MultiSite Gateway-Compatible Cell Type-Specific Gene-Inducible System for Plants1[OPEN
Siligato, Riccardo; Wang, Xin; Yadav, Shri Ram; Lehesranta, Satu; Ma, Guojie; Ursache, Robertas; Sevilem, Iris; Zhang, Jing; Gorte, Maartje; Prasad, Kalika; Heidstra, Renze
2016-01-01
A powerful method to study gene function is expression or overexpression in an inducible, cell type-specific system followed by observation of consequent phenotypic changes and visualization of linked reporters in the target tissue. Multiple inducible gene overexpression systems have been developed for plants, but very few of these combine plant selection markers, control of expression domains, access to multiple promoters and protein fusion reporters, chemical induction, and high-throughput cloning capabilities. Here, we introduce a MultiSite Gateway-compatible inducible system for Arabidopsis (Arabidopsis thaliana) plants that provides the capability to generate such constructs in a single cloning step. The system is based on the tightly controlled, estrogen-inducible XVE system. We demonstrate that the transformants generated with this system exhibit the expected cell type-specific expression, similar to what is observed with constitutively expressed native promoters. With this new system, cloning of inducible constructs is no longer limited to a few special cases but can be used as a standard approach when gene function is studied. In addition, we present a set of entry clones consisting of histochemical and fluorescent reporter variants designed for gene and promoter expression studies. PMID:26644504
ERIC Educational Resources Information Center
Rodriguez, Lisa Ann; Shepard, MaryFriend
2013-01-01
This study explored the perceptions of adult English language learners about audience response systems (clickers) as tools to facilitate communication. According to second language acquisition theory, learners' receptive capabilities in the early stages of second language acquisition surpass expressive capabilities, often rendering them silent in…
Transforming Lepidopteran Insect Cells for Improved Protein Processing and Expression
USDA-ARS?s Scientific Manuscript database
The lepidopteran insect cells used with the baculovirus expression vector system (BEVS) are capable of synthesizing and accurately processing foreign proteins. However, proteins expressed in baculovirus-infected cells often fail to be completely processed, or are not processed in a manner that meet...
Ito, Yoichiro; Yamanishi, Mamoru; Ikeuchi, Akinori; Matsuyama, Takashi
2015-01-16
Control of the expression levels of multiple enzymes in transgenic yeasts is essential for the effective production of complex molecules through fermentation. Here, we propose a tunable strategy for the control of expression levels based on the design of terminator regions and other gene-expression control elements in Saccharomyces cerevisiae. Our genome-integrated system, which is capable of producing high expression levels over a wide dynamic range, will broadly enable metabolic engineering and synthetic biology. We demonstrated that the activities of multiple cellulases and the production of ethanol were doubled in a transgenic yeast constructed with our system compared with those achieved with a standard expression system.
Synthetic LDL as targeted drug delivery vehicle
Forte, Trudy M [Berkeley, CA; Nikanjam, Mina [Richmond, CA
2012-08-28
The present invention provides a synthetic LDL nanoparticle comprising a lipid moiety and a synthetic chimeric peptide so as to be capable of binding the LDL receptor. The synthetic LDL nanoparticle of the present invention is capable of incorporating and targeting therapeutics to cells expressing the LDL receptor for diseases associated with the expression of the LDL receptor such as central nervous system diseases. The invention further provides methods of using such synthetic LDL nanoparticles.
Practical applications of space systems. [environmental quality and resources management
NASA Technical Reports Server (NTRS)
1975-01-01
The study was conducted to provide an opportunity for knowledgeable users to express their needs for information or services which might or might not be met by space systems, and to relate the present and potential capabilities of space systems to their needs. The needs, accomplishments to date, and future possibilities in the applications of space systems for providing food and energy, while at the same time improving and safeguarding the physical environment and the quality of life, are presented. Organizing the usage of these space systems capabilities is also discussed.
Wang, Jing; Cui, Xun; Yang, Le; Zhang, Zhe; Lv, Liping; Wang, Haoyuan; Zhao, Zhenmin; Guan, Ningzi; Dong, Lichun; Chen, Rachel
2017-07-01
Artificial control of bio-functions through regulating gene expression is one of the most important and attractive technologies to build novel living systems that are useful in the areas of chemical synthesis, nanotechnology, pharmacology, cell biology. Here, we present a novel real-time control system of gene regulation that includes an enhancement element by introducing duplex DNA aptamers upstream promoter and a repression element by introducing a RNA aptamer upstream ribosome binding site. With the presence of ligands corresponding to the DNA aptamers, the expression of the target gene can be potentially enhanced at the transcriptional level by strengthening the recognition capability of RNAP to the recognition region and speeding up the separation efficiency of the unwinding region due to the induced DNA bubble around the thrombin-bound aptamers; while with the presence of RNA aptamer ligand, the gene expression can be repressed at the translational level by weakening the recognition capability of ribosome to RBS due to the shielding of RBS by the formed aptamer-ligand complex upstream RBS. The effectiveness and potential utility of the developed gene regulation system were demonstrated by regulating the expression of ecaA gene in the cell-free systems. The realistic metabolic engineering application of the system has also tested by regulating the expression of mgtC gene and thrombin cDNA in Escherichia coli JD1021 for controlling metabolic flux and improving thrombin production, verifying that the real-time control system of gene regulation is able to realize the dynamic regulation of gene expression with potential applications in bacterial physiology studies and metabolic engineering. Copyright © 2017. Published by Elsevier Inc.
Riddell, Imogen A; Smulders, Maarten M J; Clegg, Jack K; Hristova, Yana R; Breiner, Boris; Thoburn, John D; Nitschke, Jonathan R
2012-09-01
Biochemical systems are adaptable, capable of reconstitution at all levels to achieve the functions associated with life. Synthetic chemical systems are more limited in their ability to reorganize to achieve new functions; they can reconfigure to bind an added substrate (template effect) or one binding event may modulate a receptor's affinity for a second substrate (allosteric effect). Here we describe a synthetic chemical system that is capable of structural reconstitution on receipt of one anionic signal (perchlorate) to create a tight binding pocket for another anion (chloride). The complex, barrel-like structure of the chloride receptor is templated by five perchlorate anions. This second-order templation phenomenon allows chemical networks to be envisaged that express more complex responses to chemical signals than is currently feasible.
Legastelois, Isabelle; Buffin, Sophie; Peubez, Isabelle; Mignon, Charlotte; Sodoyer, Régis; Werle, Bettina
2017-01-01
ABSTRACT The increasing demand for recombinant vaccine antigens or immunotherapeutic molecules calls into question the universality of current protein expression systems. Vaccine production can require relatively low amounts of expressed materials, but represents an extremely diverse category consisting of different target antigens with marked structural differences. In contrast, monoclonal antibodies, by definition share key molecular characteristics and require a production system capable of very large outputs, which drives the quest for highly efficient and cost-effective systems. In discussing expression systems, the primary assumption is that a universal production platform for vaccines and immunotherapeutics will unlikely exist. This review provides an overview of the evolution of traditional expression systems, including mammalian cells, yeast and E.coli, but also alternative systems such as other bacteria than E. coli, transgenic animals, insect cells, plants and microalgae, Tetrahymena thermophila, Leishmania tarentolae, filamentous fungi, cell free systems, and the incorporation of non-natural amino acids. PMID:27905833
Expression of eukaryotic polypeptides in chloroplasts
Mayfield, Stephen P.
2013-06-04
The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.
Evolving fuzzy rules in a learning classifier system
NASA Technical Reports Server (NTRS)
Valenzuela-Rendon, Manuel
1993-01-01
The fuzzy classifier system (FCS) combines the ideas of fuzzy logic controllers (FLC's) and learning classifier systems (LCS's). It brings together the expressive powers of fuzzy logic as it has been applied in fuzzy controllers to express relations between continuous variables, and the ability of LCS's to evolve co-adapted sets of rules. The goal of the FCS is to develop a rule-based system capable of learning in a reinforcement regime, and that can potentially be used for process control.
Real-time face and gesture analysis for human-robot interaction
NASA Astrophysics Data System (ADS)
Wallhoff, Frank; Rehrl, Tobias; Mayer, Christoph; Radig, Bernd
2010-05-01
Human communication relies on a large number of different communication mechanisms like spoken language, facial expressions, or gestures. Facial expressions and gestures are one of the main nonverbal communication mechanisms and pass large amounts of information between human dialog partners. Therefore, to allow for intuitive human-machine interaction, a real-time capable processing and recognition of facial expressions, hand and head gestures are of great importance. We present a system that is tackling these challenges. The input features for the dynamic head gestures and facial expressions are obtained from a sophisticated three-dimensional model, which is fitted to the user in a real-time capable manner. Applying this model different kinds of information are extracted from the image data and afterwards handed over to a real-time capable data-transferring framework, the so-called Real-Time DataBase (RTDB). In addition to the head and facial-related features, also low-level image features regarding the human hand - optical flow, Hu-moments are stored into the RTDB for the evaluation process of hand gestures. In general, the input of a single camera is sufficient for the parallel evaluation of the different gestures and facial expressions. The real-time capable recognition of the dynamic hand and head gestures are performed via different Hidden Markov Models, which have proven to be a quick and real-time capable classification method. On the other hand, for the facial expressions classical decision trees or more sophisticated support vector machines are used for the classification process. These obtained results of the classification processes are again handed over to the RTDB, where other processes (like a Dialog Management Unit) can easily access them without any blocking effects. In addition, an adjustable amount of history can be stored by the RTDB buffer unit.
RNA binding protein and binding site useful for expression of recombinant molecules
Mayfield, Stephen P.
2006-10-17
The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.
RNA binding protein and binding site useful for expression of recombinant molecules
Mayfield, Stephen
2000-01-01
The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.
International Space Station (ISS)
2001-05-14
Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.
Astronaut James S. Voss Performs Tasks in the Destiny Laboratory
NASA Technical Reports Server (NTRS)
2001-01-01
Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.
Purification of proteins from baculovirus-infected insect cells.
O'Shaughnessy, Luke; Doyle, Sean
2011-01-01
Expression of recombinant proteins in the baculovirus/insect cell expression system is employed because it enables post-translational protein modification and high yields of recombinant protein. The system is capable of facilitating the functional expression of many proteins - either secreted or intracellularly located within infected insect cells. Strategies for the isolation and extraction of soluble proteins are presented in this chapter and involve selective cell lysis, precipitation and chromatography. Protein insolubility, following recombinant expression in insect cells, can occur. However, using the methods described herein, it is possible to extract and purify insoluble protein using affinity, ion-exchange and gel filtration chromatography. Indeed, protein insolubility often aids protein purification.
Del Medico Zajac, María Paula; Zanetti, Flavia Adriana; Esusy, María Soledad; Federico, Carlos Rodolfo; Zabal, Osvaldo; Valera, Alejandro Rafael; Calamante, Gabriela
In this study, we evaluated the immunogenicity and efficacy of mucosal delivery of a recombinant modified vaccinia Ankara virus (MVA) expressing the secreted version of bovine herpesvirus type 1 (BoHV-1) glycoprotein D (MVA-gDs) without addition of adjuvant in two animal models. First, we demonstrated the capability of MVA-gDs of inducing both local and systemic anti-gD humoral immune response after intranasal immunization of mice. Then, we confirmed that two doses of MVA-gDs administered intranasally to rabbits induced systemic anti-gD antibodies and conferred protection against BoHV-1 challenge. Our results show the potential of using MVA as a vector for the rational design of veterinary vaccines capable of inducing specific and protective immune responses both at local and systemic level.
Recombinant organisms capable of fermenting cellobiose
Ingram, Lonnie O.; Lai, Xiaokuang; Moniruzzaman, Mohammed; York, Sean W.
2000-01-01
This invention relates to a recombinant microorganism which expresses pyruvate decarboxylase, alcohol dehydrogenase, Klebsiella phospho-.beta.-glucosidase and Klebsiella (phosphoenolpyruvate-dependent phosphotransferase system) cellobiose-utilizing Enzyme II, wherein said phospho-.beta.-glucosidase and said (phosphoenolpyruvate-dependent phosphotransferase) cellobiose-utilizing Enzyme II are heterologous to said microorganism and wherein said microorganism is capable of utilizing both hemicellulose and cellulose, including cellobiose, in the production of ethanol.
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Peyvan, Kia; Karouia, Fathi; Ricco, Antonio
2012-01-01
The capability to measure gene expression on board spacecraft opens the door to a large number of high-value experiments on the influence of the space environment on biological systems. For example, measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, and determine the metabolic bases of microbial pathogenicity and drug resistance. These and other applications hold significant potential for discoveries in space biology, biotechnology, and medicine. Supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measurement of expression of several hundreds of microbial genes from multiple samples. The instrument will be capable of (1) lysing cell walls of bacteria sampled from cultures grown in space, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA on a microarray and (4) providing readout of the microarray signal, all in a single microfluidics cartridge. The device is suitable for deployment on nanosatellite platforms developed by NASA Ames' Small Spacecraft Division. To meet space and other technical constraints imposed by these platforms, a number of technical innovations are being implemented. The integration and end-to-end technological and biological validation of the instrument are carried out using as a model the photosynthetic bacterium Synechococcus elongatus, known for its remarkable metabolic diversity and resilience to adverse conditions. Each step in the measurement process-lysis, nucleic acid extraction, purification, and hybridization to an array-is assessed through comparison of the results obtained using the instrument with those from standard laboratory protocols. Once developed, the system can be used with minor modifications for multiple experiments on different platforms in space, including extension to higher organisms and microbial monitoring. A proposed version of GEMM that is capable of handling both microbial and tissue samples on the International Space Station will be briefly summarized.
Direct multiplexed measurement of gene expression with color-coded probe pairs.
Geiss, Gary K; Bumgarner, Roger E; Birditt, Brian; Dahl, Timothy; Dowidar, Naeem; Dunaway, Dwayne L; Fell, H Perry; Ferree, Sean; George, Renee D; Grogan, Tammy; James, Jeffrey J; Maysuria, Malini; Mitton, Jeffrey D; Oliveri, Paola; Osborn, Jennifer L; Peng, Tao; Ratcliffe, Amber L; Webster, Philippa J; Davidson, Eric H; Hood, Leroy; Dimitrov, Krassen
2008-03-01
We describe a technology, the NanoString nCounter gene expression system, which captures and counts individual mRNA transcripts. Advantages over existing platforms include direct measurement of mRNA expression levels without enzymatic reactions or bias, sensitivity coupled with high multiplex capability, and digital readout. Experiments performed on 509 human genes yielded a replicate correlation coefficient of 0.999, a detection limit between 0.1 fM and 0.5 fM, and a linear dynamic range of over 500-fold. Comparison of the NanoString nCounter gene expression system with microarrays and TaqMan PCR demonstrated that the nCounter system is more sensitive than microarrays and similar in sensitivity to real-time PCR. Finally, a comparison of transcript levels for 21 genes across seven samples measured by the nCounter system and SYBR Green real-time PCR demonstrated similar patterns of gene expression at all transcript levels.
NASA Astrophysics Data System (ADS)
Vallino, J. J.; Huber, J. A.
2016-02-01
Marine biogeochemistry is orchestrated by a complex and dynamic community of microorganisms that attempt to maximize their own fecundity through a combination of competition and cooperation. At a systems level, the community can be described as a distributed metabolic network, where different species contribute their own unique set of metabolic capabilities. Our current project attempts to understand the governing principles that describe amplification or attenuation of metabolic pathways within the network through a combination of modeling and metagenomic, metatranscriptomic and biogeochemical observations. We will describe and present results from our thermodynamic-based model that determines optimal pathway expression from available resources based on the principle of maximum entropy production (MEP); that is, based on the hypothesis that non-equilibrium systems organize to maximize energy dissipation. The MEP model currently predicts metabolic pathway expression over time, and one spatial dimension. Model predictions will be compared to biogeochemical observations and gene presence and expression from samples collected over time and space from a costal meromictic basin (Siders Pond) located in Falmouth MA, US. Siders Pond permanent stratification, caused by occasional seawater intrusion, results in steep chemoclines and redox gradients, which supports both aerobic and anaerobic phototrophs as well as sulfur, Fe and Mn redox cycles. The diversity of metabolic capability and expression we have observed over depth makes it an ideal system to test our thermodynamic-based model.
Importance of the brow in facial expressiveness during human communication.
Neely, John Gail; Lisker, Paul; Drapekin, Jesse
2014-03-01
The objective of this study was to evaluate laterality and upper/lower face dominance of expressiveness during prescribed speech using a unique validated image subtraction system capable of sensitive and reliable measurement of facial surface deformation. Observations and experiments of central control of facial expressions during speech and social utterances in humans and animals suggest that the right mouth moves more than the left during nonemotional speech. However, proficient lip readers seem to attend to the whole face to interpret meaning from expressed facial cues, also implicating a horizontal (upper face-lower face) axis. Prospective experimental design. Experimental maneuver: recited speech. image-subtraction strength-duration curve amplitude. Thirty normal human adults were evaluated during memorized nonemotional recitation of 2 short sentences. Facial movements were assessed using a video-image subtractions system capable of simultaneously measuring upper and lower specific areas of each hemiface. The results demonstrate both axes influence facial expressiveness in human communication; however, the horizontal axis (upper versus lower face) would appear dominant, especially during what would appear to be spontaneous breakthrough unplanned expressiveness. These data are congruent with the concept that the left cerebral hemisphere has control over nonemotionally stimulated speech; however, the multisynaptic brainstem extrapyramidal pathways may override hemiface laterality and preferentially take control of the upper face. Additionally, these data demonstrate the importance of the often-ignored brow in facial expressiveness. Experimental study. EBM levels not applicable.
Ternary particles for effective vaccine delivery to the pulmonary system
NASA Astrophysics Data System (ADS)
Terry, Treniece La'shay
Progress in the fields of molecular biology and genomics has provided great insight into the pathogenesis of disease and the defense mechanisms of the immune system. This knowledge has lead to the classification of an array of abnormal genes, for which, treatment relies on cellular expression of proteins. The utility of DNA-based vaccines hold great promise for the treatment of genetically based and infectious diseases, which ranges from hemophilia, cystic fibrosis, and HIV. Synthetic delivery systems consisting of cationic polymers, such as polyethylenimine (PEI), are capable of condensing DNA into compact structures, maximizing cellular uptake of DNA and yielding high levels of protein expression. To date, short term expression is a major obstacle in the development of gene therapies and has halted their expansion in clinical applications. This study intends to develop a sustained release vaccine delivery system using PLA-PEG block copolymers encapsulating PEI:DNA polyplexes. To enhance the effectiveness of such DNA-based vaccines, resident antigen presenting cells, macrophages and dendritic cells, will be targeted within the alveoli regions of the lungs. Porous microspheres will be engineered with aerodynamic properties capable of achieving deep lung deposition. A fabrication technique using concentric nozzles will be developed to produce porous microspheres. It was observed that modifications in the dispersed to continuous phase ratios have the largest influence on particle size distributions, release rates and encapsulation efficiency which ranged form 80--95% with fourteen days of release. Amphiphilic block copolymers were also used to fabricate porous microspheres. The confirmation of PEG within the biodegradable polymer backbone was found to have a tremendous impact on the microsphere morphology and encapsulation efficiency which varied from 50--90%. Porous microspheres were capable of providing sustained gene expression when tested in vitro using the luciferase reporter gene plasmid DNA. Prolonged expression was obtained for 9 days. PLGA and PLA-PEG microspheres were administered in vivo by intra-tracheal instillation and produced an acute inflammatory response, as observed from the large presence of neutrophils. The response using PLA-PEG microspheres yielded a lower total cell count signifying the incorporation of PEG into the copolymer backbone enhances the biocompatibility of the delivery system.
Information services and information processing
NASA Technical Reports Server (NTRS)
1975-01-01
Attempts made to design and extend space system capabilities are reported. Special attention was given to establishing user needs for information or services which might be provided by space systems. Data given do not attempt to detail scientific, technical, or economic bases for the needs expressed by the users.
A transgenic model of transactivation by the Tax protein of HTLV-I.
Bieberich, C J; King, C M; Tinkle, B T; Jay, G
1993-09-01
The human T-lymphotropic virus type I (HTLV-I) Tax protein is a transcriptional regulatory protein that has been suggested to play a causal role in the development of several HTLV-I-associated diseases. Tax regulates expression of its own LTR and of certain cellular promoters perhaps by usurping the function of the host transcriptional machinery. We have established a transgenic mouse model system to define the spectrum of tissues in vivo that are capable of supporting Tax-mediated transcriptional transactivation. Transgenic mice carrying the HTLV-I LTR driving expression of the Escherichia coli beta-galactosidase (beta gal) gene were generated, and this LTR-beta gal gene was transcriptionally inactive in all tissues. When LTR-beta gal mice were mated to transgenic mice carrying the same LTR driving expression of the HTLV-I tax gene, mice that carried both transgenes showed restricted expression of the beta gal reporter gene in several tissues including muscle, bone, salivary glands, skin, and nerve. In addition, a dramatic increase in the number of beta gal-expressing cells was seen in response to wounding. These observations provide direct evidence for viral transactivation in vivo, delimit the tissues capable of supporting that transactivation, and provide a model system to study the mechanism of gene regulation by Tax.
Online handwritten mathematical expression recognition
NASA Astrophysics Data System (ADS)
Büyükbayrak, Hakan; Yanikoglu, Berrin; Erçil, Aytül
2007-01-01
We describe a system for recognizing online, handwritten mathematical expressions. The system is designed with a user-interface for writing scientific articles, supporting the recognition of basic mathematical expressions as well as integrals, summations, matrices etc. A feed-forward neural network recognizes symbols which are assumed to be single-stroke and a recursive algorithm parses the expression by combining neural network output and the structure of the expression. Preliminary results show that writer-dependent recognition rates are very high (99.8%) while writer-independent symbol recognition rates are lower (75%). The interface associated with the proposed system integrates the built-in recognition capabilities of the Microsoft's Tablet PC API for recognizing textual input and supports conversion of hand-drawn figures into PNG format. This enables the user to enter text, mathematics and draw figures in a single interface. After recognition, all output is combined into one LATEX code and compiled into a PDF file.
A novel pair of inducible expression vectors for use in Methylobacterium extorquens.
Chubiz, Lon M; Purswani, Jessica; Carroll, Sean Michael; Marx, Chistopher J
2013-05-06
Due to the ever increasing use of diverse microbial taxa in basic research and industrial settings, there is a growing need for genetic tools to alter the physiology of these organisms. In particular, there is a dearth of inducible expression systems available for bacteria outside commonly used γ-proteobacteria, such as Escherichia coli or Pseudomonas species. To this end, we have sought to develop a pair of inducible expression vectors for use in the α-proteobacterium Methylobacterium extorquens, a model methylotroph. We found that the P(R) promoter from rhizobial phage 16-3 was active in M. extorquens and engineered the promoter to be inducible by either p-isopropyl benzoate (cumate) or anhydrotetracycline. These hybrid promoters, P(R/cmtO) and P(R/tetO), were found to have high levels of expression in M. extorquens with a regulatory range of 10-fold and 30-fold, respectively. Compared to an existing cumate-inducible (10-fold range), high-level expression system for M. extorquens, P(R/cmtO) and P(R/tetO) have 33% of the maximal activity but were able to repress gene expression 3 and 8-fold greater, respectively. Both promoters were observed to exhibit homogeneous, titratable activation dynamics rather than on-off, switch-like behavior. The utility of these promoters was further demonstrated by complementing loss of function of ftfL--essential for growth on methanol--where we show P(R/tetO) is capable of not only fully complementing function but also producing a conditional null phenotype. These promoters have been incorporated into a broad-host-range backbone allowing for potential use in a variety of bacterial hosts. We have developed two novel expression systems for use in M. extorquens. The expression range of these vectors should allow for increased ability to explore cellular physiology in M. extorquens. Further, the P(R/tetO) promoter is capable of producing conditional null phenotypes, previously unattainable in M. extorquens. As both expression systems rely on the use of membrane permeable inducers, we suspect these expression vectors will be useful for ectopic gene expression in numerous proteobacteria.
Real-Time Projection to Verify Plan Success During Execution
NASA Technical Reports Server (NTRS)
Wagner, David A.; Dvorak, Daniel L.; Rasmussen, Robert D.; Knight, Russell L.; Morris, John R.; Bennett, Matthew B.; Ingham, Michel D.
2012-01-01
The Mission Data System provides a framework for modeling complex systems in terms of system behaviors and goals that express intent. Complex activity plans can be represented as goal networks that express the coordination of goals on different state variables of the system. Real-time projection extends the ability of this system to verify plan achievability (all goals can be satisfied over the entire plan) into the execution domain so that the system is able to continuously re-verify a plan as it is executed, and as the states of the system change in response to goals and the environment. Previous versions were able to detect and respond to goal violations when they actually occur during execution. This new capability enables the prediction of future goal failures; specifically, goals that were previously found to be achievable but are no longer achievable due to unanticipated faults or environmental conditions. Early detection of such situations enables operators or an autonomous fault response capability to deal with the problem at a point that maximizes the available options. For example, this system has been applied to the problem of managing battery energy on a lunar rover as it is used to explore the Moon. Astronauts drive the rover to waypoints and conduct science observations according to a plan that is scheduled and verified to be achievable with the energy resources available. As the astronauts execute this plan, the system uses this new capability to continuously re-verify the plan as energy is consumed to ensure that the battery will never be depleted below safe levels across the entire plan.
An Interoperability Framework and Capability Profiling for Manufacturing Software
NASA Astrophysics Data System (ADS)
Matsuda, M.; Arai, E.; Nakano, N.; Wakai, H.; Takeda, H.; Takata, M.; Sasaki, H.
ISO/TC184/SC5/WG4 is working on ISO16100: Manufacturing software capability profiling for interoperability. This paper reports on a manufacturing software interoperability framework and a capability profiling methodology which were proposed and developed through this international standardization activity. Within the context of manufacturing application, a manufacturing software unit is considered to be capable of performing a specific set of function defined by a manufacturing software system architecture. A manufacturing software interoperability framework consists of a set of elements and rules for describing the capability of software units to support the requirements of a manufacturing application. The capability profiling methodology makes use of the domain-specific attributes and methods associated with each specific software unit to describe capability profiles in terms of unit name, manufacturing functions, and other needed class properties. In this methodology, manufacturing software requirements are expressed in terns of software unit capability profiles.
Gao, Wen; Yin, Jun; Bao, Lichen; Wang, Qun; Hou, Shan; Yue, Yali; Yao, Wenbing; Gao, Xiangdong
2018-05-18
Escherichia coli extracellular expression systems have a number of advantages over other systems, such as lower pyrogen levels and a simple purification process. Various approaches, such as the generation of leaky mutants via chromosomal engineering, have been explored for this expression system. However, extracellular protein yields in leaky mutants are relatively low compared to that in intracellular expression systems and therefore need to be improved. In this work, we describe the construction, characterization, and mechanism of enhanced extracellular expression in Escherichia coli. On the basis of the localizations, functions, and transcription levels of cell envelope proteins, we systematically elucidated the effects of multiple gene deletions on cell growth and extracellular expression using modified CRISPR/Cas9-based genome editing and a FlAsH labeling assay. High extracellular yields of heterologous proteins of different sizes were obtained by screening multiple gene mutations. The enhancement of extracellular secretion was associated with the derepression of translation and translocation. This work utilized universal methods in the design of extracellular expression systems for genes not directly associated with protein synthesis that were used to generate strains with higher protein expression capability. We anticipate that extracellular expression systems may help to shed light on the poorly understood aspects of these secretion processes as well as to further assist in the construction of engineered prokaryotic cells for efficient extracellular production of heterologous proteins.
NASA Astrophysics Data System (ADS)
Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh
2012-07-01
The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions, under light and dark cycles exposed to polar orbit for a period of 6 months. The integration and end-to-end technology validation of this instrument will be discussed. In particular, preliminary results demonstrating that the instrument properly carries out cellular lysis, nucleic acid extraction and its purification is being assessed by reverse transcription polymerase chain reaction (PCR) and real time PCR, in addition to microarray analysis of selected genes. Once developed, the system can be used with minor modifications for multiple experiments on different platforms in space, including extensions to higher organisms and microbial monitoring. A proposed version of GEMM that is capable of handing both microbial and tissue samples on the International Space Station will be briefly reviewed.
Venus Express Chemical Propulsion System - The Mars Express Legacy
NASA Astrophysics Data System (ADS)
Hunter, C. J.
2004-10-01
ESA's ambition of inter-planetary exploration using a fast-track low cost industrial programme was well achieved with Mars Express. Reusing the platform architecture for the service module and specifically the Propulsion system enabled Venus Express to benefit from several lessons learnt from the Mars Express experience. Using all existing components qualified for previous programmes, many of them commercial telecommunication spacecraft programmes with components available from stock, an industrial organisation familiar from Mars Express was able to compress the schedule to make the November 2005 launch window a realistic target. While initial inspection of the CPS schematic indicates a modified Eurostar type architecture, - a similar system using some Eurostar components - would be a fairer description. The use of many parts of the system on arrival at the destination (Mars or Venus in this case) is a departure from the usual mode of operation, where many components are used during the initial few weeks of GTO or GEO. The system modifications over the basic Eurostar system have catered for this in terms of reliability contingencies by replacing components, or providing different levels of test capability or isolation in flight. This paper aims to provide an introduction to the system, address the evolution from Eurostar, and provide an initial assessment of the success of these modifications using the Mars Express experience, and how measures have been adopted specifically for Venus Express.
Dickey, Alexia; Wang, Nan; Cooper, Edwin; Tull, Lauren; Breedlove, Drew; Mason, Hugh; Liu, Dehu; Wang, Kevin Yueju
2017-01-01
Lumbrokinases, a group of fibrinolytic enzymes extracted from earthworm, have been widely used to prevent and treat various cardiovascular diseases. They specifically target fibrin to effectively degrade thrombi without major side effects. Plant expression systems are becoming potential alternative expression platforms for producing pharmaceutical proteins. In this work, a lumbrokinase (PI239) was produced from a plant system. Both wild-type (WT) and plant codon-optimized (OP) PI239 gene sequences were synthesized and cloned into a geminivirus-based single-vector DNA replicon system. Both vectors were independently expressed in tobacco (Nicotiana tabacum) leaves transiently by agroinfiltration. Overexpressed PI239 resulted in sudden tissue necrosis 3 days after infiltration. Remaining proteins were purified through His-tag affinity chromatography and analyzed with SDS-PAGE and Western blot methods. Purified PI239 successfully degraded artificial fibrin with relative activity of 13,400 U/mg when compared with commercial lumbrokinase product. In vitro tests demonstrated that plant-derived PI239 dissolved human blood clots and that the plant expression system is capable of producing functional PI239.
Logical Analysis of Regulation of Interleukin-12 Expression Pathway Regulation During HCV Infection.
Farooqi, Zia-Ur-Rehman; Tareen, Samar H K; Ahmed, Jamil; Zaidi, Najam-Us-Sahar S
2016-01-01
Hepatitis C virus (HCV) triggers coordinated innate and adaptive response in host cell. HCV genome and proteins of the replicating virus are recognized as non-self-antigens by host cell to activate Toll Like Receptors (TLRs). Activated TLRs ultimately express cytokines, which can clear virus either by activating interferon (IFN), protein kinase C (PKC) and RNA Lase system or through activation of cytotoxic T-lymphocytes. Interleukin-12 (IL-12) is a potent antiviral cytokine, capable of clearing HCV by bridging both innate and adaptive antiviral immune response. Activation of TLR-4 on macrophages surface induces expression of IL-12 via NF-κB and AP-1 transcriptional pathway. After expression, IL- 12 releases IFN-γ, which activates anti-HCV cytotoxic lymphocytes. Conversely, in chronic HCV infection downregulation of IL-12 has been reported instead of by number of studies. Keeping in view of the above mentioned facts, this study was designed to evaluate HCV-core mediated down-regulation of IL-12 transcriptional pathway by employing a logical modeling approach based on the Ren´e Thomas formalism. The logical parameters of entities were estimated by using SMBioNet. The Logical model represents all possible dynamics of protein expression involved during course of HCV pathology. Results demonstrated that at chronic stage of infection, though TLR-4 was constantly active but yet it failed to express the NF-κB, AP-1, IL-12 and IFN-γ. This mechanism was indicative of incorporation of core mediated changes in IL-12 regulatory pathway. Moreover, results also indicate that HCV adopts different trajectories to accomplish the persistence of chronic phase of infection. It also implicated that human immune system tries to clear HCV but core is capable of inducing system oscillations to evade the immunity.
Lu, M; Farrell, P J; Johnson, R; Iatrou, K
1997-12-05
It has been previously reported that baculovirus homologous regions, the regions of baculovirus genomes that contain the origins of DNA replication, can augment the expression of a small number of baculovirus genes in vitro. We are now reporting that a region of the genome of Bombyx mori nuclear polyhedrosis virus (BmNPV) containing the homologous region 3 (HR3) acts as an enhancer for the promoter of a nonviral gene, the cytoplasmic actin gene of the silkmoth B. mori. Incorporation of the HR3 sequences of BmNPV into an actin promoter-based expression cassette results in an augmentation of transgene expression in transfected cells by two orders of magnitude relative to the control recombinant expression cassette. This increase is due to a corresponding increase in the rate of transcription from the actin promoter and not to replication of the expression cassette and occurs only when the HR3 element is linked to the expression cassette in cis. A comparable degree of enhancement in the activity of the silkworm actin promoter occurs also in heterologous lepidopteran cells. Concomitant supplementation of transfected cells with the BmIE1 trans-activator, which was previously shown to be capable of functioning in vitro as a transcriptional co-activator of the cytoplasmic actin gene promoter, results in more than a 1,000-fold increase in the level of expression of recombinant proteins placed under the control of the actin gene promoter. These findings provide the foundation for the development of a nonlytic insect cell expression system for continuous high-level expression of recombinant proteins. Such a system should provide levels of expression of recombinant proteins comparable to those obtained from baculovirus expression systems and should also have the additional advantage of continuous production in a cellular environment that, in contrast to that generated by a baculovirus infection, supports continuously proper posttranslational modifications of recombinant proteins and the capability of expression of proteins from genomic as well as cDNA sequences.
2014-11-03
Rob Mueller, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, demonstrates the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
Gene transfer to brain using herpes simplex virus vectors.
Glorioso, J C; Goins, W F; Meaney, C A; Fink, D J; DeLuca, N A
1994-01-01
Herpes simplex virus type 1 represents an ideal candidate for development as a vehicle for gene transfer to postmitotic neurons of the central nervous system. The natural biology of this virus makes it well suited for this purpose as it is capable of infecting a variety of neuronal cell types in the brain where the viral genome can persist indefinitely in a latent state. In latency, the viral lytic genes are transcriptionally silent and a unique set of latency-associated transcripts are expressed. Two impediments to using herpes simplex virus vectors must be overcome: (1) A noncytotoxic mutant virus backbone must be engineered, and (2) a suitable promoter-regulator that stably expresses foreign genes from the vector genome during latency must be constructed. Deletion of specific immediate early genes from the vector can render the virus nontoxic to neurons in culture and in vivo following stereotactic inoculation into specific regions of the brain. Because these viruses cannot replicate, they enter latency on infection of central nervous system neurons. A number of viral and cellular promoters have been tested for their ability to express genes during latency. Strong viral promoters and neurospecific promoters display transient activity. Although the promoter regions for the latency-associated transcripts are highly active in the peripheral nervous system, they show low-level but persistent activity in the brain. Experiments are in progress to exploit RNA polymerase III gene promoters or novel recombinant promoters capable of auto-inducing their own expression in order to increase gene expression during latency in brain neurons.
Rinaldi, Fabio; Ellendorff, Tilia Renate; Madan, Sumit; Clematide, Simon; van der Lek, Adrian; Mevissen, Theo; Fluck, Juliane
2016-01-01
Automatic extraction of biological network information is one of the most desired and most complex tasks in biological and medical text mining. Track 4 at BioCreative V attempts to approach this complexity using fragments of large-scale manually curated biological networks, represented in Biological Expression Language (BEL), as training and test data. BEL is an advanced knowledge representation format which has been designed to be both human readable and machine processable. The specific goal of track 4 was to evaluate text mining systems capable of automatically constructing BEL statements from given evidence text, and of retrieving evidence text for given BEL statements. Given the complexity of the task, we designed an evaluation methodology which gives credit to partially correct statements. We identified various levels of information expressed by BEL statements, such as entities, functions, relations, and introduced an evaluation framework which rewards systems capable of delivering useful BEL fragments at each of these levels. The aim of this evaluation method is to help identify the characteristics of the systems which, if combined, would be most useful for achieving the overall goal of automatically constructing causal biological networks from text. © The Author(s) 2016. Published by Oxford University Press.
Smith, Aaron T; Sestok, Alexandrea E
2018-02-01
The acquisition of ferrous iron (Fe 2+ ) is an important virulence factor utilized by several hospital-acquired (nosocomial) pathogens such as Klebsiella pneumoniae to establish infection within human hosts. Virtually all bacteria use the ferrous iron transport system (Feo) to acquire ferrous iron from their environments, which are often biological niches that stabilize Fe 2+ relative to Fe 3+ . However, the details of this process remain poorly understood, likely owing to the few expression and purification systems capable of supplying sufficient quantities of the chief component of the Feo system, the integral membrane GTPase FeoB. This bottleneck has undoubtedly hampered efforts to understand this system in order to target it for therapeutic intervention. In this study, we describe the expression, solubilization, and purification of the Fe 2+ transporter from K. pneumoniae, KpFeoB. We show that this protein may be heterologously overexpressed in Escherichia coli as the host organism. After testing several different commercially-available detergents, we have developed a solubilization and purification protocol that produces milligram quantities of KpFeoB with sufficient purity for enzymatic and biophysical analyses. Importantly, we demonstrate that KpFeoB displays robust GTP hydrolysis activity (k cat GTP of ∼10 -1 s -1 ) in the absence of any additional stimulatory factors. Our findings suggest that K. pneumoniae may be capable of using its Feo system to drive Fe 2+ import in an active manner. Copyright © 2017 Elsevier Inc. All rights reserved.
2015-12-01
Manual D-A-1). APAs are “Performance attributes of a system not important enough to be considered KPPs or KSAs, but still appropriate to include in...the CDD or CPD are designated as APAs ” (JCIDS Manual D-A-1). The requirements are expressed using Thresholds (T) and Objectives (O). “Performance...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA SYSTEMS ENGINEERING CAPSTONE PROJECT REPORT Approved for public release; distribution is
Effects of N-acetylcysteine and L-arginine in the antioxidant system of C2C12 cells.
Da Silva, E P; Lambertucci, R H
2015-06-01
The aim of this study was to evaluate the effects of N-acetylcysteine or L-arginine in the antioxidant system of skeletal muscle cells in culture. We used C2C12 cells which were supplemented or not with N-acetylcysteine or L-arginine at different time points. Antioxidant enzymes' activities and protein expression were evaluated. Additionally, superoxide production by cytochrome c reduction method was carried out. It was observed that the supplementation with either N-acetylcysteine or L-arginine was capable to acutely reduce superoxide production (after 30 and 60 minutes). Surprisingly, N-acetylcysteine supplementation also induced an increased production of superoxide during the period of 24 hours. Moreover, both supplements were capable to improve the activity and protein expression of some antioxidants enzymes. In conclusion, we have found new evidences showing that N-acetylcysteine or L-arginine supplementation can provide some benefits to the antioxidant system of skeletal muscle cells in culture. Further studies have to be carried out to evaluate if such benefits could also occur in an in vivo model, with possible benefits for athletes' health and performance.
Combinatorial Approaches for the Identification of Brain Drug Delivery Targets
Stutz, Charles C.; Zhang, Xiaobin; Shusta, Eric V.
2018-01-01
The blood-brain barrier (BBB) represents a large obstacle for the treatment of central nervous system diseases. Targeting endogenous nutrient transporters that transcytose the BBB is one promising approach to selectively and noninvasively deliver a drug payload to the brain. The main limitations of the currently employed transcytosing receptors are their ubiquitous expression in the peripheral vasculature and the inherent low levels of transcytosis mediated by such systems. In this review, approaches designed to increase the repertoire of transcytosing receptors which can be targeted for the purpose of drug delivery are discussed. In particular, combinatorial protein libraries can be screened on BBB cells in vitro or in vivo to isolate targeting peptides or antibodies that can trigger transcytosis. Once these targeting reagents are discovered, the cognate BBB transcytosis system can be identified using techniques such as expression cloning or immunoprecipitation coupled with mass spectrometry. Continued technological advances in BBB genomics and proteomics, membrane protein manipulation, and in vitro BBB technology promise to further advance the capability to identify and optimize peptides and antibodies capable of mediating drug transport across the BBB. PMID:23789958
Development of an Improved Mammalian Overexpression Method for Human CD62L
Brown, Haley A.; Roth, Gwynne; Holzapfel, Genevieve; Shen, Sarek; Rahbari, Kate; Ireland, Joanna; Zou, Zhongcheng; Sun, Peter D.
2014-01-01
We have previously developed a glutamine synthetase (GS)-based mammalian recombinant protein expression system that is capable of producing 5 to 30 mg/L recombinant proteins. The over expression is based on multiple rounds of target gene amplification driven by methionine sulfoximine (MSX), an inhibitor of glutamine synthetase. However, like other stable mammalian over expression systems, a major shortcoming of the GS-based expression system is its lengthy turn-around time, typically taking 4–6 months to produce. To shorten the construction time, we replaced the muti-round target gene amplifications with single-round in situ amplifications, thereby shortening the cell line construction to 2 months. The single-round in situ amplification method resulted in highest recombinant CD62L expressing CHO cell lines producing ~5mg/L soluble CD62L, similar to those derived from the multi-round amplification and selection method. In addition, we developed a MSX resistance assay as an alternative to utilizing ELISA for evaluating the expression level of stable recombinant CHO cell lines. PMID:25286402
A multiplexable TALE-based binary expression system for in vivo cellular interaction studies.
Toegel, Markus; Azzam, Ghows; Lee, Eunice Y; Knapp, David J H F; Tan, Ying; Fa, Ming; Fulga, Tudor A
2017-11-21
Binary expression systems have revolutionised genetic research by enabling delivery of loss-of-function and gain-of-function transgenes with precise spatial-temporal resolution in vivo. However, at present, each existing platform relies on a defined exogenous transcription activator capable of binding a unique recognition sequence. Consequently, none of these technologies alone can be used to simultaneously target different tissues or cell types in the same organism. Here, we report a modular system based on programmable transcription activator-like effector (TALE) proteins, which enables parallel expression of multiple transgenes in spatially distinct tissues in vivo. Using endogenous enhancers coupled to TALE drivers, we demonstrate multiplexed orthogonal activation of several transgenes carrying cognate variable activating sequences (VAS) in distinct neighbouring cell types of the Drosophila central nervous system. Since the number of combinatorial TALE-VAS pairs is virtually unlimited, this platform provides an experimental framework for highly complex genetic manipulation studies in vivo.
Building biochips: a protein production pipeline
NASA Astrophysics Data System (ADS)
de Carvalho-Kavanagh, Marianne G. S.; Albala, Joanna S.
2004-06-01
Protein arrays are emerging as a practical format in which to study proteins in high-throughput using many of the same techniques as that of the DNA microarray. The key advantage to array-based methods for protein study is the potential for parallel analysis of thousands of samples in an automated, high-throughput fashion. Building protein arrays capable of this analysis capacity requires a robust expression and purification system capable of generating hundreds to thousands of purified recombinant proteins. We have developed a method to utilize LLNL-I.M.A.G.E. cDNAs to generate recombinant protein libraries using a baculovirus-insect cell expression system. We have used this strategy to produce proteins for analysis of protein/DNA and protein/protein interactions using protein microarrays in order to understand the complex interactions of proteins involved in homologous recombination and DNA repair. Using protein array techniques, a novel interaction between the DNA repair protein, Rad51B, and histones has been identified.
Information Management for Unmanned Systems: Combining DL-Reasoning with Publish/Subscribe
NASA Astrophysics Data System (ADS)
Moser, Herwig; Reichelt, Toni; Oswald, Norbert; Förster, Stefan
Sharing capabilities and information between collaborating entities by using modem information- and communication-technology is a core principle in complex distributed civil or military mission scenarios. Previous work proved the suitability of Service-oriented Architectures for modelling and sharing the participating entities' capabilities. Albeit providing a satisfactory model for capabilities sharing, pure service-orientation curtails expressiveness for information exchange as opposed to dedicated data-centric communication principles. In this paper we introduce an Information Management System which combines OWL-Ontologies and automated reasoning with Publish/Subscribe-Systems, providing for a shared but decoupled data model. While confirming existing related research results, we emphasise the novel application and lack of practical experience of using Semantic Web technologies in areas other than originally intended. That is, aiding decision support and software design in the context of a mission scenario for an unmanned system. Experiments within a complex simulation environment show the immediate benefits of a semantic information-management and -dissemination platform: Clear separation of concerns in code and data model, increased service re-usability and extensibility as well as regulation of data flow and respective system behaviour through declarative rules.
The Omics Dashboard for interactive exploration of gene-expression data.
Paley, Suzanne; Parker, Karen; Spaulding, Aaron; Tomb, Jean-Francois; O'Maille, Paul; Karp, Peter D
2017-12-01
The Omics Dashboard is a software tool for interactive exploration and analysis of gene-expression datasets. The Omics Dashboard is organized as a hierarchy of cellular systems. At the highest level of the hierarchy the Dashboard contains graphical panels depicting systems such as biosynthesis, energy metabolism, regulation and central dogma. Each of those panels contains a series of X-Y plots depicting expression levels of subsystems of that panel, e.g. subsystems within the central dogma panel include transcription, translation and protein maturation and folding. The Dashboard presents a visual read-out of the expression status of cellular systems to facilitate a rapid top-down user survey of how all cellular systems are responding to a given stimulus, and to enable the user to quickly view the responses of genes within specific systems of interest. Although the Dashboard is complementary to traditional statistical methods for analysis of gene-expression data, we show how it can detect changes in gene expression that statistical techniques may overlook. We present the capabilities of the Dashboard using two case studies: the analysis of lipid production for the marine alga Thalassiosira pseudonana, and an investigation of a shift from anaerobic to aerobic growth for the bacterium Escherichia coli. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Omics Dashboard for interactive exploration of gene-expression data
Paley, Suzanne; Parker, Karen; Spaulding, Aaron; Tomb, Jean-Francois; O’Maille, Paul
2017-01-01
Abstract The Omics Dashboard is a software tool for interactive exploration and analysis of gene-expression datasets. The Omics Dashboard is organized as a hierarchy of cellular systems. At the highest level of the hierarchy the Dashboard contains graphical panels depicting systems such as biosynthesis, energy metabolism, regulation and central dogma. Each of those panels contains a series of X–Y plots depicting expression levels of subsystems of that panel, e.g. subsystems within the central dogma panel include transcription, translation and protein maturation and folding. The Dashboard presents a visual read-out of the expression status of cellular systems to facilitate a rapid top-down user survey of how all cellular systems are responding to a given stimulus, and to enable the user to quickly view the responses of genes within specific systems of interest. Although the Dashboard is complementary to traditional statistical methods for analysis of gene-expression data, we show how it can detect changes in gene expression that statistical techniques may overlook. We present the capabilities of the Dashboard using two case studies: the analysis of lipid production for the marine alga Thalassiosira pseudonana, and an investigation of a shift from anaerobic to aerobic growth for the bacterium Escherichia coli. PMID:29040755
NASA Technical Reports Server (NTRS)
2002-01-01
The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the International Space Station (ISS). EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle. The Racks stay on orbit continually, while experiments are exchanged in and out of the EXPRESS Racks as needed, remaining on the ISS for three months to several years, depending on the experiment's time requirements. A refrigerator-sized Rack can be divided into segments, as large as half of an entire rack or as small as a bread box. Payloads within EXPRESS Racks can operate independently of each other, allowing for differences in temperature, power levels, and schedules. Experiments contained within EXPRESS Racks may be controlled by the ISS crew or remotely by the Payload Rack Officer at the Payload Operations Center at the Marshall Space Flight Center (MSFC). The EXPRESS Rack system was developed by MSFC and built by the Boeing Co. in Huntsville, Alabama. Eight EXPRESS Racks are being built for use on the ISS.
Engine out of the Chassis: Cell-Free Protein Synthesis and its Uses
Rosenblum, Gabriel; Cooperman, Barry S.
2013-01-01
The translation machinery is the engine of life. Extracting the cytoplasmic milieu from a cell affords a lysate capable of producing proteins in concentrations reaching tens of micromolar. Such lysates, derivable from a variety of cells, allow the facile addition and subtraction of components that are directly or indirectly related to the translation machinery and/or the over-expressed protein. The flexible nature of such cell-free expression systems, when coupled with high throughput monitoring, can be especially suitable for protein engineering studies, allowing one to bypass multiple steps typically required using conventional in vivo protein expression. PMID:24161673
2014-11-03
Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface Systems Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
2014-11-03
Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
Sato, M; Figueiredo, ML; Burton, JB; Johnson, M; Chen, M; Powell, R; Gambhir, SS; Carey, M; Wu, L
2009-01-01
Effective treatment for recurrent, disseminated prostate cancer is notably limited. We have developed adenoviral vectors with a prostate-specific two-step transcriptional amplification (TSTA) system that would express therapeutic genes at a robust level to target metastatic disease. The TSTA system employs the prostate-specific antigen (PSA) promoter/enhancer to drive a potent synthetic activator, which in turn activates the expression of the therapeutic gene. In this study, we explored different configurations of this bipartite system and discovered that physical separation of the two TSTA components into E1 and E3 regions of adenovirus was able to enhance androgen regulation and cell-discriminatory expression. The TSTA vectors that express imaging reporter genes were assessed by noninvasive imaging technologies in animal models. The improved selectivity of the E1E3 configured vector was reflected in silenced ectopic expression in the lung. Significantly, the enhanced specificity of the E1E3 vector enabled the detection of lung metastasis of prostate cancer. An E1E3 TSTA vector that expresses the herpes simplex virus thymidine kinase gene can effectively direct positron emission tomography (PET) imaging of the tumor. The prostate-targeted gene delivery vectors with robust and cell-specific expression capability will advance the development of safe and effective imaging guided therapy for recurrent metastatic stages of prostate cancer. PMID:18305574
Peck, Grantley R; Bowden, Timothy R; Shiell, Brian J; Michalski, Wojtek P
2014-01-01
EnBase (BioSilta, Finland) is a microbial cultivation system that replicates fed-batch systems through sustained release of glucose by enzymatic degradation of a polymeric substrate. Achievable bacterial cell densities and recombinant capripoxvirus protein expression levels, solubility, and antigenicity using the EnBase system were assessed. BL21-AI Escherichia coli expressing capripoxvirus proteins achieved up to eightfold higher cell densities when grown in EnBase media compared with standard media. Greater yields of capripoxvirus proteins were attained using EnBase media, either through increases in the amount of expressed protein per cell in conjunction with higher cell density or through the increase in cell density alone. Addition of EnBase booster enhanced protein yield for one of the proteins tested but reduced yield for the other. However, the amount of soluble forms of the capripoxvirus proteins tested was not different from that observed from cultures grown under standard conditions. Purified capripoxvirus proteins expressed using EnBase or standard media were assessed for their performance by enzyme-linked immunosorbent assay (ELISA) and were shown to be equally capable of specifically binding capripoxvirus antibodies.
2010-11-09
Report No. 10-13M, supported by the U.S. Air Force Medical Logistics Agency, under Work Unit No. 60334. The views expressed in this article are those...recommended 917Q line list. The Unit Type Code (UTC) capabilities, operational requirements, and materiel solutions were identified, and issues of...by 22%, and cost by 4%, or $9,500. Modeling and simulating a medical system like the FFDOT, with a range of capabilities and functional areas
A Simple And Rapid Minicircle DNA Vector Manufacturing System
Kay, Mark A; He, Cheng-Yi; Chen, Zhi-Ying
2010-01-01
Minicircle DNA vectors consisting of a circular expression cassette devoid of the bacterial plasmid DNA backbone provides several advantages including sustained transgene expression in quiescent cells/tissues. Their use has been limited by labor-intensive production. We report on a strategy for making multiple genetic modifications in E.coli to construct a producer strain that stably expresses a set of inducible minicircle-assembly enzymes, the øC31-integrase and I-SceI homing-endonuclease. This bacterial strain is capable of producing highly purified minicircle yields in the same time frame as routine plasmid DNA. It is now feasible for minicircle DNA vectors to replace routine plasmids in mammalian transgene expression studies. PMID:21102455
Improving Pharmaceutical Protein Production in Oryza sativa
Kuo, Yu-Chieh; Tan, Chia-Chun; Ku, Jung-Ting; Hsu, Wei-Cho; Su, Sung-Chieh; Lu, Chung-An; Huang, Li-Fen
2013-01-01
Application of plant expression systems in the production of recombinant proteins has several advantages, such as low maintenance cost, absence of human pathogens, and possession of complex post-translational glycosylation capabilities. Plants have been successfully used to produce recombinant cytokines, vaccines, antibodies, and other proteins, and rice (Oryza sativa) is a potential plant used as recombinant protein expression system. After successful transformation, transgenic rice cells can be either regenerated into whole plants or grown as cell cultures that can be upscaled into bioreactors. This review summarizes recent advances in the production of different recombinant protein produced in rice and describes their production methods as well as methods to improve protein yield and quality. Glycosylation and its impact in plant development and protein production are discussed, and several methods of improving yield and quality that have not been incorporated in rice expression systems are also proposed. Finally, different bioreactor options are explored and their advantages are analyzed. PMID:23615467
Neuromuscular Development and Regulation of Myosin Expression
NASA Technical Reports Server (NTRS)
Bodine, Sue
1997-01-01
The proposed experiments were designed to determine whether the absence of gravity during embryogenesis influences the postnatal development of the neuromuscular system. Further, we examined the effects of reduced gravity on hindlimb muscles of the pregnant rats. Microgravity may have short and long-term effects on the development of muscle fiber type differentiation and force producing capabilities. Microgravity will reduce muscle fiber size and cause a shift in myosin heavy chain expression from slow to fast in hindlimb muscles of the adult pregnant rats.
Hong, Y K; Kim, D H; Beletskii, A; Lee, C; Memili, E; Strauss, W M
2001-04-01
Most conditional expression vectors designed for mammalian cells have been valuable systems for studying genes of interest by regulating their expressions. The available vectors, however, are reliable for the short-length cDNA clones and not optimal for relatively long fragments of genomic DNA or long cDNAs. Here, we report the construction of two bacterial artificial chromosome (BAC) vectors, capable of harboring large inserts and shuttling among Escherichia coli, yeast, and mammalian cells. These two vectors, pEYMT and pEYMI, contain conditional expression systems which are designed to be regulated by tetracycline and mouse interferons, respectively. To test the properties of the vectors, we cloned in both vectors the green fluorescence protein (GFP) through an in vitro ligation reaction and the 17.8-kb-long X-inactive-specific transcript (Xist) cDNA through homologous recombination in yeast. Subsequently, we characterized their regulated expression properties using real-time quantitative RT-PCR (TaqMan) and RNA-fluorescent in situ hybridization (FISH). We demonstrate that these two BAC vectors are good systems for recombination-based cloning and regulated expression of large genes in mammalian cells. Copyright 2001 Academic Press.
Assessing repository technology. Where do we go from here?
NASA Technical Reports Server (NTRS)
Eichmann, David
1992-01-01
Three sample information retrieval systems, archie, autoLib, and Wide Area Information Service (WAIS), are compared with regard to their expressiveness and usefulness, first in the general context of information retrieval, and then as prospective software reuse repositories. While the representational capabilities of these systems are limited, they provide a useful foundation for future repository efforts, particularly from the perspective of repository distribution and coherent user interface design.
Assessing repository technology: Where do we go from here?
NASA Technical Reports Server (NTRS)
Eichmann, David A.
1992-01-01
Three sample information retrieval systems, archie, autoLib, and Wide Area Information Service (WAIS), are compared with regard to their expressiveness and usefulness, first in the general context of information retrieval, and then as perspective software reuse repositories. While the representational capabilities of these systems are limited, they provide a useful foundation for future repository efforts, particularly from the perspective of repository distribution and coherent user interface design.
DARPA Orbital Express program: effecting a revolution in space-based systems
NASA Astrophysics Data System (ADS)
Whelan, David A.; Adler, E. A.; Wilson, Samuel B., III; Roesler, Gordon M., Jr.
2000-11-01
A primary goal of the Defense Advanced Research Projects Agency is to develop innovative, high-risk technologies with the potential of a revolutionary impact on missions of the Department of Defense. DARPA is developing a space experiment to prove the feasibility of autonomous on- orbit servicing of spacecraft. The Orbital Express program will demonstrate autonomous on-orbit refueling, as well as autonomous delivery of a small payload representing an avionics upgrade package. The maneuverability provided to spacecraft from a ready refueling infrastructure will enable radical new capabilities for the military, civil and commercial spacecraft. Module replacement has the potential to extend bus lifetimes, and to upgrade the performance of key subsystems (e.g. processors) at the pace of technology development. The Orbital Express technology development effort will include the necessary autonomy for a viable servicing infrastructure; a universal interface for docking, refueling and module transfers; and a spacecraft bus design compatible with this servicing concept. The servicer spacecraft of the future may be able to act as a host platform for microsatellites, extending their capabilities while reducing risk. An infrastructure based on Orbital Express also benefits from, and stimulates the development of, lower-cost launch strategies.
Corneanu, Ciprian Adrian; Simon, Marc Oliu; Cohn, Jeffrey F; Guerrero, Sergio Escalera
2016-08-01
Facial expressions are an important way through which humans interact socially. Building a system capable of automatically recognizing facial expressions from images and video has been an intense field of study in recent years. Interpreting such expressions remains challenging and much research is needed about the way they relate to human affect. This paper presents a general overview of automatic RGB, 3D, thermal and multimodal facial expression analysis. We define a new taxonomy for the field, encompassing all steps from face detection to facial expression recognition, and describe and classify the state of the art methods accordingly. We also present the important datasets and the bench-marking of most influential methods. We conclude with a general discussion about trends, important questions and future lines of research.
ACTIVE EFFLUX OF ORGANIC SOLVENTS BY PSEUDOMONAS PUTIDA S12 IS INDUCED BY SOLVENTS
Induction of the membrane-associated organic solvent efflux system SrpABC of Pseudomonas putida S12 was examined by cloning a 312-bp DNA fragment, containing the srp promoter, in the broad-host-range reporter vector pKRZ-1. Compounds that are capable of inducing expression of the...
Transcription factor-based biosensor
Dietrich, Jeffrey A; Keasling, Jay D
2013-10-08
The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.
NASA Technical Reports Server (NTRS)
Wang, C.-W.; Stark, W.
2005-01-01
This article considers a quaternary direct-sequence code-division multiple-access (DS-CDMA) communication system with asymmetric quadrature phase-shift-keying (AQPSK) modulation for unequal error protection (UEP) capability. Both time synchronous and asynchronous cases are investigated. An expression for the probability distribution of the multiple-access interference is derived. The exact bit-error performance and the approximate performance using a Gaussian approximation and random signature sequences are evaluated by extending the techniques used for uniform quadrature phase-shift-keying (QPSK) and binary phase-shift-keying (BPSK) DS-CDMA systems. Finally, a general system model with unequal user power and the near-far problem is considered and analyzed. The results show that, for a system with UEP capability, the less protected data bits are more sensitive to the near-far effect that occurs in a multiple-access environment than are the more protected bits.
Interchange of electronic design through VHDL and EIS
NASA Technical Reports Server (NTRS)
Wallace, Richard M.
1987-01-01
The need for both robust and unambiguous electronic designs is a direct requirement of the astonishing growth in design and manufacturing capability during recent years. In order to manage the plethora of designs, and have the design data both interchangeable and interoperable, the Very High Speed Integrated Circuits (VHSIC) program is developing two major standards for the electronic design community. The VHSIC Hardware Description Language (VHDL) is designed to be the lingua franca for transmission of design data between designers and their environments. The Engineering Information System (EIS) is designed to ease the integration of data betweeen diverse design automation systems. This paper describes the rationale for the necessity for these two standards and how they provide a synergistic expressive capability across the macrocosm of design environments.
Genetic network inference as a series of discrimination tasks.
Kimura, Shuhei; Nakayama, Satoshi; Hatakeyama, Mariko
2009-04-01
Genetic network inference methods based on sets of differential equations generally require a great deal of time, as the equations must be solved many times. To reduce the computational cost, researchers have proposed other methods for inferring genetic networks by solving sets of differential equations only a few times, or even without solving them at all. When we try to obtain reasonable network models using these methods, however, we must estimate the time derivatives of the gene expression levels with great precision. In this study, we propose a new method to overcome the drawbacks of inference methods based on sets of differential equations. Our method infers genetic networks by obtaining classifiers capable of predicting the signs of the derivatives of the gene expression levels. For this purpose, we defined a genetic network inference problem as a series of discrimination tasks, then solved the defined series of discrimination tasks with a linear programming machine. Our experimental results demonstrated that the proposed method is capable of correctly inferring genetic networks, and doing so more than 500 times faster than the other inference methods based on sets of differential equations. Next, we applied our method to actual expression data of the bacterial SOS DNA repair system. And finally, we demonstrated that our approach relates to the inference method based on the S-system model. Though our method provides no estimation of the kinetic parameters, it should be useful for researchers interested only in the network structure of a target system. Supplementary data are available at Bioinformatics online.
Re-use of Science Operations Systems around Mars: from Mars Express to ExoMars
NASA Astrophysics Data System (ADS)
Cardesin-Moinelo, Alejandro; Mars Express Operations Centre; ExoMars Science Operations Centre
2017-10-01
Mars Express and ExoMars 2016 Trace Gas Orbiter are the only two ESA planetary missions currently in operations, and they happen to be around the same planet! These two missions have great potential for synergies between their science objectives, instruments and observation capabilities and they can all be combined to improve the scientific outcome and improve our knowledge about Mars. In this contribution we will give a short summary of both missions, with an insight in its similarities and differences regarding their scientific and operational challenges, and we will summarize the lessons learned from Mars Express and how the existing science operations systems, processes and tools have been reused, redesigned and adapted in order to satisfy the operational requirements of ExoMars, with limited development resources thanks to the inherited capabilities from previous missions. In particular we will focus on the preparations done by the science operations centers at ESAC and the work within the Science Ground Segments for the re-use of the SPICE and MAPPS software tools, with the necessary modifications and upgrades to perform the geometrical and operational simulations of both spacecrafts, taking into account the specific instrument modelling, observation requirements and all the payload and spacecraft operational rules and constraints for feasibility checks. All of these system upgrades are now being finalized for ExoMars and some of them have already been rehearsed in orbit, getting ready for the nominal science operations phase starting in the first months of 2018 after the aerobraking phase
WetLab-2: Tools for Conducting On-Orbit Quantitative Real-Time Gene Expression Analysis on ISS
NASA Technical Reports Server (NTRS)
Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Schonfeld, Julie
2014-01-01
The objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a research platform capable of conducting gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens sampled or cultured on orbit. The project has selected a Commercial-Off-The-Shelf (COTS) qRT-PCR system, the Cepheid SmartCycler and will fly it in its COTS configuration. The SmartCycler has a number of advantages including modular design (16 independent PCR modules), low power consumption, rapid ramp times and the ability to detect up to four separate fluorescent channels at one time enabling multiplex assays that can be used for normalization and to study multiple genes of interest in each module. The team is currently working with Cepheid to enable the downlink of data from the ISS to the ground and provide uplink capabilities for programming, commanding, monitoring, and instrument maintenance. The project has adapted commercial technology to design a module that can lyse cells and extract RNA of sufficient quality and quantity for use in qRT-PCR reactions while using a housekeeping gene to normalize RNA concentration and integrity. The WetLab-2 system is capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on-orbit. The ability to conduct qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples. The system can be used to validate terrestrial analyses of samples returned from ISS by providing on-orbit gene expression benchmarking prior to sample return. The ability to get on orbit data will provide investigators with the opportunity to adjust experiment parameters for subsequent trials based on the real-time data analysis without need for sample return and re-flight. Researchers will also be able to sample multigenerational changes in organisms. Finally, the system can be used for analysis of air, surface, water, and clinical samples to monitor environmental contaminants and crew health. The verification flight of the instrument is scheduled to launch on SpaceX-7 in June 2015.
2011-01-01
Insects carry out essential ecological functions, such as pollination, but also cause extensive damage to agricultural crops and transmit human diseases such as malaria and dengue fever. Advances in insect transgenesis are making it increasingly feasible to engineer genes conferring desirable phenotypes, and gene drive systems are required to spread these genes into wild populations. Medea provides one solution, being able to spread into a population from very low initial frequencies through the action of a maternally-expressed toxin linked to a zygotically-expressed antidote. Several other toxin-antidote combinations are imaginable that distort the offspring ratio in favor of a desired transgene, or drive the population towards an all-male crash. We explore two such systems—Semele, which is capable of spreading a desired transgene into an isolated population in a confined manner; and Merea, which is capable of inducing a local population crash when located on the Z chromosome of a Lepidopteron pest. PMID:21876382
Plan Execution Interchange Language (PLEXIL)
NASA Technical Reports Server (NTRS)
Estlin, Tara; Jonsson, Ari; Pasareanu, Corina; Simmons, Reid; Tso, Kam; Verma, Vandi
2006-01-01
Plan execution is a cornerstone of spacecraft operations, irrespective of whether the plans to be executed are generated on board the spacecraft or on the ground. Plan execution frameworks vary greatly, due to both different capabilities of the execution systems, and relations to associated decision-making frameworks. The latter dependency has made the reuse of execution and planning frameworks more difficult, and has all but precluded information sharing between different execution and decision-making systems. As a step in the direction of addressing some of these issues, a general plan execution language, called the Plan Execution Interchange Language (PLEXIL), is being developed. PLEXIL is capable of expressing concepts used by many high-level automated planners and hence provides an interface to multiple planners. PLEXIL includes a domain description that specifies command types, expansions, constraints, etc., as well as feedback to the higher-level decision-making capabilities. This document describes the grammar and semantics of PLEXIL. It includes a graphical depiction of this grammar and illustrative rover scenarios. It also outlines ongoing work on implementing a universal execution system, based on PLEXIL, using state-of-the-art rover functional interfaces and planners as test cases.
On the current drive capability of low dimensional semiconductors: 1D versus 2D
Zhu, Y.; Appenzeller, J.
2015-10-29
Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Lastly, our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.
A simple and robust vector-based shRNA expression system used for RNA interference.
Wang, Xue-jun; Li, Ying; Huang, Hai; Zhang, Xiu-juan; Xie, Pei-wen; Hu, Wei; Li, Dan-dan; Wang, Sheng-qi
2013-01-01
RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) has become a powerful genetic tool for conducting functional studies. Previously, vector-based shRNA-expression strategies capable of inducing RNAi in viable cells have been developed, however, these vector systems have some disadvantages, either because they were error-prone or cost prohibitive. In this report we described the development of a simple, robust shRNA expression system utilizing 1 long oligonucleotide or 2 short oligonucleotides for half the cost of conventional shRNA construction methods and with a >95% cloning success rate. The shRNA loop sequence and stem structure were also compared and carefully selected for better RNAi efficiency. Furthermore, an easier strategy was developed based on isocaudomers which permit rapid combination of the most efficient promoter-shRNA cassettes. Finally, using this method, the conservative target sites for hepatitis B virus (HBV) knockdown were systemically screened and HBV antigen expression shown to be successfully suppressed in the presence of connected multiple shRNAs both in vitro and in vivo. This novel design describes an inexpensive and effective way to clone and express single or multiple shRNAs from the same vector with the capacity for potent and effective silencing of target genes.
A language comparison for scientific computing on MIMD architectures
NASA Technical Reports Server (NTRS)
Jones, Mark T.; Patrick, Merrell L.; Voigt, Robert G.
1989-01-01
Choleski's method for solving banded symmetric, positive definite systems is implemented on a multiprocessor computer using three FORTRAN based parallel programming languages, the Force, PISCES and Concurrent FORTRAN. The capabilities of the language for expressing parallelism and their user friendliness are discussed, including readability of the code, debugging assistance offered, and expressiveness of the languages. The performance of the different implementations is compared. It is argued that PISCES, using the Force for medium-grained parallelism, is the appropriate choice for programming Choleski's method on the multiprocessor computer, Flex/32.
Targeted and inducible regulation of mammalian gene expression is a broadly important research capability that may also enable development of novel therapeutics for treating human diseases. Here we demonstrate that a catalytically inactive RNA-guided CRISPR-Cpf1 nuclease fused to transcriptional activation domains can up-regulate endogenous human gene expression. We engineered drug-inducible Cpf1-based activators and show how this system can be used to tune the regulation of endogenous gene transcription in human cells.
NASA Astrophysics Data System (ADS)
Mackie, Ryan S.; Schilling, Amanda S.; Lopez, Arturo M.; Rayms-Keller, Alfredo
2002-02-01
Detection of multiple chemical and biological weapons (CBW) agents and/or complex mixtures of toxic industrial chemicals (TIC) is imperative for both the commercial and military sectors. In a military scenario, a multi-CBW attack would create confusion, thereby delaying decontamination and therapeutic efforts. In the commercial sector, polluted sites invariably contain a mixture of TIC. Novel detection systems capable of detecting CBW and TIC are sorely needed. While it may be impossible to build a detector capable of discriminating all the possible combinations of CBW, a detection system capable of statistically predicting the most likely composition of a given mixture is within the reach of current emerging technologies. Aquatic insect-gene activity may prove to be a sensitive, discriminating, and elegant paradigm for the detection of CBW and TIC. We propose to systematically establish the expression patterns of selected protein markers in insects exposed to specific mixtures of chemical and biological warfare agents to generate a library of biosignatures of exposure. The predicting capabilities of an operational library of biosignatures of exposures will allow the detection of emerging novel or genetically engineered agents, as well as complex mixtures of chemical and biological weapons agents. CBW and TIC are discussed in the context of war, terrorism, and pollution.
Shackleton, David; Pagram, Jenny; Ives, Lesley; Vanhinsbergh, Des
2018-06-02
The RapidHIT™ 200 System is a fully automated sample-to-DNA profile system designed to produce high quality DNA profiles within 2h. The use of RapidHIT™ 200 System within the United Kingdom Criminal Justice System (UKCJS) has required extensive development and validation of methods with a focus on AmpFℓSTR ® NGMSElect™ Express PCR kit to comply with specific regulations for loading to the UK National DNA Database (NDNAD). These studies have been carried out using single source reference samples to simulate live reference samples taken from arrestees and victims for elimination. The studies have shown that the system is capable of generating high quality profile and has achieved the accreditations necessary to load to the NDNAD; a first for the UK. Copyright © 2018 Elsevier B.V. All rights reserved.
A triplex ribozyme expression system based on a single hairpin ribozyme.
Aquino-Jarquin, Guillermo; Benítez-Hess, María Luisa; DiPaolo, Joseph A; Alvarez-Salas, Luis M
2008-09-01
Triplex ribozyme (RZ) configurations allow for the individual activity of trans-acting RZs in multiple expression cassettes (multiplex), thereby increasing target cleavage relative to conventionally expressed RZs. Although hairpin RZs have been advantageously compared to hammerhead RZs, their longer size and structural features complicated triplex design. We present a triplex expression system based on a single hairpin RZ with transcleavage capability and simple engineering. The system was tested in vitro using cis- and trans-cleavage kinetic assays against a known target RNA from HPV-16 E6/E7 mRNA. Single and multiplex triplex RZ constructs were more efficient in cleaving the target than tandem-cloned hairpin RZs, suggesting that the release of individual RZs enhanced trans-cleavage kinetics. Multiplex systems constructed with two different hairpin RZs resulted in better trans-cleavage compared to standard double-RZ constructs. In addition, the triplex RZ performed cis- and trans-cleavage in cervical cancer cells. The use of triplex configurations with multiplex RZs permit differential targeting of the same or different RNA, thus improving potential use against unstable targets. This prototype will provide the basis for the development of future RZ-based therapies and technologies.
Research issues of geometry-based visual languages and some solutions
NASA Astrophysics Data System (ADS)
Green, Thorn G.
This dissertation addresses the problem of how to design visual language systems that are based upon Geometric Algebra, and provide a visual coupling of algebraic expressions and geometric depictions. This coupling of algebraic expressions and geometric depictions provides a new means for expressing both mathematical and geometric relationships present in mathematics, physics, and Computer-Aided Geometric Design (CAGD). Another significant feature of such a system is that the result of changing a parameter (by dragging the mouse) can be seen immediately in the depiction(s) of all expressions that use that parameter. This greatly aides the cognition of the relationships between variables. Systems for representing such a coupling of algebra and geometry have characteristics of both visual language systems, and systems for scientific visualization. Instead of using a parsing or dataflow paradigm for the visual language representation, the systems instead represent equations as manipulatible constrained diagrams for their visualization. This requires that the design of such a system have (but is not limited to) a means for parsing equations entered by the user, a scheme for producing a visual representation of these equations; techniques for maintaining the coupling between the expressions entered and the diagrams displayed; algorithms for maintaining the consistency of the diagrams; and, indexing capabilities that are efficient enough to allow diagrams to be created, and manipulated in a short enough period of time. The author proposes solutions for how such a design can be realized.
ERIC Educational Resources Information Center
Cheng, Yufang; Chen, Shuhui
2010-01-01
Individuals with intellectual and developmental disabilities (IDD) have specific difficulties in cognitive social-emotional capability, which affect numerous aspects of social competence. This study evaluated the learning effects of using 3D-emotion system intervention program for individuals with IDD in learning socially based-emotions capability…
Conformal Predictions in Multimedia Pattern Recognition
ERIC Educational Resources Information Center
Nallure Balasubramanian, Vineeth
2010-01-01
The fields of pattern recognition and machine learning are on a fundamental quest to design systems that can learn the way humans do. One important aspect of human intelligence that has so far not been given sufficient attention is the capability of humans to express when they are certain about a decision, or when they are not. Machine learning…
Biometrics Foundation Documents
2009-01-01
a digital form. The quality of the sensor used has a significant impact on the recognition results. Example “sensors” could be digital cameras...Difficult to control sensor and channel variances that significantly impact capabilities Not sufficiently distinctive for identification over large...expressions, hairstyle, glasses, hats, makeup, etc. have on face recognition systems? Minor variances , such as those mentioned, will have a moderate
The First Amendment and the Fourth Estate: The Law of Mass Media. Fourth Edition.
ERIC Educational Resources Information Center
Carter, T. Barton; And Others
Predicated on the belief that communications students are capable of understanding communications law and the processes that created it, this book examines U.S. Supreme Court opinions on the First Amendment. The book addresses the following topics: 1) the American legal system and freedom of expression (in introductory chapters); 2) defamation; 3)…
Oszvald, Maria; Kang, Tae-Jin; Tomoskozi, Sandor; Tamas, Cecilia; Tamas, Laszlo; Kim, Tae-Geum; Yang, Moon-Sik
2007-03-01
Epitopes often require co-delivery with adjuvant and targeting proteins to enable recognition by the immune system, and this approach may also increase the efficacy of the antigen. In this study, we assess and describe the ability of transgenic rice plants to express a fusion protein consisting of the B-subunit of the Escherichia coli heat-labile enterotoxin (LTB) and a synthetic core-neutralizing epitope (COE) of porcine epidemic diarrhea virus (PEDV), inducing an enteric disease that is seen most predominantly in piglets. Both components of the fusion proteins were detected with Western blot analysis. The fusion protein was determined to assemble into pentamers, as was evidenced by its ability to bind to GM1 gangliosides, and evidenced an average level of expression in a transgenic rice endosperm. This indicates that the expression system of the plant is capable of generating a sizable amount of antigen, possibly allowing for the successful development of an edible vaccine.
2014-11-03
Members of the media watch a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Tom Engler, center, in the suit, deputy director of Kennedy's Center Planning and Development, announced Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
2014-11-03
CAPE CANAVERAL, Fla. - Rob Mueller, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, demonstrates the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
Molecular expression in transfected corneal endothelial cells
NASA Astrophysics Data System (ADS)
Wang, Fan; Miao, Zhuang; Lu, Chengwei; Hao, Jilong
2017-10-01
To investigate the capability of human corneal endothelial cells serving as immunological cells. Expression of HLA-DP, -DQ, -DR, CD40, CD80, and CD86 was determined by immunohistochemical methods. Meanwhile, purified peripheral blood mononuclear cells were cocultured with human corneal endothelial cells which were pre-treated with and without -IFN respectively, activation of lymphocytes was determined by FACS analysis. In coculture system, T lymphocyte was activated by corneal endothelial cells, HLA-DP, -DQ, -DR and CD40 expression were increased by - IFN induction. Costimulatory molecular CD80 was shown on the endothelial cells. Human corneal endothelial cells were assumed to be involved in the corneal transplantation rejection process as potential antigen presenting cells.
Shrestha, Roshan P.; Hildebrand, Mark
2017-08-17
An inducible promoter for recombinant protein expression provides substantial benefits because under induction conditions cellular energy and metabolic capability can be directed into protein synthesis. The most widely used inducible promoter for diatoms is for nitrate reductase, however, nitrogen metabolism is tied into diverse aspects of cellular function, and the induction response is not necessarily robust. Silicon limitation offers a means to eliminate energy and metabolic flux into cell division processes, with little other detrimental effect on cellular function, and a protein expression system that works under those conditions could be advantageous. In this study, we evaluate a number ofmore » promoters for recombinant protein expression induced by silicon limitation and repressed by the presence of silicon in the diatoms Thalassiosira pseudonana and Cyclotella cryptica. In addition to silicon limitation, we describe additional strategies to elevate recombinant protein expression level, including inclusion of the 5' fragment of the coding region of the native gene and reducing carbon flow into ancillary processes of pigment synthesis and formation of photosynthetic storage products. We achieved yields of eGFP to 1.8% of total soluble protein in C. cryptica, which is about 3.6-fold higher than that obtained with chloroplast expression and ninefold higher than nuclear expression in another well-established algal system. Our studies demonstrate that the combination of inducible promoter and other strategies can result in robust expression of recombinant protein in a nuclear-based expression system in diatoms under silicon limited conditions, separating the protein expression regime from growth processes and improving overall recombinant protein yields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, Roshan P.; Hildebrand, Mark
An inducible promoter for recombinant protein expression provides substantial benefits because under induction conditions cellular energy and metabolic capability can be directed into protein synthesis. The most widely used inducible promoter for diatoms is for nitrate reductase, however, nitrogen metabolism is tied into diverse aspects of cellular function, and the induction response is not necessarily robust. Silicon limitation offers a means to eliminate energy and metabolic flux into cell division processes, with little other detrimental effect on cellular function, and a protein expression system that works under those conditions could be advantageous. In this study, we evaluate a number ofmore » promoters for recombinant protein expression induced by silicon limitation and repressed by the presence of silicon in the diatoms Thalassiosira pseudonana and Cyclotella cryptica. In addition to silicon limitation, we describe additional strategies to elevate recombinant protein expression level, including inclusion of the 5' fragment of the coding region of the native gene and reducing carbon flow into ancillary processes of pigment synthesis and formation of photosynthetic storage products. We achieved yields of eGFP to 1.8% of total soluble protein in C. cryptica, which is about 3.6-fold higher than that obtained with chloroplast expression and ninefold higher than nuclear expression in another well-established algal system. Our studies demonstrate that the combination of inducible promoter and other strategies can result in robust expression of recombinant protein in a nuclear-based expression system in diatoms under silicon limited conditions, separating the protein expression regime from growth processes and improving overall recombinant protein yields.« less
WetLab-2: Providing Quantitative PCR Capabilities on ISS
NASA Technical Reports Server (NTRS)
Parra, Macarena; Jung, Jimmy Kar Chuen; Almeida, Eduardo; Boone, Travis David; Schonfeld, Julie; Tran, Luan Hoang
2015-01-01
The objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a system capable of conducting gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens sampled or cultured on orbit. The WetLab-2 system is capable of processing sample types ranging from microbial cultures to animal tissues dissected on-orbit. The project has developed a RNA preparation module that can lyse cells and extract RNA of sufficient quality and quantity for use as templates in qRT-PCR reactions. Our protocol has the advantage that it uses non-toxic chemicals, alcohols or other organics. The resulting RNA is transferred into a pipette and then dispensed into reaction tubes that contain all lyophilized reagents needed to perform qRT-PCR reactions. These reaction tubes are mounted on rotors to centrifuge the liquid to the reaction window of the tube using a cordless drill. System operations require simple and limited crew actions including syringe pushes, valve turns and pipette dispenses. The resulting process takes less than 30 min to have tubes ready for loading into the qRT-PCR unit.The project has selected a Commercial-Off-The-Shelf (COTS) qRT-PCR unit, the Cepheid SmartCycler, that will fly in its COTS configuration. The SmartCycler has a number of advantages including modular design (16 independent PCR modules), low power consumption, rapid thermal ramp times and four-color detection. The ability to detect up to four fluorescent channels will enable multiplex assays that can be used to normalize for RNA concentration and integrity, and to study multiple genes of interest in each module. The WetLab-2 system will have the capability to downlink data from the ISS to the ground after a completed run and to uplink new programs. The ability to conduct qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples. The system can be used to validate terrestrial analyses of samples returned from ISS by providing on-orbit gene expression benchmarking prior to sample return. The ability to get on-orbit data will provide investigators with the opportunity to adjust experimental parameters in real time for subsequent trials, without the need for sample return and re-flight to sample multigenerational changes. The system can also be used for analysis of air, surface, water, and clinical samples to monitor environmental contaminants and crew health. The verification flight of the instrument is scheduled to launch on SpaceX-7 in June 2015. The WetLab-2 Project is supported by NASAs ISS Program at JSC, Code OZ.
Development of Network Interface Cards for TRIDAQ systems with the NaNet framework
NASA Astrophysics Data System (ADS)
Ammendola, R.; Biagioni, A.; Cretaro, P.; Di Lorenzo, S.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Valente, P.; Vicini, P.
2017-03-01
NaNet is a framework for the development of FPGA-based PCI Express (PCIe) Network Interface Cards (NICs) with real-time data transport architecture that can be effectively employed in TRIDAQ systems. Key features of the architecture are the flexibility in the configuration of the number and kind of the I/O channels, the hardware offloading of the network protocol stack, the stream processing capability, and the zero-copy CPU and GPU Remote Direct Memory Access (RDMA). Three NIC designs have been developed with the NaNet framework: NaNet-1 and NaNet-10 for the CERN NA62 low level trigger and NaNet3 for the KM3NeT-IT underwater neutrino telescope DAQ system. We will focus our description on the NaNet-10 design, as it is the most complete of the three in terms of capabilities and integrated IPs of the framework.
Origin of symbol-using systems: speech, but not sign, without the semantic urge
Sereno, Martin I.
2014-01-01
Natural language—spoken and signed—is a multichannel phenomenon, involving facial and body expression, and voice and visual intonation that is often used in the service of a social urge to communicate meaning. Given that iconicity seems easier and less abstract than making arbitrary connections between sound and meaning, iconicity and gesture have often been invoked in the origin of language alongside the urge to convey meaning. To get a fresh perspective, we critically distinguish the origin of a system capable of evolution from the subsequent evolution that system becomes capable of. Human language arose on a substrate of a system already capable of Darwinian evolution; the genetically supported uniquely human ability to learn a language reflects a key contact point between Darwinian evolution and language. Though implemented in brains generated by DNA symbols coding for protein meaning, the second higher-level symbol-using system of language now operates in a world mostly decoupled from Darwinian evolutionary constraints. Examination of Darwinian evolution of vocal learning in other animals suggests that the initial fixation of a key prerequisite to language into the human genome may actually have required initially side-stepping not only iconicity, but the urge to mean itself. If sign languages came later, they would not have faced this constraint. PMID:25092671
Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.
Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F
2014-10-17
The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.
Vitorino, Marta; Cunha, Nídia; Conceição, Natércia; Cancela, M Leonor
2018-05-11
Atypical Rett syndrome is a child neurodevelopmental disorder induced by mutations in CDKL5 gene and characterized by a progressive regression in development with loss of purposeful use of the hands, slowed brain and head growth, problems with walking, seizures, and intellectual disability. At the moment, there is no cure for this pathology and little information is available concerning animal models capable of mimicking its phenotypes, thus the development of additional animal models should be of interest to gain more knowledge about the disease. Zebrafish has been used successfully as model organism for many human genetic diseases; however, no information is available concerning the spatial and temporal expression of cdkl5 orthologous in this organism. In the present study, we identified the developmental expression patterns of cdkl5 in zebrafish by quantitative PCR and whole-mount in situ hybridization. cdkl5 is expressed maternally at low levels during the first 24 h of development. After that the expression of the gene increases significantly and it starts to be expressed mainly in the nervous system and in several brain structures, such as telencephalon, mesencephalon and diencephalon. The expression patterns of cdkl5 in zebrafish is in accordance with the tissues known to be affected in humans and associated to symptoms and deficits observed in Rett syndrome patients thus providing the first evidence that zebrafish could be an alternative model to study the molecular pathways of this disease as well as to test possible therapeutic approaches capable of rescuing the phenotype.
Price, Paul A; Tanner, Houston R; Dillon, Brett A; Shabab, Mohammed; Walker, Graham C; Griffitts, Joel S
2015-12-08
Legume-rhizobium pairs are often observed that produce symbiotic root nodules but fail to fix nitrogen. Using the Sinorhizobium meliloti and Medicago truncatula symbiotic system, we previously described several naturally occurring accessory plasmids capable of disrupting the late stages of nodule development while enhancing bacterial proliferation within the nodule. We report here that host range restriction peptidase (hrrP), a gene found on one of these plasmids, is capable of conferring both these properties. hrrP encodes an M16A family metallopeptidase whose catalytic activity is required for these symbiotic effects. The ability of hrrP to suppress nitrogen fixation is conditioned upon the genotypes of both the host plant and the hrrP-expressing rhizobial strain, suggesting its involvement in symbiotic communication. Purified HrrP protein is capable of degrading a range of nodule-specific cysteine-rich (NCR) peptides encoded by M. truncatula. NCR peptides are crucial signals used by M. truncatula for inducing and maintaining rhizobial differentiation within nodules, as demonstrated in the accompanying article [Horváth B, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1500777112]. The expression pattern of hrrP and its effects on rhizobial morphology are consistent with the NCR peptide cleavage model. This work points to a symbiotic dialogue involving a complex ensemble of host-derived signaling peptides and bacterial modifier enzymes capable of adjusting signal strength, sometimes with exploitative outcomes.
Cancer-specific transgene expression mediated by systemic injection of nanoparticles.
Chisholm, Edward J; Vassaux, Georges; Martin-Duque, Pilar; Chevre, Raphael; Lambert, Olivier; Pitard, Bruno; Merron, Andrew; Weeks, Mark; Burnet, Jerome; Peerlinck, Inge; Dai, Ming-Shen; Alusi, Ghassan; Mather, Stephen J; Bolton, Katherine; Uchegbu, Ijeoma F; Schatzlein, Andreas G; Baril, Patrick
2009-03-15
The lack of safe and efficient systemic gene delivery vectors has largely reduced the potential of gene therapy in the clinic. Previously, we have reported that polypropylenimine dendrimer PPIG3/DNA nanoparticles are capable of tumor transfection upon systemic administration in tumor-bearing mice. To be safely applicable in the clinic, it is crucial to investigate the colloidal stability of nanoparticles and to monitor the exact biodistribution of gene transfer in the whole body of the live subject. Our biophysical characterization shows that dendrimers, when complexed with DNA, are capable of forming spontaneously in solution a supramolecular assembly that possesses all the features required to diffuse in experimental tumors through the enhanced permeability and retention effect. We show that these nanoparticles are of sizes ranging from 33 to 286 nm depending on the DNA concentration, with a colloidal stable and well-organized fingerprint-like structure in which DNA molecules are condensed with an even periodicity of 2.8 nm. Whole-body nuclear imaging using small-animal nano-single-photon emission computed tomography/computer tomography scanner and the human Na/I symporter (NIS) as reporter gene shows unique and highly specific tumor targeting with no detection of gene transfer in any of the other tissues of tumor-bearing mice. Tumor-selective transgene expression was confirmed by quantitative reverse transcription-PCR at autopsy of scanned animals, whereas genomic PCR showed that the tumor sites are the predominant sites of nanoparticle accumulation. Considering that NIS imaging of transgene expression has been recently validated in humans, our data highlight the potential of these nanoparticles as a new formulation for cancer gene therapy.
An, Na; Ou, Jiquan; Jiang, Daiming; Zhang, Liping; Liu, Jingru; Fu, Kai; Dai, Ying; Yang, Daichang
2013-02-07
Basic fibroblast growth factor (FGF-2) is an important member of the FGF gene family. It is widely used in clinical applications for scald and wound healing in order to stimulate cell proliferation. Further it is applied for inhibiting stem cell differentiation in cultures. Due to a shortage of plasma and low expression levels of recombinant rbFGF in conventional gene expression systems, we explored the production of recombinant rbFGF in rice grains (Oryza sativa bFGF, OsrbFGF). An expression level of up to 185.66 mg/kg in brown rice was obtained. A simple purification protocol was established with final recovery of 4.49% and resulting in a yield of OsrbFGF reaching up to 8.33 mg/kg OsrbFGF. The functional assay of OsrbFGF indicated that the stimulating cell proliferation activity on NIH/3T3 was the same as with commercialized rbFGF. Wound healing in vivo of OsrbFGF is equivalent to commercialized rbFGF. Our results indicate that rice endosperm is capable of expressing small molecular mass proteins, such as bFGF. This again demonstrates that rice endosperm is a promising system to express various biopharmaceutical proteins.
Synthetic and systems biology for microbial production of commodity chemicals.
Chubukov, Victor; Mukhopadhyay, Aindrila; Petzold, Christopher J; Keasling, Jay D; Martín, Héctor García
2016-01-01
The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges start at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.
Synthetic and systems biology for microbial production of commodity chemicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chubukov, Victor; Mukhopadhyay, Aindrila; Petzold, Christopher J.
The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges startmore » at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.« less
Synthetic and systems biology for microbial production of commodity chemicals
Chubukov, Victor; Mukhopadhyay, Aindrila; Petzold, Christopher J.; ...
2016-04-07
The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges startmore » at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.« less
Lee, Seong Min; Bishop, Kathleen A; Goellner, Joseph J; O'Brien, Charles A; Pike, J Wesley
2014-06-01
The biological actions of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) are mediated by the vitamin D receptor (VDR), which is expressed in numerous target tissues in a cell type-selective manner. Recent studies using genomic analyses and recombineered bacterial artificial chromosomes (BACs) have defined the specific features of mouse and human VDR gene loci in vitro. In the current study, we introduced recombineered mouse and human VDR BACs as transgenes into mice and explored their expression capabilities in vivo. Individual transgenic mouse strains selectively expressed BAC-derived mouse or human VDR proteins in appropriate vitamin D target tissues, thereby recapitulating the tissue-specific expression of endogenous mouse VDR. The mouse VDR transgene was also regulated by 1,25(OH)2D3 and dibutyryl-cAMP. When crossed into a VDR-null mouse background, both transgenes restored wild-type basal as well as 1,25(OH)2D3-inducible gene expression patterns in the appropriate tissues. This maneuver resulted in the complete rescue of the aberrant phenotype noted in the VDR-null mouse, including systemic features associated with altered calcium and phosphorus homeostasis and disrupted production of parathyroid hormone and fibroblast growth factor 23, and abnormalities associated with the skeleton, kidney, parathyroid gland, and the skin. This study suggests that both mouse and human VDR transgenes are capable of recapitulating basal and regulated expression of the VDR in the appropriate mouse tissues and restore 1,25(OH)2D3 function. These results provide a baseline for further dissection of mechanisms integral to mouse and human VDR gene expression and offer the potential to explore the consequence of selective mutations in VDR proteins in vivo.
Qian, Dongyang; Bai, Bo; Yan, Guangbin; Zhang, Shujiang; Liu, Qi; Chen, Yi; Tan, Xiaobo; Zeng, Yanjun
2016-01-01
The repairing of large segmental bone defects is difficult for clinical orthopedists at present. Gene therapy is regarded as a promising method for bone defects repair. The present study aimed to construct an effective and controllable Tet-On expression system for transferring hBMP-2 gene into bone marrow mesenchymal progenitor cells (BMSCs). Meanwhile, with combination of alginate-poly-L-lysine-alginate (APA) microencapsulation technology, we attempted to reduce the influence of immunologic rejection and examine the effect of the Tet-On expression system on osteogenesis of BMSCs. The adenovirus encoding hBMP-2 (ADV-hBMP2) was constructed using the means of molecular cloning. The ADV-hBMP2 and Adeno-X Tet-On virus was respectively transfected to the HEK293 for amplification and afterward BMSCs were co-infected with the virus of ADV-hBMP2 and the Adeno-X Tet-On. The expression of hBMP-2 was measured with induction by doxycycline (DOX) at different concentration by means of RT-PCR and ELISA. Combining Tet-On expression system and APA microcapsules with the use of the pulsed high-voltage electrostatic microcapsule instrument, we examined the expression level of hBMP-2 in APA microcapsules by ELISA as well as the osteogenesis by alizarin red S staining. An effective Tet-On expression system for transferring hBMP-2 gene into BMSCs was constructed successfully. Also, the expression of hBMP-2 could be regulated by concentration of DOX. The data exhibited that BMSCs in APA microcapsules maintained the capability of proliferation and differentiation. The combination of Tet-On expression system and APA microcapsules could promote the osteogenesis of BMSCs. According to the results, microencapsulated Tet-On expression system showed the effective characteristics of secreting hBMP-2 and enhancing osteogenesis, which would provide a promising way for bone repair.
ESOC's System for Interplanetary Orbit Determination: Implementation and Operational Experience
NASA Astrophysics Data System (ADS)
Budnik, F.; Morley, T. A.; MacKenzie, R. A.
A system for interplanetary orbit determination has been developed at ESOC over the past six years. Today, the system is in place and has been proven to be both reliable and robust by successfully supporting critical operations of ESA's interplanetary spacecraft Rosetta, Mars Express, and SMART-1. To reach this stage a long and challenging way had to be travelled. This paper gives a digest about the journey from the development and testing to the operational use of ESOC's new interplanetary orbit determination system. It presents the capabilities and reflects experiences gained from the performed tests and tracking campaigns.
NASA Technical Reports Server (NTRS)
Pelfrey, Joseph J.; Jordan, Lee P.
2008-01-01
The EXpedite the PRocessing of Experiments to Space Station or EXPRESS Rack System has provided accommodations and facilitated operations for microgravity-based research payloads for over 6 years on the International Space Station (ISS). The EXPRESS Rack accepts Space Shuttle middeck type lockers and International Subrack Interface Standard (ISIS) drawers, providing a modular-type interface on the ISS. The EXPRESS Rack provides 28Vdc power, Ethernet and RS-422 data interfaces, thermal conditioning, vacuum exhaust, and Nitrogen supply for payload use. The EXPRESS Rack system also includes payload checkout capability with a flight rack or flight rack emulator prior to launch, providing a high degree of confidence in successful operations once an-orbit. In addition, EXPRESS trainer racks are provided to support crew training of both rack systems and subrack operations. Standard hardware and software interfaces provided by the EXPRESS Rack simplify the integration processes for ISS payload development. The EXPRESS Rack is designed to accommodate multidiscipline research, allowing for the independent operation of each subrack payload within a single rack. On-orbit operations began for the EXPRESS Rack Project on April 24, 2001, with one rack operating continuously to support high-priority payloads. The other on-orbit EXPRESS Racks operate based on payload need and resource availability. Over 50 multi-discipline payloads have now been supported on-orbit by the EXPRESS Rack Program. Sustaining engineering, logistics, and maintenance functions are in place to maintain hardware, operations and provide software upgrades. Additional EXPRESS Racks are planned for launch prior to ISS completion in support of long-term operations and the planned transition of the U.S. Segment to a National Laboratory.
Network Security via Biometric Recognition of Patterns of Gene Expression
NASA Technical Reports Server (NTRS)
Shaw, Harry C.
2016-01-01
Molecular biology provides the ability to implement forms of information and network security completely outside the bounds of legacy security protocols and algorithms. This paper addresses an approach which instantiates the power of gene expression for security. Molecular biology provides a rich source of gene expression and regulation mechanisms, which can be adopted to use in the information and electronic communication domains. Conventional security protocols are becoming increasingly vulnerable due to more intensive, highly capable attacks on the underlying mathematics of cryptography. Security protocols are being undermined by social engineering and substandard implementations by IT organizations. Molecular biology can provide countermeasures to these weak points with the current security approaches. Future advances in instruments for analyzing assays will also enable this protocol to advance from one of cryptographic algorithms to an integrated system of cryptographic algorithms and real-time expression and assay of gene expression products.
Research on capability of detecting ballistic missile by near space infrared system
NASA Astrophysics Data System (ADS)
Lu, Li; Sheng, Wen; Jiang, Wei; Jiang, Feng
2018-01-01
The infrared detection technology of ballistic missile based on near space platform can effectively make up the shortcomings of high-cost of traditional early warning satellites and the limited earth curvature of ground-based early warning radar. In terms of target detection capability, aiming at the problem that the formula of the action distance based on contrast performance ignores the background emissivity in the calculation process and the formula is only valid for the monochromatic light, an improved formula of the detecting range based on contrast performance is proposed. The near space infrared imaging system parameters are introduced, the expression of the contrastive action distance formula based on the target detection of the near space platform is deduced. The detection range of the near space infrared system for the booster stage ballistic missile skin, the tail nozzle and the tail flame is calculated. The simulation results show that the near-space infrared system has the best effect on the detection of tail-flame radiation.
GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems
Rellán-Álvarez, Rubén; Lobet, Guillaume; Lindner, Heike; Pradier, Pierre-Luc; Sebastian, Jose; Yee, Muh-Ching; Geng, Yu; Trontin, Charlotte; LaRue, Therese; Schrager-Lavelle, Amanda; Haney, Cara H; Nieu, Rita; Maloof, Julin; Vogel, John P; Dinneny, José R
2015-01-01
Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes. DOI: http://dx.doi.org/10.7554/eLife.07597.001 PMID:26287479
GLO-Roots: An imaging platform enabling multidimensional characterization of soil-grown root systems
Rellan-Alvarez, Ruben; Lobet, Guillaume; Lindner, Heike; ...
2015-08-19
Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow themore » spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes.« less
Small-Animal Imaging Using Diffuse Fluorescence Tomography.
Davis, Scott C; Tichauer, Kenneth M
2016-01-01
Diffuse fluorescence tomography (DFT) has been developed to image the spatial distribution of fluorescence-tagged tracers in living tissue. This capability facilitates the recovery of any number of functional parameters, including enzymatic activity, receptor density, blood flow, and gene expression. However, deploying DFT effectively is complex and often requires years of know-how, especially for newer mutlimodal systems that combine DFT with conventional imaging systems. In this chapter, we step through the process of using MRI-DFT imaging of a receptor-targeted tracer in small animals.
Engineered enzymatically active bacteriophages and methods of uses thereof
Collins, James J [Newton, MA; Kobayashi, Hideki [Yokohama, JP; Kearn, Mads [Ottawa, CA; Araki, Michihiro [Minatoku, JP; Friedland, Ari [Boston, MA; Lu, Timothy Kuan-Ta [Palo Alto, CA
2012-05-22
The present invention provides engineered bacteriophages that express at least one biofilm degrading enzyme on their surface and uses thereof for degrading bacterial biofilms. The invention also provides genetically engineered bacteriophages expressing the biofilm degrading enzymes and proteins necessary for the phage to replicate in different naturally occurring biofilm producing bacteria. The phages of the invention allow a method of biofilm degradation by the use of one or only a few administration of the phage because the system using these phages is self perpetuating, and capable of degrading biofilm even when the concentration of bacteria within the biofilm is low.
Assured crew return capability Crew Emergency Return Vehicle (CERV) avionics
NASA Technical Reports Server (NTRS)
Myers, Harvey Dean
1990-01-01
The Crew Emergency Return Vehicle (CERV) is being defined to provide Assured Crew Return Capability (ACRC) for Space Station Freedom. The CERV, in providing the standby lifeboat capability, would remain in a dormat mode over long periods of time as would a lifeboat on a ship at sea. The vehicle must be simple, reliable, and constantly available to assure the crew's safety. The CERV must also provide this capability in a cost effective and affordable manner. The CERV Project philosophy of a simple vehicle is to maximize its useability by a physically deconditioned crew. The vehicle reliability goes unquestioned since, when needed, it is the vehicle of last resort. Therefore, its systems and subsystems must be simple, proven, state-of-the-art technology with sufficient redundancy to make it available for use as required for the life of the program. The CERV Project Phase 1'/2 Request for Proposal (RFP) is currently scheduled for release on October 2, 1989. The Phase 1'/2 effort will affirm the existing project requirements or amend and modify them based on a thorough evaluation of the contractor(s) recommendations. The system definition phase, Phase 2, will serve to define CERV systems and subsystems. The current CERV Project schedule has Phase 2 scheduled to begin October 1990. Since a firm CERV avionics design is not in place at this time, the treatment of the CERV avionics complement for the reference configuration is not intended to express a preference with regard to a system or subsystem.
A publicly available toxicogenomics capability for supporting predictive toxicology and meta-analysis depends on availability of gene expression data for chemical treatment scenarios, the ability to locate and aggregate such information by chemical, and broad data coverage within...
Patch models and their applications to multivehicle command and control.
Rao, Venkatesh G; D'Andrea, Raffaello
2007-06-01
We introduce patch models, a computational modeling formalism for multivehicle combat domains, based on spatiotemporal abstraction methods developed in the computer science community. The framework yields models that are expressive enough to accommodate nontrivial controlled vehicle dynamics while being within the representational capabilities of common artificial intelligence techniques used in the construction of autonomous systems. The framework allows several key design requirements of next-generation network-centric command and control systems, such as maintenance of shared situation awareness, to be achieved. Major features include support for multiple situation models at each decision node and rapid mission plan adaptation. We describe the formal specification of patch models and our prototype implementation, i.e., Patchworks. The capabilities of patch models are validated through a combat mission simulation in Patchworks, which involves two defending teams protecting a camp from an enemy attacking team.
NASA Technical Reports Server (NTRS)
Jung, Jimmy; Parra, Macarena P.; Almeida, Eduardo; Boone, Travis; Chinn, Tori; Ricco, Antonio; Souza, Kenneth; Hyde, Liz; Rukhsana, Yousuf; Richey, C. Scott
2013-01-01
The primary objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a research platform to facilitate gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens grown or cultured on orbit. The WetLab-2 equipment will be capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on-orbit. In addition to the logistical benefits of in-situ sample processing and analysis, conducting qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms. The system can also validate terrestrial analyses of samples returned from ISS by providing quantitative on-orbit gene expression benchmarking prior to sample return. The ability to get on orbit data will provide investigators with the opportunity to adjust experimental parameters for subsequent trials based on the real-time data analysis without need for sample return and re-flight. Finally, WetLab-2 can be used for analysis of air, surface, water, and clinical samples to monitor environmental contaminants and crew health. The verification flight of the instrument is scheduled to launch on SpaceX-5 in Aug. 2014.Progress to date: The WetLab-2 project completed a thorough study of commercially available qRT-PCR systems and performed a downselect based on both scientific and engineering requirements. The selected instrument, the Cepheid SmartCycler, has advantages including modular design (16 independent PCR modules), low power consumption, and rapid ramp times. The SmartCycler has multiplex capabilities, assaying up to four genes of interest in each of the 16 modules. The WetLab-2 team is currently working with Cepheid to modify the unit for housing within an EXPRESS rack locker on the ISS. This will enable the downlink of data to the ground and provide uplink capabilities for programming, commanding, monitoring, and instrument maintenance. The project is currently designing a module that will lyse the cells and extract RNA of sufficient quality for use in qRT-PCR reactions while using a housekeeping gene to normalize RNA concentration and integrity. Current testing focuses on two promising commercial products and chemistries that allow for RNA extraction with minimal complexity and crew time.
Gottschamel, Johanna; Lössl, Andreas; Ruf, Stephanie; Wang, Yanliang; Skaugen, Morten; Bock, Ralph; Clarke, Jihong Liu
2016-07-01
Dengue fever is a disease in many parts of the tropics and subtropics and about half the world's population is at risk of infection according to the World Health Organization. Dengue is caused by any of the four related dengue virus serotypes DEN-1, -2, -3 and -4, which are transmitted to people by Aedes aegypti mosquitoes. Currently there is only one vaccine (Dengvaxia(®)) available (limited to a few countries) on the market since 2015 after half a century's intensive efforts. Affordable and accessible vaccines against dengue are hence still urgently needed. The dengue envelop protein domain III (EDIII), which is capable of eliciting serotype-specific neutralizing antibodies, has become the focus for subunit vaccine development. To contribute to the development of an accessible and affordable dengue vaccine, in the current study we have used plant-based vaccine production systems to generate a dengue subunit vaccine candidate in tobacco. Chloroplast genome engineering was applied to express serotype-specific recombinant EDIII proteins in tobacco chloroplasts using both constitutive and ethanol-inducible expression systems. Expression of a tetravalent antigen fusion construct combining EDIII polypeptides from all four serotypes was also attempted. Transplastomic EDIII-expressing tobacco lines were obtained and homoplasmy was verified by Southern blot analysis. Northern blot analyses showed expression of EDIII antigen-encoding genes. EDIII protein accumulation levels varied for the different recombinant EDIII proteins and the different expression systems, and reached between 0.8 and 1.6 % of total cellular protein. Our study demonstrates the suitability of the chloroplast compartment as a production site for an EDIII-based vaccine candidate against dengue fever and presents a Gateway(®) plastid transformation vector for inducible transgene expression.
Patterns of Bacterial and Archaeal Gene Expression through the Lower Amazon River
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satinsky, Brandon M.; Smith, Christa B.; Sharma, Shalabh
Analysis of metatranscriptomic and metagenomic datasets from the lower reaches of the Amazon River between Obidos and the river mouth revealed microbial transcript and gene pools dominated by Actinobacteria, Thaumarchaeota, Bacteroidetes, Acidobacteria, Betaproteobacteria, and Planctomycetes. Three mainstem stations spanning a 625 km reach had similar gene expression patterns (transcripts gene copy-1) across a diverse suite of element cycling genes, but two tributary-influenced stations at the mouth of the Tapajos River and near the Tocantins River at Belem had distinct transcriptome composition and expression ratios, particularly for genes encoding light-related energy capture (higher) and iron acquisition and ammonia oxidation (lower). Environmentalmore » parameters that were useful predictors of gene expression ratios included concentrations of lignin phenols, suspended sediments, nitrate, phosphate, and particulate organic carbon and nitrogen. Similar to the gene expression data, these chemical properties reflected highly homogeneous mainstem stations punctuated by distinct tributary- influenced stations at Tapajos and Belem. Although heterotrophic processes were expected to dominate in the lower Amazon, transcripts from photosynthetic bacteria were abundant in tributary-influenced regions, and transcripts from Thaumarcheota taxa genetically capable of chemosynthetic ammonia oxidation accounted for up to 21% of the transcriptome at others. Based on regressions of transcript numbers against gene numbers, expression ratios of Thaumarchaeota populations were largely unchanged within the mainstem, suggesting a relatively minor role for gene regulation. These quantitative gene and transcript inventories detail a diverse array of energy acquisition strategies and metabolic capabilities for bacteria and archaea populations of the world’s largest river system.« less
NASA Astrophysics Data System (ADS)
Liew, Oi Wah; Asundi, Anand K.; Chen, Jun-Wei; Chew, Yiwen; Yu, Shangjuan; Yeo, Gare H.
2001-05-01
In this paper, fiber optic spectroscopy is developed to detect and quantify recombinant green (EGFP) and red (DsRED) fluorescent proteins in vitro and in vivo. The bacterial expression vectors carrying the coding regions of EGFP and DsRED were introduced into Escherichia coli host cells and fluorescent proteins were produced following induction with IPTG. Soluble EGFP and DsRED proteins were isolated from lysed bacterial cells and serially diluted for quantitative analysis by fiber optic spectroscopy. Fluorescence at the appropriate emission wavelengths could be detected up to 64X dilution for EGFP and 40X dilution for DsRED. To determine the capability of spectroscopy detection in vivo, transgenic potato hairy roots expressing EGFP and DsRED were regenerated. This was achieved by cloning the EGFP and DsRED genes into the plant binary vector, pTMV35S, to create the recombinant vectors pGLOWGreen and pGLOWRed. These latter binary vectors were introduced into Agrobacterium rhizogenes strain A4T. Infection of potato cells with transformed agrobacteria was used to insert the fluorescent protein genes into the potato genome. Genetically modified potato cells were then regenerated into hairy roots. A panel of transformed hairy roots expressing varying levels of fluorescent proteins was selected by fluorescence microscopy. We are now assessing the capability of spectroscopic detection system for in vivo quantification of green and red fluorescence levels in transformed roots.
Affect in Human-Robot Interaction
2014-01-01
is capable of learning and producing a large number of facial expressions based on Ekman’s Facial Action Coding System, FACS (Ekman and Friesen 1978... tactile (pushed, stroked, etc.), auditory (loud sound), temperature and olfactory (alcohol, smoke, etc.). The personality of the robot consists of...robot’s behavior through decision-making, learning , or action selection, a number of researchers used the fuzzy logic approach to emotion generation
Automated Rendezvous and Capture System Development and Simulation for NASA
NASA Technical Reports Server (NTRS)
Roe, Fred D.; Howard, Richard T.; Murphy, Leslie
2004-01-01
The United States does not have an Automated Rendezvous and Capture/Docking (AR and C) capability and is reliant on manned control for rendezvous and docking of orbiting spacecraft. This reliance on the labor intensive manned interface for control of rendezvous and docking vehicles has a significant impact on the cost of the operation of the International Space Station (ISS) and precludes the use of any U.S. expendable launch capabilities for Space Station resupply. The Soviets have the capability to autonomously dock in space, but their system produces a hard docking with excessive force and contact velocity. Automated Rendezvous and Capture/Docking has been identified as a key enabling technology for the Space Launch Initiative (SLI) Program, DARPA Orbital Express and other DOD Programs. The development and implementation of an AR&C capability can significantly enhance system flexibility, improve safety, and lower the cost of maintaining, supplying, and operating the International Space Station. The Marshall Space Flight Center (MSFC) has conducted pioneering research in the development of an automated rendezvous and capture (or docking) (AR and C) system for U.S. space vehicles. This AR&C system was tested extensively using hardware-in-the-loop simulations in the Flight Robotics Laboratory, and a rendezvous sensor, the Video Guidance Sensor was developed and successfully flown on the Space Shuttle on flights STS-87 and STS-95, proving the concept of a video- based sensor. Further developments in sensor technology and vehicle and target configuration have lead to continued improvements and changes in AR&C system development and simulation. A new Advanced Video Guidance Sensor (AVGS) with target will be utilized on the Demonstration of Autonomous Rendezvous Technologies (DART) flight experiment in 2004.
Wijesinghe, Priyanga; Bepler, Gerold
2014-01-01
Introduction ROS1 and RET gene fusions were recently discovered in non-small cell lung cancer (NSCLC) as potential therapeutic targets with small molecule kinase inhibitors. The conventional screening methods of these fusions are time consuming and require samples of high quality and quantity. Here, we describe a novel and efficient method by coupling the power of multiplexing PCR and the sensitivity of mass spectrometry. Methods The multiplex mass spectrometry platform simultaneously tests samples for the expression of nine ROS1 and six RET fusion genes. The assay incorporates detection of wild-type exon junctions immediately upstream and downstream of the fusion junction to exclude false negative results. To flag false positives, the system also comprises two independent assays for each fusion gene junction. Results The characteristic mass spectrometric peaks of the gene fusions were obtained using engineered plasmid constructs. Specific assays targeting the wild-type gene exon junctions were validated using cDNA from lung tissue of healthy individuals. The system was further validated using cDNA derived from NSCLC cell lines that express endogenous fusion genes. The expressed ROS1-SLC34A2 and CCDC6-RET gene fusions from the NSCLC cell lines HCC78 and LC-2/ad, respectively, were accurately detected by the novel assay. The assay is extremely sensitive, capable of detecting an event in test specimens containing 0.5% positive tumors. Conclusion The novel multiplexed assay is robustly capable of detecting 15 different clinically relevant RET and ROS1 fusion variants. The benefits of this detection method include exceptionally low sample input, high cost efficiency, flexibility, and rapid turnover. PMID:25384172
Mansson, Maria; Nielsen, Anita; Kjærulff, Louise; Gotfredsen, Charlotte H.; Wietz, Matthias; Ingmer, Hanne; Gram, Lone; Larsen, Thomas O.
2011-01-01
During a global research expedition, more than five hundred marine bacterial strains capable of inhibiting the growth of pathogenic bacteria were collected. The purpose of the present study was to determine if these marine bacteria are also a source of compounds that interfere with the agr quorum sensing system that controls virulence gene expression in Staphylococcus aureus. Using a gene reporter fusion bioassay, we recorded agr interference as enhanced expression of spa, encoding Protein A, concomitantly with reduced expression of hla, encoding α-hemolysin, and rnaIII encoding RNAIII, the effector molecule of agr. A marine Photobacterium produced compounds interfering with agr in S. aureus strain 8325-4, and bioassay-guided fractionation of crude extracts led to the isolation of two novel cyclodepsipeptides, designated solonamide A and B. Northern blot analysis confirmed the agr interfering activity of pure solonamides in both S. aureus strain 8325-4 and the highly virulent, community-acquired strain USA300 (CA-MRSA). To our knowledge, this is the first report of inhibitors of the agr system by a marine bacterium. PMID:22363239
Price, Paul A.; Tanner, Houston R.; Dillon, Brett A.; Shabab, Mohammed; Walker, Graham C.; Griffitts, Joel S.
2015-01-01
Legume–rhizobium pairs are often observed that produce symbiotic root nodules but fail to fix nitrogen. Using the Sinorhizobium meliloti and Medicago truncatula symbiotic system, we previously described several naturally occurring accessory plasmids capable of disrupting the late stages of nodule development while enhancing bacterial proliferation within the nodule. We report here that host range restriction peptidase (hrrP), a gene found on one of these plasmids, is capable of conferring both these properties. hrrP encodes an M16A family metallopeptidase whose catalytic activity is required for these symbiotic effects. The ability of hrrP to suppress nitrogen fixation is conditioned upon the genotypes of both the host plant and the hrrP-expressing rhizobial strain, suggesting its involvement in symbiotic communication. Purified HrrP protein is capable of degrading a range of nodule-specific cysteine-rich (NCR) peptides encoded by M. truncatula. NCR peptides are crucial signals used by M. truncatula for inducing and maintaining rhizobial differentiation within nodules, as demonstrated in the accompanying article [Horváth B, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1500777112]. The expression pattern of hrrP and its effects on rhizobial morphology are consistent with the NCR peptide cleavage model. This work points to a symbiotic dialogue involving a complex ensemble of host-derived signaling peptides and bacterial modifier enzymes capable of adjusting signal strength, sometimes with exploitative outcomes. PMID:26401024
A computational procedure for multibody systems including flexible beam dynamics
NASA Technical Reports Server (NTRS)
Downer, J. D.; Park, K. C.; Chiou, J. C.
1990-01-01
A computational procedure suitable for the solution of equations of motions for flexible multibody systems has been developed. A fully nonlinear continuum approach capable of accounting for both finite rotations and large deformations has been used to model a flexible beam component. The beam kinematics are referred directly to an inertial reference frame such that the degrees of freedom embody both the rigid and flexible deformation motions. As such, the beam inertia expression is identical to that of rigid body dynamics. The nonlinear coupling between gross body motion and elastic deformation is contained in the internal force expression. Numerical solution procedures for the integration of spatial kinematic systems can be directily applied to the generalized coordinates of both the rigid and flexible components. An accurate computation of the internal force term which is invariant to rigid motions is incorporated into the general solution procedure.
[Run the risk: social disadvantage or capability?
Muñoz-Duque, Luz Adriana
2018-05-10
This article discusses the notions of risk and risk acceptability from a social justice perspective, especially in light of the capability approach proposed by Amartya Sen. The article argues that risk can be the expression of restrictions on subjects' capabilities, deriving from social disadvantages that can be taken for granted in their daily realities. On the other hand, risk can be viewed as an expression of capability in cases where subjects have accepted or admitted the risk through the exercise of freedom, as long as the subjects that relate to the risk do so in keeping with their idea of a good life, the building of which implies the full development of capability for agency. The article concludes with some thoughts on the issues of risk and risk acceptability in the sphere of public health.
2014-11-03
CAPE CANAVERAL, Fla. - Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
2014-11-03
CAPE CANAVERAL, Fla. - Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface Systems Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
A novel intranuclear RNA vector system for long-term stem cell modification
Ikeda, Yasuhiro; Makino, Akiko; Matchett, William E.; Holditch, Sara J.; Lu, Brian; Dietz, Allan B.; Tomonaga, Keizo
2015-01-01
Genetically modified stem and progenitor cells have emerged as a promising regenerative platform in the treatment of genetic and degenerative disorders, highlighted by their successful therapeutic use in inherent immunodeficiencies. However, biosafety concerns over insertional mutagenesis resulting from integrating recombinant viral vectors have overshadowed the widespread clinical applications of genetically modified stem cells. Here, we report an RNA-based episomal vector system, amenable for long-term transgene expression in stem cells. Specifically, we used a unique intranuclear RNA virus, Borna disease virus (BDV), as the gene transfer vehicle, capable of persistent infections in various cell types. BDV-based vectors allowed for long-term transgene expression in mesenchymal stem cells (MSCs) without affecting cellular morphology, cell surface CD105 expression, or the adipogenicity of MSCs. Similarly, replication-defective BDV vectors achieved long-term transduction of human induced pluripotent stem cells (iPSCs), while maintaining the ability to differentiate into three embryonic germ layers. Thus, the BDV-based vectors offer a genomic modification-free, episomal RNA delivery system for sustained stem cell transduction. PMID:26632671
Lavdas, Alexandros A; Efrose, Rodica; Douris, Vassilis; Gaitanou, Maria; Papastefanaki, Florentia; Swevers, Luc; Thomaidou, Dimitra; Iatrou, Kostas; Matsas, Rebecca
2010-12-01
For biotechnological applications, insect cell lines are primarily known as hosts for the baculovirus expression system that is capable to direct synthesis of high levels of recombinant proteins through use of powerful viral promoters. Here, we demonstrate the implementation of two alternative approaches based on the baculovirus system for production of a mammalian recombinant glycoprotein, comprising the extracellular part of the cell adhesion molecule L1, with potential important therapeutic applications in nervous system repair. In the first approach, the extracellular part of L1 bearing a myc tag is produced in permanently transformed insect cell lines and purified by affinity chromatography. In the second approach, recombinant baculoviruses that express L1-Fc chimeric protein, derived from fusion of the extracellular part of L1 with the Fc part of human IgG1, under the control of a mammalian promoter are used to infect mammalian HEK293 and primary Schwann cells. Both the extracellular part of L1 bearing a myc tag accumulating in the supernatants of insect cultures as well as L1-Fc secreted by transduced HEK293 or Schwann cells are capable of increasing the motility of Schwann cells with similar efficiency in a gap bridging bioassay. In addition, baculovirus-transduced Schwann cells show enhanced motility when grafted on organotypic cultures of neonatal brain slices while they retain their ability to myelinate CNS axons. This proof-of-concept that the migratory properties of myelin-forming cells can be modulated by recombinant protein produced in insect culture as well as by means of baculovirus-mediated adhesion molecule expression in mammalian cells may have beneficial applications in the field of CNS therapies. ©2010 The Authors. Journal of Neurochemistry © 2010 International Society for Neurochemistry.
APGEN Scheduling: 15 Years of Experience in Planning Automation
NASA Technical Reports Server (NTRS)
Maldague, Pierre F.; Wissler, Steve; Lenda, Matthew; Finnerty, Daniel
2014-01-01
In this paper, we discuss the scheduling capability of APGEN (Activity Plan Generator), a multi-mission planning application that is part of the NASA AMMOS (Advanced Multi- Mission Operations System), and how APGEN scheduling evolved over its applications to specific Space Missions. Our analysis identifies two major reasons for the successful application of APGEN scheduling to real problems: an expressive DSL (Domain-Specific Language) for formulating scheduling algorithms, and a well-defined process for enlisting the help of auxiliary modeling tools in providing high-fidelity, system-level simulations of the combined spacecraft and ground support system.
Robb, S; Cheek, T R; Hannan, F L; Hall, L M; Midgley, J M; Evans, P D
1994-01-01
A cloned seven transmembrane-spanning Drosophila octopamine/tyramine receptor, permanently expressed in a Chinese hamster ovary cell line, both inhibits adenylate cyclase activity and leads to the elevation of intracellular Ca2+ levels by separate G-protein-coupled pathways. Agonists of this receptor (octopamine and tyramine), differing by only a single hydroxyl group in their side chain, may be capable of differentially coupling it to different second messenger systems. Thus, a single receptor may have a different pharmacological profile depending on which second messenger system is used to assay its efficacy. PMID:8137817
Randelli, Pietro; Menon, Alessandra; Ragone, Vincenza; Creo, Pasquale; Bergante, Sonia; Randelli, Filippo; De Girolamo, Laura; Alfieri Montrasio, Umberto; Banfi, Giuseppe; Cabitza, Paolo; Tettamanti, Guido; Anastasia, Luigi
2016-01-01
Increasing the success rate of rotator cuff healing remains tremendous challenge. Among many approaches, the possibility of activating resident stem cells in situ, without the need to isolate them from biopsies, could represent valuable therapeutic strategy. Along this line, it has been recently demonstrated that lipoaspirate product, Lipogems, contains and produces growth-factors that may activate resident stem cells. In this study, human tendon stem cells (hTSCs) from the rotator cuff were cocultured in a transwell system with the Lipogems lipoaspirate product and compared to control untreated cells in terms of cell proliferation, morphology, stem cell marker and VEGF expression, and differentiation and migration capabilities. Results showed that the Lipogems product significantly increases the proliferation rate of hTSCs without altering their stemness and differentiation capability. Moreover, treated cells increase the expression of VEGF, which is crucial for the neovascularization of the tissue during the healing process. Overall, this study supports that directly activating hTSCs with the Lipogems lipoaspirate could represent a new practical therapeutic approach. In fact, obtaining a lipoaspirate is easier, safer, and more cost-effective than harvesting cells from tendon or bone marrow biopsies, expanding them in GMP facility and then reinjecting them in the patient. PMID:27057170
Randelli, Pietro; Menon, Alessandra; Ragone, Vincenza; Creo, Pasquale; Bergante, Sonia; Randelli, Filippo; De Girolamo, Laura; Alfieri Montrasio, Umberto; Banfi, Giuseppe; Cabitza, Paolo; Tettamanti, Guido; Anastasia, Luigi
2016-01-01
Increasing the success rate of rotator cuff healing remains tremendous challenge. Among many approaches, the possibility of activating resident stem cells in situ, without the need to isolate them from biopsies, could represent valuable therapeutic strategy. Along this line, it has been recently demonstrated that lipoaspirate product, Lipogems, contains and produces growth-factors that may activate resident stem cells. In this study, human tendon stem cells (hTSCs) from the rotator cuff were cocultured in a transwell system with the Lipogems lipoaspirate product and compared to control untreated cells in terms of cell proliferation, morphology, stem cell marker and VEGF expression, and differentiation and migration capabilities. Results showed that the Lipogems product significantly increases the proliferation rate of hTSCs without altering their stemness and differentiation capability. Moreover, treated cells increase the expression of VEGF, which is crucial for the neovascularization of the tissue during the healing process. Overall, this study supports that directly activating hTSCs with the Lipogems lipoaspirate could represent a new practical therapeutic approach. In fact, obtaining a lipoaspirate is easier, safer, and more cost-effective than harvesting cells from tendon or bone marrow biopsies, expanding them in GMP facility and then reinjecting them in the patient.
Wang, Zupeng; Wang, Shuaibin; Li, Dawei; Zhang, Qiong; Li, Li; Zhong, Caihong; Liu, Yifei; Huang, Hongwen
2018-01-13
Kiwifruit is an important fruit crop; however, technologies for its functional genomic and molecular improvement are limited. The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system has been successfully applied to genetic improvement in many crops, but its editing capability is variable depending on the different combinations of the synthetic guide RNA (sgRNA) and Cas9 protein expression devices. Optimizing conditions for its use within a particular species is therefore needed to achieve highly efficient genome editing. In this study, we developed a new cloning strategy for generating paired-sgRNA/Cas9 vectors containing four sgRNAs targeting the kiwifruit phytoene desaturase gene (AcPDS). Comparing to the previous method of paired-sgRNA cloning, our strategy only requires the synthesis of two gRNA-containing primers which largely reduces the cost. We further compared efficiencies of paired-sgRNA/Cas9 vectors containing different sgRNA expression devices, including both the polycistronic tRNA-sgRNA cassette (PTG) and the traditional CRISPR expression cassette. We found the mutagenesis frequency of the PTG/Cas9 system was 10-fold higher than that of the CRISPR/Cas9 system, coinciding with the relative expressions of sgRNAs in two different expression cassettes. In particular, we identified large chromosomal fragment deletions induced by the paired-sgRNAs of the PTG/Cas9 system. Finally, as expected, we found both systems can successfully induce the albino phenotype of kiwifruit plantlets regenerated from the G418-resistance callus lines. We conclude that the PTG/Cas9 system is a more powerful system than the traditional CRISPR/Cas9 system for kiwifruit genome editing, which provides valuable clues for optimizing CRISPR/Cas9 editing system in other plants. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Chiu, Tzu-Keng; Chou, Wen-Pin; Huang, Song-Bin; Wang, Hung-Ming; Lin, Yung-Chang; Hsieh, Chia-Hsun; Wu, Min-Hsien
2016-09-01
Circulating tumour cells (CTCs) in a blood circulation system are associated with cancer metastasis. The analysis of the drug-resistance gene expression of cancer patients’ CTCs holds promise for selecting a more effective therapeutic regimen for an individual patient. However, the current CTC isolation schemes might not be able to harvest CTCs with sufficiently high purity for such applications. To address this issue, this study proposed to integrate the techniques of optically induced dielectrophoretic (ODEP) force-based cell manipulation and fluorescent microscopic imaging in a microfluidic system to further purify CTCs after the conventional CTC isolation methods. In this study, the microfluidic system was developed, and its optimal operating conditions and performance for CTC isolation were evaluated. The results revealed that the presented system was able to isolate CTCs with cell purity as high as 100%, beyond what is possible using the previously existing techniques. In the analysis of CTC gene expression, therefore, this method could exclude the interference of leukocytes in a cell sample and accordingly contribute to higher analytical sensitivity, as demonstrated in this study. Overall, this study has presented an ODEP-based microfluidic system capable of simply and effectively isolating a specific cell species from a cell mixture.
Chiu, Tzu-Keng; Chou, Wen-Pin; Huang, Song-Bin; Wang, Hung-Ming; Lin, Yung-Chang; Hsieh, Chia-Hsun; Wu, Min-Hsien
2016-09-09
Circulating tumour cells (CTCs) in a blood circulation system are associated with cancer metastasis. The analysis of the drug-resistance gene expression of cancer patients' CTCs holds promise for selecting a more effective therapeutic regimen for an individual patient. However, the current CTC isolation schemes might not be able to harvest CTCs with sufficiently high purity for such applications. To address this issue, this study proposed to integrate the techniques of optically induced dielectrophoretic (ODEP) force-based cell manipulation and fluorescent microscopic imaging in a microfluidic system to further purify CTCs after the conventional CTC isolation methods. In this study, the microfluidic system was developed, and its optimal operating conditions and performance for CTC isolation were evaluated. The results revealed that the presented system was able to isolate CTCs with cell purity as high as 100%, beyond what is possible using the previously existing techniques. In the analysis of CTC gene expression, therefore, this method could exclude the interference of leukocytes in a cell sample and accordingly contribute to higher analytical sensitivity, as demonstrated in this study. Overall, this study has presented an ODEP-based microfluidic system capable of simply and effectively isolating a specific cell species from a cell mixture.
Chiu, Tzu-Keng; Chou, Wen-Pin; Huang, Song-Bin; Wang, Hung-Ming; Lin, Yung-Chang; Hsieh, Chia-Hsun; Wu, Min-Hsien
2016-01-01
Circulating tumour cells (CTCs) in a blood circulation system are associated with cancer metastasis. The analysis of the drug-resistance gene expression of cancer patients’ CTCs holds promise for selecting a more effective therapeutic regimen for an individual patient. However, the current CTC isolation schemes might not be able to harvest CTCs with sufficiently high purity for such applications. To address this issue, this study proposed to integrate the techniques of optically induced dielectrophoretic (ODEP) force-based cell manipulation and fluorescent microscopic imaging in a microfluidic system to further purify CTCs after the conventional CTC isolation methods. In this study, the microfluidic system was developed, and its optimal operating conditions and performance for CTC isolation were evaluated. The results revealed that the presented system was able to isolate CTCs with cell purity as high as 100%, beyond what is possible using the previously existing techniques. In the analysis of CTC gene expression, therefore, this method could exclude the interference of leukocytes in a cell sample and accordingly contribute to higher analytical sensitivity, as demonstrated in this study. Overall, this study has presented an ODEP-based microfluidic system capable of simply and effectively isolating a specific cell species from a cell mixture. PMID:27609546
NASA Technical Reports Server (NTRS)
1976-01-01
This methodology calculates the electric energy busbar cost from a utility-owned solar electric system. This approach is applicable to both publicly- and privately-owned utilities. Busbar cost represents the minimum price per unit of energy consistent with producing system-resultant revenues equal to the sum of system-resultant costs. This equality is expressed in present value terms, where the discount rate used reflects the rate of return required on invested capital. Major input variables describe the output capabilities and capital cost of the energy system, the cash flows required for system operation amd maintenance, and the financial structure and tax environment of the utility.
How do plants achieve immunity? Defence without specialized immune cells.
Spoel, Steven H; Dong, Xinnian
2012-01-25
Vertebrates have evolved a sophisticated adaptive immune system that relies on an almost infinite diversity of antigen receptors that are clonally expressed by specialized immune cells that roam the circulatory system. These immune cells provide vertebrates with extraordinary antigen-specific immune capacity and memory, while minimizing self-reactivity. Plants, however, lack specialized mobile immune cells. Instead, every plant cell is thought to be capable of launching an effective immune response. So how do plants achieve specific, self-tolerant immunity and establish immune memory? Recent developments point towards a multilayered plant innate immune system comprised of self-surveillance, systemic signalling and chromosomal changes that together establish effective immunity.
Coherence-generating power of quantum dephasing processes
NASA Astrophysics Data System (ADS)
Styliaris, Georgios; Campos Venuti, Lorenzo; Zanardi, Paolo
2018-03-01
We provide a quantification of the capability of various quantum dephasing processes to generate coherence out of incoherent states. The measures defined, admitting computable expressions for any finite Hilbert-space dimension, are based on probabilistic averages and arise naturally from the viewpoint of coherence as a resource. We investigate how the capability of a dephasing process (e.g., a nonselective orthogonal measurement) to generate coherence depends on the relevant bases of the Hilbert space over which coherence is quantified and the dephasing process occurs, respectively. We extend our analysis to include those Lindblad time evolutions which, in the infinite-time limit, dephase the system under consideration and calculate their coherence-generating power as a function of time. We further identify specific families of such time evolutions that, although dephasing, have optimal (over all quantum processes) coherence-generating power for some intermediate time. Finally, we investigate the coherence-generating capability of random dephasing channels.
Sex hormones and the genesis of autoimmunity.
Ackerman, Lindsay S
2006-03-01
The sexually dimorphic prevalence of autoimmune disease remains one of the most intriguing clinical observations among this group of disorders. While sex hormones have long been recognized for their roles in reproductive functions, within the past 2 decades scientists have found that sex hormones are integral signaling modulators of the mammalian immune system. Sex hormones have definitive roles in lymphocyte maturation, activation, and synthesis of antibodies and cytokines. Sex hormone expression is altered among patients with autoimmune disease, and this variation of expression contributes to immune dysregulation. English-language literature from the last 10 years was reviewed to examine the relationship between sex hormones and the function of the mammalian immune system. Approximately 50 publications were included in this review, and the majority were controlled trials with investigator blinding that compared both male and female diseased and normal subjects. The review provided basic knowledge regarding the broad impact of sex hormones on the immune system and how abnormal sex hormone expression contributes to the development and maintenance of autoimmune phenomena, with a focus on systemic lupus erythematosus, as models of "lupus-prone" mice are readily available. Sex hormones affect the function of the mammalian immune system, and sex hormone expression is different in patients with systemic lupus erythematosus than in healthy subjects. Sex hormones play a role in the genesis of autoimmunity. Future research may provide a therapeutic approach that is capable of altering disease pathogenesis, rather than targeting disease sequelae.
2014-11-03
CAPE CANAVERAL, Fla. - Members of the media watch a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Tom Engler, center, in the suit, deputy director of Kennedy's Center Planning and Development, announced Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
Kadowaki, Atsushi; Miyake, Sachiko; Saga, Ryoko; Chiba, Asako; Mochizuki, Hideki; Yamamura, Takashi
2016-01-01
The gut environment has been found to significantly influence autoimmune diseases such as multiple sclerosis; however, immune cell mechanisms are unclear. Here we show that the gut epithelium of myelin oligodendrocyte glycoprotein(35-55)-specific T-cell receptor transgenic mice contains environmental stimuli-induced intraepithelial lymphocytes (IELs) that inhibit experimental autoimmune encephalomyelitis on transfer. These cells express surface markers phenotypical of ‘induced' IELs, have a TH17-like profile and infiltrate the central nervous system (CNS). They constitutively express Ctla4 and Tgfb1 and markedly upregulate Lag3 expression in the CNS, thereby inhibiting inflammation. We also demonstrate the suppressive capability of CD4+ IELs with alternative antigen specificities, their proliferation in response to gut-derived antigens and contribution of the microbiota and dietary aryl hydrocarbon receptor ligands to their induction. Thus, the gut environment favours the generation of autoreactive CD4+ T cells with unique regulatory functions, potentially important for preventing CNS autoimmunity. PMID:27198196
Development of a SARS Coronavirus Vaccine from Recombinant Spike Protein Plus Delta Inulin Adjuvant.
McPherson, Clifton; Chubet, Richard; Holtz, Kathy; Honda-Okubo, Yoshikazu; Barnard, Dale; Cox, Manon; Petrovsky, Nikolai
2016-01-01
Given periodic outbreaks of fatal human infections caused by coronaviruses, development of an optimal coronavirus vaccine platform capable of rapid production is an ongoing priority. This chapter describes the use of an insect cell expression system for rapid production of a recombinant vaccine against severe acute respiratory syndrome coronavirus (SARS). Detailed methods are presented for expression, purification, and release testing of SARS recombinant spike protein antigen, followed by adjuvant formulation and animal testing. The methods herein described for rapid development of a highly protective SARS vaccine are equally suited to rapid development of vaccines against other fatal human coronavirus infections, e.g., the MERS coronavirus.
2014-11-03
Bob Richards, co-founder and chief executive officer of Moon Express Inc., of Moffett Field, California, speaks to the media during an event to announce the company's selection to use Kennedy Space Center's facilities as part of NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
2014-11-03
Greg C. Shavers, Lander Technology director at Marshall Space Flight Center in Alabama, speaks to members of the media during an event to announce the agency's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative and introduced one of the partners, Moon Express Inc. of Moffett Field, California. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
2014-11-03
Tom Engler, deputy director of Center Planning and Development at NASA's Kennedy Space Center in Florida, speaks to members of the media during an event to announce the agency's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative and introduced one of the partners, Moon Express Inc. of Moffett Field, California. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
Network Security via Biometric Recognition of Patterns of Gene Expression
NASA Technical Reports Server (NTRS)
Shaw, Harry C.
2016-01-01
Molecular biology provides the ability to implement forms of information and network security completely outside the bounds of legacy security protocols and algorithms. This paper addresses an approach which instantiates the power of gene expression for security. Molecular biology provides a rich source of gene expression and regulation mechanisms, which can be adopted to use in the information and electronic communication domains. Conventional security protocols are becoming increasingly vulnerable due to more intensive, highly capable attacks on the underlying mathematics of cryptography. Security protocols are being undermined by social engineering and substandard implementations by IT (Information Technology) organizations. Molecular biology can provide countermeasures to these weak points with the current security approaches. Future advances in instruments for analyzing assays will also enable this protocol to advance from one of cryptographic algorithms to an integrated system of cryptographic algorithms and real-time assays of gene expression products.
The Fastrack Suborbital Platform for Microgravity Applications
NASA Technical Reports Server (NTRS)
Levine, H. G.; Ball, J. E.; Shultz, D.; Odyssey, A.; Wells, H. W.; Soler, R. R.; Albino, S.; Meshberger, R. J.; Murdoch, T.
2009-01-01
The FASTRACK suborbital experiment platform has been developed to provide a capability for utilizing 2.5-5 minute microgravity flight opportunities anticipated from the commercial suborbital fleet (currently in development) for science investigations, technology development and hardware testing. It also provides "express rack" functionality to deliver payloads to ISS. FASTRACK fits within a 24" x 24" x 36" (61 cm x 61 cm x 91.4 cm) envelope and is capable of supporting either two single Middeck Locker Equivalents (MLE) or one double MLE configuration. Its overall mass is 300 lbs (136 kg), of which 160 lbs (72 kg) is reserved for experiments. FASTRACK operates using 28 VDC power or batteries. A support drawer located at the bottom of the structure contains all ancillary electrical equipment (including batteries, a conditioned power system and a data collection system) as well as a front panel that contains all switches (including remote cut-off), breakers and warning LEDs.
Systems-Level Synthetic Biology for Advanced Biofuel Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruffing, Anne; Jensen, Travis J.; Strickland, Lucas Marshall
2015-03-01
Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcusmore » sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.« less
Open-access microfluidic patch-clamp array with raised lateral cell trapping sites.
Lau, Adrian Y; Hung, Paul J; Wu, Angela R; Lee, Luke P
2006-12-01
A novel open-access microfluidic patch-clamp array chip with lateral cell trapping sites raised above the bottom plane of the chip was developed by combining both a microscale soft-lithography and a macroscale polymer fabrication method. This paper demonstrates the capability of using such an open-access fluidic system for patch-clamp measurements. The surface of the open-access patch-clamp sites prepared by the macroscale hole patterning method of soft-state elastic polydimethylsiloxane (PDMS) is examined; the seal resistances are characterized and correlated with the aperture dimensions. Whole cell patch-clamp measurements are carried out with CHO cells expressing Kv2.1 ion channels. Kv2.1 ion channel blocker (TEA) dosage response is characterized and the binding activity is examined. The results demonstrate that the system is capable of performing whole cell measurements and drug profiling in a more efficient manner than the traditional patch-clamp set-up.
Dynamic Visualization of Co-expression in Systems Genetics Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
New, Joshua Ryan; Huang, Jian; Chesler, Elissa J
2008-01-01
Biologists hope to address grand scientific challenges by exploring the abundance of data made available through modern microarray technology and other high-throughput techniques. The impact of this data, however, is limited unless researchers can effectively assimilate such complex information and integrate it into their daily research; interactive visualization tools are called for to support the effort. Specifically, typical studies of gene co-expression require novel visualization tools that enable the dynamic formulation and fine-tuning of hypotheses to aid the process of evaluating sensitivity of key parameters. These tools should allow biologists to develop an intuitive understanding of the structure of biologicalmore » networks and discover genes which reside in critical positions in networks and pathways. By using a graph as a universal data representation of correlation in gene expression data, our novel visualization tool employs several techniques that when used in an integrated manner provide innovative analytical capabilities. Our tool for interacting with gene co-expression data integrates techniques such as: graph layout, qualitative subgraph extraction through a novel 2D user interface, quantitative subgraph extraction using graph-theoretic algorithms or by querying an optimized b-tree, dynamic level-of-detail graph abstraction, and template-based fuzzy classification using neural networks. We demonstrate our system using a real-world workflow from a large-scale, systems genetics study of mammalian gene co-expression.« less
Núñez-Hernández, Fernando; Pérez, Lester J; Vera, Gonzalo; Córdoba, Sarai; Segalés, Joaquim; Sánchez, Armand; Núñez, José I
2015-05-01
Porcine circovirus type 2 (PCV2) is a ssDNA virus causing PCV2-systemic disease (PCV2-SD), one of the most important diseases in swine. MicroRNAs (miRNAs) are a new class of small non-coding RNAs that regulate gene expression post-transcriptionally. Viral miRNAs have recently been described and the number of viral miRNAs has been increasing in the past few years. In this study, small RNA libraries were constructed from two tissues of subclinically PCV2 infected pigs to explore if PCV2 can encode viral miRNAs. The deep sequencing data revealed that PCV2 does not express miRNAs in an in vivo subclinical infection.
Constitutional dynamic self-sensing in a zinc(II)/polyiminofluorenes system.
Giuseppone, Nicolas; Lehn, Jean-Marie
2004-09-22
The interaction of an external effector, ZnII ions, with a constitutional dynamic library of fluorescent polyiminofluorenes leads to component exchange, which generates an entity responding by a change in emission to the effector that has induced its formation. The overall coupled system displays a tuning of optical signal, resulting from two synergistic processes: adaptative constitutional reorganization and self-sensing. In broader terms, this work highlights the perspectives opened by constitutional dynamic chemistry toward the design of smart materials, capable of expressing different latent properties in response to environmental conditions.
Stepanyuk, Galina A.; Xu, Hao; Wu, Chia-Kuei; Markova, Svetlana V.; Lee, John; Vysotski, Eugene S.; Wang, Bi-Cheng
2008-01-01
Metridia luciferase is a secreted luciferase from a marine copepod and uses coelenterazine as a substrate to produce a blue bioluminescence (λmax = 480 nm). This luciferase has been successfully applied as a bioluminescent reporter in mammalian cells. The main advantage of secreted luciferase as a reporter is the capability of measuring intracellular events without destroying the cells or tissues and this property is well suited for development of high throughput screening technologies. However because Metridia luciferase is a Cys-rich protein, E. coli expression systems produce an incorrectly folded protein, hindering its biochemical characterization and application for development of in vitro bioluminescent assays. Here we report the successful expression of Metridia luciferase with its signal peptide for secretion, in insect (Sf9) cells using the baculovirus expression system. Functionally active luciferase secreted by insect cells into the culture media has been efficiently purified with a yield of high purity protein of 2–3 mg/L. This Metridia luciferase expressed in the insect cell system is a monomeric protein showing 3.5-fold greater bioluminescence activity than luciferase expressed and purified from E. coli. The near coincidence of the experimental mass of Metridia luciferase purified from insect cells with that calculated from amino acid sequence, indicates that luciferase does not undergo posttranslational modifications such as phosphorylation or glycosylation and also, the cleavage site of the signal peptide for secretion is at VQA-KS, as predicted from sequence analysis. PMID:18595733
MicroRNA profiling of the murine hematopoietic system
Monticelli, Silvia; Ansel, K Mark; Xiao, Changchun; Socci, Nicholas D; Krichevsky, Anna M; Thai, To-Ha; Rajewsky, Nikolaus; Marks, Debora S; Sander, Chris; Rajewsky, Klaus; Rao, Anjana; Kosik, Kenneth S
2005-01-01
Background MicroRNAs (miRNAs) are a class of recently discovered noncoding RNA genes that post-transcriptionally regulate gene expression. It is becoming clear that miRNAs play an important role in the regulation of gene expression during development. However, in mammals, expression data are principally based on whole tissue analysis and are still very incomplete. Results We used oligonucleotide arrays to analyze miRNA expression in the murine hematopoietic system. Complementary oligonucleotides capable of hybridizing to 181 miRNAs were immobilized on a membrane and probed with radiolabeled RNA derived from low molecular weight fractions of total RNA from several different hematopoietic and neuronal cells. This method allowed us to analyze cell type-specific patterns of miRNA expression and to identify miRNAs that might be important for cell lineage specification and/or cell effector functions. Conclusion This is the first report of systematic miRNA gene profiling in cells of the hematopoietic system. As expected, miRNA expression patterns were very different between hematopoietic and non-hematopoietic cells, with further subtle differences observed within the hematopoietic group. Interestingly, the most pronounced similarities were observed among fully differentiated effector cells (Th1 and Th2 lymphocytes and mast cells) and precursors at comparable stages of differentiation (double negative thymocytes and pro-B cells), suggesting that in addition to regulating the process of commitment to particular cellular lineages, miRNAs might have an important general role in the mechanism of cell differentiation and maintenance of cell identity. PMID:16086853
Defense Science Board Task Force Report: The Role of Autonomy in DoD Systems
2012-07-01
ASD(R&E) and the Military Services should schedule periodic, on-site collaborations that bring together academia, government and not-for-profit labs...expressing UxV activities, increased problem solving, planning and scheduling capabilities to enable dynamic tasking of distributed UxVs and tools for...industrial, governmental and military. Manufacturing has long exploited planning for logistics and matching product demand to production schedules
l-Canavanine Made by Medicago sativa Interferes with Quorum Sensing in Sinorhizobium meliloti
Keshavan, Neela D.; Chowdhary, Puneet K.; Haines, Donovan C.; González, Juan E.
2005-01-01
Sinorhizobium meliloti is a gram-negative soil bacterium, capable of establishing a nitrogen-fixing symbiosis with its legume host, alfalfa (Medicago sativa). Quorum sensing plays a crucial role in this symbiosis, where it influences the nodulation process and the synthesis of the symbiotically important exopolysaccharide II (EPS II). S. meliloti has three quorum-sensing systems (Sin, Tra, and Mel) that use N-acyl homoserine lactones as their quorum-sensing signal molecule. Increasing evidence indicates that certain eukaryotic hosts involved in symbiotic or pathogenic relationships with gram-negative bacteria produce quorum-sensing-interfering (QSI) compounds that can cross-communicate with the bacterial quorum-sensing system. Our studies of alfalfa seed exudates suggested the presence of multiple signal molecules capable of interfering with quorum-sensing-regulated gene expression in different bacterial strains. In this work, we choose one of these QSI molecules (SWI) for further characterization. SWI inhibited violacein production, a phenotype that is regulated by quorum sensing in Chromobacterium violaceum. In addition, this signal molecule also inhibits the expression of the S. meliloti exp genes, responsible for the production of EPS II, a quorum-sensing-regulated phenotype. We identified this molecule as l-canavanine, an arginine analog, produced in large quantities by alfalfa and other legumes. PMID:16321947
Lopes, Cátia DF; Oliveira, Hugo; Estevão, Inês; Pires, Liliana Raquel; Pêgo, Ana Paula
2016-01-01
A major challenge in neuronal gene therapy is to achieve safe, efficient, and minimally invasive transgene delivery to neurons. In this study, we report the use of a nonviral neurotropic poly(ethylene imine)-based nanoparticle that is capable of mediating neuron-specific transfection upon a subcutaneous injection. Nanoparticles were targeted to peripheral neurons by using the nontoxic carboxylic fragment of tetanus toxin (HC), which, besides being neurotropic, is capable of being retrogradely transported from neuron terminals to the cell bodies. Nontargeted particles and naked plasmid DNA were used as control. Five days after treatment by subcutaneous injection in the footpad of Wistar rats, it was observed that 56% and 64% of L4 and L5 dorsal root ganglia neurons, respectively, were expressing the reporter protein. The delivery mediated by HC-functionalized nanoparticles spatially limited the transgene expression, in comparison with the controls. Histological examination revealed no significant adverse effects in the use of the proposed delivery system. These findings demonstrate the feasibility and safety of the developed neurotropic nanoparticles for the minimally invasive delivery of genes to the peripheral nervous system, opening new avenues for the application of gene therapy strategies in the treatment of peripheral neuropathies. PMID:27354797
Shu, Sai-Nan; Wei, Lai; Wang, Jiang-Hua; Zhan, Yu-Tao; Chen, Hong-Song; Wang, Yu
2004-10-01
To investigate the different effects of mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) on hepatic differentiation. MSCs from rat bone marrow were isolated and cultured by standard methods. HSCs from rat bone marrow were isolated and purified by magnetic activated cell sorting. Both cell subsets were induced. Morphology, RT-PCR and immunocytochemistry were used to identify the hepatic differentiation grade. MSCs exhibited round in shape after differentiation, instead of fibroblast-like morphology before differentiation. Albumin mRNA and protein were expressed positively in MSCs, without detection of alpha-fetoprotein (AFP). HSCs were polygonal in shape after differentiation. The expression of albumin signal decreased and AFP signal increased. The expression of CK18 was continuous in MSCs and HSCs both before and after induction. Both MSCs and HSCs have hepatic differentiation capabilities. However, their capabilities are not the same. MSCs can differentiate into mature hepatocyte-like cells, never expressing early hepatic specific genes, while Thy-1.1(+) cells are inclined to differentiate into hepatic stem cell-like cells, with an increasing AFP expression and a decreasing albumin signal. CK18 mRNA is positive in Thy-1.1(+) cells and MSCs, negative in Thy-1.1(-) cells. It seems that CK18 has some relationship with Thy-1.1 antigen, and CK18 may be a predictive marker of hepatic differentiation capability.
Xoca-Orozco, Luis-Ángel; Cuellar-Torres, Esther Angélica; González-Morales, Sandra; Gutiérrez-Martínez, Porfirio; López-García, Ulises; Herrera-Estrella, Luis; Vega-Arreguín, Julio; Chacón-López, Alejandra
2017-01-01
Avocado ( Persea americana ) is one of the most important crops in Mexico as it is the main producer, consumer, and exporter of avocado fruit in the world. However, successful avocado commercialization is often reduced by large postharvest losses due to Colletotrichum sp., the causal agent of anthracnose. Chitosan is known to have a direct antifungal effect and acts also as an elicitor capable of stimulating a defense response in plants. However, there is little information regarding the genes that are either activated or repressed in fruits treated with chitosan. The aim of this study was to identify by RNA-seq the genes differentially regulated by the action of low molecular weight chitosan in the avocado-chitosan- Colletotrichum interaction system. The samples for RNA-seq were obtained from fruits treated with chitosan, fruits inoculated with Colletotrichum and fruits both treated with chitosan and inoculated with the fungus. Non-treated and non-inoculated fruits were also analyzed. Expression profiles showed that in short times, the fruit-chitosan system presented a greater number of differentially expressed genes, compared to the fruit-pathogen system. Gene Ontology analysis of differentially expressed genes showed a large number of metabolic processes regulated by chitosan, including those preventing the spread of Colletotrichum . It was also found that there is a high correlation between the expression of genes in silico and qPCR of several genes involved in different metabolic pathways.
Expression of group III metabotropic glutamate receptors in the reproductive system of male mice.
Marciniak, Marcin; Chruścicka, Barbara; Lech, Tomasz; Burnat, Grzegorz; Pilc, Andrzej
2016-03-01
Although the presence of metabotropic glutamate (mGlu) receptors in the central nervous system is well documented, they have recently been found in peripheral and non-neuronal tissues. In the present study we investigated the expression of group III mGlu receptors in the reproductive system of male mice. Reverse transcription-polymerase chain reaction analysis revealed the presence of mGlu6, mGlu7 and mGlu8 (but not mGlu4) receptor transcripts in testes and epididymides from adult mice. In addition, expression of mGlu6 (Grm6) and mGlu8 receptor (Grm8) mRNA was detected in spermatozoa isolated from the vas deferens. The vas deferens was found to contain only mGlu7 receptor (Grm7) mRNA, which was particularly intense in 21-day-old male mice. In penile homogenates, only the mGlu7 receptor signal was detected. Genetic ablation of the mGlu7 receptor in males led to fertility disorders manifested by decreased insemination capability as well as deterioration of sperm parameters, particularly sperm motility, vitality, sperm membrane integrity and morphology, with a simultaneous increase in sperm concentration. These results indicate that constitutively expressed mGlu receptors in the male reproductive system may play an important role in ejaculation and/or erection processes, as well as in the formation and maturation of spermatozoa.
Distorted Representations of the "Capability Approach" in Australian School Education
ERIC Educational Resources Information Center
Skourdoumbis, Andrew
2015-01-01
Recently, curriculum developments in Australia have seen the incorporation of functionalist "general capabilities" as essential markers of schooling, meaning that any pedagogical expression of classroom-based practice, including subsequent instruction, should entail the identification and development of operational general capabilities.…
Stimuli-free programmable drug release for combination chemo-therapy
NASA Astrophysics Data System (ADS)
Fan, Li; Jin, Boquan; Zhang, Silu; Song, Chaojun; Li, Quan
2016-06-01
Combinational chemotherapy capable of targeted delivery and programmable multi-drug release leads to enhanced drug efficacy, and is highly desired for cancer treatment. However, effective approaches for achieving both features in a single treatment are limited. In the present work, we demonstrated programmed delivery of both chemotherapeutic and immunotherapeutic agents with tumor cell targeting capability by using SiO2 based self-decomposable nanoparticulate systems. The programmable drug delivery is realized by manipulating drug loading configurations instead of relying on external stimuli. Both in vitro and in vivo results showed specific drug binding to FAT1-expressing colon cancer cells. The loaded dual drugs were demonstrated to be delivered in a sequential manner with specific time intervals between their peak releases, which maximize the synergistic effect of the chemotherapeutics. These features led to significantly enhanced drug efficacy and reduced system toxicity. The tumor weight decreased by 1/350, together with a moderate increase in rats' body weight, which were observed when adopting the dual drug loaded nanoparticles, as compared to those of the control groups. The present system provides a simple and feasible method for the design of targeting and combination chemotherapy with programmed drug release.Combinational chemotherapy capable of targeted delivery and programmable multi-drug release leads to enhanced drug efficacy, and is highly desired for cancer treatment. However, effective approaches for achieving both features in a single treatment are limited. In the present work, we demonstrated programmed delivery of both chemotherapeutic and immunotherapeutic agents with tumor cell targeting capability by using SiO2 based self-decomposable nanoparticulate systems. The programmable drug delivery is realized by manipulating drug loading configurations instead of relying on external stimuli. Both in vitro and in vivo results showed specific drug binding to FAT1-expressing colon cancer cells. The loaded dual drugs were demonstrated to be delivered in a sequential manner with specific time intervals between their peak releases, which maximize the synergistic effect of the chemotherapeutics. These features led to significantly enhanced drug efficacy and reduced system toxicity. The tumor weight decreased by 1/350, together with a moderate increase in rats' body weight, which were observed when adopting the dual drug loaded nanoparticles, as compared to those of the control groups. The present system provides a simple and feasible method for the design of targeting and combination chemotherapy with programmed drug release. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06305a
Innovation Inspired by Nature: Capabilities, Potentials and Challenges
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph
2012-01-01
Through evolution, nature came up with many effective solutions to its challenges and continually improving them. By mimicking, coping and being inspired, humans have been using Nature's solutions to address their own challenges. In recent years, the implementation of nature's capabilities has intensified with our growing understanding of the various biological and nastic mechanisms and processes. Successes include even the making of humanlike robots that perform such lifelike tasks as walking, talking, making eye-contact, interpreting speech and facial expressions, as well as many other humanlike functions. Generally, once humans are able to implement a function then, thru rapid advances in technology, capabilities are developed that can significantly exceed the original source of inspiration in Nature. Examples include flight where there is no species that can fly as high, carry so much mass, has so large dimensions and fly so fast, and operate at as such extreme conditions as our aircraft and other aerospace systems. However, using the capabilities of today's technology, there are many challenges that are not feasible to address in mimicking characteristics of species and plants. In this manuscript, state-of-the-art of biomimetic capabilities, potentials and challenges are reviewed.
Learning to Be Creatively Expressive Performers
ERIC Educational Resources Information Center
Strand, Katherine; Brenner, Brenda
2017-01-01
Research conducted on the development of expressive performance capabilities suggests that children can learn to demonstrate expressiveness in their music-making. Expressivity includes musical interpretation, performance technique, and musical and personal creativity. This article examines creativity as an important component of musical…
Methods for Gene Transfer to the Central Nervous System
Kantor, Boris; Bailey, Rachel M.; Wimberly, Keon; Kalburgi, Sahana N.; Gray, Steven J.
2015-01-01
Gene transfer is an increasingly utilized approach for research and clinical applications involving the central nervous system (CNS). Vectors for gene transfer can be as simple as an unmodified plasmid, but more commonly involve complex modifications to viruses to make them suitable gene delivery vehicles. This chapter will explain how tools for CNS gene transfer have been derived from naturally occurring viruses. The current capabilities of plasmid, retroviral, adeno-associated virus, adenovirus, and herpes simplex virus vectors for CNS gene delivery will be described. These include both focal and global CNS gene transfer strategies, with short- or long-term gene expression. As is described in this chapter, an important aspect of any vector is the cis-acting regulatory elements incorporated into the vector genome that control when, where, and how the transgene is expressed. PMID:25311922
Zhang, Kang; Su, Lingqia; Duan, Xuguo; Liu, Lina; Wu, Jing
2017-02-20
We recently constructed a Bacillus subtilis strain (CCTCC M 2016536) from which we had deleted the srfC, spoIIAC, nprE, aprE and amyE genes. This strain is capable of robust recombinant protein production and amenable to high-cell-density fermentation. Because the promoter is among the factors that influence the production of target proteins, optimization of the initial promoter, P amyQ from Bacillus amyloliquefaciens, should improve protein expression using this strain. This study was undertaken to develop a new, high-level expression system in B. subtilis CCTCC M 2016536. Using the enzyme β-cyclodextrin glycosyltransferase (β-CGTase) as a reporter protein and B. subtilis CCTCC M 2016536 as the host, nine plasmids equipped with single promoters were screened using shake-flask cultivation. The plasmid containing the P amyQ' promoter produced the greatest extracellular β-CGTase activity; 24.1 U/mL. Subsequently, six plasmids equipped with dual promoters were constructed and evaluated using this same method. The plasmid containing the dual promoter P HpaII -P amyQ' produced the highest extracellular β-CGTase activity (30.5 U/mL) and was relatively glucose repressed. The dual promoter P HpaII -P amyQ' also mediated substantial extracellular pullulanase (90.7 U/mL) and α-CGTase expression (9.5 U/mL) during shake-flask cultivation, demonstrating the general applicability of this system. Finally, the production of β-CGTase using the dual-promoter P HpaII -P amyQ' system was investigated in a 3-L fermenter. Extracellular expression of β-CGTase reached 571.2 U/mL (2.5 mg/mL), demonstrating the potential of this system for use in industrial applications. The dual-promoter P HpaII -P amyQ' system was found to support superior expression of extracellular proteins in B. subtilis CCTCC M 2016536. This system appears generally applicable and is amenable to scale-up.
Aerobic biodegradation of N-nitrosodimethylamine (NDMA) by axenic bacterial strains.
Sharp, Jonathan O; Wood, Thomas K; Alvarez-Cohen, Lisa
2005-03-05
The water contaminant N-nitrosodimethylamine (NDMA) is a probable human carcinogen whose appearance in the environment is related to the release of rocket fuel and to chlorine-based disinfection of water and wastewater. Although this compound has been shown to be biodegradable, there is minimal information about the organisms capable of this degradation, and little is understood of the mechanisms or biochemistry involved. This study shows that bacteria expressing monooxygenase enzymes functionally similar to those demonstrated to degrade NDMA in eukaryotes have the capability to degrade NDMA. Specifically, induction of the soluble methane monooxygenase (sMMO) expressed by Methylosinus trichosporium OB3b, the propane monooxygenase (PMO) enzyme of Mycobacterium vaccae JOB-5, and the toluene 4-monooxygenases found in Ralstonia pickettii PKO1 and Pseudomonas mendocina KR1 resulted in NDMA degradation by these strains. In each of these cases, brief exposure to acetylene gas, a suicide substrate for certain monooxygenases, inhibited the degradation of NDMA. Further, Escherichia coli TG1/pBS(Kan) containing recombinant plasmids derived from the toluene monooxygenases found in strains PKO1 and KR1 mimicked the behavior of the parent strains. In contrast, M. trichosporium OB3b expressing the particulate form of MMO, Burkholderia cepacia G4 expressing the toluene 2-monooxygenase, and Pseudomonas putida mt-2 expressing the toluene sidechain monooxygenase were not capable of NDMA degradation. In addition, bacteria expressing aromatic dioxygenases were not capable of NDMA degradation. Finally, Rhodococcus sp. RR1 exhibited the ability to degrade NDMA by an unidentified, constitutively expressed enzyme that, unlike the confirmed monooxygenases, was not inhibited by acetylene exposure. 2005 Wiley Periodicals, Inc.
Decadal opportunities for space architects
NASA Astrophysics Data System (ADS)
Sherwood, Brent
2012-12-01
A significant challenge for the new field of space architecture is the dearth of project opportunities. Yet every year more young professionals express interest to enter the field. This paper derives projections that bound the number, type, and range of global development opportunities that may be reasonably expected over the next few decades for human space flight (HSF) systems so those interested in the field can benchmark their goals. Four categories of HSF activity are described: human Exploration of solar system bodies; human Servicing of space-based assets; large-scale development of space Resources; and Breakout of self-sustaining human societies into the solar system. A progressive sequence of capabilities for each category starts with its earliest feasible missions and leads toward its full expression. The four sequences are compared in scale, distance from Earth, and readiness. Scenarios hybridize the most synergistic features from the four sequences for comparison to status quo, government-funded HSF program plans. Finally qualitative, decadal, order-of-magnitude estimates are derived for system development needs, and hence opportunities for space architects. Government investment towards human planetary exploration is the weakest generator of space architecture work. Conversely, the strongest generator is a combination of three market drivers: (1) commercial passenger travel in low Earth orbit; (2) in parallel, government extension of HSF capability to GEO; both followed by (3) scale-up demonstration of end-to-end solar power satellites in GEO. The rich end of this scale affords space architecture opportunities which are more diverse, complex, large-scale, and sociologically challenging than traditional exploration vehicle cabins and habitats.
Webb, Ian C; Baltazar, Ricardo M; Lehman, Michael N; Coolen, Lique M
2009-11-01
Reward is mediated by a distributed series of midbrain and basal forebrain structures collectively referred to as the brain reward system. Recent evidence indicates that an additional regulatory system, the circadian system, can modulate reward-related learning. Diurnal or circadian changes in drug self-administration, responsiveness to drugs of abuse and reward to natural stimuli have been reported. These variations are associated with daily rhythms in mesolimbic electrical activity, dopamine synthesis and metabolism, and local clock gene oscillations. Conversely, the presentation of rewards appears capable of influencing circadian timing. Rodents can anticipate a daily mealtime by the entrainment of a series of oscillators that are anatomically distinct from the suprachiasmatic nucleus. Other work has indicated that restricted access to non-nutritive reinforcers (e.g. drugs of abuse, sex) or to palatable food in the absence of an energy deficit is capable of inducing relatively weak anticipatory activity, suggesting that reward alone is sufficient to induce anticipation. Recent attempts to elucidate the neural correlates of anticipation have revealed that both restricted feeding and restricted palatable food access can entrain clock gene expression in many reward-related corticolimbic structures. By contrast, restricted feeding alone can induce or entrain clock gene expression in hypothalamic nuclei involved in energy homeostasis. Thus, under ad libitum feeding conditions, the weak anticipatory activity induced by restricted reward presentation may result from the entrainment of reward-associated corticolimbic structures. The additional induction or entrainment of oscillators in hypothalamic regulatory areas may contribute to the more robust anticipatory activity associated with restricted feeding schedules.
Internationalization of the Space Station
NASA Technical Reports Server (NTRS)
Lottmann, R. V.
1985-01-01
Attention is given to the NASA Space Station system elements whose production is under consideration by potential foreign partners. The ESA's Columbus Program declaration encompasses studies of pressurized modules, unmanned payload carriers, and ground support facilities. Canada has expressed interest in construction and servicing facilities, solar arrays, and remote sensing facilities. Japanese studies concern a multipurpose experimental module concept. Each of these foreign investments would expand Space Station capabilities and lay the groundwork for long term partnerships.
Hara, Takato; Kojima, Takayuki; Matsuzaki, Hiroka; Nakamura, Takehiro; Yoshida, Eiko; Fujiwara, Yasuyuki; Yamamoto, Chika; Saito, Shinichi; Kaji, Toshiyuki
2017-02-08
Organic-inorganic hybrid molecules constitute analytical tools used in biological systems. Vascular endothelial cells synthesize and secrete proteoglycans, which are macromolecules consisting of a core protein and glycosaminoglycan side chains. Although the expression of endothelial proteoglycans is regulated by several cytokines/growth factors, there may be alternative pathways for proteoglycan synthesis aside from downstream pathways activated by these cytokines/growth factors. Here, we investigated organic-inorganic hybrid molecules to determine a variant capable of analyzing the expression of syndecan-4, a transmembrane heparan-sulfate proteoglycan, and identified 1,10-phenanthroline ( o -Phen) with or without zinc (Zn-Phen) or rhodium (Rh-Phen). Bovine aortic endothelial cells in culture were treated with these compounds, and the expression of syndecan-4 mRNA and core proteins was determined by real-time reverse transcription polymerase chain reaction and Western blot analysis, respectively. Our findings indicated that o -Phen and Zn-Phen specifically and strongly induced syndecan-4 expression in cultured vascular endothelial cells through activation of the hypoxia-inducible factor-1α/β pathway via inhibition of prolyl hydroxylase-domain-containing protein 2. These results demonstrated an alternative pathway involved in mediating induction of endothelial syndecan-4 expression and revealed organic-inorganic hybrid molecules as effective tools for analyzing biological systems.
A natural language query system for Hubble Space Telescope proposal selection
NASA Technical Reports Server (NTRS)
Hornick, Thomas; Cohen, William; Miller, Glenn
1987-01-01
The proposal selection process for the Hubble Space Telescope is assisted by a robust and easy to use query program (TACOS). The system parses an English subset language sentence regardless of the order of the keyword phases, allowing the user a greater flexibility than a standard command query language. Capabilities for macro and procedure definition are also integrated. The system was designed for flexibility in both use and maintenance. In addition, TACOS can be applied to any knowledge domain that can be expressed in terms of a single reaction. The system was implemented mostly in Common LISP. The TACOS design is described in detail, with particular attention given to the implementation methods of sentence processing.
NASA Astrophysics Data System (ADS)
Kumar, Manish; Kishore, Sandeep; Nasenbeny, Jordan; McLean, David L.; Kozorovitskiy, Yevgenia
2018-05-01
Versatile, sterically accessible imaging systems capable of in vivo rapid volumetric functional and structural imaging deep in the brain continue to be a limiting factor in neuroscience research. Towards overcoming this obstacle, we present integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy which uses a single front-facing microscope objective to provide light-sheet scanning based rapid volumetric imaging capability at subcellular resolution. Our planar scan-mirror based optimized light-sheet architecture allows for non-distorted scanning of volume samples, simplifying accurate reconstruction of the imaged volume. Integration of both one-photon (1P) and two-photon (2P) light-sheet microscopy in the same system allows for easy selection between rapid volumetric imaging and higher resolution imaging in scattering media. Using SOPi, we demonstrate deep, large volume imaging capability inside scattering mouse brain sections and rapid imaging speeds up to 10 volumes per second in zebrafish larvae expressing genetically encoded fluorescent proteins GFP or GCaMP6s. SOPi flexibility and steric access makes it adaptable for numerous imaging applications and broadly compatible with orthogonal techniques for actuating or interrogating neuronal structure and activity.
Kumar, Manish; Kishore, Sandeep; Nasenbeny, Jordan; McLean, David L; Kozorovitskiy, Yevgenia
2018-05-14
Versatile, sterically accessible imaging systems capable of in vivo rapid volumetric functional and structural imaging deep in the brain continue to be a limiting factor in neuroscience research. Towards overcoming this obstacle, we present integrated one- and two-photon scanned oblique plane illumination (SOPi, /sōpī/) microscopy which uses a single front-facing microscope objective to provide light-sheet scanning based rapid volumetric imaging capability at subcellular resolution. Our planar scan-mirror based optimized light-sheet architecture allows for non-distorted scanning of volume samples, simplifying accurate reconstruction of the imaged volume. Integration of both one-photon (1P) and two-photon (2P) light-sheet microscopy in the same system allows for easy selection between rapid volumetric imaging and higher resolution imaging in scattering media. Using SOPi, we demonstrate deep, large volume imaging capability inside scattering mouse brain sections and rapid imaging speeds up to 10 volumes per second in zebrafish larvae expressing genetically encoded fluorescent proteins GFP or GCaMP6s. SOPi's flexibility and steric access makes it adaptable for numerous imaging applications and broadly compatible with orthogonal techniques for actuating or interrogating neuronal structure and activity.
Simultaneous expression and transportation of insulin by supramolecular polysaccharide nanocluster
NASA Astrophysics Data System (ADS)
Zhang, Yu-Hui; Zhang, Ying-Ming; Zhao, Qi-Hui; Liu, Yu
2016-03-01
Drug/gene transportation systems with stimuli-responsive release behaviors are becoming research hotspots in biochemical and biomedical fields. In this work, a glucose-responsive supramolecular nanocluster was successfully constructed by the intermolecular complexation of phenylboronic acid modified β-cyclodextrin with adamantane modified polyethylenimine, which could be used as a biocompatible carrier for insulin and pCMV3-C-GFPSpark-Ins DNA which could express insulin co-delivery. Benefiting from the response capability of phenylboronic acid moiety toward glucose, the encapsulated insulin could be specifically released and the corresponding targeted DNA could efficiently express insulin in HepG2 cell, accompanied by the high-level insulin release in vitro. Our results demonstrate that the simultaneous insulin drug delivery and insulin gene transfection in a controlled mode may have great potential in the clinical diabetes treatments.
Donato, David I.
2012-01-01
This report presents the mathematical expressions and the computational techniques required to compute maximum-likelihood estimates for the parameters of the National Descriptive Model of Mercury in Fish (NDMMF), a statistical model used to predict the concentration of methylmercury in fish tissue. The expressions and techniques reported here were prepared to support the development of custom software capable of computing NDMMF parameter estimates more quickly and using less computer memory than is currently possible with available general-purpose statistical software. Computation of maximum-likelihood estimates for the NDMMF by numerical solution of a system of simultaneous equations through repeated Newton-Raphson iterations is described. This report explains the derivation of the mathematical expressions required for computational parameter estimation in sufficient detail to facilitate future derivations for any revised versions of the NDMMF that may be developed.
Morbioli, Giorgio Gianini; Mazzu-Nascimento, Thiago; Aquino, Adriano; Cervantes, Cesar; Carrilho, Emanuel
2016-09-07
We present here a critical review covering conventional analytical tools of recombinant drug analysis and discuss their evolution towards miniaturized systems foreseeing a possible unique recombinant drug-on-a-chip device. Recombinant protein drugs and/or pro-drug analysis require sensitive and reproducible analytical techniques for quality control to ensure safety and efficacy of drugs according to regulatory agencies. The versatility of miniaturized systems combined with their low-cost could become a major trend in recombinant drugs and bioprocess analysis. Miniaturized systems are capable of performing conventional analytical and proteomic tasks, allowing for interfaces with other powerful techniques, such as mass spectrometry. Microdevices can be applied during the different stages of recombinant drug processing, such as gene isolation, DNA amplification, cell culture, protein expression, protein separation, and analysis. In addition, organs-on-chips have appeared as a viable alternative to testing biodrug pharmacokinetics and pharmacodynamics, demonstrating the capabilities of the miniaturized systems. The integration of individual established microfluidic operations and analytical tools in a single device is a challenge to be overcome to achieve a unique recombinant drug-on-a-chip device. Copyright © 2016 Elsevier B.V. All rights reserved.
Vincent, S F; Bell, P J; Bissinger, P; Nevalainen, K M
1999-02-01
Yeast strains currently used in the baking industry cannot fully utilize the trisaccharide raffinose found in beet molasses due to the absence of melibiase (alpha-galactosidase) activity. To overcome this deficiency, the MEL1 gene encoding melibiase enzyme was introduced into baker's yeast by both classical breeding and recombinant DNA technology. Both types of yeast strains were capable of vigorous fermentation in the presence of high levels of sucrose, making them suitable for the rapidly developing Asian markets where high levels of sugar are used in bread manufacture. Melibiase expression appeared to be dosage-dependent, with relatively low expression sufficient for complete melibiose utilization in a model fermentation system.
A microRNA detection system based on padlock probes and rolling circle amplification
Jonstrup, Søren Peter; Koch, Jørn; Kjems, Jørgen
2006-01-01
The differential expression and the regulatory roles of microRNAs (miRNAs) are being studied intensively these years. Their minute size of only 19–24 nucleotides and strong sequence similarity among related species call for enhanced methods for reliable detection and quantification. Moreover, miRNA expression is generally restricted to a limited number of specific cells within an organism and therefore requires highly sensitive detection methods. Here we present a simple and reliable miRNA detection protocol based on padlock probes and rolling circle amplification. It can be performed without specialized equipment and is capable of measuring the content of specific miRNAs in a few nanograms of total RNA. PMID:16888321
A microRNA detection system based on padlock probes and rolling circle amplification.
Jonstrup, Søren Peter; Koch, Jørn; Kjems, Jørgen
2006-09-01
The differential expression and the regulatory roles of microRNAs (miRNAs) are being studied intensively these years. Their minute size of only 19-24 nucleotides and strong sequence similarity among related species call for enhanced methods for reliable detection and quantification. Moreover, miRNA expression is generally restricted to a limited number of specific cells within an organism and therefore requires highly sensitive detection methods. Here we present a simple and reliable miRNA detection protocol based on padlock probes and rolling circle amplification. It can be performed without specialized equipment and is capable of measuring the content of specific miRNAs in a few nanograms of total RNA.
Kessler, P D; Podsakoff, G M; Chen, X; McQuiston, S A; Colosi, P C; Matelis, L A; Kurtzman, G J; Byrne, B J
1996-11-26
Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the beta-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies.
Kessler, Paul D.; Podsakoff, Gregory M.; Chen, Xiaojuan; McQuiston, Susan A.; Colosi, Peter C.; Matelis, Laura A.; Kurtzman, Gary J.; Byrne, Barry J.
1996-01-01
Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the β-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies. PMID:8943064
Action Learning, Performativity and Negative Capability
ERIC Educational Resources Information Center
Edmonstone, John
2016-01-01
The paper examines the concept of negative capability as a human capacity for containment and contrasts it with well-valued positive capability as expressed through performativity in organisations and society. It identifies the problem of dispersal--the complex ways we behave in order to avoid the emotional challenges of living with uncertainty.…
Cowles, Martis W; Omuro, Kerilyn C; Stanley, Brianna N; Quintanilla, Carlo G; Zayas, Ricardo M
2014-10-01
Members of the COE family of transcription factors are required for central nervous system (CNS) development. However, the function of COE in the post-embryonic CNS remains largely unknown. An excellent model for investigating gene function in the adult CNS is the freshwater planarian. This animal is capable of regenerating neurons from an adult pluripotent stem cell population and regaining normal function. We previously showed that planarian coe is expressed in differentiating and mature neurons and that its function is required for proper CNS regeneration. Here, we show that coe is essential to maintain nervous system architecture and patterning in intact (uninjured) planarians. We took advantage of the robust phenotype in intact animals to investigate the genetic programs coe regulates in the CNS. We compared the transcriptional profiles of control and coe RNAi planarians using RNA sequencing and identified approximately 900 differentially expressed genes in coe knockdown animals, including 397 downregulated genes that were enriched for nervous system functional annotations. Next, we validated a subset of the downregulated transcripts by analyzing their expression in coe-deficient planarians and testing if the mRNAs could be detected in coe+ cells. These experiments revealed novel candidate targets of coe in the CNS such as ion channel, neuropeptide, and neurotransmitter genes. Finally, to determine if loss of any of the validated transcripts underscores the coe knockdown phenotype, we knocked down their expression by RNAi and uncovered a set of coe-regulated genes implicated in CNS regeneration and patterning, including orthologs of sodium channel alpha-subunit and pou4. Our study broadens the knowledge of gene expression programs regulated by COE that are required for maintenance of neural subtypes and nervous system architecture in adult animals.
Saenko, Vladimir; Suzuki, Masatoshi; Matsuse, Michiko; Ohtsuru, Akira; Kumagai, Atsushi; Uga, Tatsuya; Yano, Hiroshi; Nagayama, Yuji; Yamashita, Shunichi
2011-01-01
While identification and isolation of adult stem cells have potentially important implications, recent reports regarding dedifferentiation/reprogramming from differentiated cells have provided another clue to gain insight into source of tissue stem/progenitor cells. In this study, we developed a novel culture system to obtain dedifferentiated progenitor cells from normal human thyroid tissues. After enzymatic digestion, primary thyrocytes, expressing thyroglobulin, vimentin and cytokeratin-18, were cultured in a serum-free medium called SAGM. Although the vast majority of cells died, a small proportion (∼0.5%) survived and proliferated. During initial cell expansion, thyroglobulin/cytokeratin-18 expression was gradually declined in the proliferating cells. Moreover, sorted cells expressing thyroid peroxidase gave rise to proliferating clones in SAGM. These data suggest that those cells are derived from thyroid follicular cells or at least thyroid-committed cells. The SAGM-grown cells did not express any thyroid-specific genes. However, after four-week incubation with FBS and TSH, cytokeratin-18, thyroglobulin, TSH receptor, PAX8 and TTF1 expressions re-emerged. Moreover, surprisingly, the cells were capable of differentiating into neuronal or adipogenic lineage depending on differentiating conditions. In summary, we have developed a novel system to generate multilineage progenitor cells from normal human thyroid tissues. This seems to be achieved by dedifferentiation of thyroid follicular cells. The presently described culture system may be useful for regenerative medicine, but the primary importance will be as a tool to elucidate the mechanisms of thyroid diseases. PMID:21556376
Application of symbolic computations to the constitutive modeling of structural materials
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Tan, H. Q.; Dong, X.
1990-01-01
In applications involving elevated temperatures, the derivation of mathematical expressions (constitutive equations) describing the material behavior can be quite time consuming, involved and error-prone. Therefore intelligent application of symbolic systems to faciliate this tedious process can be of significant benefit. Presented here is a problem oriented, self contained symbolic expert system, named SDICE, which is capable of efficiently deriving potential based constitutive models in analytical form. This package, running under DOE MACSYMA, has the following features: (1) potential differentiation (chain rule), (2) tensor computations (utilizing index notation) including both algebraic and calculus; (3) efficient solution of sparse systems of equations; (4) automatic expression substitution and simplification; (5) back substitution of invariant and tensorial relations; (6) the ability to form the Jacobian and Hessian matrix; and (7) a relational data base. Limited aspects of invariant theory were also incorporated into SDICE due to the utilization of potentials as a starting point and the desire for these potentials to be frame invariant (objective). The uniqueness of SDICE resides in its ability to manipulate expressions in a general yet pre-defined order and simplify expressions so as to limit expression growth. Results are displayed, when applicable, utilizing index notation. SDICE was designed to aid and complement the human constitutive model developer. A number of examples are utilized to illustrate the various features contained within SDICE. It is expected that this symbolic package can and will provide a significant incentive to the development of new constitutive theories.
Symbolic computer vector analysis
NASA Technical Reports Server (NTRS)
Stoutemyer, D. R.
1977-01-01
A MACSYMA program is described which performs symbolic vector algebra and vector calculus. The program can combine and simplify symbolic expressions including dot products and cross products, together with the gradient, divergence, curl, and Laplacian operators. The distribution of these operators over sums or products is under user control, as are various other expansions, including expansion into components in any specific orthogonal coordinate system. There is also a capability for deriving the scalar or vector potential of a vector field. Examples include derivation of the partial differential equations describing fluid flow and magnetohydrodynamics, for 12 different classic orthogonal curvilinear coordinate systems.
Graded Alternating-Time Temporal Logic
NASA Astrophysics Data System (ADS)
Faella, Marco; Napoli, Margherita; Parente, Mimmo
Graded modalities enrich the universal and existential quantifiers with the capability to express the concept of at least k or all but k, for a non-negative integer k. Recently, temporal logics such as μ-calculus and Computational Tree Logic, Ctl, augmented with graded modalities have received attention from the scientific community, both from a theoretical side and from an applicative perspective. Both μ-calculus and Ctl naturally apply as specification languages for closed systems: in this paper, we add graded modalities to the Alternating-time Temporal Logic (Atl) introduced by Alur et al., to study how these modalities may affect specification languages for open systems.
Advances and Computational Tools towards Predictable Design in Biological Engineering
2014-01-01
The design process of complex systems in all the fields of engineering requires a set of quantitatively characterized components and a method to predict the output of systems composed by such elements. This strategy relies on the modularity of the used components or the prediction of their context-dependent behaviour, when parts functioning depends on the specific context. Mathematical models usually support the whole process by guiding the selection of parts and by predicting the output of interconnected systems. Such bottom-up design process cannot be trivially adopted for biological systems engineering, since parts function is hard to predict when components are reused in different contexts. This issue and the intrinsic complexity of living systems limit the capability of synthetic biologists to predict the quantitative behaviour of biological systems. The high potential of synthetic biology strongly depends on the capability of mastering this issue. This review discusses the predictability issues of basic biological parts (promoters, ribosome binding sites, coding sequences, transcriptional terminators, and plasmids) when used to engineer simple and complex gene expression systems in Escherichia coli. A comparison between bottom-up and trial-and-error approaches is performed for all the discussed elements and mathematical models supporting the prediction of parts behaviour are illustrated. PMID:25161694
Adaptive and Context-Aware Reconciliation of Reactive and Pro-active Behavior in Evolving Systems
NASA Astrophysics Data System (ADS)
Trajcevski, Goce; Scheuermann, Peter
One distinct characteristics of the context-aware systems is their ability to react and adapt to the evolution of the environment, which is often a result of changes in the values of various (possibly correlated) attributes. Based on these changes, reactive systems typically take corrective actions, e.g., adjusting parameters in order to maintain the desired specifications of the system's state. Pro-active systems, on the other hand, may change the mode of interaction with the environment as well as the desired goals of the system. In this paper we describe our (ECA)2 paradigm for reactive behavior with proactive impact and we present our ongoing work and vision for a system that is capable of context-aware adaptation, while ensuring the maintenance of a set of desired behavioral policies. Our main focus is on developing a formalism that provides tools for expressing normal, as well as defeasible and/or exceptional specification. However, at the same time, we insist on a sound semantics and the capability of answering hypothetical "what-if" queries. Towards this end, we introduce the high-level language L_{ EAR} that can be used to describe the dynamics of the problem domain, specify triggers under the (ECA)2 paradigm, and reason about the consequences of the possible evolutions.
NASA Technical Reports Server (NTRS)
Benford, Steve; Bowers, John; Fahlen, Lennart E.; Greenhalgh, Chris; Snowdon, Dave
1994-01-01
This paper explores the issue of user embodiment within collaborative virtual environments. By user embodiment we mean the provision of users with appropriate body images so as to represent them to others and also to themselves. By collaborative virtual environments we mean multi-user virtual reality systems which support cooperative work (although we argue that the results of our exploration may also be applied to other kinds of collaborative systems). The main part of the paper identifies a list of embodiment design issues including: presence, location, identity, activity, availability, history of activity, viewpoint, action point, gesture, facial expression, voluntary versus involuntary expression, degree of presence, reflecting capabilities, manipulating the user's view of others, representation across multiple media, autonomous and distributed body parts, truthfulness and efficiency. Following this, we show how these issues are reflected in our own DIVE and MASSIVE prototype collaborative virtual environments.
Lowery, Colin A.; Matamouros, Susana; Niessen, Sherry; Zhu, Jie; Scolnick, Jonathan A.; Mee, Jenny M.; Cravatt, Benjamin F.; Miller, Samuel I.; Kaufmann, Gunnar F.; Janda, Kim D.
2013-01-01
SUMMARY Small molecule probes have been employed extensively to explore biological systems and elucidate cellular signaling pathways. In this study, we utilize an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering new processes regulated by AI-2-based quorum sensing (QS), a mechanism of bacterial intracellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intracellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation. PMID:23890008
Cell-free synthetic biology for environmental sensing and remediation.
Karig, David K
2017-06-01
The fields of biosensing and bioremediation leverage the phenomenal array of sensing and metabolic capabilities offered by natural microbes. Synthetic biology provides tools for transforming these fields through complex integration of natural and novel biological components to achieve sophisticated sensing, regulation, and metabolic function. However, the majority of synthetic biology efforts are conducted in living cells, and concerns over releasing genetically modified organisms constitute a key barrier to environmental applications. Cell-free protein expression systems offer a path towards leveraging synthetic biology, while preventing the spread of engineered organisms in nature. Recent efforts in the areas of cell-free approaches for sensing, regulation, and metabolic pathway implementation, as well as for preserving and deploying cell-free expression components, embody key steps towards realizing the potential of cell-free systems for environmental sensing and remediation. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.
Lowery, Colin A; Matamouros, Susana; Niessen, Sherry; Zhu, Jie; Scolnick, Jonathan; Lively, Jenny M; Cravatt, Benjamin F; Miller, Samuel I; Kaufmann, Gunnar F; Janda, Kim D
2013-07-25
Small molecule probes have been used extensively to explore biologic systems and elucidate cellular signaling pathways. In this study, we use an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering unrecognized processes regulated by AI-2-based quorum-sensing (QS), a mechanism of bacterial intercellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intercellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Giri, Bikash Ranjan; Du, Xiaoli; Xia, Tianqi; Chen, Yongjun; Li, Hao; Cheng, Guofeng
2017-07-01
Pluripotent stem cells, called neoblasts, are well known for the regenerative capability and developmental plasticity in flatworms. Impressive advancement has been made in free-living flatworms, while in case of its parasitic counterpart, neoblast-like stem cells have attracted recent attention for its self-renewal and differentiation capacity. Nanos is a key conserved post-transcriptional regulator critical for the formation, development, and/or maintenance of the pluripotent germ line stem cell systems in many metazoans including schistosomes. In the present study, we report the molecular cloning and expression of nanos orthologous genes nanos in Schistosoma japonicum (Sjnanos). The cDNA of Sjnanos is 826 bp long, containing an open reading frame (ORF) for 223 amino acid long protein. qRT-PCR analysis shown that Sjnanos was differently expressed in several stages of schistosomes with relatively high level in schistosomula. Additionally, Sjnanos was expressed highly in adult females compared to adult males. Transfection of recombinant plasmid for expressing Sjnanos resulted in significant proliferation and increased expression of several stem cell factors in mammalian cells. Overall, our preliminary study provides the molecular basis to further functionally characterize Sjnanos in S. japonicum.
Use of transcriptomic data for extending a model of the AppA/PpsR system in Rhodobacter sphaeroides.
Pandey, Rakesh; Armitage, Judith P; Wadhams, George H
2017-12-28
Photosynthetic (PS) gene expression in Rhodobacter sphaeroides is regulated in response to changes in light and redox conditions mainly by PrrB/A, FnrL and AppA/PpsR systems. The PrrB/A and FnrL systems activate the expression of them under anaerobic conditions while the AppA/PpsR system represses them under aerobic conditions. Recently, two mathematical models have been developed for the AppA/PpsR system and demonstrated how the interaction between AppA and PpsR could lead to a phenotype in which PS genes are repressed under semi-aerobic conditions. These models have also predicted that the transition from aerobic to anaerobic growth mode could occur via a bistable regime. However, they lack experimentally quantifiable inputs and outputs. Here, we extend one of them to include such quantities and combine all relevant micro-array data publically available for a PS gene of this bacterium and use that to parameterise the model. In addition, we hypothesise that the AppA/PpsR system alone might account for the observed trend of PS gene expression under semi-aerobic conditions. Our extended model of the AppA/PpsR system includes the biological input of atmospheric oxygen concentration and an output of photosynthetic gene expression. Following our hypothesis that the AppA/PpsR system alone is sufficient to describe the overall trend of PS gene expression we parameterise the model and suggest that the rate of AppA reduction in vivo should be faster than its oxidation. Also, we show that despite both the reduced and oxidised forms of PpsR binding to the PS gene promoters in vitro, binding of the oxidised form as a repressor alone is sufficient to reproduce the observed PS gene expression pattern. Finally, the combination of model parameters which fit the biological data well are broadly consistent with those which were previously determined to be required for the system to show (i) the repression of PS genes under semi-aerobic conditions, and (ii) bistability. We found that despite at least three pathways being involved in the regulation of photosynthetic genes, the AppA/PpsR system alone is capable of accounting for the observed trends in photosynthetic gene expression seen at different oxygen levels.
Xoca-Orozco, Luis-Ángel; Cuellar-Torres, Esther Angélica; González-Morales, Sandra; Gutiérrez-Martínez, Porfirio; López-García, Ulises; Herrera-Estrella, Luis; Vega-Arreguín, Julio; Chacón-López, Alejandra
2017-01-01
Avocado (Persea americana) is one of the most important crops in Mexico as it is the main producer, consumer, and exporter of avocado fruit in the world. However, successful avocado commercialization is often reduced by large postharvest losses due to Colletotrichum sp., the causal agent of anthracnose. Chitosan is known to have a direct antifungal effect and acts also as an elicitor capable of stimulating a defense response in plants. However, there is little information regarding the genes that are either activated or repressed in fruits treated with chitosan. The aim of this study was to identify by RNA-seq the genes differentially regulated by the action of low molecular weight chitosan in the avocado-chitosan-Colletotrichum interaction system. The samples for RNA-seq were obtained from fruits treated with chitosan, fruits inoculated with Colletotrichum and fruits both treated with chitosan and inoculated with the fungus. Non-treated and non-inoculated fruits were also analyzed. Expression profiles showed that in short times, the fruit-chitosan system presented a greater number of differentially expressed genes, compared to the fruit-pathogen system. Gene Ontology analysis of differentially expressed genes showed a large number of metabolic processes regulated by chitosan, including those preventing the spread of Colletotrichum. It was also found that there is a high correlation between the expression of genes in silico and qPCR of several genes involved in different metabolic pathways. PMID:28642771
Paratransgenesis applied for control of tsetse transmitted sleeping sickness.
Aksoy, Serap; Weiss, Brian; Attardo, Geoffrey
2008-01-01
African trypanosomiasis (sleeping sickness) is a major cause of morbidity and mortality in Subsaharan Africa for human and animal health. In the absence of effective vaccines and efficacious drugs, vector control is an alternative intervention tool to break the disease cycle. This chapter describes the vectorial and symbiotic biology of tsetse with emphasis on the current knowledge on tsetse symbiont genomics and functional biology, and tsetse's trypanosome transmission capability. The ability to culture one of tsetse's commensal symbiotic microbes, Sodalis in vitro has allowed for the development of a genetic transformation system for this organism. Tsetse can be repopulated with the modified Sodalis symbiont, which can express foreign gene products (an approach we refer to as paratransgenic expression system). Expanding knowledge on tsetse immunity effectors, on genomics of tsetse symbionts and on tsetse's parasite transmission biology stands to enhance the development and potential application of paratransgenesis as a new vector-control strategy. We describe the hallmarks of the paratransgenic transformation technology where the modified symbionts expressing trypanocidal compounds can be used to manipulate host functions and lead to the control of trypanosomiasis by blocking trypanosome transmission in the tsetse vector.
Nasim, M. T.; Trembath, R. C.
2005-01-01
Methods for determining protein–protein interactions in mammalian cells typically rely on single reporter functions and are susceptible to variations between samples particularly in regard to levels of transcription, processing and translation. A method has been developed for determining protein–protein interactions in mammalian cells, which bypasses these variables confounding single reporter assays. The approach utilizes two units of gene expression linked to reporter functions that are interposed by a deactivation–activation unit in such a way that the downstream expression unit is switched off. Hence upstream expression occurs regardless of protein–protein interaction, leading to the production of the upstream reporter. In the event of protein–protein interactions, the downstream expression unit is switched on leading to dual reporter read outs. Thus, the ratio of the two reporter activities provides a measure to determine the efficiency of protein–protein interactions. To access the system we screened a mutant of BMPR2 where the interaction between BMPR-II and LIMK is abrogated. BMPR-II is a type II receptor of the TGFβ superfamily and plays a key role in the pathogenesis of familial pulmonary arterial hypertension. This system has potential for high-throughput screening of libraries (peptide, chemical, cDNA, etc.) to isolate agents that are capable of interfering with highly selective protein–protein interaction. PMID:15824058
Miyazaki, Yumi; Tsumiyama, Ken; Yamane, Takashi; Ito, Mitsuhiro; Shiozawa, Shunichi
2013-04-18
We have developed a systems biology concept to explain the origin of systemic autoimmunity. From our studies of systemic lupus erythematosus (SLE) we have concluded that this disease is the inevitable consequence of over-stimulating the host's immune system by repeated exposure to antigen to levels that surpass a critical threshold, which we term the system's "self-organized criticality". We observed that overstimulation of CD4 T cells in mice led to the development of autoantibody-inducing CD4 T cells (aiCD4 T) capable of generating various autoantibodies and pathological lesions identical to those observed in SLE. We show here that this is accompanied by the significant expansion of a novel population of effector T cells characterized by expression of programmed death-1 (PD-1)-positive, CD27(low), CD127(low), CCR7(low) and CD44(high)CD62L(low) markers, as well as increased production of IL-2 and IL-6. In addition, repeated immunization caused the expansion of CD8 T cells into fully-matured cytotoxic T lymphocytes (CTL) that express Ly6C(high)CD122(high) effector and memory markers. Thus, overstimulation with antigen leads to the expansion of a novel effector CD4 T cell population that expresses an unusual memory marker, PD-1, and that may contribute to the pathogenesis of SLE.
tOWL: a temporal Web Ontology Language.
Milea, Viorel; Frasincar, Flavius; Kaymak, Uzay
2012-02-01
Through its interoperability and reasoning capabilities, the Semantic Web opens a realm of possibilities for developing intelligent systems on the Web. The Web Ontology Language (OWL) is the most expressive standard language for modeling ontologies, the cornerstone of the Semantic Web. However, up until now, no standard way of expressing time and time-dependent information in OWL has been provided. In this paper, we present a temporal extension of the very expressive fragment SHIN(D) of the OWL Description Logic language, resulting in the temporal OWL language. Through a layered approach, we introduce three extensions: 1) concrete domains, which allow the representation of restrictions using concrete domain binary predicates; 2) temporal representation , which introduces time points, relations between time points, intervals, and Allen's 13 interval relations into the language; and 3) timeslices/fluents, which implement a perdurantist view on individuals and allow for the representation of complex temporal aspects, such as process state transitions. We illustrate the expressiveness of the newly introduced language by using an example from the financial domain.
Applications of lentiviral vectors in molecular imaging.
Chatterjee, Sushmita; De, Abhijit
2014-06-01
Molecular imaging provides the ability of simultaneous visual and quantitative estimation of long term gene expression directly from living organisms. To reveal the kinetics of gene expression by imaging method, often sustained expression of the transgene is required. Lentiviral vectors have been extensively used over last fifteen years for delivery of a transgene in a wide variety of cell types. Lentiviral vectors have the well known advantages such as sustained transgene delivery through stable integration into the host genome, the capability of infecting non-dividing and dividing cells, broad tissue tropism, a reasonably large carrying capacity for delivering therapeutic and reporter gene combinations. Additionally, they do not express viral proteins during transduction, have a potentially safe integration site profile, and a relatively easy system for vector manipulation and infective viral particle production. As a result, lentiviral vector mediated therapeutic and imaging reporter gene delivery to various target organs holds promise for the future treatment. In this review, we have conducted a brief survey of important lentiviral vector developments in diverse biomedical fields including reproductive biology.
van der Weijden, Vera A; Chen, Shuai; Bauersachs, Stefan; Ulbrich, Susanne E; Schoen, Jennifer
2017-11-25
We recently developed an air-liquid interface long-term culture of differentiated bovine oviductal epithelial cells (ALI-BOEC). This ex vivo oviduct epithelium is capable of supporting embryo development in co-culture up to the blastocyst stage without addition of embryo culture medium. However, blastocyst rates in co-culture were markedly lower than in conventional in vitro embryo production procedures. In the present study, we assessed target gene expression of ALI-BOEC derived embryos to test their similarity to embryos from conventional in vitro embryo culture. We screened previously published data from developing bovine embryos and selected 41 genes which are either differentially expressed during embryo development, or reflect differences between various in vitro culture conditions or in vitro and in vivo embryos. Target gene expression was measured in 8-cell embryos and blastocysts using a 48.48 Dynamic Array™ on a Biomark HD instrument. For comparison with the ALI-BOEC system, we generated embryos by two different standard IVP protocols. The culture conditions lead to differential gene expression in both 8-cell embryos and blastocysts. Across the expression of all target genes the embryos developing on ALI-BOEC did not depart from conventional IVP embryos. These first results prove that gene expression in ALI-BOEC embryos is not largely aberrant. However, there was no clear indication for a more in vivo-like target gene expression of these embryos. This calls for further optimization of the ALI-BOEC system to increase its efficiency both quantitatively and qualitatively.
Sprague, Leslee; Muccioli, Maria; Pate, Michelle; Singh, Manindra; Xiong, Chengkai; Ostermann, Alexander; Niese, Brandon; Li, Yihan; Li, Yandi; Courreges, Maria Cecilia; Benencia, Fabian
2014-04-15
Dendritic cells (DCs) are immune cells found in the peripheral tissues where they sample the organism for infections or malignancies. There they take up antigens and migrate towards immunological organs to contact and activate T lymphocytes that specifically recognize the antigen presented by these antigen presenting cells. In the steady state there are several types of resident DCs present in various different organs. For example, in the mouse, splenic DC populations characterized by the co-expression of CD11c and CD8 surface markers are specialized in cross-presentation to CD8 T cells, while CD11c/SIRP-1α DCs seem to be dedicated to activating CD4 T cells. On the other hand, DCs have also been associated with the development of various diseases such as cancer, atherosclerosis, or inflammatory conditions. In such disease, DCs can participate by inducing angiogenesis or immunosuppression (tumors), promoting autoimmune responses, or exacerbating inflammation (atherosclerosis). This change in DC biology can be prompted by signals in the microenvironment. We have previously shown that the interaction of DCs with various extracellular matrix components modifies the immune properties and angiogenic potential of these cells. Building on those studies, herewith we analyzed the angiogenic profile of murine myeloid DCs upon interaction with 2D and 3D type-I collagen environments. As determined by PCR array technology and quantitative PCR analysis we observed that interaction with these collagen environments induced the expression of particular angiogenic molecules. In addition, DCs cultured on collagen environments specifically upregulated the expression of CXCL-1 and -2 chemokines. We were also able to establish DC cultures on type-IV collagen environments, a collagen type expressed in pathological conditions such as atherosclerosis. When we examined DC populations in atherosclerotic veins of Apolipoprotein E deficient mice we observed that they expressed adhesion molecules capable of interacting with collagen. Finally, to further investigate the interaction of DCs with collagen in other pathological conditions, we determined that both murine ovarian and breast cancer cells express several collagen molecules that can contribute to shape their particular tumor microenvironment. Consistently, tumor-associated DCs were shown to express adhesion molecules capable of interacting with collagen molecules as determined by flow cytometry analysis. Of particular relevance, tumor-associated DCs expressed high levels of CD305/LAIR-1, an immunosuppressive receptor. This suggests that signaling through this molecule upon interaction with collagen produced by tumor cells might help define the poorly immunogenic status of these cells in the tumor microenvironment. Overall, these studies demonstrate that through interaction with collagen proteins, DCs can be capable of modifying the microenvironments of inflammatory disease such as cancer or atherosclerosis. Copyright © 2014. Published by Elsevier Inc.
Recombinant hosts suitable for simultaneous saccharification and fermentation
Ingram, Lonnie O'Neal; Zhou, Shengde
2007-06-05
The invention provides recombinant host cells containing at least one heterologous polynucleotide encoding a polysaccharase under the transcriptional control of a surrogate promoter capable of increasing the expression of the polysaccharase. In addition, the invention further provides such hosts with genes encoding secretory protein/s to facilitate the secretion of the expressed polysaccharase. Preferred hosts of the invention are ethanologenic and capable of carrying out simultaneous saccharification fermentation resulting in the production of ethanol from complex cellulose substrates.
Gan, Yiling; Yao, Yiyong; Guo, Shuliang
2015-05-01
Here we hypothesized that dormant cells of Mycobacterium tuberculosis (M. tuberculosis) may be resuscitated by a new expression system of recombinant mycobacteriophage-resuscitation-promoting factor (Rpf). In this system, gene of targeted Rpf was cloned into mycobacteriophage genome, since mycobacteriophages possess several characteristics, including automatic identification and specific infection of M. tuberculosis. Thus the targeted delivery and endogenous expression of Rpf to the infected area of M. tuberculosis can be realized, followed by resuscitating the dormant cells of M. tuberculosis. Finally, these resuscitated M. tuberculosis can be thoroughly killed by a strong short-term subsequent chemotherapy, which makes the course of TB chemotherapy much shorter in the future compared to simple chemotherapy. Early studies have confirmed that dormant cells of M. tuberculosis can be resuscitated by Rpf in vitro, but so far, there is no report that Rpf can succeed in resuscitating dormant cells of M. tuberculosis in vivo, the reason may be that it is difficult for purified Rpf to remain active in vivo, especially to achieve targeted delivery of exogenous Rpf to the infected area of dormant cells of M. tuberculosis. Mycobacteriophage is a virus, capable of specifically identifying and infecting mycobacterium, such as M. tuberculosis. Several studies show that motif 3-containing proteins have peptidoglycan-hydrolysing activity and that while this activity is not required for mycobacteriophage viability, it facilitates efficient infection and DNA injection of mycobacteriophage (including motif 3 protein) into stationary phase cells. Thus this expression system can achieve targeted delivery and endogenous expression of Rpf to infected area of dormant cells of M. tuberculosis. Finally, we discuss the implication of this recombinant expression system for shortening the course of TB chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Knowledge representation system for assembly using robots
NASA Technical Reports Server (NTRS)
Jain, A.; Donath, M.
1987-01-01
Assembly robots combine the benefits of speed and accuracy with the capability of adaptation to changes in the work environment. However, an impediment to the use of robots is the complexity of the man-machine interface. This interface can be improved by providing a means of using a priori-knowledge and reasoning capabilities for controlling and monitoring the tasks performed by robots. Robots ought to be able to perform complex assembly tasks with the help of only supervisory guidance from human operators. For such supervisory quidance, it is important to express the commands in terms of the effects desired, rather than in terms of the motion the robot must undertake in order to achieve these effects. A suitable knowledge representation can facilitate the conversion of task level descriptions into explicit instructions to the robot. Such a system would use symbolic relationships describing the a priori information about the robot, its environment, and the tasks specified by the operator to generate the commands for the robot.
A wetting and drying scheme for ROMS
Warner, John C.; Defne, Zafer; Haas, Kevin; Arango, Hernan G.
2013-01-01
The processes of wetting and drying have many important physical and biological impacts on shallow water systems. Inundation and dewatering effects on coastal mud flats and beaches occur on various time scales ranging from storm surge, periodic rise and fall of the tide, to infragravity wave motions. To correctly simulate these physical processes with a numerical model requires the capability of the computational cells to become inundated and dewatered. In this paper, we describe a method for wetting and drying based on an approach consistent with a cell-face blocking algorithm. The method allows water to always flow into any cell, but prevents outflow from a cell when the total depth in that cell is less than a user defined critical value. We describe the method, the implementation into the three-dimensional Regional Oceanographic Modeling System (ROMS), and exhibit the new capability under three scenarios: an analytical expression for shallow water flows, a dam break test case, and a realistic application to part of a wetland area along the Georgia Coast, USA.
Piras, Bryan A; O'Connor, Daniel M; French, Brent A
2013-01-01
AAV9 is a powerful gene delivery vehicle capable of providing long-term gene expression in a variety of cell types, particularly cardiomyocytes. The use of AAV-delivery for RNA interference is an intense area of research, but a comprehensive analysis of knockdown in cardiac and liver tissues after systemic delivery of AAV9 has yet to be reported. We sought to address this question by using AAV9 to deliver a short-hairpin RNA targeting the enhanced green fluorescent protein (GFP) in transgenic mice that constitutively overexpress GFP in all tissues. The expression cassette was initially tested in vitro and we demonstrated a 61% reduction in mRNA and a 90% reduction in GFP protein in dual-transfected 293 cells. Next, the expression cassette was packaged as single-stranded genomes in AAV9 capsids to test cardiac GFP knockdown with several doses ranging from 1.8×10(10) to 1.8×10(11) viral genomes per mouse and a dose-dependent response was obtained. We then analyzed GFP expression in both heart and liver after delivery of 4.4×10(11) viral genomes per mouse. We found that while cardiac knockdown was highly efficient, with a 77% reduction in GFP mRNA and a 71% reduction in protein versus control-treated mice, there was no change in liver expression. This was despite a 4.5-fold greater number of viral genomes in the liver than in the heart. This study demonstrates that single-stranded AAV9 vectors expressing shRNA can be used to achieve highly efficient cardiac-selective knockdown of GFP expression that is sustained for at least 7 weeks after the systemic injection of 8 day old mice, with no change in liver expression and no evidence of liver damage despite high viral genome presence in the liver.
Conducting On-orbit Gene Expression Analysis on ISS: WetLab-2
NASA Technical Reports Server (NTRS)
Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Lera, Matthew P.; Ricco, Antonio; Souza, Kenneth; Wu, Diana; Richey, C. Scott
2013-01-01
WetLab-2 will enable expanded genomic research on orbit by developing tools that support in situ sample collection, processing, and analysis on ISS. This capability will reduce the time-to-results for investigators and define new pathways for discovery on the ISS National Lab. The primary objective is to develop a research platform on ISS that will facilitate real-time quantitative gene expression analysis of biological samples collected on orbit. WetLab-2 will be capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on orbit. WetLab-2 will significantly expand the analytical capabilities onboard ISS and enhance science return from ISS.
Müller, Mario M; Lehmann, Roland; Klassert, Tilman E; Reifenstein, Stella; Conrad, Theresia; Moore, Christoph; Kuhn, Anna; Behnert, Andrea; Guthke, Reinhard; Driesch, Dominik; Slevogt, Hortense
2017-04-12
Exposure of human monocytes to lipopolysaccharide (LPS) induces a temporary insensitivity to subsequent LPS challenges, a cellular state called endotoxin tolerance. In this study, we investigated the LPS-induced global glycoprotein expression changes of tolerant human monocytes and THP-1 cells to identify markers and glycoprotein targets capable to modulate the immunosuppressive state. Using hydrazide chemistry and LC-MS/MS analysis, we analyzed glycoprotein expression changes during a 48 h LPS time course. The cellular snapshots at different time points identified 1491 glycoproteins expressed by monocytes and THP-1 cells. Label-free quantitative analysis revealed transient or long-lasting LPS-induced expression changes of secreted or membrane-anchored glycoproteins derived from intracellular membrane coated organelles or from the plasma membrane. Monocytes and THP-1 cells demonstrated marked differences in glycoproteins differentially expressed in the tolerant state. Among the shared differentially expressed glycoproteins G protein-coupled receptor 84 (GPR84) was identified as being capable of modulating pro-inflammatory TNFα mRNA expression in the tolerant cell state when activated with its ligand Decanoic acid.
Terrestrial Planet Space Weather Information: An Update
NASA Astrophysics Data System (ADS)
Luhmann, J. G.; Li, Y.; Lee, C.; Mays, M. L.; Odstrcil, D.; Jian, L.; Galvin, A. B.; Mewaldt, R. A.; von Rosenvinge, T. T.; Russell, C. T.; Halekas, J. S.; Connerney, J. E. P.; Jakosky, B. M.; Thompson, W. T.; Baker, D. N.; Dewey, R. M.; Zheng, Y.; Holmstrom, M.; Futaana, Y.
2015-12-01
Space weather research is now a solar system-wide enterprise. While with the end of the Venus Express Express mission and MESSENGER, we lost our 'inside' sentinels, new missions such as Solar Orbiter and SPP, and Bepi-Colombo will soon be launched and operating. In the meantime the combination of L1 resources (ACE,WIND,SOHO) and STEREO-A at 1 AU, and Mars Express and MAVEN missions at ~1.5 AU, provide opportunities. Comparative conditions at the Earth orbit and Mars orbit locations are of special interest because they are separated by the region where most solar wind stream interaction regions develop. These alter the propagation of disturbances including the interplanetary CME-driven shocks that make the space radiation affecting future Human mission planning. We share some observational and modeling results thatillustrate present capabilities, as well as developing ones such as ENLIL-based SEP event models that use a range of available observations.
2014-11-03
CAPE CANAVERAL, Fla. - Tom Engler, deputy director of Center Planning and Development at NASA's Kennedy Space Center in Florida, speaks to members of the media during an event to announce the agency's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative and introduced one of the partners, Moon Express Inc. of Moffett Field, California. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
2014-11-03
CAPE CANAVERAL, Fla. - Greg C. Shavers, Lander Technology director at Marshall Space Flight Center in Alabama, speaks to members of the media during an event to announce the agency's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative and introduced one of the partners, Moon Express Inc. of Moffett Field, California. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
2014-11-03
CAPE CANAVERAL, Fla. - Bob Richards, co-founder and chief executive officer of Moon Express Inc., of Moffett Field, California, speaks to the media during an event to announce the company's selection to use Kennedy Space Center's facilities as part of NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
Ferreira, Joshua P; Peacock, Ryan W S; Lawhorn, Ingrid E B; Wang, Clifford L
2011-12-01
The human cytomegalovirus and elongation factor 1α promoters are constitutive promoters commonly employed by mammalian expression vectors. These promoters generally produce high levels of expression in many types of cells and tissues. To generate a library of synthetic promoters capable of generating a range of low, intermediate, and high expression levels, the TATA and CAAT box elements of these promoters were mutated. Other promoter variants were also generated by random mutagenesis. Evaluation using plasmid vectors integrated at a single site in the genome revealed that these various synthetic promoters were capable of expression levels spanning a 40-fold range. Retroviral vectors were equipped with the synthetic promoters and evaluated for their ability to reproduce the graded expression demonstrated by plasmid integration. A vector with a self-inactivating long terminal repeat could neither reproduce the full range of expression levels nor produce stable expression. Using a second vector design, the different synthetic promoters enabled stable expression over a broad range of expression levels in different cell lines. The online version of this article (doi:10.1007/s11693-011-9089-0) contains supplementary material, which is available to authorized users.
Pridans, Clare; Lillico, Simon; Whitelaw, Bruce; Hume, David A
2014-01-01
The development of macrophages requires signaling through the lineage-restricted receptor Csf1r. Macrophage-restricted expression of transgenic reporters based upon Csf1r requires the highly conserved Fms-intronic regulatory element (FIRE). We have created a lentiviral construct containing mouse FIRE and promoter. The lentivirus is capable of directing macrophage-restricted reporter gene expression in mouse, rat, human, pig, cow, sheep, and even chicken. Rat bone marrow cells transduced with the lentivirus were capable of differentiating into macrophages expressing the reporter gene in vitro. Macrophage-restricted expression may be desirable for immunization or immune response modulation, and for gene therapy for lysosomal storage diseases and some immunodeficiencies. The small size of the Csf1r transcription control elements will allow the insertion of large “cargo” for applications in gene therapy and vaccine delivery. PMID:26015955
Sharma, Manoj Kumar; Singh, Nirmal Kumar; Jani, Dewal; Sisodia, Rama; Thungapathra, M; Gautam, J K; Meena, L S; Singh, Yogendra; Ghosh, Amit; Tyagi, Akhilesh Kumar; Sharma, Arun Kumar
2008-02-01
For protection against cholera, it is important to develop efficient vaccine capable of inducing anti-toxin as well as anti-colonizing immunity against Vibrio cholerae infections. Earlier, expression of cholera toxin B subunit (CTB) in tomato was reported by us. In the present investigation, toxin co-regulated pilus subunit A (TCPA), earlier reported to be an antigen capable of providing anti-colonization immunity, has been expressed in tomato. Further, to generate more potent combinatorial antigens, nucleotides encoding P4 or P6 epitope of TCPA were fused to cholera toxin B subunit gene (ctxB) and expressed in tomato. Presence of transgenes in the tomato genome was confirmed by PCR and expression of genes was confirmed at transcript and protein level. TCPA, chimeric CTB-P4 and CTB-P6 proteins were also expressed in E. coli. TCPA protein expressed in E. coli was purified to generate anti-TCPA antibodies in rabbit. Immunoblot and G(M1)-ELISA verified the synthesis and assembly of pentameric chimeric proteins in fruit tissue of transgenic tomato plants. The chimeric protein CTB-P4 and CTB-P6 accumulated up to 0.17 and 0.096% of total soluble protein (TSP), respectively, in tomato fruits. Whereas expression of TCPA, CTB-P4 and CTB-P6 in E. coli can be utilized for development of conventional vaccine, expression of these antigens which can provide both anti-toxin as well as anti-colonization immunity, has been demonstrated in plants, in a form which is potentially capable of inducing immune response against cholera infection.
An analysis of particle track effects on solid mammalian tissues
NASA Technical Reports Server (NTRS)
Todd, P.; Clarkson, T. W. (Principal Investigator)
1992-01-01
Relative biological effectiveness (RBE) and quality factor (Q) at extreme values of linear energy transfer (LET) have been determined on the basis of experiments with single-cell systems and specific tissue responses. In typical single-cell systems, each heavy particle (Ar or Fe) passes through a single cell or no cell. In experiments on animal tissues, however, each heavy particle passes through several cells, and the LET can exceed 200 keV micrometers-1 in every cell. In most laboratory animal tissue systems, however, only a small portion of the hit cells are capable of expressing the end-point being measured, such as cell killing, mutation or carcinogenesis. The following question was therefore addressed: do RBEs and Q factors derived from single-cell experiments properly account for the damage at high LET when multiple cells are hit by HZE tracks? A review is offered in which measured radiation effects and known tissue properties are combined to estimate on the one hand, the number of cells at risk, p3n, per track, where n is the number of cells per track based on tissue and organ geometry, and p3 is the probability that a cell in the track is capable of expressing the experimental end-point. On the other hand, the tissue and single-cell responses are compared by determining the ratio RBE in tissue/RBE in corresponding single cells. Experimental data from the literature indicate that tissue RBEs at very high LET (Fe and Ar ions) are higher than corresponding single-cell RBEs, especially in tissues in which p3n is high.
Guerra-Narbona, R; Delgado-García, J M; López-Ramos, J C
2013-06-15
The aim of this work was to reveal a hypothetical improvement of cognitive abilities in animals acclimatized to altitude and performing under ground level conditions, when looking at submaximal performance, once seen that it was not possible when looking at maximal scores. We modified contrasted cognitive tasks (object recognition, operant conditioning, eight-arm radial maze, and classical conditioning of the eyeblink reflex), increasing their complexity in an attempt to find performance differences in acclimatized animals vs. untrained controls. In addition, we studied, through immunohistochemical quantification, the expression of choline acetyltransferase and acetyl cholinesterase, enzymes involved in the synthesis and degradation of acetylcholine, in the septal area, piriform and visual cortexes, and the hippocampal CA1 area of animals submitted to acute hypobaric hypoxia, or acclimatized to this simulated altitude, to find a relationship between the cholinergic system and a cognitive improvement due to altitude acclimatization. Results showed subtle improvements of the cognitive capabilities of acclimatized animals in all of the tasks when performed under ground-level conditions (although not before 24 h), in the three tasks used to test explicit memory (object recognition, operant conditioning in the Skinner box, and eight-arm radial maze) and (from the first conditioning session) in the classical conditioning task used to evaluate implicit memory. An imbalance of choline acetyltransferase/acetyl cholinesterase expression was found in acclimatized animals, mainly 24 h after the acclimatization period. In conclusion, altitude acclimatization improves cognitive capabilities, in a process parallel to an imbalance of the cholinergic system.
Human Planetary Landing System (HPLS) Capability Roadmap NRC Progress Review
NASA Technical Reports Server (NTRS)
Manning, Rob; Schmitt, Harrison H.; Graves, Claude
2005-01-01
Capability Roadmap Team. Capability Description, Scope and Capability Breakdown Structure. Benefits of the HPLS. Roadmap Process and Approach. Current State-of-the-Art, Assumptions and Key Requirements. Top Level HPLS Roadmap. Capability Presentations by Leads. Mission Drivers Requirements. "AEDL" System Engineering. Communication & Navigation Systems. Hypersonic Systems. Super to Subsonic Decelerator Systems. Terminal Descent and Landing Systems. A Priori In-Situ Mars Observations. AEDL Analysis, Test and Validation Infrastructure. Capability Technical Challenges. Capability Connection Points to other Roadmaps/Crosswalks. Summary of Top Level Capability. Forward Work.
Cunha, Mayara Caldas Ramos; Lima, Fabiana da Silva; Vinolo, Marco Aurélio Ramirez; Hastreiter, Araceli; Curi, Rui; Borelli, Primavera; Fock, Ricardo Ambrósio
2013-01-01
Protein malnutrition (PM) results in pathological changes that are associated with peripheral leukopenia, bone marrow (BM) hypoplasia and alterations in the BM microenvironment leading to hematopoietic failure; however, the mechanisms involved are poorly understood. In this context, the BM mesenchymal stem cells (MSCs) are cells intimately related to the formation of the BM microenvironment, and their differentiation into adipocytes is important because adipocytes are cells that have the capability to negatively modulate hematopoiesis. Two-month-old male Balb/c mice were subjected to protein-energy malnutrition with a low-protein diet containing 2% protein, whereas control animals were fed a diet containing 12% protein. The hematopoietic parameters and the expression of CD45 and CD117 positive cells in the BM were evaluated. MSCs were isolated from BM, and their capability to produce SCF, IL-3, G-CSF and GM-CSF were analyzed. The expression of PPAR-γ and C/EBP-α as well as the expression of PPAR-γ and SREBP mRNAs were evaluated in MSCs together with their capability to differentiate into adipocytes in vitro. The malnourished animals had anemia and leukopenia as well as spleen and bone marrow hypoplasia and a reduction in the expression of CD45 and CD117 positive cells from BM. The MSCs of the malnourished mice presented an increased capability to produce SCF and reduced production of G-CSF and GM-CSF. The MSCs from the malnourished animals showed increased expression of PPAR-γ protein and PPAR-γ mRNA associated with an increased capability to differentiate into adipocytes. The alterations found in the malnourished animals allowed us to conclude that malnutrition committed MSC differentiation leading to adipocyte decision and compromised their capacity for cytokine production, contributing to an impaired hematopoietic microenvironment and inducing the bone marrow failure commonly observed in protein malnutrition states. PMID:23516566
Jiang, Yujia; Zhang, Ting; Lu, Jiasheng; Dürre, Peter; Zhang, Wenming; Dong, Weiliang; Zhou, Jie; Jiang, Min; Xin, Fengxue
2018-05-07
Biobutanol can be indigenously synthesized by solventogenic Clostridium species; however, these microorganisms possess inferior capability of utilizing abundant and renewable organic wastes, such as starch, lignocellulose, and even syngas. The common strategy to achieve direct butanol production from these organic wastes is through genetic modification of wild-type strains. However, due to the complex of butanol synthetic and hydrolytic enzymes expression systems, the recombinants show unsatisfactory results. Recently, setting up microbial co-culturing systems became more attractive, as they could not only perform more complicated tasks, but also endure changeable environments. Hence, this mini-review comprehensively summarized the state-of-the-art biobutanol production from different substrates by using microbial co-culturing systems. Furthermore, strategies regarding establishment principles of microbial co-culturing systems were also analyzed and compared.
Griffiths, Mark R; Gasque, Philippe; Neal, James W
2009-03-01
Central nervous system (CNS) tissues contain cells (i.e. glia and neurons) that have innate immune functions. These cells express a range of receptors that are capable of detecting and clearing apoptotic cells and regulating inflammatory responses. Phagocytosis of apoptotic cells is a nonphlogistic (i.e. noninflammatory) process that provides immune regulation through anti-inflammatory cytokines andregulatory T cells. Neurons and glia express cellular death signals, including CD95Fas/CD95L, FasL, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and tumor necrosis factor receptor 1 (TNFR), through which they can trigger apoptosis in T cells and other infiltrating cells. Microglia, astrocytes, ependymal cells, and neurons express defense collagens and scavenger and phagocytic receptors that recognize apoptotic cells displaying apoptotic cell-associated molecular patterns, which serve as markers of "altered self." Glia also express pentraxins and complement proteins (C1q, C3b, and iC3b) that opsonize apoptotic cells, making them targets for the phagocytic receptors CR3 and CR4. Immunoregulatory molecules such as the complement regulator CD46 are lost from apoptotic cells and stimulate phagocytosis, whereas the expression of CD47 and CD200 is upregulated during apoptosis; this inhibits proinflammatory microglial cytokine expression, thereby reducing the severity of inflammation. This review outlines the cellular pathways used for the detection and phagocytosis of apoptotic cells in vitro and in experimental models of CNS inflammation.
A Novel Molecular Targeting of a Tumor-Specific Oncogenic Mutant Receptor in Human Prostate Cancer
2005-02-01
in cells and can generate dominant negative mutant (15). Hammerhead ribozymes are self-cleaving RNAs whose catalytic activity has been mapped to a...specific ribozyme targeted at the fusion junction of EGFRvIII. This specific EGFRvIII ribozyme is able to effectively cleave EGFRvIII mRNA under...physiological conditions in a cell-free system. While expressing this EGFRvIII- ribozyme in 32D/EGFRvIII cell, EGFRvIII- ribozyme is capable of down-regulating
Islet organogenesis, angiogenesis and innervation.
Cerf, Marlon E
2011-11-01
The pancreas is characterized by a major component, an exocrine and ductal system involved in digestion, and a minor component, the endocrine islets represented by islet micro-organs that tightly regulate glucose homoeostasis. Pancreatic organogenesis is strictly co-ordinated by transcription factors that are expressed sequentially to yield functional islets capable of maintaining glucose homoeostasis. Angiogenesis and innervation complete islet development, equipping islets to respond to metabolic demands. Proper regulation of this triad of processes during development is critical for establishing functional islets.
1980-03-01
language, reliance upon instrumental (technical) versus biologi - cal ( human ) capabilities, etc. The latter - the appreciative one - is not expressed...infrastructure, and most of human contribution, should be ready for servi- cing the military scene in case of high tension, or in the context of hostility...already proven "feasible changes*. 10 81 In a similar way of improvement ( 751 and [ 771 give additional information about DABS and a DABS/ ATARS
NASA Technical Reports Server (NTRS)
Karouia, Fathi; Peyvan, Kia; Danley, David; Ricco, Antonio J.; Santos, Orlando; Pohorille, Andrew
2011-01-01
Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. The spacecraft environment subjects the traveler to noise, chemical and microbiological contaminants, increased radiation, and variable gravity forces. As humans prepare for long-duration missions to the International Space Station (ISS) and beyond, effective measures must be developed, verified and implemented to ensure mission success. Limited biomedical quantitative capabilities are currently available onboard the ISS. Therefore, the development of versatile instruments to perform space biological analysis and to monitor astronauts' health is needed. We are developing a fully automated, miniaturized system for measuring gene expression on small spacecraft in order to better understand the influence of the space environment on biological systems. This low-cost, low-power, multi-purpose instrument represents a major scientific and technological advancement by providing data on cellular metabolism and regulation. The current system will support growth of microorganisms, extract and purify the RNA, hybridize it to the array, read the expression levels of a large number of genes by microarray analysis, and transmit the measurements to Earth. The system will help discover how bacteria develop resistance to antibiotics and how pathogenic bacteria sometimes increase their virulence in space, facilitating the development of adequate countermeasures to decrease risks associated with human spaceflight. The current stand-alone technology could be used as an integrated platform onboard the ISS to perform similar genetic analyses on any biological systems from the tree of life. Additionally, with some modification the system could be implemented to perform real-time in-situ microbial monitoring of the ISS environment (air, surface and water samples) and the astronaut's microbiome using 16SrRNA microarray technology. Furthermore, the current system can be enhanced substantially by combining it with other technologies for automated, miniaturized, high-throughput biological measurements, such as fast sequencing, protein identification (proteomics) and metabolite profiling (metabolomics). Thus, the system can be integrated with other biomedical instruments in order to support and enhance telemedicine capability onboard ISS. NASA's mission includes sustained investment in critical research leading to effective countermeasures to minimize the risks associated with human spaceflight, and the use of appropriate technology to sustain space exploration at reasonable cost. Our integrated microarray technology is expected to fulfill these two critical requirements and to enable the scientific community to better understand and monitor the effects of the space environment on microorganisms and on the astronaut, in the process leveraging current capabilities and overcoming present limitations.
Turning the gene tap off; implications of regulating gene expression for cancer therapeutics
Curtin, James F.; Candolfi, Marianela; Xiong, Weidong; Lowenstein, Pedro R.; Castro, Maria G.
2008-01-01
Cancer poses a tremendous therapeutic challenge worldwide, highlighting the critical need for developing novel therapeutics. A promising cancer treatment modality is gene therapy, which is a form of molecular medicine designed to introduce into target cells genetic material with therapeutic intent. Anticancer gene therapy strategies currently used in preclinical models, and in some cases in the clinic, include proapoptotic genes, oncolytic/replicative vectors, conditional cytotoxic approaches, inhibition of angiogenesis, inhibition of growth factor signaling, inactivation of oncogenes, inhibition of tumor invasion and stimulation of the immune system. The translation of these novel therapeutic modalities from the preclinical setting to the clinic has been driven by encouraging preclinical efficacy data and advances in gene delivery technologies. One area of intense research involves the ability to accurately regulate the levels of therapeutic gene expression to achieve enhanced efficacy and provide the capability to switch gene expression off completely if adverse side effects should arise. This feature could also be implemented to switch gene expression off when a successful therapeutic outcome ensues. Here, we will review recent developments related to the engineering of transcriptional switches within gene delivery systems, which could be implemented in clinical gene therapy applications directed at the treatment of cancer. PMID:18347132
Viera-Vera, Jorge; García-Arrarás, José E
2018-05-15
Retinoic acid receptors (RAR) and retinoid X receptors (RXR) are ligand-mediated transcription factors that synchronize intricate signaling networks in metazoans. Dimer formation between these two nuclear receptors mediates the recruitment of co-regulatory complexes coordinating the progression of signaling cascades during developmental and regenerative events. In the present study we identified and characterized the receptors for retinoic acid in the sea cucumber Holothuria glaberrima; a model system capable of regenerative organogenesis during adulthood. Molecular characterizations revealed the presence of three isoforms of RAR and two of RXR as a consequence of alternative splicing events. Various analyses including: primary structure sequencing, phylogenetic analysis, protein domain prediction, and multiple sequence alignment further confirmed their identity. Semiquantitative reverse transcription PCR analysis of each receptor isoform herein identified showed that the retinoid receptors are expressed in all tissues sampled: the mesenteries, respiratory trees, muscles, gonads, and the digestive tract. During regenerative organogenesis two of the receptors (RAR-L and RXR-T) showed differential expression in the posterior segment while RAR-S is differentially expressed in the anterior segment of the intestine. This work presents the first description of the components relaying the signaling for retinoic acid within this model system. Copyright © 2018 Elsevier B.V. All rights reserved.
Angart, Phillip A; Carlson, Rebecca J; Thorwall, Sarah; Patrick Walton, S
2017-07-01
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family critical for neuronal cell survival and differentiation, with therapeutic potential for the treatment of neurological disorders and spinal cord injuries. The production of recombinant, bioactive BDNF is not practical in most traditional microbial expression systems because of the inability of the host to correctly form the characteristic cystine-knot fold of BDNF. Here, we investigated Brevibacillus choshinensis as a suitable expression host for bioactive BDNF expression, evaluating the effects of medium type (2SY and TM), temperature (25 and 30 °C), and culture time (48-120 h). Maximal BDNF bioactivity (per unit mass) was observed in cultures grown in 2SY medium at extended times (96 h at 30 °C or >72 h at 25 °C), with resulting bioactivity comparable to that of a commercially available BDNF. For cultures grown in 2SY medium at 25 °C for 72 h, the condition that led to the greatest quantity of biologically active protein in the shortest culture time, we recovered 264 μg/L of BDNF. As with other microbial expression systems, BDNF aggregates did form in all culture conditions, indicating that while we were able to recover biologically active BDNF, further optimization of the expression system could yield still greater quantities of bioactive protein. This study provides confirmation that B. choshinensis is capable of producing biologically active BDNF and that further optimization of culture conditions could prove valuable in increasing BDNF yields.
Viral Paratransgenesis in the Malaria Vector Anopheles gambiae
Ren, Xiaoxia; Hoiczyk, Egbert; Rasgon, Jason L.
2008-01-01
Paratransgenesis, the genetic manipulation of insect symbiotic microorganisms, is being considered as a potential method to control vector-borne diseases such as malaria. The feasibility of paratransgenic malaria control has been hampered by the lack of candidate symbiotic microorganisms for the major vector Anopheles gambiae. In other systems, densonucleosis viruses (DNVs) are attractive agents for viral paratransgenesis because they infect important vector insects, can be genetically manipulated and are transmitted to subsequent generations. However, An. gambiae has been shown to be refractory to DNV dissemination. We discovered, cloned and characterized the first known DNV (AgDNV) capable of infection and dissemination in An. gambiae. We developed a flexible AgDNV-based expression vector to express any gene of interest in An. gambiae using a two-plasmid helper-transducer system. To demonstrate proof-of-concept of the viral paratransgenesis strategy, we used this system to transduce expression of an exogenous gene (enhanced green fluorescent protein; EGFP) in An. gambiae mosquitoes. Wild-type and EGFP-transducing AgDNV virions were highly infectious to An. gambiae larvae, disseminated to and expressed EGFP in epidemiologically relevant adult tissues such as midgut, fat body and ovaries and were transmitted to subsequent mosquito generations. These proof-of-principle data suggest that AgDNV could be used as part of a paratransgenic malaria control strategy by transduction of anti-Plasmodium peptides or insect-specific toxins in Anopheles mosquitoes. AgDNV will also be extremely valuable as an effective and easy-to-use laboratory tool for transient gene expression or RNAi in An. gambiae. PMID:18725926
DOE Office of Scientific and Technical Information (OSTI.GOV)
Currie, Devin; Herring, Christopher; Guss, Adam M
BACKGROUND: Cellulose is highly recalcitrant and thus requires a specialized suite of enzymes to solubilize it into fermentable sugars. In C. thermocellum, these extracellular enzymes are present as a highly active multi-component system known as the cellulosome. This study explores the expression of a critical C. thermocellum cellulosomal component in T. saccharolyticum as a step toward creating a thermophilic bacterium capable of consolidated bioprocessing by employing heterologously expressed cellulosomes. RESULTS: We developed an inducible promoter system based on the native T. saccharolyticum xynA promoter, which was shown to be induced by xylan and xylose. The promoter was used to expressmore » the cellulosomal component cipA*, an engineered form of the wild-type cipA from C. thermocellum. Expression and localization to the supernatant were both verified for CipA*. When a cipA mutant C. thermocellum strain was cultured with a CipA*-expressing T. saccharolyticum strain, hydrolysis and fermentation of 10 grams per liter SigmaCell 101, a highly crystalline cellulose, were observed. This trans-species complementation of a cipA deletion demonstrated the ability for CipA* to assemble a functional cellulosome. CONCLUSION: This study is the first example of an engineered thermophile heterologously expressing a structural component of a cellulosome. To achieve this goal we developed and tested an inducible promoter for controlled expression in T. saccharolyticum as well as a synthetic cipA. In addition, we demonstrate a high degree of hydrolysis (up to 93%) on microcrystalline cellulose.« less
Samuel, Premila P.; Smith, Lucian P.; Phillips, George N.; Olson, John S.
2015-01-01
Expression levels in animal muscle tissues and in Escherichia coli vary widely for naturally occurring mammalian myoglobins (Mb). To explore this variation, we developed an in vitro transcription and wheat germ extract-based translation assay to examine quantitatively the factors that govern expression of holoMb. We constructed a library of naturally occurring Mbs from two terrestrial and four deep-diving aquatic mammals and three distal histidine mutants designed to enhance apoglobin stability but decrease hemin affinity. A strong linear correlation is observed between cell-free expression levels of holo-metMb variants and their corresponding apoglobin stabilities, which were measured independently by guanidine HCl-induced unfolding titrations using purified proteins. In contrast, there is little dependence of expression on hemin affinity. Our results confirm quantitatively that deep diving mammals have highly stable Mbs that express to higher levels in animal myocytes, E. coli, and the wheat germ cell-free system than Mbs from terrestrial mammals. Our theoretical analyses show that the rate of aggregation of unfolded apoMb is very large, and as a result, the key factor for high level expression of holoMb, and presumably other heme proteins, is an ultra high fraction of folded, native apoglobin that is capable of rapidly binding hemin. This fraction is determined by the overall equilibrium folding constant and not hemin affinity. These results also demonstrate that the cell-free transcription/translation system can be used as a high throughput platform to screen for apoglobin stability without the need to generate large amounts of protein for in vitro unfolding measurements. PMID:26205820
Functional Dissection of the Neural Substrates for Sexual Behaviors in Drosophila melanogaster
Meissner, Geoffrey W.; Manoli, Devanand S.; Chavez, Jose F.; Knapp, Jon-Michael; Lin, Tasha L.; Stevens, Robin J.; Mellert, David J.; Tran, David H.; Baker, Bruce S.
2011-01-01
The male-specific Fruitless proteins (FruM) act to establish the potential for male courtship behavior in Drosophila melanogaster and are expressed in small groups of neurons throughout the nervous system. We screened ∼1000 GAL4 lines, using assays for general courtship, male–male interactions, and male fertility to determine the phenotypes resulting from the GAL4-driven inhibition of FruM expression in subsets of these neurons. A battery of secondary assays showed that the phenotypic classes of GAL4 lines could be divided into subgroups on the basis of additional neurobiological and behavioral criteria. For example, in some lines, restoration of FruM expression in cholinergic neurons restores fertility or reduces male–male courtship. Persistent chains of males courting each other in some lines results from males courting both sexes indiscriminately, whereas in other lines this phenotype results from apparent habituation deficits. Inhibition of ectopic FruM expression in females, in populations of neurons where FruM is necessary for male fertility, can rescue female infertility. To identify the neurons responsible for some of the observed behavioral alterations, we determined the overlap between the identified GAL4 lines and endogenous FruM expression in lines with fertility defects. The GAL4 lines causing fertility defects generally had widespread overlap with FruM expression in many regions of the nervous system, suggesting likely redundant FruM-expressing neuronal pathways capable of conferring male fertility. From associations between the screened behaviors, we propose a functional model for courtship initiation. PMID:21705753
NASA Technical Reports Server (NTRS)
Thronson, Harley; Lester, Daniel
2008-01-01
Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the U.S. have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a 10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover, as the recent Orbital Express and Automated Transfer Vehicle Missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth.
Reconstructing Dynamic Promoter Activity Profiles from Reporter Gene Data.
Kannan, Soumya; Sams, Thomas; Maury, Jérôme; Workman, Christopher T
2018-03-16
Accurate characterization of promoter activity is important when designing expression systems for systems biology and metabolic engineering applications. Promoters that respond to changes in the environment enable the dynamic control of gene expression without the necessity of inducer compounds, for example. However, the dynamic nature of these processes poses challenges for estimating promoter activity. Most experimental approaches utilize reporter gene expression to estimate promoter activity. Typically the reporter gene encodes a fluorescent protein that is used to infer a constant promoter activity despite the fact that the observed output may be dynamic and is a number of steps away from the transcription process. In fact, some promoters that are often thought of as constitutive can show changes in activity when growth conditions change. For these reasons, we have developed a system of ordinary differential equations for estimating dynamic promoter activity for promoters that change their activity in response to the environment that is robust to noise and changes in growth rate. Our approach, inference of dynamic promoter activity (PromAct), improves on existing methods by more accurately inferring known promoter activity profiles. This method is also capable of estimating the correct scale of promoter activity and can be applied to quantitative data sets to estimate quantitative rates.
Text-to-audiovisual speech synthesizer for children with learning disabilities.
Mendi, Engin; Bayrak, Coskun
2013-01-01
Learning disabilities affect the ability of children to learn, despite their having normal intelligence. Assistive tools can highly increase functional capabilities of children with learning disorders such as writing, reading, or listening. In this article, we describe a text-to-audiovisual synthesizer that can serve as an assistive tool for such children. The system automatically converts an input text to audiovisual speech, providing synchronization of the head, eye, and lip movements of the three-dimensional face model with appropriate facial expressions and word flow of the text. The proposed system can enhance speech perception and help children having learning deficits to improve their chances of success.
WDM PONs based on colorless technology
NASA Astrophysics Data System (ADS)
Saliou, Fabienne; Simon, Gael; Chanclou, Philippe; Pizzinat, Anna; Lin, Huafeng; Zhou, Enyu; Xu, Zhiguang
2015-12-01
Wavelength Division Multiplexing (WDM) Passive Optical Network (PON) is foreseen to be part of the Next Generation Passive Optical Networks. Business and mobile fronthaul networks already express the need to develop WDM PONs in the access segment. Fixed wavelength transceivers based on Coarse WDM are already available to respond to today's market needs but Dense WDM technologies will be needed and colorless technologies are essential to provide simple and cost-effective WDM PON systems. We propose in this paper to demonstrate the capabilities of a DWDM PON system prototype based on self-seeded RSOAs and designed to transmit CPRI over 60 km of fiber at 2.5 Gbit/s.
An assessment of future computer system needs for large-scale computation
NASA Technical Reports Server (NTRS)
Lykos, P.; White, J.
1980-01-01
Data ranging from specific computer capability requirements to opinions about the desirability of a national computer facility are summarized. It is concluded that considerable attention should be given to improving the user-machine interface. Otherwise, increased computer power may not improve the overall effectiveness of the machine user. Significant improvement in throughput requires highly concurrent systems plus the willingness of the user community to develop problem solutions for that kind of architecture. An unanticipated result was the expression of need for an on-going cross-disciplinary users group/forum in order to share experiences and to more effectively communicate needs to the manufacturers.
Sobol-Shikler, Tal; Robinson, Peter
2010-07-01
We present a classification algorithm for inferring affective states (emotions, mental states, attitudes, and the like) from their nonverbal expressions in speech. It is based on the observations that affective states can occur simultaneously and different sets of vocal features, such as intonation and speech rate, distinguish between nonverbal expressions of different affective states. The input to the inference system was a large set of vocal features and metrics that were extracted from each utterance. The classification algorithm conducted independent pairwise comparisons between nine affective-state groups. The classifier used various subsets of metrics of the vocal features and various classification algorithms for different pairs of affective-state groups. Average classification accuracy of the 36 pairwise machines was 75 percent, using 10-fold cross validation. The comparison results were consolidated into a single ranked list of the nine affective-state groups. This list was the output of the system and represented the inferred combination of co-occurring affective states for the analyzed utterance. The inference accuracy of the combined machine was 83 percent. The system automatically characterized over 500 affective state concepts from the Mind Reading database. The inference of co-occurring affective states was validated by comparing the inferred combinations to the lexical definitions of the labels of the analyzed sentences. The distinguishing capabilities of the system were comparable to human performance.
Expression of Shigella flexneri ipaB Gene in Tobacco.
Ohadi, Mandana; Rasouli, Rahimeh; Darzi-Eslam, Elham; Jafari, Anis; Ehsani, Parastoo
2013-04-01
Shigellosis is a leading cause of diarrhea in many developing countries and although the disease can be controlled and managed with antibiotics, the constant emergence of resistant species requiring ever newer antibacterial drugs make development of an effective vaccine necessary. The bacteria are highly contagious and since immunity to Shigella is serotype-specific a multi-serotype vaccine is required for adequate protection. Proteins encoded by Shigella invasion plasmid, which are part of the Type Three Secretion System (TTSS) of this bacteria, are good candidate as vaccine targets since they are both immunogenic and conserved between different Shigella species. The advent of molecular farming, which is a low cost system, has opened up new venues for production of recombinant proteins. In view of the difficulties encountered in expressing IpaB in Escherichia coli (E. coli), the feasibility of the expression of this protein in tobacco has been investigated. The ipaB gene was cloned in place of the Hygromycin gene in pCambia1304 containing GFP as a reporter gene. The vector was then transferred into competent Agrobacterium tumefaciens (A. tumefaciens) strain LBA4404 which was used for agro-infiltration of Nicotiana tobaccum (N. tobaccum) leaves. Transformation was confirmed by expression of GFP. The gene was also cloned in pBAD/geneIII A and transformed E. coli host containing the construct was induced using different amounts of L-arabinose as inducer. Expression of IpaB gene by both hosts was determined by Western blotting using anti-IpaB monoclonal antibody. The data obtained showed that IpaB was expressed in plant leaves but expression in E. coli was not detectable. This study showed that N. tobaccum is capable of expressing this protein without its specific chaperon and in levels detectable by Western blotting.
A Bioinformatics Facility for NASA
NASA Technical Reports Server (NTRS)
Schweighofer, Karl; Pohorille, Andrew
2006-01-01
Building on an existing prototype, we have fielded a facility with bioinformatics technologies that will help NASA meet its unique requirements for biological research. This facility consists of a cluster of computers capable of performing computationally intensive tasks, software tools, databases and knowledge management systems. Novel computational technologies for analyzing and integrating new biological data and already existing knowledge have been developed. With continued development and support, the facility will fulfill strategic NASA s bioinformatics needs in astrobiology and space exploration. . As a demonstration of these capabilities, we will present a detailed analysis of how spaceflight factors impact gene expression in the liver and kidney for mice flown aboard shuttle flight STS-108. We have found that many genes involved in signal transduction, cell cycle, and development respond to changes in microgravity, but that most metabolic pathways appear unchanged.
Zhang, Qunzhou; Shi, Shihong; Liu, Yi; Uyanne, Jettie; Shi, Yufang; Shi, Songtao; Le, Anh D.
2010-01-01
Aside from the well-established self-renewal and multipotent differentiation properties, mesenchymal stem cells exhibit both immunomodulatory and anti-inflammatory roles in several experimental autoimmune and inflammatory diseases. In this study, we isolated a new population of stem cells from human gingiva, a tissue source easily accessible from the oral cavity, namely, gingiva-derived mesenchymal stem cells (GMSCs), which exhibited clonogenicity, self-renewal, and multipotent differentiation capacities. Most importantly, GMSCs were capable of immunomodulatory functions, specifically suppressed peripheral blood lymphocyte proliferation, induced expression of a wide panel of immunosuppressive factors including IL-10, IDO, inducible NO synthase (iNOS), and cyclooxygenase 2 (COX-2) in response to the inflammatory cytokine, IFN-γ. Cell-based therapy using systemic infusion of GMSCs in experimental colitis significantly ameliorated both clinical and histopathological severity of the colonic inflammation, restored the injured gastrointestinal mucosal tissues, reversed diarrhea and weight loss, and suppressed the overall disease activity in mice. The therapeutic effect of GMSCs was mediated, in part, by the suppression of inflammatory infiltrates and inflammatory cytokines/mediators and the increased infiltration of regulatory T cells and the expression of anti-inflammatory cytokine IL-10 at the colonic sites. Taken together, GMSCs can function as an immunomodulatory and anti-inflammatory component of the immune system in vivo and is a promising cell source for cell-based treatment in experimental inflammatory diseases. PMID:19923445
Semantic message oriented middleware for publish/subscribe networks
NASA Astrophysics Data System (ADS)
Li, Han; Jiang, Guofei
2004-09-01
The publish/subscribe paradigm of Message Oriented Middleware provides a loosely coupled communication model between distributed applications. Traditional publish/subscribe middleware uses keywords to match advertisements and subscriptions and does not support deep semantic matching. To this end, we designed and implemented a Semantic Message Oriented Middleware system to provide such capabilities for semantic description and matching. We adopted the DARPA Agent Markup Language and Ontology Inference Layer, a formal knowledge representation language for expressing sophisticated classifications and enabling automated inference, as the topic description language in our middleware system. A simple description logic inference system was implemented to handle the matching process between the subscriptions of subscribers and the advertisements of publishers. Moreover our middleware system also has a security architecture to support secure communication and user privilege control.
Function of the CRISPR-Cas System of the Human Pathogen Clostridium difficile
Boudry, Pierre; Semenova, Ekaterina; Monot, Marc; Datsenko, Kirill A.; Lopatina, Anna; Sekulovic, Ognjen; Ospina-Bedoya, Maicol; Fortier, Louis-Charles; Severinov, Konstantin; Dupuy, Bruno
2015-01-01
ABSTRACT Clostridium difficile is the cause of most frequently occurring nosocomial diarrhea worldwide. As an enteropathogen, C. difficile must be exposed to multiple exogenous genetic elements in bacteriophage-rich gut communities. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems allow bacteria to adapt to foreign genetic invaders. Our recent data revealed active expression and processing of CRISPR RNAs from multiple type I-B CRISPR arrays in C. difficile reference strain 630. Here, we demonstrate active expression of CRISPR arrays in strain R20291, an epidemic C. difficile strain. Through genome sequencing and host range analysis of several new C. difficile phages and plasmid conjugation experiments, we provide evidence of defensive function of the CRISPR-Cas system in both C. difficile strains. We further demonstrate that C. difficile Cas proteins are capable of interference in a heterologous host, Escherichia coli. These data set the stage for mechanistic and physiological analyses of CRISPR-Cas-mediated interactions of important global human pathogen with its genetic parasites. PMID:26330515
A wide range real-time synchronous demodulation system for the dispersion interferometer on HL-2M
NASA Astrophysics Data System (ADS)
Wu, Tongyu; Zhang, Wei; Yin, Zejie
2017-09-01
A real-time synchronous demodulation system has been developed for the dispersion interferometer on a HL-2M tokamak. The system is based on the phase extraction method which uses a ratio of modulation amplitudes. A high-performance field programmable gate array with pipeline process capabilities is used to realize the real time synchronous demodulation algorithm. A fringe jump correction algorithm is applied to follow the fast density changes of the plasma. By using the Peripheral Component Interconnect Express protocol, the electronics can perform real-time density feedback with a temporal resolution of 100 ns. Some experimental results presented show that the electronics can obtain a wide measurement range of 2.28 × 1022 m-2 with high precision.
Detecting Disease Specific Pathway Substructures through an Integrated Systems Biology Approach
Alaimo, Salvatore; Marceca, Gioacchino Paolo; Ferro, Alfredo; Pulvirenti, Alfredo
2017-01-01
In the era of network medicine, pathway analysis methods play a central role in the prediction of phenotype from high throughput experiments. In this paper, we present a network-based systems biology approach capable of extracting disease-perturbed subpathways within pathway networks in connection with expression data taken from The Cancer Genome Atlas (TCGA). Our system extends pathways with missing regulatory elements, such as microRNAs, and their interactions with genes. The framework enables the extraction, visualization, and analysis of statistically significant disease-specific subpathways through an easy to use web interface. Our analysis shows that the methodology is able to fill the gap in current techniques, allowing a more comprehensive analysis of the phenomena underlying disease states. PMID:29657291
de Arruda, Henrique Ferraz; Comin, Cesar Henrique; Miazaki, Mauro; Viana, Matheus Palhares; Costa, Luciano da Fontoura
2015-04-30
A key point in developmental biology is to understand how gene expression influences the morphological and dynamical patterns that are observed in living beings. In this work we propose a methodology capable of addressing this problem that is based on estimating the mutual information and Pearson correlation between the intensity of gene expression and measurements of several morphological properties of the cells. A similar approach is applied in order to identify effects of gene expression over the system dynamics. Neuronal networks were artificially grown over a lattice by considering a reference model used to generate artificial neurons. The input parameters of the artificial neurons were determined according to two distinct patterns of gene expression and the dynamical response was assessed by considering the integrate-and-fire model. As far as single gene dependence is concerned, we found that the interaction between the gene expression and the network topology, as well as between the former and the dynamics response, is strongly affected by the gene expression pattern. In addition, we observed a high correlation between the gene expression and some topological measurements of the neuronal network for particular patterns of gene expression. To our best understanding, there are no similar analyses to compare with. A proper understanding of gene expression influence requires jointly studying the morphology, topology, and dynamics of neurons. The proposed framework represents a first step towards predicting gene expression patterns from morphology and connectivity. Copyright © 2015. Published by Elsevier B.V.
IMPLICATIONS OF CROSS DOMAIN FIRES IN MULTI-DOMAIN BATTLE
2017-04-06
States Air Force 6 April 2017 DISTRIBUTION A. Approved for public release: distribution unlimited. 1 DISCLAIMER The views expressed in this...their cyber capability that will ultimately reinforce their influence and power across the Middle East. In viewing North Korea threat capabilities...land-based assets operating in cross domain denial type operations. In viewing the historical warfare capabilities captured in 13 the case study
Fu, Si-Yao; Yang, Guo-Sheng; Kuai, Xin-Kai
2012-01-01
In this paper, we present a quantitative, highly structured cortex-simulated model, which can be simply described as feedforward, hierarchical simulation of ventral stream of visual cortex using biologically plausible, computationally convenient spiking neural network system. The motivation comes directly from recent pioneering works on detailed functional decomposition analysis of the feedforward pathway of the ventral stream of visual cortex and developments on artificial spiking neural networks (SNNs). By combining the logical structure of the cortical hierarchy and computing power of the spiking neuron model, a practical framework has been presented. As a proof of principle, we demonstrate our system on several facial expression recognition tasks. The proposed cortical-like feedforward hierarchy framework has the merit of capability of dealing with complicated pattern recognition problems, suggesting that, by combining the cognitive models with modern neurocomputational approaches, the neurosystematic approach to the study of cortex-like mechanism has the potential to extend our knowledge of brain mechanisms underlying the cognitive analysis and to advance theoretical models of how we recognize face or, more specifically, perceive other people's facial expression in a rich, dynamic, and complex environment, providing a new starting point for improved models of visual cortex-like mechanism. PMID:23193391
Molecular cloning of Brevundimonas diminuta for efficacy assessment of reverse osmosis devices.
Donofrio, Robert; Saha, Ratul; Bestervelt, Lori; Bagley, Susan
2012-06-01
Brevundimonas diminuta is the test organism specified in the United States Environmental Protection Agency's (USEPA) reverse osmosis (RO) treatment device verification protocol. As non-selective growth medium is employed, enumeration of B. diminuta may be impaired due to interference by indigenous heterotrophic bacteria. Thus the microbial removal capability of the filtration system may be incorrectly assessed. As these treatment devices are used in emergency situations, the health of the public could be compromised. The objective of this study was to develop selective approaches for enumerating viable B. diminuta in test water. Two molecular approaches were investigated: expression of a kanamycin resistance gene and expression of a fluorescent protein gene. The USEPA protocol specifies a 0.3 μm cell size, so the expression of the selective markers were assessed following growth on media designed to induce this small cell diameter. The kan(R) strain was demonstrated to be equivalent to the wild type in cell dimension and survival following exposure to the test water. The kan(R) strain showed equivalent performance to the wild type in the RO protocol indicating that it is a viable alternative surrogate. By utilizing this strain, a more accurate validation of the RO system can be achieved.
Fu, Si-Yao; Yang, Guo-Sheng; Kuai, Xin-Kai
2012-01-01
In this paper, we present a quantitative, highly structured cortex-simulated model, which can be simply described as feedforward, hierarchical simulation of ventral stream of visual cortex using biologically plausible, computationally convenient spiking neural network system. The motivation comes directly from recent pioneering works on detailed functional decomposition analysis of the feedforward pathway of the ventral stream of visual cortex and developments on artificial spiking neural networks (SNNs). By combining the logical structure of the cortical hierarchy and computing power of the spiking neuron model, a practical framework has been presented. As a proof of principle, we demonstrate our system on several facial expression recognition tasks. The proposed cortical-like feedforward hierarchy framework has the merit of capability of dealing with complicated pattern recognition problems, suggesting that, by combining the cognitive models with modern neurocomputational approaches, the neurosystematic approach to the study of cortex-like mechanism has the potential to extend our knowledge of brain mechanisms underlying the cognitive analysis and to advance theoretical models of how we recognize face or, more specifically, perceive other people's facial expression in a rich, dynamic, and complex environment, providing a new starting point for improved models of visual cortex-like mechanism.
NASA Astrophysics Data System (ADS)
Zimmermann, Patrick; Walowski, Christoph; Enders, Sabine
2018-03-01
The Lattice Cluster Theory (LCT) provides a powerful tool to predict thermodynamic properties of large molecules (e.g., polymers) of different molecular architectures. When the pure-component parameters of a certain compound have been derived by adjustment to experimental data and the number of atoms is held constant within the molecule so that only the architecture is changed, the LCT is capable of predicting the properties of isomers without further parameter adjustment just based on the incorporation of molecular architecture. Trying to predict the thermodynamic properties of smaller molecules, one might face some challenges, which are addressed in this contribution. After factoring out the mean field term of the partition function, the LCT poses an expression that involves corrections to the mean field depending on molecular architecture, resulting in the free energy formally being expressed as a double series expansion in lattice coordination number z and interaction energy ɛ ˜ . In the process of deriving all contributing sub-structures within a molecule, some parts have been neglected to this point due to the double series expansion being truncated after the order ɛ˜ 2z-2. We consider the neglected parts that are of the order z-3 and reformulate the expression for the free energy within the LCT to achieve a higher predictive capability of the theory when it comes to small isomers and compressible systems. The modified version was successfully applied for phase equilibrium calculations of binary mixtures composed of linear and branched alkanes.
Notes on stochastic (bio)-logic gates: computing with allosteric cooperativity
Agliari, Elena; Altavilla, Matteo; Barra, Adriano; Dello Schiavo, Lorenzo; Katz, Evgeny
2015-01-01
Recent experimental breakthroughs have finally allowed to implement in-vitro reaction kinetics (the so called enzyme based logic) which code for two-inputs logic gates and mimic the stochastic AND (and NAND) as well as the stochastic OR (and NOR). This accomplishment, together with the already-known single-input gates (performing as YES and NOT), provides a logic base and paves the way to the development of powerful biotechnological devices. However, as biochemical systems are always affected by the presence of noise (e.g. thermal), standard logic is not the correct theoretical reference framework, rather we show that statistical mechanics can work for this scope: here we formulate a complete statistical mechanical description of the Monod-Wyman-Changeaux allosteric model for both single and double ligand systems, with the purpose of exploring their practical capabilities to express noisy logical operators and/or perform stochastic logical operations. Mixing statistical mechanics with logics, and testing quantitatively the resulting findings on the available biochemical data, we successfully revise the concept of cooperativity (and anti-cooperativity) for allosteric systems, with particular emphasis on its computational capabilities, the related ranges and scaling of the involved parameters and its differences with classical cooperativity (and anti-cooperativity). PMID:25976626
A high throughput array microscope for the mechanical characterization of biomaterials
NASA Astrophysics Data System (ADS)
Cribb, Jeremy; Osborne, Lukas D.; Hsiao, Joe Ping-Lin; Vicci, Leandra; Meshram, Alok; O'Brien, E. Tim; Spero, Richard Chasen; Taylor, Russell; Superfine, Richard
2015-02-01
In the last decade, the emergence of high throughput screening has enabled the development of novel drug therapies and elucidated many complex cellular processes. Concurrently, the mechanobiology community has developed tools and methods to show that the dysregulation of biophysical properties and the biochemical mechanisms controlling those properties contribute significantly to many human diseases. Despite these advances, a complete understanding of the connection between biomechanics and disease will require advances in instrumentation that enable parallelized, high throughput assays capable of probing complex signaling pathways, studying biology in physiologically relevant conditions, and capturing specimen and mechanical heterogeneity. Traditional biophysical instruments are unable to meet this need. To address the challenge of large-scale, parallelized biophysical measurements, we have developed an automated array high-throughput microscope system that utilizes passive microbead diffusion to characterize mechanical properties of biomaterials. The instrument is capable of acquiring data on twelve-channels simultaneously, where each channel in the system can independently drive two-channel fluorescence imaging at up to 50 frames per second. We employ this system to measure the concentration-dependent apparent viscosity of hyaluronan, an essential polymer found in connective tissue and whose expression has been implicated in cancer progression.
Notes on stochastic (bio)-logic gates: computing with allosteric cooperativity.
Agliari, Elena; Altavilla, Matteo; Barra, Adriano; Dello Schiavo, Lorenzo; Katz, Evgeny
2015-05-15
Recent experimental breakthroughs have finally allowed to implement in-vitro reaction kinetics (the so called enzyme based logic) which code for two-inputs logic gates and mimic the stochastic AND (and NAND) as well as the stochastic OR (and NOR). This accomplishment, together with the already-known single-input gates (performing as YES and NOT), provides a logic base and paves the way to the development of powerful biotechnological devices. However, as biochemical systems are always affected by the presence of noise (e.g. thermal), standard logic is not the correct theoretical reference framework, rather we show that statistical mechanics can work for this scope: here we formulate a complete statistical mechanical description of the Monod-Wyman-Changeaux allosteric model for both single and double ligand systems, with the purpose of exploring their practical capabilities to express noisy logical operators and/or perform stochastic logical operations. Mixing statistical mechanics with logics, and testing quantitatively the resulting findings on the available biochemical data, we successfully revise the concept of cooperativity (and anti-cooperativity) for allosteric systems, with particular emphasis on its computational capabilities, the related ranges and scaling of the involved parameters and its differences with classical cooperativity (and anti-cooperativity).
Notes on stochastic (bio)-logic gates: computing with allosteric cooperativity
NASA Astrophysics Data System (ADS)
Agliari, Elena; Altavilla, Matteo; Barra, Adriano; Dello Schiavo, Lorenzo; Katz, Evgeny
2015-05-01
Recent experimental breakthroughs have finally allowed to implement in-vitro reaction kinetics (the so called enzyme based logic) which code for two-inputs logic gates and mimic the stochastic AND (and NAND) as well as the stochastic OR (and NOR). This accomplishment, together with the already-known single-input gates (performing as YES and NOT), provides a logic base and paves the way to the development of powerful biotechnological devices. However, as biochemical systems are always affected by the presence of noise (e.g. thermal), standard logic is not the correct theoretical reference framework, rather we show that statistical mechanics can work for this scope: here we formulate a complete statistical mechanical description of the Monod-Wyman-Changeaux allosteric model for both single and double ligand systems, with the purpose of exploring their practical capabilities to express noisy logical operators and/or perform stochastic logical operations. Mixing statistical mechanics with logics, and testing quantitatively the resulting findings on the available biochemical data, we successfully revise the concept of cooperativity (and anti-cooperativity) for allosteric systems, with particular emphasis on its computational capabilities, the related ranges and scaling of the involved parameters and its differences with classical cooperativity (and anti-cooperativity).
Three-Dimensional Photoactivated Localization Microscopy with Genetically Expressed Probes
Temprine, Kelsey; York, Andrew G.; Shroff, Hari
2017-01-01
Photoactivated localization microscopy (PALM) and related single-molecule imaging techniques enable biological image acquisition at ~20 nm lateral and ~50–100 nm axial resolution. Although such techniques were originally demonstrated on single imaging planes close to the coverslip surface, recent technical developments now enable the 3D imaging of whole fixed cells. We describe methods for converting a 2D PALM into a system capable of acquiring such 3D images, with a particular emphasis on instrumentation that is compatible with choosing relatively dim, genetically expressed photoactivatable fluorescent proteins (PA-FPs) as PALM probes. After reviewing the basics of 2D PALM, we detail astigmatic and multiphoton imaging approaches well suited to working with PA-FPs. We also discuss the use of open-source localization software appropriate for 3D PALM. PMID:25391803
Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals.
Hsieh, Ju-Liang; Chen, Ching-Yi; Chiu, Meng-Hsuen; Chein, Mei-Fang; Chang, Jo-Shu; Endo, Ginro; Huang, Chieh-Chen
2009-01-30
A specific mercuric ion binding protein (MerP) originating from transposon TnMERI1 of Bacillus megaterium strain MB1 isolated from Minamata Bay displayed good adsorption capability for a variety of heavy metals. In this study, the Gram-positive MerP protein was expressed in transgenic Arabidopsis to create a model system for phytoremediation of heavy metals. Under control of an actin promoter, the transgenic Arabidpsis showed higher tolerance and accumulation capacity for mercury, cadium and lead when compared with the control plant. Results from confocal microscopy analysis also indicate that MerP was localized at the cell membrane and vesicles of plant cells. The developed transgenic plants possessing excellent metal-accumulative ability could have potential applications in decontamination of heavy metals.
Sereni, Lucia; Castiello, Maria Carmina; Marangoni, Francesco; Anselmo, Achille; di Silvestre, Dario; Motta, Sara; Draghici, Elena; Mantero, Stefano; Thrasher, Adrian J; Giliani, Silvia; Aiuti, Alessandro; Mauri, Pierluigi; Notarangelo, Luigi D; Bosticardo, Marita; Villa, Anna
2018-02-06
Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency characterized by eczema, infections, and susceptibility to autoimmunity and malignancies. Thrombocytopenia is a constant finding, but its pathogenesis remains elusive. To dissect the basis of the WAS platelet defect, we used a novel conditional mouse model (CoWas) lacking Wiskott-Aldrich syndrome protein (WASp) only in the megakaryocytic lineage in the presence of a normal immunologic environment, and in parallel we analyzed samples obtained from patients with WAS. Phenotypic and functional characterization of megakaryocytes and platelets in mutant CoWas mice and patients with WAS with and without autoantibodies was performed. Platelet antigen expression was examined through a protein expression profile and cluster proteomic interaction network. Platelet immunogenicity was tested by using ELISAs and B-cell and platelet cocultures. CoWas mice showed increased megakaryocyte numbers and normal thrombopoiesis in vitro, but WASp-deficient platelets had short lifespan and high expression of activation markers. Proteomic analysis identified signatures compatible with defects in cytoskeletal reorganization and metabolism yet surprisingly increased antigen-processing capabilities. In addition, WASp-deficient platelets expressed high levels of surface and soluble CD40 ligand and were capable of inducing B-cell activation in vitro. WASp-deficient platelets were highly immunostimulatory in mice and triggered the generation of antibodies specific for WASp-deficient platelets, even in the context of a normal immune system. Patients with WAS also showed platelet hyperactivation and increased plasma soluble CD40 ligand levels correlating with the presence of autoantibodies. Overall, these findings suggest that intrinsic defects in WASp-deficient platelets decrease their lifespan and dysregulate immune responses, corroborating the role of platelets as modulators of inflammation and immunity. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Bessling, Seneca; Thielen, Peter; Zhang, Sherry; Wolfe, Joshua
2017-01-01
Many biotechnology capabilities are limited by stringent storage needs of reagents, largely prohibiting use outside of specialized laboratories. Focusing on a large class of protein-based biotechnology applications, we address this issue by developing a method for preserving cell-free protein expression systems for months above room temperature. Our approach realizes unprecedented long-term stability at elevated temperatures by leveraging the sugar alcohol trehalose, a simple, low-cost, open-air drying step, and strategic separation of reaction components during drying. The resulting preservation capacity enables efficient production of a wide range of on-demand proteins under adverse conditions, for instance during emergency outbreaks or in remote locations. To demonstrate application potential, we use cell-free reagents subjected to months of exposure at 37°C and atmospheric conditions to produce sufficient concentrations of a pyocin protein to kill Pseudomonas aeruginosa, a troublesome pathogen for traumatic and burn wound injuries. Our work makes possible new biotechnology applications that demand ruggedness and scalability. PMID:28446704
NASA Technical Reports Server (NTRS)
Stetson, Howard K.; Frank, Jeremy; Cornelius, Randy; Haddock, Angie; Wang, Lui; Garner, Larry
2015-01-01
NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control experiment on-board the International Space Station that demonstrated single action intelligent procedures for crew command and control. The target problem was to enable crew initialization of a facility class rack with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as initialization of a medical facility to respond to a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). Utilization of Draper Laboratory's Timeliner software, deployed on-board the ISS within the Command and Control (C&C) computers and the Payload computers, allowed development of the automated procedures specific to ISS without having to certify and employ novel software for procedure development and execution. The procedures contained the ground procedure logic and actions as possible to include fault detection and recovery capabilities.
A Modified Consumer Inkjet for Spatiotemporal Control of Gene Expression
Cohen, Daniel J.; Morfino, Roberto C.; Maharbiz, Michel M.
2009-01-01
This paper presents a low-cost inkjet dosing system capable of continuous, two-dimensional spatiotemporal regulation of gene expression via delivery of diffusible regulators to a custom-mounted gel culture of E. coli. A consumer-grade, inkjet printer was adapted for chemical printing; E. coli cultures were grown on 750 µm thick agar embedded in micro-wells machined into commercial compact discs. Spatio-temporal regulation of the lac operon was demonstrated via the printing of patterns of lactose and glucose directly into the cultures; X-Gal blue patterns were used for visual feedback. We demonstrate how the bistable nature of the lac operon's feedback, when perturbed by patterning lactose (inducer) and glucose (inhibitor), can lead to coordination of cell expression patterns across a field in ways that mimic motifs seen in developmental biology. Examples of this include sharp boundaries and the generation of traveling waves of mRNA expression. To our knowledge, this is the first demonstration of reaction-diffusion effects in the well-studied lac operon. A finite element reaction-diffusion model of the lac operon is also presented which predicts pattern formation with good fidelity. PMID:19763256
Besson, Vanessa; Smeriglio, Piera; Wegener, Amélie; Relaix, Frédéric; Nait Oumesmar, Brahim; Sassoon, David A.; Marazzi, Giovanna
2011-01-01
A variety of markers are invaluable for identifying and purifying stem/progenitor cells. Here we report the generation of a murine reporter line driven by Pw1 that reveals cycling and quiescent progenitor/stem cells in all adult tissues thus far examined, including the intestine, blood, testis, central nervous system, bone, skeletal muscle, and skin. Neurospheres generated from the adult PW1-reporter mouse show near 100% reporter-gene expression following a single passage. Furthermore, epidermal stem cells can be purified solely on the basis of reporter-gene expression. These cells are clonogenic, repopulate the epidermal stem-cell niches, and give rise to new hair follicles. Finally, we demonstrate that only PW1 reporter-expressing epidermal cells give rise to follicles that are capable of self-renewal following injury. Our data demonstrate that PW1 serves as an invaluable marker for competent self-renewing stem cells in a wide array of adult tissues, and the PW1-reporter mouse serves as a tool for rapid stem cell isolation and characterization. PMID:21709251
A method for generating new datasets based on copy number for cancer analysis.
Kim, Shinuk; Kon, Mark; Kang, Hyunsik
2015-01-01
New data sources for the analysis of cancer data are rapidly supplementing the large number of gene-expression markers used for current methods of analysis. Significant among these new sources are copy number variation (CNV) datasets, which typically enumerate several hundred thousand CNVs distributed throughout the genome. Several useful algorithms allow systems-level analyses of such datasets. However, these rich data sources have not yet been analyzed as deeply as gene-expression data. To address this issue, the extensive toolsets used for analyzing expression data in cancerous and noncancerous tissue (e.g., gene set enrichment analysis and phenotype prediction) could be redirected to extract a great deal of predictive information from CNV data, in particular those derived from cancers. Here we present a software package capable of preprocessing standard Agilent copy number datasets into a form to which essentially all expression analysis tools can be applied. We illustrate the use of this toolset in predicting the survival time of patients with ovarian cancer or glioblastoma multiforme and also provide an analysis of gene- and pathway-level deletions in these two types of cancer.
Zirpel, Bastian; Stehle, Felix; Kayser, Oliver
2015-09-01
The Δ9-tetrahydrocannabinolic acid synthase (THCAS) from Cannabis sativa was expressed intracellularly in different organisms to investigate the potential of a biotechnological production of Δ9-tetrahydrocannabinolic acid (THCA) using whole cells. Functional expression of THCAS was obtained in Saccharomyces cerevisiae and Pichia (Komagataella) pastoris using a signal peptide from the vacuolar protease, proteinase A. No functional expression was achieved in Escherichia coli. The highest volumetric activities obtained were 98 pkat ml(-1) (intracellular) and 44 pkat ml(-1) (extracellular) after 192 h of cultivation at 15 °C using P. pastoris cells. Low solubility of CBGA prevents the THCAS application in aqueous cell-free systems, thus whole cells were used for a bioconversion of cannabigerolic acid (CBGA) to THCA. Finally, 1 mM (0.36 g THCA l(-1)) THCA could be produced by 10.5 gCDW l(-1) before enzyme activity was lost. Whole cells of P. pastoris offer the capability of synthesizing pharmaceutical THCA production.
The visual pigments of the West Indian manatee (Trichechus manatus).
Newman, Lucy A; Robinson, Phyllis R
2006-10-01
Manatees are unique among the fully aquatic marine mammals in that they are herbivorous creatures, with hunting strategies restricted to grazing on sea-grasses. Since the other groups of (carnivorous) marine mammals have been found to possess various visual system adaptations to their unique visual environments, it was of interest to investigate the visual capability of the manatee. Previous work, both behavioral (Griebel & Schmid, 1996), and ultrastructural (Cohen, Tucker, & Odell, 1982; unpublished work cited by Griebel & Peichl, 2003), has suggested that manatees have the dichromatic color vision typical of diurnal mammals. This study uses molecular techniques to investigate the cone visual pigments of the manatee. The aim was to clone and sequence cone opsins from the retina, and, if possible, express and reconstitute functional visual pigments to perform spectral analysis. Both LWS and SWS cone opsins were cloned and sequenced from manatee retinae, which, upon expression and spectral analysis, had lambda(max) values of 555 and 410 nm, respectively. The expression of both the LWS and SWS cone opsin in the manatee retina is unique as both pinnipeds and cetaceans only express a cone LWS opsin.
Protonation free energy levels in complex molecular systems.
Antosiewicz, Jan M
2008-04-01
All proteins, nucleic acids, and other biomolecules contain residues capable of exchanging protons with their environment. These proton transfer phenomena lead to pH sensitivity of many molecular processes underlying biological phenomena. In the course of biological evolution, Nature has invented some mechanisms to use pH gradients to regulate biomolecular processes inside cells or in interstitial fluids. Therefore, an ability to model protonation equilibria in molecular systems accurately would be of enormous value for our understanding of biological processes and for possible rational influence on them, like in developing pH dependent drugs to treat particular diseases. This work presents a derivation, by thermodynamic and statistical mechanical methods, of an expression for the free energy of a complex molecular system at arbitrary ionization state of its titratable residues. This constitutes one of the elements of modeling protonation equilibria. Starting from a consideration of a simple acid-base equilibrium of a model compound with a single tritratable group, we arrive at an expression which is of general validity for complex systems. The only approximation used in this derivation is the postulating that the interaction energy between any pair of titratable sites does not depend on the protonation states of all the remaining ionizable groups.
Boase, Murray R; Brendolise, Cyril; Wang, Lei; Ngo, Hahn; Espley, Richard V; Hellens, Roger P; Schwinn, Kathy E; Davies, Kevin M; Albert, Nick W
2015-10-01
The Md - MYB10 R6 gene from apple is capable of self-regulating in heterologous host species and enhancing anthocyanin pigmentation, but the activity of MYB10 is dependent on endogenous protein partners. Coloured foliage due to anthocyanin pigments (bronze/red/black) is an attractive trait that is often lacking in many bedding, ornamental and horticultural plants. Apples (Malus × domestica) containing an allelic variant of the anthocyanin regulator, Md-MYB10 R6 , are highly pigmented throughout the plant, due to autoregulation by MYB10 upon its own promoter. We investigated whether Md-MYB10 R6 from apple is capable of functioning within the heterologous host Petunia hybrida to generate plants with novel pigmentation patterns. The Md-MYB10 R6 transgene (MYB10-R6 pro :MYB10:MYB10 term ) activated anthocyanin synthesis when transiently expressed in Antirrhinum rosea (dorsea) petals and petunia leaf discs. Stable transgenic petunias containing Md-MYB10 R6 lacked foliar pigmentation but had coloured flowers, complementing the an2 phenotype of 'Mitchell' petunia. The absence of foliar pigmentation was due to the failure of the Md-MYB10 R6 gene to self-activate in vegetative tissues, suggesting that additional protein partners are required for Md-MYB10 to activate target genes in this heterologous system. In petunia flowers, where endogenous components including MYB-bHLH-WDR (MBW) proteins were present, expression of the Md-MYB10 R6 promoter was initiated, allowing auto-regulation to occur and activating anthocyanin production. Md-MYB10 is capable of operating within the petunia MBW gene regulation network that controls the expression of the anthocyanin biosynthesis genes, AN1 (bHLH) and MYBx (R3-MYB repressor) in petals.
Li, Siyuan; Gu, Zhuoyu; Xiao, Zhiwei; Zhou, Ting; Li, Jun; Sun, Kan
2015-01-01
To investigate whether celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, can attenuate proliferation, migration, invasion and MMP-14 expression in pancreatic cancer cells PANC-1 and the possible anti-tumor mechanism of celecoxib. Human pancreatic cancer cell line PANC-1 cells were treated with diverse concentrations of celecoxib (20, 60, 100 μmol/L). Cell proliferation, invasion and migration capabilities were measured by MTT colorimetry, transwell invasion assay, and scratch assay separately. At the same time, the protein expression of COX-2 and MMP-14 was assessed by ELISA. The capabilities of proliferation, invasion and migration in PANC-1 cells were attenuated in a concentration-dependent manner after treated with celecoxib, followed by the down-regulation of the protein expression of COX-2 and MMP-14. In addition, MMP-14 expression was significantly positively correlated with COX-2 expression. COX-2 inhibitor celecoxib can inhibit the proliferation, invasion and migration of PANC-1 cells via down-regulating the expression of MMP-14 in a concentration-dependent manner, thus contributing to its anti-tumor effect in pancreatic cancer.
Kunz, Miriam; Faltermeier, Nicole; Lautenbacher, Stefan
2012-02-01
The ability to facially communicate physical distress (e.g. pain) can be essential to ensure help, support and clinical treatment for the individual experiencing physical distress. So far, it is not known to which degree this ability represents innate and biologically prepared programs or whether it requires visual learning. Here, we address this question by studying evoked and voluntary facial expressions of pain in congenitally blind (N=21) and sighted (N=42) individuals. The repertoire of evoked facial expressions was comparable in congenitally blind and sighted individuals; however, blind individuals were less capable of facially encoding different intensities of experimental pain. Moreover, blind individuals were less capable of voluntarily modulating their pain expression. We conclude that the repertoire of facial muscles being activated during pain is biologically prepared. However, visual learning is a prerequisite in order to encode different intensities of physical distress as well as for up- and down-regulation of one's facial expression. Copyright © 2011 Elsevier B.V. All rights reserved.
Wallin, Patric; Zandén, Carl; Carlberg, Björn; Hellström Erkenstam, Nina; Liu, Johan; Gold, Julie
2012-01-01
The properties of a cell’s microenvironment are one of the main driving forces in cellular fate processes and phenotype expression invivo. The ability to create controlled cell microenvironments invitro becomes increasingly important for studying or controlling phenotype expression in tissue engineering and drug discovery applications. This includes the capability to modify material surface properties within well-defined liquid environments in cell culture systems. One successful approach to mimic extra cellular matrix is with porous electrospun polymer fiber scaffolds, while microfluidic networks have been shown to efficiently generate spatially and temporally defined liquid microenvironments. Here, a method to integrate electrospun fibers with microfluidic networks was developed in order to form complex cell microenvironments with the capability to vary relevant parameters. Spatially defined regions of electrospun fibers of both aligned and random orientation were patterned on glass substrates that were irreversibly bonded to microfluidic networks produced in poly-dimethyl-siloxane. Concentration gradients obtained in the fiber containing channels were characterized experimentally and compared with values obtained by computational fluid dynamic simulations. Velocity and shear stress profiles, as well as vortex formation, were calculated to evaluate the influence of fiber pads on fluidic properties. The suitability of the system to support cell attachment and growth was demonstrated with a fibroblast cell line. The potential of the platform was further verified by a functional investigation of neural stem cell alignment in response to orientation of electrospun fibers versus a microfluidic generated chemoattractant gradient of stromal cell-derived factor 1 alpha. The described method is a competitive strategy to create complex microenvironments invitro that allow detailed studies on the interplay of topography, substrate surface properties, and soluble microenvironment on cellular fate processes. PMID:23781291
Michelin, Severino; Gallegos, Cristina E; Dubner, Diana; Favier, Benoit; Carosella, Edgardo D
2009-12-01
Human leukocyte antigen G (HLA-G) is a nonclassical HLA class I molecule involved in fetus protection from the maternal immune system, transplant tolerance, and viral and tumoral immune escape. Tumor-specific HLA-G expression has been described for a wide variety of malignancies, including melanomas. The aim of this study was to evaluate whether ionizing radiation (IR) could modulate the surface expression of HLA-G1 in a human melanoma cell line that expresses endogenously membrane-bound HLA-G1. For this purpose, cells were exposed to increasing doses of gamma-irradiation (0-20 Gy) and HLA-G1 levels at the plasma membrane were analyzed at different times postirradiation by flow cytometry. HLA-G total expression and the presence of the soluble form of HLA-G1 (sHLA-G1) in the culture medium of irradiated cells were also evaluated. IR was capable of downregulating cell surface and total HLA-G levels, with a concomitant increase of sHLA-G1 in the medium. These results could indicate that gamma-irradiation decreases HLA-G1 surface levels by enhancing the proteolytic cleavage of this molecule.
Transcriptome analysis of Vibrio parahaemolyticus in type III secretion system 1 inducing conditions
Nydam, Seth D.; Shah, Devendra H.; Call, Douglas R.
2014-01-01
Vibrio parahaemolyticus is an emerging bacterial pathogen capable of causing inflammatory gastroenteritis, wound infections, and septicemia. As a food-borne illness, infection is most frequently associated with the consumption of raw or undercooked seafood, particularly shellfish. It is the primary cause of Vibrio-associated food-borne illness in the United States and the leading cause of food-borne illness in Japan. The larger of its two chromosomes harbors a set of genes encoding type III section system 1 (T3SS1), a virulence factor present in all V. parahaemolyticus strains that is similar to the Yersinia ysc T3SS. T3SS1 translocates effector proteins into eukaryotic cells where they induce changes to cellular physiology and modulate host-pathogen interactions. T3SS1 is also responsible for cytotoxicity toward several different cultured cell lines as well as mortality in a mouse model. Herein we used RNA-seq to obtain global transcriptome patterns of V. parahaemolyticus under conditions that either induce [growth in Dulbecco's Modified Eagle Medium (DMEM) media, in trans expression of transcriptional regulator exsA] or repress T3SS1 expression (growth in LB-S media, in trans exsD expression) and during infection of HeLa cells over time. Comparative transcriptomic analysis demonstrated notable differences in the expression patterns under inducing conditions and was also used to generate an expression profile of V. parahaemolyticus during infection of HeLa cells. In addition, we identified several new genes that are associated with T3SS1 expression and may warrant further study. PMID:24478989
Ede, Christopher; Chen, Ximin; Lin, Meng-Yin; Chen, Yvonne Y
2016-05-20
Inducible transcription systems play a crucial role in a wide array of synthetic biology circuits. However, the majority of inducible promoters are constructed from a limited set of tried-and-true promoter parts, which are susceptible to common shortcomings such as high basal expression levels (i.e., leakiness). To expand the toolbox for regulated mammalian gene expression and facilitate the construction of mammalian genetic circuits with precise functionality, we quantitatively characterized a panel of eight core promoters, including sequences with mammalian, viral, and synthetic origins. We demonstrate that this selection of core promoters can provide a wide range of basal gene expression levels and achieve a gradient of fold-inductions spanning 2 orders of magnitude. Furthermore, commonly used parts such as minimal CMV and minimal SV40 promoters were shown to achieve robust gene expression upon induction, but also suffer from high levels of leakiness. In contrast, a synthetic promoter, YB_TATA, was shown to combine low basal expression with high transcription rate in the induced state to achieve significantly higher fold-induction ratios compared to all other promoters tested. These behaviors remain consistent when the promoters are coupled to different genetic outputs and different response elements, as well as across different host-cell types and DNA copy numbers. We apply this quantitative understanding of core promoter properties to the successful engineering of human T cells that respond to antigen stimulation via chimeric antigen receptor signaling specifically under hypoxic environments. Results presented in this study can facilitate the design and calibration of future mammalian synthetic biology systems capable of precisely programmed functionality.
Preparing for Mars: The Evolvable Mars Campaign 'Proving Ground' Approach
NASA Technical Reports Server (NTRS)
Bobskill, Marianne R.; Lupisella, Mark L.; Mueller, Rob P.; Sibille, Laurent; Vangen, Scott; Williams-Byrd, Julie
2015-01-01
As the National Aeronautics and Space Administration (NASA) prepares to extend human presence beyond Low Earth Orbit, we are in the early stages of planning missions within the framework of an Evolvable Mars Campaign. Initial missions would be conducted in near-Earth cis-lunar space and would eventually culminate in extended duration crewed missions on the surface of Mars. To enable such exploration missions, critical technologies and capabilities must be identified, developed, and tested. NASA has followed a principled approach to identify critical capabilities and a "Proving Ground" approach is emerging to address testing needs. The Proving Ground is a period subsequent to current International Space Station activities wherein exploration-enabling capabilities and technologies are developed and the foundation is laid for sustained human presence in space. The Proving Ground domain essentially includes missions beyond Low Earth Orbit that will provide increasing mission capability while reducing technical risks. Proving Ground missions also provide valuable experience with deep space operations and support the transition from "Earth-dependence" to "Earth-independence" required for sustainable space exploration. A Technology Development Assessment Team identified a suite of critical technologies needed to support the cadence of exploration missions. Discussions among mission planners, vehicle developers, subject-matter-experts, and technologists were used to identify a minimum but sufficient set of required technologies and capabilities. Within System Maturation Teams, known challenges were identified and expressed as specific performance gaps in critical capabilities, which were then refined and activities required to close these critical gaps were identified. Analysis was performed to identify test and demonstration opportunities for critical technical capabilities across the Proving Ground spectrum of missions. This suite of critical capabilities is expected to provide the foundation required to enable a variety of possible destinations and missions consistent with the Evolvable Mars Campaign.. The International Space Station will be used to the greatest extent possible for exploration capability and technology development. Beyond this, NASA is evaluating a number of options for Proving Ground missions. An "Asteroid Redirect Mission" will demonstrate needed capabilities (e.g., Solar Electric Propulsion) and transportation systems for the crew (i.e., Space Launch System and Orion) and for cargo (i.e., Asteroid Redirect Vehicle). The Mars 2020 mission and follow-on robotic precursor missions will gather Mars surface environment information and will mature technologies. NASA is considering emplacing a small pressurized module in cis-lunar space to support crewed operations of increasing duration and to serve as a platform for critical exploration capabilities testing (e.g., radiation mitigation; extended duration deep space habitation). In addition, "opportunistic mission operations" could demonstrate capabilities not on the Mars critical path that may, nonetheless, enhance exploration operations (e.g., teleoperations, crew assisted Mars sample return). The Proving Ground may also include "pathfinder" missions to test and demonstrate specific capabilities at Mars (e.g., entry, descent, and landing). This paper describes the (1) process used to conduct an architecture-driven technology development assessment, (2) exploration mission critical and supporting capabilities, and (3) approach for addressing test and demonstration opportunities encompassing the spectrum of flight elements and destinations consistent with the Evolvable Mars Campaign.
Tamilzhalagan, Sembulingam; Rathinam, Dhanasekaran; Ganesan, Kumaresan
2017-06-01
Frequent amplification of 7q21-22 genomic region is known in gastric cancer. Multiple genes including SHFM1, MCM7, and COL1A2 were reported to be the potential cancer candidate genes of this 20 Mb amplicon. This amplicon has two polycistrionic miRNA clusters and in the present study, miR-106b-25 cluster located in intron-13 of MCM7 was identified to express in gastric tumors. Among the 7q21-22 candidate genes, SHFM1 and MCM7 are expressed in intestinal type gastric tumors, whereas COL1A2 is expressed in diffuse type gastric tumors. Across gastric tumors, miR-25 was identified to co-express with MCM7 and SHFM1. On the other hand, negative correlation was observed between miR-25 and COL1A2 expression. miR-25 originating from MCM7 was found capable of selectively targeting the adjacent gene COL1A2. Silencing of miR-25 was found capable of elevating the expression of COL1A2 and inhibiting E-cadherin expression, revealing the diffuse type gastric cancer suppressive role conferred by miR-25. miR-25 was also found to suppress p53, and activate c-Src revealing its intestinal type gastric cancer associated oncogenic functions. Genome-wide expression profiling upon miR-25 silencing reveals that miR-25 is capable of suppressing 40 genes which are co-expressed with COL1A2, involved in epithelial to mesenchymal transition and angiogenesis which are the typical diffuse type gastric cancer features. The results clearly demonstrate 7q21-22 amplification, MCM7, and its intronic miR-25 are the major molecular switches involved in the complex oncogenic circuits of gastric cancer. © 2017 Wiley Periodicals, Inc.
Omidfar, Kobra; Rasaee, Mohhamad Javad; Kashanian, Soheila; Paknejad, Malieheh; Bathaie, Zahra
2007-01-01
Camelids have a unique immune system capable of producing heavy-chain antibodies lacking the light chains and CH1 (constant heavy-chain domain 1). It has been shown that, in contrast with conventional antibody fragments, the variable domains of these heavy-chain antibodies are functional at or after exposure to high temperatures. In the present study, the VHH (variable domain of heavy-chain antibody) camel antibody was subcloned into vector Ppiczc and expressed in Pichia pastoris. ORB1-83 VHH antibody recognizes the external domain of the mutant EGFR [EGF (epidermal growth factor) receptor], EGFR VIII. This tumour-specific antigen is ligand-independent, contains a constitutively active tyrosine kinase domain and has been shown to be present in a number of human malignancies. We report here that, although expression from P. pastoris resulted in a significantly increased level of expression of the anti-EGFR VIII VHH antibodies compared with Escherichia coli [Omidfar, Rasaee, Modjtahedi, Forouzandeh, Taghikhani, Bakhtiari, Paknejad and Kashanian (2004) Tumor Biol. 25, 179-187; Omidfar, Rasaee, Modjtahedi, Forouzandeh, Taghikhani and Golmakany (2004) Tumor Biol. 25, 296-305], this antibody selectively bound to the EGFR VIII peptide and reacted specifically with the immunoaffinity-purified antigen from non-small-cell lung cancer. Furthermore, thermal denaturation stability and CD spectra analysis of the Camelus bactrianus (Bactrian camel) VHH and heavy-chain antibodies at different temperature proved reversibility and binding activity after heat denaturation. Our results indicate that the P. pastoris expression system may be useful for the expression of camel single domain antibody and the ability of the expressed protein to reversibly melt without aggregation, allowing it to regain binding activity after heat denaturation.
Inhibited Carnitine Synthesis Causes Systemic Alteration of Nutrient Metabolism in Zebrafish
Li, Jia-Min; Li, Ling-Yu; Qin, Xuan; Degrace, Pascal; Demizieux, Laurent; Limbu, Samwel M.; Wang, Xin; Zhang, Mei-Ling; Li, Dong-Liang; Du, Zhen-Yu
2018-01-01
Impaired mitochondrial fatty acid β-oxidation has been correlated with many metabolic syndromes, and the metabolic characteristics of the mammalian models of mitochondrial dysfunction have also been intensively studied. However, the effects of the impaired mitochondrial fatty acid β-oxidation on systemic metabolism in teleost have never been investigated. In the present study, we established a low-carnitine zebrafish model by feeding fish with mildronate as a specific carnitine synthesis inhibitor [0.05% body weight (BW)/d] for 7 weeks, and the systemically changed nutrient metabolism, including carnitine and triglyceride (TG) concentrations, fatty acid (FA) β-oxidation capability, and other molecular and biochemical assays of lipid, glucose, and protein metabolism, were measured. The results indicated that mildronate markedly decreased hepatic carnitine concentrations while it had no effect in muscle. Liver TG concentrations increased by more than 50% in mildronate-treated fish. Mildronate decreased the efficiency of liver mitochondrial β-oxidation, increased the hepatic mRNA expression of genes related to FA β-oxidation and lipolysis, and decreased the expression of lipogenesis genes. Mildronate decreased whole body glycogen content, increased glucose metabolism rate, and upregulated the expression of glucose uptake and glycolysis genes. Mildronate also increased whole body protein content and hepatic mRNA expression of mechanistic target of rapamycin (mtor), and decreased the expression of a protein catabolism-related gene. Liver, rather than muscle, was the primary organ targeted by mildronate. In short, mildronate-induced hepatic inhibited carnitine synthesis in zebrafish caused decreased mitochondrial FA β-oxidation efficiency, greater lipid accumulation, and altered glucose and protein metabolism. This reveals the key roles of mitochondrial fatty acid β-oxidation in nutrient metabolism in fish, and this low-carnitine zebrafish model could also be used as a novel fish model for future metabolism studies. PMID:29867554
Inhibited Carnitine Synthesis Causes Systemic Alteration of Nutrient Metabolism in Zebrafish.
Li, Jia-Min; Li, Ling-Yu; Qin, Xuan; Degrace, Pascal; Demizieux, Laurent; Limbu, Samwel M; Wang, Xin; Zhang, Mei-Ling; Li, Dong-Liang; Du, Zhen-Yu
2018-01-01
Impaired mitochondrial fatty acid β-oxidation has been correlated with many metabolic syndromes, and the metabolic characteristics of the mammalian models of mitochondrial dysfunction have also been intensively studied. However, the effects of the impaired mitochondrial fatty acid β-oxidation on systemic metabolism in teleost have never been investigated. In the present study, we established a low-carnitine zebrafish model by feeding fish with mildronate as a specific carnitine synthesis inhibitor [0.05% body weight (BW)/d] for 7 weeks, and the systemically changed nutrient metabolism, including carnitine and triglyceride (TG) concentrations, fatty acid (FA) β-oxidation capability, and other molecular and biochemical assays of lipid, glucose, and protein metabolism, were measured. The results indicated that mildronate markedly decreased hepatic carnitine concentrations while it had no effect in muscle. Liver TG concentrations increased by more than 50% in mildronate-treated fish. Mildronate decreased the efficiency of liver mitochondrial β-oxidation, increased the hepatic mRNA expression of genes related to FA β-oxidation and lipolysis, and decreased the expression of lipogenesis genes. Mildronate decreased whole body glycogen content, increased glucose metabolism rate, and upregulated the expression of glucose uptake and glycolysis genes. Mildronate also increased whole body protein content and hepatic mRNA expression of mechanistic target of rapamycin ( mtor ), and decreased the expression of a protein catabolism-related gene. Liver, rather than muscle, was the primary organ targeted by mildronate. In short, mildronate-induced hepatic inhibited carnitine synthesis in zebrafish caused decreased mitochondrial FA β-oxidation efficiency, greater lipid accumulation, and altered glucose and protein metabolism. This reveals the key roles of mitochondrial fatty acid β-oxidation in nutrient metabolism in fish, and this low-carnitine zebrafish model could also be used as a novel fish model for future metabolism studies.
The International Space Station as a Research Laboratory: A View to 2010 and Beyond
NASA Technical Reports Server (NTRS)
Uri, John J.; Sotomayor, Jorge L.
2007-01-01
Assembly of International Space Station (ISS) is expected to be complete in 2010, with operations planned to continue through at least 2016. As we move nearer to assembly complete, replanning activities by NASA and ISS International Partners have been completed and the final complement of research facilities on ISS is becoming more certain. This paper will review pans for facilities in the US On-orbit Segment of ISS, including contributions from International Partners, to provide a vision of the research capabilities that will be available starting in 2010. At present, in addition to research capabilities in the Russian segment, the United States Destiny research module houses nine research facilities or racks. These facilities include five multi-purpose EXPRESS racks, two Human Research Facility (HRF) racks, the Microgravity Science Glovebox (MSG), and the Minus Eighty-degree Laboratory Freezer for ISS (MELFI), enabling a wide range of exploration-related applied as well as basic research. In the coming years, additional racks will be launched to augment this robust capability: Combustion Integrated Rack (CIR), Fluids Integrated Rack (FIR), Window Observation Rack Facility (WORF), Microgravity Science Research Rack (MSRR), Muscle Atrophy Research Exercise System (MARES), additional EXPRESS racks and possibly a second MELFI. In addition, EXPRESS Logistics Carriers (ELC) will provide attach points for external payloads. The European Space Agency s Columbus module will contain five research racks and provide four external attach sites. The research racks are Biolab, European Physiology Module (EPM), Fluid Science Lab (FSL), European Drawer System (EDS) and European Transport Carrier (ETC). The Japanese Kibo elements will initially support three research racks, Ryutai for fluid science, Saibo for cell science, and Kobairo for materials research, as well as 10 attachment sites for external payloads. As we look ahead to assembly complete, these new facilities represent a threefold increase from the current research laboratory infrastructure on ISS. In addition, the increase in resident crew size will increase from three to six in 2009, will provide the long-term capacity for completing research on board ISS. Transportation to and from ISS for crew and cargo will be provided by a fleet of vehicles from the United States, Russia, ESA and Japan, including accommodations for thermally-conditioned cargo. The completed ISS will have robust research accommodations to support the multidisciplinary research objective of scientists worldwide.
Highly stable beta-class carbonic anhydrases useful in carbon capture systems
Alvizo, Oscar; Benoit, Mike; Novick, Scott
2013-04-16
The present disclosure relates to .beta.-class carbonic anhydrase polypeptides having improved properties including increased thermostability and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides formulations and uses of the polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering. Also provided are polynucleotides encoding the carbonic anhydrase polypeptides and host cells capable of expressing them.
Highly stable beta-class carbonic anhydrases useful in carbon capture systems
Alvizo, Oscar; Benoit, Michael R; Novick, Scott J
2013-08-20
The present disclosure relates to .beta.-class carbonic anhydrase polypeptides having improved properties including increased thermostability and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides formulations and uses of the polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering. Also provided are polynucleotides encoding the carbonic anhydrase polypeptides and host cells capable of expressing them.
Demircan, Pinar Cetinalp; Sariboyaci, Ayla Eker; Unal, Zehra Seda; Gacar, Gulcin; Subasi, Cansu; Karaoz, Erdal
2011-11-01
BACKGROUND AIMS. Studies performed using human and animal models have indicated the immunoregulatory capability of mesenchymal stromal cells in several lineages. We investigated whether human dental pulp-derived stem cells (hDP-SC) have regulatory effects on phytohemagglutinin (PHA)-activated CD3(+) T cells. We aimed to define the regulatory mechanisms associated with hDP-SC that occur in mixed lymphocyte reaction (MLR) and transwell systems with PHA-CD3(+) T cells and hDP-SC at a ratio of 1:1. METHODS. Proliferation, apoptosis and pro- and anti-inflammatory cytokines of PHA-CD3(+)T cells, the expression of Regulatory T cells (Treg) markers and some regulatory factors related to hDP-SC, were studied in Both transwell and MLR are co-cultures systems. RESULTS. Anti-proliferative and apoptotic effects of hDP-SC were determined in co-culture systems. Elevated expression levels of human leukocyte antigen (HLA)-G, hepatocyte growth factor (HGF)-β1, intracellular adhesion molecule (ICAM-1)-1, interleukin (IL)-6, IL-10, transforming growth factor (TGF)-β1, vascular adhesion molecule (VCAM)-1 and vascular endothelial growth factor (VEGF) by hDP-SC were detected in the co-culture systems. We observed decreased expression levels of pro-inflammatory cytokines [interferon (IFN)-γ, IL-2, IL-6 receptor (R), IL-12, Interleukin-17A (IL-17A), tumor necrosis factor (TNF)-α] and increased expression levels of anti-inflammatory cytokine [inducible protein (IP)-10] from PHA-CD3(+) T cells in the transwell system. Expression of Treg (CD4(+) CD25(+) Foxp3(+)) markers was significantly induced by hDP-SC in both co-culture systems. We observed apoptosis of PHA-CD3(+) T cells with 24 h using time-lapse camera photographs and active caspase labeling; it is likely that paracrine soluble factors and molecular signals secreted by hDP-SC led this apoptosis. CONCLUSIONS. We suggest that hDP-SC have potent immunoregulatory functions because of their soluble factors and cytokines via paracrine mechanisms associated with PHA-CD3(+) T cells, which could contribute to clinical therapies.
Target Detection Routine (TADER). User’s Guide.
1987-09-01
o System range capability subset (one record - omitted for standoff SLAR and penetrating system) o System inherent detection probability subset ( IELT ...records, i.e., one per element type) * System capability modifier subset/A=1, E=1 ( IELT records) o System capability modifier subset/A=1, E=2 ( IELT ...records) s System capability modifier subset/A=2, E=1 ( IELT records) o System capability modifier subset/A=2, E=2 ( IELT records) Unit Data Set (one set
NASA Technical Reports Server (NTRS)
Graves, Claude
2005-01-01
Some engineering topics: Some Initial Thoughts. Capability Description. Capability State-of-the-Art. Capability Requirements. Systems Engineering. Capability Roadmap. Capability Maturity. Candidate Technologies. Metrics.
Ali, Eman Ali; Nakamura, Ryosuke; Falcone, Franco H
2017-01-01
Allergen-specific Immunoglobulin E (IgE) determination lies at the heart of diagnosis of sensitization to food and other allergens. In the past few years, reporter systems capable of detecting the presence of allergen-specific IgE have been developed by several labs. These rely on humanized rat basophil leukemia cell lines stably transfected with reporter genes such as firefly luciferase. In this chapter, we describe protocols for the use of the RS-ATL8 cell line (IgE cross-linking-induced luciferase expression; EXiLE) in 96-well and 384-well formats. We also describe optional treatment steps for enveloped virus and complement inactivation.
Static shape control for flexible structures
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Scheid, R. E., Jr.
1986-01-01
An integrated methodology is described for defining static shape control laws for large flexible structures. The techniques include modeling, identifying and estimating the control laws of distributed systems characterized in terms of infinite dimensional state and parameter spaces. The models are expressed as interconnected elliptic partial differential equations governing a range of static loads, with the capability of analyzing electromagnetic fields around antenna systems. A second-order analysis is carried out for statistical errors, and model parameters are determined by maximizing an appropriate defined likelihood functional which adjusts the model to observational data. The parameter estimates are derived from the conditional mean of the observational data, resulting in a least squares superposition of shape functions obtained from the structural model.
MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer.
Olson, Peter; Lu, Jun; Zhang, Hao; Shai, Anny; Chun, Matthew G; Wang, Yucheng; Libutti, Steven K; Nakakura, Eric K; Golub, Todd R; Hanahan, Douglas
2009-09-15
While altered expression of microRNAs (miRs) in tumors has been well documented, it remains unclear how the miR transcriptome intersects neoplastic progression. By profiling the miR transcriptome we identified miR expression signatures associated with steps in tumorigenesis and the acquisition of hallmark capabilities in a prototypical mouse model of cancer. Metastases and a rare subset of primary tumors shared a distinct miR signature, implicating a discrete lineage for metastatic tumors. The miR-200 family is strongly down-regulated in metastases and met-like primary tumors, thereby relieving repression of the mesenchymal transcription factor Zeb1, which in turn suppresses E-cadherin. Treatment with a clinically approved angiogenesis inhibitor normalized angiogenic signature miRs in primary tumors, while altering expression of metastatic signature miRs similarly to liver metastases, suggesting their involvement in adaptive resistance to anti-angiogenic therapy via enhanced metastasis. Many of the miR changes associated with specific stages and hallmark capabilities in the mouse model are similarly altered in human tumors, including cognate pancreatic neuroendocrine tumors, implying a generality.
Toward a Public Toxicogenomics Capability for Supporting ...
A publicly available toxicogenomics capability for supporting predictive toxicology and meta-analysis depends on availability of gene expression data for chemical treatment scenarios, the ability to locate and aggregate such information by chemical, and broad data coverage within chemical, genomics, and toxicological information domains. This capability also depends on common genomics standards, protocol description, and functional linkages of diverse public Internet data resources. We present a survey of public genomics resources from these vantage points and conclude that, despite progress in many areas, the current state of the majority of public microarray databases is inadequate for supporting these objectives, particularly with regard to chemical indexing. To begin to address these inadequacies, we focus chemical annotation efforts on experimental content contained in the two primary public genomic resources: ArrayExpress and Gene Expression Omnibus. Automated scripts and extensive manual review were employed to transform free-text experiment descriptions into a standardized, chemically indexed inventory of experiments in both resources. These files, which include top-level summary annotations, allow for identification of current chemical-associated experimental content, as well as chemical-exposure–related (or
Meireles, Manuela; Marques, Cláudia; Norberto, Sónia; Fernandes, Iva; Mateus, Nuno; Rendeiro, Catarina; Spencer, Jeremy P E; Faria, Ana; Calhau, Conceição
2015-11-01
Neuroinflammation has been suggested as a central mediator of central nervous system dysfunction, including in dementia and neurodegenerative disease. Flavonoids have emerged as promising candidates for the prevention of neurodegenerative diseases and are thought to be capable of antiinflammatory effects in the brain. In the present study, the impact of a chronic intake of an anthocyanin extract from blackberry (BE) on brain inflammatory status in the presence or absence of a high-fat diet was investigated. Following intake of the dietary regimes for 17 weeks neuroinflammatory status in Wistar rat cortex, hippocampus and plasma were assessed using cytokine antibody arrays. In the cortex, intake of the high-fat diet resulted in an increase of at least 4-fold, in expression of the cytokine-induced neutrophil chemoattractant CINC-3, the ciliary neurotrophic factor CNTF, the platelet-derived growth factor PDGF-AA, IL-10, the tissue inhibitor of metalloproteinase TIMP-1 and the receptor for advanced glycation end products RAGE. BE intake partially decreased the expression of these mediators in the high-fat challenged brain. In standard-fed animals, BE intake significantly increased cortical levels of fractalkine, PDGF-AA, activin, the vascular endothelial growth factor VEGF and agrin expression, suggesting effects as neuronal growth and synaptic connection modulators. In hippocampus, BE modulates fractalkine and the thymus chemokine TCK-1 expression independently of diet intake and, only in standard diet, increased PDGF-AA. Exploring effects of anthocyanins on fractalkine transcription using the neuronal cell line SH-SY5Y suggested that other cell types may be involved in this effect. This is the first evidence, in in vivo model, that blackberry extract intake may be capable of preventing the detrimental effects of neuroinflammation in a high-fat challenged brain. Also, fractalkine and TCK-1 expression may be specific targets of anthocyanins and their metabolites on neuroinflammation. Copyright © 2015 Elsevier Inc. All rights reserved.
Peyer, Suzanne M.; Pankey, M. Sabrina; Oakley, Todd H.; McFall-Ngai, Margaret J.
2014-01-01
The squid Euprymna scolopes has evolved independent sets of tissues capable of light detection, including a complex eye and a photophore or ‘light organ’, which houses the luminous bacterial symbiont Vibrio fischeri. As the eye and light organ originate from different embryonic tissues, we examined whether the eye-specification genes, pax6, eya, six, and dac, are shared by these two organs, and if so, whether they are regulated in the light organ by symbiosis. We obtained sequences of the four genes with PCR, confirmed orthology with phylogenetic analysis, and determined that each was expressed in the eye and light organ. With in situ hybridization (ISH), we localized the gene transcripts in developing embryos, comparing the patterns of expression in the two organs. The four transcripts localized to similar tissues, including those associated with the visual system ~1/4 into embryogenesis (Naef stage 18) and the light organ ~3/4 into embryogenesis (Naef stage 26). We used ISH and quantitative real-time PCR to examine transcript expression and differential regulation in postembryonic light organs in response to the following colonization conditions: wild-type, luminescent V. fischeri; a mutant strain defective in light production; and as a control, no symbiont. In ISH experiments light organs showed down regulation of the pax6, eya, and six transcripts in response to wild-type V. fischeri. Mutant strains also induced down regulation of the pax6 and eya transcripts, but not of the six transcript. Thus, luminescence was required for down regulation of the six transcript. We discuss these results in the context of symbiont-induced light-organ development. Our study indicates that the eye-specification genes are expressed in light-interacting tissues independent of their embryonic origin and are capable of responding to bacterial cues. These results offer evidence for evolutionary tinkering or the recruitment of eye development genes for use in a light-sensing photophore. PMID:24157521
Tissue-Specific Gain of RTK Signalling Uncovers Selective Cell Vulnerability during Embryogenesis
Audebert, Stéphane; Helmbacher, Françoise; Dono, Rosanna; Maina, Flavio
2015-01-01
The successive events that cells experience throughout development shape their intrinsic capacity to respond and integrate RTK inputs. Cellular responses to RTKs rely on different mechanisms of regulation that establish proper levels of RTK activation, define duration of RTK action, and exert quantitative/qualitative signalling outcomes. The extent to which cells are competent to deal with fluctuations in RTK signalling is incompletely understood. Here, we employ a genetic system to enhance RTK signalling in a tissue-specific manner. The chosen RTK is the hepatocyte growth factor (HGF) receptor Met, an appropriate model due to its pleiotropic requirement in distinct developmental events. Ubiquitously enhanced Met in Cre/loxP-based Rosa26 stopMet knock-in context (Del-R26 Met) reveals that most tissues are capable of buffering enhanced Met-RTK signalling thus avoiding perturbation of developmental programs. Nevertheless, this ubiquitous increase of Met does compromise selected programs such as myoblast migration. Using cell-type specific Cre drivers, we genetically showed that altered myoblast migration results from ectopic Met expression in limb mesenchyme rather than in migrating myoblasts themselves. qRT-PCR analyses show that ectopic Met in limbs causes molecular changes such as downregulation in the expression levels of Notum and Syndecan4, two known regulators of morphogen gradients. Molecular and functional studies revealed that ectopic Met expression in limb mesenchyme does not alter HGF expression patterns and levels, but impairs HGF bioavailability. Together, our findings show that myoblasts, in which Met is endogenously expressed, are capable of buffering increased RTK levels, and identify mesenchymal cells as a cell type vulnerable to ectopic Met-RTK signalling. These results illustrate that embryonic cells are sensitive to alterations in the spatial distribution of RTK action, yet resilient to fluctuations in signalling levels of an RTK when occurring in its endogenous domain of activity. PMID:26393505
Effects of cerebrolysin on motor-neuron-like NSC-34 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keilhoff, Gerburg, E-mail: Gerburg.keilhoff@med.ovgu.de; Lucas, Benjamin; Pinkernelle, Josephine
Although the peripheral nervous system is capable of regeneration, this capability is limited. As a potential means of augmenting nerve regeneration, the effects of cerebrolysin (CL) – a proteolytic peptide fraction – were tested in vitro on the motor-neuron-like NSC-34 cell line and organotypic spinal cord cultures. Therefore, NSC-34 cells were subjected to mechanical stress by changing media and metabolic stress by oxygen glucose deprivation. Afterwards, cell survival/proliferation using MTT and BrdU-labeling (FACS) and neurite sprouting using ImageJ analysis were evaluated. Calpain-1, Src and α-spectrin protein expression were analyzed by Western blot. In organotypic cultures, the effect of CL onmore » motor neuron survival and neurite sprouting was tested by immunohistochemistry. CL had a temporary anti-proliferative but initially neuroprotective effect on OGD-stressed NSC-34 cells. High-dosed or repeatedly applied CL was deleterious for cell survival. CL amplified neurite reconstruction to limited extent, affected calpain-1 protein expression and influenced calpain-mediated spectrin cleavage as a function of Src expression. In organotypic spinal cord slice cultures, CL was not able to support motor neuron survival/neurite sprouting. Moreover, it hampered astroglia and microglia activities. The data suggest that CL may have only isolated positive effects on injured spinal motor neurons. High-dosed or accumulated CL seemed to have adverse effects in treatment of spinal cord injury. Further experiments are required to optimize the conditions for a safe clinical administration of CL in spinal cord injuries. - Highlights: • Cerebrolysin (CL) is anti-proliferative but initially neuroprotective in OGD-stressed NSC-34 cells. • CL amplified neurite reconstruction of NSC-34 cells. • CL affected calpain-1 expression and calpain-mediated spectrin cleavage as function of Src expression. • In organotypic spinal cord cultures, CL hampered motor neuron survival and glia activity. • Findings pose a contraindication for unchallenged use of CL in spinal cord injuries.« less
MPIGeneNet: Parallel Calculation of Gene Co-Expression Networks on Multicore Clusters.
Gonzalez-Dominguez, Jorge; Martin, Maria J
2017-10-10
In this work we present MPIGeneNet, a parallel tool that applies Pearson's correlation and Random Matrix Theory to construct gene co-expression networks. It is based on the state-of-the-art sequential tool RMTGeneNet, which provides networks with high robustness and sensitivity at the expenses of relatively long runtimes for large scale input datasets. MPIGeneNet returns the same results as RMTGeneNet but improves the memory management, reduces the I/O cost, and accelerates the two most computationally demanding steps of co-expression network construction by exploiting the compute capabilities of common multicore CPU clusters. Our performance evaluation on two different systems using three typical input datasets shows that MPIGeneNet is significantly faster than RMTGeneNet. As an example, our tool is up to 175.41 times faster on a cluster with eight nodes, each one containing two 12-core Intel Haswell processors. Source code of MPIGeneNet, as well as a reference manual, are available at https://sourceforge.net/projects/mpigenenet/.
Airborne lidar wind detection at 2 μm
NASA Astrophysics Data System (ADS)
Targ, Russell; Hawley, James G.; Steakley, Bruce C.; Ames, Lawrence L.; Robinson, Paul A.
1995-06-01
NASA and the FAA have expressed interest in laser radar's capabilities to detect wind profiles at altitude. A number of programs have been addressing the technical feasibility and utility of laser radar atmospheric backscatter data to determine wind profiles and wind hazards for aircraft guidance and navigation. In addition, the U.S. Air Force is investigating the use of airborne lidar to achieve precision air drop capability, and to increase the accuracy of the AC- 130 gunship and the B-52 bomber by measuring the wind field from the aircraft to the ground. There are emerging capabilities of airborne laser radar to measure wind velocities and detect turbulence and other atmospheric disturbances out in front of an aircraft in real time. The measurement of these parameters can significantly increase fuel efficiency, flight safety, airframe lifetime, and terminal area capacity for new and existing aircraft. This is achieved through wind velocity detection, turbulence avoidance, active control utilization to alleviate gust loading, and detection of wingtip wake vortices produced by landing aircraft. This paper presents the first flight test results of an all solid-state 2-micrometers laser radar system measuring the wind field profile 1 to 2 km in front of an aircraft in real time. We find 0.7-m/s wind measurement accuracy for the system which is configured in a rugged, light weight, high- performance ARINC package.
Control of single-photon routing in a T-shaped waveguide by another atom
NASA Astrophysics Data System (ADS)
Huang, Jin-Song; Wang, Jing-Wen; Wang, Yan; Li, Yan-Ling; Huang, You-Wen
2018-04-01
Quantum routers with a high routing rate of much more than 0.5 are of great importance for quantum networks. We provide a scheme to perform bidirectional high routing-rate transfer in a T-shaped coupled-resonator waveguide (CRW), which extends a recent unidirectional scheme proposed by Lu et al. (Opt Express 23:22955, 2015). By locating an extra two-level atom in the infinite CRW channel of the T-shaped CRW with a three-level system, an effective potential is generated. Our numerical results show that high routing capability from the infinite CRW channel to the semi-infinite channel can be achieved, and routing capability from the semi-infinite CRW channel to the infinite channel can also be significantly enhanced, with the help of the effective potential. Therefore, the proposed double-atom configuration could be utilized as a bidirectional quantum routing controller to implement high transfer rate routing of single photons.
Innovations in gene and growth factor delivery systems for diabetic wound healing
Laiva, Ashang Luwang; O'Brien, Fergal J.
2017-01-01
Abstract The rise in lower extremity amputations due to nonhealing of foot ulcers in diabetic patients calls for rapid improvement in effective treatment regimens. Administration of growth factors (GFs) are thought to offer an off‐the‐shelf treatment; however, the dose‐ and time‐dependent efficacy of the GFs together with the hostile environment of diabetic wound beds impose a major hindrance in the selection of an ideal route for GF delivery. As an alternative, the delivery of therapeutic genes using viral and nonviral vectors, capable of transiently expressing the genes until the recovery of the wounded tissue offers promise. The development of implantable biomaterial dressings capable of modulating the release of either single or combinatorial GFs/genes may offer solutions to this overgrowing problem. This article reviews the state of the art on gene and protein delivery and the strategic optimization of clinically adopted delivery strategies for the healing of diabetic wounds. PMID:28482114
An autonomous molecular computer for logical control of gene expression.
Benenson, Yaakov; Gil, Binyamin; Ben-Dor, Uri; Adar, Rivka; Shapiro, Ehud
2004-05-27
Early biomolecular computer research focused on laboratory-scale, human-operated computers for complex computational problems. Recently, simple molecular-scale autonomous programmable computers were demonstrated allowing both input and output information to be in molecular form. Such computers, using biological molecules as input data and biologically active molecules as outputs, could produce a system for 'logical' control of biological processes. Here we describe an autonomous biomolecular computer that, at least in vitro, logically analyses the levels of messenger RNA species, and in response produces a molecule capable of affecting levels of gene expression. The computer operates at a concentration of close to a trillion computers per microlitre and consists of three programmable modules: a computation module, that is, a stochastic molecular automaton; an input module, by which specific mRNA levels or point mutations regulate software molecule concentrations, and hence automaton transition probabilities; and an output module, capable of controlled release of a short single-stranded DNA molecule. This approach might be applied in vivo to biochemical sensing, genetic engineering and even medical diagnosis and treatment. As a proof of principle we programmed the computer to identify and analyse mRNA of disease-related genes associated with models of small-cell lung cancer and prostate cancer, and to produce a single-stranded DNA molecule modelled after an anticancer drug.
Flavonoids, Thyroid Iodide Uptake and Thyroid Cancer—A Review
Gonçalves, Carlos F. L.; de Freitas, Mariana L.; Ferreira, Andrea C. F.
2017-01-01
Thyroid cancer is the most common malignant tumor of the endocrine system and the incidence has been increasing in recent years. In a great part of the differentiated carcinomas, thyrocytes are capable of uptaking iodide. In these cases, the main therapeutic approach includes thyroidectomy followed by ablative therapy with radioiodine. However, in part of the patients, the capacity to concentrate iodide is lost due to down-regulation of the sodium-iodide symporter (NIS), the protein responsible for transporting iodide into the thyrocytes. Thus, therapy with radioiodide becomes ineffective, limiting therapeutic options and reducing the life expectancy of the patient. Excessive ingestion of some flavonoids has been associated with thyroid dysfunction and goiter. Nevertheless, studies have shown that some flavonoids can be beneficial for thyroid cancer, by reducing cell proliferation and increasing cell death, besides increasing NIS mRNA levels and iodide uptake. Recent data show that the flavonoids apingenin and rutin are capable of increasing NIS function and expression in vivo. Herein we review literature data regarding the effect of flavonoids on thyroid cancer, besides the effect of these compounds on the expression and function of the sodium-iodide symporter. We will also discuss the possibility of using flavonoids as adjuvants for therapy of thyroid cancer. PMID:28604619
Engineered microorganisms capable of producing target compounds under anaerobic conditions
Buelter, Thomas [Denver, CO; Meinhold, Peter [Denver, CO; Feldman, Reid M. Renny [San Francisco, CA; Hawkins, Andrew C [Parker, CO; Urano, Jun [Irvine, CA; Bastian, Sabine [Pasadena, CA; Arnold, Frances [La Canada, CA
2012-01-17
The present invention is generally provides recombinant microorganisms comprising engineered metabolic pathways capable of producing C3-C5 alcohols under aerobic and anaerobic conditions. The invention further provides ketol-acid reductoisomerase enzymes which have been mutated or modified to increase their NADH-dependent activity or to switch the cofactor preference from NADPH to NADH and are expressed in the modified microorganisms. In addition, the invention provides isobutyraldehyde dehydrogenase enzymes expressed in modified microorganisms. Also provided are methods of producing beneficial metabolites under aerobic and anaerobic conditions by contacting a suitable substrate with the modified microorganisms of the present invention.
The National Cancer Institute Laboratory of Molecular Biology is seeking statements of capability or interest from parties interested in licensing or collaborative research to further develop, evaluate, or commercialize antibody-based treatments of mesothelin-expressing cancers.
Close, Dan; Ojumu, John O.; Zhang, Gui X.
2016-11-03
Cryptococcus terricola JCM 24523 has recently been identified as an oleaginous yeast capable of converting starch into fatty acids. Here, this draft genome sequence provides a platform for elucidating its fatty acid production potential and supporting comparisons with other oleaginous species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Close, Dan; Ojumu, John O.; Zhang, Gui X.
Cryptococcus terricola JCM 24523 has recently been identified as an oleaginous yeast capable of converting starch into fatty acids. Here, this draft genome sequence provides a platform for elucidating its fatty acid production potential and supporting comparisons with other oleaginous species.
University-Industry Research Collaboration: A Model to Assess University Capability
ERIC Educational Resources Information Center
Abramo, Giovanni; D'Angelo, Ciriaco Andrea; Di Costa, Flavia
2011-01-01
Scholars and policy makers recognize that collaboration between industry and the public research institutions is a necessity for innovation and national economic development. This work presents an econometric model which expresses the university capability for collaboration with industry as a function of size, location and research quality. The…
Human Rights, Capabilities and the Normative Basis of "Education for All"
ERIC Educational Resources Information Center
McCowan, Tristan
2011-01-01
While commitment to a universal entitlement to education is highly desirable, some significant limitations have been identified in the right to education as currently expressed and implemented. This article assesses the contribution that the capabilities approach can make in this regard. While some proponents have suggested that capabilities…
System noise analysis of the dumbbell tethered satellite for gravity-gradient measurements
NASA Technical Reports Server (NTRS)
Colombo, G.
1979-01-01
An analysis of the dumbbell gravity gradiometer concept for measuring short wavelength variations in the earth's gravity gradient is presented. Variations in the gradient are recorded by measuring tension variations in a vertically stabilized satellite consisting of heavy masses connected by a long wire or rod. Tension noise arises from the excitation of various mechanical oscillations of the system. The principal noise sources that were identified are fluctuations in atmospheric drag heating and drag force resulting from density variations and winds. Approximate analytical expressions are presented for the tension noise as a function of the system design parameters for various possible configurations. Computer simulations using numerical integration were performed to study the tension noise for several sample cases. Three designs consistent with Shuttle launch capabilities are discussed.
Nichols, Julia K; O'Reilly, Oliver M
2017-03-01
Biomechanics software programs, such as Visual3D, Nexus, Cortex, and OpenSim, have the capability of generating several distinct component representations for joint moments and forces from motion capture data. These representations include those for orthonormal proximal and distal coordinate systems and a non-orthogonal joint coordinate system. In this article, a method is presented to address the challenging problem of evaluating and verifying the equivalence of these representations. The method accommodates the difficulty that there are two possible sets of non-orthogonal basis vectors that can be used to express a vector in the joint coordinate system and is illuminated using motion capture data from a drop vertical jump task. Copyright © 2016 Elsevier B.V. All rights reserved.
de la Fuente-Núñez, César; Lu, Timothy K
2017-02-20
The development of CRISPR-Cas9 technology has revolutionized our ability to edit DNA and to modulate expression levels of genes of interest, thus providing powerful tools to accelerate the precise engineering of a wide range of organisms. In addition, the CRISPR-Cas system can be harnessed to design "precision" antimicrobials that target bacterial pathogens in a DNA sequence-specific manner. This capability will enable killing of drug-resistant microbes by selectively targeting genes involved in antibiotic resistance, biofilm formation and virulence. Here, we review the origins and mechanistic basis of CRISPR-Cas systems, discuss how this technology can be leveraged to provide a range of applications in both eukaryotic and prokaryotic systems, and finish by outlining limitations and future prospects.
Overview of ASC Capability Computing System Governance Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doebling, Scott W.
This document contains a description of the Advanced Simulation and Computing Program's Capability Computing System Governance Model. Objectives of the Governance Model are to ensure that the capability system resources are allocated on a priority-driven basis according to the Program requirements; and to utilize ASC Capability Systems for the large capability jobs for which they were designed and procured.
Robertson, Aaron; Schaltz, Kyle; Neimanis, Karina; Staples, James F; McDonald, Allison E
2016-10-01
Alternative oxidase (AOX) is a terminal oxidase within the inner mitochondrial membrane (IMM) present in many organisms where it functions in the electron transport system (ETS). AOX directly accepts electrons from ubiquinol and is therefore capable of bypassing ETS Complexes III and IV. The human genome does not contain a gene coding for AOX, so AOX expression has been suggested as a gene therapy for a range of human mitochondrial diseases caused by genetic mutations that render Complex III and/or IV dysfunctional. An effective means of screening mutations amenable to AOX treatment remains to be devised. We have generated such a tool by heterologously expressing AOX from the Pacific oyster (Crassostrea gigas) in the yeast Saccharomyces cerevisiae under the control of a galactose promoter. Our results show that this animal AOX is monomeric and is correctly targeted to yeast mitochondria. Moreover, when expressed in yeast, Pacific oyster AOX is a functional quinol oxidase, conferring cyanide-resistant growth and myxothiazol-resistant oxygen consumption to yeast cells and isolated mitochondria. This system represents a high-throughput screening tool for determining which Complex III and IV genetic mutations in yeast will be amenable to AOX gene therapy. As many human genes are orthologous to those found in yeast, our invention represents an efficient and cost-effective way to evaluate viable research avenues. In addition, this system provides the opportunity to learn more about the localization, structure, and regulation of AOXs from animals that are not easily reared or manipulated in the lab.
Mission Data System Java Edition Version 7
NASA Technical Reports Server (NTRS)
Reinholtz, William K.; Wagner, David A.
2013-01-01
The Mission Data System framework defines closed-loop control system abstractions from State Analysis including interfaces for state variables, goals, estimators, and controllers that can be adapted to implement a goal-oriented control system. The framework further provides an execution environment that includes a goal scheduler, execution engine, and fault monitor that support the expression of goal network activity plans. Using these frameworks, adapters can build a goal-oriented control system where activity coordination is verified before execution begins (plan time), and continually during execution. Plan failures including violations of safety constraints expressed in the plan can be handled through automatic re-planning. This version optimizes a number of key interfaces and features to minimize dependencies, performance overhead, and improve reliability. Fault diagnosis and real-time projection capabilities are incorporated. This version enhances earlier versions primarily through optimizations and quality improvements that raise the technology readiness level. Goals explicitly constrain system states over explicit time intervals to eliminate ambiguity about intent, as compared to command-oriented control that only implies persistent intent until another command is sent. A goal network scheduling and verification process ensures that all goals in the plan are achievable before starting execution. Goal failures at runtime can be detected (including predicted failures) and handled by adapted response logic. Responses can include plan repairs (try an alternate tactic to achieve the same goal), goal shedding, ignoring the fault, cancelling the plan, or safing the system.
NASA Astrophysics Data System (ADS)
Stytz, Martin R.; May, Michael; Banks, Sheila B.
2009-04-01
Department of Defense (DoD) Information Technology (IT) systems operate in an environment different from the commercial world, the differences arise from the differences in the types of attacks, the interdependencies between DoD software systems, and the reliance upon commercial software to provide basic capabilities. The challenge that we face is determining how to specify the information assurance requirements for a system without requiring changes to the commercial software and in light of the interdependencies between systems. As a result of the interdependencies and interconnections between systems introduced by the global information grid (GIG), an assessment of the IA requirements for a system must consider three facets of a system's IA capabilities: 1) the IA vulnerabilities of the system, 2) the ability of a system to repel IA attacks, and 3) the ability of a system to insure that any IA attack that penetrates the system is contained within the system and does not spread. Each facet should be assessed independently and the requirements should be derived independently from the assessments. In addition to the desired IA technology capabilities of the system, a complete assessment of the system's overall IA security technology readiness level cannot be accomplished without an assessment of the capabilities required of the system for its capability to recover from and remediate IA vulnerabilities and compromises. To allow us to accomplish these three formidable tasks, we propose a general system architecture designed to separate the system's IA capabilities from its other capability requirements; thereby allowing the IA capabilities to be developed and assessed separately from the other system capabilities. The architecture also enables independent requirements specification, implementation, assessment, measurement, and improvement of a system's IA capabilities without requiring modification of the underlying application software.
Geologic interpretation of space shuttle radar images of Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabing, F.F.
1983-11-01
The National Aeronautics and Space Administration (NASA) space shuttle mission in November 1981 acquired images of parts of the earth with a synthetic aperture radar system at a wavelength of 23.5 cm (9.3 in.) and spatial resolution of 38 m (125 ft). This report describes the geologic interpretation of 1:250,000-scale images of Irian Jaya and eastern Kalimantan, Indonesia, where the all-weather capability of radar penetrates the persistent cloud cover. The inclined look direction of radar enhances subtle topographic features that may be the expression of geologic structures. On the Indonesian images, the following terrain categories are recognizable for geologic mapping:more » carbonate, clastic, volcanic, alluvial and coastal, melange, and metamorphic, as well as undifferentiated bedrock. Regional and local geologic structures are well expressed on the images.« less
Trovato, A; Siracusa, R; Di Paola, R; Scuto, M; Ontario, M L; Bua, Ornella; Di Mauro, Paola; Toscano, M A; Petralia, C C T; Maiolino, L; Serra, A; Cuzzocrea, S; Calabrese, Vittorio
2016-01-01
There has been a recent upsurge of interest in complementary medicine, especially dietary supplements and foods functional in delaying the onset of age-associated neurodegenerative diseases. Mushrooms have long been used in traditional medicine for thousands of years, being now increasingly recognized as antitumor, antioxidant, antiviral, antibacterial and hepatoprotective agent also capable to stimulate host immune responses. Here we provide evidence of neuroprotective action of Hericium Herinaceus when administered orally to rat. Expression of Lipoxin A4 (LXA4) was measured in different brain regions after oral administration of a biomass Hericium preparation, given for 3 month. LXA4 up-regulation was associated with an increased content of redox sensitive proteins involved in cellular stress response, such as Hsp72, Heme oxygenase -1 and Thioredoxin. In the brain of rats receiving Hericium, maximum induction of LXA4 was observed in cortex, and hippocampus followed by substantia Nigra, striatum and cerebellum. Increasing evidence supports the notion that oxidative stress-driven neuroinflammation is a fundamental cause in neurodegenerative diseases. As prominent intracellular redox system involved in neuroprotection, the vitagene system is emerging as a neurohormetic potential target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins 70, heme oxygenase-1, thioredoxin and Lipoxin A4. Emerging interest is now focussing on molecules capable of activating the vitagene system as novel therapeutic target to minimize deleterious consequences associated with free radical-induced cell damage, such as in neurodegeneration. LXA4 is an emerging endogenous eicosanoid able to promote resolution of inflammation, acting as an endogenous "braking signal" in the inflammatory process. In addition, Hsp system is emerging as key pathway for modulation to prevent neuronal dysfunction, caused by protein misfolding. Conceivably, activation of LXA4 signaling and modulation of stress responsive vitagene proteins could serve as a potential therapeutic target for AD-related inflammation and neurodegenerative damage.
Chai, San Jiun; Yap, Yoke Yeow; Foo, Yoke Ching; Yap, Lee Fah; Ponniah, Sathibalan; Teo, Soo Hwang; Cheong, Sok Ching; Patel, Vyomesh; Lim, Kue Peng
2015-01-01
Nasopharyngeal carcinoma (NPC) is highly prevalent in South East Asia and China. The poor outcome is due to late presentation, recurrence, distant metastasis and limited therapeutic options. For improved treatment outcome, immunotherapeutic approaches focusing on dendritic and autologous cytotoxic T-cell based therapies have been developed, but cost and infrastructure remain barriers for implementing these in low-resource settings. As our prior observations had found that four-jointed box 1 (FJX1), a tumor antigen, is overexpressed in NPCs, we investigated if short 9-20 amino acid sequence specific peptides matching to FJX1 requiring only intramuscular immunization to train host immune systems would be a better treatment option for this disease. Thus, we designed 8 FJX1-specific peptides and implemented an assay system to first, assess the binding of these peptides to HLA-A2 molecules on T2 cells. After, ELISPOT assays were used to determine the peptides immunogenicity and ability to induce potential cytotoxicity activity towards cancer cells. Also, T-cell proliferation assay was used to evaluate the potential of MHC class II peptides to stimulate the expansion of isolated T-cells. Our results demonstrate that these peptides are immunogenic and peptide stimulated T-cells were able to induce peptide-specific cytolytic activity specifically against FJX1-expressing cancer cells. In addition, we demonstrated that the MHC class II peptides were capable of inducing T-cell proliferation. Our results suggest that these peptides are capable of inducing specific cytotoxic cytokines secretion against FJX1-expressing cancer cells and serve as a potential vaccine-based therapy for NPC patients.
Morrison, T; McQuain, C; McGinnes, L
1991-01-01
The cDNA derived from the fusion gene of the virulent AV strain of Newcastle disease virus (NDV) was expressed in chicken embryo cells by using a retrovirus vector. The fusion protein expressed in this system was transported to the cell surface and was efficiently cleaved into the disulfide-linked F1-F2 form found in infectious virions. The cells expressing the fusion gene grew normally and could be passaged many times. Monolayers of these cells would plaque, in the absence of trypsin, avirulent NDV strains (strains which encode a fusion protein which is not cleaved in tissue culture). Fusion protein-expressing cells would not fuse if mixed with uninfected cells or uninfected cells expressing the hemagglutinin-neuraminidase (HN) protein. However, the fusion protein-expressing cells, if infected with avirulent strains of NDV, would fuse with uninfected cells, suggesting that fusion requires both the fusion protein and another viral protein expressed in the same cell. Fusion was also seen after transfection of the HN protein gene into fusion protein-expressing cells. Thus, the expressed fusion protein gene is capable of complementing the virus infection, providing an active cleaved fusion protein required for the spread of infection. However, the fusion protein does not mediate cell fusion unless the cell also expresses the HN protein. Fusion protein-expressing cells would not plaque influenza virus in the absence of trypsin, nor would influenza virus-infected fusion protein-expressing cells fuse with uninfected cells. Thus, the influenza virus HA protein will not substitute for the NDV HN protein in cell-to-cell fusion. Images PMID:1987376
Wang, Wei-Wei; Zhang, Yu; Huang, Xiao-Bing; You, Nan; Zheng, Lu; Li, Jing
2017-10-14
To investigate whether fecal microbiota transplantation (FMT) prevents hepatic encephalopathy (HE) in rats with carbon tetrachloride (CCl 4 )-induced acute hepatic dysfunction. A rat model of HE was established with CCl 4 . Rat behaviors and spatial learning capability were observed, and hepatic necrosis, intestinal mucosal barrier, serum ammonia levels and intestinal permeability were determined in HE rats receiving FMT treatment. Furthermore, the expression of tight junction proteins (Claudin-1, Claudin-6 and Occludin), Toll-like receptor (TLR) 4/TLR9, interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α was examined. FMT improved rat behaviors, HE grade and spatial learning capability. Moreover, FMT prevented hepatic necrosis and intestinal mucosal barrier damage, leading to hepatic clearance of serum ammonia levels and reduced intestinal permeability. The expression of TLR4 and TLR9, two potent mediators of inflammatory response, was significantly downregulated in the liver of rats treated with FMT. Consistently, circulating pro-inflammatory factors such as interleukin (IL)-1β, IL-6 and tumor necrosis factor-α were remarkably decreased, indicating that FMT is able to limit systemic inflammation by decreasing the expression of TLR4 and TLR9. Importantly, HE-induced loss of tight junction proteins (Claudin-1, Claudin-6 and Occludin) was restored in intestinal tissues of rats receiving FMT treatment. FMT enables protective effects in HE rats, and it improves the cognitive function and reduces the liver function indexes. FMT may cure HE by altering the intestinal permeability and improving the TLR response of the liver.
Hu, Bo; Li, Chang; Lu, Huijun; Zhu, Zhanbo; Du, Shouwen; Ye, Ming; Tan, Lei; Ren, Dayong; Han, Jiali; Kan, Shifu; Wang, Jing; Jin, Ningyi
2011-01-01
Bacillus subtilis has been engineered successfully to express heterologous antigens for use as a vaccine vehicle that can elicit mucosal and systemic immunity response. In this study, a recombinant B. subtilis expressing the B subunit of cholera toxin (CT-B) and an epitope box constituted with antigen sites from foot-and-mouth disease virus (FMDV) type Asia 1 was constructed and named 1A751/CTB-TEpiAs. Its capability to induce mucosal, humoral, and cellular responses in mice and guinea pigs was evaluated after oral administration with vegetative cells of 1A751/CTB-TEpiAs. In addition, its capability to protect guinea pigs against homologous virus challenge was examined. All animals were given booster vaccination at day 21 after initial inoculation and guinea pigs were challenged 3 weeks after booster vaccination. The control groups were inoculated with a commercial vaccine or administered orally with 1A751/pBC38C or an oral buffer. All animals vaccinated with 1A751/CTB-TEpiAs developed specific anti-FMDV IgA in lung and gut lavage fluid, serum ELISA antibody, neutralizing antibody as well as T lymphocyte proliferation, and IFN-γ secretory responses. Three of the five guinea pigs vaccinated with 1A751/CTB-TEpiAs were protected completely from the viral challenge. The results demonstrate the potential viability of a B. subtilis-based recombinant vaccine for the control and prevention of FMDV infections. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Tran, L.; Parra, Macarena P.; Jung, J.; Boone, T.; Schonfeld, Julie; Almeida, Eduardo
2017-01-01
The NASA Ames WetLab-2 system was developed to offer new on-orbit gene expression analysis capabilities to ISS researchers and can be used to conduct on-orbit RNA isolation and quantitative real time PCR (RT-qPCR) analysis of gene expression from a wide range of biological samples ranging from microbes to mammalian tissues. On orbit validation included three quantitative PCR (qPCR) runs using an E. coli genomic DNA template pre-loaded at three different concentrations. The flight Ct values for the DNA standards showed no statistically significant differences relative to ground controls although there was increased noise in Ct curves, likely due to microgravity-related bubble retention in the optical windows. RNA was successfully purified from both E. coli and mouse liver samples and successfully generated singleplex, duplex and triplex data although with higher standard deviations than ground controls, also likely due to bubbles. Using volunteer science activities, a potential bubble reduction strategy was tested and resulted in smooth amplification curves and tighter Cts between replicates. The WetLab-2 validation experiment demonstrates a novel molecular biology workbench on ISS which allows scientists to purify and stabilize RNA, and to conduct RT-qPCR analyses on-orbit with rapid results. This novel ability is an important step towards utilizing ISS as a National Laboratory facility with the capability to conduct and adjust science experiments in real time without sample return, and opens new possibilities for rapid medical diagnostics and biological environmental monitoring on ISS.
Ultrasound-induced hyperthermia for the spatio-temporal control of gene expression in bone repair
NASA Astrophysics Data System (ADS)
Wilson, Christopher; Padilla, Frédéric; Zhang, Man; Vilaboa, Nuria; Kripfgans, Oliver; Fowlkes, Brian; Franceschi, Renny
2012-10-01
Spatial and temporal control over the expression of growth/differentiation factors is of great interest for regeneration of bone, but technologies capable of providing tight and active control over gene expression remain elusive. We propose the use of focused ultrasound for the targeted activation of heat shock-sensitive expression systems in engineered bone. We report in vitro results with cells that express firefly luciferase (fLuc) under the control of a heat shock protein promoter. Cells were embedded in fibrin scaffolds and exposed to focused ultrasound, using a custom 3.3MHz transducer (focal length 4", f-number 1.33", focal dimension 1.2mm lateral FWHM) in CW mode for 2-20 minutes at intensities ISPTA=120-440 W/cm2. The kinetics of ultrasound-mediated activation of the cells was compared with that of strictly thermal activation. Bioluminescence imaging revealed fLuc expression in an area ≥2.5mm in diameter at the position of the ultrasound focus, and the diameter and intensity of the signal increased with the amplitude of the acoustic energy. We also found that ultrasound activated fLuc expression with substantially shorter exposures than thermal activation. Our results demonstrate the potential for focused ultrasound to selectively activate the expression of a gene of interest in an engineered tissue and suggest that focused ultrasound activates the heat shock pathway by a combination of thermal and non-thermal mechanisms.
Hadadeh, Ola; Barruet, Emilie; Peiretti, Franck; Verdier, Monique; Bernot, Denis; Hadjal, Yasmine; Yazidi, Claire El; Robaglia-Schlupp, Andrée; De Paula, Andre Maues; Nègre, Didier; Iacovino, Michelina; Kyba, Michael; Alessi, Marie-Christine; Binétruy, Bernard
2012-01-01
Regulation of the extracellular matrix (ECM) plays an important functional role either in physiological or pathological conditions. The plasminogen activation (PA) system, comprising the uPA and tPA proteases and their inhibitor PAI-1, is one of the main suppliers of extracellular proteolytic activity contributing to tissue remodeling. Although its function in development is well documented, its precise role in mouse embryonic stem cell (ESC) differentiation in vitro is unknown. We found that the PA system components are expressed at very low levels in undifferentiated ESCs and that upon differentiation uPA activity is detected mainly transiently, whereas tPA activity and PAI-1 protein are maximum in well differentiated cells. Adipocyte formation by ESCs is inhibited by amiloride treatment, a specific uPA inhibitor. Likewise, ESCs expressing ectopic PAI-1 under the control of an inducible expression system display reduced adipogenic capacities after induction of the gene. Furthermore, the adipogenic differentiation capacities of PAI-1−/− induced pluripotent stem cells (iPSCs) are augmented as compared to wt iPSCs. Our results demonstrate that the control of ESC adipogenesis by the PA system correspond to different successive steps from undifferentiated to well differentiated ESCs. Similarly, skeletal myogenesis is decreased by uPA inhibition or PAI-1 overexpression during the terminal step of differentiation. However, interfering with uPA during days 0 to 3 of the differentiation process augments ESC myotube formation. Neither neurogenesis, cardiomyogenesis, endothelial cell nor smooth muscle formation are affected by amiloride or PAI-1 induction. Our results show that the PA system is capable to specifically modulate adipogenesis and skeletal myogenesis of ESCs by successive different molecular mechanisms. PMID:23145071
NASA Technical Reports Server (NTRS)
Thronson, Harley A.; Lester, Daniel F.
2008-01-01
Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the US have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a approx.10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover, as the recent Orbital Express and Automated Transfer Vehicle missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth. In addition to multiplying the value of NASA's architecture for future human spaceflight to achieve the goals multiple major stakeholders, if humans one day travel beyond the Earth-Moon system - say, to Mars - technologies and capabilities for operating for long periods in free space must be developed. The engineering. management, and operational successes of the Space Station have demonstrated that international collaboration is possible. However, there is a danger that the hard-won lessons of current programs will be lost without continuing development of in-space operations. A program to achieve. for example, major astronomical goals in space using astronauts and robots will sustain international capabilities, produce highly visible achievements, and appeal to an additional broad community of stakeholders not currently involved with missions to the lunar surface.
NASA Technical Reports Server (NTRS)
Thronson, Harley; Lester, Daniel F.
2008-01-01
Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the US have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a approx. 10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover. as the recent Orbital Express and Automated Transfer Vehicle missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth. In addition to multiplying the value of NASA's architecture for future human spaceflight to achieve the goals multiple major stakeholders. if humans one day travel beyond the Earth-Moon system - say, to Mars - technologies and capabilities for operating for long periods in free space must be developed. The engineering, management. and operational successes of the Space Station have demonstrated that international collaboratioi is possible. However, there is a danger that the hard-won lessons of cLul+sent programs will be lost without continuing development of in-space operations. A program to achieve. for example. major astronomical goals in space using astronauts and robots will sustain international capabilities. produce highly visible achievements. and appeal to a11 additional broad community of stakeholders not currently involved with missions to the lunar surface.
Next Generation Sequencing at the University of Chicago Genomics Core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faber, Pieter
2013-04-24
The University of Chicago Genomics Core provides University of Chicago investigators (and external clients) access to State-of-the-Art genomics capabilities: next generation sequencing, Sanger sequencing / genotyping and micro-arrays (gene expression, genotyping, and methylation). The current presentation will highlight our capabilities in the area of ultra-high throughput sequencing analysis.
CONTEXT: N02 and 03 are ubiquitous air toxicants capable of inducing lung damage to the respiratory epithelium. Due to their oxidizing capabilities, these pollutants have been proposed to target specific biological pathways, but few publications have compared the pathways activat...
An Experimental Determination of Static Magnetic Fields Induced Noise in Living Systems
NASA Astrophysics Data System (ADS)
Brady, Megan; Laramee, Craig
2013-03-01
Living systems are constantly exposed to static magnetic fields (SMFs) from both natural and man-made sources. Exposures vary in dose and duration ranging from geomagnetic (~50 μT) to residential and industrial (~10s of mT) fields. Efforts to characterize responses to SMFs have yielded conflicting results, showing a dependence on experimental variables used. Here we argue that low to moderate SMF exposure is a sub-threshold perturbation operating below thermal noise, and assays that evaluate statistical characteristics of a single cell may identify responses not consistently found by population averaging approaches. Recent studies of gene expression show that it is a stochastic process capable of producing bursting dynamics. Moreover, theoretical and experimental methods have also been developed to allow quantitative estimates of the associated biophysical parameters. These developments provide a new way to assess responses of living systems to SMFs. In this work, we report on our efforts to use single molecule fluorescence in situ hybridization to assess responses of NIH-3T3 cells to SMF exposure at flux densities ranging from 1 to 440 mT for 48 hours. Results will contribute to determining mechanisms by which SMF exposure influences gene expression.
Intrathecal injection of a therapeutic gene-containing polyplex to treat spinal cord injury.
Hayakawa, Kentaro; Uchida, Satoshi; Ogata, Toru; Tanaka, Sakae; Kataoka, Kazunori; Itaka, Keiji
2015-01-10
Spinal cord injury (SCI) is a serious clinical problem that suddenly deprives patients of neurologic function and drastically diminishes their quality of life. Gene introduction has the potential to be effective for various pathological states of SCI because various proteins can be produced just by modifying nucleic acid sequences. In addition, the sustainable protein expression allows to maintain its concentration at an effective level at the target site in the spinal cord. Here we propose an approach using a polyplex system composed of plasmid DNA (pDNA) and a cationic polymer, poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} [PAsp(DET)], that has high capacity to promote endosome escape and the long-term safety by self-catalytically degrading within a few days. We applied brain-derived neurotrophic factor (BDNF)-expressing pDNA for SCI treatment by intrathecal injection of PAsp(DET)/pDNA polyplex. A single administration of polyplex for experimental SCI provided sufficient therapeutic effects including prevention of neural cell death and enhancement of motor function recovery. This lasted for a few weeks after SCI, demonstrating the capability of this system to express BDNF in a safe and responsible manner for treatment of various pathological states in SCI. Copyright © 2014 Elsevier B.V. All rights reserved.
Bistable switch in let-7 miRNA biogenesis pathway involving Lin28.
Shi, Fei; Yu, Wenbao; Wang, Xia
2014-10-21
miRNAs are small noncoding RNAs capable of regulating gene expression at the post-transcriptional level. A growing body of evidence demonstrated that let-7 family of miRNAs, as one of the highly conserved miRNAs, plays an important role in cell differentiation and development, as well as tumor suppressor function depending on their levels of expression. To explore the physiological significance of let-7 in regulating cell fate decisions, we present a coarse grained model of let-7 biogenesis network, in which let-7 and its regulator Lin28 inhibit mutually. The dynamics of this minimal network architecture indicates that, as the concentration of Lin28 increases, the system undergoes a transition from monostability to a bistability and then to a one-way switch with increasing strength of positive feedback of let-7, while in the absence of Lin28 inhibition, the system loses bistability. Moreover, the ratio of degradation rates of let-7 and Lin28 is critical for the switching sensitivity and resistance to stimulus fluctuations. These findings may highlight why let-7 is required for normal gene expression in the context of embryonic development and oncogenesis, which will facilitate the development of approaches to exploit this regulatory pathway by manipulating Lin28/let-7 axis for novel treatments of human diseases.
Dai, Qun; Aleksandrov, Andrei A.; Bajrami, Bekim; Diego, Pamela Ann; Wu, Xing; Ray, Marjorie; Naren, Anjaparavanda P.; Riordan, John R.; Yao, Xudong; DeLucas, Lawrence J.; Urbatsch, Ina L.; Kappes, John C.
2015-01-01
Recent human clinical trials results demonstrated successful treatment for certain genetic forms of cystic fibrosis (CF). To extend treatment opportunities to those afflicted with other genetic forms of CF disease, structural and biophysical characterization of CF transmembrane conductance regulator (CFTR) is urgently needed. In this study, CFTR was modified with various tags, including a His10 purification tag, the SUMOstar (SUMO*) domain, an extracellular FLAG epitope, or an enhanced green fluorescent protein (EGFP), each alone or in various combinations. Expressed in HEK293 cells, recombinant CFTR proteins underwent complex glycosylation, compartmentalized with the plasma membrane, and exhibited regulated chloride-channel activity with only modest alterations in channel conductance and gating kinetics. Surface CFTR expression level was enhanced by the presence of SUMO* on the N-terminus. Quantitative mass-spectrometric analysis indicated approximately 10% of the total recombinant CFTR (SUMO*-CFTRFLAG-EGFP) localized to the plasma membrane. Trial purification using dodecylmaltoside for membrane protein extraction reproducibly recovered 178 ± 56 μg SUMO*-CFTRFLAG-EGFP per billion cells at 80% purity. Fluorescence size-exclusion chromatography indicated purified CFTR was monodisperse. These findings demonstrate a stable mammalian cell expression system capable of producing human CFTR of sufficient quality and quantity to augment futrure CF drug discovery efforts, including biophysical and structural studies. PMID:25577540
The CpxRA two-component system contributes to Legionella pneumophila virulence.
Tanner, Jennifer R; Li, Laam; Faucher, Sébastien P; Brassinga, Ann Karen C
2016-06-01
The bacterium Legionella pneumophila is capable of intracellular replication within freshwater protozoa as well as human macrophages, the latter of which results in the serious pneumonia Legionnaires' disease. A primary factor involved in these host cell interactions is the Dot/Icm Type IV secretion system responsible for translocating effector proteins needed to establish and maintain the bacterial replicative niche. Several regulatory factors have been identified to control the expression of the Dot/Icm system and effectors, one of which is the CpxRA two-component system, suggesting essentiality for virulence. In this study, we generated cpxR, cpxA and cpxRA in-frame null mutant strains to further delineate the role of the CpxRA system in bacterial survival and virulence. We found that cpxR is essential for intracellular replication within Acanthamoeba castellanii, but not in U937-derived macrophages. Transcriptome analysis revealed that CpxRA regulates a large number of virulence-associated proteins including Dot/Icm effectors as well as Type II secreted substrates. Furthermore, the cpxR and cpxRA mutant strains were more sodium resistant than the parental strain Lp02, and cpxRA expression reaches maximal levels during postexponential phase. Taken together, our findings suggest the CpxRA system is a key contributor to L. pneumophila virulence in protozoa via virulence factor regulation. © 2016 John Wiley & Sons Ltd.
Shmelkov, Sergey V.; Butler, Jason M.; Hooper, Andrea T.; Hormigo, Adilia; Kushner, Jared; Milde, Till; St. Clair, Ryan; Baljevic, Muhamed; White, Ian; Jin, David K.; Chadburn, Amy; Murphy, Andrew J.; Valenzuela, David M.; Gale, Nicholas W.; Thurston, Gavin; Yancopoulos, George D.; D’Angelica, Michael; Kemeny, Nancy; Lyden, David; Rafii, Shahin
2008-01-01
Colon cancer stem cells are believed to originate from a rare population of putative CD133+ intestinal stem cells. Recent publications suggest that a small subset of colon cancer cells expresses CD133, and that only these CD133+ cancer cells are capable of tumor initiation. However, the precise contribution of CD133+ tumor-initiating cells in mediating colon cancer metastasis remains unknown. Therefore, to temporally and spatially track the expression of CD133 in adult mice and during tumorigenesis, we generated a knockin lacZ reporter mouse (CD133lacZ/+), in which the expression of lacZ is driven by the endogenous CD133 promoters. Using this model and immunostaining, we discovered that CD133 expression in colon is not restricted to stem cells; on the contrary, CD133 is ubiquitously expressed on differentiated colonic epithelium in both adult mice and humans. Using Il10–/–CD133lacZ mice, in which chronic inflammation in colon leads to adenocarcinomas, we demonstrated that CD133 is expressed on a full gamut of colonic tumor cells, which express epithelial cell adhesion molecule (EpCAM). Similarly, CD133 is widely expressed by human primary colon cancer epithelial cells, whereas the CD133– population is composed mostly of stromal and inflammatory cells. Conversely, CD133 expression does not identify the entire population of epithelial and tumor-initiating cells in human metastatic colon cancer. Indeed, both CD133+ and CD133– metastatic tumor subpopulations formed colonospheres in in vitro cultures and were capable of long-term tumorigenesis in a NOD/SCID serial xenotransplantation model. Moreover, metastatic CD133– cells form more aggressive tumors and express typical phenotypic markers of cancer-initiating cells, including CD44 (CD44+CD24–), whereas the CD133+ fraction is composed of CD44lowCD24+ cells. Collectively, our data suggest that CD133 expression is not restricted to intestinal stem or cancer-initiating cells, and during the metastatic transition, CD133+ tumor cells might give rise to the more aggressive CD133– subset, which is also capable of tumor initiation in NOD/SCID mice. PMID:18497886
Cholinergic Interneurons Mediate Fast VGluT3-Dependent Glutamatergic Transmission in the Striatum
Higley, Michael J.; Balthasar, Nina; Seal, Rebecca P.; Edwards, Robert H.; Lowell, Bradford B.; Kreitzer, Anatol C.; Sabatini, Bernardo L.
2011-01-01
The neurotransmitter glutamate is released by excitatory projection neurons throughout the brain. However, non-glutamatergic cells, including cholinergic and monoaminergic neurons, express markers that suggest that they are also capable of vesicular glutamate release. Striatal cholinergic interneurons (CINs) express the Type-3 vesicular glutamate transporter (VGluT3), although whether they form functional glutamatergic synapses is unclear. To examine this possibility, we utilized mice expressing Cre-recombinase under control of the endogenous choline acetyltransferase locus and conditionally expressed light-activated Channelrhodopsin2 in CINs. Optical stimulation evoked action potentials in CINs and produced postsynaptic responses in medium spiny neurons that were blocked by glutamate receptor antagonists. CIN-mediated glutamatergic responses exhibited a large contribution of NMDA-type glutamate receptors, distinguishing them from corticostriatal inputs. CIN-mediated glutamatergic responses were insensitive to antagonists of acetylcholine receptors and were not seen in mice lacking VGluT3. Our results indicate that CINs are capable of mediating fast glutamatergic transmission, suggesting a new role for these cells in regulating striatal activity. PMID:21544206
Modulation of PPAR Expression and Activity in Response to Polyphenolic Compounds in High Fat Diets
Domínguez-Avila, J. Abraham; González-Aguilar, Gustavo A.; Alvarez-Parrilla, Emilio; de la Rosa, Laura A.
2016-01-01
Peroxisome proliferator-activated receptors (PPAR) are transcription factors that modulate energy metabolism in liver, adipose tissue and muscle. High fat diets (HFD) can negatively impact PPAR expression or activity, favoring obesity, dyslipidemia, insulin resistance and other conditions. However, polyphenols (PP) found in vegetable foodstuffs are capable of positively modulating this pathway. We therefore focused this review on the possible effects that PP can have on PPAR when administered together with HFD. We found that PP from diverse sources, such as coffee, olives, rice, berries and others, are capable of inducing the expression of genes involved in a decrease of adipose mass, liver and serum lipids and lipid biosynthesis in animal and cell models of HFD. Since cells or gut bacteria can transform PP into different metabolites, it is possible that a synergistic or antagonistic effect ultimately occurs. PP molecules from vegetable sources are an interesting option to maintain or return to a state of energy homeostasis, possibly due to an adequate PPAR expression and activity. PMID:27367676
Modulation of PPAR Expression and Activity in Response to Polyphenolic Compounds in High Fat Diets.
Domínguez-Avila, J Abraham; González-Aguilar, Gustavo A; Alvarez-Parrilla, Emilio; de la Rosa, Laura A
2016-06-29
Peroxisome proliferator-activated receptors (PPAR) are transcription factors that modulate energy metabolism in liver, adipose tissue and muscle. High fat diets (HFD) can negatively impact PPAR expression or activity, favoring obesity, dyslipidemia, insulin resistance and other conditions. However, polyphenols (PP) found in vegetable foodstuffs are capable of positively modulating this pathway. We therefore focused this review on the possible effects that PP can have on PPAR when administered together with HFD. We found that PP from diverse sources, such as coffee, olives, rice, berries and others, are capable of inducing the expression of genes involved in a decrease of adipose mass, liver and serum lipids and lipid biosynthesis in animal and cell models of HFD. Since cells or gut bacteria can transform PP into different metabolites, it is possible that a synergistic or antagonistic effect ultimately occurs. PP molecules from vegetable sources are an interesting option to maintain or return to a state of energy homeostasis, possibly due to an adequate PPAR expression and activity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... objective should an automatic sprinkler system be capable of meeting? 102-80.100 Section 102-80.100 Public... Automatic Sprinkler Systems § 102-80.100 What performance objective should an automatic sprinkler system be capable of meeting? The performance objective of the automatic sprinkler system is that it must be capable...
Code of Federal Regulations, 2013 CFR
2013-07-01
... objective should an automatic sprinkler system be capable of meeting? 102-80.100 Section 102-80.100 Public... Automatic Sprinkler Systems § 102-80.100 What performance objective should an automatic sprinkler system be capable of meeting? The performance objective of the automatic sprinkler system is that it must be capable...
Code of Federal Regulations, 2014 CFR
2014-01-01
... objective should an automatic sprinkler system be capable of meeting? 102-80.100 Section 102-80.100 Public... Automatic Sprinkler Systems § 102-80.100 What performance objective should an automatic sprinkler system be capable of meeting? The performance objective of the automatic sprinkler system is that it must be capable...
Code of Federal Regulations, 2012 CFR
2012-01-01
... objective should an automatic sprinkler system be capable of meeting? 102-80.100 Section 102-80.100 Public... Automatic Sprinkler Systems § 102-80.100 What performance objective should an automatic sprinkler system be capable of meeting? The performance objective of the automatic sprinkler system is that it must be capable...
Code of Federal Regulations, 2011 CFR
2011-01-01
... objective should an automatic sprinkler system be capable of meeting? 102-80.100 Section 102-80.100 Public... Automatic Sprinkler Systems § 102-80.100 What performance objective should an automatic sprinkler system be capable of meeting? The performance objective of the automatic sprinkler system is that it must be capable...
Differentially Expressed Genes in Hirudo medicinalis Ganglia after Acetyl-L-Carnitine Treatment
Federighi, Giuseppe; Macchi, Monica; Bernardi, Rodolfo; Scuri, Rossana; Brunelli, Marcello; Durante, Mauro; Traina, Giovanna
2013-01-01
Acetyl-l-carnitine (ALC) is a naturally occurring substance that, when administered at supra-physiological concentration, is neuroprotective. It is involved in membrane stabilization and in enhancement of mitochondrial functions. It is a molecule of considerable interest for its clinical application in various neural disorders, including Alzheimer’s disease and painful neuropathies. ALC is known to improve the cognitive capability of aged animals chronically treated with the drug and, recently, it has been reported that it impairs forms of non-associative learning in the leech. In the present study the effects of ALC on gene expression have been analyzed in the leech Hirudo medicinalis. The suppression subtractive hybridisation methodology was used for the generation of subtracted cDNA libraries and the subsequent identification of differentially expressed transcripts in the leech nervous system after ALC treatment. The method detects differentially but also little expressed transcripts of genes whose sequence or identity is still unknown. We report that a single administration of ALC is able to modulate positively the expression of genes coding for functions that reveal a lasting effect of ALC on the invertebrate, and confirm the neuroprotective and neuromodulative role of the substance. In addition an important finding is the modulation of genes of vegetal origin. This might be considered an instance of ectosymbiotic mutualism. PMID:23308261
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Tan, H. Q.; Dong, X.
1989-01-01
Development of new material models for describing the high temperature constitutive behavior of real materials represents an important area of research in engineering disciplines. Derivation of mathematical expressions (constitutive equations) which describe this high temperature material behavior can be quite time consuming, involved and error prone; thus intelligent application of symbolic systems to facilitate this tedious process can be of significant benefit. A computerized procedure (SDICE) capable of efficiently deriving potential based constitutive models, in analytical form is presented. This package, running under MACSYMA, has the following features: partial differentiation, tensor computations, automatic grouping and labeling of common factors, expression substitution and simplification, back substitution of invariant and tensorial relations and a relational data base. Also limited aspects of invariant theory were incorporated into SDICE due to the utilization of potentials as a starting point and the desire for these potentials to be frame invariant (objective). Finally not only calculation of flow and/or evolutionary laws were accomplished but also the determination of history independent nonphysical coefficients in terms of physically measurable parameters, e.g., Young's modulus, was achieved. The uniqueness of SDICE resides in its ability to manipulate expressions in a general yet predefined order and simplify expressions so as to limit expression growth. Results are displayed when applicable utilizing index notation.
Perez-Cunningham, Jessica; Boyer, Scott W; Landon, Mark; Forsberg, E Camilla
2016-08-01
Selective labeling of specific cell types by expression of green fluorescent protein (GFP) within the hematopoietic system would have great utility in identifying, localizing, and tracking different cell populations in flow cytometry, microscopy, lineage tracing, and transplantation assays. In this report, we describe the generation and characterization of a new transgenic mouse line with specific GFP labeling of all nucleated hematopoietic cells and platelets. This new "Vav-GFP" mouse line labels the vast majority of hematopoietic cells with GFP during both embryonic development and adulthood, with particularly high expression in hematopoietic stem and progenitor cells (HSPCs). With the exception of transient labeling of fetal endothelial cells, GFP expression is highly selective for hematopoietic cells and persists in donor-derived progeny after transplantation of HSPCs. Finally, we also demonstrate that the loxP-flanked reporter allows for specific GFP labeling of different hematopoietic cell subsets when crossed to various Cre reporter lines. By crossing Vav-GFP mice to Flk2-Cre mice, we obtained robust and highly selective GFP expression in hematopoietic stem cells (HSCs). These data describe a new mouse model capable of directing GFP labeling exclusively of hematopoietic cells or exclusively of HSCs. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
Glycoproteins Enrichment and LC-MS/MS Glycoproteomics in Central Nervous System Applications.
Zhu, Rui; Song, Ehwang; Hussein, Ahmed; Kobeissy, Firas H; Mechref, Yehia
2017-01-01
Proteins and glycoproteins play important biological roles in central nervous systems (CNS). Qualitative and quantitative evaluation of proteins and glycoproteins expression in CNS is critical to reveal the inherent biomolecular mechanism of CNS diseases. This chapter describes proteomic and glycoproteomic approaches based on liquid chromatography/tandem mass spectrometry (LC-MS or LC-MS/MS) for the qualitative and quantitative assessment of proteins and glycoproteins expressed in CNS. Proteins and glycoproteins, extracted by a mass spectrometry friendly surfactant from CNS samples, were subjected to enzymatic (tryptic) digestion and three down-stream analyses: (1) a nano LC system coupled with a high-resolution MS instrument to achieve qualitative proteomic profile, (2) a nano LC system combined with a triple quadrupole MS to quantify identified proteins, and (3) glycoprotein enrichment prior to LC-MS/MS analysis. Enrichment techniques can be applied to improve coverage of low abundant glycopeptides/glycoproteins. An example described in this chapter is hydrophilic interaction liquid chromatographic (HILIC) enrichment to capture glycopeptides, allowing efficient removal of peptides. The combination of three LC-MS/MS-based approaches is capable of the investigation of large-scale proteins and glycoproteins from CNS with an in-depth coverage, thus offering a full view of proteins and glycoproteins changes in CNS.
Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector
Kabadi, Ami M.; Ousterout, David G.; Hilton, Isaac B.; Gersbach, Charles A.
2014-01-01
Engineered DNA-binding proteins that manipulate the human genome and transcriptome have enabled rapid advances in biomedical research. In particular, the RNA-guided CRISPR/Cas9 system has recently been engineered to create site-specific double-strand breaks for genome editing or to direct targeted transcriptional regulation. A unique capability of the CRISPR/Cas9 system is multiplex genome engineering by delivering a single Cas9 enzyme and two or more single guide RNAs (sgRNAs) targeted to distinct genomic sites. This approach can be used to simultaneously create multiple DNA breaks or to target multiple transcriptional activators to a single promoter for synergistic enhancement of gene induction. To address the need for uniform and sustained delivery of multiplex CRISPR/Cas9-based genome engineering tools, we developed a single lentiviral system to express a Cas9 variant, a reporter gene and up to four sgRNAs from independent RNA polymerase III promoters that are incorporated into the vector by a convenient Golden Gate cloning method. Each sgRNA is efficiently expressed and can mediate multiplex gene editing and sustained transcriptional activation in immortalized and primary human cells. This delivery system will be significant to enabling the potential of CRISPR/Cas9-based multiplex genome engineering in diverse cell types. PMID:25122746
Mr.CAS-A minimalistic (pure) Ruby CAS for fast prototyping and code generation
NASA Astrophysics Data System (ADS)
Ragni, Matteo
There are Computer Algebra System (CAS) systems on the market with complete solutions for manipulation of analytical models. But exporting a model that implements specific algorithms on specific platforms, for target languages or for particular numerical library, is often a rigid procedure that requires manual post-processing. This work presents a Ruby library that exposes core CAS capabilities, i.e. simplification, substitution, evaluation, etc. The library aims at programmers that need to rapidly prototype and generate numerical code for different target languages, while keeping separated mathematical expression from the code generation rules, where best practices for numerical conditioning are implemented. The library is written in pure Ruby language and is compatible with most Ruby interpreters.
Geometric quantification of features in large flow fields.
Kendall, Wesley; Huang, Jian; Peterka, Tom
2012-01-01
Interactive exploration of flow features in large-scale 3D unsteady-flow data is one of the most challenging visualization problems today. To comprehensively explore the complex feature spaces in these datasets, a proposed system employs a scalable framework for investigating a multitude of characteristics from traced field lines. This capability supports the examination of various neighborhood-based geometric attributes in concert with other scalar quantities. Such an analysis wasn't previously possible because of the large computational overhead and I/O requirements. The system integrates visual analytics methods by letting users procedurally and interactively describe and extract high-level flow features. An exploration of various phenomena in a large global ocean-modeling simulation demonstrates the approach's generality and expressiveness as well as its efficacy.
Symbolic discrete event system specification
NASA Technical Reports Server (NTRS)
Zeigler, Bernard P.; Chi, Sungdo
1992-01-01
Extending discrete event modeling formalisms to facilitate greater symbol manipulation capabilities is important to further their use in intelligent control and design of high autonomy systems. An extension to the DEVS formalism that facilitates symbolic expression of event times by extending the time base from the real numbers to the field of linear polynomials over the reals is defined. A simulation algorithm is developed to generate the branching trajectories resulting from the underlying nondeterminism. To efficiently manage symbolic constraints, a consistency checking algorithm for linear polynomial constraints based on feasibility checking algorithms borrowed from linear programming has been developed. The extended formalism offers a convenient means to conduct multiple, simultaneous explorations of model behaviors. Examples of application are given with concentration on fault model analysis.
Iron homeostasis: a new job for macrophages in adipose tissue?
Hubler, Merla J.; Peterson, Kristin R.; Hasty, Alyssa H.
2015-01-01
Elevated serum ferritin and increased cellular iron concentrations are risk factors for diabetes; however, the etiology of this association is unclear. Metabolic tissues such as pancreas, liver, and adipose tissue (AT), as well as the immune cells resident in these tissues, may be involved. Recent studies demonstrate that the polarization status of macrophages has important relevance to their iron handling capabilities. Furthermore, a subset of macrophages in AT have elevated iron concentrations and a gene expression profile indicative of iron handling, a capacity diminished in obesity. Because iron overload in adipocytes increases systemic insulin resistance, iron handling by AT macrophages may have relevance not only to adipocyte iron stores but also to local and systemic insulin sensitivity. PMID:25600948
Compositions and Methods for Inhibiting Gene Expressions
NASA Technical Reports Server (NTRS)
Williams, Loren D. (Inventor); Hsiao, Chiaolong (Inventor); Fang, Po-Yu (Inventor); Williams, Justin (Inventor)
2018-01-01
A combined packing and assembly method that efficiently packs ribonucleic acid (RNA) into virus like particles (VLPs) has been developed. The VLPs can spontaneously assemble and load RNA in vivo, efficiently packaging specifically designed RNAs at high densities and with high purity. In some embodiments the RNA is capable of interference activity, or is a precursor of a RNA capable of causing interference activity. Compositions and methods for the efficient expression, production and purification of VLP-RNAs are provided. VLP-RNAs can be used for the storage of RNA for long periods, and provide the ability to deliver RNA in stable form that is readily taken up by cells.
Correia, Margareta P; Costa, Alexandra V; Uhrberg, Markus; Cardoso, Elsa M; Arosa, Fernando A
2011-05-01
During the last years several authors have described a small population of CD8+ T cells expressing NK receptors (NKRs). Although their origin remains largely unknown, we have recently demonstrated that IL-15 is capable of inducing NKR expression in purified human CD8+CD56- T cells. In this study we show that IL-15-driven NKR induction in CD8+ T cells was linked with CD56 de novo acquisition, consistent with an effector-memory phenotype, increased anti-apoptotic levels, high granzyme B/perforin expression and with the ability of displaying in vitro NK-like cytotoxicity. Interestingly, dissection of NKR functional outcome in IL-15-cultured CD8+ T cells revealed: (i) that NKG2D cross-linking was able per se to upregulate degranulation levels and (ii) that KIR and NKG2A cross-linking upregulated secretion of cytokines such as IFN-γ, TNF-α, IL-1β and IL-10. These results suggest that IL-15 is capable of differentiating CD8+ T cells into NK-like T cells displaying a regulatory phenotype. Copyright © 2010 Elsevier GmbH. All rights reserved.
A positive feedback mechanism that regulates expression of miR-9 during neurogenesis.
Davila, Jonathan L; Goff, Loyal A; Ricupero, Christopher L; Camarillo, Cynthia; Oni, Eileen N; Swerdel, Mavis R; Toro-Ramos, Alana J; Li, Jiali; Hart, Ronald P
2014-01-01
MiR-9, a neuron-specific miRNA, is an important regulator of neurogenesis. In this study we identify how miR-9 is regulated during early differentiation from a neural stem-like cell. We utilized two immortalized rat precursor clones, one committed to neurogenesis (L2.2) and another capable of producing both neurons and non-neuronal cells (L2.3), to reproducibly study early neurogenesis. Exogenous miR-9 is capable of increasing neurogenesis from L2.3 cells. Only one of three genomic loci capable of encoding miR-9 was regulated during neurogenesis and the promoter region of this locus contains sufficient functional elements to drive expression of a luciferase reporter in a developmentally regulated pattern. Furthermore, among a large number of potential regulatory sites encoded in this sequence, Mef2 stood out because of its known pro-neuronal role. Of four Mef2 paralogs, we found only Mef2C mRNA was regulated during neurogenesis. Removal of predicted Mef2 binding sites or knockdown of Mef2C expression reduced miR-9-2 promoter activity. Finally, the mRNA encoding the Mef2C binding partner HDAC4 was shown to be targeted by miR-9. Since HDAC4 protein could be co-immunoprecipitated with Mef2C protein or with genomic Mef2 binding sequences, we conclude that miR-9 regulation is mediated, at least in part, by Mef2C binding but that expressed miR-9 has the capacity to reduce inhibitory HDAC4, stabilizing its own expression in a positive feedback mechanism.
Content of childbirth-related fear in Swedish women and men--analysis of an open-ended question.
Eriksson, Carola; Westman, Göran; Hamberg, Katarina
2006-01-01
The content of childbirth-related fear as described by 308 women and 194 men was analyzed and compared in relation to intensity of fear. The content of fear was similarly described by women and men and concerned the following main categories: the labor and delivery process, the health and life of the baby, the health and life of the woman, own capabilities and reactions, the partner's capabilities and reactions, and the professionals' competence and behavior. Among women, the labor and delivery process was the most frequently reported among the 6 categories of fears, whereas the health and life of the baby was the most frequent among the men. Fears related to own capabilities and reactions were described significantly more often by women with intense fear than by women with mild to moderate fear. The greatest difference between men with intense versus mild to moderate fear was a more frequent expression of concern for the health and life of the woman. Both women and men had fears related to not being treated with respect and not receiving sufficient medical care. This finding suggests that part of the problem with childbirth-related fear is located within the health care system itself.
The pathophysiological role of PEDF in bone diseases.
Broadhead, M L; Akiyama, T; Choong, P F M; Dass, C R
2010-04-01
First discovered in 1991 as a factor secreted by retinal pigment epithelial cells, the potency of pigment epithelium derived factor (PEDF) as an anti-angiogenic has led to examination of its role in active bone growth, repair and remodelling. In the musculoskeletal system, PEDF expression occurs particularly at sites of active bone formation. Expression has been noted in osteoblasts and to a lesser degree osteoclasts, the major classes of bone cells. In fact, PEDF is capable of inducing differentiation of precursor cells into mature osteoblasts. Expression and localisation are closely linked with that of vascular endothelial growth factor (VEGF). Studies at the epiphyseal plate have revealed that PEDF expression plays a key role in endochondral ossification, and beyond this may account for the epiphyseal plate's innate ability to resist neoplastic cell invasion. Collagen-1, the major protein in bone, is avidly bound by PEDF, implicating an important role played by this protein on PEDF function, possibly through MMP-2 and -9 activity. Surprisingly, the role of PEDF has not been evaluated more widely in bone disorders, so the challenge ahead lies in a more diverse evaluation of PEDF in various osteologic pathologies including osteoarthritis and fracture healing.
Trichinella spiralis: killing of newborn larvae by lung cells.
Falduto, Guido H; Vila, Cecilia C; Saracino, María P; Calcagno, Marcela A; Venturiello, Stella M
2015-02-01
The migratory stage of Trichinella spiralis, the newborn larva (NBL), travels along the pulmonary microvascular system on its way to the skeletal muscle cells. The present work studies the capability of lung cells to kill NBL. For this purpose, in vitro cytotoxicity assays were performed using NBL, lung cell suspensions from Wistar rats, rat anti-NBL surface sera, and fresh serum as complement source. The cytotoxic activity of lung cells from rats infected on day 6 p.i. was compared with that from noninfected rats. Two and 20 h-old NBL (NBL2 and NBL20) were used as they had shown to exhibit different surface antigens altering their biological activity. Sera antibodies were analyzed by indirect immunofluorescence assay, and cell populations used in each assay were characterized by histological staining. The role of IgE in the cytotoxic attack against NBL was analyzed using heated serum. The FcεRI expression on cell suspensions was examined by flow cytometry. Results showed that lung cells were capable of killing NBL by antibody-dependent cell-mediated cytotoxicity (ADCC). Lung cells from infected animals yielded the highest mortality percentages of NBL, with NBL20 being the most susceptible to such attack. IgE yielded a critical role in the cytotoxic attack. Regarding the analysis of cell suspensions, cells from infected rats showed an increase in the percentage of eosinophils, neutrophils, and the number of cells expressing the FcεRI receptor. We conclude that lung cells are capable of killing NBL in the presence of specific antibodies, supporting the idea that the lung is one of the sites where the NBL death occurs due to ADCC.
Generative Representations for Computer-Automated Evolutionary Design
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2006-01-01
With the increasing computational power of computers, software design systems are progressing from being tools for architects and designers to express their ideas to tools capable of creating designs under human guidance. One of the main limitations for these computer-automated design systems is the representation with which they encode designs. If the representation cannot encode a certain design, then the design system cannot produce it. To be able to produce new types of designs, and not just optimize pre-defined parameterizations, evolutionary design systems must use generative representations. Generative representations are assembly procedures, or algorithms, for constructing a design thereby allowing for truly novel design solutions to be encoded. In addition, by enabling modularity, regularity and hierarchy, the level of sophistication that can be evolved is increased. We demonstrate the advantages of generative representations on two different design domains: the evolution of spacecraft antennas and the evolution of 3D objects.
Molecular implementation of simple logic programs.
Ran, Tom; Kaplan, Shai; Shapiro, Ehud
2009-10-01
Autonomous programmable computing devices made of biomolecules could interact with a biological environment and be used in future biological and medical applications. Biomolecular implementations of finite automata and logic gates have already been developed. Here, we report an autonomous programmable molecular system based on the manipulation of DNA strands that is capable of performing simple logical deductions. Using molecular representations of facts such as Man(Socrates) and rules such as Mortal(X) <-- Man(X) (Every Man is Mortal), the system can answer molecular queries such as Mortal(Socrates)? (Is Socrates Mortal?) and Mortal(X)? (Who is Mortal?). This biomolecular computing system compares favourably with previous approaches in terms of expressive power, performance and precision. A compiler translates facts, rules and queries into their molecular representations and subsequently operates a robotic system that assembles the logical deductions and delivers the result. This prototype is the first simple programming language with a molecular-scale implementation.
Error correcting code with chip kill capability and power saving enhancement
Gara, Alan G [Mount Kisco, NY; Chen, Dong [Croton On Husdon, NY; Coteus, Paul W [Yorktown Heights, NY; Flynn, William T [Rochester, MN; Marcella, James A [Rochester, MN; Takken, Todd [Brewster, NY; Trager, Barry M [Yorktown Heights, NY; Winograd, Shmuel [Scarsdale, NY
2011-08-30
A method and system are disclosed for detecting memory chip failure in a computer memory system. The method comprises the steps of accessing user data from a set of user data chips, and testing the user data for errors using data from a set of system data chips. This testing is done by generating a sequence of check symbols from the user data, grouping the user data into a sequence of data symbols, and computing a specified sequence of syndromes. If all the syndromes are zero, the user data has no errors. If one of the syndromes is non-zero, then a set of discriminator expressions are computed, and used to determine whether a single or double symbol error has occurred. In the preferred embodiment, less than two full system data chips are used for testing and correcting the user data.
Efficiency analysis of semi-open sorption heat pump systems
Gluesenkamp, Kyle R.; Chugh, Devesh; Abdelaziz, Omar; ...
2016-08-10
Sorption systems traditionally fall into two categories: closed (heat pumps and chillers) and open (dehumidification). Recent work has explored the possibility of semi-open systems, which can perform heat pumping or chilling while utilizing ambient humidity as the working fluid of the cycle, and are still capable of being driven by solar, waste, or combustion heat sources. The efficiencies of closed and open systems are well characterized, and can typically be determined from four temperature s. In this work, the performance potential of semi-open systems is explored by adapting expressions for the efficiency of closed and open systems to the novelmore » semi-open systems. A key new parameter is introduced, which involves five temperatures, since both the ambient dry bulb and ambient dew point are used. Furthermore, this additional temperature is necessary to capture the open absorber performance in terms of both the absorption of humidity and sensible heat transfer with surrounding air.« less
Efficiency analysis of semi-open sorption heat pump systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gluesenkamp, Kyle R.; Chugh, Devesh; Abdelaziz, Omar
Sorption systems traditionally fall into two categories: closed (heat pumps and chillers) and open (dehumidification). Recent work has explored the possibility of semi-open systems, which can perform heat pumping or chilling while utilizing ambient humidity as the working fluid of the cycle, and are still capable of being driven by solar, waste, or combustion heat sources. The efficiencies of closed and open systems are well characterized, and can typically be determined from four temperature s. In this work, the performance potential of semi-open systems is explored by adapting expressions for the efficiency of closed and open systems to the novelmore » semi-open systems. A key new parameter is introduced, which involves five temperatures, since both the ambient dry bulb and ambient dew point are used. Furthermore, this additional temperature is necessary to capture the open absorber performance in terms of both the absorption of humidity and sensible heat transfer with surrounding air.« less
Analytic few-photon scattering in waveguide QED
NASA Astrophysics Data System (ADS)
Hurst, David L.; Kok, Pieter
2018-04-01
We develop an approach to light-matter coupling in waveguide QED based upon scattering amplitudes evaluated via Dyson series. For optical states containing more than single photons, terms in this series become increasingly complex, and we provide a diagrammatic recipe for their evaluation, which is capable of yielding analytic results. Our method fully specifies a combined emitter-optical state that permits investigation of light-matter entanglement generation protocols. We use our expressions to study two-photon scattering from a Λ -system and find that the pole structure of the transition amplitude is dramatically altered as the two ground states are tuned from degeneracy.
The enzymes of bacterial census and censorship
Fast, Walter; Tipton, Peter A.
2011-01-01
N-Acyl-l-homoserine lactones (AHLs) are a major class of quorum sensing signals used by Gram-negative bacteria to regulate gene expression in a population-dependent manner, thereby enabling group behavior. Enzymes capable of generating and catabolizing AHL signals are of significant interest for the study of microbial ecology and quorum-sensing pathways, for understanding the systems that bacteria have evolved to interact with small molecule signals, and for their possible use in therapeutic and industrial applications. The recent structural and functional studies reviewed here provide detailed insight into the chemistry and enzymology of bacterial communication. PMID:22099187
Oscillator Neural Network Retrieving Sparsely Coded Phase Patterns
NASA Astrophysics Data System (ADS)
Aoyagi, Toshio; Nomura, Masaki
1999-08-01
Little is known theoretically about the associative memory capabilities of neural networks in which information is encoded not only in the mean firing rate but also in the timing of firings. Particularly, in the case of sparsely coded patterns, it is biologically important to consider the timings of firings and to study how such consideration influences storage capacities and quality of recalled patterns. For this purpose, we propose a simple extended model of oscillator neural networks to allow for expression of a nonfiring state. Analyzing both equilibrium states and dynamical properties in recalling processes, we find that the system possesses good associative memory.
Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination
Nochi, Tomonori; Takagi, Hidenori; Yuki, Yoshikazu; Yang, Lijun; Masumura, Takehiro; Mejima, Mio; Nakanishi, Ushio; Matsumura, Akiko; Uozumi, Akihiro; Hiroi, Takachika; Morita, Shigeto; Tanaka, Kunisuke; Takaiwa, Fumio; Kiyono, Hiroshi
2007-01-01
Capable of inducing antigen-specific immune responses in both systemic and mucosal compartments without the use of syringe and needle, mucosal vaccination is considered ideal for the global control of infectious diseases. In this study, we developed a rice-based oral vaccine expressing cholera toxin B subunit (CTB) under the control of the endosperm-specific expression promoter 2.3-kb glutelin GluB-1 with codon usage optimization for expression in rice seed. An average of 30 μg of CTB per seed was stored in the protein bodies, which are storage organelles in rice. When mucosally fed, rice seeds expressing CTB were taken up by the M cells covering the Peyer's patches and induced CTB-specific serum IgG and mucosal IgA antibodies with neutralizing activity. When expressed in rice, CTB was protected from pepsin digestion in vitro. Rice-expressed CTB also remained stable and thus maintained immunogenicity at room temperature for >1.5 years, meaning that antigen-specific mucosal immune responses were induced at much lower doses than were necessary with purified recombinant CTB. Because they require neither refrigeration (cold-chain management) nor a needle, these rice-based mucosal vaccines offer a highly practical and cost-effective strategy for orally vaccinating large populations against mucosal infections, including those that may result from an act of bioterrorism. PMID:17573530
Knowledge bases built on web languages from the point of view of predicate logics
NASA Astrophysics Data System (ADS)
Vajgl, Marek; Lukasová, Alena; Žáček, Martin
2017-06-01
The article undergoes evaluation of formal systems created on the base of web (ontology/concept) languages by simplifying the usual approach of knowledge representation within the FOPL, but sharing its expressiveness, semantic correct-ness, completeness and decidability. Evaluation of two of them - that one based on description logic and that one built on RDF model principles - identifies some of the lacks of those formal systems and presents, if possible, corrections of them. Possibilities to build an inference system capable to obtain new further knowledge over given knowledge bases including those describing domains by giant linked domain databases has been taken into account. Moreover, the directions towards simplifying FOPL language discussed here has been evaluated from the point of view of a possibility to become a web language for fulfilling an idea of semantic web.
Escherichia coli global gene expression in urine from women with urinary tract infection.
Hagan, Erin C; Lloyd, Amanda L; Rasko, David A; Faerber, Gary J; Mobley, Harry L T
2010-11-11
Murine models of urinary tract infection (UTI) have provided substantial data identifying uropathogenic E. coli (UPEC) virulence factors and assessing their expression in vivo. However, it is unclear how gene expression in these animal models compares to UPEC gene expression during UTI in humans. To address this, we used a UPEC strain CFT073-specific microarray to measure global gene expression in eight E. coli isolates monitored directly from the urine of eight women presenting at a clinic with bacteriuria. The resulting gene expression profiles were compared to those of the same E. coli isolates cultured statically to exponential phase in pooled, sterilized human urine ex vivo. Known fitness factors, including iron acquisition and peptide transport systems, were highly expressed during human UTI and support a model in which UPEC replicates rapidly in vivo. While these findings were often consistent with previous data obtained from the murine UTI model, host-specific differences were observed. Most strikingly, expression of type 1 fimbrial genes, which are among the most highly expressed genes during murine experimental UTI and encode an essential virulence factor for this experimental model, was undetectable in six of the eight E. coli strains from women with UTI. Despite the lack of type 1 fimbrial expression in the urine samples, these E. coli isolates were generally capable of expressing type 1 fimbriae in vitro and highly upregulated fimA upon experimental murine infection. The findings presented here provide insight into the metabolic and pathogenic profile of UPEC in urine from women with UTI and represent the first transcriptome analysis for any pathogenic E. coli during a naturally occurring infection in humans.
Generic trending and analysis system
NASA Technical Reports Server (NTRS)
Keehan, Lori; Reese, Jay
1994-01-01
The Generic Trending and Analysis System (GTAS) is a generic spacecraft performance monitoring tool developed by NASA Code 511 and Loral Aerosys. It is designed to facilitate quick anomaly resolution and trend analysis. Traditionally, the job of off-line analysis has been performed using hardware and software systems developed for real-time spacecraft contacts; then, the systems were supplemented with a collection of tools developed by Flight Operations Team (FOT) members. Since the number of upcoming missions is increasing, NASA can no longer afford to operate in this manner. GTAS improves control center productivity and effectiveness because it provides a generic solution across multiple missions. Thus, GTAS eliminates the need for each individual mission to develop duplicate capabilities. It also allows for more sophisticated tools to be developed because it draws resources from several projects. In addition, the GTAS software system incorporates commercial off-the-shelf tools software (COTS) packages and reuses components of other NASA-developed systems wherever possible. GTAS has incorporated lessons learned from previous missions by involving the users early in the development process. GTAS users took a proactive role in requirements analysis, design, development, and testing. Because of user involvement, several special tools were designed and are now being developed. GTAS users expressed considerable interest in facilitating data collection for long term trending and analysis. As a result, GTAS provides easy access to large volumes of processed telemetry data directly in the control center. The GTAS archival and retrieval capabilities are supported by the integration of optical disk technology and a COTS relational database management system.
2014-08-01
AWARD NUMBER: W81XWH-13-1-0227 TITLE: Deficient BIM Expression as a Mechanism of Intrinsic and...1Aug2013-31July2014 4. TITLE AND SUBTITLE Deficient BIM Expression as a Mechanism of Intrinsic and Acquired Resistance to 5a. CONTRACT NUMBER...clinic. We had not had this capability when we applied for this award. We can now use these clinically relevant models to assess the expression of BIM
Computerized History Games: Narrative Options
ERIC Educational Resources Information Center
Kee, Kevin
2011-01-01
How may historians best express history through computer games? This article suggests that the answer lies in correctly correlating historians' goals for teaching with the capabilities of different kinds of computer games. During the development of a game prototype for high school students, the author followed best practices as expressed in the…
USDA-ARS?s Scientific Manuscript database
Vibrio parahaemolyticus is a significant human pathogen capable of causing foodborne gastroenteritis associated with the consumption of contaminated raw or undercooked seafood. Quantitative RT-PCR (qRT-PCR) is a useful tool for studying gene expression in V. parahaemolyticus to characterize the viru...
Central Nervous System Fibrosis Is Associated with Fibrocyte-Like Infiltrates
Aldrich, Amy; Kielian, Tammy
2011-01-01
Fibrotic wall formation is essential for limiting pathogen dissemination during brain abscess development. However, little is known about the regulation of fibrotic processes in the central nervous system (CNS). Most CNS injury responses are associated with hypertrophy of resident astrocytes, a process termed reactive gliosis. Studies of fibrosis outside the CNS have identified two bone marrow–derived cell types, fibrocytes and alternatively activated M2 macrophages, as key mediators of fibrosis. The current study used bone marrow chimeras generated from green fluorescent protein transgenic mice to evaluate the appearance of these cell types and whether bone marrow–derived cells were capable of acquiring fibrotic characteristics during brain abscess development. Immunofluorescence staining revealed partial overlap between green fluorescent protein, α-smooth muscle actin, and procollagen, suggesting that a population of cells forming the brain abscess capsule originate from a bone marrow precursor. In addition, the influx of fibrocyte-like cells into brain abscesses immediately preceded the onset of fibrotic encapsulation. Fibrotic wall formation was also associated with increased numbers of alternatively activated M2 microglia and macrophages. To our knowledge, this is the first study demonstrating that bone marrow–derived infiltrates are capable of expressing fibrotic molecules during CNS inflammation. PMID:22015460
Rigorous modal analysis of plasmonic nanoresonators
NASA Astrophysics Data System (ADS)
Yan, Wei; Faggiani, Rémi; Lalanne, Philippe
2018-05-01
The specificity of modal-expansion formalisms is their capabilities to model the physical properties in the natural resonance-state basis of the system in question, leading to a transparent interpretation of the numerical results. In electromagnetism, modal-expansion formalisms are routinely used for optical waveguides. In contrast, they are much less mature for analyzing open non-Hermitian systems, such as micro- and nanoresonators. Here, by accounting for material dispersion with auxiliary fields, we considerably extend the capabilities of these formalisms, in terms of computational effectiveness, number of states handled, and range of validity. We implement an efficient finite-element solver to compute the resonance states, and derive closed-form expressions of the modal excitation coefficients for reconstructing the scattered fields. Together, these two achievements allow us to perform rigorous modal analysis of complicated plasmonic resonators, being not limited to a few resonance states, with straightforward physical interpretations and remarkable computation speeds. We particularly show that, when the number of states retained in the expansion increases, convergence toward accurate predictions is achieved, offering a solid theoretical foundation for analyzing important issues, e.g., Fano interference, quenching, and coupling with the continuum, which are critical in nanophotonic research.
Fujita, Atsushi; Uchida, Naoya; Haro-Mora, Juan J; Winkler, Thomas; Tisdale, John
2016-06-01
Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells represent a potential alternative source for red blood cell transfusion. However, when using traditional methods with embryoid bodies, ES cell-derived erythroid cells predominantly express embryonic type ɛ-globin, with lesser fetal type γ-globin and very little adult type β-globin. Furthermore, no β-globin expression is detected in iPS cell-derived erythroid cells. ES cell-derived sacs (ES sacs) have been recently used to generate functional platelets. Due to its unique structure, we hypothesized that ES sacs serve as hemangioblast-like progenitors capable to generate definitive erythroid cells that express β-globin. With our ES sac-derived erythroid differentiation protocol, we obtained ∼120 erythroid cells per single ES cell. Both primitive (ɛ-globin expressing) and definitive (γ- and β-globin expressing) erythroid cells were generated from not only ES cells but also iPS cells. Primitive erythropoiesis is gradually switched to definitive erythropoiesis during prolonged ES sac maturation, concurrent with the emergence of hematopoietic progenitor cells. Primitive and definitive erythroid progenitor cells were selected on the basis of glycophorin A or CD34 expression from cells within the ES sacs before erythroid differentiation. This selection and differentiation strategy represents an important step toward the development of in vitro erythroid cell production systems from pluripotent stem cells. Further optimization to improve expansion should be required for clinical application. Stem Cells 2016;34:1541-1552. © 2016 AlphaMed Press.
Fang, Xin; Sastry, Anand; Mih, Nathan; Kim, Donghyuk; Tan, Justin; Lloyd, Colton J.; Gao, Ye; Yang, Laurence; Palsson, Bernhard O.
2017-01-01
Transcriptional regulatory networks (TRNs) have been studied intensely for >25 y. Yet, even for the Escherichia coli TRN—probably the best characterized TRN—several questions remain. Here, we address three questions: (i) How complete is our knowledge of the E. coli TRN; (ii) how well can we predict gene expression using this TRN; and (iii) how robust is our understanding of the TRN? First, we reconstructed a high-confidence TRN (hiTRN) consisting of 147 transcription factors (TFs) regulating 1,538 transcription units (TUs) encoding 1,764 genes. The 3,797 high-confidence regulatory interactions were collected from published, validated chromatin immunoprecipitation (ChIP) data and RegulonDB. For 21 different TF knockouts, up to 63% of the differentially expressed genes in the hiTRN were traced to the knocked-out TF through regulatory cascades. Second, we trained supervised machine learning algorithms to predict the expression of 1,364 TUs given TF activities using 441 samples. The algorithms accurately predicted condition-specific expression for 86% (1,174 of 1,364) of the TUs, while 193 TUs (14%) were predicted better than random TRNs. Third, we identified 10 regulatory modules whose definitions were robust against changes to the TRN or expression compendium. Using surrogate variable analysis, we also identified three unmodeled factors that systematically influenced gene expression. Our computational workflow comprehensively characterizes the predictive capabilities and systems-level functions of an organism’s TRN from disparate data types. PMID:28874552
An endogenous RNA transcript antisense to CNG(alpha)1 cation channel mRNA.
Cheng, Chin-Hung; Yew, David Tai-Wai; Kwan, Hiu-Yee; Zhou, Qing; Huang, Yu; Liu, Yong; Chan, Wing-Yee; Yao, Xiaoqiang
2002-10-01
CNG channels are cyclic nucleotide-gated Ca(2+)-permeable channels that are suggested to be involved in the activity-dependent alterations of synaptic strength that are thought to underlie information storage in the CNS. In this study, we isolated an endogenous RNA transcript antisense to CNG(alpha)1 mRNA. This transcript was capable of down-regulating the expression of sense CNG(alpha)1 in the Xenopus oocyte expression system. RT-PCR, Northern blot, and in situ hybridization analyses showed that the transcript was coexpressed with CNG(alpha)1 mRNA in many regions of human brain, notably in those regions that were involved in long-term potentiation and long-term depression, such as hippocampal CA1 and CA3, dentate gyrus, and cerebellar Purkinje layer. Comparison of expression patterns between adult and fetal cerebral cortex revealed that there were concurrent developmental changes in the expression levels of anti-CNG1 and CNG(alpha)1. Treatment of human glioma cell T98 with thyroid hormone T(3) caused a significant increase in anti-CNG1 expression and a parallel decrease in sense CNG(alpha)1 expression. These data suggest that the suppression of CNG(alpha)1 expression by anti-CNG1 may play an important role in neuronal functions, especially in synaptic plasticity and cortical development. Endogenous antisense RNA-mediated regulation may represent a new mechanism through which the activity of ion channels can be regulated in the human CNS.
Furue, Masutaka; Uchi, Hiroshi; Mitoma, Chikage; Hashimoto-Hachiya, Akiko; Chiba, Takahito; Ito, Takamichi; Nakahara, Takeshi; Tsuji, Gaku
2017-01-01
Skin is the outermost part of the body and is, thus, inevitably exposed to UV rays and environmental pollutants. Oxidative stress by these hazardous factors accelerates skin aging and induces skin inflammation and carcinogenesis. Aryl hydrocarbon receptors (AHRs) are chemical sensors that are abundantly expressed in epidermal keratinocytes and mediate the production of reactive oxygen species. To neutralize or minimize oxidative stress, the keratinocytes also express nuclear factor-erythroid 2-related factor-2 (NRF2), which is a master switch for antioxidant signaling. Notably, there is fine-tuned crosstalk between AHR and NRF2, which mutually increase or decrease their activation states. Many NRF2-mediated antioxidant phytochemicals are capable of up- and downmodulating AHR signaling. The precise mechanisms by which these phytochemicals differentially affect the AHR and NRF2 system remain largely unknown and warrant future investigation. PMID:28273792
Furue, Masutaka; Uchi, Hiroshi; Mitoma, Chikage; Hashimoto-Hachiya, Akiko; Chiba, Takahito; Ito, Takamichi; Nakahara, Takeshi; Tsuji, Gaku
2017-03-03
Skin is the outermost part of the body and is, thus, inevitably exposed to UV rays and environmental pollutants. Oxidative stress by these hazardous factors accelerates skin aging and induces skin inflammation and carcinogenesis. Aryl hydrocarbon receptors (AHRs) are chemical sensors that are abundantly expressed in epidermal keratinocytes and mediate the production of reactive oxygen species. To neutralize or minimize oxidative stress, the keratinocytes also express nuclear factor-erythroid 2-related factor-2 (NRF2), which is a master switch for antioxidant signaling. Notably, there is fine-tuned crosstalk between AHR and NRF2, which mutually increase or decrease their activation states. Many NRF2-mediated antioxidant phytochemicals are capable of up- and downmodulating AHR signaling. The precise mechanisms by which these phytochemicals differentially affect the AHR and NRF2 system remain largely unknown and warrant future investigation.
Kawamura, Norihiko; Nimura, Keisuke; Nagano, Hiromichi; Yamaguchi, Sohei; Nonomura, Norio; Kaneda, Yasufumi
2015-09-08
NANOG expression in prostate cancer is highly correlated with cancer stem cell characteristics and resistance to androgen deprivation. However, it is not clear whether NANOG or its pseudogenes contribute to the malignant potential of cancer. We established NANOG- and NANOGP8-knockout DU145 prostate cancer cell lines using the CRISPR/Cas9 system. Knockouts of NANOG and NANOGP8 significantly attenuated malignant potential, including sphere formation, anchorage-independent growth, migration capability, and drug resistance, compared to parental DU145 cells. NANOG and NANOGP8 knockout did not inhibit in vitro cell proliferation, but in vivo tumorigenic potential decreased significantly. These phenotypes were recovered in NANOG- and NANOGP8-rescued cell lines. These results indicate that NANOG and NANOGP8 proteins are expressed in prostate cancer cell lines, and NANOG and NANOGP8 equally contribute to the high malignant potential of prostate cancer.
Mapping RNA-seq Reads with STAR
Dobin, Alexander; Gingeras, Thomas R.
2015-01-01
Mapping of large sets of high-throughput sequencing reads to a reference genome is one of the foundational steps in RNA-seq data analysis. The STAR software package performs this task with high levels of accuracy and speed. In addition to detecting annotated and novel splice junctions, STAR is capable of discovering more complex RNA sequence arrangements, such as chimeric and circular RNA. STAR can align spliced sequences of any length with moderate error rates providing scalability for emerging sequencing technologies. STAR generates output files that can be used for many downstream analyses such as transcript/gene expression quantification, differential gene expression, novel isoform reconstruction, signal visualization, and so forth. In this unit we describe computational protocols that produce various output files, use different RNA-seq datatypes, and utilize different mapping strategies. STAR is Open Source software that can be run on Unix, Linux or Mac OS X systems. PMID:26334920
Mapping RNA-seq Reads with STAR.
Dobin, Alexander; Gingeras, Thomas R
2015-09-03
Mapping of large sets of high-throughput sequencing reads to a reference genome is one of the foundational steps in RNA-seq data analysis. The STAR software package performs this task with high levels of accuracy and speed. In addition to detecting annotated and novel splice junctions, STAR is capable of discovering more complex RNA sequence arrangements, such as chimeric and circular RNA. STAR can align spliced sequences of any length with moderate error rates, providing scalability for emerging sequencing technologies. STAR generates output files that can be used for many downstream analyses such as transcript/gene expression quantification, differential gene expression, novel isoform reconstruction, and signal visualization. In this unit, we describe computational protocols that produce various output files, use different RNA-seq datatypes, and utilize different mapping strategies. STAR is open source software that can be run on Unix, Linux, or Mac OS X systems. Copyright © 2015 John Wiley & Sons, Inc.
Huang, Ting-Kuo; Falk, Bryce W; Dandekar, Abhaya M; McDonald, Karen A
2018-05-24
We have previously demonstrated that the inducible plant viral vector (CMViva) in transgenic plant cell cultures can significantly improve the productivity of extracellular functional recombinant human alpha-1-antiryspin (rAAT) compared with either a common plant constitutive promoter ( Cauliflower mosaic virus (CaMV) 35S) or a chemically inducible promoter (estrogen receptor-based XVE) system. For a transgenic plant host system, however, viral or transgene-induced post-transcriptional gene silencing (PTGS) has been identified as a host response mechanism that may dramatically reduce the expression of a foreign gene. Previous studies have suggested that viral gene silencing suppressors encoded by a virus can block or interfere with the pathways of transgene-induced PTGS in plant cells. In this study, the capability of nine different viral gene silencing suppressors were evaluated for improving the production of rAAT protein in transgenic plant cell cultures (CMViva, XVE or 35S system) using an Agrobacterium -mediated transient expression co-cultivation process in which transgenic plant cells and recombinant Agrobacterium carrying the viral gene silencing suppressor were grown together in suspension cultures. Through the co-cultivation process, the impacts of gene silencing suppressors on the rAAT production were elucidated, and promising gene silencing suppressors were identified. Furthermore, the combinations of gene silencing suppressors were optimized using design of experiments methodology. The results have shown that in transgenic CMViva cell cultures, the functional rAAT as a percentage of total soluble protein is increased 5.7 fold with the expression of P19, and 17.2 fold with the co-expression of CP, P19 and P24.
T cells fail to develop in the human skin-cell explants system; an inconvenient truth.
Meek, Bob; Van Elssen, Catharina H M J; Huijskens, Mirelle J A J; van der Stegen, Sjoukje J C; Tonnaer, Siebe; Lumeij, Stijn B J; Vanderlocht, Joris; Kirkland, Mark A; Hesselink, Reinout; Germeraad, Wilfred T V; Bos, Gerard M J
2011-02-18
Haplo-identical hematopoietic stem cell (HSC) transplantation is very successful in eradicating haematological tumours, but the long post-transplant T-lymphopenic phase is responsible for high morbidity and mortality rates. Clark et al. have described a skin-explant system capable of producing host-tolerant donor-HSC derived T-cells. Because this T-cell production platform has the potential to replenish the T-cell levels following transplantation, we set out to validate the skin-explant system. Following the published procedures, while using the same commercial components, it was impossible to reproduce the skin-explant conditions required for HSC differentiation towards mature T-cells. The keratinocyte maturation procedure resulted in fragile cells with minimum expression of delta-like ligand (DLL). In most experiments the generated cells failed to adhere to carriers or were quickly outcompeted by fibroblasts. Consequently it was not possible to reproduce cell-culture conditions required for HSC differentiation into functional T-cells. Using cell-lines over-expressing DLL, we showed that the antibodies used by Clark et al. were unable to detect native DLL, but instead stained 7AAD+ cells. Therefore, it is unlikely that the observed T-lineage commitment from HSC is mediated by DLL expressed on keratinocytes. In addition, we did confirm expression of the Notch-ligand Jagged-1 by keratinocytes. Currently, and unfortunately, it remains difficult to explain the development or growth of T-cells described by Clark et al., but for the fate of patients suffering from lymphopenia it is essential to both reproduce and understand how these co-cultures really "work". Fortunately, alternative procedures to speed-up T-cell reconstitution are being established and validated and may become available for patients in the near future.
Feasibility and demonstration of a cloud-based RIID analysis system
NASA Astrophysics Data System (ADS)
Wright, Michael C.; Hertz, Kristin L.; Johnson, William C.; Sword, Eric D.; Younkin, James R.; Sadler, Lorraine E.
2015-06-01
A significant limitation in the operational utility of handheld and backpack radioisotope identifiers (RIIDs) is the inability of their onboard algorithms to accurately and reliably identify the isotopic sources of the measured gamma-ray energy spectrum. A possible solution is to move the spectral analysis computations to an external device, the cloud, where significantly greater capabilities are available. The implementation and demonstration of a prototype cloud-based RIID analysis system have shown this type of system to be feasible with currently available communication and computational technology. A system study has shown that the potential user community could derive significant benefits from an appropriately implemented cloud-based analysis system and has identified the design and operational characteristics required by the users and stakeholders for such a system. A general description of the hardware and software necessary to implement reliable cloud-based analysis, the value of the cloud expressed by the user community, and the aspects of the cloud implemented in the demonstrations are discussed.
LIGHT: A Novel Immunotherapy for Primary and Metastatic Prostate Cancer
2015-11-01
R), is predominantly expressed on activated immune cells , signaling via LTR is required for the formation of organized lymphoid tissues while...expressed on activated immune cells . Signaling via LTβR is required for the formation of organized lymphoid tissues while signaling via HVEM...required for the formation of organized lymphoid tissues. Forced expression of LIGHT recruits naive T cells into tumors and is capable of establishing
Paucity of PD-L1 expression in prostate cancer: innate and adaptive immune resistance.
Martin, A M; Nirschl, T R; Nirschl, C J; Francica, B J; Kochel, C M; van Bokhoven, A; Meeker, A K; Lucia, M S; Anders, R A; DeMarzo, A M; Drake, C G
2015-12-01
Primary prostate cancers are infiltrated with programmed death-1 (PD-1) expressing CD8+ T-cells. However, in early clinical trials, men with metastatic castrate-resistant prostate cancer did not respond to PD-1 blockade as a monotherapy. One explanation for this unresponsiveness could be that prostate tumors generally do not express programmed death ligand-1 (PD-L1), the primary ligand for PD-1. However, lack of PD-L1 expression in prostate cancer would be surprising, given that phosphatase and tensin homolog (PTEN) loss is relatively common in prostate cancer and several studies have shown that PTEN loss correlates with PD-L1 upregulation--constituting a mechanism of innate immune resistance. This study tested whether prostate cancer cells were capable of expressing PD-L1, and whether the rare PD-L1 expression that occurs in human specimens correlates with PTEN loss. Human prostate cancer cell lines were evaluated for PD-L1 expression and loss of PTEN by flow cytometry and western blotting, respectively. Immunohistochemical (IHC) staining for PTEN was correlated with PD-L1 IHC using a series of resected human prostate cancer samples. In vitro, many prostate cancer cell lines upregulated PD-L1 expression in response to inflammatory cytokines, consistent with adaptive immune resistance. In these cell lines, no association between PTEN loss and PD-L1 expression was apparent. In primary prostate tumors, PD-L1 expression was rare, and was not associated with PTEN loss. These studies show that some prostate cancer cell lines are capable of expressing PD-L1. However, in human prostate cancer, PTEN loss is not associated with PD-L1 expression, arguing against innate immune resistance as a mechanism that mitigates antitumor immune responses in this disease.
Inducible expression of photoacoustic reporter gene tyrosinase in cells using a single plasmid
NASA Astrophysics Data System (ADS)
Paproski, Robert J.; Zemp, Roger J.
2012-02-01
We have previously demonstrated that tyrosinase is a reporter gene for photoacoustic imaging since tyrosinase is the rate-limiting step in the synthesis of melanin, a pigment capable of producing strong photoacoustic signals. We previously created a cell line capable of inducible tyrosinase expression (important due to toxicity of melanin) by stably transfecting tyrosinase in MCF-7 Tet-OnR cell line (Clontech) which expresses a doxycycline-controlled transactivator. Unfortunately, Clontech provides few Tet-On Advanced cell lines making it difficult to have inducible tyrosinase expression in cell lines not provided by Clontech. In order to simplify the creation of cell lines with inducible expression of tyrosinase, we created a single plasmid that encodes both the transactivator as well as tyrosinase. PCR was used to amplify both the transactivator and tyrosinase from the Tet-OnR Advanced and pTRE-Tight-TYR plasmids, respectively. Both PCR products were cloned into the pEGFP-N1 plasmid and the newly created plasmid was transfected into ZR-75-1, MCF-7, and MIA PaCa-1 cells using lipofectamine. After several days, brown melanin was only observed in cells incubated with doxycycline, suggesting that the newly created single plasmid allowed inducible tyrosinase expression in many different cells lines.
Operational Protection from Unmanned Aerial Systems
2015-05-15
future threat posed by adversary UAS to U.S. forces, both in the form of system capabilities and methods of employment . It also addresses present...both in the form of system capabilities and methods of employment . It also addresses present counter UAS capabilities and recommends ways and means to...capabilities and methods of employment . It also addresses present counter UAS capabilities and recommends ways and means to provide better operational
Molecular genetic transfection of the coccidian parasite Sarcocystis neurona.
Gaji, Rajshekhar Y; Zhang, Deqing; Breathnach, Cormac C; Vaishnava, Shipra; Striepen, Boris; Howe, Daniel K
2006-11-01
Sarcocystis neurona is an apicomplexan parasite that is the major cause of equine protozoal myeloencephalitis (EPM). The biology of this pathogen remains poorly understood in part due to unavailability of molecular genetic tools. Hence, with an objective to develop DNA transfection capabilities for S. neurona, the 5' flanking region of the SnSAG1 gene was isolated from a genomic library and used to construct expression plasmids. In transient assays, the reporter molecules beta-galactosidase (beta-gal) and yellow fluorescent protein (YFP) could be detected in electroporated S. neurona, thereby confirming the feasibility of transgene expression in this organism. Stable transformation of S. neurona was achieved using a mutant dihydrofolate reductase thymidylate synthase (DHFR-TS) gene of Toxoplasma gondii that confers resistance to pyrimethamine. This selection system was used to create transgenic S. neurona that stably express beta-gal and YFP. As shown in this study, these transgenic clones can be useful for analyzing growth rate of parasites in vitro and for assessing drug sensitivities. More importantly, the DNA transfection methods described herein should greatly facilitate studies examining intracellular parasitism by this important coccidian pathogen.
The road ahead: working towards effective clinical translation of myocardial gene therapies
Katz, Michael G; Fargnoli, Anthony S; Williams, Richard D; Bridges, Charles R
2014-01-01
During the last two decades the fields of molecular and cellular cardiology, and more recently molecular cardiac surgery, have developed rapidly. The concept of delivering cDNA encoding a therapeutic gene to cardiomyocytes using a vector system with substantial cardiac tropism, allowing for long-term expression of a therapeutic protein, has moved from hypothesis to bench to clinical application. However, the clinical results to date are still disappointing. The ideal gene transfer method should be explored in clinically relevant animal models of heart disease to evaluate the relative roles of specific molecular pathways in disease pathogenesis, helping to validate the potential targets for therapeutic intervention. Successful clinical cardiovascular gene therapy also requires the use of nonimmunogenic cardiotropic vectors capable of expressing the requisite amount of therapeutic protein in vivo and in situ. Depending on the desired application either regional or global myocardial gene delivery is required. Cardiac-specific delivery techniques incorporating mapping technologies for regional delivery and highly efficient methodologies for global delivery should improve the precision and specificity of gene transfer to the areas of interest and minimize collateral organ gene expression. PMID:24341816
Use of high-throughput mass spectrometry to elucidate host pathogen interactions in Salmonella
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodland, Karin D.; Adkins, Joshua N.; Ansong, Charles
Capabilities in mass spectrometry are evolving rapidly, with recent improvements in sensitivity, data analysis, and most important, from the standpoint of this review, much higher throughput allowing analysis of many samples in a single day. This short review describes how these improvements in mass spectrometry can be used to dissect host-pathogen interactions using Salmonella as a model system. This approach enabled direct identification of the majority of annotated Salmonella proteins, quantitation of expression changes under various in vitro growth conditions, and new insights into virulence and expression of Salmonella proteins within host cell cells. One of the most significant findingsmore » is that a very high percentage of the all annotated genes (>20%) in Salmonella are regulated post-transcriptionally. In addition, new and unexpected interactions have been identified for several Salmonella virulence regulators that involve protein-protein interactions, suggesting additional functions of these regulators in coordinating virulence expression. Overall high throughput mass spectrometry provides a new view of pathogen-host interactions emphasizing the protein products and defining how protein interactions determine the outcome of infection.« less
Engineering modular ‘ON’ RNA switches using biological components
Ceres, Pablo; Trausch, Jeremiah J.; Batey, Robert T.
2013-01-01
Riboswitches are cis-acting regulatory elements broadly distributed in bacterial mRNAs that control a wide range of critical metabolic activities. Expression is governed by two distinct domains within the mRNA leader: a sensory ‘aptamer domain’ and a regulatory ‘expression platform’. Riboswitches have also received considerable attention as important tools in synthetic biology because of their conceptually simple structure and the ability to obtain aptamers that bind almost any conceivable small molecule using in vitro selection (referred to as SELEX). In the design of artificial riboswitches, a significant hurdle has been to couple the two domains enabling their efficient communication. We previously demonstrated that biological transcriptional ‘OFF’ expression platforms are easily coupled to diverse aptamers, both biological and SELEX-derived, using simple design rules. Here, we present two modular transcriptional ‘ON’ riboswitch expression platforms that are also capable of hosting foreign aptamers. We demonstrate that these biological parts can be used to facilely generate artificial chimeric riboswitches capable of robustly regulating transcription both in vitro and in vivo. We expect that these modular expression platforms will be of great utility for various synthetic biological applications that use RNA-based biosensors. PMID:23999097
Park, Jisang; Seo, Ki-Weon; Kim, Sae-Hae; Lee, Ha-Yan; Kim, Bumseok; Lim, Chae Woong; Kim, Jin-Hee; Yoo, Han Sang; Jang, Yong-Suk
2015-05-15
Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia and severe economic loss in the swine industry has been caused by the infection. Therefore, the development of an effective vaccine against the bacteria is necessary. ApxII toxin, among several virulence factors expressed by the bacteria, is considered to be a promising vaccine candidate because ApxII toxin not only accompanies cytotoxic and hemolytic activities, but is also expressed in all 15 serotypes of bacteria except serotypes 10 and 14. In this study, we identified the peptide ligand capable of targeting the ligand-conjugated ApxIIA #5 fragment antigen to nasopharynx-associated lymphoid tissue. It was found that nasal immunization with ligand-conjugated ApxIIA #5 induced efficient mucosal and systemic immune responses measured at the levels of antigen-specific antibodies, cytokine-secreting cells after antigen exposure, and antigen-specific lymphocyte proliferation. More importantly, the nasal immunization induced protective immunity against nasal challenge infection of the bacteria, which was confirmed by histopathological studies and bacterial clearance after challenge infection. Collectively, we confirmed that the ligand capable of targeting the ligand-conjugated antigen to nasopharynx-associated lymphoid tissue can be used as an effective nasal vaccine adjuvant to induce protective immunity against A. pleuropneumoniae infection. Copyright © 2015 Elsevier B.V. All rights reserved.
An autonomous molecular computer for logical control of gene expression
Benenson, Yaakov; Gil, Binyamin; Ben-Dor, Uri; Adar, Rivka; Shapiro, Ehud
2013-01-01
Early biomolecular computer research focused on laboratory-scale, human-operated computers for complex computational problems1–7. Recently, simple molecular-scale autonomous programmable computers were demonstrated8–15 allowing both input and output information to be in molecular form. Such computers, using biological molecules as input data and biologically active molecules as outputs, could produce a system for ‘logical’ control of biological processes. Here we describe an autonomous biomolecular computer that, at least in vitro, logically analyses the levels of messenger RNA species, and in response produces a molecule capable of affecting levels of gene expression. The computer operates at a concentration of close to a trillion computers per microlitre and consists of three programmable modules: a computation module, that is, a stochastic molecular automaton12–17; an input module, by which specific mRNA levels or point mutations regulate software molecule concentrations, and hence automaton transition probabilities; and an output module, capable of controlled release of a short single-stranded DNA molecule. This approach might be applied in vivo to biochemical sensing, genetic engineering and even medical diagnosis and treatment. As a proof of principle we programmed the computer to identify and analyse mRNA of disease-related genes18–22 associated with models of small-cell lung cancer and prostate cancer, and to produce a single-stranded DNA molecule modelled after an anticancer drug. PMID:15116117
Majka, Susan M.; Kohrt, Wendy M.; Miller, Heidi L.; Sullivan, Timothy M.; Klemm, Dwight J.
2017-01-01
ABSTRACT Some bona fide adult adipocytes arise de novo from a bone marrow-derived myeloid lineage. These studies further demonstrate that adipose tissue stroma contains a resident population of myeloid cells capable of adipocyte and multilineage mesenchymal differentiation. These resident myeloid cells lack hematopoietic markers and express mesenchymal and progenitor cell markers. Because bone marrow mesenchymal progenitor cells have not been shown to enter the circulation, we hypothesized that myeloid cells acquire mesenchymal differentiation capacity in adipose tissue. We fabricated a 3-dimensional fibrin matrix culture system to define the adipose differentiation potential of adipose tissue-resident myeloid subpopulations, including macrophages, granulocytes and dendritic cells. Our data show that multilineage mesenchymal potential was limited to adipose tissue macrophages, characterized by the acquisition of adipocyte, osteoblast, chondrocyte and skeletal muscle myocyte phenotypes. Fibrin hydrogel matrices stimulated macrophage loss of hematopoietic cell lineage determinants and the expression of mesenchymal and progenitor cell markers, including integrin β1. Ablation of integrin β1 in macrophages inhibited adipocyte specification. Therefore, some bona fide adipocytes are specifically derived from adipose tissue-resident macrophages via an integrin β1-dependent hematopoietic-to-mesenchymal transition, whereby they become capable of multipotent mesenchymal differentiation. The requirement for integrin β1 highlights this molecule as a potential target for controlling the production of marrow-derived adipocytes and their contribution to adipose tissue development and function. PMID:28441086
Chai, San Jiun; Yap, Yoke Yeow; Foo, Yoke Ching; Yap, Lee Fah; Ponniah, Sathibalan; Teo, Soo Hwang; Cheong, Sok Ching; Patel, Vyomesh; Lim, Kue Peng
2015-01-01
Nasopharyngeal carcinoma (NPC) is highly prevalent in South East Asia and China. The poor outcome is due to late presentation, recurrence, distant metastasis and limited therapeutic options. For improved treatment outcome, immunotherapeutic approaches focusing on dendritic and autologous cytotoxic T-cell based therapies have been developed, but cost and infrastructure remain barriers for implementing these in low-resource settings. As our prior observations had found that four-jointed box 1 (FJX1), a tumor antigen, is overexpressed in NPCs, we investigated if short 9–20 amino acid sequence specific peptides matching to FJX1 requiring only intramuscular immunization to train host immune systems would be a better treatment option for this disease. Thus, we designed 8 FJX1-specific peptides and implemented an assay system to first, assess the binding of these peptides to HLA-A2 molecules on T2 cells. After, ELISPOT assays were used to determine the peptides immunogenicity and ability to induce potential cytotoxicity activity towards cancer cells. Also, T-cell proliferation assay was used to evaluate the potential of MHC class II peptides to stimulate the expansion of isolated T-cells. Our results demonstrate that these peptides are immunogenic and peptide stimulated T-cells were able to induce peptide-specific cytolytic activity specifically against FJX1-expressing cancer cells. In addition, we demonstrated that the MHC class II peptides were capable of inducing T-cell proliferation. Our results suggest that these peptides are capable of inducing specific cytotoxic cytokines secretion against FJX1-expressing cancer cells and serve as a potential vaccine-based therapy for NPC patients. PMID:26536470
Dyszkiewicz-Konwińska, M; Bryja, A; Jopek, K; Budna, J; Khozmi, R; Jeseta, M; Bukowska, D; Antosik, P; Bruska, M; Nowicki, M; Zabel, M; Kempisty, B
2017-01-01
Recently, using experimental animal model, we demonstrated that porcine buccal pouch mucosal cells reflect increased proliferation capability during primary cultivation in vitro. Although the histological structure and morphogenesis in oral cavity is well recognized, the molecular mechanisms which regulate this process still need further investigation. This study was aimed to analyze the molecular marker expression profile involved in morphogenesis and differentiation capacity of porcine buccal pouch mucosal cells during their long-term primary cultivation in vitro. The experiment was performed on buccal pouch mucosal cells isolated from 80 pubertal crossbred Landrace gilts. After collection, the cells were treated enzymatically and transferred into a primary in vitro culture (IVC) system and cultured for 30 days. The cells were collected for RNA isolation after 7, 15 and 30 days of IVC and were checked for their real-time proliferative status using the RTCA system. We found an increased expression of FN1 and SOX9 genes when calculated against ACTB after 7, and 30 days of IVC, (P less than 0.01, P less than 0.001, respectively). The CXCL12 mRNA was down-regulated after 7, 15 and 30 days of IVC, but not statistically significant. Similar expression profile was observed when calculated against HPRT, however, DAB2 was found to be higher expressed at day 15 of IVC, (P less than 0.05). The cell index measured during real-time cell proliferation was substantially increased between 96 h and 147h of IVC and reached the log phase. Since FN1 and SOX9 revealed significant increase of expression after long-term culture in vitro, it is suggested that expression of these differentiation and stemness genes is accompanied by cell proliferation. Moreover, FN1 and SOX9 might be recognized as new markers of buccal pouch mucosal cell proliferation and differentiation in pigs in in vitro primary culture model.
Mechanisms of anaphylaxis in human low-affinity IgG receptor locus knock-in mice.
Gillis, Caitlin M; Jönsson, Friederike; Mancardi, David A; Tu, Naxin; Beutier, Héloïse; Van Rooijen, Nico; Macdonald, Lynn E; Murphy, Andrew J; Bruhns, Pierre
2017-04-01
Anaphylaxis can proceed through distinct IgE- or IgG-dependent pathways, which have been investigated in various mouse models. We developed a novel mouse strain in which the human low-affinity IgG receptor locus, comprising both activating (hFcγRIIA, hFcγRIIIA, and hFcγRIIIB) and inhibitory (hFcγRIIB) hFcγR genes, has been inserted into the equivalent murine locus, corresponding to a locus swap. We sought to determine the capabilities of hFcγRs to induce systemic anaphylaxis and identify the cell types and mediators involved. hFcγR expression on mouse and human cells was compared to validate the model. Passive systemic anaphylaxis was induced by injection of heat-aggregated human intravenous immunoglobulin and active systemic anaphylaxis after immunization and challenge. Anaphylaxis severity was evaluated based on hypothermia and mortality. The contribution of receptors, mediators, or cell types was assessed based on receptor blockade or depletion. The human-to-mouse low-affinity FcγR locus swap engendered hFcγRIIA/IIB/IIIA/IIIB expression in mice comparable with that seen in human subjects. Knock-in mice were susceptible to passive and active anaphylaxis, accompanied by downregulation of both activating and inhibitory hFcγR expression on specific myeloid cells. The contribution of hFcγRIIA was predominant. Depletion of neutrophils protected against hypothermia and mortality. Basophils contributed to a lesser extent. Anaphylaxis was inhibited by platelet-activating factor receptor or histamine receptor 1 blockade. Low-affinity FcγR locus-switched mice represent an unprecedented model of cognate hFcγR expression. Importantly, IgG-related anaphylaxis proceeds within a native context of activating and inhibitory hFcγRs, indicating that, despite robust hFcγRIIB expression, activating signals can dominate to initiate a severe anaphylactic reaction. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
A Positive Feedback Mechanism That Regulates Expression of miR-9 during Neurogenesis
Oni, Eileen N.; Swerdel, Mavis R.; Toro-Ramos, Alana J.; Li, Jiali; Hart, Ronald P.
2014-01-01
MiR-9, a neuron-specific miRNA, is an important regulator of neurogenesis. In this study we identify how miR-9 is regulated during early differentiation from a neural stem-like cell. We utilized two immortalized rat precursor clones, one committed to neurogenesis (L2.2) and another capable of producing both neurons and non-neuronal cells (L2.3), to reproducibly study early neurogenesis. Exogenous miR-9 is capable of increasing neurogenesis from L2.3 cells. Only one of three genomic loci capable of encoding miR-9 was regulated during neurogenesis and the promoter region of this locus contains sufficient functional elements to drive expression of a luciferase reporter in a developmentally regulated pattern. Furthermore, among a large number of potential regulatory sites encoded in this sequence, Mef2 stood out because of its known pro-neuronal role. Of four Mef2 paralogs, we found only Mef2C mRNA was regulated during neurogenesis. Removal of predicted Mef2 binding sites or knockdown of Mef2C expression reduced miR-9-2 promoter activity. Finally, the mRNA encoding the Mef2C binding partner HDAC4 was shown to be targeted by miR-9. Since HDAC4 protein could be co-immunoprecipitated with Mef2C protein or with genomic Mef2 binding sequences, we conclude that miR-9 regulation is mediated, at least in part, by Mef2C binding but that expressed miR-9 has the capacity to reduce inhibitory HDAC4, stabilizing its own expression in a positive feedback mechanism. PMID:24714615
Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate
2012-01-01
Bioluminescence methodologies have been extraordinarily useful due to their high sensitivity, broad dynamic range, and operational simplicity. These capabilities have been realized largely through incremental adaptations of native enzymes and substrates, originating from luminous organisms of diverse evolutionary lineages. We engineered both an enzyme and substrate in combination to create a novel bioluminescence system capable of more efficient light emission with superior biochemical and physical characteristics. Using a small luciferase subunit (19 kDa) from the deep sea shrimp Oplophorus gracilirostris, we have improved luminescence expression in mammalian cells ∼2.5 million-fold by merging optimization of protein structure with development of a novel imidazopyrazinone substrate (furimazine). The new luciferase, NanoLuc, produces glow-type luminescence (signal half-life >2 h) with a specific activity ∼150-fold greater than that of either firefly (Photinus pyralis) or Renilla luciferases similarly configured for glow-type assays. In mammalian cells, NanoLuc shows no evidence of post-translational modifications or subcellular partitioning. The enzyme exhibits high physical stability, retaining activity with incubation up to 55 °C or in culture medium for >15 h at 37 °C. As a genetic reporter, NanoLuc may be configured for high sensitivity or for response dynamics by appending a degradation sequence to reduce intracellular accumulation. Appending a signal sequence allows NanoLuc to be exported to the culture medium, where reporter expression can be measured without cell lysis. Fusion onto other proteins allows luminescent assays of their metabolism or localization within cells. Reporter quantitation is achievable even at very low expression levels to facilitate more reliable coupling with endogenous cellular processes. PMID:22894855
Wang, Xuanzhi; Dai, Xingliang; Zhang, Xinzhi; Li, Xinda; Xu, Tao; Lan, Qing
2018-04-15
Cancer stem cells (CSCs), being tumor-initiating with self-renewal capacity and heterogeneity, are most likely the cause of tumor resistance, reoccurrence and metastasis. To further investigate the role of CSCs in tumor biology, there is a need to develop an effective culture system to grow, maintain and enrich CSCs. Three-dimensional (3D) cell culture model has been widely used in tumor research and drug screening. Recently, researchers have begun to utilize 3D models to culture cancer cells for CSCs enrichment. In this study, glioma cell line was cultured with 3D porous chitosan (CS) scaffolds or chitosan-hyaluronic acid (CS-HA) scaffolds to explore the possibility of glioma stem cells (GSCs)-like cells enrichment, to study the morphology, gene expression, and in vivo tumorigenicity of 3D scaffolds cells, and to compare results to 2D controls. Results showed that glioma cells on both CS and CS-HA scaffolds could form tumor cell spheroids and increased the expression of GSCs biomarkers compared to conventional 2D monolayers. Furthermore, cells in CS-HA scaffolds had higher expression levels of epithelial-to-mesenchymal transition (EMT)-related gene. Specifically, the in vivo tumorigenicity capability of CS-HA scaffold cultured cells was greater than 2D cells or CS scaffold cultured cells. It is indicated that the chemical composition of scaffold plays an important role in the enrichment of CSCs. Our results suggest that CS-HA scaffolds have a better capability to enrich GSCs-like cells and can serve as a simple and effective way to cultivate and enrich CSCs in vitro to support the study of CSCs biology and development of novel anti-cancer therapies. Copyright © 2018 Elsevier Inc. All rights reserved.
Beal, Jacob; Lu, Ting; Weiss, Ron
2011-01-01
Background The field of synthetic biology promises to revolutionize our ability to engineer biological systems, providing important benefits for a variety of applications. Recent advances in DNA synthesis and automated DNA assembly technologies suggest that it is now possible to construct synthetic systems of significant complexity. However, while a variety of novel genetic devices and small engineered gene networks have been successfully demonstrated, the regulatory complexity of synthetic systems that have been reported recently has somewhat plateaued due to a variety of factors, including the complexity of biology itself and the lag in our ability to design and optimize sophisticated biological circuitry. Methodology/Principal Findings To address the gap between DNA synthesis and circuit design capabilities, we present a platform that enables synthetic biologists to express desired behavior using a convenient high-level biologically-oriented programming language, Proto. The high level specification is compiled, using a regulatory motif based mechanism, to a gene network, optimized, and then converted to a computational simulation for numerical verification. Through several example programs we illustrate the automated process of biological system design with our platform, and show that our compiler optimizations can yield significant reductions in the number of genes () and latency of the optimized engineered gene networks. Conclusions/Significance Our platform provides a convenient and accessible tool for the automated design of sophisticated synthetic biological systems, bridging an important gap between DNA synthesis and circuit design capabilities. Our platform is user-friendly and features biologically relevant compiler optimizations, providing an important foundation for the development of sophisticated biological systems. PMID:21850228
Beal, Jacob; Lu, Ting; Weiss, Ron
2011-01-01
The field of synthetic biology promises to revolutionize our ability to engineer biological systems, providing important benefits for a variety of applications. Recent advances in DNA synthesis and automated DNA assembly technologies suggest that it is now possible to construct synthetic systems of significant complexity. However, while a variety of novel genetic devices and small engineered gene networks have been successfully demonstrated, the regulatory complexity of synthetic systems that have been reported recently has somewhat plateaued due to a variety of factors, including the complexity of biology itself and the lag in our ability to design and optimize sophisticated biological circuitry. To address the gap between DNA synthesis and circuit design capabilities, we present a platform that enables synthetic biologists to express desired behavior using a convenient high-level biologically-oriented programming language, Proto. The high level specification is compiled, using a regulatory motif based mechanism, to a gene network, optimized, and then converted to a computational simulation for numerical verification. Through several example programs we illustrate the automated process of biological system design with our platform, and show that our compiler optimizations can yield significant reductions in the number of genes (~ 50%) and latency of the optimized engineered gene networks. Our platform provides a convenient and accessible tool for the automated design of sophisticated synthetic biological systems, bridging an important gap between DNA synthesis and circuit design capabilities. Our platform is user-friendly and features biologically relevant compiler optimizations, providing an important foundation for the development of sophisticated biological systems.
Calculation of ground vibration spectra from heavy military vehicles
NASA Astrophysics Data System (ADS)
Krylov, V. V.; Pickup, S.; McNuff, J.
2010-07-01
The demand for reliable autonomous systems capable to detect and identify heavy military vehicles becomes an important issue for UN peacekeeping forces in the current delicate political climate. A promising method of detection and identification is the one using the information extracted from ground vibration spectra generated by heavy military vehicles, often termed as their seismic signatures. This paper presents the results of the theoretical investigation of ground vibration spectra generated by heavy military vehicles, such as tanks and armed personnel carriers. A simple quarter car model is considered to identify the resulting dynamic forces applied from a vehicle to the ground. Then the obtained analytical expressions for vehicle dynamic forces are used for calculations of generated ground vibrations, predominantly Rayleigh surface waves, using Green's function method. A comparison of the obtained theoretical results with the published experimental data shows that analytical techniques based on the simplified quarter car vehicle model are capable of producing ground vibration spectra of heavy military vehicles that reproduce basic properties of experimental spectra.
Trovato, A; Siracusa, R; Di Paola, R; Scuto, M; Fronte, V; Koverech, G; Luca, M; Serra, A; Toscano, M A; Petralia, A; Cuzzocrea, S; Calabrese, V
2016-03-01
Increasing evidence supports the notion that oxidative stress-driven neuroinflammation is an early pathological feature in neurodegenerative diseases. As a prominent intracellular redox system involved in neuroprotection, the vitagene system is emerging as a potential neurohormetic target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins 70, heme oxygenase-1, thioredoxin and lipoxin A4. Emerging interest is now focusing on molecules capable of activating the vitagene system as novel therapeutic targets to minimize deleterious consequences associated with free radical-induced cell damage, such as in neurodegeneration. Mushroom-derived lipoxin A4 (LXA4) is an emerging endogenous eicosanoid able to promote resolution of inflammation, acting as an endogenous "braking signal" in the inflammatory process. Mushrooms have long been used in traditional medicine for thousands of years, being now increasingly recognized as rich source of polysaccharopeptides endowed with significant antitumor, antioxidant, antiviral, antibacterial and cytoprotective effects, thereby capable of stimulating host immune responses. Here we provide evidence of a neuroprotective action of the Coriolus mushroom when administered orally to rat. Expression of LXA4 was measured in different brain regions after oral administration of a Coriolus biomass preparation, given for 30 days. LXA4 up-regulation was associated with an increased content of redox sensitive proteins involved in cellular stress response, such as Hsp72, heme oxygenase-1 and thioredoxin. In the brain of rats receiving Coriolus, maximum induction of LXA4 was observed in cortex and hippocampus. Hsps induction was associated with no significant changes in IkBα, NFkB and COX-2 brain levels. Conceivably, activation of LXA4 signaling and modulation of stress-responsive vitagene proteins could serve as a potential therapeutic target for AD-related inflammation and neurodegenerative damage. Copyright © 2015 Elsevier Inc. All rights reserved.
Peyer, Suzanne M; Pankey, M Sabrina; Oakley, Todd H; McFall-Ngai, Margaret J
2014-02-01
The squid Euprymna scolopes has evolved independent sets of tissues capable of light detection, including a complex eye and a photophore or 'light organ', which houses the luminous bacterial symbiont Vibrio fischeri. As the eye and light organ originate from different embryonic tissues, we examined whether the eye-specification genes, pax6, eya, six, and dac, are shared by these two organs, and if so, whether they are regulated in the light organ by symbiosis. We obtained sequences of the four genes with PCR, confirmed orthology with phylogenetic analysis, and determined that each was expressed in the eye and light organ. With in situ hybridization (ISH), we localized the gene transcripts in developing embryos, comparing the patterns of expression in the two organs. The four transcripts localized to similar tissues, including those associated with the visual system ∼1/4 into embryogenesis (Naef stage 18) and the light organ ∼3/4 into embryogenesis (Naef stage 26). We used ISH and quantitative real-time PCR to examine transcript expression and differential regulation in postembryonic light organs in response to the following colonization conditions: wild-type, luminescent V. fischeri; a mutant strain defective in light production; and as a control, no symbiont. In ISH experiments light organs showed down regulation of the pax6, eya, and six transcripts in response to wild-type V. fischeri. Mutant strains also induced down regulation of the pax6 and eya transcripts, but not of the six transcript. Thus, luminescence was required for down regulation of the six transcript. We discuss these results in the context of symbiont-induced light-organ development. Our study indicates that the eye-specification genes are expressed in light-interacting tissues independent of their embryonic origin and are capable of responding to bacterial cues. These results offer evidence for evolutionary tinkering or the recruitment of eye development genes for use in a light-sensing photophore. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sebastian, Katrin, E-mail: ksebastian@ukaachen.de; Ott, Hagen; Zwadlo-Klarwasser, Gabriele
Since the 7th amendment to the EU cosmetics directive foresees a complete ban on animal testing, alternative in vitro methods have been established to evaluate the sensitizing potential of small molecular weight compounds. To find out whether these novel in vitro assays are also capable to predict the sensitizing potential of small molecular weight drugs, model compounds such as beta-lactams and sulfonamides – which are the most frequent cause of adverse drug reactions – were co-incubated with THP-1, MUTZ-LC, or primary monocyte‐derived dendritic cells for 48 h and subsequent expression of selected marker genes (IL-8, IL-1β, CES1, NQO1, GCLM, PIRmore » and TRIM16) was studied by real time PCR. Benzylpenicillin and phenoxymethylpenicillin were recognized as sensitizing compounds because they are capable to induce the mRNA expression of these genes in moDCs and, except for IL-8, in THP-1 cells but not in MUTZ-LC. Ampicillin stimulated the expression of some marker genes in moDCs and THP-1 cells. SMX did not affect the expression of these genes in THP-1, however, in moDCs, at least PIR was enhanced and there was an increase of the release of IL-8. These data reveal that novel in vitro DC based assays might play a role in the evaluation of the allergenic potential of novel drug compounds, but these systems seem to lack the ability to detect the sensitizing potential of prohaptens that require metabolic activation prior to sensitization and moDCs seem to be superior with regard to the sensitivity compared with THP-1 and MUTZ-3 cell lines. -- Highlights: ► We tested the sensitizing potential of small molecular weight drugs in vitro. ► In vitro assays were performed with moDCs and THP-1 cells. ► Beta-lactam antibiotics can be recognized as sensitizing compounds. ► They affect the expression of metabolic enzymes, cytokines and transcription factors. ► Sulfamethoxazole has no measurable effect on THP-1 cells and moDCs.« less
Gresser, Amy L.; Gutzwiller, Lisa M.; Gauck, Mackenzie K.; Hartenstein, Volker; Cook, Tiffany A.; Gebelein, Brian
2015-01-01
Organismal growth regulation requires the interaction of multiple metabolic, hormonal and neuronal pathways. While the molecular basis for many of these are well characterized, less is known about the developmental origins of growth regulatory structures and the mechanisms governing control of feeding and satiety. For these reasons, new tools and approaches are needed to link the specification and maturation of discrete cell populations with their subsequent regulatory roles. In this study, we characterize a rhomboid enhancer element that selectively labels four Drosophila embryonic neural precursors. These precursors give rise to the hypopharyngeal sensory organ of the peripheral nervous system and a subset of neurons in the deutocerebral region of the embryonic central nervous system. Post embryogenesis, the rhomboid enhancer is active in a subset of cells within the larval pharyngeal epithelium. Enhancer-targeted toxin expression alters the morphology of the sense organ and results in impaired larval growth, developmental delay, defective anterior spiracle eversion and lethality. Limiting the duration of toxin expression reveals differences in the critical periods for these effects. Embryonic expression causes developmental defects and partially penetrant pre-pupal lethality. Survivors of embryonic expression, however, ultimately become viable adults. In contrast, post-embryonic toxin expression results in fully penetrant lethality. To better define the larval growth defect, we used a variety of assays to demonstrate that toxin-targeted larvae are capable of locating, ingesting and clearing food and they exhibit normal food search behaviors. Strikingly, however, following food exposure these larvae show a rapid decrease in consumption suggesting a satiety-like phenomenon that correlates with the period of impaired larval growth. Together, these data suggest a critical role for these enhancer-defined lineages in regulating feeding, growth and viability. PMID:26252385
Sleeping Beauty-baculovirus hybrid vectors for long-term gene expression in the eye.
Turunen, Tytteli Anni Kaarina; Laakkonen, Johanna Päivikki; Alasaarela, Laura; Airenne, Kari Juhani; Ylä-Herttuala, Seppo
2014-01-01
A baculovirus vector is capable of efficiently transducing many nondiving and diving cell types. However, the potential of baculovirus is restricted for many gene delivery applications as a result of the transient gene expression that it mediates. The plasmid-based Sleeping Beauty (SB) transposon system integrates transgenes into target cell genome efficiently with a genomic integration pattern that is generally considered safer than the integration of many other integrating vectors; yet efficient delivery of therapeutic genes into cells of target tissues in vivo is a major challenge for nonviral gene therapy. In the present study, SB was introduced into baculovirus to obtain novel hybrid vectors that would combine the best features of the two vector systems (i.e. effective gene delivery and efficient integration into the genome), thus circumventing the major limitations of these vectors. We constructed and optimized SB-baculovirus hybrid vectors that bear either SB100x transposase or SB transposon in the forward or reverse orientations with respect to the viral backbone The functionality of the novel hybrid vectors was investigated in cell cultures and in a proof-of-concept study in the mouse eye. The hybrid vectors showed high and sustained transgene expression that remained stable and demonstrated no signs of decline during the 2 months follow-up in vitro. These results were verified in the mouse eye where persistent transgene expression was detected two months after intravitreal injection. Our results confirm that (i) SB-baculovirus hybrid vectors mediate long-term gene expression in vitro and in vivo, and (ii) the hybrid vectors are potential new tools for the treatment of ocular diseases. Copyright © 2014 John Wiley & Sons, Ltd.
The role of neuropeptides in the multifactorial pathogenesis of acne vulgaris
Ganceviciene, Ruta; Böhm, Markus; Fimmel, Sabine
2009-01-01
Background: Central or peripheral stress may induce the development of clinical inflammation in the pilosebaceous unit (PSU) leading to the development or to exacerbation of preexisting acne. The presence of a complete corticotropin-releasing hormone (CRH) system has been confirmed in human sebocytes in vitro. CRH is capable to induce lipid synthesis, steroidogenesis and interact with testosterone and growth hormone. α-Melanocyte-stimulating hormone (α-MSH) and its receptors can regulate melanogenesis as well as affect inflammation, apoptosis and sebogenesis. Objectives: The purpose of the study was to investigate by immunohistochemistry if changes of CRH/CRH-binding protein (CRHBP)/CRH receptors (CRHR) as well as melanocortin-1 receptor (MC-1R) expression are detectable in acne lesions vs. normal skin, especially in the sebaceous gland (SG). Results: Very strong expression of CRH was observed in acne-involved skin in SG cells comparing with weaker expression in non-involved and normal skin SG. The strongest reaction for CRHBP in acne-involved SG was in differentiating sebocytes. CRHR-1 and -2 exhibited the strongest expression in sweat glands and SG, respectively. Sebocytes and cells of the ductus seboglandularis (DSG) of acne-involved and non-involved skin showed very intense MC-1R expression in contrast to less intense scattered immunoreactivity in normal skin samples. Methods: 33 patients with acne vulgaris and 8 age-matched volunteers without acne participated in the study. Skin biopsies were taken from acne-involved face, the non-involved thigh skin of the same patients and from normal human skin. Conclusions: These data suggest that NP, such as the complete CRH system and MC-1R, are involved in the pathogenesis of acne. PMID:20436885
DDP-516 Computer Graphics System Capabilities
DOT National Transportation Integrated Search
1972-06-01
This report describes the capabilities of the DDP-516 Computer Graphics System. One objective of this report is to acquaint DOT management and project planners with the system's current capabilities, applications hardware and software. The Appendix i...
USDA-ARS?s Scientific Manuscript database
Many brown rot fungi are capable of rapidly degrading wood and are copper-tolerant. To better understand the genes that control these processes, we examined gene expression of Fibroporia radiculosa growing on wood treated with a copper-based preservative that combined copper carbonate with dimethyld...
File Server-Based CD-ROM Networking: Using SCSI Express.
ERIC Educational Resources Information Center
McQueen, Howard
1992-01-01
Provides guidelines for evaluating SCSI Express Novell 386, a new product allowing CD-ROM drives to be attached to a Netware 3.11 file server, increasing CD-ROM networking capability. Specific limitations concerning software, hardware, and human resources are outlined, as well as its unique features and potential for future networking uses. (EA)
ERIC Educational Resources Information Center
Sundeen, Todd H.; O'Neil, Kathleen; Fanselow, Stephanie A.
2017-01-01
Younger students' visual texts are statements and stories conveyed through drawings or other artwork and often convey meaning beyond the child's capability to communicate with written expression. Although opportunities for expression through drawing are routinely offered to children in the initial and middle stages of early childhood literacy…
Ruan, Qiang; Fang, Zhi-Yuan; Cui, Shu-Zhong; Zhang, Xiang-Liang; Wu, Yin-Bing; Tang, Hong-Sheng; Tu, Yi-Nuo; Ding, Yan
2015-08-01
Thermo-chemotherapy has been proven to reduce the invasion capability of cancer cells. However, the molecular mechanism underlying this anti-invasion effect is still unclear. In this study, the role of thermo-chemotherapy in the inhibition of tumor invasion was studied. The results demonstrated that expression of miR-218 was downregulated in gastric cancer tissues, which had a positive correlation with tumor invasion and metastasis. In vitro thermo-chemotherapy increased miR-218 expression in SGC7901 cells and inhibited both proliferation and invasion of cancer cells. Gli2 was identified as a downstream target of miR-218, and its expression was negatively regulated by miR-218. The thermo-chemotherapy induced miR-218 upregulation was also accompanied by increasing of E-cadherin expression. In conclusion, the present study indicates that thermo-chemotherapy can effectively decrease the invasion capability of cancer cells and increase cell-cell adhesion. miR-218 and its downstream target Gli2, as well as E-cadherin, participate in the anti-invasion process.
Mao, Yanfei; Zhang, Zhengjing; Feng, Zhengyan; Wei, Pengliang; Zhang, Hui; Botella, José Ramón; Zhu, Jian-Kang
2017-01-01
Summary The Streptococcus-derived CRISPR/Cas9 system is being widely used to perform targeted gene modifications in plants. This customized endonuclease system has two components, the single-guide RNA (sgRNA) for target DNA recognition and the CRISPR-associated protein 9 (Cas9) for DNA cleavage. Ubiquitously expressed CRISPR/Cas9 systems (UC) generate targeted gene modifications with high efficiency but only those produced in reproductive cells are transmitted to the next generation. We report the design and characterization of a germ-line-specific Cas9 system (GSC) for Arabidopsis gene modification in male gametocytes, constructed using a SPOROCYTELESS (SPL) genomic expression cassette. Four loci in two endogenous genes were targeted by both systems for comparative analysis. Mutations generated by the GSC system were rare in T1 plants but were abundant (30%) in the T2 generation. The vast majority (70%) of the T2 mutant population generated using the UC system were chimeras while the newly developed GSC system produced only 29% chimeras, with 70% of the T2 mutants being heterozygous. Analysis of two loci in the T2 population showed that the abundance of heritable gene mutations was 37% higher in the GSC system compared to the UC system and the level of polymorphism of the mutations was also dramatically increased with the GSC system. Two additional systems based on germ-line-specific promoters (pDD45-GT and pLAT52-GT) were also tested, and one of them was capable of generating heritable homozygous T1 mutant plants. Our results suggest that future application of the described GSC system will facilitate the screening for targeted gene modifications, especially lethal mutations in the T2 population. PMID:26360626
GANT61, a GLI inhibitor, sensitizes glioma cells to the temozolomide treatment.
Li, Jianlong; Cai, Jinquan; Zhao, Shihong; Yao, Kun; Sun, Ying; Li, Yongli; Chen, Lingchao; Li, Ruiyan; Zhai, Xiuwei; Zhang, Junhe; Jiang, Chuanlu
2016-11-28
The aim of this study was to investigate the effect of downregulating Hedgehog pathway by GANT61 on human glioma cells, examine the consequent changes of temozolomide (TMZ)-induced effects and explore the molecular mechanisms. The cytotoxicity of a Gli1/2 inhibitor, GANT61 was examined both alone and in combination with TMZ in human glioma cell lines. The mRNA and protein expression alterations were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. CCK-8 assay detected the cell proliferative capability. Apoptotic cell number was measured by flow cytometry. The transwell assay was used to test the cell invasive capability. DNA damage effect was identified by COMET assay and γH2AX expression. Proliferation of tumor cells treated with GANT61 in combination with TMZ was significantly suppressed compared with those treated with either drug used alone. The combination treatment induced a higher rate of apoptosis, DNA damage and reduced the invasive capability of glioma cells. DNA damage repair enzyme MGMT and the Notch1 pathway increased in the cells treated by TMZ treatment. However, GANT61 could abrogated the protein increasing. GANT61 sensitizes glioma cells to TMZ treatment by enhancing DNA damage effect, decreasing MGMT expression and the Notch1 pathway.
NASA Astrophysics Data System (ADS)
Iacobucci, Joseph V.
The research objective for this manuscript is to develop a Rapid Architecture Alternative Modeling (RAAM) methodology to enable traceable Pre-Milestone A decision making during the conceptual phase of design of a system of systems. Rather than following current trends that place an emphasis on adding more analysis which tends to increase the complexity of the decision making problem, RAAM improves on current methods by reducing both runtime and model creation complexity. RAAM draws upon principles from computer science, system architecting, and domain specific languages to enable the automatic generation and evaluation of architecture alternatives. For example, both mission dependent and mission independent metrics are considered. Mission dependent metrics are determined by the performance of systems accomplishing a task, such as Probability of Success. In contrast, mission independent metrics, such as acquisition cost, are solely determined and influenced by the other systems in the portfolio. RAAM also leverages advances in parallel computing to significantly reduce runtime by defining executable models that are readily amendable to parallelization. This allows the use of cloud computing infrastructures such as Amazon's Elastic Compute Cloud and the PASTEC cluster operated by the Georgia Institute of Technology Research Institute (GTRI). Also, the amount of data that can be generated when fully exploring the design space can quickly exceed the typical capacity of computational resources at the analyst's disposal. To counter this, specific algorithms and techniques are employed. Streaming algorithms and recursive architecture alternative evaluation algorithms are used that reduce computer memory requirements. Lastly, a domain specific language is created to provide a reduction in the computational time of executing the system of systems models. A domain specific language is a small, usually declarative language that offers expressive power focused on a particular problem domain by establishing an effective means to communicate the semantics from the RAAM framework. These techniques make it possible to include diverse multi-metric models within the RAAM framework in addition to system and operational level trades. A canonical example was used to explore the uses of the methodology. The canonical example contains all of the features of a full system of systems architecture analysis study but uses fewer tasks and systems. Using RAAM with the canonical example it was possible to consider both system and operational level trades in the same analysis. Once the methodology had been tested with the canonical example, a Suppression of Enemy Air Defenses (SEAD) capability model was developed. Due to the sensitive nature of analyses on that subject, notional data was developed. The notional data has similar trends and properties to realistic Suppression of Enemy Air Defenses data. RAAM was shown to be traceable and provided a mechanism for a unified treatment of a variety of metrics. The SEAD capability model demonstrated lower computer runtimes and reduced model creation complexity as compared to methods currently in use. To determine the usefulness of the implementation of the methodology on current computing hardware, RAAM was tested with system of system architecture studies of different sizes. This was necessary since system of systems may be called upon to accomplish thousands of tasks. It has been clearly demonstrated that RAAM is able to enumerate and evaluate the types of large, complex design spaces usually encountered in capability based design, oftentimes providing the ability to efficiently search the entire decision space. The core algorithms for generation and evaluation of alternatives scale linearly with expected problem sizes. The SEAD capability model outputs prompted the discovery a new issue, the data storage and manipulation requirements for an analysis. Two strategies were developed to counter large data sizes, the use of portfolio views and top 'n' analysis. This proved the usefulness of the RAAM framework and methodology during Pre-Milestone A capability based analysis. (Abstract shortened by UMI.).
Kusar, A; Zupancic, A; Sentjurc, M; Baricevic, D
2006-10-01
Yellow gentian (Gentiana lutea L.) is a herbal species with a long-term use in traditional medicine due to its digestive and stomachic properties. This paper presents an investigation of the free radical scavenging activity of methanolic extracts of yellow gentian leaves and roots in two different systems using electron spin resonance (ESR) spectrometry. Assays were based on the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the superoxide radicals (O2*-) generated by the xanthine/xanthine oxidase (X/XO) system. The results of gentian methanolic extracts were compared with the antioxidant capacity of synthetic antioxidant butylated hydroxyanisole (BHA). This study proves that yellow gentian leaves and roots exhibit considerable antioxidant properties, expressed either by their capability to scavenge DPPH or superoxide radicals.
Williams works on the payload APEX TAGES in the JPM during Expedition 22
2009-12-15
ISS022-E-011304 (15 Dec. 2009) --- NASA astronaut Jeffrey Williams, Expedition 22 commander, conducts a daily status check of the Advanced Plant Experiments on Orbit (APEX) experiment in the Kibo laboratory of the International Space Station. During each check, Williams looks for health and color of the plants, since the Cambium plants are removed from the Advanced Biological Research System (ABRS). When completed, the APEX-Cambium payload in conjunction with the NASA-sponsored Transgenic Arabidopsis Gene Expression System (TAGES) will determine the role of gravity in Cambium wood cell development and demonstrate non-destructive reporter gene technology and investigate spaceflight plant stress. APEX-Cambium provides NASA and the ISS community a permanent controlled environment capability to support growth of various organisms (i.e. whole plants).
Thermographic Sensing For On-Line Industrial Control
NASA Astrophysics Data System (ADS)
Holmsten, Dag
1986-10-01
It is today's emergence of thermoelectrically cooled, highly accurate infrared linescanners and imaging systems that has definitely made on-line Infraread Thermography (IRT) possible. Specifically designed for continuous use, these scanners are equipped with dedicated software capable of monitoring and controlling highly complex thermodynamic situations. This paper will outline some possible implications of using IRT on-line by describing some uses of this technology in the steel-making (hot rolling) and automotive industries (machine-vision). A warning is also expressed that IRT technology not originally designed for automated applications e.g. high resolution, imaging systems, should not be directly applied to an on-line measurement situation without having its measurement resolution, accuracy and especially its repeatability, reliably proven. Some suitable testing procedures are briefly outlined at the end of the paper.
Emergent 1d Ising Behavior in AN Elementary Cellular Automaton Model
NASA Astrophysics Data System (ADS)
Kassebaum, Paul G.; Iannacchione, Germano S.
The fundamental nature of an evolving one-dimensional (1D) Ising model is investigated with an elementary cellular automaton (CA) simulation. The emergent CA simulation employs an ensemble of cells in one spatial dimension, each cell capable of two microstates interacting with simple nearest-neighbor rules and incorporating an external field. The behavior of the CA model provides insight into the dynamics of coupled two-state systems not expressible by exact analytical solutions. For instance, state progression graphs show the causal dynamics of a system through time in relation to the system's entropy. Unique graphical analysis techniques are introduced through difference patterns, diffusion patterns, and state progression graphs of the 1D ensemble visualizing the evolution. All analyses are consistent with the known behavior of the 1D Ising system. The CA simulation and new pattern recognition techniques are scalable (in both dimension, complexity, and size) and have many potential applications such as complex design of materials, control of agent systems, and evolutionary mechanism design.
Wang, Ying; Chen, Hu; Liu, Yu-Xiang; Ren, Rui-Peng; Lv, Yong-Kang
2016-07-01
The feasibility of simultaneous biodegradation of phenol and ammonium in phenol-rich wastewater was evaluated in a reusable system, which contained macroporous adsorption resin and Alcaligenes faecalis strain WY-01. In the system, up to 6000mg/L phenol could be completely degraded by WY-01; meanwhile, 99.03±3.95% of ammonium was removed from the initial concentration of 384mg/L. This is the first study to show the capability of single strain in simultaneous removal of ammonium and phenol in wastewater containing such high concentrations of phenol. Moreover, the resin was regenerated during the biodegradation process without any additional manipulations, indicating the system was reusable. Furthermore, enzyme assay, gene expression patterns, HPLC-MS and gas chromatography analysis confirmed that phenol biodegradation accompanied with aerobic nitrifier denitrification process. Results imply that the reusable system provides a novel strategy for more efficient biodegradation of phenol and ammonium contained in some particular industrial wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
User's Manual: Thermal Radiation Analysis System TRASYS 2
NASA Technical Reports Server (NTRS)
Jensen, C. L.
1981-01-01
A digital computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems is presented. When used in conjunction with a generalized thermal analysis program such as the systems improved numerical differencing analyzer program, any thermal problem that can be expressed in terms of a lumped parameter R-C thermal network can be solved. The function of TRASYS is twofold. It provides: (a) Internode radiation interchange data; and (b) Incident and absorbed heat rate data from environmental radiant heat sources. Data of both types is provided in a format directly usable by the thermal analyzer programs. The system allows the user to write his own executive or driver program which organizes and directs the program library routines toward solution of each specific problem in the most expeditious manner. The user also may write his own output routines, thus the system data output can directly interface with any thermal analyzer using the R-C network concept.
Integrated System Health Management (ISHM): Systematic Capability Implementation
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Holland, Randy; Schmalzwel, John; Duncavage, Dan
2006-01-01
This paper provides a credible approach for implementation of ISHM capability in any system. The requirements and processes to implement ISHM capability are unique in that a credible capability is initially implemented at a low level, and it evolves to achieve higher levels by incremental augmentation. In contrast, typical capabilities, such as thrust of an engine, are implemented once at full Functional Capability Level (FCL), which is not designed to change during the life of the product. The approach will describe core ingredients (e.g. technologies, architectures, etc.) and when and how ISHM capabilities may be implemented. A specific architecture/taxonomy/ontology will be described, as well as a prototype software environment that supports development of ISHM capability. This paper will address implementation of system-wide ISHM as a core capability, and ISHM for specific subsystems as expansions and evolution, but always focusing on achieving an integrated capability.
Synthetic Gene Expression Circuits for Designing Precision Tools in Oncology
Re, Angela
2017-01-01
Precision medicine in oncology needs to enhance its capabilities to match diagnostic and therapeutic technologies to individual patients. Synthetic biology streamlines the design and construction of functionalized devices through standardization and rational engineering of basic biological elements decoupled from their natural context. Remarkable improvements have opened the prospects for the availability of synthetic devices of enhanced mechanism clarity, robustness, sensitivity, as well as scalability and portability, which might bring new capabilities in precision cancer medicine implementations. In this review, we begin by presenting a brief overview of some of the major advances in the engineering of synthetic genetic circuits aimed to the control of gene expression and operating at the transcriptional, post-transcriptional/translational, and post-translational levels. We then focus on engineering synthetic circuits as an enabling methodology for the successful establishment of precision technologies in oncology. We describe significant advancements in our capabilities to tailor synthetic genetic circuits to specific applications in tumor diagnosis, tumor cell- and gene-based therapy, and drug delivery. PMID:28894736
Enhanced Training by a Systemic Governance of Force Capabilities, Tasks, and Processes
2013-06-01
18th ICCRTS “C2 in Underdeveloped, Degraded and Denied Operational Environments” Enhanced Training by a Systemic Governance of Force Capabilities...TITLE AND SUBTITLE Enhanced Training by a Systemic Governance of Force Capabilities, Tasks, and Processes 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...assess, evaluate and accredit the Swedish forces. This paper presents a Systemic Governance of Capabilities, Tasks, and Processes applied to the
2011-01-01
Background Green plant leaves have always fascinated biologists as hosts for photosynthesis and providers of basic energy to many food webs. Today, comprehensive databases of gene expression data enable us to apply increasingly more advanced computational methods for reverse-engineering the regulatory network of leaves, and to begin to understand the gene interactions underlying complex emergent properties related to stress-response and development. These new systems biology methods are now also being applied to organisms such as Populus, a woody perennial tree, in order to understand the specific characteristics of these species. Results We present a systems biology model of the regulatory network of Populus leaves. The network is reverse-engineered from promoter information and expression profiles of leaf-specific genes measured over a large set of conditions related to stress and developmental. The network model incorporates interactions between regulators, such as synergistic and competitive relationships, by evaluating increasingly more complex regulatory mechanisms, and is therefore able to identify new regulators of leaf development not found by traditional genomics methods based on pair-wise expression similarity. The approach is shown to explain available gene function information and to provide robust prediction of expression levels in new data. We also use the predictive capability of the model to identify condition-specific regulation as well as conserved regulation between Populus and Arabidopsis. Conclusions We outline a computationally inferred model of the regulatory network of Populus leaves, and show how treating genes as interacting, rather than individual, entities identifies new regulators compared to traditional genomics analysis. Although systems biology models should be used with care considering the complexity of regulatory programs and the limitations of current genomics data, methods describing interactions can provide hypotheses about the underlying cause of emergent properties and are needed if we are to identify target genes other than those constituting the "low hanging fruit" of genomic analysis. PMID:21232107
Polito, Annabella; Reynolds, Richard
2005-01-01
The mammalian adult central nervous system (CNS) is known to respond rapidly to demyelinating insults by regenerating oligodendrocytes for remyelination from a dividing precursor population. A widespread population of cells exists within the adult CNS that is thought to belong to the oligodendrocyte lineage, but which do not express proteins characteristic of mature myelinating oligodendrocytes, such as myelin basic protein (MBP) and 2,3-cyclic nucleotide 3-phosphodiesterase (CNP). Instead, these cells have phenotypic characteristics of a more immature stage of the oligodendrocyte lineage. They express the NG2 chondroitin sulphate proteoglycan, in addition to O4 and the platelet-derived growth factor α-receptor, all widely accepted as markers for oligodendrocyte progenitor cells (OPCs) throughout development. However, NG2+ cells residing in the adult CNS do not resemble embryonic or neonatal NG2+ cells in terms of their morphology or proliferation characteristics, but instead represent a unique type of glial cell that has the ability to react rapidly to CNS damage. In this review, we present the evidence that adult NG2+ cells are part of the oligodendrocyte lineage and are capable of giving rise to new oligodendrocytes under both normal and demyelinating conditions. We also review the literature that these cells may have multiple functional roles within the adult CNS, notwithstanding their primary role as OPCs. PMID:16367798
Cao, Bihao; Huang, Zhiyin; Chen, Guoju; Lei, Jianjun
2010-04-01
This study was designed to control plant fertility by cell lethal gene Barnase expressing at specific developmental stage and in specific tissue of male organ under the control of Cre/loxP system, for heterosis breeding, producing hybrid seed of eggplant. The Barnase-coding region was flanked by loxP recognition sites for Cre-recombinase. The eggplant inbred/pure line ('E-38') was transformed with Cre gene and the inbred/pure line ('E-8') was transformed with the Barnase gene situated between loxp. The experiments were done separately, by means of Agrobacterium co-culture. Four T(0) -plants with the Barnase gene were obtained, all proved to be male-sterile and incapable of producing viable pollen. Flowers stamens were shorter, but the vegetative phenotype was similar to wild-type. Five T (0) -plants with the Cre gene developed well, blossomed out and set fruit normally. The crossing of male-sterile Barnase-plants with Cre expression transgenic eggplants resulted in site-specific excision with the male-sterile plants producing normal fruits. With the Barnase was excised, pollen fertility was fully restored in the hybrids. The phenotype of these restored plants was the same as that of the wild-type. Thus, the Barnase and Cre genes were capable of stable inheritance and expression in progenies of transgenic plants.
Meng, Qingyuan; Haque, Amranul; Hexig, Bayar; Akaike, Toshihiro
2012-02-01
A simple culture system to achieve the differentiation of embryonic stem (ES) cells toward hepatocytes with high efficiency is crucial in providing a cell source for the medical application. In this study, we report the effect of a matrix-dependent enrichment of ES cell-derived hepatocytes using immobilized poly(N-p-vinylbenzyl-4-O-β-D-galactopyranosyl-D-gluconamide) (PVLA) with E-cadherin-IgG Fc (E-cad-Fc) as a galactose-carrying substratum. PVLA and E-cad-Fc were confirmed to be stably co-adsorbed onto polystyrene surface by quartz crystal microbalance (QCM). We showed that the E-cad-Fc/PVLA hybrid substratum was efficient in culturing primary hepatocytes and maintaining liver functions, on which the undifferentiated ES cells also maintained high proliferative capability. Furthermore, ES cell-derived hepatocytes on this hybrid matrix expressed elevated level of liver specific genes and functions together with early expression of definitive hepatocyte marker, asialoglycoprotein receptor (ASGPR). Finally, we isolated a high percentage of cells (about 60%) with ASGPR expression after re-seeding onto PVLA-coated surface, and observed the elimination of the poorly differentiated cells (Gata6(+) and Sox17(+)) and the ones toward another cell lineage (brachyury(+) and Pdx1(+)). The system uses a glycopolymer as an extracellular substratum for isolation and enrichment of ES cell-derived hepatocytes with adequate homogeneity and functionality. Copyright © 2011 Elsevier Ltd. All rights reserved.
Li, Yujia; Parks, Griffith D.
2018-01-01
The complement system is a part of the innate immune system that viruses need to face during infections. Many viruses incorporate cellular regulators of complement activation (RCA) to block complement pathways and our prior work has shown that Parainfluenza virus 5 (PIV5) incorporates CD55 and CD46 to delay complement-mediated neutralization. In this paper, we tested the role of a third individual RCA inhibitor CD59 in PIV5 interactions with complement pathways. Using a cell line engineered to express CD59, we show that small levels of functional CD59 are associated with progeny PIV5, which is capable of blocking assembly of the C5b-C9 membrane attack complex (MAC). PIV5 containing CD59 (PIV5-CD59) showed increased resistance to complement-mediated neutralization in vitro comparing to PIV5 lacking regulators. Infection of A549 cells with PIV5 and RSV upregulated CD59 expression. TGF-beta treatment of PIV5-infected cells also increased cell surface CD59 expression and progeny virions were more resistant to complement-mediated neutralization. A comparison of individual viruses containing only CD55, CD46, or CD59 showed a potency of inhibiting complement-mediated neutralization, which followed a pattern of CD55 > CD46 > CD59. PMID:29693588
Statechart Analysis with Symbolic PathFinder
NASA Technical Reports Server (NTRS)
Pasareanu, Corina S.
2012-01-01
We report here on our on-going work that addresses the automated analysis and test case generation for software systems modeled using multiple Statechart formalisms. The work is motivated by large programs such as NASA Exploration, that involve multiple systems that interact via safety-critical protocols and are designed with different Statechart variants. To verify these safety-critical systems, we have developed Polyglot, a framework for modeling and analysis of model-based software written using different Statechart formalisms. Polyglot uses a common intermediate representation with customizable Statechart semantics and leverages the analysis and test generation capabilities of the Symbolic PathFinder tool. Polyglot is used as follows: First, the structure of the Statechart model (expressed in Matlab Stateflow or Rational Rhapsody) is translated into a common intermediate representation (IR). The IR is then translated into Java code that represents the structure of the model. The semantics are provided as "pluggable" modules.
Sade, Robert M
2008-10-01
Proposed solutions to the problems of this country's health care system range along a spectrum from central planning to free market. Central planners and free market advocates provide various ethical justifications for the policies they propose. The crucial flaw in the philosophical rationale of central planning is failure to distinguish between normative and metanormative principles, which leads to mistaken understanding of the nature of rights. Natural rights, based on the principle of noninterference, provide the link between individual morality and social order. Free markets, the practical expression of natural rights, are uniquely capable of achieving the goals that central planners seek but find beyond their grasp. The history of this country's health care system and the experiences of other nations provide evidence of the superiority of free markets in reaching for the goals of universal access, control of costs, and sustaining the quality of health care.
Recombinant Salmonella Bacteria Vectoring HIV/AIDS Vaccines
Chin’ombe, Nyasha; Ruhanya, Vurayai
2013-01-01
HIV/AIDS is an important public health problem globally. An affordable, easy-to-deliver and protective HIV vaccine is therefore required to curb the pandemic from spreading further. Recombinant Salmonella bacteria can be harnessed to vector HIV antigens or DNA vaccines to the immune system for induction of specific protective immunity. These are capable of activating the innate, humoral and cellular immune responses at both mucosal and systemic compartments. Several studies have already demonstrated the utility of live recombinant Salmonella in delivering expressed foreign antigens as well as DNA vaccines to the host immune system. This review gives an overview of the studies in which recombinant Salmonella bacteria were used to vector HIV/AIDS antigens and DNA vaccines. Most of the recombinant Salmonella-based HIV/AIDS vaccines developed so far have only been tested in animals (mainly mice) and are yet to reach human trials. PMID:24478808
Generative Representations for Computer-Automated Design Systems
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2004-01-01
With the increasing computational power of Computers, software design systems are progressing from being tools for architects and designers to express their ideas to tools capable of creating designs under human guidance. One of the main limitations for these computer-automated design programs is the representation with which they encode designs. If the representation cannot encode a certain design, then the design program cannot produce it. Similarly, a poor representation makes some types of designs extremely unlikely to be created. Here we define generative representations as those representations which can create and reuse organizational units within a design and argue that reuse is necessary for design systems to scale to more complex and interesting designs. To support our argument we describe GENRE, an evolutionary design program that uses both a generative and a non-generative representation, and compare the results of evolving designs with both types of representations.
NASA Astrophysics Data System (ADS)
Zhang, Shenwei; Qiu, Chunyin; Wang, Mudi; Ke, Manzhu; Liu, Zhengyou
2016-11-01
In this work, we study the acoustically mediated interaction forces among multiple well-separated spherical particles trapped in the same node or antinode plane of a standing wave. An analytical expression of the acoustic interaction force is derived, which is accurate even for the particles beyond the Rayleigh limit. Interestingly, the multi-particle system can be decomposed into a series of independent two-particle systems described by pairwise interactions. Each pairwise interaction is a long-range interaction, as characterized by a soft oscillatory attenuation (at the power exponent of n = -1 or -2). The vector additivity of the acoustic interaction force, which is not well expected considering the nonlinear nature of the acoustic radiation force, is greatly useful for exploring a system consisting of a large number of particles. The capability of self-organizing a big particle cluster can be anticipated through such acoustically controllable long-range interaction.
Gastrin Receptor-Avid Peptide Conjugates
Hoffman, Timothy J.; Volkert, Wynn A.; Li, Ning; Sieckman, Gary; Higginbotham, Chrys-Ann
2005-07-26
A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.
Gastrin receptor-avid peptide conjugates
Hoffman, Timothy J.; Volkert, Wynn A.; Li, Ning; Sieckman, Gary; Higginbotham, C. A.
2001-01-01
A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.
Gastrin receptor-avid peptide conjugates
Hoffman, Timothy J.; Volkert, Wynn A.; Sieckman, Gary; Smith, Charles J.; Gali, Hariprasad
2006-06-13
A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a-moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.
Gastrin receptor-avid peptide conjugates
Hoffman, Timothy J.; Volkert, Wynn A.; Li, Ning; Sieckman, Gary; Higginbotham, Chrys-Ann
2006-12-12
A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.
Generation of a stable cell line for constitutive miRNA expression.
Lieber, Diana
2013-01-01
miRNAs have in recent years emerged as novel players in virus-host interactions. While individual miRNAs are capable of regulating many targets simultaneously, not much is known about the role of distinct host or viral miRNAs in the context of infection. Analysis of the function of a miRNA is often hampered by the complexity of virus-host interactions and the enormous changes in the host cell during infection. Many viral miRNAs as for example from Kaposi sarcoma-associated Herpesvirus (KSHV) are probably exclusively expressed in latent infection. This might lead to a steady-state situation with offense and defense mechanisms counteracting each other. Cellular miRNAs involved in defense against pathogens on the other hand might be suppressed in infection. A cell culture system allowing for constitutive expression of individual miRNAs at high levels is a useful tool to enhance miRNA-specific functions and to uncouple viral miRNA function from other infection-related mechanisms. Here, a protocol is described to generate stable cell lines for constitutive expression of single cellular or viral miRNA precursors in absence of infection. The procedure comprises cloning of the precursor sequence, generation of the lentiviral expression vector, transduction of the cells of interest, selection for polyclonal cell lines, and isolation of monoclonal cell lines by limiting dilution.
MINIS: Multipurpose Interactive NASA Information System
NASA Technical Reports Server (NTRS)
1976-01-01
The Multipurpose Interactive NASA Information Systems (MINIS) was developed in response to the need for a data management system capable of operation on several different minicomputer systems. The desired system had to be capable of performing the functions of a LANDSAT photo descriptive data retrieval system while remaining general in terms of other acceptable user definable data bases. The system also had to be capable of performing data base updates and providing user-formatted output reports. The resultant MINI System provides all of these capabilities and several other features to complement the data management system. The MINI System is currently implemented on two minicomputer systems and is in the process of being installed on another minicomputer system. The MINIS is operational on four different data bases.
Kuriakose, Selvia; Lahiri, Uttama
2015-07-01
Individuals with Autism are characterized by deficits in socialization and communication. In recent years several assistive technologies, e.g., Virtual Reality (VR), have been investigated to address the socialization deficits in these individuals. Presently available VR-based systems address various aspects of social communication in an isolated manner and without monitoring one's affective state such as, anxiety. However, in conventional observation-based therapy, a therapist adjusts the intervention paradigm by monitoring one's anxiety level. But, often these individuals have an inherent inability to explicitly express their anxiety thereby inducing limitations on conventional techniques. Physiological signals being continuously available and not directly impacted by these communication difficulties can be alternatively used as markers of one's anxiety level. In our research we aim at designing a Virtual-reality bAsed Social-communication Task (VAST) system that can address the various aspects of social communication, e.g., social context, subtle social cues, emotional expression, etc., in a cumulative and structured way. In addition, we augment this with a capability to use one's physiological signals as markers of one's anxiety level. In our preliminary feasibility study we investigate the potential of VAST to cause variations in one's performance and anxiety level that can be mapped from one's physiological indices.
Yu, Yin; Zhang, Yahui; Martin, James A; Ozbolat, Ibrahim T
2013-09-01
Organ printing is a novel concept recently introduced in developing artificial three-dimensional organs to bridge the gap between transplantation needs and organ shortage. One of the major challenges is inclusion of blood-vessellike channels between layers to support cell viability, postprinting functionality in terms of nutrient transport, and waste removal. In this research, we developed a novel and effective method to print tubular channels encapsulating cells in alginate to mimic the natural vascular system. An experimental investigation into the influence on cartilage progenitor cell (CPCs) survival, and the function of printing parameters during and after the printing process were presented. CPC functionality was evaluated by checking tissue-specific genetic marker expression and extracellular matrix production. Our results demonstrated the capability of direct fabrication of cell-laden tubular channels by our newly designed coaxial nozzle assembly and revealed that the bioprinting process could induce quantifiable cell death due to changes in dispensing pressure, coaxial nozzle geometry, and biomaterial concentration. Cells were able to recover during incubation, as well as to undergo differentiation with high-level cartilage-associated gene expression. These findings may not only help optimize our system but also can be applied to biomanufacturing of 3D functional cellular tissue engineering constructs for various organ systems.
2010-01-01
Background Francisella tularensis is a prototypic example of a pathogen for which few experimental datasets exist, but for which copious high-throughout data are becoming available because of its re-emerging significance as biothreat agent. The virulence of Francisella tularensis depends on its growth capabilities within a defined environmental niche of the host cell. Results We reconstructed the metabolism of Francisella as a stoichiometric matrix. This systems biology approach demonstrated that changes in carbohydrate utilization and amino acid metabolism play a pivotal role in growth, acid resistance, and energy homeostasis during infection with Francisella. We also show how varying the expression of certain metabolic genes in different environments efficiently controls the metabolic capacity of F. tularensis. Selective gene-expression analysis showed modulation of sugar catabolism by switching from oxidative metabolism (TCA cycle) in the initial stages of infection to fatty acid oxidation and gluconeogenesis later on. Computational analysis with constraints derived from experimental data revealed a limited set of metabolic genes that are operational during infection. Conclusions This integrated systems approach provides an important tool to understand the pathogenesis of an ill-characterized biothreat agent and to identify potential novel drug targets when rapid target identification is required should such microbes be intentionally released or become epidemic. PMID:20731870
Young, Susan M; Curry, Mark S; Ransom, John T; Ballesteros, Juan A; Prossnitz, Eric R; Sklar, Larry A; Edwards, Bruce S
2004-03-01
HyperCyt, an automated sample handling system for flow cytometry that uses air bubbles to separate samples sequentially introduced from multiwell plates by an autosampler. In a previously documented HyperCyt configuration, air bubble separated compounds in one sample line and a continuous stream of cells in another are mixed in-line for serial flow cytometric cell response analysis. To expand capabilities for high-throughput bioactive compound screening, the authors investigated using this system configuration in combination with automated cell sorting. Peptide ligands were sampled from a 96-well plate, mixed in-line with fluo-4-loaded, formyl peptide receptor-transfected U937 cells, and screened at a rate of 3 peptide reactions per minute with approximately 10,000 cells analyzed per reaction. Cell Ca(2+) responses were detected to as little as 10(-11) M peptide with no detectable carryover between samples at up to 10(-7) M peptide. After expansion in culture, cells sort-purified from the 10% highest responders exhibited enhanced sensitivity and more sustained responses to peptide. Thus, a highly responsive cell subset was isolated under high-throughput mixing and sorting conditions in which response detection capability spanned a 1000-fold range of peptide concentration. With single-cell readout systems for protein expression libraries, this technology offers the promise of screening millions of discrete compound interactions per day.
Galeano-Garces, Catalina; Camilleri, Emily T; Riester, Scott M; Dudakovic, Amel; Larson, Dirk R; Qu, Wenchun; Smith, Jay; Dietz, Allan B; Im, Hee-Jeong; Krych, Aaron J; Larson, A Noelle; Karperien, Marcel; van Wijnen, Andre J
2017-07-01
To determine the optimal environmental conditions for chondrogenic differentiation of human adipose tissue-derived mesenchymal stromal/stem cells (AMSCs). In this investigation we specifically investigate the role of oxygen tension and 3-dimensional (3D) culture systems. Both AMSCs and primary human chondrocytes were cultured for 21 days in chondrogenic media under normoxic (21% oxygen) or hypoxic (2% oxygen) conditions using 2 distinct 3D culture methods (high-density pellets and poly-ε-caprolactone [PCL] scaffolds). Histologic analysis of chondro-pellets and the expression of chondrocyte-related genes as measured by reverse transcriptase quantitative polymerase chain reaction were used to evaluate the efficiency of differentiation. AMSCs are capable of expressing established cartilage markers including COL2A1, ACAN, and DCN when grown in chondrogenic differentiation media as determined by gene expression and histologic analysis of cartilage markers. Expression of several cartilage-related genes was enhanced by low oxygen tension, including ACAN and HAPLN1. The pellet culture environment also promoted the expression of hypoxia-inducible cartilage markers compared with cells grown on 3D scaffolds. Cell type-specific effects of low oxygen and 3D environments indicate that mesenchymal cell fate and differentiation potential is remarkably sensitive to oxygen. Genetic programming of AMSCs to a chondrocytic phenotype is effective under hypoxic conditions as evidenced by increased expression of cartilage-related biomarkers and biosynthesis of a glycosaminoglycan-positive matrix. Lower local oxygen levels within cartilage pellets may be a significant driver of chondrogenic differentiation.
NASA Astrophysics Data System (ADS)
Frigato, Elena; Vallone, Daniela; Bertolucci, Cristiano; Foulkes, Nicholas S.
2006-08-01
Non-mammalian vertebrates have multiple extraocular photoreceptors, mainly localised in the pineal complex and the brain, to mediate irradiance detection. In this study, we report the full-length cDNA cloning of ruin lizard melanopsin and pinopsin. The high level of identity with opsins in both the transmembrane regions, where the chromophore binding site is located, and the intracellular loops, where the G-proteins interact, suggests that both melanopsin and pinopsin should be able to generate a stable photopigment, capable of triggering a transduction cascade mediated by G-proteins. Phylogenetic analysis showed that both opsins are located on the expected branches of the corresponding sequences of ortholog proteins. Subsequently, using RT-PCR and RPA analysis, we verified the expression of ruin lizard melanopsin and pinopsin in directly photosensitive organs, such as the lateral eye, brain, pineal gland and parietal eye. Melanopsin expression was detected in the lateral eye and all major regions of the brain. However, different from the situation in Xenopus and chicken, melanopsin is not expressed in the ruin lizard pineal. Pinopsin mRNA expression was only detected in the pineal complex. As a result of their phylogenetic position and ecology, reptiles provide the circadian field with some of the most interesting models for understanding the evolution of the vertebrate circadian timing system and its response to light. This characterization of melanopsin and pinopsin expression in the ruin lizard will be important for future studies aimed at understanding the molecular basis of circadian light detection in reptiles.
Kelwick, Richard; Webb, Alexander J; MacDonald, James T; Freemont, Paul S
2016-11-01
Cell-free transcription-translation systems were originally applied towards in vitro protein production. More recently, synthetic biology is enabling these systems to be used within a systematic design context for prototyping DNA regulatory elements, genetic logic circuits and biosynthetic pathways. The Gram-positive soil bacterium, Bacillus subtilis, is an established model organism of industrial importance. To this end, we developed several B. subtilis-based cell-free systems. Our improved B. subtilis WB800N-based system was capable of producing 0.8µM GFP, which gave a ~72x fold-improvement when compared with a B. subtilis 168 cell-free system. Our improved system was applied towards the prototyping of a B. subtilis promoter library in which we engineered several promoters, derived from the wild-type P grac (σA) promoter, that display a range of comparable in vitro and in vivo transcriptional activities. Additionally, we demonstrate the cell-free characterisation of an inducible expression system, and the activity of a model enzyme - renilla luciferase. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Identification of oocyte progenitor cells in the zebrafish ovary.
Draper, Bruce W
2012-01-01
Zebrafish breed year round and females are capable of producing thousands of eggs during their lifetime. This amazing fecundity is due to the fact that the adult ovary, contains premeiotic oocyte progenitor cells, called oogonia, which produce a continuous supply of new oocytes throughout adult life. Oocyte progenitor cells can be easily identified based on their expression of Vasa, and their characteristic nuclear morphology. Thus, the zebrafish ovary provides a unique and powerful system to study the genetic regulation of oocyte production in a vertebrate animal. A method is presented here for identifying oocyte progenitor cells in the zebrafish ovary using whole-mount confocal immunofluorescence that is simple and accurate.
Comparative studies on dimming capabilities of retrofit LED lamps
NASA Astrophysics Data System (ADS)
Ionescu, Ciprian; Vasile, Alexandru; Codreanu, Norocel; Negroiu, Rodica
2016-12-01
These days many variants for lighting systems are available on the market, and new solutions are about to emerge. Most of the new lamps are offered in form to be retrofitted to existing sockets and luminaires. In this paper, are presented some systematically investigations on different lamps as LEDs, Compact Fluorescent Lamps (CFLs), tungsten, and new available Cold Cathode Fluorescent Lamps (CCFLs), regarding the light level, dimming performances and also the resulting flicker and power distortion performances. The light level was expressed by the illuminance level, measured for all lamps in the same conditions, at the same distance and on the same surface represented by the photometer probe.
The enzymes of bacterial census and censorship.
Fast, Walter; Tipton, Peter A
2012-01-01
N-Acyl-L-homoserine lactones (AHLs) are a major class of quorum-sensing signals used by Gram-negative bacteria to regulate gene expression in a population-dependent manner, thereby enabling group behavior. Enzymes capable of generating and catabolizing AHL signals are of significant interest for the study of microbial ecology and quorum-sensing pathways, for understanding the systems that bacteria have evolved to interact with small-molecule signals, and for their possible use in therapeutic and industrial applications. The recent structural and functional studies reviewed here provide a detailed insight into the chemistry and enzymology of bacterial communication. Copyright © 2011 Elsevier Ltd. All rights reserved.
Peptide Logic Circuits Based on Chemoenzymatic Ligation for Programmable Cell Apoptosis.
Li, Yong; Sun, Sujuan; Fan, Lin; Hu, Shanfang; Huang, Yan; Zhang, Ke; Nie, Zhou; Yao, Shouzhou
2017-11-20
A novel and versatile peptide-based bio-logic system capable of regulating cell function is developed using sortase A (SrtA), a peptide ligation enzyme, as a generic processor. By modular peptide design, we demonstrate that mammalian cells apoptosis can be programmed by peptide-based logic operations, including binary and combination gates (AND, INHIBIT, OR, and AND-INHIBIT), and a complex sequential logic circuit (multi-input keypad lock). Moreover, a proof-of-concept peptide regulatory circuit was developed to analyze the expression profile of cell-secreted protein biomarkers and trigger cancer-cell-specific apoptosis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Toward a Capability Engineering Process
2004-12-01
TOWARD A CAPABILITY ENGINEERING PROCESS M. Lizotte, F. Bernier, M. Mokhtari , M. Couture, G. Dussault, C. Lalancette, F. Lemieux System of Systems...Lizotte, F. Lemieux, the US DoD 5000 acquisition strategies?; and (8) since a M. Mokhtari , 2004: Toward Capability Engineering capability can be
Biomolecular Analysis Capability for Cellular and Omics Research on the International Space Station
NASA Technical Reports Server (NTRS)
Guinart-Ramirez, Y.; Cooley, V. M.; Love, J. E.
2016-01-01
International Space Station (ISS) assembly complete ushered a new era focused on utilization of this state-of-the-art orbiting laboratory to advance science and technology research in a wide array of disciplines, with benefits to Earth and space exploration. ISS enabling capability for research in cellular and molecular biology includes equipment for in situ, on-orbit analysis of biomolecules. Applications of this growing capability range from biomedicine and biotechnology to the emerging field of Omics. For example, Biomolecule Sequencer is a space-based miniature DNA sequencer that provides nucleotide sequence data for entire samples, which may be used for purposes such as microorganism identification and astrobiology. It complements the use of WetLab-2 SmartCycler"TradeMark", which extracts RNA and provides real-time quantitative gene expression data analysis from biospecimens sampled or cultured onboard the ISS, for downlink to ground investigators, with applications ranging from clinical tissue evaluation to multigenerational assessment of organismal alterations. And the Genes in Space-1 investigation, aimed at examining epigenetic changes, employs polymerase chain reaction to detect immune system alterations. In addition, an increasing assortment of tools to visualize the subcellular distribution of tagged macromolecules is becoming available onboard the ISS. For instance, the NASA LMM (Light Microscopy Module) is a flexible light microscopy imaging facility that enables imaging of physical and biological microscopic phenomena in microgravity. Another light microscopy system modified for use in space to image life sciences payloads is initially used by the Heart Cells investigation ("Effects of Microgravity on Stem Cell-Derived Cardiomyocytes for Human Cardiovascular Disease Modeling and Drug Discovery"). Also, the JAXA Microscope system can perform remotely controllable light, phase-contrast, and fluorescent observations. And upcoming confocal microscopy capability will allow for optical sectioning of biological tissues to determine microanatomical localization of biomarkers. Furthermore, NASA's geneLAB effort addresses integration of genomic, epigenomic, transcriptomic, proteomic and metabolomic datasets, by applying an innovative open source science platform for multi-investigator high throughput utilization of the ISS. In sum, the expanding ISS capability for analysis of biomolecules is enabling innovative research in a broad spectrum of areas such as cellular and molecular biology, biotechnology, tissue engineering, biomedicine, and Omics, providing manifold benefits for humanity.
Yamagiwa, Raika; Kurahashi, Takuya; Takeda, Mariko; Adachi, Mayuho; Nakamura, Hiro; Arai, Hiroyuki; Shiro, Yoshitsugu; Sawai, Hitomi; Tosha, Takehiko
2018-05-01
Membrane-integrated nitric oxide reductase (NOR) reduces nitric oxide (NO) to nitrous oxide (N 2 O) with protons and electrons. This process is essential for the elimination of the cytotoxic NO that is produced from nitrite (NO 2 - ) during microbial denitrification. A structure-guided mutagenesis of NOR is required to elucidate the mechanism for NOR-catalyzed NO reduction. We have already solved the crystal structure of cytochrome c-dependent NOR (cNOR) from Pseudomonas aeruginosa. In this study, we then constructed its expression system using cNOR-gene deficient and wild-type strains for further functional study. Characterizing the variants of the five conserved Glu residues located around the heme/non-heme iron active center allowed us to establish how the anaerobic growth rate of cNOR-deficient strains expressing cNOR variants correlates with the in vitro enzymatic activity of the variants. Since bacterial strains require active cNOR to eliminate cytotoxic NO and to survive under denitrification conditions, the anaerobic growth rate of a strain with a cNOR variant is a good indicator of NO decomposition capability of the variants and a marker for the screening of functionally important residues without protein purification. Using this in vivo screening system, we examined the residues lining the putative proton transfer pathways for NO reduction in cNOR, and found that the catalytic protons are likely transferred through the Glu57 located at the periplasmic protein surface. The homologous cNOR expression system developed here is an invaluable tool for facile identification of crucial residues in vivo, and for further in vitro functional and structural studies. Copyright © 2018 Elsevier B.V. All rights reserved.
[Regulation of heat shock gene expression in response to stress].
Garbuz, D G
2017-01-01
Heat shock (HS) genes, or stress genes, code for a number of proteins that collectively form the most ancient and universal stress defense system. The system determines the cell capability of adaptation to various adverse factors and performs a variety of auxiliary functions in normal physiological conditions. Common stress factors, such as higher temperatures, hypoxia, heavy metals, and others, suppress transcription and translation for the majority of genes, while HS genes are upregulated. Transcription of HS genes is controlled by transcription factors of the HS factor (HSF) family. Certain HSFs are activated on exposure to higher temperatures or other adverse factors to ensure stress-induced HS gene expression, while other HSFs are specifically activated at particular developmental stages. The regulation of the main mammalian stress-inducible factor HSF1 and Drosophila melanogaster HSF includes many components, such as a variety of early warning signals indicative of abnormal cell activity (e.g., increases in intracellular ceramide, cytosolic calcium ions, or partly denatured proteins); protein kinases, which phosphorylate HSFs at various Ser residues; acetyltransferases; and regulatory proteins, such as SUMO and HSBP1. Transcription factors other than HSFs are also involved in activating HS gene transcription; the set includes D. melanogaster GAF, mammalian Sp1 and NF-Y, and other factors. Transcription of several stress genes coding for molecular chaperones of the glucose-regulated protein (GRP) family is predominantly regulated by another stress-detecting system, which is known as the unfolded protein response (UPR) system and is activated in response to massive protein misfolding in the endoplasmic reticulum and mitochondrial matrix. A translational fine tuning of HS protein expression occurs via changing the phosphorylation status of several proteins involved in translation initiation. In addition, specific signal sequences in the 5'-UTRs of some HS protein mRNAs ensure their preferential translation in stress.
Xu Chen; Berry, Damon; Stephens, Gaye
2015-01-01
Computerised identity management is in general encountered as a low-level mechanism that enables users in a particular system or region to securely access resources. In the Electronic Health Record (EHR), the identifying information of both the healthcare professionals who access the EHR and the patients whose EHR is accessed, are subject to change. Demographics services have been developed to manage federated patient and healthcare professional identities and to support challenging healthcare-specific use cases in the presence of diverse and sometimes conflicting demographic identities. Demographics services are not the only use for identities in healthcare. Nevertheless, contemporary EHR specifications limit the types of entities that can be the actor or subject of a record to health professionals and patients, thus limiting the use of two level models in other healthcare information systems. Demographics are ubiquitous in healthcare, so for a general identity model to be usable, it should be capable of managing demographic information. In this paper, we introduce a generalised identity reference model (GIRM) based on key characteristics of five surveyed demographic models. We evaluate the GIRM by using it to express the EN13606 demographics model in an extensible way at the metadata level and show how two-level modelling can support the exchange of instances of demographic identities. This use of the GIRM to express demographics information shows its application for standards-compliant two-level modelling alongside heterogeneous demographics models. We advocate this approach to facilitate the interoperability of identities between two-level model-based EHR systems and show the validity and the extensibility of using GIRM for the expression of other health-related identities.
Yin, Heng; Wu, Haijing; Zhao, Ming; Zhang, Qing; Long, Hai; Fu, Siqi; Lu, Qianjin
2017-07-25
Aberrant CD11a overexpression in CD4+ T cells induces T cell auto-reactivity, which is an important factor for systemic lupus erythematosus (SLE) pathogenesis. Although many studies have focused on CD11a epigenetic regulation, little is known about histone methylation. JMJD3, as a histone demethylase, is capable of specifically removing the trimethyl group from the H3K27 lysine residue, triggering target gene activation. Here, we examined the expression and function of JMJD3 in CD4+ T cells from SLE patients. Significantly decreased H3K27me3 levels and increased JMJD3 binding were detected within the ITGAL (CD11a) promoter locus in SLE CD4+ T cells compared with those in healthy CD4+ T cells. Moreover, overexpressing JMJD3 through the transfection of pcDNA3.1-JMJD3 into healthy donor CD4+ T cells increased JMJD3 enrichment and decreased H3K27me3 enrichment within the ITGAL (CD11a) promoter and up-regulated CD11a expression, leading to T and B cell hyperactivity. Inhibition of JMJD3 via JMJD3-siRNA in SLE CD4+ T cells showed the opposite effects. These results demonstrated that histone demethylase JMJD3 regulates CD11a expression in lupus T cells by affecting the H3K27me3 levels in the ITGAL (CD11a) promoter region, and JMJD3 might thereby serve as a potential therapeutic target for SLE.
Lee-Sayer, Sally S. M.; Dougan, Meghan N.; Cooper, Jesse; Sanderson, Leslie; Dosanjh, Manisha; Maxwell, Christopher A.
2018-01-01
CD44 is a widely expressed cell adhesion molecule that binds to the extracellular matrix component, hyaluronan. However, this interaction is not constitutive in most immune cells at steady state, as the ability of CD44 to engage hyaluronan is highly regulated. While activated T cells and macrophages gain the ability to bind hyaluronan by CD44, the status in other immune cells is less studied. Here we found a percentage of murine eosinophils, natural killer and natural killer T cells were capable of interacting with hyaluronan at steady state. To further investigate the consequences of hyaluronan binding by CD44 in the hematopoietic system, point mutations of CD44 that either cannot bind hyaluronan (LOF-CD44) or have an increased affinity for hyaluronan (GOF-CD44) were expressed in CD44-deficient bone marrow. Competitive bone marrow reconstitution of irradiated mice revealed an early preference for GOF-CD44 over WT-CD44 expressing cells, and for WT-CD44 over LOF-CD44 expressing cells, in the hematopoietic progenitor cell compartment. The advantage of the hyaluronan-binding cells was observed in the hematopoietic stem and progenitor populations, and was maintained throughout the immune system. Hematopoietic stem cells bound minimal hyaluronan at steady state, and this was increased when the cells were induced to proliferate whereas multipotent progenitors had an increased ability to bind hyaluronan at steady state. In vitro, the addition of hyaluronan promoted their proliferation. Thus, proliferating hematopoietic progenitors bind hyaluronan, and hyaluronan binding cells have a striking competitive advantage in bone marrow engraftment. PMID:29684048
Rossi, Francesca; Perrotta, Silverio; Bellini, Giulia; Luongo, Livio; Tortora, Chiara; Siniscalco, Dario; Francese, Matteo; Torella, Marco; Nobili, Bruno; Di Marzo, Vincenzo; Maione, Sabatino
2014-01-01
The pathogenesis of bone resorption in β-thalassemia major is multifactorial and our understanding of the underlying molecular and cellular mechanisms remains incomplete. Considering the emerging importance of the endocannabinoid/endovanilloid system in bone metabolism, it may be instructive to examine a potential role for this system in the development of osteoporosis in patients with β-thalassemia major and its relationship with iron overload and iron chelation therapy. This study demonstrates that, in thalassemic-derived osteoclasts, tartrate-resistant acid phosphatase expression inversely correlates with femoral and lumbar bone mineral density, and directly correlates with ferritin levels and liver iron concentration. The vanilloid agonist resiniferatoxin dramatically reduces cathepsin K levels and osteoclast numbers in vitro, without affecting tartrate-resistant acid phosphatase expression. The iron chelators deferoxamine, deferiprone and deferasirox decrease both tartrate-resistant acid phosphatase and cathepsin K expression, as well as osteoclast activity. Taken together, these data show that transient receptor potential vanilloid type 1 activation/desensitization influences tartrate-resistant acid phosphatase expression and activity, and this effect is dependent on iron, suggesting a pivotal role for iron overload in the dysregulation of bone metabolism in patients with thalassemia major. Our applied pharmacology provides evidence for the potential of iron chelators to abrogate these effects by reducing osteoclast activity. Whether iron chelation therapy is capable of restoring bone health in humans requires further study, but the potential to provide dual benefits for patients with β-thalassemia major –preventing iron-overload and alleviating associated osteoporotic changes – is exciting. PMID:25216685
Detection of human cytomegalovirus DNA replication in non-permissive Vero and 293 cells.
Ellsmore, Victoria; Reid, G Gordon; Stow, Nigel D
2003-03-01
Human cytomegalovirus (HCMV) displays an exceptionally restricted host range in tissue culture with human fibroblasts being the principal fully permissive system. Nevertheless, immediate early (IE) proteins are expressed following infection of many non-permissive cell types of human, simian and murine origin, and viral origin-dependent DNA synthesis has been reconstituted by transfection of plasmids into Vero cells, a non-permissive line from African green monkey. We have examined the accumulation of HCMV strain AD169 DNA, and the replication of transfected HCMV origin-containing plasmids, in infected Vero and human embryonic kidney 293 cells, which were previously reported to express the major IE protein in a small proportion of infected cells but to be non-permissive for viral DNA synthesis. In Vero cells accumulation of origin-containing plasmid but not viral DNA occurred, whilst in 293 cells both DNAs accumulated. Immunofluorescence experiments indicated that following infection with 3 p.f.u. per cell, a small fraction of both cell types expressed the UL44 DNA replication protein. Neither cell line, however, supported the generation of infectious progeny virus. These results suggest that IE proteins expressed in Vero and 293 cells can induce the synthesis of early proteins capable of functioning in viral DNA replication, but there is a failure in later events on the pathway to infectious virus production. This provides further support for transfected Vero cells being a valid system in which to study HCMV DNA synthesis, and suggests that 293 cells may also prove useful in similar experiments.
Spectral Analysis: From Additive Perspective to Multiplicative Perspective
NASA Astrophysics Data System (ADS)
Wu, Z.
2017-12-01
The early usage of trigonometric functions can be traced back to at least 17th century BC. It was Bhaskara II of the 12th century CE who first proved the mathematical equivalence between the sum of two trigonometric functions of any given angles and the product of two trigonometric functions of related angles, which has been taught these days in middle school classroom. The additive perspective of trigonometric functions led to the development of the Fourier transform that is used to express any functions as the sum of a set of trigonometric functions and opened a new mathematical field called harmonic analysis. Unfortunately, Fourier's sum cannot directly express nonlinear interactions between trigonometric components of different periods, and thereby lacking the capability of quantifying nonlinear interactions in dynamical systems. In this talk, the speaker will introduce the Huang transform and Holo-spectrum which were pioneered by Norden Huang and emphasizes the multiplicative perspective of trigonometric functions in expressing any function. Holo-spectrum is a multi-dimensional spectral expression of a time series that explicitly identifies the interactions among different scales and quantifies nonlinear interactions hidden in a time series. Along with this introduction, the developing concepts of physical, rather than mathematical, analysis of data will be explained. Various enlightening applications of Holo-spectrum analysis in atmospheric and climate studies will also be presented.
Gandier, Julie-Anne; Master, Emma R.
2018-01-01
The heterologous expression of proteins is often a crucial first step in not only investigating their function, but also in their industrial application. The functional assembly and aggregation of hydrophobins offers intriguing biotechnological applications from surface modification to drug delivery, yet make developing systems for their heterologous expression challenging. In this article, we describe the development of Pichia pastoris KM71H strains capable of solubly producing the full set of predicted Cordyceps militaris hydrophobins CMil1 (Class IA), CMil2 (Class II), and CMil3 (IM) at mg/L yields with the use of 6His-tags not only for purification but for their detection. This result further demonstrates the feasibility of using P. pastoris as a host organism for the production of hydrophobins from all Ascomycota Class I subdivisions (a classification our previous work defined) as well as Class II. We highlight the specific challenges related to the production of hydrophobins, notably the challenge in detecting the protein that will be described, in particular during the screening of transformants. Together with the literature, our results continue to show that P. pastoris is a suitable host for the soluble heterologous expression of hydrophobins with a wide range of properties. PMID:29303996
Gandier, Julie-Anne; Master, Emma R
2018-01-05
The heterologous expression of proteins is often a crucial first step in not only investigating their function, but also in their industrial application. The functional assembly and aggregation of hydrophobins offers intriguing biotechnological applications from surface modification to drug delivery, yet make developing systems for their heterologous expression challenging. In this article, we describe the development of Pichia pastoris KM71H strains capable of solubly producing the full set of predicted Cordyceps militaris hydrophobins CMil1 (Class IA), CMil2 (Class II), and CMil3 (IM) at mg/L yields with the use of 6His-tags not only for purification but for their detection. This result further demonstrates the feasibility of using P. pastoris as a host organism for the production of hydrophobins from all Ascomycota Class I subdivisions (a classification our previous work defined) as well as Class II. We highlight the specific challenges related to the production of hydrophobins, notably the challenge in detecting the protein that will be described, in particular during the screening of transformants. Together with the literature, our results continue to show that P. pastoris is a suitable host for the soluble heterologous expression of hydrophobins with a wide range of properties.
Multifunctional Envelope-Type siRNA Delivery Nanoparticle Platform for Prostate Cancer Therapy.
Xu, Xiaoding; Wu, Jun; Liu, Yanlan; Saw, Phei Er; Tao, Wei; Yu, Mikyung; Zope, Harshal; Si, Michelle; Victorious, Amanda; Rasmussen, Jonathan; Ayyash, Dana; Farokhzad, Omid C; Shi, Jinjun
2017-03-28
With the capability of specific silencing of target gene expression, RNA interference (RNAi) technology is emerging as a promising therapeutic modality for the treatment of cancer and other diseases. One key challenge for the clinical applications of RNAi is the safe and effective delivery of RNAi agents such as small interfering RNA (siRNA) to a particular nonliver diseased tissue (e.g., tumor) and cell type with sufficient cytosolic transport. In this work, we proposed a multifunctional envelope-type nanoparticle (NP) platform for prostate cancer (PCa)-specific in vivo siRNA delivery. A library of oligoarginine-functionalized and sharp pH-responsive polymers was synthesized and used for self-assembly with siRNA into NPs with the features of long blood circulation and pH-triggered oligoarginine-mediated endosomal membrane penetration. By further modification with ACUPA, a small molecular ligand specifically recognizing prostate-specific membrane antigen (PSMA) receptor, this envelope-type nanoplatform with multifunctional properties can efficiently target PSMA-expressing PCa cells and silence target gene expression. Systemic delivery of the siRNA NPs can efficiently silence the expression of prohibitin 1 (PHB1), which is upregulated in PCa and other cancers, and significantly inhibit PCa tumor growth. These results suggest that this multifunctional envelope-type nanoplatform could become an effective tool for PCa-specific therapy.
Li, Zhidong; Marinova, Dora; Guo, Xiumei; Gao, Yuan
2015-01-01
Many steel-based cities in China were established between the 1950s and 1960s. After more than half a century of development and boom, these cities are starting to decline and industrial transformation is urgently needed. This paper focuses on evaluating the transformation capability of resource-based cities building an evaluation model. Using Text Mining and the Document Explorer technique as a way of extracting text features, the 200 most frequently used words are derived from 100 publications related to steel- and other resource-based cities. The Expert Evaluation Method (EEM) and Analytic Hierarchy Process (AHP) techniques are then applied to select 53 indicators, determine their weights and establish an index system for evaluating the transformation capability of the pillar industry of China’s steel-based cities. Using real data and expert reviews, the improved Fuzzy Relation Matrix (FRM) method is applied to two case studies in China, namely Panzhihua and Daye, and the evaluation model is developed using Fuzzy Comprehensive Evaluation (FCE). The cities’ abilities to carry out industrial transformation are evaluated with concerns expressed for the case of Daye. The findings have policy implications for the potential and required industrial transformation in the two selected cities and other resource-based towns. PMID:26422266
Li, Zhidong; Marinova, Dora; Guo, Xiumei; Gao, Yuan
2015-01-01
Many steel-based cities in China were established between the 1950s and 1960s. After more than half a century of development and boom, these cities are starting to decline and industrial transformation is urgently needed. This paper focuses on evaluating the transformation capability of resource-based cities building an evaluation model. Using Text Mining and the Document Explorer technique as a way of extracting text features, the 200 most frequently used words are derived from 100 publications related to steel- and other resource-based cities. The Expert Evaluation Method (EEM) and Analytic Hierarchy Process (AHP) techniques are then applied to select 53 indicators, determine their weights and establish an index system for evaluating the transformation capability of the pillar industry of China's steel-based cities. Using real data and expert reviews, the improved Fuzzy Relation Matrix (FRM) method is applied to two case studies in China, namely Panzhihua and Daye, and the evaluation model is developed using Fuzzy Comprehensive Evaluation (FCE). The cities' abilities to carry out industrial transformation are evaluated with concerns expressed for the case of Daye. The findings have policy implications for the potential and required industrial transformation in the two selected cities and other resource-based towns.
Haynes, Nicole M; Trapani, Joseph A; Teng, Michele W L; Jackson, Jacob T; Cerruti, Loretta; Jane, Stephen M; Kershaw, Michael H; Smyth, Mark J; Darcy, Phillip K
2002-11-15
A new strategy to improve the therapeutic utility of redirected T cells for cancer involves the development of novel Ag-specific chimeric receptors capable of stimulating optimal and sustained T cell antitumor activity in vivo. Given that T cells require both primary and costimulatory signals for optimal activation and that many tumors do not express critical costimulatory ligands, modified single-chain Ab receptors have been engineered to codeliver CD28 costimulation. In this study, we have compared the antitumor potency of primary T lymphocytes expressing carcinoembryonic Ag (CEA)-reactive chimeric receptors that incorporate either TCR-zeta or CD28/TCR-zeta signaling. Although both receptor-transduced T cell effector populations demonstrated cytolysis of CEA(+) tumors in vitro, T cells expressing the single-chain variable fragment of Ig (scFv)-CD28-zeta chimera had a far greater capacity to control the growth of CEA(+) xenogeneic and syngeneic colon carcinomas in vivo. The observed enhanced antitumor activity of T cells expressing the scFv-CD28-zeta receptor was critically dependent on perforin and the production of IFN-gamma. Overall, this study has illustrated the ability of a chimeric scFv receptor capable of harnessing the signaling machinery of both TCR-zeta and CD28 to augment T cell immunity against tumors that have lost expression of both MHC/peptide and costimulatory ligands in vivo.
Expression of SLP-2 was associated with invasion of esophageal squamous cell carcinoma.
Cao, Wenfeng; Zhang, Bin; Ding, Fang; Zhang, Weiran; Sun, Baocun; Liu, Zhihua
2013-01-01
Stomatin-like protein 2 (SLP-2), a member of the Stomatin superfamily, has been identified as an oncogenic-related protein and found to be up-regulated in multi-cancers. Nonetheless, the expression pattern and regulation of SLP-2 in human esophageal squamous cell carcinoma (ESCC) remain unexplored. Immunohistochemistry and immunofluorescence staining analysis were performed to show SLP-2 expression and location. RNAi method was used to inhibit specific protein expression. Transwell assay was done to investigate cells invasive capability. RT-PCR and Western blot analysis were used to detect mRNA and protein expression levels. Immunohistochemical analysis showed that up-regulation of SLP-2 was found in invasive front compared with cancer central tissue in ESCC. Inhibition of SLP-2 by SLP-2 siRNA can decrease ESCC cells invasive capability through MMP-2 dependent manner. Up-regulation of SLP-2 was effectively abrogated by the ERK1/2 inhibitors either PD98059 or U0126, but no effect was showed by the treatment of AKT inhibitors either LY294002 or MK-2206. So the regulation of SLP-2 was involved in activation of the MAPK/ERK pathway. We found that PMA/EGF could induce the up-regulated expression of SLP-2 probably through activating ERK signalling. The current study suggests that SLP-2 may represent an important molecular hallmark that is clinically relevant to the invasion of ESCC.
Mora-García, M L; Ávila-Ibarra, L R; García-Rocha, R; Weiss-Steider, B; Hernández-Montes, J; Don-López, C A; Gutiérrez-Serrano, V; Titla-Vilchis, I J; Fuentes-Castañeda, M C; Monroy-Mora, A; Jave-Suárez, L F; Chacón-Salinas, R; Vallejo-Castillo, L; Pérez-Tapia, S M; Monroy-García, A
2017-10-01
The expression of CD73 in tumor cells plays a significant role in the production of adenosine (Ado) that suppresses antitumor effector cells. In this study we analyzed the capability of HPV-positive (HPV+) cervical cancer (CeCa) cell lines CaSki, SiHa, HeLa, and RoVa; and HPV-negative (HPV-) cell lines C33A and ViBo to produce Ado and inhibit effector functions of CD8+ T cells. HPV+ CeCa cells expressed significantly higher levels of CD73 in the membrane (p<0.01) than HPV- CeCa cells and this expression was associated with the production of larger amounts of Ado (>400μM) compared to HPV-CeCa cells (<200μM) in the presence of AMP, as well asa stronger inhibition of (>50%) proliferation, activation, and cytotoxic activity of CD8+ T cells via interaction with A2A adenosine receptor. We also provide evidence that silenced E6/E7 expression in CeCa cells, strongly reduced its CD73 expression level and its capability to generate Ado. This results suggest that HPV infection, which is associated with more than 99% of CeCa cases, may present an increased constitutive expression of CD73 in cervical neoplasia to contribute to the suppression of the immune response mediated by the production of large amounts of Ado. Copyright © 2017 Elsevier Inc. All rights reserved.
2012-09-01
ovarian cancer stem cell markers to consider it as a new experimental target for novel nanotechnology approaches capable of destroying ovarian cancer stem...FSHR mRNA after several generations in an amount consistent with stem cell characteristics. Nude mouse experiments to confirm co-expression in vivoare
Integrated Systems Health Management for Intelligent Systems
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Melcher, Kevin
2011-01-01
The implementation of an integrated system health management (ISHM) capability is fundamentally linked to the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system. Management implies storage, distribution, sharing, maintenance, processing, reasoning, and presentation. ISHM is akin to having a team of experts who are all individually and collectively observing and analyzing a complex system, and communicating effectively with each other in order to arrive at an accurate and reliable assessment of its health. In this chapter, concepts, procedures, and approaches are presented as a foundation for implementing an ISHM capability relevant to intelligent systems. The capability stresses integration of DIaK from all elements of a system, emphasizing an advance toward an on-board, autonomous capability. Both ground-based and on-board ISHM capabilities are addressed. The information presented is the result of many years of research, development, and maturation of technologies, and of prototype implementations in operational systems.
Yang, Fan; Korban, Schuyler S; Pusey, P Lawrence; Elofsson, Michael; Sundin, George W; Zhao, Youfu
2014-01-01
The type III secretion system (T3SS) and exopolysaccharide (EPS) amylovoran are two essential pathogenicity factors in Erwinia amylovora, the causal agent of the serious bacterial disease fire blight. In this study, small molecules that inhibit T3SS gene expression in E. amylovora under hrp (hypersensitive response and pathogenicity)-inducing conditions were identified and characterized using green fluorescent protein (GFP) as a reporter. These compounds belong to salicylidene acylhydrazides and also inhibit amylovoran production. Microarray analysis of E. amylovora treated with compounds 3 and 9 identified a total of 588 significantly differentially expressed genes. Among them, 95 and 78 genes were activated and suppressed by both compounds, respectively, when compared with the dimethylsulphoxide (DMSO) control. The expression of the majority of T3SS genes in E. amylovora, including hrpL and the avrRpt2 effector gene, was suppressed by both compounds. Compound 3 also suppressed the expression of amylovoran precursor and biosynthesis genes. However, both compounds induced significantly the expression of glycogen biosynthesis genes and siderophore biosynthesis, regulatory and transport genes. Furthermore, many membrane, lipoprotein and exported protein-encoding genes were also activated by both compounds. Similar expression patterns were observed for compounds 1, 2 and 4. Using crab apple flower as a model, compound 3 was capable of reducing disease development in pistils. These results suggest a common inhibition mechanism shared by salicylidene acylhydrazides and indicate that small-molecule inhibitors that disable T3SS function could be explored to control fire blight disease. © 2013 BSPP AND JOHN WILEY & SONS LTD.
Commercial Application of In-Space Assembly
NASA Technical Reports Server (NTRS)
Lymer, John; Hanson, Mark; Tadros, Al; Boccio, Joel; Hollenstein, Bruno; Emerick, Ken; Doughtery, Sean; Doggett, Bill; Dorsey, John T.; King, Bruce D.;
2016-01-01
In-Space assembly (ISA) expands the opportunities for cost effective emplacement of systems in space. Currently, spacecraft are launched into space and deploy into their operational configuration through a carefully choreographed sequence of operations. The deployment operation dictates the arrangement of the primary systems on the spacecraft, limiting the ability to take full advantage of launch vehicles volume and mass capability. ISA enables vastly different spacecraft architectures and emplacement scenarios to be achieved, including optimal launch configurations ranging from single launch and assembly to on-orbit aggregation of multiple launches at different orbital locations and times. The spacecraft can be visited at different orbital locations and times to effect expansion and maintenance of an operational capability. To date, the primary application of ISA has been in large programs funded by government organizations, such as the International Space Station. Recently, Space Systems Loral (SSL) led a study funded by the Defense Advanced Research Projects Agency (DARPA), called Dragonfly, to investigate the commercial applicability and economic advantages of ISA. In the study, it was shown that ISA enables SSL to double the capability of a commercial satellite system by taking advantage of alternate packaging approaches for the reflectors. The study included an ultra-light-weight robotic system, derived from Mars manipulator designs, to complete assembly of portions of the antenna system using a tool derived from DARPA orbital express and National Aeronautics and Space Administration (NASA) automated structural assembly experience. The mechanical connector that enables robotic ISA takes advantage of decades of development by NASA from the 1970's to 1980's during the Space Station Freedom program, the precursor to the ISS. The mechanical connector was originally designed for rapid astronaut assembly while also providing a high quality structural connection with linear load deflection response. The paper will discuss the business case for ISA, the general approach taken to exploit on-orbit assembly in the GEO communication satellite market, and the concept of operations associated with the ISA approach, thus laying the foundation for ISA to become an accepted operational approach for commercial in-space operations.
The cerebellum: a neural system for the study of reinforcement learning.
Swain, Rodney A; Kerr, Abigail L; Thompson, Richard F
2011-01-01
In its strictest application, the term "reinforcement learning" refers to a computational approach to learning in which an agent (often a machine) interacts with a mutable environment to maximize reward through trial and error. The approach borrows essentials from several fields, most notably Computer Science, Behavioral Neuroscience, and Psychology. At the most basic level, a neural system capable of mediating reinforcement learning must be able to acquire sensory information about the external environment and internal milieu (either directly or through connectivities with other brain regions), must be able to select a behavior to be executed, and must be capable of providing evaluative feedback about the success of that behavior. Given that Psychology informs us that reinforcers, both positive and negative, are stimuli or consequences that increase the probability that the immediately antecedent behavior will be repeated and that reinforcer strength or viability is modulated by the organism's past experience with the reinforcer, its affect, and even the state of its muscles (e.g., eyes open or closed); it is the case that any neural system that supports reinforcement learning must also be sensitive to these same considerations. Once learning is established, such a neural system must finally be able to maintain continued response expression and prevent response drift. In this report, we examine both historical and recent evidence that the cerebellum satisfies all of these requirements. While we report evidence from a variety of learning paradigms, the majority of our discussion will focus on classical conditioning of the rabbit eye blink response as an ideal model system for the study of reinforcement and reinforcement learning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslinger, Paul W.; Aaberg, Rosanne L.; Lopresti, Charles A.
2004-09-14
This document contains detailed user instructions for a suite of utility codes developed for Rev. 1 of the Systems Assessment Capability. The suite of computer codes for Rev. 1 of Systems Assessment Capability performs many functions.
Photovoltaic Systems Test Facilities: Existing capabilities compilation
NASA Technical Reports Server (NTRS)
Volkmer, K.
1982-01-01
A general description of photovoltaic systems test facilities (PV-STFs) operated under the U.S. Department of Energy's photovoltaics program is given. Descriptions of a number of privately operated facilities having test capabilities appropriate to photovoltaic hardware development are given. A summary of specific, representative test capabilities at the system and subsystem level is presented for each listed facility. The range of system and subsystem test capabilities available to serve the needs of both the photovoltaics program and the private sector photovoltaics industry is given.
Animals Remember Previous Facial Expressions that Specific Humans Have Exhibited.
Proops, Leanne; Grounds, Kate; Smith, Amy Victoria; McComb, Karen
2018-05-07
For humans, facial expressions are important social signals, and how we perceive specific individuals may be influenced by subtle emotional cues that they have given us in past encounters. A wide range of animal species are also capable of discriminating the emotions of others through facial expressions [1-5], and it is clear that remembering emotional experiences with specific individuals could have clear benefits for social bonding and aggression avoidance when these individuals are encountered again. Although there is evidence that non-human animals are capable of remembering the identity of individuals who have directly harmed them [6, 7], it is not known whether animals can form lasting memories of specific individuals simply by observing subtle emotional expressions that they exhibit on their faces. Here we conducted controlled experiments in which domestic horses were presented with a photograph of an angry or happy human face and several hours later saw the person who had given the expression in a neutral state. Short-term exposure to the facial expression was enough to generate clear differences in subsequent responses to that individual (but not to a different mismatched person), consistent with the past angry expression having been perceived negatively and the happy expression positively. Both humans were blind to the photograph that the horses had seen. Our results provide clear evidence that some non-human animals can effectively eavesdrop on the emotional state cues that humans reveal on a moment-to-moment basis, using their memory of these to guide future interactions with particular individuals. Copyright © 2018 Elsevier Ltd. All rights reserved.
Evans, Tyler G.; Hofmann, Gretchen E.
2012-01-01
Anthropogenic stressors, such as climate change, are driving fundamental shifts in the abiotic characteristics of marine ecosystems. As the environmental aspects of our world's oceans deviate from evolved norms, of major concern is whether extant marine species possess the capacity to cope with such rapid change. In what many scientists consider the post-genomic era, tools that exploit the availability of DNA sequence information are being increasingly recognized as relevant to questions surrounding ocean change and marine conservation. In this review, we highlight the application of high-throughput gene-expression profiling, primarily transcriptomics, to the field of marine conservation physiology. Through the use of case studies, we illustrate how gene expression can be used to standardize metrics of sub-lethal stress, track organism condition in natural environments and bypass phylogenetic barriers that hinder the application of other physiological techniques to conservation. When coupled with fine-scale monitoring of environmental variables, gene-expression profiling provides a powerful approach to conservation capable of informing diverse issues related to ocean change, from coral bleaching to the spread of invasive species. Integrating novel approaches capable of improving existing conservation strategies, including gene-expression profiling, will be critical to ensuring the ecological and economic health of the global ocean. PMID:22566679
Williams-Devane, ClarLynda R; Wolf, Maritja A; Richard, Ann M
2009-06-01
A publicly available toxicogenomics capability for supporting predictive toxicology and meta-analysis depends on availability of gene expression data for chemical treatment scenarios, the ability to locate and aggregate such information by chemical, and broad data coverage within chemical, genomics, and toxicological information domains. This capability also depends on common genomics standards, protocol description, and functional linkages of diverse public Internet data resources. We present a survey of public genomics resources from these vantage points and conclude that, despite progress in many areas, the current state of the majority of public microarray databases is inadequate for supporting these objectives, particularly with regard to chemical indexing. To begin to address these inadequacies, we focus chemical annotation efforts on experimental content contained in the two primary public genomic resources: ArrayExpress and Gene Expression Omnibus. Automated scripts and extensive manual review were employed to transform free-text experiment descriptions into a standardized, chemically indexed inventory of experiments in both resources. These files, which include top-level summary annotations, allow for identification of current chemical-associated experimental content, as well as chemical-exposure-related (or "Treatment") content of greatest potential value to toxicogenomics investigation. With these chemical-index files, it is possible for the first time to assess the breadth and overlap of chemical study space represented in these databases, and to begin to assess the sufficiency of data with shared protocols for chemical similarity inferences. Chemical indexing of public genomics databases is a first important step toward integrating chemical, toxicological and genomics data into predictive toxicology.
Mucosal and systemic anti-HIV immunity controlled by A20 in mouse dendritic cells.
Hong, Bangxing; Song, Xiao-Tong; Rollins, Lisa; Berry, Lindsey; Huang, Xue F; Chen, Si-Yi
2011-02-01
Both mucosal and systemic immune responses are required for preventing or containing HIV transmission and chronic infection. However, currently described vaccination approaches are largely ineffective in inducing both mucosal and systemic responses. In this study, we found that the ubiquitin-editing enzyme A20--an inducible feedback inhibitor of the TNFR, RIG-I, and TLR signaling pathways that broadly controls the maturation, cytokine production, and immunostimulatory potency of DCs--restricted systemically immunized DCs to induce both robust mucosal and systemic HIV-specific cellular and humoral responses. Mechanistic studies revealed that A20 regulated DC production of retinoic acid and proinflammatory cytokines, inhibiting the expression of gut-homing receptors on T and B cells. Furthermore, A20-silenced, hyperactivated DCs exhibited an enhanced homing capacity to draining and gut-associated lymphoid tissues (GALTs) after systemic administration. Thus, this study provides insights into the role of A20 in innate immunity. This work may allow the development of an efficient HIV vaccination strategy that is capable of inducing both robust systemic and mucosal anti-HIV cellular and humoral responses.
GeneLab Phase 2: Integrated Search Data Federation of Space Biology Experimental Data
NASA Technical Reports Server (NTRS)
Tran, P. B.; Berrios, D. C.; Gurram, M. M.; Hashim, J. C. M.; Raghunandan, S.; Lin, S. Y.; Le, T. Q.; Heher, D. M.; Thai, H. T.; Welch, J. D.;
2016-01-01
The GeneLab project is a science initiative to maximize the scientific return of omics data collected from spaceflight and from ground simulations of microgravity and radiation experiments, supported by a data system for a public bioinformatics repository and collaborative analysis tools for these data. The mission of GeneLab is to maximize the utilization of the valuable biological research resources aboard the ISS by collecting genomic, transcriptomic, proteomic and metabolomic (so-called omics) data to enable the exploration of the molecular network responses of terrestrial biology to space environments using a systems biology approach. All GeneLab data are made available to a worldwide network of researchers through its open-access data system. GeneLab is currently being developed by NASA to support Open Science biomedical research in order to enable the human exploration of space and improve life on earth. Open access to Phase 1 of the GeneLab Data Systems (GLDS) was implemented in April 2015. Download volumes have grown steadily, mirroring the growth in curated space biology research data sets (61 as of June 2016), now exceeding 10 TB/month, with over 10,000 file downloads since the start of Phase 1. For the period April 2015 to May 2016, most frequently downloaded were data from studies of Mus musculus (39) followed closely by Arabidopsis thaliana (30), with the remaining downloads roughly equally split across 12 other organisms (each 10 of total downloads). GLDS Phase 2 is focusing on interoperability, supporting data federation, including integrated search capabilities, of GLDS-housed data sets with external data sources, such as gene expression data from NIHNCBIs Gene Expression Omnibus (GEO), proteomic data from EBIs PRIDE system, and metagenomic data from Argonne National Laboratory's MG-RAST. GEO and MG-RAST employ specifications for investigation metadata that are different from those used by the GLDS and PRIDE (e.g., ISA-Tab). The GLDS Phase 2 system will implement a Google-like, full-text search engine using a Service-Oriented Architecture by utilizing publicly available RESTful web services Application Programming Interfaces (e.g., GEO Entrez Programming Utilities) and a Common Metadata Model (CMM) in order to accommodate the different metadata formats between the heterogeneous bioinformatics databases. GLDS Phase 2 completion with fully implemented capabilities will be made available to the general public in September 2017.
Wang, Fei; Salous, Sana; Zhou, Jianjiang
2017-01-01
In this paper, we investigate a low probability of intercept (LPI)-based optimal power allocation strategy for a joint bistatic radar and communication system, which is composed of a dedicated transmitter, a radar receiver, and a communication receiver. The joint system is capable of fulfilling the requirements of both radar and communications simultaneously. First, assuming that the signal-to-noise ratio (SNR) corresponding to the target surveillance path is much weaker than that corresponding to the line of sight path at radar receiver, the analytically closed-form expression for the probability of false alarm is calculated, whereas the closed-form expression for the probability of detection is not analytically tractable and is approximated due to the fact that the received signals are not zero-mean Gaussian under target presence hypothesis. Then, an LPI-based optimal power allocation strategy is presented to minimize the total transmission power for information signal and radar waveform, which is constrained by a specified information rate for the communication receiver and the desired probabilities of detection and false alarm for the radar receiver. The well-known bisection search method is employed to solve the resulting constrained optimization problem. Finally, numerical simulations are provided to reveal the effects of several system parameters on the power allocation results. It is also demonstrated that the LPI performance of the joint bistatic radar and communication system can be markedly improved by utilizing the proposed scheme. PMID:29186850
Shi, Chenguang; Wang, Fei; Salous, Sana; Zhou, Jianjiang
2017-11-25
In this paper, we investigate a low probability of intercept (LPI)-based optimal power allocation strategy for a joint bistatic radar and communication system, which is composed of a dedicated transmitter, a radar receiver, and a communication receiver. The joint system is capable of fulfilling the requirements of both radar and communications simultaneously. First, assuming that the signal-to-noise ratio (SNR) corresponding to the target surveillance path is much weaker than that corresponding to the line of sight path at radar receiver, the analytically closed-form expression for the probability of false alarm is calculated, whereas the closed-form expression for the probability of detection is not analytically tractable and is approximated due to the fact that the received signals are not zero-mean Gaussian under target presence hypothesis. Then, an LPI-based optimal power allocation strategy is presented to minimize the total transmission power for information signal and radar waveform, which is constrained by a specified information rate for the communication receiver and the desired probabilities of detection and false alarm for the radar receiver. The well-known bisection search method is employed to solve the resulting constrained optimization problem. Finally, numerical simulations are provided to reveal the effects of several system parameters on the power allocation results. It is also demonstrated that the LPI performance of the joint bistatic radar and communication system can be markedly improved by utilizing the proposed scheme.
Optogenetic pacing in Drosophila melanogaster
Alex, Aneesh; Li, Airong; Tanzi, Rudolph E.; Zhou, Chao
2015-01-01
Electrical stimulation is currently the gold standard for cardiac pacing. However, it is invasive and nonspecific for cardiac tissues. We recently developed a noninvasive cardiac pacing technique using optogenetic tools, which are widely used in neuroscience. Optogenetic pacing of the heart provides high spatial and temporal precisions, is specific for cardiac tissues, avoids artifacts associated with electrical stimulation, and therefore promises to be a powerful tool in basic cardiac research. We demonstrated optogenetic control of heart rhythm in a well-established model organism, Drosophila melanogaster. We developed transgenic flies expressing a light-gated cation channel, channelrhodopsin-2 (ChR2), specifically in their hearts and demonstrated successful optogenetic pacing of ChR2-expressing Drosophila at different developmental stages, including the larva, pupa, and adult stages. A high-speed and ultrahigh-resolution optical coherence microscopy imaging system that is capable of providing images at a rate of 130 frames/s with axial and transverse resolutions of 1.5 and 3.9 μm, respectively, was used to noninvasively monitor Drosophila cardiac function and its response to pacing stimulation. The development of a noninvasive integrated optical pacing and imaging system provides a novel platform for performing research studies in developmental cardiology. PMID:26601299
Yu, Yanbin; Piddington, Christopher; Fitzpatrick, Dan; Twomey, Brian; Xu, Ren; Swanson, Steven J; Jing, Shuqian
2006-10-20
The presence of neutralizing antibodies against protein therapeutics is a concern in the biomedical field. Such antibodies not only reduce the efficacy of protein therapeutics, but also impose potential dangers to the patients receiving them. To date, a small number of in vitro cell-based bioassays for detecting neutralizing antibodies against therapeutic proteins have been developed. Most of the existing assays, however, either involve the use of radioactive materials or have limited sensitivities and/or poor specificities. With advances in mRNA profiling and detection techniques, we have established a novel and non-radioactive bioassay system using branched DNA (bDNA) technology for detecting protein-therapeutic neutralizing antibodies in patient serum. Our assay measures the variations of target gene expression that reflect the biologic effect of the therapeutic agent and the capability of the antibodies, if present, to neutralize the therapeutics. Compared with most existing assays, the new assay is more sensitive and specific, and completely eliminates the use of radioactive materials. Application of the new assay system can be widely expanded if new target genes and responding cell lines for other therapeutics are identified or engineered.
NASA Technical Reports Server (NTRS)
Regenie, Victoria
2005-01-01
Contents include the following: General Background and Introduction of Capability. Roadmaps for Systems Engineering Cost/Risk Analysis. Agency Objectives. Strategic Planning Transformation. Review Capability Roadmaps and Schedule. Review Purpose of NRC Review. Capability Roadmap Development (Progress to Date).
Cheng, Mingrong; Zhi, Kangkang; Gao, Xiaoyan; He, Bing; Li, Yingchun; Han, Jiang; Zhang, Zhiping; Wu, Yan
2013-12-18
Cancer is both a systemic and a genetic disease. The pathogenesis of cancer might be related to dampened immunity. Host immunity recognizes nascent malignant cells - a process referred to as immune surveillance. Augmenting immune surveillance and suppressing immune escape are crucial in tumor immunotherapy. A recombinant plasmid capable of co-expressing granulocyte-macrophage colony- stimulating factor (GM-SCF), interleukin-21 (IL-21), and retinoic acid early transcription factor-1 (Rae-1) was constructed, and its effects determined in a mouse model of subcutaneous liver cancer. Serum specimens were assayed for IL-2 and INF-γ by ELISA. Liver cancer specimens were isolated for Rae-1 expression by RT-PCR and Western blot, and splenocytes were analyzed by flow cytometry. The recombinant plasmid inhibited the growth of liver cancer and prolonged survival of tumor-loaded mice. Activation of host immunity might have contributed to this effect by promoting increased numbers and cytotoxicity of natural killer (NK) cells and cytotoxic T lymphocytes (CTL) following expression of GM-SCF, IL-21, and Rae-1. By contrast, the frequency of regulatory T cells was decreased, Consequently, activated CTL and NK cells enhanced their secretion of INF-γ, which promoted cytotoxicity of NK cells and CTL. Moreover, active CTL showed dramatic secretion of IL-2, which stimulates CTL. The recombinant expression plasmid also augmented Rae-1 expression by liver cancer cells. Rae-1 receptor expressing CTL and NK cells removed liver cancer. The recombinant expression plasmid inhibited liver cancer by a mechanism that involved activation of cell-mediated immunity and Rae-1 in liver cancer.
Prima, Victor; Kaliberova, Lyudmila N.; Kaliberov, Sergey; Curiel, David T.; Kusmartsev, Sergei
2017-01-01
In recent years, it has been established that programmed cell death protein ligand 1 (PD-L1)–mediated inhibition of activated PD-1+ T lymphocytes plays a major role in tumor escape from immune system during cancer progression. Lately, the anti–PD-L1 and –PD-1 immune therapies have become an important tool for treatment of advanced human cancers, including bladder cancer. However, the underlying mechanisms of PD-L1 expression in cancer are not fully understood. We found that coculture of murine bone marrow cells with bladder tumor cells promoted strong expression of PD-L1 in bone marrow–derived myeloid cells. Tumor-induced expression of PD-L1 was limited to F4/80+ macrophages and Ly-6C+ myeloid-derived suppressor cells. These PD-L1–expressing cells were immunosuppressive and were capable of eliminating CD8 T cells in vitro. Tumor-infiltrating PD-L1+ cells isolated from tumor-bearing mice also exerted morphology of tumor-associated macrophages and expressed high levels of prostaglandin E2 (PGE2)-forming enzymes microsomal PGE2 synthase 1 (mPGES1) and COX2. Inhibition of PGE2 formation, using pharmacologic mPGES1 and COX2 inhibitors or genetic overexpression of PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH), resulted in reduced PD-L1 expression. Together, our study demonstrates that the COX2/mPGES1/PGE2 pathway involved in the regulation of PD-L1 expression in tumor-infiltrating myeloid cells and, therefore, reprogramming of PGE2 metabolism in tumor microenvironment provides an opportunity to reduce immune suppression in tumor host. PMID:28096371
Mochida, Keiichi; Uehara-Yamaguchi, Yukiko; Yoshida, Takuhiro; Sakurai, Tetsuya; Shinozaki, Kazuo
2011-01-01
Accumulated transcriptome data can be used to investigate regulatory networks of genes involved in various biological systems. Co-expression analysis data sets generated from comprehensively collected transcriptome data sets now represent efficient resources that are capable of facilitating the discovery of genes with closely correlated expression patterns. In order to construct a co-expression network for barley, we analyzed 45 publicly available experimental series, which are composed of 1,347 sets of GeneChip data for barley. On the basis of a gene-to-gene weighted correlation coefficient, we constructed a global barley co-expression network and classified it into clusters of subnetwork modules. The resulting clusters are candidates for functional regulatory modules in the barley transcriptome. To annotate each of the modules, we performed comparative annotation using genes in Arabidopsis and Brachypodium distachyon. On the basis of a comparative analysis between barley and two model species, we investigated functional properties from the representative distributions of the gene ontology (GO) terms. Modules putatively involved in drought stress response and cellulose biogenesis have been identified. These modules are discussed to demonstrate the effectiveness of the co-expression analysis. Furthermore, we applied the data set of co-expressed genes coupled with comparative analysis in attempts to discover potentially Triticeae-specific network modules. These results demonstrate that analysis of the co-expression network of the barley transcriptome together with comparative analysis should promote the process of gene discovery in barley. Furthermore, the insights obtained should be transferable to investigations of Triticeae plants. The associated data set generated in this analysis is publicly accessible at http://coexpression.psc.riken.jp/barley/. PMID:21441235
Advanced Ground Systems Maintenance Prognostics Project
NASA Technical Reports Server (NTRS)
Perotti, Jose M.
2015-01-01
The project implements prognostics capabilities to predict when a component system or subsystem will no longer meet desired functional or performance criteria, called the end of life. The capability also provides an assessment of the remaining useful life of a hardware component. The project enables the delivery of system health advisories to ground system operators. This project will use modeling techniques and algorithms to assess components' health andpredict remaining life for such components. The prognostics capability being developed will beused:during the design phase and during pre/post operations to conduct planning and analysis ofsystem design, maintenance & logistics plans, and system/mission operations plansduring real-time operations to monitor changes to components' health and assess their impacton operations.This capability will be interfaced to Ground Operations' command and control system as a part ofthe AGSM project to help assure system availability and mission success. The initial modelingeffort for this capability will be developed for Liquid Oxygen ground loading applications.
Development of a functional thyroid model based on an organoid culture system.
Saito, Yoshiyuki; Onishi, Nobuyuki; Takami, Hiroshi; Seishima, Ryo; Inoue, Hiroyoshi; Hirata, Yuki; Kameyama, Kaori; Tsuchihashi, Kenji; Sugihara, Eiji; Uchino, Shinya; Ito, Koichi; Kawakubo, Hirofumi; Takeuchi, Hiroya; Kitagawa, Yuko; Saya, Hideyuki; Nagano, Osamu
2018-03-04
The low turnover rate of thyroid follicular cells and the lack of a long-term thyroid cell culture system have hampered studies of thyroid carcinogenesis. We have now established a thyroid organoid culture system that supports thyroid cell proliferation in vitro. The established mouse thyroid organoids performed thyroid functions including thyroglobulin synthesis, iodide uptake, and the production and release of thyroid hormone. Furthermore, transplantation of the organoids into recipient mice resulted in the formation of normal thyroid-like tissue capable of iodide uptake and thyroglobulin production in vivo. Finally, forced expression of oncogenic NRAS (NRAS Q61R ) in thyroid organoids established from p53 knockout mice and transplantation of the manipulated organoids into mouse recipients generated a model of poorly differentiated thyroid cancer. Our findings suggest that this newly developed thyroid organoid culture system is a potential research tool for the study of thyroid physiology and pathology including thyroid cancer. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2015-01-12
The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers willmore » now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, William E.; Siirola, John Daniel
We describe new capabilities for modeling MPEC problems within the Pyomo modeling software. These capabilities include new modeling components that represent complementar- ity conditions, modeling transformations for re-expressing models with complementarity con- ditions in other forms, and meta-solvers that apply transformations and numeric optimization solvers to optimize MPEC problems. We illustrate the breadth of Pyomo's modeling capabil- ities for MPEC problems, and we describe how Pyomo's meta-solvers can perform local and global optimization of MPEC problems.
How Should Air Force Expeditionary Medical Capabilities Be Expressed
2009-01-01
Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Sci- ence, Vol. 4, 2006, pp. 135–146; Sarah A. Lister, Hurricane Katrina: The Public...setting this might mean releasing the patient to a nursing home. In a domestic civilian disaster setting, it may mean releasing the patient to some...described below. The Mobile Aeromedical Staging Facility (MASF) is a 15-person, communications-capable UTC that provides supportive/resuscita- tive nursing