Science.gov

Sample records for expression systems yield

  1. Choosing Between Yeast and Bacterial Expression Systems: Yield Dependent

    NASA Technical Reports Server (NTRS)

    Miller, Rebecca S.; Malone, Christine C.; Moore, Blake P.; Burk, Melissa; Crawford, Lisa; Karr, Laurel J.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Green fluorescent protein (GFP) is a naturally occurring fluorescent protein isolated from the jellyfish Aequorea victoria. The intrinsic fluorescence of the protein is due to a chromophore located in the center of the molecule. Its usefulness has been established as a marker for gene expression and localization of gene products. GFP has recently been utilized as a model protein for crystallization studies at NASA/MSFC, both in earth-based and in microgravity experiments. Because large quantities of purified protein were needed, the cDNA of GFP was cloned into the Pichia pastoris pPICZ(alpha) C strain, with very little protein secreted into the media. Microscopic analysis prior to harvest showed gigantic green fluorescent yeast, but upon harvesting most protein was degraded. Trial fermentations of GFP cloned into pPICZ A for intracellular expression provided unsatisfactory yield. GFP cloned into E, coli was overexpressed at greater than 150 mg/liter, with purification yields at greater than 100mg/liter.

  2. A High Yield and Cost-efficient Expression System of Human Granzymes in Mammalian Cells.

    PubMed

    Dotiwala, Farokh; Fellay, Isabelle; Filgueira, Luis; Martinvalet, Denis; Lieberman, Judy; Walch, Michael

    2015-06-10

    When cytotoxic T lymphocytes (CTL) or natural killer (NK) cells recognize tumor cells or cells infected with intracellular pathogens, they release their cytotoxic granule content to eliminate the target cells and the intracellular pathogen. Death of the host cells and intracellular pathogens is triggered by the granule serine proteases, granzymes (Gzms), delivered into the host cell cytosol by the pore forming protein perforin (PFN) and into bacterial pathogens by the prokaryotic membrane disrupting protein granulysin (GNLY). To investigate the molecular mechanisms of target cell death mediated by the Gzms in experimental in-vitro settings, protein expression and purification systems that produce high amounts of active enzymes are necessary. Mammalian secreted protein expression systems imply the potential to produce correctly folded, fully functional protein that bears posttranslational modification, such as glycosylation. Therefore, we used a cost-efficient calcium precipitation method for transient transfection of HEK293T cells with human Gzms cloned into the expression plasmid pHLsec. Gzm purification from the culture supernatant was achieved by immobilized nickel affinity chromatography using the C-terminal polyhistidine tag provided by the vector. The insertion of an enterokinase site at the N-terminus of the protein allowed the generation of active protease that was finally purified by cation exchange chromatography. The system was tested by producing high levels of cytotoxic human Gzm A, B and M and should be capable to produce virtually every enzyme in the human body in high yields.

  3. Wheat germ cell-free expression system as a pathway to improve protein yield and solubility for the SSGCID pipeline.

    PubMed

    Guild, Katherine; Zhang, Yang; Stacy, Robin; Mundt, Elizabeth; Benbow, Sarah; Green, Amanda; Myler, Peter J

    2011-09-01

    Recombinant expression of proteins of interest in Escherichia coli is an important tool in the determination of protein structure. However, lack of expression and insolubility remain significant challenges to the expression and crystallization of these proteins. The SSGCID program uses a wheat germ cell-free expression system as a rescue pathway for proteins that are either not expressed or insoluble when produced in E. coli. Testing indicates that the system is a valuable tool for these protein targets. Further increases in solubility were obtained by the addition of the NVoy polymer reagent to the reaction mixture. These data indicate that this eukaryotic cell-free expression system has a high success rate and that the addition of specific reagents can increase the yield of soluble protein.

  4. Yield Optimisation of Hepatitis B Virus Core Particles in E. coli Expression System for Drug Delivery Applications.

    PubMed

    Bin Mohamed Suffian, Izzat Fahimuddin; Garcia-Maya, Mitla; Brown, Paul; Bui, Tam; Nishimura, Yuya; Palermo, Amir Rafiq Bin Mohammad Johari; Ogino, Chiaki; Kondo, Akihiko; Al-Jamal, Khuloud T

    2017-03-03

    An E. coli expression system offers a mean for rapid, high yield and economical production of Hepatitis B Virus core (HBc) particles. However, high-level production of HBc particles in bacteria is demanding and optimisation of HBc particle yield from E. coli is required to improve laboratory-scale productivity for further drug delivery applications. Production steps involve bacterial culture, protein isolation, denaturation, purification and finally protein assembly. In this study, we describe a modified E. coli based method for purifying HBc particles and compare the results with those obtained using a conventional purification method. HBc particle morphology was confirmed by Atomic Force Microscopy (AFM). Protein specificity and secondary structure were confirmed by Western Blot and Circular Dichroism (CD), respectively. The modified method produced ~3-fold higher yield and greater purity of wild type HBc particles than the conventional method. Our results demonstrated that the modified method produce a better yield and purity of HBc particles in an E. coli-expression system, which are fully characterised and suitable to be used for drug delivery applications.

  5. Yield Optimisation of Hepatitis B Virus Core Particles in E. coli Expression System for Drug Delivery Applications

    PubMed Central

    Bin Mohamed Suffian, Izzat Fahimuddin; Garcia-Maya, Mitla; Brown, Paul; Bui, Tam; Nishimura, Yuya; Palermo, Amir Rafiq Bin Mohammad Johari; Ogino, Chiaki; Kondo, Akihiko; Al-Jamal, Khuloud T.

    2017-01-01

    An E. coli expression system offers a mean for rapid, high yield and economical production of Hepatitis B Virus core (HBc) particles. However, high-level production of HBc particles in bacteria is demanding and optimisation of HBc particle yield from E. coli is required to improve laboratory-scale productivity for further drug delivery applications. Production steps involve bacterial culture, protein isolation, denaturation, purification and finally protein assembly. In this study, we describe a modified E. coli based method for purifying HBc particles and compare the results with those obtained using a conventional purification method. HBc particle morphology was confirmed by Atomic Force Microscopy (AFM). Protein specificity and secondary structure were confirmed by Western Blot and Circular Dichroism (CD), respectively. The modified method produced ~3-fold higher yield and greater purity of wild type HBc particles than the conventional method. Our results demonstrated that the modified method produce a better yield and purity of HBc particles in an E. coli-expression system, which are fully characterised and suitable to be used for drug delivery applications. PMID:28256592

  6. Laue crystal structure of Shewanella oneidensis cytochrome c nitrite reductase from a high-yield expression system

    SciTech Connect

    Youngblut, Matthew; Judd, Evan T.; Srajer, Vukica; Sayyed, Bilal; Goelzer, Tyler; Elliott, Sean J.; Schmidt, Marius; Pacheco, A. Andrew

    2012-09-11

    The high-yield expression and purification of Shewanella oneidensis cytochrome c nitrite reductase (ccNiR) and its characterization by a variety of methods, notably Laue crystallography, are reported. A key component of the expression system is an artificial ccNiR gene in which the N-terminal signal peptide from the highly expressed S. oneidensis protein 'small tetraheme c' replaces the wild-type signal peptide. This gene, inserted into the plasmid pHSG298 and expressed in S. oneidensis TSP-1 strain, generated approximately 20 mg crude ccNiR per liter of culture, compared with 0.5-1 mg/L for untransformed cells. Purified ccNiR has nitrite and hydroxylamine reductase activities comparable to those previously reported for Escherichia coli ccNiR, and is stable for over 2 weeks in pH 7 solution at 4 C. UV/vis spectropotentiometric titrations and protein film voltammetry identified five independent one-electron reduction processes. Global analysis of the spectropotentiometric data also allowed determination of the extinction coefficient spectra for the five reduced ccNiR species. The characteristics of the individual extinction coefficient spectra suggest that, within each reduced species, the electrons are distributed among the various hemes, rather than being localized on specific heme centers. The purified ccNiR yielded good-quality crystals, with which the 2.59-{angstrom}-resolution structure was solved at room temperature using the Laue diffraction method. The structure is similar to that of E. coli ccNiR, except in the region where the enzyme interacts with its physiological electron donor (CymA in the case of S. oneidensis ccNiR, NrfB in the case of the E. coli protein).

  7. Laue Crystal Structure of Shewanella oneidensis Cytochrome c Nitrite Reductase from a High-yield Expression System

    PubMed Central

    Youngblut, Matthew; Judd, Evan T.; Srajer, Vukica; Sayyed, Bilal; Goelzer, Tyler; Elliott, Sean J.; Schmidt, Marius; Pacheco, A. Andrew

    2012-01-01

    The high-yield expression and purification of Shewanella oneidensis cytochrome c nitrite reductase (ccNiR), and its characterization by a variety of methods, notably Laue crystallography, is reported. A key component of the expression system is an artificial ccNiR gene in which the N-terminal signal peptide from the highly expressed S. oneidensis protein “Small Tetra-heme c” replaces the wild-type signal peptide. This gene, inserted into the plasmid pHSG298 and expressed in S. oneidensis TSP-1 strain, generated ~20 mg crude ccNiR/L culture, compared with 0.5–1 mg/L for untransformed cells. Purified ccNiR has nitrite and hydroxylamine reductase activities comparable to those previously reported for E. coli ccNiR, and is stable for over two weeks in pH 7 solution at 4° C. UV/Vis spectropotentiometric titrations and protein film voltammetry identified 5 independent 1-electron reduction processes. Global analysis of the spectropotentiometric data also allowed determination of the extinction coefficient spectra for the 5 reduced ccNiR species. The characteristics of the individual extinction coefficient spectra suggest that, within each reduced species, the electrons are distributed amongst the various hemes, rather than being localized on specific heme centers. The purified ccNiR yielded good quality crystals, with which the 2.59 Å resolution structure was solved at room temperature using the Laue diffraction method. The structure is similar to that of E. coli ccNiR, except in the region where the enzyme interacts with its physiological electron donor (CymA in the case of S. oneidensis ccNiR, NrfB in the case of the E. coli protein). PMID:22382353

  8. Development of a high yielding E. coli periplasmic expression system for the production of humanized Fab' fragments.

    PubMed

    Ellis, Mark; Patel, Pareshkumar; Edon, Marjory; Ramage, Walter; Dickinson, Robert; Humphreys, David P

    2017-01-01

    Humanized Fab' fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase Fab' yield and reduce proteolysis we developed periplasmic protease deficient strains of E. coli. These strains lacked the protease activity of Tsp, protease III and DegP. High cell density fermentations indicated Tsp deficient strains increased productivity two fold but this increase was accompanied by premature cell lysis soon after the induction of Fab' expression. To overcome the reduction in cell viability we introduced suppressor mutations into the spr gene. The mutations partially restored the wild type phenotype of the cells. Furthermore, we coexpressed a range of periplasmic chaperone proteins with the Fab', DsbC had the most significant impact, increasing humanized Fab' production during high cell density fermentation. When DsbC coexpression was combined with a Tsp deficient spr strain we observed an increase in yield and essentially restored "wild type" cell viability. We achieved a final periplasmic yield of over 2.4g/L (final cell density OD600 105), 40 h post Fab' induction with minimal cell lysis.The data suggests that proteolysis, periplasm integrity, protein folding and disulphide bond formation are all potential limiting steps in the production of Fab' fragments in the periplasm of E. coli. In this body of work, we have addressed these limiting steps by utilizing stabilized protease deficient strains and chaperone coexpression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:212-220, 2017.

  9. Removal of bacterial suspension water occupying the intercellular space of detached leaves after agroinfiltration improves the yield of recombinant hemagglutinin in a Nicotiana benthamiana transient gene expression system.

    PubMed

    Fujiuchi, Naomichi; Matsuda, Ryo; Matoba, Nobuyuki; Fujiwara, Kazuhiro

    2016-04-01

    The use of detached leaves instead of whole plants provides an alternative means for recombinant protein production based on Agrobacterium tumefaciens-mediated transient gene overexpression. However, the process for high-level protein production in detached leaves has not yet been established. In this study, we focused on leaf handling and maintenance conditions immediately after infiltration with Agrobacterium suspension (agroinfiltration) to improve recombinant protein expression in detached Nicotiana benthamiana leaves. We demonstrated that the residual water of bacterial suspension in detached leaves had significant impact on the yield of recombinant influenza hemagglutinin (HA). Immediately after agroinfiltration, detached leaves were stored in a dehumidified chamber to allow bacterial suspension water occupying intercellular space to be removed by transpiration. We varied the duration of this water removal treatment from 0.7 to 4.4 h, which resulted in leaf fresh weights ranging from 0.94 to 1.28 g g(-1) relative to weights measured just before agroinfiltration. We used these relative fresh weights (RFWs) as an indicator of the amount of residual water. The detached leaves were then incubated in humidified chambers for 6 days. We found that the presence of residual water significantly decreased HA yield, with a clear inverse correlation observed between HA yield and RFW. We next compared HA yields in detached leaves with those obtained from intact leaves by whole-plant expression performed at the same time. The maximum HA yield obtained from a detached leaf with a RFW of approximately 1.0, namely, 800 μg gFW(-1), was comparable to the mean HA yield of 846 μg gFW(-1) generated in intact leaves. Our results indicate the necessity of removing bacterial suspension water from agroinfiltrated detached leaves in transient overexpression systems and point to a critical factor enabling the detached-leaf system as a viable recombinant protein factory.

  10. A Weakened Transcriptional Enhancer Yields Variegated Gene Expression

    PubMed Central

    Collins, Cathy; Azmi, Peter; Berru, Maribel; Zhu, Xiaofu; Shulman, Marc J.

    2006-01-01

    Identical genes in the same cellular environment are sometimes expressed differently. In some cases, including the immunoglobulin heavy chain (IgH) locus, this type of differential gene expression has been related to the absence of a transcriptional enhancer. To gain additional information on the role of the IgH enhancer, we examined expression driven by enhancers that were merely weakened, rather than fully deleted, using both mutations and insulators to impair enhancer activity. For this purpose we used a LoxP/Cre system to place a reporter gene at the same genomic site of a stable cell line. Whereas expression of the reporter gene was uniformly high in the presence of the normal, uninsulated enhancer and undetectable in its absence, weakened enhancers yielded variegated expression of the reporter gene; i.e., the average level of expression of the same gene differed in different clones, and expression varied significantly among cells within individual clones. These results indicate that the weakened enhancer allows the reporter gene to exist in at least two states. Subtle aspects of the variegation suggest that the IgH enhancer decreases the average duration (half-life) of the silent state. This analysis has also tested the conventional wisdom that enhancer activity is independent of distance and orientation. Thus, our analysis of mutant (truncated) forms of the IgH enhancer revealed that the 250 bp core enhancer was active in its normal position, ∼1.4 kb 3′ of the promoter, but inactive ∼6 kb 3′, indicating that the activity of the core enhancer was distance-dependent. A longer segment – the core enhancer plus ∼1 kb of 3′ flanking material, including the 3′ matrix attachment region – was active, and the activity of this longer segment was orientation-dependent. Our data suggest that this 3′ flank includes binding sites for at least two activators. PMID:17183661

  11. Direct laboratory tensile testing of select yielding rock bolt systems

    SciTech Connect

    VandeKraats, J.D.; Watson, S.O.

    1996-08-01

    Yielding rock bolt support systems have been developed to accommodate ground movement in shifting ground such as in coal operations; in creeping ground such as salt, trona, and potash; and in swelling ground associated with some clays. These systems, designed to remain intact despite ground movement, should enhance mine safety and help contain costs in areas where rebolting of rigid non-yielding systems is typically required. Four such systems were tested in straight tensile pulls in the laboratory. They include the Slip Nut System from Dywidag Systems International USA, Inc., Ischebeck`s bolt mounted Titan Load Indicator, Rocky Mountain Bolt Company`s Yielding Cable Bolt, and a rock bolt installed variation of the yielding steel post developed by RE/SPEC Inc. The first two systems are currently marketed products and the latter two are prototype systems. Each system responds to load and displacement by yielding in an unique manner. All are designed to yield at predetermined loads. A description of each system and its yield function is provided. Each system was tested over its prescribed yield range in a test machine. At least five tests were performed on each system. Each system yielded and continued to provide support according to its design. Each shows promise for ground control use in shifting or creeping rock. This work helps to illustrate the comparative differences in performance between these specialized systems and the applications where they may be most useful.

  12. Surprising yields with no-till cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers using no-till systems have found that crop yields often exceed their expectation based on nutrient and water supply. For example, corn yields 7% higher in a no-till system in central South Dakota than in a tilled system in eastern South Dakota. This is surprising because rainfall is 5 in...

  13. Sex Roles and Yielded/Expressed Self-Control.

    ERIC Educational Resources Information Center

    Ganong, Lawrence H.; Coleman, Marilyn

    1987-01-01

    Results of a study of the impact of sex and sex role orientation on reported self-control behaviors showed that sex did not affect self-control or satisfaction with self-control, but sex role orientation did. Androgynous persons reported using more expressed self-control than others. (PS)

  14. Hyper-inducible expression system for streptomycetes.

    PubMed

    Herai, Sachio; Hashimoto, Yoshiteru; Higashibata, Hiroki; Maseda, Hideaki; Ikeda, Haruo; Omura, Satoshi; Kobayashi, Michihiko

    2004-09-28

    Streptomycetes produce useful enzymes and a wide variety of secondary metabolites with potent biological activities (e.g., antibiotics, immunosuppressors, pesticides, etc.). Despite their importance in the pharmaceutical and agrochemical fields, there have been no reports for practical expression systems in streptomycetes. Here, we developed a "P(nitA)-NitR" system for regulatory gene expression in streptomycetes based on the expression mechanism of Rhodococcus rhodochrous J1 nitrilase, which is highly induced by an inexpensive and safe inducer, epsilon-caprolactam. Heterologous protein expression experiments demonstrated that the system allowed suppressed basal expression and hyper-inducible expression, yielding target protein levels of as high as approximately 40% of all soluble protein. Furthermore, the system functioned in important streptomycete strains. Thus, the P(nitA)-NitR system should be a powerful tool for improving the productivity of various useful products in streptomycetes.

  15. A High-Yield Co-Expression System for the Purification of an Intact Drs2p-Cdc50p Lipid Flippase Complex, Critically Dependent on and Stabilized by Phosphatidylinositol-4-Phosphate

    PubMed Central

    Azouaoui, Hassina; Montigny, Cédric; Ash, Miriam-Rose; Fijalkowski, Frank; Jacquot, Aurore; Grønberg, Christina; López-Marqués, Rosa L.; Palmgren, Michael G.; Garrigos, Manuel; le Maire, Marc; Decottignies, Paulette; Gourdon, Pontus; Nissen, Poul; Champeil, Philippe; Lenoir, Guillaume

    2014-01-01

    P-type ATPases from the P4 subfamily (P4-ATPases) are energy-dependent transporters, which are thought to establish lipid asymmetry in eukaryotic cell membranes. Together with their Cdc50 accessory subunits, P4-ATPases couple ATP hydrolysis to lipid transport from the exoplasmic to the cytoplasmic leaflet of plasma membranes, late Golgi membranes, and endosomes. To gain insights into the structure and function of these important membrane pumps, robust protocols for expression and purification are required. In this report, we present a procedure for high-yield co-expression of a yeast flippase, the Drs2p-Cdc50p complex. After recovery of yeast membranes expressing both proteins, efficient purification was achieved in a single step by affinity chromatography on streptavidin beads, yielding ∼1–2 mg purified Drs2p-Cdc50p complex per liter of culture. Importantly, the procedure enabled us to recover a fraction that mainly contained a 1∶1 complex, which was assessed by size-exclusion chromatography and mass spectrometry. The functional properties of the purified complex were examined, including the dependence of its catalytic cycle on specific lipids. The dephosphorylation rate was stimulated in the simultaneous presence of the transported substrate, phosphatidylserine (PS), and the regulatory lipid phosphatidylinositol-4-phosphate (PI4P), a phosphoinositide that plays critical roles in membrane trafficking events from the trans-Golgi network (TGN). Likewise, overall ATP hydrolysis by the complex was critically dependent on the simultaneous presence of PI4P and PS. We also identified a prominent role for PI4P in stabilization of the Drs2p-Cdc50p complex towards temperature- or C12E8-induced irreversible inactivation. These results indicate that the Drs2p-Cdc50p complex remains functional after affinity purification and that PI4P as a cofactor tightly controls its stability and catalytic activity. This work offers appealing perspectives for detailed structural and

  16. Yield and yield gaps in central U.S. corn production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The magnitude of yield gaps (YG) (potential yield – farmer yield) provides some indication of the prospects for increasing crop yield. Quantile regression analysis was applied to county maize (Zea mays L.) yields (1972 – 2011) from Kentucky, Iowa and Nebraska (irrigated) (total of 115 counties) to e...

  17. EarthSat spring wheat yield system test 1975

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The results of an operational test of the EarthSat System during the period 1 June - 30 August 1975 over the spring wheat regions of North Dakota, South Dakota, and Minnesota are presented. The errors associated with each sub-element of the system during the operational test and the sensitivity of the complete system and each major functional sub-element of the system to the observed errors were evaluated. Evaluations and recommendations for future operational users of the system include: (1) changes in various system sub-elements, (2) changes in the yield model to affect improved accuracy, (3) changes in the number of geobased cells needed to develop an accurate aggregated yield estimate, (4) changes associated with the implementation of future operational satellites and data processing systems, and (5) detailed system documentation.

  18. Applicability and methodology of determining sustainable yield in groundwater systems

    NASA Astrophysics Data System (ADS)

    Kalf, Frans R. P.; Woolley, Donald R.

    2005-03-01

    There is currently a need for a review of the definition and methodology of determining sustainable yield. The reasons are: (1) current definitions and concepts are ambiguous and non-physically based so cannot be used for quantitative application, (2) there is a need to eliminate varying interpretations and misinterpretations and provide a sound basis for application, (3) the notion that all groundwater systems either are or can be made to be sustainable is invalid, (4) often there are an excessive number of factors bound up in the definition that are not easily quantifiable, (5) there is often confusion between production facility optimal yield and basin sustainable yield, (6) in many semi-arid and arid environments groundwater systems cannot be sensibly developed using a sustained yield policy particularly where ecological constraints are applied. Derivation of sustainable yield using conservation of mass principles leads to expressions for basin sustainable, partial (non-sustainable) mining and total (non-sustainable) mining yields that can be readily determined using numerical modelling methods and selected on the basis of applied constraints. For some cases there has to be recognition that the groundwater resource is not renewable and its use cannot therefore be sustainable. In these cases, its destiny should be the best equitable use.

  19. High Yield Expression of Recombinant Human Proteins with the Transient Transfection of HEK293 Cells in Suspension

    PubMed Central

    Subedi, Ganesh P.; Johnson, Roy W.; Moniz, Heather A.; Moremen, Kelley W.; Barb, Adam

    2015-01-01

    The art of producing recombinant proteins with complex post-translational modifications represents a major challenge for studies of structure and function. The rapid establishment and high recovery from transiently-transfected mammalian cell lines addresses this barrier and is an effective means of expressing proteins that are naturally channeled through the ER and Golgi-mediated secretory pathway. Here is one protocol for protein expression using the human HEK293F and HEK293S cell lines transfected with a mammalian expression vector designed for high protein yields. The applicability of this system is demonstrated using three representative glycoproteins that expressed with yields between 95-120 mg of purified protein recovered per liter of culture. These proteins are the human FcγRIIIa and the rat α2-6 sialyltransferase, ST6GalI, both expressed with an N-terminal GFP fusion, as well as the unmodified human immunoglobulin G1 Fc. This robust system utilizes a serum-free medium that is adaptable for expression of isotopically enriched proteins and carbohydrates for structural studies using mass spectrometry and nuclear magnetic resonance spectroscopy. Furthermore, the composition of the N-glycan can be tuned by adding a small molecule to prevent certain glycan modifications in a manner that does not reduce yield. PMID:26779721

  20. High-yield positron systems for linear colliders

    SciTech Connect

    Clendenin, J.E.

    1989-04-01

    Linear colliders, such as the SLC, are among those accelerators for which a high-yield positron source operating at the repetition rate of the accelerator is desired. The SLC, having electron energies up to 50 GeV, presents the possibility of generating positron bunches with useful charge even exceeding that of the initial electron bunch. The exact positron yield to be obtained depends on the particular capture, transport and damping system employed. Using 31 GeV electrons impinging on a W-type converter phase-space at the target to the acceptance of the capture rf section, the SLC source is capable of producing, for every electron, up to two positrons within the acceptance of the positron damping ring. The design of this source and the performance of the positron system as built are described. Also, future prospects and limitations for high-yield positron systems are discussed. 11 refs., 5 figs., 3 tabs.

  1. Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis.

    PubMed

    Guo, Mei; Rupe, Mary A; Yang, Xiaofeng; Crasta, Oswald; Zinselmeier, Christopher; Smith, Oscar S; Bowen, Ben

    2006-09-01

    Heterosis, or hybrid vigor, has been widely exploited in plant breeding for many decades, but the molecular mechanisms underlying the phenomenon remain unknown. In this study, we applied genome-wide transcript profiling to gain a global picture of the ways in which a large proportion of genes are expressed in the immature ear tissues of a series of 16 maize hybrids that vary in their degree of heterosis. Key observations include: (1) the proportion of allelic additively expressed genes is positively associated with hybrid yield and heterosis; (2) the proportion of genes that exhibit a bias towards the expression level of the paternal parent is negatively correlated with hybrid yield and heterosis; and (3) there is no correlation between the over- or under-expression of specific genes in maize hybrids with either yield or heterosis. The relationship of the expression patterns with hybrid performance is substantiated by analysis of a genetically improved modern hybrid (Pioneer hybrid 3394) versus a less improved older hybrid (Pioneer hybrid 3306) grown at different levels of plant density stress. The proportion of allelic additively expressed genes is positively associated with the modern high yielding hybrid, heterosis and high yielding environments, whereas the converse is true for the paternally biased gene expression. The dynamic changes of gene expression in hybrids responding to genotype and environment may result from differential regulation of the two parental alleles. Our findings suggest that differential allele regulation may play an important role in hybrid yield or heterosis, and provide a new insight to the molecular understanding of the underlying mechanisms of heterosis.

  2. Analysis on differential expressed genes of ovarian tissue between high- and low-yield laying hen.

    PubMed

    Chen, Wei; Song, Ling-Jun; Zeng, Yong-Qing; Yang, Yun; Wang, Hui

    2013-01-01

    In order to elucidate molecular genetic mechanism of laying hen reproduction at the transcriptional level and the structure of significantly differential genes, the mRNA differential display and reverse northern dot-blot were used to detect the differential expression of genes in the ovary tissue of low-yield laying hens and high-yield laying hens in the present study. Sixteen 32-week-old CAU-pink laying hens divided into two groups were used and the laying performance was measured. The results showed that only the egg numbers were significantly different between the two groups; and from 15 primer pairs, a total of 336 bands were displayed of which 59 cDNA bands were found to be differentially expressed in both high-yield and low-yield laying hen. The sequence analysis indicated that the expression of such bands as H-AP5, H-P5, and H-P4 was significantly potentiated in high-yield laying hen using primer pairs AP5/HT11G, P5/HT11G and P4/HT11G and these transcripts had high homology (98%) to HoxDb, HoxCa, and HoxBa, respectively. The differentially expressed gene fragments may be relevant to the progression of the high-yield hens to the egg-laying stage. And further study is required to elucidate the molecular function to improve the productivity of laying hens.

  3. Yield Response and Economics of Shallow Subsurface Drip Irrigation Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field tests were conducted using shallow subsurface drip irrigation (S3DI) on cotton (Gossypium hirsutum, L.), corn (Zea mays, L.), and peanut (Arachis hypogeae, L.) in rotation to investigate yield potential and economic sustainability of this irrigation system technique over a six year period. Dri...

  4. Environment Control to Improve Recombinant Protein Yields in Plants Based on Agrobacterium-Mediated Transient Gene Expression.

    PubMed

    Fujiuchi, Naomichi; Matoba, Nobuyuki; Matsuda, Ryo

    2016-01-01

    Agrobacterium-mediated transient expression systems enable plants to produce a wide range of recombinant proteins on a rapid timescale. To achieve economically feasible upstream production and downstream processing, two yield parameters should be considered: (1) recombinant protein content per unit biomass and (2) recombinant protein productivity per unit area-time at the end of the upstream production. Because environmental factors in the upstream production have impacts on these parameters, environment control is important to maximize the recombinant protein yield. In this review, we summarize the effects of pre- and postinoculation environmental factors in the upstream production on the yield parameters and discuss the basic concept of environment control for plant-based transient expression systems. Preinoculation environmental factors associated with planting density, light quality, and nutrient supply affect plant characteristics, such as biomass and morphology, which in turn affect recombinant protein content and productivity. Accordingly, environment control for such plant characteristics has significant implications to achieve a high yield. On the other hand, postinoculation environmental factors, such as temperature, light intensity, and humidity, have been shown to affect recombinant protein content. Considering that recombinant protein production in Agrobacterium-mediated transient expression systems is a result of a series of complex biological events starting from T-DNA transfer from Agrobacterium tumefaciens to protein biosynthesis and accumulation in leaf tissue, we propose that dynamic environment control during the postinoculation process, i.e., changing environmental conditions at an appropriate timing for each event, may be a promising approach to obtain a high yield. Detailed descriptions of plant growth conditions and careful examination of environmental effects will significantly contribute to our knowledge to stably obtain high recombinant

  5. Environment Control to Improve Recombinant Protein Yields in Plants Based on Agrobacterium-Mediated Transient Gene Expression

    PubMed Central

    Fujiuchi, Naomichi; Matoba, Nobuyuki; Matsuda, Ryo

    2016-01-01

    Agrobacterium-mediated transient expression systems enable plants to produce a wide range of recombinant proteins on a rapid timescale. To achieve economically feasible upstream production and downstream processing, two yield parameters should be considered: (1) recombinant protein content per unit biomass and (2) recombinant protein productivity per unit area–time at the end of the upstream production. Because environmental factors in the upstream production have impacts on these parameters, environment control is important to maximize the recombinant protein yield. In this review, we summarize the effects of pre- and postinoculation environmental factors in the upstream production on the yield parameters and discuss the basic concept of environment control for plant-based transient expression systems. Preinoculation environmental factors associated with planting density, light quality, and nutrient supply affect plant characteristics, such as biomass and morphology, which in turn affect recombinant protein content and productivity. Accordingly, environment control for such plant characteristics has significant implications to achieve a high yield. On the other hand, postinoculation environmental factors, such as temperature, light intensity, and humidity, have been shown to affect recombinant protein content. Considering that recombinant protein production in Agrobacterium-mediated transient expression systems is a result of a series of complex biological events starting from T-DNA transfer from Agrobacterium tumefaciens to protein biosynthesis and accumulation in leaf tissue, we propose that dynamic environment control during the postinoculation process, i.e., changing environmental conditions at an appropriate timing for each event, may be a promising approach to obtain a high yield. Detailed descriptions of plant growth conditions and careful examination of environmental effects will significantly contribute to our knowledge to stably obtain high recombinant

  6. Interpretation of quantum yields exceeding unity in photoelectrochemical systems

    SciTech Connect

    Szklarczyk, M.; Allen, R.E.

    1986-10-20

    In photoelectrochemical systems involving light shining on a semiconductor interfaced with an electrolyte, the quantum yield as a function of photon frequency ..nu.. is observed to exhibit a peak at h..nu..roughly-equal2E/sub g/, where E/sub g/ is the band gap of the semiconductor. The maximum in this peak is sometimes found to exceed unity. We provide an interpretation involving surface states and inelastic electron-electron scattering. The theory indicates that the effect should be observable for p-type semiconductors, but not n-type.

  7. Hydrodynamic Tail Vein Injection as a Simple Tool for Yielding Extended Transgene Expression in Solid Tumors.

    PubMed

    Takayama, Takuma; Ukawa, Masami; Kanazawa, Yuki; Ando, Hidenori; Shimizu, Taro; Ishida, Tatsuhiro

    2016-01-01

    Hydrodynamic tail vein injection was considered an in vivo transfection method that yields a higher level of gene expression mainly in the liver. This method has been applied to cancer gene therapy targeting both hepatic and non-hepatic cancers. However, intratumor transgene expression in non-hepatic tumors has not been well studied. In this study, we showed an extended transgene expression of β-galactosidase (LacZ), a nonsecretory protein, in a subcutaneously implanted murine solid tumor following the hydrodynamic injection of plasmid DNA (LacZ pDNA). Our result may indicate that the hydrodynamic injection method is a powerful tool that can be used to gain transgene expression not only in the liver but also in solid tumors.

  8. A Single Point Mutation within the Coding Sequence of Cholera Toxin B Subunit Will Increase Its Expression Yield

    PubMed Central

    Bakhshi, Bita; Boustanshenas, Mina; Ghorbani, Masoud

    2014-01-01

    Background: Cholera toxin B subunit (CTB) has been extensively considered as an immunogenic and adjuvant protein, but its yield of expression is not satisfactory in many studies. The aim of this study was to compare the expression of native and mutant recombinant CTB (rCTB) in pQE vector. Methods: ctxB fragment from Vibrio cholerae O1 ATCC14035 containing the substitution of mutant ctxB for amino acid S128T was amplified by PCR and cloned in pGETM-T easy vector. It was then transformed to E. coli Top 10F' and cultured on LB agar plate containing ampicillin. Sequence analysis confirmed the mature ctxB gene sequence and the mutant one in both constructs which were further subcloned to pQE-30 vector. Both constructs were subsequently transformed to E. coli M15 (pREP4) for expression of mature and mutant rCTB. Results: SDS-PAGE analysis showed the maximum expression of rCTB in both systems at 5 hours after induction and Western-blot analysis confirmed the presence of rCTB in blotting membranes. The expression of mutant rCTB was much higher than mature rCTB, which may be the result of serine-to-threonine substitution at position 128 of mature rCTB amino acid sequence created by PCR mutagenesis. The mutant rCTB retained pentameric stability and its ability to bind to anti- cholera toxin IgG antibodies. Conclusion: Point mutation in ctxB sequence resulted in over-expression of rCTB, probably due to the increase of solubility of produced rCTB. Consequently, this expression system can be used to produce rCTB in high yield. PMID:24842138

  9. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize.

    PubMed

    Li, Bei; Liu, Hua; Zhang, Yue; Kang, Tao; Zhang, Li; Tong, Jianhua; Xiao, Langtao; Zhang, Hongxia

    2013-12-01

    Grain size, number and starch content are important determinants of grain yield and quality. One of the most important biological processes that determine these components is the carbon partitioning during the early grain filling, which requires the function of cell wall invertase. Here, we showed the constitutive expression of cell wall invertase-encoding gene from Arabidopsis, rice (Oryza sativa) or maize (Zea mays), driven by the cauliflower mosaic virus (CaMV) 35S promoter, all increased cell wall invertase activities in different tissues and organs, including leaves and developing seeds, and substantially improved grain yield up to 145.3% in transgenic maize plants as compared to the wild-type plants, an effect that was reproduced in our 2-year field trials at different locations. The dramatically increased grain yield is due to the enlarged ears with both enhanced grain size and grain number. Constitutive expression of the invertase-encoding gene also increased total starch content up to 20% in the transgenic kernels. Our results suggest that cell wall invertase gene can be genetically engineered to improve both grain yield and grain quality in crop plants.

  10. Generalized storage-reliability-yield relationships for rainwater harvesting systems

    NASA Astrophysics Data System (ADS)

    Hanson, L. S.; Vogel, R. M.

    2014-07-01

    Sizing storage for rainwater harvesting (RWH) systems is often a difficult design consideration, as the system must be designed specifically for the local rainfall pattern. We introduce a generally applicable method for estimating the required storage by using regional regression equations to account for climatic differences in the behavior of RWH systems across the entire continental United States. A series of simulations for 231 locations with continuous daily precipitation records enable the development of storage-reliability-yield (SRY) relations at four useful reliabilities, 0.8, 0.9, 0.95, and 0.98. Multivariate, log-linear regression results in storage equations that include demand, collection area and local precipitation statistics. The continental regression equations demonstrated excellent goodness-of-fit (R2 0.96-0.99) using only two precipitation parameters, and fits improved when three geographic regions with more homogeneous rainfall characteristics were considered. The SRY models can be used to obtain a preliminary estimate of how large to build a storage tank almost anywhere in the United States based on desired yield and reliability, collection area, and local rainfall statistics. Our methodology could be extended to other regions of world, and the equations presented herein could be used to investigate how RWH systems would respond to changes in climatic variability. The resulting model may also prove useful in regional planning studies to evaluate the net benefits which result from the broad use of RWH to meet water supply requirements. We outline numerous other possible extensions to our work, which when taken together, illustrate the value of our initial generalized SRY model for RWH systems.

  11. Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli

    PubMed Central

    Ihssen, Julian; Reiss, Renate; Luchsinger, Ronny; Thöny-Meyer, Linda; Richter, Michael

    2015-01-01

    Laccases are multi-copper oxidases that oxidize a broad range of substrates at the expense of molecular oxygen, without any need for co-factor regeneration. These enzymes bear high potential for the sustainable synthesis of fine chemicals and the modification of (bio)polymers. Here we describe cloning and expression of five novel bacterial laccase-like multi copper oxidases (LMCOs) of diverse origin which were identified by homology searches in online databases. Activity yields under different expression conditions and temperature stabilities were compared to three previously described enzymes from Bacillus subtilis, Bacillus pumilus and Bacillus clausii. In almost all cases, a switch to oxygen-limited growth conditions after induction increased volumetric activity considerably. For proteins with predicted signal peptides for secretion, recombinant expression with and without signal sequence was investigated. Bacillus CotA-type LMCOs outperformed enzymes from Streptomyces and Gram-negative bacteria with respect to activity yields in Escherichia coli and application relevant biochemical properties. The novel Bacillus coagulans LMCO combined high activity yields in E. coli with unprecedented activity at strong alkaline pH and high storage stability, making it a promising candidate for further development. PMID:26068013

  12. Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli.

    PubMed

    Ihssen, Julian; Reiss, Renate; Luchsinger, Ronny; Thöny-Meyer, Linda; Richter, Michael

    2015-06-12

    Laccases are multi-copper oxidases that oxidize a broad range of substrates at the expense of molecular oxygen, without any need for co-factor regeneration. These enzymes bear high potential for the sustainable synthesis of fine chemicals and the modification of (bio)polymers. Here we describe cloning and expression of five novel bacterial laccase-like multi copper oxidases (LMCOs) of diverse origin which were identified by homology searches in online databases. Activity yields under different expression conditions and temperature stabilities were compared to three previously described enzymes from Bacillus subtilis, Bacillus pumilus and Bacillus clausii. In almost all cases, a switch to oxygen-limited growth conditions after induction increased volumetric activity considerably. For proteins with predicted signal peptides for secretion, recombinant expression with and without signal sequence was investigated. Bacillus CotA-type LMCOs outperformed enzymes from Streptomyces and Gram-negative bacteria with respect to activity yields in Escherichia coli and application relevant biochemical properties. The novel Bacillus coagulans LMCO combined high activity yields in E. coli with unprecedented activity at strong alkaline pH and high storage stability, making it a promising candidate for further development.

  13. TaER Expression Is Associated with Transpiration Efficiency Traits and Yield in Bread Wheat.

    PubMed

    Zheng, Jiacheng; Yang, Zhiyuan; Madgwick, Pippa J; Carmo-Silva, Elizabete; Parry, Martin A J; Hu, Yin-Gang

    2015-01-01

    ERECTA encodes a receptor-like kinase and is proposed as a candidate for determining transpiration efficiency of plants. Two genes homologous to ERECTA in Arabidopsis were identified on chromosomes 6 (TaER2) and 7 (TaER1) of bread wheat (Triticum aestivum L.), with copies of each gene on the A, B and D genomes of wheat. Similar expression patterns were observed for TaER1 and TaER2 with relatively higher expression of TaER1 in flag leaves of wheat at heading (Z55) and grain-filling (Z73) stages. Significant variations were found in the expression levels of both TaER1 and TaER2 in the flag leaves at both growth stages among 48 diverse bread wheat varieties. Based on the expression of TaER1 and TaER2, the 48 wheat varieties could be classified into three groups having high (5 varieties), medium (27 varieties) and low (16 varieties) levels of TaER expression. Significant differences were also observed between the three groups varying for TaER expression for several transpiration efficiency (TE)- related traits, including stomatal density (SD), transpiration rate, photosynthetic rate (A), instant water use efficiency (WUEi) and carbon isotope discrimination (CID), and yield traits of biomass production plant-1 (BYPP) and grain yield plant-1 (GYPP). Correlation analysis revealed that the expression of TaER1 and TaER2 at the two growth stages was significantly and negatively associated with SD (P<0.01), transpiration rate (P<0.05) and CID (P<0.01), while significantly and positively correlated with flag leaf area (FLA, P<0.01), A (P<0.05), WUEi (P<0.05), BYPP (P<0.01) and GYPP (P<0.01), with stronger correlations for TaER1 than TaER2 and at grain-filling stage than at heading stage. These combined results suggested that TaER involved in development of transpiration efficiency -related traits and yield in bread wheat, implying a function for TaER in regulating leaf development of bread wheat and contributing to expression of these traits. Moreover, the results indicate

  14. Expression of cyanobacterial FBP/SBPase in soybean prevents yield depression under future climate conditions.

    PubMed

    Köhler, Iris H; Ruiz-Vera, Ursula M; VanLoocke, Andy; Thomey, Michell L; Clemente, Tom; Long, Stephen P; Ort, Donald R; Bernacchi, Carl J

    2016-12-12

    Predictions suggest that current crop production needs to double by 2050 to meet global food and energy demands. Based on theory and experimental studies, overexpression of the photosynthetic enzyme sedoheptulose-1,7-bisphosphatase (SBPase) is expected to enhance C3 crop photosynthesis and yields. Here we test how expression of the cyanobacterial, bifunctional fructose-1,6/sedoheptulose-1,7-bisphosphatase (FBP/SBPase) affects carbon assimilation and seed yield (SY) in a major crop (soybean, Glycine max). For three growing seasons, wild-type (WT) and FBP/SBPase-expressing (FS) plants were grown in the field under ambient (400 μmol mol(-1)) and elevated (600 μmol mol(-1)) CO2 concentrations [CO2] and under ambient and elevated temperatures (+2.7 °C during daytime, +3.4 °C at night) at the SoyFACE research site. Across treatments, FS plants had significantly higher carbon assimilation (4-14%), V c,max (5-8%), and J max (4-8%). Under ambient [CO2], elevated temperature led to significant reductions of SY of both genotypes by 19-31%. However, under elevated [CO2] and elevated temperature, FS plants maintained SY levels, while the WT showed significant reductions between 11% and 22% compared with plants under elevated [CO2] alone. These results show that the manipulation of the photosynthetic carbon reduction cycle can mitigate the effects of future high CO2 and high temperature environments on soybean yield.

  15. High-yield expression in Escherichia coli of soluble human MT2A with native functions.

    PubMed

    Yang, Fang; Zhou, Min; He, Zhimin; Liu, Xiaorong; Sun, Lin; Sun, Yu; Chen, Zhuchu

    2007-05-01

    Metallothioneins (MTs) are a family of low molecular weight, cysteine rich heavy metal binding proteins with multifunction, such as metal detoxification and antioxidation, and are involved in a number of cellular processes including gene expression, apoptosis, proliferation and differentiation. However, high yield expression of human MT in Escherichia coli has not been established effectively. To produce large amounts of human MT protein at low cost, recombinant human metallothionein 2A (MT2A) protein with an N-terminal GST tag was successfully expressed at high levels in soluble form in E. coli and high purification of it was established by affinity chromatography under native conditions. The final yield was about 5mg of the recombinant MT2A per liter of bacterial culture with the purity of 97.9%. Chemical and functional characteristics analysis of the recombinant human MT2A exhibited intact metal binding ability, hydroxyl radical scavenging ability and significant protective role against DNA damage caused by UVC radiation. Establishment of highly purified recombinant human MT2A protein with native characteristics at low cost would improve its function study and wide applications in protecting against oxidative damage and UV radiation.

  16. Surprising yields with no-till cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers using no-till practices have observed that crop yields can greatly exceed expectations based on nutrient and water supply. For example, Ralph Holzwarth, who farms near Gettysburg, SD, has averaged 150 bu/ac of corn on his farm for the past 6 years. We were surprised with this yield, as c...

  17. Improving starch yield in cereals by over-expression of ADPglucose pyrophosphorylase: expectations and unanticipated outcomes.

    PubMed

    Tuncel, Aytug; Okita, Thomas W

    2013-10-01

    Significant improvements in crop productivity are required to meet the nutritional requirements of a growing world population. This challenge is magnified by an increased demand for bioenergy as a means to mitigate carbon inputs into the environment. Starch is a major component of the harvestable organs of many crop plants, and various endeavors have been taken to improve the yields of starchy organs through the manipulation of starch synthesis. Substantial efforts have centered on the starch regulatory enzyme ADPglucose pyrophosphorylase (AGPase) due to its pivotal role in starch biosynthesis. These efforts include over-expression of this enzyme in cereal plants such as maize, rice and wheat as well as potato and cassava, as they supply the bulk of the staple food worldwide. In this perspective, we describe efforts to increase starch yields in cereal grains by first providing an introduction about the importance of source-sink relationship and the motives behind the efforts to alter starch biosynthesis and turnover in leaves. We then discuss the catalytic and regulatory properties of AGPase and the molecular approaches used to enhance starch synthesis by manipulation of this process during grain filling using seed-specific promoters. Several studies have demonstrated increases in starch content per seed using endosperm-specific promoters, but other studies have demonstrated an increase in seed number with only marginal impact on seed weight. Potential mechanisms that may be responsible for this paradoxical increase in seed number will also be discussed. Finally, we describe current efforts and future prospects to improve starch yield in cereals. These efforts include further enhancement of starch yield in rice by augmenting the process of ADPglucose transport into amyloplast as well as other enzymes involved in photoassimilate partitioning in seeds.

  18. Inducible gene expression systems and plant biotechnology.

    PubMed

    Corrado, Giandomenico; Karali, Marianthi

    2009-01-01

    Plant biotechnology relies heavily on the genetic manipulation of crops. Almost invariantly, the gene of interest is expressed in a constitutive fashion, although this may not be strictly necessary for several applications. Currently, there are several regulatable expression systems for the temporal, spatial and quantitative control of transgene activity. These molecular switches are based on components derived from different organisms, which range from viruses to higher eukaryotes. Many inducible systems have been designed for fundamental and applied research and since their initial development, they have become increasingly popular in plant molecular biology. This review covers a broad number of inducible expression systems examining their properties and relevance for plant biotechnology in its various guises, from molecular breeding to pharmaceutical and industrial applications. For each system, we examine some advantages and limitations, also in relation to the strategy on which they rely. Besides being necessary to control useful genes that may negatively affect crop yield and quality, we discuss that inducible systems can be also used to increase public acceptance of GMOs, reducing some of the most common concerns. Finally, we suggest some directions and future developments for their further diffusion in agriculture and biotechnology.

  19. Pluto Express power system architecture

    SciTech Connect

    Carr, G.A.

    1996-12-31

    The Pluto Express power system must answer the challenge of the next generation spacecraft by reducing its power, mass and volume envelopes. Technology developed by the New Millennium Program will enable the power system to meet the stringent requirements for the Pluto Express mission without exceeding the spacecraft mass and volume budgets. Traditionally, there has been an increasing trend of the percentage of mass of the power system electronics with respect to the total spacecraft mass. With all of the previous technology focus on high density digital packaging, the power system electronics have not been keeping pace forcing the spacecraft to absorb a relative increase in the power system mass. The increasing trend can be reversed by using mixed signal ASICs and high density multi-chip-module (MCM) packaging techniques validated by the New Millennium Program. As the size of the spacecraft shrinks, the power system electronics must become tightly integrated with the spacecraft loads. The power system architecture needs the flexibility to accommodate the specific load requirements without sacrificing the capability for growth or reduction as the spacecraft requirements change throughout the development. Modularity is a key requirement that will reduce the overall power system cost. Although the focus has been on shrinking the power system volume and mass, the efficiency and functionality cannot be ignored. Increased efficiency and functionality will only enhance the power systems capability to reduce spacecraft power requirements. The combination of the New Millennium packaging technologies with the Pluto Express power system architecture will produce a product with the capability to meet a wide range of mission profiles while reducing system development costs.

  20. Site-specific integration and constitutive expression of key genes into Escherichia coli chromosome increases shikimic acid yields.

    PubMed

    Liu, Xianglei; Lin, Jun; Hu, Haifeng; Zhou, Bin; Zhu, Baoquan

    2016-01-01

    As the key starting material for the chemical synthesis of Oseltamivir, shikimic acid (SA) has captured worldwide attention. Many researchers have tried to improve SA production by metabolic engineering, yet expression plasmids were used generally. In recent years, site-specific integration of key genes into chromosome to increase the yield of metabolites showed considerable advantages. The genes could maintain stably and express constitutively without induction. Herein, crucial genes aroG, aroB, tktA, aroE (encoding 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase, dehydroquinate synthase, transketolase and shikimate dehydrogenase, respectively) of SA pathway and glk, galP (encoding glucokinase and galactose permease) were integrated into the locus of ptsHIcrr (phosphoenolpyruvate: carbohydrate phosphotransferase system operon) in a shikimate kinase genetic defect strain Escherichia coli BW25113 (ΔaroL/aroK, DE3). Furthermore, another key gene ppsA (encoding phosphoenolpyruvate synthase) was integrated into tyrR (encoding Tyr regulator protein). As a result, SA production of the recombinant (SA5/pGBAE) reached to 4.14 g/L in shake flask and 27.41 g/L in a 5-L bioreactor. These data suggested that integration of key genes increased SA yields effectively. This strategy is environmentally friendly for no antibiotic is added, simple to handle without induction, and suitable for industrial production.

  1. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  2. Positively regulated bacterial expression systems

    PubMed Central

    Brautaset, Trygve; Lale, Rahmi; Valla, Svein

    2009-01-01

    Summary Regulated promoters are useful tools for many aspects related to recombinant gene expression in bacteria, including for high‐level expression of heterologous proteins and for expression at physiological levels in metabolic engineering applications. In general, it is common to express the genes of interest from an inducible promoter controlled either by a positive regulator or by a repressor protein. In this review, we discuss established and potentially useful positively regulated bacterial promoter systems, with a particular emphasis on those that are controlled by the AraC‐XylS family of transcriptional activators. The systems function in a wide range of microorganisms, including enterobacteria, soil bacteria, lactic bacteria and streptomycetes. The available systems that have been applied to express heterologous genes are regulated either by sugars (l‐arabinose, l‐rhamnose, xylose and sucrose), substituted benzenes, cyclohexanone‐related compounds, ε‐caprolactam, propionate, thiostrepton, alkanes or peptides. It is of applied interest that some of the inducers require the presence of transport systems, some are more prone than others to become metabolized by the host and some have been applied mainly in one or a limited number of species. Based on bioinformatics analyses, the AraC‐XylS family of regulators contains a large number of different members (currently over 300), but only a small fraction of these, the XylS/Pm, AraC/PBAD, RhaR‐RhaS/rhaBAD, NitR/PnitA and ChnR/Pb regulator/promoter systems, have so far been explored for biotechnological applications. PMID:21261879

  3. Gastrointestinal Spatiotemporal mRNA Expression of Ghrelin vs Growth Hormone Receptor and New Growth Yield Machine Learning Model Based on Perturbation Theory.

    PubMed

    Ran, Tao; Liu, Yong; Li, Hengzhi; Tang, Shaoxun; He, Zhixiong; Munteanu, Cristian R; González-Díaz, Humberto; Tan, Zhiliang; Zhou, Chuanshe

    2016-07-27

    The management of ruminant growth yield has economic importance. The current work presents a study of the spatiotemporal dynamic expression of Ghrelin and GHR at mRNA levels throughout the gastrointestinal tract (GIT) of kid goats under housing and grazing systems. The experiments show that the feeding system and age affected the expression of either Ghrelin or GHR with different mechanisms. Furthermore, the experimental data are used to build new Machine Learning models based on the Perturbation Theory, which can predict the effects of perturbations of Ghrelin and GHR mRNA expression on the growth yield. The models consider eight longitudinal GIT segments (rumen, abomasum, duodenum, jejunum, ileum, cecum, colon and rectum), seven time points (0, 7, 14, 28, 42, 56 and 70 d) and two feeding systems (Supplemental and Grazing feeding) as perturbations from the expected values of the growth yield. The best regression model was obtained using Random Forest, with the coefficient of determination R(2) of 0.781 for the test subset. The current results indicate that the non-linear regression model can accurately predict the growth yield and the key nodes during gastrointestinal development, which is helpful to optimize the feeding management strategies in ruminant production system.

  4. Neuroglobin Expression in the Mammalian Auditory System.

    PubMed

    Reuss, Stefan; Banica, Ovidiu; Elgurt, Mirra; Mitz, Stephanie; Disque-Kaiser, Ursula; Riemann, Randolf; Hill, Marco; Jaquish, Dawn V; Koehrn, Fred J; Burmester, Thorsten; Hankeln, Thomas; Woolf, Nigel K

    2016-04-01

    The energy-yielding pathways that provide the large amounts of metabolic energy required by inner ear sensorineural cells are poorly understood. Neuroglobin (Ngb) is a neuron-specific hemoprotein of the globin family, which is suggested to be involved in oxidative energy metabolism. Here, we present quantitative real-time reverse transcription PCR, in situ hybridization, immunohistochemical, and Western blot evidence that neuroglobin is highly expressed in the mouse and rat cochlea. For primary cochlea neurons, Ngb expression is limited to the subpopulation of type I spiral ganglion cells, those which innervate inner hair cells, while the subpopulation of type II spiral ganglion cells which innervate the outer hair cells do not express Ngb. We further investigated Ngb distribution in rat, mouse, and human auditory brainstem centers, and found that the cochlear nuclei and superior olivary complex (SOC) also express considerable amounts of Ngb. Notably, the majority of olivocochlear neurons, those which provide efferent innervation of outer hair cells as identified by neuronal tract tracing, were Ngb-immunoreactive. We also observed that neuroglobin in the SOC frequently co-localized with neuronal nitric oxide synthase, the enzyme responsible for nitric oxide production. Our findings suggest that neuroglobin is well positioned to play an important physiologic role in the oxygen homeostasis of the peripheral and central auditory nervous system, and provides the first evidence that Ngb signal differentiates the central projections of the inner and outer hair cells.

  5. Cloning, expression, purification and characterization of his-tagged human glucose-6-phosphate dehydrogenase: a simplified method for protein yield.

    PubMed

    Gómez-Manzo, Saúl; Terrón-Hernández, Jessica; de la Mora-de la Mora, Ignacio; García-Torres, Itzhel; López-Velázquez, Gabriel; Reyes-Vivas, Horacio; Oria-Hernández, Jesús

    2013-10-01

    Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first step of the pentose phosphate pathway. In erythrocytes, the functionality of the pathway is crucial to protect these cells against oxidative damage. G6PD deficiency is the most frequent enzymopathy in humans with a global prevalence of 4.9 %. The clinical picture is characterized by chronic or acute hemolysis in response to oxidative stress, which is related to the low cellular activity of G6PD in red blood cells. The disease is heterogeneous at genetic level with around 160 mutations described, mostly point mutations causing single amino acid substitutions. The biochemical studies aimed to describe the detrimental effects of mutations on the functional and structural properties of human G6PD are indispensable to understand the molecular physiopathology of this disease. Therefore, reliable systems for efficient expression and purification of the protein are highly desirable. In this work, human G6PD was heterologously expressed in Escherichia coli and purified by immobilized metal affinity chromatography in a single chromatographic step. The structural and functional characterization indicates that His-tagged G6PD resembles previous preparations of recombinant G6PD. In contrast with previous protein yield systems, our method is based on commonly available resources and fully accessible laboratory equipment; therefore, it can be readily implemented.

  6. Upper Limits for Power Yield in Thermal, Chemical, and Electrochemical Systems

    NASA Astrophysics Data System (ADS)

    Sieniutycz, Stanislaw

    2010-03-01

    We consider modeling and power optimization of energy converters, such as thermal, solar and chemical engines and fuel cells. Thermodynamic principles lead to expressions for converter's efficiency and generated power. Efficiency equations serve to solve the problems of upgrading or downgrading a resource. Power yield is a cumulative effect in a system consisting of a resource, engines, and an infinite bath. While optimization of steady state systems requires using the differential calculus and Lagrange multipliers, dynamic optimization involves variational calculus and dynamic programming. The primary result of static optimization is the upper limit of power, whereas that of dynamic optimization is a finite-rate counterpart of classical reversible work (exergy). The latter quantity depends on the end state coordinates and a dissipation index, h, which is the Hamiltonian of the problem of minimum entropy production. In reacting systems, an active part of chemical affinity constitutes a major component of the overall efficiency. The theory is also applied to fuel cells regarded as electrochemical flow engines. Enhanced bounds on power yield follow, which are stronger than those predicted by the reversible work potential.

  7. Identification of expressed genes in the mapped QTLs for yield related traits in rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improvement of grain yield is a perpetual goal in rice breeding. Yield and its component traits are quantitatively inherited and controlled by many genes. To identify the Quantitative Trait Loci (QTL) involved in yield, a recombinant inbred line (RIL) population consisting of 259 progeny was devel...

  8. Corn and soybean grain yields in a long-term tillage and cropping systems study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reports on the long-term effects of tillage and cropping systems on corn and soybean yields are limited. Yields have been measured in a long-term experiment (30+ years) with three cropping systems [continuous corn (CC), continuous soybean (CSB), and soybean-corn (SB-C)] in six primary tillage system...

  9. Overexpression of wheat gene TaMOR improves root system architecture and grain yield in Oryza sativa

    PubMed Central

    Li, Bo; Liu, Dan; Li, Qiaoru; Mao, Xinguo; Li, Ang; Wang, Jingyi; Chang, Xiaoping; Jing, Ruilian

    2016-01-01

    Improved root architecture is an effective strategy to increase crop yield. We demonstrate that overexpression of transcription factor gene MORE ROOT (TaMOR) from wheat (Triticum aestivum L.) results in more roots and higher grain yield in rice (Oryza sativa). TaMOR, encoding a plant-specific transcription factor belonging to the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) protein family, is highly conserved in wheat and its wild relatives. In this study, tissue expression patterns indicated that TaMOR mainly localizes to root initiation sites. The consistent gene expression pattern suggests that TaMOR is involved in root initiation. Exogenous auxin treatment induced TaMOR expression without de novo protein biosynthesis. Both in vivo and in vitro experiments demonstrated that TaMOR interacts with TaMOR-related protein TaMRRP, which contains a four-tandem-pentatricopeptide repeat motif. Overexpression of TaMOR led to more lateral roots in Arabidopsis thaliana, and TaMOR-overexpressing rice plants had more crown roots, a longer main panicle, a higher number of primary branches on the main panicle, a higher grain number per plant, and higher yield per plant than the plants of wild type. In general, TaMOR-D-overexpressing lines had larger root systems in Arabidopsis and rice, and produce a higher grain yield per plant. TaMOR therefore offers an opportunity to improve root architecture and increase yield in crop plants. PMID:27229732

  10. Efficient expression systems for cysteine proteases of malaria parasites

    PubMed Central

    Sarduy, Emir Salas; de los A. Chávez Planes, María

    2013-01-01

    Papain-like cysteine proteases of malaria parasites are considered important chemotherapeutic targets or valuable models for the evaluation of drug candidates. Consequently, many of these enzymes have been cloned and expressed in Escherichia coli for their biochemical characterization. However, their expression has been problematic, showing low yield and leading to the formation of insoluble aggregates. Given that highly-productive expression systems are required for the high-throughput evaluation of inhibitors, we analyzed the existing expression systems to identify the causes of such apparent issues. We found that significant divergences in codon and nucleotide composition from host genes are the most probable cause of expression failure, and propose several strategies to overcome these limitations. Finally we predict that yeast hosts Saccharomyces cerevisiae and Pichia pastoris may be better suited than E. coli for the efficient expression of plasmodial genes, presumably leading to soluble and active products reproducing structural and functional characteristics of the natural enzymes. PMID:23018863

  11. Pentopyranosyl Oligonucleotide Systems. Part 11: Systems with Shortened Backbones: D)-beta-Ribopyranosyl-(4 yields 3 )- and (L)-alpha - Lyxopyranosyl-(4 yields 3 )-oligonucleotides

    NASA Technical Reports Server (NTRS)

    Wippo, Harald; Reck, Folkert; Kudick, Rene; Ramaseshan, Mahesh; Ceulemans, Griet; Bolli, Martin; Krishnamurthy, Ramanarayanan; Eschenmoser, Albert

    2001-01-01

    The (L)-a-lyxopyranosyl-(4'yields 3')-oligonucleotide system-a member of a pentopyranosyl oligonucleotide family containing a shortened backbone-is capable of cooperative base-pairing and of cross-pairing with DNA and RNA. In contrast, corresponding (D)-beta-ribopyransoyl-(4' yields 3')-oligonucleotides do not show base-pairing under similar conditions. We conclude that oligonucleotide systems can violate the six-bonds-per-backbone-unit rule by having five bonds instead, if their vicinally bound phosphodiester bridges can assume an antiperiplanar conformation. An additional structural feature that seems relevant to the cross-pairing capability of the (L)-a-lyxopyranosyl-(4' yields 3')-oligonucleotide system is its (small) backbone/basepair axes inclination. An inclination which is similar to that in B-DNA seems to be a prerequisite for an oligonucleotide system s capability to cross-pair with DNA.

  12. Expression, Purification, and Characteristic of Tibetan Sheep Breast Lysozyme Using Pichia pastoris Expression System

    PubMed Central

    Li, Jianbo; Jiang, Mingfeng; Wang, Yong

    2014-01-01

    A lysozyme gene from breast of Tibetan sheep was successfully expressed by secretion using a-factor signal sequence in the methylotrophic yeast, Pichia pastoris GS115. An expression yield and specific activity greater than 500 mg/L and 4,000 U/mg was obtained. Results at optimal pH and temperature showed recombinant lysozyme has higher lytic activity at pH 6.5 and 45°C. This study demonstrates the successful expression of recombinant lysozyme using the eukaryotic host organism P. pastoris paving the way for protein engineering. Additionally, this study shows the feasibility of subsequent industrial manufacture of the enzyme with this expression system together with a high purity scheme for easy high-yield purification. PMID:25049990

  13. Transient co-expression for fast and high-yield production of antibodies with human-like N-glycans in plants.

    PubMed

    Vézina, Louis-P; Faye, Loïc; Lerouge, Patrice; D'Aoust, Marc-André; Marquet-Blouin, Estelle; Burel, Carole; Lavoie, Pierre-Olivier; Bardor, Muriel; Gomord, Véronique

    2009-06-01

    Plant-based transient expression is potentially the most rapid and cost-efficient system for the production of recombinant pharmaceutical proteins, but safety concerns associated with plant-specific N-glycosylation have hampered its adoption as a commercial production system. In this article, we describe an approach based on the simultaneous transient co-expression of an antibody, a suppressor of silencing and a chimaeric human beta1,4-galactosyltransferase targeted for optimal activity to the early secretory pathway in agroinfiltrated Nicotiana benthamiana leaves. This strategy allows fast and high-yield production of antibodies with human-like N-glycans and, more generally, provides solutions to many critical problems posed by the large-scale production of therapeutic and vaccinal proteins, specifically yield, volume and quality.

  14. Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens Yields Pili with Exceptional Conductivity

    PubMed Central

    Tan, Yang; Adhikari, Ramesh Y.; Malvankar, Nikhil S.; Ward, Joy E.; Woodard, Trevor L.; Nevin, Kelly P.

    2017-01-01

    ABSTRACT The electrically conductive pili (e-pili) of Geobacter sulfurreducens serve as a model for a novel strategy for long-range extracellular electron transfer. e-pili are also a new class of bioelectronic materials. However, the only other Geobacter pili previously studied, which were from G. uraniireducens, were poorly conductive. In order to obtain more information on the range of pili conductivities in Geobacter species, the pili of G. metallireducens were investigated. Heterologously expressing the PilA gene of G. metallireducens in G. sulfurreducens yielded a G. sulfurreducens strain, designated strain MP, that produced abundant pili. Strain MP exhibited phenotypes consistent with the presence of e-pili, such as high rates of Fe(III) oxide reduction and high current densities on graphite anodes. Individual pili prepared at physiologically relevant pH 7 had conductivities of 277 ± 18.9 S/cm (mean ± standard deviation), which is 5,000-fold higher than the conductivity of G. sulfurreducens pili at pH 7 and nearly 1 million-fold higher than the conductivity of G. uraniireducens pili at the same pH. A potential explanation for the higher conductivity of the G. metallireducens pili is their greater density of aromatic amino acids, which are known to be important components in electron transport along the length of the pilus. The G. metallireducens pili represent the most highly conductive pili found to date and suggest strategies for designing synthetic pili with even higher conductivities. PMID:28096491

  15. Production of different glycosylation variants of the tumour-targeting mAb H10 in Nicotiana benthamiana: influence on expression yield and antibody degradation.

    PubMed

    Lombardi, Raffaele; Donini, Marcello; Villani, Maria Elena; Brunetti, Patrizia; Fujiyama, Kazuhito; Kajiura, Hiroyuki; Paul, Matthew; Ma, Julian K-C; Benvenuto, Eugenio

    2012-10-01

    We previously described the expression of a tumour-targeting antibody (mAb H10) in Nicotiana benthamiana by vacuum-agro-infiltration and the remarkable yields of highly pure protein achieved. The objective of the present work was to investigate different strategies for transient overexpression of the mAb H10 in which glycan configuration was modulated and assess how these strategies affect the accumulation yield and stability of the antibody. To this aim, three procedures have been assayed: (1) Site-directed mutagenesis to abolish the glycosylation site; (2) endoplasmic reticulum retention (C-terminal SEKDEL fusion) to ensure predominantly high-mannose type glycans; and (3) expression in a N. benthamiana RNAi down-regulated line in which β1,2-xylosyltransferase and α1,3-fucosyltransferase gene expression is silenced. The three antibody variants (H10-Mut) (H10-SEKDEL) (H10(XylT/FucT)) were transiently expressed, purified and characterised for their glycosylation profile, expression/purification yield and antibody degradation pattern. Glycosylation analysis of H10(XylT/FucT) demonstrated the absence of plant complex-type sugars, while H10-SEKDEL, although substantially retained in the ER, revealed the presence of β1,2-xylose and α1,3-fucose residues, indicating a partial escape from the ER retrieval system. Antibody accumulation and purification yields were not enhanced by ER retention. All H10 antibody glyco-forms revealed greater degradation compared to the original, resulting mostly in the formation of Fab fragments. In the case of aglycosylated H10-Mut, more than 95% of the heavy chain was cleaved, confirming the pivotal role of the sugar moiety in protein stability. Identification of possible 'fragile' sites in the H10 antibody hinge region could be of general interest for the development of new strategies to reduce antibody degradation and increase the yield of intact IgGs in plants.

  16. EarthSat spring wheat yield system test 1975, appendix 4

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A computer system is presented which processes meteorological data from both ground observations and meteorologic satellites to define plant weather aspects on a four time per day basis. Plant growth stages are calculated and soil moisture profiles are defined by the system. The EarthSat system assesses plant stress and prepares forecasts of end-of-year yields. The system was used to forecast spring wheat yields in the upper Great Plains states. Hardware and software documentation is provided.

  17. Performance benchmarking of four cell-free protein expression systems.

    PubMed

    Gagoski, Dejan; Polinkovsky, Mark E; Mureev, Sergey; Kunert, Anne; Johnston, Wayne; Gambin, Yann; Alexandrov, Kirill

    2016-02-01

    Over the last half century, a range of cell-free protein expression systems based on pro- and eukaryotic organisms have been developed and have found a range of applications, from structural biology to directed protein evolution. While it is generally accepted that significant differences in performance among systems exist, there is a paucity of systematic experimental studies supporting this notion. Here, we took advantage of the species-independent translation initiation sequence to express and characterize 87 N-terminally GFP-tagged human cytosolic proteins of different sizes in E. coli, wheat germ (WGE), HeLa, and Leishmania-based (LTE) cell-free systems. Using a combination of single-molecule fluorescence spectroscopy, SDS-PAGE, and Western blot analysis, we assessed the expression yields, the fraction of full-length translation product, and aggregation propensity for each of these systems. Our results demonstrate that the E. coli system has the highest expression yields. However, we observe that high expression levels are accompanied by production of truncated species-particularly pronounced in the case of proteins larger than 70 kDa. Furthermore, proteins produced in the E. coli system display high aggregation propensity, with only 10% of tested proteins being produced in predominantly monodispersed form. The WGE system was the most productive among eukaryotic systems tested. Finally, HeLa and LTE show comparable protein yields that are considerably lower than the ones achieved in the E. coli and WGE systems. The protein products produced in the HeLa system display slightly higher integrity, whereas the LTE-produced proteins have the lowest aggregation propensity among the systems analyzed. The high quality of HeLa- and LTE-produced proteins enable their analysis without purification and make them suitable for analysis of multi-domain eukaryotic proteins.

  18. Topical imiquimod yields systemic effects due to unintended oral uptake.

    PubMed

    Grine, Lynda; Steeland, Sophie; Van Ryckeghem, Sara; Ballegeer, Marlies; Lienenklaus, Stefan; Weiss, Siegfried; Sanders, Niek N; Vandenbroucke, Roosmarijn E; Libert, Claude

    2016-01-28

    Repetitive application of topical imiquimod is used as an experimental model for the induction of psoriasiform skin lesions in mice. The model is characterized by several inflammatory processes, including cytokine production both locally and systemically, cellular infiltration, and splenomegaly. To investigate the production of type I interferons in response to imiquimod-containing Aldara cream, IFNβ-luciferase reporter mice were imaged in vivo and ex vivo. Type I interferons were found to be produced in the skin, but also in the intestinal system caused by unintended ingestion of imiquimod by the mice. Through the use of Elizabethan collars to prevent ingestion, these effects, including psoriasiform lesions were nearly completely prevented. Our findings reveal that topical treatment with Aldara induces a psoriasiform skin inflammation, but that its mode of action depends on ingestion of the chemical, which leads to systemic responses and affects local inflammation. Therefore, potential ingestion of topical treatments during experimental procedures should be taken into account during assessment of cutaneous inflammatory parameters in skin disease models.

  19. Topical imiquimod yields systemic effects due to unintended oral uptake

    PubMed Central

    Grine, Lynda; Steeland, Sophie; Van Ryckeghem, Sara; Ballegeer, Marlies; Lienenklaus, Stefan; Weiss, Siegfried; Sanders, Niek N.; Vandenbroucke, Roosmarijn E.; Libert, Claude

    2016-01-01

    Repetitive application of topical imiquimod is used as an experimental model for the induction of psoriasiform skin lesions in mice. The model is characterized by several inflammatory processes, including cytokine production both locally and systemically, cellular infiltration, and splenomegaly. To investigate the production of type I interferons in response to imiquimod-containing Aldara cream, IFNβ-luciferase reporter mice were imaged in vivo and ex vivo. Type I interferons were found to be produced in the skin, but also in the intestinal system caused by unintended ingestion of imiquimod by the mice. Through the use of Elizabethan collars to prevent ingestion, these effects, including psoriasiform lesions were nearly completely prevented. Our findings reveal that topical treatment with Aldara induces a psoriasiform skin inflammation, but that its mode of action depends on ingestion of the chemical, which leads to systemic responses and affects local inflammation. Therefore, potential ingestion of topical treatments during experimental procedures should be taken into account during assessment of cutaneous inflammatory parameters in skin disease models. PMID:26818707

  20. Heterologous expression of chloroplast-localized geranylgeranyl pyrophosphate synthase confers fast plant growth, early flowering and increased seed yield.

    PubMed

    Tata, Sandeep Kumar; Jung, Jihye; Kim, Yoon-Ha; Choi, Jun Young; Jung, Ji-Yul; Lee, In-Jung; Shin, Jeong Sheop; Ryu, Stephen Beungtae

    2016-01-01

    Geranylgeranyl pyrophosphate synthase (GGPS) is a key enzyme for a structurally diverse class of isoprenoid biosynthetic metabolites including gibberellins, carotenoids, chlorophylls and rubber. We expressed a chloroplast-targeted GGPS isolated from sunflower (Helianthus annuus) under control of the cauliflower mosaic virus 35S promoter in tobacco (Nicotiana tabacum). The resulting transgenic tobacco plants expressing heterologous GGPS showed remarkably enhanced growth (an increase in shoot and root biomass and height), early flowering, increased number of seed pods and greater seed yield compared with that of GUS-transgenic lines (control) or wild-type plants. The gibberellin levels in HaGGPS-transgenic plants were higher than those in control plants, indicating that the observed phenotype may result from increased gibberellin content. However, in HaGGPS-transformant tobacco plants, we did not observe the phenotypic defects such as reduced chlorophyll content and greater petiole and stalk length, which were previously reported for transgenic plants expressing gibberellin biosynthetic genes. Fast plant growth was also observed in HaGGPS-expressing Arabidopsis and dandelion plants. The results of this study suggest that GGPS expression in crop plants may yield desirable agronomic traits, including enhanced growth of shoots and roots, early flowering, greater numbers of seed pods and/or higher seed yield. This research has potential applications for fast production of plant biomass that provides commercially valuable biomaterials or bioenergy.

  1. Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome

    PubMed Central

    Moon, Christina D.; Leahy, Sinead C.; Kang, Dongwan; Froula, Jeff; Kittelmann, Sandra; Fan, Christina; Deutsch, Samuel; Gagic, Dragana; Seedorf, Henning; Kelly, William J.; Atua, Renee; Sang, Carrie; Soni, Priya; Li, Dong; Pinares-Patiño, Cesar S.; McEwan, John C.; Janssen, Peter H.; Chen, Feng; Visel, Axel; Wang, Zhong; Attwood, Graeme T.

    2014-01-01

    Ruminant livestock represent the single largest anthropogenic source of the potent greenhouse gas methane, which is generated by methanogenic archaea residing in ruminant digestive tracts. While differences between individual animals of the same breed in the amount of methane produced have been observed, the basis for this variation remains to be elucidated. To explore the mechanistic basis of this methane production, we measured methane yields from 22 sheep, which revealed that methane yields are a reproducible, quantitative trait. Deep metagenomic and metatranscriptomic sequencing demonstrated a similar abundance of methanogens and methanogenesis pathway genes in high and low methane emitters. However, transcription of methanogenesis pathway genes was substantially increased in sheep with high methane yields. These results identify a discrete set of rumen methanogens whose methanogenesis pathway transcription profiles correlate with methane yields and provide new targets for CH4 mitigation at the levels of microbiota composition and transcriptional regulation. PMID:24907284

  2. An automated high-throughput screening method for the identification of high-yield, soluble protein variants using cell-free expression and systematic truncation.

    PubMed

    Bursey, Evan H; Kim, Chang-Yub; Yu, Minmin; Terwilliger, Thomas C; Hung, Li-Wei

    2006-12-01

    A highly automated method for rapidly identifying soluble protein variants with good expression yields has been developed. This method is based on a commercially available in vitro protein expression system. It consists of two polymerase chain reactions (PCR) followed by in vitro protein expression and protein quantification by dot blot. The PCR protocols have been improved and optimized to allow automation using commercial fluid handling devices. A PCR primer design program has also been implemented to streamline protein variant design. This automated protocol is highly reliable and has tremendously improved the throughput of expression screening as compared to conventional cell-based methods and manual in vitro methods. We have applied this method to 32 problematic targets from the TB Structural Genomics Consortium. Experimental results of these studies are reported.

  3. Direct and efficient ethanol production from high-yielding rice using a Saccharomyces cerevisiae strain that express amylases.

    PubMed

    Yamada, Ryosuke; Yamakawa, Syun-Ichi; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2011-04-07

    Efficient ethanol producing yeast Saccharomyces cerevisiae cannot produce ethanol from raw starch directly. Thus the conventional ethanol production required expensive and complex process. In this study, we developed a direct and efficient ethanol production process from high-yielding rice harvested in Japan by using amylase expressing yeast without any pretreatment or addition of enzymes or nutrients. Ethanol productivity from high-yielding brown rice (1.1g/L/h) was about 5-fold higher than that obtained from purified raw corn starch (0.2g/L/h) when nutrients were added. Using an inoculum volume equivalent to 10% of the fermentation volume without any nutrient supplementation resulted in ethanol productivity and yield reaching 1.2g/L/h and 101%, respectively, in a 24-h period. High-yielding rice was demonstrated to be a suitable feedstock for bioethanol production. In addition, our polyploid amylase-expressing yeast was sufficiently robust to produce ethanol efficiently from real biomass. This is first report of direct ethanol production on real biomass using an amylase-expressing yeast strain without any pretreatment or commercial enzyme addition.

  4. Ectopic expression of SlAGO7 alters leaf pattern and inflorescence architecture and increases fruit yield in tomato.

    PubMed

    Lin, Dongbo; Xiang, Ya; Xian, Zhiqiang; Li, Zhengguo

    2016-08-01

    ARGONAUTE7 (AGO7), a key regulator of the trans-acting small interfering RNAs (ta-siRNA) pathway, plays a conserved role in controlling leaf pattern among species. However, little is known about the ta-siRNA pathway in regulating inflorescence architecture and fruit yield. In this study, we characterized the expression pattern, subcellular localization and developmental functions of SlAGO7 in tomato (Solanum lycopersicum). Overexpressing SlAGO7 in tomato exhibited pleiotropic phenotypes, including improved axillary bud formation, altered leaf morphology and inflorescence architecture, and increased fruit yield. Cross-sectioning of leaves showed that the number of vascular bundles was significantly increased in 35:SlAGO7 lines. Overexpression of SlAGO7 increased the production of ta-siRNA, and repressed the expression ta-siRNA-targeted genes (SlARF2a, SlARF2b, SlARF3 and SlARF4). Further analysis showed that overexpression of SlAGO7 alters the expression of key genes implicated in leaf morphology, inflorescence architecture, auxin transport and signaling. In addition, the altered auxin response of 35:SlAGO7 lines were also investigated. These results suggested that SlAGO7 plays a positive role in determining inflorescence architecture and fruit yield though the ta-siRNA pathway. Therefore, SlAGO7 represents a useful gene that can be incorporated in tomato breeding programs for developing cultivars with yield potential.

  5. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems.

    PubMed

    Kravchenko, Alexandra N; Snapp, Sieglinde S; Robertson, G Philip

    2017-01-31

    Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based-organic, management practices for a corn-soybean-wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world.

  6. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems

    PubMed Central

    Kravchenko, Alexandra N.; Snapp, Sieglinde S.; Robertson, G. Philip

    2017-01-01

    Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based–organic, management practices for a corn–soybean–wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world. PMID:28096409

  7. Transient expression systems for plant-derived biopharmaceuticals.

    PubMed

    Komarova, Tatiana V; Baschieri, Selene; Donini, Marcello; Marusic, Carla; Benvenuto, Eugenio; Dorokhov, Yuri L

    2010-08-01

    In the molecular farming area, transient expression approaches for pharmaceutical proteins production, mainly recombinant monoclonal antibodies and vaccines, were developed almost two decades ago and, to date, these systems basically depend on Agrobacterium-mediated delivery and virus expression machinery. We survey here the current state-of-the-art of this research field. Several vectors have been designed on the basis of DNA- and RNA-based plant virus genomes and viral vectors are used both as single- and multicomponent expression systems in different combinations depending on the protein of interest. The obvious advantages of these systems are ease of manipulation, speed, low cost and high yield of proteins. In addition, Agrobacterium-mediated expression also allows the production in plants of complex proteins assembled from subunits. Currently, the transient expression methods are preferential over any other transgenic system for the exploitation of large and unrestricted numbers of plants in a contained environment. By designing optimal constructs and related means of delivery into plant cells, the overall technology plan considers scenarios that envisage high yield of bioproducts and ease in monitoring the whole spectrum of upstream production, before entering good manufacturing practice facilities. In this way, plant-derived bioproducts show promise of high competitiveness towards classical eukaryotic cell factory systems.

  8. Animal component-free Agrobacterium tumefaciens cultivation media for better GMP-compliance increases biomass yield and pharmaceutical protein expression in Nicotiana benthamiana.

    PubMed

    Houdelet, Marcel; Galinski, Anna; Holland, Tanja; Wenzel, Kathrin; Schillberg, Stefan; Buyel, Johannes Felix

    2017-02-21

    Transient expression systems allow the rapid production of recombinant proteins in plants. Such systems can be scaled up to several hundred kilograms of biomass, making them suitable for the production of pharmaceutical proteins required at short notice, such as emergency vaccines. However, large-scale transient expression requires the production of recombinant Agrobacterium tumefaciens strains with the capacity for efficient gene transfer to plant cells. The complex media often used for the cultivation of this species typically include animal-derived ingredients that can contain human pathogens, thus conflicting with the requirements of good manufacturing practice (GMP). We replaced all the animal-derived components in yeast extract broth (YEB) cultivation medium with soybean peptone, and then used a design-of-experiments approach to optimize the medium composition, increasing the biomass yield while maintaining high levels of transient expression in subsequent infiltration experiments. The resulting plant peptone Agrobacterium medium (PAM) achieved a two-fold increase in OD600 compared to YEB medium during a 4-L batch fermentation lasting 18 h. Furthermore, the yields of the monoclonal antibody 2G12 and the fluorescent protein DsRed were maintained when the cells were cultivated in PAM rather than YEB. We have thus demonstrated a simple, efficient and scalable method for medium optimization that reduces process time and costs. The final optimized medium for the cultivation of A. tumefaciens completely lacks animal-derived components, thus facilitating the GMP-compliant large-scale transient expression of recombinant proteins in plants.

  9. Regulated expression of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions.

    PubMed

    Qin, Hua; Gu, Qiang; Zhang, Junling; Sun, Li; Kuppu, Sundaram; Zhang, Yizheng; Burow, Mark; Payton, Paxton; Blumwald, Eduardo; Zhang, Hong

    2011-11-01

    Isopentenyltransferase (IPT) is a critical enzyme in the cytokinin biosynthetic pathway. The expression of IPT under the control of a maturation- and stress-induced promoter was shown to delay stress-induced plant senescence that resulted in an enhanced drought tolerance in both monocot and dicot plants. This report extends the earlier findings in tobacco and rice to peanut (Arachis hypogaea L.), an important oil crop and protein source. Regulated expression of IPT in peanut significantly improved drought tolerance in both laboratory and field conditions. Transgenic peanut plants maintained higher photosynthetic rates, higher stomatal conductance and higher transpiration than wild-type control plants under reduced irrigation conditions. More importantly, transgenic peanut plants produced significantly higher yields than wild-type control plants in the field, indicating a great potential for the development of crops with improved performance and yield in water-limited areas of the world.

  10. Improvement of enzymatic saccharification yield in Arabidopsis thaliana by ectopic expression of the rice SUB1A-1 transcription factor

    PubMed Central

    Núñez-López, Lizeth; Aguirre-Cruz, Andrés

    2015-01-01

    Saccharification of polysaccharides releases monosaccharides that can be used by ethanol-producing microorganisms in biofuel production. To improve plant biomass as a raw material for saccharification, factors controlling the accumulation and structure of carbohydrates must be identified. Rice SUB1A-1 is a transcription factor that represses the turnover of starch and postpones energy-consuming growth processes under submergence stress. Arabidopsis was employed to test if heterologous expression of SUB1A-1 or SUB1C-1 (a related gene) can be used to improve saccharification. Cellulolytic and amylolytic enzymatic treatments confirmed that SUB1A-1 transgenics had better saccharification yield than wild-type (Col-0), mainly from accumulated starch. This improved saccharification yield was developmentally controlled; when compared to Col-0, young transgenic vegetative plants yielded 200–300% more glucose, adult vegetative plants yielded 40–90% more glucose and plants in reproductive stage had no difference in yield. We measured photosynthetic parameters, starch granule microstructure, and transcript abundance of genes involved in starch degradation (SEX4, GWD1), juvenile transition (SPL3-5) and meristematic identity (FUL, SOC1) but found no differences to Col-0, indicating that starch accumulation may be controlled by down-regulation of CONSTANS and FLOWERING LOCUS T by SUB1A-1 as previously reported. SUB1A-1 transgenics also offered less resistance to deformation than wild-type concomitant to up-regulation of AtEXP2 expansin and BGL2 glucan-1,3,-beta-glucosidase. We conclude that heterologous SUB1A-1 expression can improve saccharification yield and softness, two traits needed in bioethanol production. PMID:25780769

  11. Identification of crowding stress tolerance co-expression networks involved in sweet corn yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tolerance to crowding stress has played a crucial role in improving agronomic productivity in field corn; however, commercial sweet corn hybrids vary greatly in crowding stress tolerance. The objectives were to 1) explore transcriptional changes among sweet corn hybrids with differential yield under...

  12. Expression of cyanobacterial FBP/SBPase in soybean prevents yield depression under future climate conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Predictions suggest that current crop production needs to double by 2050 to meet global food and energy demands. Based on theory and experimental studies, overexpression of the photosynthetic enzyme sedoheptulose-1,7-bisphosphatase (SBPase) is expected to enhance C3 crop photosynthesis and yields. H...

  13. Influence of an oxic settling anoxic system on biomass yield, protozoa and filamentous bacteria.

    PubMed

    Rodriguez-Perez, Santiago; Fermoso, Fernando G

    2016-01-01

    An oxic settling anoxic system coupled with an activated sludge process has been studied to reduce sewage sludge production. The reduction of sludge yield, excess sludge production and active biomass yield were 51.7%, 52.9% and 67.1%, respectively, compared with the control system. The oxic reactor of the oxic settling anoxic system, even with a lower active biomass concentration than the oxic reactor of control system, showed a higher metabolic activity in their active biomass. Diversity and crawling ciliates group have been shown as promising bioindicators of active biomass yield reduction. The identification of floc-forming bacteria in the control system suggested that oxic settling anoxic system will improve settling properties compared to a Conventional Activated Sludge process.

  14. Greenhouse tomato limited cluster production systems: crop management practices affect yield

    NASA Technical Reports Server (NTRS)

    Logendra, L. S.; Gianfagna, T. J.; Specca, D. R.; Janes, H. W.

    2001-01-01

    Limited-cluster production systems may be a useful strategy to increase crop production and profitability for the greenhouse tomato (Lycopersicon esculentum Mill). In this study, using an ebb-and-flood hydroponics system, we modified plant architecture and spacing and determined the effects on fruit yield and harvest index at two light levels. Single-cluster plants pruned to allow two leaves above the cluster had 25% higher fruit yields than did plants pruned directly above the cluster; this was due to an increase in fruit weight, not fruit number. Both fruit yield and harvest index were greater for all single-cluster plants at the higher light level because of increases in both fruit weight and fruit number. Fruit yield for two-cluster plants was 30% to 40% higher than for single-cluster plants, and there was little difference in the dates or length of the harvest period. Fruit yield for three-cluster plants was not significantly different from that of two-cluster plants; moreover, the harvest period was delayed by 5 days. Plant density (5.5, 7.4, 9.2 plants/m2) affected fruit yield/plant, but not fruit yield/unit area. Given the higher costs for materials and labor associated with higher plant densities, a two-cluster crop at 5.5 plants/m2 with two leaves above the cluster was the best of the production system strategies tested.

  15. Expression of varied GFPs in Saccharomyces cerevisiae: codon optimization yields stronger than expected expression and fluorescence intensity

    PubMed Central

    Kaishima, Misato; Ishii, Jun; Matsuno, Toshihide; Fukuda, Nobuo; Kondo, Akihiko

    2016-01-01

    Green fluorescent protein (GFP), which was originally isolated from jellyfish, is a widely used tool in biological research, and homologs from other organisms are available. However, researchers must determine which GFP is the most suitable for a specific host. Here, we expressed GFPs from several sources in codon-optimized and non-codon-optimized forms in the yeast Saccharomyces cerevisiae, which represents an ideal eukaryotic model. Surprisingly, codon-optimized mWasabi and mNeonGreen, which are typically the brightest GFPs, emitted less green fluorescence than did the other five codon-optimized GFPs tested in S. cerevisiae. Further, commercially available GFPs that have been optimized for mammalian codon usage (e.g., EGFP, AcGFP1 and TagGFP2) unexpectedly exhibited extremely low expression levels in S. cerevisiae. In contrast, codon-optimization of the GFPs for S. cerevisiae markedly increased their expression levels, and the fluorescence intensity of the cells increased by a maximum of 101-fold. Among the tested GFPs, the codon-optimized monomeric mUkG1 from soft coral showed the highest levels of both expression and fluorescence. Finally, the expression of this protein as a fusion-tagged protein successfully improved the reporting system’s ability to sense signal transduction and protein–protein interactions in S. cerevisiae and increased the detection rates of target cells using flow cytometry. PMID:27782154

  16. Develop a field grid system for yield mapping and machine control. Final report, Invention 544

    SciTech Connect

    1995-12-15

    The objective of this project was to build and test the Field Grid Sense system for yield mapping and machine control during harvesting. Secondly, to use Field Grid Sense system with chemical application equipment to demonstrate a workable in-field system. This document contains summarized quarterly reports.

  17. Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors.

    PubMed

    Giritch, Anatoli; Marillonnet, Sylvestre; Engler, Carola; van Eldik, Gerben; Botterman, Johan; Klimyuk, Victor; Gleba, Yuri

    2006-10-03

    Plant viral vectors allow expression of heterologous proteins at high yields, but so far, they have been unable to express heterooligomeric proteins efficiently. We describe here a rapid and indefinitely scalable process for high-level expression of functional full-size mAbs of the IgG class in plants. The process relies on synchronous coinfection and coreplication of two viral vectors, each expressing a separate antibody chain. The two vectors are derived from two different plant viruses that were found to be noncompeting. Unlike vectors derived from the same virus, noncompeting vectors effectively coexpress the heavy and light chains in the same cell throughout the plant body, resulting in yields of up to 0.5 g of assembled mAbs per kg of fresh-leaf biomass. This technology allows production of gram quantities of mAbs for research purposes in just several days, and the same protocol can be used on an industrial scale in situations requiring rapid response, such as pandemic or terrorism events.

  18. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture.

    PubMed

    Cassman, K G

    1999-05-25

    Wheat (Triticum aestivum L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide about two-thirds of all energy in human diets, and four major cropping systems in which these cereals are grown represent the foundation of human food supply. Yield per unit time and land has increased markedly during the past 30 years in these systems, a result of intensified crop management involving improved germplasm, greater inputs of fertilizer, production of two or more crops per year on the same piece of land, and irrigation. Meeting future food demand while minimizing expansion of cultivated area primarily will depend on continued intensification of these same four systems. The manner in which further intensification is achieved, however, will differ markedly from the past because the exploitable gap between average farm yields and genetic yield potential is closing. At present, the rate of increase in yield potential is much less than the expected increase in demand. Hence, average farm yields must reach 70-80% of the yield potential ceiling within 30 years in each of these major cereal systems. Achieving consistent production at these high levels without causing environmental damage requires improvements in soil quality and precise management of all production factors in time and space. The scope of the scientific challenge related to these objectives is discussed. It is concluded that major scientific breakthroughs must occur in basic plant physiology, ecophysiology, agroecology, and soil science to achieve the ecological intensification that is needed to meet the expected increase in food demand.

  19. Auto-induction for high yield expression of recombinant novel isoallergen tropomyosin from King prawn (Melicertus latisulcatus) for improved diagnostics and immunotherapeutics.

    PubMed

    Koeberl, Martina; Kamath, Sandip D; Saptarshi, Shruti R; Smout, Michael J; Rolland, Jennifer M; O'Hehir, Robyn E; Lopata, Andreas L

    2014-12-15

    Food allergies are increasing worldwide, demonstrating a considerable public health concern. Shellfish allergy is one of the major food groups causing allergic sensitization among adults and children, affecting up to 2% of the general world population. Tropomyosin (TM) is the major allergen in shellfish and frequently used in the diagnosis of allergic sensitization and the detection of cross-contaminated food. To improve and establish better and more sensitive diagnostics for allergies and immunotherapeutics, large quantities of pure allergens are required. To establish a reproducible method for the generation of pure recombinant tropomyosin we utilized in this study different Escherichia coli strains (NM522, TOP10 and BL21(DE3)RIPL). In addition, isopropyl-β-D-thiogalactoside (IPTG) induction was compared with a novel auto-induction system to allow the generation of larger quantities of recombinant allergen. We demonstrated that the B-strain of E. coli is better for the expression of TM compared to the K-strain. Moreover, a higher yield could be achieved when using the auto-induction system, with up to 62 mg/l. High yield expressed recombinant TM from King prawn (KP) was compared to recombinant TM from Black tiger prawn (Pen m 1). We demonstrated that recombinant TM from KP and known isoallergen Pen m 1 have very similar molecular and immunological characteristics. Overall, we demonstrate that auto-induction can be used to express larger quantities of recombinant allergens for the development of diagnostic, to quantify allergens as well as immunotherapeutics employing isoallergens.

  20. The expression of a recombinant glycolate dehydrogenase polyprotein in potato (Solanum tuberosum) plastids strongly enhances photosynthesis and tuber yield.

    PubMed

    Nölke, Greta; Houdelet, Marcel; Kreuzaler, Fritz; Peterhänsel, Christoph; Schillberg, Stefan

    2014-08-01

    We have increased the productivity and yield of potato (Solanum tuberosum) by developing a novel method to enhance photosynthetic carbon fixation based on expression of a polyprotein (DEFp) comprising all three subunits (D, E and F) of Escherichia coli glycolate dehydrogenase (GlcDH). The engineered polyprotein retained the functionality of the native GlcDH complex when expressed in E. coli and was able to complement mutants deficient for the D, E and F subunits. Transgenic plants accumulated DEFp in the plastids, and the recombinant protein was active in planta, reducing photorespiration and improving CO2 uptake with a significant impact on carbon metabolism. Transgenic lines with the highest DEFp levels and GlcDH activity produced significantly higher levels of glucose (5.8-fold), fructose (3.8-fold), sucrose (1.6-fold) and transitory starch (threefold), resulting in a substantial increase in shoot and leaf biomass. The higher carbohydrate levels produced in potato leaves were utilized by the sink capacity of the tubers, increasing the tuber yield by 2.3-fold. This novel approach therefore has the potential to increase the biomass and yield of diverse crops.

  1. Evaluating yield quality and quantity of garlic as affected by different farming systems and garlic clones.

    PubMed

    Mirzaei, R; Liaghati, H; Damghani, A Mahdavi

    2007-07-01

    In order to study the effects of different farming systems and garlic (Allium sativum L.) clones on yield quality and quantity of garlic, an experiment was conducted with split plot arrangement with three completely randomized blockes in the 2005 growing season at the experimental research station of Shahid Beheshti University at Zirab, north of Iran. Two factors were involved in the experiment: farming systems in three levels (intensive, conventional and organic farming), as main plots and garlic clones in three levels (Atoo, Hamedani and Khorassani) as sub-plots. The studied factors in this experiment consisted of leaf number, LAI, stem height and diameter, bulb yield, weight of bulbs, number of cloves, weight of cloves and level of allicin. Results showed that the farming systems had significant effect (p<0.05) on LAI, number of plant and bulb yield, but the effect on the other factors was not significant. The highest and lowest bulb yields were obtained in intensive (9.5 ton ha(-1)) and organic (7.4 ton ha(-1)) systems, respectively. All of the top factors were significantly (p< or =0.01) affected by garlic clones. Maximum and minimum yields were obtained from Hamedani, Atoo (9.2 ton ha(-1)) and Virani (7.1 ton ha(-1)) clones, respectively. Level of allicin was not significantly affected by farming systems but, differences among garlic clones were significant. Maximum and minimum allicin yields were obtained from Hamedan (5.96 mg g(-1)) and Virani (4.52 mg g(-1)) clones, respectively. As a result, however, organic farming systems can not influence the yield in short term, but can increase it by applying crop rotation, use of organic fertilizer and cover crops in the long term.

  2. Expression of Vitreoscilla hemoglobin in Bacillus thuringiensis improve the cell density and insecticidal crystal proteins yield.

    PubMed

    Liang, Feng; Shouwen, Chen; Ming, Sun; Ziniu, Yu

    2007-02-01

    The Vitreoscilla hemoglobin (VHb) gene (vgb) was integrated into the chromosome of Bacillus thuringiensis BMB171 using integrative vector pEG491. The production of VHb was confirmed by CO-difference spectra analysis. Fermentation experiments results showed that with the production of VHb, the critical oxygen concentration (COC) of the host strain was reduced from 18 to 12%. The maximum viable cell counts of the VHb+ strain in high, middle, and low aeration/agitation fermentations were 0.94-, 1.23-, and 1.59-fold of those of the VHb- strain, respectively. Under the same conditions, the yields of insecticidal crystal proteins (ICP) by VHb+ strain were 1.22-, 1.63-, and 3.13-fold of those of the VHb- strain. The production of VHb also accelerated the formation of ICP and spores. These results indicated that the production of VHb could improve the cell density and ICP yield of B. thuringiensis, especially under low aeration/agitation condition.

  3. Mesoderm-specific Stat3 deletion affects expression of Sox9 yielding Sox9-dependent phenotypes

    PubMed Central

    Hall, Michael D.; Murray, Caroline A.; Perantoni, Alan O.

    2017-01-01

    To date, mutations within the coding region and translocations around the SOX9 gene both constitute the majority of genetic lesions underpinning human campomelic dysplasia (CD). While pathological coding-region mutations typically result in a non-functional SOX9 protein, little is known about what mechanism(s) controls normal SOX9 expression, and subsequently, which signaling pathways may be interrupted by alterations occurring around the SOX9 gene. Here, we report the identification of Stat3 as a key modulator of Sox9 expression in nascent cartilage and developing chondrocytes. Stat3 expression is predominant in tissues of mesodermal origin, and its conditional ablation using mesoderm-specific TCre, in vivo, causes dwarfism and skeletal defects characteristic of CD. Specifically, Stat3 loss results in the expansion of growth plate hypertrophic chondrocytes and deregulation of normal endochondral ossification in all bones examined. Conditional deletion of Stat3 with a Sox9Cre driver produces palate and tracheal irregularities similar to those described in Sox9+/- mice. Furthermore, mesodermal deletion of Stat3 causes global embryonic down regulation of Sox9 expression and function in vivo. Mechanistic experiments ex vivo suggest Stat3 can directly activate the expression of Sox9 by binding to its proximal promoter following activation. These findings illuminate a novel role for Stat3 in chondrocytes during skeletal development through modulation of a critical factor, Sox9. Importantly, they further provide the first evidence for the modulation of a gene product other than Sox9 itself which is capable of modeling pathological aspects of CD and underscore a potentially valuable therapeutic target for patients with the disorder. PMID:28166224

  4. High-yield secretion of recombinant proteins expressed in tobacco cell culture with a designer glycopeptide tag: Process development.

    PubMed

    Zhang, Ningning; Gonzalez, Maria; Savary, Brett; Xu, Jianfeng

    2016-03-01

    Low-yield protein production remains the most significant economic hurdle with plant cell culture technology. Fusions of recombinant proteins with hydroxyproline-O-glycosylated designer glycopeptide tags have consistently boosted secreted protein yields. This prompted us to study the process development of this technology aiming to achieve productivity levels necessary for commercial viability. We used a tobacco BY-2 cell culture expressing EGFP as fusion with a glycopeptide tag comprised of 32 repeat of "Ser-Pro" dipeptide, or (SP)32 , to study cell growth and protein secretion, culture scale-up, and establishment of perfusion cultures for continuous production. The BY-2 cells accumulated low levels of cell biomass (~7.5 g DW/L) in Schenk & Hildebrandt medium, but secreted high yields of (SP)32 -tagged EGFP (125 mg/L). Protein productivity of the cell culture has been stable for 6.0 years. The BY-2 cells cultured in a 5-L bioreactor similarly produced high secreted protein yield at 131 mg/L. Successful operation of a cell perfusion culture for 30 days was achieved under the perfusion rate of 0.25 and 0.5 day(-1) , generating a protein volumetric productivity of 17.6 and 28.9 mg/day/L, respectively. This research demonstrates the great potential of the designer glycopeptide technology for use in commercial production of valuable proteins with plant cell cultures.

  5. Fertilizer source and tillage effects on yield-scaled nitrous oxide emissions in a corn cropping system.

    PubMed

    Venterea, Rodney T; Bijesh, Maharjan; Dolan, Michael S

    2011-01-01

    Management practices such as fertilizer or tillage regime may affect nitrous oxide (N₂O) emissions and crop yields, each of which is commonly expressed with respect to area (e.g., kg N ha or Mg grain ha). Expressing N₂O emissions per unit of yield can account for both of these management impacts and might provide a useful metric for greenhouse gas inventories by relating N₂O emissions to grain production rates. The objective of this study was to examine the effects of long-term (>17 yr) tillage treatments and N fertilizer source on area- and yield-scaled N₂O emissions, soil N intensity, and nitrogen use efficiency for rainfed corn ( L.) in Minnesota over three growing seasons. Two different controlled-release fertilizers (CRFs) and conventional urea (CU) were surface-applied at 146 kg N ha(-1) several weeks after planting to conventional tillage (CT) and no-till (NT) treatments. Yield-scaled emissions across all treatments represented 0.4 to 1.1% of the N harvested in the grain. Both CRFs reduced soil nitrate intensity, but not N₂O emissions, compared with CU. One CRF, consisting of nitrification and urease inhibitors added to urea, decreased N₂O emissions compared with a polymer-coated urea (PCU). The PCU tended to have lower yields during the drier years of the study, which increased its yield-scaled N₂O emissions. The overall effectiveness of CRFs compared with CU in this study may have been reduced because they were applied several weeks after corn was planted. Across all N treatments, area-scaled N₂O emissions were not significantly affected by tillage. However, when expressed per unit yield of grain, grain N, or total aboveground N, N₂O emissions with NT were 52, 66, and 69% greater, respectively, compared with CT. Thus, in this cropping system and climate regime, production of an equivalent amount of grain using NT would generate substantially more N₂O compared with CT.

  6. Longer-term potato cropping system effects on soilborne diseases and tuber yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In field trials established in 2004, different 3-yr potato cropping systems focused on specific crop management goals of (SC) soil conservation, (SI) soil improvement, and (DS) disease-suppression were evaluated for their effects on soilborne diseases and tuber yield. These systems were compared to ...

  7. Ectopic expression of Arabidopsis Target of Rapamycin (AtTOR) improves water-use efficiency and yield potential in rice

    NASA Astrophysics Data System (ADS)

    Bakshi, Achala; Moin, Mazahar; Kumar, M. Udaya; Reddy, Aramati Bindu Madhava; Ren, Maozhi; Datla, Raju; Siddiq, E. A.; Kirti, P. B.

    2017-02-01

    The target of Rapamycin (TOR) present in all eukaryotes is a multifunctional protein, regulating growth, development, protein translation, ribosome biogenesis, nutrient, and energy signaling. In the present study, ectopic expression of TOR gene of Arabidopsis thaliana in a widely cultivated indica rice resulted in enhanced plant growth under water-limiting conditions conferring agronomically important water-use efficiency (WUE) trait. The AtTOR high expression lines of rice exhibited profuse tillering, increased panicle length, increased plant height, high photosynthetic efficiency, chlorophyll content and low ∆13C. Δ13C, which is inversely related to high WUE, was as low as 17‰ in two AtTOR high expression lines. These lines were also insensitive to the ABA-mediated inhibition of seed germination. The significant upregulation of 15 stress-specific genes in high expression lines indicates their contribution to abiotic stress tolerance. The constitutive expression of AtTOR is also associated with significant transcriptional upregulation of putative TOR complex-1 components, OsRaptor and OsLST8. Glucose-mediated transcriptional activation of AtTOR gene enhanced lateral root formation. Taken together, our findings indicate that TOR, in addition to its multiple cellular functions, also plays an important role in response to abiotic stress and potentially enhances WUE and yield related attributes.

  8. Ectopic expression of Arabidopsis Target of Rapamycin (AtTOR) improves water-use efficiency and yield potential in rice

    PubMed Central

    Bakshi, Achala; Moin, Mazahar; Kumar, M. Udaya; Reddy, Aramati Bindu Madhava; Ren, Maozhi; Datla, Raju; Siddiq, E. A.; Kirti, P. B.

    2017-01-01

    The target of Rapamycin (TOR) present in all eukaryotes is a multifunctional protein, regulating growth, development, protein translation, ribosome biogenesis, nutrient, and energy signaling. In the present study, ectopic expression of TOR gene of Arabidopsis thaliana in a widely cultivated indica rice resulted in enhanced plant growth under water-limiting conditions conferring agronomically important water-use efficiency (WUE) trait. The AtTOR high expression lines of rice exhibited profuse tillering, increased panicle length, increased plant height, high photosynthetic efficiency, chlorophyll content and low ∆13C. Δ13C, which is inversely related to high WUE, was as low as 17‰ in two AtTOR high expression lines. These lines were also insensitive to the ABA-mediated inhibition of seed germination. The significant upregulation of 15 stress-specific genes in high expression lines indicates their contribution to abiotic stress tolerance. The constitutive expression of AtTOR is also associated with significant transcriptional upregulation of putative TOR complex-1 components, OsRaptor and OsLST8. Glucose-mediated transcriptional activation of AtTOR gene enhanced lateral root formation. Taken together, our findings indicate that TOR, in addition to its multiple cellular functions, also plays an important role in response to abiotic stress and potentially enhances WUE and yield related attributes. PMID:28230163

  9. Development of a telemetry and yield-mapping system of olive harvester.

    PubMed

    Castillo-Ruiz, Francisco J; Pérez-Ruiz, Manuel; Blanco-Roldán, Gregorio L; Gil-Ribes, Jesús A; Agüera, Juan

    2015-02-10

    Sensors, communication systems and geo-reference units are required to achieve an optimized management of agricultural inputs with respect to the economic and environmental aspects of olive groves. In this study, three commercial olive harvesters were tracked during two harvesting seasons in Spain and Chile using remote and autonomous equipment that was developed to determine their time efficiency and effective based on canopy shaking for fruit detachment. These harvesters work in intensive/high-density (HD) and super-high-density (SHD) olive orchards. A GNSS (Global Navigation Satellite System) and GSM (Global System for Mobile Communications) device was installed to track these harvesters. The GNSS receiver did not affect the driver's work schedule. Time elements methodology was adapted to the remote data acquisition system. The effective field capacity and field efficiency were investigated. In addition, the field shape, row length, angle between headland alley and row, and row alley width were measured to determinate the optimum orchard design parameters value. The SHD olive harvester showed significant lower effective field capacity values when alley width was less than 4 m. In addition, a yield monitor was developed and installed on a traditional olive harvester to obtain a yield map from the harvested area. The hedge straddle harvester stood out for its highly effective field capacity; nevertheless, a higher field efficiency was provided by a non-integral lateral canopy shaker. All of the measured orchard parameters have influenced machinery yields, whether effective field capacity or field efficiency. A saving of 40% in effective field capacity was achieved with a reduction from 4 m or higher to 3.5 m in alley width for SHD olive harvester. A yield map was plotted using data that were acquired by a yield monitor, reflecting the yield gradient in spite of the larger differences between tree yields.

  10. Development of a Telemetry and Yield-Mapping System of Olive Harvester

    PubMed Central

    Castillo-Ruiz, Francisco J.; Pérez-Ruiz, Manuel; Blanco-Roldán, Gregorio L.; Gil-Ribes, Jesús A.; Agüera, Juan

    2015-01-01

    Sensors, communication systems and geo-reference units are required to achieve an optimized management of agricultural inputs with respect to the economic and environmental aspects of olive groves. In this study, three commercial olive harvesters were tracked during two harvesting seasons in Spain and Chile using remote and autonomous equipment that was developed to determine their time efficiency and effective based on canopy shaking for fruit detachment. These harvesters work in intensive/high-density (HD) and super-high-density (SHD) olive orchards. A GNSS (Global Navigation Satellite System) and GSM (Global System for Mobile Communications) device was installed to track these harvesters. The GNSS receiver did not affect the driver’s work schedule. Time elements methodology was adapted to the remote data acquisition system. The effective field capacity and field efficiency were investigated. In addition, the field shape, row length, angle between headland alley and row, and row alley width were measured to determinate the optimum orchard design parameters value. The SHD olive harvester showed significant lower effective field capacity values when alley width was less than 4 m. In addition, a yield monitor was developed and installed on a traditional olive harvester to obtain a yield map from the harvested area. The hedge straddle harvester stood out for its highly effective field capacity; nevertheless, a higher field efficiency was provided by a non-integral lateral canopy shaker. All of the measured orchard parameters have influenced machinery yields, whether effective field capacity or field efficiency. A saving of 40% in effective field capacity was achieved with a reduction from 4 m or higher to 3.5 m in alley width for SHD olive harvester. A yield map was plotted using data that were acquired by a yield monitor, reflecting the yield gradient in spite of the larger differences between tree yields. PMID:25675283

  11. Codon Optimization to Enhance Expression Yields Insights into Chloroplast Translation1[OPEN

    PubMed Central

    Chan, Hui-Ting; Williams-Carrier, Rosalind; Barkan, Alice

    2016-01-01

    Codon optimization based on psbA genes from 133 plant species eliminated 105 (human clotting factor VIII heavy chain [FVIII HC]) and 59 (polio VIRAL CAPSID PROTEIN1 [VP1]) rare codons; replacement with only the most highly preferred codons decreased transgene expression (77- to 111-fold) when compared with the codon usage hierarchy of the psbA genes. Targeted proteomic quantification by parallel reaction monitoring analysis showed 4.9- to 7.1-fold or 22.5- to 28.1-fold increase in FVIII or VP1 codon-optimized genes when normalized with stable isotope-labeled standard peptides (or housekeeping protein peptides), but quantitation using western blots showed 6.3- to 8-fold or 91- to 125-fold increase of transgene expression from the same batch of materials, due to limitations in quantitative protein transfer, denaturation, solubility, or stability. Parallel reaction monitoring, to our knowledge validated here for the first time for in planta quantitation of biopharmaceuticals, is especially useful for insoluble or multimeric proteins required for oral drug delivery. Northern blots confirmed that the increase of codon-optimized protein synthesis is at the translational level rather than any impact on transcript abundance. Ribosome footprints did not increase proportionately with VP1 translation or even decreased after FVIII codon optimization but is useful in diagnosing additional rate-limiting steps. A major ribosome pause at CTC leucine codons in the native gene of FVIII HC was eliminated upon codon optimization. Ribosome stalls observed at clusters of serine codons in the codon-optimized VP1 gene provide an opportunity for further optimization. In addition to increasing our understanding of chloroplast translation, these new tools should help to advance this concept toward human clinical studies. PMID:27465114

  12. Heterologous expression of VHb can improve the yield and quality of biocontrol fungus Paecilomyces lilacinus, during submerged fermentation.

    PubMed

    Zhang, Shumeng; Wang, Jieping; Wei, Yale; Tang, Qing; Ali, Maria Kanwal; He, Jin

    2014-10-10

    Paecilomyces lilacinus is an egg-parasitic fungus which is effective against plant-parasitic nematodes and it has been successfully commercialized for the control of many plant-parasitic nematodes. However, during the large-scale industrial fermentation process of the filamentous fungus, the dissolved oxygen supply is a limiting factor, which influences yield, product quality and production cost. To solve this problem, we intended to heterologously express VHb in P. lilacinus ACSS. After optimizing the vgb gene, we fused it with a selection marker gene nptII, a promoter PgpdA and a terminator TtrpC. The complete expression cassette PgpdA-nptII-vgb-TtrpC was transferred into P. lilacinus ACSS by Agrobacterium tumefaciens-mediated transformation. Consequently, we successfully screened an applicable fungus strain PNVT8 which efficiently expressed VHb. The submerged fermentation experiments demonstrated that the expression of VHb not only increased the production traits of P. lilacinus such as biomass and spore production, but also improved the beneficial product quality and application value, due to the secretion of more protease and chitinase. It can be speculated that the recombinant strain harboring vgb gene will have a growth advantage over the original strain under anaerobic conditions in soil and therefore will possess higher biocontrol efficiency against plant-parasitic nematodes.

  13. High-Yield Expression of M2e Peptide of Avian Influenza Virus H5N1 in Transgenic Duckweed Plants.

    PubMed

    Firsov, Aleksey; Tarasenko, Irina; Mitiouchkina, Tatiana; Ismailova, Natalya; Shaloiko, Lyubov; Vainstein, Alexander; Dolgov, Sergey

    2015-07-01

    Avian influenza is a major viral disease in poultry. Antigenic variation of this virus hinders vaccine development. However, the extracellular domain of the virus-encoded M2 protein (peptide M2e) is nearly invariant in all influenza A strains, enabling the development of a broad-range vaccine against them. Antigen expression in transgenic plants is becoming a popular alternative to classical expression methods. Here we expressed M2e from avian influenza virus A/chicken/Kurgan/5/2005(H5N1) in nuclear-transformed duckweed plants for further development of avian influenza vaccine. The N-terminal fragment of M2, including M2e, was selected for expression. The M2e DNA sequence fused in-frame to the 5' end of β-glucuronidase was cloned into pBI121 under the control of CaMV 35S promoter. The resulting plasmid was successfully used for duckweed transformation, and western analysis with anti-β-glucuronidase and anti-M2e antibodies confirmed accumulation of the target protein (M130) in 17 independent transgenic lines. Quantitative ELISA of crude protein extracts from these lines showed M130-β-glucuronidase accumulation ranging from 0.09-0.97 mg/g FW (0.12-1.96 % of total soluble protein), equivalent to yields of up to 40 μg M2e/g plant FW. This relatively high yield holds promise for the development of a duckweed-based expression system to produce an edible vaccine against avian influenza.

  14. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions.

    PubMed

    Pasapula, Vijaya; Shen, Guoxin; Kuppu, Sundaram; Paez-Valencia, Julio; Mendoza, Marisol; Hou, Pei; Chen, Jian; Qiu, Xiaoyun; Zhu, Longfu; Zhang, Xianlong; Auld, Dick; Blumwald, Eduardo; Zhang, Hong; Gaxiola, Roberto; Payton, Paxton

    2011-01-01

    The Arabidopsis gene AVP1 encodes a vacuolar pyrophosphatase that functions as a proton pump on the vacuolar membrane. Overexpression of AVP1 in Arabidopsis, tomato and rice enhances plant performance under salt and drought stress conditions, because up-regulation of the type I H+-PPase from Arabidopsis may result in a higher proton electrochemical gradient, which facilitates enhanced sequestering of ions and sugars into the vacuole, reducing water potential and resulting in increased drought- and salt tolerance when compared to wild-type plants. Furthermore, overexpression of AVP1 stimulates auxin transport in the root system and leads to larger root systems, which helps transgenic plants absorb water more efficiently under drought conditions. Using the same approach, AVP1-expressing cotton plants were created and tested for their performance under high-salt and reduced irrigation conditions. The AVP1-expressing cotton plants showed more vigorous growth than wild-type plants in the presence of 200 mM NaCl under hydroponic growth conditions. The soil-grown AVP1-expressing cotton plants also displayed significantly improved tolerance to both drought and salt stresses in greenhouse conditions. Furthermore, the fibre yield of AVP1-expressing cotton plants is at least 20% higher than that of wild-type plants under dry-land conditions in the field. This research indicates that AVP1 has the potential to be used for improving crop's drought- and salt tolerance in areas where water and salinity are limiting factors for agricultural productivity.

  15. A quality assessment of the MARS crop yield forecasting system for the European Union

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn; Bareuth, Bettina

    2015-04-01

    Timely information on crop production forecasts can become of increasing importance as commodity markets are more and more interconnected. Impacts across large crop production areas due to (e.g.) extreme weather and pest outbreaks can create ripple effects that may affect food prices and availability elsewhere. The MARS Unit (Monitoring Agricultural ResourceS), DG Joint Research Centre, European Commission, has been providing forecasts of European crop production levels since 1993. The operational crop production forecasting is carried out with the MARS Crop Yield Forecasting System (M-CYFS). The M-CYFS is used to monitor crop growth development, evaluate short-term effects of anomalous meteorological events, and provide monthly forecasts of crop yield at national and European Union level. The crop production forecasts are published in the so-called MARS bulletins. Forecasting crop yield over large areas in the operational context requires quality benchmarks. Here we present an analysis of the accuracy and skill of past crop yield forecasts of the main crops (e.g. soft wheat, grain maize), throughout the growing season, and specifically for the final forecast before harvest. Two simple benchmarks to assess the skill of the forecasts were defined as comparing the forecasts to 1) a forecast equal to the average yield and 2) a forecast using a linear trend established through the crop yield time-series. These reveal a variability in performance as a function of crop and Member State. In terms of production, the yield forecasts of 67% of the EU-28 soft wheat production and 80% of the EU-28 maize production have been forecast superior to both benchmarks during the 1993-2013 period. In a changing and increasingly variable climate crop yield forecasts can become increasingly valuable - provided they are used wisely. We end our presentation by discussing research activities that could contribute to this goal.

  16. Heterologous Expression of ATG8c from Soybean Confers Tolerance to Nitrogen Deficiency and Increases Yield in Arabidopsis

    PubMed Central

    Liu, Dong; Chai, Wenting; Gong, Qingqiu; Wang, Ning Ning

    2012-01-01

    Nitrogen is an essential element for plant growth and yield. Improving Nitrogen Use Efficiency (NUE) of crops could potentially reduce the application of chemical fertilizer and alleviate environmental damage. To identify new NUE genes is therefore an important task in molecular breeding. Macroautophagy (autophagy) is an intracellular process in which damaged or obsolete cytoplasmic components are encapsulated in double membraned vesicles termed autophagosomes, then delivered to the vacuole for degradation and nutrient recycling. One of the core components of autophagosome formation, ATG8, has been shown to directly mediate autophagosome expansion, and the transcript of which is highly inducible upon starvation. Therefore, we postulated that certain homologs of Saccharomyces cerevisiae ATG8 (ScATG8) from crop species could have potential for NUE crop breeding. A soybean (Glycine max, cv. Zhonghuang-13) ATG8, GmATG8c, was selected from the 11 family members based on transcript analysis upon nitrogen deprivation. GmATG8c could partially complement the yeast atg8 mutant. Constitutive expression of GmATG8c in soybean callus cells not only enhanced nitrogen starvation tolerance of the cells but accelerated the growth of the calli. Transgenic Arabidopsis over-expressing GmATG8c performed better under extended nitrogen and carbon starvation conditions. Meanwhile, under optimum growth conditions, the transgenic plants grew faster, bolted earlier, produced larger primary and axillary inflorescences, eventually produced more seeds than the wild-type. In average, the yield was improved by 12.9%. We conclude that GmATG8c may serve as an excellent candidate for breeding crops with enhanced NUE and better yield. PMID:22629371

  17. Expression, purification and characterization of inactive and active forms of ERK2 from insect expression system.

    PubMed

    Yan, Kelly; Merritt, Hanne; Crawford, Kenneth; Pardee, Gwynn; Cheng, Jan Marie; Widger, Stephania; Hekmat-Nejad, Mohammad; Zaror, Isabel; Sim, Janet

    2015-06-01

    Extracellular signal-regulated kinase 2 (ERK2) is a serine/threonine protein kinase involved in many cellular programs, such as cell proliferation, differentiation, motility and programed cell-death. It is therefore considered an important target in the treatment of cancer. In an effort to support biochemical screening and small molecule drug discovery, we established a robust system to generate both inactive and active forms of ERK2 using insect expression system. We report here, for the first time, that inactive ERK2 can be expressed and purified with 100% homogeneity in the unphosphorylated form using insect system. This resulted in a significant 20-fold yield improvement compared to that previously reported using bacterial expression system. We also report a newly developed system to generate active ERK2 in insect cells through in vivo co-expression with a constitutively active MEK1 (S218D S222D). Isolated active ERK2 was confirmed to be doubly phosphorylated at the correct sites, T185 and Y187, in the activation loop of ERK2. Both ERK2 forms, inactive and active, were well characterized by biochemical activity assay for their kinase function. Inactive and active ERK2 were the two key reagents that enabled successful high through-put biochemical assay screen and structural drug discovery studies.

  18. Crop yield network and its response to changes in climate system

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.

    2013-12-01

    Crop failure (reduction in crop yield) due to extreme weather and climate change could lead to unstable food supply, reflecting the recent globalization in world agricultural production. Specifically, in several major production countries producing large amount of main cereal crops, wheat, maize, soybean and rice, abrupt crop failures in wide area are significantly serious for world food supply system. We examined the simultaneous changes in crop yield in USA, China and Brazil, in terms of the changes in climate system such as El Nino, La nina and so on. In this study, we defined a crop yield networks, which represent the correlation between yearly changes in crop yields and climate resources during the crop growing season in two regions. The climate resources during the crop growing season represents here the average temperature and the accumulated precipitation during the crop growing season of a target crop. As climate data, we used a reanalysis climate data JRA-25 (Japan Meteorological Agency). The yearly changes in crop yields are based on a gridded crop productivity database with a resolution of 1.125 degree in latitude/longitude (Iizumi et al. 2013). It is constructed from the agriculture statistics issued by local administrative bureau in each country, which covers the period during 1982 to 2006 (25 years). For the regions being lack of data, the data was interpolated referring to NPP values estimated by satellite data. Crop yield network is constructed as follows: (1) let DY(i,y) be negative difference in crop yield of year y from the trend yield at grid i; (2) define the correlation of the differences Cij(y) = DY(i, y) DY(j, y); (3) if Cij(y) > Q, then grids i and j are mutually linked for a threshold value Q. Links between grids make a crop yield network. It is here noted that only negative differences are taken into account because we focused on the lean year cases (i.e. yields of both grids were lower than those in the long-term trend). The arrays of

  19. Sheep Grazing Effect on Dryland Soil Properties and Wheat Yield in the Wheat-Fallow System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheep (Ovis aries L.) grazing during fallow is an effective method of controlling weeds and pests in the wheat (Triticum aestivum L.)-fallow system. Little is known about the effect of sheep grazing on dryland soil properties and wheat yield. We evaluated the effects of fallow management for weed co...

  20. Sheep Grazing in the Wheat-Fallow System Affects Dryland Soil Properties and Grain Yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheep (Ovis aries L.) grazing during fallow is an effective method of controlling weeds and pests in the wheat (Triticum aestivum L.)-fallow system. Little is known about the effect of sheep grazing on dryland soil properties and wheat yield. We evaluated the effects of fallow management for weed co...

  1. Does increasing milk yield per cow reduce greenhouse gas emissions? A system approach.

    PubMed

    Zehetmeier, M; Baudracco, J; Hoffmann, H; Heißenhuber, A

    2012-01-01

    Milk yield per cow has continuously increased in many countries over the last few decades. In addition to potential economic advantages, this is often considered an important strategy to decrease greenhouse gas (GHG) emissions per kg of milk produced. However, it should be considered that milk and beef production systems are closely interlinked, as fattening of surplus calves from dairy farming and culled dairy cows play an important role in beef production in many countries. The main objective of this study was to quantify the effect of increasing milk yield per cow on GHG emissions and on other side effects. Two scenarios were modelled: constant milk production at the farm level and decreasing beef production (as co-product; Scenario 1); and both milk and beef production kept constant by compensating the decline in beef production with beef from suckler cow production (Scenario 2). Model calculations considered two types of production unit (PU): dairy cow PU and suckler cow PU. A dairy cow PU comprises not only milk output from the dairy cow, but also beef output from culled cows and the fattening system for surplus calves. The modelled dairy cow PU differed in milk yield per cow per year (6000, 8000 and 10 000 kg) and breed. Scenario 1 resulted in lower GHG emissions with increasing milk yield per cow. However, when milk and beef outputs were kept constant (Scenario 2), GHG emissions remained approximately constant with increasing milk yield from 6000 to 8000 kg/cow per year, whereas further increases in milk yield (10 000 kg milk/cow per year) resulted in slightly higher (8%) total GHG emissions. Within Scenario 2, two different allocation methods to handle co-products (surplus calves and beef from culled cows) from dairy cow production were evaluated. Results showed that using the 'economic allocation method', GHG emissions per kg milk decreased with increasing milk yield per cow per year, from 1.06 kg CO2 equivalents (CO2eq) to 0.89 kg CO2eq for the 6000 and

  2. The yield and decay coefficients of exoelectrogenic bacteria in bioelectrochemical systems.

    PubMed

    Wilson, Erica L; Kim, Younggy

    2016-05-01

    In conventional wastewater treatment, waste sludge management and disposal contribute the major cost for wastewater treatment. Bioelectrochemical systems, as a potential alternative for future wastewater treatment and resources recovery, are expected to produce small amounts of waste sludge because exoelectrogenic bacteria grow on anaerobic respiration and form highly populated biofilms on bioanode surfaces. While waste sludge production is governed by the yield and decay coefficient, none of previous studies have quantified these kinetic constants for exoelectrogenic bacteria. For yield coefficient estimation, we modified McCarty's free energy-based model by using the bioanode potential for the free energy of the electron acceptor reaction. The estimated true yield coefficient ranged 0.1 to 0.3 g-VSS (volatile suspended solids) g-COD(-1) (chemical oxygen demand), which is similar to that of most anaerobic microorganisms. The yield coefficient was sensitively affected by the bioanode potential and pH while the substrate and bicarbonate concentrations had relatively minor effects on the yield coefficient. In lab-scale experiments using microbial electrolysis cells, the observed yield coefficient (including the effect of cell decay) was found to be 0.020 ± 0.008 g-VSS g-COD(-1), which is an order of magnitude smaller than the theoretical estimation. Based on the difference between the theoretical and experimental results, the decay coefficient was approximated to be 0.013 ± 0.002 d(-1). These findings indicate that bioelectrochemical systems have potential for future wastewater treatment with reduced waste sludge as well as for resources recovery. Also, the found kinetic information will allow accurate estimation of wastewater treatment performance in bioelectrochemical systems.

  3. Expression systems for cloned xenobiotic transporters

    SciTech Connect

    Pritchard, John B.

    2005-05-01

    One challenge of modern biology is to be able to match genes and their encoded proteins with events at the molecular, cellular, tissue, and organism levels, and thus, provide a multi-level understanding of gene function and dysfunction. How well this can be done for xenobiotic transporters depends on a knowledge of the genes expressed in the tissue, the cellular locations of the gene products (do they function for uptake or efflux?), and our ability to match substrates with transporters using information obtained from cloned transporters functioning in heterologous expression systems. Clearly, making a rational choice of expression system to use for the characterization and study of cloned xenobiotic transporters is a critical part of study design. This choice requires well-defined goals, as well as an understanding of the strengths and weaknesses of candidate expression systems.

  4. Baculovirus-insect cell expression systems.

    PubMed

    Jarvis, Donald L

    2009-01-01

    In the early 1980s, the first-published reports of baculovirus-mediated foreign gene expression stimulated great interest in the use of baculovirus-insect cell systems for recombinant protein production. Initially, this system appeared to be the first that would be able to provide the high production levels associated with bacterial systems and the eukaryotic protein processing capabilities associated with mammalian systems. Experience and an increased understanding of basic insect cell biology have shown that these early expectations were not completely realistic. Nevertheless, baculovirus-insect cell expression systems have the capacity to produce many recombinant proteins at high levels and they also provide significant eukaryotic protein processing capabilities. Furthermore, important technological advances over the past 20 years have improved upon the original methods developed for the isolation of baculovirus expression vectors, which were inefficient, required at least some specialized expertise and, therefore, induced some frustration among those who used the original baculovirus-insect cell expression system. Today, virtually any investigator with basic molecular biology training can relatively quickly and efficiently isolate a recombinant baculovirus vector and use it to produce their favorite protein in an insect cell culture. This chapter will begin with background information on the basic baculovirus-insect cell expression system and will then focus on recent developments that have greatly facilitated the ability of an average investigator to take advantage of its attributes.

  5. Genetic modification of alphaGal expression in xenogeneic endothelial cells yields a complex immunological response.

    PubMed

    Fischbeck, J A; Baier, J M; Akella, R; Hern-Anderson, D; Schmidt, C E

    2001-12-01

    The source of cells for tissue engineering applications remains a hurdle, predominantly for procedures in which there is insufficient time to harvest a patient's own cells. Animal cells are readily available, but undergo immune rejection. Rejection of animal (i.e., xenogeneic) tissue involves practically every component of the immune system. The initial phase, hyperacute rejection (HAR), involves natural xenoreactive antibodies and the complement system, and leads to endothelial cell lysis and rapid tissue destruction. The cell-surface epitope, galactose-alpha(1,3)-galactose (alphaGal), is presumed to play a key role in HAR. The later stage of immune response (delayed xenograft rejection or DXR), is mediated by immune cells such as monocytes. Carbohydrates are likely also involved in DXR, but their role in this phase of the immune response is less clear. A better understanding of all stages of xenogeneic immune rejection may make it feasible to create cell lines that are immune tolerant. In these studies, we have genetically modified bovine endothelial cells to study the roles of carbohydrates in immune rejection. Our studies suggest that one or more epitopes other than alphaGal may influence complement-mediated lysis. Furthermore, antibodies, as instigators in the complement response, and monocytes appear to recognize different cell surface epitopes.

  6. Effect of tillage system on yield and weed populations of soybean ( Glycin Max L.).

    PubMed

    Hosseini, Seyed Z; Firouzi, Saeed; Aminpanah, Hashem; Sadeghnejhad, Hamid R

    2016-03-01

    Field experiment was conducted at Agricultural and Natural Resources Research Center of Golestan Province, Iran, to determine the effects of tillage system and weed management regime on yield and weed populations in soybean ( Glycin max L.). The experimental design was a split plot where the whole plot portion was a randomized complete block with three replicates. Main plots were tillage system: 1- No-till row crop seeding, 2- No-till seed drilling, 3- Tillage with disc harrow and drill planting, 4- Tillage with chisel packer and drill planting. The subplots were weed management regimes: 1-Weed control with herbicide application, 2- Hand weeding, 3- Herbicide application plus hand weeding, and 4- Non-weeding. Results indicated that the main effects of tillage system and weed management regime were significant for seed yield, pod number per plant, seed number per pod, weed density and biomass, while their interaction were significant only for weed density, weed biomass, and seed number per pod. The highest grain yields (3838 kg ha-1) were recorded for No-till row crop seeding. The highest seed yield (3877 kg ha-1) also was recorded for weed control with herbicide and hand weeding treatment, followed by hand weeding (3379 kg ha-1).

  7. Transgene expression systems in the Triticeae cereals.

    PubMed

    Hensel, Götz; Himmelbach, Axel; Chen, Wanxin; Douchkov, Dimitar K; Kumlehn, Jochen

    2011-01-01

    The control of transgene expression is vital both for the elucidation of gene function and for the engineering of transgenic crops. Given the dominance of the Triticeae cereals in the agricultural economy of the temperate world, the development of well-performing transgene expression systems of known functionality is of primary importance. Transgenes can be expressed either transiently or stably. Transient expression systems based on direct or virus-mediated gene transfer are particularly useful in situations where the need is to rapidly screen large numbers of genes. However, an unequivocal understanding of gene function generally requires that a transgene functions throughout the plant's life and is transmitted through the sexual cycle, since this alone allows its effect to be decoupled from the plant's response to the generally stressful gene transfer event. Temporal, spatial and quantitative control of a transgene's expression depends on its regulatory environment, which includes both its promoter and certain associated untranslated region sequences. While many transgenic approaches aim to manipulate plant phenotype via ectopic gene expression, a transgene sequence can be also configured to down-regulate the expression of its endogenous counterpart, a strategy which exploits the natural gene silencing machinery of plants. In this review, current technical opportunities for controlling transgene expression in the Triticeae species are described. Apart from protocols for transient and stable gene transfer, the choice of promoters and other untranslated regulatory elements, we also consider signal peptides, as they too govern the abundance and particularly the sub-cellular localization of transgene products.

  8. Kinetics of lipogenic genes expression in milk purified mammary epithelial cells (MEC) across lactation and their correlation with milk and fat yield in buffalo.

    PubMed

    Yadav, Poonam; Kumar, Parveen; Mukesh, Manishi; Kataria, R S; Yadav, Anita; Mohanty, A K; Mishra, B P

    2015-04-01

    Expression patterns of lipogenic genes (LPL, ABCG2, ACSS2, ACACA, SCD, BDH, LIPIN1, SREBF1, PPARα and PPARγ) were studied in milk purified MEC across different stages of lactation (15, 30, 45, 60, 90, 120 and 240 days relative to parturition) in buffalo. PPARα was the most abundant gene while ABCG2 and ACSS2 had moderate level of expression; whereas expression of SREBF and PPARγ was very low. The expression patterns of some genes (BDH1, ACSS2, and LIPIN1) across lactation were positively correlated with milk yield while negatively correlated with fat yield. SCD also showed weak correlation with milk yield (p, 0.53) and fat yield (p, -0.47). On the other hand, expression pattern of ACACA was negatively correlated with milk yield (p, -0.88) and positively correlated with fat yield (p, 0.62). Strong correlation was observed between genes involved in de novo milk fat synthesis (BDH1, ACSS2, LIPIN2 and SCD) and milk yield.

  9. Development and validation of equations utilizing lamb vision system output to predict lamb carcass fabrication yields.

    PubMed

    Cunha, B C N; Belk, K E; Scanga, J A; LeValley, S B; Tatum, J D; Smith, G C

    2004-07-01

    This study was performed to validate previous equations and to develop and evaluate new regression equations for predicting lamb carcass fabrication yields using outputs from a lamb vision system-hot carcass component (LVS-HCC) and the lamb vision system-chilled carcass LM imaging component (LVS-CCC). Lamb carcasses (n = 149) were selected after slaughter, imaged hot using the LVS-HCC, and chilled for 24 to 48 h at -3 to 1 degrees C. Chilled carcasses yield grades (YG) were assigned on-line by USDA graders and by expert USDA grading supervisors with unlimited time and access to the carcasses. Before fabrication, carcasses were ribbed between the 12th and 13th ribs and imaged using the LVS-CCC. Carcasses were fabricated into bone-in subprimal/primal cuts. Yields calculated included 1) saleable meat yield (SMY); 2) subprimal yield (SPY); and 3) fat yield (FY). On-line (whole-number) USDA YG accounted for 59, 58, and 64%; expert (whole-number) USDA YG explained 59, 59, and 65%; and expert (nearest-tenth) USDA YG accounted for 60, 60, and 67% of the observed variation in SMY, SPY, and FY, respectively. The best prediction equation developed in this trial using LVS-HCC output and hot carcass weight as independent variables explained 68, 62, and 74% of the variation in SMY, SPY, and FY, respectively. Addition of output from LVS-CCC improved predictive accuracy of the equations; the combined output equations explained 72 and 66% of the variability in SMY and SPY, respectively. Accuracy and repeatability of measurement of LM area made with the LVS-CCC also was assessed, and results suggested that use of LVS-CCC provided reasonably accurate (R2 = 0.59) and highly repeatable (repeatability = 0.98) measurements of LM area. Compared with USDA YG, use of the dual-component lamb vision system to predict cut yields of lamb carcasses improved accuracy and precision, suggesting that this system could have an application as an objective means for pricing carcasses in a value

  10. Enhancing digestibility and ethanol yield of Populus wood via expression of an engineered monolignol 4-O-methyltransferase

    PubMed Central

    Cai, Yuanheng; Zhang, Kewei; Kim, Hoon; Hou, Guichuan; Zhang, Xuebin; Yang, Huijun; Feng, Huan; Miller, Lisa; Ralph, John; Liu, Chang-Jun

    2016-01-01

    Producing cellulosic biofuels and bio-based chemicals from woody biomass is impeded by the presence of lignin polymer in the plant cell wall. Manipulating the monolignol biosynthetic pathway offers a promising approach to improved processability, but often impairs plant growth and development. Here, we show that expressing an engineered 4-O-methyltransferase that chemically modifies the phenolic moiety of lignin monomeric precursors, thus preventing their incorporation into the lignin polymer, substantially alters hybrid aspens' lignin content and structure. Woody biomass derived from the transgenic aspens shows a 62% increase in the release of simple sugars and up to a 49% increase in the yield of ethanol when the woody biomass is subjected to enzymatic digestion and yeast-mediated fermentation. Moreover, the cell wall structural changes do not affect growth and biomass production of the trees. Our study provides a useful strategy for tailoring woody biomass for bio-based applications. PMID:27349324

  11. Enhancing digestibility and ethanol yield of Populus wood via expression of an engineered monolignol 4-O-methyltransferase

    DOE PAGES

    Cai, Yuanheng; Zhang, Kewei; Kim, Hoon; ...

    2016-06-28

    Producing cellulosic biofuels and bio-based chemicals from woody biomass is impeded by the presence of lignin polymer in the plant cell wall. Manipulating the monolignol biosynthetic pathway offers a promising approach to improved processability, but often impairs plant growth and development. Here, we show that expressing an engineered 4-O-methyltransferase that chemically modifies the phenolic moiety of lignin monomeric precursors, thus preventing their incorporation into the lignin polymer, substantially alters hybrid aspens’ lignin content and structure. Woody biomass derived from the transgenic aspens shows a 62% increase in the release of simple sugars and up to a 49% increase in themore » yield of ethanol when the woody biomass is subjected to enzymatic digestion and yeast-mediated fermentation. Furthermore, the cell wall structural changes do not affect growth and biomass production of the trees. Our study provides a useful strategy for tailoring woody biomass for bio-based applications.« less

  12. Enhancing digestibility and ethanol yield of Populus wood via expression of an engineered monolignol 4-O-methyltransferase.

    PubMed

    Cai, Yuanheng; Zhang, Kewei; Kim, Hoon; Hou, Guichuan; Zhang, Xuebin; Yang, Huijun; Feng, Huan; Miller, Lisa; Ralph, John; Liu, Chang-Jun

    2016-06-28

    Producing cellulosic biofuels and bio-based chemicals from woody biomass is impeded by the presence of lignin polymer in the plant cell wall. Manipulating the monolignol biosynthetic pathway offers a promising approach to improved processability, but often impairs plant growth and development. Here, we show that expressing an engineered 4-O-methyltransferase that chemically modifies the phenolic moiety of lignin monomeric precursors, thus preventing their incorporation into the lignin polymer, substantially alters hybrid aspens' lignin content and structure. Woody biomass derived from the transgenic aspens shows a 62% increase in the release of simple sugars and up to a 49% increase in the yield of ethanol when the woody biomass is subjected to enzymatic digestion and yeast-mediated fermentation. Moreover, the cell wall structural changes do not affect growth and biomass production of the trees. Our study provides a useful strategy for tailoring woody biomass for bio-based applications.

  13. Effect of Pulse Width on Ozone Yield using Inductive Energy Storage System Pulsed Power Generator

    NASA Astrophysics Data System (ADS)

    Yagi, Ippei; Mukaigawa, Seiji; Takaki, Koichi; Fujiwara, Tamiya; Go, Tomio

    Nanosecond pulse voltages of several pulse widths were applied to a cylindrical plasma reactor for ozone synthesis with high energy yield. Nanoseconds pulse voltages were produced by inductive energy storage system pulsed power generators using semiconductor opening switch (SOS) diodes. First recovery diodes were used as SOS diodes in the inductive energy storage system to produce short-pulsed high voltage with high-repetition rate. The short pulse voltage of 9.5 ns width and 33 kV peak voltage was produced at charging voltage of 15 kV and was applied to a 1 mm diameter center wire electrode in the plasma reactor. The copper cylinder of 19 mm inner diameter was used as outer electrode and was connected to a ground. The ozone yield of 271 g/kWh was obtained using the 9.5 ns width pulse voltage at synthesized 412 ppm of ozone concentration. The yield 271 g/kWh was more than twice as much as the yield 114 g/kWh at 401 ppm using a 60 ns pulse voltage.

  14. Satellite-based assessment of yield variation and its determinants in smallholder African systems

    PubMed Central

    Lobell, David B.

    2017-01-01

    The emergence of satellite sensors that can routinely observe millions of individual smallholder farms raises possibilities for monitoring and understanding agricultural productivity in many regions of the world. Here we demonstrate the potential to track smallholder maize yield variation in western Kenya, using a combination of 1-m Terra Bella imagery and intensive field sampling on thousands of fields over 2 y. We find that agreement between satellite-based and traditional field survey-based yield estimates depends significantly on the quality of the field-based measures, with agreement highest (R2 up to 0.4) when using precise field measures of plot area and when using larger fields for which rounding errors are smaller. We further show that satellite-based measures are able to detect positive yield responses to fertilizer and hybrid seed inputs and that the inferred responses are statistically indistinguishable from estimates based on survey-based yields. These results suggest that high-resolution satellite imagery can be used to make predictions of smallholder agricultural productivity that are roughly as accurate as the survey-based measures traditionally used in research and policy applications, and they indicate a substantial near-term potential to quickly generate useful datasets on productivity in smallholder systems, even with minimal or no field training data. Such datasets could rapidly accelerate learning about which interventions in smallholder systems have the most positive impact, thus enabling more rapid transformation of rural livelihoods. PMID:28202728

  15. Enhanced expression of OsSPL14 gene and its association with yield components in rice (Oryza sativa) under low nitrogen conditions.

    PubMed

    Srikanth, B; Subhakara Rao, I; Surekha, K; Subrahmanyam, D; Voleti, S R; Neeraja, C N

    2016-01-15

    Nitrogen use efficiency (NUE) in rice crop is the need of the hour for reduction of nitrous oxide emission resulting from excess nitrogen (N) fertilizer application and also in reduction of cost of cultivation. Ten rice genotypes were grown under low and recommended dose of N application and characterized in terms of parameters related to yield, yield related components and NUE indicators. Wide genetic variability under low N conditions was observed with significant variation for 15 yield related parameters in interactions of genotypes and treatment. Limitation of N has led to the decrease of all yield and yield related parameters, but for grain filling % and 1000 grain weight. Two genotypes, Rasi and Varadhan have shown minimum differences between low and recommended N conditions. Correlation analysis of various yield components showed the importance of the secondary branches for the total grains under low N. Expression analysis of OsSPL14 (LOC_Os08g39890) gene reported to be associated with increased panicle branching and higher grain yield through real time PCR in leaf and three stages of panicle has shown differential temporal expression and its association with yield and yield related components across the genotypes. The expression of OsSPL14 at panicle stage 3, has shown correlation (P<0.05) with N% in grain. Since OsSPL14 is a functional transcription activator, its association of expression in leaf and three panicle stages with yield components as observed in the present study suggests the role of nitrogen metabolism related genes in plant growth and development and its conversion into yield components in rice.

  16. Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants.

    PubMed

    Park, Ki Youl; Kim, Eun Yu; Seo, Young Sam; Kim, Woo Taek

    2016-03-01

    Phospholipids are not only important components of cell membranes, but participate in diverse processes in higher plants. In this study, we generated Capsicum annuum phospholipiase A1 (CaPLA1) overexpressing transgenic rice (Oryza sativa L.) plants under the control of the maize ubiquitin promoter. The T4 CaPLA1-overexpressing rice plants (Ubi:CaPLA1) had a higher root:shoot mass ratio than the wild-type plants in the vegetative stage. Leaf epidermal cells from transgenic plants had more cells than wild-type plants. Genes that code for cyclin and lipid metabolic enzymes were up-regulated in the transgenic lines. When grown under typical paddy field conditions, the transgenic plants produced more tillers, longer panicles and more branches per panicle than the wild-type plants, all of which resulted in greater grain yield. Microarray analysis suggests that gene expressions that are related with cell proliferation, lipid metabolism, and redox state were widely altered in CaPLA1-overexpressing transgenic rice plants. Ubi:CaPLA1 plants had a reduced membrane peroxidation state, as determined by malondialdehyde and conjugated diene levels and higher peroxidase activity than wild-type rice plants. Furthermore, three isoprenoid synthetic genes encoding terpenoid synthase, hydroxysteroid dehydrogenase and 3-hydroxy-3-methyl-glutaryl-CoA reductase were up-regulated in CaPLA1-overexpressing plants. We suggest that constitutive expression of CaPLA1 conferred increased grain yield with enhanced growth in transgenic rice plants by alteration of gene activities related with cell proliferation, lipid metabolism, membrane peroxidation state and isoprenoid biosynthesis.

  17. PERUN system and its application for assessing the crop yield potential of the Czech Republic

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Zalud, Z.; Eitzinger, J.; Trnka, M.; Semeradova, D.

    2003-04-01

    The main purpose of the first version of the computer system PERUN, which has been developed in 2001-2002 (presented in EGS 2002), is the probabilistic seasonal crop yield forecasting for a given site. The system is based on the crop growth model WOFOST (version 7, slightly modified) and the six-variate version of the stochastic weather generator Met&Roll. The system is now being enhanced to allow assessment of the crop yield potential of a larger area. As this assessment requires a great amount of meteorological, pedological and crop data to be gathered, but these data are not yet all available to the authors, the presentation will rather focus on the methodological aspects and the results of the sensitivity analysis. The presentation will consist of the following points: (i) Overview of the PERUN system. The results of the validation experiments (spring barley and winter wheat at selected Czech locations) will be presented, too. (ii) Methodology used for a spatial assessment. The assessment is based on integrating model crop yields simulated at multiple sub-regions with region-specific climatic and pedological conditions. The input daily weather series are produced by the stochastic generator. The multi-year crop model simulation is performed for each sub-region to assess the mean and variability of the model yields. (iii) Sensitivity of the regional crop production potential to uncertainties in selected input characteristics: crop cultivar, soil type, hydrological characteristics (e.g. amount of available water at the beginning of the simulation), and climatic conditions (e.g temperature, precipitation). In assessing sensitivity to climate, the climatic characteristics will be varied within the range of values typical for the territory of the Czech Republic. The crops applied in the analysis are spring barley and winter wheat. Acknowledgement: The system PERUN has been developed within the frame of project QC1316 sponsored by the Czech National Agency for

  18. Maximum sustainable yield and species extinction in a prey-predator system: some new results.

    PubMed

    Ghosh, Bapan; Kar, T K

    2013-06-01

    Though the maximum sustainable yield (MSY) approach has been legally adopted for the management of world fisheries, it does not provide any guarantee against from species extinction in multispecies communities. In the present article, we describe the appropriateness of the MSY policy in a Holling-Tanner prey-predator system with different types of functional responses. It is observed that for both type I and type II functional responses, harvesting of either prey or predator species at the MSY level is a sustainable fishing policy. In the case of combined harvesting, both the species coexist at the maximum sustainable total yield (MSTY) level if the biotic potential of the prey species is greater than a threshold value. Further, increase of the biotic potential beyond the threshold value affects the persistence of the system.

  19. Dependence of Initial Oxygen Concentration on Ozone Yield Using Inductive Energy Storage System Pulsed Power Generator

    NASA Astrophysics Data System (ADS)

    Go, Tomio; Tanaka, Yasushi; Yamazaki, Nobuyuki; Mukaigawa, Seiji; Takaki, Koichi; Fujiwara, Tamiya

    Dependence of initial oxygen concentration on ozone yield using streamer discharge reactor driven by an inductive energy storage system pulsed power generator is described in this paper. Fast recovery type diodes were employed as semiconductor opening switch to interrupt a circuit current within 100 ns. This rapid current change produced high-voltage short pulse between a secondary energy storage inductor. The repetitive high-voltage short pulse was applied to a 1 mm diameter center wire electrode placed in a cylindrical pulse corona reactor. The streamer discharge successfully occurred between the center wire electrode and an outer cylinder ground electrode of 2 cm inner diameter. The ozone was produced with the streamer discharge and increased with increasing pulse repetition rate. The ozone yield changed in proportion to initial oxygen concentration contained in the injected gas mixture at 800 ns forward pumping time of the current. However, the decrease of the ozone yield by decreasing oxygen concentration in the gas mixture at 180 ns forward pumping time of the current was lower than the decrease at 800 ns forward pumping time of the current. This dependence of the initial oxygen concentration on ozone yield at 180 ns forward pumping time is similar to that of dielectric barrier discharge reactor.

  20. The Potato Systems Planner: Integrating Cropping System Impacts on Crop Yield and Quality, Soil Biology, Nutrient Cycling, Diseases, and Economics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Finding and developing profitable cropping systems is a high priority for the potato industry. Consequently, an interdisciplinary team of ARS scientists from the New England Plant, Soil, & Water Laboratory evaluated 14 different rotations for their impacts on crop yield and quality, nutrient availa...

  1. Holographic lens spectrum splitting photovoltaic system for increased diffuse collection and annual energy yield

    NASA Astrophysics Data System (ADS)

    Vorndran, Shelby D.; Wu, Yuechen; Ayala, Silvana; Kostuk, Raymond K.

    2015-09-01

    Concentrating and spectrum splitting photovoltaic (PV) modules have a limited acceptance angle and thus suffer from optical loss under off-axis illumination. This loss manifests itself as a substantial reduction in energy yield in locations where a significant portion of insulation is diffuse. In this work, a spectrum splitting PV system is designed to efficiently collect and convert light in a range of illumination conditions. The system uses a holographic lens to concentrate shortwavelength light onto a smaller, more expensive indium gallium phosphide (InGaP) PV cell. The high efficiency PV cell near the axis is surrounded with silicon (Si), a less expensive material that collects a broader portion of the solar spectrum. Under direct illumination, the device achieves increased conversion efficiency from spectrum splitting. Under diffuse illumination, the device collects light with efficiency comparable to a flat-panel Si module. Design of the holographic lens is discussed. Optical efficiency and power output of the module under a range of illumination conditions from direct to diffuse are simulated with non-sequential raytracing software. Using direct and diffuse Typical Metrological Year (TMY3) irradiance measurements, annual energy yield of the module is calculated for several installation sites. Energy yield of the spectrum splitting module is compared to that of a full flat-panel Si reference module.

  2. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase

    PubMed Central

    Mahmoud, Soheil S.; Croteau, Rodney B.

    2001-01-01

    Peppermint (Mentha × piperita L.) was independently transformed with a homologous sense version of the 1-deoxy-d-xylulose-5-phosphate reductoisomerase cDNA and with a homologous antisense version of the menthofuran synthase cDNA, both driven by the CaMV 35S promoter. Two groups of transgenic plants were regenerated in the reductoisomerase experiments, one of which remained normal in appearance and development; another was deficient in chlorophyll production and grew slowly. Transgenic plants of normal appearance and growth habit expressed the reductoisomerase transgene strongly and constitutively, as determined by RNA blot analysis and direct enzyme assay, and these plants accumulated substantially more essential oil (about 50% yield increase) without change in monoterpene composition compared with wild-type. Chlorophyll-deficient plants did not afford detectable reductoisomerase mRNA or enzyme activity and yielded less essential oil than did wild-type plants, indicating cosuppression of the reductoisomerase gene. Plants transformed with the antisense version of the menthofuran synthase cDNA were normal in appearance but produced less than half of this undesirable monoterpene oil component than did wild-type mint grown under unstressed or stressed conditions. These experiments demonstrate that essential oil quantity and quality can be regulated by metabolic engineering. Thus, alteration of the committed step of the mevalonate-independent pathway for supply of terpenoid precursors improves flux through the pathway that leads to increased monoterpene production, and antisense manipulation of a selected downstream monoterpene biosynthetic step leads to improved oil composition. PMID:11427737

  3. Efficient expression of acetylcholine-binding protein from Aplysia californica in Bac-to-Bac system.

    PubMed

    Lin, Bo; Meng, Hailing; Bing, Hui; Zhangsun, Dongting; Luo, Sulan

    2014-01-01

    The Bac-to-Bac baculovirus expression system can efficiently produce recombinant proteins, but the system may have to be optimized to achieve high-level expression for different candidate proteins. We reported here the efficient expression of acetylcholine-binding proteins from sea hares Aplysia californica (Ac-AChBP) and a convenient method to monitor protein expression level in this expression system. Three key factors affecting expression of Ac-AChBP were optimized for maximizing the yield, which included the cell density, volume of the infecting baculovirus inoculums, and the culturing time of postinfection. We have found it to reach a high yield of ∼5 mg/L, which needs 55 h incubation after infection at the cell density of 2 × 10(6) cells/mL with an inoculum volume ratio of 1 : 100. The optimized expression system in this study was also applied for expressing another protein Ls-AChBP from Lymnaea stagnalis successfully. Therefore, this established method is helpful to produce high yields of AChBP proteins for X-ray crystallographic structural and functional studies.

  4. Recombinant protein expression in Lactococcus lactis using the P170 expression system.

    PubMed

    Jørgensen, Casper M; Vrang, Astrid; Madsen, Søren M

    2014-02-01

    The use of the Gram-positive bacterium Lactococcus lactis in recombinant protein production has several advantages, including the organism's long history of safe use in food production and the fact that it does not produce endotoxins. Furthermore the current non-dairy L. lactis production strains contain few proteases and can secrete stable recombinant protein to the growth medium. The P170 expression system used for recombinant protein production in L. lactis utilizes an inducible promoter, P170, which is up-regulated as lactate accumulates in the growth medium. We have optimised the components of the expression system, including improved promoter strength, signal peptides and isolation of production strains with increased productivity. Recombinant proteins are produced in a growth medium with no animal-derived components as a simple batch fermentation requiring minimal process control. The accumulation of lactate in the growth medium does, however, inhibit growth and limits the yield from batch and fed-batch processes. We therefore combined the P170 expression system with the REED™ technology, which allows control of lactate concentration by electro-dialysis during fermentation. Using this combination, production of the Staphylococcus aureus nuclease reached 2.5 g L(-1).

  5. CHO-S antibody titers >1 gram/liter using flow electroporation-mediated transient gene expression followed by rapid migration to high-yield stable cell lines.

    PubMed

    Steger, Krista; Brady, James; Wang, Weili; Duskin, Meg; Donato, Karen; Peshwa, Madhusudan

    2015-04-01

    In recent years, researchers have turned to transient gene expression (TGE) as an alternative to CHO stable cell line generation for early-stage antibody development. Despite advances in transfection methods and culture optimization, the majority of CHO-based TGE systems produce insufficient antibody titers for extensive use within biotherapeutic development pipelines. Flow electroporation using the MaxCyte STX Scalable Transfection System is a highly efficient, scalable means of CHO-based TGE for gram-level production of antibodies without the need for specialized expression vectors or genetically engineered CHO cell lines. CHO cell flow electroporation is easily scaled from milligram to multigram quantities without protocol reoptimization while maintaining transfection performance and antibody productivity. In this article, data are presented that demonstrate the reproducibility, scalability, and antibody production capabilities of CHO-based TGE using the MaxCyte STX. Data show optimization of posttransfection parameters such as cell density, media composition, and feed strategy that result in secreted antibody titers >1 g/L and production of multiple grams of antibody within 2 weeks of a single CHO-S cell transfection. In addition, data are presented to demonstrate the application of scalable electroporation for the rapid generation of high-yield stable CHO cell lines to bridge the gap between early- and late-stage antibody development activities.

  6. Expression of soluble and active interferon consensus in SUMO fusion expression system in E. coli.

    PubMed

    Peciak, Karolina; Tommasi, Rita; Choi, Ji-won; Brocchini, Steve; Laurine, Emmanuelle

    2014-07-01

    Protein production can be improved if methods for soluble protein expression are developed. Interferon consensus (IFN-con) is used to treat hepatitis C. IFN-con has superior activity compared to other clinically used interferon α subtypes. However IFN-con is a challenging protein to produce in a soluble form using an Escherichia coli expression system. Here we describe the expression of soluble and active recombinant IFN-con in E. coli. The IFN-con gene sequence was optimised for expression in E. coli, which was then cloned into the Champion™ pET SUMO expression vector downstream of the SUMO fusion protein and under strong T7lac promoter. The SUMO-IFN-con fusion protein was efficiently expressed using the SHuffle™ E. coli strain and existed in soluble form as 86-88% of the total IFN-con. After removal of the SUMO fusion partner, approximately 50mg of recombinant IFN-con of at least 98% purity (by RP-HPLC) was obtained from a 1L fermentation culture. Using an A549/EMCV antiviral assay, the specific activity of the recombinant IFN-con was determined to be 960×10(6) IU/mg as calculated to NIBSC standard for IFN-con (3×10(5)pfu/mL virus titre). Comparison of the antiviral activity of the produced IFN-con to IFN α-2a showed that IFN-con displays 2.8 times greater activity, which is in good agreement with what has been reported in the literature for pure protein. IFN-con expression in a soluble form from E. coli allowed us to use a simple, two-step purification process to yield highly pure and active IFN-con which is more efficient than obtaining IFN-con from inclusion bodies.

  7. Impact of land management system on crop yields and soil fertility in Cameroon

    NASA Astrophysics Data System (ADS)

    Tsozué, D.; Nghonda, J. P.; Mekem, D. L.

    2015-06-01

    The impact of direct-seeding mulch-based cropping systems (DMC), direct seeding (DS) and tillage seeding (TS) on Sorghum yields, soil fertility and the rehabilitation of degraded soils was evaluated in northern Cameroon. Field work consisted of visual examination, soil sampling, yield and rainfall data collection. Three fertilization rates (F1: 100 kg ha-1 NPK + 25 kg ha-1 of urea in DMC, F2: 200 kg ha-1 NPK + 50 kg ha-1 of urea in DMC and F3: 300 kg ha-1 NPK + 100 kg ha-1 of urea in DMC) were applied to each cropping system (DS, TS and DMC), resulting in nine experimental plots. Two types of chemical fertilizer were used (NPK 22.10.15 and urea) and applied each year from 2002 to 2012. Average Sorghum yields were 1239, 863 and 960 kg ha-1 respectively in DMC, DS and TS at F1, 1658, 1139 and 1192 kg ha-1 respectively in DMC, DS and TS at F2, and 2270, 2138 and 1780 kg ha-1 respectively in DMC, DS and TS at F3. pH values were 5.2 to 5.7 under DMC, 4.9 to 5.3 under DS and TS, and 5.6 in the control sample. High values of cation exchange capacity were recorded in the control sample, TS system and F1 of DMC. Base saturation rates, total nitrogen and organic matter contents were high in the control sample and the DMC than in the others systems. All studied soils were permanently not suitable for Sorghum due to the high percentage of nodules. F1 and F2 of the DS were currently not suitable, while F1 and F3 of DMC, F3 of DS and F1, F2 and F3 of TS were marginally suitable for Sorghum due to low soil pH values.

  8. Impact of land management system on crop yields and soil fertility in Cameroon

    NASA Astrophysics Data System (ADS)

    Tsozué, D.; Nghonda, J. P.; Mekem, D. L.

    2015-09-01

    The impact of direct-seeding mulch-based cropping systems (DMC), direct seeding (DS) and tillage seeding (TS) on Sorghum yields, soil fertility and the rehabilitation of degraded soils was evaluated in northern Cameroon. Field work consisted of visual examination, soil sampling, yield and rainfall data collection. Three fertilization rates (F1: 100 kg ha-1 NPK + 25 kg ha-1 of urea in DMC, F2: 200 kg ha-1 NPK + 50 kg ha-1 of urea in DMC and F3: 300 kg ha-1 NPK + 100 kg ha-1 of urea in DMC) were applied to each cropping system (DS, TS and DMC), resulting in nine experimental plots. Two types of chemical fertilizer were used (NPK 22.10.15 and urea) and applied each year from 2002 to 2012. Average Sorghum yields were 1239, 863 and 960 kg ha-1 in DMC, DS and TS, respectively, at F1, 1658, 1139 and 1192 kg ha-1 in DMC, DS and TS, respectively, at F2, and 2270, 2138 and 1780 kg ha-1 in DMC, DS and TS, respectively, at F3. pH values were 5.2-5.7 under DMC, 4.9-5.3 under DS and TS and 5.6 in the control sample. High values of cation exchange capacity were recorded in the control sample, TS system and F1 of DMC. Base saturation rates, total nitrogen and organic matter contents were higher in the control sample and DMC than in the other systems. All studied soils were permanently not suitable for Sorghum due to the high percentage of nodules. F1 and F2 of the DS were currently not suitable, while F1 and F3 of DMC, F3 of DS and F1, F2 and F3 of TS were marginally suitable for Sorghum due to low pH values.

  9. Yield and gas exchange ability of sweetpotato plants cultured in a hydroponic system

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Hirai, H.; Saiful Islam, A. F. M.; Yamamoto, M.

    Life support of crews in space is greatly dependent on the amounts of food atmospheric O 2 and clean water produced by plants Therefore the space farming systems with scheduling of crop production obtaining high yields with a rapid turnover rate converting atmospheric CO 2 to O 2 and purifying water should be established with employing suitable plant species and varieties and precisely controlling environmental variables around plants grown at a high density in a limited space In this study three sweetpotato varieties were cultured in a newly developed hydroponic system and the yield the photosynthetic rate and the transpiration rate were compared on the earth as a fundamental study for establishing the space farming systems The varieties were Elegant summer Koukei 14 and Beniazuma The hydroponic system mainly consisted of water channels and rockwool boards A growing space for roots was made between the rockwool board and nutrient solution in the water channel Storage roots were developed on the lower surface of the rockwool plates Fresh weights of the storage roots were 1 6 1 2 and 0 6 kg plant for Koukei 14 Elegant summer and Beniazuma respectively grown for five months from June to October under the sun light in Osaka Japan Koukei 14 and Elegant summer produced greater total phytomass than Beniazuma There were positive correlations among the total phytomass the net photosynthetic rate and the transpiration rate Young stems and leaves as well as storage roots of Elegant summer are edible Therefore Elegant-summer

  10. Ectopic expression of a hot pepper bZIP-like transcription factor in potato enhances drought tolerance without decreasing tuber yield.

    PubMed

    Moon, Seok-Jun; Han, Se-Youn; Kim, Dool-Yi; Yoon, In Sun; Shin, Dongjin; Byun, Myung-Ok; Kwon, Hawk-Bin; Kim, Beom-Gi

    2015-11-01

    Over-expression of group A bZIP transcription factor genes in plants improves abiotic stress tolerance but usually reduces yields. Thus, there have been several efforts to overcome yield penalty in transgenic plants. In this study, we characterized that expression of the hot pepper (Capsicum annuum) gene CaBZ1, which encodes a group S bZIP transcription factor, was induced by salt and osmotic stress as well as abscisic acid (ABA). Transgenic potato (Solanum tuberosum) plants over-expressing CaBZ1 exhibited reduced rates of water loss and faster stomatal closure than non transgenic potato plants under drought and ABA treatment conditions. CaBZ1 over-expression in transgenic potato increased the expression of ABA- and stress-related genes (such as CYP707A1, CBF and NAC-like genes) and improved drought stress tolerance. Interestingly, over-expression of CaBZ1 in potato did not produce undesirable growth phenotypes in major agricultural traits such as plant height, leaf size and tuber formation under normal growth conditions. The transgenic potato plants also had higher tuber yields than non transgenic potato plants under drought stress conditions. Thus, CaBZ1 may be useful for improving drought tolerance in tuber crops. This might be the first report of the production of transgenic potato with improved tuber yields under drought conditions.

  11. Recombinant Expression of Trichoderma reesei Cel61A in Pichia pastoris: Optimizing Yield and N-terminal Processing.

    PubMed

    Tanghe, Magali; Danneels, Barbara; Camattari, Andrea; Glieder, Anton; Vandenberghe, Isabel; Devreese, Bart; Stals, Ingeborg; Desmet, Tom

    2015-12-01

    The auxiliary activity family 9 (AA9, formerly GH61) harbors a recently discovered group of oxidative enzymes that boost cellulose degradation. Indeed, these lytic polysaccharide monooxygenases (LPMOs) are able to disrupt the crystalline structure of cellulose, thereby facilitating the work of hydrolytic enzymes involved in biomass degradation. Since these enzymes require an N-terminal histidine residue for activity, their recombinant production as secreted protein is not straightforward. We here report the expression optimization of Trichoderma reesei Cel61A (TrCel61A) in the host Pichia pastoris. The use of the native TrCel61A secretion signal instead of the alpha-mating factor from Saccharomyces cerevisiae was found to be crucial, not only to obtain high protein yields (>400 mg/L during fermentation) but also to enable the correct processing of the N-terminus. Furthermore, the LPMO activity of the enzyme is demonstrated here for the first time, based on its degradation profile of a cellulosic substrate.

  12. High-Yield Expression in E. coli and Refolding of the bZIP Domain of Activating Transcription Factor 5

    PubMed Central

    Ciaccio, Natalie A.; Moreno, Matthew L.; Bauer, Rachel L.; Laurence, Jennifer S.

    2008-01-01

    Activating Transcription Factor 5 (ATF5) recently has been demonstrated to play a critical role in promoting the survival of human glioblastoma cells. Interference with the function of ATF5 in an in vivo rat model caused glioma cell death in primary tumors but did not affect the status of normal cells surrounding the tumor, suggesting ATF5 may prove an ideal target for anti-cancer therapy. In order to examine ATF5 as a pharmaceutical target, the protein must be produced and purified to sufficient quantity to begin analyses. Here, a procedure for expressing and refolding the bZIP domain of ATF5 in sufficient yield and final concentration to permit assay development and structural characterization of this target using solution NMR is reported. Two-dimensional NMR and circular dichrosim analyses indicate the protein exists in the partially α-helical, monomeric x-form conformation with only a small fraction of ATF5 participating in formation of higher-order structure, presumably coiled-coil homodimerization. Despite the persistence of monomers in solution even at high concentration, an electrophoretic mobility shift assay showed that ATF5 is able to bind to the cAMP response element (CRE) DNA motif. Polyacrylamide gel electrophoresis and mass spectrometry were used to confirm that ATF5 can participate in homodimer formation and that this dimerization is mediated by disulfide bond formation. PMID:18718539

  13. Genome-Wide Identification of Differentially Expressed Genes Associated with the High Yielding of Oleoresin in Secondary Xylem of Masson Pine (Pinus massoniana Lamb) by Transcriptomic Analysis

    PubMed Central

    Liu, Qinghua; Zhou, Zhichun; Wei, Yongcheng; Shen, Danyu; Feng, Zhongping; Hong, Shanping

    2015-01-01

    Masson pine is an important timber and resource for oleoresin in South China. Increasing yield of oleoresin in stems can raise economic benefits and enhance the resistance to bark beetles. However, the genetic mechanisms for regulating the yield of oleoresin were still unknown. Here, high-throughput sequencing technology was used to investigate the transcriptome and compare the gene expression profiles of high and low oleoresin-yielding genotypes. A total of 40,690,540 reads were obtained and assembled into 137,499 transcripts from the secondary xylem tissues. We identified 84,842 candidate unigenes based on sequence annotation using various databases and 96 unigenes were candidates for terpenoid backbone biosynthesis in pine. By comparing the expression profiles of high and low oleoresin-yielding genotypes, 649 differentially expressed genes (DEGs) were identified. GO enrichment analysis of DEGs revealed that multiple pathways were related to high yield of oleoresin. Nine candidate genes were validated by QPCR analysis. Among them, the candidate genes encoding geranylgeranyl diphosphate synthase (GGPS) and (-)-alpha/beta-pinene synthase were up-regulated in the high oleoresin-yielding genotype, while tricyclene synthase revealed lower expression level, which was in good agreement with the GC/MS result. In addition, DEG encoding ABC transporters, pathogenesis-related proteins (PR5 and PR9), phosphomethylpyrimidine synthase, non-specific lipid-transfer protein-like protein and ethylene responsive transcription factors (ERFs) were also confirmed to be critical for the biosynthesis of oleoresin. The next-generation sequencing strategy used in this study has proven to be a powerful means for analyzing transcriptome variation related to the yield of oleoresin in masson pine. The candidate genes encoding GGPS, (-)-alpha/beta-pinene, tricyclene synthase, ABC transporters, non-specific lipid-transfer protein-like protein, phosphomethylpyrimidine synthase, ERFs and pathogen

  14. The relationship between yield and the antioxidant defense system in tomatoes grown under heat stress.

    PubMed

    Rainwater, D T; Gossett, D R; Millhollon, E P; Hanna, H Y; Banks, S W; Lucas, M C

    1996-11-01

    Four putative heat-tolerant tomato (Lycopersicum esculentum) cultivars (Tamasabro, Heat Wave, LHT-24, and Solar Set) and one putative heat-sensitive tomato cultivar (Floradade) were grown in the field under non-stress (average daily temperature of 26 degrees C) and heat-stress (average daily temperature of 34 degrees C) conditions. At anthesis, approximately five weeks after being transplanted to the field, leaf samples were collected for antioxidant analyses. Yield was determined by harvesting ripe fruit seven weeks after the collection of leaf samples. Heat stress resulted in a 79.1% decrease in yield for the heat-sensitive Floradade, while the fruit yield in the heat-tolerant cultivars Heat Wave, LHT-24, Solar Set, and Tamasabro was reduced 51.5%, 22.1%, 43.8%, and 34.8% respectively. When grown under heat stress, antioxidant activities were also greater in the heat-tolerant cultivars. Superoxide dismutase (SOD) activity increased up to 9-fold in the heat-tolerant cultivars but decreased 83.1% in the heat-sensitive Floradade. Catalase, peroxidase, and ascorbate peroxidase activity increased significantly in all cultivars. Only Heat Wave showed a significant increase in glutathione reductase in response to heat stress but all heat-tolerant cultivars exhibited significantly lower oxidized ascorbate/reduced ascorbate ratios, greater reduced glutathione/oxidized glutathione rations, and greater alpha-tocopherol concentrations compared to the heat-sensitive cultivar Floridade. These data indicate that the more heat-tolerant cultivars had an enhanced capacity for scavenging active oxygen species and a more active ascorbate-glutathione cycle and suggest a strong correlation between the ability to up-regulate the antioxidant defense system and the ability of tomatoes to produce greater yields when grown under heat stress.

  15. Economics of fertility in high-yielding dairy cows on confined TMR systems.

    PubMed

    Cabrera, V E

    2014-05-01

    The objective of this review paper was to summarise the latest findings in dairy cattle reproductive economics with an emphasis on high yielding, confined total mixed ration systems. The economic gain increases as the reproductive efficiency improves. These increments follow the law of diminishing returns, but are still positive even at high reproductive performance. Reproductive improvement results in higher milk productivity and, therefore, higher milk income over feed cost, more calf sales and lower culling and breeding expenses. Most high-yielding herds in the United States use a combination of timed artificial insemination (TAI) and oestrous detection (OD) reproductive programme. The ratio of achievable pregnancies between OD and TAI determines the economic value difference between both and their combinations. Nonetheless, complex interactions between reproductive programme, herd relative milk yield, and type of reproductive programme are reported. For example, higher herd relative milk yield would favour programme relying more on TAI. In addition, improved reproductive efficiency produces extra replacements. The availability of additional replacements could allow more aggressive culling policies (e.g. less services for non-pregnant cows) to balance on-farm supply and demand of replacements. Balancing heifer replacement availability in an efficient reproductive programme brings additional economic benefits. New technologies such as the use of earlier chemical tests for pregnancy diagnosis could be economically effective depending on the goals and characteristics of the farm. Opportunities for individual cow reproductive management within defined reproductive programme exist. These decisions would be based on economic metrics derived from the value of a cow such as the value of a new pregnancy, the cost of a pregnancy loss, or the cost of an extra day open.

  16. Efficient cyclic system to yield ectoine using Brevibacterium sp. JCM 6894 subjected to osmotic downshock.

    PubMed

    Nagata, Shinichi; Wang, Yaoqiang; Oshima, Akinobu; Zhang, Linghua; Miyake, Hideyoshi; Sasaki, Hideaki; Ishida, Akio

    2008-03-01

    Brevibacterium sp. JCM 6894 cells grown in the presence of 1.5-2.5 M NaCl for 24 h at 30 degrees C were subjected to the osmotic downshock. Downshocked cells after ectoine release were grown for further 24 h in the fresh medium with same salinity as before shock. When this cyclic system was applied to the strain JCM 6894, the amount of ectoine in the cells increased with an increase of incubation time, which indicates that the cells manipulated by the present conditions were enough active to survive and synthesize ectoine after several times of osmotic downshock. In the presence of 2 M NaCl, the highest yield of ectoine released was achieved in this cyclic system, more than 2.4 g/L during 7 days of incubation. (1)H and (13)C-NMR analyses of solutes released from the cells by the osmotic downshock showed the presence of only ectoine with high purity. Release of ectoine from the cells was carried out within 5 min and its rates were increased by the dilution in the downshock treatment. For the convenience of operations, non-sterilized medium containing 2 M NaCl was examined for the cell growth in the present system, in which almost same level of ectoine yield, release rates, and cell viability were observed as those of sterilized medium.

  17. Method for improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system

    DOEpatents

    Shelnutt, J.A.

    1984-11-29

    A method is disclosed improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system for hydrogen generation. The method comprises forming an aqueous solution comprising an electron donor, methylviologen, and certain metalloporphyrins and metallochlorins, and irradiating said aqueous solution with light in the presence of a catalyst. In the photosynthesis process, solar energy is collected and stored in the form of a hydrogen. Ligands attached above and below the metalloporphyrin and metallochlorin plane are capable of sterically blocking photochemically inactive electrostatically bound ..pi..-..pi.. complexes which can develop.

  18. Method for improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system

    DOEpatents

    Shelnutt, John A.

    1986-01-01

    A method for improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system for hydrogen generation which comprises forming an aqueous solution comprising an electron donor, methylviologen, and certain metalloporphyrins and metallochlorins, and irradiating said aqueous solution with light in the presence of a catalyst. In the photosynthesis process, solar energy is collected and stored in the form of a gas hydrogen. Ligands attached above and below the metalloporphyrin and metallochlorin plane are capable of sterically blocking photochemically inactive electrostatically bound .pi.--.pi. complexes which can develop.

  19. An efficient protocol towards site-specifically clickable nanobodies in high yield: cytoplasmic expression in Escherichia coli combined with intein-mediated protein ligation.

    PubMed

    Ta, Duy Tien; Redeker, Erik Steen; Billen, Brecht; Reekmans, Gunter; Sikulu, Josephine; Noben, Jean-Paul; Guedens, Wanda; Adriaensens, Peter

    2015-10-01

    In this study, several expression strategies were investigated in order to develop a generic, highly productive and efficient protocol to produce nanobodies modified with a clickable alkyne function at their C-terminus via the intein-mediated protein ligation (IPL) technique. Hereto, the nanobody targeting the vascular cell adhesion molecule 1 (NbVCAM1) was used as a workhorse. The highlights of the protocol can be ascribed to a cytoplasmic expression of the nanobody-intein-chitin-binding domain fusion protein in the Escherichia coli SHuffle(®) T7 cells with a C-terminal extension, i.e. LEY, EFLEY or His6 spacer peptide, in the commonly used Luria-Bertani medium. The combination of these factors led to a high yield (up to 22 mg/l of culture) and nearly complete alkynation efficiency of the C-terminally modified nanobody via IPL. This yield can even be improved to ∼45 mg/l in the EnPresso(®) growth system but this method is more expensive and time-consuming. The resulting alkynated nanobodies retained excellent binding capacity towards the recombinant human VCAM1. The presented protocol benefits from time- and cost-effectiveness, which allows a feasible production up-scaling of generic alkynated nanobodies. The production of high quantities of site-specifically modified nanobodies paves the way to new biosurface applications that demand for a homogeneously oriented nanobody coupling. Prospectively, the alkynated nanobodies can be covalently coupled to a multitude of azide-containing counterparts, e.g. contrast labeling agents, particles or surfaces for numerous innovative applications.

  20. Antigenic assessment of a recombinant human CD90 protein expressed in prokaryotic expression system.

    PubMed

    Yousefi-Rad, Narges; Shokrgozar, Mohammad Ali; Behdani, Mahdi; Moradi-Kalbolandi, Shima; Motamedi-Rad, Mahdieh; Habibi-Anbouhi, Mahdi

    2015-12-01

    Cluster of Differentiation 90 (CD90, Thy-1) has been proposed as one of the most important biomarkers in several cancer cells including cancer stem cells (CSCs). CD90 is considered as a potential normal stem cell and CSCs biomarker and also has been identified in lung cancer stem cells, hepatocellular carcinoma cells and high-grade gliomas. Using eukaryotic host systems involves complex procedures and frequently results in low protein yields. The expression of recombinant proteins in Escherichia coli is comparatively easier than eukaryotic host cells. The potential of large scale production of recombinant protein has made this system an economic production platform. In this study we expressed the extra-membrane domain of human CD90 (exCD90) antigen (Gln15-Cys130) in E. coli expression host cells. The epitope integrity of purified recombinant antigen was confirmed by antibody-antigen interaction using 5E10 anti-CD90 monoclonal antibody and binding study through ELISA and florescent staining of CD90(+) cells in a flow cytometry experiment.

  1. High-yield expression in Escherichia coli and purification of mouse ubiquitin-activating enzyme E1.

    PubMed

    Carvalho, Andreia F; Pinto, Manuel P; Grou, Cláudia P; Vitorino, Rui; Domingues, Pedro; Yamao, Fumiaki; Sá-Miranda, Clara; Azevedo, Jorge E

    2012-07-01

    Research in the ubiquitin field requires large amounts of ubiquitin-activating enzyme (E1) for in vitro ubiquitination assays. Typically, the mammalian enzyme is either isolated from natural sources or produced recombinantly using baculovirus/insect cell protein expression systems. Escherichia coli is seldom used to produce mammalian E1 probably due to the instability and insolubility of this high-molecular mass protein. In this report, we show that 5-10 mg of histidine-tagged mouse E1 can be easily obtained from a 1 l E. coli culture. A low temperature during the protein induction step was found to be critical to obtain an active enzyme.

  2. A nonlinear dynamical system approach for the yielding behaviour of a viscoplastic material.

    PubMed

    Burghelea, Teodor; Moyers-Gonzalez, Miguel; Sainudiin, Raazesh

    2017-02-15

    A nonlinear dynamical system model that approximates a microscopic Gibbs field model for the yielding of a viscoplastic material subjected to varying external stresses recently reported in R. Sainudiin, M. Moyers-Gonzalez and T. Burghelea, Soft Matter, 2015, 11(27), 5531-5545 is presented. The predictions of the model are in fair agreement with microscopic simulations and are in very good agreement with the micro-structural semi-empirical model reported in A. M. V. Putz and T. I. Burghelea, Rheol. Acta, 2009, 48, 673-689. With only two internal parameters, the nonlinear dynamical system model captures several key features of the solid-fluid transition observed in experiments: the effect of the interactions between microscopic constituents on the yield point, the abruptness of solid-fluid transition and the emergence of a hysteresis of the micro-structural states upon increasing/decreasing external forces. The scaling behaviour of the magnitude of the hysteresis with the degree of the steadiness of the flow is consistent with previous experimental observations. Finally, the practical usefulness of the approach is demonstrated by fitting a rheological data set measured with an elasto-viscoplastic material.

  3. Validation of a land data assimilation system using river discharge and agricultural yield observations

    NASA Astrophysics Data System (ADS)

    Calvet, Jean-Christophe; Barbu, Alina; Fairbairn, David; Gelati, Emiliano

    2015-04-01

    Meteo-France develops the ISBA-A-gs generic Land Surface Model (LSM) able to represent the diurnal cycle of the surface fluxes together with the seasonal, interannual and decadal variability of the vegetation biomass. The LSM is embedded in the SURFEX modeling platform together with a simplified extended Kalman filter. These tools form a Land Data Assimilation System (LDAS). The current version of the LDAS assimilates SPOT-VGT LAI and ASCAT surface soil moisture (SSM) products over France (8km x 8km), and a passive monitoring of albedo, FAPAR and Land Surface temperature (LST) is performed (i.e., the simulated values are compared with the satellite products). The vegetation biomass is analysed together with the root-zone soil moisture. The LDAS was coupled to the MODCOU hydrological model, and this allowed the use of in situ river discharge observations for the validation of the whole system. Moreover, open-loop (i.e. without integrationg satellite observations into the model) simulations of the above-ground biomass of straw cereals were compared with the analyzed values (i.e. after integration of satellite observations into the model), and with agricultural yield observations. It is shown that the assimilation of satellite observations sharply enhances the overall correlation of the simulated above-ground biomass with the agricultural yield observations.

  4. Baculovirus expression system and method for high throughput expression of genetic material

    DOEpatents

    Clark, Robin; Davies, Anthony

    2001-01-01

    The present invention provides novel recombinant baculovirus expression systems for expressing foreign genetic material in a host cell. Such expression systems are readily adapted to an automated method for expression foreign genetic material in a high throughput manner. In other aspects, the present invention features a novel automated method for determining the function of foreign genetic material by transfecting the same into a host by way of the recombinant baculovirus expression systems according to the present invention.

  5. Root-knot Nematode Management and Yield of Soybean as Affected by Winter Cover Crops, Tillage Systems, and Nematicides.

    PubMed

    Minton, N A; Parker, M B

    1987-01-01

    Management of Meloidogyne incognita on soybean as affected by winter small grain crops or fallow, two tillage systems, and nematicides was studied. Numbers of M. incognita did not differ in plots planted to wheat and rye. Yields of soybean planted after these crops also did not differ. Numbers of M. incognita were greater in fallow than in rye plots, but soybean yield was not affected by the two treatments. Soybean yields were greater in subsoil-plant than in moldboard plowed plots. Ethylene dibromide reduced nematode population densities more consistently than aldicarb and phenamiphos. Also, ethylene dibromide increased yields the most and phenamiphos the least. There was a positive correlation (P = 0.001) of seed size (weight of 100 seeds) with yield (r = 0.79), indicating that factors affecting yield also affected seed size.

  6. A meta-analysis of maize and wheat yields in low-input vs. conventional and organic systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic and low-input systems are proposed as ways to reduce the environmental impacts of agriculture. Previous studies have shown that yields of organic systems can be ~19-25% lower than conventional systems. An intermediary, low-input system could be less damaging for the environment than conventi...

  7. ROI on yield data analysis systems through a business process management strategy

    NASA Astrophysics Data System (ADS)

    Rehani, Manu; Strader, Nathan; Hanson, Jeff

    2005-05-01

    The overriding motivation for yield engineering is profitability. This is achieved through application of yield management. The first application is to continually reduce waste in the form of yield loss. New products, new technologies and the dynamic state of the process and equipment keep introducing new ways to cause yield loss. In response, the yield management efforts have to continually come up with new solutions to minimize it. The second application of yield engineering is to aid in accurate product pricing. This is achieved through predicting future results of the yield engineering effort. The more accurate the yield prediction, the more accurate the wafer start volume, the more accurate the wafer pricing. Another aspect of yield prediction pertains to gauging the impact of a yield problem and predicting how long that will last. The ability to predict such impacts again feeds into wafer start calculations and wafer pricing. The question then is that if the stakes on yield management are so high why is it that most yield management efforts are run like science and engineering projects and less like manufacturing? In the eighties manufacturing put the theory of constraints1 into practice and put a premium on stability and predictability in manufacturing activities, why can't the same be done for yield management activities? This line of introspection led us to define and implement a business process to manage the yield engineering activities. We analyzed the best known methods (BKM) and deployed a workflow tool to make them the standard operating procedure (SOP) for yield managment. We present a case study in deploying a Business Process Management solution for Semiconductor Yield Engineering in a high-mix ASIC environment. We will present a description of the situation prior to deployment, a window into the development process and a valuation of the benefits.

  8. Improvement in the yield and quality of kalmegh (Andrographis paniculata Nees) under the sustainable production system.

    PubMed

    Verma, Rajesh Kumar; Verma, Sanjeet K; Pankaj, Umesh; Gupta, Anand K; Khan, Khushboo; Shankar, Karuna

    2015-02-01

    Andrographis paniculata Nees is an annual erect herb with wide medicinal and pharmacological applications due to the presence of andrographolide and other active chemical constituents. The large-scale cultivation of the kalmegh is not in practice. The aim of this study was to establish sustainable production systems of A. paniculata cv CIM-Megha with the application of different bioinoculants and chemical fertilisers. A. paniculata herb and andrographolide yield in the dried leaves was found to be highest (218% and 61.3%, respectively) in treatment T3 (NPK+Bacillus sp.) compared with T1 (control). The soil organic carbon, soil microbial respiration, soil enzymes activity and available nutrients improved significantly with combined application of bioinoculants and chemical fertilisers.

  9. The TRANSFAC system on gene expression regulation.

    PubMed

    Wingender, E; Chen, X; Fricke, E; Geffers, R; Hehl, R; Liebich, I; Krull, M; Matys, V; Michael, H; Ohnhäuser, R; Prüss, M; Schacherer, F; Thiele, S; Urbach, S

    2001-01-01

    The TRANSFAC database on transcription factors and their DNA-binding sites and profiles (http://www.gene-regulation.de/) has been quantitatively extended and supplemented by a number of modules. These modules give information about pathologically relevant mutations in regulatory regions and transcription factor genes (PathoDB), scaffold/matrix attached regions (S/MARt DB), signal transduction (TRANSPATH) and gene expression sources (CYTOMER). Altogether, these distinct database modules constitute the TRANSFAC system. They are accompanied by a number of program routines for identifying potential transcription factor binding sites or for localizing individual components in the regulatory network of a cell.

  10. Silkworm expression system as a platform technology in life science.

    PubMed

    Kato, Tatsuya; Kajikawa, Mizuho; Maenaka, Katsumi; Park, Enoch Y

    2010-01-01

    Many recombinant proteins have been successfully produced in silkworm larvae or pupae and used for academic and industrial purposes. Several recombinant proteins produced by silkworms have already been commercialized. However, construction of a recombinant baculovirus containing a gene of interest requires tedious and troublesome steps and takes a long time (3-6 months). The recent development of a bacmid, Escherichia coli and Bombyx mori shuttle vector, has eliminated the conventional tedious procedures required to identify and isolate recombinant viruses. Several technical improvements, including a cysteine protease or chitinase deletion bacmid and chaperone-assisted expression and coexpression, have led to significantly increased protein yields and reduced costs for large-scale production. Terminal N-acetyl glucosamine and galactose residues were found in the N-glycan structures produced by silkworms, which are different from those generated by insect cells. Genomic elucidation of silkworm has opened a new chapter in utilization of silkworm. Transgenic silkworm technology provides a stable production of recombinant protein. Baculovirus surface display expression is one of the low-cost approaches toward silkworm larvae-derived recombinant subunit vaccines. The expression of pharmaceutically relevant proteins, including cell/viral surface proteins, membrane proteins, and guanine nucleotide-binding protein (G protein) coupled receptors, using silkworm larvae or cocoons has become very attractive. Silkworm biotechnology is an innovative and easy approach to achieve high protein expression levels and is a very promising platform technology in the field of life science. Like the "Silkroad," we expect that the "Bioroad" from Asia to Europe will be established by the silkworm expression system.

  11. Developing a Hybrid Solar/Wind Powered Drip Irrigation System for Dragon Fruit Yield

    NASA Astrophysics Data System (ADS)

    Widiastuti, I.; Wijayanto, D. S.

    2017-03-01

    Irrigation operations take a large amount of water and energy which impact to total costs of crop production. Development of an efficient irrigation supplying precise amount of water and conserving the use of energy can have benefits not only by reducing the operating costs but also by enhancing the farmland productivity. This article presents an irrigation method that promotes sustainable use of water and energy appropriate for a developing tropical country. It proposes a drip irrigation system supported by a combined solar-wind electric power generation system for efficient use of water in dragon fruit cultivation. The electric power generated is used to drive a water pump filling a storage tank for irrigating a 3000 m2 dragon fruit yield in Nguntoronadi, Wonogiri, Indonesia. In designing the irrigation system, the plant’s water requirement was identified based on the value of reference evapotranspiration of the area. A cost/benefit analysis was performed to evaluate the economic feasibility of the proposed scheme. The installation of this solar and wind drip irrigation helps provide sufficient quantity of water to each plant using renewable energy sources which reduce dependence on fossil fuel.

  12. Efficient expression systems for cysteine proteases of malaria parasites: too good to be true?

    PubMed

    Sarduy, Emir Salas; Chávez Planes, María de los A

    2013-01-01

    Papain-like cysteine proteases of malaria parasites are considered important chemotherapeutic targets or valuable models for the evaluation of drug candidates. Consequently, many of these enzymes have been cloned and expressed in Escherichia coli for their biochemical characterization. However, their expression has been problematic, showing low yield and leading to the formation of insoluble aggregates. Given that highly-productive expression systems are required for the high-throughput evaluation of inhibitors, we analyzed the existing expression systems to identify the causes of such apparent issues. We found that significant divergences in codon and nucleotide composition from host genes are the most probable cause of expression failure, and propose several strategies to overcome these limitations. Finally we predict that yeast hosts Saccharomyces cerevisiae and Pichia pastoris may be better suited than E. coli for the efficient expression of plasmodial genes, presumably leading to soluble and active products reproducing structural and functional characteristics of the natural enzymes.

  13. Subplots facilitate assessment of corn yield losses from weed competition in a long-term systems experiment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weeds can potentially limit crop yield, particularly in organic systems where herbicide technologies are unavailable. Weedy and weed-free subplots were established within full plots of a long-term cropping systems experiment, the Farming Systems Project, at Beltsville, Maryland, USA, to determine t...

  14. A high loading overland flow system: Impacts on soil characteristics, grass constituents, yields and nutrient removal.

    PubMed

    Wen, C G; Chen, T H; Hsu, F H; Lu, C H; Lin, J B; Chang, C H; Chang, S P; Lee, C S

    2007-04-01

    The objectives of this paper are to determine effects of different grass species and their harvests on pollutant removal, elucidate impacts on soil characteristics and grass constituents, observe grass yield and quantify nutrient uptake by vegetation in an overland flow system (OLFS). Polluted creek water was applied to eight channels in the OLFS, which were planted with Paragrass, Nilegrass, Cattail, and Vetiver, with each two channels being randomly planted with a given grass species. The grass in one channel was harvested while that in the other channel was not. At a high rate of 27.8 m d(-1) hydraulic loading, the removal efficiencies of conventional pollutants such as BOD, COD, suspended solids (SS), and total coliforms in wastewater are not affected by the type of the grasses species, but those of nitrogen and phosphorus are affected by different species. Overall average removal efficiencies of BOD, COD, SS, ammonia, total nitrogen, total phosphorus and total coliforms through the OLFS are 42%, 48%, 78%, 47%, 40%, 33% and 89%, respectively. The concentration of nitrate, however, increases due to nitrification. Soil characteristics in OLFS have been changed significantly; specific conductivity, organic matter, exchangeable magnesium, extractable copper and zinc in soils all increase with time while pHs decrease. During the winter season, there is a significant accumulation of nitrate in grass with the subsequent reduction during the active growing season (Spring). The contents of nitrate and phosphorus in grass tissue are higher than those of grass in general pastureland, probably due to nutrient luxury uptake by grass. The overall grass yield, growth rate and nutrient uptake are quantified and implication of such high rate OLFS discussed.

  15. The sweet potato sporamin promoter confers high-level phytase expression and improves organic phosphorus acquisition and tuber yield of transgenic potato.

    PubMed

    Hong, Ya-Fang; Liu, Chang-Yeu; Cheng, Kuo-Joan; Hour, Ai-Ling; Chan, Min-Tsair; Tseng, Tung-Hai; Chen, Kai-Yi; Shaw, Jei-Fu; Yu, Su-May

    2008-07-01

    The sweet potato sporamin promoter was used to control the expression in transgenic potato of the E. coli appA gene, which encodes a bifunctional enzyme exhibiting both acid phosphatase and phytase activities. The sporamin promoter was highly active in leaves, stems and different size tubers of transgenic potato, with levels of phytase expression ranging from 3.8 to 7.4% of total soluble proteins. Phytase expression levels in transgenic potato tubers were stable over several cycles of propagation. Field tests showed that tuber size, number and yield increased in transgenic potato. Improved phosphorus (P) acquisition when phytate was provided as a sole P source and enhanced microtuber formation in cultured transgenic potato seedlings when phytate was provided as an additional P source were observed, which may account for the increase in leaf chloroplast accumulation (important for photosynthesis) and tuber yield of field-grown transgenic potato supplemented with organic fertilizers. Animal feeding tests indicated that the potato-produced phytase supplement was as effective as a commercially available microbial phytase in increasing the availability of phytate-P to weanling pigs. This study demonstrates that the sporamin promoter can effectively direct high-level recombinant protein expression in potato tubers. Moreover, overexpression of phytase in transgenic potato not only offers an ideal feed additive for improving phytate-P digestibility in monogastric animals but also improves tuber yield, enhances P acquisition from organic fertilizers, and has a potential for phytoremediation.

  16. Straw return reduces yield-scaled N2O plus NO emissions from annual winter wheat-based cropping systems in the North China Plain.

    PubMed

    Yao, Zhisheng; Yan, Guangxuan; Zheng, Xunhua; Wang, Rui; Liu, Chunyan; Butterbach-Bahl, Klaus

    2017-07-15

    Straw return in combination with synthetic N fertilizer is considered to be beneficial to soil fertility and crop yield. Such practice, however, can considerably modify soil microbial activity and relative C and N availability, both of which are known to regulate soil nitrous oxide (N2O) and nitric oxide (NO) emissions. Minimizing these emissions per unit of crop yield is a prerequisite to minimize the environmental footprint of agricultural production and thus, a policy objective. In our study, we quantified N2O and NO emissions and determined fertilizer-N use efficiencies (NUE) and crop yields of two double-cropping (summer maize/Welsh onion-winter wheat) systems with and without straw incorporation in the North China Plain. Relative to the fertilized treatment without straw amendments, straw incorporation showed a significant inhibitory effect on annual N2O emissions from the maize-wheat system (-31%), but no significant effect was observed for the Welsh onion-wheat system. However, straw return significantly reduced annual NO emissions by >30% for both systems. Meanwhile, straw return in both systems significantly increased the NUE and crop yields by 34-47% and 7-16%, respectively, as compared to the treatment without straw additions. Across the double-cropping systems, annual direct emission factors of N2O, NO and N2O+NO were 0.37-0.57%, 0.08-0.78% and 0.57-1.36%, respectively. Furthermore, a negative relationship between direct emission factors of N2O+NO and crop NUE was observed, highlighting the importance of optimizing NUE for reducing environmental risks of a cropping system. When expressing emissions on a yield basis, straw return significantly reduced annual yield-scaled N2O+NO emissions by 15-42% for both systems. Overall, our results show that the combined application of crop straw and synthetic N fertilizer is a promising N management strategy for maximizing crop yields while mitigating N-trace gas emissions.

  17. Thick target neutron yield from 145 MeV 19F+27Al system

    NASA Astrophysics Data System (ADS)

    Sunil, C.; Bandyopadhyay, T.; Nandy, M.; Suman, Vitisha; Paul, S.; Nanal, V.; Pillay, R. G.; Sarkar, P. K.

    2013-09-01

    The double differential neutron energy distribution has been measured for the 19F+27Al system at 145 MeV projectile energy. The time of flight technique was used to measure the energy while pulse shape discrimination has been used to separate the neutrons from photons. The results are compared with the statistical nuclear reaction model codes PACE and EMPIRE. The PACE code appears to predict the slope and the end point energy of the experimental spectra fairly well but over predicts the values. The slope obtained from the EMPIRE calculations appears to be harder while the values being closer to the experimental results. The yield from the Hauser-Feshbach based compound nucleus model calculations agree reasonably well with the experimental results at the backward angles but not in the forward directions. The energy integrated angular distribution from 145 MeV projectiles show an enhanced emission in the forward angles compared to the similar results from 110 MeV projectiles. This analysis suggests some contribution from the pre-equilibrium emissions from the system at the higher projectile energy.

  18. Expression of the hemagglutinin HA1 subunit of the equine influenza virus using a baculovirus expression system.

    PubMed

    Sguazza, Guillermo H; Fuentealba, Nadia A; Tizzano, Marco A; Galosi, Cecilia M; Pecoraro, Marcelo R

    2013-01-01

    Equine influenza virus is a leading cause of respiratory disease in horses worldwide. Disease prevention is by vaccination with inactivated whole virus vaccines. Most current influenza vaccines are generated in embryonated hens' eggs. Virions are harvested from allantoic fluid and chemically inactivated. Although this system has served well over the years, the use of eggs as the substrate for vaccine production has several well-recognized disadvantages (cost, egg supply, waste disposal and yield in eggs). The aim of this study was to evaluate a baculovirus system as a potential method for producing recombinant equine influenza hemagglutinin to be used as a vaccine. The hemagglutinin ectodomain (HA1 subunit) was cloned and expressed using a baculovirus expression vector. The expression was determined by SDS-PAGE and immunoblotting. A high yield, 20μg/ml of viral protein, was obtained from recombinant baculovirus-infected cells. The immune response in BALB/c mice was examined following rHA1 inoculation. Preliminary results show that recombinant hemagglutinin expressed from baculovirus elicits a strong antibody response in mice; therefore it could be used as an antigen for subunit vaccines and diagnostic tests.

  19. Crop yield and light / energy efficiency in a closed ecological system: two laboratory biosphere experiments

    NASA Astrophysics Data System (ADS)

    Nelson, M.; Dempster, W. F.; Silverstone, S.; Alling, A.; Allen, J. P.; van Thillo, M.

    field results but somewhat below greenhouse trials at comparable light levels, and the best portion of the crop at 0.22g/mole was inbetween those values. Sweet potato production was overall close to 50% higher than trials using hydroponic methods with TU-82-155 at NASA JSC. Compared to projected yields for the Mars on Earth life support system, these wheat yields were about 15% higher, and the sweet potato yields averaged over 80% higher

  20. Efficient Agrobacterium-based transient expression system for the production of biopharmaceuticals in plants

    PubMed Central

    Circelli, Patrizia; Donini, Marcello; Villani, Maria Elena; Benvenuto, Eugenio

    2010-01-01

    We have recently described an efficient transient expression system mediated by Agrobacterium tumefaciens for the production of HIV-1 Nef protein in Nicotiana benthamiana plants. In order to enhance the yield of recombinant protein we assayed the effect of three gene-silencing viral suppressor proteins (P25 of Potato Virus X, P19 of Artichoke Mottled Crinckle virus and Tomato Bushy Stunt virus) on Nef expression levels. Results demonstrated that AMCV-P19 gave the highest Nef yield (1.3% of total soluble protein) and that this effect was correlated to a remarkable decrease of Nef-specific small interfering RNAs (siRNAs) indicating an effective modulation of RNA silencing mechanisms. Here we report additional data on the production of different heterologous proteins including human immunoglobulin heavy and light chains and a virus coat protein that demonstrate the robustness of this co-agroinfiltration expression system boosted by the AMCV-P19 gene-silencing suppressor. PMID:21326930

  1. Genotype by feeding system interaction in the genetic evaluation of Jersey cattle for milk yield.

    PubMed

    Ramírez-Valverde, R; Peralta-Aban, J A; Núñez-Domínguez, R; Ruíz-Flores, A; García-Muñiz, J G; García-Peniche, T B

    2010-12-01

    Results of studies in dairy cattle about the magnitude of the genotype-environment interaction (GEI) are variable, depending on the definitions of genotype and environment. Therefore, the objective of this study was to determine the magnitude of the interaction of genotype and feeding system (confinement and grazing) in the Mexican genetic evaluation of Jersey cattle for milk yield. The number of lactations and animals in the pedigree used were 5122 and 18 432. An animal model and the MTDFREML program were used to estimate genetic parameters and predict genetic values of the animals. Bivariate analysis was carried out considering the performance of confined and grazing cows as two different traits. Three indicator variables were used to assess GEI: (i) magnitude of the genetic correlation coefficients, (ii) correlation between predicted breeding values and (iii) frequency of coincidence in the ranking of top sires. The magnitude of GEI depended on the choice of the indicator variable. The estimate of genetic correlation coefficient less than unity (0.76; P < 0.05) suggested the presence of biologically important GEI. The differences in phenotypic averages and variances between confinement and grazing systems seem to be the main causes for the genotype by environment interaction detected. However, the correlation coefficient between breeding values from confined and grazing animals (0.96) and the frequency of coincidence between breeding values of common sires within the top 100 in confinement and grazing (0.86) indicated low-to-moderate re-ranking of animals or top sires. In addition, the high correlations between predicted breeding values of Mexican genetic evaluation and the two environments (0.99 and 0.93 for confinement and grazing) indicated that for the two feeding systems, breeding values from national analyses could be safely used.

  2. Expression of the Arabidopsis vacuolar H⁺-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field.

    PubMed

    Schilling, Rhiannon K; Marschner, Petra; Shavrukov, Yuri; Berger, Bettina; Tester, Mark; Roy, Stuart J; Plett, Darren C

    2014-04-01

    Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H⁺-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to null segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mM NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields.

  3. Soil and rainfall factors influencing yields of a dryland cropping system in Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The semi-arid Great Plains of the United States experience a large variation in crop yields due to variability in rainfall, soil, and other factors. We analyzed crop yields (24-year period) from a no-till rotation of wheat(Triticum aestivum)-corn (Zea mays L.) or sorghum[Sorghum bicolor (L.) Moench]...

  4. Meteorological fluctuations define long-term crop yield patterns in conventional and organic production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Periodic variability in meteorological patterns presents significant challenges to crop production consistency and yield stability. Meteorological influences on corn and soybean grain yields were analyzed over an 18-year period at a long-term experiment in Beltsville, Maryland, U.S.A., comparing c...

  5. A mercury-catalyzed, high-yield system for the oxidation of methane to methanol.

    PubMed

    Periana, R A; Taube, D J; Evitt, E R; Löffler, D G; Wentrcek, P R; Voss, G; Masuda, T

    1993-01-15

    A homogeneous system for the selective, catalytic oxidation of methane to methanol via methyl bisulfate is reported. The net reaction catalyzed by mercuric ions, Hg(II), is the oxidation of methane by concentrated sulfuric acid to produce methyl bisulfate, water, and sulfur dioxide. The reaction is efficient. At a methane conversion of 50 percent, 85 percent selectivity to methyl bisulfate ( approximately 43 percent yield; the major side product is carbon dioxide) was achieved at a molar productivity of 10(-7) mole per cubic centimeter per second and Hg(II) turnover frequency of 10(-3) per second. Separate hydrolysis of methyl bisulfate and reoxidation of the sulfur dioxide with air provides a potentially practical scheme for the oxidation of methane to methanol with molecular oxygen. The primary steps of the Hg(II)-catalyzed reaction were individually examined and the essential elements of the mechanism were identified. The Hg(II) ion reacts with methane by an electrophilic displacement mechanism to produce an observable species, CH(3)HgOSO(3)H, 1. Under the reaction conditions, 1 readily decomposes to CH(3)OSO(3)H and the reduced mercurous species, Hg(2)(2+) The catalytic cycle is completed by the reoxidation of Hg(2)(2+) with H(2)SO(4) to regenerate Hg(II) and byproducts SO(2) and H(2)O. Thallium(III), palladium(II), and the cations of platinum and gold also oxidize methane to methyl bisulfate in sulfuric acid.

  6. A Mercury-Catalyzed, High-Yield System for the Oxidation of Methane to Methanol

    NASA Astrophysics Data System (ADS)

    Periana, Roy A.; Taube, Douglas J.; Evitt, Eric R.; Loffler, Daniel G.; Wentrcek, Paul R.; Voss, George; Masuda, Toshihiko

    1993-01-01

    A homogeneous system for the selective, catalytic oxidation of methane to methanol via methyl bisulfate is reported. The net reaction catalyzed by mercuric ions, Hg(II), is the oxidation of methane by concentrated sulfuric acid to produce methyl bisulfate, water, and sulfur dioxide. The reaction is efficient. At a methane conversion of 50 percent, 85 percent selectivity to methyl bisulfate (~43 percent yield; the major side product is carbon dioxide) was achieved at a molar productivity of 10-7 mole per cubic centimeter per second and Hg(II) turnover frequency of 10-3 per second. Separate hydrolysis of methyl bisulfate and reoxidation of the sulfur dioxide with air provides a potentially practical scheme for the oxidation of methane to methanol with molecular oxygen. The primary steps of the Hg(II)-catalyzed reaction were individually examined and the essential elements of the mechanism were identified. The Hg(II) ion reacts with methane by an electrophilic displacement mechanism to produce an observable species, CH_3HgOSO_3H, 1. Under the reaction conditions, 1 readily decomposes to CH_3OSO_3H and the reduced mercurous species, Hg_22+. The catalytic cycle is completed by the reoxidation of Hg_22+ with H_2SO_4 to regenerate Hg(II) and byproducts SO_2 and H_2O. Thallium(III), palladium(II), and the cations of platinum and gold also oxidize methane to methyl bisulfate in sulfuric acid.

  7. Effect of initial biomass on channel catfish yield and water quality in a biofloc technology production system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofloc technology (BFT) production systems are being used more commonly to produce high yields of fish or shrimp because very high feed rates are possible. In an outdoor BFT production system, a complex of living organisms is closely associated with particulate organic matter and is maintained in ...

  8. An evaluation of the lamb vision system as a predictor of lamb carcass red meat yield percentage.

    PubMed

    Brady, A S; Belk, K E; LeValley, S B; Dalsted, N L; Scanga, J A; Tatum, J D; Smith, G C

    2003-06-01

    An objective method for predicting red meat yield in lamb carcasses is needed to accurately assess true carcass value. This study was performed to evaluate the ability of the lamb vision system (LVS; Research Management Systems USA, Fort Collins, CO) to predict fabrication yields of lamb carcasses. Lamb carcasses (n = 246) were evaluated using LVS and hot carcass weight (HCW), as well as by USDA expert and on-line graders, before fabrication of carcass sides to either bone-in or boneless cuts. On-line whole number, expert whole-number, and expert nearest-tenth USDA yield grades and LVS + HCW estimates accounted for 53, 52, 58, and 60%, respectively, of the observed variability in boneless, saleable meat yields, and accounted for 56, 57, 62, and 62%, respectively, of the variation in bone-in, saleable meat yields. The LVS + HCW system predicted 77, 65, 70, and 87% of the variation in weights of boneless shoulders, racks, loins, and legs, respectively, and 85, 72, 75, and 86% of the variation in weights of bone-in shoulders, racks, loins, and legs, respectively. Addition of longissimus muscle area (REA), adjusted fat thickness (AFT), or both REA and AFT to LVS + HCW models resulted in improved prediction of boneless saleable meat yields by 5, 3, and 5 percentage points, respectively. Bone-in, saleable meat yield estimations were improved in predictive accuracy by 7.7, 6.6, and 10.1 percentage points, and in precision, when REA alone, AFT alone, or both REA and AFT, respectively, were added to the LVS + HCW output models. Use of LVS + HCW to predict boneless red meat yields of lamb carcasses was more accurate than use of current on-line whole-number, expert whole-number, or expert nearest-tenth USDA yield grades. Thus, LVS + HCW output, when used alone or in combination with AFT and/or REA, improved on-line estimation of boneless cut yields from lamb carcasses. The ability of LVS + HCW to predict yields of wholesale cuts suggests that LVS could be used as an objective

  9. Fluorescence quantum yield measurement in nanoparticle-fluorophore systems by thermal lens spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferreira, M.; Piscitelli, V.

    2016-04-01

    Metallic nanoparticles have been used as a way to tailor the fluorescence properties like quantum yield, but regular fluorescence quantum yield measurements have to counter the reflection and dispersion of a sample for an accurate result. Thermal lens spectroscopy is a good alternative to resolve this problem because doesn't measure the fluorescence intensity but the heat generated by absorption. We studied the changes induced by silver nanoparticles, generated by laser ablation, in the fluorescence peak and quantum yield of Rhodamine B. We fund that the silver nanoparticles lowered the fluorescence peak and quenched the fluorescence of the Rhodamine B and how much is quenched also depends on its concentration.

  10. Space mutagenesis of genetically engineered bacteria expressing recombinant human interferon α1b and screening of higher yielding strains.

    PubMed

    Wang, Junfeng; Liu, Changting; Liu, Jinyi; Fang, Xiangqun; Xu, Chen; Guo, Yinghua; Chang, De; Su, Longxiang

    2014-03-01

    The aim of this study was to investigate the space mutagenesis of genetically engineered bacteria expressing recombinant human interferon α1b. The genetically engineered bacteria expressing the recombinant interferon α1b were sent into outer space on the Chinese Shenzhou VIII spacecraft. After the 17 day space flight, mutant strains that highly expressed the target gene were identified. After a series of screening of spaceflight-treated bacteria and the quantitative comparison of the mutant strains and original strain, we found five strains that showed a significantly higher production of target proteins, compared with the original strain. Our results support the notion that the outer space environment has unique effects on the mutation breeding of microorganisms, including genetically engineered strains. Mutant strains that highly express the target protein could be obtained through spaceflight-induced mutagenesis.

  11. Negative energy balance and hepatic gene expression patterns in high-yielding dairy cows during the early postpartum period: a global approach.

    PubMed

    McCarthy, S D; Waters, S M; Kenny, D A; Diskin, M G; Fitzpatrick, R; Patton, J; Wathes, D C; Morris, D G

    2010-11-15

    In high-yielding dairy cows the liver undergoes extensive physiological and biochemical changes during the early postpartum period in an effort to re-establish metabolic homeostasis and to counteract the adverse effects of negative energy balance (NEB). These adaptations are likely to be mediated by significant alterations in hepatic gene expression. To gain new insights into these events an energy balance model was created using differential feeding and milking regimes to produce two groups of cows with either a mild (MNEB) or severe NEB (SNEB) status. Cows were slaughtered and liver tissues collected on days 6-7 of the first follicular wave postpartum. Using an Affymetrix 23k oligonucleotide bovine array to determine global gene expression in hepatic tissue of these cows, we found a total of 416 genes (189 up- and 227 downregulated) to be altered by SNEB. Network analysis using Ingenuity Pathway Analysis revealed that SNEB was associated with widespread changes in gene expression classified into 36 gene networks including those associated with lipid metabolism, connective tissue development and function, cell signaling, cell cycle, and metabolic diseases, the three most significant of which are discussed in detail. SNEB cows displayed reduced expression of transcription activators and signal transducers that regulate the expression of genes and gene networks associated with cell signaling and tissue repair. These alterations are linked with increased expression of abnormal cell cycle and cellular proliferation associated pathways. This study provides new information and insights on the effect of SNEB on gene expression in high-yielding Holstein Friesian dairy cows in the early postpartum period.

  12. HCHL expression in hairy roots of Beta vulgaris yields a high accumulation of p-hydroxybenzoic acid (pHBA) glucose ester, and linkage of pHBA into cell walls.

    PubMed

    Rahman, Laiq ur; Kouno, Hitomi; Hashiguchi, Yuya; Yamamoto, Hirobumi; Narbad, Arjan; Parr, Adrian; Walton, Nicholas; Ikenaga, Toshihiko; Kitamura, Yoshie

    2009-10-01

    As part of a study to explore the potential for new or modified bio-product formation, Beta vulgaris (sugar beet) has been genetically modified to express in root-organ culture a bacterial gene of phenylpropanoid catabolism. The HCHL gene, encoding p-hydroxycinnamoyl-CoA hydratase/lyase, was introduced into B. vulgaris under the control of a CaMV 35S promoter, using Agrobacterium rhizogenes LBA 9402. Hairy root clones expressing the HCHL gene, together with non-expressing clones, were analysed and revealed that one expression-positive clone accumulated the glucose ester of p-hydroxybenzoic acid (pHBA) at about 14% on a dry weight basis. This is the best yield achieved in plant systems so far. Determination of cell-wall components liberated by alkaline hydrolysis confirmed that the ratio of pHBA to ferulic acid was considerably higher in the HCHL-expressing clones, whereas only ferulic acid was detected in a non-expressing clone. The change in cell-wall components also resulted in a decrease in tensile strength in the HCHL-expressing clones.

  13. Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield

    PubMed Central

    2012-01-01

    Background Lipids extracted from seeds of Camelina sativa have been successfully used as a reliable source of aviation biofuels. This biofuel is environmentally friendly because the drought resistance, frost tolerance and low fertilizer requirement of Camelina sativa allow it to grow on marginal lands. Improving the species growth and seed yield by genetic engineering is therefore a target for the biofuels industry. In Arabidopsis, overexpression of purple acid phosphatase 2 encoded by Arabidopsis (AtPAP2) promotes plant growth by modulating carbon metabolism. Overexpression lines bolt earlier and produce 50% more seeds per plant than wild type. In this study, we explored the effects of overexpressing AtPAP2 in Camelina sativa. Results Under controlled environmental conditions, overexpression of AtPAP2 in Camelina sativa resulted in longer hypocotyls, earlier flowering, faster growth rate, higher photosynthetic rate and stomatal conductance, increased seed yield and seed size in comparison with the wild-type line and null-lines. Similar to transgenic Arabidopsis, activity of sucrose phosphate synthase in leaves of transgenic Camelina was also significantly up-regulated. Sucrose produced in photosynthetic tissues supplies the building blocks for cellulose, starch and lipids for growth and fuel for anabolic metabolism. Changes in carbon flow and sink/source activities in transgenic lines may affect floral, architectural, and reproductive traits of plants. Conclusions Lipids extracted from the seeds of Camelina sativa have been used as a major constituent of aviation biofuels. The improved growth rate and seed yield of transgenic Camelina under controlled environmental conditions have the potential to boost oil yield on an area basis in field conditions and thus make Camelina-based biofuels more environmentally friendly and economically attractive. PMID:22472516

  14. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs)

    PubMed Central

    Abraham, Nikita; Paul, Blessy; Ragnarsson, Lotten; Lewis, Richard J.

    2016-01-01

    Nicotinic acetylcholine receptors (nAChR) are ligand gated ion channels, identified as therapeutic targets for a range of human diseases. Drug design for nAChR related disorders is increasingly using structure-based approaches. Many of these structural insights for therapeutic lead development have been obtained from co-crystal structures of nAChR agonists and antagonists with the acetylcholine binding protein (AChBP). AChBP is a water soluble, structural and functional homolog of the extracellular, ligand-binding domain of nAChRs. Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for structural and biophysical studies. Here, we report the establishment of an Escherichia coli (E. coli) expression system that significantly reduces the cost and time of production compared to the existing expression systems. E. coli can efficiently express unglycosylated AChBP for crystallography and makes the expression of isotopically labelled forms feasible for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to recover protein from inclusion bodies. The purified protein yield obtained from the E. coli expression system is comparable to that obtained from existing AChBP expression systems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities matching those previously reported. Thus, the E. coli expression system significantly simplifies the expression and purification of functional AChBP for structural and biophysical studies. PMID:27304486

  15. The Expression of TaRca2-α Gene Associated with Net Photosynthesis Rate, Biomass and Grain Yield in Bread Wheat (Triticum aestivum L.) under Field Conditions

    PubMed Central

    Saeed, Iqbal; Bachir, Daoura Goudia; Chen, Liang; Hu, Yin-Gang

    2016-01-01

    Improvement in activation of Rubisco by Rubisco activase can potentially enhance CO2 assimilation and photosynthetic efficiency in plants. The three homoeologous copies of TaRca2-α were identified on chromosomes 4AL, 4BS and 4DS (TaRca2-α-4AL, TaRca2-α-4BS, and TaRca2-α-4DS) in bread wheat. Expression patterns of the three copies at heading (Z55), anthesis (Z67) and grain-filling (Z73) stages were investigated through qRT-PCR analyses in a panel of 59 bread wheat genotypes and their effects on net photosynthesis rate (Pn), biomass plant-1 (BMPP) and grain yield plant-1 (GYPP) were further explored. Different but similar expression patterns were observed for the three copies of TaRca2-α at the three growth stages with highest expression at grain-filling stage. TaRca2-α-4BS expressed higher at the three stages than TaRca2-α-4AL and TaRca2-α-4DS. The 59 genotypes could be clustered into three groups as high (7 genotypes), intermediate (41 genotypes) and low (11 genotypes) expression based on the expression of the three copies of TaRca2-α at three growth stages. Significant variations (P<0.01) were observed among the three groups of bread wheat genotypes for Pn, BMPP and GYPP. Generally, the genotypes with higher TaRca2-α expression also showed higher values for Pn, BMPP and GYPP. The expressions of the three copies of TaRca2-α at heading, anthesis and grain-filling stages were positively correlated with Pn, BMPP and GYPP (P<0.01) with stronger association for TaRca2-α-4BS at grain-filling stage. These results revealed that the expression of TaRca2-α contribute substantially to Pn, BMPP and GYPP, and suggested that manipulating TaRca-α expression may efficiently improve Pn, BMPP and GYPP in bread wheat and detecting TaRca-α expression levels with emphasis on TaRca2-α-4BS may be a positive strategy for selection in improving photosynthetic efficiency and grain yield of bread wheat. PMID:27548477

  16. Tradeoffs between vigor and yield for crops grown under different management systems

    NASA Astrophysics Data System (ADS)

    Simic Milas, Anita; Keller Vincent, Robert; Romanko, Matthew; Feitl, Melina; Rupasinghe, Prabha

    2016-04-01

    Remote sensing can provide an effective means for rapid and non-destructive monitoring of crop status and biochemistry. Monitoring pattern of traditional vigor algorithms generated from Landsat 8 OLI satellite data represents a robust method that can be widely used to differentiate the status of crops, as well as to monitor nutrient uptake functionality of differently treated seeds grown under different managements. This study considers 24 factorial parcels of winter wheat in 2013, corn in 2014, and soybeans in 2015, grown under four different types of agricultural management. The parcels are located at the Kellogg Biological Station, Long-Term Ecological Research site in the State of Michigan USA. At maturity, the organic crops exhibit significantly higher vigor and significantly lower yield than conventionally managed crops under different treatments. While organic crops invest in their metabolism at the expense of their yield, the conventional crops manage to increase their yield at the expense of their vigor. Landsat 8 OLI is capable of 1) differentiating the biochemical status of crops under different treatments at maturity, and 2) monitoring the tradeoff between crop yield and vigor that can be controlled by the seed treatments and proper conventional applications, with the ultimate goal of increasing food yield and food availability, and 3) distinguishing between organic and conventionally treated crops. Timing, quantity and types of herbicide applications have a great impact on early and pre-harvest vigor, maturity and yield of conventionally treated crops. Satellite monitoring using Landsat 8 is an optimal tool for coordinating agricultural applications, soil practices and genetic coding of the crop to produce higher yield as well as have early crop maturity, desirable in northern climates.

  17. High yields and soluble expression of superoxide dismutases in Escherichia coli due to the HIV-1 Tat peptide via increases in mRNA transcription

    PubMed Central

    Sun, Yangdong; Ye, Qiao; Wu, Min; Wu, Yonghong; Zhang, Chenggang; Yan, Weiqun

    2016-01-01

    This study aimed to validate the high yield and soluble expression of proteins carrying the transactivator of transcription (Tat) peptide tag, and further explored the potential mechanism by which the Tat tag increases expression. Escherichia coli superoxide dismutase (SOD) proteins, including SodA, SodB and SodC, were selected for analysis. As expected, the yields and the solubility of Tat-tagged proteins were higher than those of Tat-free proteins, and similar results were observed for the total SOD enzyme activity. Bacterial cells that overexpressed Tat-tagged proteins exhibited increased anti-paraquat activity compared with those expressing Tat-free proteins that manifested as SodA>SodC>SodB. When compared with an MG1655 wild-type strain, the growth of a ΔSodA mutant strain was found to be inhibited after paraquat treatment; the growth of ΔSodB and ΔSodC mutant strains was also slightly inhibited. The mRNA transcript level of genes encoding Tat-tagged proteins was higher than that of genes encoding Tat-free proteins. Furthermore, the α-helix and turn of Tat-tagged proteins were higher than those of Tat-free proteins, but the β-sheet and random coil content was lower. These results indicated that the incorporation of the Tat core peptide as a significant basic membrane transduction peptide in fusion proteins could increase mRNA transcripts and promote the high yield and soluble expression of heterologous proteins in E. coli. PMID:27741225

  18. Genetic, Physiological, and Gene Expression Analyses Reveal That Multiple QTL Enhance Yield of Rice Mega-Variety IR64 under Drought

    PubMed Central

    Swamy B. P., Mallikarjuna; Ahmed, Helal Uddin; Henry, Amelia; Mauleon, Ramil; Dixit, Shalabh; Vikram, Prashant; Tilatto, Ram; Verulkar, Satish B.; Perraju, Puvvada; Mandal, Nimai P.; Variar, Mukund; S., Robin; Chandrababu, Ranganath; Singh, Onkar N.; Dwivedi, Jawaharlal L.; Das, Sankar Prasad; Mishra, Krishna K.; Yadaw, Ram B.; Aditya, Tamal Lata; Karmakar, Biswajit; Satoh, Kouji; Moumeni, Ali; Kikuchi, Shoshi; Leung, Hei; Kumar, Arvind

    2013-01-01

    Background Rice (Oryza sativa L.) is a highly drought sensitive crop, and most semi dwarf rice varieties suffer severe yield losses from reproductive stage drought stress. The genetic complexity of drought tolerance has deterred the identification of agronomically relevant quantitative trait loci (QTL) that can be deployed to improve rice yield under drought in rice. Convergent evidence from physiological characterization, genetic mapping, and multi-location field evaluation was used to address this challenge. Methodology/Principal Findings Two pairs of backcross inbred lines (BILs) from a cross between drought-tolerant donor Aday Sel and high-yielding but drought-susceptible rice variety IR64 were produced. From six BC4F3 mapping populations produced by crossing the +QTL BILs with the −QTL BILs and IR64, four major-effect QTL - one each on chromosomes 2, 4, 9, and 10 - were identified. Meta-analysis of transcriptome data from the +QTL/−QTL BILs identified differentially expressed genes (DEGs) significantly associated with QTL on chromosomes 2, 4, 9, and 10. Physiological characterization of BILs showed increased water uptake ability under drought. The enrichment of DEGs associated with root traits points to differential regulation of root development and function as contributing to drought tolerance in these BILs. BC4F3-derived lines with the QTL conferred yield advantages of 528 to 1875 kg ha−1 over IR64 under reproductive-stage drought stress in the targeted ecosystems of South Asia. Conclusions/Significance Given the importance of rice in daily food consumption and the popularity of IR64, the BC4F3 lines with multiple QTL could provide higher livelihood security to farmers in drought-prone environments. Candidate genes were shortlisted for further characterization to confirm their role in drought tolerance. Differential yield advantages of different combinations of the four QTL reported here indicate that future research should include optimizing QTL

  19. Regulated Expression of an Isopentenyltransferase Gene (IPT) in Peanut Significantly Improves Drought Tolerance and Increases Yield Under Field Conditions.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isopentenyltransferase (IPT) is a critical enzyme in the cytokinin biosynthetic pathway. The expression of IPT under the control of a maturation- and stress-induced promoter was shown to delay stress-induced plant senescence that resulted in an enhanced drought tolerance in both monocot and dicot p...

  20. Characterisation of endometrial gene expression and metabolic parameters in beef heifers yielding viable or non-viable embryos on Day 7 after insemination.

    PubMed

    Beltman, M E; Forde, N; Furney, P; Carter, F; Roche, J F; Lonergan, P; Crowe, M A

    2010-01-01

    The aim of the present study was to compare the hormonal and metabolic characteristics and endometrial gene expression profiles in beef heifers yielding either a viable or degenerate embryo on Day 7 after insemination as a means to explain differences in embryo survival. Oestrus was synchronised in cross-bred beef heifers (n = 145) using a controlled internal drug release (CIDR)-prostaglandin protocol. Heifers (n = 102) detected in standing oestrus (within 24-48 h after CIDR removal) were inseminated 12-18 h after detection of oestrus (Day 0) with frozen-thawed semen from a single ejaculate of a bull with proven fertility. Blood samples were collected from Day 4 to Day 7 after oestrus to measure progesterone (on Days 4, 5 and 7), insulin and insulin-like growth factor (IGF)-I (on Days 4 and 6) and urea (on Day 7) concentrations. All animals were killed on Day 7. Uterine pH was determined at the time of death. Animals from which an embryo was recovered were classified as either having a viable embryo (morula/blastocyst stage; n = 32) or a retarded embryo (arrested at the two- to 16-cell stage; n = 19). In addition, 14 single-celled unfertilised oocytes were recovered, giving an overall recovery rate of 64%. There was no significant difference in the blood parameters determined or uterine pH at the time of death between heifers with either a viable or retarded embryo. The relative abundance of nine transcripts (i.e. MOGAT1, PFKB2, LYZ2, SVS8, UHRF1, PTGES, AGPAT4, DGKA and HGPD) of 53 tested in the endometrial tissue differed between heifers with a viable or retarded embryo. Both LYZ2 and UHRF1 are associated with regulation of the immune system; PFKFB2 is a mediator in glycolysis; MOGAT, AGPAT4 and DGKA belong to the triglyceride synthesis pathway; and PTGES and HGPD belong to the prostaglandin pathway. Both these metabolic pathways are important for early embryonic development. In conclusion, retarded embryo development in the present study was not related to serum

  1. The separation distance distribution in electron-donor-acceptor systems and the wavelength dependence of free ion yields

    NASA Astrophysics Data System (ADS)

    Zhou, Jinwei; Findley, Bret R.; Braun, Charles L.; Sutin, Norman

    2001-06-01

    We recently reported that free radical ion quantum yields for electron-donor-acceptor (EDA) systems of alkylbenzenes-tetracyanoethylene (TCNE) exhibit a remarkable wavelength dependence in dichloromethane, a medium polarity solvent. We proposed that weak absorption by long-distance, unassociated or "random" D⋯A pairs is mainly responsible for the free radical ion yield. Here a model for the wavelength dependence of the free ion yield is developed for four systems in which differing degrees of EDA complex formation are present: 1,3,5-tri-tert-butylbenzene-TCNE in which only random pairs exist due to the bulky groups on the electron donor, and toluene—TCNE, 1,3,5-triethylbenzene-TCNE and 1,3,5-trimethylbenzene-TCNE. Mulliken-Hush theory is used to determine the excitation distance distribution of unassociated, random pairs at different wavelengths. For each absorption distribution, free radical ion yields at different wavelengths are then calculated using Onsager's result for the ion separation probability. Encouraging agreement between the calculated yields and our experimental results is obtained. As far as we are aware, this is the first time that photoexcitation of unassociated donor/acceptor pairs has been invoked as the source of separated radical ion pairs.

  2. Effects of polyunsaturated fatty acids from plant oils and algae on milk fat yield and composition are associated with mammary lipogenic and SREBF1 gene expression.

    PubMed

    Angulo, J; Mahecha, L; Nuernberg, K; Nuernberg, G; Dannenberger, D; Olivera, M; Boutinaud, M; Leroux, C; Albrecht, E; Bernard, L

    2012-12-01

    The main aim of the present study was to examine the effects of long-term supplementing diets with saturated or unprotected polyunsaturated fatty acids from two different plant oils rich in either n-3 or n-6 fatty acids (FAs) plus docosahexaenoic acid (DHA)-rich algae on mammary gene expression and milk fat composition in lactating dairy cows. Gene expression was determined from mammary tissue and milk epithelial cells. Eighteen primiparous German Holstein dairy cows in mid-lactation were randomly assigned into three dietary treatments that consist of silage-based diets supplemented with rumen-stable fractionated palm fat (SAT; 3.1% of the basal diet dry matter, DM), or a mixture of linseed oil (2.7% of the basal diet DM) plus DHA-rich algae (LINA; 0.4% of the basal diet DM) or a mixture of sunflower oil (2.7% of the basal diet DM) plus DHA-rich algae (SUNA; 0.4% of the basal diet DM), for a period of 10 weeks. At the end of the experimental period, the cows were slaughtered and mammary tissues were collected to study the gene expression of lipogenic enzymes. During the last week, the milk yield and composition were determined, and milk was collected for FA measurements and the isolation of milk purified mammary epithelial cells (MECs). Supplementation with plant oils and DHA-rich algae resulted in milk fat depression (MFD; yield and percentage). The secretion of de novo FAs in the milk was reduced, whereas the secretion of trans-10,cis-12-CLA and DHA were increased. These changes in FA secretions were associated in mammary tissue with a joint down-regulation of mammary lipogenic enzyme gene expression (stearoyl-CoA desaturase, SCD1; FA synthase, FASN) and expression of the regulatory element binding transcription factor (SREBF1), whereas no effect was observed on lipoprotein lipase (LPL) and glycerol-3-phosphate acyltransferase 1, mitochondrial (GPAM). A positive relationship between mammary SCD1 and SREBF1 mRNA abundances was observed, suggesting a similar

  3. Assimilating remote sensing observations of leaf area index and soil moisture for wheat yield estimates: An observing system simulation experiment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We develop a robust understanding of the effects of assimilating remote sensing observations of leaf area index and soil moisture (in the top 5 cm) on DSSAT-CSM CropSim-Ceres wheat yield estimates. Synthetic observing system simulation experiments compare the abilities of the Ensemble Kalman Filter...

  4. Impact of liquid fertilizers on plant growth, yield, fruit quality and fertigation management in an organic processing blackberry production system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of organic fertilizer source on the growth, fruit quality, and yield of blackberry cultivars (‘Marion’ and ‘Black Diamond’) grown in machine-harvested, organic production systems for the processed market was evaluated from 2011-13. The planting was established in spring 2010 using approve...

  5. A simple and robust protocol for high-yield expression of perdeuterated proteins in Escherichia coli grown in shaker flasks.

    PubMed

    Cai, Mengli; Huang, Ying; Yang, Renbin; Craigie, Robert; Clore, G M

    2016-10-01

    We present a simple, convenient and robust protocol for expressing perdeuterated proteins in E. coli BL21(DE3) cells in shaker flasks that reduces D2O usage tenfold and d7-glucose usage by 30 %. Using a modified M9 medium and optimized growth conditions, we were able to grow cells in linear log phase to an OD600 of up to 10. Inducing the cells with isopropyl β-D-1-thiogalactopyranoside at an OD600 of 10, instead of less than 1, enabled us to increase the cell mass tenfold per unit volume of cell culture. We show that protein expression levels per cell are the same when induced at an OD600 between 1 and 10 under these growth conditions. Thus, our new protocol can increase protein yield per unit volume of cell culture tenfold. Adaptation of E. coli from H2O-based to D2O-based medium is also key for ensuring high levels of protein expression in D2O. We find that a simple three-step adaptation approach-Luria-Bertani (LB) medium in H2O to LB in D2O to modified-M9 medium in D2O is both simple and reliable. The method increases the yield of perdeuterated proteins by up to tenfold using commonly available air shakers without any requirement for specialized fermentation equipment.

  6. Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield.

    PubMed

    Pino, María-Teresa; Skinner, Jeffrey S; Park, Eung-Jun; Jeknić, Zoran; Hayes, Patrick M; Thomashow, Michael F; Chen, Tony H H

    2007-09-01

    Solanum tuberosum is a frost-sensitive species incapable of cold acclimation. A brief exposure to frost can significantly reduce its yields, while hard frosts can completely destroy entire crops. Thus, gains in freezing tolerance of even a few degrees would be of considerable benefit relative to frost damage. The S. tuberosum cv. Umatilla was transformed with three Arabidopsis CBF genes (AtCBF1-3) driven by either a constitutive CaMV35S or a stress-inducible Arabidopsis rd29A promoter. AtCBF1 and AtCBF3 over-expression via the 35S promoter increased freezing tolerance about 2 degrees C, whereas AtCBF2 over-expression failed to increase freezing tolerance. Transgenic plants of AtCBF1 and AtCBF3 driven by the rd29A promoter reached the same level of freezing tolerance as the 35S versions within a few hours of exposure to low but non-freezing temperatures. Constitutive expression of AtCBF genes was associated with negative phenotypes, including smaller leaves, stunted plants, delayed flowering, and reduction or lack of tuber production. While imparting the same degree of freezing tolerance, control of AtCBF expression via the stress-inducible promoter ameliorated these negative phenotypic effects and restored tuber production to levels similar to wild-type plants. These results suggest that use of a stress-inducible promoter to direct CBF transgene expression can yield significant gains in freezing tolerance without negatively impacting agronomically important traits in potato.

  7. Interspecific Differential Expression Analysis of RNA-Seq Data Yields Insight into Life Cycle Variation in Hydractiniid Hydrozoans.

    PubMed

    Sanders, Steven M; Cartwright, Paulyn

    2015-08-06

    Hydrozoans are known for their complex life cycles, which can alternate between an asexually reproducing polyp stage and a sexually reproducing medusa stage. Most hydrozoan species, however, lack a free-living medusa stage and instead display a developmentally truncated form, called a medusoid or sporosac, which generally remains attached to the polyp. Although evolutionary transitions in medusa truncation and loss have been investigated phylogenetically, little is known about the genes involved in the development and loss of this life cycle stage. Here, we present a new workflow for evaluating differential expression (DE) between two species using short read Illumina RNA-seq data. Through interspecific DE analyses between two hydractiniid hydrozoans, Hydractinia symbiolongicarpus and Podocoryna carnea, we identified genes potentially involved in the developmental, functional, and morphological differences between the fully developed medusa of P. carnea and reduced sporosac of H. symbiolongicarpus. A total of 10,909 putative orthologs of H. symbiolongicarpus and P. carnea were identified from de novo assemblies of short read Illumina data. DE analysis revealed 938 of these are differentially expressed between P. carnea developing and adult medusa, when compared with H. symbiolongicarpus sporosacs, the majority of which have not been previously characterized in cnidarians. In addition, several genes with no corresponding ortholog in H. symbiolongicarpus were expressed in developing medusa of P. carnea. Results presented here show interspecific DE analyses of RNA-seq data to be a sensitive and reliable method for identifying genes and gene pathways potentially involved in morphological and life cycle differences between species.

  8. Disease severity and yield potential of rice cultivars in organic production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The market demand for organically produced rice has driven the steady increase in the acreage of organic rice in the U. S., with Texas and California being the largest states. Yield potential and disease management are among the principal challenges associated with organic rice production. We evalua...

  9. Comparison of disease severity and yield potential of rice varieties in two organic cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The market demand for organically produced rice has driven the steady increase in acreage of organic rice in the U. S., with Texas and California having the most acreage. Yield potential and disease management are among the principal challenges associated with organic rice production. Organic rice c...

  10. Increasing plant density in eastern United States broccoli production systems to maximize marketable head yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased demand for fresh market broccoli (Brassica oleracea L. var. italica) has led to increased production along the eastern seaboard of the United States. Maximizing broccoli yields is a primary concern for quickly expanding eastern commercial markets. Thus, a plant density study was carried ...

  11. Comparative Proteomic Analysis of saccharopolyspora spinosa SP06081 and PR2 strains reveals the differentially expressed proteins correlated with the increase of spinosad yield

    PubMed Central

    2011-01-01

    Background Saccharopolyspora spinosa produces the environment-friendly biopesticide spinosad, a mixture of two polyketide-derived macrolide active ingredients called spinosyns A and D. Therefore considerable interest is in the improvement of spinosad production because of its low yield in wild-type S. spinosa. Recently, a spinosad-hyperproducing PR2 strain with stable heredity was obtained from protoplast regeneration of the wild-type S. spinosa SP06081 strain. A comparative proteomic analysis was performed on the two strains during the first rapid growth phase (RG1) in seed medium (SM) by using label-free quantitative proteomics to investigate the underlying mechanism leading to the enhancement of spinosad yield. Results In total, 224 proteins from the SP06081 strain and 204 proteins from the PR2 strain were unambiguously identified by liquid chromatography-tandem mass spectrometry analysis, sharing 140 proteins. A total of 12 proteins directly related to spinosad biosynthesis were identified from the two strains in RG1. Comparative analysis of the shared proteins revealed that approximately 31% of them changed their abundance significantly and fell in all of the functional groups, such as tricarboxylic acid cycles, glycolysis, biosynthetic processes, catabolic processes, transcription, translation, oxidation and reduction. Several key enzymes involved in the synthesis of primary metabolic intermediates used as precursors for spinosad production, energy supply, polyketide chain assembly, deoxysugar methylation, and antioxidative stress were differentially expressed in the same pattern of facilitating spinosad production by the PR2 strain. Real-time reverse transcriptase polymerase chain reaction analysis revealed that four of five selected genes showed a positive correlation between changes at the translational and transcriptional expression level, which further confirmed the proteomic analysis. Conclusions The present study is the first comprehensive and

  12. Effect of chemical and mechanical weed control on cassava yield, soil quality and erosion under cassava cropping system

    NASA Astrophysics Data System (ADS)

    Islami, Titiek; Wisnubroto, Erwin; Utomo, Wani

    2016-04-01

    Three years field experiments were conducted to study the effect of chemical and mechanical weed control on soil quality and erosion under cassava cropping system. The experiment were conducted at University Brawijaya field experimental station, Jatikerto, Malang, Indonesia. The experiments were carried out from 2011 - 2014. The treatments consist of three cropping system (cassava mono culture; cassava + maize intercropping and cassava + peanut intercropping), and two weed control method (chemical and mechanical methods). The experimental result showed that the yield of cassava first year and second year did not influenced by weed control method and cropping system. However, the third year yield of cassava was influence by weed control method and cropping system. The cassava yield planted in cassava + maize intercropping system with chemical weed control methods was only 24 t/ha, which lower compared to other treatments, even with that of the same cropping system used mechanical weed control. The highest cassava yield in third year was obtained by cassava + peanuts cropping system with mechanical weed control method. After three years experiment, the soil of cassava monoculture system with chemical weed control method possessed the lowest soil organic matter, and soil aggregate stability. During three years of cropping soil erosion in chemical weed control method, especially on cassava monoculture, was higher compared to mechanical weed control method. The soil loss from chemical control method were 40 t/ha, 44 t/ha and 54 t/ha for the first, second and third year crop. The soil loss from mechanical weed control method for the same years was: 36 t/ha, 36 t/ha and 38 t/ha. Key words: herbicide, intercropping, soil organic matter, aggregate stability.

  13. Interspecific Differential Expression Analysis of RNA-Seq Data Yields Insight into Life Cycle Variation in Hydractiniid Hydrozoans

    PubMed Central

    Sanders, Steven M.; Cartwright, Paulyn

    2015-01-01

    Hydrozoans are known for their complex life cycles, which can alternate between an asexually reproducing polyp stage and a sexually reproducing medusa stage. Most hydrozoan species, however, lack a free-living medusa stage and instead display a developmentally truncated form, called a medusoid or sporosac, which generally remains attached to the polyp. Although evolutionary transitions in medusa truncation and loss have been investigated phylogenetically, little is known about the genes involved in the development and loss of this life cycle stage. Here, we present a new workflow for evaluating differential expression (DE) between two species using short read Illumina RNA-seq data. Through interspecific DE analyses between two hydractiniid hydrozoans, Hydractinia symbiolongicarpus and Podocoryna carnea, we identified genes potentially involved in the developmental, functional, and morphological differences between the fully developed medusa of P. carnea and reduced sporosac of H. symbiolongicarpus. A total of 10,909 putative orthologs of H. symbiolongicarpus and P. carnea were identified from de novo assemblies of short read Illumina data. DE analysis revealed 938 of these are differentially expressed between P. carnea developing and adult medusa, when compared with H. symbiolongicarpus sporosacs, the majority of which have not been previously characterized in cnidarians. In addition, several genes with no corresponding ortholog in H. symbiolongicarpus were expressed in developing medusa of P. carnea. Results presented here show interspecific DE analyses of RNA-seq data to be a sensitive and reliable method for identifying genes and gene pathways potentially involved in morphological and life cycle differences between species. PMID:26251524

  14. Characterization of NoV P particle-based chimeric protein vaccines developed from two different expression systems.

    PubMed

    Fu, Lu; Jin, Hao; Yu, Yongjiao; Yu, Bin; Zhang, Haihong; Wu, Jiaxin; Yin, Yuhe; Yu, Xianghui; Wu, Hui; Kong, Wei

    2017-02-01

    The Norovirus (NoV) P domain, with three surface loops for foreign antigen insertion, has been demonstrated as an excellent platform for antigen presentation and novel vaccine development. The P domain alone can self-assemble into a P dimer, 12-mer small particle or 24-mer P particle, and vaccines based on those particles may elicit different levels of immunogenicity. Currently, P particles are generally produced in soluble expression systems in Escherichia coli, mainly in the 24-mer form. However, the low yield of the soluble protein has hindered further clinical applications of P particle-based protein vaccines. In this study, we inserted the Alzheimer's disease (AD) immunogen Aβ1-6 into the three loops of the P particle to generate an AD protein vaccine. To increase the yield of this chimeric protein, we tested the generation of proteins in a soluble expression system and an inclusion body expression system separately in E. coli. The result showed that the inclusion body expression system could greatly enhance the product yield of the chimeric protein compared with the soluble expression system. The refolded protein from the inclusion bodies was mainly in the 12-mer form, while the protein generated from the soluble supernatant was mainly in the 24-mer form. Moreover, the immunogenicity of soluble proteins was significantly stronger than that of the refolded proteins. Thus, comparisons between the two expression methods suggested that the soluble expression system generated chimeric P particles with better immunogenicity, while inclusion body expression system yielded more P particle proteins.

  15. Evaluation of current methods used to analyze the expression profiles of ABC transporters yields an improved drug-discovery database

    PubMed Central

    Orina, Josiah N.; Calcagno, Anna Maria; Wu, Chung-Pu; Varma, Sudhir; Shih, Joanna; Lin, Min; Eichler, Gabriel; Weinstein, John N.; Pommier, Yves; Ambudkar, Suresh V.; Gottesman, Michael M.; Gillet, Jean-Pierre

    2009-01-01

    The development of multidrug resistance (MDR) to chemotherapy remains a major challenge in the treatment of cancer. Resistance exists against every effective anti-cancer drug and can develop by multiple mechanisms. These mechanisms can act individually or synergistically, leading to multidrug resistance (MDR), in which the cell becomes resistant to a variety of structurally and mechanistically unrelated drugs in addition to the drug initially administered. Although extensive work has been done to characterize MDR mechanisms in vitro, the translation of this knowledge to the clinic has not been successful. Therefore, identifying genes and mechanisms critical to the development of MDR in vivo and establishing a reliable method for analyzing highly homologous genes from small amounts of tissue is fundamental to achieving any significant enhancement in our understanding of multidrug resistance mechanisms and could lead to treatments designed to circumvent it. In this study, we use a previously established database that allows the identification of lead compounds in the early stages of drug discovery that are not ABC transporter substrates. We believe this can serve as a model for appraising the accuracy and sensitivity of current methods used to analyze the expression profiles of ABC transporters. We found two platforms to be superior methods for the analysis of expression profiles of highly homologous gene superfamilies. This study also led to an improved database by revealing previously unidentified substrates for ABCB1, ABCC1 and ABCG2, transporters that contribute to multidrug resistance. PMID:19584229

  16. The silver lining of a viral agent: increasing seed yield and harvest index in Arabidopsis by ectopic expression of the potato leaf roll virus movement protein.

    PubMed

    Kronberg, Kristin; Vogel, Florian; Rutten, Twan; Hajirezaei, Mohammed-Reza; Sonnewald, Uwe; Hofius, Daniel

    2007-11-01

    Ectopic expression of viral movement proteins (MPs) has previously been shown to alter plasmodesmata (PD) function and carbon partitioning in transgenic plants, giving rise to the view of PD being dynamic and highly regulated structures that allow resource allocation to be adapted to environmental and developmental needs. However, most work has been restricted to solanaceous species and the potential use of MP expression to improve biomass and yield parameters has not been addressed in detail. Here we demonstrate that MP-mediated modification of PD function can substantially alter assimilate allocation, biomass production, and reproductive growth in Arabidopsis (Arabidopsis thaliana). These effects were achieved by constitutive expression of the potato leaf roll virus 17-kD MP (MP17) fused to green fluorescent protein (GFP) in different Arabidopsis ecotypes. The resulting transgenic plants were analyzed for PD localization of the MP17:GFP fusion protein and different lines with low to high expression levels were selected for further analysis. Low-level accumulation of MP17 resulted in enhanced sucrose efflux from source leaves and a considerably increased vegetative biomass production. In contrast, high MP17 levels impaired sucrose export, resulting in source leaf-specific carbohydrate accumulation and a strongly reduced vegetative growth. Surprisingly, later during development the MP17-mediated inhibition of resource allocation was reversed, and final seed yield increased in average up to 30% in different transgenic lines as compared to wild-type plants. This resulted in a strongly improved harvest index. The release of the assimilate export block was paralleled by a reduced PD binding of MP17 in senescing leaves, indicating major structural changes of PD during leaf senescence.

  17. Acetate yield increased by gas circulation and fed-batch fermentation in a novel syntrophic acetogenesis and homoacetogenesis coupling system.

    PubMed

    Nie, YanQiu; Liu, He; Du, GuoCheng; Chen, Jian

    2008-05-01

    Gas circulation and fed-batch fermentation were applied for enhancing acetate production by mixed culture in a novel syntrophic acetogenesis and homoacetogenesis coupling system. The results show that the acetate yield in the fed-batch test with gas circulation is about 47% higher than that in the batch test without gas circulation. The fed-batch method helps to increase acetate yield by balancing hydrogen production in the acetogenesis phase (the 1st phase) and hydrogen consumption in the homoacetogenesis phase (the 2nd phase) of the coupling system. Gas circulation enhances mass transfer between different phases of the coupling system, hence resulting in increased homoacetogenesis in the 2nd phase and relief of the products (H2) inhibition to syntrophic acetogenesis in the 1st phase. The effects of gas circulation and fed-batch fermentation on direct glucose conversion to acetate were also investigated.

  18. Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS and pykF

    PubMed Central

    2013-01-01

    Background During the last two decades many efforts have been directed towards obtaining efficient microbial processes for the production of shikimic acid (SA); however, feeding high amounts of substrate to increase the titer of this compound has invariably rendered low conversion yields, leaving room for improvement of the producing strains. In this work we report an alternative platform to overproduce SA in a laboratory-evolved Escherichia coli strain, based on plasmid-driven constitutive expression of six genes selected from the pentose phosphate and aromatic amino acid pathways, artificially arranged as an operon. Production strains also carried inactivated genes coding for phosphotransferase system components (ptsHIcrr), shikimate kinases I and II (aroK and aroL), pyruvate kinase I (pykF) and the lactose operon repressor (lacI). Results The strong and constitutive expression of the constructed operon permitted SA production from the beginning of the cultures, as evidenced in 1 L batch-mode fermentors starting with high concentrations of glucose and yeast extract. Inactivation of the pykF gene improved SA production under the evaluated conditions by increasing the titer, yield and productivity of this metabolite compared to the isogenic pykF+ strain. The best producing strain accumulated up to 43 g/L of SA in 30 h and relatively low concentrations of acetate and aromatic byproducts were detected, with SA accounting for 80% of the produced aromatic compounds. These results were consistent with high expression levels of the glycolytic pathway and synthetic operon genes from the beginning of fermentations, as revealed by transcriptomic analysis. Despite the consumption of 100 g/L of glucose, the yields on glucose of SA and of total aromatic compounds were about 50% and 60% of the theoretical maximum, respectively. The obtained yields and specific production and consumption rates proved to be constant with three different substrate concentrations. Conclusions

  19. Comparative Single-Cell Analysis of Different E. coli Expression Systems during Microfluidic Cultivation

    PubMed Central

    Hilgers, Fabienne; Loeschcke, Anita; Jaeger, Karl-Erich; Kohlheyer, Dietrich; Drepper, Thomas

    2016-01-01

    Recombinant protein production is mostly realized with large-scale cultivations and monitored at the level of the entire population. Detailed knowledge of cell-to-cell variations with respect to cellular growth and product formation is limited, even though phenotypic heterogeneity may distinctly hamper overall production yields, especially for toxic or difficult-to-express proteins. Unraveling phenotypic heterogeneity is thus a key aspect in understanding and optimizing recombinant protein production in biotechnology and synthetic biology. Here, microfluidic single-cell analysis serves as the method of choice to investigate and unmask population heterogeneities in a dynamic and spatiotemporal fashion. In this study, we report on comparative microfluidic single-cell analyses of commonly used E. coli expression systems to uncover system-inherent specifications in the synthetic M9CA growth medium. To this end, the PT7lac/LacI, the PBAD/AraC and the Pm/XylS system were systematically analyzed in order to gain detailed insights into variations of growth behavior and expression phenotypes and thus to uncover individual strengths and deficiencies at the single-cell level. Specifically, we evaluated the impact of different system-specific inducers, inducer concentrations as well as genetic modifications that affect inducer-uptake and regulation of target gene expression on responsiveness and phenotypic heterogeneity. Interestingly, the most frequently applied expression system based on E. coli strain BL21(DE3) clearly fell behind with respect to expression homogeneity and robustness of growth. Moreover, both the choice of inducer and the presence of inducer uptake systems proved crucial for phenotypic heterogeneity. Conclusively, microfluidic evaluation of different inducible E. coli expression systems and setups identified the modified lacY-deficient PT7lac/LacI as well as the Pm/XylS system with conventional m-toluic acid induction as key players for precise and robust

  20. Expression Profiling of Liposarcoma Yields a Multigene Predictor of Patient Outcome and Identifies Genes that Contribute to Liposarcomagenesis

    PubMed Central

    Gobble, Ryan M.; Qin, Li-Xuan; Brill, Elliott R.; Angeles, Christina V.; Ugras, Stacy; O’Connor, Rachael B.; Moraco, Nicole H.; DeCarolis, Penelope L.; Antonescu, Christina; Singer, Samuel

    2011-01-01

    Liposarcomas are the second most common type of soft tissue sarcoma but its genetics are poorly defined. To identify genes that contribute to liposarcomagenesis and serve as prognostic candidates, we undertook expression profiling of 140 primary liposarcoma samples, which were randomly split into training set (n=95) and test set (n=45). A multi-gene predictor for DRFS was developed using the supervised principal component method. Expression levels of the 588 genes in the predictor were used to calculate a risk score for each patient. In validation of the predictor in the test set, patients with low risk score had a 3-year DRFS of 83% vs. 45% for high risk score patients (P=0.001). The hazard ratio for high vs. low score, adjusted for histologic subtype, was 4.42 (95% confidence interval 1.26–15.55; P=0.021). The concordance probability for risk score was 0.732. In contrast, the concordance probability for histologic subtype, which had been considered the best predictor of outcome in liposarcoma, was 0.669. Genes related to adipogenesis, DNA replication, mitosis, and spindle assembly checkpoint control were all highly represented in the multi-gene predictor. Three genes from the predictor, TOP2A, PTK7, and CHEK1, were found to be overexpressed in liposarcoma samples of all five subtypes and in liposarcoma cell lines. RNAi-mediated knockdown of these genes in liposarcoma cell lines reduced proliferation and invasiveness and increased apoptosis. Taken together, our findings identify genes that appear to be involved liposarcomagenesis and have promise as therapeutic targets, and support the use of this multi-gene predictor to improve risk stratification for individual patients with liposarcoma. PMID:21335544

  1. Regulated expression of a cytokinin biosynthesis gene IPT delays leaf senescence and improves yield under rainfed and irrigated conditions in canola (Brassica napus L.).

    PubMed

    Kant, Surya; Burch, David; Badenhorst, Pieter; Palanisamy, Rajasekaran; Mason, John; Spangenberg, German

    2015-01-01

    Delay of leaf senescence through genetic modification can potentially improve crop yield, through maintenance of photosynthetically active leaves for a longer period. Plant growth hormones such as cytokinin regulate and delay leaf senescence. Here, the structural gene (IPT) encoding the cytokinin biosynthetic enzyme isopentenyltransferase was fused to a functionally active fragment of the AtMYB32 promoter and was transformed into canola plants. Expression of the AtMYB32xs::IPT gene cassette delayed the leaf senescence in transgenic plants grown under controlled environment conditions and field experiments conducted for a single season at two geographic locations. The transgenic canola plants retained higher chlorophyll levels for an extended period and produced significantly higher seed yield with similar growth and phenology compared to wild type and null control plants under rainfed and irrigated treatments. The yield increase in transgenic plants was in the range of 16% to 23% and 7% to 16% under rainfed and irrigated conditions, respectively, compared to control plants. Most of the seed quality parameters in transgenic plants were similar, and with elevated oleic acid content in all transgenic lines and higher oil content and lower glucosinolate content in one specific transgenic line as compared to control plants. The results suggest that by delaying leaf senescence using the AtMYB32xs::IPT technology, productivity in crop plants can be improved under water stress and well-watered conditions.

  2. Effects of potato-cotton cropping systems and nematicides on plant-parasitic nematodes and crop yields.

    PubMed

    Crow, W T; Weingartner, D P; Dickson, D W

    2000-09-01

    Belonolaimus longicaudatus has been reported as damaging both potato (Solanum tuberosum) and cotton (Gossypium hirsutum). These crops are not normally grown in cropping systems together in areas where the soil is infested with B. longicaudatus. During the 1990s cotton was grown in a potato production region that was a suitable habitat for B. longicaudatus. It was not known how integrating the production of these two crops by rotation or double-cropping would affect the population densities of B. longicaudatus, other plant-parasitic nematodes common in the region, or crop yields. A 3-year field study evaluated the viability of both crops in monocropping, rotation, and double-cropping systems. Viability was evaluated using effects on population densities of plant-parasitic nematodes and yields. Rotation of cotton with potato was found to decrease population densities of B. longicaudatus and Meloidogyne incognita in comparison with continuous potato. Population densities of B. longicaudatus following double-cropping were greater than following continuous cotton. Yields of both potato and cotton in rotation were equivalent to either crop in monocropping. Yields of both crops were lower following double-cropping when nematicides were not used.

  3. Crop yield summary for three wetland reservoir subirrigation systems in northwest Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wetland Reservoir Subirrigation Systems (WRSIS) are innovative agricultural water management and recycling systems comprised of three main components; a constructed wetland, a water storage reservoir, and cropland containing subsurface drainage pipe systems. Surface runoff and subsurface drainage f...

  4. Development and characterization of a high yield transportable pulsed neutron source with efficient and compact pulsed power system

    NASA Astrophysics Data System (ADS)

    Verma, Rishi; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag

    2016-09-01

    The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ˜10 kJ is segregated into four modules of ˜2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA-600 kA (corresponding to charging voltage range of 14 kV-18 kV) in a quarter time period of ˜2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar-11 mbar at ˜17 kV/550 kA discharge. At ˜7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ˜4 × 109 neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ˜2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.

  5. Development and characterization of a high yield transportable pulsed neutron source with efficient and compact pulsed power system.

    PubMed

    Verma, Rishi; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag

    2016-09-01

    The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA-600 kA (corresponding to charging voltage range of 14 kV-18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar-11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10(9) neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.

  6. Homologous expression of cytosolic dehydroascorbate reductase increases grain yield and biomass under paddy field conditions in transgenic rice (Oryza sativa L. japonica).

    PubMed

    Kim, Young-Saeng; Kim, Il-Sup; Bae, Mi-Jung; Choe, Yong-Hoe; Kim, Yul-Ho; Park, Hyang-Mi; Kang, Hong-Gyu; Yoon, Ho-Sung

    2013-06-01

    Dehydroascorbate reductase (DHAR, EC 1.8.5.1) maintains redox pools of ascorbate (AsA) by recycling oxidized AsA to reduced AsA. To investigate whether DHAR affects rice yield under normal environmental conditions, cDNA-encoding DHAR (OsDHAR1) was isolated from rice and used to develop OsDHAR1-overexpressing transgenic rice plants, under the regulation of a maize ubiquitin promoter. Incorporation and expression of the transgene in transgenic rice plants was confirmed by genomic polymerase chain reaction (PCR), semi-quantitative reverse transcription PCR (RT-PCR), western blot, and enzyme activity. The expression levels were at least twofold higher in transgenic (TG) rice plants than in control wild-type (WT) rice plants. In addition, OsDHAR1-overexpression in seven-independent homologous transgenic plants, as compared to WT plants, increased photosynthetic capacity and antioxidant enzyme activities under paddy field conditions, which led to an improved AsA pool and redox homeostasis. Furthermore, OsDHAR1 overexpression significantly improved grain yield and biomass due to the increase of culm and root weights and to enhance panicle and spikelet numbers in the same seven independent TG rice plants during the farming season (2010 and 2011) in South Korea. The OsDHAR protein contained the redox-active site (Cys20), as well as the conserved GSH-binding region, GSH-binding motif, glutathione-S-transferase (GST) N-terminal domain, C-terminal domain interface, and GST C-terminal domain. Therefore, our results indicate that OsDHAR1 overexpression, capable of functioning in AsA recycling, and protein folding increases environmental adaptation to paddy field conditions by the improving AsA pool and redox homeostasis, which enhances rice grain yield and biomass.

  7. Influence of solid-liquid separation strategy on biogas yield from a stratified swine production system.

    PubMed

    Cestonaro do Amaral, André; Kunz, Airton; Radis Steinmetz, Ricardo Luis; Scussiato, Lucas Antunes; Tápparo, Deisi Cristina; Gaspareto, Taís Carla

    2016-03-01

    As the fourth largest swine producer and exporter, Brazil has increased its participation in the global swine production market. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to prevent environmental impacts, being anaerobic digestion is an interesting alternative for treating these effluents. The low-volatile solid concentration in the manure suggests the need for solid-liquid separation as a tool to improve the biogas generation capacity. This study aimed to determine the influence of simplified and inexpensive solid-liquid separation strategies (screening and settling) and the different manures produced during each swine production phase (gestating and farrowing sow houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sow houses (GSH-a and GSH-b), two farrowing sow houses (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). Biochemical methane potential (BMP) tests were performed according to international standard procedures. The settled sludge fraction comprised 20-30% of the raw manure volume, which comprises 40-60% of the total methane yield. The methane potential of the settled sludge fraction was approximately two times higher than the methane potential of the supernatant fraction. The biogas yield differed among the raw manures from different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH -970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences were relative to the production phase (feed type and feeding techniques) and the management of the effluent inside the facilities (water management). Brazilian swine production has increased his participation in the global market, been the fourth producer and the fourth exporter. The segregation of swine production in multiple sites has increased its importance, due to the possibilities to have more specialized units. Generally, these units

  8. Neutron Yield Study of Direct-Drive, Low-Adiabat Cryogenic D2 Implosions on OMEGA Laser System

    SciTech Connect

    Hu, S.X.; Radha, P.B.; Marozas, J.A.; Betti, R.; Collins, T.J.B.; Craxton, R.S.; Delettrez, J.A.; Edgell, D.H.; Epstein, R.; Goncharov, V.N.; Igumenshchev, I.V.; Marshall, F.J.; McCrory, R.L.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.; Skupsky, S.; Smalyuk, V.A.; Elbaz, Y.; Shvarts, D.

    2009-11-17

    Neutron yields of direct-drive, low-adiabat (alpha ~~ 2 to 3) cryogenic D2 target implosions on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have been systematically investigated using the two-dimensional (2D) radiation hydrodynamics code DRACO [P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)]. Low-mode (ell <- 12) perturbations, including initial target offset, ice-layer roughness, and laser-beam power imbalance, were found to be the primary source of yield reduction for thin-shell (5 um), low-alpha, cryogenic targets. The 2D simulations of thin-shell implosions track experimental measurements for different target conditions and peak laser intensities ranging from 2.5 x 10^14–6 x 10^14 W/cm^2. Simulations indicate that the fusion yield is sensitive to the relative phases between the target offset and the ice-layer perturbations. The results provide a reasonable good guide to understanding the yield degradation in direct-drive, low-adiabat, cryogenic, thin-shell-target implosions. Thick-shell (10 um) implosions generally give lower yield over clean than low-ell-mode DRACO simulation predictions. Simulations including the effect of laser-beam nonuniformities indicate that high-ell-mode perturbations caused by laser imprinting further degrade the neutron yield of thick-shell implosions. To study ICF compression physics, these results suggest a target specification with a <-30 um offset and ice-roughness of sigma_rms < 3 um are required.

  9. Expression of functional Plasmodium falciparum enzymes using a wheat germ cell-free system.

    PubMed

    Mudeppa, Devaraja G; Rathod, Pradipsinh K

    2013-12-01

    One decade after the sequencing of the Plasmodium falciparum genome, 95% of malaria proteins in the genome cannot be expressed in traditional cell-based expression systems, and the targets of the best new leads for antimalarial drug discovery are either not known or not available in functional form. For a disease that kills up to 1 million people per year, routine expression of recombinant malaria proteins in functional form is needed both for the discovery of new therapeutics and for identification of targets of new drugs. We tested the general utility of cell-free systems for expressing malaria enzymes. Thirteen test enzyme sequences were reverse amplified from total RNA, cloned into a plant-like expression vector, and subjected to cell-free expression in a wheat germ system. Protein electrophoresis and autoradiography confirmed the synthesis of products of expected molecular masses. In rare problematic cases, truncated products were avoided by using synthetic genes carrying wheat codons. Scaled-up production generated 39 to 354 μg of soluble protein per 10 mg of translation lysate. Compared to rare proteins where cell-based systems do produce functional proteins, the cell-free yields are comparable or better. All 13 test products were enzymatically active, without failure. This general path to produce functional malaria proteins should now allow the community to access new tools, such as biologically active protein arrays, and lead to the discovery of new chemical functions, structures, and inhibitors of previously inaccessible malaria gene products.

  10. A Comparative Analysis of Recombinant Protein Expression in Different Biofactories: Bacteria, Insect Cells and Plant Systems

    PubMed Central

    Brozzetti, Annalisa; Falorni, Alberto; Pezzotti, Mario; Avesani, Linda

    2015-01-01

    Plant-based systems are considered a valuable platform for the production of recombinant proteins as a result of their well-documented potential for the flexible, low-cost production of high-quality, bioactive products. In this study, we compared the expression of a target human recombinant protein in traditional fermenter-based cell cultures (bacterial and insect) with plant-based expression systems, both transient and stable. For each platform, we described the set-up, optimization and length of the production process, the final product quality and the yields and we evaluated provisional production costs, specific for the selected target recombinant protein. Overall, our results indicate that bacteria are unsuitable for the production of the target protein due to its accumulation within insoluble inclusion bodies. On the other hand, plant-based systems are versatile platforms that allow the production of the selected protein at lower-costs than Baculovirus/insect cell system. In particular, stable transgenic lines displayed the highest-yield of the final product and transient expressing plants the fastest process development. However, not all recombinant proteins may benefit from plant-based systems but the best production platform should be determined empirically with a case-by-case approach, as described here. PMID:25867956

  11. An IPTG Inducible Conditional Expression System for Mycobacteria

    PubMed Central

    Ravishankar, Sudha; Ambady, Anisha; Ramu, Haripriya; Mudugal, Naina Vinay; Tunduguru, Ragadeepthi; Anbarasu, Anand; Sharma, Umender K.; Sambandamurthy, Vasan K.; Ramaiah, Sudha

    2015-01-01

    Conditional expression strains serve as a valuable tool to study the essentiality and to establish the vulnerability of a target under investigation in a drug discovery program. While essentiality implies an absolute requirement of a target function, vulnerability provides valuable information on the extent to which a target function needs to be depleted to achieve bacterial growth inhibition followed by cell death. The critical feature of an ideal conditional expression system is its ability to tightly regulate gene expression to achieve the full spectrum spanning from a high level of expression in order to support growth and near zero level of expression to mimic conditions of gene knockout. A number of bacterial conditional expression systems have been reported for use in mycobacteria. The utility of an isopropylthiogalactoside (IPTG) inducible system in mycobacteria has been reported for protein overexpression and anti-sense gene expression from a replicating multi-copy plasmid. Herein, we report the development of a versatile set of non-replicating IPTG inducible vectors for mycobacteria which can be used for generation of conditional expression strains through homologous recombination. The role of a single lac operator versus a double lac operator to regulate gene expression was evaluated by monitoring the expression levels of β-galactosidase in Mycobacterium smegmatis. These studies indicated a significant level of leaky expression from the vector with a single lac operator but none from the vector with double lac operator. The significance of the double lac operator vector for target validation was established by monitoring the growth kinetics of an inhA, a rpoB and a ftsZ conditional expression strain grown in the presence of different concentrations of IPTG. The utility of this inducible system in identifying target specific inhibitors was established by screening a focussed library of small molecules using an inhA and a rpoB conditional expression

  12. Solid-phase fermentation and juice expression systems for sweet sorghum

    SciTech Connect

    Bryan, W.L.; Monroe, G.E.; Caussariel, P.M.

    1985-01-01

    Two systems to recover fermented juice from variety M 81E sweet sorghum stalks that contained about 11% fermentable sugar were compared. (a) Stalks with leaves and tops removed were chopped and inoculated with 0.2% yeast in a forage harvester, stored under anaerobic conditions for 75 hours in insulated fermentors and pressed in a screw press to recover fermented juice (5-6% ethanol). (b) Mechanically harvested sweet sorghum billets (30 cm length) without leaves or seed heads were shredded and milled in a 3-roll mill; and bagasse was inoculated with 0.2% yeast, fermented for 100 h and pressed to recover fermented juice (4 to 5% ethanol). Potential ethanol yields were 75% of theoretical for the forage harvest system and 78% for the shredder mill system, based on 95% of theoretical ethanol yield from juice expressed during milling and no loss of ethanol during fermentation, handling and pressing in the screw press. 20 references.

  13. Decomposing global crop yield variability

    NASA Astrophysics Data System (ADS)

    Ben-Ari, Tamara; Makowski, David

    2014-11-01

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961-2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  14. Develop a field grid system for yield mapping and machine control. Quarterly report, July 1, 1995--September 30, 1995

    SciTech Connect

    Hart, F.; Windish, J.

    1995-10-01

    Build and test the Field Grid Sense system for yield mapping and machine control during harvesting. Secondly, use Field Grid Sense with chemical application equipment to demonstrate a workable in-field system. More specifically, the operation of the patented hardware/software Field Grid Sense (FGS) system will be tested in crop harvesting to demonstrate the system`s utility and to analyze the flexibility of operation under true field conditions. Additionally, FGS will again be used with chemical application equipment - equipment that needs modification to correct one or two slight shortcomings. This action will create improved systems and establish the worthiness, efficiency and necessity of chemical application equipment that is controlled and directed via the FGS package.

  15. Current status of viral expression systems in plants and perspectives for oral vaccines development.

    PubMed

    Salazar-González, Jorge A; Bañuelos-Hernández, Bernardo; Rosales-Mendoza, Sergio

    2015-02-01

    During the last 25 years, the technology to produce recombinant vaccines in plant cells has evolved from modest proofs of the concept to viable technologies adopted by some companies due to significant improvements in the field. Viral-based expression strategies have importantly contributed to this success owing to high yields, short production time (which is in most cases free of tissue culture steps), and the implementation of confined processes for production under GMPs. Herein the distinct expression systems based on viral elements are analyzed. This review also presents the outlook on how these technologies have been successfully applied to the development of plant-based vaccines, some of them being in advanced stages of development. Perspectives on how viral expression systems could allow for the development of innovative oral vaccines constituted by minimally-processed plant biomass are discussed.

  16. Improving potato cropping systems: longer-term effects on diseases and yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of effective cropping systems can provide the structural basis for enhanced crop production and sustainability through the conservation, maintenance, and replenishment of various soil resources. In 2004, field trials evaluating potato cropping systems focused on different specific cr...

  17. Rectal site and suboptimal nodal yield predict systemic recurrence in resected colorectal carcinoma: a case-control study.

    PubMed

    Hayes, Brian D; O'Riordan, James M; Stuart, Charlotte; Muldoon, Cian

    2014-09-01

    We assessed the contribution of histopathological features to systemic recurrence (SR) in patients with colorectal cancer, using a case-control design: 71 cases and 184 controls were included, with a mean time until SR of 1.4 ± 0.1 years and a mean follow-up of controls of 1.6 ± 0.06 years. Cases had significantly greater odds of rectal site (odds ratio [OR] = 1.82), stage ≥ pT3 (OR = 2.11), suboptimal (<12) lymph node yield (OR = 4.6), stage ≥ pN1 (OR = 2.46), KRAS mutation (OR = 2.76), and extramural venous invasion (OR = 1.97). By multiple regression analysis, rectal site, stage ≥ pT3, suboptimal lymph node yield, and lymph node positivity independently predicted SR. Rectal cancers were more likely to have a suboptimal node yield than nonrectal cancers (relative risk = 1.6) among the entire cohort. We conclude that rectal cancers have greater risk of SR than colon cancers. A lower yield of lymph nodes in rectal cancer specimens may contribute to this.

  18. Whole intact rapeseeds or sunflower oil in high-forage or high-concentrate diets affects milk yield, milk composition, and mammary gene expression profile in goats.

    PubMed

    Ollier, S; Leroux, C; de la Foye, A; Bernard, L; Rouel, J; Chilliard, Y

    2009-11-01

    This study aimed to ascertain the response of goat mammary metabolic pathways to concentrate and lipid feeding in relation to milk fatty acid (FA) composition and secretion. Sixteen midlactation multiparous goats received diets differing in forage-to-concentrate ratio [high forage (HF) 64:36, and low forage (LF) 43:57] supplemented or not with lipids [HF with 130 g/d of oil from whole intact rapeseeds (RS) and LF with 130 g/d of sunflower oil (SO)] in a 4 x 4 Latin square design. Milk yield, milk composition, FA profile, and FA secretion were measured, as well as the expression profiles of key genes in mammary metabolism and of 8,382 genes, using a bovine oligonucleotide microarray. After 3 wk of treatment, milk, lactose, and protein yields were lower with HF-RS than with the other diets, whereas treatment had no effect on milk protein content. Milk fat content was higher with the HF-RS and LF-SO diets than with the HF and LF diets, and SO supplementation increased milk fat yield compared with the LF diet. Decreasing the forage-to-concentrate ratio from 64:36 to 43:57 had a limited effect on goat milk FA concentrations and secretions. Supplementing the LF diet with SO changed almost all the FA concentrations, including decreases in medium-chain saturated FA and large increases in trans C18:1 and C18:2 isomers (particularly trans-11 C18:1 and cis-9, trans-11 conjugated linoleic acid), without significant changes in C18:0 and cis-9 C18:1, whereas supplementing the HF diet with RS led to a strong decrease in short- and medium-chain saturated FA and a very strong increase in C18:0 and cis-9 C18:1, without significant changes in trans C18:1 and conjugated linoleic acid. Despite the decreases in milk lactose and protein yields observed with HF-RS, and despite the decrease in milk medium-chain FA and the increase in C18 FA secretion with RS or SO supplementation, none of the dietary treatments had any effect on mammary mRNA expression of the key genes involved in lactose

  19. Ethylene stimulation of latex yield depends on the expression of a sucrose transporter (HbSUT1B) in rubber tree (Hevea brasiliensis).

    PubMed

    Dusotoit-Coucaud, Anaïs; Kongsawadworakul, Panida; Maurousset, Laurence; Viboonjun, Unshira; Brunel, Nicole; Pujade-Renaud, Valérie; Chrestin, Hervé; Sakr, Soulaïman

    2010-12-01

    Hevea brasiliensis is an important industrial crop for natural rubber production. Latex biosynthesis occurs in the cytoplasm of highly specialized latex cells and requires sucrose as the unique precursor. Ethylene stimulation of latex production results in high sugar flow from the surrounding cells of inner bark towards the latex cells. The aim of this work was to understand the role of seven sucrose transporters (HbSUTs) and one hexose transporter (HbHXT1) in this process. Two Hevea clones were used: PB217 and PB260, respectively described as high and low yielding clones. The expression pattern of these sugar transporters (HbSUTs and HbHXT1) was monitored under different physiological conditions and found to be maximal in latex cells. HbSUT1, one of the most abundant isoforms, displayed the greatest response to ethylene treatment. In clone PB217, ethylene treatment led to a higher accumulation of HbSUT1B in latex cells than in the inner bark tissues. Conversely, stronger expression of HbSUT1B was observed in inner bark tissues than in latex cells of PB260. A positive correlation with HbSUT1B transcript accumulation and increased latex production was further supported by its lower expression in latex cells of the virgin clone PB217.

  20. Wheat germ systems for cell-free protein expression.

    PubMed

    Harbers, Matthias

    2014-08-25

    Cell-free protein expression plays an important role in biochemical research. However, only recent developments led to new methods to rapidly synthesize preparative amounts of protein that make cell-free protein expression an attractive alternative to cell-based methods. In particular the wheat germ system provides the highest translation efficiency among eukaryotic cell-free protein expression approaches and has a very high success rate for the expression of soluble proteins of good quality. As an open in vitro method, the wheat germ system is a preferable choice for many applications in protein research including options for protein labeling and the expression of difficult-to-express proteins like membrane proteins and multiple protein complexes. Here I describe wheat germ cell-free protein expression systems and give examples how they have been used in genome-wide expression studies, preparation of labeled proteins for structural genomics and protein mass spectroscopy, automated protein synthesis, and screening of enzymatic activities. Future directions for the use of cell-free expression methods are discussed.

  1. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.

    PubMed

    Holaskova, Edita; Galuszka, Petr; Frebort, Ivo; Oz, M Tufan

    2015-11-01

    Antimicrobial peptides (AMPs) are vital components of the innate immune system of nearly all living organisms. They generally act in the first line of defense against various pathogenic bacteria, parasites, enveloped viruses and fungi. These low molecular mass peptides are considered prospective therapeutic agents due to their broad-spectrum rapid activity, low cytotoxicity to mammalian cells and unique mode of action which hinders emergence of pathogen resistance. In addition to medical use, AMPs can also be employed for development of innovative approaches for plant protection in agriculture. Conferred disease resistance by AMPs might help us surmount losses in yield, quality and safety of agricultural products due to plant pathogens. Heterologous expression in plant-based systems, also called plant molecular farming, offers cost-effective large-scale production which is regarded as one of the most important factors for clinical or agricultural use of AMPs. This review presents various types of AMPs as well as plant-based platforms ranging from cell suspensions to whole plants employed for peptide production. Although AMP production in plants holds great promises for medicine and agriculture, specific technical limitations regarding product yield, function and stability still remain. Additionally, establishment of particular stable expression systems employing plants or plant tissues generally requires extended time scale for platform development compared to certain other heterologous systems. Therefore, fast and promising tools for evaluation of plant-based expression strategies and assessment of function and stability of the heterologously produced AMPs are critical for molecular farming and plant protection.

  2. Optimizing hill seeding density for high-yielding hybrid rice in a single rice cropping system in South China.

    PubMed

    Wang, Danying; Chen, Song; Wang, Zaiman; Ji, Chenglin; Xu, Chunmei; Zhang, Xiufu; Chauhan, Bhagirath Singh

    2014-01-01

    Mechanical hill direct seeding of hybrid rice could be the way to solve the problems of high seeding rates and uneven plant establishment now faced in direct seeded rice; however, it is not clear what the optimum hill seeding density should be for high-yielding hybrid rice in the single-season rice production system. Experiments were conducted in 2010 and 2011 to determine the effects of hill seeding density (25 cm×15 cm, 25 cm×17 cm, 25 cm×19 cm, 25 cm×21 cm, and 25 cm×23 cm; three to five seeds per hill) on plant growth and grain yield of a hybrid variety, Nei2you6, in two fields with different fertility (soil fertility 1 and 2). In addition, in 2012 and 2013, comparisons among mechanical hill seeding, broadcasting, and transplanting were conducted with three hybrid varieties to evaluate the optimum seeding density. With increases in seeding spacing from 25 cm×15 cm to 25 cm×23 cm, productive tillers per hill increased by 34.2% and 50.0% in soil fertility 1 and 2. Panicles per m2 declined with increases in seeding spacing in soil fertility 1. In soil fertility 2, no difference in panicles per m2 was found at spacing ranging from 25 cm×17 cm to 25 cm×23 cm, while decreases in the area of the top three leaves and aboveground dry weight per shoot at flowering were observed. Grain yield was the maximum at 25 cm×17 cm spacing in both soil fertility fields. Our results suggest that a seeding density of 25 cm×17 cm was suitable for high-yielding hybrid rice. These results were verified through on-farm demonstration experiments, in which mechanical hill-seeded rice at this density had equal or higher grain yield than transplanted rice.

  3. Optimizing Hill Seeding Density for High-Yielding Hybrid Rice in a Single Rice Cropping System in South China

    PubMed Central

    Wang, Danying; Chen, Song; Wang, Zaiman; Ji, Chenglin; Xu, Chunmei; Zhang, Xiufu; Chauhan, Bhagirath Singh

    2014-01-01

    Mechanical hill direct seeding of hybrid rice could be the way to solve the problems of high seeding rates and uneven plant establishment now faced in direct seeded rice; however, it is not clear what the optimum hill seeding density should be for high-yielding hybrid rice in the single-season rice production system. Experiments were conducted in 2010 and 2011 to determine the effects of hill seeding density (25 cm×15 cm, 25 cm×17 cm, 25 cm×19 cm, 25 cm×21 cm, and 25 cm×23 cm; three to five seeds per hill) on plant growth and grain yield of a hybrid variety, Nei2you6, in two fields with different fertility (soil fertility 1 and 2). In addition, in 2012 and 2013, comparisons among mechanical hill seeding, broadcasting, and transplanting were conducted with three hybrid varieties to evaluate the optimum seeding density. With increases in seeding spacing from 25 cm×15 cm to 25 cm×23 cm, productive tillers per hill increased by 34.2% and 50.0% in soil fertility 1 and 2. Panicles per m2 declined with increases in seeding spacing in soil fertility 1. In soil fertility 2, no difference in panicles per m2 was found at spacing ranging from 25 cm×17 cm to 25 cm×23 cm, while decreases in the area of the top three leaves and aboveground dry weight per shoot at flowering were observed. Grain yield was the maximum at 25 cm×17 cm spacing in both soil fertility fields. Our results suggest that a seeding density of 25 cm×17 cm was suitable for high-yielding hybrid rice. These results were verified through on-farm demonstration experiments, in which mechanical hill-seeded rice at this density had equal or higher grain yield than transplanted rice. PMID:25290342

  4. Local and Systemic Cytokine Expression in Patients with Postherpetic Neuralgia

    PubMed Central

    Üçeyler, Nurcan; Valet, Michael; Kafke, Waldemar; Tölle, Thomas R.; Sommer, Claudia

    2014-01-01

    Background Postherpetic neuralgia (PHN) is the painful complication of a varicella zoster virus reactivation. We investigated the systemic and local gene expression of pro- and anti-inflammatory cytokine expression in patients with PHN. Methods Thirteen patients with PHN at the torso (Th4-S1) were recruited. Skin punch biopsies were obtained from the painful and the contralateral painless body area for intraepidermal nerve fiber density (IENFD) and cytokine profiling. Additionally, blood was withdrawn for systemic cytokine expression and compared to blood values of healthy controls. We analyzed the gene expression of selected pro- and anti-inflammatory cytokines (tumor necrosis factor-alpha [TNF] and interleukins [IL]-1β, IL-2, and IL-8). Results IENFD was lower in affected skin compared to unaffected skin (p<0.05), while local gene expression of pro- and anti-inflammatory cytokines did not differ except for two patients who had 7fold higher IL-6 and 10fold higher IL-10 gene expression in the affected skin compared to the contralateral unaffected skin sample. Also, the systemic expression of cytokines in patients with PHN and in healthy controls was similar. Conclusion While the systemic and local expression of the investigated pro- and anti-inflammatory cytokines was not different from controls, this may have been influenced by study limitations like the low number of patients and different disease durations. Furthermore, other cytokines or pain mediators need to be considered. PMID:25127283

  5. Relationships between Written Expression Achievement and the Cognitive Assessment System.

    ERIC Educational Resources Information Center

    Johnson, Judy A.; Bardos, Achilles N.; Tayebi, Kandi A.

    The purpose of this study was to explore the relationships between the Cognitive Assessment System (CAS) and writing achievement in junior high students (aged 11-15 years) with and without written expression disabilities. Ninety-six students with (n=48) and without (n=48) written expression disabilities were administered the Das-Naglieri:…

  6. The Facial Expression Coding System (FACES): Development, Validation, and Utility

    ERIC Educational Resources Information Center

    Kring, Ann M.; Sloan, Denise M.

    2007-01-01

    This article presents information on the development and validation of the Facial Expression Coding System (FACES; A. M. Kring & D. Sloan, 1991). Grounded in a dimensional model of emotion, FACES provides information on the valence (positive, negative) of facial expressive behavior. In 5 studies, reliability and validity data from 13 diverse…

  7. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability.

    PubMed

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-08-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26-141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture.

  8. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability

    PubMed Central

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-01-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26–141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture. PMID:23576836

  9. Assimilating Remote Sensing Observations of Leaf Area Index and Soil Moisture for Wheat Yield Estimates: An Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Nearing, Grey S.; Crow, Wade T.; Thorp, Kelly R.; Moran, Mary S.; Reichle, Rolf H.; Gupta, Hoshin V.

    2012-01-01

    Observing system simulation experiments were used to investigate ensemble Bayesian state updating data assimilation of observations of leaf area index (LAI) and soil moisture (theta) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment and a water-limited environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and initial conditions, and cultivar parameters and through perturbations to model state transition equations. The ensemble Kalman filter and the sequential importance resampling filter were tested for the ability to attenuate effects of these types of uncertainty on yield estimates. LAI and theta observations were synthesized according to characteristics of existing remote sensing data, and effects of observation error were tested. Results indicate that the potential for assimilation to improve end-of-season yield estimates is low. Limitations are due to a lack of root zone soil moisture information, error in LAI observations, and a lack of correlation between leaf and grain growth.

  10. Nitrous oxide, methane emission, and yield-scaled emission from organically and conventionally managed systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a gap in empirical greenhouse gas (GHG) data from many regions of the USA including the northern Corn Belt. This study compared nitrous oxide (N2O) emission in diverse, low-tillage conventionally- and organically-managed systems. Both systems had a four-year rotation, mole-knife, strip till...

  11. Maintaining yields and reducing nitrogen loss in rice-wheat rotation system in Taihu Lake region with proper fertilizer management

    NASA Astrophysics Data System (ADS)

    Xue, Lihong; Yu, Yingliang; Yang, Linzhang

    2014-11-01

    In the Tailake region of China, heavy nitrogen (N) loss of rice-wheat rotation systems, due to high fertilizer-N input with low N use efficiency (NUE), was widely reported. To alleviate the detrimental impacts caused by N loss, it is necessary to improve the fertilizer management practices. Therefore, a 3 yr field experiments with different N managements including organic combined chemical N treatment (OCN, 390 kg N ha-1 yr-1, 20% organic fertilizer), control-released urea treatment (CRU, 390 kg N ha-1 yr-1, 70% resin-coated urea), reduced chemical N treatment (RCN, 390 kg N ha-1 yr-1, all common chemical fertilizer), and site-specific N management (SSNM, 333 kg N ha-1 yr-1, all common chemical fertilizer) were conducted in the Taihu Lake region with the ‘farmer’s N’ treatment (FN, 510 kg N ha-1 yr-1, all common chemical fertilizer) as a control. Grain yield, plant N uptake (PNU), NUE, and N losses via runoff, leaching, and ammonia volatilization were assessed. In the rice season, the FN treatment had the highest N loss and lowest NUE, which can be attributed to an excessive rate of N application. Treatments of OCN and RCN with a 22% reduced N rate from FN had no significant effect on PNU nor the yield of rice in the 3 yr; however, the NUE was improved and N loss was reduced 20-32%. OCN treatment achieved the highest yield, while SSNM has the lowest N loss and highest NUE due to the lowest N rate. In wheat season, N loss decreased about 28-48% with the continuous reduction of N input, but the yield also declined, with the exception of OCN treatment. N loss through runoff, leaching and ammonia volatilization was positively correlated with the N input rate. When compared with the pure chemical fertilizer treatment of RCN under the same N input, OCN treatment has better NUE, better yield, and lower N loss. 70% of the urea replaced with resin-coated urea had no significant effect on yield and NUE improvement, but decreased the ammonia volatilization loss. Soil

  12. Enhancing digestibility and ethanol yield of Populus wood via expression of an engineered monolignol 4-O-methyltransferase

    SciTech Connect

    Cai, Yuanheng; Zhang, Kewei; Kim, Hoon; Hou, Guichuan; Zhang, Xuebin; Yang, Huijun; Feng, Huan; Miller, Lisa; Ralph, John; Liu, Chang -Jun

    2016-06-28

    Producing cellulosic biofuels and bio-based chemicals from woody biomass is impeded by the presence of lignin polymer in the plant cell wall. Manipulating the monolignol biosynthetic pathway offers a promising approach to improved processability, but often impairs plant growth and development. Here, we show that expressing an engineered 4-O-methyltransferase that chemically modifies the phenolic moiety of lignin monomeric precursors, thus preventing their incorporation into the lignin polymer, substantially alters hybrid aspens’ lignin content and structure. Woody biomass derived from the transgenic aspens shows a 62% increase in the release of simple sugars and up to a 49% increase in the yield of ethanol when the woody biomass is subjected to enzymatic digestion and yeast-mediated fermentation. Furthermore, the cell wall structural changes do not affect growth and biomass production of the trees. Our study provides a useful strategy for tailoring woody biomass for bio-based applications.

  13. High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system.

    PubMed

    Endo, Yaeta; Sawasaki, Tatsuya

    2004-01-01

    Current cell-free protein expression systems are capable of synthesizing proteins with high speed and accuracy; however, the yields are low due to their instability over time. Escherichia coli based systems are not always sufficient for expression of eukaryotic proteins. This report reviews a high-throughput protein production method based on the cell-free system prepared from eukaryote, wheat embryos. We first demonstrate a method for preparation of this extract that exhibited a high degree of stability and activity. To maximize translation yield and throughput, we address and resolve the following issues: (1) optimization of the ORF flanking regions; (2) PCR-based generation of DNA for mRNA production; (3) expression vectors for large-scale protein production; and (4) a translation reaction that does not require a membrane. The combination of these elemental processes with robotic automation resulted in high-throughput protein synthesis.

  14. Current warming will reduce yields unless maize breeding and seed systems adapt immediately

    NASA Astrophysics Data System (ADS)

    Challinor, A. J.; Koehler, A.-K.; Ramirez-Villegas, J.; Whitfield, S.; Das, B.

    2016-10-01

    The development of crop varieties that are better suited to new climatic conditions is vital for future food production. Increases in mean temperature accelerate crop development, resulting in shorter crop durations and reduced time to accumulate biomass and yield. The process of breeding, delivery and adoption (BDA) of new maize varieties can take up to 30 years. Here, we assess for the first time the implications of warming during the BDA process by using five bias-corrected global climate models and four representative concentration pathways with realistic scenarios of maize BDA times in Africa. The results show that the projected difference in temperature between the start and end of the maize BDA cycle results in shorter crop durations that are outside current variability. Both adaptation and mitigation can reduce duration loss. In particular, climate projections have the potential to provide target elevated temperatures for breeding. Whilst options for reducing BDA time are highly context dependent, common threads include improved recording and sharing of data across regions for the whole BDA cycle, streamlining of regulation, and capacity building. Finally, we show that the results have implications for maize across the tropics, where similar shortening of duration is projected.

  15. High-yield soluble expression, purification and characterization of human steroidogenic acute regulatory protein (StAR) fused to a cleavable Maltose-Binding Protein (MBP).

    PubMed

    Sluchanko, Nikolai N; Tugaeva, Kristina V; Faletrov, Yaroslav V; Levitsky, Dmitrii I

    2016-03-01

    Steroidogenic acute regulatory protein (StAR) is responsible for the rapid delivery of cholesterol to mitochondria where the lipid serves as a source for steroid hormones biosynthesis in adrenals and gonads. Despite many successful investigations, current understanding of the mechanism of StAR action is far from being completely clear. StAR was mostly obtained using denaturation/renaturation or in minor quantities in a soluble form at decreased temperatures that, presumably, limited the possibilities for its consequent detailed exploration. In our hands, existing StAR expression constructs could be bacterially expressed almost exclusively as insoluble forms, even upon decreased expression temperatures and in specific strains of Escherichia coli, and isolated protein tended to aggregate and was difficult to handle. To maximize the yield of soluble protein, optimized StAR sequence encompassing functional domain STARD1 (residues 66-285) was fused to the C-terminus of His-tagged Maltose-Binding Protein (MBP) with the possibility to cleave off the whole tag by 3C protease. The developed protocol of expression and purification comprising of a combination of subtractive immobilized metal affinity chromatography (IMAC) and size-exclusion chromatography allowed us to obtain up to 25 mg/1 L culture of completely soluble StAR protein, which was (i) homogenous according to SDS-PAGE, (ii) gave a single symmetrical peak on a gel-filtration, (iii) showed the characteristic CD spectrum and (iv) pH-dependent ability to bind a fluorescently-labeled cholesterol analogue. We conclude that our strategy provides fully soluble and native StAR protein which in future could be efficiently used for biotechnology and drug discovery aimed at modulation of steroids production.

  16. Linking stomatal traits and expression of slow anion channel genes HvSLAH1 and HvSLAC1 with grain yield for increasing salinity tolerance in barley

    PubMed Central

    Liu, Xiaohui; Mak, Michelle; Babla, Mohammad; Wang, Feifei; Chen, Guang; Veljanoski, Filip; Wang, Gang; Shabala, Sergey; Zhou, Meixue; Chen, Zhong-Hua

    2014-01-01

    Soil salinity is an environmental and agricultural problem in many parts of the world. One of the keys to breeding barley for adaptation to salinity lies in a better understanding of the genetic control of stomatal regulation. We have employed a range of physiological (stomata assay, gas exchange, phylogenetic analysis, QTL analysis), and molecular techniques (RT-PCR and qPCR) to investigate stomatal behavior and genotypic variation in barley cultivars and a genetic population in four experimental trials. A set of relatively efficient and reliable methods were developed for the characterization of stomatal behavior of a large number of varieties and genetic lines. Furthermore, we found a large genetic variation of gas exchange and stomatal traits in barley in response to salinity stress. Salt-tolerant cultivar CM72 showed significantly larger stomatal aperture under 200 mM NaCl treatment than that of salt-sensitive cultivar Gairdner. Stomatal traits such as aperture width/length were found to significantly correlate with grain yield under salt treatment. Phenotypic characterization and QTL analysis of a segregating double haploid population of the CM72/Gairdner resulted in the identification of significant stomatal traits-related QTLs for salt tolerance. Moreover, expression analysis of the slow anion channel genes HvSLAH1 and HvSLAC1 demonstrated that their up-regulation is linked to higher barley grain yield in the field. PMID:25505473

  17. Linking stomatal traits and expression of slow anion channel genes HvSLAH1 and HvSLAC1 with grain yield for increasing salinity tolerance in barley.

    PubMed

    Liu, Xiaohui; Mak, Michelle; Babla, Mohammad; Wang, Feifei; Chen, Guang; Veljanoski, Filip; Wang, Gang; Shabala, Sergey; Zhou, Meixue; Chen, Zhong-Hua

    2014-01-01

    Soil salinity is an environmental and agricultural problem in many parts of the world. One of the keys to breeding barley for adaptation to salinity lies in a better understanding of the genetic control of stomatal regulation. We have employed a range of physiological (stomata assay, gas exchange, phylogenetic analysis, QTL analysis), and molecular techniques (RT-PCR and qPCR) to investigate stomatal behavior and genotypic variation in barley cultivars and a genetic population in four experimental trials. A set of relatively efficient and reliable methods were developed for the characterization of stomatal behavior of a large number of varieties and genetic lines. Furthermore, we found a large genetic variation of gas exchange and stomatal traits in barley in response to salinity stress. Salt-tolerant cultivar CM72 showed significantly larger stomatal aperture under 200 mM NaCl treatment than that of salt-sensitive cultivar Gairdner. Stomatal traits such as aperture width/length were found to significantly correlate with grain yield under salt treatment. Phenotypic characterization and QTL analysis of a segregating double haploid population of the CM72/Gairdner resulted in the identification of significant stomatal traits-related QTLs for salt tolerance. Moreover, expression analysis of the slow anion channel genes HvSLAH1 and HvSLAC1 demonstrated that their up-regulation is linked to higher barley grain yield in the field.

  18. Engineering of recombinant Escherichia coli cells co-expressing poly-γ-glutamic acid (γ-PGA) synthetase and glutamate racemase for differential yielding of γ-PGA.

    PubMed

    Cao, Mingfeng; Geng, Weitao; Zhang, Wei; Sun, Jibin; Wang, Shufang; Feng, Jun; Zheng, Ping; Jiang, Anna; Song, Cunjiang

    2013-11-01

    Poly-γ-glutamic acid (γ-PGA) is a promising environmental-friendly material with outstanding water solubility, biocompatibility and degradability. However, it is tough to determine the relationship between functional synthetic enzyme and the strains' yield or substrate dependency. We cloned γ-PGA synthetase genes pgsBCA and glutamate racemase gene racE from both L-glutamate-dependent γ-PGA-producing Bacillus licheniformis NK-03 and L-glutamate-independent B. amyloliquefaciens LL3 strains. The deduced RacE and PgsA from the two strains shared the identity of 84.5% and 78.53%, while PgsB and PgsC possessed greater similarity with 93.13% and 93.96%. The induced co-expression of pgsBCA and racE showed that the engineered Escherichia coli strains had the capacity of synthesizing γ-PGA, and LL3 derived PgsBCA had higher catalytic activity and enhanced productivity than NK-03 in Luria-Bertani medium containing glucose or L-glutamate. However, the differential effect was weakened when providing sufficient immediateness L-glutamate substrate, that is, the supply of substrate could be served as the ascendance upon γ-PGA production. Furthermore, RacE integration could enhance γ-PGA yield through improving the preferred d-glutamate content. This is the first report about co-expression of pgsBCA and racE from the two Bacillus strains, which will be of great value for the determination of the biosynthetic mechanism of γ-PGA.

  19. Expression, purification, and bioactivity of GST-fused v-Src from a bacterial expression system*

    PubMed Central

    Gong, Xing-guo; Ji, Jing; Xie, Jie; Zhou, Yuan; Zhang, Jun-yan; Zhong, Wen-tao

    2006-01-01

    v-Src is a non-receptor protein tyrosine kinase involved in many signal transduction pathways and closely related to the activation and development of cancers. We present here the expression, purification, and bioactivity of a GST (glutathione S-transferase)-fused v-Src from a bacterial expression system. Different culture conditions were examined in an isopropyl β-D-thiogalactopyranoside (IPTG)-regulated expression, and the fused protein was purified using GSH (glutathione) affinity chromatography. ELISA (enzyme-linked immunosorbent assay) was employed to determine the phosphorylation kinase activity of the GST-fused v-Src. This strategy seems to be more promising than the insect cell system or other eukaryotic systems employed in earlier Src expression. PMID:16365920

  20. Row Spacing, Tillage System, and Herbicide Technology Affects Cotton Plant Growth and Yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton (Gossypium hirsutum L.) producers are faced with numerous production choices including cotton varieties, herbicide technology, tillage systems, and row spacing. A study was conducted to compare cotton production across conventional, glyphosate tolerant, and glufosinate tolerant varieties in ...

  1. Vestigial expression in the Drosophila embryonic central nervous system.

    PubMed

    Guss, Kirsten A; Mistry, Hemlata; Skeath, James B

    2008-09-01

    The Drosophila central nervous system is an excellent model system in which to resolve the genetic and molecular control of neuronal differentiation. Here we show that the wing selector vestigial is expressed in discrete sets of neurons. We track the axonal trajectories of VESTIGIAL-expressing cells in the ventral nerve cord and show that these cells descend from neuroblasts 1-2, 5-1, and 5-6. In addition, along the midline, VESTIGIAL is expressed in ventral unpaired median motorneurons and cells that may descend from the median neuroblast. These studies form the requisite descriptive foundation for functional studies addressing the role of vestigial during interneuron differentiation.

  2. Inter-comparison of laboratory smog chamber and flow reactor systems on organic aerosol yield and composition

    NASA Astrophysics Data System (ADS)

    Bruns, E. A.; El Haddad, I.; Keller, A.; Klein, F.; Kumar, N. K.; Pieber, S. M.; Corbin, J. C.; Slowik, J. G.; Brune, W. H.; Baltensperger, U.; Prévôt, A. S. H.

    2015-06-01

    A variety of tools are used to simulate atmospheric aging, including smog chambers and flow reactors. Traditional, large-scale smog chambers age emissions over the course of hours to days, whereas flow reactors rapidly age emissions using high oxidant concentrations to reach higher degrees of oxygenation than typically attained in smog chamber experiments. The atmospheric relevance of the products generated under such rapid oxidation warrants further study. However, no previously published studies have compared the yields and chemical composition of products generated in flow reactors and smog chambers from the same starting mixture. The yields and composition of the organic aerosol formed from the photo-oxidation of α-pinene and of wood-combustion emissions in a smog chamber (SC) and two flow reactors: a potential aerosol mass reactor (PAM) and a micro-smog chamber (MSC), were determined using aerosol mass spectrometry. Reactants were sampled from the SC and aged in the MSC and the PAM using a range of hydroxyl radical (OH) concentrations and then photo-chemically aged in the SC. The chemical composition, as well as the maximum yields and emission factors, of the products in both the α-pinene and wood-combustion systems determined with the PAM and the SC agreed reasonably well. High OH exposures have been shown previously to lower yields by breaking carbon-carbon bonds and forming higher volatility species, which reside largely in the gas phase; however, fragmentation in the PAM was not observed. The yields determined using the PAM for the α-pinene system were slightly lower than in the SC, possibly from increased wall losses of gas phase species due to the higher surface area to volume ratios in the PAM, even when offset with better isolation of the sampled flow from the walls. The α-pinene SOA results for the MSC were not directly comparable, as particles were smaller than the optimal AMS transmission range. The higher supersaturation in the flow reactors

  3. Plant development and yield of four sugarcane varieties irrigated by a subsurface drip irrigation system in Campinas, Brazil

    NASA Astrophysics Data System (ADS)

    Silva, André Luiz Barros de O.; Célia de Matos Pires, Regina; Yukitaka Pessinati Ohashi, Augusto; Vasconcelos Ribeiro, Rafael; Landell, Marcos Guimarães de Andrade; Aparecida Creste Dias de Souza, Silvana

    2013-04-01

    The biofuel production is a growing concern on modern society due to the agricultural sustainability, in which both food and energy supply should be taken into account. The agroclimatic zoning indicates that sugarcane expansion in Brazil can only take place in marginal lands, where water deficit occurs and irrigation is necessary. The use of subsurface drip irrigation (SDI) in sugarcane cultivation is an interesting cultural practice to improve production and allow cultivation in marginal lands due to water deficit conditions or to attain high yield and to increase longevity of plants. In this context it is necessary to investigate responses of different varieties to water supply. The aim of this work was to evaluate the plant development and yield of four sugarcane varieties irrigated by a subsurface drip irrigation system in Campinas, Brazil in the 1st cane ratoon cycle. The field experiment was carried out in Campinas SP Brazil, with IACSP95-5000, IACSP94-2094, IACSP94-2101 and SP79-1011 cultivars in the 1st cane ratoon cycle, from January (after the harvest of cane plant cycle) to October (harvest the 1st cane ratoon cycle). The plant spacing was 1.5 m between rows. Each cultivar was planted in an area of 0.4 hectares. The irrigation was done by a subsuperficial drip system with one drip line in each plant row installed at 0.25 m deep. During the 1st cane ratoon cycle the parameters were analysed on the 33rd, 123rd, 185th and 277th day. The analysed parameters were: plant yield (m), leaf area index (LAI) and yield (tons per hectare). According to the results from the second sampling (123rd day) the varieties IACSP95-5000 and IACSP94-2101 showed higher plant height when compared to the other varieties. However, from the third sampling (185th day) on the IACSP95-5000 variety grew considerably taller than the other varieties. The varieties SP79-1011and IACSP94-2101 presented lower values of LAI throughout the crop cycle when compared to other varieties. But on the

  4. Efficient silkworm expression of human GPCR (nociceptin receptor) by a Bombyx mori bacmid DNA system

    SciTech Connect

    Kajikawa, Mizuho; Sasaki, Kaori; Wakimoto, Yoshitaro; Toyooka, Masaru; Motohashi, Tomoko; Shimojima, Tsukasa; Takeda, Shigeki; Park, Enoch Y.; Maenaka, Katsumi

    2009-07-31

    Guanine nucleotide-binding protein (G protein) coupled receptors (GPCRs) are frequently expressed by a baculovirus expression vector system (BEVS). We recently established a novel BEVS using the bacmid system of Bombyx mori nucleopolyhedrovirus (BmNPV), which is directly applicable for protein expression in silkworms. Here, we report the first example of GPCR expression in silkworms by the simple injection of BmNPV bacmid DNA. Human nociceptin receptor, an inhibitory GPCR, and its fusion protein with inhibitory G protein alpha subunit (G{sub i}{alpha}) were both successfully expressed in the fat bodies of silkworm larvae as well as in the BmNPV viral fraction. Its yield was much higher than that from Sf9 cells. The microsomal fractions including the nociceptin receptor fusion, which are easily prepared by only centrifugation steps, exhibited [{sup 35}S]GTP{gamma}S-binding activity upon specific stimulation by nociceptin. Therefore, this rapid method is easy-to-use and has a high expression level, and thus will be an important tool for human GPCR production.

  5. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System.

    PubMed

    López-Vidal, Javier; Gómez-Sebastián, Silvia; Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M

    2015-01-01

    Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health.

  6. Bacterial expression system with tightly regulated gene expression and plasmid copy number.

    PubMed

    Bowers, Lisa M; Lapoint, Kathleen; Anthony, Larry; Pluciennik, Anna; Filutowicz, Marcin

    2004-09-29

    A new Escherichia coli host/vector system has been engineered to allow tight and uniform modulation of gene expression and gamma origin (ori) plasmid copy number. Regulation of gamma ori plasmid copy number is achieved through arabinose-inducible expression of the necessary Rep protein, pi, whose gene was integrated into the chromosome of the host strain under control of the P(BAD) promoter. gamma ori replication can be uniformly modulated over 100-fold by changing the concentration of l-arabinose in the growth medium. This strain avoids the problem of all-or-nothing induction of P(BAD) because it is deficient in both arabinose uptake and degradation genes. Arabinose enters the cell by a mutant LacY transporter, LacYA177C, which is expressed from the host chromosome. Although this strain could be compatible with any gamma ori plasmid, we describe the utility of a gamma ori expression vector that allows especially tight regulation of gene expression. With this host/vector system, it is possible to independently modulate gene expression and gene dosage, facilitating the cloning and overproduction of toxic gene products. We describe the successful use of this system for cloning a highly potent toxin, Colicin E3, in the absence of its cognate immunity protein. This system could be useful for cloning genes encoding other potent toxins, screening libraries for potential toxins, and maintaining any gamma ori vector at precise copy levels in a cell.

  7. Object-Oriented Agricultural System Modeling: Component-Driven Nutrient Dynamics and Crop Yield Simulations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Challenges in agro-ecosystem conservation management have created demand for state-of-the-art, integrated, and flexible modeling tools. For example, agricultural system modeling tools are needed which are robust and fast enough to be applied on large watershed scales, but which are also able to sim...

  8. Yields in stripper header vs conventional header in dryland cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in crop residue quality can impact the amount of soil water storage in semi-arid no-till systems of the West Central Great Plains. Using a stripper header as opposed to a conventional-reel type header to harvest small grains impacts the quality of the crop residue left in the field. Pr...

  9. Grazing winter rye cover crop in a cotton no-till system: yield and economics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crop adoption in conservation management systems continues to be limited in the US but could be encouraged if establishment costs could be offset. A 4-yr field experiment was conducted near Watkinsville, Georgia in which a rye (Secale cereale L.) cover crop was either grazed by catt...

  10. Comparison of cellulosic ethanol yields from midwestern maize and reconstructed tallgrass prairie systems managed for bioenergy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize- and prairie-based systems were investigated as cellulosic feedstocks by conducting a 9 ha side-by-side comparison on fertile soils in the Midwestern United States. Maize was grown continuously with adequate fertilization over years both with and without a winter rye cover crop, and the 31-spe...

  11. Winter Cereal Termination and Conservation Agriculture Cotton Yield Following Mechanical and Chemical Management Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An integral component of conservation-tillage systems in cotton is the use of a high-residue winter cover crop; however, managing such cover crops is a challenge. Black oat (Avena strigosa Schreb.), rye (Secale cereale L.), and wheat (Triticum aestivum L.) winter cover crops were established in ear...

  12. Human SUMO fusion systems enhance protein expression and solubility.

    PubMed

    Wang, Zhongyuan; Li, Haolong; Guan, Wei; Ling, Haili; Wang, Zhiyong; Mu, Tianyang; Shuler, Franklin D; Fang, Xuexun

    2010-10-01

    A major challenge associated with recombinant protein production in Escherichia coli is generation of large quantities of soluble, functional protein. Yeast SUMO (small ubiquitin-related modifier), has been shown to enhance heterologous protein expression and solubility as fusion tag, however, the effects of human SUMOs on protein expression have not been investigated. Here we describe the use of human SUMO1 and SUMO2 as a useful gene fusion technology. Human SUMO1 and SUMO2 fusion expression vectors were constructed and tested in His-tag and ubiquitin fusion expression systems. Two difficult-to-express model proteins, matrix metalloprotease-13 (MMP13) and enhanced green fluorescence protein (eGFP) were fused to the C-terminus of the human SUMO1 and SUMO2 expression vectors. These constructs were expressed in E. coli and evaluation of MMP13 and eGFP expression and solubility was conducted. We found that both SUMO1 and SUMO2 had the ability to enhance the solubility of MMP13 and eGFP, with the SUMO2 tag having a more significant effect. Since fusion tags produce varying quantities of soluble proteins, we assessed the effect of SUMO2 coupled with ubiquitin (Ub). SUMO2-ubiquitin and ubiquitin-SUMO2 fusion expression plasmids were constructed with eGFP as a passenger protein. Following expression in E. coli, both plasmids could improve eGFP expression and solubility similar to the SUMO2 fusion and better than the ubiquitin fusion. The sequential order of SUMO2 and ubiquitin had little effect on expression and solubility of eGFP. Purification of eGFP from the gene fusion product, SUMO2-ubiquitin-eGFP, involved cleavage by a deubiquitinase (Usp2-cc) and Ni-Sepharose column chromatography. The eGFP protein was purified to high homogeneity. In summary, human SUMO1 and SUMO2 are useful gene fusion technologies enhancing the expression, solubility and purification of model heterologous proteins.

  13. Enhanced Gene Expression Rather than Natural Polymorphism in Coding Sequence of the OsbZIP23 Determines Drought Tolerance and Yield Improvement in Rice Genotypes

    PubMed Central

    Dey, Avishek; Samanta, Milan Kumar; Gayen, Srimonta; Sen, Soumitra K.; Maiti, Mrinal K.

    2016-01-01

    Drought is one of the major limiting factors for productivity of crops including rice (Oryza sativa L.). Understanding the role of allelic variations of key regulatory genes involved in stress-tolerance is essential for developing an effective strategy to combat drought. The bZIP transcription factors play a crucial role in abiotic-stress adaptation in plants via abscisic acid (ABA) signaling pathway. The present study aimed to search for allelic polymorphism in the OsbZIP23 gene across selected drought-tolerant and drought-sensitive rice genotypes, and to characterize the new allele through overexpression (OE) and gene-silencing (RNAi). Analyses of the coding DNA sequence (CDS) of the cloned OsbZIP23 gene revealed single nucleotide polymorphism at four places and a 15-nucleotide deletion at one place. The single-copy OsbZIP23 gene is expressed at relatively higher level in leaf tissues of drought-tolerant genotypes, and its abundance is more in reproductive stage. Cloning and sequence analyses of the OsbZIP23-promoter from drought-tolerant O. rufipogon and drought-sensitive IR20 cultivar showed variation in the number of stress-responsive cis-elements and a 35-nucleotide deletion at 5’-UTR in IR20. Analysis of the GFP reporter gene function revealed that the promoter activity of O. rufipogon is comparatively higher than that of IR20. The overexpression of any of the two polymorphic forms (1083 bp and 1068 bp CDS) of OsbZIP23 improved drought tolerance and yield-related traits significantly by retaining higher content of cellular water, soluble sugar and proline; and exhibited decrease in membrane lipid peroxidation in comparison to RNAi lines and non-transgenic plants. The OE lines showed higher expression of target genes-OsRab16B, OsRab21 and OsLEA3-1 and increased ABA sensitivity; indicating that OsbZIP23 is a positive transcriptional-regulator of the ABA-signaling pathway. Taken together, the present study concludes that the enhanced gene expression rather

  14. pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants.

    PubMed

    Chen, Jingguang; Fan, Xiaoru; Qian, Kaiyun; Zhang, Yong; Song, Miaoquan; Liu, Yu; Xu, Guohua; Fan, Xiaorong

    2017-02-22

    The nitrate (NO3-) transporter has been selected as an important gene maker in the process of environmental adoption in rice cultivars. In this work, we transferred another native OsNAR2.1 promoter with driving OsNAR2.1 gene into rice plants. The transgenic lines with exogenous pOsNAR2.1:OsNAR2.1 constructs showed enhanced OsNAR2.1 expression level, compared with wild type (WT), and (15) N influx in roots increased 21%-32% in response to 0.2 mm and 2.5 mm 15NO3- and 1.25 mm (15) NH4(15) NO3 . Under these three N conditions, the biomass of the pOsNAR2.1:OsNAR2.1 transgenic lines increased 143%, 129% and 51%, and total N content increased 161%, 242% and 69%, respectively, compared to WT. Furthermore in field experiments we found the grain yield, agricultural nitrogen use efficiency (ANUE), and dry matter transfer of pOsNAR2.1:OsNAR2.1 plants increased by about 21%, 22% and 21%, compared to WT. We also compared the phenotypes of pOsNAR2.1:OsNAR2.1 and pOsNAR2.1:OsNRT2.1 transgenic lines in the field, found that postanthesis N uptake differed significantly between them, and in comparison with the WT. Postanthesis N uptake (PANU) increased approximately 39% and 85%, in the pOsNAR2.1:OsNAR2.1 and pOsNAR2.1:OsNRT2.1 transgenic lines, respectively, possibly because OsNRT2.1 expression was less in the pOsNAR2.1:OsNAR2.1 lines than in the pOsNAR2.1:OsNRT2.1 lines during the late growth stage. These results show that rice NO3(-) uptake, yield and NUE were improved by increased OsNAR2.1 expression via its native promoter.

  15. Enhanced Gene Expression Rather than Natural Polymorphism in Coding Sequence of the OsbZIP23 Determines Drought Tolerance and Yield Improvement in Rice Genotypes.

    PubMed

    Dey, Avishek; Samanta, Milan Kumar; Gayen, Srimonta; Sen, Soumitra K; Maiti, Mrinal K

    2016-01-01

    Drought is one of the major limiting factors for productivity of crops including rice (Oryza sativa L.). Understanding the role of allelic variations of key regulatory genes involved in stress-tolerance is essential for developing an effective strategy to combat drought. The bZIP transcription factors play a crucial role in abiotic-stress adaptation in plants via abscisic acid (ABA) signaling pathway. The present study aimed to search for allelic polymorphism in the OsbZIP23 gene across selected drought-tolerant and drought-sensitive rice genotypes, and to characterize the new allele through overexpression (OE) and gene-silencing (RNAi). Analyses of the coding DNA sequence (CDS) of the cloned OsbZIP23 gene revealed single nucleotide polymorphism at four places and a 15-nucleotide deletion at one place. The single-copy OsbZIP23 gene is expressed at relatively higher level in leaf tissues of drought-tolerant genotypes, and its abundance is more in reproductive stage. Cloning and sequence analyses of the OsbZIP23-promoter from drought-tolerant O. rufipogon and drought-sensitive IR20 cultivar showed variation in the number of stress-responsive cis-elements and a 35-nucleotide deletion at 5'-UTR in IR20. Analysis of the GFP reporter gene function revealed that the promoter activity of O. rufipogon is comparatively higher than that of IR20. The overexpression of any of the two polymorphic forms (1083 bp and 1068 bp CDS) of OsbZIP23 improved drought tolerance and yield-related traits significantly by retaining higher content of cellular water, soluble sugar and proline; and exhibited decrease in membrane lipid peroxidation in comparison to RNAi lines and non-transgenic plants. The OE lines showed higher expression of target genes-OsRab16B, OsRab21 and OsLEA3-1 and increased ABA sensitivity; indicating that OsbZIP23 is a positive transcriptional-regulator of the ABA-signaling pathway. Taken together, the present study concludes that the enhanced gene expression rather than

  16. Applied studies of plant meridian system: I. The effect of agri-wave technology on yield and quality of tomato.

    PubMed

    Hou, T Z; Mooneyham, R E

    1999-01-01

    Agri-wave technology is a new agricultural technology based on the plant meridian system, that focuses on measurement of plant sound characteristics. The basic principle of agri-wave technology is to improve the yield and quality of plants such as vegetables, flowers, and fruit trees by broadcasting sound waves of certain frequencies and spraying a compound microelement fertilizer on the leaves. The application of agri-wave technology on tomatoes remarkably stimulates growth of their seedlings. Fresh weight of the branch, stems, and leaves of the treated tomatoes is significantly (59.53%, P < 0.0001) higher than that of the control group. Sampling survey results indicate that agri-wave technology accelerates the ripeness of tomatoes. The fresh weight of ripe tomatoes treated with this technique is 30.73% higher than that of the untreated (P = 0.0018), while the fresh weight of the treated unripe tomatoes is 27.29% lower than that of the untreated unripe group (P = 0.0020). Yield surveys show that the yield of treated plants is 13.89% (p < 0.0001) higher than that of the control group. Moreover, with agri-wave technology treatment the storage period of tomatoes is almost doubled. Analysis of tomato nutrition shows that agri-wave technology has increased their sugar content by 26.19%, vitamin A and niacin (an antifavours vitamin) by 55.39% and 92.31% respectively. There is no difference concerning vitamin B1, B2, and D content between the two groups, and vitamin C and E contents decreased by 2.10% and 12.69%, respectively. Among the analyzed 33 minerals of tomatoes, 26 increased in content, while 7 decreased. In conclusion, agri-wave technology has promoted the growth of the tomato, increased its yield, and improved its quality.

  17. How the Navy Can Use Open Systems Architecture to Revolutionize Capability Acquisition: The Naval OSA Strategy Can Yield Multiple Benefits

    DTIC Science & Technology

    2015-04-30

    ååì~ä=^Åèìáëáíáçå= oÉëÉ~êÅÜ=póãéçëáìã= tÉÇåÉëÇ~ó=pÉëëáçåë= sçäìãÉ=f= = How the Navy Can Use Open Systems Architecture to Revolutionize Capability...Acquisition: The Naval OSA Strategy Can Yield Multiple Benefits Nickolas Guertin, DASN RDT&E Robert Sweeney, Naval Air Systems Command Douglas C...to 00-00-2015 4. TITLE AND SUBTITLE How the Navy Can Use Open Systems Architecture to Revolutionize Capability Acquisition: The Naval OSA Strategy

  18. Optimization of transient gene expression system in Gerbera jemosonii petals.

    PubMed

    Hussein, Gihan M; Abu El-Heba, Ghada A; Abdou, Sara M; Abdallah, Naglaa A

    2013-01-01

    Low transformation efficiency and long generation time for production of transgenic Gerbera jemosonii plants leads to vulnerable gene function studies. Thus, transient expression of genes would be an efficient alternative. In this investigation, a transient expression system for gerbera petals based on the Agrobacterium infiltration protocol was developed using the reporter genes β-glucuronidase (gus) and green florescence protein (gfp). Results revealed the incapability of using the gfp gene as a reporter gene for transient expression study in gerbera flowers due to the detection of green fluorescent color in the non-infiltrated gerbera flower petals. However, the gus reporter gene was successfully utilized for optimizing and obtaining the suitable agroinfiltration system in gerbera flowers. The expression of GUS was detectable after three days of agroinfiltration in gerbera cultivars "Express" and "White Grizzly" with dark pink and white flower colors, respectively. The vacuum agroinfiltration protocol has been applied on the cultivar "Express" for evaluating the transient expression of the two genes involved in the anthocyanin pathway (iris-dfr and petunia-f3' 5'h), which is responsible for the color in flowers. In comparison to the control, transient expression results showed change in the anthocyanin pigment in all infiltrated flowers with color genes. Additionally, blue color was detected in the stigma and pollen grains in the infiltrated flowers. Moreover, blue colors with variant intensities were observed in produced calli during the routine work of stable transformation with f3' 5'h gene.

  19. Biomass yield and composition of sweetpotato grown in a nutrient film technique system.

    PubMed

    Almazan, A M; Zhou, X

    1997-01-01

    Sweetpotato cultivar TU-82-155 grown in a nutrient film technique system and separated into foliage, tips, fibrous, string and storage roots at harvest had a total dry biomass of 89.9 g per plant with 38.4% inedible portion. Tips and storage roots, the traditional edible parts, were analyzed for dry matter, protein, fat, ash, minerals (Ca, Fe, K, Mg, Na, Zn), vitamins (carotene, ascorbic acid, thiamin), oxalic and tannic acids, and trypsin and chymotrypsin inhibitors to determine their nutritional quality. Water soluble matter, minerals (Ca, Fe, K, Mg, Na, Zn), cellulose, hemicellulose and lignin concentrations in the edible and inedible parts were obtained to provide information needed for the selection of appropriate bioconversion processes of plant wastes into food or forms suitable for crop production in a controlled biological life support system.

  20. Avalanches in 2D dislocation systems: plastic yielding is not depinning.

    PubMed

    Ispánovity, Péter Dusán; Laurson, Lasse; Zaiser, Michael; Groma, István; Zapperi, Stefano; Alava, Mikko J

    2014-06-13

    We study the properties of strain bursts (dislocation avalanches) occurring in two-dimensional discrete dislocation dynamics models under quasistatic stress-controlled loading. Contrary to previous suggestions, the avalanche statistics differ fundamentally from predictions obtained for the depinning of elastic manifolds in quenched random media. Instead, we find an exponent τ=1 of the power-law distribution of slip or released energy, with a cutoff that increases exponentially with the applied stress and diverges with system size at all stresses. These observations demonstrate that the avalanche dynamics of 2D dislocation systems is scale-free at every applied stress and, therefore, cannot be envisaged in terms of critical behavior associated with a depinning transition.

  1. Conjunctive-management models for sustained yield of stream-aquifer systems

    USGS Publications Warehouse

    Barlow, P.M.; Ahlfeld, D.P.; Dickerman, D.C.

    2003-01-01

    Conjunctive-management models that couple numerical simulation with linear optimization were developed to evaluate trade-offs between groundwater withdrawals and streamflow depletions for alluvial-valley stream-aquifer systems representative of those of the northeastern United States. A conjunctive-management model developed for a hypothetical stream-aquifer system was used to assess the effect of interannual hydrologic variability on minimum monthly streamflow requirements. The conjunctive-management model was applied to the Hunt-Annaquatucket-Pettaquamscutt stream-aquifer system of central Rhode Island. Results show that it is possible to increase the amount of current withdrawal from the aquifer by as much as 50% by modifying current withdrawal schedules, modifying the number and configuration of wells in the supply-well network, or allowing increased streamflow depletion in the Annaquatucket and Pettaquamscutt rivers. Alternatively, it is possible to reduce current rates of streamflow depletion in the Hunt River by as much as 35% during the summer, but such reductions would result increases in groundwater withdrawals.

  2. High-yield isolation of extracellular vesicles using aqueous two-phase system

    PubMed Central

    Shin, Hyunwoo; Han, Chungmin; Labuz, Joseph M.; Kim, Jiyoon; Kim, Jongmin; Cho, Siwoo; Gho, Yong Song; Takayama, Shuichi; Park, Jaesung

    2015-01-01

    Extracellular vesicles (EVs) such as exosomes and microvesicles released from cells are potential biomarkers for blood-based diagnostic applications. To exploit EVs as diagnostic biomarkers, an effective pre-analytical process is necessary. However, recent studies performed with blood-borne EVs have been hindered by the lack of effective purification strategies. In this study, an efficient EV isolation method was developed by using polyethylene glycol/dextran aqueous two phase system (ATPS). This method provides high EV recovery efficiency (~70%) in a short time (~15 min). Consequently, it can significantly increase the diagnostic applicability of EVs. PMID:26271727

  3. Statistical analysis of features associated with protein expression/solubility in an in vivo Escherichia coli expression system and a wheat germ cell-free expression system.

    PubMed

    Hirose, Shuichi; Kawamura, Yoshifumi; Yokota, Kiyonobu; Kuroita, Toshihiro; Natsume, Tohru; Komiya, Kazuo; Tsutsumi, Takeshi; Suwa, Yorimasa; Isogai, Takao; Goshima, Naoki; Noguchi, Tamotsu

    2011-07-01

    Recombinant protein technology is an important tool in many industrial and pharmacological applications. Although the success rate of obtaining soluble proteins is relatively low, knowledge of protein expression/solubility under 'standard' conditions may increase the efficiency and reduce the cost of proteomics studies. In this study, we conducted a genome-scale experiment to assess the overexpression and the solubility of human full-length cDNA in an in vivo Escherichia coli expression system and a wheat germ cell-free expression system. We evaluated the influences of sequence and structural features on protein expression/solubility in each system and estimated a minimal set of features associated with them. A comparison of the feature sets related to protein expression/solubility in the in vivo Escherichia coli expression system revealed that the structural information was strongly associated with protein expression, rather than protein solubility. Moreover, a significant difference was found in the number of features associated with protein solubility in the two expression systems.

  4. Free range and deep litter poultry production systems: effect on performance, carcass yield and meat composition of cockerel chickens.

    PubMed

    Sogunle, Olajide Mark; Olaniyi, Olagoke Ayobami; Egbeyale, Lawrence Tokunbo; Akinola, Olufemi Sunday; Shittu, Taofeek A; Abiola, Samuel Soladoye; Ladokun, Abimbola O; Sobayo, Richard Abayomi

    2013-01-01

    This study was carried out on 150 cockerel chickens each of Harco Black and Novogen strains to determine their performance, carcass yield and meat composition on free range and deep litter production systems. The birds were brooded for 4 weeks and thereafter allotted to the different production systems for a period of 12 weeks. Each production system was allotted 150 chicks (75 chicks per strain) with three replicates of 25 chicks. The birds on deep litter production system were fed ad libitum while each bird on free range was fed 50 % of its daily feed requirement. On the 84 th day, a total of 36 birds were randomly selected for analysis of the carcass yield and meat composition. The data generated were subjected to a two-way analysis of variance in a 2 × 2 factorial experimental arrangement. Novogen strain consumed less feed (P < 0.05) on free range and had the best feed/gain (2.72). A higher (P < 0.05) shear force value (3.74 N) was obtained in the thigh muscle for birds on free range. The tibia proximal length and breadth, and tibia distal length and breadth were significantly (P < 0.05) affected by the production systems and strains. On free range, Harco black had more meat (85.69 g) than bone (18.07 g) in the breast while Novogen had the lowest meat/bone (2.38). Conclusively, Novogen strain should be raised on free range for a better performance in terms of feed/gain, but for higher meat composition, Harco black is a better strain.

  5. Environmental controls, sediment sources and spatiotemporal variability of suspended sediment yields in partly glacierized catchment systems in western Norway

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.; Laute, Katja; Storms, Joep E. A.

    2016-04-01

    This work focuses on environmental controls, sediment sources and the spatiotemporal variability of suspended sediment yields in the neighboring, partly glacierized and steep Erdalen (79.5 km2) and Bødalen (60.1 km2) catchment systems in the fjord landscape of the inner Nordfjord in western Norway. Field work, including extended samplings and measurements, was carried out since 2004 in Erdalen and since 2008 in Bødalen. Fluvial suspended sediment transport in the inner Nordfjord is altogether supply-limited and larger thermally and/or pluvially generated runoff events occurring mostly during the period April-November are needed to mobilize and transport significant amounts of suspended sediments. The distinct intra- and inter-annual temporal variability of suspended sediment transport found is mostly controlled by meteorological events, with most suspended sediment transport occurring during pluvial events in autumn (September-November), followed by mostly thermally determined glacier melt in summer (July-August), and by mostly thermally determined snowmelt in spring (April-June). Extreme rainfall events (>70 mm/d) in autumn can trigger relevant debris-flow activity that can cause significant transfers of suspended sediments from ice-free surface areas with sedimentary covers into main stream channels and is particularly important for fluvial suspended sediment transport. In years with occurring relevant debris-flow activity the total annual drainage-basin wide suspended sediment yields are strongly determined by these single extreme events. The share of glacier coverage, followed by steepness of slopes, and degree of vegetation cover in ice-free surface areas with sedimentary covers are the main controls of the detected spatial variability of suspended sediment yields. The contemporary sediment delivery from glacierized surface areas through different outlet glaciers shows a high spatial variability which is mostly explained by a spatially variable availability

  6. Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system

    PubMed Central

    Rabert, Claudia; Weinacker, Daniel; Pessoa, Adalberto; Farías, Jorge G.

    2013-01-01

    The innovation in industrial process with impact in the efficient production is the major challenge for actual industry. A high numerous of enzymes are utilized in at different level of process; the search for new alternatives with better characteristic has become a field of study of great interest, the recombinant protein achievement in a different host system is an alternative widely assessed for production of this. The microorganism Pichia pastoris has been used like a successful expression system in diverse areas, improved the yield and extraction-recovery of the product expressed. The reported of diverse authors in the production of enzymes with different application in industry is varied, in this review the different industry areas and the characteristic of the enzymes produced are detailed. PMID:24294221

  7. Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system.

    PubMed

    Rabert, Claudia; Weinacker, Daniel; Pessoa, Adalberto; Farías, Jorge G

    2013-01-01

    The innovation in industrial process with impact in the efficient production is the major challenge for actual industry. A high numerous of enzymes are utilized in at different level of process; the search for new alternatives with better characteristic has become a field of study of great interest, the recombinant protein achievement in a different host system is an alternative widely assessed for production of this. The microorganism Pichia pastoris has been used like a successful expression system in diverse areas, improved the yield and extraction-recovery of the product expressed. The reported of diverse authors in the production of enzymes with different application in industry is varied, in this review the different industry areas and the characteristic of the enzymes produced are detailed.

  8. Effect of materials for micro-electro-mechanical systems on PCR yield.

    PubMed

    Potrich, Cristina; Lunelli, Lorenzo; Forti, Stefania; Vozzi, Diego; Pasquardini, Laura; Vanzetti, Lia; Panciatichi, Cristina; Anderle, Mariano; Pederzolli, Cecilia

    2010-05-01

    In this study we analyzed the surface properties of different silicon-based materials used for micro-electro-mechanical systems (MEMS) production, such as thermally grown silicon oxide, plasma-enhanced chemical vapor deposition (PECVD)-treated silicon oxide, reactive-ion etch (RIE)-treated silicon oxide, and Pyrex. Substrates were characterized by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to define the surface chemical and morphological properties, and by fluorescence microscopy to directly assess the absorption of the different polymerase chain reaction (PCR) components. By using microchips fabricated with the same materials we investigated their compatibility with PCR reactions, exploiting the use of different enzymes and reagents or proper surface treatments. We established the best conditions for DNA amplification in silicon/Pyrex microdevices depending on the type of device and fabrication method used and the quality of reagents, rather than on the passivation treatment or increment in standard Taq polymerase concentration.

  9. Constitutive expression of McCHIT1-PAT enhances resistance to rice blast and herbicide, but does not affect grain yield in transgenic glutinous rice.

    PubMed

    Zeng, Xiao-Fang; Li, Lei; Li, Jian-Rong; Zhao, De-Gang

    2016-01-01

    To produce new rice blast- and herbicide-resistant transgenic rice lines, the McCHIT1 gene encoding the class I chitinase from Momordica charantia and the herbicide resistance gene PAT were introduced into Lailong (Oryza sativa L. ssp. Japonica), a glutinous local rice variety from Guizhou Province, People's Republic of China. Transgenic lines were identified by ß-glucuronidase (GUS) histochemical staining, PCR, and Southern blot analyses. Agronomic traits, resistance to rice blast and herbicide, chitinase activities, and transcript levels of McCHIT1 were assessed in the T2 progeny of three transgenic lines (L1, L8, and L10). The results showed that the introduction of McCHIT1-PAT into Lailong significantly enhanced herbicide and blast resistance. After infection with the blast fungus Magnaporthe oryzae, all of the T2 progeny exhibited less severe lesion symptoms than those of wild type. The disease indices were 100% for wild type, 65.66% for T2 transgenic line L1, 59.69% for T2 transgenic line L8, and 79.80% for T2 transgenic line L10. Transgenic lines expressing McCHIT1-PAT did not show a significant difference from wild type in terms of malondialdehyde (MDA) content, polyphenol oxidase (PPO) activity, and superoxide dismutase (SOD) activity in the leaves. However, after inoculation with M. oryzae, transgenic plants showed significantly higher SOD and PPO activities and lower MDA contents in leaves, compared with those in wild-type leaves. The transgenic and the wild-type plants did not show significant differences in grain yield parameters including plant height, panicles per plant, seeds per panicle, and 1000-grain weight. Therefore, the transgenic plants showed increased herbicide and blast resistance, with no yield penalty.

  10. Development of high yielding photonic light delivery system for photodynamic therapy of esophageal carcinomas

    NASA Astrophysics Data System (ADS)

    Premasiri, Amaranath; Happawana, Gemunu; Rosen, Arye

    2007-02-01

    Photodynamic therapy (PDT) is an approved treatment modality for Barrett's and invasive esophageal carcinoma. Proper Combination of photosentizing agent, oxygen, and a specific wavelength of light to activate the photosentizing agents is necessary for the cytotoxic destruction of cancerous cells by PDT. As a light source expensive solid-state laser sources currently are being used for the treatment. Inexpensive semiconductor lasers have been suggested for the light delivery system, however packaging of semiconductor lasers for optimal optical power output is challenging. In this paper, we present a multidirectional direct water-cooling of semiconductor lasers that provides a better efficiency than the conventional unidirectional cooling. AlGaAsP lasers were tested under de-ionized (DI) water and it is shown that the optical power output of the lasers under the DI water is much higher than that of the uni-directional cooling of lasers. Also, in this paper we discuss how direct DI water-cooling can optimize power output of semiconductor lasers. Thereafter an optimal design of the semiconductor laser package is shown with the DI water-cooling system. Further, a microwave antenna is designed which is to be imprinted on to a balloon catheter in order to provide local heating of esophagus, leading to an increase in local oxygenation of the tumor to generate an effective level of singlet oxygen for cellular death. Finally the optimal level of light energy that is required to achieve the expected level of singlet oxygen is modeled to design an efficient PDT protocol.

  11. Stepwise optimization of a low-temperature Bacillus subtilis expression system for "difficult to express" proteins.

    PubMed

    Welsch, Norma; Homuth, Georg; Schweder, Thomas

    2015-08-01

    In order to improve the overproduction of "difficult to express" proteins, a low-temperature expression system for Bacillus subtilis based on the cold-inducible promoter of the desaturase-encoding des gene was constructed. Selected regulatory DNA sequence elements from B. subtilis genes known to be cold-inducible were fused to different model genes. It could be demonstrated that these regulatory elements are able to mediate increased heterologous gene expression, either by improved translation efficiency or by higher messenger RNA (mRNA) stability. In case of a cold-adapted β-galactosidase from Pseudoalteromonas haloplanktis TAE79A serving as the model, significantly higher expression was achieved by fusing its coding sequence to the so-called "downstream box" sequence of cspB encoding the major B. subtilis cold-shock protein. The combination of this fusion with a cspB 5'-UTR stem-loop structure resulted in further enhancement of the β-galactosidase expression. In addition, integration of the transcription terminator of the B. subtilis cold-inducible bkd operon downstream of the target genes caused a higher mRNA stability and enabled thus a further significant increase in expression. Finally, the fully optimized expression system was validated by overproducing a B. subtilis xylanase as well as an α-glucosidase from Saccharomyces cerevisiae, the latter known for tending to form inclusion bodies. These analyses verified the applicability of the engineered expression system for extracellular and intracellular protein synthesis in B. subtilis, thereby confirming the suitability of this host organism for the overproduction of critical, poorly soluble proteins.

  12. A High Efficiency Cloning and Expression System for Proteomic Analysis

    DTIC Science & Technology

    2006-03-19

    Research, Rockville, MD, USA 0 U.a . The recent description of the complete genomes of the two most pathogenic species of Brucella Received: Januarp9...level high-efficiency cloning and expression system (HECES) that Accepted: March 19, 2006 allow expression of large numbers of Brucella proteins based...method will allow selection of new reagents for diagnosis of bru- cellosis and development of vaccine against Brucella , an important zoonotic disease and

  13. Hormonal treatment of the bark of rubber trees (Hevea brasiliensis) increases latex yield through latex dilution in relation with the differential expression of two aquaporin genes.

    PubMed

    Tungngoen, Kessarin; Viboonjun, Unchera; Kongsawadworakul, Panida; Katsuhara, Maki; Julien, Jean-Louis; Sakr, Soulaiman; Chrestin, Hervé; Narangajavana, Jarunya

    2011-02-15

    Natural rubber is synthesized in laticifers in the inner liber of the rubber tree (Hevea brasiliensis). Upon bark tapping, the latex is expelled due to liber turgor pressure. The mature laticifers are devoid of plasmodesmata; therefore a corresponding decrease in the total latex solid content is likely to occur due to water influx inside the laticifers. Auxins and ethylene used as efficient yield stimulants in mature untapped rubber trees, but, bark treatments with abscisic acid (ABA) and salicylic acid (SA) could also induce a transient increase latex yield. We recently reported that there are three aquaporin genes, HbPIP2;1, HbTIP1;1 and HbPIP1;1, that are regulated differentially after ethylene bark treatment. HbPIP2;1 was up-regulated in both the laticifers and the inner liber tissues, whereas HbTIP1;1 was up-regulated in the latex cells, but very markedly down-regulated in the inner liber tissues. Conversely, HbPIP1;1 was down-regulated in both tissues. In the present study, HbPIP2;1 and HbTIP1;1 showed a similar expression in response to auxin, ABA and SA, as seen in ethylene stimulation, while HbPIP1;1 was slightly regulated by auxin, but neither by ABA nor SA. The analysis of the HbPIP1;1 promoter region indicated the presence of only ethylene and auxin responsive elements. In addition, the poor efficiency of this HbPIP1;1 in increasing plasmalemma water conductance was confirmed in Xenopus oocytes. Thus, an increase in latex yield in response to all of these hormones was proposed to be the major function of aquaporins, HbPIP2;1 and HbTIP1;1. This study emphasized that the circulation of water between the laticifers and their surrounding tissues that result in latex dilution, as well as the probable maintenance of the liber tissues turgor pressure, favor the prolongation of latex flow.

  14. Smoothed Biasing Forces Yield Unbiased Free Energies with the Extended-System Adaptive Biasing Force Method.

    PubMed

    Lesage, Adrien; Lelièvre, Tony; Stoltz, Gabriel; Hénin, Jérôme

    2016-12-27

    We report a theoretical description and numerical tests of the extended-system adaptive biasing force method (eABF), together with an unbiased estimator of the free energy surface from eABF dynamics. Whereas the original ABF approach uses its running estimate of the free energy gradient as the adaptive biasing force, eABF is built on the idea that the exact free energy gradient is not necessary for efficient exploration, and that it is still possible to recover the exact free energy separately with an appropriate estimator. eABF does not directly bias the collective coordinates of interest, but rather fictitious variables that are harmonically coupled to them; therefore is does not require second derivative estimates, making it easily applicable to a wider range of problems than ABF. Furthermore, the extended variables present a smoother, coarse-grain-like sampling problem on a mollified free energy surface, leading to faster exploration and convergence. We also introduce CZAR, a simple, unbiased free energy estimator from eABF trajectories. eABF/CZAR converges to the physical free energy surface faster than standard ABF for a wide range of parameters.

  15. Brevibacillus expression system: host-vector system for efficient production of secretory proteins.

    PubMed

    Mizukami, Makoto; Hanagata, Hiroshi; Miyauchi, Akira

    2010-04-01

    Brevibacillus expression system is an effective bacterial expression system for secretory proteins. The host bacterium, Brevibacillus choshinensis, a gram-positive bacterium, has strong capacity to secrete a large amount of proteins (approximately 30 g/L), which mostly consist of cell wall protein. A host-vector system that utilizes such high expression capacity has been constructed for the production of secretory proteins and tested for various heterologous proteins, including cytokines, enzymes, antigens, and adjuvants.

  16. Genetic selection system for improving recombinant membrane protein expression in E. coli

    PubMed Central

    Massey-Gendel, Elizabeth; Zhao, Anni; Boulting, Gabriella; Kim, Hye-Yeon; Balamotis, Michael A; Seligman, Len M; Nakamoto, Robert K; Bowie, James U

    2009-01-01

    A major barrier to the physical characterization and structure determination of membrane proteins is low yield in recombinant expression. To address this problem, we have designed a selection strategy to isolate mutant strains of Escherichia coli that improve the expression of a targeted membrane protein. In this method, the coding sequence of the membrane protein of interest is fused to a C-terminal selectable marker, so that the production of the selectable marker and survival on selective media is linked to expression of the targeted membrane protein. Thus, mutant strains with improved expression properties can be directly selected. We also introduce a rapid method for curing isolated strains of the plasmids used during the selection process, in which the plasmids are removed by in vivo digestion with the homing endonuclease I-CreI. We tested this selection system on a rhomboid family protein from Mycobacterium tuberculosis (Rv1337) and were able to isolate mutants, which we call EXP strains, with up to 75-fold increased expression. The EXP strains also improve the expression of other membrane proteins that were not the target of selection, in one case roughly 90-fold. PMID:19165721

  17. Expression and bioactivity of human α-fetoprotein in a Bac-to-Bac system.

    PubMed

    Lin, Bo; Liu, Kun; Wang, Wenting; Li, Wei; Dong, Xu; Chen, Yi; Lu, Yan; Guo, Junli; Zhu, Mingyue; Li, Mengsen

    2017-02-28

    α-fetoprotein (AFP) is an early serum growth factor in foetal embryonic development and hepatic oncogenesis. A growing number of investigations of AFP as a tumour-specific biomarker have concluded that AFP is an important target for cancer treatment. AFP also plays an immunomodulatory role in the treatment of several autoimmune diseases, such as rheumatoid arthritis, multiple sclerosis, myasthenia gravis and thyroiditis. In an effort to support biochemical screening and drug design and discovery, we attempted to express and purify human AFP in a Bac-to-Bac system. Two key factors affecting the expression of recombinant human AFP (R-AFP), namely the infectious baculovirus inoculum volume and the culturing time post-infection, were optimized to maximize the yield. We achieved a high yield of approximately 1.5 mg/l of harvested medium with a 72-96 h incubation period after infection and an inoculum volume ratio of 1:100. We also assessed the role of R-AFP in the proliferation of the human liver cancer cell line Bel 7402, and the results indicated that R-AFP promoted the growth of hepatoma cells. We concluded that this method can produce high yields of R-AFP, which can be used for studies related to AFP.

  18. Expression and bioactivity of human α-fetoprotein in a Bac-to-Bac system

    PubMed Central

    Lin, Bo; Liu, Kun; Wang, Wenting; Li, Wei; Dong, Xu; Chen, Yi; Lu, Yan; Guo, Junli; Li, Mengsen

    2016-01-01

    α-fetoprotein (AFP) is an early serum growth factor in foetal embryonic development and hepatic oncogenesis. A growing number of investigations of AFP as a tumour-specific biomarker have concluded that AFP is an important target for cancer treatment. AFP also plays an immunomodulatory role in the treatment of several autoimmune diseases, such as rheumatoid arthritis, multiple sclerosis, myasthenia gravis and thyroiditis. In an effort to support biochemical screening and drug design and discovery, we attempted to express and purify human AFP in a Bac-to-Bac system. Two key factors affecting the expression of recombinant human AFP (R-AFP), namely the infectious baculovirus inoculum volume and the culturing time post-infection, were optimized to maximize the yield. We achieved a high yield of approximately 1.5 mg/l of harvested medium with a 72–96 h incubation period after infection and an inoculum volume ratio of 1:100. We also assessed the role of R-AFP in the proliferation of the human liver cancer cell line Bel 7402, and the results indicated that R-AFP promoted the growth of hepatoma cells. We concluded that this method can produce high yields of R-AFP, which can be used for studies related to AFP. PMID:27913752

  19. Modelling Pasture-based Automatic Milking System Herds: The Impact of Large Herd on Milk Yield and Economics.

    PubMed

    Islam, M R; Clark, C E F; Garcia, S C; Kerrisk, K L

    2015-07-01

    The aim of this modelling study was to investigate the effect of large herd size (and land areas) on walking distances and milking interval (MI), and their impact on milk yield and economic penalties when 50% of the total diets were provided from home grown feed either as pasture or grazeable complementary forage rotation (CFR) in an automatic milking system (AMS). Twelve scenarios consisting of 3 AMS herds (400, 600, 800 cows), 2 levels of pasture utilisation (current AMS utilisation of 15.0 t dry matter [DM]/ha, termed as 'moderate'; optimum pasture utilisation of 19.7 t DM/ha, termed as 'high') and 2 rates of incorporation of grazeable complementary forage system (CFS: 0, 30%; CFS = 65% farm is CFR and 35% of farm is pasture) were investigated. Walking distances, energy loss due to walking, MI, reduction in milk yield and income loss were calculated for each treatment based on information available in the literature. With moderate pasture utilisation and 0% CFR, increasing the herd size from 400 to 800 cows resulted in an increase in total walking distances between the parlour and the paddock from 3.5 to 6.3 km. Consequently, MI increased from 15.2 to 16.4 h with increased herd size from 400 to 800 cows. High pasture utilisation (allowing for an increased stocking density) reduced the total walking distances up to 1 km, thus reduced the MI by up to 0.5 h compared to the moderate pasture, 800 cow herd combination. The high pasture utilisation combined with 30% of the farm in CFR in the farm reduced the total walking distances by up to 1.7 km and MI by up to 0.8 h compared to the moderate pasture and 800 cow herd combination. For moderate pasture utilisation, increasing the herd size from 400 to 800 cows resulted in more dramatic milk yield penalty as yield increasing from c.f. 2.6 and 5.1 kg/cow/d respectively, which incurred a loss of up to $AU 1.9/cow/d. Milk yield losses of 0.61 kg and 0.25 kg for every km increase in total walking distance (voluntary return

  20. Modelling Pasture-based Automatic Milking System Herds: The Impact of Large Herd on Milk Yield and Economics

    PubMed Central

    Islam, M. R.; Clark, C. E. F.; Garcia, S. C.; Kerrisk, K. L.

    2015-01-01

    The aim of this modelling study was to investigate the effect of large herd size (and land areas) on walking distances and milking interval (MI), and their impact on milk yield and economic penalties when 50% of the total diets were provided from home grown feed either as pasture or grazeable complementary forage rotation (CFR) in an automatic milking system (AMS). Twelve scenarios consisting of 3 AMS herds (400, 600, 800 cows), 2 levels of pasture utilisation (current AMS utilisation of 15.0 t dry matter [DM]/ha, termed as ‘moderate’; optimum pasture utilisation of 19.7 t DM/ha, termed as ‘high’) and 2 rates of incorporation of grazeable complementary forage system (CFS: 0, 30%; CFS = 65% farm is CFR and 35% of farm is pasture) were investigated. Walking distances, energy loss due to walking, MI, reduction in milk yield and income loss were calculated for each treatment based on information available in the literature. With moderate pasture utilisation and 0% CFR, increasing the herd size from 400 to 800 cows resulted in an increase in total walking distances between the parlour and the paddock from 3.5 to 6.3 km. Consequently, MI increased from 15.2 to 16.4 h with increased herd size from 400 to 800 cows. High pasture utilisation (allowing for an increased stocking density) reduced the total walking distances up to 1 km, thus reduced the MI by up to 0.5 h compared to the moderate pasture, 800 cow herd combination. The high pasture utilisation combined with 30% of the farm in CFR in the farm reduced the total walking distances by up to 1.7 km and MI by up to 0.8 h compared to the moderate pasture and 800 cow herd combination. For moderate pasture utilisation, increasing the herd size from 400 to 800 cows resulted in more dramatic milk yield penalty as yield increasing from c.f. 2.6 and 5.1 kg/cow/d respectively, which incurred a loss of up to $AU 1.9/cow/d. Milk yield losses of 0.61 kg and 0.25 kg for every km increase in total walking distance (voluntary

  1. Near-infrared spectroscopy of a hydroecological indicator: new tool for determining sustainable yield for Floridan aquifer system

    NASA Astrophysics Data System (ADS)

    Bacchus, Sydney T.; Archibald, Douglas D.; Brook, George A.; Britton, Kerry O.; Haines, Bruce L.; Rathbun, Stephen L.; Madden, Marguerite

    2003-06-01

    Pond-cypress (Taxodium ascendens Brong.) is a dominant canopy species in depressional wetlands of the south-eastern Coastal Plain. Unsustainable withdrawals from the karst Floridan aquifer system have caused premature decline and death of pond-cypress trees, presumably owing to altered hydroperiods (which alter the flow of water and nutrients in trees). There has been no scientifically based means to determine sustainable yield from this regional aquifer system or to detect early stages of physical/ecological damage associated with groundwater mining and aquifer storage and recovery (ASR, which also can alter natural hydroperiods). In this study, the relationship between visual symptoms (indicators) of stress or premature decline, and spectral reflectance was evaluated using dried, milled branch tips collected from natural stands of mature pond-cypress. Depressional systems evaluated represented four of the six aquifer system subregions where subsurface perturbations from groundwater mining: (i) were presumed not to be occurring (reference wetlands); (ii) may be occurring but are not documented; and (iii) have been confirmed. Sampled trees were assigned to one of three stress classes (1, no/minimal; 2, moderate; 3, severe) based on the visual indicators. Partial least squares-linear discriminant analysis of second derivative spectral transformations in the visible/shortwave near-infrared (NIR) region (400-1100 nm) and the NIR region (1100-2500 nm) was used to evaluate the samples in assigned classes.Class 1 samples were discriminated from combined class 2 and 3 samples in the NIR region with 100% and 97% accuracy for consecutive winter sample periods (before bud-break). The percentage of correctly classified samples in this spectral region was lower (85%) for summer samples (full leaf-out). Second-derivative models for the NIR region developed from the winter data sets predicted assigned classes for alternate winter's samples with an accuracy of 97% and 100%. High

  2. Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress.

    PubMed

    Shafi, Amrina; Chauhan, Rohit; Gill, Tejpal; Swarnkar, Mohit K; Sreenivasulu, Yelam; Kumar, Sanjay; Kumar, Neeraj; Shankar, Ravi; Ahuja, Paramvir Singh; Singh, Anil Kumar

    2015-04-01

    Abiotic stresses cause accumulation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2) in plants. Sophisticated mechanisms are required to maintain optimum level of H2O2 that acts as signalling molecule regulating adaptive response to salt stress. CuZn-superoxide dismutase (CuZn-SOD) and ascorbate peroxidase (APX) constitute first line of defence against oxidative stress. In the present study, PaSOD and RaAPX genes from Potentilla atrosanguinea and Rheum australe, respectively were overexpressed individually as well as in combination in Arabidopsis thaliana. Interestingly, PaSOD and dual transgenic lines exhibit enhanced lignin deposition in their vascular bundles with altered S:G ratio under salt stress. RNA-seq analysis revealed that expression of PaSOD gene in single and dual transgenics positively regulates expression of lignin biosynthesis genes and transcription factors (NACs, MYBs, C3Hs and WRKY), leading to enhanced and ectopic deposition of lignin in vascular tissues with larger xylem fibres and alters S:G ratio, as well. In addition, transgenic plants exhibit growth promotion, higher biomass production and increased yield under salt stress as compared to wild type plants. Our results suggest that in dual transgenics, ROS generated during salt stress gets converted into H2O2 by SOD and its optimum level was maintained by APX. This basal level of H2O2 acts as messenger for transcriptional activation of lignin biosynthesis in vascular tissue, which provides mechanical strength to plants. These findings reveal an important role of PaSOD and RaAPX in enhancing salt tolerance of transgenic Arabidopsis via increased accumulation of compatible solutes and by regulating lignin biosynthesis.

  3. Tree growth and management in Ugandan agroforestry systems: effects of root pruning on tree growth and crop yield.

    PubMed

    Wajja-Musukwe, Tellie-Nelson; Wilson, Julia; Sprent, Janet I; Ong, Chin K; Deans, J Douglas; Okorio, John

    2008-02-01

    Tree root pruning is a potential tool for managing belowground competition when trees and crops are grown together in agroforestry systems. We investigated the effects of tree root pruning on shoot growth and root distribution of Alnus acuminata (H.B. & K.), Casuarina equisetifolia L., Grevillea robusta A. Cunn. ex R. Br., Maesopsis eminii Engl. and Markhamia lutea (Benth.) K. Schum. and on yield of adjacent crops in sub-humid Uganda. The trees were 3 years old at the commencement of the study, and most species were competing strongly with crops. Tree roots were pruned 41 months after planting by cutting and back-filling a trench to a depth of 0.3 m, at a distance of 0.3 m from the trees, on one side of the tree row. The trench was reopened and roots recut at 50 and 62 months after planting. We assessed the effects on tree growth and root distribution over a 3 year period, and crop yield after the third root pruning at 62 months. Overall, root pruning had only a slight effect on aboveground tree growth: height growth was unaffected and diameter growth was reduced by only 4%. A substantial amount of root regrowth was observed by 11 months after pruning. Tree species varied in the number and distribution of roots, and C. equisetifolia and M. lutea had considerably more roots per unit of trunk volume than the other species, especially in the surface soil layers. Casuarina equisetifolia and M. eminii were the tree species most competitive with crops and G. robusta and M. lutea the least competitive. Crop yield data provided strong evidence of the redistribution of root activity following root pruning, with competition increasing on the unpruned side of tree rows. Thus, one-sided root pruning will be useful in only a few circumstances.

  4. EXPRESSION SYSTEM-DEPENDENT MODULATION OF HIV-1 ENVELOPE GLYCOPROTEIN ANTIGENICITY AND IMMUNOGENICITY

    PubMed Central

    Kong, Leopold; Sheppard, Neil C.; Stewart-Jones, Guillaume B.E.; Robson, Cynthia L.; Chen, Hongying; Xu, Xiaodong; Krashias, George; Bonomelli, Camille; Scanlan, Christopher N.; Kwong, Peter D.; Jeffs, Simon A.; Jones, Ian M.; Sattentau, Quentin J.

    2010-01-01

    Recombinant expression systems differ in the type of glycosylation they impart on expressed antigens such as the Human Immunodeficiency Virus Type-1 (HIV-1) envelope glycoproteins, potentially affecting their biological properties. We performed head-to-head antigenic, immunogenic and molecular profiling of two distantly-related Env surface (gp120) antigens produced in different systems: a) mammalian (293F) cells in the presence of kifunensine which impart only high mannose glycans; b) insect (Spodoptera frugiperda, Sf9) cells, which confer mainly paucimannosidic glycans; c) Sf9 cells recombinant for mammalian glycosylation enzymes (Sf9 Mimic™), which impart high mannose, hybrid and complex glycans without sialic acid; d) 293F cells, which impart high mannose, hybrid and complex glycans with sialic acid. Molecular models revealed a significant difference in gp120 glycan coverage between the Sf9- and wild-type mammalian cell-derived material that is predicted to impact upon ligand binding sites proximal to glycans. Modelling of solvent-exposed surface electrostatic potentials showed that sialic acid imparts a significant negative surface charge that may influence gp120 antigenicity and immunogenicity. Gp120 expressed in systems that do not incorporate sialic acid displayed increased ligand binding to the CD4-binding and CD4–induced sites compared to those expressed in the system that does, and imparted other more subtle differences in antigenicity in a gp120 subtype-specific manner. Non-sialic acid-containing gp120 was significantly more immunogenic than the sialyated version when administered in two different adjuvants, and induced higher titres of antibodies competing for CD4 binding site ligand-gp120 interaction. These findings suggest that non-sialic acid imparting systems yield gp120 immunogens with modified antigenic and immunogenic properties, considerations which should be considered when selecting expression systems for glycosylated antigens to be used

  5. Comparative analysis of eukaryotic cell-free expression systems.

    PubMed

    Hartsough, Emily M; Shah, Pankti; Larsen, Andrew C; Chaput, John C

    2015-09-01

    Cell-free protein synthesis (CFPS) allows researchers to rapidly generate functional proteins independent of cell culture. Although advances in eukaryotic lysates have increased the amount of protein that can be produced, the nuances of different translation systems lead to variability in protein production. To help overcome this problem, we have compared the relative yield and template requirements for three commonly used commercial cell-free translation systems: wheat germ extract (WGE), rabbit reticulocyte lysate (RRL), and HeLa cell lysate (HCL). Our results provide a general guide for researchers interested in using cell-free translation to generate recombinant protein for biomedical applications.

  6. Effects of prebiotics on immune system and cytokine expression.

    PubMed

    Shokryazdan, Parisa; Faseleh Jahromi, Mohammad; Navidshad, Bahman; Liang, Juan Boo

    2017-02-01

    Nowadays, use of prebiotics as feed and food additives has received increasing interest because of the beneficial effects of prebiotics on the health of animals and humans. One of the beneficial effects of prebiotics is stimulation of immune system, which can be direct or indirect through increasing population of beneficial microbes or probiotics, especially lactic acid bacteria and bifidobacteria, in the gut. An important mechanism of action of probiotics and prebiotics, by which they can affect the immune system, is changing the expression of cytokines. The present review tried to summarize the findings of studies that investigated the effects of prebiotics on immune system with focusing on their effects on cytokine expression. Generally, most of reviewed studies indicated beneficial effects for prebiotics in terms of improving immune system, by increasing the expression of anti-inflammatory cytokines, while reducing the expressions of proinflammatory cytokines. However, most of studies mainly considered the indirect effects of prebiotics on the immune system (through changing the composition and population of gut microbiota), and their direct effects still need to be further studied using prebiotics with different degree of polymerization in different hosts.

  7. Tet-On Systems For Doxycycline-inducible Gene Expression

    PubMed Central

    Das, Atze T.; Tenenbaum, Liliane; Berkhout, Ben

    2016-01-01

    The tetracycline-controlled Tet-Off and Tet-On gene expression systems are used to regulate the activity of genes in eukaryotic cells in diverse settings, varying from basic biological research to biotechnology and gene therapy applications. These systems are based on regulatory elements that control the activity of the tetracycline-resistance operon in bacteria. The Tet-Off system allows silencing of gene expression by administration of tetracycline (Tc) or tetracycline-derivatives like doxycycline (dox), whereas the Tet-On system allows activation of gene expression by dox. Since the initial design and construction of the original Tet-system, these bacterium-derived systems have been significantly improved for their function in eukaryotic cells. We here review how a dox-controlled HIV-1 variant was designed and used to greatly improve the activity and dox-sensitivity of the rtTA transcriptional activator component of the Tet-On system. These optimized rtTA variants require less dox for activation, which will reduce side effects and allow gene control in tissues where a relatively low dox level can be reached, such as the brain. PMID:27216914

  8. Testing DAYCENT model simulations of corn yields and nitrous oxide emissions in irrigated tillage systems in Colorado.

    PubMed

    Del Grosso, S J; Halvorson, A D; Parton, W J

    2008-01-01

    Agricultural soils are responsible for the majority of nitrous oxide (N(2)O) emissions in the USA. Irrigated cropping, particularly in the western USA, is an important source of N(2)O emissions. However, the impacts of tillage intensity and N fertilizer amount and type have not been extensively studied for irrigated systems. The DAYCENT biogeochemical model was tested using N(2)O, crop yield, soil N and C, and other data collected from irrigated cropping systems in northeastern Colorado during 2002 to 2006. DAYCENT uses daily weather, soil texture, and land management information to simulate C and N fluxes between the atmosphere, soil, and vegetation. The model properly represented the impacts of tillage intensity and N fertilizer amount on crop yields, soil organic C (SOC), and soil water content. DAYCENT N(2)O emissions matched the measured data in that simulated emissions increased as N fertilization rates increased and emissions from no-till (NT) tended to be lower on average than conventional-till (CT). However, the model overestimated N(2)O emissions. Lowering the amount of N(2)O emitted per unit of N nitrified from 2 to 1% helped improve model fit but the treatments receiving no N fertilizer were still overestimated by more than a factor of 2. Both the model and measurements showed that soil NO(3)(-) levels increase with N fertilizer addition and with tillage intensity, but DAYCENT underestimated NO(3)(-) levels, particularly for the treatments receiving no N fertilizer. We suggest that DAYCENT could be improved by reducing the background nitrification rate and by accounting for the impact of changes in microbial community structure on denitrification rates.

  9. Power system comparison for the Pluto Express mission

    SciTech Connect

    Harty, R.B.

    1995-12-31

    This paper presents a comparison of three advanced radioisotope power systems, along with a down sized RTG for the Pluto Express mission. These three advanced radioisotope power systems were the Radioisotope Alkali Metal Thermal--to-Electric Converter (RAMTEC), Radioisotope Stirling, and Radioisotope Thermophotovoltaic (RTPV). For the Pluto Express mission, the power requirement at the end of the 10-y mission is 74 We. It was found that all three advanced power systems could meet the required end of mission power with two General Purpose Heat Source (GPHS) modules. The RTG required six modules to meet the power requirement. Only the RAMTEC and RTPV met the mass goal of 9.5 kg. The AMTEC has a radiator area more than a factor of 10 lower than the Stirling and RTPV power systems, which simplifies spacecraft integration.

  10. Protoplast Transformation as a Plant-Transferable Transient Expression System.

    PubMed

    Duarte, Patrícia; Ribeiro, Diana; Carqueijeiro, Inês; Bettencourt, Sara; Sottomayor, Mariana

    2016-01-01

    The direct uptake of DNA by naked plant cells (protoplasts) provides an expression system of exception for the quickly growing research in non-model plants, fuelled by the power of next-generation sequencing to identify novel candidate genes. Here, we describe a simple and effective method for isolation and transformation of protoplasts, and illustrate its application to several plant materials.

  11. VITELLOGENIN EXPRESSION IN SHEEPSHEAD MINNOWS FROM THE PENSACOLA BAY SYSTEM

    EPA Science Inventory

    Hemmer, M.J., B.L. Hemmer, S.D. Friedman and P.S. Harris. In press. Vitellogenin Expression in Populations of Sheepshead Minnows from the Pensacola Bay System (Abstract). To be presented at the SETAC Fourth World Congress, 14-18 November 2004, Portland, OR. 1 p. (ERL,GB R1015). <...

  12. Lipase expression in Pseudomonas alcaligenes is under the control of a two-component regulatory system.

    PubMed

    Krzeslak, Joanna; Gerritse, Gijs; van Merkerk, Ronald; Cool, Robbert H; Quax, Wim J

    2008-03-01

    Preliminary observations in a large-scale fermentation process suggested that the lipase expression of Pseudomonas alcaligenes can be switched on by the addition of certain medium components, such as soybean oil. In an attempt to elucidate the mechanism of induction of lipase expression, we have set up a search method for genes controlling lipase expression by use of a cosmid library containing fragments of P. alcaligenes genomic DNA. A screen for lipase hyperproduction resulted in the selection of multiple transformants, of which the best-producing strains comprised cosmids that shared an overlapping genomic fragment. Within this fragment, two previously unidentified genes were found and named lipQ and lipR. Their encoded proteins belong to the NtrBC family of regulators that regulate gene expression via binding to a specific upstream activator sequence (UAS). Such an NtrC-like UAS was identified in a previous study in the P. alcaligenes lipase promoter, strongly suggesting that LipR acts as a positive regulator of lipase expression. The regulating role could be confirmed by down-regulated lipase expression in a strain with an inactivated lipR gene and a threefold increase in lipase yield in a large-scale fermentation when expressing the lipQR operon from the multicopy plasmid pLAFR3. Finally, cell extracts of a LipR-overexpressing strain caused a retardation of the lipase promoter fragment in a band shift assay. Our results indicate that lipase expression in Pseudomonas alcaligenes is under the control of the LipQR two-component system.

  13. Integrative Food-Grade Expression System Based on the Lactose Regulon of Lactobacillus casei

    PubMed Central

    Gosalbes, María José; Esteban, Carlos David; Galán, José Luis; Pérez-Martínez, Gaspar

    2000-01-01

    The lactose operon from Lactobacillus casei is regulated by very tight glucose repression and substrate induction mechanisms, which made it a tempting candidate system for the expression of foreign genes or metabolic engineering. An integrative vector was constructed, allowing stable gene insertion in the chromosomal lactose operon of L. casei. This vector was based on the nonreplicative plasmid pRV300 and contained two DNA fragments corresponding to the 3′ end of lacG and the complete lacF gene. Four unique restriction sites were created, as well as a ribosome binding site that would allow the cloning and expression of new genes between these two fragments. Then, integration of the cloned genes into the lactose operon of L. casei could be achieved via homologous recombination in a process that involved two selection steps, which yielded highly stable food-grade mutants. This procedure has been successfully used for the expression of the E. coli gusA gene and the L. lactis ilvBN genes in L. casei. Following the same expression pattern as that for the lactose genes, β-glucuronidase activity and diacetyl production were repressed by glucose and induced by lactose. This integrative vector represents a useful tool for strain improvement in L. casei that could be applied to engineering fermentation processes or used for expression of genes for clinical and veterinary uses. PMID:11055930

  14. Crop monitoring & yield forecasting system based on Synthetic Aperture Radar (SAR) and process-based crop growth model: Development and validation in South and South East Asian Countries

    NASA Astrophysics Data System (ADS)

    Setiyono, T. D.

    2014-12-01

    Accurate and timely information on rice crop growth and yield helps governments and other stakeholders adapting their economic policies and enables relief organizations to better anticipate and coordinate relief efforts in the wake of a natural catastrophe. Such delivery of rice growth and yield information is made possible by regular earth observation using space-born Synthetic Aperture Radar (SAR) technology combined with crop modeling approach to estimate yield. Radar-based remote sensing is capable of observing rice vegetation growth irrespective of cloud coverage, an important feature given that in incidences of flooding the sky is often cloud-covered. The system allows rapid damage assessment over the area of interest. Rice yield monitoring is based on a crop growth simulation and SAR-derived key information, particularly start of season and leaf growth rate. Results from pilot study sites in South and South East Asian countries suggest that incorporation of SAR data into crop model improves yield estimation for actual yields. Remote-sensing data assimilation into crop model effectively capture responses of rice crops to environmental conditions over large spatial coverage, which otherwise is practically impossible to achieve. Such improvement of actual yield estimates offers practical application such as in a crop insurance program. Process-based crop simulation model is used in the system to ensure climate information is adequately captured and to enable mid-season yield forecast.

  15. Development of an efficient expression system for Flavobacterium strains

    PubMed Central

    Chen, Shicheng; Kaufman, Michael G.; Bagdasarian, Michael; Bates, Adam K.; Walker, Edward D.

    2014-01-01

    Strong promoters were isolated from Flavobacterium johnsoniae in a promoter-trap vector incorporating a gfp reporter system, and were used to express fluorescent protein markers (including GFP, YFP, mOrange and mStrawberry) and insecticidal protein genes in Flavobacterium strains. Sequence analysis of trapped DNA fragments showed conserved Bacteroidetes promoter motifs (TTG-N19-TAnnTTTG) located upstream of putative open reading frames. Plasmids harboring these genomic DNA fragments from F. johnsoniae promoted strong production of fluorescent proteins in Flavobacterium hibernum but not in E. coli. The most potent promoter (PompA) identified in this work was cloned upstream of genes encoding fluorescent proteins, and these were co-expressed in Flavobacterium strains. The p42 and p51 genes (binary toxins from Bacillus sphaericus) when translationally fused to the 3’-end of gfp showed strong expression. Flavobacteria expressing these genes exhibited toxicity against larvae of the mosquitoes Culex quinquefasciatus, Anopheles gambiae, and Ochlerotatus triseriatus. However, transformants with the transcriptional fusion construct between cry11A with p20 from Bacillus thuringiensis did not express Cry11A protein indicating that constitutive expression of cry11A may be problematic in Flavobacterium. PMID:20206244

  16. Expression and characterization of a Talaromyces marneffei active phospholipase B expressed in a Pichia pastoris expression system

    PubMed Central

    He, Yan; Li, Linghua; Hu, Fengyu; Chen, Wanshan; Lei, Huali; Chen, Xiejie; Cai, Weiping; Tang, Xiaoping

    2016-01-01

    Phospholipase B is a virulence factor for several clinically important pathogenic fungi, including Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus, but its role in the thermally dimorphic fungus Talaromyces marneffei remains unclear. Here, we provide the first report of the expression of a novel phospholipase gene, designated TmPlb1, from T. marneffei in the eukaryotic expression system of Pichia pastoris GS115. Sensitive real-time quantitative reverse-transcription PCR (qRT-PCR) demonstrated that the expression of TmPlb1 increased 1.85-fold in the yeast phase compared with the mycelial phase. TmPlb1 contains an open reading frame (ORF) of 732 bp that encodes a protein of 243 amino acids. The conserved serine, aspartate and histidine catalytic triad and the G-X-S-X-G domain of TmPLB1 provide the structural basis for its molecular activity. The ORF of TmPlb1 was successfully cloned into a pPIC9K vector containing an α-mating factor secretion signal that allowed the secretory expression of TmPLB1 in P. pastoris. The heterologous protein expression began 12 h after methanol induction and peaked at 96 h. Through analysis with SDS–polyacrylamide gel electrophoresis (SDS-PAGE), western blotting and mass spectrometry, we confirmed that TmPLB1 was successfully expressed. Through Ni-affinity chromatography, TmPLB1 was highly purified, and its concentration reached 240.4 mg/L of culture medium. With specific substrates, the phospholipase A1 and phospholipase A2 activities of TmPLB1 were calculated to be 5.96 and 1.59 U/mg, respectively. The high purity and activity of the TmPLB1 obtained here lay a solid foundation for further investigation. PMID:27876784

  17. Methods for high yield production of terpenes

    DOEpatents

    Kutchan, Toni; Higashi, Yasuhiro; Feng, Xiaohong

    2017-01-03

    Provided are enhanced high yield production systems for producing terpenes in plants via the expression of fusion proteins comprising various combinations of geranyl diphosphate synthase large and small subunits and limonene synthases. Also provided are engineered oilseed plants that accumulate monoterpene and sesquiterpene hydrocarbons in their seeds, as well as methods for producing such plants, providing a system for rapidly engineering oilseed crop production platforms for terpene-based biofuels.

  18. Expression of the endocannabinoid system in fibroblasts and myofascial tissues.

    PubMed

    McPartland, John M

    2008-04-01

    The endocannabinoid (eCB) system, like the better-known endorphin system, consists of cell membrane receptors, endogenous ligands and ligand-metabolizing enzymes. Two cannabinoid receptors are known: CB(1) is principally located in the nervous system, whereas CB(2) is primarily associated with the immune system. Two eCB ligands, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are mimicked by cannabis plant compounds. The first purpose of this paper was to review the eCB system in detail, highlighting aspects of interest to bodyworkers, especially eCB modulation of pain and inflammation. Evidence suggests the eCB system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, expression of the eCB system in myofascial tissues has not been established. The second purpose of this paper was to investigate the eCB system in fibroblasts and other fascia-related cells. The investigation used a bioinformatics approach, obtaining microarray data via the GEO database (www.ncbi.nlm.nih.gov/geo/). GEO data mining revealed that fibroblasts, myofibroblasts, chondrocytes and synoviocytes expressed CB(1), CB(2) and eCB ligand-metabolizing enzymes. Fibroblast CB(1) levels nearly equalled levels expressed by adipocytes. CB(1) levels upregulated after exposure to inflammatory cytokines and equiaxial stretching of fibroblasts. The eCB system affects fibroblast remodeling through lipid rafts associated with focal adhesions and dampens cartilage destruction by decreasing fibroblast-secreted metalloproteinase enzymes. In conclusion, the eCB system helps shape biodynamic embryological development, diminishes nociception and pain, reduces inflammation in myofascial tissues and plays a role in fascial reorganization. Practitioners wield several tools that upregulate eCB activity, including myofascial manipulation, diet and lifestyle modifications, and pharmaceutical approaches.

  19. High yield expression of an AHL-lactonase from Bacillus sp. B546 in Pichia pastoris and its application to reduce Aeromonas hydrophila mortality in aquaculture

    PubMed Central

    2010-01-01

    Background Aeromonas hydrophila is a serious pathogen and can cause hemorrhagic septicemia in fish. To control this disease, antibiotics and chemicals are widely used which can consequently result in "superbugs" and chemical accumulation in the food chain. Though vaccine against A. hydrophila is available, its use is limited due to multiple serotypes of this pathogen and problems of safety and efficacy. Another problem with vaccination is the ability to apply it to small fish especially in high numbers. In this study, we tried a new way to attenuate the A. hydrophila infection by using a quorum quenching strategy with a recombinant AHL-lactonase expressed in Pichia pastoris. Results The AHL-lactonase (AiiAB546) from Bacillus sp. B546 was produced extracellularly in P. pastoris with a yield of 3,558.4 ± 81.3 U/mL in a 3.7-L fermenter when using 3-oxo-C8-HSL as the substrate. After purification with a HiTrap Q Sepharose column, the recombinant homogenous protein showed a band of 33.6 kDa on SDS-PAGE, higher than the calculated molecular mass (28.14 kDa). Deglycosylation of AiiAB546 with Endo H confirmed the occurrence of N-glycosylation. The purified recombinant AiiAB546 showed optimal activity at pH 8.0 and 20°C, exhibited excellent stability at pH 8.0-12.0 and thermal stability at 70°C, was firstly confirmed to be significantly protease-resistant, and had wide substrate specificity. In application test, when co-injected with A. hydrophila in common carp, recombinant AiiAB546 decreased the mortality rate and delayed the mortality time of fish. Conclusions Our results not only indicate the possibility of mass-production of AHL-lactonase at low cost, but also open up a promising foreground of application of AHL-lactonase in fish to control A. hydrophila disease by regulating its virulence. To our knowledge, this is the first report on heterologous expression of AHL-lactonase in P. pastoris and attenuating A. hydrophila virulence by co-injection with AHL

  20. High-level protein expression following single and dual gene cloning of infectious bronchitis virus N and S genes using baculovirus systems.

    PubMed

    Abdel-Moneim, Ahmed S; Giesow, Katrin; Keil, Günther M

    2014-03-01

    Baculovirus is an efficient system for the gene expression that can be used for gene transfer to both insect and different vertebrate hosts. The nucleocapsid gene (N) of the infectious bronchitis virus was cloned in a baculovirus expression system for insect cell expression. Dual expression vectors containing IBV N and spike (S) proteins of the avian infectious bronchitis virus were engineered under the control of human and murine cytomegalovirus immediate-early enhancer/promoter elements in combination with the baculoviral polyhedrin and p10 promoters for simultaneous expression in both vertebrate and insect cells. Transduction of the N gene in the insect Sf9 cells revealed a high level of protein expression. The expressed protein, used in ELISA, effectively detected chicken anti-IBV antibodies with high specificity. Transduction of mammalian and avian cells with BacMam viruses revealed that dual expression cassettes yielded high levels of protein from both transcription units.

  1. Closing system-wide yield gaps to increase food production and mitigate GHGs among mixed crop-livestock smallholders in Sub-Saharan Africa.

    PubMed

    Henderson, B; Godde, C; Medina-Hidalgo, D; van Wijk, M; Silvestri, S; Douxchamps, S; Stephenson, E; Power, B; Rigolot, C; Cacho, O; Herrero, M

    2016-03-01

    In this study we estimate yield gaps for mixed crop-livestock smallholder farmers in seven Sub-Saharan African sites covering six countries (Kenya, Tanzania, Uganda, Ethiopia, Senegal and Burkina Faso). We also assess their potential to increase food production and reduce the GHG emission intensity of their products, as a result of closing these yield gaps. We use stochastic frontier analysis to construct separate production frontiers for each site, based on 2012 survey data prepared by the International Livestock Research Institute for the Climate Change, Agriculture and Food Security program. Instead of relying on theoretically optimal yields-a common approach in yield gap assessments-our yield gaps are based on observed differences in technical efficiency among farms within each site. Sizeable yield gaps were estimated to be present in all of the sites. Expressed as potential percentage increases in outputs, the average site-based yield gaps ranged from 28 to 167% for livestock products and from 16 to 209% for crop products. The emission intensities of both livestock and crop products registered substantial falls as a consequence of closing yield gaps. The relationships between farm attributes and technical efficiency were also assessed to help inform policy makers about where best to target capacity building efforts. We found a strong and statistically significant relationship between market participation and performance across most sites. We also identified an efficiency dividend associated with the closer integration of crop and livestock enterprises. Overall, this study reveals that there are large yield gaps and that substantial benefits for food production and environmental performance are possible through closing these gaps, without the need for new technology.

  2. Yield and economic performance of organic and conventional cotton-based farming systems--results from a field trial in India.

    PubMed

    Forster, Dionys; Andres, Christian; Verma, Rajeev; Zundel, Christine; Messmer, Monika M; Mäder, Paul

    2013-01-01

    The debate on the relative benefits of conventional and organic farming systems has in recent time gained significant interest. So far, global agricultural development has focused on increased productivity rather than on a holistic natural resource management for food security. Thus, developing more sustainable farming practices on a large scale is of utmost importance. However, information concerning the performance of farming systems under organic and conventional management in tropical and subtropical regions is scarce. This study presents agronomic and economic data from the conversion phase (2007-2010) of a farming systems comparison trial on a Vertisol soil in Madhya Pradesh, central India. A cotton-soybean-wheat crop rotation under biodynamic, organic and conventional (with and without Bt cotton) management was investigated. We observed a significant yield gap between organic and conventional farming systems in the 1(st) crop cycle (cycle 1: 2007-2008) for cotton (-29%) and wheat (-27%), whereas in the 2(nd) crop cycle (cycle 2: 2009-2010) cotton and wheat yields were similar in all farming systems due to lower yields in the conventional systems. In contrast, organic soybean (a nitrogen fixing leguminous plant) yields were marginally lower than conventional yields (-1% in cycle 1, -11% in cycle 2). Averaged across all crops, conventional farming systems achieved significantly higher gross margins in cycle 1 (+29%), whereas in cycle 2 gross margins in organic farming systems were significantly higher (+25%) due to lower variable production costs but similar yields. Soybean gross margin was significantly higher in the organic system (+11%) across the four harvest years compared to the conventional systems. Our results suggest that organic soybean production is a viable option for smallholder farmers under the prevailing semi-arid conditions in India. Future research needs to elucidate the long-term productivity and profitability, particularly of cotton and

  3. Yield and Economic Performance of Organic and Conventional Cotton-Based Farming Systems – Results from a Field Trial in India

    PubMed Central

    Forster, Dionys; Andres, Christian; Verma, Rajeev; Zundel, Christine; Messmer, Monika M.; Mäder, Paul

    2013-01-01

    The debate on the relative benefits of conventional and organic farming systems has in recent time gained significant interest. So far, global agricultural development has focused on increased productivity rather than on a holistic natural resource management for food security. Thus, developing more sustainable farming practices on a large scale is of utmost importance. However, information concerning the performance of farming systems under organic and conventional management in tropical and subtropical regions is scarce. This study presents agronomic and economic data from the conversion phase (2007–2010) of a farming systems comparison trial on a Vertisol soil in Madhya Pradesh, central India. A cotton-soybean-wheat crop rotation under biodynamic, organic and conventional (with and without Bt cotton) management was investigated. We observed a significant yield gap between organic and conventional farming systems in the 1st crop cycle (cycle 1: 2007–2008) for cotton (−29%) and wheat (−27%), whereas in the 2nd crop cycle (cycle 2: 2009–2010) cotton and wheat yields were similar in all farming systems due to lower yields in the conventional systems. In contrast, organic soybean (a nitrogen fixing leguminous plant) yields were marginally lower than conventional yields (−1% in cycle 1, −11% in cycle 2). Averaged across all crops, conventional farming systems achieved significantly higher gross margins in cycle 1 (+29%), whereas in cycle 2 gross margins in organic farming systems were significantly higher (+25%) due to lower variable production costs but similar yields. Soybean gross margin was significantly higher in the organic system (+11%) across the four harvest years compared to the conventional systems. Our results suggest that organic soybean production is a viable option for smallholder farmers under the prevailing semi-arid conditions in India. Future research needs to elucidate the long-term productivity and profitability, particularly of

  4. An amplified promoter system for targeted expression of calcium indicator proteins in the cerebellar cortex

    PubMed Central

    Kuhn, Bernd; Ozden, Ilker; Lampi, Yulia; Hasan, Mazahir T.; Wang, Samuel S.-H.

    2012-01-01

    Recording of identified neuronal network activity using genetically encoded calcium indicators (GECIs) requires labeling that is cell type-specific and bright enough for the detection of functional signals. However, specificity and strong expression are often not achievable using the same promoter. Here we present a combinatorial approach for targeted expression and single-cell-level quantification in which a weak promoter is used to drive trans-amplification under a strong general promoter. We demonstrated this approach using recombinant adeno-associated viruses (rAAVs) to deliver the sequence of the GECI D3cpv in the mouse cerebellar cortex. Direct expression under the human synapsin promoter (hSYN) led to high levels of expression (50–100 μM) in five interneuron types of the cerebellar cortex but not in Purkinje cells (PCs) (≤10 μM), yielding sufficient contrast to allow functional signals to be recorded from somata and processes in awake animals using two-photon microscopy. When the hSYN promoter was used to drive expression of the tetracycline transactivator (tTA), a second rAAV containing the bidirectional TET promoter (Ptetbi) could drive strong D3cpv expression in PCs (10–300 μM), enough to allow reliable complex spike detection in the dendritic arbor. An amplified approach should be of use in monitoring neural processing in selected cell types and boosting expression of optogenetic probes. Additionally, we overcome cell toxicity associated with rAAV injection and/or local GECI overexpression by combining the virus injection with systemic pre-injection of hyperosmotic D-mannitol, and by this double the time window for functional imaging. PMID:22866030

  5. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System

    PubMed Central

    Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M.

    2015-01-01

    Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health. PMID:26458221

  6. Crop yield and light/energy efficiency in a closed ecological system: Laboratory Biosphere experiments with wheat and sweet potato

    NASA Astrophysics Data System (ADS)

    Nelson, M.; Dempster, W. F.; Silverstone, S.; Alling, A.; Allen, J. P.; van Thillo, M.

    somewhat below greenhouse trials at comparable light levels, and the best portion of the crop at 0.22 g mol -1 was in-between those values. Sweet potato production was overall close to 50% higher than trials using hydroponic methods with TU-82-155 at NASA JSC. Compared to projected yields for the Mars on Earth life support system, these wheat yields were about 15% higher, and the sweet potato yields averaged over 80% higher.

  7. Crop yield and light/energy efficiency in a closed ecological system: Laboratory Biosphere experiments with wheat and sweet potato.

    PubMed

    Nelson, M; Dempster, W F; Silverstone, S; Alling, A; Allen, J P; van Thillo, M

    2005-01-01

    greenhouse trials at comparable light levels, and the best portion of the crop at 0.22 g mol-1 was in-between those values. Sweet potato production was overall close to 50% higher than trials using hydroponic methods with TU-82-155 at NASA JSC. Compared to projected yields for the Mars on Earth life support system, these wheat yields were about 15% higher, and the sweet potato yields averaged over 80% higher.

  8. Investigating the implications of meteorological indicators of seasonal rainfall performance on maize yield in a rain-fed agricultural system: case study of Mt. Darwin District in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Mushore, Terence; Manatsa, Desmond; Pedzisai, Ezra; Muzenda-Mudavanhu, Chipo; Mushore, Washington; Kudzotsa, Innocent

    2016-06-01

    The study focuses on the impacts of climate variability and change on maize yield in Mt. Darwin District. The rainfall and temperature data for the period under study that is from 1992 to 2012 were obtained from Meteorological Services Department of Zimbabwe at daily resolution while crop yield data were obtained from Department of Agricultural, Technical and Extension Services (AGRITEX) and Zimbabwe Statistics Agency (ZIMSTAT) at seasonal/yearly resolution. In order to capture full rainfall seasons, a year was set to begin on 1 June and end on 31 July the next year. Yearly yield, temperature and rainfall data were used to compute time series analysis of rainfall, temperature and yield. The relationship between temperature, rainfall, quality of season (start, cessation, dry days, wet days and length) and yield was also investigated. The study also investigated the link between meteorological normal and maize yield. The study revealed that temperature is rising while rainfall is decreasing with time hence increasing risk of low maize yield in Mt. Darwin. Correlation between maize yield was higher using a non-linear (R 2 = 0.630) than a linear regression model (R 2 = 0.173). There was a very high correlation between maize yield and number of dry days (R = -0.905) as well as between maize yield and length of season (R = 0.777). We also observed a strong correlation between percentage normal rainfall and percentage normal maize yield (R 2 = 0.753). This was also agreed between rainfall tessiles and maize yield tessiles as 50 % of the seasons had normal and above normal rainfall coinciding with normal and above normal maize yield. Of the 21 seasons considered, only one season had above normal rainfall while maize yield was below normal. The study concluded that there is a strong association between meteorological normal and maize yield in a rain-fed agricultural system. Climate information remains crucial to agricultural productivity hence the need to train farmers to

  9. Functional protein expression from a DNA based wheat germ cell-free system.

    PubMed

    Zhao, Kate Qin; Hurst, Robin; Slater, Michael R; Bulleit, Robert F

    2007-12-01

    Wheat germ based eukaryotic cell-free systems have been shown to be applicable for both functional and structural analyses of proteins. However, the existing methods might require specialized instrumentation and/or a separate mRNA synthesis step. We have developed a DNA based, highly productive, coupled transcription/translation wheat germ cell-free system that incorporates the normally separate mRNA synthesis step and does not require specialized instrumentation. Using a small-volume batch reaction with fluorescence labeling, DNA templates predicted to encode proteins could be quickly screened for their ability to direct the expression of proteins of the appropriate size. Protein yield can be increased as much as 2 to 4-fold in this system using a dialysis reaction, reaching approximately 200-440 microg/ml in 10-20 h. Furthermore, enzyme activities can be assayed directly in the extract without further purification. Simple purification with affinity tags can be achieved in one-step and with minor modifications, efficient SeMet and [U-15N] labeling of >95% can be accomplished in this system. Thus, this efficient cell-free expression system can facilitate both functional and structural proteomics.

  10. Dynamic Visualization of Co-expression in Systems Genetics Data

    SciTech Connect

    New, Joshua Ryan; Huang, Jian; Chesler, Elissa J

    2008-01-01

    Biologists hope to address grand scientific challenges by exploring the abundance of data made available through modern microarray technology and other high-throughput techniques. The impact of this data, however, is limited unless researchers can effectively assimilate such complex information and integrate it into their daily research; interactive visualization tools are called for to support the effort. Specifically, typical studies of gene co-expression require novel visualization tools that enable the dynamic formulation and fine-tuning of hypotheses to aid the process of evaluating sensitivity of key parameters. These tools should allow biologists to develop an intuitive understanding of the structure of biological networks and discover genes which reside in critical positions in networks and pathways. By using a graph as a universal data representation of correlation in gene expression data, our novel visualization tool employs several techniques that when used in an integrated manner provide innovative analytical capabilities. Our tool for interacting with gene co-expression data integrates techniques such as: graph layout, qualitative subgraph extraction through a novel 2D user interface, quantitative subgraph extraction using graph-theoretic algorithms or by querying an optimized b-tree, dynamic level-of-detail graph abstraction, and template-based fuzzy classification using neural networks. We demonstrate our system using a real-world workflow from a large-scale, systems genetics study of mammalian gene co-expression.

  11. Proteoglycan and collagen expression during human air conducting system development

    PubMed Central

    Godoy-Guzmán, C.; San Martin, S.; Pereda, J.

    2012-01-01

    The lung is formed from a bud that grows and divides in a dichotomous way. A bud is a new growth center which is determined by epithelial-mesenchymal interactions where proteins of the extracellular matrix (ECM) might be involved. To understand this protein participation during human lung development, we examined the expression and distribution of proteoglycans in relation to the different types of collagens during the period in which the air conducting system is installed. Using light microscopy and immunohistochemistry we evaluate the expression of collagens (I, III and VI) and proteoglycans (decorin, biglycan and lumican) between 8 to 10 weeks post fertilization and 11 to 14 weeks of gestational age of human embryo and fetus lungs. We show that decorin, lumican and all the collagen types investigated were expressed at the epithelium-mesenchymal interface, forming a sleeve around the bronchiolar ducts. In addition, biglycan was expressed in both the endothelial cells and the smooth muscle of the blood vessels. Thus, the similar distribution pattern of collagen and proteoglycans in the early developmental stages of the human lung may be closely related to the process of dichotomous division of the bronchial tree. This study provides a new insight concerning the participation of collagens and proteoglycans in the epithelial-mesenchymal interface during the period in which the air conducting system is installed in the human fetal lung. PMID:23027345

  12. Cloning and Expression of Recombinant Human Endostatin in Periplasm of Escherichia coli Expression System

    PubMed Central

    Mohajeri, Abbas; Pilehvar-Soltanahmadi, Yones; Pourhassan-Moghaddam, Mohammad; Abdolalizadeh, Jalal; Karimi, Pouran; Zarghami, Nosratollah

    2016-01-01

    Purpose: Recombinant human endostatin (rhEs) is an angiogenesis inhibitor which is used as a specific drug in the treatment of non-small-cell lung cancer. In the current research, we developed an efficient method for expressing soluble form of the rhEs protein in the periplasmic space of Escherichia coli via fusing with pelB signal peptide. Methods: The human endostatin (hEs) gene was amplified using synthetic (hEs) gene as a template; then, cloned and expressed under T7 lac promoter. IPTG was used as an inducer for rhEs expression. Next, the osmotic shock was used to extraction of protein from the periplasmic space. The presence of rhEs in the periplasmic space was approved by SDS-PAGE and Western blotting. Results: The results show the applicability of pelB fusion protein system usage for secreting rhEs in the periplasm of E. coli in the laboratory scale. The rhEs represents approximately 35 % (0.83mg/l) of the total cell protein. Conclusion: The present study apparently is the first report of codon-optimized rhEs expression as a fusion with pelB signal peptide. The results presented the successful secretion of soluble rhEs to the periplasmic space. PMID:27478780

  13. Closing system-wide yield gaps to increase food production and mitigate GHGs among mixed crop–livestock smallholders in Sub-Saharan Africa

    PubMed Central

    Henderson, B.; Godde, C.; Medina-Hidalgo, D.; van Wijk, M.; Silvestri, S.; Douxchamps, S.; Stephenson, E.; Power, B.; Rigolot, C.; Cacho, O.; Herrero, M.

    2016-01-01

    In this study we estimate yield gaps for mixed crop–livestock smallholder farmers in seven Sub-Saharan African sites covering six countries (Kenya, Tanzania, Uganda, Ethiopia, Senegal and Burkina Faso). We also assess their potential to increase food production and reduce the GHG emission intensity of their products, as a result of closing these yield gaps. We use stochastic frontier analysis to construct separate production frontiers for each site, based on 2012 survey data prepared by the International Livestock Research Institute for the Climate Change, Agriculture and Food Security program. Instead of relying on theoretically optimal yields—a common approach in yield gap assessments—our yield gaps are based on observed differences in technical efficiency among farms within each site. Sizeable yield gaps were estimated to be present in all of the sites. Expressed as potential percentage increases in outputs, the average site-based yield gaps ranged from 28 to 167% for livestock products and from 16 to 209% for crop products. The emission intensities of both livestock and crop products registered substantial falls as a consequence of closing yield gaps. The relationships between farm attributes and technical efficiency were also assessed to help inform policy makers about where best to target capacity building efforts. We found a strong and statistically significant relationship between market participation and performance across most sites. We also identified an efficiency dividend associated with the closer integration of crop and livestock enterprises. Overall, this study reveals that there are large yield gaps and that substantial benefits for food production and environmental performance are possible through closing these gaps, without the need for new technology. PMID:26941474

  14. Expression systems and species used for transgenic animal bioreactors.

    PubMed

    Wang, Yanli; Zhao, Sihai; Bai, Liang; Fan, Jianglin; Liu, Enqi

    2013-01-01

    Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals) and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm cocoon), the mammary glands of transgenic animals have enormous potential. Compared with other mammalian species (pig, goat, sheep, and cow) that are currently being studied as bioreactors, rabbits offer many advantages: high fertility, easy generation of transgenic founders and offspring, insensitivity to prion diseases, relatively high milk production, and no transmission of severe diseases to humans. Noticeably, for a small- or medium-sized facility, the rabbit system is ideal to produce up to 50 kg of protein per year, considering both economical and hygienic aspects; rabbits are attractive candidates for the mammary-gland-specific expression of recombinant proteins. We also reviewed recombinant proteins that have been produced by targeted expression in the mammary glands of rabbits and discussed the limitations of transgenic animal bioreactors.

  15. Control of gene expression by CRISPR-Cas systems.

    PubMed

    Bikard, David; Marraffini, Luciano A

    2013-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) loci and their associated cas (CRISPR-associated) genes provide adaptive immunity against viruses (phages) and other mobile genetic elements in bacteria and archaea. While most of the early work has largely been dominated by examples of CRISPR-Cas systems directing the cleavage of phage or plasmid DNA, recent studies have revealed a more complex landscape where CRISPR-Cas loci might be involved in gene regulation. In this review, we summarize the role of these loci in the regulation of gene expression as well as the recent development of synthetic gene regulation using engineered CRISPR-Cas systems.

  16. Periplasmic production via the pET expression system of soluble, bioactive human growth hormone.

    PubMed

    Sockolosky, Jonathan T; Szoka, Francis C

    2013-02-01

    A pET based expression system for the production of recombinant human growth hormone (hGH) directed to the Escherichia coli periplasmic space was developed. The pET22b plasmid was used as a template for creating vectors that encode hGH fused to either a pelB or ompA secretion signal under control of the strong bacteriophage T7 promoter. The pelB- and ompA-hGH constructs expressed in BL21 (λDE3)-RIPL E. coli are secreted into the periplasm which facilitates isolation of soluble hGH by selective disruption of the outer membrane. A carboxy-terminal poly-histidine tag enabled purification by Ni(2+) affinity chromatography with an average yield of 1.4 mg/L culture of purified hGH, independent of secretion signal. Purified pelB- and ompA-hGH are monomeric based on size exclusion chromatography with an intact mass corresponding to mature hGH indicating proper cleavage of the signal peptide and folding in the periplasm. Both pelB- and ompA-hGH bind the hGH receptor with high affinity and potently stimulate Nb2 cell growth. These results demonstrate that the pET expression system is suitable for the rapid and simple isolation of bioactive, soluble hGH from E. coli.

  17. Engineering of a wheat germ expression system to provide compatibility with a high throughput pET-based cloning platform.

    PubMed

    Zhao, Li; Zhao, Kate Q; Hurst, Robin; Slater, Michael R; Acton, Thomas B; Swapna, G V T; Shastry, Ritu; Kornhaber, Gregory J; Montelione, Gaetano T

    2010-09-01

    Wheat germ cell-free methods provide an important approach for the production of eukaryotic proteins. We have developed a protein expression vector for the TNT((R)) SP6 High-Yield Wheat Germ Cell-Free (TNT WGCF) expression system (Promega) that is also compatible with our T7-based Escherichia coli intracellular expression vector pET15_NESG. This allows cloning of the same PCR product into either one of several pET_NESG vectors and this modified WGCF vector (pWGHisAmp) by In-Fusion LIC cloning (Zhu et al. in Biotechniques 43:354-359, 2007). Integration of these two vector systems allowed us to explore the efficacy of the TNT WGCF system by comparing the expression and solubility characteristics of 59 human protein constructs in both WGCF and pET15_NESG E. coli intracellular expression. While only 30% of these human proteins could be produced in soluble form using the pET15_NESG based system, some 70% could be produced in soluble form using the TNT WGCF system. This high success rate underscores the importance of eukaryotic expression host systems like the TNT WGCF system for eukaryotic protein production in a structural genomics sample production pipeline. To further demonstrate the value of this WGCF system in producing protein suitable for structural studies, we scaled up, purified, and analyzed by 2D NMR two (15)N-, (13)C-enriched human proteins. The results of this study indicate that the TNT WGCF system is a successful salvage pathway for producing samples of difficult-to-express small human proteins for NMR studies, providing an important complementary pathway for eukaryotic sample production in the NESG NMR structure production pipeline.

  18. Analytic approaches to stochastic gene expression in multicellular systems.

    PubMed

    Boettiger, Alistair Nicol

    2013-12-17

    Deterministic thermodynamic models of the complex systems, which control gene expression in metazoa, are helping researchers identify fundamental themes in the regulation of transcription. However, quantitative single cell studies are increasingly identifying regulatory mechanisms that control variability in expression. Such behaviors cannot be captured by deterministic models and are poorly suited to contemporary stochastic approaches that rely on continuum approximations, such as Langevin methods. Fortunately, theoretical advances in the modeling of transcription have assembled some general results that can be readily applied to systems being explored only through a deterministic approach. Here, I review some of the recent experimental evidence for the importance of genetically regulating stochastic effects during embryonic development and discuss key results from Markov theory that can be used to model this regulation. I then discuss several pairs of regulatory mechanisms recently investigated through a Markov approach. In each case, a deterministic treatment predicts no difference between the mechanisms, but the statistical treatment reveals the potential for substantially different distributions of transcriptional activity. In this light, features of gene regulation that seemed needlessly complex evolutionary baggage may be appreciated for their key contributions to reliability and precision of gene expression.

  19. A high efficiency cloning and expression system for proteomic analysis.

    PubMed

    Ding, Xuan Z; Paulsen, Ian T; Bhattacharjee, Apurba K; Nikolich, Mikeljon P; Myers, Gary; Hoover, David L

    2006-07-01

    The recent description of the complete genomes of the two most pathogenic species of Brucella opens the way for genome-based analysis of the antigenicity of their proteins. In the present report, we describe a bench-level high-efficiency cloning and expression system (HECES) that allow expression of large numbers of Brucella proteins based on genomic sequence information. Purified proteins are produced with high efficiency in a microarray format conducive to analysis of their sero-reactivity against serum from immunized animals. This method is applicable at either small or large scale of protein processing. While it does not require robotics, the format is amenable to robotic implementation for all aspects of the process and subsequent analysis of protein characteristics. This method will allow selection of new reagents for diagnosis of brucellosis and development of vaccine against Brucella, an important zoonotic disease and biothreat agent.

  20. AMTEC radioisotope power system for the Pluto Express mission

    SciTech Connect

    Ivanenok, J.F. III; Sievers, R.K.

    1995-12-31

    The Alkali Metal Thermal to Electric Converter (AMTEC) technology has made substantial advances in the last 3 years through design improvements and technical innovations. In 1993 programs began to produce an AMTEC cell specifically for the NASA Pluto Express Mission. A set of efficiency goals was established for this series of cells to be developed. According to this plan, cell {number_sign}8 would be 17% efficient but was actually 18% efficient. Achieving this goal, as well as design advances that allow the cell to be compact, has resulted in pushing the cell from an unexciting 2 W/kg and 2% efficiency to very attractive 40 W/kg and 18% measured efficiency. This paper will describe the design and predict the performance of a radioisotope powered AMTEC system for the Pluto Express mission.

  1. An optimized sericin-1 expression system for mass-producing recombinant proteins in the middle silk glands of transgenic silkworms.

    PubMed

    Wang, Feng; Xu, Hanfu; Yuan, Lin; Ma, Sanyuan; Wang, Yuancheng; Duan, Xiaoli; Duan, Jianping; Xiang, Zhonghuai; Xia, Qingyou

    2013-10-01

    The middle silk gland (MSG) of silkworm is thought to be a potential host for mass-producing valuable recombinant proteins. Transgenic MSG expression systems based on the usage of promoter of sericin1 gene (sericin-1 expression system) have been established to produce various recombinant proteins in MSG. However, further modifying the activity of the sericin-1 expression system to yield higher amounts of recombinant proteins is still necessary. In this study, we provide an alternative modification strategy to construct an efficient sericin-1 expression system by using the hr3 enhancer (hr3 CQ) from a Chongqing strain of the Bombyx mori nuclear polyhedrosis virus (BmNPV) and the 3'UTRs of the fibroin heavy chain (Fib-HPA), the fibroin light chain (Fib-LPA), and Sericin1 (Ser1PA) genes. We first analyzed the effects of these DNA elements on expression of luciferase, and found that the combination of hr3 CQ and Ser1PA was most effective to increase the activity of luciferase. Then, hr3 CQ and Ser1PA were used to modify the sericin1 expression system. Transgenic silkworms bearing these modified sericin1 expression vectors were generated by a piggyBac transposon mediated genetic transformation method. Our results showed that mRNA level of DsRed reporter gene in transgenic silkworms containing hr3 CQ and Ser1PA significantly increased by 9 fold to approximately 83 % of that of endogenous sericin1. As the results of that, the production of recombinant RFP increased by 16 fold to 9.5 % (w/w) of cocoon shell weight. We conclude that this modified sericin-1 expression system is efficient and will contribute to the MSG as host to mass produce valuable recombinant proteins.

  2. Expression and Purification of C-Peptide Containing Insulin Using Pichia pastoris Expression System

    PubMed Central

    Baeshen, Mohammed N.; Bouback, Thamer A. F.; Alzubaidi, Mubarak A.; Alabbas, Omar T. O.; Alshahrani, Sultan M.; Aljohani, Ahmed A. M.; Munshi, Rayan A. A.; Al-Hejin, Ahmed; Redwan, Elrashdy M.; Ramadan, Hassan A. I.; Saini, Kulvinder S.; Baeshen, Nabih A.

    2016-01-01

    Increase in the incidence of Insulin Dependent Diabetes Mellitus (IDDM) among people from developed and developing countries has created a large global market for insulin. Moreover, exploration of new methods for insulin delivery including oral or inhalation route which require very high doses would further increase the demand of cost-effective recombinant insulin. Various bacterial and yeast strains have been optimized to overproduce important biopharmaceuticals. One of the approaches we have taken is the production of recombinant human insulin along with C-peptide in yeast Pichia pastoris. We procured a cDNA clone of insulin from Origene Inc., USA. Insulin cDNA was PCR amplified and cloned into yeast vector pPICZ-α. Cloned insulin cDNA was confirmed by restriction analysis and DNA sequencing. pPICZ-α-insulin clone was transformed into Pichia pastoris SuperMan5 strain. Several Zeocin resistant clones were obtained and integration of insulin cDNA in Pichia genome was confirmed by PCR using insulin specific primers. Expression of insulin in Pichia clones was confirmed by ELISA, SDS-PAGE, and Western blot analysis. In vivo efficacy studies in streptozotocin induced diabetic mice confirmed the activity of recombinant insulin. In conclusion, a biologically active human proinsulin along with C-peptide was expressed at high level using Pichia pastoris expression system. PMID:27579308

  3. Expression and Purification of C-Peptide Containing Insulin Using Pichia pastoris Expression System.

    PubMed

    Baeshen, Mohammed N; Bouback, Thamer A F; Alzubaidi, Mubarak A; Bora, Roop S; Alotaibi, Mohammed A T; Alabbas, Omar T O; Alshahrani, Sultan M; Aljohani, Ahmed A M; Munshi, Rayan A A; Al-Hejin, Ahmed; Ahmed, Mohamed M M; Redwan, Elrashdy M; Ramadan, Hassan A I; Saini, Kulvinder S; Baeshen, Nabih A

    2016-01-01

    Increase in the incidence of Insulin Dependent Diabetes Mellitus (IDDM) among people from developed and developing countries has created a large global market for insulin. Moreover, exploration of new methods for insulin delivery including oral or inhalation route which require very high doses would further increase the demand of cost-effective recombinant insulin. Various bacterial and yeast strains have been optimized to overproduce important biopharmaceuticals. One of the approaches we have taken is the production of recombinant human insulin along with C-peptide in yeast Pichia pastoris. We procured a cDNA clone of insulin from Origene Inc., USA. Insulin cDNA was PCR amplified and cloned into yeast vector pPICZ-α. Cloned insulin cDNA was confirmed by restriction analysis and DNA sequencing. pPICZ-α-insulin clone was transformed into Pichia pastoris SuperMan 5 strain. Several Zeocin resistant clones were obtained and integration of insulin cDNA in Pichia genome was confirmed by PCR using insulin specific primers. Expression of insulin in Pichia clones was confirmed by ELISA, SDS-PAGE, and Western blot analysis. In vivo efficacy studies in streptozotocin induced diabetic mice confirmed the activity of recombinant insulin. In conclusion, a biologically active human proinsulin along with C-peptide was expressed at high level using Pichia pastoris expression system.

  4. Annual Variation in Flowering Phenology, Pollination, Mating System, and Pollen Yield in Two Natural Populations of Schima wallichii (DC.) Korth

    PubMed Central

    Khanduri, Vinod Prasad; Sharma, C. M.; Kumar, K. S.; Ghildiyal, S. K.

    2013-01-01

    Background. Schima wallichii is a highly valuable tree of tropical forest in north-east Himalaya region that grows naturally in a wide range of altitudes between 750 and 2400 m asl with varying environments. Flowering phenology of tropical tree species at population level is generally ignored and therefore a detailed knowledge of flowering and fruiting patterns of important multipurpose tree species is critical to the successful management of forest genetic resources. Materials and Methods. The study was conducted at two different altitudes (i.e., 750 m and 900 m asl) in the tropical semideciduous forest of north-east Himalaya. The floral phenology including flowering synchrony in the populations, anthesis, anther dehiscence, stigma receptivity, pollinators visitation frequency, and mating system including index of self-incompatibility were worked out in Schima wallichii according to the ear-marked standard methods given by various scientists for each parameter. Results. The flowering period in Schima wallichii varied from 33 to 42 days with mean synchrony of 0.54 to 0.68 between the populations. The stigma was receptive up to 2.5 days only and showed slightly protandrous type of dichogamy. Average pollen production ranged between 6.90 × 107 pollen per tree in 2007 and 15.49 × 108 pollen per tree in 2011. A three-year masting cycle was noticed in this species. The frequency of visitation of honey bees was fairly high (5.2 ± 1.12 visits/flower/hour) as compared to other pollinators. The hand pollination revealed maximum fruit (74.2 ± 5.72%) and seed (70.8 ± 7.46%) settings. Conclusions. The variation in flowering phenology and pollen yield individually and annually along with temporal separation in anther dehiscence and pollinator's visitation cause pollen limited reproduction, which ultimately influences the reproductive success in Schima wallichii. PMID:24501577

  5. Long-term trends in nitrous oxide emissions, soil nitrogen, and crop yields of till and no-till cropping systems.

    PubMed

    Grandy, A Stuart; Loecke, Terrance D; Parr, Sara; Robertson, G Philip

    2006-01-01

    No-till cropping can increase soil C stocks and aggregation but patterns of long-term changes in N2O emissions, soil N availability, and crop yields still need to be resolved. We measured soil C accumulation, aggregation, soil water, N2O emissions, soil inorganic N, and crop yields in till and no-till corn-soybean-wheat rotations between 1989 and 2002 in southwestern Michigan and investigated whether tillage effects varied over time or by crop. Mean annual NO3- concentrations in no-till were significantly less than in conventional till in three of six corn years and during one year of wheat production. Yields were similar in each system for all 14 years but three, during which yields were higher in no-till, indicating that lower soil NO3- concentrations did not result in lower yields. Carbon accumulated in no-till soils at a rate of 26 g C m(-2) yr(-1) over 12 years at the 0- to 5-cm soil depth. Average nitrous oxide emissions were similar in till (3.27 +/- 0.52 g N ha d(-1)) and no-till (3.63 +/- 0.53 g N ha d(-1)) systems and were sufficient to offset 56 to 61% of the reduction in CO2 equivalents associated with no-till C sequestration. After controlling for rotation and environmental effects by normalizing treatment differences between till and no-till systems we found no significant trends in soil N, N2O emissions, or yields through time. In our sandy loam soils, no-till cropping enhances C storage, aggregation, and associated environmental processes with no significant ecological or yield tradeoffs.

  6. FPGA-accelerated algorithm for the regular expression matching system

    NASA Astrophysics Data System (ADS)

    Russek, P.; Wiatr, K.

    2015-01-01

    This article describes an algorithm to support a regular expressions matching system. The goal was to achieve an attractive performance system with low energy consumption. The basic idea of the algorithm comes from a concept of the Bloom filter. It starts from the extraction of static sub-strings for strings of regular expressions. The algorithm is devised to gain from its decomposition into parts which are intended to be executed by custom hardware and the central processing unit (CPU). The pipelined custom processor architecture is proposed and a software algorithm explained accordingly. The software part of the algorithm was coded in C and runs on a processor from the ARM family. The hardware architecture was described in VHDL and implemented in field programmable gate array (FPGA). The performance results and required resources of the above experiments are given. An example of target application for the presented solution is computer and network security systems. The idea was tested on nearly 100,000 body-based viruses from the ClamAV virus database. The solution is intended for the emerging technology of clusters of low-energy computing nodes.

  7. MEASURING AND EXPRESSING THE PERFORMANCE OF ENERGY STORAGE SYSTEMS

    SciTech Connect

    Schoenwald, David; Conover, David R.

    2013-12-03

    Until late 2012, there was no uniform methodology to measure and express the performance of energy storage systems (ESS). A void in this area can affect the acceptance of ESS in the marketplace because different systems cannot be equitably compared and ESS cost-benefit analysis may be challenging due to a lack of verified and relevant ESS performance. The lack of such criteria also furthers the probability that each ESS customer or user will make up their own; necessitating “custom validation” to a unique set of criteria each time an ESS is to be considered or installed. To address this need and foster the acceptance of ESS, the U.S. Department of Energy’s (DOE) Energy Storage Systems Program facilitated the development of a protocol to measure and express ESS performance and is supporting its updating, enhancement and use in formal consensus standards development. Of particular interest is the development of the document through an open and transparent process that saved considerable time.

  8. Solanum nigrum: a model ecological expression system and its tools.

    PubMed

    Schmidt, Dominik D; Kessler, André; Kessler, Danny; Schmidt, Silvia; Lim, Michelle; Gase, Klaus; Baldwin, Ian T

    2004-05-01

    Plants respond to environmental stresses through a series of complicated phenotypic responses, which can be understood only with field studies because other organisms must be recruited for their function. If ecologists are to fully participate in the genomics revolution and if molecular biologists are to understand adaptive phenotypic responses, native plant ecological expression systems that offer both molecular tools and interesting natural histories are needed. Here, we present Solanum nigrum L., a Solanaceous relative of potato and tomato for which many genomic tools are being developed, as a model plant ecological expression system. To facilitate manipulative ecological studies with S. nigrum, we describe: (i) an Agrobacterium-based transformation system and illustrate its utility with an example of the antisense expression of RuBPCase, as verified by Southern gel blot analysis and real-time quantitative PCR; (ii) a 789-oligonucleotide microarray and illustrate its utility with hybridizations of herbivore-elicited plants, and verify responses with RNA gel blot analysis and real-time quantitative PCR; (iii) analyses of secondary metabolites that function as direct (proteinase inhibitor activity) and indirect (herbivore-induced volatile organic compounds) defences; and (iv) growth and fitness-estimates for plants grown under field conditions. Using these tools, we demonstrate that attack from flea beetles elicits: (i) a large transcriptional change consistent with elicitation of both jasmonate and salicylate signalling; and (ii) increases in proteinase inhibitor transcripts and activity, and volatile organic compound release. Both flea beetle attack and jasmonate elicitation increased proteinase inhibitors and jasmonate elicitation decreased fitness in field-grown plants. Hence, proteinase inhibitors and jasmonate-signalling are targets for manipulative studies.

  9. [Expression of Photobacterium leiognathi bioluminescence system genes in Escherichia coli].

    PubMed

    Ptitsyn, L R; Fatova, M A; Stepanov, A I

    1990-02-01

    Expression of Photobacterium leiognathi bioluminescence genes under the control of lac, tac, tet promoters in Escherichia coli cells has been studied. The position of the genes for aliphatic aldehyde biosynthesis and for the synthesis of luciferase subunits was identified. The plasmid pBRPL1 has been constructed containing the system of bioluminescence genes devoid of promoter following the polylinker DNA fragment. The plasmid can be used for selection of promoter containing DNA sequences as well as for studying the promoters regulation in process of Escherichia coli cells growth.

  10. Math5 expression and function in the central auditory system

    PubMed Central

    Saul, Sara M.; Brzezinski, Joseph A.; Altschuler, Richard A.; Shore, Susan E.; Rudolph, Dellaney D.; Kabara, Lisa L.; Halsey, Karin E.; Hufnagel, Robert B.; Zhou, Jianxun; Dolan, David F.; Glaser, Tom

    2008-01-01

    The basic helix-loop-helix (bHLH) transcription factor Math5 (Atoh7) is required for retinal ganglion cell (RGC) and optic nerve development. Using Math5-lacZ knockout mice, we have identified an additional expression domain for Math5 outside the eye, in functionally connected structures of the central auditory system. In the adult hindbrain, the cytoplasmic Math5-lacZ reporter is expressed within the ventral cochlear nucleus (VCN), in a subpopulation of neurons that project to medial nucleus of the trapezoid body (MNTB), lateral superior olive (LSO), and lateral lemniscus (LL). These cells were identified as globular and small spherical bushy cells based on their morphology, abundance, distribution within the cochlear nucleus (CN), co-expression of Kv1.1, Kv3.1b and Kcnq4 potassium channels, and projection patterns within the auditory brainstem. Math5-lacZ is also expressed by cochlear root neurons in the auditory nerve. During embryonic development, Math5-lacZ was detected in precursor cells emerging from the caudal rhombic lip from embryonic day (E)12 onwards, consistent with the time course of CN neurogenesis. These cells co-express MafB, Math1 and Math5 and are post-mitotic. Math5 expression in the CN was verified by mRNA in situ hybridization, and the identity of positive neurons was confirmed morphologically using a Math5-Cre BAC transgene with an alkaline phosphatase reporter. The hindbrains of Math5 mutants appear grossly normal, with the exception of the CN. Although overall CN dimensions are unchanged, the lacZ positive cells are significantly smaller in Math5 −/− mice compared to Math5 +/− mice, suggesting these neurons may function abnormally. The Auditory Brainstem Response (ABR) of Math5 mutants was evaluated in a BALB/cJ congenic background. ABR thresholds of Math5 −/− mice were similar to those of wild-type and heterozygous mice, but the interpeak latencies for Peaks II-IV were significantly altered. These temporal changes are consistent

  11. A transgenic study on affecting potato tuber yield by expressing the rice sucrose transporter genes OsSUT5Z and OsSUT2M.

    PubMed

    Sun, Aijun; Dai, Yan; Zhang, Xinsheng; Li, Chunmin; Meng, Kun; Xu, Honglin; Wei, Xiaoli; Xiao, Guifang; Ouwerkerk, Pieter B F; Wang, Mei; Zhu, Zhen

    2011-07-01

    In many plants, sucrose transporters are essential for both sucrose exports from sources and imports into sinks, indicating a function in assimilate partitioning. To investigate whether sucrose transporters can improve the yield of starch plant, potato plants (Solanum tuberosum L. cv. Désirée) were transformed with cDNAs of the rice sucrose transporter genes OsSUT5Z and OsSUT2M under the control of a tuber-specific, class-I patatin promoter. Compared to the controls, the average fructose content of OsSUT5Z transgenic tubers significantly increased. However, the content of the sugars and starch in the OsSUT2M transgenic potato tubers showed no obvious difference. Correspondingly, the average tuber yield, average number of tubers per plant and average weight of single tuber showed no significant difference in OsSUT2M transgenic tubers with controls. In the OsSUT5Z transgenic lines, the average tuber yield per plant was 1.9-fold higher than the controls, and the average number of tubers per plant increased by more than 10 tubers on average, whereas the average weight of a single tuber did not increase significantly. These results suggested that the average number of tubers per plant showed more contribution than the average weight of a single tuber to the tuber yield per plant.

  12. Yield and fiber quality of five pairs of near-isogenic cotton (Gossypium hirsutum L.) lines expressing the fuzzless/linted and fuzzy/linted seed phenotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fuzzless cotton often has traits desirable to the cotton industry, including longer fibers, reduced short fiber content, fewer neps, and improved ginning efficiency. This two-year field study described yield and fiber properties of five pairs of fuzzy and fuzzless near-isogenic lines, developed from...

  13. Construction of a Baculovirus-Silkworm Multigene Expression System and Its Application on Producing Virus-Like Particles

    PubMed Central

    Su, Shuo; Yao, Ning; He, Jian; Peng, Li; Sun, Jingchen

    2012-01-01

    A new baculovirus-silkworm multigene expression system named Bombyx mori MultiBac is developed and described here, by which multiple expression cassettes can be introduced into the Bombyx mori nuclear polyhedrosis virus (BmNPV) genome efficiently. The system consists of three donor vectors (pCTdual, pRADM and pUCDMIG) and an invasive diaminopimelate (DAP) auxotrophic recipient E. coli containing BmNPV-Bacmid (BmBacmid) with a homologous recombination region, an attTn7 site and a loxp site. Two genes carried by pCTdual are firstly inserted into BmBacmid by homologous recombination, while the other eight genes in pRADM and pUCDMIG are introduced into BmBacmid through Tn7 transposition and cre-loxp recombination. Then the invasive and DAP auxotrophic E. coli carrying recombinant BmBacmid is directly injected into silkworm for expressing heterologous genes in larvae or pupae. Three structural genes of rotavirus and three fluorescent genes have been simultaneously expressed in silkworm larvae using our new system, resulting in the formation of virus-like particles (VLPs) of rotavirus and the color change of larvae. The VLPs were purified from hemolymph by ultracentrifugation using CsCl gradients, with a yield of 12.7 µg per larva. For the great capacity of foreign genes and the low cost of feeding silkworm, this high efficient BmMultiBac expression system provides a suitable platform to produce VLPs or protein complexes. PMID:22403668

  14. The wheat-germ cell-free expression system.

    PubMed

    Takai, Kazuyuki; Sawasaki, Tatsuya; Endo, Yaeta

    2010-04-01

    We have made a dramatic improvement of the wheat cell-free protein synthesis system. The first key improvement is the method for preparation of the cell-free extract that is free of inhibitory factors of translation reaction. Additional improvements include a method for preparation of transcription-ready templates by PCR, an expression vector for the cell-free system, and the "bilayer" mode reaction method that is much more efficient than the batch mode method and at the same time easy to be performed by human hands and by liquid handling machines. We review here the history of the development and describe the protocols for the most handy "bilayer" method and a more efficient but complicated methods. Information on many examples and variations of the wheat cell-free protein synthesis methods already published elsewhere is then provided so that the readers can understand the power and potential applications of the methods.

  15. Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions.

    PubMed

    Yang, Deok Hee; Kwak, Kyung Jin; Kim, Min Kyung; Park, Su Jung; Yang, Kwang-Yeol; Kang, Hunseung

    2014-01-01

    Although posttranscriptional regulation of RNA metabolism is increasingly recognized as a key regulatory process in plant response to environmental stresses, reports demonstrating the importance of RNA metabolism control in crop improvement under adverse environmental stresses are severely limited. To investigate the potential use of RNA-binding proteins (RBPs) in developing stress-tolerant transgenic crops, we generated transgenic rice plants (Oryza sativa) that express Arabidopsis thaliana glycine-rich RBP (AtGRP) 2 or 7, which have been determined to harbor RNA chaperone activity and confer stress tolerance in Arabidopsis, and analyzed the response of the transgenic rice plants to abiotic stresses. AtGRP2- or AtGRP7-expressing transgenic rice plants displayed similar phenotypes comparable with the wild-type plants under high salt or cold stress conditions. By contrast, AtGRP2- or AtGRP7-expressing transgenic rice plants showed much higher recovery rates and grain yields compared with the wild-type plants under drought stress conditions. The higher grain yield of the transgenic rice plants was due to the increases in filled grain numbers per panicle. Collectively, the present results show the importance of posttranscriptional regulation of RNA metabolism in plant response to environmental stress and suggest that GRPs can be utilized to improve the yield potential of crops under stress conditions.

  16. Comparison of expression systems for human fucosyltransferase IX.

    PubMed

    Stacke, Christina; Ziegelmüller, Patrick; Hahn, Ulrich

    2010-01-01

    Human fucosyltransferase IX (hFucT-IX) is a highly conserved alpha1,3 fucosyltransferase with a distinct acceptor and site specificity. hFucT-IX catalyses the transfer of activated fucose to a sugar acceptor, thereby forming the Lewis x epitope. This epitope is responsible for recognition phenomena throughout the body e.g. in tumour growth. Detailed characterisation of hFucT-IX structure-function relationships by kinetic and X-ray structure analysis is prerequisite to the development of enzyme inhibitors for clinical applications such as the suppression of tumour metastasis. For these analyses substantial amounts of hFucT-IX are desirable. Since hFucT-IX is not present in considerable amounts in common cells an overproduction of recombinant hFucT-IX is appropriate. To evaluate the best system for this overproduction we compared different strategies employing prokaryotes (Escherichia coli), mammalian cells and insect cells. Insect cells were tested using stable and baculoviral expression strategies. Current results favour the use of the baculoviral expression system for further experiments.

  17. Using interpolation to estimate system uncertainty in gene expression experiments.

    PubMed

    Falin, Lee J; Tyler, Brett M

    2011-01-01

    The widespread use of high-throughput experimental assays designed to measure the entire complement of a cell's genes or gene products has led to vast stores of data that are extremely plentiful in terms of the number of items they can measure in a single sample, yet often sparse in the number of samples per experiment due to their high cost. This often leads to datasets where the number of treatment levels or time points sampled is limited, or where there are very small numbers of technical and/or biological replicates. Here we introduce a novel algorithm to quantify the uncertainty in the unmeasured intervals between biological measurements taken across a set of quantitative treatments. The algorithm provides a probabilistic distribution of possible gene expression values within unmeasured intervals, based on a plausible biological constraint. We show how quantification of this uncertainty can be used to guide researchers in further data collection by identifying which samples would likely add the most information to the system under study. Although the context for developing the algorithm was gene expression measurements taken over a time series, the approach can be readily applied to any set of quantitative systems biology measurements taken following quantitative (i.e. non-categorical) treatments. In principle, the method could also be applied to combinations of treatments, in which case it could greatly simplify the task of exploring the large combinatorial space of future possible measurements.

  18. Optimization of transplastomic production of hemicellulases in tobacco: effects of expression cassette configuration and tobacco cultivar used as production platform on recombinant protein yields

    PubMed Central

    2013-01-01

    Background Chloroplast transformation in tobacco has been used extensively to produce recombinant proteins and enzymes. Chloroplast expression cassettes can be designed with different configurations of the cis-acting elements that govern foreign gene expression. With the aim to optimize production of recombinant hemicellulases in transplastomic tobacco, we developed a set of cassettes that incorporate elements known to facilitate protein expression in chloroplasts and examined expression and accumulation of a bacterial xylanase XynA. Biomass production is another important factor in achieving sustainable and high-volume production of cellulolytic enzymes. Therefore, we compared productivity of two tobacco cultivars – a low-alkaloid and a high-biomass - as transplastomic expression platforms. Results Four different cassettes expressing XynA produced various mutant phenotypes of the transplastomic plants, affected their growth rate and resulted in different accumulation levels of the XynA enzyme. The most productive cassette was identified and used further to express XynA and two additional fungal xylanases, Xyn10A and Xyn11B, in a high-biomass tobacco cultivar. The high biomass cultivar allowed for a 60% increase in XynA production per plant. Accumulation of the fungal enzymes reached more than 10-fold higher levels than the bacterial enzyme, constituting up to 6% of the total soluble protein in the leaf tissue. Use of a well-characterized translational enhancer with the selected expression cassette revealed inconsistent effects on accumulation of the recombinant xylanases. Additionally, differences in the enzymatic activity of crude plant extracts measured in leaves of different age suggest presence of a specific xylanase inhibitor in the green leaf tissue. Conclusion Our results demonstrate the pivotal importance of the expression cassette design and appropriate tobacco cultivar for high-level transplastomic production of recombinant proteins. PMID:23642171

  19. A comparison of two stream gauging systems for measuring runoff and sediment yield on semi-arid wtershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our ability to understand erosion processes in semi-arid ecosystems depends on establishing relationships between rainfall, runoff and sediment yield and determining the key factors that influence these relationships. This requires collection of extensive and accurate hydrologic and sediment data se...

  20. Effects of Heat Shock Protein-70 Gene and Forage System on Milk Yield and Composition of Beef Cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic DNA from 117 Angus, Brahman, and reciprocal-cross cows was used to determine the influence of heat shock protein 70 haplotype and forage type [endophyte-infected tall fescue (Neotyphodium coenophialum; E+) or common bermudagrass (Cynododactylon; BG)] on milk yield and composition (protein, f...

  1. An inducible expression system for high-level expression of recombinant proteins in slow growing mycobacteria.

    PubMed

    Leotta, Lisa; Spratt, Joanne M; Kong, Carlyn U; Triccas, James A

    2015-09-01

    A novel protein expression vector utilising the inducible hspX promoter of Mycobacterium tuberculosis was constructed and evaluated in this study. High-level induction of three mycobacterial antigens, comprising up to 9% of bacterial sonicate, was demonstrated in recombinant Mycobacterium bovis BCG when grown under low-oxygen tension, which serves to enhance hspX promoter activity. Recombinant proteins were efficiently purified from bacterial lysates in a soluble form by virtue of a C-terminal 6-histidine tag. Purification of the immunodominant M. tuberculosis Ag85B antigen using this system resulted in a recombinant protein that stimulated significant IFN-γ release from Ag85B-reactive T cells generated after vaccination of mice with an Ag85B-expressing vaccine. Further, the M. tuberculosis L-alanine dehydrogenase (Ald) protein purified from recombinant BCG displayed strong enzymatic activity in recombinant form. This study demonstrated that high levels of native-like recombinant mycobacterial proteins can be produced in mycobacterial hosts, and this may aid the analysis of mycobacterial protein function and the development of new treatments.

  2. Optimisation of the Schizosaccharomyces pombe urg1 expression system.

    PubMed

    Watson, Adam T; Daigaku, Yasukazu; Mohebi, Saed; Etheridge, Thomas J; Chahwan, Charly; Murray, Johanne M; Carr, Antony M

    2013-01-01

    The ability to study protein function in vivo often relies on systems that regulate the presence and absence of the protein of interest. Two limitations for previously described transcriptional control systems that are used to regulate protein expression in fission yeast are: the time taken for inducing conditions to initiate transcription and the ability to achieve very low basal transcription in the "OFF-state". In previous work, we described a Cre recombination-mediated system that allows the rapid and efficient regulation of any gene of interest by the urg1 promoter, which has a dynamic range of approximately 75-fold and which is induced within 30-60 minutes of uracil addition. In this report we describe easy-to-use and versatile modules that can be exploited to significantly tune down Purg1 "OFF-levels" while maintaining an equivalent dynamic range. We also provide plasmids and tools for combining Purg1 transcriptional control with the auxin degron tag to help maintain a null-like phenotype. We demonstrate the utility of this system by improved regulation of HO-dependent site-specific DSB formation, by the regulation Rtf1-dependent replication fork arrest and by controlling Rhp18(Rad18)-dependent post replication repair.

  3. Protocols for implementing an Escherichia coli based TX-TL cell-free expression system for synthetic biology.

    PubMed

    Sun, Zachary Z; Hayes, Clarmyra A; Shin, Jonghyeon; Caschera, Filippo; Murray, Richard M; Noireaux, Vincent

    2013-09-16

    Ideal cell-free expression systems can theoretically emulate an in vivo cellular environment in a controlled in vitro platform. This is useful for expressing proteins and genetic circuits in a controlled manner as well as for providing a prototyping environment for synthetic biology. To achieve the latter goal, cell-free expression systems that preserve endogenous Escherichia coli transcription-translation mechanisms are able to more accurately reflect in vivo cellular dynamics than those based on T7 RNA polymerase transcription. We describe the preparation and execution of an efficient endogenous E. coli based transcription-translation (TX-TL) cell-free expression system that can produce equivalent amounts of protein as T7-based systems at a 98% cost reduction to similar commercial systems. The preparation of buffers and crude cell extract are described, as well as the execution of a three tube TX-TL reaction. The entire protocol takes five days to prepare and yields enough material for up to 3000 single reactions in one preparation. Once prepared, each reaction takes under 8 hr from setup to data collection and analysis. Mechanisms of regulation and transcription exogenous to E. coli, such as lac/tet repressors and T7 RNA polymerase, can be supplemented. Endogenous properties, such as mRNA and DNA degradation rates, can also be adjusted. The TX-TL cell-free expression system has been demonstrated for large-scale circuit assembly, exploring biological phenomena, and expression of proteins under both T7- and endogenous promoters. Accompanying mathematical models are available. The resulting system has unique applications in synthetic biology as a prototyping environment, or "TX-TL biomolecular breadboard."

  4. Regulation of Ribulose-1,5-Bisphosphate Carboxylase Expression in Second Leaves of Maize Seedlings from Low and High Yield Populations 1

    PubMed Central

    Loza-Tavera, Herminia; Martínez-Barajas, Eleazar; Sánchez-de-Jiménez, Estela

    1990-01-01

    Ribulose-1,5-bisphosphate carboxylase oxygenase (EC 4.1.1.39) (Rubisco) activity, Rubisco-protein, and Rubisco large and small subunit gene (rbcL and rbcS) transcripts were measured at seven stages of development in the second leaf of maize (Zea mays L.) seedlings belonging to low and high yield populations. During the three early stages of development, when the leaf has not yet expanded, it was determined that increments in Rubisco-activity were caused by increases in Rubisco-protein and its mRNAs. Afterward, the rbcS level decreased sharply down to nondetectable levels at the seventh stage, when the leaf was at the beginning of senescence. As a contrast, rbcL transcript decreased slowly and Rubisco-protein accumulated up to the fifth stage, when the leaf reached its maximum expansion. A slight decrease in Rubisco-protein was then observed. These results suggest that at early stages of development Rubisco-activity and Rubisco-protein are regulated mainly at the transcriptional level. At the later phase the regulation seems to be at other biochemical levels. Neither Rubisco activity nor Rubisco-protein showed correlation with yield for both maize populations at this stage of development. Slightly higher levels of both transcripts were observed in the high yield population. Images Figure 1 Figure 6 PMID:16667500

  5. Evaluation of a cotton stripper yield monitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work was to evaluate the accuracy of a microwave sensor based yield monitor for measuring yield on a cotton stripper harvester and determine if the yield monitor can discriminate differences in yield to the same level as a reference scale system. A new yield monitor was instal...

  6. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system....

  7. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system....

  8. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system....

  9. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system....

  10. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system....

  11. New method to enhance the extraction yield of rutin from Sophora japonica using a novel ultrasonic extraction system by determining optimum ultrasonic frequency.

    PubMed

    Liao, Jianqing; Qu, Baida; Liu, Da; Zheng, Naiqin

    2015-11-01

    A new method has been proposed for enhancing extraction yield of rutin from Sophora japonica, in which a novel ultrasonic extraction system has been developed to perform the determination of optimum ultrasonic frequency by a two-step procedure. This study has systematically investigated the influence of a continuous frequency range of 20-92 kHz on rutin yields. The effects of different operating conditions on rutin yields have also been studied in detail such as solvent concentration, solvent to solid ratio, ultrasound power, temperature and particle size. A higher extraction yield was obtained at the ultrasonic frequency of 60-62 kHz which was little affected under other extraction conditions. Comparative studies between existing methods and the present method were done to verify the effectiveness of this method. Results indicated that the new extraction method gave a higher extraction yield compared with existing ultrasound-assisted extraction (UAE) and soxhlet extraction (SE). Thus, the potential use of this method may be promising for extraction of natural materials on an industrial scale in the future.

  12. Photosensitized electron transfer processes in SiO2 colloids and sodium lauryl sulfate micellar systems: Correlation of quantum yields with interfacial surface potentials

    PubMed Central

    Laane, Colja; Willner, Itamar; Otvos, John W.; Calvin, Melvin

    1981-01-01

    The effectiveness of negatively charged colloidal SiO2 particles in controlling photosensitized electron transfer reactions has been studied and compared with that of the negatively charged sodium lauryl sulfate (NaLauSO4) micellar system. In particular, the photosensitized reduction of the zwitterionic electron acceptor propylviologen sulfonate (PVS0) with tris(2,2′-bipyridinium)ruthenium(II) [Ru(bipy)32+] as the sensitizer and triethanolamine as the electron donor is found to have a quantum yield of 0.033 for formation of the radical anion (PVS[unk]) in the SiO2 colloid compared with 0.005 in the homogeneous system and 0.0086 in a NaLauSO4 micellar solution. The higher quantum yields obtained with the SiO2 colloidal system are attributed to substantial stabilization against back reaction of the intermediate photoproducts—i.e., Ru(bipy)33+ and PVS[unk]—by electrostatic repulsion of the reduced electron acceptor from the negatively charged particle surface. The binding properties of the SiO2 particles and NaLauSO4 micelles were investigated by flow dialysis. The results show that the sensitizer binds to both interfaces and that the SiO2 interface is characterized by a much higher surface potential than the micellar interface (≈-170 mV vs. -85 mV). The effect of ionic strength on the surface potential was estimated from the Gouy-Chapman theory, and the measured quantum yields of photosensitized electron transfer were correlated with surface potential at different ionic strengths. This correlation shows that the quantum yield is not affected by surface potentials smaller than ≈-40 mV. At larger potentials, the quantum yield increases rapidly. The quantum yield obtained in the micellar system at different strengths fits nicely on the correlation curve for the colloid SiO2 system. These results indicate that the surface potential is the dominant factor in the quantum yield improvement for PVS0 reduction. PMID:16593095

  13. Cowpeas and pinto beans: yields and light efficiency of candidate space crops in the Laboratory Biosphere closed ecological system

    NASA Astrophysics Data System (ADS)

    Nelson, M.; Dempster, W. F.; Silverstone, S.; Alling, A.; Allen, J. P.; van Thillo, M.

    An experiment utilizing cowpeas Vigna unguiculata pinto beans Phaseolus vulgaris L and Apogee ultra-dwarf wheat was conducted in the soil-based closed ecological facility Laboratory Biosphere from February to May 2005 The lighting regime was 13 hours light 11 hours dark at a light intensity of 960 mu mol m -2 s -1 45 moles m -2 day -1 supplied by high-pressure sodium lamps The pinto beans and cowpeas were grown at two different plant densities The pinto bean produced 710 g m -2 total aboveground biomass and 341 g m -2 at 33 5 plants per m 2 and at 37 5 plants per m 2 produced 1092 g m -2 total biomass and 537 g m -2 of dry seed an increase of almost 50 Cowpeas at 28 plants m -2 yielded 1060 g m -2 of total biomass and 387 g seed m -2 outproducing the less dense planting by more than double 209 in biomass and 86 more seed as the planting of 21 plants m -2 produced 508 g m-2 of total biomass and 209 g m-2 of seed Edible yield rate EYR for the denser cowpea bean was 4 6 g m -2 day -1 vs 2 5 g m -2 day -1 for the less dense stand average yield was 3 5 g m -2 day -1 EYR for the denser pinto bean was 8 5 g m -2 day -1 vs 5 3 g m -2 day -1 average EYR for the pinto beans was 7 0 g m -2 day -1 Yield efficiency rate YER the ratio of edible to non-edible biomass was 0 97 for the dense pinto bean 0 92 for the less dense pinto bean and average 0 94 for the entire crop The cowpeas

  14. Gene Expression Profiles in a Rabbit Model of Systemic Lupus Erythematosus Autoantibody Production1

    PubMed Central

    Rai, Geeta; Ray, Satyajit; Milton, Jacqueline; Yang, Jun; Ren, Ping; Lempicki, Richard; Mage, Rose G.

    2010-01-01

    We previously reported the establishment of a rabbit (Oryctolagus cuniculus) model in which peptide immunization led to production of lupus-like autoantibodies including anti-Sm, -RNP, -SS-A, -SS-B and –dsDNA characteristic of those produced in Systemic Lupus Erythematosus (SLE) patients. Some neurological symptoms in form of seizures and nystagmus were observed. The animals used in the previous and in the present study were from a National Institute of Allergy and Infectious Diseases colony of rabbits that were pedigreed, immunoglobulin allotype-defined but not inbred. Their genetic heterogeneity may correspond to that found among patients of a given ethnicity. We extended the information about this rabbit model by microarray based expression profiling. We first demonstrated that human expression arrays could be used with rabbit RNA to yield information on molecular pathways. We then designed a study evaluating gene expression profiles in 8 groups of control and treated rabbits (47 rabbits in total). Genes significantly upregulated in treated rabbits were associated with NK cytotoxicity, antigen presentation, leukocyte migration, cytokine activity, protein kinases, RNA spliceosomal ribonucleoproteins, intracellular signaling cascades, and glutamate receptor activity. These results link increased immune activation with up-regulation of components associated with neurological and anti-RNP responses, demonstrating the utility of the rabbit model to uncover biological pathways related to SLE-induced clinical symptoms, including Neuropsychiatric Lupus. Our finding of distinct gene expression patterns in rabbits that made anti-dsDNA compared to those that only made other anti-nuclear antibodies should be further investigated in subsets of SLE patients with different autoantibody profiles. PMID:20817871

  15. The expression of SEIPIN in the mouse central nervous system.

    PubMed

    Liu, Xiaoyun; Xie, Beibei; Qi, Yanfei; Du, Ximing; Wang, Shaoshi; Zhang, Yumei; Paxinos, George; Yang, Hongyuan; Liang, Huazheng

    2016-11-01

    Immunohistochemical staining was used to investigate the expression pattern of SEIPIN in the mouse central nervous system. SEIPIN was found to be present in a large number of areas, including the motor and somatosensory cortex, the thalamic nuclei, the hypothalamic nuclei, the mesencephalic nuclei, some cranial motor nuclei, the reticular formation of the brainstem, and the vestibular complex. Double labeling with NeuN antibody confirmed that SEIPIN-positive cells in some nuclei were neurons. Retrograde tracer injections into the spinal cord revealed that SEIPIN-positive neurons in the motor and somatosensory cortex and other movement related nuclei project to the mouse spinal cord. The present study found more nuclei positive for SEIPIN than shown using in situ hybridization and confirmed the presence of SEIPIN in neurons projecting to the spinal cord. The results of this study help to explain the clinical manifestations of patients with Berardinelli-Seip congenital lipodystrophy (Bscl2) gene mutations.

  16. Phosphate Concentration and Arbuscular Mycorrhizal Colonisation Influence the Growth, Yield and Expression of Twelve PHT1 Family Phosphate Transporters in Foxtail Millet (Setaria italica)

    PubMed Central

    Ceasar, S. Antony; Hodge, Angela; Baker, Alison; Baldwin, Stephen A.

    2014-01-01

    Phosphorus (P) is an essential element which plays several key roles in all living organisms. Setaria italica (foxtail millet) is a model species for panacoid grasses including several millet species widely grown in arid regions of Asia and Africa, and for the bioenergy crop switchgrass. The growth responses of S. italica to different levels of inorganic phosphate (Pi) and to colonisation with the arbuscular mycorrhizal fungus Funneliformis mosseae (syn. Glomus mosseae) were studied. Phosphate is taken up from the environment by the PHT1 family of plant phosphate transporters, which have been well characterized in several plant species. Bioinformatic analysis identified 12 members of the PHT1 gene family (SiPHT1;1-1;12) in S. italica, and RT and qPCR analysis showed that most of these transporters displayed specific expression patterns with respect to tissue, phosphate status and arbuscular mycorrhizal colonisation. SiPHT1;2 was found to be expressed in all tissues and in all growth conditions tested. In contrast, expression of SiPHT1;4 was induced in roots after 15 days growth in hydroponic medium of low Pi concentration. Expression of SiPHT1;8 and SiPHT1;9 in roots was selectively induced by colonisation with F. mosseae. SiPHT1;3 and SiPHT1;4 were found to be predominantly expressed in leaf and root tissues respectively. Several other transporters were expressed in shoots and leaves during growth in low Pi concentrations. This study will form the basis for the further characterization of these transporters, with the long term goal of improving the phosphate use efficiency of foxtail millet. PMID:25251671

  17. Connexin32 expression in central and peripheral nervous systems

    SciTech Connect

    Deschenes, S.M.; Scherer, S.S.; Fischbeck, K.H.

    1994-09-01

    Mutations have been identified in the gap junction gene, connexin32 (Cx32), in patients affected with the X-linked form of the demyelinating neuropathy, Charcot-Marie-Tooth disease (CMTX). Gap junctions composed of Cx32 are present and developmentally regulated in a wide variety of tissues. In peripheral nerve, our immunohistochemical analysis localized Cx32 to the noncompacted myelin of the paranodal regions and the Schmidt-Lantermann incisures, where previous studies describe gap junctions. In contrast to the location of Cx32 in peripheral nerve and the usual restriction of clinical manifestations to the peripheral nervous system (PNS) (abstract by Paulson describes an exception), preliminary studies show that Cx32 is present in the compacted myelin of the central nervous system (CNS), as demonstrated by radial staining through the myelin sheath of oligodendrocytes in rat spinal cord. Analysis of Cx32 expression in various regions of rat CNS during development shows that the amount of Cx32 mRNA and protein increases as myelination increases, a pattern observed for other myelin genes. Studies in the PNS provide additional evidence that Cx32 and myelin genes are coordinately regulated at the transcriptional level; Cx32 and peripheral myelin gene PMP-22 mRNAs are expressed in parallel following transient or permanent nerve injury. Differences in post-translational regulation of Cx32 in the CNS and PNS may be indicated by the presence of a faster migrating form of Cs32 in cerebrum versus peripheral nerve. Studies are currently underway to determine the unique role of Cx32 in peripheral nerve.

  18. Biophysical characterisation of electrofused giant HEK293-cells as a novel electrophysiological expression system

    SciTech Connect

    Zimmermann, D.; Terpitz, U.; Zhou, A.; Reuss, R.; Mueller, K.; Sukhorukov, V.L.; Gessner, P.; Nagel, G.; Zimmermann, U.; Bamberg, E. . E-mail: ernst.bamberg@mpibp-frankfurt.mpg.de

    2006-09-22

    Giant HEK293 cells of 30-65 {mu}m in diameter were produced by three-dimensional multi-cell electrofusion in 75 mOsm sorbitol media. These strong hypotonic conditions facilitated fusion because of the spherical shape and smooth membrane surface of the swollen cells. A regulatory volume decrease (RVD), as observed at higher osmolalities, did not occur at 75 mOsm. In contrast to field-treated, but unfused cells, the increase in volume induced by hypotonic shock was only partly reversible in the case of fused giant cells after their transfer into isotonic medium. The large size of the electrofused cells allowed the study of their electrophysiological properties by application of both whole-cell and giant excised patch-clamp techniques. Recordings on giant cells yielded a value of 1.1 {+-} 0.1 {mu}F/cm{sup 2} for the area-specific membrane capacitance. This value was consistent with that of the parental cells. The area-specific conductivity of giant cells (diameter > 50 {mu}m) was found to be between 12.8 and 16.1 {mu}S/cm{sup 2}, which is in the range of that of the parental cells. Measurements with patch-pipettes containing fluorescein showed uniform dye uptake in the whole-cell configuration, but not in the cell-attached configuration. The diffusion-controlled uniform uptake of the dye into the cell interior excludes internal compartmentalisation. The finding of a homogeneous fusion was also supported by expression of the yellow fluorescent protein YFP (as part of the fusion-protein ChR2-YFP) in giant cells since no plasma-membrane bound YFP-mediated fluorescence was detected in the interior of the electrofused cells. Functional expression and the electrophysiological characterisation of the light-activated cation channel Channelrhodopsin 2 (ChR2) yielded similar results as for parental cells. Most importantly, the giant cells exhibited a comparable expression density of the channel protein in the plasma membrane as observed in parental cells. This demonstrates that

  19. Gene expression analysis of clams Ruditapes philippinarum and Ruditapes decussatus following bacterial infection yields molecular insights into pathogen resistance and immunity.

    PubMed

    Moreira, R; Balseiro, P; Romero, A; Dios, S; Posada, D; Novoa, B; Figueras, A

    2012-01-01

    The carpet shell clam (Ruditapes decussatus) and Manila clam (Ruditapes philippinarum), which are cultured bivalve species with important commercial value, are affected by diseases that result in large economic losses. Because the molecular mechanism of the immune response of bivalves, especially clams, is scarce and fragmentary, we have examined all Expressed Sequence Tags (EST) resources available in public databases for these two species in order to increase our knowledge on genes related with the immune function in these animals. After automatic annotation and classification of the 3784 not-annotated ESTs of R. decussatus and 4607 of R. philippinarum found in GenBank, 424 ESTs of R. decussatus and 464 of R. philippinarum were found to be putatively involved in immune response. These were carefully reviewed and reannotated. As a result, 13 immune-related ESTs were selected and studied to compare the immune response of R. decussatus and R. philippinarum following a Vibrio alginolyticus challenge. Quantitative PCR was performed, and the expression of each EST was determined. The results showed that, in R. philippinarum, the immune response seems to be faster than that in R. decussatus. Additionally, expression of NF-κB activating genes in R. decussatus did not seem to be sufficient to promote an immune response after Vibrio infection. R. philippinarum, however, was able to trigger and efficiently regulate the transcriptional activity of NF-κB, even when low expression values were reported.

  20. Non-homologous end-joining protein expression screen from radiosensitive cancer patients yields a novel DNA double strand break repair phenotype

    PubMed Central

    Goh, Su Kak; McKay, Jeremy N.; Chao, Michael; McKay, Timothy M.

    2017-01-01

    Background Clinical radiosensitivity is a significant impediment to tumour control and cure, in that it restricts the total doses which can safely be delivered to the whole radiotherapy population, within the tissue tolerance of potentially radiosensitive (RS) individuals. Understanding its causes could lead to personalization of radiotherapy. Methods We screened tissues from a unique bank of RS cancer patients for expression defects in major DNA double-strand break repair proteins, using Western blot analysis and subsequently reverse-transcriptase polymerase chain reaction and pulsed-field gel electrophoresis. Results We hypothesized that abnormalities in expression of these proteins may explain the radiosensitivity of some of our cancer patients. The cells from one patient showed a reproducibly consistent expression reduction in two complex-forming DNA double-strand break repair protein components (DNA Ligase IV and XRCC4). We also showed a corresponding reduction in both gene products at the mRNA level. Additionally, the mRNA inducibility by ionizing radiation was increased for one of the proteins in the patient’s cells. We confirmed the likely functional significance of the non-homologous end-joining (NHEJ) expression abnormalities with a DNA double strand break (DNA DSB) repair assay. Conclusions We have identified a novel biological phenotype linked to clinical radiosensitivity. This is important in that very few molecular defects are known in human radiotherapy subjects. Such knowledge may contribute to the understanding of radiation response mechanisms in cancer patients and to personalization of radiotherapy. PMID:28361061

  1. Achieving High Yield of Lactic Acid for Antimicrobial Characterization in Cephalosporin-Resistant Lactobacillus by the Co-Expression of the Phosphofructokinase and Glucokinase.

    PubMed

    Gong, Yahui; Li, Tiyuan; Li, Shiyu; Jiang, Zhenyou; Yang, Yan; Huang, Junli; Liu, Zhaobing; Sun, Hanxiao

    2016-06-28

    Lactobacilli are universally recognized as probiotics that are widely used in the adjuvant treatment of inflammatory diseases, such as vaginitis and enteritis. With the overuse of antibiotics in recent years, the lactobacilli in the human body are killed, which could disrupt the microecological balance in the human body and affect health adversely. In this work, cephalosporin-resistant Lactobacillus casei RL20 was obtained successfully from the feces of healthy volunteers, which possessed a stable genetic set. However, the shortage of lactic acid (72.0 g/l at 48 h) by fermentation did not meet the requirement for its use in medicine. To increase the production of lactic acid, the functional genes pfk and glk were introduced into the wild strain. A yield of 144.2 g/l lactic acid was obtained in the transgenic L. casei RL20-2 after fermentation for 48 h in 1 L of basic fermentation medium with an initial glucose concentration of 100 g/l and increasing antibacterial activity. These data suggested that L. casei RL20-2 that exhibited a high yield of lactic acid may be a potential probiotic to inhibit the spread of bacterial infectious diseases and may be used for vaginitis therapy.

  2. Expression analysis of cinnamoyl-CoA reductase (CCR) gene in developing seedlings of Leucaena leucocephala: a pulp yielding tree species.

    PubMed

    Srivastava, Sameer; Gupta, Ranadheer K; Arha, Manish; Vishwakarma, Rishi K; Rawal, Shuban K; Kavi Kishor, P B; Khan, Bashir M

    2011-02-01

    Removal of lignin is a major hurdle for obtaining good quality pulp. Leucaena leucocephala (subabul) is extensively used in paper industry in India; therefore, as a first step to generate transgenic plants with low lignin content, cDNA and genomic clones of CCR gene were isolated and characterized. The cDNA encoding CCR (EC 1.2.1.44) was designated as Ll-CCR; the sequence analysis revealed an Open Reading Frame (ORF) of 1005 bp. Phylogenetic analysis showed that Ll-CCR sequence is highly homologous to CCRs from other dicot plants. The 2992 bp genomic clone of Leucaena CCR consists of 5 exons and 4 introns. The haploid genome of L. leucocephala contains two copies as revealed by DNA blot hybridization. Ll-CCR gene was over-expressed in Escherichia coli, which showed a molecular mass of approximately 38 kDa. Protein blot analysis revealed that Ll-CCR protein is expressed at higher levels in root and in stem, but undetectable in leaf tissues. Expression of CCR gene in Leucaena increased up to 15 d in case of roots and stem as revealed by QRT-PCR studies in 0-15 d old seedlings. ELISA based studies of extractable CCR protein corroborated with QRT-PCR data. CCR protein was immuno-cytolocalized around xylem tissue. Lignin estimation and expression studies of 5, 10 and 15 d old stem and root suggest that CCR expression correlates with quantity of lignin produced, which makes it a good target for antisense down regulation for producing designer species for paper industry.

  3. Comprehensive Evolutionary and Expression Analysis of FCS-Like Zinc finger Gene Family Yields Insights into Their Origin, Expansion and Divergence

    PubMed Central

    Jamsheer K, Muhammed; Mannully, Chanchal Thomas; Gopan, Nandu; Laxmi, Ashverya

    2015-01-01

    Plant evolution is characterized by frequent genome duplication events. Expansion of habitat resulted in the origin of many novel genes and genome duplication events which in turn resulted in the expansion of many regulatory gene families. The plant-specific FCS-Like Zinc finger (FLZ) gene family is characterized by the presence of a FCS-Like Zinc finger (FLZ) domain which mediates the protein-protein interaction. In this study, we identified that the expansion of FLZ gene family size in different species is correlated with ancestral and lineage-specific whole genome duplication events. The subsequent gene loss found to have a greater role in determining the size of this gene family in many species. However, genomic block duplications played the significant role in the expansion of FLZ gene family in some species. Comparison of Arabidopsis thaliana and Oryza sativa FLZ gene family revealed monocot and dicot specific evolutionary trends. The FLZ genes were found to be under high purifying selection. The spatiotemporal expression analyses of Arabidopsis thaliana FLZ gene family revealed that majority of the members are highly expressed in reproductive organs. FLZ genes were also found to be highly expressed during vegetative-to-reproductive phase transition which is correlated with the proposed role of this gene family in sugar signaling. The comparison of sequence, structural and expression features of duplicated genes identified lineage-specific redundancy and divergence. This extensive evolutionary analysis and expression analysis of Arabidopsis thaliana FLZ genes will pave the way for further functional analysis of FLZ genes. PMID:26252898

  4. Use of a crop climate modeling system to evaluate climate change adaptation practices: maize yield in East Africa

    NASA Astrophysics Data System (ADS)

    Moore, N. J.; Alagarswamy, G.; Andresen, J.; Olson, J.; Thornton, P.

    2013-12-01

    Sub Saharan African agriculture is dominated by small-scale farmers and is heavily depend on growing season precipitation. Recent studies indicate that anthropogenic- induced warming including the Indian Ocean sea surface significantly influences precipitation in East Africa. East Africa is a useful region to assess impacts of future climate because of its large rainfall gradient, large percentage of its area being sub-humid or semi-arid, complex climatology and topography, varied soils, and because the population is particularly vulnerable to shifts in climate. Agronomic adaptation practices most commonly being considered include include a shift to short season, drought resistant maize varieties, better management practices especially fertilizer use, and irrigation. The effectiveness of these practices with climate change had not previously been tested. We used the WorldClim data set to represent current climate and compared the current and future climate scenarios of 4 Global Climate Models (GCMs) including a wetter (CCSM) and drier (HadCM3) GCM downscaled to 6 km resolution. The climate data was then used in the process-based CERES maize crop model to simulate the current period (representing 1960- 1990) and change in future maize production (from 2000 to 2050s). The effectiveness of agronomic practices, including short duration maize variety, fertilizer use and irrigation, to reduce projected future yield losses due to climate change were simulated. The GCMs project an increase in maximum temperature during growing season ranging from 1.5 to 3°C. Changes in precipitation were dependent on the GCM, with high variability across different topographies land cover types and elevations. Projected warmer temperatures in the future scenarios accelerated plant development and led to a reduction in growing season length and yields even where moisture was sufficient Maize yield changes in 2050 relative to the historical period were highly varied, in excess of +/- 500 kg

  5. Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes

    PubMed Central

    2012-01-01

    Background Yarrowia lipolytica efficiently metabolizes and assimilates hydrophobic compounds such as n-alkanes and fatty acids. Efficient substrate uptake is enabled by naturally secreted emulsifiers and a modified cell surface hydrophobicity and protrusions formed by this yeast. We were examining the potential of recombinant Y. lipolytica as a biocatalyst for the oxidation of hardly soluble hydrophobic steroids. Furthermore, two-liquid biphasic culture systems were evaluated to increase substrate availability. While cells, together with water soluble nutrients, are maintained in the aqueous phase, substrates and most of the products are contained in a second water-immiscible organic solvent phase. Results For the first time we have co-expressed the human cytochromes P450 2D6 and 3A4 genes in Y. lipolytica together with human cytochrome P450 reductase (hCPR) or Y. lipolytica cytochrome P450 reductase (YlCPR). These whole-cell biocatalysts were used for the conversion of poorly soluble steroids in biphasic systems. Employing a biphasic system with the organic solvent and Y. lipolytica carbon source ethyl oleate for the whole-cell bioconversion of progesterone, the initial specific hydroxylation rate in a 1.5 L stirred tank bioreactor was further increased 2-fold. Furthermore, the product formation was significantly prolonged as compared to the aqueous system. Co-expression of the human CPR gene led to a 4-10-fold higher specific activity, compared to the co-overexpression of the native Y. lipolytica CPR gene. Multicopy transformants showed a 50-70-fold increase of activity as compared to single copy strains. Conclusions Alkane-assimilating yeast Y. lipolytica, coupled with the described expression strategies, demonstrated its high potential for biotransformations of hydrophobic substrates in two-liquid biphasic systems. Especially organic solvents which can be efficiently taken up and/or metabolized by the cell might enable more efficient bioconversion as compared

  6. An araC-controlled bacterial cre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy.

    PubMed

    Bigger, B W; Tolmachov, O; Collombet, J M; Fragkos, M; Palaszewski, I; Coutelle, C

    2001-06-22

    The presence of CpG motifs and their associated sequences in bacterial DNA causes an immunotoxic response following the delivery of these plasmid vectors into mammalian hosts. We describe a biotechnological approach to the elimination of this problem by the creation of a bacterial cre recombinase expression system, tightly controlled by the arabinose regulon. This permits the Cre-mediated and -directed excision of the entire bacterial vector sequences from plasmid constructs to create supercoiled gene expression minicircles for gene therapy. Minicircle yields using standard culture volumes are sufficient for most in vitro and in vivo applications whereas minicircle expression in vitro is significantly increased over standard plasmid transfection. By the simple expedient of removing the bacterial DNA complement, we significantly reduce the size and CpG content of these expression vectors, which should also reduce DNA-induced inflammatory responses in a dose-dependent manner. We further describe the generation of minicircle expression vectors for mammalian mitochondrial gene therapy, for which no other vector systems currently exist. The removal of bacterial vector sequences should permit appropriate transcription and correct transcriptional cleavage from the mitochondrial minicircle constructs in a mitochondrial environment and brings the realization of mitochondrial gene therapy a step closer.

  7. Molecular cloning of amphioxus uncoupling protein and assessment of its uncoupling activity using a yeast heterologous expression system

    SciTech Connect

    Chen, Kun; Sun, Guoxun; Lv, Zhiyuan; Wang, Chen; Jiang, Xueyuan; Li, Donghai; Zhang, Chenyu

    2010-10-01

    Research highlights: {yields} Invertebrates, for example amphioxus, do express uncoupling proteins. {yields} Both the sequence and the uncoupling activity of amphioxus UCP resemble UCP2. {yields} UCP1 is the only UCP that can form dimer on yeast mitochondria. -- Abstract: The present study describes the molecular cloning of a novel cDNA fragment from amphioxus (Branchiostoma belcheri) encoding a 343-amino acid protein that is highly homologous to human uncoupling proteins (UCP), this protein is therefore named amphioxus UCP. This amphioxus UCP shares more homology with and is phylogenetically more related to mammalian UCP2 as compared with UCP1. To further assess the functional similarity of amphioxus UCP to mammalian UCP1 and -2, the amphioxus UCP, rat UCP1, and human UCP2 were separately expressed in Saccharomyces cerevisiae, and the recombinant yeast mitochondria were isolated and assayed for the state 4 respiration rate and proton leak, using pYES2 empty vector as the control. UCP1 increased the state 4 respiration rate by 2.8-fold, and the uncoupling activity was strongly inhibited by GDP, while UCP2 and amphioxus UCP only increased the state 4 respiration rate by 1.5-fold and 1.7-fold in a GDP-insensitive manner, moreover, the proton leak kinetics of amphioxus UCP was very similar to UCP2, but much different from UCP1. In conclusion, the amphioxus UCP has a mild, unregulated uncoupling activity in the yeast system, which resembles mammalian UCP2, but not UCP1.

  8. High yield expression of novel glutaminase free L-asparaginase II of Pectobacterium carotovorum MTCC 1428 in Bacillus subtilis WB800N.

    PubMed

    Chityala, Sushma; Venkata Dasu, Veeranki; Ahmad, Jamal; Prakasham, Reddy Shetty

    2015-11-01

    Gene encoding glutaminase-free L-asparaginase II (ans B2) from Pectobacterium carotovorum MTCC 1428 was cloned into pHT43, transformed in Bacillus subtilis WB800N and optimised the expression levels of recombinant enzyme. A three-fold higher enzyme production was observed with an efficient transformant as compared to native strain. Enzyme localization studies revealed that >90% of recombinant enzyme is secreted extracellularly, a little fraction is attached to the membrane (>6%) and localised intracellularly (3%). The expression of recombinant L-asparaginase II was confirmed by SDS-PAGE, IMAC (Immobilised metal ion affinity chromatography) purification followed by Western blotting. Process parameter optimization with OFAT (one factor at a time) revealed that rpm (120), temperature (37 °C), Isopropyl β-D-1-thiogalactopyranoside (IPTG) concentration (1 mM) and time of induction (0.8 OD600nm) plays a vital role where a maximum of 55 IU/ml was achieved. Further, consecutive induction by IPTG improved the enzyme production up to 105 IU/ml with a specific activity of 101 IU/mg of protein. Molecular modelling analysis depicted that amino acids, GLY60, GLY119 and ALA252 in the active site are responsible for the glutaminase free L-asparaginase II activity. This is the first report on enhanced expression of recombinant glutaminase-free L-asparaginase II by intermediate addition of IPTG.

  9. Soluble expression and complex formation of proteins required for HCMV DNA replication using the SFV expression system.

    PubMed

    McCue, L A; Anders, D G

    1998-08-01

    Several of the viral proteins required for human cytomegalovirus (HCMV) DNA replication have been difficult to study due to their low abundance in infected cells and low solubility in bacterial or insect-cell expression systems. Therefore we used the Semliki Forest virus expression system to express these proteins in mammalian cells. All of the recombinant proteins were soluble, on the basis of ultracentrifugation properties and their ability to be immunoprecipitated from solution with specific antibodies. Pulse-chase analysis of the 86-kDa major immediate-early protein (IE86) revealed two expressed forms-a precursor and a product-indicating that this recombinant protein, like the native HCMV protein, is posttranslationally processed. The recombinant proteins (polymerase core and accessory as well as the IE86 and pUL84) formed stable complexes similar to those known to form in HCMV-infected cells. The recombinant DNA polymerase holoenzyme also exhibited enzyme activity that was phosphonoformic acid sensitive, as is the infected-cell DNA polymerase activity. This expression system offers many advantages for the expression and study of the HCMV replication proteins, including the expression of soluble, active proteins that are able to interact to form complexes. Additionally, the relative ease with which SFV recombinants can be made lends itself to the construction and evaluation of mutants.

  10. Systemic spread of an RNA insect virus in plants expressing plant viral movement protein genes

    PubMed Central

    Dasgupta, Ranjit; Garcia, Bradley H.; Goodman, Robert M.

    2001-01-01

    Flock house virus (FHV), a single-stranded RNA insect virus, has previously been reported to cross the kingdom barrier and replicate in barley protoplasts and in inoculated leaves of several plant species [Selling, B. H., Allison, R. F. & Kaesberg, P. (1990) Proc. Natl. Acad. Sci. USA 87, 434–438]. There was no systemic movement of FHV in plants. We tested the ability of movement proteins (MPs) of plant viruses to provide movement functions and cause systemic spread of FHV in plants. We compared the growth of FHV in leaves of nontransgenic and transgenic plants expressing the MP of tobacco mosaic virus or red clover necrotic mosaic virus (RCNMV). Both MPs mobilized cell-to-cell and systemic movement of FHV in Nicotiana benthamiana plants. The yield of FHV was more than 100-fold higher in the inoculated leaves of transgenic plants than in the inoculated leaves of nontransgenic plants. In addition, FHV accumulated in the noninoculated upper leaves of both MP-transgenic plants. RCNMV MP was more efficient in mobilizing FHV to noninoculated upper leaves. We also report here that FHV replicates in inoculated leaves of six additional plant species: alfalfa, Arabidopsis, Brassica, cucumber, maize, and rice. Our results demonstrate that plant viral MPs cause cell-to-cell and long-distance movement of an animal virus in plants and offer approaches to the study of the evolution of viruses and mechanisms governing mRNA trafficking in plants as well as to the development of promising vectors for transient expression of foreign genes in plants. PMID:11296259

  11. Production, purification, and crystallization of human interleukin-1 beta converting enzyme derived from an Escherichia coli expression system.

    PubMed

    Malinowski, J J; Grasberger, B L; Trakshel, G; Huston, E E; Helaszek, C T; Smallwood, A M; Ator, M A; Banks, T M; Brake, P G; Ciccarelli, R B

    1995-10-01

    Interleukin-1 beta converting enzyme (ICE) is a cysteine protease that catalyzes the conversion of the inactive precursor form of IL-1 beta to an active mature form. The mature form of IL-1 beta is involved in mediating inflammatory responses and in the progression of autoimmune diseases. We recently reported on the production of active human ICE in insect cells using the baculovirus expression system (Wang XM et al., 1994, Gene 145:273-277). Because the levels of expression achieved with this system were limiting for the purpose of performing detailed biochemical and biophysical studies, we examined the production of ICE in Escherichia coli. By using a tac promoter-based expression system and fusion to thioredoxin we were able to recover high levels of active ICE protein. The expressed protein, which was distributed between the soluble and insoluble fractions, was purified to homogeneity from both fractions using a combination of classical and affinity chromatography. Comparisons of ICE derived from both fractions indicated that they were comparable in their specific activities, subunit composition, and sensitivities to specific ICE inhibitors. The combined yields of ICE obtained from the soluble and insoluble fractions was close to 1 mg/L of induced culture. Recombinant human ICE was crystallized in the presence of a specific ICE inhibitor in a form suitable for X-ray crystallographic analysis. This readily available source of ICE will facilitate the further characterization of this novel and important protease.

  12. About the OH yield in the radiolysis of an aqueous/H2O2 system. Its optimisation for water treatment

    NASA Astrophysics Data System (ADS)

    Emmi, Salvatore S.; Caminati, Serena; Esposito, Biagio; Saracino, Michela

    2012-09-01

    Unless the radiolytic reducing species are neutralised or converted into oxidising species, an EB remediation system cannot be considered a true Advanced Oxidation Processes (AOP). A water/H2O2 system irradiated by UVC mercury lamps constitutes a widely used OH production method. Employing H2O2 in radiolysis as well, an enhancement of the oxidative efficiency of an EB treatment can be obtained. Pulse radiolysis measurements of an aerated aqueous/H2O2/KSCN system have been systematically undertaken to assess the optimal H2O2 concentration. By linearly fitting a competition kinetics relationship, it is found that the scavengeable extra-yield of OH is ΔG(OH)=0.24 μmol J-1 (R=0,9958), while the maximum experimental yield is measured G(OH)max=(0.52±0.02) μmol J-1 when [H2O2]=5-10 mM. Exceeding these concentrations the OH yield drops off.

  13. Evaluation of wheat growth, morphological characteristics, biomass yield and quality in Lunar Palace-1, plant factory, green house and field systems

    NASA Astrophysics Data System (ADS)

    Dong, Chen; Shao, Lingzhi; Fu, Yuming; Wang, Minjuan; Xie, Beizhen; Yu, Juan; Liu, Hong

    2015-06-01

    Wheat (Triticum aestivum L.) is one of the most important agricultural crops in both space such as Bioregenerative Life Support Systems (BLSS) and urban agriculture fields, and its cultivation is affected by several environmental factors. The objective of this study was to investigate the influences of different environmental conditions (BLSS, plant factory, green house and field) on the wheat growth, thousand kernel weight (TKW), harvest index (HI), biomass yield and quality during their life cycle. The results showed that plant height partially influenced by the interaction effects with environment, and this influence decreased gradually with the plant development. It was found that there was no significant difference between the BLSS and plant factory treatments on yields per square, but the yield of green house and field treatments were both lower. TKW and HI in BLSS and plant factory were larger than those in the green house and field. However, grain protein concentration can be inversely correlated with grain yield. Grain protein concentrations decreased under elevate CO2 condition and the magnitude of the reductions depended on the prevailing environmental condition. Conditional interaction effects with environment also influenced the components of straw during the mature stage. It indicated that CO2 enriched environment to some extent was better for inedible biomass degradation and had a significant effect on "source-sink flow" at grain filling stage, which was more beneficial to recycle substances in the processes of the environment regeneration.

  14. Planting System Effects on Yield Response of Russet Norkotah to Irrigation and Nitrogen Under High Intensity Sprinkler Irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conversion of potato ridged-row planting systems to wide bed planting systems may increase water and nitrogen use efficiency in commercial irrigated potato production systems by reducing the amount of irrigation water and water applied nitrogen fertilizer bypassing the potato root zone. Wide bed pla...

  15. Acclimation of tobacco leaves to high light intensity drives the plastoquinone oxidation system--relationship among the fraction of open PSII centers, non-photochemical quenching of Chl fluorescence and the maximum quantum yield of PSII in the dark.

    PubMed

    Miyake, Chikahiro; Amako, Katsumi; Shiraishi, Naomasa; Sugimoto, Toshio

    2009-04-01

    Responses of the reduction-oxidation level of plastoquinone (PQ) in the photosynthetic electron transport (PET) system of chloroplasts to growth light intensity were evaluated in tobacco plants. Plants grown in low light (150 micromol photons m-2 s-1) (LL plants) were exposed to a high light intensity (1,100 micromol photons m-2 s-1) for 1 d. Subsequently, the plants exposed to high light (LH plants) were returned back again to the low light condition: these plants were designated as LHL plants. Both LH and LHL plants showed higher values of non-photochemical quenching of Chl fluorescence (NPQ) and the fraction of open PSII centers (qL), and lower values of the maximum quantum yield of PSII in the dark (Fv/Fm), compared with LL plants. The dependence of qL on the quantum yield of PSII [Phi(PSII)] in LH and LHL plants was higher than that in LL plants. To evaluate the effect of an increase in NPQ and decrease in Fv/Fm on qL, we derived an equation expressing qL in relation to both NPQ and Fv/Fm, according to the lake model of photoexcitation of the PSII reaction center. As a result, the heat dissipation process, shown as NPQ, did not contribute greatly to the increase in qL. On the other hand, decreased Fv/Fm did contribute to the increase in qL, i.e. the enhanced oxidation of PQ under photosynthesis-limited conditions. Thylakoid membranes isolated from LH plants, having high qL, showed a higher tolerance against photoinhibition of PSII, compared with those from LL plants. We propose a 'plastoquinone oxidation system (POS)', which keeps PQ in an oxidized state by suppressing the accumulation of electrons in the PET system in such a way as to regulate the maximum quantum yield of PSII.

  16. Estimation of photoneutron yield in linear accelerator with different collimation systems by Geant4 and MCNPX simulation codes.

    PubMed

    Kim, Yoon Sang; Khazaei, Zeinab; Ko, Junho; Afarideh, Hossein; Ghergherehchi, Mitra

    2016-04-07

    At present, the bremsstrahlung photon beams produced by linear accelerators are the most commonly employed method of radiotherapy for tumor treatments. A photoneutron source based on three different energies (6, 10 and 15 MeV) of a linac electron beam was designed by means of Geant4 and Monte Carlo N-Particle eXtended (MCNPX) simulation codes. To obtain maximum neutron yield, two arrangements for the photo neutron convertor were studied: (a) without a collimator, and (b) placement of the convertor after the collimator. The maximum photon intensities in tungsten were 0.73, 1.24 and 2.07 photon/e at 6, 10 and 15 MeV, respectively. There was no considerable increase in the photon fluence spectra from 6 to 15 MeV at the optimum thickness between 0.8 mm and 2 mm of tungsten. The optimum dimensions of the collimator were determined to be a length of 140 mm with an aperture of 5 mm  ×  70 mm for iron in a slit shape. According to the neutron yield, the best thickness obtained for the studied materials was 30 mm. The number of neutrons generated in BeO achieved the maximum value at 6 MeV, unlike that in Be, where the highest number of neutrons was observed at 15 MeV. Statistical uncertainty in all simulations was less than 0.3% and 0.05% for MCNPX and the standard electromagnetic (EM) physics packages of Geant4, respectively. Differences among spectra in various regions are due to various cross-section and stopping power data and different simulations of the physics processes.

  17. High production of heterologous proteins in Escherichia coli using the thermo-regulated T7 expression system.

    PubMed

    Chao, Y-P; Law, W; Chen, P T; Hung, W-B

    2002-03-01

    The exclusive use of isopropyl beta-D-thiogalactopyranoside to activate the T7 promoter for protein production has limited the general use of the expression system. We have sought an alternative by constructing a recombinant Escherichia coli strain, BL21 (G2), to carry a chromosomal copy of T7 gene 1 fused to the lambdaPL and lambdaP(R) tandem promoter. As a result, the recombinant strain harboring the carbamoylase gene from Agrobacterium radiobacter NRRL B11291 was shown to display various levels of.protein production in response to different degrees of heat shock. In particular, the system remained inactive at 30 degrees C and exhibited high sensitivity to heat such that a detectable carbamoylase activity could be measured after exposure to 33 degrees C. Moreover, heating in two steps - elevating the temperature from 30 degrees C to 39 degrees C and holding for a brief period, followed by reducing to 37 degrees C--was found to be the most potent method for protein production in this case. Using this approach, the recombinant protein accounted for 20% of total protein content of the cell. These results reveal the advantages of this expression system: responsiveness to thermal modulation and high-level production capability. In an attempt to enhance the total protein yield, a fed-batch fermentation process was carried out to control the cell growth rate by adjusting the substrate inflow. By applying the two-step temperature change. a carbamoylase yield with enzyme activity corresponding to 14,256 units was obtained. This production yield is a 10-fold increase in comparison with that at the batch-fermentation scale and 2,000-fold higher than that achieved at the shake-flask scale. Overall, it illustrates the promise of the newly constructed T7 system based on heat inducibility for industrial scale production of recombinant proteins.

  18. Engineering low-temperature expression systems for heterologous production of cold-adapted enzymes

    PubMed Central

    Bjerga, Gro Elin Kjæreng; Lale, Rahmi; Williamson, Adele Kim

    2016-01-01

    ABSTRACT Production of psychrophilic enzymes in the commonly used mesophilic expression systems is hampered by low intrinsic stability of the recombinant enzymes at the optimal host growth temperatures. Unless strategies for low-temperature expression are advanced, research on psychrophilic enzymes may end up being biased toward those that can be stably produced in commonly used mesophilic host systems. Two main strategies are currently being explored for the development of low-temperature expression in bacterial hosts: (i) low-temperature adaption of existing mesophilic expression systems, and (ii) development of new psychrophilic hosts. These developments include genetic engineering of the expression cassettes to optimize the promoter/operator systems that regulate heterologous expression. In this addendum we present our efforts in the development of such low-temperature expression systems, and speculate about future advancements in the field and potential applications. PMID:26710170

  19. High yield expression of serine/threonine protein phosphatase type 5, and a fluorescent assay suitable for use in the detection of catalytic inhibitors

    PubMed Central

    Ni, Li; Swingle, Mark S.; Bourgeois, Austin C.B; Honkanen, Richard E.

    2008-01-01

    Protein phosphatase type 5 (PP5) belongs to the PPP-family of serine/threonine protein phosphatases and is expressed in most, if not all, human tissues. Although the physiological roles played by PP5 are not yet clear, PP5 is found in association with several proteins that influence intracellular signaling networks initiated by hormones (i.e. glucocorticoids) or cellular stress (i.e. hypoxia, oxidative stress). Recently, studies conducted with siRNA and antisense oligonucleotides indicate that PP5 plays an important role in the regulation of stress-induced signaling cascades that influence both cell growth and the onset of apoptosis. Therefore, the identification of small molecule inhibitors of PP5 is desired for use in studies to further define the biological/pathological roles of PP5. Such inhibitors may also prove useful for development into novel antitumor agents. Here we describe methods to express and purify large amounts of biologically active PP5c, an inhibitor-titration based assay to determine the amount of PP5 in solution, and a fluorescent phosphatase assay that can be used to screen chemical libraries and natural extracts for the presence of catalytic inhibitors. PMID:17939754

  20. Constitutive expression of a grapevine stilbene synthase gene in transgenic hop (Humulus lupulus L.) yields resveratrol and its derivatives in substantial quantities.

    PubMed

    Schwekendiek, Axel; Spring, Otmar; Heyerick, Arne; Pickel, Benjamin; Pitsch, Nicola T; Peschke, Florian; de Keukeleire, Denis; Weber, Gerd

    2007-08-22

    Resveratrol, a well-known phytoalexin and antioxidant, is produced by the action of stilbene synthase (STS) in some plant species. Hop (Humulus lupulus L.) plants of the Tettnang variety were transformed with a gene encoding for STS from grapevine. Under the control of the constitutive 35S cauliflower mosaic virus promoter, expression of the transgene resulted in accumulation of resveratrol and high levels of its glycosylated derivatives in leaves and inflorescences. Piceid, the predominant derivative, reached a concentration of up to 560 microg/g of fresh weight (f.w.) in hop cones, whereas no stilbenes were detected in nontransformed controls (wild-type). In transgenic plants the amounts of alpha- and beta-acids, naringenin chalcone, and prenylated flavonoids did not change significantly when compared with nontransformed plants. Transgenic plants showed normal morphology and flower development as did the nontransformed controls. The results clearly show that in hop constitutive expression of sts interferes neither with plant development nor with the biosynthesis of secondary metabolites relevant for the brewing industry. Since resveratrol is a well-known phytoalexin and antioxidant, sts transgenic hop plants could display enhanced pathogen resistance against microbial pathogens, exhibit new beneficial properties for health, and open new venues for metabolic engineering.

  1. [Effects of reduced N application rate on yield and nutrient uptake and utilization in maize-soybean relay strip intercropping system].

    PubMed

    Yong, Tai-Wen; Liu, Xiao-Ming; Wen-Yu, Liu; Su, Ben-Ying; Song, Chun; Yang, Feng; Wang, Xiao-Chun; Yang, Wen-Yu

    2014-02-01

    A field experiment with three N application rates (0, 180, 240 N kg x hm(-2), representing zero, reduced and conventional N application, respectively) and three planting patterns (maize monoculture, soybean monoculture and maize-soybean relay strip intercropping) was conducted to reveal the effects of cropping patterns and N application rates on yield, nutrient uptake and nitrogen use efficiency of maize and soybean. The results showed that the grain yield, N, P and K uptake and harvest index of the intercropped maize reduced slightly compared with the monoculture maize, however these indices of the intercropped soybean increased significantly compared with the monoculture. With the increase in nitrogen fertilizer application, the excellence of relay strip intercropping was weakened in the maize-soybean intercropping system. The grain yield, economic coefficient, N, P and K uptake, harvest index, N agronomy efficiency and N uptake efficiency of maize and soybean increased significantly at the reduced nitrogen rate (180 N kg x hm(-2)), but the rate of soil N contribution declined, compared with the conventional rate of N application by local farmers (240 N kg x hm(-2)). In the reduced nitrogen rate treatment, total soil N and P contents of the maize strip reduced, whereas the total soil N, P and K contents of soybean strip and the total K content of maize strip increased compared with the zero N application treatment. With the reduced N application, the annual total grain yield, N, P and K uptake of above-ground biomass in the maize-soybean relay strip intercropping system were higher than in the monoculture, and the land equivalent ratio (LER) was 2.28. N uptake efficiency of maize in the relay strip intercropping system was 20.2% higher than in the maize monoculture, and the index of soybean was 30.5% lower than in the monoculture. The rate of soil N contribution in the relay strip intercropping system was 20.0% and 8.8% lower than in the maize and soybean

  2. Expression of macrophage migration inhibitory factor in diffuse systemic sclerosis

    PubMed Central

    Selvi, E; Tripodi, S; Catenaccio, M; Lorenzini, S; Chindamo, D; Manganelli, S; Romagnoli, R; Ietta, F; Paulesu, L; Miracco, C; Cintorino, M; Marcolongo, R

    2003-01-01

    Objective: To evaluate whether, in patients with the diffuse form of systemic sclerosis (dSSc), macrophage migration inhibitory factor (MIF) production is dysregulated. Methods: 10 patients with dSSc and 10 healthy controls, matched for age and sex, were studied. MIF expression was evaluated by immunohistochemistry on formalin fixed skin biopsies of patients with dSSc and controls. MIF levels were assayed in the sera and in the supernatants of skin cultured fibroblasts by a colorimetric sandwich enzyme linked immunosorbent assay (ELISA). MIF concentrations in culture medium samples and in serum samples were compared by Student's two tailed t test for unpaired data. Results: Anti-MIF antibody immunostained the basal and mainly suprabasal keratinocytes. Small perivascular clusters of infiltrating mononuclear cells were positive; scattered spindle fibroblast-like cells were immunostained in superficial and deep dermal layers. The serum concentrations of MIF in patients with dSSc (mean (SD) 10705.6 (9311) pg/ml) were significantly higher than in controls (2157.5 (1288.6) pg/ml; p=0.011); MIF levels from dSSc fibroblast cultures (mean (SD) 1.74 (0.16) ng/2x105 cells) were also significantly higher than in controls (0.6 (0.2) ng/2x105 cells; p=0.008). Conclusion: These results suggest that MIF may be involved in the amplifying proinflammatory loop leading to scleroderma tissue remodelling. PMID:12695161

  3. Estimates of the stabilization rate as t{yields}{infinity} of solutions of the first mixed problem for a quasilinear system of second-order parabolic equations

    SciTech Connect

    Kozhevnikova, L M; Mukminov, F Kh

    2000-02-28

    A quasilinear system of parabolic equations with energy inequality is considered in a cylindrical domain {l_brace}t>0{r_brace}x{omega}. In a broad class of unbounded domains {omega} two geometric characteristics of a domain are identified which determine the rate of convergence to zero as t{yields}{infinity} of the L{sub 2}-norm of a solution. Under additional assumptions on the coefficients of the quasilinear system estimates of the derivatives and uniform estimates of the solution are obtained; they are proved to be best possible in the order of convergence to zero in the case of one semilinear equation.

  4. Milk yield differences between 1x and 4x milking are associated with changes in mammary mitochondrial number and milk protein gene expression, but not mammary cell apoptosis or "SOCS" gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Milking frequency is known to affect milk production and lactation persistence in dairy cows. Despite this, the mechanisms underlying this effect are only partially understood. Previous work in dairy cows examining increases in milk yield due to increased milking frequency have identified changes in...

  5. A highly tunable system for the simultaneous expression of multiple enzymes in Saccharomyces cerevisiae.

    PubMed

    Ito, Yoichiro; Yamanishi, Mamoru; Ikeuchi, Akinori; Matsuyama, Takashi

    2015-01-16

    Control of the expression levels of multiple enzymes in transgenic yeasts is essential for the effective production of complex molecules through fermentation. Here, we propose a tunable strategy for the control of expression levels based on the design of terminator regions and other gene-expression control elements in Saccharomyces cerevisiae. Our genome-integrated system, which is capable of producing high expression levels over a wide dynamic range, will broadly enable metabolic engineering and synthetic biology. We demonstrated that the activities of multiple cellulases and the production of ethanol were doubled in a transgenic yeast constructed with our system compared with those achieved with a standard expression system.

  6. Develop a field grid system for yield mapping and machine control. Quarterly report, April 1, 1995--June 30, 1995

    SciTech Connect

    Froehlich, D.P.; Schumacher, J.A.

    1995-07-01

    The operation of the patented hardware/software Field Grid Sense (FGS) system is being tested in crop harvesting in order to demonstrate the systems`s utility and to analyze the flexibility of operation under true field conditions. FGS is also being used with chemical application equipment. This action will create improved systems and establish the worthiness, efficiency and necessity of chemical application equipment that is controlled and directed via the FGS package.

  7. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling.

    PubMed

    Belimov, Andrey A; Dodd, Ian C; Hontzeas, Nikos; Theobald, Julian C; Safronova, Vera I; Davies, William J

    2009-01-01

    Decreased soil water availability can stimulate production of the plant hormone ethylene and inhibit plant growth. Strategies aimed at decreasing stress ethylene evolution might attenuate its negative effects. An environmentally benign (nonchemical) method of modifying crop ethylene relations - soil inoculation with a natural root-associated bacterium Variovorax paradoxus 5C-2 (containing the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase that degrades the ethylene precursor ACC), was assessed with pea (Pisum sativum) plants grown in drying soil. Inoculation with V. paradoxus 5C-2, but not with a transposome mutant with massively decreased ACC deaminase activity, improved growth, yield and water-use efficiency of droughted peas. Systemic effects of V. paradoxus 5C-2 included an amplified soil drying-induced increase of xylem abscisic acid (ABA) concentration, but an attenuated soil drying-induced increase of xylem ACC concentration. A local bacterial effect was increased nodulation by symbiotic nitrogen-fixing bacteria, which prevented a drought-induced decrease in nodulation and seed nitrogen content. Successfully deploying a single bacterial gene in the rhizosphere increased yield and nutritive value of plants grown in drying soil, via both local and systemic hormone signalling. Such bacteria may provide an easily realized, economic means of sustaining crop yields and using irrigation water more efficiently in dryland agriculture.

  8. Structure and expression of the guinea pig preproenkephalin gene: site-specific cleavage in the 3' untranslated region yields truncated mRNA transcripts in specific brain regions.

    PubMed Central

    LaForge, K S; Unterwald, E M; Kreek, M J

    1995-01-01

    We isolated the guinea pig preproenkephalin gene from a genomic library by hybridization to a rat cDNA probe. The entire nucleotide sequence of the gene was determined. Genomic Southern blot hybridization demonstrated that the gene exists in a single copy within the genome. On the basis of RNase protection transcript mapping and homology comparisons with known preproenkephalin sequences from other species and assuming a poly(A) tail length of 100 residues, we predicted an mRNA transcript of approximately 1,400 nucleotides encoded by three exons. Northern (RNA) blot analysis of total RNA from several brain regions showed high levels of preproenkephalin mRNA in the caudate putamen, nucleus accumbens, and hypothalamus, with detectable levels in the amygdala, ventral tegmental area, and central gray and also in the pituitary. Unexpectedly, in several brain regions, the mRNA appeared not only in the 1,400-nucleotide length but also in a shorter length of approximately 1,130 bases. Significant amounts of the shorter mRNA were found in the caudate putamen, nucleus accumbens, and amygdala. The longer, but not the shorter, transcripts from the caudate putamen were found to be polyadenylated, but the difference in size was not due solely to the presence of poly(A) tails. Northern gel analysis of total RNA from the caudate putamen with probes from each exon, together with RNase protection mapping of the 3' end of the mRNA demonstrated that the 1,400-base preproenkephalin mRNA transcripts are cleaved in a site-specific manner in some brain regions, yielding a 1,130-base transcript and a 165-base polyadenylated fragment derived from the terminal end of the 3' untranslated region of the mRNA. This cleavage may serve as a preliminary step in RNA degradation and provide a mechanism for control of preproenkephalin mRNA abundance through selective degradation. PMID:7891703

  9. A simplified and robust protocol for immunoglobulin expression in E scherichia coli cell‐free protein synthesis systems

    PubMed Central

    Cai, Qi; Hanson, Jeffrey A.; Steiner, Alexander R.; Tran, Cuong; Masikat, Mary Rose; Chen, Rishard; Zawada, James F.; Sato, Aaron K.; Hallam, Trevor J.

    2015-01-01

    Cell‐free protein synthesis (CFPS) systems allow for robust protein expression with easy manipulation of conditions to improve protein yield and folding. Recent technological developments have significantly increased the productivity and reduced the operating costs of CFPS systems, such that they can compete with conventional in vivo protein production platforms, while also offering new routes for the discovery and production of biotherapeutics. As cell‐free systems have evolved, productivity increases have commonly been obtained by addition of components to previously designed reaction mixtures without careful re‐examination of the essentiality of reagents from previous generations. Here we present a systematic sensitivity analysis of the components in a conventional Escherichia coli CFPS reaction mixture to evaluate their optimal concentrations for production of the immunoglobulin G trastuzumab. We identify eight changes to the system, which result in optimal expression of trastuzumab. We find that doubling the potassium glutamate concentration, while entirely eliminating pyruvate, coenzyme A, NAD, total tRNA, folinic acid, putrescine and ammonium glutamate, results in a highly productive cell‐free system with a 95% reduction in reagent costs (excluding cell‐extract, plasmid, and T7 RNA polymerase made in‐house). A larger panel of other proteins was also tested and all show equivalent or improved yields with our simplified system. Furthermore, we demonstrate that all of the reagents for CFPS can be combined in a single freeze‐thaw stable master mix to improve reliability and ease of use. These improvements are important for the application of the CFPS system in fields such as protein engineering, high‐throughput screening, and biotherapeutics. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:823–831, 2015 PMID:25826247

  10. A simplified and robust protocol for immunoglobulin expression in Escherichia coli cell-free protein synthesis systems.

    PubMed

    Cai, Qi; Hanson, Jeffrey A; Steiner, Alexander R; Tran, Cuong; Masikat, Mary Rose; Chen, Rishard; Zawada, James F; Sato, Aaron K; Hallam, Trevor J; Yin, Gang

    2015-01-01

    Cell-free protein synthesis (CFPS) systems allow for robust protein expression with easy manipulation of conditions to improve protein yield and folding. Recent technological developments have significantly increased the productivity and reduced the operating costs of CFPS systems, such that they can compete with conventional in vivo protein production platforms, while also offering new routes for the discovery and production of biotherapeutics. As cell-free systems have evolved, productivity increases have commonly been obtained by addition of components to previously designed reaction mixtures without careful re-examination of the essentiality of reagents from previous generations. Here we present a systematic sensitivity analysis of the components in a conventional Escherichia coli CFPS reaction mixture to evaluate their optimal concentrations for production of the immunoglobulin G trastuzumab. We identify eight changes to the system, which result in optimal expression of trastuzumab. We find that doubling the potassium glutamate concentration, while entirely eliminating pyruvate, coenzyme A, NAD, total tRNA, folinic acid, putrescine and ammonium glutamate, results in a highly productive cell-free system with a 95% reduction in reagent costs (excluding cell-extract, plasmid, and T7 RNA polymerase made in-house). A larger panel of other proteins was also tested and all show equivalent or improved yields with our simplified system. Furthermore, we demonstrate that all of the reagents for CFPS can be combined in a single freeze-thaw stable master mix to improve reliability and ease of use. These improvements are important for the application of the CFPS system in fields such as protein engineering, high-throughput screening, and biotherapeutics.

  11. Compartmentalization of an all-E. coli Cell-Free Expression System for the Construction of a Minimal Cell.

    PubMed

    Caschera, Filippo; Noireaux, Vincent

    2016-01-01

    Cell-free expression is a technology used to synthesize minimal biological cells from natural molecular components. We have developed a versatile and powerful all-E. coli cell-free transcription-translation system energized by a robust metabolism, with the far objective of constructing a synthetic cell capable of self-reproduction. Inorganic phosphate (iP), a byproduct of protein synthesis, is recycled through polysugar catabolism to regenerate ATP (adenosine triphosphate) and thus supports long-lived and highly efficient protein synthesis in vitro. This cell-free TX-TL system is encapsulated into cell-sized unilamellar liposomes to express synthetic DNA programs. In this work, we study the compartmentalization of cell-free TX-TL reactions, one of the aspects of minimal cell module integration. We analyze the signals of various liposome populations by fluorescence microscopy for one and for two reporter genes, and for an inducible genetic circuit. We show that small nutrient molecules and proteins are encapsulated uniformly in the liposomes with small fluctuations. However, cell-free expression displays large fluctuations in signals among the same population, which are due to heterogeneous encapsulation of the DNA template. Consequently, the correlations of gene expression with the compartment dimension are difficult to predict accurately. Larger vesicles can have either low or high protein yields.

  12. Bacterial-based systems for expression and purification of recombinant Lassa virus proteins of immunological relevance

    PubMed Central

    Branco, Luis M; Matschiner, Alex; Fair, Joseph N; Goba, Augustine; Sampey, Darryl B; Ferro, Philip J; Cashman, Kathleen A; Schoepp, Randal J; Tesh, Robert B; Bausch, Daniel G; Garry, Robert F; Guttieri, Mary C

    2008-01-01

    Background There is a significant requirement for the development and acquisition of reagents that will facilitate effective diagnosis, treatment, and prevention of Lassa fever. In this regard, recombinant Lassa virus (LASV) proteins may serve as valuable tools in diverse antiviral applications. Bacterial-based systems were engineered for expression and purification of recombinant LASV nucleoprotein (NP), glycoprotein 1 (GP1), and glycoprotein 2 (GP2). Results Full-length NP and the ectodomains of GP1 and GP2 were generated as maltose-binding protein (MBP) fusions in the Rosetta strains of Escherichia coli (E. coli) using pMAL-c2x vectors. Average fusion protein yields per liter of culture for MBP-NP, MBP-GP1, and MBP-GP2 were 10 mg, 9 mg, and 9 mg, respectively. Each protein was captured from cell lysates using amylose resin, cleaved with Factor Xa, and purified using size-exclusion chromatography (SEC). Fermentation cultures resulted in average yields per liter of 1.6 mg, 1.5 mg, and 0.7 mg of purified NP, GP1 and GP2, respectively. LASV-specific antibodies in human convalescent sera specifically detected each of the purified recombinant LASV proteins, highlighting their utility in diagnostic applications. In addition, mouse hyperimmune ascitic fluids (MHAF) against a panel of Old and New World arenaviruses demonstrated selective cross reactivity with LASV proteins in Western blot and enzyme-linked immunosorbent assay (ELISA). Conclusion These results demonstrate the potential for developing broadly reactive immunological assays that employ all three arenaviral proteins individually and in combination. PMID:18538016

  13. A Cell-Free Translocation System Using Extracts of Cultured Insect Cells to Yield Functional Membrane Proteins

    PubMed Central

    Ezure, Toru; Nanatani, Kei; Sato, Yoko; Suzuki, Satomi; Aizawa, Keishi; Souma, Satoshi; Ito, Masaaki; Hohsaka, Takahiro; von Heijine, Gunnar; Utsumi, Toshihiko; Abe, Keietsu; Ando, Eiji; Uozumi, Nobuyuki

    2014-01-01

    Cell-free protein synthesis is a powerful method to explore the structure and function of membrane proteins and to analyze the targeting and translocation of proteins across the ER membrane. Developing a cell-free system based on cultured cells for the synthesis of membrane proteins could provide a highly reproducible alternative to the use of tissues from living animals. We isolated Sf21 microsomes from cultured insect cells by a simplified isolation procedure and evaluated the performance of the translocation system in combination with a cell-free translation system originating from the same source. The isolated microsomes contained the basic translocation machinery for polytopic membrane proteins including SRP-dependent targeting components, translocation channel (translocon)-dependent translocation, and the apparatus for signal peptide cleavage and N-linked glycosylation. A transporter protein synthesized with the cell-free system could be functionally reconstituted into a lipid bilayer. In addition, single and double labeling with non-natural amino acids could be achieved at both the lumen side and the cytosolic side in this system. Moreover, tail-anchored proteins, which are post-translationally integrated by the guided entry of tail-anchored proteins (GET) machinery, were inserted correctly into the microsomes. These results showed that the newly developed cell-free translocation system derived from cultured insect cells is a practical tool for the biogenesis of properly folded polytopic membrane proteins as well as tail-anchored proteins. PMID:25486605

  14. Production of recombinant botulism antigens: a review of expression systems.

    PubMed

    Moreira, G M S G; Cunha, C E P; Salvarani, F M; Gonçalves, L A; Pires, P S; Conceição, F R; Lobato, F C F

    2014-08-01

    Botulism is a paralytic disease caused by intoxication with neurotoxins produced by Clostridium botulinum. Despite their similar mechanism of action, the botulinum neurotoxins (BoNT) are classified in eight serotypes (A to H). As to veterinary medicine, the impact of this disease is essentially economic, since different species of production animals can be affected, especially by BoNT/C and D. In human health, botulism is feared in a possible biological warfare, what would involve mainly the BoNT/A, B, E and F. In both cases, the most effective way to deal with botulism is through prevention, which involves vaccination. However, the current vaccines against this disease have several drawbacks on their process of production and, besides this, can be dangerous to producers since it requires certain level of biosafety. This way, recombinant vaccines have been shown to be a great alternative for the development of vaccines against both animal and human botulism. All BoNTs have a 50-kDa light chain (LC) and a 100-kDa heavy chain (HC). The latter one presents two domains of 50 kDa, called the N-terminal (HN) and C-terminal (HC) halves. Among these regions, the HC alone seem to confer the proper immune response against intoxication. Since innumerous studies describe the expression of these distinct regions using different systems, strategies, and protocols, it is difficult to define the best option for a viable vaccine production. Thereby, the present review describes the problematic of botulism and discusses the main advances for the viable production of vaccines for both human and veterinary medicine using recombinant antigens.

  15. Epigenetic regulation of inducible gene expression in the immune system.

    PubMed

    Lim, Pek Siew; Li, Jasmine; Holloway, Adele F; Rao, Sudha

    2013-07-01

    T cells are exquisitely poised to respond rapidly to pathogens and have proved an instructive model for exploring the regulation of inducible genes. Individual genes respond to antigenic stimulation in different ways, and it has become clear that the interplay between transcription factors and the chromatin platform of individual genes governs these responses. Our understanding of the complexity of the chromatin platform and the epigenetic mechanisms that contribute to transcriptional control has expanded dramatically in recent years. These mechanisms include the presence/absence of histone modification marks, which form an epigenetic signature to mark active or inactive genes. These signatures are dynamically added or removed by epigenetic enzymes, comprising an array of histone-modifying enzymes, including the more recently recognized chromatin-associated signalling kinases. In addition, chromatin-remodelling complexes physically alter the chromatin structure to regulate chromatin accessibility to transcriptional regulatory factors. The advent of genome-wide technologies has enabled characterization of the chromatin landscape of T cells in terms of histone occupancy, histone modification patterns and transcription factor association with specific genomic regulatory regions, generating a picture of the T-cell epigenome. Here, we discuss the multi-layered regulation of inducible gene expression in the immune system, focusing on the interplay between transcription factors, and the T-cell epigenome, including the role played by chromatin remodellers and epigenetic enzymes. We will also use IL2, a key inducible cytokine gene in T cells, as an example of how the different layers of epigenetic mechanisms regulate immune responsive genes during T-cell activation.

  16. Developmental expression of mucin genes in the human gastrointestinal system

    PubMed Central

    Reid, C; Harris, A

    1998-01-01

    Background and aims—Mucin glycoproteins play a key role in the normal function of the epithelium lining the gastrointestinal tract. The expression of mucin genes, MUC 3, 4, 5AC, 5B, 6, 7, and 8 in human fetal tissues was examined to establish the localisation and age of onset of expression of each mucin gene during human development. 
Methods—Mucin gene expression was assayed by mRNA in situ hybridisation. 
Results—Expression of MUC3 was detected in the small intestine and colon from 13 weeks gestation onwards and at low levels in the main pancreatic duct at 13 weeks only. MUC4 expression was seen at a low level in the colonic epithelium from 13 weeks of gestation but not elsewhere in the gastrointestinal tract. MUC5AC mRNA was detected in the colon at 17 weeks and at high levels in the stomach at 23 weeks. MUC6 transcripts were evident in the pancreatic ducts from 13 weeks of gestation and at high levels in the stomach at 23 weeks. MUC5B, MUC7, and MUC8 transcripts were not detected. 
Conclusions—Mucin genes are expressed from the early mid-trimester of gestation in the developing human fetal gastrointestinal tract. 

 Keywords: mucin; developmental expression; gastrointestinal tract PMID:9536947

  17. The reduction of the change of secondary ions yield in the thin SiON/Si system

    NASA Astrophysics Data System (ADS)

    Sameshima, J.; Yamamoto, H.; Hasegawa, T.; Nishina, T.; Nishitani, T.; Yoshikawa, K.; Karen, A.

    2006-07-01

    For the analyses of gate insulating materials of thin silicon oxy-nitride (SiON) and dielectric films, SIMS is one of the available tool along with TEM and ESCA, etc. Especially, to investigate the distribution of dopant in the thin films, SIMS is appreciably effective in these techniques because of its depth profiling capability and high sensitivity. One of the problem occurring in this SIMS measurement is the change of secondary ion yield at the interface as well as in the layers with different chemical composition. To solve this problem, some groups have researched the phenomenon for SiO 2/Si interface [W. Vandervorst, T. Janssens, R. Loo, M. Caymax, I. Peytier, R. Lindsay, J. Fruhauf, A. Bergmaier, G. Dollinger, Appl. Surf. Sci. 203-204 (2003) 371-376; S. Hayashi, K.Yanagihara, Appl. Surf. Sci. 203-204 (2003) 339-342; M. Barozzi, D. Giubertoni, M.Anderle, M. Bersani, Appl. Surf. Sci. 231-232 (2004) 632-635; T.H. Buyuklimanli, J.W. Marino, S.W. Novak, Appl. Surf. Sci. 231-232 (2004) 636-639]. In the present study, profiles of boron and matrix elements in the Si/SiON layers on Si substrate have been investigated. The sensitivity change of Si and B profiles in SiON layer become smaller by using oxygen flood than those without oxygen flood for both O 2+ and Cs + beam. At the range of 0-25 at.% of N composition, 11B dosimetry in SiON layer implanted through amorphous Si depends on N composition. This trend could be caused by the sensitivity change of 11B, or it indicates real 11B concentration change in SiON lyaer. N areal density determined by Cs + SIMS with oxygen flooding also shows linear relationship with N composition estimated by XPS.

  18. Regulation of gene expression in the nervous system

    SciTech Connect

    Stella, A.M.G. ); de Vellis, J. ); Perez-Polo, J.R. 62230.

    1990-01-01

    This book covers subjects under the following topics: Plenary Lecture; Growth factors; Regulation of gene expression in neurons; Cell adhesion molecules and development; Nervous tissue reaction to injury-aging; and Poster presentation.

  19. Yield of glyphosate-resistant sugar beets and efficiency of weed management systems with glyphosate and conventional herbicides under German and Polish crop production.

    PubMed

    Nichterlein, Henrike; Matzk, Anja; Kordas, Leszek; Kraus, Josef; Stibbe, Carsten

    2013-08-01

    In sugar beet production, weed control is one of the most important and most expensive practices to ensure yield. Since glyphosate-resistant sugar beets are not yet approved for cultivation in the EU, little commercial experience exists with these sugar beets in Europe. Experimental field trials were conducted at five environments (Germany, Poland, 2010, 2011) to compare the effects of glyphosate with the effects of conventional weed control programs on the development of weeds, weed control efficiency and yield. The results show that the glyphosate weed control programs compared to the conventional methods decreased not only the number of herbicide applications but equally in magnitude decreased the dosage of active ingredients. The results also showed effective weed control with glyphosate when the weed covering was greater and sugar beets had a later growth stage of four true leaves. Glyphosate-resistant sugar beets applied with the glyphosate herbicide two or three times had an increase in white sugar yield from 4 to 18 % in comparison to the high dosage conventional herbicide systems. In summary, under glyphosate management sugar beets can positively contribute to the increasingly demanding requirements regarding efficient sugar beet cultivation and to the demands by society and politics to reduce the use of chemical plant protection products in the environment.

  20. The intrinsic microglial clock system regulates interleukin-6 expression.

    PubMed

    Nakazato, Ryota; Hotta, Shogo; Yamada, Daisuke; Kou, Miki; Nakamura, Saki; Takahata, Yoshifumi; Tei, Hajime; Numano, Rika; Hida, Akiko; Shimba, Shigeki; Mieda, Michihiro; Hinoi, Eiichi; Yoneda, Yukio; Takarada, Takeshi

    2017-01-01

    Similar to neurons, microglia have an intrinsic molecular clock. The master clock oscillator Bmal1 modulates interleukin-6 upregulation in microglial cells exposed to lipopolysaccharide. Bmal1 can play a role in microglial inflammatory responses. We previously demonstrated that gliotransmitter ATP induces transient expression of the clock gene Period1 via P2X7 purinergic receptors in cultured microglia. In this study, we further investigated mechanisms underlying the regulation of pro-inflammatory cytokine production by clock molecules in microglial cells. Several clock gene transcripts exhibited oscillatory diurnal rhythmicity in microglial BV-2 cells. Real-time luciferase monitoring also showed diurnal oscillatory luciferase activity in cultured microglia from Per1::Luciferase transgenic mice. Lipopolysaccharide (LPS) strongly induced the expression of pro-inflammatory cytokines in BV-2 cells, whereas an siRNA targeting Brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1), a core positive component of the microglial molecular clock, selectively inhibited LPS-induced interleukin-6 (IL-6) expression. In addition, LPS-induced IL-6 expression was attenuated in microglia from Bmal1-deficient mice. This phenotype was recapitulated by pharmacological disruption of oscillatory diurnal rhythmicity using the synthetic Rev-Erb agonist SR9011. Promoter analysis of the Il6 gene revealed that Bmal1 is required for LPS-induced IL-6 expression in microglia. Mice conditionally Bmal1 deficient in cells expressing CD11b, including microglia, exhibited less potent upregulation of Il6 expression following middle cerebral artery occlusion compared with that in control mice, with a significant attenuation of neuronal damage. These results suggest that the intrinsic microglial clock modulates the inflammatory response, including the positive regulation of IL-6 expression in a particular pathological situation in the brain, GLIA 2016. GLIA 2017;65:198-208.

  1. Cowpeas and pinto beans: Performance and yields of candidate space crops in the laboratory biosphere closed ecological system

    NASA Astrophysics Data System (ADS)

    Nelson, M.; Dempster, W. F.; Allen, J. P.; Silverstone, S.; Alling, A.; Thillo, M. van

    An experiment utilizing cowpeas ( Vigna unguiculata L.), pinto beans ( Phaseolus vulgaris L.) and Apogee ultra-dwarf wheat ( Triticum sativa L.) was conducted in the soil-based closed ecological facility, Laboratory Biosphere, from February to May 2005. The lighting regime was 13 h light/11 h dark at a light intensity of 960 μmol m -2 s -1, 45 mol m -2 day -1 supplied by high-pressure sodium lamps. The pinto beans and cowpeas were grown at two different planting densities. Pinto bean production was 341.5 g dry seed m -2 (5.42 g m -2 day -1) and 579.5 dry seed m -2 (9.20 g m -2 day -1) at planted densities of 32.5 plants m -2 and 37.5 plants m -2, respectively. Cowpea yielded 187.9 g dry seed m -2 (2.21 g m -2 day -1) and 348.8 dry seed m -2 (4.10 g m -2 day -1) at planted densities of 20.8 plants m -2 and 27.7 plants m -2, respectively. The crop was grown at elevated atmospheric carbon dioxide levels, with levels ranging from 300-3000 ppm daily during the majority of the crop cycle. During early stages (first 10 days) of the crop, CO 2 was allowed to rise to 7860 ppm while soil respiration dominated, and then was brought down by plant photosynthesis. CO 2 was injected 27 times during days 29-71 to replenish CO 2 used by the crop during photosynthesis. Temperature regime was 24-28 °C day/deg 20-24 °C night. Pinto bean matured and was harvested 20 days earlier than is typical for this variety, while the cowpea, which had trouble establishing, took 25 days more for harvest than typical for this variety. Productivity and atmospheric dynamic results of these studies contribute toward the design of an envisioned ground-based test bed prototype Mars base.

  2. Effects of cover crop management and planting operations on cotton establishment and yield in a no-till system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One method to save resources while positively impacting the environment is combining agricultural field operations. In no-till systems, for example, termination of cover crops and planting of the cash crop can be performed simultaneously utilizing a tractor as a single power source. A no-till field ...

  3. Trailing Blackberry Genotypes Differ in Yield and Post-harvest Fruit Quality During Establishment in an Organic Production System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four blackberry (Rubus L. subgenus Rubus Watson) cultivars (‘Obsidian’, ‘Black Diamond’, ‘Metolius’, ‘Onyx’) and two advanced selections (ORUS 1939-4 and ORUS 2635-1) were evaluated during the establishment years of an organic production system for fresh market. The planting was established in sprin...

  4. Residue and soil carbon sequestration in relation to crop yield as affected by irrigation, tillage, cropping system and nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information on management practices is needed to increase surface residue and soil C sequestration to obtain farm C credit. The effects of irrigation, tillage, cropping system, and N fertilization were evaluated on the amount of crop biomass (stems and leaves) returned to the soil, surface residue C...

  5. A PagP fusion protein system for the expression of intrinsically disordered proteins in Escherichia coli.

    PubMed

    Hwang, Peter M; Pan, Jonathan S; Sykes, Brian D

    2012-09-01

    PagP, a beta-barrel membrane protein found in Gram-negative bacteria, expresses robustly in inclusion bodies when its signal sequence is removed. We have developed a new fusion protein expression system based on PagP and demonstrated its utility in the expression of the unstructured N-terminal region of human cardiac troponin I (residues 1-71). A yield of 100mg fusion protein per liter M9 minimal media was obtained. The troponin I fragment was removed from PagP using cyanogen bromide cleavage at methionine residues followed by nickel affinity chromatography. We further demonstrate that optimal cleavage requires complete reduction of methionine residues prior to cyanogen bromide treatment, and this is effectively accomplished using potassium iodide under acidic conditions. The PagP-based fusion protein system is more effective at targeting proteins into inclusion bodies than a commercially available system that uses ketosteroid isomerase; it thus represents an important advance for producing large quantities of unfolded peptides or proteins in Escherichia coli.

  6. Effects of nitrification inhibitors (DCD and DMPP) on nitrous oxide emission, crop yield and nitrogen uptake in a wheat-maize cropping system

    NASA Astrophysics Data System (ADS)

    Liu, C.; Wang, K.; Zheng, X.

    2013-04-01

    The application of nitrification inhibitors together with ammonium-based fertilizers is proposed as a potent method to decrease nitrous oxide (N2O) emission while promoting crop yield and nitrogen use efficiency in fertilized agricultural fields. To evaluate the effects of nitrification inhibitors, we conducted year-round measurements of N2O fluxes, yield, aboveground biomass, plant carbon and nitrogen contents, soil inorganic nitrogen and dissolved organic carbon contents and the main environmental factors for urea (U), urea + dicyandiamide (DCD) and urea + 3,4-dimethylpyrazol phosphate (DMPP) treatments in a wheat-maize rotation field. The cumulative N2O emissions were calculated to be 4.49 ± 0.21, 2.93 ± 0.06 and 2.78 ± 0.16 kg N ha-1 yr-1 for the U, DCD and DMPP treatments, respectively. Therefore, the DCD and DMPP treatments significantly decreased the annual emissions by 35% and 38%, respectively (p < 0.01). The variations of soil temperature, moisture and inorganic nitrogen content regulated the seasonal fluctuation of N2O emissions. When the emissions presented clearly temporal variations, high-frequency measurements or optimized sampling schedule for intermittent measurements would likely provide more accurate estimations of annual cumulative emission and treatment effect. The application of nitrification inhibitors significantly increased the soil inorganic nitrogen content (p < 0.01); shifted the main soil inorganic nitrogen form from nitrate to ammonium; and tended to increase the dissolved organic carbon content, crop yield, aboveground biomass and nitrogen uptake by aboveground plant. The results demonstrate the roles the nitrification inhibitors play in enhancing yield and nitrogen use efficiency and reducing N2O emission from the wheat-maize cropping system.

  7. Effects of nitrification inhibitors (DCD and DMPP) on nitrous oxide emission, crop yield and nitrogen uptake in a wheat-maize cropping system

    NASA Astrophysics Data System (ADS)

    Liu, C.; Wang, K.; Zheng, X.

    2013-01-01

    The application of nitrification inhibitors together with ammonium-based fertilizers is proposed as a potent method to decrease nitrous oxide (N2O) emission while promoting yield and nitrogen use efficiency in fertilized agricultural fields. To evaluate the effects of nitrification inhibitors, we conducted year-round measurements of N2O fluxes, yield, aboveground biomass, plant carbon and nitrogen contents, soil inorganic nitrogen and dissolved organic carbon contents and the main environmental factors for urea (U), urea + dicyandiamide (DCD) and urea + 3,4-dimethylpyrazol-phosphate (DMPP) treatments in a wheat-maize rotation field. The cumulative N2O emissions were calculated to be 4.49 ± 0.21, 2.93 ± 0.06 and 2.78 ± 0.16 kg N ha-1 yr-1 for the U, DCD and DMPP treatments, respectively. Therefore, the DCD and DMPP treatments decreased the annual emissions by 35% and 38%, respectively. The variations of soil temperature, moisture and inorganic nitrogen content regulated the seasonal fluctuation of N2O emissions. When the emissions presented clearly temporal variations, year-round and high-frequency measurements should be adopted to estimate annual cumulative emissions and treatment effects. The application of nitrification inhibitors increased the soil inorganic nitrogen and dissolved organic carbon availability and shifted the main soil inorganic nitrogen form from nitrate to ammonium. The annual yield, aboveground biomass and nitrogen uptake by aboveground plants increased by 8.5-9.1%, 8.6-9.7% and 10.9-13.2%, respectively, for the DCD and DMPP treatments compared with the U treatment. The results demonstrate the roles the nitrification inhibitors play in enhancing yield and nitrogen use efficiency and reducing N2O emission from the wheat-maize cropping system.

  8. Experimental and theoretical studies into the formation of C4-C6 products in partially chlorinated hydrocarbon pyrolysis systems: a probabilistic approach to congener-specific yield predictions.

    PubMed

    McIntosh, Grant J; Russell, Douglas K

    2014-09-25

    This work presents a study of the pyrolytic formation of vinylacetylene and benzene congeners formed from chlorinated hydrocarbon precursors, a complex, multipath polymerization system formed in a monomer-rich environment. (Co-)pyrolyses of dichloro- and trichloroethylene yield a rich array of products, and assuming a single dominant underlying growth mechanism, this (on comparing expected and observed products) allows a number of potentially competing channels to C4 and C6 products to be ruled out. Poor congener/isomer descriptions rule out even-carbon radical routes, and the absence of C3 and C5 products rule out odd-carbon processes. Vinylidenes appear unable to describe the increased reactivity of acetylenes with chlorination noted in our experiments, leaving molecular acetylene dimerization processes and, in C6 systems, the closely related Diels-Alder cyclization as the likely reaction mechanism. The feasibility of these routes is further supported by ab initio calculations. However, some of the most persuasive evidence is provided by congener-specific yield predictions enabled by the construction of a probability tree analogue of kinetic modeling. This approach is relatively quick to construct, provides surprisingly accurate predictions, and may be a very useful tool in screening for important reaction channels in poorly understood congener- or isomer-rich reaction systems.

  9. Multigene expression in stable CHO cell pools generated with the piggyBac transposon system.

    PubMed

    Balasubramanian, Sowmya; Wurm, Florian M; Hacker, David L

    2016-09-01

    Heterogenous populations of recombinant cells (cell pools) stably expressing 1-4 transgenes were generated from Chinese hamster overy (CHO) cells with the piggyBac (PB) transposon system. The cell pools produced different combinations of three model proteins-enhanced green fluorescent protein (EGFP), secreted alkaline phosphatase (SEAP), and a monoclonal IgG1 antibody. Each transgene was present on a separate PB donor plasmid with either the same or a different selection gene. In both cases, we obtained PB-derived cell pools with higher recombinant protein yields than from cell pools generated by conventional gene delivery. In PB-derived cell pools generated using a single selection agent, both protein production and the number of integrated copies of each transgene declined as the number of transfected transgenes increased. However, the total number of integrated transgenes was similar regardless of the number of different transgenes transfected. For PB-derived cell pools generated by selection of each transgene with a different selection agent, the total number of integrated transgenes increased with the number of transfected transgenes. The results suggest that the generation of cell pools producing multiple recombinant proteins is feasible and that the method is more efficient when each individual transgene is selected with a different marker. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1308-1317, 2016.

  10. Hierarchal clustering yields insight into multidrug-resistant bacteria isolated from a cattle feedlot wastewater treatment system.

    PubMed

    Jahne, Michael A; Rogers, Shane W; Ramler, Ivan P; Holder, Edith; Hayes, Gina

    2015-01-01

    Forty-two percent of Escherichia coli and 58% of Enterococcus spp. isolated from cattle feedlot runoff and associated infiltration basin and constructed wetland treatment system were resistant to at least one antibiotic of clinical importance; a high level of multidrug resistance (22% of E. coli and 37% of Enterococcus spp.) was observed. Hierarchical clustering revealed a closely associated resistance cluster among drug-resistant E. coli isolates that included cephalosporins (ceftiofur, cefoxitin, and ceftriaxone), aminoglycosides (gentamycin, kanamycin, and amikacin), and quinolone nalidixic acid; antibiotics from these classes were used at the study site, and cross-resistance may be associated with transferrable multiple-resistance elements. For Enterococcus spp., co-resistance among vancomycin, linezolid, and daptomycin was common; these antibiotics are reserved for complicated clinical infections and have not been approved for animal use. Vancomycin resistance (n = 49) only occurred when isolates were resistant to linezolid, daptomycin, and all four of the MLSB (macrolide-lincosamide-streptogramin B) antibiotics tested (tylosin, erythromycin, lincomycin, and quinipristin/dalfopristin). This suggests that developing co-resistance to MLSB antibiotics along with cyclic lipopeptides and oxazolidinones may result in resistance to vancomycin as well. Effects of the treatment system on antibiotic resistance were pronounced during periods of no rainfall and low flow (long residence time). Increased hydraulic loading (short residence time) under the influence of rain caused antibiotic-resistant bacteria to be flushed through the treatment system. This presents concern for environmental discharge of multidrug-resistant organisms relevant to public health.

  11. Expression of the human blood coagulation protein factor XIIIa in Saccharomyces cerevisiae: dependence of the expression levels from host-vector systems and medium conditions.

    PubMed

    Bröker, M; Bäuml, O; Göttig, A; Ochs, J; Bodenbenner, M; Amann, E

    1991-03-01

    The human blood coagulation protein Factor XIIIa (FXIIIa) was expressed in Saccharomyces cerevisiae employing Escherichia coli-yeast shuttle vectors based on a 2-mu plasmid. Several factors affecting high production yield of recombinant FXIIIa were analysed. The use of the regulatable GAL-CYC1 hybrid promoter resulted in higher FXIIIa expression when compared with the constitutive ADCI promoter. Screening for suitable yeast strains for expression of FXIIIa under the transcriptional control of the GAL-CYC1 hybrid promoter revealed a broad spectrum of productivity. No obvious correlation between the expression rate and the genetic markers of the strains could be identified. The medium composition markedly influenced the FXIIIa expression rates. The expression of FXIIIa was strictly regulated by the carbon source. Glucose as the only sugar and energy source repressed the synthesis of FXIIIa, whereas addition of galactose induced FXIIIa expression. Special feeding schemes resulted in a productivity of up to 100 mg FXIIIa/l in shake flasks.

  12. Yield Advances in Peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Average yields of peanut in the U.S. set an all time record of 4,695 kg ha-1 in 2012. This far exceeded the previous record yield of 3,837 kg ha-1 in 2008. Favorable weather conditions undoubtedly contributed to the record yields in 2012; however, these record yields would not have been achievable...

  13. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System

    PubMed Central

    Ito, Yoichiro; Yamanishi, Mamoru; Ikeuchi, Akinori; Imamura, Chie; Matsuyama, Takashi

    2015-01-01

    Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering. PMID:26692026

  14. Express

    Integrated Risk Information System (IRIS)

    Express ; CASRN 101200 - 48 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  15. A ten fold reduction of nicotine yield in tobacco smoke does not spare the central cholinergic system in adolescent mice.

    PubMed

    Abreu-Villaça, Yael; Correa-Santos, Monique; Dutra-Tavares, Ana C; Paes-Branco, Danielle; Nunes-Freitas, Andre; Manhães, Alex C; Filgueiras, Cláudio C; Ribeiro-Carvalho, Anderson

    2016-08-01

    The tobacco industry has gradually decreased nicotine content in cigarette smoke but the impact of this reduction on health is still controversial. Since the central cholinergic system is the primary site of action of nicotine, here, we investigated the effects of exposure of adolescent mice to tobacco smoke containing either high or low levels of nicotine on the central cholinergic system and the effects associated with cessation of exposure. From postnatal day (PN) 30 to 45, male and female Swiss mice were exposed to tobacco smoke (whole body exposure, 8h/day, 7 days/week) generated from 2R1F (HighNic group: 1.74mg nicotine/cigarette) or 4A1 (LowNic group: 0.14mg nicotine/cigarette) research cigarettes, whereas control mice were exposed to ambient air. Cholinergic biomarkers were assessed in the cerebral cortex and midbrain by the end of exposure (PN45), at short- (PN50) and long-term (PN75) deprivation. In the cortex, nicotinic cholinergic receptor upregulation was observed with either type of cigarette. In the midbrain, upregulation was detected only in HighNic mice and remained significant in females at short-term deprivation. The high-affinity choline transporter was reduced in the cortex: of HighNic mice by the end of exposure; of both HighNic and LowNic females at short-term deprivation; of LowNic mice at long-term deprivation. These decrements were separable from effects on choline acetyltransferase and acetylcholinesterase activities, suggesting cholinergic synaptic impairment. Here, we demonstrated central cholinergic alterations in an animal model of tobacco smoke exposure during adolescence. This system was sensitive even to tobacco smoke with very low nicotine content.

  16. Food-grade cloning and expression system for Lactococcus lactis.

    PubMed Central

    Platteeuw, C; van Alen-Boerrigter, I; van Schalkwijk, S; de Vos, W M

    1996-01-01

    A versatile set of cloning and expression vectors has been developed for application in self-cloning and other genetic modifications of Lactococcus lactis. The expression vectors were equipped with the controlled and strong lacA promoter of the lactococcal lactose operon. In addition, the transcriptional terminator of the aminopeptidase N gene, pepN, was inserted, which in some cases increased the genetic stabilities of the vectors and the cloned DNA. The small, 0.3-kb lacF gene encoding the soluble carrier enzyme IIALac was used as a dominant selection marker in the plasmid-free L. lactis strain NZ3000 carrying an in-frame deletion of the chromosomal lacF gene. Lactose-utilizing transformants were easily selected on lactose indicator plates at high frequencies and showed a copy number of approximately 50 plasmids per cell. All vectors were stably maintained in the lacF strain NZ3000 when grown on lactose, and only the high-level expression vectors showed some instability when their host was grown on glucose-containing medium. The application potentials of the expression vectors carrying the lacF marker were determined by cloning of the promoterless Escherichia coli gusA reporter gene under control of the lacA promoter followed by analysis of its expression. While in one of the vectors this resulted in a promoter-down mutation in the -10 region of the lacA promoter, in other vectors high-level and controlled expression of the gusA gene was observed. PMID:8975595

  17. In Vivo Selection Yields AAV-B1 Capsid for Central Nervous System and Muscle Gene Therapy.

    PubMed

    Choudhury, Sourav R; Fitzpatrick, Zachary; Harris, Anne F; Maitland, Stacy A; Ferreira, Jennifer S; Zhang, Yuanfan; Ma, Shan; Sharma, Rohit B; Gray-Edwards, Heather L; Johnson, Jacob A; Johnson, Aime K; Alonso, Laura C; Punzo, Claudio; Wagner, Kathryn R; Maguire, Casey A; Kotin, Robert M; Martin, Douglas R; Sena-Esteves, Miguel

    2016-08-01

    Adeno-associated viral (AAV) vectors have shown promise as a platform for gene therapy of neurological disorders. Achieving global gene delivery to the central nervous system (CNS) is key for development of effective therapies for many of these diseases. Here we report the isolation of a novel CNS tropic AAV capsid, AAV-B1, after a single round of in vivo selection from an AAV capsid library. Systemic injection of AAV-B1 vector in adult mice and cat resulted in widespread gene transfer throughout the CNS with transduction of multiple neuronal subpopulations. In addition, AAV-B1 transduces muscle, β-cells, pulmonary alveoli, and retinal vasculature at high efficiency. This vector is more efficient than AAV9 for gene delivery to mouse brain, spinal cord, muscle, pancreas, and lung. Together with reduced sensitivity to neutralization by antibodies in pooled human sera, the broad transduction profile of AAV-B1 represents an important improvement over AAV9 for CNS gene therapy.

  18. Production of an engineered killer peptide in Nicotiana benthamiana by using a potato virus X expression system.

    PubMed

    Donini, Marcello; Lico, Chiara; Baschieri, Selene; Conti, Stefania; Magliani, Walter; Polonelli, Luciano; Benvenuto, Eugenio

    2005-10-01

    The decapeptide killer peptide (KP) derived from the sequence of a single-chain, anti-idiotypic antibody acting as a functional internal image of a microbicidal, broad-spectrum yeast killer toxin (KT) was shown to exert a strong microbicidal activity against human pathogens. With the aim to exploit this peptide to confer resistance to plant pathogens, we assayed its antimicrobial activity against a broad spectrum of phytopathogenic bacteria and fungi. Synthetic KP exhibited antimicrobial activity in vitro towards Pseudomonas syringae, Erwinia carotovora, Botrytis cinerea, and Fusarium oxysporum. KP was also expressed in plants by using a Potato virus X (PVX)-derived vector as a fusion to the viral coat protein, yielding chimeric virus particles (CVPs) displaying the heterologous peptide. Purified CVPs showed enhanced antimicrobial activity against the above-mentioned plant pathogens and human pathogens such as Staphylococcus aureus and Candida albicans. Moreover, in vivo assays designed to challenge KP-expressing plants (as CVPs) with Pseudomonas syringae pv. tabaci showed enhanced resistance to bacterial attack. The results indicate that the PVX-based display system is a high-yield, rapid, and efficient method to produce and evaluate antimicrobial peptides in plants, representing a milestone for the large-scale production of high-added-value peptides through molecular farming. Moreover, KP is a promising molecule to be stably engineered in plants to confer broad-spectrum resistance to phytopathogens.

  19. Comparative effectiveness of cattle manure, poultry manure, phosphocompost and fertilizer-NPK on three cropping systems in vertisols of semi-arid tropics. I. Crop yields and system performance.

    PubMed

    Ghosh, P K; Ramesh, P; Bandyopadhyay, K K; Tripathi, A K; Hati, K M; Misra, A K; Acharya, C L

    2004-10-01

    A field experiment was conducted on deep vertisols of Bhopal, India to evaluate the manural potential of three organic manures: farmyard manure (FYM), poultry manure (PM), phosphocompost (PC) vis-a-vis 0%, 75% and 100% recommended dose of fertilizer-NPK and to find out the most productive cropping system at various combinations of organic manures and chemical fertilizers. The seed yield of intercrop soybean (population converted to 100%) was 8.7% less than sole soybean whereas the grain yield of intercrop sorghum was 9.5% more than that of sole sorghum. However, the productivity in terms of soybean equivalent yield (SEY) was relatively high in intercropping system. The increasing NPK dose from 0% to 100% significantly improved SEY in sole sorghum and soybean/sorghum intercropping system and the integrated use of organics and inorganics recorded significantly more SEY than inorganics. The effect of nutrient management followed the order; 75% NPK + 5 t FYM ha(-1) > 75% NPK + 1.5 t PM ha(-1) > 75% NPK + 5 t PC ha(-1) > 100% NPK. Sorghum, both as sole and intercrop, responded more to PM while soybean to FYM. Application of 75% NPK in combination with PM or FYM or PC to preceding rainy season crops (soybean and sorghum) and 75% NPK to wheat produced significantly higher grain yield of wheat than those in inorganics and control indicating noticeable residual effect on the succeeding wheat crop and saving of 25% fertilizer-NPK. The effect of PC on rainy season crops was not as prominent as those of FYM and PM, but its residual effect on grain yield of wheat was comparable to those two organic manures. Among the cropping systems, soybean as preceding crop recorded the highest seed yield of wheat and was on a par with that of soybean/sorghum intercropping system. The yield of wheat following sorghum was the lowest. The total system productivity (TSP) was the highest in sorghum + soybean-wheat system and the lowest in the soybean-wheat system.

  20. Optimized soluble expression and purification of an aggregation-prone protein by fusion tag systems and on-column cleavage in Escherichia coli.

    PubMed

    Li, Wen; Gao, Mingming; Liu, Wenchao; Kong, Yuelin; Tian, Hong; Yao, Wenbing; Gao, Xiangdong

    2012-12-01

    Previously we constructed a fusion protein based on GLP-1 and globular adiponectin but unfortunately its yield was low because it was mainly expressed as inclusion bodies. Herein to optimize the soluble expression of this fusion protein we tried several fusion tag systems. Fusion tags, including GST-, Trx- and MBP-tag, greatly improved the soluble expression of the fusion protein. However, these tag-fusion proteins were aggregation-prone as judged by Native PAGE and gel filtration chromatography, and this aggregation reduced the specificity of enterokinase-mediated enzyme cleavage which was essential to remove the fusion tags. To improve the specificity of protein cleavage, we employed on-column cleavage for downstream purification. Finally using optimized expression followed by on-column cleavage, we obtained the product fusion protein with a yield of 1.2 mg per g wet bacterial cells which was 8-fold higher than before. This method improved the yield and simplified the process, and as a convenient method it can also be used for the preparation of other aggregation-prone proteins.

  1. Efficient system of artificial oil bodies for functional expression and purification of recombinant nattokinase in Escherichia coli.

    PubMed

    Chiang, Chung-Jen; Chen, Hong-Chen; Chao, Yun-Peng; Tzen, Jason T C

    2005-06-15

    Nattokinase, a serine protease, and pronattokinase, when expressed in Escherichia coli, formed insoluble aggregates without enzymatic activity. For functional expression and purification, nattokinase or pronattokinase was first overexpressed in E. coli as an insoluble recombinant protein linked to the C terminus of oleosin, a structural protein of seed oil bodies, by an intein fragment. Artificial oil bodies were reconstituted with triacylglycerol, phospholipid, and the insoluble recombinant protein thus formed. Soluble nattokinase was subsequently released through self-splicing of intein induced by temperature alteration, with the remaining oleosin-intein residing in oil bodies and the leading propeptide of pronattokinase, when present, spontaneously cleaved in the process. Active nattokinase with fibrinolytic activity was harvested by concentrating the supernatant. Nattokinase released from oleosin-intein-pronattokinase exhibited 5 times higher activity than that released from oleosin-intein-nattokinase, although the production yields were similar in both cases. Furthermore, active nattokinase could be harvested in the same system by fusing pronattokinase to the N terminus of oleosin via a different intein linker, with self-splicing induced by 1,4-dithiothreitol. These results have shown a great potential of this system for bacterial expression and purification of functional recombinant proteins.

  2. Importance of rhizobia in Agriculture: potential of the commercial inoculants and native strains for improving legume yields in different land-use systems

    NASA Astrophysics Data System (ADS)

    Lesueur, D.; Atieno, M.; Mathu, S.; Herrmann, L.

    2012-04-01

    Legumes play an important role in the traditional diets of many regions throughout the world because they provide a multitude of benefits to both the soil and other crops grown in combination with them or following them in several cropping systems. The ability of legumes to fix atmospheric nitrogen in association with rhizobia gives them the capacity to grow in very degraded soils. But do we have to systematically inoculate legumes? For example our results suggested that the systematic inoculation of both cowpea and green gram in Kenya with commercial inoculants to improve yields is not really justified, native strains performing better than inoculated strains. But when native rhizobia nodulating legumes are not naturally present, application of rhizobial inoculants is very commonly used. Our results showed that the utilization of effective good-quality rhizobial inoculants by farmers have a real potential to improve legume yields in unfertile soils requesting high applications of mineral fertilizers. For example an effective soybean commercial inoculants was tested in different locations in Kenya (in about 150 farms in 3 mandate areas presenting different soil characteristics and environmental conditions). Application of the rhizobial inoculant significantly increased the soybean yields in all mandate areas (about 75% of the farms). Nodule occupancy analysis showed that a high number of nodules occupied by the inoculated strain did not obviously lead to an increase of soybean production. Soil factors (pH, P, C, N…) seemed to affect the inoculant efficiency whether the strain is occupying the nodules or not. Our statistic analysis showed that soil pH significantly affected nodulation and yield, though the effect was variable depending on the region. We concluded that the competitiveness of rhizobial strains might not be the main factor explaining the effect (or lack of) of legumes inoculation in the field. Another study was aiming to assess if several factors

  3. Environmental Response and Genomic Regions Correlated with Rice Root Growth and Yield under Drought in the OryzaSNP Panel across Multiple Study Systems

    PubMed Central

    Wade, Len J.; Bartolome, Violeta; Mauleon, Ramil; Vasant, Vivek Deshmuck; Prabakar, Sumeet Mankar; Chelliah, Muthukumar; Kameoka, Emi; Nagendra, K.; Reddy, K. R. Kamalnath; Varma, C. Mohan Kumar; Patil, Kalmeshwar Gouda; Shrestha, Roshi; Al-Shugeairy, Zaniab; Al-Ogaidi, Faez; Munasinghe, Mayuri; Gowda, Veeresh; Semon, Mande; Suralta, Roel R.; Shenoy, Vinay; Vadez, Vincent; Serraj, Rachid; Shashidhar, H. E.; Yamauchi, Akira; Babu, Ranganathan Chandra; Price, Adam; McNally, Kenneth L.; Henry, Amelia

    2015-01-01

    The rapid progress in rice genotyping must be matched by advances in phenotyping. A better understanding of genetic variation in rice for drought response, root traits, and practical methods for studying them are needed. In this study, the OryzaSNP set (20 diverse genotypes that have been genotyped for SNP markers) was phenotyped in a range of field and container studies to study the diversity of rice root growth and response to drought. Of the root traits measured across more than 20 root experiments, root dry weight showed the most stable genotypic performance across studies. The environment (E) component had the strongest effect on yield and root traits. We identified genomic regions correlated with root dry weight, percent deep roots, maximum root depth, and grain yield based on a correlation analysis with the phenotypes and aus, indica, or japonica introgression regions using the SNP data. Two genomic regions were identified as hot spots in which root traits and grain yield were co-located; on chromosome 1 (39.7–40.7 Mb) and on chromosome 8 (20.3–21.9 Mb). Across experiments, the soil type/ growth medium showed more correlations with plant growth than the container dimensions. Although the correlations among studies and genetic co-location of root traits from a range of study systems points to their potential utility to represent responses in field studies, the best correlations were observed when the two setups had some similar properties. Due to the co-location of the identified genomic regions (from introgression block analysis) with QTL for a number of previously reported root and drought traits, these regions are good candidates for detailed characterization to contribute to understanding rice improvement for response to drought. This study also highlights the utility of characterizing a small set of 20 genotypes for root growth, drought response, and related genomic regions. PMID:25909711

  4. A novel cold-inducible expression system for Bacillus subtilis.

    PubMed

    Thuy Le, Ai Thi; Schumann, Wolfgang

    2007-06-01

    Production of recombinant proteins at low temperatures is one strategy to prevent formation of protein aggregates and the use of an expensive inducer such as IPTG. We report on the construction of two expression vectors both containing the cold-inducible des promoter of Bacillus subtilis, where one allows intra- and the other extracellular synthesis of recombinant proteins. Production of recombinant proteins started within the first 30min after temperature downshock to 25 degrees C and continued for about 5h.

  5. Cancer-specific binary expression system activated in mice by bacteriophage HK022 Integrase

    PubMed Central

    Elias, Amer; Spector, Itay; Sogolovsky-Bard, Ilana; Gritsenko, Natalia; Rask, Lene; Mainbakh, Yuli; Zilberstein, Yael; Yagil, Ezra; Kolot, Mikhail

    2016-01-01

    Binary systems based on site-specific recombination have been used for tumor specific transcription targeting of suicide genes in animal models. In these binary systems a site specific recombinase or integrase that is expressed from a tumor specific promoter drives tumor specific expression of a cytotoxic gene. In the present study we developed a new cancer specific binary expression system activated by the Integrase (Int) of the lambdoid phage HK022. We demonstrate the validity of this system by the specific expression of a luciferase (luc) reporter in human embryonic kidney 293T (HEK293T) cells and in a lung cancer mouse model. Due to the absence viral vectors and of cytotoxicity the Int based binary system offers advantages over previously described counterparts and may therefore be developed into a safer cancer cell killing system. PMID:27117628

  6. Expression of neurexin and neuroligin in the enteric nervous system and their down-regulated expression levels in Hirschsprung disease.

    PubMed

    Zhang, Qiangye; Wang, Jian; Li, Aiwu; Liu, Hongzhen; Zhang, Wentong; Cui, Xinhai; Wang, Kelai

    2013-04-01

    To investigate the expression levels of neurexins and neuroligins in the enteric nervous system (ENS) in Hirschsprung Disease (HSCR). Longitudinal muscles with adherent mesenteric plexus were obtained by dissection of the fresh gut wall of mice, guinea pigs, and humans. Double labeling of neurexin I and Hu (a neuron marker), neuroligin 1 and Hu, neurexin I and synaptophysin (a presynaptic marker), and neuroligin 1 and PSD95 (a postsynaptic marker) was performed by immunofluorescence staining. Images were merged to determine the relative localizations of the proteins. Expression levels of neurexin and neuroligin in different segments of the ENS in HSCR were investigated by immunohistochemistry. Neurexin and neuroligin were detected in the mesenteric plexus of mice, guinea pigs, and humans with HSCR. Neurexin was located in the presynapse, whereas neuroligin was located in the postsynapse. Expression levels of neurexin and neuroligin were significant in the ganglionic colonic segment of HSCR, moderate in the transitional segment, and negative in the aganglionic colonic segment. The expressions of neurexin and neuroligin in the transitional segments were significantly down-regulated compared with the levels in the normal segments (P < 0.05). Expression levels of neurexin and neuroligin in ENS are significantly down-regulated in HSCR, which may be involved in the pathogenesis of HSCR.

  7. Transient Expression Systems in Plants: Potentialities and Constraints.

    PubMed

    Canto, Tomas

    2016-01-01

    Plants have been used from old to extract and isolate by different means the products of interest that they store. In recent years new techniques have emerged that allow the use of plants as factories to overexpress transiently and often efficiently, specific genes of interest, either endogenous or foreign, in their native form or modified. These techniques allow and facilitate the targeted purification of gene products for research and commercial purposes without resorting to lengthy, time-consuming and sometimes challenging plant stable transformations, while avoiding some of their associated regulatory constraints. In this chapter we describe the main strategies available for the transient expression of gene sequences and their encoded products in plants. We discuss biological issues affecting transient expression, including resistance responses elicited by the plant against sequences that it recognizes naturally as foreign, and ways to neutralize them. We also discuss the relative advantages of each expression strategy as well as their inherent drawbacks and technical limitations, and how to partially prevent or overcome them, whenever possible.

  8. Serotoninergic and melatoninergic systems are fully expressed in human skin.

    PubMed

    Slominski, Andrzej; Pisarchik, Alexander; Semak, Igor; Sweatman, Trevor; Wortsman, Jacobo; Szczesniewski, Andre; Slugocki, George; McNulty, John; Kauser, Söbia; Tobin, Desmond J; Jing, Chen; Johansson, Olle

    2002-06-01

    We investigated the cutaneous expression of genes and enzymes responsible for the multistep conversion of tryptophan to serotonin and further to melatonin. Samples tested were human skin, normal and pathologic (basal cell carcinoma and melanoma), cultured normal epidermal and follicular melanocytes, melanoma cell lines, normal neonatal and adult epidermal and follicular keratinocytes, squamous cell carcinoma cells, and fibroblasts from dermis and follicular papilla. The majority of the samples showed simultaneous expression of the genes for tryptophan hydroxylase, arylalkylamine N-acetyltransferase (AANAT), and hydroxyindole-O-methyltransferase (HIOMT). The products of AANAT activity were identified by RP-HPLC with fluorimetric detection in human skin and in cultured normal and malignant melanocytes and immortalized keratinocytes; HIOMT activity was detected in human skin, keratinocytes, and melanoma cells. N-acetylserotonin (NAS) was detected by RP-HPLC in human skin extracts. NAS identity was confirmed further by LC/MS in keratinocytes. In conclusion, we provide evidence that the human skin expresses intrinsic serotonin and melatonin biosynthetic pathways.

  9. Constitutive and inducible co-expression systems for non-viral osteoinductive gene therapy.

    PubMed

    Feichtinger, G A; Hacobian, A; Hofmann, A T; Wassermann, K; Zimmermann, A; van Griensven, M; Redl, H

    2014-02-19

    Tissue regenerative gene therapy requires expression strategies that deliver therapeutic effective amounts of transgenes. As physiological expression patterns are more complex than high-level expression of a singular therapeutic gene, we aimed at constitutive or inducible co-expression of 2 transgenes simultaneously. Co-expression of human bone morphogenetic protein 2 and 7 (BMP2/7) from constitutively expressing and doxycycline inducible plasmids was evaluated in vitro in C2C12 cells with osteocalcin reporter gene assays and standard assays for osteogenic differentiation. The constitutive systems were additionally tested in an in vivo pilot for ectopic bone formation after repeated naked DNA injection to murine muscle tissue. Inductor controlled differentiation was demonstrated in vitro for inducible co-expression. Both co-expression systems, inducible and constitutive, achieved significantly better osteogenic differentiation than single factor expression. The potency of the constitutive co-expression systems was dependent on relative expression cassette topology. In vivo, ectopic bone formation was demonstrated in 6/13 animals (46% bone formation efficacy) at days 14 and 28 in hind limb muscles as proven by in vivo µCT and histological evaluation. In vitro findings demonstrated that the devised single vector BMP2/7 co-expression strategy mediates superior osteoinduction, can be applied in an inductor controlled fashion and that its efficiency is dependent on expression cassette topology. In vivo results indicatethatco-expression of BMP2/7 applied by non-viral naked DNA gene transfer effectively mediates bone formation without the application of biomaterials, cells or recombinant growth factors, offering a promising alternative to current treatment strategies with potential for clinical translation in the future.

  10. Growth and yield responses of crops and macronutrient balance influenced by commercial organic manure used as a partial substitute for chemical fertilizers in an intensive vegetable cropping system

    NASA Astrophysics Data System (ADS)

    Lu, H. J.; Ye, Z. Q.; Zhang, X. L.; Lin, X. Y.; Ni, W. Z.

    A long-term field experiment was conducted with an annual rotation of tomato-radish-pakchoi to assess the effects of a commercial organic manure (COM) used as a partial substitute for chemical fertilizers on crop yield and nutrient balance in an intensive vegetable cropping system. Four treatments as chemical fertilizers (T1), chemical fertilizers + lower rate of COM (T2), chemical fertilizers + medium rate of COM (T3), and chemical fertilizers + high rate of COM (T4) were designed in the present experiment. The supplied doses of N, P, and K were equal for all treatments. Results showed that there were no significant differences in shoot biomass and market yields of tomato, radish and pakchoi among treatments ( P > 0.05). It was found that positive P and K balance existed in the tomato-radish-pakchoi cropping system of all treatments. Compared with no manure treatment (T1), application of medium rate of COM (T3) decreased N, P runoff losses, increased N, P, K contents in crop tissues except N, P in pakchoi shoot, and lessened P, K accumulation in soils, accordingly, improved the efficiency of macronutrient. It was concluded that appropriate COM used as a partial substitute for chemical fertilizers could not only meet the crops’ nutrient requirement, but also improved the efficiency of macronutrient and remained positive balance of P and K in the intensive tomato-radish-pakchoi cropping system, which can be regarded as an effective measure for a contribution towards sustainable agriculture and a control pathway for reducing the potential risk of castoff to water environment.

  11. Inducible protein expression in Drosophila Schneider 2 cells using the lac operator-repressor system.

    PubMed

    Wakiyama, Motoaki; Muramatsu, Reiko; Kaitsu, Yoko; Ikeda, Mariko; Yokoyama, Shigeyuki

    2011-12-01

    Schneider line 2 cells, derived from Drosophila melanogaster, can be used as a highly versatile gene expression system. Two powerful promoters derived from the actin5C (Ac5) and metallothionein (Mtn) genes are available. The Mtn promoter can be used for the inducible expression of heterologous proteins unsuitable for constitutive expression. However, to circumvent using CuSO(4) or CdCl(2) as inducers of the Mtn promoter, we created a modified Ac5 promoter, Ac5LacO, in which two short lac operator sequences are embedded. Expression from the Ac5LacO promoter was regulated with co-expression of the lac repressor and IPTG. More than 25-fold induction of firefly luciferase expression was achieved in transient transfection experiments. Furthermore, we demonstrated that the lac operator-repressor regulatory system functioned in chromosomally integrated cell lines.

  12. Expression and purification of the matrix protein of Nipah virus in baculovirus insect cell system.

    PubMed

    Masoomi Dezfooli, Seyedehsara; Tan, Wen Siang; Tey, Beng Ti; Ooi, Chien Wei; Hussain, Siti Aslina

    2016-01-01

    Nipah virus (NiV) causes fatal respiratory illness and encephalitis in humans and animals. The matrix (M) protein of NiV plays an important role in the viral assembly and budding process. Thus, an access to the NiV M protein is vital to the design of viral antigens as diagnostic reagents. In this study, recombinant DNA technology was successfully adopted in the cloning and expression of NiV M protein. A recombinant expression cassette (baculovirus expression vector) was used to encode an N-terminally His-tagged NiV M protein in insect cells. A time-course study demonstrated that the highest yield of recombinant M protein (400-500 μg) was expressed from 107 infected cells 3 days after infection. A single-step purification method based on metal ion affinity chromatography was established to purify the NiV M protein, which successfully yielded a purity level of 95.67% and a purification factor of 3.39. The Western blotting and enzyme-linked immunosorbent assay (ELISA) showed that the purified recombinant M protein (48 kDa) was antigenic and reacted strongly with the serum of a NiV infected pig.

  13. Regional Expression of MTG Genes in the Developing Mouse Central Nervous System

    PubMed Central

    Alishahi, Amin; Koyano-Nakagawa, Naoko; Nakagawa, Yasushi

    2009-01-01

    Myeloid translocation gene (MTG) proteins are transcriptional repressors that are highly conserved across species. We studied the expression of three members of this gene family, MTGR1, MTG8, and MTG16 in developing mouse central nervous system by in situ hybridization. All of these genes are detected as early as embryonic day 11.5. Because these genes are known to be induced by proneural genes during neurogenesis, we analyzed the expression of MTG genes in relation to two proneural genes, Neurog2 (also known as Ngn2 or Neurogenin 2) and Ascl1 (also known as Mash1). While MTGR1 are generally expressed in regions that also express Neurog2, MTG8 and MTG16 expression is associated more tightly with that of Ascl1-expressing neural progenitor cells. These results suggest the possibility that expression of MTG genes is differentially controlled by specific proneural genes during neurogenesis. PMID:19618476

  14. Induction of Systemic Resistance against Aphids by Endophytic Bacillus velezensis YC7010 via Expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis

    PubMed Central

    Rashid, Md. Harun-Or-; Khan, Ajmal; Hossain, Mohammad T.; Chung, Young R.

    2017-01-01

    Aphids are the most destructive insect pests. They suck the sap and transmit plant viruses, causing widespread yield loss of many crops. A multifunctional endophytic bacterial strain Bacillus velezensis YC7010 has been found to induce systemic resistance against bacterial and fungal pathogens of rice. However, its activity against insects attack and underlying cellular and molecular defense mechanisms are not elucidated yet. Here, we show that root drenching of Arabidopsis seedlings with B. velezensis YC7010 can induce systemic resistance against green peach aphid (GPA), Myzus persicae. Treatment of bacterial suspension of B. velezensis YC7010 at 2 × 107 CFU/ml to Arabidopsis rhizosphere induced higher accumulation of hydrogen peroxide, cell death, and callose deposition in leaves compared to untreated plants at 6 days after infestation of GPA. Salicylic acid, jasmonic acid, ethylene, and abscisic acid were not required to confer defense against GPA in Arabidopsis plants treated by B. velezensis YC7010. Bacterial treatment with B. velezensis YC7010 significantly reduced settling, feeding and reproduction of GPA on Arabidopsis leaves via strongly expressing senescence-promoting gene PHYTOALEXIN DEFICIENT4 (PAD4) while suppressing BOTRYTIS-INDUCED KINASE1 (BIK1). These results indicate that B. velezensis YC7010-induced systemic resistance to the GPA is a hypersensitive response mainly dependent on higher expression of PAD4 with suppression of BIK1, resulting in more accumulation of hydrogen peroxide, cell death, and callose deposition in Arabidopsis. PMID:28261260

  15. Induction of Systemic Resistance against Aphids by Endophytic Bacillus velezensis YC7010 via Expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis.

    PubMed

    Rashid, Md Harun-Or-; Khan, Ajmal; Hossain, Mohammad T; Chung, Young R

    2017-01-01

    Aphids are the most destructive insect pests. They suck the sap and transmit plant viruses, causing widespread yield loss of many crops. A multifunctional endophytic bacterial strain Bacillus velezensis YC7010 has been found to induce systemic resistance against bacterial and fungal pathogens of rice. However, its activity against insects attack and underlying cellular and molecular defense mechanisms are not elucidated yet. Here, we show that root drenching of Arabidopsis seedlings with B. velezensis YC7010 can induce systemic resistance against green peach aphid (GPA), Myzus persicae. Treatment of bacterial suspension of B. velezensis YC7010 at 2 × 10(7) CFU/ml to Arabidopsis rhizosphere induced higher accumulation of hydrogen peroxide, cell death, and callose deposition in leaves compared to untreated plants at 6 days after infestation of GPA. Salicylic acid, jasmonic acid, ethylene, and abscisic acid were not required to confer defense against GPA in Arabidopsis plants treated by B. velezensis YC7010. Bacterial treatment with B. velezensis YC7010 significantly reduced settling, feeding and reproduction of GPA on Arabidopsis leaves via strongly expressing senescence-promoting gene PHYTOALEXIN DEFICIENT4 (PAD4) while suppressing BOTRYTIS-INDUCED KINASE1 (BIK1). These results indicate that B. velezensis YC7010-induced systemic resistance to the GPA is a hypersensitive response mainly dependent on higher expression of PAD4 with suppression of BIK1, resulting in more accumulation of hydrogen peroxide, cell death, and callose deposition in Arabidopsis.

  16. Theoretical study of effects of the entrance channel on the relative yield of complete fusion and quasifission in heavy-ion collisions within a dinuclear system approach

    NASA Astrophysics Data System (ADS)

    Soheyli, S.; Khanlari, M. Varasteh

    2016-09-01

    The relative yield of complete fusion and quasifission components for the 12C+204Pb , 19F+197Au , 30Si+186W , and 48Ca+168Er reactions which all lead to the compound nucleus 216Ra are analyzed to calculate the entrance channel effects by comparison of capture, complete fusion, and quasifission cross sections, emission barriers (Bfus*,Bq f ), as well as complete fusion probability estimated by statistical method within the framework of the dinuclear system model. The difference among complete fusion probabilities calculated by the dinuclear system model for different entrance channels can be explained by the hindrance to complete fusion due to the larger inner fusion barrier Bfus* for the transformation of the dinuclear system into a compound nucleus and the increase of the quasifission contribution due to the decreasing of the emission barrier Bq f of quasifission as a function of the angular momentum. Although these reactions with different entrance channels populate the same compound nucleus 216Ra at similar excitation energies, the model predicts the negligible quasifission probability for reactions having higher entrance channel mass asymmetry and the dominant decay channel is complete fission. For reactions induced by massive projectiles such as Si and Ca having lower entrance channel mass asymmetry, the quasifission component is dominant in the evolution of dinuclear system, and the fusion process is extremely hindered.

  17. Nitrous oxide in fresh water systems: An estimate for the yield of atmospheric N2O associated with disposal of human waste

    NASA Technical Reports Server (NTRS)

    Kaplan, W. A.; Elkins, J. W.; Kolb, C. E.; Mcelroy, M. B.; Wofsy, S. C.; Duran, A. P.

    1977-01-01

    The N2O content of waters in the Potomac and Merrimack Rivers was measured on a number of occasions over the period April to July 1977. The concentrations of dissolved N2O exceeded those which would apply in equilibrium with air by factors ranging from about 46 in the Potomac to 1.2 in the Merrimack. Highest concentrations of dissolved N2O were associated with sewage discharges from the vicinity of Washington, D. C., and analysis indicates a relatively high yield, 1.3 to 11%, for prompt conversion of waste nitrogen to N2O. Measurements of dissolved N2O in fresh water ponds near Boston demonstrated that aquatic systems provide both strong sources and sinks for atmospheric N2O.

  18. Variability of Inducible Expression across the Hematopoietic System of Tetracycline Transactivator Transgenic Mice

    PubMed Central

    Takiguchi, Megumi; Dow, Lukas E.; Prier, Julia E.; Carmichael, Catherine L.; Kile, Benjamin T.; Turner, Stephen J.; Lowe, Scott W.; Huang, David C. S.; Dickins, Ross A.

    2013-01-01

    The tetracycline (tet)-regulated expression system allows for the inducible overexpression of protein-coding genes, or inducible gene knockdown based on expression of short hairpin RNAs (shRNAs). The system is widely used in mice, however it requires robust expression of a tet transactivator protein (tTA or rtTA) in the cell type of interest. Here we used an in vivo tet-regulated fluorescent reporter approach to characterise inducible gene/shRNA expression across a range of hematopoietic cell types of several commonly used transgenic tet transactivator mouse strains. We find that even in strains where the tet transactivator is expressed from a nominally ubiquitous promoter, the efficiency of tet-regulated expression can be highly variable between hematopoietic lineages and between differentiation stages within a lineage. In some cases tet-regulated reporter expression differs markedly between cells within a discrete, immunophenotypically defined population, suggesting mosaic transactivator expression. A recently developed CAG-rtTA3 transgenic mouse displays intense and efficient reporter expression in most blood cell types, establishing this strain as a highly effective tool for probing hematopoietic development and disease. These findings have important implications for interpreting tet-regulated hematopoietic phenotypes in mice, and identify mouse strains that provide optimal tet-regulated expression in particular hematopoietic progenitor cell types and mature blood lineages. PMID:23326559

  19. Cloning and expression analysis of cadherin7 in the central nervous system of the embryonic zebrafish.

    PubMed

    Liu, Bei; Joel Duff, R; Londraville, Richard L; Marrs, J A; Liu, Qin

    2007-01-01

    Cadherin cell adhesion molecules exhibit unique expression patterns during development of the vertebrate central nervous system. In this study, we obtained a full-length cDNA of a novel zebrafish cadherin using reverse transcriptase-polymerase chain reaction (RT-PCR) and 5' and 3' rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of this molecule is most similar to the published amino acid sequences of chicken and mammalian cadherin7 (Cdh7), a member of the type II cadherin subfamily. cadherin7 message (cdh7) expression in embryonic zebrafish was studied using in situ hybridization and RT-PCR methods. cdh7 expression begins at about 12h postfertilization (hpf) in a small patch in the anterior neural keel, and along the midline of the posterior neural keel. By 24 hpf, cdh7 expression in the brain shows a distinct segmental pattern that reflects the neuromeric organization of the brain, while its expression domain in the spinal cord is continuous, but confined to the middle region of the spinal cord. As development proceeds, cdh7 expression is detected in more regions of the brain, including the major visual structures in the fore- and midbrains, while its expression domain in the hindbrain becomes more restricted, and its expression in the spinal cord becomes undetectable. cdh7 expression becomes reduced in 3-day old embryos. Our results show that cdh7 expression in the zebrafish developing central nervous system is both spatially and temporally regulated.

  20. Yield surfaces for anisotropic plates

    NASA Astrophysics Data System (ADS)

    Walker, J. D.; Thacker, B. H.

    2000-04-01

    Aerospace systems are incorporating composite materials into their structures. The composite materials are often anisotropic in mechanical response due to their geometric layout. For many years, the failure surfaces of anisotropic materials were thought to be characterizable by a quadratic function in the stress, referred to as a Tsai-Wu yield surface, or, in a more restrictive form, a Tsai-Hill yield surface. Such a representation does not work for materials that are strong in two directions and weak in one direction, which is the case of most interest since it represents fiber/epoxy composite plates. This paper demonstrates the impossibility of modeling the failure surface with either the Tsai-Wu or Tsai-Hill failure surfaces. A yield surface is presented based on the lemniscate, which is quartic in the stress. This new yield surface addresses the case of strong in two directions and weak in one.

  1. Impact of cow strain and concentrate supplementation on grazing behaviour, milk yield and metabolic state of dairy cows in an organic pasture-based feeding system.

    PubMed

    Heublein, C; Dohme-Meier, F; Südekum, K-H; Bruckmaier, R M; Thanner, S; Schori, F

    2016-12-20

    As ruminants are able to digest fibre efficiently and assuming that competition for feed v. food use would intensify in the future, cereals and other field crops should primarily be destined to cover the dietary needs of humans and monogastric animals such as poultry and pigs. Farming systems with a reduced or absent concentrate supplementation, as postulated by organic agriculture associations, require adapted dairy cows. The aim of this experiment was to examine the impact of concentrate supplementation on milk production, grazing and rumination behaviour, feed intake, physical activity and blood traits with two Holstein-Friesian cow strains and to conclude the consequences for sustainable and organic farming. The experiment was a cross-over study and took place on an organic farm in Switzerland. In all, 12 Swiss Holstein-Friesian (HCH) cows and 12 New Zealand Holstein-Friesian (HNZ) cows, which were paired according to lactation number, days in milk and age for primiparous cows, were used. All cows grazed full time and were supplemented either with 6 kg/day of a commercial, organic cereal-grain mix or received no supplement. After an adaptation period of 21 days, a measurement period of 7 days followed, where milk yield and composition, pasture dry matter intake estimated with the n-alkane double-indicator technique, physical activity based on pedometer measurements, grazing behaviour recorded by automatic jaw movement recorder and blood samples were investigated. Non-supplemented cows had a lower milk yield and supplemented HCH cows produced more milk than supplemented HNZ cows. Grazing time and physical activity were greater for non-supplemented cows. Supplementation had no effect on rumination behaviour, but HNZ cows spent longer ruminating compared with HCH cows. Pasture dry matter intake decreased with the concentrate supplementation. Results of blood analysis did not indicate a strong negative energy balance for either non-supplemented or supplemented cows

  2. Engineering of a green-light inducible gene expression system in Synechocystis sp. PCC6803

    PubMed Central

    Abe, Koichi; Miyake, Kotone; Nakamura, Mayumi; Kojima, Katsuhiro; Ferri, Stefano; Ikebukuro, Kazunori; Sode, Koji

    2014-01-01

    In order to construct a green-light-regulated gene expression system for cyanobacteria, we characterized a green-light sensing system derived from Synechocystis sp. PCC6803, consisting of the green-light sensing histidine kinase CcaS, the cognate response regulator CcaR, and the promoter of cpcG2 (PcpcG2). CcaS and CcaR act as a genetic controller and activate gene expression from PcpcG2 with green-light illumination. The green-light induction level of the native PcpcG2 was investigated using GFPuv as a reporter gene inserted in a broad-host-range vector. A clear induction of protein expression from native PcpcG2 under green-light illumination was observed; however, the expression level was very low compared with Ptrc, which was reported to act as a constitutive promoter in cyanobacteria. Therefore, a Shine-Dalgarno-like sequence derived from the cpcB gene was inserted in the 5′ untranslated region of the cpcG2 gene, and the expression level of CcaR was increased. Thus, constructed engineered green-light sensing system resulted in about 40-fold higher protein expression than with the wild-type promoter with a high ON/OFF ratio under green-light illumination. The engineered green-light gene expression system would be a useful genetic tool for controlling gene expression in the emergent cyanobacterial bioprocesses. PMID:24330635

  3. The Effect of an Intelligent Tutoring System (ITS) on Student Achievement in Algebraic Expression

    ERIC Educational Resources Information Center

    Chien, Tsai Chen; Md. Yunus, Aida Suraya; Ali, Wan Zah Wan; Bakar, Ab. Rahim

    2008-01-01

    In this experimental study, use of Computer Assisted Instruction (CAI) followed by use of an Intelligent Tutoring System (CAI+ITS) was compared to the use of CAI (CAI only) in tutoring students on the topic of Algebraic Expression. Two groups of students participated in the study. One group of 32 students studied algebraic expression in a CAI…

  4. 75 FR 49928 - California Independent System Operator Corporation; Green Energy Express LLC; 21st Century...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission California Independent System Operator Corporation; Green Energy Express LLC... Green Energy Express LLC and 21st Century Transmission Holdings, LLC, in Docket No. EL10-76-000,...

  5. SOME QUESTIONS OF EVALUATION OF YIELD MAPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ultimate goal for the application of yield maps is to provide profitable crop output in farming systems. Recently, several methods and tools have been developed for the evaluation of yield maps. It is based on crisp and fuzzy modeling. However, the process of evaluation of yield maps is full o...

  6. Fate of organic pollutants in a pilot-scale membrane bioreactor-nanofiltration membrane system at high water yield in antibiotic wastewater treatment.

    PubMed

    Wang, Jianxing; Wei, Yuansong; Li, Kun; Cheng, Yutao; Li, Mingyue; Xu, Jianguo

    2014-01-01

    A double membrane system combining a membrane bioreactor (MBR) with a nanofiltration (NF) membrane at the pilot scale was tested to treat real antibiotic wastewater at a pharmaceutical company in Wuxi (China). The water yield of the pilot system reached over 92 ± 5.6% through recycling the NF concentrate to the MBR tank. Results showed that the pilot scale system operated in good conditions throughout the entire experiment period and obtained excellent water quality in which the concentrations of chemical oxygen demand and total organic carbon were stable at 35 and 5.7 mg/L, respectively. The antibiotic removal rates of both spiramycin (SPM) and new spiramycin in wastewater were over 95%. Organics analysis results showed that the main organics in the biological effluent were proteins, soluble microbial by-product-like, fulvic acid-like and humic-like substances. These organics could be perfectly rejected by the NF membrane. Most of the organics could be removed through recycling NF concentrate to the MBR tank and only a small part was discharged with NF concentrate and permeate.

  7. Production of recombinant proteins in E. coli by the heat inducible expression system based on the phage lambda pL and/or pR promoters

    PubMed Central

    2010-01-01

    The temperature inducible expression system, based on the pL and/or pR phage lambda promoters regulated by the thermolabile cI857 repressor has been widely use to produce recombinant proteins in prokariotic cells. In this expression system, induction of heterologous protein is achieved by increasing the culture temperature, generally above 37°C. Concomitant to the overexpression of heterologous protein, the increase in temperature also causes a variety of complex stress responses. Many studies have reported the use of such temperature inducible expression system, however only few discuss the simultaneous stress effects caused by recombinant protein production and the up-shift in temperature. Understanding the integral effect of such responses should be useful to develop improved strategies for high yield protein production and recovery. Here, we describe the current status of the heat inducible expression system based on the pL and/or pR λ phage promoters, focusing on recent developments on expression vehicles, the stress responses at the molecular and physiological level that occur after heat induction, and bioprocessing factors that affect protein overexpression, including culture operation variables and induction strategies. PMID:20298615

  8. Gene Expression in Mammalian Cells Using BacMam, a Modified Baculovirus System.

    PubMed

    Fornwald, James A; Lu, Quinn; Boyce, Frederick M; Ames, Robert S

    2016-01-01

    BacMams are modified baculoviruses that contain mammalian expression cassettes for gene delivery and expression in mammalian cells. BacMams have become an integral part of the recombinant mammalian gene expression toolbox in research labs worldwide. Construction of transfer vectors is straightforward using basic molecular biology protocols. Virus generation is based on common methods used with the baculovirus insect cell expression system. BacMam transduction of mammalian cells requires minimal modifications to familiar cell culture methods. This chapter highlights the BacMam transfer vector pHTBV.

  9. Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Folini, Doris; Henschel, Florian; Müller, Björn

    2015-04-01

    Traditionally, for the planning and assessment of solar energy systems, the amount of solar radiation (sunlight) incident on the Earth's surface is assumed to be constant over the years. However, with changing climate and air pollution levels, solar resources may no longer be stable over time and undergo substantial decadal changes. Observational records covering the past decades confirm long-term changes in this quantity. Here we examine, how the latest generation of climate models used for the 5th IPCC report projects potential changes in surface solar radiation over the coming decades, and how this may affect, in combination with the expected greenhouse warming, solar power output from photovoltaic (PV) systems. For this purpose, projections up to the mid 21th century from 39 state of the art climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are analysed globally and for selected key regions with major solar power production capacity. The large model ensemble allows to assess the degree of consistency of their projections. Models are largely consistent in the sign of the projected changes in solar radiation under cloud-free conditions as well as in surface temperatures over most of the globe, while still reasonably consistent over a considerable part of the globe in the sign of changes in cloudiness and associated changes in solar radiation. A first order estimate of the impact of solar radiation and temperature changes on energy yields of PV systems under the RPC8.5 scenario indicates statistically significant decreases in PV outputs in large parts of the world, but notable exceptions with positive trends in parts of Europe and the South-East of China. Projected changes between 2006 and 2049 under the RCP8.5 scenario overall are on the order of 1 % per decade for horizontal planes, but may be larger for tilted or tracked planes as well as on shorter (decadal) timescales. Related References: Wild, M., Folini, D., Henschel, F., and M

  10. Expression systems for heterologous production of antimicrobial peptides.

    PubMed

    Parachin, Nádia Skorupa; Mulder, Kelly Cristina; Viana, Antônio Américo Barbosa; Dias, Simoni Campos; Franco, Octávio Luiz

    2012-12-01

    Antimicrobial peptides (AMPs) consist of molecules that act on the defense systems of numerous organisms toward multiple pathogens such as bacteria, fungi, parasites and viruses. These compounds have become extremely significant due to the increasing resistance of microorganisms to common antibiotics. However, the low quantity of peptides obtained from direct purification is, to date, still a remarkable bottleneck for scientific and industrial research development. Therefore, this review describes the main heterologous systems currently used for AMP production, including bacteria, fungi and plants, and also the related strategies for reaching greater functional peptide production. The main difficulties of each system are also described in order to provide some directions for AMP production. In summary, data revised here indicate that large-scale production of AMPs can be obtained using biotechnological tools, and the products may be applied in the pharmaceutical industry as well as in agribusiness.

  11. Plant expression systems, a budding way to confront chikungunya and Zika in developing countries?

    PubMed Central

    Cardona-Ospina, Jaime A.; Sepúlveda-Arias, Juan C.; Mancilla, L.; Gutierrez-López, Luis G.

    2016-01-01

    Plant expression systems could be used as biofactories of heterologous proteins that have the potential to be used with biopharmaceutical aims and vaccine design. This technology is scalable, safe and cost-effective and it has been previously proposed as an option for vaccine and protein pharmaceutical development in developing countries. Here we present a proposal of how plant expression systems could be used to address Zika and chikungunya outbreaks through development of vaccines and rapid diagnostic kits. PMID:27781090

  12. Plant expression systems, a budding way to confront chikungunya and Zika in developing countries?

    PubMed

    Cardona-Ospina, Jaime A; Sepúlveda-Arias, Juan C; Mancilla, L; Gutierrez-López, Luis G

    2016-01-01

    Plant expression systems could be used as biofactories of heterologous proteins that have the potential to be used with biopharmaceutical aims and vaccine design. This technology is scalable, safe and cost-effective and it has been previously proposed as an option for vaccine and protein pharmaceutical development in developing countries. Here we present a proposal of how plant expression systems could be used to address Zika and chikungunya outbreaks through development of vaccines and rapid diagnostic kits.

  13. Weed management and cotton yield under two row spacings, conventional and conservation tillage systems utilizing conventional, glufosinate-, and glyphosate-based weed management systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field experiment was conducted in 2005 and 2006, to evaluate weed control in conventional, Liberty Link® (LL), and Roundup Ready® (RR) herbicide systems under standard [102 cm (40 inch)] and narrow [38 cm (15 inch)] row-spacings utilizing conventional and high-residue conservation tillage systems....

  14. Herbivory alters the expression of a mixed-mating system.

    PubMed

    Steets, Janette A; Ashman, Tia-Lynn

    2004-07-01

    The direct and indirect effects of vegetative herbivory on the mating system of Impatiens capensis were analyzed through a survey of herbivory in natural I. capensis populations and manipulation of leaf damage in the field. Across 10 wild populations of I. capensis proportion of cleistogamous flowers had a significant positive exponential relationship with natural levels of herbivory. Similarly, experimental leaf damage increased the proportion of flowers and seeds that were cleistogamous. Leaf damage also reduced the biomass of cleistogamous progeny more severely relative to that of chasmogamous progeny. The cumulative effect of leaf damage was to increase plant reliance on fitness derived from cleistogamous progeny. Leaf damage indirectly affected mating system traits by reducing chasmogamous flower size, leading to a reduction in pollinator visitation. Under these experimental conditions, herbivory did not significantly reduce the number of simultaneously open flowers and potential for geitonogamy, nor did it result in significant changes in the composition of the pollinator fauna. These findings are among the first to demonstrate that herbivory has consequences for mating system and should be considered a factor shaping mating system evolution.

  15. Parents' Cultural Belief Systems: Their Origins, Expressions, and Consequences.

    ERIC Educational Resources Information Center

    Harkness, Sara, Ed.; Super, Charles M., Ed.

    This volume presents observations and thinking of scholars from a variety of disciplines about parental cultural belief systems. The chapters are concerned with the sources and consequences of parental ethnotheories in a number of societies. The following chapters are included: (1) "Introduction" (Sara Harkness and Charles M. Super); (2)…

  16. Yield Improvement in Steel Casting (Yield II)

    SciTech Connect

    Richard A. Hardin; Christoph Beckermann; Tim Hays

    2002-02-18

    This report presents work conducted on the following main projects tasks undertaken in the Yield Improvement in Steel Casting research program: Improvement of Conventional Feeding and Risering Methods, Use of Unconventional Yield Improvement Techniques, and Case Studies in Yield Improvement. Casting trials were conducted and then simulated using the precise casting conditions as recorded by the participating SFSA foundries. These results present a statistically meaningful set of experimental data on soundness versus feeding length. Comparisons between these casting trials and casting trials performed more than forty years ago by Pellini and the SFSA are quite good and appear reasonable. Comparisons between the current SFSA feeding rules and feeding rules based on the minimum Niyama criterion reveal that the Niyama-based rules are generally less conservative. The niyama-based rules also agree better with both the trials presented here, and the casting trails performed by Pellini an d the SFSA years ago. Furthermore, the use of the Niyama criterion to predict centerline shrinkage for horizontally fed plate sections has a theoretical basis according to the casting literature reviewed here. These results strongly support the use of improved feeding rules for horizontal plate sections based on the Niyama criterion, which can be tailored to the casting conditions for a given alloy and to a desired level of soundness. The reliability and repeatability of ASTM shrinkage x-ray ratings was investigated in a statistical study performed on 128 x-rays, each of which were rated seven different times. A manual ''Feeding and Risering Guidelines for Steel Castings' is given in this final report. Results of casting trials performed to test unconventional techniques for improving casting yield are presented. These use a stacked arrangement of castings and riser pressurization to increase the casting yield. Riser pressurization was demonstrated to feed a casting up to four time s the

  17. Synthetic Transcription Amplifier System for Orthogonal Control of Gene Expression in Saccharomyces cerevisiae

    PubMed Central

    Rantasalo, Anssi; Czeizler, Elena; Virtanen, Riitta; Rousu, Juho; Lähdesmäki, Harri; Penttilä, Merja

    2016-01-01

    This work describes the development and characterization of a modular synthetic expression system that provides a broad range of adjustable and predictable expression levels in S. cerevisiae. The system works as a fixed-gain transcription amplifier, where the input signal is transferred via a synthetic transcription factor (sTF) onto a synthetic promoter, containing a defined core promoter, generating a transcription output signal. The system activation is based on the bacterial LexA-DNA-binding domain, a set of modified, modular LexA-binding sites and a selection of transcription activation domains. We show both experimentally and computationally that the tuning of the system is achieved through the selection of three separate modules, each of which enables an adjustable output signal: 1) the transcription-activation domain of the sTF, 2) the binding-site modules in the output promoter, and 3) the core promoter modules which define the transcription initiation site in the output promoter. The system has a novel bidirectional architecture that enables generation of compact, yet versatile expression modules for multiple genes with highly diversified expression levels ranging from negligible to very strong using one synthetic transcription factor. In contrast to most existing modular gene expression regulation systems, the present system is independent from externally added compounds. Furthermore, the established system was minimally affected by the several tested growth conditions. These features suggest that it can be highly useful in large scale biotechnology applications. PMID:26901642

  18. Yield Surfaces for Anisotropic Plates

    NASA Astrophysics Data System (ADS)

    Walker, J. D.; Thacker, B. H.

    1999-06-01

    Modern aerospace systems are incorporating composite materials into their structures. Often, the composite materials are anisotropic in their mechanical response due to the geometric layout of fibers. For many years, the failure surfaces of anisotropic materials were thought to be characterizable by a quadratic function in the stress, often referred to as a Tsai-Wu yield surface, or, in a more restrictive form, a Tsai-Hill yield surface. Such a representation does not work for materials that are strong in two directions and weak in one direction, which, unfortunately, is the case of most interest since it represents most composite plates. This paper demonstrates the impossibility of modeling the failure surface with both the Tsai-Wu and Tsai-Hill failure surfaces. We then present a yield surface based on the lemniscate, which is quartic in the stress. This new yield surface addresses the case of strong in two directions and weak in one. Calculations with a fragment impacting a composite plate modeled with the new yield surface are presented. Modifications of the yield surface are presented to allow, in a limited way, materials that are both anisotropic and have differing strengths in tension and compression.

  19. A HAMP promoter bioassay system for identifying chemical compounds that modulate hepcidin expression.

    PubMed

    Kawabata, Hiroshi; Uchiyama, Tatsuki; Sakamoto, Soichiro; Kanda, Junya; Oishi, Shinya; Fujii, Nobutaka; Tomosugi, Naohisa; Kadowaki, Norimitsu; Takaori-Kondo, Akifumi

    2015-05-01

    Hepcidin is the central regulator of systemic iron homeostasis; dysregulation of hepcidin expression causes various iron metabolic disorders, including hereditary hemochromatosis and anemia of inflammation. To identify molecules that modulate hepcidin expression, we developed a bioassay system for hepcidin gene (HAMP) promoter activity by stable transfection of Hep3B hepatoma cells with an expression plasmid in which EGFP was linked to a 2.5-kb human HAMP promoter. Interleukin 6, bone morphogenetic protein 6 (BMP-6), and oncostatin M, well-characterized stimulators of the HAMP promoter, strongly enhanced the green fluorescence intensity of these cells. Dorsomorphin, heparin, and cobalt chloride, known inhibitors of hepcidin expression, significantly suppressed green fluorescence intensity, and these inhibitory effects were more prominent when the cells were stimulated with BMP-6. Employing this system, we screened 1,280 biologically active small molecules and found several candidate inhibitors of hepcidin expression. Apomorphine, benzamil, etoposide, CGS-15943, kenpaullone, and rutaecarpine (all at 10 μmol/L) significantly inhibited hepcidin mRNA expression by Hep3B cells without affecting cell viability. CGS-15943 was the strongest suppressor of BMP-6-induced hepcidin-25 secretion in these cells. We conclude that our newly developed hepcidin promoter bioassay system is useful for identifying and evaluating compounds that modulate hepcidin expression.

  20. A light-switchable bidirectional expression system in filamentous fungus Trichoderma reesei.

    PubMed

    Zhang, Guoxiu; Liu, Pei; Wei, Wei; Wang, Xuedong; Wei, Dongzhi; Wang, Wei

    2016-12-20

    The filamentous fungi Trichoderma reesei is widely used in the production of cellulolytic enzymes and recombinant proteins. However, only moderate success has been achieved in expressing heterologous proteins in T. reesei. Light-dependent control of DNA transcription, and protein expression have been demonstrated in bacteria, fungi, and mammalian cells. In this study, light inducible transactivators, a "light-on" bidirectional promoter and a "light-off" promoter were constructed successfully in T. reesei for the first time. Our light inducible transactivators can homodimerize and bind to the upstream region of artificial promoters to activate or repress genes transcription. Additionally, we upgraded the light-inducible system to on-off system that can simultaneously control the expression of multiple heterologous proteins in T. reesei. Moreover, a native cellulase-free background for the expression of heterologous proteins was achieved by knocking out the genes involved in transcriptional regulation and encoding of cellulases: xyr1, cbh1, and cbh2. Our light-switchable system showed a very little background protein expression and robust activation in the blue light with significantly improved heterologous protein expression. We demonstrate that our light-switchable system has a potential application as an on/off "switch" that can simultaneously regulate the expression of multiple genes in T. reesei under native cellulase-free background.

  1. Expression, Purification, and Structural Insights for the Human Uric Acid Transporter, GLUT9, Using the Xenopus laevis Oocytes System

    PubMed Central

    Clémençon, Benjamin; Lüscher, Benjamin P.; Fine, Michael; Baumann, Marc U.; Surbek, Daniel V.; Bonny, Olivier; Hediger, Matthias A.

    2014-01-01

    The urate transporter, GLUT9, is responsible for the basolateral transport of urate in the proximal tubule of human kidneys and in the placenta, playing a central role in uric acid homeostasis. GLUT9 shares the least homology with other members of the glucose transporter family, especially with the glucose transporting members GLUT1-4 and is the only member of the GLUT family to transport urate. The recently published high-resolution structure of XylE, a bacterial D-xylose transporting homologue, yields new insights into the structural foundation of this GLUT family of proteins. While this represents a huge milestone, it is unclear if human GLUT9 can benefit from this advancement through subsequent structural based targeting and mutagenesis. Little progress has been made toward understanding the mechanism of GLUT9 since its discovery in 2000. Before work can begin on resolving the mechanisms of urate transport we must determine methods to express, purify and analyze hGLUT9 using a model system adept in expressing human membrane proteins. Here, we describe the surface expression, purification and isolation of monomeric protein, and functional analysis of recombinant hGLUT9 using the Xenopus laevis oocyte system. In addition, we generated a new homology-based high-resolution model of hGLUT9 from the XylE crystal structure and utilized our purified protein to generate a low-resolution single particle reconstruction. Interestingly, we demonstrate that the functional protein extracted from the Xenopus system fits well with the homology-based model allowing us to generate the predicted urate-binding pocket and pave a path for subsequent mutagenesis and structure-function studies. PMID:25286413

  2. Atmospheric Nitrogen Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K. U.; Sokolsky, Pierre; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric nitrogen fluorescence. The nitrogen fluorescence yield from air shower electrons depends on the atmospheric composition. We will discuss the uncertainties in the fluorescence yield form electrons in the real atmosphere and describe a concept for a small balloon payload to measure the atmospheric fluorescence yield as a function of attitude.

  3. Analytical expressions for the nonlinear interference in dispersion managed transmission coherent optical systems

    NASA Astrophysics Data System (ADS)

    Qiao, Yaojun; Li, Ming; Yang, Qiuhong; Xu, Yanfei; Ji, Yuefeng

    2015-01-01

    Closed-form expressions of nonlinear interference of dense wavelength-division-multiplexed (WDM) systems with dispersion managed transmission (DMT) are derived. We carry out a simulative validation by addressing an ample and significant set of the Nyquist-WDM systems based on polarization multiplexed quadrature phase-shift keying (PM-QPSK) subcarriers at a baud rate of 32 Gbaud per channel. Simulation results show the simple closed-form analytical expressions can provide an effective tool for the quick and accurate prediction of system performance in DMT coherent optical systems.

  4. Depth-expression characteristics of multi-projection 3D display systems [invited].

    PubMed

    Park, Soon-gi; Hong, Jong-Young; Lee, Chang-Kun; Miranda, Matheus; Kim, Youngmin; Lee, Byoungho

    2014-09-20

    A multi-projection display consists of multiple projection units. Because of the large amount of data, a multi-projection system shows large, high-quality images. According to the projection geometry and the optical configuration, multi-projection systems show different viewing characteristics for generated three-dimensional images. In this paper, we analyzed the various projection geometries of multi-projection systems, and explained the different depth-expression characteristics for each individual projection geometry. We also demonstrated the depth-expression characteristic of an experimental multi-projection system.

  5. SimCheck: An Expressive Type System for Simulink

    NASA Technical Reports Server (NTRS)

    Roy, Pritam; Shankar, Natarajan

    2010-01-01

    MATLAB Simulink is a member of a class of visual languages that are used for modeling and simulating physical and cyber-physical systems. A Simulink model consists of blocks with input and output ports connected using links that carry signals. We extend the type system of Simulink with annotations and dimensions/units associated with ports and links. These types can capture invariants on signals as well as relations between signals. We define a type-checker that checks the wellformedness of Simulink blocks with respect to these type annotations. The type checker generates proof obligations that are solved by SRI's Yices solver for satisfiability modulo theories (SMT). This translation can be used to detect type errors, demonstrate counterexamples, generate test cases, or prove the absence of type errors. Our work is an initial step toward the symbolic analysis of MATLAB Simulink models.

  6. Expression systems and developments in plant-made vaccines.

    PubMed

    Rigano, M Manuela; Walmsley, Amanda M

    2005-06-01

    Delivery of vaccines to mucosal surfaces can elicit humoral and cell-mediated responses of the mucosal and systemic immune systems, evoke less pain and discomfort than parenteral delivery, and eliminate needle-associated risks. Transgenic plants are an ideal means by which to produce oral vaccines, as the rigid walls of the plant cell protect antigenic proteins from the acidic environment of the stomach, enabling intact antigen to reach the gut associated lymphoid tissue. In the past few years, new techniques (such as chloroplast transformation and food processing) have improved antigen concentration in transgenic plants. In addition, adjuvants and targeting proteins have increased the immunogenicity of mucosally administered plant-made vaccines. These studies have moved plant-made vaccines closer to the development phase.

  7. Efficient production of anti-fluorescein and anti-lysozyme as single-chain anti-body fragments (scFv) by Brevibacillus expression system.

    PubMed

    Onishi, Hiromasa; Mizukami, Makoto; Hanagata, Hiroshi; Tokunaga, Masao; Arakawa, Tsutomu; Miyauchi, Akira

    2013-10-01

    Expression of scFv in Brevibacillus choshinensis was tested using combinations of three different promoters and four different secretion signals. Two model scFv constructs, i.e., His-scFvFLU and His-scFvHEL, were successfully expressed with some of the combinations. Ni Sepharose column and size exclusion chromatography resulted in fairly pure preparations of these two proteins. The purified His-scFvFLU inhibited fluorescence from fluorescein, while the purified His-scFvHEL inhibited lysozyme activity. Relatively high yield of His-scFvFLU (∼40%) and His-scFvHEL (∼30%) was achieved with the expression and purification system described here.

  8. Heterologous viral expression systems in fosmid vectors increase the functional analysis potential of metagenomic libraries

    PubMed Central

    Terrón-González, L.; Medina, C.; Limón-Mortés, M. C.; Santero, E.

    2013-01-01

    The extraordinary potential of metagenomic functional analyses to identify activities of interest present in uncultured microorganisms has been limited by reduced gene expression in surrogate hosts. We have developed vectors and specialized E. coli strains as improved metagenomic DNA heterologous expression systems, taking advantage of viral components that prevent transcription termination at metagenomic terminators. One of the systems uses the phage T7 RNA-polymerase to drive metagenomic gene expression, while the other approach uses the lambda phage transcription anti-termination protein N to limit transcription termination. A metagenomic library was constructed and functionally screened to identify genes conferring carbenicillin resistance to E. coli. The use of these enhanced expression systems resulted in a 6-fold increase in the frequency of carbenicillin resistant clones. Subcloning and sequence analysis showed that, besides β-lactamases, efflux pumps are not only able contribute to carbenicillin resistance but may in fact be sufficient by themselves to convey carbenicillin resistance. PMID:23346364

  9. A self-inducible heterologous protein expression system in Escherichia coli

    PubMed Central

    Briand, L.; Marcion, G.; Kriznik, A.; Heydel, J. M.; Artur, Y.; Garrido, C.; Seigneuric, R.; Neiers, F.

    2016-01-01

    Escherichia coli is an important experimental, medical and industrial cell factory for recombinant protein production. The inducible lac promoter is one of the most commonly used promoters for heterologous protein expression in E. coli. Isopropyl-β-D-thiogalactoside (IPTG) is currently the most efficient molecular inducer for regulating this promoter’s transcriptional activity. However, limitations have been observed in large-scale and microplate production, including toxicity, cost and culture monitoring. Here, we report the novel SILEX (Self-InducibLe Expression) system, which is a convenient, cost-effective alternative that does not require cell density monitoring or IPTG induction. We demonstrate the broad utility of the presented self-inducible method for a panel of diverse proteins produced in large amounts. The SILEX system is compatible with all classical culture media and growth temperatures and allows protein expression modulation. Importantly, the SILEX system is proven to be efficient for protein expression screening on a microplate scale. PMID:27611846

  10. System for stable β-estradiol-inducible gene expression in the moss Physcomitrella patens.

    PubMed

    Kubo, Minoru; Imai, Akihiro; Nishiyama, Tomoaki; Ishikawa, Masaki; Sato, Yoshikatsu; Kurata, Tetsuya; Hiwatashi, Yuji; Reski, Ralf; Hasebe, Mitsuyasu

    2013-01-01

    Inducible transgene expression provides a useful tool to analyze gene function. The moss Physcomitrellapatens is a model basal land plant with well-developed research tools, including a high efficiency of gene targeting and substantial genomics resources. However, current systems for controlled transgene expression remain limited. Here we report the development of an estrogen receptor mediated inducible gene expression system, based on the system used in flowering plants. After identifying the appropriate promoters to drive the chimeric transducer, we succeeded in inducing transcription over 1,000-fold after 24 h incubation with β-estradiol. The P. patens system was also effective for high-level long-term induction of gene expression; transcript levels of the activated gene were maintained for at least seven days on medium containing β-estradiol. We also established two potentially neutral targeting sites and a set of vectors for reproducible expression of two transgenes. This β-estradiol-dependent system will be useful to test genes individually or in combination, allowing stable, inducible transgenic expression in P. patens.

  11. Lentiviral vector system for coordinated constitutive and drug controlled tetracycline-regulated gene co-expression.

    PubMed

    Stahlhut, Maike; Schwarzer, Adrian; Eder, Matthias; Yang, Min; Li, Zhixiong; Morgan, Michael; Schambach, Axel; Kustikova, Olga S

    2015-09-01

    Constitutive co-expression of cooperating transgenes using retroviral integrating vectors is frequently used for genetic modification of different cell types to establish therapeutic or cancer models. However, such approaches are unable to dissect the influence of dose, order and reversibility of transgene expression on the fate of newly developed therapeutic/malignant phenotypes. We present a modular lentiviral vector system, which provides expression of constitutive and inducible components. To demonstrate its functionality, we constitutively expressed the well-described transcription factor Meis1 followed by inducible co-expression of collaborating partner Hoxa9 under the control of tetracycline responsive promoters in murine fibroblasts and primary hematopoietic progenitor cells (HPCs). Fluorescent markers to track transgene co-expression revealed tightly controlled, efficiently inducible and reversible but cell type dependent gene transfer over time. We demonstrated dose-dependent blockade of myeloid differentiation when both Meis1/Hoxa9 were concomitantly overexpressed in primary HPCs in vitro, but the absence of the transformed phenotype in non-induced samples or when Hoxa9 expression was down-regulated. This system combines the advantages of lentiviral gene transfer and the opportunity for drug-controlled co-expression of multiple transgenes to dissect, among others, gene networks governing complex cell behavior, such as proto-oncogene dose-dependent leukemogenic pathways or collaborating mechanisms of genes enhancing competitive fitness of hematopoietic cells.

  12. Construction of a novel bioluminescent reporter system for investigating Shiga toxin expression of enterohemorrhagic Escherichia coli.

    PubMed

    Shimizu, Takeshi; Ohta, Yuko; Tsutsuki, Hiroyasu; Noda, Masatoshi

    2011-06-01

    A novel chromosome-plasmid hybrid bioluminescent reporter system (C-P reporter system) utilizing Photorhabdus luminescens luxCDABE genes has been constructed to monitor the expression of Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2) in enterohemorrhagic Escherichia coli (EHEC) in real time. The luxCDABE genes of P. luminescens have been cloned and divided into a luxCDAB cassette and a luxE gene. A promoter-less luxE gene introduced downstream from stx1 and from stx2 on EHEC chromosomes in single copies, and other luxCDAB genes were expressed on a multicopy number expression plasmid into the same cells. These Stx1- and Stx2-bioluminescent reporter strains expressed bioluminescence into bacteria cells when the expression of the promoter-less luxE gene was expressed in response to the promoter activity of stx1 and stx2, respectively. The expression levels of bioluminescence were identical to the production levels of Stx1 and Stx2 in the Stx1- and Stx2-bioluminescent reporter strains, and these strains produced both Stxs at the same respective levels as those of the parent EHEC strains. Using these reporter strains, we examined the profiles of Stx1 and Stx2 expression in EHEC. We found that production of both Stx1 and Stx2 in EHEC was enhanced upon contact with intestinal epithelial cells and within macrophages. However, the expression profiles between Stx1 and Stx2 in EHEC were different from each other under these conditions. Thus, these results suggested that this C-P reporter system is useful for determining the gene expression profile of bacteria.

  13. Functional evaluation of candidate ice structuring proteins using cell-free expression systems.

    PubMed

    Brödel, A K; Raymond, J A; Duman, J G; Bier, F F; Kubick, S

    2013-02-10

    Ice structuring proteins (ISPs) protect organisms from damage or death by freezing. They depress the non-equilibrium freezing point of water and prevent recrystallization, probably by binding to the surface of ice crystals. Many ISPs have been described and it is likely that many more exist in nature that have not yet been identified. ISPs come in many forms and thus cannot be reliably identified by their structure or consensus ice-binding motifs. Recombinant protein expression is the gold standard for proving the activity of a candidate ISP. Among existing expression systems, cell-free protein expression is the simplest and gives the fastest access to the protein of interest, but selection of the appropriate cell-free expression system is crucial for functionality. Here we describe cell-free expression methods for three ISPs that differ widely in structure and glycosylation status from three organisms: a fish (Macrozoarces americanus), an insect (Dendroides canadensis) and an alga (Chlamydomonas sp. CCMP681). We use both prokaryotic and eukaryotic expression systems for the production of ISPs. An ice recrystallization inhibition assay is used to test functionality. The techniques described here should improve the success of cell-free expression of ISPs in future applications.

  14. WeGET: predicting new genes for molecular systems by weighted co-expression

    PubMed Central

    Szklarczyk, Radek; Megchelenbrink, Wout; Cizek, Pavel; Ledent, Marie; Velemans, Gonny; Szklarczyk, Damian; Huynen, Martijn A.

    2016-01-01

    We have developed the Weighted Gene Expression Tool and database (WeGET, http://weget.cmbi.umcn.nl) for the prediction of new genes of a molecular system by correlated gene expression. WeGET utilizes a compendium of 465 human and 560 murine gene expression datasets that have been collected from multiple tissues under a wide range of experimental conditions. It exploits this abundance of expression data by assigning a high weight to datasets in which the known genes of a molecular system are harmoniously up- and down-regulated. WeGET ranks new candidate genes by calculating their weighted co-expression with that system. A weighted rank is calculated for human genes and their mouse orthologs. Then, an integrated gene rank and p-value is computed using a rank-order statistic. We applied our method to predict novel genes that have a high degree of co-expression with Gene Ontology terms and pathways from KEGG and Reactome. For each query set we provide a list of predicted novel genes, computed weights for transcription datasets used and cell and tissue types that contributed to the final predictions. The performance for each query set is assessed by 10-fold cross-validation. Finally, users can use the WeGET to predict novel genes that co-express with a custom query set. PMID:26582928

  15. Energetics of the all-trans{yields}13-cis isomerization of the retinal chromophore of bacteriorhodopsin: Electronic structure calculations for a simple model system

    SciTech Connect

    Woywod, Clemens; Vallet, Valerie; Li, Jingrui; Goerling, Andreas

    2008-12-08

    Understanding the molecular mechanism for the photoinduced transmembrane proton pump in the bacteriorhodopsin system is of fundamental importance. This study attempts to investigate the energetics of the initial step of the proton transport cycle, the photoisomerization of the retinal chromophore. The exact reaction pathway and the question of how many excited electronic states are involved in the internal conversion process are still unresolved. The problem is approached by constructing a reaction coordinate suggested by crystallographic studies for a simplified chromophore model system. The CASSCF and CASPT2 electronic structure methods are employed to calculate the energies of the four lowest lying singlet states as a function of the reaction coordinate. The effect of negatively charged protein residues on the reaction is simulated by inclusion of a negative point charge in the model. The results indicate that trans{yields}cis isomerization around the C{sub {beta}} = C{sub {gamma}} bond may be accompanied by twisting around the C{sub {alpha}}-C{sub {beta}} bond in order to drive the proton pump. The presence of a counterion does not seem to reduce the barrier for isomerization or the S{sub 0}-S{sub 1} energy difference but clearly stabilizes the cis--product. At first sight the results appear to support the idea of a participation of no other electronic states beyond S{sub 0} and first singly {pi}{pi}* excited state in the photoreaction. However, the relevance of this prediction is rather limited because of the small size of the model system. Other states of retinal, corresponding in particular to the partly doubly {pi}{pi}* excited S{sub 2} state of the model, are likely to have a vertical excitation energy similar to the first singly {pi}{pi}* excited state or even below.

  16. Expression studies of catalytic antibodies

    SciTech Connect

    Ulrich, H.D.; Patten, P.A.; Yang, P.L.

    1995-12-05

    We have examined the positive influence of human constant regions on the folding and bacterial expression of active soluble mouse immunoglobulin variable domains derived form a number of catalytic antibodies. Expression yields of eight hybridoma-and myeloma-derived chimeric Fab fragments are compared in both shake flasks and high-density fermentation. In addition the usefulness of this system for the generation of in vivo expression libraries is examined by constructing and expressing combinations of heavy and light chain variable regions that were not selected as a pair during an immune response. A mutagenesis study of one of the recombinant catalytic Fab fragments reveals that single amino acid substitutions can have dramatic effects on the expression yield. This system should be generally applicable to the production of Fab fragments of catalytic and other hybridoma-derived antibodies for crystallographic and structure-function studies. 41 refs., 4 figs., 1 tab.

  17. Evaluation of maize yield in an on-farm maize-soybean and maize-Lablab crop rotation systems in the Northern Guinea Savanna