FOLR1 expression and survival from ovarian carcinoma: implications for clinical testing. An Ovarian Tumour Tissue Analysis consortium study

    PubMed Central

    Köbel, M; Madore, J; Ramus, S J; Clarke, B A; Pharoah, P D P; Deen, S; Bowtell, D D; Odunsi, K; Menon, U; Morrison, C; Lele, S; Bshara, W; Sucheston, L; Beckmann, M W; Hein, A; Thiel, F C; Hartmann, A; Wachter, D L; Anglesio, M S; Høgdall, E; Jensen, A; Høgdall, C; Kalli, K R; Fridley, B L; Keeney, G L; Fogarty, Z C; Vierkant, R A; Liu, S; Cho, S; Nelson, G; Ghatage, P; Gentry-Maharaj, A; Gayther, S A; Benjamin, E; Widschwendter, M; Intermaggio, M P; Rosen, B; Bernardini, M Q; Mackay, H; Oza, A; Shaw, P; Jimenez-Linan, M; Driver, K E; Alsop, J; Mack, M; Koziak, J M; Steed, H; Ewanowich, C; DeFazio, A; Chenevix-Trench, G; Fereday, S; Gao, B; Johnatty, S E; George, J; Galletta, L; Goode, E L; Kjær, S K; Huntsman, D G; Fasching, P A; Moysich, K B; Brenton, J D; Kelemen, L E

    2014-01-01

    Background: Folate receptor 1 (FOLR1) is expressed in the majority of ovarian carcinomas (OvCa), making it an attractive target for therapy. However, clinical trials testing anti-FOLR1 therapies in OvCa show mixed results and require better understanding of the prognostic relevance of FOLR1 expression. We conducted a large study evaluating FOLR1 expression with survival in different histological types of OvCa. Methods: Tissue microarrays composed of tumour samples from 2801 patients in the Ovarian Tumour Tissue Analysis (OTTA) consortium were assessed for FOLR1 expression by centralised immunohistochemistry. We estimated associations for overall (OS) and progression-free (PFS) survival using adjusted Cox regression models. High-grade serous ovarian carcinomas (HGSC) from The Cancer Genome Atlas (TCGA) were evaluated independently for association between FOLR1 mRNA upregulation and survival. Results: FOLR1 expression ranged from 76% in HGSC to 11% in mucinous carcinomas in OTTA. For HGSC, the association between FOLR1 expression and OS changed significantly during the years following diagnosis in OTTA (Pinteraction=0.01, N=1422) and TCGA (Pinteraction=0.01, N=485). In OTTA, particularly for FIGO stage I/II tumours, patients with FOLR1-positive HGSC showed increased OS during the first 2 years only (hazard ratio=0.44, 95% confidence interval=0.20–0.96) and patients with FOLR1-positive clear cell carcinomas (CCC) showed decreased PFS independent of follow-up time (HR=1.89, 95% CI=1.10–3.25, N=259). In TCGA, FOLR1 mRNA upregulation in HGSC was also associated with increased OS during the first 2 years following diagnosis irrespective of tumour stage (HR: 0.48, 95% CI: 0.25–0.94). Conclusions: FOLR1-positive HGSC tumours were associated with an increased OS in the first 2 years following diagnosis. Patients with FOLR1-negative, poor prognosis HGSC would be unlikely to benefit from anti-FOLR1 therapies. In contrast, a decreased PFS interval was observed for FOLR1

  15. DUSP1 induces paclitaxel resistance through the regulation of p-glycoprotein expression in human ovarian cancer cells.

    PubMed

    Kang, Yu-Seon; Seok, Hyun-Jeong; Jeong, Eun-Jeong; Kim, Yuna; Yun, Seok-Joong; Min, Jeong-Ki; Kim, Sun Jin; Kim, Jang-Seong

    2016-09-09

    The heterogeneity and genetic instability of ovarian cancer cells often lead to the development of drug resistance, closely related with the increased cancer-related mortality. In this study, we investigated the role of dual-specificity phosphatase 1 (DUSP1) in the development of the resistance in human ovarian cancer cells against paclitaxel. Overexpression of DUSP1 in HeyA8 human ovarian cancer cells (HeyA8-DUSP1) up-regulated the expression of the drug efflux pump, p-glycoprotein. Consequently, HeyA8-DUSP1 cells are highly resistant to paclitaxel, with the resistance comparable to that of a multi-drug resistance cell line (HeyA8-MDR). Moreover, over expression of DUSP1 significantly increased the activation of p38 MAPK, leaving the activation of ERK1/2 and JNK1/2 unaffected. Pharmacological suppression of p38 MAPK activity prevents the up-regulation of p-glycoprotein expression and the consequent resistance against paclitaxel in HeyA8-DUSP1 cells. By contrast, HeyA8-MDR cells expressed a significantly higher level of DUSP1, but treatment with small interference RNA against DUSP1 significantly suppressed the expression of p-glycoprotein and the resistance against paclitaxel in HeyA8-MDR cells. Ectopic expression of MKK3, an upstream activator of p38 MAPK, significantly up-regulated the expression of p-glycoprotein and increased the consequent resistance against paclitaxel in HeyA8 cells. Collectively, these data indicated that DUSP1 may induce the resistance against paclitaxel through the p38 MAPK-mediated overexpression of p-glycoprotein in human ovarian cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Vascular endothelial growth factor polymorphisms and a synchronized examination of plasma and tissue expression in epithelial ovarian cancers.

    PubMed

    Bhaskari, J; Premalata, C S; Shilpa, V; Rahul, B; Pallavi, V R; Ramesh, G; Krishnamoorthy, Lakshmi

    2016-01-01

    In this study, we have analyzed six genetic polymorphisms of the VEGF-A gene and correlated the genetic data with plasma and tissue expression of VEGF-A in epithelial ovarian carcinomas. A total of 130 cases including 95 malignant carcinomas, 17 low malignant potential and 18 benign tumours were studied. rs699947, rs833061, rs1570360, rs2010963, rs1413711 and rs3025039 were studied by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Plasma levels of VEGF-A were estimated by enzyme-linked immunosorbent assay (ELISA) and tissue expression of VEGF-A by immunohistochemistry (IHC). Four polymorphisms of the above excluding rs699947 and rs3025039 showed significant association with malignancy, and we observed the presence of positive correlation between haplotype CCGGCC and increased expression of VEGF-A in both plasma and tissues which also correlated with poor prognosis and recurrence suggesting a probable increase in resistance to treatment in such carriers. Highly upregulated tissue expression of VEGF-A was seen in all epithelial ovarian carcinomas with intensity of expression increasing from benign to malignant cases. ELISA data from our study showed an increase in circulating levels of VEGF-A in malignancies. VEGF-A plasma levels can be employed as a biomarker for high-grade malignancy in epithelial ovarian cancers alongside tissue expression and CA-125 levels. This study is unique due to the fact that a simultaneous analysis of plasma and tissue expression has been demonstrated and is a first such study in epithelial ovarian cancers and representing the Indian population (South-east Asian) synchronized with genetic polymorphism data as well.

  17. ERCC1 expression as a predictor of resistance to platinum-based chemotherapy in primary ovarian cancer.

    PubMed

    Muallem, Mustafa Zelal; Braicu, Ioana; Nassir, Mani; Richter, Rolf; Sehouli, Jalid; Arsenic, Ruza

    2014-01-01

    The purpose of the present study was to investigate the possible association between Excision repair cross-complementing group 1 (ERCC1) score and platinum resistance in first-line chemotherapy for ovarian cancer. ERCC1 Expression was determined using immunohisto-chemistry in 68 patients with platinum-responding tumor and 30 with platinum-resistant tumors. The primary end-point of this study was the association between the expression of ERCC1 protein with resistance to standard platinum-based chemotherapy in primary ovarian cancer. In pairwise comparisons, the overall survival (OS) for patients with ovarian cancer, who were non-responders to platinum-based chemotherapy with low or intermediate H-score for ERCC1 was better than that of non-responders with high H-score for ERCC1 [median OS=21 (16.8-25.2 months) and 28 (14.6-41.4 months) vs. 15 months (6.2-23.8 months), p-value=0.048, and p-value=0.017, respectively]. There were no significant differences in the progression-free survival between those with low, intermediate and high H-score for ERCC1. There is no statistically significant relationship between ERCC1 score and response to platinum-based chemotherapy in patients with primary ovarian cancer.

  18. Decreased expression of aquaporin 2 is associated with impaired endometrial receptivity in controlled ovarian stimulation.

    PubMed

    Zhang, Dan; Xu, Gufeng; Zhang, Runju; Zhu, Yimin; Gao, Huijuan; Zhou, Caiyun; Sheng, Jianzhong; Huang, Hefeng

    2016-03-01

    Recently, there has been evidence of decreased implantation rates with in vitro fertilisation and embryo transfer due to controlled ovarian stimulation (COS). The aim of this study was to investigate the effect of COS on embryo implantation and the role of aquaporin 2 (AQP2). We recruited eight patients who underwent COS and 40 matched controls. Endometrial samples were collected on Day 4~8 after injection of human chorionic gonadotrophin in the COS group and in the mid-secretory phase in the control group. Human endometrial morphological changes after COS were examined and expression of AQP2, leukaemia inhibitory factor (LIF) and integrin B3 (ITGB3) were determined by quantitative polymerase chain reaction, western blotting and immunohistochemistry in human endometrium and Ishikawa cells. Attachment rates were obtained using the embryo attachment test. The results showed that endometrial epithelial cells from the COS group were disrupted and lacked pinopodes. Messenger RNA and protein levels of AQP2, LIF and ITGB3 decreased in endometrial samples from the COS group. Knockdown of AQP2 resulted in reduced expression of LIF and ITGB3 and reduced embryo attachment rates. In conclusion, impaired endometrial receptivity in patients who underwent COS is correlated with a decreased expression of AQP2.

  19. Induction of resistance to Aplidin in a human ovarian cancer cell line related to MDR expression.

    PubMed

    Tognon, Gianluca; Bernasconi, Sergio; Celli, Nicola; Faircloth, Glynn T; Cuevas, Carmen; Jimeno, José; Erba, Eugenio; D'Incalci, Maurizio

    2005-12-01

    Aplidin-resistant IGROV-1/APL cells were derived from the human ovarian cancer IGROV-1 cell line by exposing the cells to increasing concentration of Aplidin for eight months, starting from a concentration of 10 nM to a final concentration of 4 microM. IGROV-1/APL cell line possesses five fold relative resistance to Aplidin. IGROV-1/APL resistant cell line shows the typical MDR phenotype: (1) increased expression of membrane-associated P-glycoprotein, (2) cross-resistance to drugs like etoposide, doxorubicin, vinblastine, vincristine, taxol, colchicin and the novel anticancer drug Yondelis (ET-743). The Pgp inhibitor cyclosporin-A restored the sensitivity of IGROV-1/APL cells to Aplidin by increasing the drug intracellular concentration. The resistance to Aplidin was not due to the other proteins, such as LPR-1 and MRP-1, being expressed at the same level in resistant and parental cell line. The finding that cells over-expressing Pgp are resistant to Aplidin was confirmed in CEM/VLB 100 cells, that was found to be 5-fold resistant to Aplidin compared to the CEM parental cell line.

  20. Extracting coordinated patterns of DNA methylation and gene expression in ovarian cancer.

    PubMed

    Joung, Je-Gun; Kim, Dokyoon; Kim, Kyung Hwa; Kim, Ju Han

    2013-01-01

    DNA methylation, a regulator of gene expression, plays an important role in diverse biological processes including developmental process, carcinogenesis and aging. In particular, aberrant DNA methylation has been largely observed in several types of cancers. Currently, it is important to extract disease-specific gene sets associated with the regulation of DNA methylation. Here we propose a novel approach to find the minimum regulatory units of genes, co-methylated and co-expressed gene pairs (MEGP) that are highly correlated gene pairs between DNA methylation and gene expression showing the co-regulatory relationship. To evaluate whether our method is applicable to extract disease-associated genes, we applied our method to a large-scale dataset from the Cancer Genome Atlas extracting significantly associated MEGP and analyzed their functional correlation. We observed that many MEGP physically interacted with each other and showed high semantic similarity with gene ontology terms. Furthermore, we performed gene set enrichment tests to identify how they are correlated in a complex biological process. Our MEGP were highly enriched in the biological pathway associated with ovarian cancers. Our approach is useful for discovering coordinated epigenetic markers associated with specific diseases.

  1. Effect of light intensity on ovarian gene expression, reproductive performance and body weight of rabbit does.

    PubMed

    Sun, Liangzhan; Wu, Zhenyu; Li, Fuchang; Liu, Lei; Li, Jinglin; Zhang, Di; Sun, Chaoran

    2017-08-01

    The objective of the experiment was to find the minimum light intensity which could improve reproduction by examining its effect on ovarian gene expression, reproductive performance and body weight of rabbit does with three different light intensities: 60 (L), 80 (M), and 100 (H)lx. A total of 144 Rex-rabbits submitted to a 49-day reproductive regimen were used in this study. Ovaries were collected and relative abundance of mRNA for ovarian proteins of interest was examined with real-time PCR. Amount of protein for proteins of interest was examined by immunohistochemistry. Reproductive performance and doe bodyweight of the first three consecutive reproductive periods after initiation of the light intensity treatments were evaluated. The results provided evidence that light intensity had no effect on relative abundance of estradiol receptor-α (ER-α), follicle stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), gonadotropin releasing hormone receptor 1 (GnRHR1) and progesterone receptor (PGR) mRNA. The relative abundance of growth hormone receptor (GHR) mRNA was, however, greater in Group L than M and H (P<0.05). No difference was observed for all reproductive indices as a result of submission to the three light intensities (P>0.05). The bodyweight of the does in Group L was greater than the other two groups at first insemination, second insemination and the second postpartum period (P<0.05). There was no difference in bodyweight after the second postpartum period (P>0.05). These observations suggest that light intensity between 60 and 100lx has no effect on the reproductive performance of rabbit does, however, the amounts of GHR mRNA and growth hormone (GH) protein were affected and the greater light intensity had a negative effect on bodyweight between the time of the first insemination and the second partum period. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effects of temperature and fish oil supplementation on ovarian development and foxl2 mRNA expression in spotted scat Scatophagus argus.

    PubMed

    Li, G-L; Zhang, M-Z; Deng, S-P; Chen, H-P; Zhu, C-H

    2015-01-01

    In this study, the complete foxl2 complementary (c)DNA sequence was isolated by simple modular-architecture research tool (SMART)er rapid amplification of cDNA ends (RACE). Two year-old female spotted scat, Scatophagus argus, were reared at different temperatures (23, 26 and 29° C) for 6 weeks, or fed with different concentrations of dietary fish oil (0, 2 or 6%) for 8 weeks. Ovarian development, serum oestradiol-17β (E2 ) levels, as well as ovarian foxl2 expression were measured. At the end of experiment, ovarian foxl2 messenger (m)RNA expression in fish reared at 23 and 26° C was significantly higher than that in fish reared at 29° C, and that in 2 and 6% fish oil groups was also significantly higher than that in control group (P < 0·05). Serum E2 levels exhibited the same trend with foxl2 mRNA expression in temperature treatment groups and fish oil fed groups. There was a significant positive correlation between stage of oocytes and foxl2 expressions. Results showed that from 23 to 29° C, the optimal temperature for ovarian development in S. argus was 23-26° C, and 6% fish oil supplementation could effectively promote ovarian development. Optimal temperature and fish oil supplement might increase ovarian foxl2 mRNA expressions to promote ovarian development in S. argus. © 2014 The Fisheries Society of the British Isles.

  3. Low meprin α expression differentiates primary ovarian mucinous carcinoma from gastrointestinal cancers that commonly metastasise to the ovaries

    PubMed Central

    Heinzelmann‐Schwarz, Viola A; Scolyer, Richard A; Scurry, James P; Smith, Alison N; Gardiner‐Garden, Margaret; Biankin, Andrew V; Baron‐Hay, Sally; Scott, Carolyn; Ward, Robyn L; Fink, Daniel; Hacker, Neville F; Sutherland, Robert L; O'Brien, Philippa M

    2007-01-01

    Background Currently, no specific immunohistochemical markers are available to differentiate primary mucinous epithelial ovarian cancer (MOC) from adenocarcinomas originating at other sites that have metastasised to the ovary, which may have an impact on patient management and prognosis. Aim To investigate the expression of two intestinal markers, galectin 4 and meprin α, in mucinous carcinomas of the ovary and gastrointestinal tract. Methods Using immunohistochemical analysis, the expression of galectin 4 and meprin α was investigated in 10 MOCs and in 38 mucinous adenocarcinomas of colon, pancreas, stomach and appendix, the most common sites of origin of ovarian metastases. Results Total cytoplasmic galectin 4 expression was relatively consistent between the different carcinomas. Membranous meprin α expression was significantly lower in MOCs compared with gastrointestinal carcinomas. Moreover, meprin α expression showed greater discrimination between the ovarian and gastrointestinal carcinomas than the cytokeratins CK7 and CK20, the current standard immunohistochemical markers used to determine the tissue origin of mucinous carcinomas involving the ovaries. Conclusions Meprin α is a useful additional marker in differentiating primary from secondary mucinous adenocarcinomas of the ovary. PMID:16822880

  4. GnRH-agonist implants suppress reproductive function and affects ovarian LHR and FSHR expression in prepubertal female cats.

    PubMed

    Mehl, N S; Srisuwatanasagul, S; Swangchan-Uthai, T; Sirivaidyapong, S; Khalid, M

    2017-01-01

    Effect of a GnRH-agonist (deslorelin) was studied on reproductive function and ovarian luteinizing hormone receptor (LHR) and follicle stimulating hormone receptor (FSHR) expression in prepubertal female cats that were either implanted with 4.7-mg deslorelin (implanted: n = 6) or not (controls: n = 18) or ovariohysterectomized at prepubertal age (prepubertal OVH: n = 6). Body weights, fecal estradiol, and sexual behavior of implanted and control cats were monitored for 48 weeks followed by collection of ovaries and uteri. Ovaries and uteri were collected from control cats at follicular, luteal, and inactive stage (n = 6/group) and from prepubertal OVH cats at prepubertal age. Ovaries and uteri were analyzed for anatomical/histological characteristics. Ovaries were also analyzed for LHR and FSHR expression. Statistical analysis showed higher (P ≤ 0.05) body weight in control than implanted cats only during 22nd to 26th weeks of the study. Estrus was observed in control cats only. Deslorelin reduced (P ≤ 0.05) ovarian weight and number of antral follicles but did not affect endometrial thickness and gland diameter. However, myometrial thickness of implanted cats was significantly lower than control cats at follicular and luteal stage. Ovarian LHR mRNA expression was lower (P ≤ 0.05) in implanted cats than control cats at follicular stage. FSHR mRNA and LHR protein expression did not differ among the three groups. FSHR protein expression was lower (P ≤ 0.05) in prepubertal OVH cats and was not affected by deslorelin. In conclusion, deslorelin suppresses reproductive function in prepubertal female cats for at least 48 weeks possibly through a change in the ovarian mRNA expression of LHR. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Osteopontin-c isoform levels are associated with SR and hnRNP differential expression in ovarian cancer cell lines.

    PubMed

    Marques, Durval Santos; Grativol, Jessica; Alves da Silva Peres, Rodrigo; da Rocha Matos, Aline; Gimba, Etel Rodrigues Pereira

    2017-09-01

    Osteopontin-c splicing isoform activates ovarian cancer progression features. Imbalanced expression of splicing factors from serine/arginine -rich and heterogeneous ribonucleoproteins families has been correlated with the generation of oncogenic splicing isoforms. Our goal was to investigate whether there is any association between the transcriptional patterns of these splicing factors in ovarian cells and osteopontin-c expression levels. We also aimed to investigate the occurrence of these splicing factors binding sites inside osteopontin exon 4 and adjacent introns. To test associations between osteopontin-c and splicing factors expression patterns, we used an in vitro model in which OVCAR-3 cells overexpressing osteopontin-c (OVCAR-3/OPNc(++)) presented higher transcriptional levels of osteopontin-c than two other ovarian carcinoma cells (TOV-112D, SKOV-3) and ovarian non-tumoral cell lines (IOSE 364 and IOSE 385). The transcriptional levels of osteopontin-c, serine/arginine-rich, and hnRNP factors were evaluated using real-time polymerase chain reaction. Human Splice Finder software was used to search for putative splicing factor binding sites in osteopontin genomic regions. OVCAR-3/OPNc(++) cells presented higher transcriptional levels of hnRNP than serine/arginine-rich when compared to TOV-112D, SKOV-3, and IOSE cells. TOV-112D and SKOV-3 cells also overexpressed hnRNP in relation to serine/arginine-rich transcripts. Putative binding sites for these splicing factors have been predicted on osteopontin exon 4 and their upstream and downstream intronic regions. Our data showed that higher osteopontin-c expression levels are associated with a predominance of hnRNP in relation to serine/arginine-rich transcripts and that osteopontin exon 4 and adjacent intronic sequences contain predicted binding sites for some of these tested splicing factors. In conclusion, differential expression of these splicing factors in ovarian cancer cells could be one of the putative

  6. Gene Expression Networks Underlying Ovarian Development in Wild Largemouth Bass (Micropterus salmoides)

    PubMed Central

    Martyniuk, Christopher J.; Prucha, Melinda S.; Doperalski, Nicholas J.; Antczak, Philipp; Kroll, Kevin J.; Falciani, Francesco; Barber, David S.; Denslow, Nancy D.

    2013-01-01

    Background Oocyte maturation in fish involves numerous cell signaling cascades that are activated or inhibited during specific stages of oocyte development. The objectives of this study were to characterize molecular pathways and temporal gene expression patterns throughout a complete breeding cycle in wild female largemouth bass to improve understanding of the molecular sequence of events underlying oocyte maturation. Methods Transcriptomic analysis was performed on eight morphologically diverse stages of the ovary, including primary and secondary stages of oocyte growth, ovulation, and atresia. Ovary histology, plasma vitellogenin, 17β-estradiol, and testosterone were also measured to correlate with gene networks. Results Global expression patterns revealed dramatic differences across ovarian development, with 552 and 2070 genes being differentially expressed during both ovulation and atresia respectively. Gene set enrichment analysis (GSEA) revealed that early primary stages of oocyte growth involved increases in expression of genes involved in pathways of B-cell and T-cell receptor-mediated signaling cascades and fibronectin regulation. These pathways as well as pathways that included adrenergic receptor signaling, sphingolipid metabolism and natural killer cell activation were down-regulated at ovulation. At atresia, down-regulated pathways included gap junction and actin cytoskeleton regulation, gonadotrope and mast cell activation, and vasopressin receptor signaling and up-regulated pathways included oxidative phosphorylation and reactive oxygen species metabolism. Expression targets for luteinizing hormone signaling were low during vitellogenesis but increased 150% at ovulation. Other networks found to play a significant role in oocyte maturation included those with genes regulated by members of the TGF-beta superfamily (activins, inhibins, bone morphogenic protein 7 and growth differentiation factor 9), neuregulin 1, retinoid X receptor, and nerve growth

  7. The MOC31PE immunotoxin reduces cell migration and induces gene expression and cell death in ovarian cancer cells

    PubMed Central

    2014-01-01

    Background The standard treatment of ovarian cancer with chemotherapy often leads to drug resistance and relapse of the disease, and the need for development of novel therapy alternatives is obvious. The MOC31PE immunotoxin binds to the cell surface antigen EpCAM, which is expressed by the majority of epithelial cancers including ovarian carcinomas, and we studied the cytotoxic effects of MOC31PE in ovarian cancer cells. Methods Investigation of the effects of MOC31PE treatment on protein synthesis, cell viability, proliferation and gene expression of the ovarian cancer cell lines B76 and HOC7. Results MOC31PE treatment for 24 h caused a dose-dependent reduction of protein synthesis with ID50 values of less than 10 ng/ml, followed by reduced cell viability. In a gene expression array monitoring the expression of 84 key genes in cancer pathways, 13 of the genes were differentially expressed by MOC31PE treatment in comparison to untreated cells. By combining MOC31PE and the immune suppressor cyclosporin A (CsA) the MOC31PE effect on protein synthesis inhibition and cell viability increased tenfold. Cell migration was also reduced, both in the individual MOC31PE and CsA treatment, but even more when combining MOC31PE and CsA. In tumor metastasis PCR arrays, 23 of 84 genes were differentially expressed comparing CsA versus MOC31PE + CsA treatment. Increased expression of the tumor suppressor KISS1 and the nuclear receptor NR4A3 was observed, and the differential candidate gene expression was confirmed in complementary qPCR analyses. For NR4A3 this was not accompanied by increased protein expression. However, a subcellular fractionation assay revealed increased mitochondrial NR4A3 in MOC31PE treated cells, suggesting a role for this protein in MOC31PE-induced apoptotic cell death. Conclusion The present study demonstrates that MOC31PE may become a new targeted therapy for ovarian cancer and that the MOC31PE anti-cancer effect is potentiated by CsA. PMID:24528603

  8. Thymidine kinase 1 expression in ovarian serous adenocarcinoma is superior to Ki-67: A new prognostic biomarker.

    PubMed

    Wang, Jianjun; Liu, Qi; Zhou, Xiaodie; He, Yan; Guo, Qing; Shi, Qunli; Eriksson, Staffan; Zhou, Ji; He, Ellen; Skog, Sven

    2017-06-01

    Cancer is a disease with abnormally proliferating cells and therefore proliferation rate is an important index for assessing tumour growth. Ki-67 is a commonly used proliferation marker considered to be an unfavourable prognostic marker in some tumors, while Thymidine kinase 1 (TK1) is an interesting proliferation marker because its levels are highly dependent on the growth stage of cells. To define the immunohistochemistry (IHC) expression of the TK1 in patients with ovarian serous adenocarcinoma and establish its potential role as a new biomarker for progressive disease, we analyzed the expression patterns of TK1 and Ki-67 in 109 patients with ovarian serous adenocarcinoma. TK1 and Ki-67 expression both showed a statistically significant correlation to MD Anderson Cancer Center (MDACC) grade, but not to age, tumour size, lymph node metastasis or pathological TNM (pTNM) stages. TK1 expression, MDACC grades, pathological stages and lymph node metastasis correlate to relapse incident rate and overall survival, but Ki-67 does not. Although TK1 expression, MDACC grade, pTNM stage and lymph node metastasis significantly correlate to relapse in the Cox univariate analysis, in the multivariate Cox analysis only TK1 expression and lymph node metastasis were independent prognostic factors. The overall survival also correlated significantly to TK1 expression, MDACC grade, pTNM stage and lymph node metastasis in the Cox univariate analysis. However, only the pTNM stage was found to be an independent prognostic factor for survival in the Cox multivariate analysis. Therefore, though TK1 expression was an independent prognostic factor for relapse, but not for survival, TK1 is a more informative expression than Ki-67 for LI, relapse and overall survival rates. Thus, when TK1 is combined with MDACC grading, pTNM staging and lymph node metastasis, IHC determination of TK1 expression may improve the overall prediction of prognosis in patients with ovarian cancer.

  9. Type of gonadotropin used during controlled ovarian stimulation induces differential gene expression in human cumulus cells: A randomized study.

    PubMed

    Cruz, María; Requena, Antonio; Agudo, David; García-Velasco, Juan Antonio

    2017-08-01

    The cumulus-oocyte complex plays a central role in the regulation of folliculogenesis where it is important for the maturation, reprogramming, and fertilization of oocytes. Consequently, cumulus cell gene expression profiling is being explored as a promising method for assessing oocyte competence in the near future. Through DNA microarray technology, we analyzed the potential differences in the gene expression profiles of cumulus cells from preovulatory follicles after controlled ovarian stimulation using different types of gonadotropins. A prospective, randomized study was performed among 90 women participating in an oocyte donation program. Subjects were assigned to receive recombinant follicle-stimulating hormone (FSH), urinary FSH, or human menopausal gonadotropin (hMG). The gene expression profile in cumulus cells was analyzed according the type of gonadotropin received during ovarian stimulation. Furthermore, we also performed a gene ontology analysis to provide structural knowledge. Hierarchical clustering, principal component analysis, and gene enrichment analysis revealed greater differences between the urinary FSH and hMG groups compared to the rest of the pair-wise comparisons; recombinant FSH vs hMG and urinary FSH vs recombinant FSH. Data suggest that controlled ovarian stimulation induces specific gene expression profiles in human cumulus cells depending on the type of gonadotropin used. Registered at clinicaltrials.gov; identifier NCT022437032. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Ovarian Hormone Deprivation Reduces Oxytocin Expression in Paraventricular Nucleus Preautonomic Neurons and Correlates with Baroreflex Impairment in Rats

    PubMed Central

    De Melo, Vitor U.; Saldanha, Rayssa R. M.; Dos Santos, Carla R.; De Campos Cruz, Josiane; Lira, Vitor A.; Santana-Filho, Valter J.; Michelini, Lisete C.

    2016-01-01

    The prevalence of cardiovascular diseases including hypertension increases dramatically in women after menopause, however the mechanisms involved remain incompletely understood. Oxytocinergic (OTergic) neurons are largely present within the paraventricular nucleus of the hypothalamus (PVN). Several studies have shown that OTergic drive from PVN to brainstem increases baroreflex sensitivity and improves autonomic control of the circulation. Since preautonomic PVN neurons express different types of estrogen receptors, we hypothesize that ovarian hormone deprivation causes baroreflex impairment, autonomic imbalance and hypertension by negatively impacting OTergic drive and oxytocin levels in pre-autonomic neurons. Here, we assessed oxytocin gene and protein expression (qPCR and immunohistochemistry) within PVN subnuclei in sham-operated and ovariectomized Wistar rats. Conscious hemodynamic recordings were used to assess resting blood pressure and heart rate and the autonomic modulation of heart and vessels was estimated by power spectral analysis. We observed that the ovarian hormone deprivation in ovariectomized rats decreased baroreflex sensitivity, increased sympathetic and reduced vagal outflows to the heart and augmented the resting blood pressure. Of note, ovariectomized rats had reduced PVN oxytocin mRNA and protein expression in all pre-autonomic PVN subnuclei. Furthermore, reduced PVN oxytocin protein levels were positively correlated with decreased baroreflex sensitivity and negatively correlated with increased LF/HF ratio. These findings suggest that reduced oxytocin expression in OTergic neurons of the PVN contributes to the baroreflex dysfunction and autonomic dysregulation observed with ovarian hormone deprivation. PMID:27790154

  11. White as a Reporter Gene to Detect Transcriptional Silencers Specifying Position-Specific Gene Expression during Drosophila Melanogaster Eye Development

    PubMed Central

    Sun, Y. H.; Tsai, C. J.; Green, M. M.; Chao, J. L.; Yu, C. T.; Jaw, T. J.; Yeh, J. Y.; Bolshakov, V. N.

    1995-01-01

    The white(+) gene was used as a reporter to detect transcriptional silencer activity in the Drosophila genome. Changes in the spatial expression pattern of white were scored in the adult eye as nonuniform patterns of pigmentation. Thirty-six independent P[lacW] transposant lines were collected. These represent 12 distinct pigmentation patterns and probably 21 loci. The spatial pigmentation pattern is due to cis-acting suppression of white(+) expression, and the suppression probably depends on cell position rather than cell type. The mechanism of suppression differs from inactivation by heterochromatin. In addition, activation of lacZ in P[lacW] occurs also in specific patterns in imaginal discs and embryos in many of the lines. The expression patterns of white(+) and lacZ may reflect the activity of regulatory elements belonging to an endogenous gene near each P[lacW] insertion site. We speculate that these putative POSE (position-specific expression) genes may have a role in pattern formation of the eye as well as other imaginal structures. Three of the loci identified are optomotor-blind, engrailed and invected. teashirt is also implicated as a candidate gene. We propose that this ``silencer trap'' may be an efficient way of identifying genes involved in imaginal pattern formation. PMID:8582614

  12. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells

    PubMed Central

    Kim, Yong-Wan; Kim, Eun Young; Jeon, Doin; Liu, Juinn-Lin; Kim, Helena Suhyun; Choi, Jin Woo; Ahn, Woong Shick

    2014-01-01

    Paclitaxel (Taxol) resistance remains a major obstacle for the successful treatment of ovarian cancer. MicroRNAs (miRNAs) have oncogenic and tumor suppressor activity and are associated with poor prognosis phenotypes. miRNA screenings for this drug resistance are needed to estimate the prognosis of the disease and find better drug targets. miRNAs that were differentially expressed in Taxol-resistant ovarian cancer cells, compared with Taxol-sensitive cells, were screened by Illumina Human MicroRNA Expression BeadChips. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to identify target genes of selected miRNAs. Kaplan–Meier survival analysis was applied to identify dysregulated miRNAs in ovarian cancer patients using data from The Cancer Genome Atlas. A total of 82 miRNAs were identified in ovarian carcinoma cells compared to normal ovarian cells. miR-141, miR-106a, miR-200c, miR-96, and miR-378 were overexpressed, and miR-411, miR-432, miR-494, miR-409-3p, and miR-655 were underexpressed in ovarian cancer cells. Seventeen miRNAs were overexpressed in Taxol-resistant cells, including miR-663, miR-622, and HS_188. Underexpressed miRNAs in Taxol-sensitive cells included miR-497, miR-187, miR-195, and miR-107. We further showed miR-663 and miR-622 as significant prognosis markers of the chemo-resistant patient group. In particular, the downregulation of the two miRNAs was associated with better survival, perhaps increasing the sensitivity of cancer cells to Taxol. In the chemo-sensitive patient group, only miR-647 could be a prognosis marker. These miRNAs inhibit several interacting genes of p53 networks, especially in TUOS-3 and TUOS-4, and showed cell line-specific inhibition effects. Taken together, the data indicate that the three miRNAs are closely associated with Taxol resistance and potentially better prognosis factors. Our results suggest that these miRNAs were successfully and reliably identified and would be used in the

  13. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells.

    PubMed

    Kim, Yong-Wan; Kim, Eun Young; Jeon, Doin; Liu, Juinn-Lin; Kim, Helena Suhyun; Choi, Jin Woo; Ahn, Woong Shick

    2014-01-01

    Paclitaxel (Taxol) resistance remains a major obstacle for the successful treatment of ovarian cancer. MicroRNAs (miRNAs) have oncogenic and tumor suppressor activity and are associated with poor prognosis phenotypes. miRNA screenings for this drug resistance are needed to estimate the prognosis of the disease and find better drug targets. miRNAs that were differentially expressed in Taxol-resistant ovarian cancer cells, compared with Taxol-sensitive cells, were screened by Illumina Human MicroRNA Expression BeadChips. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to identify target genes of selected miRNAs. Kaplan-Meier survival analysis was applied to identify dysregulated miRNAs in ovarian cancer patients using data from The Cancer Genome Atlas. A total of 82 miRNAs were identified in ovarian carcinoma cells compared to normal ovarian cells. miR-141, miR-106a, miR-200c, miR-96, and miR-378 were overexpressed, and miR-411, miR-432, miR-494, miR-409-3p, and miR-655 were underexpressed in ovarian cancer cells. Seventeen miRNAs were overexpressed in Taxol-resistant cells, including miR-663, miR-622, and HS_188. Underexpressed miRNAs in Taxol-sensitive cells included miR-497, miR-187, miR-195, and miR-107. We further showed miR-663 and miR-622 as significant prognosis markers of the chemo-resistant patient group. In particular, the downregulation of the two miRNAs was associated with better survival, perhaps increasing the sensitivity of cancer cells to Taxol. In the chemo-sensitive patient group, only miR-647 could be a prognosis marker. These miRNAs inhibit several interacting genes of p53 networks, especially in TUOS-3 and TUOS-4, and showed cell line-specific inhibition effects. Taken together, the data indicate that the three miRNAs are closely associated with Taxol resistance and potentially better prognosis factors. Our results suggest that these miRNAs were successfully and reliably identified and would be used in the

  14. Nerve growth factor and its high-affinity receptor trkA participate in the control of vascular endothelial growth factor expression in epithelial ovarian cancer.

    PubMed

    Campos, Ximena; Muñoz, Yenny; Selman, Alberto; Yazigi, Roberto; Moyano, Leonor; Weinstein-Oppenheimer, Caroline; Lara, Hernán E; Romero, Carmen

    2007-01-01

    To compare the expression of nerve growth factor (NGF) and its high-affinity receptor trkA in normal ovaries and in epithelial ovarian carcinomas. Given NGF acts as an angiogenic factor through a vascular endothelial growth factor (VEGF)-mediated mechanism in several types of tissues, we examined whether NGF regulates the expression of VEGF isoforms in epithelial ovarian cancer (EOC). The expression and localization of NGF and tyrosine kinase receptor A (trkA) in normal ovarian samples and in ovarian cancer samples were analyzed by RT-PCR and immunohistochemistry. NGF regulates the expression of three VEGF isoforms (VEGF(121), VEGF(165) and VEGF(189)); these were examined using RT-PCR in explants of EOC and ELISA in culture media. TrkA mRNA levels were over-expressed in ovarian cancer compared to normal ovarian samples, whereas NGF mRNA levels remained unchanged. NGF and trkA proteins were absent or found in very low levels in normal ovarian surface epithelium (OSE), whereas they were highly expressed in epithelial cells of EOC. Additionally, NGF stimulated the expression of VEGF isoforms in cancer explants. The effect was dose-dependent and inhibited by a NGF antibody and by K(252a), a trk receptor inhibitor. The abundance of NGF and trkA receptors in epithelial cells of EOC, together with the ability of NGF to increase VEGF expression strongly suggests an autocrine role of NGF in EOC. These findings suggest that blocking neurotrophin action could be a therapeutic target in treating ovarian cancer.

  15. Chimeric NKG2D CAR-Expressing T Cell-Mediated Attack of Human Ovarian Cancer Is Enhanced by Histone Deacetylase Inhibition

    PubMed Central

    Song, De-Gang; Ye, Qunrui; Santoro, Stephen; Fang, Chongyun; Best, Andrew

    2013-01-01

    Abstract NKG2D ligands (NKG2DLs) are widely expressed on ovarian cancers to various degrees, making them attractive targets for immunotherapy. Here, we applied a chimeric antigen receptor (CAR) approach for the targeting of NKG2DLs expressed on human ovarian cancer cells and evaluated the impact of pharmacological upregulation of NKG2DLs on immune recognition. Various NKG2DLs, including MICA/B and ULBP-1, -2, -3, and -4, were expressed at various levels on the surface of all established ovarian cancer cell lines and primary ovarian cancer samples tested. To redirect human T cells against NKG2DLs, an NKG2DL-specific CAR was generated by fusing the extracellular domain of the NKG2D receptor to the 4-1BB costimulatory and CD3-ζ chain signaling domains. In vitro expansion of chimeric NKG2D CAR T cells was delayed compared with untransduced T cells and control CAR T cells; the likely result of fratricide among activated T cells expressing NKG2DLs. However, NKG2D CAR T cells did expand and were selectively enriched during prolonged culture. In coculture, CD4+ and CD8+ NKG2D CAR T cells specifically recognized and killed NKG2DL-expressing ovarian cancer cell lines but not NKG2DL-negative cells. Notably, pretreatment of ovarian cancer cells expressing moderate to low levels of NKG2DLs with the histone deacetylase inhibitor sodium valproate (VPA) upregulated NKG2DL cell surface expression and consequently enhanced their immune recognition by chimeric NKG2D CAR T cells. Our results demonstrate that VPA-induced upregulation of NKG2DL expression enhances the immune recognition of ovarian cancer cells by engineered NKG2D CAR T cells, and rationalizes the use of VPA in combination with NKG2DL-targeted immunotherapy in ovarian cancer. PMID:23297870

  16. Chimeric NKG2D CAR-expressing T cell-mediated attack of human ovarian cancer is enhanced by histone deacetylase inhibition.

    PubMed

    Song, De-Gang; Ye, Qunrui; Santoro, Stephen; Fang, Chongyun; Best, Andrew; Powell, Daniel J

    2013-03-01

    NKG2D ligands (NKG2DLs) are widely expressed on ovarian cancers to various degrees, making them attractive targets for immunotherapy. Here, we applied a chimeric antigen receptor (CAR) approach for the targeting of NKG2DLs expressed on human ovarian cancer cells and evaluated the impact of pharmacological upregulation of NKG2DLs on immune recognition. Various NKG2DLs, including MICA/B and ULBP-1, -2, -3, and -4, were expressed at various levels on the surface of all established ovarian cancer cell lines and primary ovarian cancer samples tested. To redirect human T cells against NKG2DLs, an NKG2DL-specific CAR was generated by fusing the extracellular domain of the NKG2D receptor to the 4-1BB costimulatory and CD3-ζ chain signaling domains. In vitro expansion of chimeric NKG2D CAR T cells was delayed compared with untransduced T cells and control CAR T cells; the likely result of fratricide among activated T cells expressing NKG2DLs. However, NKG2D CAR T cells did expand and were selectively enriched during prolonged culture. In coculture, CD4(+) and CD8(+) NKG2D CAR T cells specifically recognized and killed NKG2DL-expressing ovarian cancer cell lines but not NKG2DL-negative cells. Notably, pretreatment of ovarian cancer cells expressing moderate to low levels of NKG2DLs with the histone deacetylase inhibitor sodium valproate (VPA) upregulated NKG2DL cell surface expression and consequently enhanced their immune recognition by chimeric NKG2D CAR T cells. Our results demonstrate that VPA-induced upregulation of NKG2DL expression enhances the immune recognition of ovarian cancer cells by engineered NKG2D CAR T cells, and rationalizes the use of VPA in combination with NKG2DL-targeted immunotherapy in ovarian cancer.

  17. High expression of miR-532-5p, a tumor suppressor, leads to better prognosis in ovarian cancer both in vivo and in vitro

    PubMed Central

    Wang, Fan; Chang, Jeremy T-H.; Kao, Chester Jingshiu; Huang, R. Stephanie

    2016-01-01

    Ovarian cancer is the leading cause of death for gynaecological cancers, ranking fifth overall for cancer-related death among women. The identification of biomarkers and the elucidation of molecular mechanisms for improving treatment options have received extensive efforts in ovarian cancer research. MicroRNAs (miRNAs) have high potential to act as both ovarian cancer biomarkers and as critical regulators of ovarian tumor behavior. We comprehensively analyzed global messenger RNA (mRNA), miRNA expression, and survival data for ovarian cancer from the Cancer Genome Atlas (TCGA) to pinpoint miRNAs that play critical roles in ovarian cancer survival through their effect on mRNA expression. We performed miRNA overexpression and gene knockdown experiments to confirm mechanisms predicted in our bioinformatics approach. We established that overexpression of miR-532-5p in OVCAR-3 cells resulted in a significant decrease in cell viability over a 96-hour time period. In the TCGA ovarian cancer data set, we found 67 genes whose expression levels were negatively correlated with miR-532-5p expression and correlated with patient survival, such as WNT9A, CSNK2A2, CHD4, and SH3PXD2A. The potential miR-532-5p-regulated gene targets were found to be enriched in the Wnt pathway. Overexpression of miR-532-5p through miRNA mimic caused downregulation of CSNK2A2, CHD4, and SH3PXD2A in the OVCAR-3 cell line. We have discovered and validated the tumor-suppressing capabilities of miR-532-5p both in vivo through TCGA analysis and in vitro through ovarian cancer cell lines. Our work highlights the potential clinical importance of miR-532-5p expression in ovarian cancer patients. PMID:26873729

  18. Gene expression profiling of epithelial ovarian cancer reveals key genes and pathways associated with chemotherapy resistance.

    PubMed

    Zhang, M; Luo, S C

    2016-01-22

    The aim of this study is to analyze gene expression data to identify key genes and pathways associated with resistance to platinum-based chemotherapy in epithelial ovarian cancer (EOC) and to improve clinical treatment strategies. The gene expression data set was downloaded from Gene Expression Omnibus and included 12 chemotherapy-resistant EOC samples and 16 chemotherapy-sensitive EOC samples. A differential analysis was performed to screen out differentially expressed genes (DEGs). A functional enrichment analysis was conducted for the DEGs using the database for annotation, visualization, and integration discovery. A protein-protein interaction (PPI) network was constructed with information from the human protein reference database. Pathway-pathway interactions were determined with a test based on the hypergeometric distribution. A total of 1564 DEGs were identified in chemotherapy-sensitive EOC, including 654 upregulated genes and 910 downregulated genes. The top three upregulated genes were HIST1H3G, AKT3, and RTN3, while the top three downregulated genes were NBLA00301, TRIM62, and EPHA5. A Gene Ontology enrichment analysis showed that cell adhesion, biological adhesion, and intracellular signaling cascades were significantly enriched in the DEGs. A KEGG pathway enrichment analysis revealed that the calcium, mitogen-activated protein kinase, and B cell receptor signaling pathways were significantly over-represented in the DEGs. A PPI network containing 101 interactions was acquired. The top three hub genes were RAC1, CAV1, and BCL2. Five modules were identified from the PPI network. Taken together, these findings could advance the understanding of the molecular mechanisms underlying intrinsic chemotherapy resistance in EOC.

  19. [Effect of estrogen or progesterone combined with paclitaxel on human ovarian cancer cell growth and Drosha expression].

    PubMed

    Yang, Yunjie; Han, Ke; Xie, Yulian

    2015-08-01

    To investigate the effect of estrogen (E2), progesterone(P4), and paclitaxel (taxol) on the growth of primary human ovarian cancer cells in vitro and the expression of Drosha. Human ovarian cancer cells were treated with estrogen, progesterone or in combination with paclitaxel in vitro. The inhibition rate of ovarian cancer cells was assessed by methyl thiazolyl tetrazolium (MTT) assay. Apoptosis rate and cell cycle were determined by FACS analysis. The relative abundence of Drosha expression was detected by real-time quantitative PCR (qRT-PCR) and Western blotting. The inhibition rate of the estrogen group, progesterone group, paclitaxel group, E2(+)Taxol group, P4(+)Taxol group was (31.53 ± 8.21)%, (25.22 ± 15.50)%, (46.71 ± 4.25)%, (69.46 ± 3.71)%, and (47.35 ± 39.02)%, respectively, significantly higher than that of the control group (0%, P<0.05 for all). Relative to the ER (-) in ovarian cancer cells,Drosha mRNA expression level of estrogen group, progesterone group, paclitaxel group, E2(+) Taxol group,and P4(+)Taxol group was 1.62 ± 0.10,1.60 ± 0.10,1.75 ± 0.16,1.95 ± 0.20, and 1.53 ± 0.06, respectively, significantly higher than that of the control group (1.00, P<0.05 for all). Relative to the ER (+)in ovarian cancer cells,the Drosha mRNA expression level of estrogen group, progesterone group, paclitaxel group, E2(+)taxol group, and P4(+)Taxol group was 1.03 ± 0.14, 1.60 ± 0.09, 1.75 ± 0.16, 1.60 ± 0.10, 1.53 ± 0.06, respectively except estrogen group, significantly higher than that of the control group (1.00, P<0.05). Relative to the ER (-) in ovarian cancer cells, the Drosha protein expression levels of the control group, estrogen group, progesterone group, paclitaxel group, E2(+) taxol group, and P4(+) Taxol group were 0.25 ± 0.05, 0.87 ± 0.30, 0.85 ± 0.38, 1.30 ± 0.21, 1.75 ± 0.83, 1.62 ± 0.82, respectively, with a significant difference between the experimental groups and the control group (P<0.05). Relative to the ER(+)ovarian

  20. Induction of proapoptotic gene expression and recruitment of p53 herald ovarian follicle loss caused by polycyclic aromatic hydrocarbons.

    PubMed

    Pru, James K; Kaneko-Tarui, Tomoko; Jurisicova, Andrea; Kashiwagi, Aki; Selesniemi, Kaisa; Tilly, Jonathan L

    2009-04-01

    Activation of the aryl hydrocarbon receptor (AHR) by polycyclic aromatic hydrocarbons (PAH), a ubiquitous class of environmental and occupational biohazards, accelerates germ cell depletion in female mice during prenatal and postnatal life. Like AHR, BAX is also functionally required for PAH to kill oocytes. Here, we show that PAH upregulates ovarian expression of not just Bax but a large cassette of proapoptotic genes that function at multiple steps of the cell death signaling pathway. We further show that ovarian expression of p53 and several proapoptotic genes that are known transcriptional targets of p53 are increased by PAH treatment, and that mice lacking functional p53 are resistant to the ovotoxic effects of in vivo PAH exposure. This study provides further mechanistic insights into how PAH accelerate oocyte depletion in females and adds p53 to the list of genes whose functional importance to PAH-induced ovotoxicity has been demonstrated by gene knockout technology.

  1. Existence of a photoinducible phase for ovarian development and photoperiod-related alteration of clock gene expression in a damselfish.

    PubMed

    Takeuchi, Yuki; Hada, Noriko; Imamura, Satoshi; Hur, Sung-Pyo; Bouchekioua, Selma; Takemura, Akihiro

    2015-10-01

    The sapphire devil, Chrysiptera cyanea, is a reef-associated damselfish and their ovarian development can be induced by a long photoperiod. In this study, we demonstrated the existence of a photoinducible phase for the photoperiodic ovarian development in the sapphire devil. Induction of ovarian development under night-interruption light schedules and Nanda-Hamner cycles revealed that the photoinducible phase appeared in a circadian manner between ZT12 and ZT13. To characterize the effect of photoperiod on clock gene expression in the brain of this species, we determined the expression levels of the sdPer1, sdPer2, sdCry1, and sdCry2 clock genes under constant light and dark conditions (LL and DD) and photoperiodic (short and long photoperiods). The expression of sdPer1 exhibited clear circadian oscillation under both LL and DD conditions, while sdPer2 and sdCry1 expression levels were lower under DD than under LL conditions and sdCry2 expression was lower under LL than under DD conditions. These results suggest a key role for sdPer1 in circadian clock cycling and that sdPer2, sdCry1, and sdCry2 are light-responsive clock genes in the sapphire devil. After 1 week under a long photoperiod, we observed photoperiod-related changes in sdPer1, sdPer2, and sdCry2 expression, but not in sdCry1 expression. These results suggest that the expression patterns of some clock genes exhibit seasonal variation according to seasonal changes in day length and that such seasonal alteration of clock gene expression may contribute to seasonal recognition by the sapphire devil.

  2. Analysis of MDR genes expression and cross-resistance in eight drug resistant ovarian cancer cell lines.

    PubMed

    Januchowski, Radosław; Sterzyńska, Karolina; Zaorska, Katarzyna; Sosińska, Patrycja; Klejewski, Andrzej; Brązert, Maciej; Nowicki, Michał; Zabel, Maciej

    2016-10-18

    Multiple drug resistance (MDR) of cancer cells is the main reason of intrinsic or acquired insensitivity to chemotherapy in many cancers. In this study we used ovarian cancer model of acquired drug resistance to study development of MDR. We have developed eight drug resistant cell lines from A2780 ovarian cancer cell line: two cell lines resistant to each drug commonly used in ovarian cancer chemotherapy: cisplatin (CIS), paclitaxel (PAC), doxorubicin (DOX) and topotecan (TOP). A chemosensitivity assay - MTT was performed to assess drug cross-resistance. Quantitative real-time polymerase chain reaction and immunofluorescence were also performed to determine mRNA and protein expression of genes/proteins involved in drug resistance (P-gp, BCRP, MRP1, MRP2, MVP). Flow cytometry was used to determine the activity of drug transporters. We could observe cross-resistance between PAC- and DOX-resistant cell lines. Additionally, both PAC-resistant cell lines were cross-resistant to TOP and both TOP-resistant cell lines were cross-resistant to DOX. We observed two different mechanisms of resistance to TOP related to P-gp and BCRP expression and activity. P-gp and BCRP were also involved in DOX resistance. Expression of MRP2 was increased in CIS-resistant cell lines and increased MVP expression was observed in CIS-, PAC- and TOP-, but not in DOX-resistant cell lines. Effectiveness of TOP and DOX in second line of chemotherapy in ovarian cancer can be limited because of their cross-resistance to PAC. Moreover, cross-resistance of PAC-resistant cell line to CIS suggests that such interaction between those drugs might also be probable in clinic.

  3. Ovarian cancer

    MedlinePlus

    ... cancer, CT scan Ovarian cancer dangers Ovarian growth worries Uterus Ovarian cancer Ovarian cancer metastasis References Coleman ... Duplication for commercial use must be authorized in writing by ADAM Health Solutions. About MedlinePlus Site Map ...

  4. Analysis of wntless (WLS) expression in gastric, ovarian, and breast cancers reveals a strong association with HER2 overexpression.

    PubMed

    Stewart, Jonathan; James, Jacqueline; McCluggage, Glenn W; McQuaid, Stephen; Arthur, Kenneth; Boyle, David; Mullan, Paul; McArt, Darragh; Yan, Benedict; Irwin, Gareth; Harkin, D Paul; Zhengdeng, Lei; Ong, Chee-Wee; Yu, Jia; Virshup, David M; Salto-Tellez, Manuel

    2015-03-01

    The oncogenic role of WNT is well characterized. Wntless (WLS) (also known as GPR177, or Evi), a key modulator of WNT protein secretion, was recently found to be highly overexpressed in malignant astrocytomas. We hypothesized that this molecule may be aberrantly expressed in other cancers known to possess aberrant WNT signaling such as ovarian, gastric, and breast cancers. Immunohistochemical analysis using a TMA platform revealed WLS overexpression in a subset of ovarian, gastric, and breast tumors; this overexpression was associated with poorer clinical outcomes in gastric cancer (P=0.025). In addition, a strong correlation was observed between WLS expression and human epidermal growth factor receptor 2 (HER2) overexpression. Indeed, 100% of HER2-positive intestinal gastric carcinomas, 100% of HER2-positive serous ovarian carcinomas, and 64% of HER2-positive breast carcinomas coexpressed WLS protein. Although HER2 protein expression or gene amplification is an established predictive biomarker for trastuzumab response in breast and gastric cancers, a significant proportion of HER2-positive tumors display resistance to trastuzumab, which may be in part explainable by a possible mechanistic link between WLS and HER2.

  5. Ubiquitin-specific protease 7 expression is a prognostic factor in epithelial ovarian cancer and correlates with lymph node metastasis

    PubMed Central

    Ma, Ming; Yu, Nina

    2016-01-01

    Objective Ubiquitin-specific protease 7 (USP7) is a common target of herpesviruses and is important in the DNA damage response, which is also upregulated in several cancers, including prostate, colon, liver, and lung cancers. However, less is known about its expression in ovarian cancer tissues. The role of USP7 in epithelial ovarian cancer (EOC) has not yet been investigated. Materials and methods We recruited 141 patients from Linyi People’s Hospital between June 1999 and June 2013, all pathologically diagnosed with primary EOC. Their clinical data were collected, and the expression of USP7 in the tumor tissues was determined using immunohistochemistry. The correlations between USP7 expression and the clinicopathological variables of patients with EOC were assessed using Spearman’s rank correlation test. Kaplan–Meier analysis and Cox regression analysis were used to identify the prognosis value of USP7. The function of USP7 in the EOC cells was also detected in vitro. Results Among the 141 cases, USP7 expression was high in 59 EOC samples (41.8%), and was significantly correlated with lymphatic invasion; USP7 can act as independent prognostic indicator for the overall survival (OS) of EOC, and its high expression was associated with poor OS rate. The RNA inteference and overexpression assays indicated that USP7 can positively regulate the ovarian cell vitality and invasion process. Conclusion Patients with EOC expressing high level of USP7 have worse OS compared with those with low USP7 expression. USP7 may be involved in the proliferation and invasion of EOC cells, and USP7 expression can serve as an independent predictor of EOC. PMID:27051296

  6. BENZO(A)PYRENE DECREASES BRAIN AND OVARIAN AROMATASE mRNA EXPRESSION IN FUNDULUS HETEROCLITUS

    PubMed Central

    Dong, Wu; Wang, Lu; Thornton, Cammi; Scheffler, Brian E.; Willett, Kristine L.

    2008-01-01

    The higher molecular weight polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BaP) are typically associated with genotoxicity, however, newer evidence suggests that these compounds may also act as endocrine system disruptors. We hypothesized that altered expression of the P450 enzyme aromatase genes could be a target for reproductive or developmental dysfunction caused by BaP exposure. Aromatase is at least partially responsible for estrogen homeostasis by converting androgens into estrogens. In fish, there are two isoforms of aromatase, a predominantly ovarian form, CYP19A1, and a brain form, CYP19A2. CYP19 mRNA expression was measured following BaP exposure (0, 10, 100 µg/L waterborne for 10 or 15 days) in Fundulus adults, juveniles and embryos by in situ hybridization. The CYP19A1 expression was significantly decreased after BaP exposure in the 3 month old Fundulus immature oocytes, but BaP did not affect CYP19A1 expression at any stage in adult oocytes. In embryo brains, BaP significantly decreased CYP19A2 compared to controls by 3.6-fold at 14 days post-fertilization. In adults, CYP19A2 expression was decreased significantly in the pituitary and hypothalamus (81% and 85% of controls, respectively). Promoter regions of Fundulus CYP19s were cloned, and putative response elements in the CYP19A1 and CYP19A2 promoters such as CRE, AhR and ERE may be involved in BaP-mediated changes in CYP19 expression. In order to compare the mechanism of BaP-mediated inhibition with that of a known aromatase inhibitor, fish were also exposed to fadrozole (20 and 100 µg/L). Fadrozole did not significantly decrease the mRNA expression in embryos or adult Fundulus. However, aromatase enzyme activity was significantly decreased in adult ovary and brain tissues. These studies provide a greater molecular understanding of the mechanisms of action of BaP and its potential to impact reproduction or development. PMID:18571745

  7. Infantile 4-tert-octylphenol exposure transiently inhibits rat ovarian steroidogenesis and steroidogenic acute regulatory protein (StAR) expression

    SciTech Connect

    Myllymaeki, S.A. . E-mail: saanmy@utu.fi; Karjalainen, M.; Haavisto, T.E.; Toppari, J.; Paranko, J.

    2005-08-22

    Phenolic compounds, such as 4-tert-octylphenol (OP), have been shown to interfere with rat ovarian steroidogenesis. However, little is known about steroidogenic effects of infantile OP exposure on immature ovary. The aim of the present study was to investigate the effects of infantile OP exposure on plasma FSH, LH, estradiol, and progesterone levels in 14-day-old female rats. The effect on ovarian steroidogenic acute regulatory protein (StAR) and FSH receptor (FSHr) expression was analyzed by Western blotting. Ex vivo analysis was carried out for follicular estradiol, progesterone, testosterone, and cAMP production. Sprague-Dawley rats were given OP (0, 10, 50, or 100 mg/kg) subcutaneously on postnatal days 6, 8, 10, and 12. On postnatal day 14, plasma FSH was decreased and progesterone increased significantly at a dose of 100 mg OP/kg. In addition, the highest OP dose advanced the time of vaginal opening in puberty. OP had no effect on infantile LH and estradiol levels or ovarian FSHr content. Ovarian StAR protein content and ex vivo hormone and cAMP production were decreased at all OP doses compared to controls. However, hormone levels recovered independent on FSH and even increased above the control level during a prolonged culture. On postnatal day 35, no statistically significant differences were seen between control and OP-exposed animals in plasma FSH, LH, estradiol, and progesterone levels, or in ovarian StAR protein content. The results indicate that the effect of OP on the infantile ovary is reversible, while more permanent effects in the hypothalamus and pituitary, as described earlier, are involved in the reduction of circulating FSH levels and premature vaginal opening.

  8. Sense organ identity in the Drosophila antenna is specified by the expression of the proneural gene atonal.

    PubMed

    Jhaveri, D; Sen, A; Reddy, G V; Rodrigues, V

    2000-12-01

    We have shown that the basic helix-loop-helix transcription factor Atonal is sufficient for specification of one of the three subsets of olfactory sense organs on the Drosophila antenna. Misexpression of Atonal in all sensory precursors in the antennal disc results in their conversion to coeloconic sensilla. The mechanism by which specific sense organ fate is triggered remains unclear. We have shown that the homeodomain transcription factor Cut which acts in the chordotonal-external sense organ choice does not play a role in olfactory sense organ development. The expression of atonal in specific domains of the antennal disc is regulated by an interplay of the patterning genes, Hedgehog and Wingless, and Drosophila epidermal growth factor receptor pathway.

  9. Epigenetic Modifications of Distinct Sequences of the p1 Regulatory Gene Specify Tissue-Specific Expression Patterns in Maize

    PubMed Central

    Sekhon, Rajandeep S.; Peterson, Thomas; Chopra, Surinder

    2007-01-01

    Tandemly repeated endogenous genes are common in plants, but their transcriptional regulation is not well characterized. In maize, the P1-wr allele of pericarp color1 is composed of multiple copies arranged in a head-to-tail fashion. P1-wr confers a white kernel pericarp and red cob glume pigment phenotype that is stably inherited over generations. To understand the molecular mechanisms that regulate tissue-specific expression of P1-wr, we have characterized P1-wr*, a spontaneous loss-of-function epimutation that shows a white kernel pericarp and white cob glume phenotype. As compared to its progenitor P1-wr, the P1-wr* is hypermethylated in exon 1 and intron 2 regions. In the presence of the epigenetic modifier Ufo1 (Unstable factor for orange1), P1-wr* plants exhibit a range of cob glume pigmentation whereas pericarps remain colorless. In these plants, the level of cob pigmentation directly correlates with the degree of DNA demethylation in the intron 2 region of p1. Further, genomic bisulfite sequencing indicates that a 168-bp region of intron 2 is significantly hypomethylated in both CG and CNG context in P1-wr* Ufo1 plants. Interestingly, P1-wr* Ufo1 plants did not show any methylation change in a distal enhancer region that has previously been implicated in Ufo1-induced gain of pericarp pigmentation of the P1-wr allele. These results suggest that distinct regulatory sequences in the P1-wr promoter and intron 2 regions can undergo independent epigenetic modifications to generate tissue-specific expression patterns. PMID:17179091

  10. Decreased Expression of Inhibitor of DNA-binding (Id) Proteins and Vascular Endothelial Growth Factor and Increased Apoptosis in Ovarian Aging.

    PubMed

    Park, Min Jung; Park, Sea Hee; Moon, Sung Eun; Koo, Ja Seong; Moon, Hwa Sook; Joo, Bo Sun

    2013-03-01

    This study examined the expression of inhibitor of DNA-binding (Id) proteins and vascular endothelial growth factor (VEGF) in the ovary according to female age using a mice model as the first step in investigating the potential role of Ids and VEGF in ovarian aging. C57BL inbred female mice of three age groups (6-9, 14-16, and 23-26 weeks) were injected with 5 IU pregnant mare's serum gonadotropin (PMSG) in order to synchronize the estrus cycle. After 48 h, ovarian expression of Ids and VEGF was analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR), western blot and immunohistochemistry. Ovarian apoptosis was examined by ovarian expression of Bcl-2 and Bcl-xL. Expression of Id-1 and VEGF was decreased with advancing female age, but not Id-2, Id-3, and Id-4. In particular, their expressions were significantly decreased in aged mice of 23-26 weeks compared with the young mice of 6-9 weeks (p < 0.05). In contrast, ovarian apoptosis was greatly increased in the aged mice compared to the young mice. This result suggests that Id-1 may have an implicated role in ovarian aging by associating with VEGF.

  11. Solexa Sequencing of Novel and Differentially Expressed MicroRNAs in Testicular and Ovarian Tissues in Holstein Cattle

    PubMed Central

    Huang, Jinming; Ju, Zhihua; Li, Qiuling; Hou, Qinlei; Wang, Changfa; Li, Jianbin; Li, Rongling; Wang, Lingling; Sun, Tao; Hang, Suqin; Gao, Yundong; Hou, Minghai; Zhong, Jifeng

    2011-01-01

    The posttranscriptional gene regulation mediated by microRNA plays an important role in the development and function of male and female reproductive organs and germ cells in mammals, including cattle. In the present study, we identified novel and differentially expressed miRNAs in the testis and ovary in Holstein cattle by combining the Solexa sequencing with bioinformatics. In total 100 and 104 novel pre-miRNAs were identified in testicular and ovarian tissues, encoding 122 and 136 mature miRNAs, respectively. Of these, 6 miRNAs appear to be bovine-specific. A total of 246 known miRNAs were co-expressed in the testicular and ovarian tissues. Of the known miRNAs, twenty-one testis-specific and nine ovary-specific (1-23 reads) were found. Approximately 30.5% of the known bovine miRNAs in this study were found to have >2-fold differential expression within the two respective reproductive organ systems. The putative miRNA target genes of miRNAs were involved in pathways associated with reproductive physiology. Both known and novel tissue-specific miRNAs are expressed by Real-time quantitative PCR analysis in dairy cattle. This study expands the number of miRNAs known to be expressed in cattle. The patterns of miRNAs expression differed significantly between the bovine testicular and ovarian tissues, which provide important information on sex differences in miRNA expression. Diverse miRNAs may play an important regulatory role in the development of the reproductive organs in Holstein cattle. PMID:21912509

  12. Heterogeneity of the Mac-1 expression on peripheral blood neutrophils in patients with different types of epithelial ovarian cancer.

    PubMed

    Bednarska, Katarzyna; Klink, Magdalena; Wilczyński, Jacek R; Szyłło, Krzysztof; Malinowski, Andrzej; Sułowska, Zofia; Nowak, Marek

    2016-02-01

    The expression level of Mac-1 on the surface of neutrophils is an important indicator of neutrophil activation. Under pathological conditions, Mac-1 is believed a key adhesion molecule that facilitates cancer progression and mediates the adhesion of tumour cells to the endothelium of blood vessels. Our previous findings indicated that circulating peripheral blood neutrophils in patients with advanced epithelial ovarian cancer (EOC) expressed enhanced levels of Mac-1, which was functionally associated with an increased adhesive function of neutrophils. The objective of the current study was to analyse whether the value of individual components of the differential white cell count, including the neutrophil and lymphocyte ratios, which are markers of blood neutrophil activation, might be associated with certain types of ovarian cancer. We showed the increase in Mac-1 expression along with a parallel decrease of L-selectin and PSGL-1 on peripheral blood neutrophils of patients with EOC of early and advanced FIGO stages, which indicates an activated state of neutrophils in comparison to neutrophils of individuals without cancer. Despite a significant difference between Mac-1 expression in patients with and without cancer, a dramatic increase in Mac-1 expression was observed in the blood of patients with undifferentiated carcinomas compared with patients with other histological types of EOC. Moreover, the expression level of Mac-1 correlated with the number of neutrophils in patients with serous, endometrioid and undifferentiated EOC. The results of an ROC analysis demonstrated that the patients with the undifferentiated type of EOC form a distinct group with regard to Mac-1 expression on blood neutrophils. The results suggested a diverse biological cadre of immune cells in patients with undifferentiated ovarian carcinomas compared with patients with other histological types of EOC. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Characterization of the mRNA expression of StAR and steroidogenic enzymes in zebrafish ovarian follicles.

    PubMed

    Ings, Jennifer S; Van Der Kraak, Glen J

    2006-08-01

    The objective of this study was to investigate the levels of expression of steroid biosynthetic enzymes and steroidogenic acute regulatory protein (StAR) at different stages of ovarian follicular development in zebrafish (Danio rerio), and to investigate the sites within the steroid biosynthetic pathway that may be regulated by gonadotropins. Ovarian follicles of sexually mature fish were separated into primary, previtellogenic, vitellogenic, and mature stages and the expression of StAR, P450 side chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), P450 hydroxylase/lyase (P450c17), 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), 17beta-hydroxysteroid dehydrogenase type 3 (17beta-HSD3), and P450 aromatase (P450aromA) was determined by Real time RT-PCR. The expression of all genes changed significantly as follicles grew, with a decrease in the expression of StAR, P450scc, 3beta-HSD and P450c17 with maturation, and an increase in the expression of 17beta-HSD3 during vitellogenesis and 17beta-HSD1 and P450aromA during previtellogenesis. In vitro incubation of vitellogenic follicles demonstrated that the expression of StAR, 17beta-HSD3, and P450aromA increased in response to hCG, and decreased in the absence of hCG. In contrast, the expression of P450scc, 3beta-HSD, P450c17, and 17beta-HSD1 remained constant between treatments and over time. Testosterone and estradiol production in the culture medium was stimulated by human chorionic gonadotropin (hCG). These experiments aid in the characterization of the roles and regulation of steroids throughout ovarian development, and suggest that gonadotropins play a key role in the regulation of StAR, 17beta-HSD3, and P450aromA in zebrafish.

  14. The spatiotemporal expression of multiple coho salmon ovarian connexin genes and their hormonal regulation in vitro during oogenesis

    PubMed Central

    2011-01-01

    Background Throughout oogenesis, cell-cell communication via gap junctions (GJs) between oocytes and surrounding follicle cells (theca and granulosa cells), and/or amongst follicle cells is required for successful follicular development. To gain a fundamental understanding of ovarian GJs in teleosts, gene transcripts encoding GJ proteins, connexins (cx), were identified in the coho salmon, Oncorhynchus kisutch, ovary. The spatiotemporal expression of four ovarian cx transcripts was assessed, as well as their potential regulation by follicle-stimulating hormone (FSH), luteinizing hormone (LH) and insulin-like growth factor 1 (IGF1). Methods Salmonid ovarian transcriptomes were mined for cx genes. Four gene transcripts designated cx30.9, cx34.3, cx43.2, and cx44.9 were identified. Changes in gene expression across major stages of oogenesis were determined with real-time, quantitative RT-PCR (qPCR) and cx transcripts were localized to specific ovary cell-types by in situ hybridization. Further, salmon ovarian follicles were cultured with various concentrations of FSH, LH and IGF1 and effects of each hormone on cx gene expression were determined by qPCR. Results Transcripts for cx30.9 and cx44.9 were highly expressed at the perinucleolus (PN)-stage and decreased thereafter. In contrast, transcripts for cx34.3 and cx43.2 were low at the PN-stage and increased during later stages of oogenesis, peaking at the mid vitellogenic (VIT)-stage and maturing (MAT)-stage, respectively. In situ hybridization revealed that transcripts for cx34.3 were only detected in granulosa cells, but other cx transcripts were detected in both oocytes and follicle cells. Transcripts for cx30.9 and cx44.9 were down-regulated by FSH and IGF1 at the lipid droplet (LD)-stage, whereas transcripts for cx34.3 were up-regulated by FSH and IGF1 at the LD-stage, and LH and IGF1 at the late VIT-stage. Transcripts for cx43.2 were down-regulated by IGF1 at the late VIT-stage and showed no response to

  15. Naturally occurring anti-glycan antibodies binding to Globo H-expressing cells identify ovarian cancer patients.

    PubMed

    Pochechueva, Tatiana; Alam, Shahidul; Schötzau, Andreas; Chinarev, Alexander; Bovin, Nicolai V; Hacker, Neville F; Jacob, Francis; Heinzelmann-Schwarz, Viola

    2017-02-10

    Glycosphingolipids are important compounds of the plasma membrane of mammalian cells and a number of them have been associated with malignant transformation and progression, reinforcing tumour aggressiveness and metastasis. Here we investigated the levels of naturally occurring anti-glycan antibodies to Globo H in blood plasma obtained from high-grade serous ovarian cancer patients (SOC) and women without gynaecological malignancies (control) using suspension glycan array technology employing chemically synthesized glycans as antibody targets. We found that anti-human Globo H IgG antibodies were able to significantly discriminate SOC from controls (P < 0.05). A combination with the clinically used tumour marker CA125 increased the diagnostic performance (AUC 0.8711). We next compared suspension array with standard flow cytometry in plasma samples and found that the level of anti-Globo H antibodies highly correlated (r = 0.992). The incubation of plasma-derived anti-glycan antibodies with chemically synthesized (presented on fluorescence microspheres) and native Globo H (expressed on Globo H-positive cell lines) revealed strong reactivity of naturally occurring human anti-Globo H antibodies towards its antigen expressed on ovarian cancer cells. Our data demonstrate that human plasma-derived antibodies to Globo H as well as the presence of the antigen might be considered as therapeutic option in ovarian cancer.

  16. An adenovirus with enhanced infectivity mediates molecular chemotherapy of ovarian cancer cells and allows imaging of gene expression.

    PubMed

    Hemminki, A; Belousova, N; Zinn, K R; Liu, B; Wang, M; Chaudhuri, T R; Rogers, B E; Buchsbaum, D J; Siegal, G P; Barnes, M N; Gomez-Navarro, J; Curiel, D T; Alvarez, R D

    2001-09-01

    The adenovirus (Ad) is a useful vector for cancer gene therapy due to its unparalleled gene transfer efficiency to dividing and quiescent cells. Primary cancer cells, however, often have highly variable or low levels of the requisite coxsackie-adenovirus receptor (CAR). Also, assessment of gene transfer and vector persistence has been logistically difficult in human clinical trials. We describe here two novel bicistronic adenoviral (Ad) vectors, AdTKSSTR and RGDTKSSTR, which contain the herpes simplex virus thymidine kinase gene (TK) for molecular chemotherapy and bystander effect. In addition, the viruses contain the human somatostatin receptor subtype-2 gene (SSTR2), the expression of which can be noninvasively imaged. We enhanced the infectivity of RGDTKSSTR by genetically incorporating the RGD-4C motif into the HI-loop of the fiber. This allows the virus to circumvent CAR deficiency by binding to alpha(v)beta(3) and alpha(v)beta(5) integrins, which are highly expressed on most ovarian cancers. The expanded tropism of RGDTKSSTR results in increased infectivity of purified primary ovarian cancer cells and allows enhanced gene transfer in the presence of malignant ascites containing anti-Ad antibodies. RGDTKSSTR may be a useful agent for treating ovarian cancer in clinical trials.

  17. Diagnostic and Prognostic Significance of Ki-67 Immunohistochemical Expression in Surface Epithelial Ovarian Carcinoma

    PubMed Central

    Krishna, Shruthi Mysore; Vimala, Manjunath Gubbanna

    2017-01-01

    Introduction The Surface Epithelial Ovarian Carcinoma (SEOC) at the moment of diagnosis, the disease is extended beyond the structures of the pelvis. Ki-67 is one of the prognostic marker which determines the growth fraction of a tumour and its over expression is associated with malignancy, tumour aggression, reserved prognosis and metastasis. Aim To evaluate the proliferative activity using Ki-67 immuno-staining in SEOC and to correlate with histological subtype, grade, Federation of Gynecology and Obstetrics (FIGO) stage, CA125 levels for diagnostic and prognostic purpose. Materials and Methods The study was conducted in JSS Medical College and Hospital, JSS University, Mysuru. It was a descriptive cross-sectional study involving 40 cases of SEOC over a period of two years. The proliferation expression related to Ki-67 antigen was evaluated by immunohistochemical monoclonal MIB-1 antibody. In each case, the Ki-67 labeling index (Ki-67 LI) was articulated as percentage of positively stained cells using high power objective of the microscope (x400). Results Among the 40 carcinomas, 26 were serous, five mucinous, four each of clear cell and undifferentiated and one transitional cell carcinoma. A total of 75% were high grade tumours. High Ki-67 LI was associated with high grade tumours (69.9%), high grade serous tumours (65.34%) and advanced FIGO staging (70.6%) with the p-value of <0.001. CA 125 levels did not have a significant correlation with Ki-67 LI. Conclusion Ki-67 is an exceptionally a cost effective marker to determine the growth fraction of a tumour cell population. In SEOC histological grade and FIGO stage when combined with Ki-67 LI in histopathology report would help in diagnostic differentiation of subtypes, prognostication, deciding the need for adjuvant chemotherapy and in predicting survival analysis. PMID:28384868

  18. Diagnostic and Prognostic Significance of Ki-67 Immunohistochemical Expression in Surface Epithelial Ovarian Carcinoma.

    PubMed

    Mahadevappa, Asha; Krishna, Shruthi Mysore; Vimala, Manjunath Gubbanna

    2017-02-01

    The Surface Epithelial Ovarian Carcinoma (SEOC) at the moment of diagnosis, the disease is extended beyond the structures of the pelvis. Ki-67 is one of the prognostic marker which determines the growth fraction of a tumour and its over expression is associated with malignancy, tumour aggression, reserved prognosis and metastasis. To evaluate the proliferative activity using Ki-67 immuno-staining in SEOC and to correlate with histological subtype, grade, Federation of Gynecology and Obstetrics (FIGO) stage, CA125 levels for diagnostic and prognostic purpose. The study was conducted in JSS Medical College and Hospital, JSS University, Mysuru. It was a descriptive cross-sectional study involving 40 cases of SEOC over a period of two years. The proliferation expression related to Ki-67 antigen was evaluated by immunohistochemical monoclonal MIB-1 antibody. In each case, the Ki-67 labeling index (Ki-67 LI) was articulated as percentage of positively stained cells using high power objective of the microscope (x400). Among the 40 carcinomas, 26 were serous, five mucinous, four each of clear cell and undifferentiated and one transitional cell carcinoma. A total of 75% were high grade tumours. High Ki-67 LI was associated with high grade tumours (69.9%), high grade serous tumours (65.34%) and advanced FIGO staging (70.6%) with the p-value of <0.001. CA 125 levels did not have a significant correlation with Ki-67 LI. Ki-67 is an exceptionally a cost effective marker to determine the growth fraction of a tumour cell population. In SEOC histological grade and FIGO stage when combined with Ki-67 LI in histopathology report would help in diagnostic differentiation of subtypes, prognostication, deciding the need for adjuvant chemotherapy and in predicting survival analysis.

  19. Human leukocyte antigen-E alleles and expression in patients with serous ovarian cancer

    PubMed Central

    Zheng, Hui; Lu, Renquan; Xie, Suhong; Wen, Xuemei; Wang, Hongling; Gao, Xiang; Guo, Lin

    2015-01-01

    Human leukocyte antigen-E (HLA-E) is one of the most extensively studied non-classical MHC class I molecules that is almost non-polymorphic. Only two alleles (HLA-E*0101 and HLA-E*0103) are found in worldwide populations, and suggested to be functional differences between these variants. The HLA-E molecule can contribute to the escape of cancer cells from host immune surveillance. However, it is still unknown whether HLA-E gene polymorphisms might play a role in cancer immune escape. To explore the association between HLA-E alleles and the susceptibility to serous ovarian cancer (SOC), 85 primary SOC patients and 100 healthy women were enrolled. Here, we indicated that high frequency of HLA-E*0103 allele existed in SOC patients by the allele-specific quantitative real-time PCR method. The levels of HLA-E protein expression in SOC patients with the HLA-E*0103 allele were higher than those with the HLA-E*0101 allele using immunohistochemistry analysis. The cell surface expression and functional differences between the two alleles were verified by K562 cells transfected with HLA-E*0101 or HLA-E*0103 allelic heavy chains. The HLA-E*0103 allele made the transfer of the HLA-E molecule to the cell surface easier, and HLA-E/peptides complex more stable. These differences ultimately influenced the function of natural killer cells, showing that the cells transfected with HLA-E*0103 allele inhibited natural killer cells to lysis. This study reveals a novel mechanism regarding the susceptibility to SOC, which is correlated with the HLA-E*0103 allele. PMID:25711417

  20. Nerve Growth Factor gene ovarian expression, polymorphism identification, and association with litter size in goats.

    PubMed

    Naicy, T; Venkatachalapathy, R T; Aravindakshan, T V; Radhika, G; Raghavan, K C; Mini, M; Shyama, K

    2016-12-01

    The Nerve Growth Factor (NGF) plays an important role in reproduction by augmenting folliculogenesis. In this study, the coding regions of caprine NGF gene were analyzed to detect single-nucleotide polymorphisms (SNPs), their association with litter size, and the relative ovarian expression of NGF gene in the two indigenous goat breeds of South India viz., the prolific Malabari and less-prolific Attappady Black. The sequence analysis of the third exon containing the entire open reading frame of NGF gene was observed to be of 808 bp with one nonsynonymous mutation at 217th position. Later, polymerase chain reaction (PCR) was performed to amplify a region of 188 bp covering the region carrying the detected mutation. The genomic DNAs from the goats under study (n = 277) were subjected to PCR and single strand conformation polymorphism (SSCP). On analysis, four diplotypes viz., AA, AB, AC, and AD were observed with respective frequencies of 0.50, 0.22, 0.27, and 0.01. Sequencing of the representative samples revealed an additional synonymous mutation, i.e., g.291C>A. Statistical analysis indicated that NGF diplotypes and the SNP g.217G>A were associated with litter size in goats (P < 0.05). Relative expression of NGF gene was significantly higher in the ovaries of goats with history of multiple than single births (P < 0.05). The results of the present study suggest the significant effect of the NGF gene on litter size in goats and identified SNPs would benefit the selection of prolific animals in future marker-assisted breeding programs. The two novel PCR-restriction fragment length polymorphisms designed, based on the detected SNPs, would help in the rapid screening of large number of animals in a breeding population for identifying individual animals with desired genetic characteristics. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. p19INK4d mRNA and protein expression as new prognostic factors in ovarian cancer patients

    PubMed Central

    Felisiak-Golabek, Anna; Dansonka-Mieszkowska, Agnieszka; Rzepecka, Iwona K; Szafron, Lukasz; Kwiatkowska, Ewa; Konopka, Bozena; Podgorska, Agnieszka; Rembiszewska, Alina; Kupryjanczyk, Jolanta

    2013-01-01

    p19INK4d (CDKN2D) is a negative regulator of the cell cycle. Little is known of its role in cancer development and prognosis. We aimed to evaluate the clinical significance of p19INK4d expression in ovarian carcinomas with respect to the TP53 accumulation status, as well as the frequency of CDKN2D mutations. p19INK4d and TP53 expression was evaluated immunohistochemically in 445 ovarian carcinomas: 246 patients were treated with platinum–cyclophosphamide (PC/PAC), while 199 were treated with taxane–platinum agents (TP). CDKN2D gene expression (mRNA) was examined in 106 carcinomas, while CDKN2D mutations in 68 tumors. Uni- and multivariate statistical analyses (logistic regression and the Cox proportional hazards model) were performed for patient groups divided according to the chemotherapeutic regimen administered, and in subgroups with and without TP53 accumulation. High p19INK4d expression increased the risk of death, but only in patients with the TP53-negative carcinomas (HR 1.61, P = 0.049 for PC/PAC-treated patients, HR 2.00, P = 0.015 for TP-treated patients). This result was confirmed by the mRNA analysis (HR 4.24, P = 0.001 for TP-treated group). High p19INK4d protein expression associated with adverse clinicopathological factors. We found no alterations in the CDKN2D gene; the c.90C>G (p.R30R; rs1968445) polymorphism was detected in 10% of tumors. Our results suggest that p19INK4d expression is a poor prognostic factor in ovarian cancer patients. Analyses of tumor groups according to the TP53 accumulation status facilitate the identification of cancer biomarkers. PMID:24022213

  2. CSIOVDB: a microarray gene expression database of epithelial ovarian cancer subtype.

    PubMed

    Tan, Tuan Zea; Yang, He; Ye, Jieru; Low, Jeffrey; Choolani, Mahesh; Tan, David Shao Peng; Thiery, Jean-Paul; Huang, Ruby Yun-Ju

    2015-12-22

    Databases pertaining to various diseases provide valuable resources on particular genes of interest but lack the molecular subtype and epithelial-mesenchymal transition status. CSIOVDB is a transcriptomic microarray database of 3,431 human ovarian cancers, including carcinoma of the ovary, fallopian tube, and peritoneum, and metastasis to the ovary. The database also comprises stroma and ovarian surface epithelium from normal ovary tissue, as well as over 400 early-stage ovarian cancers. This unique database presents the molecular subtype and epithelial-mesenchymal transition status for each ovarian cancer sample, with major ovarian cancer histologies (clear cell, endometrioid, mucinous, low-grade serous, serous) represented. Clinico-pathological parameters available include tumor grade, surgical debulking status, clinical response and age. The database has 1,868 and 1,516 samples with information pertaining to overall and disease-free survival rates, respectively. The database also provides integration with the copy number, DNA methylation and mutation data from TCGA. CSIOVDB seeks to provide a resource for biomarker and therapeutic target exploration for ovarian cancer research.

  3. Collagen type XVIII/endostatin is differentially expressed in primary and metastatic colorectal cancers and ovarian carcinomas

    PubMed Central

    Guenther, U; Herbst, H; Bauer, M; Isbert, C; Buhr, H-J; Riecken, E-O; Schuppan, D

    2001-01-01

    Collagen type XVIII (C18) is a nonfibrillar collagen of basement membranes. Its C-terminal fragment, endostatin, has been identified as an inhibitor of angiogenesis. C18 is predominantly expressed by hepatocytes of normal, cirrhotic and neoplastic liver. We compared the patterns of C18 RNA-expression in colonic adenocarcinoma metastases, which represent the most frequently occurring liver tumours, to normal colon mucosa, to primary colon cancers and to ovarian cancers which are often morphologically similar to colonic cancer or metastasis. Two C18-specific RNA-probes were generated to perform in situ hybridization combined with immunohistochemistry for cytokeratin, vimentin and the endothelial marker CD31, in order to characterize the C18-expressing cells. C18/endostatin protein was localized by immunohistology. In colorectal carcinomas and their liver metastases high levels of C18 transcripts were observed in endothelial cells and fibroblasts/myofibroblasts, whereas C18 RNA was virtually absent from carcinoma cells. Ovarian carcinomas displayed high C18 RNA expression both in carcinoma and stromal cells, indicating that induction of C18 transcription in tumour stromal cells is independent of the ability of carcinoma cells to express C18. While the role of tumour cell derived C18 in cancer growth regulation remains unknown, stimulation of proteolysis of the locally strongly expressed C18 to endostatin could offer an attractive approach for a targeted antineoplastic therapy. © 2001 Cancer Research Campaign   http://www.bjcancer.com PMID:11720442

  4. HOXB13 and ALX4 induce SLUG expression for the promotion of EMT and cell invasion in ovarian cancer cells.

    PubMed

    Yuan, Hong; Kajiyama, Hiroaki; Ito, Satoko; Chen, Dan; Shibata, Kiyosumi; Hamaguchi, Michinari; Kikkawa, Fumitaka; Senga, Takeshi

    2015-05-30

    Homeoproteins, a family of transcription factors that have conserved homeobox domains, play critical roles in embryonic development in a wide range of species. Accumulating studies have revealed that homeoproteins are aberrantly expressed in multiple tumors and function as either tumor promoters or suppressors. In this study, we show that two homeoproteins, HOXB13 and ALX4, are associated with epithelial to mesenchymal transition (EMT) and invasion of ovarian cancer cells. HOXB13 and ALX4 formed a complex in cells, and exogenous expression of either protein promoted EMT and invasion. Conversely, depletion of either protein suppressed invasion and induced reversion of EMT. SLUG is a C2H2-type zinc-finger transcription factor that promotes EMT in various cell lines. Knockdown of HOXB13 or ALX4 suppressed SLUG expression, and exogenous expression of either protein promoted SLUG expression. Finally, we showed that SLUG expression was essential for the HOXB13- or ALX4-mediated EMT and invasion. Our results show that HOXB13/SLUG and ALX4/SLUG axes are novel pathways that promote EMT and invasion of ovarian cancer cells.

  5. Transforming growth factor-β stimulates human ovarian cancer cell migration by up-regulating connexin43 expression via Smad2/3 signaling.

    PubMed

    Qiu, Xin; Cheng, Jung-Chien; Zhao, Jianfang; Chang, Hsun-Ming; Leung, Peter C K

    2015-10-01

    Reduced connexin43 (Cx43) expression is frequently detected in different types of human cancer. Cx43 has been shown to regulate cancer cell migration in a cell-type dependent manner. In both primary and recurrent human ovarian cancer, overexpression of TGF-β ligand and its receptors have been detected. TGF-β can regulate Cx43 expression in other cell types and stimulate human ovarian cancer cell migration. However, whether Cx43 can be regulated by TGF-β and is involved in TGF-β-stimulated cell migration in human ovarian cancer cells remain unknown. In this study, we demonstrate that TGF-β up-regulates Cx43 in two human ovarian cancer cell lines, SKOV3 and OVCAR4. The stimulatory effect of TGF-β on Cx43 expression is blocked by inhibition of TGF-β receptor. Treatment with TGF-β activates Smad2 and Smad3 signaling pathways in both ovarian cancer cell lines. In addition, siRNA-mediated knockdown of Smad2 or Smd3 abolishes TGF-β-induced up-regulation of Cx43 expression. Moreover, knockdown of Cx43 attenuates TGF-β-stimulated cell migration. This study demonstrates an important role for Cx43 in mediating the effects of TGF-β on human ovarian cancer cell migration.

  6. FSH and eCG impact follicles development and expression of ovarian FSHR and caspase-9 in mice.

    PubMed

    Wei, S; Gong, Z; Guo, H; Zhang, T; Ma, Z

    2017-01-01

    The study aimed to investigate the effects of FSH and eCG on the ovarian and follicular development, expression levels of FSHR and caspase-9 of ovaries in vivo. One hundred and five prepuberty mice were allocated into FSH-1, FSH-2, FSH-3, eCG-1, eCG-2, eCG-3 groups and control group (CG). Mice in FSH-1, FSH-2 and FSH-3 were intramuscularly injected with 5, 10 and 20 IU FSH twice (on day 0 and 4), respectively. Mice in eCG-1, eCG-2 and eCG-3 were intraperitoneally injected with 10, 20 and 40 IU eCG on day 0 and 4. Mice in the CG were injected with 0.5 ml normal saline on day 0 and 4. Left and right ovaries of each mouse were dissected aseptically on days 7, 14 and 21, respectively. The results showed that on days 14 and 21 the ovarian sizes and follicle numbers of FSH-3 and eCG-3 groups were greater than CG (P<0.05). FSHR mRNA of FSH-2 and eCG-1 were higher than CG on days 14 and 21 (P<0.05). FSHR proteins of FSH-3 were higher than CG on days 14 and 21 (P<0.05). Caspase-9 mRNA in FSH and eCG groups was less than CG. There were positive correlations between follicle numbers and FSH and eCG doses. FSHR protein expressions had positive correlations between ovarian weights and sizes of ovary and follicle numbers (r=0.971, P<0.05) in FSH-treated mice. Serum FSH concentrations of FSH-2, FSH-3, eCG-2 and eCG-3 groups were greater than that of CG. In conclusion, eCG and FSH promoted the ovarian development, follicle genesis, FSH secretion, FSHR mRNA and protein expressions in ovaries of mice. FSH and eCG inhibited the expression of ovarian caspase-9 mRNA.

  7. Ovarian expressed microsomal epoxide hydrolase: Role in detoxification of 4-vinylcyclohexene diepoxide and regulation by phosphatidylinositol-3 kinase signaling

    SciTech Connect

    Bhattacharya, Poulomi; Sen, Nivedita; Hoyer, Patricia B.; Keating, Aileen F.

    2012-01-01

    4-vinylcyclohexene diepoxide (VCD) is a metabolite of 4-vinylcyclohexene (VCH) which has the potential to be formed in the ovary through CYP2E1 activity. VCD specifically destroys primordial and small primary follicles in the rodent ovary. Mouse ovaries exposed to VCD demonstrate increased mRNA and protein expression of microsomal epoxide hydrolase (mEH), and an inactive tetrol metabolite (4-(1,2-dihydroxy)ethyl-1,2-dihydroxycyclohexane) can be formed in mouse ovarian follicles, potentially through detoxification action of mEH. In contrast, mEH can bioactivate another ovotoxic chemical, 7,12-dimethylbenz[a]anthracene (DMBA) to a more toxic compound, DMBA-3,4-diol-1,2-epoxide. Thus, the present study evaluated a functional role for mEH during detoxification of VCD. Additionally, because inhibition of the phosphatidyinositol-3 kinase (PI3K) signaling pathway in a previous study protected primordial follicles from VCD-induced destruction, but accelerated DMBA-induced ovotoxicity, a role for PI3K in ovarian mEH regulation was evaluated. Using a post-natal day (PND) 4 Fischer 344 rat whole ovary culture system inhibition of mEH using cyclohexene oxide during VCD exposure resulted in a greater (P < 0.05) loss of primordial and small primary follicles relative to VCD-treated ovaries. Also, relative to controls, meh mRNA was increased (P < 0.05) on day 4 of VCD (30 μM) exposure, followed by increased (P < 0.05) mEH protein after 6 days. Furthermore, inhibition of PI3K signaling increased mEH mRNA and protein expression. Thus, these results support a functional role for mEH in the rat ovary, and demonstrate the involvement of PI3K signaling in regulation of ovarian xenobiotic metabolism by mEH. -- Highlights: ► Ovarian mEH functions to metabolize VCD to a less toxic compound. ► mEH expression is increased in a temporal pattern in response to VCD exposure. ► PI3K signaling is involved in regulation of ovarian mEH expression.

  8. Is mammary not otherwise specified-type sarcoma with CD10 expression a distinct entity? A rare case report with immunohistochemical and ultrastructural study

    PubMed Central

    2013-01-01

    Abstract Mammary sarcoma is extremely rare and the diagnosis is established only after metaplastic carcinomas and malignant phyllodes tumours are excluded. A rare case of not otherwise specified-type sarcoma with CD10 expression in the left breast in a 45-year-old female was presented. It was a high-grade tumour composed of spindle cells histologically. The immunohistochemical results showed that CD10, vimentin and EGFR were positive diffusely and SMA presented focally, whereas epithelial markers and other myoepithelial or myogenic markers were all negative. The electron microscope investigation demonstrated fibroblast-like features. The exact entity of the tumour remains to be studied because it resembles undifferentiated sarcoma or sarcomatoid metaplastic carcinoma to some degree, as well as high-grade malignant phyllodes tumour in particular. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9019879588725702 PMID:23356903

  9. Global transcriptional expression in ovarian follicles from Tsaiya ducks (Anas platyrhynchos) with a high-fertilization rate.

    PubMed

    Wu, Shyh-Jong; Cheng, Yu-Shin; Liu, Hsiao-Lung; Wang, Hsing-He; Huang, Hsiu-Lin

    2016-05-01

    Novel candidates for biomarkers of a high-fertilization rate were identified here through global transcriptional profiling of ovarian follicles. Some other differentially expressed candidate genes were first noted to influence animal reproduction in our previous cDNA microarray analysis and are now recognized as markers for marker-assisted selection. In the present study, we compared gene expression in ovarian follicles from animals with high- and low-fertilization rates using an oligonucleotide array. On the basis of a fold change of greater than 1.2 and less than -1.2, a difference of >100 Affymetrix arbitrary units between the two groups, and a P value of less than 0.05, 47 genes were found to be associated with fertilization rate. GOEAST and MetaCore software were further used to identify the functional categories of genes that were differentially expressed. Then, we focused on three interesting genes associated with a high-fertilization rate: one of these genes was discovered to participate in signaling pathways of fertilization, and two genes take roles in lipid metabolism. An oligonucleotide array showed that the levels of orthodenticle homeobox 2 (OTX2) and lecithin:cholesterol acyltransferase (LCAT) gene expression were 1.62-fold and 1.95-fold higher in the high-fertilization rate group than in the low-fertilization rate group, respectively (P < 0.05). The level of apolipoprotein A-I (APOA1) gene expression was also higher in the high-fertilization rate group, with a difference of 2.31-fold (P < 0.05). The data were validated through quantitative polymerase chain reaction analysis. These results confirm the usefulness of the array technique and data mining methods in the discovery of new biomarkers and add knowledge to our understanding of the factors affecting fertilization rates in ovarian follicles. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Expression of focal adhesion kinase in endometrial stromal cells of women with endometriosis was adjusted by ovarian steroid hormones.

    PubMed

    Mu, Lin; Ma, Yan-Yan

    2015-01-01

    The aim of our study is to investigate the effects of ovarian steroid hormones on focal adhesion kinase (FAK) expression in ESCs and whether there is alteration in women with endometriosis. FAK expression was assessed by western blotting analysis. Elevated expression of FAK was seen in the cultured ESCs treated with estrogen (P < 0.05). Expression of FAK protein was not changed in ESCs after treated by progesterone or treated by estrogen and progesterone. The level of up-regulation by estrogen in endometriosis is significantly higher than that from women without endometriosis (P < 0.05). FAK expression in endometrial stromal cells from endometriosis was more sensitive to estrogen, which might contribute to the pathogenesis and progress of endometriosis.

  11. Increased expression of protein kinase CK2α correlates with poor patient prognosis in epithelial ovarian cancer

    PubMed Central

    Ma, Zebiao; Wang, Xiaojing; He, Jiehua

    2017-01-01

    Epithelial ovarian cancer (EOC) is one of the deadly gynecological malignancies. The function of protein kinase CK2α (CK2α) in EOC is still unknown. Our study aimed to investigate the relationship between the protein expression of CK2α and the tumor progression, the prognosis of human EOC. In this study, we analyzed the expression levels of CK2α through Western blot, using EOC cell lines like A2780, HO8910, COV644, OVCAR3, SKOV3, and the primary normal ovarian surface epithelial (NOSE) cells. Furthermore, OVCAR3 and SKOV3 EOC cells were employed as a cellular model to study the role of CK2α on cell growth, migration, invasion, apoptosis, and cell cycle distribution. In addition, we investigated CK2α protein expression in tumor tissues from patients with EOC by immunohistochemistry and analyzed the association between CK2α expression and clinicopathologic parameters and prognosis of EOC patients. And we found that compared with NOSE cells, CK2α protein expression was increased in A2780, HO8910, OVCAR3, and SKOV3 ovarian cancer cell lines. Decreased CK2α expression suppressed OVCAR3 and SKOV3 cell growth and induced more apoptosis. CK2α knockdown using specific siRNAs inhibited migration and invasion ability of OVCAR3 and SKOV3 cells. In addition, high CK2α protein expression was found in 68.4% (80/117) of EOC patients. Increased CK2α expression of was significantly correlated with FIGO staging and peritoneal cytology. Patients with higher CK2α expression had a significantly poorer overall survival compared with those with lower CK2α expression. Multi-variate Cox regression analysis proved that increased CK2α expression was an independent prognostic marker for EOC. Taken together, our data displayed that CK2α may play a role in tumor aggressive behavior of EOC and could be used as a marker for predicting prognosis of EOC patient. High CK2α expression might predict poor patient survival. PMID:28355289

  12. Molecular characterisation and expression profiling of the ENO1 gene in the ovarian follicle of the Sichuan white goose.

    PubMed

    Kang, Bo; Jiang, Dong Mei; Bai, Lin; He, Hui; Ma, Rong

    2014-01-01

    The ENO1 gene encodes a multifunctional enzyme that has been identified as a key component of the glycolytic pathway. Our previous studies demonstrated that ENO1 gene expression was higher in the ovaries of laying geese compared with prelaying geese. However, the molecular characterisation and expression profiling of the ENO1 gene in geese tissues and ovarian follicles remain to be determined. In this study, ENO1 cDNA (1,445 bp long) of the Sichuan white goose was cloned and characterised. The ORF of ENO1 cDNA is 1,305 bp in length and encodes a 434 amino acid protein with a molecular weight of 47.27 kDa. ENO1 expression in all of the examined tissues was the highest in spleen and the lowest in breast muscle. High expression of ENO1 appeared in the kidney, liver, adrenal gland, and retina. With increasing follicle growth, ENO1 gene expression began to decrease from the small white follicle to F5, which was followed by a sharp increase in expression in F4 and then a gradual decrease in expression from F3 to F1. Furthermore, in the postovulatory follicles (POF), the levels of ENO1 gene expression decreased gradually from POF1 to POF4. In conclusion, the ENO1 transcript was widely distributed in various tissues of the Sichuan white goose, but ENO1 expression was tissue-specific. Furthermore, the results of the ENO1 expression profiling of ovarian follicles suggest that ENO1 may play an important dual role in the progress of follicular development, where ENO1 acts as a glycolytic enzyme and also mediates apoptosis.

  13. Immunohistochemical Expression of PCNA and CD34 in Colorectal Adenomas and Carcinomas Using Specified Automated Cellular Image Analysis System: A Clinicopathologic Study

    PubMed Central

    Qasim, Ban J.; Ali, Hussam H.; Hussein, Alaa G.

    2012-01-01

    Background/Aim: To evaluate the immunohistochemical expression of proliferating cell nuclear antigen (PCNA) and CD34 in colorectal adenomas and carcinomas, and to correlate this expression with different clinicopathologic parameters. Materials and Methods: The study was retrospectively designed. A total of 86 tissue samples, including 33 paraffin blocks from patients with colorectal adenomas, 33 paraffin blocks from patients with colorectal adenocarcinomas, and a control group of 20 samples of nontumerous colonic tissue, were included in the study. From each block, 3 sections of 5 ΅m thickness were taken, 1 section was stained with hematoxylin and eosin (H and E) and the other 2 sections were stained immunohistochemically for PCNA and CD34. Scoring of the immunohistochemical staining was performed using a specified automated cellular image analysis system (Digimizer). Results: PCNA expression was significantly increased in a sequence of normal mucosa–adenoma–carcinoma. It was significantly higher in adenomas ≥ 1 cm and those with severe dysplasia, and it showed a significant positive correlation with grade and lymph node involvement in colorectal carcinoma. CD34 showed significantly higher expression in carcinoma than adenoma and in adenoma than in the control group. CD34 expression showed a significant correlation with adenomas carrying severe dysplasia and large-sized adenomas (≥1cm). It was significantly correlated with tumor grade, lymphovascular invasion, and lymph node involvement in colorectal carcinoma. Conclusion: PCNA plays an important role in colorectal neoplastic progression and can be utilized as ancillary marker for the risk of malignant transformation in colorectal adenomas as it correlates with high grade dysplasia and size. Intratumoral quantification of the mean (A and N) of CD34 in colorectal carcinoma reflects the grade of tumors and can predict lymph node involvement and lymphovascular invasion, to make a useful additional prognostic

  14. High expressions of BCL6 and Lewis y antigen are correlated with high tumor burden and poor prognosis in epithelial ovarian cancer.

    PubMed

    Zhu, Liancheng; Feng, Huilin; Jin, Shan; Tan, Mingzi; Gao, Song; Zhuang, Huiyu; Hu, Zhenhua; Wang, Huimin; Song, Zuofei; Lin, Bei

    2017-07-01

    Aberrant regulation of BCL6 plays crucial oncogenic roles in various malignant tumors; howbeit, the function of BCL6 in tumorigenesis of ovarian cancer remains unclear. The aim of this study is to investigate the role of BCL6 in ovarian cancer. The methods of immunohistochemical staining, quantitative real-time polymerase chain reaction, immunocytochemical staining, and gene expression profile enrichment analysis were performed to identify the possible role of BCL6 in ovarian cancer. We observed that the expression of BCL6 was significantly higher in ovarian cancer tissues and correlated with higher tumor burden including advanced International Federation of Gynecology and Obstetrics stages, poor differentiation, Type II ovarian cancer, the presence of >1 cm residual tumor size, and appearance of recurrence or death (all p < 0.05). The expression patterns of Lewis y were similar to these of BCL6. Multivariate Cox analysis demonstrated that advanced International Federation of Gynecology and Obstetrics stage, lymph node metastasis, residual tumor size >1 cm, as well as high expressions of BCL6 and Lewis y antigen were independent factors of worse progression-free survival and overall survival (all p < 0.05). There was a positive correlation of the expressions of BCL6 and Lewis y antigen. The associated genes with BCL6 in response to Lewis y antigen were identified, including four upregulated genes ( SOCS3, STAT1, PPARG, and GADD45A) and three downregulated genes ( ACAN, E2F3, and ZBTB7B). In conclusion, the high expressions of BCL6 and Lewis y antigen are associated with development, high tumor burden, and worse prognosis of ovarian cancer and targeting BCL6 could be a novel therapeutic strategy for ovarian cancer treatment.

  15. Ovarian cysteine proteinases in the teleost Fundulus heteroclitus: molecular cloning and gene expression during vitellogenesis and oocyte maturation.

    PubMed

    Fabra, Mercedes; Cerdà, Joan

    2004-03-01

    The cysteine proteinases cathepsins B and L are members of the multigene family of lysosomal proteases that have been implicated in the processing of yolk proteins (YPs) in teleost oocytes. However, the full identification of the type of cathepsins expressed in fish ovarian follicles and embryos, as well as their regulatory mechanisms and specific function(s), are not yet elucidated. In this study, cDNAs encoding cathepsins B, L, F, K, S, Z, C, and H have been isolated from the teleost Fundulus heteroclitus, and the analysis of their deduced amino acid sequences revealed highly similar structural features to vertebrate orthologs, and confirmed in this species the existence of cathepsin L-like, cathepsin B-like, and cathepsin F-like subfamilies of cysteine proteinases. While all identified cathepsins were expressed in ovarian follicles, the corresponding mRNAs showed different temporal expression patterns. Thus, similar mRNA levels of cathepsins L, F, S, B, C, and Z were found throughout the oocyte growth or vitellogenesis period, whereas those for cathepsin H and K appeared to decrease as vitellogenesis advanced. During oocyte maturation, a transient accumulation of cathepsins L, S, H, and F mRNAs, approximately a 3-, 1.5-, 1.6-, and 6-fold increase, respectively, was detected in ovarian follicles within the 20-25 hr after hormone stimulation, coincident with the maximum proteolysis of the oocyte major YPs. The specific temporal pattern of expression of these genes may indicate a potential role of cathepsin L-like and cathepsin F proteases in the YP processing events occurring during fish oocyte maturation and/or early embryogenesis.

  16. The RUNX1 transcription factor is expressed in serous epithelial ovarian carcinoma and contributes to cell proliferation, migration and invasion

    PubMed Central

    Keita, Mamadou; Bachvarova, Magdalena; Morin, Chantale; Plante, Marie; Gregoire, Jean; Renaud, Marie-Claude; Sebastianelli, Alexandra; Trinh, Xuan Bich; Bachvarov, Dimcho

    2013-01-01

    Previously, we have identified the RUNX1 gene as hypomethylated and overexpressed in post-chemotherapy (CT) primary cultures derived from epithelial ovarian cancer (EOC) patients, when compared with primary cultures derived from matched primary (prior to CT) tumors. Here we show that RUNX1 displays a trend of hypomethylation, although not significant, in omental metastases compared with primary EOC tumors. Surprisingly, RUNX1 displayed significantly higher expression not only in metastatic tissue, but also in high-grade primary tumors and even in low malignant potential tumors. The RUNX1 expression levels were almost identical in primary tumors and omental metastases, suggesting that RUNX1 hypomethylation might have a limited impact on its overexpression in advanced (metastatic) stage of the disease. Knockdown of the RUNX1 expression in EOC cells led to sharp decrease of cell proliferation and induced G1 cell cycle arrest. Moreover, RUNX1 suppression significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon RUNX1 suppression, while a number of pro-apoptotic genes and some EOC tumor suppressor genes were induced. Taken together, our data are indicative for a strong oncogenic potential of the RUNX1 gene in EOC progression and suggest that RUNX1 might be a novel EOC therapeutic target. Further studies are needed to more completely elucidate the functional implications of RUNX1 and other members of the RUNX gene family in ovarian tumorigenesis. PMID:23442798

  17. Gene Expression Profile for Predicting Survival in Advanced-Stage Serous Ovarian Cancer Across Two Independent Datasets

    PubMed Central

    Yoshihara, Kosuke; Tajima, Atsushi; Yahata, Tetsuro; Kodama, Shoji; Fujiwara, Hiroyuki; Suzuki, Mitsuaki; Onishi, Yoshitaka; Hatae, Masayuki; Sueyoshi, Kazunobu; Fujiwara, Hisaya; Kudo, Yoshiki; Kotera, Kohei; Masuzaki, Hideaki; Tashiro, Hironori; Katabuchi, Hidetaka; Inoue, Ituro; Tanaka, Kenichi

    2010-01-01

    Background Advanced-stage ovarian cancer patients are generally treated with platinum/taxane-based chemotherapy after primary debulking surgery. However, there is a wide range of outcomes for individual patients. Therefore, the clinicopathological factors alone are insufficient for predicting prognosis. Our aim is to identify a progression-free survival (PFS)-related molecular profile for predicting survival of patients with advanced-stage serous ovarian cancer. Methodology/Principal Findings Advanced-stage serous ovarian cancer tissues from 110 Japanese patients who underwent primary surgery and platinum/taxane-based chemotherapy were profiled using oligonucleotide microarrays. We selected 88 PFS-related genes by a univariate Cox model (p<0.01) and generated the prognostic index based on 88 PFS-related genes after adjustment of regression coefficients of the respective genes by ridge regression Cox model using 10-fold cross-validation. The prognostic index was independently associated with PFS time compared to other clinical factors in multivariate analysis [hazard ratio (HR), 3.72; 95% confidence interval (CI), 2.66–5.43; p<0.0001]. In an external dataset, multivariate analysis revealed that this prognostic index was significantly correlated with PFS time (HR, 1.54; 95% CI, 1.20–1.98; p = 0.0008). Furthermore, the correlation between the prognostic index and overall survival time was confirmed in the two independent external datasets (log rank test, p = 0.0010 and 0.0008). Conclusions/Significance The prognostic ability of our index based on the 88-gene expression profile in ridge regression Cox hazard model was shown to be independent of other clinical factors in predicting cancer prognosis across two distinct datasets. Further study will be necessary to improve predictive accuracy of the prognostic index toward clinical application for evaluation of the risk of recurrence in patients with advanced-stage serous ovarian cancer. PMID:20300634

  18. Expression of WT1, CA 125, and GCDFP-15 as useful markers in the differential diagnosis of primary ovarian carcinomas versus metastatic breast cancer to the ovary.

    PubMed

    Tornos, Carmen; Soslow, Robert; Chen, Shirley; Akram, Muzaffar; Hummer, Amanda J; Abu-Rustum, Nadeen; Norton, Larry; Tan, Lee K

    2005-11-01

    Metastatic breast carcinoma to the ovary is sometimes difficult to differentiate from primary ovarian carcinoma. This problem is often encountered in breast carcinoma patients who develop adnexal masses. ER and PR can be positive in a high percentage of breast and ovarian carcinomas, and therefore cannot be used in the differential diagnosis of these entities. WT1 and CA125 have been identified as possible markers for ovarian cancer. However, no studies have been done that specifically compare the immunophenotype of breast carcinoma metastatic to ovary with that of primary ovarian cancer. Thirty-nine cases of metastatic breast carcinoma to the ovary, 36 primary breast carcinomas, and 42 primary ovarian carcinomas were examined immunohistochemically for the expression of WT1, CA125, carcinoembryonic antigen, MUC2, MUC1, and GCDFP. The percentage of cells stained and the intensity of staining were recorded. Thirty-two ovarian carcinomas (76%) were positive for WT1, including 31 of 33 (94%) serous carcinomas. Most of them had strong and diffuse staining. None of the breast cancers either primary or metastatic to the ovary expressed WT1. Thirty-eight (90%) ovarian carcinomas were positive for CA125, most of them with strong and diffuse staining. Most breast carcinomas were negative for CA125, with only 6 (16%) of the primary ones and 5 (12%) of the metastatic showing weak and focal positivity. All ovarian carcinomas were negative for GCDFP. Five primary breast cancers (14%) and 17 (43%) metastatic to the ovary were positive for GCDFP. Nine (21%) ovarian carcinomas, 8 (22%) primary breast carcinomas, and 13 (33%) metastatic to the ovary were positive for carcinoembryonic antigen. Almost all tumors examined were positive for MUC1 (100% ovarian carcinomas, 100% primary breast carcinomas, and 95% metastatic breast carcinomas to ovary). MUC2 was positive in 10 (24%) ovarian carcinomas, 3 (8%) primary breast cancers, and 12 (30%) metastases to the ovary. The presence of

  19. Impaired gremlin 1 (GREM1) expression in cumulus cells in young women with diminished ovarian reserve (DOR).

    PubMed

    Jindal, Sangita; Greenseid, Keri; Berger, Dara; Santoro, Nanette; Pal, Lubna

    2012-02-01

    A symbiotic relationship between ovarian granulosa cells (GC) and the developing oocyte is critical. Genetic modulations in GC's can lead to reproductive insufficiency, highlighting the role of GC's in reproductive competence. Utilizing gene expression analyses in cumulus GC's, we attempt to enhance our understanding of mechanisms that may contribute to poor reproductive capacity in young women with diminished ovarian reserve (DOR). We measured gremlin 1 (GREM1) gene expression in GC's from infertile women <38 years undergoing in vitro fertilization in the context of DOR. GREM1, a member of the differential screening-selected gene aberrative in neuroblastoma (DAN) family of genes known for its highly regulated expression pattern during folliculogenesis and a downstream effecter of oocyte-derived growth and differentiation factor 9, was down-regulated 3-fold (-3.08) in women with DOR versus control; down-regulation was confirmed by qRT-PCR (-4.02). This is the first demonstration linking differential expression of Gremlin with etiology of infertility in women.

  20. Expression of Yes-associated protein 1 and its clinical significance in ovarian serous cystadenocarcinoma.

    PubMed

    Cho, Sang Yeon; Kim, Kwanghun; Park, Min Soo; Jang, Mi Young; Choi, Young Hwan; Han, Suyeon; Shin, Hyun Mo; Chung, Chaeuk; Han, Hye Young; Yang, Jung Bo; Ko, Young Bok; Yoo, Heon Jong

    2017-05-01

    Yes-associated protein 1 (YAP1) is a key transcriptional regulator in the Hippo signaling pathway that plays a critical role in the development and progression of several types of malignancies, including ovarian cancer. Herein, we investigated the expression of YAP1 and its clinical significance in a large population of patients with ovarian serous cystadenocarcinoma (OSC), which is the most common form of epithelial ovarian neoplasm, using the TCGA database. Surprisingly, cross-cancer mRNA expression and alterations in YAP1 were higher in OSC than in those of other types of cancers in the TCGA database. YAP1 mRNA expression was significantly higher in OSC compared with normal ovarian samples, and was higher in stages III and IV, than stages I and II. The level of YAP1 protein, which is mainly localized to the nucleus, was also higher in stage IV as compared with stages I, II and III. However, the protein level of pYAP1, which is inactive and is localized to the cytoplasm, was not significantly different between stages. The ratio of pYAP/YAP, which shows higher activity at a low ratio, was lower in stage III than in stages I and II. High YAP and low pYAP levels were significantly correlated with a poor prognosis in patients with OSC. The mRNA and protein expression of YAP1 were significantly increased in the proliferative subtype as compared to the differentiated, immunoreactive and mesenchymal subtypes. According to bioinformatics analysis, YAP1 is most highly correlated with the cell cycle. TGF-β signaling and WNT signaling were significantly increased in the high YAP1 group according to gene set enrichment analysis. Taken together, our results suggest that not only high YAP1 expression but also its subcellular distribution may be associated with poor overall survival in patients with OSC.

  1. VAV1 represses E-cadherin expression through the transactivation of Snail and Slug: a potential mechanism for aberrant epithelial to mesenchymal transition in human epithelial ovarian cancer.

    PubMed

    Wakahashi, Senn; Sudo, Tamotsu; Oka, Noriko; Ueno, Sayaka; Yamaguchi, Satoshi; Fujiwara, Kiyoshi; Ohbayashi, Chiho; Nishimura, Ryuichiro

    2013-09-01

    Ovarian cancer is the most lethal gynecological malignancy in the western world. Although patients with early-stage ovarian cancer generally have a good prognosis, approximately 20%-30% of patients will die of the disease, and 5-year recurrence rates are 25%-45%, highlighting the need for improved detection and treatment. We investigated the role of VAV1, a protein with guanine nucleotide exchange factor activity, which is associated with survival in patients with early-stage ovarian cancer (International of Obstetrics and Gynecology [FIGO] stages I and II). We analyzed 88 samples from patients with primary epithelial ovarian cancer, which were divided into FIGO stages I and II (n = 46), and III and IV (n = 42). Prognostic analysis revealed that upregulated VAV1 expression correlated significantly with poor prognosis in patients with early-stage epithelial ovarian cancer (P ≤ 0.05), but not with other clinicopathologic features. Stable overexpression of VAV1 in human high-grade serous ovarian cancer SKOV3 cells induced morphologic changes indicative of loss of intercellular adhesions and organized actin stress fibers. Western blotting and real-time reverse transcriptase-polymerase chain reaction demonstrated that these cells had downregulated E-cadherin protein and messenger RNA levels, respectively. This downregulation is associated with epithelial-mesenchymal transition (EMT) and invasive cancer. Furthermore, VAV1 overexpression in both SKOV3 and human ovarian surface epithelial cells demonstrated that its upregulation of an E-cadherin transcriptional repressor, Snail and Slug, was not confined to ovarian cancer cells. Conversely, knockdown of VAV1 by RNA interference reduced Snail and Slug. Our findings suggest that VAV1 may play a role in the EMT of ovarian cancer, and may serve as a potential therapeutic target.

  2. Human Epidermal Growth Factor Receptor-3 mRNA Expression as a Prognostic Marker for Invasive Duct Carcinoma not Otherwise Specified

    PubMed Central

    Hammoda, Ghada Ezat; El-Hefnawy, Sally Mohammed; Abdallah, Rania Abdallah

    2017-01-01

    Introduction Breast cancer is the most common cancer in women and the Erythroblastosis Oncogene B(ErbB) receptor family holds crucial role in its pathogenesis. Human Epidermal Growth Factor Receptor 3 (HER-3) gene over expression in breast tissue has been associated with aggressive clinical behaviour and bad prognosis. Aim To evaluate HER-3 mRNA expression level as a prognostic marker for breast cancer and to correlate its level with other established prognostic parameters. Materials and Methods This study was carried out on specimens of 100 cases that were divided into 40 patients presented with fibroadenoma and 60 patients presented with Invasive Ductal Carcinoma (IDC) not otherwise specified and underwent modified radical mastectomy. All specimens were investigated for HER-2/neu, ER and PR expression by Immunohistochemistry (IHC) and quantitative assay of HER-3 mRNA expression using real time PCR technique. Results There was a significant high HER3 mRNA level in carcinoma cases compared to fibroadenoma. In malignant cases, HER3 mRNA level was significantly associated with advanced T stage, advanced N stage, number of positive lymph nodes, large tumour size and cases associated with an adjacent in situ component. Moreover, HER-3 mRNA level was of highest values in Her-2/neu positive group followed by triple negative cases with the lowest level in luminal group (p<0.05). Conclusion HER-3 gene is upregulated in IDC especially those carrying poor prognostic features. HER-3 mRNA level may identify a subset of patients with a poor prognosis, and who could undergo further evaluation for the efficacy of HER3 targeted anticancer therapy. PMID:28384967

  3. The Stimulation of IGF-1R Expression by Lewis(y) Antigen Provides a Powerful Development Mechanism of Epithelial Ovarian Carcinoma

    PubMed Central

    Liu, Dawo; Liu, Juanjuan; Wang, Changzhi; Lin, Bei; Liu, Qing; Hao, Yingying; Zhang, Shulan; Iwamori, Masao

    2011-01-01

    Objective This study aimed to measure and correlate the expression of insulin-like growth factor receptor-1 (IGF-1R) and the Lewis(y) antigen in ovarian cancer cell lines and tissue samples. Methods Reverse transcriptase PCR (RT-PCR), Western blotting, immunoprecipitation, immunohistochemistry, and immunofluorescence double-labeling techniques were applied to detect and measure the expression of Lewis(y) and IGF-1R. Results In α1,2-fucosyltransferase (α1,2-FT)-transfected cells, IGF-1R expression was significantly upregulated compared with cells that do not overexpress α1,2-FT (P < 0.05). The amount of Lewis(y) expressed on IGF-1R increased 1.81-fold in α1,2-FT-overexpressing cells (P < 0.05), but the ratio of Lewis(y) expressed on IGF-1R to total IGF-1R was unaltered between two cells (P > 0.05). In malignant epithelial ovarian tumors, the positivity rates of Lewis(y) and IGF-1R detection were 88.3% and 93.33%, respectively, which is higher than the positivity rates in marginal (60.00% and 63.33%, all P < 0.05), benign (33.00% and 53.33%, all P < 0.01), and normal (0% and 40%, all P < 0.01) ovarian samples. No correlations were detected in positivity rates of Lewis(y) or IGF-1R expression with respect to clinicopathological parameters in ovarian cancers (all P > 0.05). Both IGF-1R and Lewis(y) were highly expressed in ovarian cancer tissues, and their expression levels were positively correlated (P < 0.05). Conclusion Overexpression of Lewis(y) results in overexpression of IGF-1R. Both IGF-1R and Lewis(y) are associated with the occurrence and development of ovarian cancers. PMID:22072919

  4. Regulatory Role of Gonadotropins and Local Factors Produced by Ovarian Follicles on In Vitro Resistin Expression and Action on Porcine Follicular Steroidogenesis.

    PubMed

    Rak, Agnieszka; Drwal, Eliza; Karpeta, Anna; Gregoraszczuk, Ewa Ł

    2015-06-01

    Resistin, a hormone secreted by adipocytes, is thought to be important in reproduction. Our previous study demonstrated resistin expression in porcine ovarian follicles and its direct effect on steroidogenesis. The aim of the current study was to evaluate the effect of gonadotropins and the local ovarian factors, such as insulin-like growth factor type 1 (IGF1) and steroids (progesterone, testosterone, and 17 beta-estradiol), on the expression and secretion of resistin, as well as its steroidogenic action. Porcine ovarian follicles were exposed to follicle-stimulating hormone (FSH) and luteinizing hormone (LH) at 50-150 ng/ml, IGF1 (10-100 ng/ml), and steroids at 10(-8) to 10(-6) M for 24 h. Then, mRNA, protein expression, and medium concentration of resistin were determined using real-time PCR, Western blot analysis, and ELISA, respectively. In the subsequent experiments, ovarian follicles were exposed to resistin and/or FSH, LH, IGF1, and steroids, and ovarian steroidogenesis was analyzed. Additionally, we examined the direct effect of resistin on the protein expression of receptors for gonadotropins and investigated local factors. The results showed that gonadotropins and steroids have stimulatory effects but that IGF1 has an inhibitory effect on resistin expression and secretion. Resistin decreased gonadotropins and local hormone-induced steroid secretion and inhibited 3beta-hydroxysteroid dehydrogenase, 17beta-hydroxysteroid dehydrogenase, and cytochrome P450 aromatase protein expression. Additionally, we demonstrated that resistin increased the expression of receptors for progesterone and testosterone. These findings all show that the expression and function of resistin are regulated by gonadotropins and local factors produced by ovarian follicles. © 2015 by the Society for the Study of Reproduction, Inc.

  5. The stimulation of IGF-1R expression by Lewis(y) antigen provides a powerful development mechanism of epithelial ovarian carcinoma.

    PubMed

    Liu, Dawo; Liu, Juanjuan; Wang, Changzhi; Lin, Bei; Liu, Qing; Hao, Yingying; Zhang, Shulan; Iwamori, Masao

    2011-01-01

    This study aimed to measure and correlate the expression of insulin-like growth factor receptor-1 (IGF-1R) and the Lewis(y) antigen in ovarian cancer cell lines and tissue samples. Reverse transcriptase PCR (RT-PCR), Western blotting, immunoprecipitation, immunohistochemistry, and immunofluorescence double-labeling techniques were applied to detect and measure the expression of Lewis(y) and IGF-1R. In α1,2-fucosyltransferase (α1,2-FT)-transfected cells, IGF-1R expression was significantly upregulated compared with cells that do not overexpress α1,2-FT (P < 0.05). The amount of Lewis(y) expressed on IGF-1R increased 1.81-fold in α1,2-FT-overexpressing cells (P < 0.05), but the ratio of Lewis(y) expressed on IGF-1R to total IGF-1R was unaltered between two cells (P > 0.05). In malignant epithelial ovarian tumors, the positivity rates of Lewis(y) and IGF-1R detection were 88.3% and 93.33%, respectively, which is higher than the positivity rates in marginal (60.00% and 63.33%, all P < 0.05), benign (33.00% and 53.33%, all P < 0.01), and normal (0% and 40%, all P < 0.01) ovarian samples. No correlations were detected in positivity rates of Lewis(y) or IGF-1R expression with respect to clinicopathological parameters in ovarian cancers (all P > 0.05). Both IGF-1R and Lewis(y) were highly expressed in ovarian cancer tissues, and their expression levels were positively correlated (P < 0.05). Overexpression of Lewis(y) results in overexpression of IGF-1R. Both IGF-1R and Lewis(y) are associated with the occurrence and development of ovarian cancers.

  6. Microarray-based detection and expression analysis of extracellular matrix proteins in drug‑resistant ovarian cancer cell lines.

    PubMed

    Januchowski, Radosław; Zawierucha, Piotr; Ruciński, Marcin; Zabel, Maciej

    2014-11-01

    Ovarian cancer is the most lethal gynecological malignancy. Multiple drug resistance (MDR) development leads to resistance of cancer cells to chemotherapy. Microarray methods can provide information regarding new candidate genes that can play a role in resistance to cytostatic drugs. Extracellular matrix (ECM) can influence drug resistance by inhibiting the penetration of the drug into cancer tissue as well as increased apoptosis resistance. In the present study, we report changes in the ECM and related gene expression pattern in methotrexate-, cisplatin-, doxorubicin-, vincristine-, topotecan- and paclitaxel-resistant variants of the W1 ovarian cancer cell line. The resistant variants of the W1 cell line were generated by stepwise selection of cells with an increasing concentration of the indicated drugs. Affymetrix GeneChip® Human Genome U219 Array Strips were used for hybridizations. Independent t-tests were used to determinate the statistical significance of results. Genes whose expression levels were higher than the assumed threshold (upregulated, >5-fold and downregulated, <5-fold) were visualized using the scatter plot method, selected and listed in the tables. Among the investigated genes, expression of 24 genes increased, expression of 14 genes decreased and expression of three genes increased or decreased depending on the cell line. Among the increased genes, expression of 10 increased very significantly, >20-fold. These genes were: ITGB1BP3, COL3A1, COL5A2, COL15A1, TGFBI, DCN, LUM, MATN2, POSTN and EGFL6. The expression of seven genes decreased very significantly: ITGA1, COL1A2, LAMA2, GPC3, KRT23, VIT and HMCN1. The expression pattern of ECM and related genes provided the preliminary view into the role of ECM components in cytostatic drug resistance of cancer cells. The exact role of the investigated genes in drug resistance requires further investigation.

  7. Bone morphogenetic protein 1 is expressed in porcine ovarian follicles and promotes oocyte maturation and early embryonic development

    PubMed Central

    LEI, Xiaocan; CUI, Kuiqing; CAI, Xiaoyan; REN, Yanping; LIU, Qingyou; SHI, Deshun

    2016-01-01

    In the present study, we tried to determine whether bone morphogenetic protein 1 (BMP1) plays a role in ovarian follicular development and early embryo development. We systematically investigated the expression and influence of BMP1 during porcine follicle and early embryonic development. Immunohistochemistry demonstrated that the BMP1 protein is expressed in granular cells and oocytes during follicular development, from primary to pre-ovulatory follicles, including atretic follicles and the corpus luteum. The mRNA expression of BMP1 significantly increased as the porcine follicles grew. Immunofluorescence analysis indicated that BMP1 was expressed in cumulus-oocyte complexes (COCs), oocytes and porcine embryos during early in vitro culture. qPCR and western blot analysis showed that the expression of BMP1 was significantly up-regulated in mature porcine oocytes and COCs compared to immature oocytes and COCs. BMP1 is expressed in early porcine embryos, and its expression reaches a peak at the 8-cell stage. To determine the effect of BMP1 on the maturation of oocytes and the development of early embryos, various concentrations of BMP1 recombinant protein or antibody were added to the in vitro culture media, respectively. BMP1 significantly affected the porcine oocyte maturation rate, the cleavage rate and the blastocyst development rate of embryos cultured in vitro in a positive way, as well as the blastocyst cell number. In conclusion, BMP1 is expressed throughout porcine ovarian follicle development and early embryogenesis, and it promotes oocyte maturation and the developmental ability of embryos during early in vitro culture. PMID:27890905

  8. Characterization, localization, and stage-dependent gene expression of gonadotropin receptors in chub mackerel (Scomber japonicus) ovarian follicles.

    PubMed

    Nyuji, Mitsuo; Kitano, Hajime; Shimizu, Akio; Lee, Jae Man; Kusakabe, Takahiro; Yamaguchi, Akihiko; Matsuyama, Michiya

    2013-06-01

    The pituitary gonadotropins (GtHs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), are key regulators of gametogenesis in teleosts. However, little is known about the physiological mechanisms by which GtHs regulate asynchronous oocyte development in multiple-spawning marine fishes. We cloned cDNAs encoding GtH receptors (FSHR and LHR) from chub mackerel (Scomber japonicus). FSH and LH were purified by anion-exchange chromatography, gel filtration, and concanavalinA-agarose. When expressed in mammalian cells, FSHR and LHR responded strongly to their own ligands. By separating LH into two subunits by the use of reverse-phase chromatography, we found that the beta-subunit is responsible for signal transduction and the alpha-subunit may be important for holding hormone-receptor complex. In situ hybridization showed that only fshr was expressed in prefollicle and granulosa cells in oocytes at the perinucleolus and cortical alveolus stages, suggesting that FSH is involved in the primary and early secondary growth of oocytes. In ovarian follicles during vitellogenesis, both fshr and lhr were expressed in granulosa and thecal cells, and lhr was strongly expressed during germinal vesicle migration (GVM). Real-time PCR analysis of stage-dependent fshr and lhr expression showed that fshr expression was high in ovarian follicles throughout vitellogenesis and decreased during GVM, whereas lhr expression was low in early vitellogenesis, but increased markedly in the late phase of vitellogenesis, remaining high during GVM. These findings suggest that switching of the expression of FSHR to LHR controls the effects of FSH and/or LH on vitellogenesis and final oocyte maturation via steroid production in granulosa and thecal cells.

  9. Ovarian Autoantibodies Predict Ovarian Cancer

    DTIC Science & Technology

    2010-11-01

    ovarian adenocarcinomas from laying hens. Gynecol Oncol, 2007; 104: 192-198. 506 25. Hales DB, Zhuge Y, Lagman JA, Ansenberger K, Mahon C, Barua A...Ultrasound Med 2010, 29:173-182. 479 (19) Hales DB, Zhuge Y, Lagman JA, Ansenberger K, Mahon C, Barua A et al: 480 Cyclooxygenases expression and...adenocarcinomas from laying hens. Gynecol Oncol 2007, 507 104:192-198. 508 (30) Ansenberger K, Zhuge Y, Lagman JA, Richards C, Barua A, Bahr JM

  10. Human epididymis protein 4 expression positively correlated with miR-21 and served as a prognostic indicator in ovarian cancer.

    PubMed

    Chen, Yong; Chen, Qingquan; Liu, Qicai; Gao, Feng

    2016-06-01

    Ovarian cancer is the most common cause of gynecological malignancy-related mortality. Human epididymis protein 4 (HE4) is a useful biomarker for ovarian cancer when either used alone or in combination with carbohydrate antigen 125 (CA125). What is more, aberrant expression of microRNA-21 (miR-21) has been shown to be involved in oncogenesis, but the relationship between miR-21 and HE4 in ovarian cancer is not clear. Tumor and adjacent tumor tissues from 43 patients with ovarian cancer were examined. Real-time polymerase chain reaction (RT-PCR) was used to detect the expression of HE4 in the carcinoma and adjacent tissues. The associations between HE4 and tumor biological characters were discussed. TaqMan(®) MicroRNA (miRNA) assays were employed to detect the expression of miR-21 in the ovarian carcinoma. In ovarian cancer, the expression of HE4 messenger RNA (mRNA) in cancer tissues was higher than adjacent tumor tissues (P < 0.0001), which was 1.299-fold of adjacent tumor tissues. And, the expression of miR-21 was also up-regulated which was significantly different in the ovarian cancer (the positive rate was 76.74 %). There was a significantly positive correlation between miR-21 and HE4 expression (r = 0.283 and P = 0.066 for HE4 mRNA, r = 0.663 and P < 0.0001 for serum HE4). There was also a significant correlation between miR-21 and tumor grade (r = 0.608, P < 0.0001). Significantly, patients with recent recurrence (less than 6 months, n = 17) have a higher miR-21 expression than those with no recent recurrence. Therefore, HE4 and miR-21 may play an important role in the development and progression of ovarian cancer and they may serve as prognostic indicators in ovarian cancer.

  11. Cell-mass structures expressing the aromatase gene Cyp19a1 lead to ovarian cavities in Xenopus laevis.

    PubMed

    Mawaribuchi, Shuuji; Ikeda, Nozomi; Fujitani, Kazuko; Ito, Yuzuru; Onuma, Yasuko; Komiya, Tohru; Takamatsu, Nobuhiko; Ito, Michihiko

    2014-10-01

    The African clawed frog, Xenopus laevis, has a ZZ/ZW-type sex-determination system. We previously reported that a W-linked gene, Dm-W, can determine development as a female. However, the mechanisms of early sex differentiation remain unclear. We used microarrays to screen for genes with sexually dimorphic expression in ZZ and ZW gonads during early sex differentiation in X laevis and found several steroidogenic genes. Importantly, the steroid 17α-hydroxylase gene Cyp17a1 and the aromatase gene Cyp19a1 were highly expressed in ZZ and ZW gonads, respectively, just after sex determination. At this stage, we found that Cyp17a1, Cyp19a1, or both were expressed in the ZZ and ZW gonads in a unique mass-in-line structure, in which several masses of cells, each surrounded by a basement membrane, were aligned along the anteroposterior axis. In fact, during sex differentiation, ovarian cavities formed inside each mass of Cyp17a1- and Cyp19a1-positive cells in the ZW gonads. However, the mass-in-line structure disappeared during testicular development in the ZZ testes. These results suggested that the mass-in-line structure found in both ZZ and ZW gonads just after sex determination might be formed in advance to produce ovarian cavities and then oocytes. Consequently, we propose a view that the default sex may be female in the morphological aspect of gonads in X laevis.

  12. Ovarian Transcriptome Analysis of Portunus trituberculatus Provides Insights into Genes Expressed during Phase III and IV Development

    PubMed Central

    Han, Tao; Liu, Tao; Wang, Chunlin; Xiao, Jia; Mu, Changkao; Li, Ronghua; Yu, Fangping; Shi, Huilai

    2015-01-01

    Enhancing the production of aquatic animals is crucial for fishery management and aquaculture applications. Ovaries are specialized tissues that play critical roles in producing oocytes and hormones. Significant biochemical changes take place during the sexual maturation of Portunus trituberculatus, but the genetics of this process has not been extensively studied. Transcriptome sequencing can be used to determine gene expression changes within specific periods. In the current study, we used transcriptome sequencing to produce a comprehensive transcript dataset for the ovarian development of P. trituberculatus. Approximately 100 million sequencing reads were generated, and 126,075 transcripts were assembled. Functional annotation of the obtained transcripts revealed important pathways in ovarian development, such as those involving the vitellogenin gene. Also, we performed deep sequencing of ovaries in phases III and IV of sexual maturation in P. trituberculatus. Differential analysis of gene expression identified 506 significantly differentially expressed genes, which belong to 20 pathway, transporters, development, transcription factors, metabolism of other amino acids, carbohydrate and lipid, solute carrier family members, and enzymes. Taken together, our study provides the first comprehensive transcriptomic resource for P. trituberculatus ovaries, which will strengthen understanding of the molecular mechanisms underlying the sexual maturation process and advance molecular nutritional studies of P. trituberculatus. PMID:26431399

  13. Cloning and expression of R-Spondin1 in different vertebrates suggests a conserved role in ovarian development

    PubMed Central

    Smith, Craig A; Shoemaker, Christina M; Roeszler, Kelly N; Queen, Joanna; Crews, David; Sinclair, Andrew H

    2008-01-01

    Background R-Spondin1 (Rspo1) is a novel regulator of the Wnt/β-catenin signalling pathway. Loss-of-function mutations in human RSPO1 cause testicular differentiation in 46, XX females, pointing to a role in ovarian development. Here we report the cloning and comparative expression analysis of R-SPONDIN1 orthologues in the mouse, chicken and red-eared slider turtle, three species with different sex-determining mechanisms. Evidence is presented that this gene is an ancient component of the vertebrate ovary-determining pathway. Results Gonadal RSPO1 gene expression is female up-regulated in the embryonic gonads in each species at the onset of sexual differentiation. In the mouse gonad, Rspo1 mRNA is expressed in the somatic cell lineage at the time of ovarian differentiation (E12.5–E15.5), with little expression in germ cells. However, the protein is localised in the cytoplasm and at the cell surface of both somatic (pre-follicular) and germ cells. In the chicken embryo, RSPO1 expression becomes elevated in females at the time of ovarian differentiation, coinciding with female-specific activation of the FOXL2 gene and estrogen synthesis. RSPO1 protein in chicken is localised in the outer cortical zone of the developing ovary, the site of primordial follicle formation and germ cell differentiation. Inhibition of estrogen synthesis with a specific aromatase inhibitor results in a decline in chicken RSPO1 expression, indicating that RSPO1 is influenced by estrogen. In the red-eared slider turtle, which exhibits temperature-dependent sex determination, up-regulation of RSPO1 occurs during the temperature-sensitive period, when gonadal development is responsive to temperature. Accordingly, RSPO1 expression is temperature-responsive, and is down-regulated in embryos shifted from female- to male-producing incubation temperatures. Conclusion These results indicate that RSPO1 is up-regulated in the embryonic gonads of female vertebrates with different sex

  14. Differential expression of Fas family members and Bcl-2 family members in benign versus malignant epithelial ovarian cancer (EOC) in North Indian population.

    PubMed

    Chaudhry, Parvesh; Srinivasan, Radhika; Patel, Firuza D

    2012-09-01

    Epithelial ovarian cancer (EOC) represents the most challenging of gynecological malignancies. Defective apoptosis is a major causative factor in the development and progression of cancer. The two important pathways of apoptosis are extrinsic death receptor pathway (Fas family) and intrinsic mitochondrial pathway (Bcl-2 family). In this study, differential protein expression of the major Fas family members (Fas, FasL, and FAP-1) and Bcl-2 family members (Bax, Bcl-2, and Bcl-X(L)) in benign versus malignant surface epithelial ovarian tumors was evaluated at the protein level by immunohistochemistry. The expression of these molecules was compared in 30 benign versus 35 malignant surface epithelial ovarian tumors. The findings of the present study showed that there was no significant difference in the expression of the Fas family members in benign and malignant ovarian tumors. However, benign tumors showed higher levels of anti-apoptotic Bcl-2 protein levels (p < 0.009), whereas malignant tumors showed higher levels of pro-apoptotic Bax (p < 0.001). In general, there was no significant difference in Bcl-X(L) protein levels. The observations made in the present study suggest that alterations in expression of the Fas family and the Bcl-2 family members occur and play a key role in the deregulated growth of epithelial ovarian cancer.

  15. Ovarian Cancer

    MedlinePlus

    ... deaths than other female reproductive cancers. The sooner ovarian cancer is found and treated, the better your chance for recovery. But ovarian cancer is hard to detect early. Women with ovarian ...

  16. Effects of neonatal litter size and age on ovarian gene expression and follicular development in gilts

    USDA-ARS?s Scientific Manuscript database

    Gilts raised in small litters have greater ovulation rate, stay in the herd longer and produce more pigs. The objective was to understand how neonatal litter size affects gilt development. The hypothesis is that gilts reared in smaller litters have greater ovarian follicular development. Within 24 h...

  17. Determination of BRAF V600E (VE1) protein expression and BRAF gene mutation status in codon 600 in borderline and low-grade ovarian cancers.

    PubMed

    Sadlecki, Pawel; Walentowicz, Pawel; Bodnar, Magdalena; Marszalek, Andrzej; Grabiec, Marek; Walentowicz-Sadlecka, Malgorzata

    2017-05-01

    Epithelial ovarian tumors are a group of morphologically and genetically heterogeneous neoplasms. Based on differences in clinical phenotype and genetic background, ovarian neoplasms are classified as low-grade and high-grade tumor. Borderline ovarian tumors represent approximately 10%-20% of all epithelial ovarian masses. Various histological subtypes of ovarian malignancies differ in terms of their risk factor profiles, precursor lesions, clinical course, patterns of spread, molecular genetics, response to conventional chemotherapy, and prognosis. The most frequent genetic aberrations found in low-grade serous ovarian carcinomas and serous borderline tumors, as well as in mucinous cancers, are mutations in BRAF and KRAS genes. The most commonly observed BRAF mutation is substitution of glutamic acid for valine in codon 600 (V600E) in exon 15. The primary aim of this study was to determine whether fully integrated, real-time polymerase chain reaction-based Idylla™ system may be useful in determination of BRAF gene mutation status in codon 600 in patients with borderline ovarian tumors and low-grade ovarian carcinomas. The study included tissue specimens from 42 patients with histopathologically verified ovarian masses, who were operated on at the Department of Obstetrics and Gynecology, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz (Poland). Based on histopathological examination of surgical specimens, 35 lesions were classified as low-grade ovarian carcinomas, and 7 as borderline ovarian tumors. Specimens with expression of BRAF V600E (VE1) protein were tested for mutations in codon 600 of the BRAF gene, using an automated molecular diagnostics platform Idylla™. Cytoplasmic immunoexpression of BRAF V600E (VE1) protein was found in three specimens: serous superficial papilloma, serous papillary cystadenoma of borderline malignancy, and partially proliferative serous cystadenoma. All specimens with the expression of BRAF V600E (VE1) protein were

  18. Gene Expression of Aromatases, Steroid Receptor, GnRH and GTHs in the Brain during the Formation of Ovarian Cavity in Red Spotted Grouper, Epinephelus akaara

    PubMed Central

    Kim, Hyun Kyu; Kim, Jung-Hyun; Baek, Hea Ja; Kwon, Joon Yeong

    2016-01-01

    ABSTRACT Red spotted grouper, Epinephelus akaara, is a popular aquaculture species and a protogynous hermaphrodite. Induction of artificial sex change at the time of primary sex differentiation is of interest but has not been successful due to the lack of necessary basic information. To find out the potential neuroendocrine influence on the primary sex differentiation, the expression of key genes in the brain was investigated during the formation of ovarian cavity. Expression of cyp19a1b, esr1, gnrhr1, fsh, lh and cga in the brain was positively associated with the formation of ovarian cavity, showing gradual increase as the formation proceeds. However, the expression of gnrh1 was suppressed during the early part of the ovarian cavity formation, signifying potential hypothalamic influence on the primary sex differentiation in this species. PMID:28144641

  19. IL-12 Expressing oncolytic herpes simplex virus promotes anti-tumor activity and immunologic control of metastatic ovarian cancer in mice.

    PubMed

    Thomas, Eric D; Meza-Perez, Selene; Bevis, Kerri S; Randall, Troy D; Gillespie, G Yancey; Langford, Catherine; Alvarez, Ronald D

    2016-10-27

    Despite advances in surgical aggressiveness and conventional chemotherapy, ovarian cancer remains the most lethal cause of gynecologic cancer mortality; consequently there is a need for new therapeutic agents and innovative treatment paradigms for the treatment of ovarian cancer. Several studies have demonstrated that ovarian cancer is an immunogenic disease and immunotherapy represents a promising and novel approach that has not been completely evaluated in ovarian cancer. Our objective was to evaluate the anti-tumor activity of an oncolytic herpes simplex virus "armed" with murine interleukin-12 and its ability to elicit tumor-specific immune responses. We evaluated the ability of interleukin-12-expressing and control oncolytic herpes simplex virus to kill murine and human ovarian cancer cell lines in vitro. We also administered interleukin-12-expressing oncolytic herpes simplex virus to the peritoneal cavity of mice that had developed spontaneous, metastatic ovarian cancer and determined overall survival and tumor burden at 95 days. We used flow cytometry to quantify the tumor antigen-specific CD8(+) T cell response in the omentum and peritoneal cavity. All ovarian cancer cell lines demonstrated susceptibility to oncolytic herpes simplex virus in vitro. Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus demonstrated a more robust tumor antigen-specific CD8(+) T-cell immune response in the omentum (471.6 cells vs 33.1 cells; p = 0.02) and peritoneal cavity (962.3 cells vs 179.5 cells; p = 0.05). Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus were more likely to control ovarian cancer metastases (81.2 % vs 18.2 %; p = 0.008) and had a significantly longer overall survival (p = 0.02). Finally, five of 6 mice treated with interleukin-12-expressing oHSV had no evidence of metastatic tumor when euthanized at 6 months, compared to two of 4 mice treated

  20. Genomic and protein expression analysis reveals flap endonuclease 1 (FEN1) as a key biomarker in breast and ovarian cancer.

    PubMed

    Abdel-Fatah, Tarek M A; Russell, Roslin; Albarakati, Nada; Maloney, David J; Dorjsuren, Dorjbal; Rueda, Oscar M; Moseley, Paul; Mohan, Vivek; Sun, Hongmao; Abbotts, Rachel; Mukherjee, Abhik; Agarwal, Devika; Illuzzi, Jennifer L; Jadhav, Ajit; Simeonov, Anton; Ball, Graham; Chan, Stephen; Caldas, Carlos; Ellis, Ian O; Wilson, David M; Madhusudan, Srinivasan

    2014-10-01

    FEN1 has key roles in Okazaki fragment maturation during replication, long patch base excision repair, rescue of stalled replication forks, maintenance of telomere stability and apoptosis. FEN1 may be dysregulated in breast and ovarian cancers and have clinicopathological significance in patients. We comprehensively investigated FEN1 mRNA expression in multiple cohorts of breast cancer [training set (128), test set (249), external validation (1952)]. FEN1 protein expression was evaluated in 568 oestrogen receptor (ER) negative breast cancers, 894 ER positive breast cancers and 156 ovarian epithelial cancers. FEN1 mRNA overexpression was highly significantly associated with high grade (p = 4.89 × 10(-57)), high mitotic index (p = 5.25 × 10(-28)), pleomorphism (p = 6.31 × 10(-19)), ER negative (p = 9.02 × 10(-35)), PR negative (p = 9.24 × 10(-24)), triple negative phenotype (p = 6.67 × 10(-21)), PAM50.Her2 (p = 5.19 × 10(-13)), PAM50. Basal (p = 2.7 × 10(-41)), PAM50.LumB (p = 1.56 × 10(-26)), integrative molecular cluster 1 (intClust.1) (p = 7.47 × 10(-12)), intClust.5 (p = 4.05 × 10(-12)) and intClust. 10 (p = 7.59 × 10(-38)) breast cancers. FEN1 mRNA overexpression is associated with poor breast cancer specific survival in univariate (p = 4.4 × 10(-16)) and multivariate analysis (p = 9.19 × 10(-7)). At the protein level, in ER positive tumours, FEN1 overexpression remains significantly linked to high grade, high mitotic index and pleomorphism (ps < 0.01). In ER negative tumours, high FEN1 is significantly associated with pleomorphism, tumour type, lymphovascular invasion, triple negative phenotype, EGFR and HER2 expression (ps < 0.05). In ER positive as well as in ER negative tumours, FEN1 protein overexpression is associated with poor survival in univariate and multivariate analysis (ps < 0.01). In ovarian epithelial cancers, similarly, FEN1 overexpression is associated with high grade, high stage and poor survival (ps < 0.05). We conclude that FEN1

  1. Changes in ovarian gene expression profiles and plasma hormone levels in maturing European eel (Anguilla anguilla); Biomarkers for broodstock selection.

    PubMed

    Burgerhout, Erik; Minegishi, Yuki; Brittijn, Sebastiaan A; de Wijze, Danielle L; Henkel, Christiaan V; Jansen, Hans J; Spaink, Herman P; Dirks, Ron P; van den Thillart, Guido E E J M

    2016-01-01

    Complete sexual maturation of European eels (Anguilla anguilla) in captivity can only be achieved via injections with gonadotropins. For female eels this procedure takes 4-6months and the response ranges from "unresponsive" to final maturation and ovulation. Reproductive success could be significantly increased via early selection of responders based on predictive markers and minimally invasive sampling methods. To get a better understanding of the genetic background of ovarian maturation of the European eel we performed a pilot deep-sequencing transcriptome analysis of ovarian tissue derived from a yellow eel, a prepubertal silver eel and a post-spawning matured eel. Two key players in steroidogenesis were strongly correlated with advanced sexual maturation, namely P450c17 and liver receptor homolog-1, suggesting that blood plasma steroids might qualify as minimally invasive markers for early detection of responders. Since the predictive value of plasma sex steroid levels for final maturation of the European eel had not yet been carefully examined, we performed an extensive artificial maturation trial. Farmed silver eels were treated with pituitary extracts and sampled at multiple time intervals. Expression of steroidogenesis-related genes in ovarian tissue of responding and non-responding eels after four weekly injections with pituitary extract was compared using a custom-built microarray and RNAseq. Increased expression of 17β-hsd1 was strongly linked to sexual maturation. Blood plasma levels of sex steroids were measured using ELISAs. We show that a 2.5-fold increase in blood-plasma estradiol level after 4 weekly pituitary extract injections is a strong predictor of final sexual maturation of female European eel.

  2. Pattern of HER-2 Gene Amplification and Protein Expression in Benign, Borderline, and Malignant Ovarian Serous and Mucinous Neoplasms.

    PubMed

    Mohammed, Rabab A A; Makboul, Rania; Elsers, Dalia A H; Elsaba, Tarek M A M; Thalab, Abeer M A B; Shaaban, Omar M

    2016-06-15

    Amplification of HER-2 gene and overexpression of HER-2 receptor play a significant role in the progression of a number of malignancies such as breast cancer. Trastuzumab (anti-HER-2 therapeutic agent) has been used successfully in treatment of breast cancer. The aim of this study was to assess the pattern of HER-2 gene amplification and of HER-2 receptor expression in a spectrum of serous and mucinous ovarian tumors to determine whether HER-2 is altered in these neoplasms similar to that occurring in breast cancer. Formalin-fixed paraffin-embedded microarray tissue sections from 212 specimens were stained with HER-2 antibody using immunohistochemistry and with anti-HER-2 DNA probe using chromogenic in situ hybridization. Specimens consisted of 65 benign tumors (50 serous and 15 mucinous), 26 borderline (13 serous and 13 mucinous), 73 malignant (53 serous carcinoma and 20 mucinous carcinoma), 18 metastatic deposits (13 serous and 5 mucinous), in addition to 30 normal tissues (16 ovarian surface and 14 normal fallopian tube). HER-2 protein-positive expression was not detected in the normal or the benign tissues. Borderline neoplasms showed positive staining, but no overexpression. HER-2 overexpression was seen only in 4 carcinoma specimens: 1/53 (1.8%) primary serous carcinomas and 3/20 (15%) primary mucinous carcinomas. HER-2 gene amplification was seen in 4 specimens: 2 primary mucinous carcinomas and 2 malignant deposits of these 2 mucinous carcinomas. In conclusion, alteration of HER-2 was not detected in ovarian serous neoplasms; however, in mucinous carcinoma, HER-2 amplification and overexpression occur more frequently.

  3. Methylation and expression analysis of 15 genes and three normally-methylated genes in 13 Ovarian cancer cell lines.

    PubMed

    Imura, Masayoshi; Yamashita, Satoshi; Cai, Li-Yi; Furuta, Jun-Ichi; Wakabayashi, Mika; Yasugi, Toshiharu; Ushijima, Toshikazu

    2006-09-28

    Aberrant methylation of CpG islands (CGIs) in promoter regions of tumor-suppressor genes causes their silencing, and aberrant demethylation of normally methylated CGIs in promoter regions causes aberrant expression of cancer-testis antigens. Here, we comprehensively analyzed aberrant methylation of 15 genes and demethylation of three normally methylated genes in 13 ovarian cancer cell lines. RASSF1A was most frequently methylated (complete methylation in 7 and partial methylation in 4 cell lines), followed by ESR1 (5 and 2, respectively), FLNC (4 and 4), HAND1 (4 and 2), LOX (3 and 2), HRASLS (3 and 2), MGMT (3 and 0), CDKN2A (3 and 0), THBD (2 and 1), hMLH1 (2 and 0), CDH1 (1 and 1) and GSTP1 (1 and 0). hTERC and TIMP3 were only partially methylated in 7 and 2 cell lines, respectively. BRCA1 was not methylated at all. Aberrant demethylation of MAGE-A3, -B2 and -A1 was detected in 8, 4 and 3 cell lines, respectively. Gene expression was consistently absent in cell lines without unmethylated DNA molecules. Aberrant methylation was frequently observed in MCAS, RMUG-L (mucinous cell carcinomas), RTSG (poorly-differentiated carcinoma) and TYK-nu (undifferentiated carcinoma) while infrequent in HTOA, JHOS-2, and OV-90 (serous cell carcinomas). Aberrant demethylation was frequently observed in OV-90, OVK-18, and ES-2 cell lines. It was shown that aberrant methylation and demethylation were frequently observed in ovarian cancer cell lines, and these data will provide a basis for further epigenetic analysis in ovarian cancers.

  4. Inovium Ovarian Rejuvenation Trials

    ClinicalTrials.gov

    2017-10-03

    Perimenopausal Disorder; Menopause; Menopause, Premature; Menopause Related Conditions; Menopause Premature Symptomatic; Menopause Premature Asymptomatic; Premature Ovarian Failure; Premature Ovarian Failure, Familial; Premature Ovarian Failure 2A; Premature Ovarian Failure 3; Premature Ovarian Failure 4; Premature Ovarian Failure 1; Premature Ovarian Failure 5; Premature Ovarian Failure 6; Premature Ovarian Failure 7; Premature Ovarian Failure 9; Premature Ovarian Failure 8; Infertility; Infertility, Female; Infertility Unexplained

  5. Modeling Human Epithelial Ovarian Cancer in Mice by Alteration of Expression of the BRCA1 and/or P53 Genes

    DTIC Science & Technology

    2005-02-01

    later by injection with 5 U of human chorionic gonadotropin (hormones purchased from Sigma, St. Louis, MO). 1.5 days following the last hormone...AD Award Number: W81XWH-04-1-0063 TITLE: Modeling Human Epithelial Ovarian Cancer in Mice by Alteration of Expression of the BRCA1 and/or P53 Genes...FUNDING NUMBERS Modeling Human Epithelial Ovarian Cancer in Mice by W81XWH-04-1-0063 Alteration of Expression of the BRCAI and/or P53 Genes 6. AUTHOR(S

  6. Factors influencing p53 expression in ovarian cancer as a biomarker of clinical outcome in multicentre studies

    PubMed Central

    de Graeff, P; Hall, J; Crijns, A P G; de Bock, G H; Paul, J; Oien, K A; ten Hoor, K A; de Jong, S; Hollema, H; Bartlett, J M S; Brown, R; van der Zee, A G J

    2006-01-01

    The prognostic impact of p53 immunostaining in a large series of tumours from epithelial ovarian cancer patients in a two-centre study was analysed. The study population (n=476) comprised of a retrospective series of 188 patients (Dutch cohort) and a prospective series of 288 patients (Scottish cohort) enrolled in clinical trials. P53 expression was determined by immunohistochemistry on tissue microarrays. Association with progression-free survival (PFS) and overall survival (OS) was analysed by univariate and multivariate Cox regression analysis. Aberrant p53 overexpression was significantly associated with PFS in the Dutch and Scottish cohorts (P=0.001 and 0.038, respectively), but not with OS in univariate analysis. In multivariate analysis, when the two groups were combined and account taken of clinical factors and country of origin of the cohort, p53 expression was not an independent prognostic predictor of PFS or OS. In this well-powered study with minimal methodological variability, p53 immunostaining is not an independent prognostic marker of clinical outcome in epithelial ovarian cancer. The data demonstrate the importance of methodological standardisation, particularly defining patient characteristics and survival end-point data, if biomarker data from multicentre studies are to be combined. PMID:16880779

  7. Ovarian expression and localization of a vitellogenin receptor with eight ligand binding repeats in the cutthroat trout (Oncorhynchus clarki).

    PubMed

    Mizuta, Hiroko; Luo, Wenshu; Ito, Yuta; Mushirobira, Yuji; Todo, Takashi; Hara, Akihiko; Reading, Benjamin J; Sullivan, Craig V; Hiramatsu, Naoshi

    2013-09-01

    A cDNA encoding a vitellogenin receptor with 8 ligand binding repeats (vtgr) was cloned from ovaries of the cutthroat trout, Oncorhynchus clarki. In situ hybridization and quantitative PCR analyses revealed that the main site of vtgr mRNA expression was the oocytes. Expression was strongly detected in perinucleous stage oocytes, gradually decreased as oocytes grew, and became hardly detectable in vitellogenic oocytes. A rabbit antibody (a-Vtgr) was raised against a recombinant Vtgr protein in order to immunologically detect and localize Vtgr within the ovarian follicles. Western blotting using a-Vtgr detected a bold band with an apparent mass of ~95-105kDa in an ovarian preparation that also bound Sakhalin taimen, Hucho perryi, vitellogenin in ligand blots. Immunohistochemistry using a-Vtgr revealed that the Vtgr was uniformly distributed throughout the ooplasm of perinucleolus stage oocytes, subsequently translocated to the periphery of lipid droplet stage oocytes, and became localized to the oolemma during vitellogenesis. We provide the first characterization of Vtgr at both the transcriptional and the translational levels in the cutthroat trout, and our results suggest that this receptor is involved in uptake of Vtg by oocytes of this species.

  8. Transposable element dynamics and PIWI regulation impacts lncRNA and gene expression diversity in Drosophila ovarian cell cultures

    PubMed Central

    Sytnikova, Yuliya A.; Rahman, Reazur; Chirn, Gung-wei; Clark, Josef P.

    2014-01-01

    Piwi proteins and Piwi-interacting RNAs (piRNAs) repress transposable elements (TEs) from mobilizing in gonadal cells. To determine the spectrum of piRNA-regulated targets that may extend beyond TEs, we conducted a genome-wide survey for transcripts associated with PIWI and for transcripts affected by PIWI knockdown in Drosophila ovarian somatic sheet (OSS) cells, a follicle cell line expressing the Piwi pathway. Despite the immense sequence diversity among OSS cell piRNAs, our analysis indicates that TE transcripts are the major transcripts associated with and directly regulated by PIWI. However, several coding genes were indirectly regulated by PIWI via an adjacent de novo TE insertion that generated a nascent TE transcript. Interestingly, we noticed that PIWI-regulated genes in OSS cells greatly differed from genes affected in a related follicle cell culture, ovarian somatic cells (OSCs). Therefore, we characterized the distinct genomic TE insertions across four OSS and OSC lines and discovered dynamic TE landscapes in gonadal cultures that were defined by a subset of active TEs. Particular de novo TEs appeared to stimulate the expression of novel candidate long noncoding RNAs (lncRNAs) in a cell lineage-specific manner, and some of these TE-associated lncRNAs were associated with PIWI and overlapped PIWI-regulated genes. Our analyses of OSCs and OSS cells demonstrate that despite having a Piwi pathway to suppress endogenous mobile elements, gonadal cell TE landscapes can still dramatically change and create transcriptome diversity. PMID:25267525

  9. Plakoglobin Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells Expressing N-Cadherin and Mutant p53

    PubMed Central

    Alaee, Mahsa; Danesh, Ghazal; Pasdar, Manijeh

    2016-01-01

    Aberrant expression of cadherins and catenins plays pivotal roles in ovarian cancer development and progression. Plakoglobin (PG, γ-catenin) is a paralog of β-catenin with dual adhesive and signaling functions. While β-catenin has known oncogenic function, PG generally acts as a tumor/metastasis suppressor. We recently showed that PG interacted with p53 and that its growth/metastasis inhibitory function may be mediated by this interaction. Very little is known about the role of PG in ovarian cancer. Here, we investigated the in vitro tumor/metastasis suppressor effects of PG in ovarian cancer cell lines with mutant p53 expression and different cadherin profiles. We showed that the N-cadherin expressing and E-cadherin and PG deficient ES-2 cells were highly migratory and invasive, whereas OV-90 cells that express E-cadherin, PG and very little/no N-cadherin were not. Exogenous expression of PG or E-cadherin or N-cadherin knockdown in ES-2 cells (ES-2-E-cad, ES-2-PG and ES-2-shN-cad) significantly reduced their migration and invasion. Also, PG expression or N-cadherin knockdown significantly decreased ES-2 cells growth. Furthermore, PG interacted with both cadherins and with wild type and mutant p53 in normal ovarian and ES-2-PG cell lines, respectively. PMID:27144941

  10. Human leukocyte antigen class I expression is an independent prognostic factor in advanced ovarian cancer resistant to first-line platinum chemotherapy.

    PubMed

    Shehata, M; Mukherjee, A; Deen, S; Al-Attar, A; Durrant, L G; Chan, S

    2009-10-20

    Loss of HLA class I is important in ovarian cancer prognosis but its role as a prognostic indicator in relation to therapy remains unproven. We studied the prognostic potential of this antigen and its significance in relation to platinum therapy. A total of 157 primary ovarian cancers were assessed for HLA class I immunohistochemically and linked to a comprehensive database of clinicopathological variables, treatment details, and platinum sensitivity. Tumours expressing high levels of HLA class I had significantly improved survival (P=0.044). There was a 19-month difference in the median overall survival between tumours with high and low antigen expression. HLA class I antigen expression, stage, and platinum sensitivity were independently predictive of prognosis on multivariate analysis. HLA class I antigen was shown to be expressed at higher levels in patients with good overall survival in platinum-resistant patients (P=0.042). HLA class I significantly correlated with overall survival on multivariate analyses (P=0.034). Low-level HLA class I expression is an independent prognostic indicator of poor clinical outcome in ovarian cancer. The survival advantage of patients with platinum-resistant tumours expressing high levels of HLA class I suggests that immunotherapy may be of use in these ovarian cancers resistant to standard chemotherapy.

  11. Human leukocyte antigen class I expression is an independent prognostic factor in advanced ovarian cancer resistant to first-line platinum chemotherapy

    PubMed Central

    Shehata, M; Mukherjee, A; Deen, S; Al-Attar, A; Durrant, L G; Chan, S

    2009-01-01

    Background: Loss of HLA class I is important in ovarian cancer prognosis but its role as a prognostic indicator in relation to therapy remains unproven. We studied the prognostic potential of this antigen and its significance in relation to platinum therapy. Methods: A total of 157 primary ovarian cancers were assessed for HLA class I immunohistochemically and linked to a comprehensive database of clinicopathological variables, treatment details, and platinum sensitivity. Results: Tumours expressing high levels of HLA class I had significantly improved survival (P=0.044). There was a 19-month difference in the median overall survival between tumours with high and low antigen expression. HLA class I antigen expression, stage, and platinum sensitivity were independently predictive of prognosis on multivariate analysis. HLA class I antigen was shown to be expressed at higher levels in patients with good overall survival in platinum-resistant patients (P=0.042). HLA class I significantly correlated with overall survival on multivariate analyses (P=0.034). Conclusion: Low-level HLA class I expression is an independent prognostic indicator of poor clinical outcome in ovarian cancer. The survival advantage of patients with platinum-resistant tumours expressing high levels of HLA class I suggests that immunotherapy may be of use in these ovarian cancers resistant to standard chemotherapy. PMID:19755991

  12. Expression of hypothalamic-pituitary-gonadal axis-related hormone receptors in low-grade serous ovarian cancer (LGSC).

    PubMed

    Feng, Zheng; Wen, Hao; Ju, Xingzhu; Bi, Rui; Chen, Xiaojun; Yang, Wentao; Wu, Xiaohua

    2017-01-25

    The aim of our study was to investigate the clinical features and expression levels of hypothalamic-pituitary-gonadal axis-related hormone receptors in low-grade serous ovarian cancer (LGSC). We retrospectively investigated the clinical features of 26 consecutive patients with LGSC who underwent primary staging or debulking surgery between April 2005 and June 2013 in our center; concomitant primary high-grade serous ovarian cancer (HGSC) patients were randomly selected at a 2:1 ratio for comparison. Tissue microarrays were constructed from the LGSC and HGSC specimens, and the expression levels of six hormone receptors in the hypothalamic pituitary-gonadal axis were analyzed by immunohistochemistry. The median (range) age of patients with LGSC was 54 (27-77) years. According to the FIGO staging system, the cases were distributed as follows: stage I, 6 (23.1%); stage II, 0 (0%); stage III, 19 (73.1%); and stage IV, 1 (3.8%). The 2-year and 5-year overall survival rates for LGSC were 91.8% and 67.5%, respectively. The expression levels of the hormone receptors were as follows: ER, 80.8%; PR, 34.6%; AR, 53.8%; FSHR, 84.0%; LHR, 65.4%; and GnRHR, 100%. Hormone receptor-positive patients had a better prognosis compared with hormone receptor-negative patients, but the difference was not significant. Our study presented a higher overall survival rate and distinctive hormone receptor expression levels of LGSC patients compared with the HGSC cohort. Patients with positive hormone receptor expression tended to have a better prognosis than the corresponding hormone receptor negative patients.

  13. Effects of frutalin on early follicle morphology, ultrastructure and gene expression in cultured goat ovarian cortical tissue.

    PubMed

    Soares, Maria A A; Costa, José J N; Vasconcelos, Gisvani L; Ribeiro, Regislane P; Souza, José C; Silva, André L C; Van den Hurk, Robert; Silva, José R V

    2017-02-15

    Frutalin is a galactose-binding lectin that has an irreversible cytotoxic effect on HeLa cervical cancer cells, by inducing apoptosis and inhibiting cell proliferation. It was previously shown that after in vitro incubation, frutalin is internalized into HeLa cells nucleus, which indicates that frutalin apoptosis-inducing activity might be linked with its nuclear localization. Considering that drugs commonly used for cancer treatment have a deleterious effect on germ cells, the aim of this study was to evaluate the effect of frutalin on the activation, survival, ultrastructure and gene expression in follicles cultured within ovarian tissue. Goat ovarian fragments were cultured for 6 days in α-MEM+ alone or supplemented with frutalin (1, 10, 50, 100 or 200 µg/ml). Non-culturad and cultured tissues were processed for histological and ultrastructural analysis and they were also stored to evaluate the expression of anti- and pro-apoptotic genes by quantitative polymerase chain reaction (qPCR). The results showed that the frutalin, at all concentrations tested, reduced follicular survival when compared with control medium. Higher concentrations of frutalin (50, 100 or 200 µg/ml) also reduced follicular survival when compared with those tissues cultured with 1 or 10 µg/ml of frutalin. The ultrastructural analysis showed that atretic cultured follicles had retracted oocytes and a large number of vacuoles spread throughout the cytoplasm. In addition, signs of damage of mitochondrial membranes and cristae were observed. Moreover, although a dose-response effect on gene expression has not been observed, when compared with tissues culture in control medium, the presence of frutalin increased in mRNA expression pro-apoptotic genes. In conclusion, frutalin reduces follicular survival at all concentrations tested, its effects being more pronounced when high concentrations of this lectin (50, 100 and 200 µg/ml) are used. Gene expression profile and ultrastrutural features of

  14. Leukocyte-associated immunoglobulin-like receptor-1 expressed in epithelial ovarian cancer cells and involved in cell proliferation and invasion

    SciTech Connect

    Cao, Qizhi; Fu, Aili; Yang, Shude; He, Xiaoli; Wang, Yue; Zhang, Xiaoshu; Zhou, Jiadi; Luan, Xiying; Yu, Wenzheng; Xue, Jiangnan

    2015-03-06

    Previous studies have shown that leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is expressed on most types of hamatopoietic cells and negatively regulate immune response, but the roles of LAIR-1 in tumor of the non-hematopoietic lineage have not been determined. Despite advances in therapy of epithelial ovarian cancer (EOC), many questions relating to EOC pathogenesis remain unanswered. The aim of this study was to investigate the clinical significance of LAIR-1 expression in EOC and explore the possible association between LAIR-1 and cancer. In this study, a tissue microarray containing 78 ovarian cancer cases was stained following a standard immunohistochemical protocol for LAIR-1 and the correlation of LAIR-1 expression with clinicopathologic features was assessed. LAIR-1 was detected to express in tumor cells of ovarian cancer tissues (73.1%) and EOC cell lines COC1 and HO8910, not in normal ovarian tissues. In addition, LAIR-1 expression correlates significantly with tumor grade (p = 0.004). Furthermore, down-regulation of LAIR-1 in HO8910 cells increased cell proliferation, colony formation and cell invasion. These data suggest that LAIR-1 has a relevant impact on EOC progression and may be helpful for a better understanding of molecular pathogenesis of cancer. - Highlights: • LAIR-1 is expressed in epithelial ovarian cancer cells. • LAIR-1 expression correlates significantly with tumor grade. • Down-regulation of LAIR-1 expression increased cell proliferation and invasion. • LAIR-1 may be a novel candidate for cancer diagnosis and therapy.

  15. Expression and regulation of SNAP-25 and synaptotagmin VII in developing mouse ovarian follicles via the FSH receptor.

    PubMed

    Choi, Sung Sik; Jung, Joo Young; Lee, Dong Ho; Kang, Ji Yoon; Lee, Sang Ho

    2013-02-01

    Soluble-NSF attachment protein receptor (SNARE) proteins play a role in vesicle fusion, exocytosis, and intracellular trafficking in neuronal cells as well as in fertilization and embryogenesis. We investigated the expression patterns of two SNARE proteins, SNAP-25 and synaptotagmin VII (SytVII), and their regulation by pregnant mare serum gonadotropin (PMSG) during mouse ovarian follicular development. Ovaries were obtained at 0, 12, 24, 36, and 48 h post-PMSG injection of immature mice. SNAP-25 and SytVII mRNA expression levels increased gradually in a time-dependant manner. However, protein levels revealed different patterns of expression, suggesting different translational regulation following PMSG stimulation. SNAP-25 and SytVII expression was closely associated with thickening of the granulosa cell (GC) layer and follicle morphological changes from a flattened to a cuboidal shape. To explore follicle stimulating hormone receptor (FSHR)-mediated regulation of their expression, GCs from preantral follicles were cultured to examine the effects of FSHR siRNA knockdown. FSHR siRNA abolished upregulation of the SNAREs in both PMSG and FSH-stimulated GCs. This abolished gene expression was rescued by adding dibutyryl cyclic AMP to the cultures. These results suggest that SNAP-25 and SytVII expression is regulated via the FSHR-cAMP pathway during follicular development.

  16. RhoA/ROCK pathway mediates leptin-induced uPA expression to promote cell invasion in ovarian cancer cells.

    PubMed

    Ghasemi, Ahmad; Hashemy, Seyed Isaac; Aghaei, Mahmoud; Panjehpour, Mojtaba

    2017-04-01

    Previous studies have shown that leptin, an adipocyte-secreted hormone, stimulates ovarian cancer invasion. Here, we investigated the contribution of uPA in leptin-induced ovarian cancer cell invasion. The cell invasion and migration experiments were carried out using matrigel invasion and wound healing assays in ovarian cancer cell lines (OVCAR3, SKOV3and CaoV-3). The mechanism underlying the invasive effect of leptin was examined using cell transfection with Ob-Rb siRNA, pre-treatment with a specific inhibitor of RhoA and ROCK, RhoA activation assay, OB-Rb, Rock and upA protein expression. Our results show that leptin induced ovarian cancer cell invasion via up-regulating upA in a time and dose-dependent manner, which was attenuated using knockdown of OB-Rb by siRNA. Moreover, pre-incubation with C3 (inhibitor of RhoA) and Y-27632 (inhibitor of ROCK) effectively attenuated leptin-induced upA expression and inhibited invasive ability of ovarian cancer cells. We also found that pretreatment with inhibitors of PI3K/AKT (LY294002), JAK/STAT (AG490) and NF-kB (BAY 11-7082) significantly reduced leptin-induced upA expression. Collectively, our findings demonstrate that OB-Rb, RhoA/ROCK, PI3K/AKT, JAK/STAT pathways and NF-kB activation are involved in leptin-induced upA expression. These results may provide a new mechanism that facilitates leptin-induced ovarian cancer invasion.

  17. Changes in gene expression variability reveal a stable synthetic lethal interaction network in BRCA2- ovarian cancers.

    PubMed

    Bueno, Raymund; Mar, Jessica C

    2017-07-25

    Synthetic lethal interactions (SLIs) are robust mechanisms that provide cells with the ability to remain viable despite having mutations in genes critical to the DNA damage response, a core cellular process. Studies in model organisms such as S. cerevisiae showed that thousands of genes important in maintaining DNA integrity cooperated in a SLI network. Two genes participate in a SLI when a mutation in one gene has no effect on the cell, but mutations in both interacting genes are lethal. Furthermore in C. elegans, a mutation in a critical gene that is important for development induced a change in expression variability in the synthetic lethal interactor. In cancer, targeting SLIs shows promise in selectively killing cancer cells. For example, targeting PARP1 is an effective treatment for BRCA1/2- breast and ovarian cancers. Although PARP1 is already identified as having a SLI with BRCA1/2-, computationally searching for other genes that cooperate in the SLI network could highlight genes that may have promise for being a cancer-specific drug target. Using RNA sequencing data for ovarian cancer patients with BRCA2 mutations and the R Bioconductor package pathVar, we showed that genes whose expression changes to an invariant, stable expression state are likely candidates for SLIs with BRCA2. Our results highlight the interactions between the genes with predicted SLIs and protein-coding genes that are functionally important in the DNA damage response. The method of analyzing expression variability to computationally identify genes with SLIs can be applied to query SLIs in other tumor types. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Nivolumab effectively inhibit platinum-resistant ovarian cancer cells via induction of cell apoptosis and inhibition of ADAM17 expression.

    PubMed

    Sun, L-M; Liu, Y-C; Li, W; Liu, S; Liu, H-X; Li, L-W; Ma, R

    2017-03-01

    Nivolumab is an anti-PD-1 (anti-programmed death-1) monoclonal antibody. It has achieved an overall response rate of 17% in Phase 1 clinical trial for patient with platinum-resistant ovarian cancer (PROC). However, its underlying mechanism has not been fully explored yet. The aim of the study is to investigate the efficiency of nivolumab to inhibit PROC cells and its possible mechanism. Firstly, methylthiazolyl tetrazolium bromide (MTT) assay was performed to determine the IC50 values of cisplatin in cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. The results showed that IC50 (half maximal inhibitory concentration) values of cisplatin were significantly decreased in a time-dependent manner in A2780, A2780/DDP, SKOV3, and SKOV3/DDP cells. Secondly, MMT assay was used once again to measure anti-tumor effects of nivolumab in A2780/DDP cells. The results showed that anti-tumor effects of nivolumab increased in a dose- and time-dependent manner. Thirdly, A2780/DDP cells were treated with nivolumab in combination with cisplatin for 48 h. The results demonstrated that nivolumab increased the anti-tumor effects of cisplatin in A2780/DDP cells. Notably, the combined treatment effectively reversed cisplatin resistance in PROC cells. Also, nivolumab induced cell apoptosis and cell-cycle arrest in G0/G1 phase in PROC cells. FACS and Western blot were performed to measure cell apoptosis and Bcl-2 and Bax expression respectively. The results showed that combined treatment significantly increased cell apoptosis rate, down-regulated Bcl-2, and unregulated Bax expression in PROC cells. Additionally, the expression levels of ADAM17 were significantly decreased in a dose-dependent manner in PROC cells, which were treated with nivolumab. Therefore, all the results demonstrated that the combined treatment with nivolumab and cisplatin effectively inhibited PROC cells via induction of cell apoptosis and inhibition of ADAM17 expression.

  19. Molecular Imaging of Ovarian Carcinoma Angiogenesis

    DTIC Science & Technology

    2009-03-01

    is found at a significantly higher rate in primary ovarian cancer than in ovarian tumors of low malignant potential, a fact which points to a role of...the correlation between αv-integrin expression and poor survival in ovarian carcinoma (11). Given that the initial critical step of ovarian cancer ...marker of poor prognosis in advanced-stage ovarian carcinoma . Clin Cancer Res. Dec 2001;7(12):4073-4079. 9. van der Flier A, Sonnenberg A. Function

  20. PPARγ Modulation of Cytokine-Stimulated MUC16 (CA125) Expression in Breast and Ovarian Cancer-Derived Cells.

    PubMed

    Morgado, Micaela; Carson, Daniel D

    2017-01-01

    CA125 is serum tumor marker consisting of an epitope carried by a portion of the extremely large (>3 MDa), heavily glycosylated cell surface transmembrane mucin, MUC16. In malignancies, membrane bound mucins lose their polarized distribution, become aberrantly over-expressed and protect tumor cells from the actions of chemotherapeutic agents as well as the immune system. Previously, we described stimulation of MUC16 expression by the proinflammatory cytokines, tumor necrosis factor α (TNFα) and interferon γ (IFNγ), in breast and ovarian cancer cells and tissues. Herein, we show that PPARγ modulates cytokine-stimulated MUC16 in a complex manner: at low concentrations (<10 µM) rosiglitazone further potentiates cytokine-driven MUC16 expression while at high concentrations (>20 µM) rosiglitazone antagonizes cytokine stimulation. Rosiglitazone actions were fully reversible by the PPARγ antagonist, GW9662. Furthermore, siRNA-mediated PPARγ knockdown also prevented a large portion of high dose rosiglitazone suppression of MUC16 expression indicating that rosiglitazone inhibition is largely PPARγ-dependent. Cytokines greatly (>75%) suppressed PPARγ expression. Conversely, PPARγ activation by rosiglitazone at either low or high concentrations greatly (>75%) suppressed NFκB/p65 expression. NFκB/p65 expression was largely preserved in the presence of cytokines at low, but not high, rosiglitazone concentrations accounting for the different concentration dependent effects on MUC16 expression. Collectively, these studies demonstrate that PPARγ is an important modulator of MUC16 expression. The ability to deliver high doses of PPARγ agonists to MUC16-expressing tumors offers an avenue to reduce expression of this protective glycoprotein and increase tumor sensitivity to killing by chemotherapeutic drugs and the immune system. J. Cell. Biochem. 118: 163-171, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. MYC Expression in Concert with BCL2 and BCL6 Expression Predicts Outcome in Chinese Patients with Diffuse Large B-Cell Lymphoma, Not Otherwise Specified

    PubMed Central

    Yan, Li-Xu; Liu, Yan-Hui; Luo, Dong-Lan; Zhang, Fen; Cheng, Yu; Luo, Xin-Lan; Xu, Jie; Cheng, Jie; Zhuang, Heng-Guo

    2014-01-01

    Recent studies provide convincing evidence that a combined immunohistochemical or fluorescence in situ hybridization (FISH) score of MYC, BCL2, BCL6 proteins and MYC translocations predicted outcome in diffuse large B-cell lymphoma (DLBCL) patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). However, by far, all these researches are based on Western populations. Therefore, we investigate the prognostic relevance of MYC-, BCL2- and BCL6-rearrangements and protein expression by immunohistochemistry and FISH from 336 de novo DLBCL, NOS treated with CHOP or R-CHOP. Breaks in MYC and BCL6, and fusion in IGH/BCL2 were detected in 9.7%, 20.0%, and 11.1% of the cases, respectively, and were not significantly associated with clinical outcomes. Protein overexpression of MYC (≥40%), BCL2 (≥70%) and BCL6 (≥50%) was encountered in 51%, 51% and 36% of the tumors, respectively. On the basis of MYC, BCL2 and BCL6 expression, double-hit scores (DHSs) and triple-hit score (THS) were assigned to all patients with DLBCL. Patients with high MYC/BCL2 DHS, high MYC/BCL6 DHS and high THS had multiple adverse prognostic factors including high LDH level, poor performance status, advanced clinical stage, high International Prognostic Index (IPI) score, and non-germinal center B-cell. In univariate analysis, high MYC/BCL2 DHS, high MYC/BCL6 DHS and high THS were associated with inferior OS and PFS in both CHOP and R-CHOP cohorts (P<0.05). The highly significant correlations with OS and PFS were maintained in multivariate models that controlled for IPI (P<0.05). DLBCLs with high DHSs and high THS share the clinical features and poor prognosis of double-hit lymphoma (P>0.05). These data together suggest that the immunohistochemical DHSs and THS defined a large subset of DLBCLs with double-hit biology and was strongly associated with poor outcome in patients treated with R-CHOP or CHOP. PMID:25090026

  2. [Expression and significance of heparin binding-epidermal growth factor-like growth factor in paclitaxel-resistant ovarian cancer].

    PubMed

    Tang, Xiaohan; Lu, Meisong; Li, Cuiping; Deng, Suo; Li, Meng

    2014-07-01

    To examine the expression of heparin binding-epidermal growth factor-like growth factor (HB- EGF) in paclitaxel- resistant ovarian cancer and elucidate the relationship between HB-EGF and the resistance of ovarian cancer to paclitaxel. The human ovarian carcinoma cell line A2780 and the paclitaxel- resistant human ovarian carcinoma cell line A2780/Taxol were cultured in vitro. Western blot was used to dectect the expression of HB-EGF protein in A2780 and A2780/Taxol groups. The A2780 cells were treated with cross- reacting material 197 (CRM197 and A2780 + CRM197 group) or dimethyl sulphoxide (DMSO; A2780 group), while the A2780/Taxol cells were treated with CRM197 (A2780/Taxol+CRM197 group) or DMSO (A2780/Taxol group). The effects of CRM197 on growth and proliferation was tested by methyl thiazolyl tetrazolium ( MTT) and the results were showed as absorbance (A). The effects of CRM197 on cell cycles was tested by flow cytometry, while the effects of CRM197 on apoptosis was examined by caspase- 3 activity assay and the results were showed as p- nitroaniline(pNa). In animal experiment, four groups of cells were inoculated to BALB/c nude mouse subcutaneously to observe tumor formation ability following CRM197 treatment. Immunohistochemistry was used to determine the expression of HB-EGF protein in A2780 and A2780/Taxol group. The expression level of HB-EGF protein in A2780/Taxol group (2.11 ± 0.41) was significantly higher than that of A2780 group (0.75 ± 0.20; P < 0.01). The inhibition effect of CRM197 on the cell growth of A2780+CRM197 and A2780/Taxol+CRM197 group was accompanied by the acceleration of CRM197 concentration(P < 0.01). When CRM197≥1 µg/ml, the inhibition effect of CRM197 on the cell growth of A2780/Taxol+CRM197 group was significantly higher than that in A2780/Taxol group(P < 0.05). In cell cycle experiment, CRM197 induced the cell-cycle arrest at the G0/G1 phase in A2780+CRM197 cells[(67 ± 4)%] compared with A2780 cells[(54 ± 6)%; P < 0

  3. RNASET2 silencing affects miRNAs and target gene expression pattern in a human ovarian cancer cell model.

    PubMed

    Turconi, Giovanna; Scaldaferri, Debora; Fabbri, Marco; Monti, Laura; Lualdi, Marta; Pedrini, Edoardo; Gribaldo, Laura; Taramelli, Roberto; Acquati, Francesco

    2016-12-01

    Ribonucleases (RNases) are hydrolytic enzymes endowed with the ability to either process or degrade ribonucleic acids. Among the many biological functions assigned to RNases, a growing attention has been recently devoted to the control of cancer growth, in the attempt to bring novel therapeutic approaches to clinical oncology. Indeed, several enzymes belonging to different ribonuclease families have been reported in the last decade to display a marked oncosuppressive activity in a wide range of experimental models. The human RNASET2 gene, the only member of the highly conserved T2/Rh/S family of endoribonucleolytic enzymes described in our species, has been shown to display oncosuppressive roles in both in vitro and in vivo models representing several human malignancies. In the present study, we extend previous findings obtained in ovarian cancer models to shed further light on the cell-autonomous roles played by this gene in the context of its oncosuppresive role and to show that RNASET2 silencing can significantly affect the transcriptional output in one of the most thoroughly investigated human ovarian cancer cell lines. Moreover, we report for the first time that RNASET2-mediated changes in the cell transcriptome are in part mediated by its apparent ability to affect the cell's microRNA expression pattern.

  4. High-grade fimbrial-ovarian carcinomas are unified by altered p53, PTEN and PAX2 expression.

    PubMed

    Roh, Michael H; Yassin, Yosuf; Miron, Alexander; Mehra, Karishma K; Mehrad, Mitra; Monte, Nicolas M; Mutter, George L; Nucci, Marisa R; Ning, Geng; Mckeon, Frank D; Hirsch, Michelle S; Wa, Xian; Crum, Christopher P

    2010-10-01

    High-grade endometrioid and serous carcinomas of the ovary and fallopian tube are responsible for the majority of cancer deaths and comprise a spectrum that includes early or localized (tubal intraepithelial carcinoma) and advanced (invasive or metastatic) disease. We subdivided a series of these tumors into three groups, (1) classic serous, (2) mixed serous and endometrioid and (3) endometrioid carcinomas and determined: (1) the frequencies of coexisting tubal intraepithelial carcinoma, (2) frequency of a dominant ovarian mass suggesting an ovarian origin and (3) immuno-localization of WT-1, p53, PTEN, PAX2 and p16(ink4). All tumors were analyzed for p53 mutations. Thirty six, 25 and 8% of groups 1-3 were associated with tubal intraepithelial carcinoma (P=0.09) and 34, 45 and 62% predominated in one ovary (P=0.028), respectively. Differences in frequencies of diffuse p53 immunostaining (85-93%), WT-1 (70-98%) and p16(ink4) positivity (69-75%) were not significant for all groups. Greater than 95% reduction in PAX2 and PTEN occurred in 67-75 and 5-12%, respectively; however, PAX2 and PTEN staining intensity, when present, was often heterogeneous, highlighting different tumor populations. PAX2 and PTEN expression were markedly reduced or absent in 12 of 12 and 4 of 12 tubal intraepithelial carcinomas. In summary, high-grade müllerian carcinomas share identical frequencies of altered or reduced expression of p53, PTEN and PAX2, all of which can be appreciated in tubal intraepithelial carcinomas. Because only a subset of these tumors appears to arise in the fallopian tube, attention to expression of these biomarkers in the ovary and other müllerian sites might facilitate the identification of other carcinogenic pathways. PAX2 and PTEN, in addition to p53 and p16(ink4), comprise a potentially important gene combination in high-grade pelvic carcinogenesis.

  5. Enhanced GAB2 Expression Is Associated with Improved Survival in High-Grade Serous Ovarian Cancer and Sensitivity to PI3K Inhibition.

    PubMed

    Davis, Sally J; Sheppard, Karen E; Anglesio, Michael S; George, Joshy; Traficante, Nadia; Fereday, Sian; Intermaggio, Maria P; Menon, Usha; Gentry-Maharaj, Aleksandra; Lubinski, Jan; Gronwald, Jacek; Pearce, Celeste Leigh; Pike, Malcolm C; Wu, Anna; Kommoss, Stefan; Pfisterer, Jacobus; du Bois, Andreas; Hilpert, Felix; Ramus, Susan J; Bowtell, David D L; Huntsman, David G; Pearson, Richard B; Simpson, Kaylene J; Campbell, Ian G; Gorringe, Kylie L

    2015-06-01

    Identification of genomic alterations defining ovarian carcinoma subtypes may aid the stratification of patients to receive targeted therapies. We characterized high-grade serous ovarian carcinoma (HGSC) for the association of amplified and overexpressed genes with clinical outcome using gene expression data from 499 HGSC patients in the Ovarian Tumor Tissue Analysis cohort for 11 copy number amplified genes: ATP13A4, BMP8B, CACNA1C, CCNE1, DYRK1B, GAB2, PAK4, RAD21, TPX2, ZFP36, and URI. The Australian Ovarian Cancer Study and The Cancer Genome Atlas datasets were also used to assess the correlation between gene expression, patient survival, and tumor classification. In a multivariate analysis, high GAB2 expression was associated with improved overall and progression-free survival (P = 0.03 and 0.02), whereas high BMP8B and ATP13A4 were associated with improved progression-free survival (P = 0.004 and P = 0.02). GAB2 overexpression and copy number gain were enriched in the AOCS C4 subgroup. High GAB2 expression correlated with enhanced sensitivity in vitro to the dual PI3K/mTOR inhibitor PF-04691502 and could be used as a genomic marker for identifying patients who will respond to treatments inhibiting PI3K signaling.

  6. p16/MTS1 inactivation in ovarian carcinomas: high frequency of reduced protein expression associated with hyper-methylation or mutation in endometrioid and mucinous tumors.

    PubMed

    Milde-Langosch, K; Ocon, E; Becker, G; Löning, T

    1998-02-20

    Inactivation of the tumor-suppressor gene p16 (MTS1/ CDKN2/INK4a) has been described in various human malignancies. Although p16 deletion has been found in various ovarian tumor cell lines, p16 inactivation by homozygous deletion or mutation has been reported only sporadically in primary ovarian carcinomas. In a comprehensive study, we analyzed p16 protein expression by immuno-histochemistry (IHC) on paraffin sections of 94 primary ovarian carcinomas of different histological subtype. Loss of expression was detected in 19 primary tumors (20%), mainly mucinous and endometrioid carcinomas. To reveal the cause of suppressed expression, we performed (i) analysis of homozygous deletions by comparative PCR after micro-dissection, (ii) mutation analysis by single-strand conformation polymorphism analysis and subsequent direct sequencing and (iii) methylation-specific PCR to determine the methylation status of 5'-CpG islands. Loss of or weak p16 expression was caused by hyper-methylation (12/19 IHC-negative cases), somatic mutation (10 tumors) or homozygous deletion (1 case). Aberrant p 16 results by one of these methods were detected in 71-79% of endometrioid and mucinous, but in only 10% of serous-papillary, carcinomas. Our data suggest that p16 inactivation is a typical feature of certain subtypes of ovarian carcinoma.

  7. Hypoxia-inducible factor 1 alpha is required for the tumourigenic and aggressive phenotype associated with Rab25 expression in ovarian cancer

    PubMed Central

    Gomez-Roman, Natividad; Sahasrabudhe, Neha Mohan; McGregor, Fiona; Chalmers, Anthony J.; Cassidy, Jim; Plumb, Jane

    2016-01-01

    The small GTPase Rab25 has been functionally linked to tumour progression and aggressiveness in ovarian cancer and promotes invasion in three-dimensional environments. This type of migration has been shown to require the expression of the hypoxia-inducible factor 1 alpha (HIF-1α). In this report we demonstrate that Rab25 regulates HIF-1α protein expression in an oxygen independent manner in a panel of cancer cell lines. Regulation of HIF-1α protein expression by Rab25 did not require transcriptional upregulation, but was dependent on de novo protein synthesis through the Erbb2/ERK1/2 and p70S6K/mTOR pathways. Rab25 expression induced HIF-1 transcriptional activity, increased cisplatin resistance, and conferred intraperitoneal growth to the A2780 cell line in immunocompromised mice. Targeting HIF1 activity by silencing HIF-1β re-sensitised cells to cisplatin in vitro and reduced tumour formation of A2780-Rab25 expressing cells in vivo in a mouse ovarian peritoneal carcinomatosis model. Similar effects on cisplatin resistance in vitro and intraperitoneal tumourigenesis in vivo were obtained after HIF1b knockdown in the ovarian cancer cell line SKOV3, which expresses endogenous Rab25 and HIF-1α at atmospheric oxygen concentrations. Our results suggest that Rab25 tumourigenic potential and chemoresistance relies on HIF1 activity in aggressive and metastatic ovarian cancer. Targeting HIF-1 activity may potentially be effective either alone or in combination with standard chemotherapy for aggressive metastatic ovarian cancer. PMID:26967059

  8. A Double Selection Approach to Achieve Specific Expression of Toxin Genes for Ovarian Cancer Gene Therapy

    DTIC Science & Technology

    2005-11-01

    Toxicol Methods 1997; 38: 59-69. toxicity. Clin Cancer Res 2004; 10: 8697-8703. 47 Chartier C et al. Efficient generation of recombinant adenovirus 32...described above) essentially as described (Krasnykh et al., 1998). pVK700 is derived from pTG3602 ( Chartier et al.. 1996), but contains an almost complete...tropism in ovarian cancer gene therapy. Hum Gene Ther 15(5), 509-18. Chartier , C., Degryse, E., Gantzer. M., Dieterle, A., Pavirani, A., and Mehtali, M

  9. High expression of CTHRC1 promotes EMT of epithelial ovarian cancer (EOC) and is associated with poor prognosis

    PubMed Central

    He, Shanyang; Li, Yang; Pan, Yunping; Feng, Chongjin; Chen, Xinlin; Zhang, Yang; Lin, Millicent; Wang, Liantang; Ke, Zunfu

    2015-01-01

    Collagen triple helix repeat-containing 1 (CTHRC1) is aberrantly overexpressed in multiple malignant tumors. However, the expression characteristics and function of CTHRC1 in epithelial ovarian cancer (EOC) remain unclear. We found that CTHRC1 expression was up-regulated in the paraffin-embedded EOC tissues compared to borderline or benign tumor tissues. CTHRC1 expression was positively correlated with tumor size (p = 0.008), menopause (p = 0.037), clinical stage (p = 0.002) and lymph node metastasis (p < 0.001) and was also an important prognostic factor for the overall survival of EOC patients, as revealed by Kaplan-Meier analysis. CTHRC1 increased the invasive capabilities of EOC cells in vitro by activating the Wnt/β-catenin signaling pathway. We showed that ectopic transfection of CTHRC1 in EOC cells up-regulated the expression of EMT markers such as N-cadherin and vimentin, and EMT-associated transcriptional factor Snail. Knockdown of CTHRC1 expression in EOC cells resulted in down-regulation of N-cadherin, vimentin, Snail and translocation of β-catenin. Collectively, CTHRC1 may promote EOC metastasis through the induction of EMT process and serve as a potential biomarker for prognosis as well as a target for therapy. PMID:26452130

  10. Apolipoprotein A-I mimetic peptides inhibit expression and activity of hypoxia-inducible factor-1α in human ovarian cancer cell lines and a mouse ovarian cancer model.

    PubMed

    Gao, Feng; Chattopadhyay, Arnab; Navab, Mohamad; Grijalva, Victor; Su, Feng; Fogelman, Alan M; Reddy, Srinivasa T; Farias-Eisner, Robin

    2012-08-01

    Our previous results demonstrated that the apolipoprotein A-I (apoA-I) mimetic peptides L-4F and L-5F inhibit vascular endothelial growth factor production and tumor angiogenesis. The present study was designed to test whether apoA-I mimetic peptides inhibit the expression and activity of hypoxia-inducible factor-1α (HIF-1α), which plays a critical role in the production of angiogenic factors and angiogenesis. Immunohistochemistry staining was used to examine the expression of HIF-1α in tumor tissues. Immunoblotting, real-time polymerase chain reaction, immunofluorescence, and luciferase activity assays were used to determine the expression and activity of HIF-1α in human ovarian cancer cell lines. Immunohistochemistry staining demonstrated that L-4F treatment dramatically decreased HIF-1α expression in mouse ovarian tumor tissues. L-4F inhibited the expression and activity of HIF-1α induced by low oxygen concentration, cobalt chloride (CoCl(2), a hypoxia-mimic compound), lysophosphatidic acid, and insulin in two human ovarian cancer cell lines, OV2008 and CAOV-3. L-4F had no effect on the insulin-induced phosphorylation of Akt, but inhibited the activation of extracellular signal-regulated kinase and p70s6 kinase, leading to the inhibition of HIF-1α synthesis. Pretreatment with L-4F dramatically accelerated the proteasome-dependent protein degradation of HIF-1α in both insulin- and CoCl(2)-treated cells. The inhibitory effect of L-4F on HIF-1α expression is in part mediated by the reactive oxygen species-scavenging effect of L-4F. ApoA-I mimetic peptides inhibit the expression and activity of HIF-1α in both in vivo and in vitro models, suggesting the inhibition of HIF-1α may be a critical mechanism responsible for the suppression of tumor progression by apoA-I mimetic peptides.

  11. HemoHIM improves ovarian morphology and decreases expression of nerve growth factor in rats with steroid-induced polycystic ovaries.

    PubMed

    Kim, Sung Ho; Lee, Hae June; Kim, Joong Sun; Moon, Changjong; Kim, Jong Choon; Bae, Chun Sik; Park, Hae Ran; Jung, Uhee; Jo, Sung Kee

    2009-12-01

    Estradiol valerate (EV)-induced polycystic ovaries (PCOs) in rats cause the anovulation and cystic ovarian morphology. We investigated whether treatment with HemoHIM influences the ovarian morphology and the expression of nerve growth factor (NGF) in an EV-induced PCO rat model. PCO was induced by a single intramuscular injection of EV (4 mg, dissolved in sesame oil) in adult cycling rats. HemoHIM was either administered orally (100 mg/kg of body weight/day) for 35 consecutive days or injected intraperitoneally (50 mg/kg of body weight) every other day after EV injection. Ovarian morphology was almost normalized, and NGF was normalized in the PCO + HemoHIM group. HemoHIM lowered the high numbers of antral follicles and increased the number of corpora lutea in PCOs. The results are consistent with a beneficial effect of HemoHIM in the prevention and treatment of PCO syndrome.

  12. Fractalkine receptor CX(3)CR1 is expressed in epithelial ovarian carcinoma cells and required for motility and adhesion to peritoneal mesothelial cells.

    PubMed

    Kim, Mijung; Rooper, Lisa; Xie, Jia; Kajdacsy-Balla, Andre A; Barbolina, Maria V

    2012-01-01

    Epithelial ovarian carcinoma (EOC) is a deadly disease, and little is known about the mechanisms underlying its metastatic progression. Using human specimens and established cell lines, we determined that the G-protein-coupled seven-transmembrane fractalkine receptor (CX(3)CR1) is expressed in primary and metastatic ovarian carcinoma cells. Ovarian carcinoma cells robustly migrated toward CX(3)CL1, a specific ligand of CX(3)CR1, in a CX(3)CR1-dependent manner. Silencing of CX(3)CR1 reduced migration toward human ovarian carcinoma ascites fluid by approximately 70%. Importantly, adhesion of ovarian carcinoma cells to human peritoneal mesothelial cells was dependent on CX(3)CL1/CX(3)CR1 signaling. In addition, CX(3)CL1 was able to induce cellular proliferation. Together, our data suggest that the fractalkine network may function as a major contributor to the progression of EOC, and further attention to its role in the metastasis of this deadly malignancy is warranted.

  13. Effects of Electro-Acupuncture on Ovarian P450arom, P450c17α and mRNA Expression Induced by Letrozole in PCOS Rats

    PubMed Central

    Wu, Huangan; Zhao, Jimeng; Cui, Yunhua; Liu, Huirong; Wu, Lingxiang; Shi, Yin; Zhu, Bing

    2013-01-01

    Hyperandrogenism is a core factor in the series of reproductive and endocrine metabolic disorders involved in polycystic ovary syndrome (PCOS). Abnormalities in enzymatic activity and the expression of ovarian granular cell layer P450arom and theca cell P450c17α can lead to an atypical environment of local ovarian hormones, including excessive androgen levels. Rat models prepared with letrozole exhibit similar endocrine and histological changes to those that occur in human PCOS. We used such a model to study the role of electro-acupuncture (EA) in regulating ovarian P450arom and P450c17α enzymatic activity and mRNA expression in PCOS rats. Female Sprague Dawley (SD) rats aged 42 days were randomly divided into 3 groups (control, PCOS, and PCOS EA) consisting of 10 rats each. The PCOS and PCOS EA groups were administered a gavage of 1.0 mg/kg−1 of letrozole solution once daily for 21 consecutive days. Beginning in the ninth week, the PCOS EA group was administered low-frequency EA treatment daily for 14 consecutive days. After the treatment, we obtained the following results. The estrous cycles were restored in 8 of the 10 rats in the PCOS EA group, and their ovarian morphologies and ultrastructures normalized. The peripheral blood measurements (with ELISA) showed significantly decreased androgens (i.e., androstenedione and testosterone) with significantly increased estrogens (i.e., estrone, estradiol) and increased P450arom with decreased P450C17α. Immunohistochemistry and Western blotting methods showed enhanced expression of ovarian granular cell layer P450arom as well as decreased expression of theca cell layer P450C17α. Fluorescence quantitative PCR methods showed enhanced expression of ovarian granular cell layer P450arom mRNA as well as decreased expression of theca cell layer P450C17α mRNA. These results may help explain the effects of electro-acupuncture in changing the local ovarian hyperandrogenic environment and improving reproductive and

  14. Expression of nuclear receptors of gingiva in polycystic ovarian syndrome: a preliminary case study.

    PubMed

    Asnani, K P; Hingorani, D; Kheur, S; Deshmukh, Vl; Romanos, G E

    2014-06-01

    Oestrogen is mainly responsible for alterations in blood vessels and progesterone stimulates the production of inflammatory mediators. In females, during puberty, ovulation and pregnancy, there is an increase in the production of sex steroid hormones, which results in increased gingival inflammation, characterized by gingival enlargement, increased bleeding and crevicular fluid flow. This article presents a case of a patient who presented with a complaint of gingival swelling and spontaneous bleeding that persisted for more than two months. Her health history documented the recently diagnosed presence of polycystic ovarian syndrome. Clinical examination revealed enlarged painful gingival tissues, which bled when touched. After completion of Phase I therapy, the enlargement did not subside and a biopsy sample was taken. This was compared with another patient who had the same health condition but did not show any gingival enlargement. Testing of tissue samples for oestrogen and progesterone receptors showed the first patient to be positive for oestrogen receptors but negative for progesterone, whereas the control was negative for both. Positive oestrogen receptors suggest that polycystic ovarian syndrome has some effect on the periodontium. The dental consequences of this condition, highly prevalent among young females, are typically ignored. Further studies warrant establishment of a clinical association and future diagnosis.

  15. A Homeobox Gene Related to Drosophila Distal-Less Promotes Ovarian Tumorigenicity by Inducing Expression of Vascular Endothelial Growth Factor and Fibroblast Growth Factor-2

    PubMed Central

    Hara, Fumikata; Samuel, Shaija; Liu, Jinsong; Rosen, Daniel; Langley, Robert R.; Naora, Honami

    2007-01-01

    Homeobox genes control developmental patterning and are increasingly being found to be deregulated in tumors. The DLX4 homeobox gene maps to the 17q21.3-q22 region that is amplified in some epithelial ovarian cancers. Because amplification of this region correlates with poor prognosis, we investigated whether DLX4 overexpression contributes to aggressive behavior of this disease. DLX4 was not detected in normal ovary and cystadenomas, whereas its expression in ovarian carcinomas was strongly associated with high tumor grade and advanced disease stage. Overexpression of DLX4 in ovarian cancer cells promoted growth in low serum and colony formation. Imaging of mice bearing intraperitoneal tumors revealed that DLX4 overexpression substantially increased tumor burden. Tumors that overexpressed DLX4 were more vascularized than vector-control tumors. Conditioned medium of DLX4-overexpressing tumor cells was more effective than medium conditioned by vector-control cells in stimulating endothelial cell growth. These observations were associated with the ability of DLX4 to induce expression of vascular endothelial growth factor as well as intracellular and secreted isoforms of fibroblast growth factor-2. Moreover, increased levels of these fibroblast growth factor-2 isoforms induced vascular endothelial growth factor expression in tumor cells. This study reveals a novel role for a homeobox gene in ovarian tumorigenicity by its induction of a proangiogenic, growth-stimulatory molecular program. PMID:17456765

  16. Effects of lipopolysaccharide and interleukins on the expression of avian β-defensins in hen ovarian follicular tissue.

    PubMed

    Abdelsalam, M; Isobe, N; Yoshimura, Y

    2012-11-01

    The aim of this study was to determine the mechanism by which expression of avian β-defensins (AvBD) in the follicular theca tissue was regulated. It was examined whether their expression was stimulated directly by LPS or indirectly through proinflammatory cytokines (IL-1β and IL-6) induced by LPS. Theca tissues of ovarian follicles were collected from White Leghorn hens. The specimens of those theca tissues were cultured in TCM-199 culture medium and stimulated by lipopolysaccharide from Salmonella minnesota (LPS), recombinant chicken IL-1β, or recombinant chicken IL-6. In the first experiment, changes in the expression of IL-1β, IL-6, AvBD10, and AvBD12 in response to LPS stimulation were examined by quantitative reverse-transcription PCR. The AvBD10 and 12 had been known to be expressed in the theca. In the second experiment, changes in the expression of AvBD10 and 12 in response to recombinant chicken IL-1β or IL-6 stimulation were examined by quantitative reverse-transcription PCR. Density of AvBD12 protein after IL-1β stimulation that showed changes in the gene expression was analyzed by Western blotting. In the first experiment, LPS was able to induce IL-1β and IL-6, but not AvBD10 or AvBD12. In the second experiment, IL-1β was able to upregulate significantly the expression of AvBD12 mRNA and protein. However, IL-6 did not exert significant effects on the expression of AvBD10 and AvBD12. It is suggested that LPS may stimulate theca cells to produce proinflammatory cytokines, whereas, in turn, IL-1β stimulates those cells to synthesize AvBD12, which may be able to attack infectious gram-negative bacteria.

  17. High ERCC1 expression is associated with platinum-resistance, but not survival in patients with epithelial ovarian cancer.

    PubMed

    Du, Pei; Wang, Yifeng; Chen, Liquan; Gan, Yaping; Wu, Qinian

    2016-08-01

    The present study aimed to investigate the association between excision repair cross-complementation group 1 (ERCC1) expression and clinical resistance to platinum-based chemotherapy or clinical characteristics, including survival time, in patients with epithelial ovarian cancer (EOC). ERCC1 expression was determined by immunohistochemical staining in 92 tumor specimens from patients with EOC. The effect of ERCC1 expression on progression-free survival time (PFS) or overall survival time (OS), and its association with clinical resistance to platinum-based chemotherapy was investigated by Kaplan-Meier survival analysis, Cox regression analysis and the χ(2) test. Of 92 patients with EOC, 89.13% (82/92) had ERCC1-positive tumors. The positive rate was significantly higher in platinum-resistant patients compared with those who were platinum-responding (P<0.05). The PFS and median OS were 12 and 30 months, respectively, in ERCC1 high expression patients, and 17 and 39 months, respectively, in ERCC1 low expression patients. However, there was no statistically significant difference in PFS (P=0.099) or OS (P=0.103) between the high and low expression groups. Furthermore, it was identified that ERCC1 was not an independent factor affecting the prognosis of patients with EOC based on Cox proportional hazards regression analysis. These results demonstrate that high ERCC1 expression is associated with resistance to platinum-based chemotherapy, but not with survival time, and ERCC1 protein expression is not an independent factor or the only factor affecting the prognosis of patients with EOC.

  18. Ovarian steroid hormones modulate the expression of progesterone receptors and histone acetylation patterns in uterine leiomyoma cells.

    PubMed

    Sant'Anna, Gabriela Dos Santos; Brum, Ilma Simoni; Branchini, Gisele; Pizzolato, Lolita Schneider; Capp, Edison; Corleta, Helena von Eye

    2017-03-16

    Uterine leiomyomas are the most common benign smooth muscle cell tumors in women. Estrogen (E2), progesterone (P4) and environmental factors play important roles in the development of these tumors. New treatments, such as mifepristone, have been proposed. We evaluated the gene expression of total (PRT) and B (PRB) progesterone receptors, and the histone acetyltransferase (HAT) and deacetylase (HDAC) activity after treatment with E2, P4 and mifepristone (RU486) in primary cell cultures from uterine leiomyoma and normal myometrium. Compared to myometrium, uterine leiomyoma cells showed an increase in PRT mRNA expression when treated with E2, and increase in PRB mRNA expression when treated with E2 and P4. Treatment with mifepristone had no significant impact on mRNA expression in these cells. The HDAC activity was higher in uterine leiomyoma compared to myometrial cells after treatment with E2 and E2 + P4 + mifepristone. HAT activity was barely detectable. Our results suggest that ovarian steroid hormones modulate PR, and mifepristone was unable to decrease PRT and PRB mRNA. The higher activity of HDAC leiomyoma cells could be involved in transcriptional repression of genes implicated in normal myometrium cell function, contributing to the maintenance and growth of uterine leiomyoma.

  19. Integrated Genome-wide DNA Copy Number and Expression Analysis Identifies Distinct Mechanisms of Primary Chemo-resistance in Ovarian Carcinomas

    PubMed Central

    Etemadmoghadam, Dariush; deFazio, Anna; Beroukhim, Rameen; Mermel, Craig; George, Joshy; Getz, Gaddy; Tothill, Richard; Okamoto, Aikou; Raeder, Maria B; Harnett, Paul; Lade, Stephen; Akslen, Lars A; Tinker, Anna; Locandro, Bianca; Alsop, Kathryn; Chiew, Yoke-Eng; Traficante, Nadia; Fereday, Sian; Johnson, Daryl; Fox, Stephen; Sellers, William; Urashima, Mitsuyoshi; Salvesen, Helga B; Meyerson, Matthew; Bowtell, David

    2009-01-01

    Purpose A significant number of women with serous ovarian cancer are intrinsically refractory to platinum-taxol based treatment. We analyzed somatic DNA copy number variation (CNV) and gene expression data to identify key mechanisms associated with primary resistance in advanced-stage serous cancers. Experimental Design Genome-wide CNV was measured in 118 ovarian tumors using high-resolution oligonucleotide microarrays. A well-defined subset of 85 advanced-stage serous tumors was then used to relate CNV to primary resistance to treatment. The discovery-based approach was complemented by quantitative-PCR copy number analysis of twelve candidate genes as independent validation of previously reported associations with clinical outcome. Likely CNV targets and tumor molecular subtypes were further characterized by gene expression profiling. Results Amplification of 19q12, containing Cyclin E (CCNE1) and 20q11.22-q13.12, mapping immediately adjacent to the steroid receptor co-activator NCOA3, were significantly associated with poor response to primary treatment. Other genes previously associated with CNV and clinical outcome in ovarian cancer were not associated with primary treatment resistance. Chemoresistant tumors with high CCNE1 copy number and protein expression were associated with increased cellular proliferation but so too were a subset of treatment responsive patients, suggesting a cell-cycle independent role for CCNE1 in modulating chemoresponse. Patients with a poor clinical outcome without CCNE1 amplification over expressed genes involved in extracellular matrix deposition. Conclusions We have identified two distinct mechanisms of primary treatment failure in serous ovarian cancer, involving CCNE1 amplification and enhanced extracellular matrix deposition. CCNE1 copy number is validated as a dominant marker of patient outcome in ovarian cancer. PMID:19193619

  20. Reduced expression of FILIP1L, a novel WNT pathway inhibitor, is associated with poor survival, progression and chemoresistance in ovarian cancer

    PubMed Central

    Rybak, Yevangelina; Luna, Alex; Choi, Chel Hun; Chung, Joon-Yong; Hewitt, Stephen M.; Adem, Asha; Tubridy, Elizabeth; Lin, Juan; Libutti, Steven K.

    2016-01-01

    Filamin A interacting protein 1-like (FILIP1L) is an inhibitor of the canonical WNT pathway. WNT/β-catenin signaling and its downstream pathway, epithelial-to-mesenchymal transition (EMT), play a key role in ovarian cancer metastasis and chemoresistance. To study the clinical implications of FILIP1L in regulating the WNT/β-catenin pathway, the expression of FILIP1L, β-catenin, SNAIL and SLUG was analyzed by immunohistochemistry on tissue microarrays of 369 ovarian samples ranging from normal to metastatic. In addition, the results were validated in mouse model and in vitro cell culture. In the present study, we demonstrated that FILIP1L expression was inversely correlated with poor prognosis, stage and chemoresistance in ovarian cancer. Notably, low FILIP1L expression was independent negative prognostic factor with respect to overall and disease-free survival. FILIP1L inhibited peritoneal metastases in orthotopic mouse model. FILIP1L knockdown induced chemoresistance in ovarian cancer cells and this phenotype was rescued by simultaneous knockdown of FILIP1L and SLUG, an EMT activator. We also demonstrated that FILIP1L regulates β-catenin degradation. FILIP1L co-localizes with phospho-β-catenin and increases phospho-β-catenin at the centrosomes, destined for proteosomal degradation. Finally, we showed that FILIP1L regulates EMT. Overall, these findings suggest that FILIP1L promotes β-catenin degradation and suppresses EMT, thereby inhibiting metastases and chemoresistance. Our study provides the first clinical relevance of FILIP1L in human cancer, and suggests that FILIP1L may be a novel prognostic marker for chemotherapy in ovarian cancer patients. Further, the modulation of FILIP1L expression may have the potential to be a target for cancer therapy. PMID:27776341

  1. Reduced expression of FILIP1L, a novel WNT pathway inhibitor, is associated with poor survival, progression and chemoresistance in ovarian cancer.

    PubMed

    Kwon, Mijung; Kim, Jae-Hoon; Rybak, Yevangelina; Luna, Alex; Choi, Chel Hun; Chung, Joon-Yong; Hewitt, Stephen M; Adem, Asha; Tubridy, Elizabeth; Lin, Juan; Libutti, Steven K

    2016-11-22

    Filamin A interacting protein 1-like (FILIP1L) is an inhibitor of the canonical WNT pathway. WNT/β-catenin signaling and its downstream pathway, epithelial-to-mesenchymal transition (EMT), play a key role in ovarian cancer metastasis and chemoresistance. To study the clinical implications of FILIP1L in regulating the WNT/β-catenin pathway, the expression of FILIP1L, β-catenin, SNAIL and SLUG was analyzed by immunohistochemistry on tissue microarrays of 369 ovarian samples ranging from normal to metastatic. In addition, the results were validated in mouse model and in vitro cell culture. In the present study, we demonstrated that FILIP1L expression was inversely correlated with poor prognosis, stage and chemoresistance in ovarian cancer. Notably, low FILIP1L expression was independent negative prognostic factor with respect to overall and disease-free survival. FILIP1L inhibited peritoneal metastases in orthotopic mouse model. FILIP1L knockdown induced chemoresistance in ovarian cancer cells and this phenotype was rescued by simultaneous knockdown of FILIP1L and SLUG, an EMT activator. We also demonstrated that FILIP1L regulates β-catenin degradation. FILIP1L co-localizes with phospho-β-catenin and increases phospho-β-catenin at the centrosomes, destined for proteosomal degradation. Finally, we showed that FILIP1L regulates EMT. Overall, these findings suggest that FILIP1L promotes β-catenin degradation and suppresses EMT, thereby inhibiting metastases and chemoresistance. Our study provides the first clinical relevance of FILIP1L in human cancer, and suggests that FILIP1L may be a novel prognostic marker for chemotherapy in ovarian cancer patients. Further, the modulation of FILIP1L expression may have the potential to be a target for cancer therapy.

  2. Profile of differentially expressed miRNAs in high-grade serous carcinoma and clear cell ovarian carcinoma, and the expression of miR-510 in ovarian carcinoma.

    PubMed

    Zhang, Xinchen; Guo, Gordon; Wang, Guang; Zhao, Jinyao; Wang, Bo; Yu, Xiaotang; Ding, Yanfang

    2015-12-01

    Improved insight into the molecular and genetic profile of different types of epithelial ovarian cancer (EOC) is required for understanding the carcinogenesis of EOC and may potentially be exploited by future targeted therapies. The aim of the present study was to identify a unique microRNA (miRNA) patterns and key miRNAs, which may assist in predicting progression and prognosis in high‑grade serous carcinoma (HGSC) and clear cell carcinoma (CCC). To identify unique miRNA patterns associated with HGSC and CCC, a miRNA microarray was performed using Chinese tumor bank specimens of patients with HGSC or CCC in a retrospective analysis. The expression levels of four deregulated miRNAs were further validated using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) in an external cohort of 42 cases of HGSC and 36 cases of CCC. Kaplan‑Meier analysis was performed to analyze the correlation between the expression levels of the four miRNAs and patient prognosis. Among these validated miRNAs, miR‑510 was further examined in another cohort of normal ovarian tissues, as well as the HGSC, low‑grade serous carcinoma (LGSC) and CCC specimens using RT‑qPCR and in situ hybridization. The results revealed that, of the 768 miRNAs analyzed in the microarray, 33 and 50 miRNAs were significantly upregulated and downregulated, respectively, with at least a 2‑fold difference in HGSC, compared with CCC. The quantitative analysis demonstrated that miR‑510 and miR‑129‑3p were significantly downregulated, and that miR‑483‑5p and miR‑miR‑449a were significantly upregulated in CCC, compared with HGSC (P<0.05), which was consistent with the microarray results. Kaplan‑Meier analysis revealed low expression levels of miR‑510 and low expression levels of miR‑129‑3p, advanced International Federation of Gynecology and Obstetrics (FIGO) stage, lymphatic metastasis and that HGSC was significantly associated with the poorer overall

  3. [RNA interference silencing expression of survivin gene and reversing drug resistance of ovarian cancer cell line SKOV3/ADM].

    PubMed

    Deng, Kai-xian; Zhong, Ling; Jiang, Mei-xian; Wang, Ping-ling; Chen, Ying

    2005-12-01

    To examine expression of survivin gene in ovarian epithelial carcinoma drug resistant cell line SKOV3/ADM and its parental cell line SKOV3, and induction of cells apoptosis and reversal of drug resistance in SKOV3/ADM after RNA interference (RNAi) silencing survivin gene. The transcription of survivin gene in cells was detected by semi-quantitative RT-PCR, the protein expression level of survivin gene was analyzed by immunofluorescence staining. SKOV3/ADM cells were treated with pshRNA-survivin and paclitaxel (Taxol), and acridine orange (AO)/ethidium bromide (EB) staining was performed to evaluate the apoptosis of cells. Survivin gene mRNA expressed by 99.1% and 75.3% respectively in cell lines SKOV3/ADM and SKOV3, while fluorescent cells were 59 +/- 5 and 42 +/- 3 (P < 0.05). After the introduction of pshRNA-survivin into SKOV3/ADM, mRNA transcription level of survivin gene decreased distinctly from 99.1% to 7.9%. The apoptotic cells of control group detected by AO/EB staining was 3.6 +/- 0.6, of Taxol group 10.2 +/- 1.0, of RNAi group 48.5 +/- 4.9, of RNAi + Taxol group 71.5 +/- 6.8. Apoptosis ratio between RNAi + Taxol group and RNAi group had significant difference (P < 0.05), and that between RNAi + Taxol group and Taxol group also had significant difference (P < 0.05). Both survivin gene mRNA and its protein are over-expressed in ovarian epithelial carcinoma cell lines SKOV3 and SKOV3/ADM, the level of survivin gene expressed in SKOV3/ADM is obviously different compared with that in its parental cell line SKOV3. RNA interference targeted against specific sequences of survivin in SKOV3/ADM cell could significantly reduce the level of survivin mRNA transcripts and protein, effectively induce the cells apoptosis and restore the sensitivity of cell to conventional chemotherapeutic agents Taxol.

  4. RNA-seq based gene expression analysis of ovarian granulosa cells exposed to zearalenone in vitro: significance to steroidogenesis

    PubMed Central

    Zhang, Guo-Liang; Zhang, Rui-Qian; Sun, Xiao-Feng; Cheng, Shun-Feng; Wang, Yu-Feng; Ji, Chuan-Liang; Feng, Yan-Zhong; Yu, Jie; Ge, Wei; Zhao, Yong; Sun, Shi-Duo; Shen, Wei; Li, Lan

    2017-01-01

    Zearalenone (ZEA) is a natural contaminant of various food and feed products representing a significant problem worldwide. Since the occurrence of ZEA in grains and feeds is frequent, the present study was carried out to evaluate the possible effects of ZEA on steroid production and gene expression of porcine granulosa cells, using RNA-seq analysis. Porcine granulosa cells were administered 10 μM and 30 μM ZEA during 72 h of culture in vitro. Following ZEA treatment the gene expression profile of control and exposed granulosa cells was compared using RNA-seq analysis. The results showed that in the exposed granulosa cells ZEA significantly altered the transcript levels, particularly steroidogenesis associated genes. Compared with the control group, 10 μM and 30 μM ZEA treatment significantly increased the mRNA expression of EDN1, IER3, TGFβ and BDNF genes and significantly reduced the mRNA expression of IGF-1 and SFRP2 genes. In particular, ZEA significantly decreased the expression of genes essential for estrogen synthesis including FSHR, CYP19A1 and HSD17β in granulosa cells. Furthermore, Q-PCR and Western-blot analysis also confirmed reduced expression of these genes in ZEA exposed granulosa cells. These effects were associated with a significant reduction of 17β-estradiol concentrations in the culture medium of granulosa cells. Collectively, these results demonstrated a concretely deleterious effect of ZEA exposure on the mRNA expression of steroidogenesis related genes and the production of steroid hormones in porcine ovarian granulosa cells in vitro. PMID:28969048

  5. Ovarian Cancer

    MedlinePlus

    OVARIAN CANCER Get the Facts About Gynecologic Cancer There are five main types of cancer that affect a ... rare fallopian tube cancer.) This fact sheet about ovarian cancer is part of the Centers for Disease Control ...

  6. Expression of orexins and their precursor in the porcine ovary and the influence of orexins on ovarian steroidogenesis in pigs.

    PubMed

    Nitkiewicz, Anna; Smolinska, Nina; Maleszka, Anna; Chojnowska, Katarzyna; Kaminski, Tadeusz

    2014-07-01

    Orexins A and B are hypothalamic neuropeptides associated with homeostasis and the reproductive system. The aim of the study was to compare the expression of the prepro-orexin gene and the intensity of orexins immunoreactivity in the porcine ovary (corpora lutea, granulosa and theca interna cells) during four different stages of the oestrous cycle (days: 2-3, 10-12, 14-16 and 17-19) and to examine the in vitro effect of orexins on the secretion of steroid hormones by porcine luteal, granulosa and theca interna cells. The highest expression of prepro-orexin mRNA was observed in theca interna cells on days 17-19 of the oestrous cycle. The highest content of immunoreactive orexin A was noted in corpora lutea on days 10-12 and the highest level of immunoreactive orexin B on days 14-16 of the cycle. Immunoreactive orexin A concentrations were higher in theca interna cells than in granulosa cells, whereas similar levels of immunoreactive orexin B were observed in both cell types. Under in vitro conditions, at the concentration of 10 nM, orexins A and B inhibited FSH-induced oestradiol secretion by granulosa cells. The obtained results suggest that the pattern of orexin peptide expression in the porcine ovary is related to the animals' hormonal status. Our findings imply that orexins can affect porcine reproductive functions through modulation of ovarian steroidogenesis.

  7. Gene Expression Profiling Reveals Cyp26b1 to Be an Activin Regulated Gene Involved in Ovarian Granulosa Cell Proliferation

    PubMed Central

    Kipp, Jingjing L.; Golebiowski, Ann; Rodriguez, Guadalupe; Demczuk, Michael; Kilen, Signe M.; Mayo, Kelly E.

    2011-01-01

    Activin, a member of the TGF-β superfamily, is an important modulator of FSH synthesis and secretion and is involved in reproductive dysfunctions and cancers. It also regulates ovarian follicle development. To understand the mechanisms and pathways by which activin regulates follicle function, we performed a microarray study and identified 240 activin regulated genes in mouse granulosa cells. The gene most strongly inhibited by activin was Cyp26b1, which encodes a P450 cytochrome enzyme that degrades retinoic acid (RA). Cyp26b1 has been shown to play an important role in male germ cell meiosis, but its expression is largely lost in the ovary around embryonic d 12.5. This study demonstrated that Cyp26b1 mRNA was expressed in granulosa cells of follicles at all postnatal developmental stages. A striking inverse spatial and temporal correlation between Cyp26b1 and activin-βA mRNA expression was observed. Cyp26b1 expression was also elevated in a transgenic mouse model that has decreased activin expression. The Cyp26 inhibitor R115866 stimulated the proliferation of primary cultured mouse granulosa cells, and a similar effect was observed with RA and activin. A pan-RA receptor inhibitor, AGN194310, abolished the stimulatory effect of either RA or activin on granulosa cell proliferation, indicating an involvement of RA receptor-mediated signaling. Overall, this study provides new insights into the mechanisms of activin action in the ovary. We conclude that Cyp26b1 is expressed in the postnatal mouse ovary, regulated by activin, and involved in the control of granulosa cell proliferation. PMID:21084447

  8. [Effects of Kuntai Capsules on endometrial thickness and expressions of leukemia inhibitory factor and epidermal growth factor in mouse after controlled ovarian hyperstimulation].

    PubMed

    Chu, Xiying; Song, Yuxia; Wan, Lijing; Tan, Li

    2014-08-05

    To explore the effects of Kuntai Capsules on endometrial thickness and the expressions of leukemia inhibitory factor (LIF) and epidermal growth factor (EGF) in mouse after controlled ovarian hyperstimulation. Healthy Sprague-Dawley mice were randomly allocated into 4 groups of control (group A), controlled ovarian hyperstimulation [COH (group B)], COH plus low-dose Kuntai Capsules (group C) and COH plus large-dose Kuntai Capsules [2x low-dose (group D)]. The controlled ovarian hyperstimulation model was established. The endometrial thickness was measured by computerized multi-functional image analyzer. And the expressions of LIF and EGF in proliferating endometrium were examined by immunohistochemistry. The endometrial thickness of groups C and D were higher than that of groups A and B. And there were significant differences (P < 0.05). The expression levels of LIF protein in proliferating endometrium was weaker than implantation window phase, the expression levels of EGF and LIF in group B was weaker than group A, groups C and D stronger than groups B and D was stronger than group C. And there were significant differences (P < 0.05). Kuntai Capsules can promote the growth of endometrium and enhance the expression levels of EGF and LIF in mice. And it may improve the ability of endometrial receptivity through optimized microenvironment. And a larger dose of Kuntai Capsules yields better outcomes.

  9. Slow freezing versus vitrification technique for human ovarian tissue cryopreservation: An evaluation of histological changes, WNT signaling pathway and apoptotic genes expression.

    PubMed

    Dalman, Azam; Deheshkar Gooneh Farahani, Nafiseh Sadat; Totonchi, Mehdi; Pirjani, Reihaneh; Ebrahimi, Bita; Valojerdi, Mojtaba Rezazadeh

    2017-10-04

    This study compared slow freezing and vitrification of ovarian tissue by evaluation of histological changes, WNT signaling pathway and apoptotic genes expression. Ovarian tissue was obtained from women aging 27-38 years old. Ovarian cortex from each patient was divided into three pieces and randomly grouped as slow freezing, vitrification and control groups for investigation of WNT signaling gene expression and β-CATENIN presence as well as histological studies. The stromal structure of all ovaries were preserved. The number of secondary follicles decreased in vitrified group (P < 0.05). WNT-3, β-CATENIN, FZD-2 and GSK-3β expressions were significantly higher in slow frozen and vitrified groups, compared to control group (P < 0.05). On the contrary, AXIN1 expression in slow frozen samples were significantly lower than that of the vitrified and control group. The expression of apoptotic genes, excluding CASP3, was significantly decreased in slow-frozen samples (P < 0.05). Conversely, BAX:BCL-2 percentage significantly increased in vitrification versus slow freezing and control(P < 0.05). Follicles in slow frozen samples displayed nuclear and cytoplasmic β-CATENIN staining, while control and vitrification groups only showed β-CATENIN protein in the cytoplasm. The presented data show that slow freezing results in a better preservation regardless of the type of follicle. Therefore, it is concluded that slow freezing is still an ideal method for ovary cryopreservation. Copyright © 2017. Published by Elsevier Inc.

  10. Techniques for Specifying Bug Patterns

    SciTech Connect

    Quinlan, D J; Vuduc, R W; Misherghi, G

    2007-04-30

    We present our on-going work to develop techniques for specifying source code signatures of bug patterns. Specifically, we discuss two approaches. The first approach directly analyzes a program in the intermediate representation (IR) of the ROSE compiler infrastructure using ROSE's API. The second analyzes the program using the bddbddb system of Lam, Whaley, et al.. In this approach, we store the IR produced by ROSE as a relational database, express patterns as declarative inference rules on relations in the language Datalog, and bddbddb implements the Datalog programs using binary decision diagram (BDD) techniques. Both approaches readily apply to large-scale applications, since ROSE provides full type analysis, control flow, and other available analysis information. In this paper, we primarily consider bug patterns expressed with respect to the structure of the source code or the control flow, or both. More complex techniques to specify patterns that are functions of data flow properties may be addressed by either of the above approaches, but are not directly treated here. Our Datalog-based work includes explicit support for expressing patterns on the use of the Message Passing Interface (MPI) in parallel distributed memory programs. We show examples of this on-going work as well.

  11. Lectin array and glycogene expression analyses of ovarian cancer cell line A2780 and its cisplatin-resistant derivate cell line A2780-cp.

    PubMed

    Zhao, Ran; Qin, Wenjun; Qin, Ruihuan; Han, Jing; Li, Can; Wang, Yisheng; Xu, Congjian

    2017-01-01

    Ovarian cancer is one of the most lethal gynecological malignancies, in which platinum resistance is a common cause of its relapse and death. Glycosylation has been reported to be involved in drug resistance, and glycomic analyses of ovarian cancer may improve our understanding of the mechanisms underlying cancer cell drug resistance and provide potential biomarkers and therapeutic targets. The serous ovarian cancer cell line A2780 and its platinum-resistant counterpart A2780-cp were used in this study. We performed a lectin array analysis to compare the glycosylation patterns of the two cell lines, a gene expression array was employed to probe the differences in glycogenes. Furthermore, the results were verified by lectin blots. A2780-cp cell exhibited stronger intensities of Lens culinaris (LCA) Canavalia ensiformis (ConA), and Lycopersicon esculentum (LEL) and weaker intensities of Sambucus nigra (SNA) lectins. The gene expression array analysis revealed increased expression of Fut8, B3gnt4, B3gnt5, B4galt2 and decreased expression of Fut1 and ST6GalNAc 6 expression were evident in the A2780-cp cells. The lectin blot confirmed the differences in LCA, ConA, SNA and LEL between the A2780 and A2780-cp cells. The combination of the lectin and gene expression analyses showed that the levels of core fucosylation and poly-LacNAc were increased in the A2780-cp cells and the levels of Fuc α1-2(gal β1-4) GlcNAc and α2-6-linked sialic structures were decreased in the A2780-cp cells. These glycans represent potential biomarkers and might be involved in the mechanism of drug resistance in ovarian cancer.

  12. [Identification and prognostic value of differentially expressed proteins of patients with platinum resistance epithelial ovarian cancer in serum].

    PubMed

    Wu, W J; Wang, Q; Zhang, W; Li, L

    2016-07-25

    To identified differentially expressed proteins associated with platinum resistance in platinum resistance epithelial oarian cancer(EOC)patients in serum and investigate their clinical value. A total of 106 patients withoverian tumor in affiliated tumor hospital of Guangxi Medical University from August 1998 to September 2013 were enrolled in this study, which include 52 cases od platinum-sensitive(PTS), 44 cases of platinum-resistant(PTR)and 10 cases of benign ovarian cyst(BOC). Thirty-three cases of normal women proceeded physical examination in our hospital in 2008 were chosen as control group(NC). Four groups of patients serum samples of 4 groups were collected and preserved.(1)Differentially express level of serum proteins of 10 cases of every group(PTS & PTR vs NC, PTS & PTR vs BOC, PTS vs PTR)were identified with isobaric tags for relative and absolute quantitative(iTRAQ)based quantitative proteomic approach and then was subjected to bioinformatics analysis.(2)Proteins that played a important role in multidrug resistance were validated by western blot(WB)and ELISA in 44 PTR patients, 52 PRS patients and 33 NC women.(3)Pearson correlation analysis was used to explain the relationship between proteins and clinical pathological parameters of PTR individuals. Kaplan-Meier method was supposed to explore serum biomarkers associated with clinical prognosis data. Receiver operating characteristic(ROC)curves were used to determine the diagnostic value of the markers. (1)Based on the result of bioinformatics analysis, 56 proteins, 39 proteins and 62 proteins were identified respectively among PTS & PTR vs NC, PTS & PTR vs BOC, PTS vs PTR. It showed that C6 and CNTN1 have a positive seletion effect among Asians and BCHE among Europeans through searching Haplotter database. CRP, FN1, S100A9, TF, ALB, VWF, APOC2, APOE, CD44, F2, GPX3 and ACTB proein were further verified related with platinum resistance by taking intersection analysis in the COREMINE database and TCGA.(2

  13. Follicle-stimulating hormone regulates expression and activity of epidermal growth factor receptor in the murine ovarian follicle.

    PubMed

    El-Hayek, Stephany; Demeestere, Isabelle; Clarke, Hugh J

    2014-11-25

    Fertility depends on the precise coordination of multiple events within the ovarian follicle to ensure ovulation of a fertilizable egg. FSH promotes late follicular development, including expression of luteinizing hormone (LH) receptor by the granulosa cells. Expression of its receptor permits the subsequent LH surge to trigger the release of ligands that activate EGF receptors (EGFR) on the granulosa, thereby initiating the ovulatory events. Here we identify a previously unknown role for FSH in this signaling cascade. We show that follicles of Fshb(-/-) mice, which cannot produce FSH, have a severely impaired ability to support two essential EGFR-regulated events: expansion of the cumulus granulosa cell layer that encloses the oocyte and meiotic maturation of the oocyte. These defects are not caused by an inability of Fshb(-/-) oocytes to produce essential oocyte-secreted factors or of Fshb(-/-) cumulus cells to respond. In contrast, although expression of both Egfr and EGFR increases during late folliculo