Sample records for expression tag profiling

  1. Tumour-associated glial host cells display a stem-like phenotype with a distinct gene expression profile and promote growth of GBM xenografts.

    PubMed

    Leiss, Lina; Mutlu, Ercan; Øyan, Anne; Yan, Tao; Tsinkalovsky, Oleg; Sleire, Linda; Petersen, Kjell; Rahman, Mohummad Aminur; Johannessen, Mireille; Mitra, Sidhartha S; Jacobsen, Hege K; Talasila, Krishna M; Miletic, Hrvoje; Jonassen, Inge; Li, Xingang; Brons, Nicolaas H; Kalland, Karl-Henning; Wang, Jian; Enger, Per Øyvind

    2017-02-07

    Little is known about the role of glial host cells in brain tumours. However, supporting stromal cells have been shown to foster tumour growth in other cancers. We isolated stromal cells from patient-derived glioblastoma (GBM) xenografts established in GFP-NOD/scid mice. With simultaneous removal of CD11b + immune and CD31 + endothelial cells by fluorescence activated cell sorting (FACS), we obtained a population of tumour-associated glial cells, TAGs, expressing markers of terminally differentiaed glial cell types or glial progenitors. This cell population was subsequently characterised using gene expression analyses and immunocytochemistry. Furthermore, sphere formation was assessed in vitro and their glioma growth-promoting ability was examined in vivo. Finally, the expression of TAG related markers was validated in human GBMs. TAGs were highly enriched for the expression of glial cell proteins including GFAP and myelin basic protein (MBP), and immature markers such as Nestin and O4. A fraction of TAGs displayed sphere formation in stem cell medium. Moreover, TAGs promoted brain tumour growth in vivo when co-implanted with glioma cells, compared to implanting only glioma cells, or glioma cells and unconditioned glial cells from mice without tumours. Genome-wide microarray analysis of TAGs showed an expression profile distinct from glial cells from healthy mice brains. Notably, TAGs upregulated genes associated with immature cell types and self-renewal, including Pou3f2 and Sox2. In addition, TAGs from highly angiogenic tumours showed upregulation of angiogenic factors, including Vegf and Angiopoietin 2. Immunohistochemistry of three GBMs, two patient biopsies and one GBM xenograft, confirmed that the expression of these genes was mainly confined to TAGs in the tumour bed. Furthermore, their expression profiles displayed a significant overlap with gene clusters defining prognostic subclasses of human GBMs. Our data demonstrate that glial host cells in brain tumours are functionally distinct from glial cells of healthy mice brains. Furthermore, TAGs display a gene expression profile with enrichment for genes related to stem cells, immature cell types and developmental processes. Future studies are needed to delineate the biological mechanisms regulating the brain tumour-host interplay.

  2. Differential effects of low-fat and high-fat diets on fed-state hepatic triacylglycerol secretion, hepatic fatty acid profiles, and DGAT-1 protein expression in obese-prone Sprague-Dawley rats.

    PubMed

    Heden, Timothy D; Morris, E Matthew; Kearney, Monica L; Liu, Tzu-Wen; Park, Young-Min; Kanaley, Jill A; Thyfault, John P

    2014-04-01

    The purpose of this study was to compare the effects of short-term low-fat (LF) and high-fat (HF) diets on fed-state hepatic triacylglycerol (TAG) secretion, the content of proteins involved in TAG assembly and secretion, fatty acid oxidation (FAO), and the fatty acid profile of stored TAG. Using selectively bred obese-prone Sprague-Dawley rats, we directly measured fed-state hepatic TAG secretion, using Tyloxapol (a lipoprotein lipase inhibitor) and a standardized oral mixed meal (45% carbohydrate, 40% fat, 15% protein) bolus in animals fed a HF or LF diet for 2 weeks, after which the rats were maintained on their respective diet for 1 week (washout) prior to the liver being excised to measure protein content, FAO, and TAG fatty acid profiles. Hepatic DGAT-1 protein expression was ∼27% lower in HF- than in LF-fed animals (p < 0.05); the protein expression of all other molecules was similar in the 2 diets. The fed-state hepatic TAG secretion rate was ∼39% lower (p < 0.05) in HF- (4.62 ± 0.18 mmol·h(-1)) than in LF- (7.60 ± 0.57 mmol·h(-1)) fed animals. Hepatic TAG content was ∼2-fold higher (p < 0.05) in HF- (1.07 ± 0.15 nmol·g(-1) tissue) than in LF- (0.50 ± 0.16 nmol·g(-1) tissue) fed animals. In addition, the fatty acid profile of liver TAG in HF-fed animals closely resembled the diet, whereas in LF-fed animals, the fatty acid profile consisted of mostly de novo synthesized fatty acids. FAO was not altered by diet. LF and HF diets differentially alter fed-state hepatic TAG secretion, hepatic fatty acid profiles, and DGAT-1 protein expression.

  3. Differential effects of low-fat and high-fat diets on fed-state hepatic triacylglycerol secretion, hepatic fatty acid profiles, and DGAT-1 protein expression in obese-prone Sprague–Dawley rats

    PubMed Central

    Heden, Timothy D.; Morris, E. Matthew; Kearney, Monica L.; Liu, Tzu-Wen; Park, Young-min; Kanaley, Jill A.; Thyfault, John P.

    2015-01-01

    The purpose of this study was to compare the effects of short-term low-fat (LF) and high-fat (HF) diets on fed-state hepatic triacylglycerol (TAG) secretion, the content of proteins involved in TAG assembly and secretion, fatty acid oxidation (FAO), and the fatty acid profile of stored TAG. Using selectively bred obese-prone Sprague–Dawley rats, we directly measured fed-state hepatic TAG secretion, using Tyloxapol (a lipoprotein lipase inhibitor) and a standardized oral mixed meal (45% carbohydrate, 40% fat, 15% protein) bolus in animals fed a HF or LF diet for 2 weeks, after which the rats were maintained on their respective diet for 1 week (washout) prior to the liver being excised to measure protein content, FAO, and TAG fatty acid profiles. Hepatic DGAT-1 protein expression was ~27% lower in HF- than in LF-fed animals (p < 0.05); the protein expression of all other molecules was similar in the 2 diets. The fed-state hepatic TAG secretion rate was ~39% lower (p < 0.05) in HF- (4.62 ± 0.18 mmol·h−1) than in LF- (7.60 ± 0.57 mmol·h−1) fed animals. Hepatic TAG content was ~2-fold higher (p < 0.05) in HF- (1.07 ± 0.15 nmol·g−1 tissue) than in LF- (0.50 ± 0.16 nmol·g−1 tissue) fed animals. In addition, the fatty acid profile of liver TAG in HF-fed animals closely resembled the diet, whereas in LF-fed animals, the fatty acid profile consisted of mostly de novo synthesized fatty acids. FAO was not altered by diet. LF and HF diets differentially alter fed-state hepatic TAG secretion, hepatic fatty acid profiles, and DGAT-1 protein expression. PMID:24669989

  4. Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile.

    PubMed

    Qi, Xiao-Hua; Xu, Xue-Wen; Lin, Xiao-Jian; Zhang, Wen-Jie; Chen, Xue-Hao

    2012-03-01

    High-throughput tag-sequencing (Tag-seq) analysis based on the Solexa Genome Analyzer platform was applied to analyze the gene expression profiling of cucumber plant at 5 time points over a 24h period of waterlogging treatment. Approximately 5.8 million total clean sequence tags per library were obtained with 143013 distinct clean tag sequences. Approximately 23.69%-29.61% of the distinct clean tags were mapped unambiguously to the unigene database, and 53.78%-60.66% of the distinct clean tags were mapped to the cucumber genome database. Analysis of the differentially expressed genes revealed that most of the genes were down-regulated in the waterlogging stages, and the differentially expressed genes mainly linked to carbon metabolism, photosynthesis, reactive oxygen species generation/scavenging, and hormone synthesis/signaling. Finally, quantitative real-time polymerase chain reaction using nine genes independently verified the tag-mapped results. This present study reveals the comprehensive mechanisms of waterlogging-responsive transcription in cucumber. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies.

    PubMed

    Haimon, Zhana; Volaski, Alon; Orthgiess, Johannes; Boura-Halfon, Sigalit; Varol, Diana; Shemer, Anat; Yona, Simon; Zuckerman, Binyamin; David, Eyal; Chappell-Maor, Louise; Bechmann, Ingo; Gericke, Martin; Ulitsky, Igor; Jung, Steffen

    2018-06-01

    Transcriptome profiling is widely used to infer functional states of specific cell types, as well as their responses to stimuli, to define contributions to physiology and pathophysiology. Focusing on microglia, the brain's macrophages, we report here a side-by-side comparison of classical cell-sorting-based transcriptome sequencing and the 'RiboTag' method, which avoids cell retrieval from tissue context and yields translatome sequencing information. Conventional whole-cell microglial transcriptomes were found to be significantly tainted by artifacts introduced by tissue dissociation, cargo contamination and transcripts sequestered from ribosomes. Conversely, our data highlight the added value of RiboTag profiling for assessing the lineage accuracy of Cre recombinase expression in transgenic mice. Collectively, this study indicates method-based biases, reveals observer effects and establishes RiboTag-based translatome profiling as a valuable complement to standard sorting-based profiling strategies.

  6. Gene expression profiling via LongSAGE in a non-model plant species: a case study in seeds of Brassica napus

    PubMed Central

    Obermeier, Christian; Hosseini, Bashir; Friedt, Wolfgang; Snowdon, Rod

    2009-01-01

    Background Serial analysis of gene expression (LongSAGE) was applied for gene expression profiling in seeds of oilseed rape (Brassica napus ssp. napus). The usefulness of this technique for detailed expression profiling in a non-model organism was demonstrated for the highly complex, neither fully sequenced nor annotated genome of B. napus by applying a tag-to-gene matching strategy based on Brassica ESTs and the annotated proteome of the closely related model crucifer A. thaliana. Results Transcripts from 3,094 genes were detected at two time-points of seed development, 23 days and 35 days after pollination (DAP). Differential expression showed a shift from gene expression involved in diverse developmental processes including cell proliferation and seed coat formation at 23 DAP to more focussed metabolic processes including storage protein accumulation and lipid deposition at 35 DAP. The most abundant transcripts at 23 DAP were coding for diverse protease inhibitor proteins and proteases, including cysteine proteases involved in seed coat formation and a number of lipid transfer proteins involved in embryo pattern formation. At 35 DAP, transcripts encoding napin, cruciferin and oleosin storage proteins were most abundant. Over both time-points, 18.6% of the detected genes were matched by Brassica ESTs identified by LongSAGE tags in antisense orientation. This suggests a strong involvement of antisense transcript expression in regulatory processes during B. napus seed development. Conclusion This study underlines the potential of transcript tagging approaches for gene expression profiling in Brassica crop species via EST matching to annotated A. thaliana genes. Limits of tag detection for low-abundance transcripts can today be overcome by ultra-high throughput sequencing approaches, so that tag-based gene expression profiling may soon become the method of choice for global expression profiling in non-model species. PMID:19575793

  7. Differential expression of diacylglycerol acyltransferase (DGAT) genes in olive tissues.

    PubMed

    Giannoulia, K; Haralampidis, K; Poghosyan, Z; Murphy, D J; Hatzopoulos, P

    2000-12-01

    Fatty acids are accumulated in triacylglycerols (TAGs), in specialized organelles of seeds named oil bodies. The major site of TAG accumulation is detected in developing seed and mesocarp of certain species. We have isolated two cDNAs encoding DGAT enzymes from olives. The deduced polypeptides differ by 26 amino acids in size. However, they have high homology and almost identical hydropathy profiles. The DGAT gene is expressed in all tissues that synthesize TAGs. However, higher levels of DGAT transcripts have been detected in seed tissues of developing olive drupe. DGAT expression and mRNA accumulation in drupe tissues is developmentally regulated. Each DGAT transcript shows a distinct profile of accumulation. The existence of two different DGAT transcripts might reflect two different enzymes with discrete function and/or localization.

  8. Serial analysis of gene expression (SAGE) in normal human trabecular meshwork.

    PubMed

    Liu, Yutao; Munro, Drew; Layfield, David; Dellinger, Andrew; Walter, Jeffrey; Peterson, Katherine; Rickman, Catherine Bowes; Allingham, R Rand; Hauser, Michael A

    2011-04-08

    To identify the genes expressed in normal human trabecular meshwork tissue, a tissue critical to the pathogenesis of glaucoma. Total RNA was extracted from human trabecular meshwork (HTM) harvested from 3 different donors. Extracted RNA was used to synthesize individual SAGE (serial analysis of gene expression) libraries using the I-SAGE Long kit from Invitrogen. Libraries were analyzed using SAGE 2000 software to extract the 17 base pair sequence tags. The extracted sequence tags were mapped to the genome using SAGE Genie map. A total of 298,834 SAGE tags were identified from all HTM libraries (96,842, 88,126, and 113,866 tags, respectively). Collectively, there were 107,325 unique tags. There were 10,329 unique tags with a minimum of 2 counts from a single library. These tags were mapped to known unique Unigene clusters. Approximately 29% of the tags (orphan tags) did not map to a known Unigene cluster. Thirteen percent of the tags mapped to at least 2 Unigene clusters. Sequence tags from many glaucoma-related genes, including myocilin, optineurin, and WD repeat domain 36, were identified. This is the first time SAGE analysis has been used to characterize the gene expression profile in normal HTM. SAGE analysis provides an unbiased sampling of gene expression of the target tissue. These data will provide new and valuable information to improve understanding of the biology of human aqueous outflow.

  9. Serial analysis of gene expression in the silkworm, Bombyx mori.

    PubMed

    Huang, Jianhua; Miao, Xuexia; Jin, Weirong; Couble, Pierre; Mita, Kasuei; Zhang, Yong; Liu, Wenbin; Zhuang, Leijun; Shen, Yan; Keime, Celine; Gandrillon, Olivier; Brouilly, Patrick; Briolay, Jerome; Zhao, Guoping; Huang, Yongping

    2005-08-01

    The silkworm Bombyx mori is one of the most economically important insects and serves as a model for Lepidoptera insects. We used serial analysis of gene expression (SAGE) to derive profiles of expressed genes during the developmental life cycle of the silkworm and to create a reference for understanding silkworm metamorphosis. We generated four SAGE libraries, one from each of the four developmental stages of the silkworm. In total we obtained 257,964 SAGE tags, of which 39,485 were unique tags. Sorted by copy number, 14.1% of the unique tags were detected at a median to high level (five or more copies), 24.2% at lower levels (two to four copies), and 61.7% as single copies. Using a basic local alignment search tool on the EST database, 35% of the tags matched known silkworm expressed sequence tags. SAGE demonstrated that a number of the genes were up- or down-regulated during the four developmental phases of the egg, larva, pupa, and adult. Furthermore, we found that the generation of longer cDNA fragments from SAGE tags constituted the most efficient method of gene identification, which facilitated the analysis of a large number of unknown genes.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zienkiewicz, Krzysztof; Zienkiewicz, Agnieszka; Poliner, Eric

    Photosynthetic microalgae are considered a viable and sustainable resource for biofuel feedstocks, because they can produce higher biomass per land area than plants and can be grown on non-arable land. Among many microalgae considered for biofuel production, Nannochloropsis oceanica (CCMP1779) is particularly promising, because following nutrient deprivation it produces very high amounts of triacylglycerols (TAG). The committed step in TAG synthesis is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT). Remarkably, a total of 13 putative DGAT-encoding genes have been previously identified in CCMP1779 but most have not yet been studied in detail. We chose six out of 12 type-2 DGAT-encoding genes (NoDGTT1-NoDGTT6),more » based on their expression profile, for their possible role in TAG biosynthesis and the respective cDNAs were expressed in a TAG synthesis-deficient mutant of yeast. Yeast expressing NoDGTT5 accumulated TAG to the highest level. Over-expression of NoDGTT5 in CCMP1779 grown in N-replete medium resulted in levels of TAG normally observed only after N deprivation. Reduced growth rates accompanied NoDGTT5 over-expression in CCMP1779. Constitutive expression of NoDGTT5 in Arabidopsis thaliana was accompanied by increased TAG content in seeds and leaves. A broad substrate specificity for NoDGTT5 was revealed, with preference for unsaturated acyl groups. Furthermore, NoDGTT5 was able to successfully rescue the Arabidopsis tag1-1 mutant by restoring the TAG content in seeds. Taken together, these results identified NoDGTT5 as the most promising gene for the engineering of TAG synthesis in multiple hosts among the 13 DGAT-encoding genes of N. oceanica CCMP1779. Consequently, this study demonstrates the potential of NoDGTT5 as a tool for enhancing the energy density in biomass by increasing TAG content in transgenic crops used for biofuel production.« less

  11. Nannochloropsis, a rich source of diacylglycerol acyltransferases for engineering of triacylglycerol content in different hosts

    DOE PAGES

    Zienkiewicz, Krzysztof; Zienkiewicz, Agnieszka; Poliner, Eric; ...

    2017-01-03

    Photosynthetic microalgae are considered a viable and sustainable resource for biofuel feedstocks, because they can produce higher biomass per land area than plants and can be grown on non-arable land. Among many microalgae considered for biofuel production, Nannochloropsis oceanica (CCMP1779) is particularly promising, because following nutrient deprivation it produces very high amounts of triacylglycerols (TAG). The committed step in TAG synthesis is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT). Remarkably, a total of 13 putative DGAT-encoding genes have been previously identified in CCMP1779 but most have not yet been studied in detail. We chose six out of 12 type-2 DGAT-encoding genes (NoDGTT1-NoDGTT6),more » based on their expression profile, for their possible role in TAG biosynthesis and the respective cDNAs were expressed in a TAG synthesis-deficient mutant of yeast. Yeast expressing NoDGTT5 accumulated TAG to the highest level. Over-expression of NoDGTT5 in CCMP1779 grown in N-replete medium resulted in levels of TAG normally observed only after N deprivation. Reduced growth rates accompanied NoDGTT5 over-expression in CCMP1779. Constitutive expression of NoDGTT5 in Arabidopsis thaliana was accompanied by increased TAG content in seeds and leaves. A broad substrate specificity for NoDGTT5 was revealed, with preference for unsaturated acyl groups. Furthermore, NoDGTT5 was able to successfully rescue the Arabidopsis tag1-1 mutant by restoring the TAG content in seeds. Taken together, these results identified NoDGTT5 as the most promising gene for the engineering of TAG synthesis in multiple hosts among the 13 DGAT-encoding genes of N. oceanica CCMP1779. Consequently, this study demonstrates the potential of NoDGTT5 as a tool for enhancing the energy density in biomass by increasing TAG content in transgenic crops used for biofuel production.« less

  12. Induction of Interferon-Stimulated Genes by Simian Virus 40 T Antigens

    PubMed Central

    Rathi, Abhilasha V.; Cantalupo, Paul G.; Sarkar, Saumendra N.; Pipas, James M.

    2010-01-01

    Simian virus 40 (SV40) large T antigen (TAg) is a multifunctional oncoprotein essential for productive viral infection and for cellular transformation. We have used microarray analysis to examine the global changes in cellular gene expression induced by wild-type T antigen (TAgwt) and TAg-mutants in mouse embryo fibroblasts (MEFs). The expression profile of approximately 800 cellular genes was altered by TAgwt and a truncated TAg (TAgN136), including many genes that influence cell cycle, DNA-replication, transcription, chromatin structure and DNA repair. Unexpectedly, we found a significant number of immune response genes upregulated by TAgwt including many interferon stimulated genes (ISGs) such as ISG56, OAS, Rsad2, Ifi27 and Mx1. Additionally, we also observed activation of STAT1 by TAgwt. Our genetic studies using several TAg mutants reveal an unexplored function of TAg and indicate that the LXCXE motif and p53 binding are required for the upregulation of ISGs. PMID:20692676

  13. Expression and characterization of human CB1 cannabinoid receptor in methylotrophic yeast Pichia pastoris.

    PubMed

    Kim, Tae-Kang; Zhang, Rundong; Feng, Wenke; Cai, Jian; Pierce, William; Song, Zhao-Hui

    2005-03-01

    For the purpose of purification and structural characterization, the CB1 cannabinoid receptors are expressed in methylotrophic yeast Pichia pastoris. The expression plasmid was constructed in which the CB1 gene is under the control of the highly inducible promoter of P. pastoris alcohol oxidase I gene. To facilitate easy detection and purification, a FLAG tag was introduced at the N-terminal, a c-myc epitope and a hexahistidine tag were introduced at the C-terminal of the CB1. In membrane preparations of CB1 gene transformed yeast cells, Western blot analysis detected the expression of CB1 proteins. Radioligand binding assays demonstrated that the tagged CB1 receptors expressed in P. pastoris have a pharmacological profile similar to that of the untagged CB1 receptors expressed in mammalian systems. Furthermore, the tagged CB1 receptors were purified by anti-FLAG M2 affinity chromatography and the identity of the purified CB1 receptor proteins was confirmed by Western blot analysis. MALDI/TOF mass spectrometry analysis of the peptides extracted from tryptic digestions of purified CB1 preparations detected 17 peptide fragments derived from the CB1, thus further confirming the identity of the purified receptor. In conclusion, these data demonstrated for the first time that epitope tagged, functional CB1 cannabinoid receptors can be expressed in P. pastoris for purification and mass spectrometry characterization.

  14. Generation of a total of 6483 expressed sequence tags from 60 day-old bovine whole fetus and fetal placenta.

    PubMed

    Oishi, M; Gohma, H; Lejukole, H Y; Taniguchi, Y; Yamada, T; Suzuki, K; Shinkai, H; Uenishi, H; Yasue, H; Sasaki, Y

    2004-05-01

    Expressed sequence tags (ESTs) generated based on characterization of clones isolated randomly from cDNA libraries are used to study gene expression profiles in specific tissues and to provide useful information for characterizing tissue physiology. In this study, two directionally cloned cDNA libraries were constructed from 60 day-old bovine whole fetus and fetal placenta. We have characterized 5357 and 1126 clones, and then identified 3464 and 795 unique sequences for the fetus and placenta cDNA libraries: 1851 and 504 showed homology to already identified genes, and 1613 and 291 showed no significant matches to any of the sequences in DNA databases, respectively. Further, we found 94 unique sequences overlapping in both the fetus and the placenta, leading to a catalog of 4165 genes expressed in 60 day-old fetus and placenta. The catalog is used to examine expression profile of genes in 60 day-old bovine fetus and placenta.

  15. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding.

    PubMed

    Shahi, Payam; Kim, Samuel C; Haliburton, John R; Gartner, Zev J; Abate, Adam R

    2017-03-14

    Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.

  16. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding

    NASA Astrophysics Data System (ADS)

    Shahi, Payam; Kim, Samuel C.; Haliburton, John R.; Gartner, Zev J.; Abate, Adam R.

    2017-03-01

    Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.

  17. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding

    PubMed Central

    Shahi, Payam; Kim, Samuel C.; Haliburton, John R.; Gartner, Zev J.; Abate, Adam R.

    2017-01-01

    Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing. PMID:28290550

  18. Developmental Regulation of Diacylglycerol Acyltransferase Family Gene Expression in Tung Tree Tissues

    PubMed Central

    Cao, Heping; Shockey, Jay M.; Klasson, K. Thomas; Chapital, Dorselyn C.; Mason, Catherine B.; Scheffler, Brian E.

    2013-01-01

    Diacylglycerol acyltransferases (DGAT) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been identified in numerous organisms. Multiple isoforms of DGAT are present in eukaryotes. We previously cloned DGAT1 and DGAT2 genes of tung tree (Vernicia fordii), whose novel seed TAGs are useful in a wide range of industrial applications. The objective of this study was to understand the developmental regulation of DGAT family gene expression in tung tree. To this end, we first cloned a tung tree gene encoding DGAT3, a putatively soluble form of DGAT that possesses 11 completely conserved amino acid residues shared among 27 DGAT3s from 19 plant species. Unlike DGAT1 and DGAT2 subfamilies, DGAT3 is absent from animals. We then used TaqMan and SYBR Green quantitative real-time PCR, along with northern and western blotting, to study the expression patterns of the three DGAT genes in tung tree tissues. Expression results demonstrate that 1) all three isoforms of DGAT genes are expressed in developing seeds, leaves and flowers; 2) DGAT2 is the major DGAT mRNA in tung seeds, whose expression profile is well-coordinated with the oil profile in developing tung seeds; and 3) DGAT3 is the major form of DGAT mRNA in tung leaves, flowers and immature seeds prior to active tung oil biosynthesis. These results suggest that DGAT2 is probably the major TAG biosynthetic isoform in tung seeds and that DGAT3 gene likely plays a significant role in TAG metabolism in other tissues. Therefore, DGAT2 should be a primary target for tung oil engineering in transgenic organisms. PMID:24146944

  19. Heterologous co-expression of a yeast diacylglycerol acyltransferase (ScDGA1) and a plant oleosin (AtOLEO3) as an efficient tool for enhancing triacylglycerol accumulation in the marine diatom Phaeodactylum tricornutum.

    PubMed

    Zulu, Nodumo Nokulunga; Popko, Jennifer; Zienkiewicz, Krzysztof; Tarazona, Pablo; Herrfurth, Cornelia; Feussner, Ivo

    2017-01-01

    Microalgae are promising alternate and renewable sources for producing valuable products such as biofuel and essential fatty acids. Although this is the case, there are still challenges impeding on the effective commercial production of microalgal products. For instance, their product yield is still too low. Therefore, this study was oriented towards enhancing triacylglycerol (TAG) accumulation in the diatom Phaeodactylum tricornutum (strain Pt4). To achieve this, a type 2 acyl-CoA:diacylglycerol acyltransferase from yeast ( ScDGA1 ) and the lipid droplet (LD) stabilizing oleosin protein 3 from Arabidopsis thaliana ( AtOLEO3 ) were expressed in Pt4. The individual expression of ScDGA1 and AtOLEO3 in Pt4 resulted in a 2.3- and 1.4-fold increase in TAG levels, respectively, in comparison to the wild type. The co-expression of both, ScDGA1 and AtOLEO3 , was accompanied by a 3.6-fold increase in TAG content. On the cellular level, the lines co-expressing ScDGA1 and AtOLEO3 showed the presence of the larger and increased numbers of lipid droplets when compared to transformants expressing single genes and an empty vector. Under nitrogen stress, TAG productivity was further increased twofold in comparison to nitrogen-replete conditions. While TAG accumulation was enhanced in the analyzed transformants, the fatty acid composition remained unchanged neither in the total lipid nor in the TAG profile. The co-expression of two genes was shown to be a more effective strategy for enhancing TAG accumulation in P. tricornutum strain Pt4 than a single gene strategy. For the first time in a diatom, a LD protein from a vascular plant, oleosin, was shown to have an impact on TAG accumulation and on LD organization.

  20. Distinct profiles of expressed sequence tags during intestinal regeneration in the sea cucumber Holothuria glaberrima

    PubMed Central

    Rojas-Cartagena, Carmencita; Ortíz-Pineda, Pablo; Ramírez-Gómez, Francisco; Suárez-Castillo, Edna C.; Matos-Cruz, Vanessa; Rodríguez, Carlos; Ortíz-Zuazaga, Humberto; García-Arrarás, José E.

    2010-01-01

    Repair and regeneration are key processes for tissue maintenance, and their disruption may lead to disease states. Little is known about the molecular mechanisms that underline the repair and regeneration of the digestive tract. The sea cucumber Holothuria glaberrima represents an excellent model to dissect and characterize the molecular events during intestinal regeneration. To study the gene expression profile, cDNA libraries were constructed from normal, 3-day, and 7-day regenerating intestines of H. glaberrima. Clones were randomly sequenced and queried against the nonredundant protein database at the National Center for Biotechnology Information. RT-PCR analyses were made of several genes to determine their expression profile during intestinal regeneration. A total of 5,173 sequences from three cDNA libraries were obtained. About 46.2, 35.6, and 26.2% of the sequences for the normal, 3-days, and 7-days cDNA libraries, respectively, shared significant similarity with known sequences in the protein database of GenBank but only present 10% of similarity among them. Analysis of the libraries in terms of functional processes, protein domains, and most common sequences suggests that a differential expression profile is taking place during the regeneration process. Further examination of the expressed sequence tag dataset revealed that 12 putative genes are differentially expressed at significant level (R > 6). Experimental validation by RT-PCR analysis reveals that at least three genes (unknown C-4677-1, melanotransferrin, and centaurin) present a differential expression during regeneration. These findings strongly suggest that the gene expression profile varies among regeneration stages and provide evidence for the existence of differential gene expression. PMID:17579180

  1. Transcriptome-Wide Identification of Preferentially Expressed Genes in the Hypothalamus and Pituitary Gland

    PubMed Central

    St-Amand, Jonny; Yoshioka, Mayumi; Tanaka, Keitaro; Nishida, Yuichiro

    2012-01-01

    To identify preferentially expressed genes in the central endocrine organs of the hypothalamus and pituitary gland, we generated transcriptome-wide mRNA profiles of the hypothalamus, pituitary gland, and parietal cortex in male mice (12–15 weeks old) using serial analysis of gene expression (SAGE). Total counts of SAGE tags for the hypothalamus, pituitary gland, and parietal cortex were 165824, 126688, and 161045 tags, respectively. This represented 59244, 45151, and 55131 distinct tags, respectively. Comparison of these mRNA profiles revealed that 22 mRNA species, including three potential novel transcripts, were preferentially expressed in the hypothalamus. In addition to well-known hypothalamic transcripts, such as hypocretin, several genes involved in hormone function, intracellular transduction, metabolism, protein transport, steroidogenesis, extracellular matrix, and brain disease were identified as preferentially expressed hypothalamic transcripts. In the pituitary gland, 106 mRNA species, including 60 potential novel transcripts, were preferentially expressed. In addition to well-known pituitary genes, such as growth hormone and thyroid stimulating hormone beta, a number of genes classified to function in transport, amino acid metabolism, intracellular transduction, cell adhesion, disulfide bond formation, stress response, transcription, protein synthesis, and turnover, cell differentiation, the cell cycle, and in the cytoskeleton and extracellular matrix were also preferentially expressed. In conclusion, the current study identified not only well-known hypothalamic and pituitary transcripts but also a number of new candidates likely to be involved in endocrine homeostatic systems regulated by the hypothalamus and pituitary gland. PMID:22649398

  2. Transcriptome-wide identification of preferentially expressed genes in the hypothalamus and pituitary gland.

    PubMed

    St-Amand, Jonny; Yoshioka, Mayumi; Tanaka, Keitaro; Nishida, Yuichiro

    2011-01-01

    To identify preferentially expressed genes in the central endocrine organs of the hypothalamus and pituitary gland, we generated transcriptome-wide mRNA profiles of the hypothalamus, pituitary gland, and parietal cortex in male mice (12-15 weeks old) using serial analysis of gene expression (SAGE). Total counts of SAGE tags for the hypothalamus, pituitary gland, and parietal cortex were 165824, 126688, and 161045 tags, respectively. This represented 59244, 45151, and 55131 distinct tags, respectively. Comparison of these mRNA profiles revealed that 22 mRNA species, including three potential novel transcripts, were preferentially expressed in the hypothalamus. In addition to well-known hypothalamic transcripts, such as hypocretin, several genes involved in hormone function, intracellular transduction, metabolism, protein transport, steroidogenesis, extracellular matrix, and brain disease were identified as preferentially expressed hypothalamic transcripts. In the pituitary gland, 106 mRNA species, including 60 potential novel transcripts, were preferentially expressed. In addition to well-known pituitary genes, such as growth hormone and thyroid stimulating hormone beta, a number of genes classified to function in transport, amino acid metabolism, intracellular transduction, cell adhesion, disulfide bond formation, stress response, transcription, protein synthesis, and turnover, cell differentiation, the cell cycle, and in the cytoskeleton and extracellular matrix were also preferentially expressed. In conclusion, the current study identified not only well-known hypothalamic and pituitary transcripts but also a number of new candidates likely to be involved in endocrine homeostatic systems regulated by the hypothalamus and pituitary gland.

  3. Comparison of Peak-area Ratios and Percentage Peak Area Derived from HPLC-evaporative Light Scattering and Refractive Index Detectors for Palm Oil and its Fractions.

    PubMed

    Ping, Bonnie Tay Yen; Aziz, Haliza Abdul; Idris, Zainab

    2018-01-01

    High-Performance Liquid Chromatography (HPLC) methods via evaporative light scattering (ELS) and refractive index (RI) detectors are used by the local palm oil industry to monitor the TAG profiles of palm oil and its fractions. The quantitation method used is based on area normalization of the TAG components and expressed as percentage area. Although not frequently used, peak-area ratios based on TAG profiles are a possible qualitative method for characterizing the TAG of palm oil and its fractions. This paper aims to compare these two detectors in terms of peak-area ratio, percentage peak area composition, and TAG elution profiles. The triacylglycerol (TAG) composition for palm oil and its fractions were analysed under similar HPLC conditions i.e. mobile phase and column. However, different sample concentrations were used for the detectors while remaining within the linearity limits of the detectors. These concentrations also gave a good baseline resolved separation for all the TAGs components. The results of the ELSD method's percentage area composition for the TAGs of palm oil and its fractions differed from those of RID. This indicates an unequal response of TAGs for palm oil and its fractions using the ELSD, also affecting the peak area ratios. They were found not to be equivalent to those obtained using the HPLC-RID. The ELSD method showed a better baseline separation for the TAGs components, with a more stable baseline as compared with the corresponding HPLC-RID. In conclusion, the percentage area compositions and peak-area ratios for palm oil and its fractions as derived from HPLC-ELSD and RID were not equivalent due to different responses of TAG components to the ELSD detector. The HPLC-RID has a better accuracy for percentage area composition and peak-area ratio because the TAG components response equally to the detector.

  4. Single-cell transcriptional analysis of taste sensory neuron pair in Caenorhabditis elegans.

    PubMed

    Takayama, Jun; Faumont, Serge; Kunitomo, Hirofumi; Lockery, Shawn R; Iino, Yuichi

    2010-01-01

    The nervous system is composed of a wide variety of neurons. A description of the transcriptional profiles of each neuron would yield enormous information about the molecular mechanisms that define morphological or functional characteristics. Here we show that RNA isolation from single neurons is feasible by using an optimized mRNA tagging method. This method extracts transcripts in the target cells by co-immunoprecipitation of the complexes of RNA and epitope-tagged poly(A) binding protein expressed specifically in the cells. With this method and genome-wide microarray, we compared the transcriptional profiles of two functionally different neurons in the main C. elegans gustatory neuron class ASE. Eight of the 13 known subtype-specific genes were successfully detected. Additionally, we identified nine novel genes including a receptor guanylyl cyclase, secreted proteins, a TRPC channel and uncharacterized genes conserved among nematodes, suggesting the two neurons are substantially different than previously thought. The expression of these novel genes was controlled by the previously known regulatory network for subtype differentiation. We also describe unique motif organization within individual gene groups classified by the expression patterns in ASE. Our study paves the way to the complete catalog of the expression profiles of individual C. elegans neurons.

  5. A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds

    PubMed Central

    Durrett, Timothy P.; McClosky, Daniel D.; Tumaney, Ajay W.; Elzinga, Dezi A.; Ohlrogge, John; Pollard, Mike

    2010-01-01

    Endosperm and embryo tissues from the seeds of Euonymus alatus (Burning Bush) accumulate high levels of 3-acetyl-1,2-diacyl-sn-glycerols (acTAGs) as their major storage lipids. In contrast, the aril tissue surrounding the seed produces long-chain triacylglycerols (lcTAGs) typical of most other organisms. The presence of the sn-3 acetyl group imparts acTAGs with different physical and chemical properties, such as a 30% reduction in viscosity, compared to lcTAGs. Comparative transcriptome analysis of developing endosperm and aril tissues using pyrosequencing technology was performed to isolate the enzyme necessary for the synthesis of acTAGs. An uncharacterized membrane-bound O-acyltransferase (MBOAT) family member was the most abundant acyltransferase in the endosperm but was absent from the aril. Expression of this MBOAT in yeast resulted in the accumulation of acTAGs but not lcTAG; hence, the enzyme was named EaDAcT (Euonymus alatus diacylglycerol acetyltransferase). Yeast microsomes expressing EaDAcT possessed acetyl-CoA diacylglycerol acetyltransferase activity but lacked long-chain acyl-CoA diacylglycerol acyltransferase activity. Expression of EaDAcT under the control of a strong, seed-specific promoter in Arabidopsis resulted in the accumulation of acTAGs, up to 40 mol % of total TAG in the seed oil. These results demonstrate the utility of deep transcriptional profiling with multiple tissues as a gene discovery strategy for low-abundance proteins. They also show that EaDAcT is the acetyltransferase necessary and sufficient for the production of acTAGs in Euonymus seeds, and that this activity can be introduced into the seeds of other plants, allowing the evaluation of these unusual TAGs for biofuel and other applications. PMID:20439724

  6. A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds.

    PubMed

    Durrett, Timothy P; McClosky, Daniel D; Tumaney, Ajay W; Elzinga, Dezi A; Ohlrogge, John; Pollard, Mike

    2010-05-18

    Endosperm and embryo tissues from the seeds of Euonymus alatus (Burning Bush) accumulate high levels of 3-acetyl-1,2-diacyl-sn-glycerols (acTAGs) as their major storage lipids. In contrast, the aril tissue surrounding the seed produces long-chain triacylglycerols (lcTAGs) typical of most other organisms. The presence of the sn-3 acetyl group imparts acTAGs with different physical and chemical properties, such as a 30% reduction in viscosity, compared to lcTAGs. Comparative transcriptome analysis of developing endosperm and aril tissues using pyrosequencing technology was performed to isolate the enzyme necessary for the synthesis of acTAGs. An uncharacterized membrane-bound O-acyltransferase (MBOAT) family member was the most abundant acyltransferase in the endosperm but was absent from the aril. Expression of this MBOAT in yeast resulted in the accumulation of acTAGs but not lcTAG; hence, the enzyme was named EaDAcT (Euonymus alatus diacylglycerol acetyltransferase). Yeast microsomes expressing EaDAcT possessed acetyl-CoA diacylglycerol acetyltransferase activity but lacked long-chain acyl-CoA diacylglycerol acyltransferase activity. Expression of EaDAcT under the control of a strong, seed-specific promoter in Arabidopsis resulted in the accumulation of acTAGs, up to 40 mol % of total TAG in the seed oil. These results demonstrate the utility of deep transcriptional profiling with multiple tissues as a gene discovery strategy for low-abundance proteins. They also show that EaDAcT is the acetyltransferase necessary and sufficient for the production of acTAGs in Euonymus seeds, and that this activity can be introduced into the seeds of other plants, allowing the evaluation of these unusual TAGs for biofuel and other applications.

  7. Differential gene expression in the siphonophore Nanomia bijuga (Cnidaria) assessed with multiple next-generation sequencing workflows.

    PubMed

    Siebert, Stefan; Robinson, Mark D; Tintori, Sophia C; Goetz, Freya; Helm, Rebecca R; Smith, Stephen A; Shaner, Nathan; Haddock, Steven H D; Dunn, Casey W

    2011-01-01

    We investigated differential gene expression between functionally specialized feeding polyps and swimming medusae in the siphonophore Nanomia bijuga (Cnidaria) with a hybrid long-read/short-read sequencing strategy. We assembled a set of partial gene reference sequences from long-read data (Roche 454), and generated short-read sequences from replicated tissue samples that were mapped to the references to quantify expression. We collected and compared expression data with three short-read expression workflows that differ in sample preparation, sequencing technology, and mapping tools. These workflows were Illumina mRNA-Seq, which generates sequence reads from random locations along each transcript, and two tag-based approaches, SOLiD SAGE and Helicos DGE, which generate reads from particular tag sites. Differences in expression results across workflows were mostly due to the differential impact of missing data in the partial reference sequences. When all 454-derived gene reference sequences were considered, Illumina mRNA-Seq detected more than twice as many differentially expressed (DE) reference sequences as the tag-based workflows. This discrepancy was largely due to missing tag sites in the partial reference that led to false negatives in the tag-based workflows. When only the subset of reference sequences that unambiguously have tag sites was considered, we found broad congruence across workflows, and they all identified a similar set of DE sequences. Our results are promising in several regards for gene expression studies in non-model organisms. First, we demonstrate that a hybrid long-read/short-read sequencing strategy is an effective way to collect gene expression data when an annotated genome sequence is not available. Second, our replicated sampling indicates that expression profiles are highly consistent across field-collected animals in this case. Third, the impacts of partial reference sequences on the ability to detect DE can be mitigated through workflow choice and deeper reference sequencing.

  8. Differential Gene Expression in the Siphonophore Nanomia bijuga (Cnidaria) Assessed with Multiple Next-Generation Sequencing Workflows

    PubMed Central

    Siebert, Stefan; Robinson, Mark D.; Tintori, Sophia C.; Goetz, Freya; Helm, Rebecca R.; Smith, Stephen A.; Shaner, Nathan; Haddock, Steven H. D.; Dunn, Casey W.

    2011-01-01

    We investigated differential gene expression between functionally specialized feeding polyps and swimming medusae in the siphonophore Nanomia bijuga (Cnidaria) with a hybrid long-read/short-read sequencing strategy. We assembled a set of partial gene reference sequences from long-read data (Roche 454), and generated short-read sequences from replicated tissue samples that were mapped to the references to quantify expression. We collected and compared expression data with three short-read expression workflows that differ in sample preparation, sequencing technology, and mapping tools. These workflows were Illumina mRNA-Seq, which generates sequence reads from random locations along each transcript, and two tag-based approaches, SOLiD SAGE and Helicos DGE, which generate reads from particular tag sites. Differences in expression results across workflows were mostly due to the differential impact of missing data in the partial reference sequences. When all 454-derived gene reference sequences were considered, Illumina mRNA-Seq detected more than twice as many differentially expressed (DE) reference sequences as the tag-based workflows. This discrepancy was largely due to missing tag sites in the partial reference that led to false negatives in the tag-based workflows. When only the subset of reference sequences that unambiguously have tag sites was considered, we found broad congruence across workflows, and they all identified a similar set of DE sequences. Our results are promising in several regards for gene expression studies in non-model organisms. First, we demonstrate that a hybrid long-read/short-read sequencing strategy is an effective way to collect gene expression data when an annotated genome sequence is not available. Second, our replicated sampling indicates that expression profiles are highly consistent across field-collected animals in this case. Third, the impacts of partial reference sequences on the ability to detect DE can be mitigated through workflow choice and deeper reference sequencing. PMID:21829563

  9. Gene expression profiling of the plant pathogenic basidiomycetous fungus Rhizoctonia solani AG 4 reveals putative virulence factors

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia solani is a ubiquitous basidiomycetous soilborne fungal pathogen causing damping off of seedlings, aerial blights and postharvest diseases. To gain insight into the molecular mechanisms of pathogenesis a global approach based on analysis of expressed sequence tags (ESTs) was undertaken. ...

  10. Comparison of immune transcriptome response following infection with PRRSV, PCV2 and SIV

    USDA-ARS?s Scientific Manuscript database

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen of swine. Here we identified and compared gene expression changes in tracheobronchial lymph nodes (TBLN) following viral infection using Digital Gene Expression Tag Profiling (DGETP). Pigs were infected with 1 x 10**5 ce...

  11. DeepSAGE Based Differential Gene Expression Analysis under Cold and Freeze Stress in Seabuckthorn (Hippophae rhamnoides L.)

    PubMed Central

    Chaudhary, Saurabh; Sharma, Prakash C.

    2015-01-01

    Seabuckthorn (Hippophae rhamnoides L.), an important plant species of Indian Himalayas, is well known for its immense medicinal and nutritional value. The plant has the ability to sustain growth in harsh environments of extreme temperatures, drought and salinity. We employed DeepSAGE, a tag based approach, to identify differentially expressed genes under cold and freeze stress in seabuckthorn. In total 36.2 million raw tags including 13.9 million distinct tags were generated using Illumina sequencing platform for three leaf tissue libraries including control (CON), cold stress (CS) and freeze stress (FS). After discarding low quality tags, 35.5 million clean tags including 7 million distinct clean tags were obtained. In all, 11922 differentially expressed genes (DEGs) including 6539 up regulated and 5383 down regulated genes were identified in three comparative setups i.e. CON vs CS, CON vs FS and CS vs FS. Gene ontology and KEGG pathway analysis were performed to assign gene ontology term to DEGs and ascertain their biological functions. DEGs were mapped back to our existing seabuckthorn transcriptome assembly comprising of 88,297 putative unigenes leading to the identification of 428 cold and freeze stress responsive genes. Expression of randomly selected 22 DEGs was validated using qRT-PCR that further supported our DeepSAGE results. The present study provided a comprehensive view of global gene expression profile of seabuckthorn under cold and freeze stresses. The DeepSAGE data could also serve as a valuable resource for further functional genomics studies aiming selection of candidate genes for development of abiotic stress tolerant transgenic plants. PMID:25803684

  12. DeepSAGE based differential gene expression analysis under cold and freeze stress in seabuckthorn (Hippophae rhamnoides L.).

    PubMed

    Chaudhary, Saurabh; Sharma, Prakash C

    2015-01-01

    Seabuckthorn (Hippophae rhamnoides L.), an important plant species of Indian Himalayas, is well known for its immense medicinal and nutritional value. The plant has the ability to sustain growth in harsh environments of extreme temperatures, drought and salinity. We employed DeepSAGE, a tag based approach, to identify differentially expressed genes under cold and freeze stress in seabuckthorn. In total 36.2 million raw tags including 13.9 million distinct tags were generated using Illumina sequencing platform for three leaf tissue libraries including control (CON), cold stress (CS) and freeze stress (FS). After discarding low quality tags, 35.5 million clean tags including 7 million distinct clean tags were obtained. In all, 11922 differentially expressed genes (DEGs) including 6539 up regulated and 5383 down regulated genes were identified in three comparative setups i.e. CON vs CS, CON vs FS and CS vs FS. Gene ontology and KEGG pathway analysis were performed to assign gene ontology term to DEGs and ascertain their biological functions. DEGs were mapped back to our existing seabuckthorn transcriptome assembly comprising of 88,297 putative unigenes leading to the identification of 428 cold and freeze stress responsive genes. Expression of randomly selected 22 DEGs was validated using qRT-PCR that further supported our DeepSAGE results. The present study provided a comprehensive view of global gene expression profile of seabuckthorn under cold and freeze stresses. The DeepSAGE data could also serve as a valuable resource for further functional genomics studies aiming selection of candidate genes for development of abiotic stress tolerant transgenic plants.

  13. Genome-Wide Analysis of Differentially Expressed Genes Relevant to Rhizome Formation in Lotus Root (Nelumbo nucifera Gaertn)

    PubMed Central

    Yin, Jingjing; Li, Liangjun; Chen, Xuehao

    2013-01-01

    Lotus root is a popular wetland vegetable which produces edible rhizome. At the molecular level, the regulation of rhizome formation is very complex, which has not been sufficiently addressed in research. In this study, to identify differentially expressed genes (DEGs) in lotus root, four libraries (L1 library: stolon stage, L2 library: initial swelling stage, L3 library: middle swelling stage, L4: later swelling stage) were constructed from the rhizome development stages. High-throughput tag-sequencing technique was used which is based on Solexa Genome Analyzer Platform. Approximately 5.0 million tags were sequenced, and 4542104, 4474755, 4777919, and 4750348 clean tags including 151282, 137476, 215872, and 166005 distinct tags were obtained after removal of low quality tags from each library respectively. More than 43% distinct tags were unambiguous tags mapping to the reference genes, and 40% were unambiguous tag-mapped genes. From L1, L2, L3, and L4, total 20471, 18785, 23448, and 21778 genes were annotated, after mapping their functions in existing databases. Profiling of gene expression in L1/L2, L2/L3, and L3/L4 libraries were different among most of the selected 20 DEGs. Most of the DEGs in L1/L2 libraries were relevant to fiber development and stress response, while in L2/L3 and L3/L4 libraries, major of the DEGs were involved in metabolism of energy and storage. All up-regulated transcriptional factors in four libraries and 14 important rhizome formation-related genes in four libraries were also identified. In addition, the expression of 9 genes from identified DEGs was performed by qRT-PCR method. In a summary, this study provides a comprehensive understanding of gene expression during the rhizome formation in lotus root. PMID:23840598

  14. Defining the Human Macula Transcriptome and Candidate Retinal Disease Genes UsingEyeSAGE

    PubMed Central

    Rickman, Catherine Bowes; Ebright, Jessica N.; Zavodni, Zachary J.; Yu, Ling; Wang, Tianyuan; Daiger, Stephen P.; Wistow, Graeme; Boon, Kathy; Hauser, Michael A.

    2009-01-01

    Purpose To develop large-scale, high-throughput annotation of the human macula transcriptome and to identify and prioritize candidate genes for inherited retinal dystrophies, based on ocular-expression profiles using serial analysis of gene expression (SAGE). Methods Two human retina and two retinal pigment epithelium (RPE)/choroid SAGE libraries made from matched macula or midperipheral retina and adjacent RPE/choroid of morphologically normal 28- to 66-year-old donors and a human central retina longSAGE library made from 41- to 66-year-old donors were generated. Their transcription profiles were entered into a relational database, EyeSAGE, including microarray expression profiles of retina and publicly available normal human tissue SAGE libraries. EyeSAGE was used to identify retina- and RPE-specific and -associated genes, and candidate genes for retina and RPE disease loci. Differential and/or cell-type specific expression was validated by quantitative and single-cell RT-PCR. Results Cone photoreceptor-associated gene expression was elevated in the macula transcription profiles. Analysis of the longSAGE retina tags enhanced tag-to-gene mapping and revealed alternatively spliced genes. Analysis of candidate gene expression tables for the identified Bardet-Biedl syndrome disease gene (BBS5) in the BBS5 disease region table yielded BBS5 as the top candidate. Compelling candidates for inherited retina diseases were identified. Conclusions The EyeSAGE database, combining three different gene-profiling platforms including the authors’ multidonor-derived retina/RPE SAGE libraries and existing single-donor retina/RPE libraries, is a powerful resource for definition of the retina and RPE transcriptomes. It can be used to identify retina-specific genes, including alternatively spliced transcripts and to prioritize candidate genes within mapped retinal disease regions. PMID:16723438

  15. Defining the human macula transcriptome and candidate retinal disease genes using EyeSAGE.

    PubMed

    Bowes Rickman, Catherine; Ebright, Jessica N; Zavodni, Zachary J; Yu, Ling; Wang, Tianyuan; Daiger, Stephen P; Wistow, Graeme; Boon, Kathy; Hauser, Michael A

    2006-06-01

    To develop large-scale, high-throughput annotation of the human macula transcriptome and to identify and prioritize candidate genes for inherited retinal dystrophies, based on ocular-expression profiles using serial analysis of gene expression (SAGE). Two human retina and two retinal pigment epithelium (RPE)/choroid SAGE libraries made from matched macula or midperipheral retina and adjacent RPE/choroid of morphologically normal 28- to 66-year-old donors and a human central retina longSAGE library made from 41- to 66-year-old donors were generated. Their transcription profiles were entered into a relational database, EyeSAGE, including microarray expression profiles of retina and publicly available normal human tissue SAGE libraries. EyeSAGE was used to identify retina- and RPE-specific and -associated genes, and candidate genes for retina and RPE disease loci. Differential and/or cell-type specific expression was validated by quantitative and single-cell RT-PCR. Cone photoreceptor-associated gene expression was elevated in the macula transcription profiles. Analysis of the longSAGE retina tags enhanced tag-to-gene mapping and revealed alternatively spliced genes. Analysis of candidate gene expression tables for the identified Bardet-Biedl syndrome disease gene (BBS5) in the BBS5 disease region table yielded BBS5 as the top candidate. Compelling candidates for inherited retina diseases were identified. The EyeSAGE database, combining three different gene-profiling platforms including the authors' multidonor-derived retina/RPE SAGE libraries and existing single-donor retina/RPE libraries, is a powerful resource for definition of the retina and RPE transcriptomes. It can be used to identify retina-specific genes, including alternatively spliced transcripts and to prioritize candidate genes within mapped retinal disease regions.

  16. SAGE analysis of early oogenesis in the silkworm, Bombyx mori.

    PubMed

    Funaguma, Shunsuke; Hashimoto, Shin-ichi; Suzuki, Yutaka; Omuro, Naoko; Sugano, Sumio; Mita, Kazuei; Katsuma, Susumu; Shimada, Toru

    2007-02-01

    To identify genes involved in the differentiation of Bombyx cystoblast, we constructed two 3' long serial analysis of gene expression (Long SAGE) libraries from stage 1-3 or stage 2-3 egg chambers and compared their gene expression profiles. In both libraries, the most frequent tags were derived from the same novel transcript. The transcript does not have any open reading frame capable of encoding a protein with over 100 amino acids in length. RNA blot analysis revealed that this transcript is specifically and abundantly expressed in the Bombyx ovary, mainly the germ line cells in the ovarioles. These results suggest that Bombyx oogenesis may be regulated by a previously unidentified non-coding RNA. Comparison of the gene expression profiles between the stage 1-3 and stage 2-3 egg chamber libraries revealed that 272 tags were significantly more abundant in stage 1-3 egg chambers (p<0.05 and at least two-fold change) than in library 2. Among the differentially expressed transcripts were the sequences that correspond to ATP synthase subunit d (3.1-fold enriched) and ATP synthase coupling factor 6 (9.1-fold enriched), suggesting that they are involved in regulation of cell cycle of cystocytes.

  17. Digital transcriptome profiling of normal and glioblastoma-derived neural stem cells identifies genes associated with patient survival

    PubMed Central

    2012-01-01

    Background Glioblastoma multiforme, the most common type of primary brain tumor in adults, is driven by cells with neural stem (NS) cell characteristics. Using derivation methods developed for NS cells, it is possible to expand tumorigenic stem cells continuously in vitro. Although these glioblastoma-derived neural stem (GNS) cells are highly similar to normal NS cells, they harbor mutations typical of gliomas and initiate authentic tumors following orthotopic xenotransplantation. Here, we analyzed GNS and NS cell transcriptomes to identify gene expression alterations underlying the disease phenotype. Methods Sensitive measurements of gene expression were obtained by high-throughput sequencing of transcript tags (Tag-seq) on adherent GNS cell lines from three glioblastoma cases and two normal NS cell lines. Validation by quantitative real-time PCR was performed on 82 differentially expressed genes across a panel of 16 GNS and 6 NS cell lines. The molecular basis and prognostic relevance of expression differences were investigated by genetic characterization of GNS cells and comparison with public data for 867 glioma biopsies. Results Transcriptome analysis revealed major differences correlated with glioma histological grade, and identified misregulated genes of known significance in glioblastoma as well as novel candidates, including genes associated with other malignancies or glioma-related pathways. This analysis further detected several long non-coding RNAs with expression profiles similar to neighboring genes implicated in cancer. Quantitative PCR validation showed excellent agreement with Tag-seq data (median Pearson r = 0.91) and discerned a gene set robustly distinguishing GNS from NS cells across the 22 lines. These expression alterations include oncogene and tumor suppressor changes not detected by microarray profiling of tumor tissue samples, and facilitated the identification of a GNS expression signature strongly associated with patient survival (P = 1e-6, Cox model). Conclusions These results support the utility of GNS cell cultures as a model system for studying the molecular processes driving glioblastoma and the use of NS cells as reference controls. The association between a GNS expression signature and survival is consistent with the hypothesis that a cancer stem cell component drives tumor growth. We anticipate that analysis of normal and malignant stem cells will be an important complement to large-scale profiling of primary tumors. PMID:23046790

  18. [Differential gene expression profile in ischemic myocardium of Wistar rats with acute myocardial infarction: the study on gene construction, identification and function].

    PubMed

    Guo, Chun Yu; Yin, Hui Jun; Jiang, Yue Rong; Xue, Mei; Zhang, Lu; Shi, Da Zhuo

    2008-06-18

    To construct the differential genes expressed profile in the ischemic myocardium tissue reduced from acute myocardial infarction(AMI), and determine the biological functions of target genes. AMI model was generated by ligation of the left anterior descending coronary artery in Wistar rats. Total RNA was extracted from the normal and the ischemic heart tissues under the ligation point 7 days after the operation. Differential gene expression profiles of the two samples were constructed using Long Serial Analysis of Gene Expression(LongSAGE). Real time fluorescence quantitative PCR was used to verify gene expression profile and to identify the expression of 2 functional genes. The activities of enzymes from functional genes were determined by histochemistry. A total of 15,966 tags were screened from the normal and the ischemic LongSAGE maps. The similarities of the sequences were compared using the BLAST algebra in NCBI and 7,665 novel tags were found. In the ischemic tissue 142 genes were significantly changed compared with those in the normal tissue (P<0.05). These differentially expressed genes represented the proteins which might play important roles in the pathways of oxidation and phosphorylation, ATP synthesis and glycolysis. The partial genes identified by LongSAGE were confirmed using real time fluorescence quantitative PCR. Two genes related to energy metabolism, COX5a and ATP5e, were screened and quantified. Expression of two functional genes down-regulated at their mRNA levels and the activities of correlative functional enzymes decreased compared with those in the normal tissue. AMI causes a series of changes in gene expression, in which the abnormal expression of genes related to energy metabolism could be one of the molecular mechanisms of AMI. The intervention of the expressions of COX5a and ATP5e may be a new target for AMI therapy.

  19. Expression of CB2 cannabinoid receptor in Pichia pastoris.

    PubMed

    Feng, Wenke; Cai, Jian; Pierce, William M; Song, Zhao-Hui

    2002-12-01

    To facilitate purification and structural characterization, the CB2 cannabinoid receptor is expressed in methylotrophic yeast Pichia pastoris. The expression plasmids were constructed in which the CB2 gene is under the control of the highly inducible promoter of P. pastoris alcohol oxidase 1 gene. A c-myc epitope and a hexahistidine tag were introduced at the C-terminal of the CB2 to permit easy detection and purification. In membrane preparations of CB2 gene transformed yeast cells, Western blot analysis detected the expression of CB2 proteins. Radioligand binding assays demonstrated that the CB2 receptors expressed in P. pastoris have a pharmacological profile similar to that of the receptors expressed in mammalian systems. Furthermore, the epitope-tagged receptor was purified by metal chelating chromatography and the purified CB2 preparations were subjected to digestion by trypsin. MALDI/TOF mass spectrometry analysis of the peptides extracted from tryptic digestions detected 14 peptide fragments derived from the CB2 receptor. ESI mass spectrometry was used to sequence one of these peptide fragments, thus, further confirming the identity of the purified receptor. In conclusion, these data demonstrated for the first time that epitope-tagged, functional CB2 cannabinoid receptor can be expressed in P. pastoris for purification.

  20. Comparative transcriptome response in swine tracheobronchial lymph nodes to viral infection

    USDA-ARS?s Scientific Manuscript database

    The tracheobronchial lymph node (TBLN) transcriptome response was evaluated following viral infection using Digital Gene Expression Tag Profiling (DGETP). Pigs were sham-treated or infected intranasally with porcine reproductive and respiratory syndrome virus, porcine circovirus type 2, pseudorabies...

  1. Stage-Specific Fatty Acid Fluxes Play a Regulatory Role in Glycerolipid Metabolism during Seed Development in Jatropha curcas L.

    PubMed

    Chaitanya, Bharatula Sri Krishna; Kumar, Sumit; Kaki, Shiva Shanker; Balakrishna, Marrapu; Karuna, Mallampalli Sri Lakshmi; Prasad, Rachapudi Badari Narayana; Sastry, Pidaparty Seshadri; Reddy, Attipalli Ramachandra

    2015-12-23

    The present study describes the changes in lipid profile as well as fatty acid fluxes during seed development in Jatropha curcas L. Endosperm from 34, 37, and 40 days after anthesis (DAA), incubated with [(14)C]acetate, showed significant synthesis of phosphatidylcholine (PC) at seed maturation. The fatty acid methyl ester profile showed PC from 34 DAA was rich in palmitic acid (16:0), whereas PC from 37 and 40 DAA was rich in oleic acid (18:1n-9). Molecular species analysis of diacylglycerol (DAG) indicated DAG (16:0/18:2n-6) was in abundance at 34 DAA, whereas DAG (18:1n-9/18:2n-6) was significantly high at 40 DAA. Triacylglycerol (TAG) analysis revealed TAG (16:0/18:2n-6/16:0) was abundant at 34 DAA, whereas TAG (18:1n-9/18:2n-6/18:1n-9) formed the majority at 40 DAA. Expression of two types of diacylglycerol acyltransferases varied with seed maturation. These data demonstrate stage-specific distinct pools of PC and DAG synthesis during storage TAG accumulation in Jatropha seed.

  2. Transcriptome-wide analysis of WRKY transcription factors in wheat and their leaf rust responsive expression profiling.

    PubMed

    Satapathy, Lopamudra; Singh, Dharmendra; Ranjan, Prashant; Kumar, Dhananjay; Kumar, Manish; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal

    2014-12-01

    WRKY, a plant-specific transcription factor family, has important roles in pathogen defense, abiotic cues and phytohormone signaling, yet little is known about their roles and molecular mechanism of function in response to rust diseases in wheat. We identified 100 TaWRKY sequences using wheat Expressed Sequence Tag database of which 22 WRKY sequences were novel. Identified proteins were characterized based on their zinc finger motifs and phylogenetic analysis clustered them into six clades consisting of class IIc and class III WRKY proteins. Functional annotation revealed major functions in metabolic and cellular processes in control plants; whereas response to stimuli, signaling and defense in pathogen inoculated plants, their major molecular function being binding to DNA. Tag-based expression analysis of the identified genes revealed differential expression between mock and Puccinia triticina inoculated wheat near isogenic lines. Gene expression was also performed with six rust-related microarray experiments at Gene Expression Omnibus database. TaWRKY10, 15, 17 and 56 were common in both tag-based and microarray-based differential expression analysis and could be representing rust specific WRKY genes. The obtained results will bestow insight into the functional characterization of WRKY transcription factors responsive to leaf rust pathogenesis that can be used as candidate genes in molecular breeding programs to improve biotic stress tolerance in wheat.

  3. Transcriptome profile analysis of young floral buds of fertile and sterile plants from the self-pollinated offspring of the hybrid between novel restorer line NR1 and Nsa CMS line in Brassica napus

    PubMed Central

    2013-01-01

    Background The fertile and sterile plants were derived from the self-pollinated offspring of the F1 hybrid between the novel restorer line NR1 and the Nsa CMS line in Brassica napus. To elucidate gene expression and regulation caused by the A and C subgenomes of B. napus, as well as the alien chromosome and cytoplasm from Sinapis arvensis during the development of young floral buds, we performed a genome-wide high-throughput transcriptomic sequencing for young floral buds of sterile and fertile plants. Results In this study, equal amounts of total RNAs taken from young floral buds of sterile and fertile plants were sequenced using the Illumina/Solexa platform. After filtered out low quality data, a total of 2,760,574 and 2,714,441 clean tags were remained in the two libraries, from which 242,163 (Ste) and 253,507 (Fer) distinct tags were obtained. All distinct sequencing tags were annotated using all possible CATG+17-nt sequences of the genome and transcriptome of Brassica rapa and those of Brassica oleracea as the reference sequences, respectively. In total, 3231 genes of B. rapa and 3371 genes of B. oleracea were detected with significant differential expression levels. GO and pathway-based analyses were performed to determine and further to understand the biological functions of those differentially expressed genes (DEGs). In addition, there were 1089 specially expressed unknown tags in Fer, which were neither mapped to B. oleracea nor to B. rapa, and these unique tags were presumed to arise basically from the added alien chromosome of S. arvensis. Fifteen genes were randomly selected and their expression levels were confirmed by quantitative RT-PCR, and fourteen of them showed consistent expression patterns with the digital gene expression (DGE) data. Conclusions A number of genes were differentially expressed between the young floral buds of sterile and fertile plants. Some of these genes may be candidates for future research on CMS in Nsa line, fertility restoration and improved agronomic traits in NR1 line. Further study of the unknown tags which were specifically expressed in Fer will help to explore desirable agronomic traits from wild species. PMID:23324545

  4. Transcriptome profile analysis of young floral buds of fertile and sterile plants from the self-pollinated offspring of the hybrid between novel restorer line NR1 and Nsa CMS line in Brassica napus.

    PubMed

    Yan, Xiaohong; Dong, Caihua; Yu, Jingyin; Liu, Wanghui; Jiang, Chenghong; Liu, Jia; Hu, Qiong; Fang, Xiaoping; Wei, Wenhui

    2013-01-16

    The fertile and sterile plants were derived from the self-pollinated offspring of the F1 hybrid between the novel restorer line NR1 and the Nsa CMS line in Brassica napus. To elucidate gene expression and regulation caused by the A and C subgenomes of B. napus, as well as the alien chromosome and cytoplasm from Sinapis arvensis during the development of young floral buds, we performed a genome-wide high-throughput transcriptomic sequencing for young floral buds of sterile and fertile plants. In this study, equal amounts of total RNAs taken from young floral buds of sterile and fertile plants were sequenced using the Illumina/Solexa platform. After filtered out low quality data, a total of 2,760,574 and 2,714,441 clean tags were remained in the two libraries, from which 242,163 (Ste) and 253,507 (Fer) distinct tags were obtained. All distinct sequencing tags were annotated using all possible CATG+17-nt sequences of the genome and transcriptome of Brassica rapa and those of Brassica oleracea as the reference sequences, respectively. In total, 3231 genes of B. rapa and 3371 genes of B. oleracea were detected with significant differential expression levels. GO and pathway-based analyses were performed to determine and further to understand the biological functions of those differentially expressed genes (DEGs). In addition, there were 1089 specially expressed unknown tags in Fer, which were neither mapped to B. oleracea nor to B. rapa, and these unique tags were presumed to arise basically from the added alien chromosome of S. arvensis. Fifteen genes were randomly selected and their expression levels were confirmed by quantitative RT-PCR, and fourteen of them showed consistent expression patterns with the digital gene expression (DGE) data. A number of genes were differentially expressed between the young floral buds of sterile and fertile plants. Some of these genes may be candidates for future research on CMS in Nsa line, fertility restoration and improved agronomic traits in NR1 line. Further study of the unknown tags which were specifically expressed in Fer will help to explore desirable agronomic traits from wild species.

  5. Ribosome Profiling Reveals a Cell-Type-Specific Translational Landscape in Brain Tumors

    PubMed Central

    Gonzalez, Christian; Sims, Jennifer S.; Hornstein, Nicholas; Mela, Angeliki; Garcia, Franklin; Lei, Liang; Gass, David A.; Amendolara, Benjamin; Bruce, Jeffrey N.

    2014-01-01

    Glioma growth is driven by signaling that ultimately regulates protein synthesis. Gliomas are also complex at the cellular level and involve multiple cell types, including transformed and reactive cells in the brain tumor microenvironment. The distinct functions of the various cell types likely lead to different requirements and regulatory paradigms for protein synthesis. Proneural gliomas can arise from transformation of glial progenitors that are driven to proliferate via mitogenic signaling that affects translation. To investigate translational regulation in this system, we developed a RiboTag glioma mouse model that enables cell-type-specific, genome-wide ribosome profiling of tumor tissue. Infecting glial progenitors with Cre-recombinant retrovirus simultaneously activates expression of tagged ribosomes and delivers a tumor-initiating mutation. Remarkably, we find that although genes specific to transformed cells are highly translated, their translation efficiencies are low compared with normal brain. Ribosome positioning reveals sequence-dependent regulation of ribosomal activity in 5′-leaders upstream of annotated start codons, leading to differential translation in glioma compared with normal brain. Additionally, although transformed cells express a proneural signature, untransformed tumor-associated cells, including reactive astrocytes and microglia, express a mesenchymal signature. Finally, we observe the same phenomena in human disease by combining ribosome profiling of human proneural tumor and non-neoplastic brain tissue with computational deconvolution to assess cell-type-specific translational regulation. PMID:25122893

  6. Profiling and quantitative evaluation of three Nickel-Coated magnetic matrices for purification of recombinant proteins: lelpful hints for the optimized nanomagnetisable matrix preparation

    PubMed Central

    2011-01-01

    Background Several materials are available in the market that work on the principle of protein magnetic fishing by their histidine (His) tags. Little information is available on their performance and it is often quoted that greatly improved purification of histidine-tagged proteins from crude extracts could be achieved. While some commercial magnetic matrices could be used successfully for purification of several His-tagged proteins, there are some which have been proved to operate just for a few extent of His-tagged proteins. Here, we address quantitative evaluation of three commercially available Nickel nanomagnetic beads for purification of two His-tagged proteins expressed in Escherichia coli and present helpful hints for optimized purification of such proteins and preparation of nanomagnetisable matrices. Results Marked differences in the performance of nanomagnetic matrices, principally on the basis of their specific binding capacity, recovery profile, the amount of imidazole needed for protein elution and the extent of target protein loss and purity were obtained. Based on the aforesaid criteria, one of these materials featured the best purification results (SiMAG/N-NTA/Nickel) for both proteins at the concentration of 4 mg/ml, while the other two (SiMAC-Nickel and SiMAG/CS-NTA/Nickel) did not work well with respect to specific binding capacity and recovery profile. Conclusions Taken together, functionality of different types of nanomagnetic matrices vary considerably. This variability may not only be dependent upon the structure and surface chemistry of the matrix which in turn determine the affinity of interaction, but, is also influenced to a lesser extent by the physical properties of the protein itself. Although the results of the present study may not be fully applied for all nanomagnetic matrices, but provide a framework which could be used to profiling and quantitative evaluation of other magnetisable matrices and also provide helpful hints for those researchers facing same challenge. PMID:21824404

  7. Staying alive in adversity: transcriptome dynamics in the stress-resistant dauer larva.

    PubMed

    Holt, Suzan J

    2006-10-01

    In response to food depletion and overcrowding, the soil nematode Caenorhabditis elegans can arrest development and form an alternate third larval stage called the dauer. Though nonfeeding, the dauer larva is long lived and stress resistant. Metabolic and transcription rates are lowered but the transcriptome of the dauer is complex. In this study, distribution analysis of transcript profiles generated by Serial Analysis of Gene Expression (SAGE) in dauer larvae and in mixed developmental stages is presented. An inverse relationship was observed between frequency and abundance/copy number of SAGE tag types (transcripts) in both profiles. In the dauer profile, a relatively greater proportion of highly abundant transcripts was counterbalanced by a smaller fraction of low to moderately abundant transcripts. Comparisons of abundant tag counts between the two profiles revealed relative enrichment in the dauer profile of transcripts with predicted or known involvement in ribosome biogenesis and protein synthesis, membrane transport, and immune responses. Translation-coupled mRNA decay is proposed as part of an immune-like stress response in the dauer larva. An influence of genomic region on transcript level may reflect the coordination of transcription and mRNA turnover.

  8. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii.

    PubMed

    La Russa, M; Bogen, C; Uhmeyer, A; Doebbe, A; Filippone, E; Kruse, O; Mussgnug, J H

    2012-11-30

    Photosynthetic organisms like plants and algae can use sunlight to produce lipids as important metabolic compounds. Plant-derived triacylglycerols (TAGs) are valuable for human and animal nutrition because of their high energy content and are becoming increasingly important for the production of renewable biofuels. Acyl-CoA:diacylglycerol acyltransferases (DGATs) have been demonstrated to play an important role in the accumulation of TAG compounds in higher plants. DGAT homologue genes have been identified in the genome of the green alga Chlamydomonas reinhardtii, however their function in vivo is still unknown. In this work, the three most promising type-2 DGAT candidate genes potentially involved in TAG lipid accumulation (CrDGAT2a, b and c) were investigated by constructing overexpression strains. For each of the genes, three strains were identified which showed enhanced mRNA levels of between 1.7 and 29.1 times that of the wild type (wt). Total lipid contents, neutral lipids and fatty acid profiles were determined and showed that an enhanced mRNA expression level of the investigated DGAT genes did not boost the intracellular TAG accumulation or resulted in alterations of the fatty acid profiles compared to wild type during standard growth condition or during nitrogen or sulfur stress conditions. We conclude that biotechnological efforts to enhance cellular TAG amount in microalgae need further insights into the complex network of lipid biosynthesis to identify potential bottlenecks of neutral lipid production. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. A High-Throughput Data Mining of Single Nucleotide Polymorphisms in Coffea Species Expressed Sequence Tags Suggests Differential Homeologous Gene Expression in the Allotetraploid Coffea arabica1[W

    PubMed Central

    Vidal, Ramon Oliveira; Mondego, Jorge Maurício Costa; Pot, David; Ambrósio, Alinne Batista; Andrade, Alan Carvalho; Pereira, Luiz Filipe Protasio; Colombo, Carlos Augusto; Vieira, Luiz Gonzaga Esteves; Carazzolle, Marcelo Falsarella; Pereira, Gonçalo Amarante Guimarães

    2010-01-01

    Polyploidization constitutes a common mode of evolution in flowering plants. This event provides the raw material for the divergence of function in homeologous genes, leading to phenotypic novelty that can contribute to the success of polyploids in nature or their selection for use in agriculture. Mounting evidence underlined the existence of homeologous expression biases in polyploid genomes; however, strategies to analyze such transcriptome regulation remained scarce. Important factors regarding homeologous expression biases remain to be explored, such as whether this phenomenon influences specific genes, how paralogs are affected by genome doubling, and what is the importance of the variability of homeologous expression bias to genotype differences. This study reports the expressed sequence tag assembly of the allopolyploid Coffea arabica and one of its direct ancestors, Coffea canephora. The assembly was used for the discovery of single nucleotide polymorphisms through the identification of high-quality discrepancies in overlapped expressed sequence tags and for gene expression information indirectly estimated by the transcript redundancy. Sequence diversity profiles were evaluated within C. arabica (Ca) and C. canephora (Cc) and used to deduce the transcript contribution of the Coffea eugenioides (Ce) ancestor. The assignment of the C. arabica haplotypes to the C. canephora (CaCc) or C. eugenioides (CaCe) ancestral genomes allowed us to analyze gene expression contributions of each subgenome in C. arabica. In silico data were validated by the quantitative polymerase chain reaction and allele-specific combination TaqMAMA-based method. The presence of differential expression of C. arabica homeologous genes and its implications in coffee gene expression, ontology, and physiology are discussed. PMID:20864545

  10. Antibacterial activity and phospholipid recognition of the recombinant defensin J1-1 from Capsicum genus.

    PubMed

    Guillén-Chable, Francisco; Arenas-Sosa, Iván; Islas-Flores, Ignacio; Corzo, Gerardo; Martinez-Liu, Cynthia; Estrada, Georgina

    2017-08-01

    The gene of the four disulfide-bridged defensin J1-1 from Capsicum was cloned into the expression vector pQE30 containing a 6His-tag as fusion protein. This construct was transfected into Origami strain of Escherichia coli and expressed after induction with isopropyl thiogalactoside (IPTG). The level of expression was 4 mg/L of culture medium, and the His-tagged recombinant defensin (HisXarJ1-1) was expressed exclusively into inclusion bodies. After solubilization, HisXarJ1-1 was purified by affinity and hydrophobic interaction chromatography. The reverse-phase HPLC profile of the HisXarJ1-1 product obtained from the affinity chromatography step showed single main peptide fraction of molecular masses of 7050.6 Da and after treatment with DTT a single fraction of 7, 042.6 Da corresponding to the reduced peptide was observed. An in vitro folding step of the HisXarJ1-1 generated a distinct profile of oxidized forms of the peptide this oxidized peptide was capable of binding phosphatidic acid in vitro. Possible dimer and oligomer of HisXarJ1-1 were visible in gel electrophoresis and immunodetected with anti-His antibodies. Pure recombinant defensin HisXarJ1-1 exhibited antibacterial activity against Pseudomonas aeruginosa. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Differentially expressed genes in the silk gland of silkworm (Bombyx mori) treated with TiO2 NPs.

    PubMed

    Xue, Bin; Li, Fanchi; Hu, Jingsheng; Tian, Jianghai; Li, Jinxin; Cheng, Xiaoyu; Hu, Jiahuan; Li, Bing

    2017-05-05

    Silk gland is a silkworm organ where silk proteins are synthesized and secreted. Dietary supplement of TiO 2 nanoparticles (NPs) promotes silk protein synthesis in silkworms. In this study, digital gene expression (DGE) tag was used to analyze the gene expression profile of the posterior silk gland of silkworms that were fed with TiO 2 NPs. In total, 5,702,823 and 6,150,719 clean tags, 55,096 and 74,715 distinct tags were detected in TiO 2 NPs treated and control groups, respectively. Compared with the control, TiO 2 NPs treated silkworms showed 306 differentially expressed genes, including 137 upregulated genes and 169 downregulated genes. Of these differentially expressed genes, 106 genes were related to silk protein synthesis, among which 97 genes were upregulated and 9 genes were downregulated. Pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that 20 pathways were significantly enriched in TiO 2 NPs treated silkworms, and the metabolic pathway-related genes were the most significantly enriched. The DGE results were verified by qRT-PCR analysis of eight differentially expressed genes. The DGE and qRT-PCR results were consistent for all three upregulated genes and three of the five downregulated genes, but the expression trends of the remaining two genes were different between qRT-PCR and DGE analysis. This study enhances our understanding of the mechanism of TiO 2 NPs promoted silk protein synthesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Monosodium glutamate versus diet induced obesity in pregnant rats and their offspring.

    PubMed

    Afifi, M M; Abbas, Amr M

    2011-06-01

    We aim at determining the role of monosodium glutamate (MSG) compared with high caloric chow(HCC) in development of obesity in pregnant rats and their offspring. Ninety pregnant rats were divided into 3 groups, control, MSG and HCC fed. We determined energy intake, body weight (BW), abdominal fat, fat to body weight ratio, serum glucose, insulin, leptin, lipid profile, ob and leptin receptor-b gene expressions in pregnant rats and ob and leptin receptor-b gene expressions, serum insulin,glucose, leptin, triacylglycerides (TAG), total lipids (TL) and BW in offspring. Although daily energy intake and BW of MSG treated rats were lower than those of HCC fed rats, their abdominal fat and fat body weight ratio were higher. MSG or HCC increased Ob gene expression, leptin, insulin,LDL, cholesterol, total lipids (TL), glucose and decreased leptin receptor-b gene expression. In offspring of MSG treated rats, BW, serum glucose, insulin, leptin, TAG, TL and Ob gene expression increased and leptin receptor-b gene expression decreased whereas in offspring of HCC fed rats, serum insulin, leptin, Ob and leptin receptor-b gene expression increased but serum glucose, TAG, TL or BW did not change. We conclude that in pregnant rats, MSG, in spite of mild hypophagia, caused severe increase in fat body weight ratio, via leptin resistance, whereas, HCC increased BW and fat body weight ratio, due to hyperphagia with consequent leptin resistance. Moreover, maternal obesity in pregnancy, caused by MSG, has greater impact on offspring metabolism and BW than that induced by HCC.

  13. Research advances based on mass spectrometry for profiling of triacylglycerols in oils and fats and their applications.

    PubMed

    Xu, Shu-Ling; Wei, Fang; Xie, Ya; Lv, Xin; Dong, Xu-Yan; Chen, Hong

    2018-03-23

    Vegetable oils and animal fats are dietary source of lipids that play critical and multiple roles in biological function. Triacylglycerols (TAGs) are the principal component of oils and fats with significant difference in profile among different oils and fats. TAG profiling is essential for nutritional evaluation, quality control and assurance of safety in oils and fats. However, analysis of TAGs is a challenging task because of the complicated composition of TAGs and their similar physicochemical properties in oils and fats. The rapid development of mass spectrometry (MS) technology in recent years makes it possible to analyze the composition, content and structure of TAGs in the study of the physical, chemical and nutritional properties of oils, fats and related products. This review described the research advancement based on MS for profiling of TAGs in oil, fat and their applications in food. The application of MS, including direct infusion strategies, and its combination with chromatography, gas chromatography-MS (GC-MS) and liquid chromatography-MS (LC-MS), in the analysis of TAGs were reviewed. The advantages and disadvantages of these analytical methods with relevant applications for TAGs analysis in food were also described. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Instantaneous characterization of vegetable oils via TAG and FFA profiles by easy ambient sonic-spray ionization mass spectrometry.

    PubMed

    Simas, Rosineide C; Catharino, Rodrigo R; Cunha, Ildenize B S; Cabral, Elaine C; Barrera-Arellano, Daniel; Eberlin, Marcos N; Alberici, Rosana M

    2010-04-01

    A fast and reliable method is presented for the analysis of vegetable oils. Easy ambient sonic-spray ionization mass spectrometry (EASI-MS) is shown to efficiently desorb and ionize the main oil constituents from an inert surface under ambient conditions and to provide comprehensive triacylglyceride (TAG) and free fatty acid (FFA) profiles detected mainly as either [TAG + Na](+) or [FFA-H](-) ions. EASI(+/-)-MS analysis is simple, easily implemented, requires just a tiny droplet of the oil and is performed without any pre-separation or chemical manipulation. It also causes no fragmentation of TAG ions hence diacylglyceride (DAG) and monoacylglyceride (MAG) profiles and contents can also be measured. The EASI(+/-)-MS profiles of TAG and FFA permit authentication and quality control and can be used, for instance, to access levels of adulteration, acidity, oxidation or hydrolysis of vegetable oils in general.

  15. Analysis and functional annotation of expressed sequence tags from the fall armyworm Spodoptera frugiperda

    PubMed Central

    Deng, Youping; Dong, Yinghua; Thodima, Venkata; Clem, Rollie J; Passarelli, A Lorena

    2006-01-01

    Background Little is known about the genome sequences of lepidopteran insects, although this group of insects has been studied extensively in the fields of endocrinology, development, immunity, and pathogen-host interactions. In addition, cell lines derived from Spodoptera frugiperda and other lepidopteran insects are routinely used for baculovirus foreign gene expression. This study reports the results of an expressed sequence tag (EST) sequencing project in cells from the lepidopteran insect S. frugiperda, the fall armyworm. Results We have constructed an EST database using two cDNA libraries from the S. frugiperda-derived cell line, SF-21. The database consists of 2,367 ESTs which were assembled into 244 contigs and 951 singlets for a total of 1,195 unique sequences. Conclusion S. frugiperda is an agriculturally important pest insect and genomic information will be instrumental for establishing initial transcriptional profiling and gene function studies, and for obtaining information about genes manipulated during infections by insect pathogens such as baculoviruses. PMID:17052344

  16. Chromatin modification contributes to the expression divergence of three TaGS2 homoeologs in hexaploid wheat

    PubMed Central

    Zhang, Wei; Fan, Xiaoli; Gao, Yingjie; Liu, Lei; Sun, Lijing; Su, Qiannan; Han, Jie; Zhang, Na; Cui, Fa; Ji, Jun; Tong, Yiping; Li, Junming

    2017-01-01

    Plastic glutamine synthetase (GS2) is responsible for ammonium assimilation. The reason that TaGS2 homoeologs in hexaploid wheat experience different selection pressures in the breeding process remains unclear. TaGS2 were minimally expressed in roots but predominantly expressed in leaves, and TaGS2-B had higher expression than TaGS2-A and TaGS2-D. ChIP assays revealed that the activation of TaGS2-B expression in leaves was correlated with increased H3K4 trimethylation. The transcriptional silencing of TaGS2 in roots was correlated with greater cytosine methylation and less H3K4 trimethylation. Micrococcal nuclease and DNase I accessibility experiments indicated that the promoter region was more resistant to digestion in roots than leaves, which indicated that the closed nucleosome conformation of the promoter region was important to the transcription initiation for the spatial-temporal expression of TaGS2. In contrast, the transcribed regions possess different nuclease accessibilities of three TaGS2 homoeologs in the same tissue, suggesting that nucleosome conformation of the transcribed region was part of the fine adjustment of TaGS2 homoeologs. This study provides evidence that histone modification, DNA methylation and nuclease accessibility coordinated the control of the transcription of TaGS2 homoeologs. Our results provided important evidence that TaGS2-B experienced the strongest selection pressures during the breeding process. PMID:28300215

  17. JC Virus Mediates Invasion and Migration in Colorectal Metastasis

    PubMed Central

    Link, Alexander; Shin, Sung Kwan; Nagasaka, Takeshi; Balaguer, Francesc; Koi, Minoru; Jung, Barbara; Boland, C. Richard; Goel, Ajay

    2009-01-01

    Introduction JC Virus (JCV), a human polyomavirus, is frequently present in colorectal cancers (CRCs). JCV large T-Ag (T-Ag) expressed in approximately half of all CRC's, however, its functional role in CRC is poorly understood. We hypothesized that JCV T-Ag may mediate metastasis in CRC cells through increased migration and invasion. Material and Methods CRC cell lines (HCT116 and SW837) were stably transfected with JCV early transcript sequences cloned into pCR3 or empty vectors. Migration and invasion assays were performed using Boyden chambers. Global gene expression analysis was performed to identify genetic targets and pathways altered by T-Ag expression. Microarray results were validated by qRT-PCR, protein expression analyses and immunohistochemistry. Matching primary CRCs and liver metastases from 33 patients were analyzed for T-Ag expression by immunohistochemistry. Results T-Ag expressing cell lines showed 2 to 3-fold increase in migration and invasion compared to controls. JCV T-Ag expression resulted in differential expression of several genetic targets, including genes that mediate cell migration and invasion. Pathway analysis suggested a significant involvement of these genes with AKT and MAPK signaling. Treatment with selective PI3K/AKT and MAPK pathway inhibitors resulted in reduced migration and invasion. In support of our in-vitro results, immunohistochemical staining of the advanced stage tumors revealed frequent JCV T-Ag expression in metastatic primary tumors (92%) as well as in their matching liver metastasis (73%). Conclusion These data suggest that JCV T-Ag expression in CRC associates with a metastatic phenotype, which may partly be mediated through the AKT/MAPK signaling pathway. Frequent expression of JCV T-Ag in CRC liver metastasis provides further clues supporting a mechanistic role for JCV as a possible mediator of cellular motility and invasion in CRC. PMID:19997600

  18. Differentially displayed expressed sequence tags in Melipona scutellaris (Hymenoptera, Apidae, Meliponini) development.

    PubMed

    Santana, Flávia A; Nunes, Francis M F; Vieira, Carlos U; Machado, Maria Alice M S; Kerr, Warwick E; Silva, Wilson A; Bonetti, Ana Maria

    2006-03-01

    We have compared gene expression, using the Differential Display Reverse Transcriptase-Polymerase Chain Reaction (DDRT-PCR) technique, by means of mRNA profile in Melipona scutellaris during ontogenetic postembryonic development, in adult worker, and in both Natural and Juvenile Hormone III-induced adult queen. Six, out of the nine ESTs described here, presented differentially expressed in the phases L1 or L2, or even in both of them, suggesting that key mechanisms to the development of Melipona scutellaris are regulated in these stages. The combination HT11G-AP05 revealed in L1 and L2 a product which matches to thioredoxin reductase protein domain in the Clostridium sporogenes, an important protein during cellular oxidoreduction processes. This study represents the first molecular evidence of differential gene expression profiles toward a description of the genetic developmental traits in the genus Melipona.

  19. Functional analysis of the missense APOC3 mutation Ala23Thr associated with human hypotriglyceridemia.

    PubMed

    Sundaram, Meenakshi; Zhong, Shumei; Bou Khalil, Maroun; Zhou, Hu; Jiang, Zhenghui G; Zhao, Yang; Iqbal, Jahangir; Hussain, M Mahmood; Figeys, Daniel; Wang, Yuwei; Yao, Zemin

    2010-06-01

    We have shown that expression of apolipoprotein (apo) C-III promotes VLDL secretion from transfected McA-RH7777 cells under lipid-rich conditions. To determine structural elements within apoC-III that confer to this function, we contrasted wild-type apoC-III with a mutant Ala23Thr originally identified in hypotriglyceridemia subjects. Although synthesis of [(3)H]glycerol-labeled TAG was comparable between cells expressing wild-type apoC-III (C3wt cells) or Ala23Thr mutant (C3AT cells), secretion of [(3)H]TAG from C3AT cells was markedly decreased. The lowered [(3)H]TAG secretion was associated with an inability of C3AT cells to assemble VLDL(1). Moreover, [(3)H]TAG within the microsomal lumen in C3AT cells was 60% higher than that in C3wt cells, yet the activity of microsomal triglyceride-transfer protein in C3AT cells was not elevated. The accumulated [(3)H]TAG in C3AT microsomal lumen was mainly associated with lumenal IDL/LDL-like lipoproteins. Phenotypically, this [(3)H]TAG fractionation profiling resembled what was observed in cells treated with brefeldin A, which at low dose specifically blocked the second-step VLDL(1) maturation. Furthermore, lumenal [(35)S]Ala23Thr protein accumulated in IDL/LDL fractions and was absent in VLDL fractions in C3AT cells. These results suggest that the presence of Ala23Thr protein in lumenal IDL/LDL particles might prevent effective fusion between lipid droplets and VLDL precursors. Thus, the current study reveals an important structural element residing within the N-terminal region of apoC-III that governs the second step VLDL(1) maturation.

  20. A gene expression resource generated by genome-wide lacZ profiling in the mouse

    PubMed Central

    Tuck, Elizabeth; Estabel, Jeanne; Oellrich, Anika; Maguire, Anna Karin; Adissu, Hibret A.; Souter, Luke; Siragher, Emma; Lillistone, Charlotte; Green, Angela L.; Wardle-Jones, Hannah; Carragher, Damian M.; Karp, Natasha A.; Smedley, Damian; Adams, Niels C.; Bussell, James N.; Adams, David J.; Ramírez-Solis, Ramiro; Steel, Karen P.; Galli, Antonella; White, Jacqueline K.

    2015-01-01

    ABSTRACT Knowledge of the expression profile of a gene is a critical piece of information required to build an understanding of the normal and essential functions of that gene and any role it may play in the development or progression of disease. High-throughput, large-scale efforts are on-going internationally to characterise reporter-tagged knockout mouse lines. As part of that effort, we report an open access adult mouse expression resource, in which the expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter gene. Many specific and informative expression patterns were noted. Expression was most commonly observed in the testis and brain and was most restricted in white adipose tissue and mammary gland. Over half of the assessed genes presented with an absent or localised expression pattern (categorised as 0-10 positive structures). A link between complexity of expression profile and viability of homozygous null animals was observed; inactivation of genes expressed in ≥21 structures was more likely to result in reduced viability by postnatal day 14 compared with more restricted expression profiles. For validation purposes, this mouse expression resource was compared with Bgee, a federated composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Furthermore, there were 1207 observations of expression of a particular gene in an anatomical structure where Bgee had no data, indicating a large amount of novelty in our data set. Examples of expression data corroborating and extending genotype-phenotype associations and supporting disease gene candidacy are presented to demonstrate the potential of this powerful resource. PMID:26398943

  1. Comparison of magnetic carboxymethyl chitosan nanoparticles and cation exchange resin for the efficient purification of lysine-tagged small ubiquitin-like modifier protease.

    PubMed

    Li, Junhua; Zhang, Yang; Shen, Fei; Yang, Yanjun

    2012-10-15

    A fusion tag that can be purified by the cheap ion-exchanger based on the ionic binding force may provide a cost-effective scheme over other affinity fusion tags. Small ubiquitin-like modifier (SUMO) protease derived from Saccharomyces cerevisiae was fused with a poly lysine tag containing 10 lysine residues at its C-terminus and then expressed in Escherichia coli. The ionic binding force provided by the ploy lysine tag allowed the selective recovery of the small ubiquitin-like modifier protease from recombinant E. coli cell extracts. A preliminary comparative study of the adsorption and elution of poly lysine tagged SUMO protease on Amberlite Cobalamion and magnetite carboxymethyl chitosan nanoparticles was performed. Amberlite Cobalamion and magnetite nanoparticles had the similar elution profile due to the common functional groups - carboxyl groups. The maximum dynamic adsorption capacity of Amberlite Cobalamion and magnetite nanoparticles reached 36.8 and 211.4 mg/g, respectively. The lysine-tagged protease can be simply purified by magnetite nanoparticles from cell extracts with higher purity than that by Amberlite Cobalamion. The superparamagnetic nanoparticles possess the advantages of highly specific, fast and excellent binding of a larger amount of lysine tagged SUMO modifier protease, and it is also easier to separate from the crude biological process liquors compared with the conventional separation techniques of polycationic amino acids fusion proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Transcript profiling reveals expression differences in wild-type and glabrous soybean lines

    PubMed Central

    2011-01-01

    Background Trichome hairs affect diverse agronomic characters such as seed weight and yield, prevent insect damage and reduce loss of water but their molecular control has not been extensively studied in soybean. Several detailed models for trichome development have been proposed for Arabidopsis thaliana, but their applicability to important crops such as cotton and soybean is not fully known. Results Two high throughput transcript sequencing methods, Digital Gene Expression (DGE) Tag Profiling and RNA-Seq, were used to compare the transcriptional profiles in wild-type (cv. Clark standard, CS) and a mutant (cv. Clark glabrous, i.e., trichomeless or hairless, CG) soybean isoline that carries the dominant P1 allele. DGE data and RNA-Seq data were mapped to the cDNAs (Glyma models) predicted from the reference soybean genome, Williams 82. Extending the model length by 250 bp at both ends resulted in significantly more matches of authentic DGE tags indicating that many of the predicted gene models are prematurely truncated at the 5' and 3' UTRs. The genome-wide comparative study of the transcript profiles of the wild-type versus mutant line revealed a number of differentially expressed genes. One highly-expressed gene, Glyma04g35130, in wild-type soybean was of interest as it has high homology to the cotton gene GhRDL1 gene that has been identified as being involved in cotton fiber initiation and is a member of the BURP protein family. Sequence comparison of Glyma04g35130 among Williams 82 with our sequences derived from CS and CG isolines revealed various SNPs and indels including addition of one nucleotide C in the CG and insertion of ~60 bp in the third exon of CS that causes a frameshift mutation and premature truncation of peptides in both lines as compared to Williams 82. Conclusion Although not a candidate for the P1 locus, a BURP family member (Glyma04g35130) from soybean has been shown to be abundantly expressed in the CS line and very weakly expressed in the glabrous CG line. RNA-Seq and DGE data are compared and provide experimental data on the expression of predicted soybean gene models as well as an overview of the genes expressed in young shoot tips of two closely related isolines. PMID:22029708

  3. Characterization of Pseudomonas putida Genes Responsive to Nutrient Limitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syn, Chris K.; Magnuson, Jon K.; Kingsley, Mark T.

    2004-06-01

    The low bioavailability of nutrients and oxygen in the soil environment has hampered successful expression of biodegradation/biocontrol genes that are driven by promoters highly active during routine laboratory conditions of high nutrient- and oxygen-availability. Hence, in the present study, expression of the gus-tagged genes in 12 Tn5-gus mutants of the soil microbe Pseudomonas putida PNL-MK25 was examined under various conditions chosen to mimic the soil environment: low carbon, phosphate, nitrate, or oxygen, and in the rhizosphere. Based on their expression profiles, three nutrient-responsive mutant (NRM) strains, NRM5, NRM7, and NRM17, were selected for identification of the tagged genes. In themore » mutant strain NRM5, expression of the glutamate dehydrogenase (gdhA) gene was increased between 4.9- to 26.4-fold under various low nutrient conditions. In NRM7, expression of the novel NADPH:quinone oxidoreductase-like (nql) gene was consistently amongst the highest and was synergistically upregulated by low nutrient and anoxic conditions. The cyoD gene in NRM17, which encodes the fourth subunit of the cytochrome o ubiquinol oxidase complex, had decreased expression in low nutrient conditions but its absolute expression levels was still amongst the highest. Additionally, it was independent of oxygen availability, in contrast to that in E. coli.« less

  4. Precolumn Derivatization with Bromine to Improve Separation and Detection Sensitivity of Triacylglycerols in Edible Oil by Reversed-Phase High Performance Liquid Chromatography.

    PubMed

    Shan, Xiao-Lin; Liu, Xiao-Ting; Gong, Can; Xu, Xu

    2018-01-01

    The complexity of triacylglycerols (TAGs) in edible oils is largely due to the many similar unsaturated TAG compounds, which makes profiling TAGs difficult. In this study, precolumn derivatization with bromine (Br 2 ) was used to improve the separation and detection sensitivity of TAGs in edible oils by RP-HPLC. Oil samples dissolved in n-hexane and TAGs were derived by reaction with a Br2-CCl 4 (1:1, v/v) solution for 3 h at room temperature. The derivate product solution was stable and was best separated and detected by RP-HPLC using a C18 column, with a mobile phase of methanol-n-hexane (91.5:8.5, v/v) at 25°C. A detection wavelength of 230 nm was used. The results showed that the approach enabled the separation and detection of more similar TAGs by RP-HPLC. The method was applied to profile 20 types of edible oil, and the results presented the differences in the TAG profiles of various edible oils, which may be useful in the identification of edible oils.

  5. Use of the Nanofitin Alternative Scaffold as a GFP-Ready Fusion Tag

    PubMed Central

    Huet, Simon; Gorre, Harmony; Perrocheau, Anaëlle; Picot, Justine; Cinier, Mathieu

    2015-01-01

    With the continuous diversification of recombinant DNA technologies, the possibilities for new tailor-made protein engineering have extended on an on-going basis. Among these strategies, the use of the green fluorescent protein (GFP) as a fusion domain has been widely adopted for cellular imaging and protein localization. Following the lead of the direct head-to-tail fusion of GFP, we proposed to provide additional features to recombinant proteins by genetic fusion of artificially derived binders. Thus, we reported a GFP-ready fusion tag consisting of a small and robust fusion-friendly anti-GFP Nanofitin binding domain as a proof-of-concept. While limiting steric effects on the carrier, the GFP-ready tag allows the capture of GFP or its blue (BFP), cyan (CFP) and yellow (YFP) alternatives. Here, we described the generation of the GFP-ready tag from the selection of a Nanofitin variant binding to the GFP and its spectral variants with a nanomolar affinity, while displaying a remarkable folding stability, as demonstrated by its full resistance upon thermal sterilization process or the full chemical synthesis of Nanofitins. To illustrate the potential of the Nanofitin-based tag as a fusion partner, we compared the expression level in Escherichia coli and activity profile of recombinant human tumor necrosis factor alpha (TNFα) constructs, fused to a SUMO or GFP-ready tag. Very similar expression levels were found with the two fusion technologies. Both domains of the GFP-ready tagged TNFα were proved fully active in ELISA and interferometry binding assays, allowing the simultaneous capture by an anti-TNFα antibody and binding to the GFP, and its spectral mutants. The GFP-ready tag was also shown inert in a L929 cell based assay, demonstrating the potent TNFα mediated apoptosis induction by the GFP-ready tagged TNFα. Eventually, we proposed the GFP-ready tag as a versatile capture and labeling system in addition to expected applications of anti-GFP Nanofitins (as illustrated with previously described state-of-the-art anti-GFP binders applied to living cells and in vitro applications). Through a single fusion domain, the GFP-ready tagged proteins benefit from subsequent customization within a wide range of fluorescence spectra upon indirect binding of a chosen GFP variant. PMID:26539718

  6. Use of the Nanofitin Alternative Scaffold as a GFP-Ready Fusion Tag.

    PubMed

    Huet, Simon; Gorre, Harmony; Perrocheau, Anaëlle; Picot, Justine; Cinier, Mathieu

    2015-01-01

    With the continuous diversification of recombinant DNA technologies, the possibilities for new tailor-made protein engineering have extended on an on-going basis. Among these strategies, the use of the green fluorescent protein (GFP) as a fusion domain has been widely adopted for cellular imaging and protein localization. Following the lead of the direct head-to-tail fusion of GFP, we proposed to provide additional features to recombinant proteins by genetic fusion of artificially derived binders. Thus, we reported a GFP-ready fusion tag consisting of a small and robust fusion-friendly anti-GFP Nanofitin binding domain as a proof-of-concept. While limiting steric effects on the carrier, the GFP-ready tag allows the capture of GFP or its blue (BFP), cyan (CFP) and yellow (YFP) alternatives. Here, we described the generation of the GFP-ready tag from the selection of a Nanofitin variant binding to the GFP and its spectral variants with a nanomolar affinity, while displaying a remarkable folding stability, as demonstrated by its full resistance upon thermal sterilization process or the full chemical synthesis of Nanofitins. To illustrate the potential of the Nanofitin-based tag as a fusion partner, we compared the expression level in Escherichia coli and activity profile of recombinant human tumor necrosis factor alpha (TNFα) constructs, fused to a SUMO or GFP-ready tag. Very similar expression levels were found with the two fusion technologies. Both domains of the GFP-ready tagged TNFα were proved fully active in ELISA and interferometry binding assays, allowing the simultaneous capture by an anti-TNFα antibody and binding to the GFP, and its spectral mutants. The GFP-ready tag was also shown inert in a L929 cell based assay, demonstrating the potent TNFα mediated apoptosis induction by the GFP-ready tagged TNFα. Eventually, we proposed the GFP-ready tag as a versatile capture and labeling system in addition to expected applications of anti-GFP Nanofitins (as illustrated with previously described state-of-the-art anti-GFP binders applied to living cells and in vitro applications). Through a single fusion domain, the GFP-ready tagged proteins benefit from subsequent customization within a wide range of fluorescence spectra upon indirect binding of a chosen GFP variant.

  7. Transcript Profile of the Response of Two Soybean Genotypes to Potassium Deficiency

    PubMed Central

    Hao, QingNan; Sha, AiHua; Shan, ZhiHui; Chen, LiMiao; Zhou, Rong; Zhi, HaiJian; Zhou, XinAn

    2012-01-01

    The macronutrient potassium (K) is essential to plant growth and development. Crop yield potential is often affected by lack of soluble K. The molecular regulation mechanism of physiological and biochemical responses to K starvation in soybean roots and shoots is not fully understood. In the present study, two soybean varieties were subjected to low-K stress conditions: a low-K-tolerant variety (You06-71) and a low-K-sensitive variety (HengChun04-11). Eight libraries were generated for analysis: 2 genotypes ×2 tissues (roots and shoots) ×2 time periods [short term (0.5 to 12 h) and long term (3 to 12 d)]. RNA derived from the roots and shoots of these two varieties across two periods (short term and long term) were sequenced and the transcriptomes were compared using high-throughput tag-sequencing. To this end, a large number of clean tags (tags used for analysis after removal of dirty tags) corresponding to distinct tags (all types of clean tags) were identified in eight libraries (L1, You06-71-root short term; L2, HengChun04-11-root short term; L3, You06-71-shoot short term; L4, HengChun04-11-shoot short term; L5, You06-71-root long term; L6, HengChun04-11-root long term; L7, You06-71-shoot long term; L8, HengChun04-11-shoot long term). All clean tags were mapped to the available soybean (Glycine max) transcript database (http://www.soybase.org). Many genes showed substantial differences in expression across the libraries. In total, 5,440 transcripts involved in 118 KEGG pathways were either up- or down-regulated. Fifteen genes were randomly selected and their expression levels were confirmed using quantitative RT-PCR. Our results provide preliminary information on the molecular mechanism of potassium absorption and transport under low-K stress conditions in different soybean tissues. PMID:22792192

  8. Exploring personalized searches using tag-based user profiles and resource profiles in folksonomy.

    PubMed

    Cai, Yi; Li, Qing; Xie, Haoran; Min, Huaqin

    2014-10-01

    With the increase in resource-sharing websites such as YouTube and Flickr, many shared resources have arisen on the Web. Personalized searches have become more important and challenging since users demand higher retrieval quality. To achieve this goal, personalized searches need to take users' personalized profiles and information needs into consideration. Collaborative tagging (also known as folksonomy) systems allow users to annotate resources with their own tags, which provides a simple but powerful way for organizing, retrieving and sharing different types of social resources. In this article, we examine the limitations of previous tag-based personalized searches. To handle these limitations, we propose a new method to model user profiles and resource profiles in collaborative tagging systems. We use a normalized term frequency to indicate the preference degree of a user on a tag. A novel search method using such profiles of users and resources is proposed to facilitate the desired personalization in resource searches. In our framework, instead of the keyword matching or similarity measurement used in previous works, the relevance measurement between a resource and a user query (termed the query relevance) is treated as a fuzzy satisfaction problem of a user's query requirements. We implement a prototype system called the Folksonomy-based Multimedia Retrieval System (FMRS). Experiments using the FMRS data set and the MovieLens data set show that our proposed method outperforms baseline methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. In vivo imaging of an inducible oncogenic tumor antigen visualizes tumor progression and predicts CTL tolerance.

    PubMed

    Buschow, Christian; Charo, Jehad; Anders, Kathleen; Loddenkemper, Christoph; Jukica, Ana; Alsamah, Wisam; Perez, Cynthia; Willimsky, Gerald; Blankenstein, Thomas

    2010-03-15

    Visualizing oncogene/tumor Ag expression by noninvasive imaging is of great interest for understanding processes of tumor development and therapy. We established transgenic (Tg) mice conditionally expressing a fusion protein of the SV40 large T Ag and luciferase (TagLuc) that allows monitoring of oncogene/tumor Ag expression by bioluminescent imaging upon Cre recombinase-mediated activation. Independent of Cre-mediated recombination, the TagLuc gene was expressed at low levels in different tissues, probably due to the leakiness of the stop cassette. The level of spontaneous TagLuc expression, detected by bioluminescent imaging, varied between the different Tg lines, depended on the nature of the Tg expression cassette, and correlated with Tag-specific CTL tolerance. Following liver-specific Cre-loxP site-mediated excision of the stop cassette that separated the promoter from the TagLuc fusion gene, hepatocellular carcinoma development was visualized. The ubiquitous low level TagLuc expression caused the failure of transferred effector T cells to reject Tag-expressing tumors rather than causing graft-versus-host disease. This model may be useful to study different levels of tolerance, monitor tumor development at an early stage, and rapidly visualize the efficacy of therapeutic intervention versus potential side effects of low-level Ag expression in normal tissues.

  10. Quantitative proteomic analysis of whey proteins in the colostrum and mature milk of yak (Bos grunniens).

    PubMed

    Yang, Yongxin; Zhao, Xiaowei; Yu, Shumin; Cao, Suizhong

    2015-02-01

    Yak (Bos grunniens) is an important natural resource in mountainous regions. To date, few studies have addressed the differences in the protein profiles of yak colostrum and milk. We used quantitative proteomics to compare the protein profiles of whey from yak colostrum and milk. Milk samples were collected from 21 yaks after calving (1 and 28 d). Whey protein profiles were generated through isobaric tag for relative and absolute quantification (iTRAQ)-labelled proteomics. We identified 183 proteins in milk whey; of these, the expression levels of 86 proteins differed significantly between the whey from colostrum and milk. Haemoglobin expression showed the greatest change; its levels were significantly higher in the whey from colostrum than in mature milk whey. Functional analysis revealed that many of the differentially expressed proteins were associated with biological regulation and response to stimuli. Further, eight differentially expressed proteins involved in the complement and coagulation cascade pathway were enriched in milk whey. These findings add to the general understanding of the protein composition of yak milk, suggest potential functions of the differentially expressed proteins, and provide novel information on the role of colostral components in calf survival. © 2014 Society of Chemical Industry.

  11. Analysis of differential gene expression by bead-based fiber-optic array in nonfunctioning pituitary adenomas.

    PubMed

    Jiang, Z; Gui, S; Zhang, Y

    2011-05-01

    Nonfunctioning pituitary adenomas (NFPAs) are relatively common, accounting for 30% of all pituitary adenomas; however, their pathogenesis remains enigmatic. To explore the possible pathogenesis of NFPAs, we used fiber-optic BeadArray to examine gene expression in 5 NFPAs compared with 3 normal pituitaries. 4 differentially expressed genes were chosen randomly for validation by reverse transcriptase-real time quantitative polymerase chain reaction (RT-qPCR). We then analyzed the differentially expressed gene profile with Kyoto Encyclopedia of Genes and Genomes (KEGG). The array analysis indentified significant increases in the expression of 1,402 genes and 383 expressed sequence tags (ESTs), and decreases in 1,697 genes and 113 ESTs in the NFPAs. Bioinformatic and pathway analysis showed that the genes HIGD1B, FAM5C, PMAIP1 and the pathway cell-cycle regulation may play an important role in tumorigenesis and progression of NFPAs. Our data suggest fiber-optic BeadArray combined with pathway analysis of differential gene expression profile appears to be a valid approach for investigating the pathogenesis of tumors. © Georg Thieme Verlag KG Stuttgart · New York.

  12. N-terminal SKIK peptide tag markedly improves expression of difficult-to-express proteins in Escherichia coli and Saccharomyces cerevisiae.

    PubMed

    Ojima-Kato, Teruyo; Nagai, Satomi; Nakano, Hideo

    2017-05-01

    Despite advances in microbial protein expression systems, low production of proteins remains a great concern for some genes. Here we report that the insertion of a short peptide tag, consisting of Ser-Lys-Ile-Lys (SKIK), adjacent to the start codon of genes encoding difficult-to-express proteins can increase protein expression in Escherichia coli and Saccharomyces cerevisiae. Protein expression levels of a mouse monoclonal antibody (mAb), rabbit mAbs obtained from clonal B cells, and an artificially designed peptide were significantly increased simply by the addition of the SKIK tag in E. coli systems. In particular, a ∼30-fold increase in protein production was observed for the mouse mAb, and the artificially designed peptide band became detectable in sodium dodecyl sulfate-poly acrylamide gel electrophoresis after coomassie brilliant blue staining or western blotting on adding the SKIK tag. The tag also increased the expression of tagged proteins in S. cerevisiae and an E. coli cell-free protein synthesis system. Although the mechanism of high protein expression on addition of the tag is unclear, our findings offer great benefits to biotechnology research and industry. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Fluorescent Labeling of COS-7 Expressing SNAP-tag Fusion Proteins for Live Cell Imaging

    PubMed Central

    Provost, Christopher R.; Sun, Luo

    2010-01-01

    SNAP-tag and CLIP-tag protein labeling systems enable the specific, covalent attachment of molecules, including fluorescent dyes, to a protein of interest in live cells. These systems offer a broad selection of fluorescent substrates optimized for a range of imaging instrumentation. Once cloned and expressed, the tagged protein can be used with a variety of substrates for numerous downstream applications without having to clone again. There are two steps to using this system: cloning and expression of the protein of interest as a SNAP-tag fusion, and labeling of the fusion with the SNAP-tag substrate of choice. The SNAP-tag is a small protein based on human O6-alkylguanine-DNA-alkyltransferase (hAGT), a DNA repair protein. SNAP-tag labels are dyes conjugated to guanine or chloropyrimidine leaving groups via a benzyl linker. In the labeling reaction, the substituted benzyl group of the substrate is covalently attached to the SNAP-tag. CLIP-tag is a modified version of SNAP-tag, engineered to react with benzylcytosine rather than benzylguanine derivatives. When used in conjunction with SNAP-tag, CLIP-tag enables the orthogonal and complementary labeling of two proteins simultaneously in the same cells. PMID:20485262

  14. High Level Expression and Purification of Recombinant Proteins from Escherichia coli with AK-TAG

    PubMed Central

    Luo, Dan; Wen, Caixia; Zhao, Rongchuan; Liu, Xinyu; Liu, Xinxin; Cui, Jingjing; Liang, Joshua G.; Liang, Peng

    2016-01-01

    Adenylate kinase (AK) from Escherichia coli was used as both solubility and affinity tag for recombinant protein production. When fused to the N-terminus of a target protein, an AK fusion protein could be expressed in soluble form and purified to near homogeneity in a single step from Blue-Sepherose via affinity elution with micromolar concentration of P1, P5- di (adenosine—5’) pentaphosphate (Ap5A), a transition-state substrate analog of AK. Unlike any other affinity tags, the level of a recombinant protein expression in soluble form and its yield of recovery during each purification step could be readily assessed by AK enzyme activity in near real time. Coupled to a His-Tag installed at the N-terminus and a thrombin cleavage site at the C terminus of AK, the streamlined method, here we dubbed AK-TAG, could also allow convenient expression and retrieval of a cleaved recombinant protein in high yield and purity via dual affinity purification steps. Thus AK-TAG is a new addition to the arsenal of existing affinity tags for recombinant protein expression and purification, and is particularly useful where soluble expression and high degree of purification are at stake. PMID:27214237

  15. Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications

    PubMed Central

    Hilson, Pierre; Allemeersch, Joke; Altmann, Thomas; Aubourg, Sébastien; Avon, Alexandra; Beynon, Jim; Bhalerao, Rishikesh P.; Bitton, Frédérique; Caboche, Michel; Cannoot, Bernard; Chardakov, Vasil; Cognet-Holliger, Cécile; Colot, Vincent; Crowe, Mark; Darimont, Caroline; Durinck, Steffen; Eickhoff, Holger; de Longevialle, Andéol Falcon; Farmer, Edward E.; Grant, Murray; Kuiper, Martin T.R.; Lehrach, Hans; Léon, Céline; Leyva, Antonio; Lundeberg, Joakim; Lurin, Claire; Moreau, Yves; Nietfeld, Wilfried; Paz-Ares, Javier; Reymond, Philippe; Rouzé, Pierre; Sandberg, Goran; Segura, Maria Dolores; Serizet, Carine; Tabrett, Alexandra; Taconnat, Ludivine; Thareau, Vincent; Van Hummelen, Paul; Vercruysse, Steven; Vuylsteke, Marnik; Weingartner, Magdalena; Weisbeek, Peter J.; Wirta, Valtteri; Wittink, Floyd R.A.; Zabeau, Marc; Small, Ian

    2004-01-01

    Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics. PMID:15489341

  16. Expression and purification of ELP-intein-tagged target proteins in high cell density E. coli fermentation.

    PubMed

    Fong, Baley A; Wood, David W

    2010-10-19

    Elastin-like polypeptides (ELPs) are useful tools that can be used to non-chromatographically purify proteins. When paired with self-cleaving inteins, they can be used as economical self-cleaving purification tags. However, ELPs and ELP-tagged target proteins have been traditionally expressed using highly enriched media in shake flask cultures, which are generally not amenable to scale-up. In this work, we describe the high cell-density expression of self-cleaving ELP-tagged targets in a supplemented minimal medium at a 2.5 liter fermentation scale, with increased yields and purity compared to traditional shake flask cultures. This demonstration of ELP expression in supplemented minimal media is juxtaposed to previous expression of ELP tags in extract-based rich media. We also describe several sets of fed-batch conditions and their impact on ELP expression and growth medium cost. By using fed batch E. coli fermentation at high cell density, ELP-intein-tagged proteins can be expressed and purified at high yield with low cost. Further, the impact of media components and fermentation design can significantly impact the overall process cost, particularly at large scale. This work thus demonstrates an important advances in the scale up of self-cleaving ELP tag-mediated processes.

  17. Expression and purification of ELP-intein-tagged target proteins in high cell density E. coli fermentation

    PubMed Central

    2010-01-01

    Background Elastin-like polypeptides (ELPs) are useful tools that can be used to non-chromatographically purify proteins. When paired with self-cleaving inteins, they can be used as economical self-cleaving purification tags. However, ELPs and ELP-tagged target proteins have been traditionally expressed using highly enriched media in shake flask cultures, which are generally not amenable to scale-up. Results In this work, we describe the high cell-density expression of self-cleaving ELP-tagged targets in a supplemented minimal medium at a 2.5 liter fermentation scale, with increased yields and purity compared to traditional shake flask cultures. This demonstration of ELP expression in supplemented minimal media is juxtaposed to previous expression of ELP tags in extract-based rich media. We also describe several sets of fed-batch conditions and their impact on ELP expression and growth medium cost. Conclusions By using fed batch E. coli fermentation at high cell density, ELP-intein-tagged proteins can be expressed and purified at high yield with low cost. Further, the impact of media components and fermentation design can significantly impact the overall process cost, particularly at large scale. This work thus demonstrates an important advances in the scale up of self-cleaving ELP tag-mediated processes. PMID:20959011

  18. Evolutionary characterization of pig interferon-inducible transmembrane gene family and member expression dynamics in tracheobronchial lymph nodes of pigs infected with swine respiratory disease viruses.

    PubMed

    Miller, Laura C; Jiang, Zhihua; Sang, Yongming; Harhay, Gregory P; Lager, Kelly M

    2014-06-15

    Studies have found that a cluster of duplicated gene loci encoding the interferon-inducible transmembrane proteins (IFITMs) family have antiviral activity against several viruses, including influenza A virus. The gene family has 5 and 7 members in humans and mice, respectively. Here, we confirm the current annotation of pig IFITM1, IFITM2, IFITM3, IFITM5, IFITM1L1 and IFITM1L4, manually annotated IFITM1L2, IFITM1L3, IFITM5L, IFITM3L1 and IFITM3L2, and provide expressed sequence tag (EST) and/or mRNA evidence, not contained with the NCBI Reference Sequence database (RefSeq), for the existence of IFITM6, IFITM7 and a new IFITM1-like (IFITM1LN) gene in pigs. Phylogenic analyses showed seven porcine IFITM genes with highly conserved human/mouse orthologs known to have anti-viral activity. Digital Gene Expression Tag Profiling (DGETP) of swine tracheobronchial lymph nodes (TBLN) of pigs infected with swine influenza virus (SIV), porcine pseudorabies virus, porcine reproductive and respiratory syndrome virus or porcine circovirus type 2 over 14 days post-inoculation (dpi) showed that gene expression abundance differs dramatically among pig IFITM family members, ranging from 0 to over 3000 tags per million. In particular, SIV up-regulated IFITM1 by 5.9 fold at 3 dpi. Bayesian framework further identified pig IFITM1 and IFITM3 as differentially expressed genes in the overall transcriptome analysis. In addition to being a component of protein complexes involved in homotypic adhesion, the IFITM1 is also associated with pathways related to regulation of cell proliferation and IFITM3 is involved in immune responses. Published by Elsevier B.V.

  19. SAGE Analysis of Transcriptome Responses in Arabidopsis Roots Exposed to 2,4,6-Trinitrotoluene1

    PubMed Central

    Ekman, Drew R.; Lorenz, W. Walter; Przybyla, Alan E.; Wolfe, N. Lee; Dean, Jeffrey F.D.

    2003-01-01

    Serial analysis of gene expression was used to profile transcript levels in Arabidopsis roots and assess their responses to 2,4,6-trinitrotoluene (TNT) exposure. SAGE libraries representing control and TNT-exposed seedling root transcripts were constructed, and each was sequenced to a depth of roughly 32,000 tags. More than 19,000 unique tags were identified overall. The second most highly induced tag (27-fold increase) represented a glutathione S-transferase. Cytochrome P450 enzymes, as well as an ABC transporter and a probable nitroreductase, were highly induced by TNT exposure. Analyses also revealed an oxidative stress response upon TNT exposure. Although some increases were anticipated in light of current models for xenobiotic metabolism in plants, evidence for unsuspected conjugation pathways was also noted. Identifying transcriptome-level responses to TNT exposure will better define the metabolic pathways plants use to detoxify this xenobiotic compound, which should help improve phytoremediation strategies directed at TNT and other nitroaromatic compounds. PMID:14551330

  20. Identification of diverse nerve growth factor-regulated genes by serial analysis of gene expression (SAGE) profiling

    PubMed Central

    Angelastro, James M.; Klimaschewski, Lars; Tang, Song; Vitolo, Ottavio V.; Weissman, Tamily A.; Donlin, Laura T.; Shelanski, Michael L.; Greene, Lloyd A.

    2000-01-01

    Neurotrophic factors such as nerve growth factor (NGF) promote a wide variety of responses in neurons, including differentiation, survival, plasticity, and repair. Such actions often require changes in gene expression. To identify the regulated genes and thereby to more fully understand the NGF mechanism, we carried out serial analysis of gene expression (SAGE) profiling of transcripts derived from rat PC12 cells before and after NGF-promoted neuronal differentiation. Multiple criteria supported the reliability of the profile. Approximately 157,000 SAGE tags were analyzed, representing at least 21,000 unique transcripts. Of these, nearly 800 were regulated by 6-fold or more in response to NGF. Approximately 150 of the regulated transcripts have been matched to named genes, the majority of which were not previously known to be NGF-responsive. Functional categorization of the regulated genes provides insight into the complex, integrated mechanism by which NGF promotes its multiple actions. It is anticipated that as genomic sequence information accrues the data derived here will continue to provide information about neurotrophic factor mechanisms. PMID:10984536

  1. Cloning and expression of antibacterial goat lactoferricin from Escherichia coli AD494(DE3)pLysS expression system.

    PubMed

    Chen, Gen-Hung; Yin, Li-Jung; Chiang, I-Hua; Jiang, Shann-Tzong

    2008-12-01

    Goat lactoferricin (GLfcin), an antibacterial peptide, is released from the N terminus of goat lactoferrin by pepsin digestion. Two GLfcin-related cDNAs, GLfcin L and GLfcin S, encoding Ala20-Ser60 and Ser36-Ser60 of goat lactoferrin, respectively, were cloned into the pET-23a(+) expression vector upstream from (His)6-Tag gene and transformed into Escherichia coli AD494(DE3)pLysS expression host. After being induced by isopropyl-beta-D-thiogalactopyranoside (IPTG), two (His)6-Tag fused recombinant lactoferricins, GLfcin L-His*Tag and GLfcin S-His*Tag, were expressed in soluble form within the E. coli cytoplasm. The GLfcin L-His*Tag and GLfcin S-His*Tag were purified using HisTrap affinity chromatography. According to an antibacterial activity assay using the agar diffusion method, GLfcin L-His*Tag had antibacterial activity against E. coli BCRC 11549, Staphylococcus aureus BCRC 25923, and Propionibacterium acnes BCRC 10723, while GLfcin S-His*Tag was able to inhibit the growth of E. coli BCRC 11549 and P. acnes BCRC 10723. These two recombinant lactoferricins behaved as thermostable peptides, which could retain their activity for up to 30 min of exposure at 100 degrees C.

  2. Expression and purification of diacylglycerol acyltransferases

    USDA-ARS?s Scientific Manuscript database

    Diacylglycerol acyltransferases (DGATs) are integral membrane proteins that catalyze the last step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Plants and animals deficient in DGATs accumulate less TAG and over-expression of DGATs increases TAG. DGAT knockout mice are resistant to ...

  3. High-level expression of soluble recombinant proteins in Escherichia coli using an HE-maltotriose-binding protein fusion tag.

    PubMed

    Han, Yingqian; Guo, Wanying; Su, Bingqian; Guo, Yujie; Wang, Jiang; Chu, Beibei; Yang, Guoyu

    2018-02-01

    Recombinant proteins are commonly expressed in prokaryotic expression systems for large-scale production. The use of genetically engineered affinity and solubility enhancing fusion proteins has increased greatly in recent years, and there now exists a considerable repertoire of these that can be used to enhance the expression, stability, solubility, folding, and purification of their fusion partner. Here, a modified histidine tag (HE) used as an affinity tag was employed together with a truncated maltotriose-binding protein (MBP; consisting of residues 59-433) from Pyrococcus furiosus as a solubility enhancing tag accompanying a tobacco etch virus protease-recognition site for protein expression and purification in Escherichia coli. Various proteins tagged at the N-terminus with HE-MBP(Pyr) were expressed in E. coli BL21(DE3) cells to determine expression and solubility relative to those tagged with His6-MBP or His6-MBP(Pyr). Furthermore, four HE-MBP(Pyr)-fused proteins were purified by immobilized metal affinity chromatography to assess the affinity of HE with immobilized Ni 2+ . Our results showed that HE-MBP(Pyr) represents an attractive fusion protein allowing high levels of soluble expression and purification of recombinant protein in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Gene expression profile in cerebrum in the filial imprinting of domestic chicks (Gallus gallus domesticus).

    PubMed

    Yamaguchi, Shinji; Fujii-Taira, Ikuko; Katagiri, Sachiko; Izawa, Ei-Ichi; Fujimoto, Yasuyuki; Takeuchi, Hideaki; Takano, Tatsuya; Matsushima, Toshiya; Homma, Koichi J

    2008-06-15

    In newly hatched chicks, gene expression in the brain has previously been shown to be up-regulated following filial imprinting. By applying cDNA microarrays containing 13,007 expressed sequence tags, we examined the comprehensive gene expression profiling of the intermediate medial mesopallium in the chick cerebrum, which has been shown to play a key role in filial imprinting. We found 52 up-regulated genes and 6 down-regulated genes of at least 2.0-fold changes 3h after the training of filial imprinting, compared to the gene expression of the dark-reared chick brain. The up-regulated genes are known to be involved in a variety of pathways, including signal transduction, cytoskeletal organization, nuclear function, cell metabolism, RNA binding, endoplasmic reticulum or Golgi function, synaptic function, ion channel, and transporter. In contrast, fewer genes were down-regulated in the imprinting, coinciding with the previous data that the total RNA synthesis increased associated with filial imprinting. Our data suggests that the filial imprinting involves the modulation of multiple signaling pathways.

  5. Analysis of differentially expressed genes between fluoride-sensitive and fluoride-endurable individuals in midgut of silkworm, Bombyx mori.

    PubMed

    Qian, Heying; Li, Gang; He, Qingling; Zhang, Huaguang; Xu, Anying

    2016-08-15

    Fluoride tolerance is an economically important trait of silkworm. Near-isogenic lines (NILs) of the dominant endurance to fluoride (Def) gene in Bombyx mori has been constructed before. Here, we analyzed the gene expression profiles of midgut of fluoride-sensitive and fluoride-endurable individuals of Def NILs by using high-throughput Illumina sequencing technology and bioinformatics tools, and identified differentially expressed genes between these individuals. A total of 3,612,399 and 3,567,631 clean tags for the libraries of fluoride-endurable and fluoride-sensitive individuals were obtained, which corresponded to 32,933 and 43,976 distinct clean tags, respectively. Analysis of differentially expressed genes indicates that 241 genes are differentially expressed between the two libraries. Among the 241 genes, 30 are up-regulated and 211 are down-regulated in fluoride-endurable individuals. Pathway enrichment analysis demonstrates that genes related to ribosomes, pancreatic secretion, steroid biosynthesis, glutathione metabolism, steroid biosynthesis, and glycerolipid metabolism are down-regulated in fluoride-endurable individuals. qRT-PCR was conducted to confirm the results of the DGE. The present study analyzed differential expression of related genes and tried to find out whether the crucial genes were related to fluoride detoxification which might elucidate fluoride effect and provide a new way in the fluorosis research. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Differential Gene Expression of Longan Under Simulated Acid Rain Stress.

    PubMed

    Zheng, Shan; Pan, Tengfei; Ma, Cuilan; Qiu, Dongliang

    2017-05-01

    Differential gene expression profile was studied in Dimocarpus longan Lour. in response to treatments of simulated acid rain with pH 2.5, 3.5, and a control (pH 5.6) using differential display reverse transcription polymerase chain reaction (DDRT-PCR). Results showed that mRNA differential display conditions were optimized to find an expressed sequence tag (EST) related with acid rain stress. The potential encoding products had 80% similarity with a transcription initiation factor IIF of Gossypium raimondii and 81% similarity with a protein product of Theobroma cacao. This fragment is the transcription factor activated by second messenger substances in longan leaves after signal perception of acid rain.

  7. Simulation of triacylglycerol ion profiles: bioinformatics for interpretation of triacylglycerol biosynthesis[S

    PubMed Central

    Han, Rowland H.; Wang, Miao; Fang, Xiaoling; Han, Xianlin

    2013-01-01

    Although the synthesis pathways of intracellular triacylglycerol (TAG) species have been well elucidated, assessment of the contribution of an individual pathway to TAG pools in different mammalian organs, particularly under pathophysiological conditions, is difficult, although not impossible. Herein, we developed and validated a novel bioinformatic approach to assess the differential contributions of the known pathways to TAG pools through simulation of TAG ion profiles determined by shotgun lipidomics. This powerful approach was applied to determine such contributions in mouse heart, liver, and skeletal muscle and to examine the changes of these pathways in mouse liver induced after treatment with a high-fat diet. It was clearly demonstrated that assessment of the altered TAG biosynthesis pathways under pathophysiological conditions can be readily achieved through simulation of lipidomics data. Collectively, this new development should greatly facilitate our understanding of the biochemical mechanisms underpinning TAG accumulation at the states of obesity and lipotoxicity. PMID:23365150

  8. A Cleavable N-Terminal Signal Peptide Promotes Widespread Olfactory Receptor Surface Expression in HEK293T Cells

    PubMed Central

    Shepard, Blythe D.; Natarajan, Niranjana; Protzko, Ryan J.; Acres, Omar W.; Pluznick, Jennifer L.

    2013-01-01

    Olfactory receptors (ORs) are G protein-coupled receptors that detect odorants in the olfactory epithelium, and comprise the largest gene family in the genome. Identification of OR ligands typically requires OR surface expression in heterologous cells; however, ORs rarely traffic to the cell surface when exogenously expressed. Therefore, most ORs are orphan receptors with no known ligands. To date, studies have utilized non-cleavable rhodopsin (Rho) tags and/or chaperones (i.e. Receptor Transporting Protein, RTP1S, Ric8b and Gαolf) to improve surface expression. However, even with these tools, many ORs still fail to reach the cell surface. We used a test set of fifteen ORs to examine the effect of a cleavable leucine-rich signal peptide sequence (Lucy tag) on OR surface expression in HEK293T cells. We report here that the addition of the Lucy tag to the N-terminus increases the number of ORs reaching the cell surface to 7 of the 15 ORs (as compared to 3/15 without Rho or Lucy tags). Moreover, when ORs tagged with both Lucy and Rho were co-expressed with previously reported chaperones (RTP1S, Ric8b and Gαolf), we observed surface expression for all 15 receptors examined. In fact, two-thirds of Lucy-tagged ORs are able to reach the cell surface synergistically with chaperones even when the Rho tag is removed (10/15 ORs), allowing for the potential assessment of OR function with only an 8-amino acid Flag tag on the mature protein. As expected for a signal peptide, the Lucy tag was cleaved from the mature protein and did not alter OR-ligand binding and signaling. Our studies demonstrate that widespread surface expression of ORs can be achieved in HEK293T cells, providing promise for future large-scale deorphanization studies. PMID:23840901

  9. Expression and purification of membrane protein diacylglycerol acyltransferase

    USDA-ARS?s Scientific Manuscript database

    Diacylglycerol acyltransferases (DGATs) catalyze the last and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Plants and animals deficient in DGATs accumulate less TAG. Over-expression of DGATs increases TAG in seeds and other tissues. DGAT knockout mice are resista...

  10. Identification of FadAB Complexes Involved in Fatty Acid β-Oxidation in Streptomyces coelicolor and Construction of a Triacylglycerol Overproducing strain

    PubMed Central

    Menendez-Bravo, Simón; Paganini, Julián; Avignone-Rossa, Claudio; Gramajo, Hugo; Arabolaza, Ana

    2017-01-01

    Oleaginous microorganisms represent possible platforms for the sustainable production of oleochemicals and biofuels due to their metabolic robustness and the possibility to be engineered. Streptomyces coelicolor is among the narrow group of prokaryotes capable of accumulating triacylglycerol (TAG) as carbon and energy reserve. Although the pathways for TAG biosynthesis in this organism have been widely addressed, the set of genes required for their breakdown have remained elusive so far. Here, we identified and characterized three gene clusters involved in the β-oxidation of fatty acids (FA). The role of each of the three different S. coelicolor FadAB proteins in FA catabolism was confirmed by complementation of an Escherichia coliΔfadBA mutant strain deficient in β-oxidation. In S. coelicolor, the expression profile of the three gene clusters showed variation related with the stage of growth and the presence of FA in media. Flux balance analyses using a corrected version of the current S. coelicolor metabolic model containing detailed TAG biosynthesis reactions suggested the relevance of the identified fadAB genes in the accumulation of TAG. Thus, through the construction and analysis of fadAB knockout mutant strains, we obtained an S. coelicolor mutant that showed a 4.3-fold increase in the TAG content compared to the wild type strain grown under the same culture conditions. PMID:28824562

  11. Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol.

    PubMed

    Malitsky, Sergey; Ziv, Carmit; Rosenwasser, Shilo; Zheng, Shuning; Schatz, Daniella; Porat, Ziv; Ben-Dor, Shifra; Aharoni, Asaph; Vardi, Assaf

    2016-04-01

    Viruses that infect marine photosynthetic microorganisms are major ecological and evolutionary drivers of microbial food webs, estimated to turn over more than a quarter of the total photosynthetically fixed carbon. Viral infection of the bloom-forming microalga Emiliania huxleyi induces the rapid remodeling of host primary metabolism, targeted towards fatty acid metabolism. We applied a liquid chromatography-mass spectrometry (LC-MS)-based lipidomics approach combined with imaging flow cytometry and gene expression profiling to explore the impact of viral-induced metabolic reprogramming on lipid composition. Lytic viral infection led to remodeling of the cellular lipidome, by predominantly inducing the biosynthesis of highly saturated triacylglycerols (TAGs), coupled with a significant accumulation of neutral lipids within lipid droplets. Furthermore, TAGs were found to be a major component (77%) of the lipidome of isolated virions. Interestingly, viral-induced TAGs were significantly more saturated than TAGs produced under nitrogen starvation. This study highlights TAGs as major products of the viral-induced metabolic reprogramming during the host-virus interaction and indicates a selective mode of membrane recruitment during viral assembly, possibly by budding of the virus from specialized subcellular compartments. These findings provide novel insights into the role of viruses infecting microalgae in regulating metabolism and energy transfer in the marine environment and suggest their possible biotechnological application in biofuel production. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Molecular imaging and sensing using plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Crow, Matthew James

    Noble metal nanoparticles exhibit unique optical properties that are beneficial to a variety of applications, including molecular imaging. The large scattering cross sections of nanoparticles provide high contrast necessary for biomarkers. Unlike alternative contrast agents, nanoparticles provide refractive index sensitivity revealing information regarding the local cellular environment. Altering the shape and composition of the nanoparticle shifts the peak resonant wavelength of scattered light, allowing for implementation of multiple spectrally distinct tags. In this project, nanoparticles that scatter in different spectral windows are functionalized with various antibodies recognizing extra-cellular receptors integral to cancer progression. A hyperspectral imaging system is developed, allowing for visualization and spectral characterization of cells labeled with these conjugates. Various molecular imaging and microspectroscopy applications of plasmonic nanoparticles are then investigated. First, anti-EGFR gold nanospheres are shown to quantitatively measure receptor expression with similar performance to fluorescence assays. Second, anti-EGFR gold nanorods and novel anti-IGF-1R silver nanospheres are implemented to indicate local cellular refractive indices. Third, because biosensing capabilities of nanoparticle tags may be limited by plasmonic coupling, polarization mapping is investigated as a method to discern these effects. Fourth, plasmonic coupling is tested to monitor HER-2 dimerization. Experiments reveal the interparticle conformation of proximal HER-2 bound labels, required for plasmonic coupling-enhanced dielectric sensing. Fifth, all three functionalized plasmonic tags are implemented simultaneously to indicate clinically relevant cell immunophenotype information and changes in the cellular dielectric environment. Finally, flow cytometry experiments are conducted utilizing the anti-EGFR nanorod tag to demonstrate profiling of receptor expression distribution and potential increased multiplexing capability.

  13. Expression and purification of recombinant tung tree diacylglycerol acyltransferase 2

    USDA-ARS?s Scientific Manuscript database

    Diacylglycerol acyltransferases (DGATs) catalyze the last step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Plants and animals deficient in DGATs accumulate less TAG. Over-expression of DGATs increases TAG. DGAT knockout mice are resistant to diet-induced obesity and lack milk secr...

  14. Gene expression profiling of adult female tissues in feeding Rhipicephalus microplus cattle ticks.

    PubMed

    Stutzer, Christian; van Zyl, Willem A; Olivier, Nicholas A; Richards, Sabine; Maritz-Olivier, Christine

    2013-06-01

    The southern cattle tick, Rhipicephalus microplus, is an economically important pest, especially for resource-poor countries, both as a highly adaptive invasive species and prominent vector of disease. The increasing prevalence of resistance to chemical acaricides and variable efficacy of current tick vaccine candidates highlight the need for more effective control methods. In the absence of a fully annotated genome, the wealth of available expressed sequence tag sequence data for this species presents a unique opportunity to study the genes that are expressed in tissues involved in blood meal acquisition, digestion and reproduction during feeding. Utilising a custom oligonucleotide microarray designed from available singletons (BmiGI Version 2.1) and expressed sequence tag sequences of R. microplus, the expression profiles in feeding adult female midgut, salivary glands and ovarian tissues were compared. From 13,456 assembled transcripts, 588 genes expressed in all three tissues were identified from fed adult females 20 days post infestation. The greatest complement of genes relate to translation and protein turnover. Additionally, a number of unique transcripts were identified for each tissue that relate well to their respective physiological/biological function/role(s). These transcripts include secreted anti-hemostatics and defense proteins from the salivary glands for acquisition of a blood meal, proteases as well as enzymes and transporters for digestion and nutrient acquisition from ingested blood in the midgut, and finally proteins and associated factors involved in DNA replication and cell-cycle control for oogenesis in the ovaries. Comparative analyses of adult female tissues during feeding enabled the identification of a catalogue of transcripts that may be essential for successful feeding and reproduction in the cattle tick, R. microplus. Future studies will increase our understanding of basic tick biology, allowing the identification of shared proteins/pathways among different tissues that may offer novel targets for the development of new tick control strategies. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  15. An efficient tag derived from the common epitope of tospoviral NSs proteins for monitoring recombinant proteins expressed in both bacterial and plant systems.

    PubMed

    Cheng, Hao-Wen; Chen, Kuan-Chun; Raja, Joseph A J; Li, Jian-Xian; Yeh, Shyi-Dong

    2013-04-15

    NSscon (23 aa), a common epitope in the gene silencing suppressor NSs proteins of the members of the Watermelon silver mottle virus (WSMoV) serogroup, was previously identified. In this investigation, we expressed different green fluorescent protein (GFP)-fused deletions of NSscon in bacteria and reacted with NSscon monoclonal antibody (MAb). Our results indicated that the core 9 amino acids, "(109)KFTMHNQIF(117)", denoted as "nss", retain the reactivity of NSscon. In bacterial pET system, four different recombinant proteins labeled with nss, either at N- or C-extremes, were readily detectable without position effects, with sensitivity superior to that for the polyhistidine-tag. When the nss-tagged Zucchini yellow mosaic virus (ZYMV) helper component-protease (HC-Pro) and WSMoV nucleocapsid protein were transiently expressed by agroinfiltration in tobacco, they were readily detectable and the tag's possible efficacy for gene silencing suppression was not noticed. Co-immunoprecipitation of nss-tagged and non-tagged proteins expressed from bacteria confirmed the interaction of potyviral HC-Pro and coat protein. Thus, we conclude that this novel nss sequence is highly valuable for tagging recombinant proteins in both bacterial and plant expression systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. New ligation independent cloning vectors for expression of recombinant proteins with a self-cleaving CPD/6xHis-tag.

    PubMed

    Biancucci, Marco; Dolores, Jazel S; Wong, Jennifer; Grimshaw, Sarah; Anderson, Wayne F; Satchell, Karla J F; Kwon, Keehwan

    2017-01-05

    Recombinant protein purification is a crucial step for biochemistry and structural biology fields. Rapid robust purification methods utilize various peptide or protein tags fused to the target protein for affinity purification using corresponding matrices and to enhance solubility. However, affinity/solubility-tags often need to be removed in order to conduct functional and structural studies, adding complexities to purification protocols. In this work, the Vibrio cholerae MARTX toxin Cysteine Protease Domain (CPD) was inserted in a ligation-independent cloning (LIC) vector to create a C-terminal 6xHis-tagged inducible autoprocessing enzyme tag, called "the CPD-tag". The pCPD and alternative pCPD/ccdB cloning vectors allow for easy insertion of DNA and expression of the target protein fused to the CPD-tag, which is removed at the end of the purification step by addition of the inexpensive small molecule inositol hexakisphosphate to induce CPD autoprocessing. This process is demonstrated using a small bacterial membrane localization domain and for high yield purification of the eukaryotic small GTPase KRas. Subsequently, pCPD was tested with 40 proteins or sub-domains selected from a high throughput crystallization pipeline. pCPD vectors are easily used LIC compatible vectors for expression of recombinant proteins with a C-terminal CPD/6xHis-tag. Although intended only as a strategy for rapid tag removal, this pilot study revealed the CPD-tag may also increase expression and solubility of some recombinant proteins.

  17. High-resolution phylogenetic microbial community profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Esther; Bushnell, Brian; Coleman-Derr, Devin

    Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structuresmore » at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake's water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential.« less

  18. High-resolution phylogenetic microbial community profiling

    DOE PAGES

    Singer, Esther; Bushnell, Brian; Coleman-Derr, Devin; ...

    2016-02-09

    Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structuresmore » at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake's water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential.« less

  19. Gene expression analysis of the liver and skeletal muscle of psyllium-treated mice.

    PubMed

    Togawa, Naoyuki; Takahashi, Rumiko; Hirai, Shizuka; Fukushima, Tatsunobu; Egashira, Yukari

    2013-02-14

    Psyllium, a dietary fibre rich in soluble components, has both cholesterol- and TAG-lowering effects. Many studies have verified these actions using liver samples, whereas little information is available on the effects of psyllium treatment on other organs. The purpose of the present study was to evaluate the possible beneficial effects of psyllium. We investigated the gene expression profiles of both liver and skeletal muscle using DNA microarrays. C57BL/6J mice were fed a low-fat diet (LFD; 7 % fat), a high-fat diet (HFD; 40 % fat) or a HFD with psyllium (40 % fat+5 % psyllium; HFD+Psy) for 10 weeks. Body weights and food intake were measured weekly. After 10 weeks, the mice were killed and tissues were collected. Adipose tissues were weighed, and plasma total cholesterol and TAG blood glucose levels were measured. The expression levels of genes involved in glycolysis, gluconeogenesis, glucose transport and fatty acid metabolism were measured by DNA microarray in the liver and skeletal muscle. In the HFD+Psy group, plasma total cholesterol, TAG and blood glucose levels significantly decreased. There was a significant reduction in the relative weight of the epididymal and retroperitoneal fat tissue depots in mice fed the HFD+Psy. The expression levels of genes involved in fatty acid oxidation and lipid transport were significantly up-regulated in the skeletal muscle of the HFD+Psy group. This result suggests that psyllium stimulates lipid transport and fatty acid oxidation in the muscle. In conclusion, the present study demonstrates that psyllium can promote lipid consumption in the skeletal muscle; and this effect would create a slightly insufficient glucose state in the liver.

  20. Divergent Label-free Cell Phenotypic Pharmacology of Ligands at the Overexpressed β2-Adrenergic Receptors

    NASA Astrophysics Data System (ADS)

    Ferrie, Ann M.; Sun, Haiyan; Zaytseva, Natalya; Fang, Ye

    2014-01-01

    We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.

  1. Expression of tung seed diacylglycerol acyltransferases (DGAT) in E. coli and yeast

    USDA-ARS?s Scientific Manuscript database

    Diacylglycerol acyltransferases (DGATs) catalyze the last step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Plants and animals deficient in DGATs accumulate less TAG, resist obesity, and/or lack milk secretion. Over-expression of the DGATs increases TAG content in seeds and other t...

  2. Lathyrus sativus transcriptome resistance response to Ascochyta lathyri investigated by deepSuperSAGE analysis

    PubMed Central

    Almeida, Nuno F.; Krezdorn, Nicolas; Rotter, Björn; Winter, Peter; Rubiales, Diego; Vaz Patto, Maria C.

    2015-01-01

    Lathyrus sativus (grass pea) is a temperate grain legume crop with a great potential for expansion in dry areas or zones that are becoming more drought-prone. It is also recognized as a potential source of resistance to several important diseases in legumes, such as ascochyta blight. Nevertheless, the lack of detailed genomic and/or transcriptomic information hampers further exploitation of grass pea resistance-related genes in precision breeding. To elucidate the pathways differentially regulated during ascochyta-grass pea interaction and to identify resistance candidate genes, we compared the early response of the leaf gene expression profile of a resistant L. sativus genotype to Ascochyta lathyri infection with a non-inoculated control sample from the same genotype employing deepSuperSAGE. This analysis generated 14.387 UniTags of which 95.7% mapped to a reference grass pea/rust interaction transcriptome. From the total mapped UniTags, 738 were significantly differentially expressed between control and inoculated leaves. The results indicate that several gene classes acting in different phases of the plant/pathogen interaction are involved in the L. sativus response to A. lathyri infection. Most notably a clear up-regulation of defense-related genes involved in and/or regulated by the ethylene pathway was observed. There was also evidence of alterations in cell wall metabolism indicated by overexpression of cellulose synthase and lignin biosynthesis genes. This first genome-wide overview of the gene expression profile of the L. sativus response to ascochyta infection delivered a valuable set of candidate resistance genes for future use in precision breeding. PMID:25852725

  3. Transcriptome responses to heat- and cold-stress in ladybirds (Cryptolaemus montrouzieri Mulasnt) analyzed by deep-sequencing.

    PubMed

    Zhang, Yuhong; Wu, Hongsheng; Xie, Jiaqin; Jiang, Ruixin; Deng, Congshuang; Pang, Hong

    2015-11-19

    Changed temperature not only threaten agricultural production, but they also affect individual biological behavior, population and community of many insects, and consequently reduce the stability of our ecosystem. Insect's ability to respond to temperature stress evolved through a complex adaptive process, thus resulting in varied temperature tolerance among different insects. Both high and low extreme temperatures are detrimental to insect development since they constitute an important abiotic stress capable of inducing abnormal biological responses. Many studies on heat or cold tolerance of ladybirds have focused on measurements of physiological and biochemical indexes such as supercooling point, higher/lower lethal temperatures, survival rate, dry body weight, water content, and developmental duration. And studies of the molecular mechanisms of ladybird responses to heat or cold stress have focused on single genes, such as those encoding heat shock proteins, but has not been analyzed by transcriptome profiling. In this study, we report the use of Digital Gene Expression (DGE) tag profiling to gain insight into transcriptional events associated with heat- and cold-stress in C. montrouzieri. About 6 million tags (49 bp in length) were sequenced in a heat stress group, a cold stress group and a negative control group. We obtained 687 and 573 genes that showed significantly altered expression levels following heat and cold shock treatments, respectively. Analysis of the global gene expression pattern suggested that 42 enzyme-encoding genes mapped to many Gene Ontology terms are associated with insect's response to heat- and cold-stress. These results provide a global assessment of genes and molecular mechanisms involved in heat and cold tolerance.

  4. High expression and purification of the recombinant camelid anti-MUC1 single domain antibodies in Escherichia coli.

    PubMed

    Rahbarizadeh, Fatemeh; Rasaee, Mohammad Javad; Forouzandeh-Moghadam, Mehdi; Allameh, Abdol-Amir

    2005-11-01

    In contrast to the murine and human VHs, camels' single domain antibodies (sdAb) have sufficient solubility. These antigen-specific fragments are expressed well in Escherichia coli. Here, we report high expression and purification of sdAbs against MUC1 mucin. MUC1 is a high molecular weight glycoprotein with an aberrant expression profile in various malignancies. The sdAb genes were sub-cloned into a pET32a(+) vector to overexpress the protein coupled with fusion tags in E. coli BL21(DE3). The expressed single domain antibodies were purified by immobilized metal affinity chromatography and antigen affinity chromatography. Analysis by SDS-PAGE and Western blotting demonstrated the integrity of the sdAbs-tags, while ELISA results confirm that the activity of these molecules compare favorably with that of the parent recombinant antibodies. Enterokinase treated sdAb showed a band at the molecular weight around 12 kDa which demonstrated the naked protein in its natural structure with activities comparable to that of native protein. The high binding activity to MUC1 antigen purified from ascitic fluid (of patients with small-cell lung aggressive carcinoma and metastasis to peritoneum) and the very close similarity of these molecules to human VHs illustrated the potential application of these novel products as an immunodiagnostic and immunotherapeutic reagent.

  5. TagFinder for the quantitative analysis of gas chromatography--mass spectrometry (GC-MS)-based metabolite profiling experiments.

    PubMed

    Luedemann, Alexander; Strassburg, Katrin; Erban, Alexander; Kopka, Joachim

    2008-03-01

    Typical GC-MS-based metabolite profiling experiments may comprise hundreds of chromatogram files, which each contain up to 1000 mass spectral tags (MSTs). MSTs are the characteristic patterns of approximately 25-250 fragment ions and respective isotopomers, which are generated after gas chromatography (GC) by electron impact ionization (EI) of the separated chemical molecules. These fragment ions are subsequently detected by time-of-flight (TOF) mass spectrometry (MS). MSTs of profiling experiments are typically reported as a list of ions, which are characterized by mass, chromatographic retention index (RI) or retention time (RT), and arbitrary abundance. The first two parameters allow the identification, the later the quantification of the represented chemical compounds. Many software tools have been reported for the pre-processing, the so-called curve resolution and deconvolution, of GC-(EI-TOF)-MS files. Pre-processing tools generate numerical data matrices, which contain all aligned MSTs and samples of an experiment. This process, however, is error prone mainly due to (i) the imprecise RI or RT alignment of MSTs and (ii) the high complexity of biological samples. This complexity causes co-elution of compounds and as a consequence non-selective, in other words impure MSTs. The selection and validation of optimal fragment ions for the specific and selective quantification of simultaneously eluting compounds is, therefore, mandatory. Currently validation is performed in most laboratories under human supervision. So far no software tool supports the non-targeted and user-independent quality assessment of the data matrices prior to statistical analysis. TagFinder may fill this gap. TagFinder facilitates the analysis of all fragment ions, which are observed in GC-(EI-TOF)-MS profiling experiments. The non-targeted approach allows the discovery of novel and unexpected compounds. In addition, mass isotopomer resolution is maintained by TagFinder processing. This feature is essential for metabolic flux analyses and highly useful, but not required for metabolite profiling. Whenever possible, TagFinder gives precedence to chemical means of standardization, for example, the use of internal reference compounds for retention time calibration or quantitative standardization. In addition, external standardization is supported for both compound identification and calibration. The workflow of TagFinder comprises, (i) the import of fragment ion data, namely mass, time and arbitrary abundance (intensity), from a chromatography file interchange format or from peak lists provided by other chromatogram pre-processing software, (ii) the annotation of sample information and grouping of samples into classes, (iii) the RI calculation, (iv) the binning of observed fragment ions of equal mass from different chromatograms into RI windows, (v) the combination of these bins, so-called mass tags, into time groups of co-eluting fragment ions, (vi) the test of time groups for intensity correlated mass tags, (vii) the data matrix generation and (viii) the extraction of selective mass tags supported by compound identification. Thus, TagFinder supports both non-targeted fingerprinting analyses and metabolite targeted profiling. Exemplary TagFinder workspaces and test data sets are made available upon request to the contact authors. TagFinder is made freely available for academic use from http://www-en.mpimp-golm.mpg.de/03-research/researchGroups/01-dept1/Root_Metabolism/smp/TagFinder/index.html.

  6. Digital gene expression for non-model organisms

    PubMed Central

    Hong, Lewis Z.; Li, Jun; Schmidt-Küntzel, Anne; Warren, Wesley C.; Barsh, Gregory S.

    2011-01-01

    Next-generation sequencing technologies offer new approaches for global measurements of gene expression but are mostly limited to organisms for which a high-quality assembled reference genome sequence is available. We present a method for gene expression profiling called EDGE, or EcoP15I-tagged Digital Gene Expression, based on ultra-high-throughput sequencing of 27-bp cDNA fragments that uniquely tag the corresponding gene, thereby allowing direct quantification of transcript abundance. We show that EDGE is capable of assaying for expression in >99% of genes in the genome and achieves saturation after 6–8 million reads. EDGE exhibits very little technical noise, reveals a large (106) dynamic range of gene expression, and is particularly suited for quantification of transcript abundance in non-model organisms where a high-quality annotated genome is not available. In a direct comparison with RNA-seq, both methods provide similar assessments of relative transcript abundance, but EDGE does better at detecting gene expression differences for poorly expressed genes and does not exhibit transcript length bias. Applying EDGE to laboratory mice, we show that a loss-of-function mutation in the melanocortin 1 receptor (Mc1r), recognized as a Mendelian determinant of yellow hair color in many different mammals, also causes reduced expression of genes involved in the interferon response. To illustrate the application of EDGE to a non-model organism, we examine skin biopsy samples from a cheetah (Acinonyx jubatus) and identify genes likely to control differences in the color of spotted versus non-spotted regions. PMID:21844123

  7. The synchronous TAG production with the growth by the expression of chloroplast transit peptide-fused ScPDAT in Chlamydomonas reinhardtii.

    PubMed

    Zhu, Zhen; Yuan, Guangze; Fan, Xuran; Fan, Yan; Yang, Miao; Yin, Yalei; Liu, Jiao; Liu, Yang; Cao, Xupeng; Tian, Jing; Xue, Song

    2018-01-01

    The synchronous triacylglycerol (TAG) production with the growth is a key step to lower the cost of the microalgae-based biofuel production. Phospholipid: diacylglycerol acyltransferase (PDAT) has been identified recently and catalyzes the phospholipid contributing acyl group to diacylglycerol to synthesize TAG, and is considered as the important source of TAG in Chlamydomonas reinhardtii . Using a chimeric Hsp70A-RbcS2 promoter, exogenous PDAT form Saccharomyces cerevisiae fused with a chloroplast transit peptide was expressed in C. reinhardtii CC-137. Proved by western blot, the expression of ScPDAT showed a synchronous trend to the growth in the exponential phase. Compared to the wild type, the strain of Scpdat achieved 22% increase in the content of total fatty acids and 32% increase in TAG content. In addition, the fluctuation of C16 series fatty acid in monogalactosyldiacylglycerol, diacylglyceryltrimethylhomoserine and TAG indicated an enhancement in the TAG accumulation pathway. The TAG production was enhanced in the regular cultivation without the nutrient stress by strengthening the conversion of polar lipid to TAG in C. reinhardtii and the findings provide a candidate strategy for rational engineered strain to overcome the decline in the growth during the TAG accumulation triggered by nitrogen starvation.

  8. Identification and Characterization of Diacylglycerol Acyltransferase from Oleaginous Fungus Mucor circinelloides.

    PubMed

    Zhang, Luning; Zhang, Huaiyuan; Song, Yuanda

    2018-01-24

    Acyl-CoA:diacylglycerol acyltransferase (DGAT) is a pivotal regulator of triacylglycerol (TAG) synthesis. The oleaginous fungus Mucor circinelloides has four putative DGATs: McDGAT1A, McDGAT1B, McDGAT2A, and McDGAT2B, classified into the DGAT1 and DGAT2 subfamilies, respectively. To identify and characterize DGATs in M. circinelloides, these four genes were expressed in Saccharomyces cerevisiae H1246 (TAG-deficient quadruple mutant), individually. TAG biosynthesis was restored only by the expression of McDGAT2B, and TAG content was significantly higher in the mutants with McDGAT2B expression than in a S. cerevisiae mutant with endogenous DGA1 expression. McDGAT2B prefers saturated fatty acids to monounsaturated fatty acids and has an obvious preference for C18:3 (ω-6) according to the results of substrate preference experiments. Furthermore, only the mRNA expression pattern of McDGAT2B correlated with TAG biosynthesis during a fermentation process. Our experiments strongly indicate that McDGAT2B is crucial for TAG accumulation, suggesting that it may be an essential target for metabolic engineering aimed at increasing lipid content of M. circinelloides.

  9. The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE

    PubMed Central

    2011-01-01

    Background The combination of high-throughput transcript profiling and next-generation sequencing technologies is a prerequisite for genome-wide comprehensive transcriptome analysis. Our recent innovation of deepSuperSAGE is based on an advanced SuperSAGE protocol and its combination with massively parallel pyrosequencing on Roche's 454 sequencing platform. As a demonstration of the power of this combination, we have chosen the salt stress transcriptomes of roots and nodules of the third most important legume crop chickpea (Cicer arietinum L.). While our report is more technology-oriented, it nevertheless addresses a major world-wide problem for crops generally: high salinity. Together with low temperatures and water stress, high salinity is responsible for crop losses of millions of tons of various legume (and other) crops. Continuously deteriorating environmental conditions will combine with salinity stress to further compromise crop yields. As a good example for such stress-exposed crop plants, we started to characterize salt stress responses of chickpeas on the transcriptome level. Results We used deepSuperSAGE to detect early global transcriptome changes in salt-stressed chickpea. The salt stress responses of 86,919 transcripts representing 17,918 unique 26 bp deepSuperSAGE tags (UniTags) from roots of the salt-tolerant variety INRAT-93 two hours after treatment with 25 mM NaCl were characterized. Additionally, the expression of 57,281 transcripts representing 13,115 UniTags was monitored in nodules of the same plants. From a total of 144,200 analyzed 26 bp tags in roots and nodules together, 21,401 unique transcripts were identified. Of these, only 363 and 106 specific transcripts, respectively, were commonly up- or down-regulated (>3.0-fold) under salt stress in both organs, witnessing a differential organ-specific response to stress. Profiting from recent pioneer works on massive cDNA sequencing in chickpea, more than 9,400 UniTags were able to be linked to UniProt entries. Additionally, gene ontology (GO) categories over-representation analysis enabled to filter out enriched biological processes among the differentially expressed UniTags. Subsequently, the gathered information was further cross-checked with stress-related pathways. From several filtered pathways, here we focus exemplarily on transcripts associated with the generation and scavenging of reactive oxygen species (ROS), as well as on transcripts involved in Na+ homeostasis. Although both processes are already very well characterized in other plants, the information generated in the present work is of high value. Information on expression profiles and sequence similarity for several hundreds of transcripts of potential interest is now available. Conclusions This report demonstrates, that the combination of the high-throughput transcriptome profiling technology SuperSAGE with one of the next-generation sequencing platforms allows deep insights into the first molecular reactions of a plant exposed to salinity. Cross validation with recent reports enriched the information about the salt stress dynamics of more than 9,000 chickpea ESTs, and enlarged their pool of alternative transcripts isoforms. As an example for the high resolution of the employed technology that we coin deepSuperSAGE, we demonstrate that ROS-scavenging and -generating pathways undergo strong global transcriptome changes in chickpea roots and nodules already 2 hours after onset of moderate salt stress (25 mM NaCl). Additionally, a set of more than 15 candidate transcripts are proposed to be potential components of the salt overly sensitive (SOS) pathway in chickpea. Newly identified transcript isoforms are potential targets for breeding novel cultivars with high salinity tolerance. We demonstrate that these targets can be integrated into breeding schemes by micro-arrays and RT-PCR assays downstream of the generation of 26 bp tags by SuperSAGE. PMID:21320317

  10. The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE.

    PubMed

    Molina, Carlos; Zaman-Allah, Mainassara; Khan, Faheema; Fatnassi, Nadia; Horres, Ralf; Rotter, Björn; Steinhauer, Diana; Amenc, Laurie; Drevon, Jean-Jacques; Winter, Peter; Kahl, Günter

    2011-02-14

    The combination of high-throughput transcript profiling and next-generation sequencing technologies is a prerequisite for genome-wide comprehensive transcriptome analysis. Our recent innovation of deepSuperSAGE is based on an advanced SuperSAGE protocol and its combination with massively parallel pyrosequencing on Roche's 454 sequencing platform. As a demonstration of the power of this combination, we have chosen the salt stress transcriptomes of roots and nodules of the third most important legume crop chickpea (Cicer arietinum L.). While our report is more technology-oriented, it nevertheless addresses a major world-wide problem for crops generally: high salinity. Together with low temperatures and water stress, high salinity is responsible for crop losses of millions of tons of various legume (and other) crops. Continuously deteriorating environmental conditions will combine with salinity stress to further compromise crop yields. As a good example for such stress-exposed crop plants, we started to characterize salt stress responses of chickpeas on the transcriptome level. We used deepSuperSAGE to detect early global transcriptome changes in salt-stressed chickpea. The salt stress responses of 86,919 transcripts representing 17,918 unique 26 bp deepSuperSAGE tags (UniTags) from roots of the salt-tolerant variety INRAT-93 two hours after treatment with 25 mM NaCl were characterized. Additionally, the expression of 57,281 transcripts representing 13,115 UniTags was monitored in nodules of the same plants. From a total of 144,200 analyzed 26 bp tags in roots and nodules together, 21,401 unique transcripts were identified. Of these, only 363 and 106 specific transcripts, respectively, were commonly up- or down-regulated (>3.0-fold) under salt stress in both organs, witnessing a differential organ-specific response to stress.Profiting from recent pioneer works on massive cDNA sequencing in chickpea, more than 9,400 UniTags were able to be linked to UniProt entries. Additionally, gene ontology (GO) categories over-representation analysis enabled to filter out enriched biological processes among the differentially expressed UniTags. Subsequently, the gathered information was further cross-checked with stress-related pathways. From several filtered pathways, here we focus exemplarily on transcripts associated with the generation and scavenging of reactive oxygen species (ROS), as well as on transcripts involved in Na+ homeostasis. Although both processes are already very well characterized in other plants, the information generated in the present work is of high value. Information on expression profiles and sequence similarity for several hundreds of transcripts of potential interest is now available. This report demonstrates, that the combination of the high-throughput transcriptome profiling technology SuperSAGE with one of the next-generation sequencing platforms allows deep insights into the first molecular reactions of a plant exposed to salinity. Cross validation with recent reports enriched the information about the salt stress dynamics of more than 9,000 chickpea ESTs, and enlarged their pool of alternative transcripts isoforms. As an example for the high resolution of the employed technology that we coin deepSuperSAGE, we demonstrate that ROS-scavenging and -generating pathways undergo strong global transcriptome changes in chickpea roots and nodules already 2 hours after onset of moderate salt stress (25 mM NaCl). Additionally, a set of more than 15 candidate transcripts are proposed to be potential components of the salt overly sensitive (SOS) pathway in chickpea. Newly identified transcript isoforms are potential targets for breeding novel cultivars with high salinity tolerance. We demonstrate that these targets can be integrated into breeding schemes by micro-arrays and RT-PCR assays downstream of the generation of 26 bp tags by SuperSAGE.

  11. Improved microarray methods for profiling the yeast knockout strain collection

    PubMed Central

    Yuan, Daniel S.; Pan, Xuewen; Ooi, Siew Loon; Peyser, Brian D.; Spencer, Forrest A.; Irizarry, Rafael A.; Boeke, Jef D.

    2005-01-01

    A remarkable feature of the Yeast Knockout strain collection is the presence of two unique 20mer TAG sequences in almost every strain. In principle, the relative abundances of strains in a complex mixture can be profiled swiftly and quantitatively by amplifying these sequences and hybridizing them to microarrays, but TAG microarrays have not been widely used. Here, we introduce a TAG microarray design with sophisticated controls and describe a robust method for hybridizing high concentrations of dye-labeled TAGs in single-stranded form. We also highlight the importance of avoiding PCR contamination and provide procedures for detection and eradication. Validation experiments using these methods yielded false positive (FP) and false negative (FN) rates for individual TAG detection of 3–6% and 15–18%, respectively. Analysis demonstrated that cross-hybridization was the chief source of FPs, while TAG amplification defects were the main cause of FNs. The materials, protocols, data and associated software described here comprise a suite of experimental resources that should facilitate the use of TAG microarrays for a wide variety of genetic screens. PMID:15994458

  12. Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis.

    PubMed

    Zhao, Lihua; He, Jiangman; Cai, Hanyang; Lin, Haiyan; Li, Yanqiang; Liu, Renyi; Yang, Zhenbiao; Qin, Yuan

    2014-11-01

    Megasporogenesis is essential for female fertility, and requires the accomplishment of meiosis and the formation of functional megaspores. The inaccessibility and low abundance of female meiocytes make it particularly difficult to elucidate the molecular basis underlying megasporogenesis. We used high-throughput tag-sequencing analysis to identify genes expressed in female meiocytes (FMs) by comparing gene expression profiles from wild-type ovules undergoing megasporogenesis with those from the spl mutant ovules, which lack megasporogenesis. A total of 862 genes were identified as FMs, with levels that are consistently reduced in spl ovules in two biological replicates. Fluorescence-assisted cell sorting followed by RNA-seq analysis of DMC1:GFP-labeled female meiocytes confirmed that 90% of the FMs are indeed detected in the female meiocyte protoplast profiling. We performed reverse genetic analysis of 120 candidate genes and identified four FM genes with a function in female meiosis progression in Arabidopsis. We further revealed that KLU, a putative cytochrome P450 monooxygenase, is involved in chromosome pairing during female meiosis, most likely by affecting the normal expression pattern of DMC1 in ovules during female meiosis. Our studies provide valuable information for functional genomic analyses of plant germline development as well as insights into meiosis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  13. A dual tag system for facilitated detection of surface expressed proteins in Escherichia coli

    PubMed Central

    2012-01-01

    Background The discovery of the autotransporter family has provided a mechanism for surface expression of proteins in laboratory strains of Escherichia coli. We have previously reported the use of the AIDA-I autotransport system to express the Salmonella enterica serovar Enteritidis proteins SefA and H:gm. The SefA protein was successfully exposed to the medium, but the orientation of H:gm in the outer membrane could not be determined due to proteolytic cleavage of the N-terminal detection-tag. The goal of the present work was therefore to construct a vector containing elements that facilitates analysis of surface expression, especially for proteins that are sensitive to proteolysis or otherwise difficult to express. Results The surface expression system pAIDA1 was created with two detection tags flanking the passenger protein. Successful expression of SefA and H:gm on the surface of E. coli was confirmed with fluorescently labeled antibodies specific for the N-terminal His6-tag and the C-terminal Myc-tag. While both tags were detected during SefA expression, only the Myc-tag could be detected for H:gm. The negative signal indicates a proteolytic cleavage of this protein that removes the His6-tag facing the medium. Conclusions Expression levels from pAIDA1 were comparable to or higher than those achieved with the formerly used vector. The presence of the Myc- but not of the His6-tag on the cell surface during H:gm expression allowed us to confirm the hypothesis that this fusion protein was present on the surface and oriented towards the cell exterior. Western blot analysis revealed degradation products of the same molecular weight for SefA and H:gm. The size of these fragments suggests that both fusion proteins have been cleaved at a specific site close to the C-terminal end of the passenger. This proteolysis was concluded to take place either in the outer membrane or in the periplasm. Since H:gm was cleaved to a much greater extent then the three times smaller SefA, it is proposed that the longer translocation time for the larger H:gm makes it more susceptible to proteolysis. PMID:22943700

  14. Insulin chains as efficient fusion tags for prokaryotic expression of short peptides.

    PubMed

    Deng, Ligang; Xue, Xiaoying; Shen, Cangjie; Song, Xiaohan; Wang, Chunyang; Wang, Nan

    2017-10-01

    Insulin chains are usually expressed in Escherichia coli as fusion proteins with different tags, including various low molecular weight peptide tags. The objective of this study was to determine if insulin chains could facilitate the recombinant expression of other target proteins, with an emphasis on low molecular weight peptides. A series of short peptides were fused to mini-proinsulin, chain B or chain A, and induced for expression in Escherichia coli. All the tested peptides including glucagon-like peptide 1 (GLP-1), a C-terminal extended GLP-1, oxyntomodulin, enfuvirtide, linaclotide, and an unstructured artificial peptide were expressed with reasonable yields, identified by Tricine-SDS-PAGE and immunoblotting. All recombinant products were expressed in inclusion bodies. The effective accumulation of products was largely attributed to the insoluble expression induced by fusion with insulin chains, and was confirmed by the fusion expression of transthyretin. Insulin chains thus show promise as efficient fusion tags for mass production of heterologous peptides in prokaryotes. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Precision Electrophile Tagging in Caenorhabditis elegans.

    PubMed

    Long, Marcus J C; Urul, Daniel A; Chawla, Shivansh; Lin, Hong-Yu; Zhao, Yi; Haegele, Joseph A; Wang, Yiran; Aye, Yimon

    2018-01-16

    Adduction of an electrophile to privileged sensor proteins and the resulting phenotypically dominant responses are increasingly appreciated as being essential for metazoan health. Functional similarities between the biological electrophiles and electrophilic pharmacophores commonly found in covalent drugs further fortify the translational relevance of these small-molecule signals. Genetically encodable or small-molecule-based fluorescent reporters and redox proteomics have revolutionized the observation and profiling of cellular redox states and electrophile-sensor proteins, respectively. However, precision mapping between specific redox-modified targets and specific responses has only recently begun to be addressed, and systems tractable to both genetic manipulation and on-target redox signaling in vivo remain largely limited. Here we engineer transgenic Caenorhabditis elegans expressing functional HaloTagged fusion proteins and use this system to develop a generalizable light-controlled approach to tagging a prototypical electrophile-sensor protein with native electrophiles in vivo. The method circumvents issues associated with low uptake/distribution and toxicity/promiscuity. Given the validated success of C. elegans in aging studies, this optimized platform offers a new lens with which to scrutinize how on-target electrophile signaling influences redox-dependent life span regulation.

  16. Precision Electrophile Tagging in Caenorhabditis elegans

    PubMed Central

    2017-01-01

    Adduction of an electrophile to privileged sensor proteins and the resulting phenotypically dominant responses are increasingly appreciated as being essential for metazoan health. Functional similarities between the biological electrophiles and electrophilic pharmacophores commonly found in covalent drugs further fortify the translational relevance of these small-molecule signals. Genetically encodable or small-molecule-based fluorescent reporters and redox proteomics have revolutionized the observation and profiling of cellular redox states and electrophile–sensor proteins, respectively. However, precision mapping between specific redox-modified targets and specific responses has only recently begun to be addressed, and systems tractable to both genetic manipulation and on-target redox signaling in vivo remain largely limited. Here we engineer transgenic Caenorhabditis elegans expressing functional HaloTagged fusion proteins and use this system to develop a generalizable light-controlled approach to tagging a prototypical electrophile–sensor protein with native electrophiles in vivo. The method circumvents issues associated with low uptake/distribution and toxicity/promiscuity. Given the validated success of C. elegans in aging studies, this optimized platform offers a new lens with which to scrutinize how on-target electrophile signaling influences redox-dependent life span regulation. PMID:28857552

  17. Genetically modified plants for law enforcement applications

    NASA Astrophysics Data System (ADS)

    Stewart, C. Neal, Jr.

    2002-08-01

    Plants are ubiquitous in the environment and have the unique ability to respond to their environment physiologically and through altered gene expression profiles (they cannot walk away). In addition, plant genetic transformation techniques and genomic information in plants are becoming increasingly advanced. We have been performing research to express the jellyfish green fluorescent protein (GFP) in plants. GFP emits green light when excited by blue or UV light. In addition, my group and collaborators have developed methods to detect GFP in plants by contact instruments and at a standoff. There are several law enforcement applications for this technology. One involves using tagging and perhaps modifying drug plants genetically. In one instance, we could tag them for destruction. In another, we could adulterate them directly. Another application is one that falls into the chemical terrorism and bioterrorism countermeasures category. We are developing plants to sense toxins and whole organisms covertly. Plants are well adapted to monitor large geographic areas; biosurveillance. Some examples of research being performed focus on plants with plant pathogen inducible promoters fused to GFP for disease sensing, and algae biosensors for chemicals.

  18. Impact of dietary precursor ALA versus preformed DHA on fatty acid profiles of eggs, liver and adipose tissue and expression of genes associated with hepatic lipid metabolism in laying hens.

    PubMed

    Neijat, M; Eck, P; House, J D

    2017-04-01

    Dietary omega-3 polyunsaturated fatty acids (n-3 PUFA), including alpha-linolenic acid (ALA) and preformed longer chain PUFA (LCPUFA, particularly docosahexaenoic acid, DHA) differ in their egg LCPUFA enrichment efficiency. However, mechanisms leading to these differences are unclear. To this end, omega-3 PUFA contents in different lipid classes, including triacylglycerol (TAG) and total phospholipid (PL) in yolk, liver and adipose, as well as the expression of key hepatic enzymes in lipid metabolism were evaluated in laying hens in response to changes in dietary supply. Seventy Lohmann hens (n=10/treatment) consumed either a control diet (0.03% total omega-3 PUFA), or the control with supplementation (0.20%, 0.40% and 0.60% total omega-3 PUFA) from either flaxseed oil or algal product, as sources of ALA (precursor) or DHA (preformed), respectively. The study was arranged in a completely randomized design, and data were analyzed using the Proc Mixed procedure of SAS. ALA accumulated as a function of intake (P<0.0001) in total and lipid classes of yolk, liver and adipose (TAG only) for ALA- and DHA-fed hens. Unlike flaxseed oil, preformed-DHA contributed to greater (P<0.0001) accumulation of LCPUFA in yolk total PL and TAG pool, as well as adipose TAG. This may relate to elevated (P<0.0001) expression of acyl-CoA synthetase (ACSL1). No difference in hepatic EPA level in total lipids was noted between both treatment groups; EPA liver =2.1493x-0.0064; R 2 =0.70, P<0.0001 (x=dietary omega-3 PUFA). The latter result may highlight the role of hepatic EPA in the regulation of LCPUFA metabolism in laying hens. Copyright © 2017. Published by Elsevier Ltd.

  19. Novel lipoprotein density profiling in healthy dogs of various breeds, healthy miniature schnauzers, and miniature schnauzers with hyperlipidemia

    PubMed Central

    2013-01-01

    Background Despite the importance of abnormalities in lipoprotein metabolism in clinical canine medicine, the fact that most previously used methods for lipoprotein profiling are rather laborious and time-consuming has been a major obstacle to the wide clinical application and use of lipoprotein profiling in this species. The aim of the present study was to assess the feasibility of a continuous lipoprotein density profile (CLPDP) generated within a bismuth sodium ethylenediaminetetraacetic acid (NaBiEDTA) density gradient to characterize and compare the lipoprotein profiles of healthy dogs of various breeds, healthy Miniature Schnauzers, and Miniature Schnauzers with primary hypertriacylglycerolemia. A total of 35 healthy dogs of various breeds with serum triacylglycerol (TAG) and cholesterol concentrations within their respective reference intervals were selected for use as a reference population. Thirty-one Miniature Schnauzers with serum TAG and cholesterol concentrations within their respective reference intervals and 31 Miniature Schnauzers with hypertriacylglyceridemia were also included in the study. Results The results suggest that CLPDP using NaBiEDTA provides unique diagnostic information in addition to measurements of serum TAG and cholesterol concentrations and that it is a useful screening method for dogs with suspected lipoprotein metabolism disorders. Using the detailed and continuous density distribution information provided by the CLPDP, important differences in lipoprotein profiles can be detected even among dogs that have serum TAG and cholesterol concentrations within the reference interval. Miniature Schnauzers with serum TAG and cholesterol concentrations within the reference interval had significantly different lipoprotein profiles than dogs of various other breeds. In addition, it was further established that specific lipoprotein fractions are associated with hypertriacylglyceridemia in Miniature Schnauzers. Conclusions The results of the present study suggest that density gradient ultracentrifugation using NaBiEDTA is a useful screening method for the study of lipoprotein profiles in dogs. Therefore, this method could potentially be used for diagnostic purposes for the separation of dogs suspected of having lipoprotein abnormalities from healthy dogs. PMID:23497598

  20. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.

    PubMed

    Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping

    2015-01-27

    Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.

  1. RNA-Seq and molecular docking reveal multi-level pesticide resistance in the bed bug

    PubMed Central

    2012-01-01

    Background Bed bugs (Cimex lectularius) are hematophagous nocturnal parasites of humans that have attained high impact status due to their worldwide resurgence. The sudden and rampant resurgence of C. lectularius has been attributed to numerous factors including frequent international travel, narrower pest management practices, and insecticide resistance. Results We performed a next-generation RNA sequencing (RNA-Seq) experiment to find differentially expressed genes between pesticide-resistant (PR) and pesticide-susceptible (PS) strains of C. lectularius. A reference transcriptome database of 51,492 expressed sequence tags (ESTs) was created by combining the databases derived from de novo assembled mRNA-Seq tags (30,404 ESTs) and our previous 454 pyrosequenced database (21,088 ESTs). The two-way GLMseq analysis revealed ~15,000 highly significant differentially expressed ESTs between the PR and PS strains. Among the top 5,000 differentially expressed ESTs, 109 putative defense genes (cuticular proteins, cytochrome P450s, antioxidant genes, ABC transporters, glutathione S-transferases, carboxylesterases and acetyl cholinesterase) involved in penetration resistance and metabolic resistance were identified. Tissue and development-specific expression of P450 CYP3 clan members showed high mRNA levels in the cuticle, Malpighian tubules, and midgut; and in early instar nymphs, respectively. Lastly, molecular modeling and docking of a candidate cytochrome P450 (CYP397A1V2) revealed the flexibility of the deduced protein to metabolize a broad range of insecticide substrates including DDT, deltamethrin, permethrin, and imidacloprid. Conclusions We developed significant molecular resources for C. lectularius putatively involved in metabolic resistance as well as those participating in other modes of insecticide resistance. RNA-Seq profiles of PR strains combined with tissue-specific profiles and molecular docking revealed multi-level insecticide resistance in C. lectularius. Future research that is targeted towards RNA interference (RNAi) on the identified metabolic targets such as cytochrome P450s and cuticular proteins could lay the foundation for a better understanding of the genetic basis of insecticide resistance in C. lectularius. PMID:22226239

  2. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis.

    PubMed

    Chen, Sixue; Glawischnig, Erich; Jørgensen, Kirsten; Naur, Peter; Jørgensen, Bodil; Olsen, Carl-Erik; Hansen, Carsten H; Rasmussen, Hasse; Pickett, John A; Halkier, Barbara A

    2003-03-01

    Cytochromes P450 of the CYP79 family catalyze the conversion of amino acids to oximes in the biosynthesis of glucosinolates, a group of natural plant products known to be involved in plant defense and as a source of flavor compounds, cancer-preventing agents and bioherbicides. We report a detailed biochemical analysis of the substrate specificity and kinetics of CYP79F1 and CYP79F2, two cytochromes P450 involved in the biosynthesis of aliphatic glucosinolates in Arabidopsis thaliana. Using recombinant CYP79F1 and CYP79F2 expressed in Escherichia coli and Saccharomyces cerevisiae, respectively, we show that CYP79F1 metabolizes mono- to hexahomomethionine, resulting in both short- and long-chain aliphatic glucosinolates. In contrast, CYP79F2 exclusively metabolizes long-chain elongated penta- and hexahomomethionines. CYP79F1 and CYP79F2 are spatially and developmentally regulated, with different gene expression patterns. CYP79F2 is highly expressed in hypocotyl and roots, whereas CYP79F1 is strongly expressed in cotyledons, rosette leaves, stems, and siliques. A transposon-tagged CYP79F1 knockout mutant completely lacks short-chain aliphatic glucosinolates, but has an increased level of long-chain aliphatic glucosinolates, especially in leaves and seeds. The level of long-chain aliphatic glucosinolates in a transposon-tagged CYP79F2 knockout mutant is substantially reduced, whereas the level of short-chain aliphatic glucosinolates is not affected. Biochemical characterization of CYP79F1 and CYP79F2, and gene expression analysis, combined with glucosinolate profiling of knockout mutants demonstrate the functional role of these enzymes. This provides valuable insights into the metabolic network leading to the biosynthesis of aliphatic glucosinolates, and into metabolic engineering of altered aliphatic glucosinolate profiles to improve nutritional value and pest resistance.

  3. Divergent evolution of arrested development in the dauer stage of Caenorhabditis elegans and the infective stage of Heterodera glycines

    PubMed Central

    Elling, Axel A; Mitreva, Makedonka; Recknor, Justin; Gai, Xiaowu; Martin, John; Maier, Thomas R; McDermott, Jeffrey P; Hewezi, Tarek; McK Bird, David; Davis, Eric L; Hussey, Richard S; Nettleton, Dan; McCarter, James P; Baum, Thomas J

    2007-01-01

    Background The soybean cyst nematode Heterodera glycines is the most important parasite in soybean production worldwide. A comprehensive analysis of large-scale gene expression changes throughout the development of plant-parasitic nematodes has been lacking to date. Results We report an extensive genomic analysis of H. glycines, beginning with the generation of 20,100 expressed sequence tags (ESTs). In-depth analysis of these ESTs plus approximately 1,900 previously published sequences predicted 6,860 unique H. glycines genes and allowed a classification by function using InterProScan. Expression profiling of all 6,860 genes throughout the H. glycines life cycle was undertaken using the Affymetrix Soybean Genome Array GeneChip. Our data sets and results represent a comprehensive resource for molecular studies of H. glycines. Demonstrating the power of this resource, we were able to address whether arrested development in the Caenorhabditis elegans dauer larva and the H. glycines infective second-stage juvenile (J2) exhibits shared gene expression profiles. We determined that the gene expression profiles associated with the C. elegans dauer pathway are not uniformly conserved in H. glycines and that the expression profiles of genes for metabolic enzymes of C. elegans dauer larvae and H. glycines infective J2 are dissimilar. Conclusion Our results indicate that hallmark gene expression patterns and metabolism features are not shared in the developmentally arrested life stages of C. elegans and H. glycines, suggesting that developmental arrest in these two nematode species has undergone more divergent evolution than previously thought and pointing to the need for detailed genomic analyses of individual parasite species. PMID:17919324

  4. Transgenic increases in seed oil content are associated with the differential expression of novel Brassica-specific transcripts.

    PubMed

    Sharma, Nirmala; Anderson, Maureen; Kumar, Arvind; Zhang, Yan; Giblin, E Michael; Abrams, Suzanne R; Zaharia, L Irina; Taylor, David C; Fobert, Pierre R

    2008-12-19

    Seed oil accumulates primarily as triacylglycerol (TAG). While the biochemical pathway for TAG biosynthesis is known, its regulation remains unclear. Previous research identified microsomal diacylglycerol acyltransferase 1 (DGAT1, EC 2.3.1.20) as controlling a rate-limiting step in the TAG biosynthesis pathway. Of note, overexpression of DGAT1 results in substantial increases in oil content and seed size. To further analyze the global consequences of manipulating DGAT1 levels during seed development, a concerted transcriptome and metabolome analysis of transgenic B. napus prototypes was performed. Using a targeted Brassica cDNA microarray, about 200 genes were differentially expressed in two independent transgenic lines analyzed. Interestingly, 24-33% of the targets showing significant changes have no matching gene in Arabidopsis although these represent only 5% of the targets on the microarray. Further analysis of some of these novel transcripts indicated that several are inducible by ABA in microspore-derived embryos. Of the 200 Arabidopsis genes implicated in lipid biology present on the microarray, 36 were found to be differentially regulated in DGAT transgenic lines. Furthermore, kinetic reverse transcriptase Polymerase Chain Reaction (k-PCR) analysis revealed up-regulation of genes encoding enzymes of the Kennedy pathway involved in assembly of TAGs. Hormone profiling indicated that levels of auxins and cytokinins varied between transgenic lines and untransformed controls, while differences in the pool sizes of ABA and catabolites were only observed at later stages of development. Our results indicate that the increased TAG accumulation observed in transgenic DGAT1 plants is associated with modest transcriptional and hormonal changes during seed development that are not limited to the TAG biosynthesis pathway. These might be associated with feedback or feed-forward effects due to altered levels of DGAT1 activity. The fact that a large fraction of significant amplicons have no matching genes in Arabidopsis compromised our ability to draw concrete inferences from the data at this stage, but has led to the identification of novel genes of potential interest.

  5. Authentication of animal fats using direct analysis in real time (DART) ionization-mass spectrometry and chemometric tools.

    PubMed

    Vaclavik, Lukas; Hrbek, Vojtech; Cajka, Tomas; Rohlik, Bo-Anne; Pipek, Petr; Hajslova, Jana

    2011-06-08

    A combination of direct analysis in real time (DART) ionization coupled to time-of-flight mass spectrometry (TOFMS) and chemometrics was used for animal fat (lard and beef tallow) authentication. This novel instrumentation was employed for rapid profiling of triacylglycerols (TAGs) and polar compounds present in fat samples and their mixtures. Additionally, fat isolated from pork, beef, and pork/beef admixtures was analyzed. Mass spectral records were processed by principal component analysis (PCA) and stepwise linear discriminant analysis (LDA). DART-TOFMS profiles of TAGs were found to be more suitable for the purpose of discrimination among the examined fat types as compared to profiles of polar compounds. The LDA model developed using TAG data enabled not only reliable classification of samples representing neat fats but also detection of admixed lard and tallow at adulteration levels of 5 and 10% (w/w), respectively. The presented approach was also successfully applied to minced meat prepared from pork and beef with comparable fat content. Using the DART-TOFMS TAG profiles of fat isolated from meat mixtures, detection of 10% pork added to beef and vice versa was possible.

  6. Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds.

    PubMed

    Jiang, Huawu; Wu, Pingzhi; Zhang, Sheng; Song, Chi; Chen, Yaping; Li, Meiru; Jia, Yongxia; Fang, Xiaohua; Chen, Fan; Wu, Guojiang

    2012-01-01

    Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29-41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production.

  7. Technological advances and genomics in metazoan parasites.

    PubMed

    Knox, D P

    2004-02-01

    Molecular biology has provided the means to identify parasite proteins, to define their function, patterns of expression and the means to produce them in quantity for subsequent functional analyses. Whole genome and expressed sequence tag programmes, and the parallel development of powerful bioinformatics tools, allow the execution of genome-wide between stage or species comparisons and meaningful gene-expression profiling. The latter can be undertaken with several new technologies such as DNA microarray and serial analysis of gene expression. Proteome analysis has come to the fore in recent years providing a crucial link between the gene and its protein product. RNA interference and ballistic gene transfer are exciting developments which can provide the means to precisely define the function of individual genes and, of importance in devising novel parasite control strategies, the effect that gene knockdown will have on parasite survival.

  8. Informatic selection of a neural crest-melanocyte cDNA set for microarray analysis

    PubMed Central

    Loftus, S. K.; Chen, Y.; Gooden, G.; Ryan, J. F.; Birznieks, G.; Hilliard, M.; Baxevanis, A. D.; Bittner, M.; Meltzer, P.; Trent, J.; Pavan, W.

    1999-01-01

    With cDNA microarrays, it is now possible to compare the expression of many genes simultaneously. To maximize the likelihood of finding genes whose expression is altered under the experimental conditions, it would be advantageous to be able to select clones for tissue-appropriate cDNA sets. We have taken advantage of the extensive sequence information in the dbEST expressed sequence tag (EST) database to identify a neural crest-derived melanocyte cDNA set for microarray analysis. Analysis of characterized genes with dbEST identified one library that contained ESTs representing 21 neural crest-expressed genes (library 198). The distribution of the ESTs corresponding to these genes was biased toward being derived from library 198. This is in contrast to the EST distribution profile for a set of control genes, characterized to be more ubiquitously expressed in multiple tissues (P < 1 × 10−9). From library 198, a subset of 852 clustered ESTs were selected that have a library distribution profile similar to that of the 21 neural crest-expressed genes. Microarray analysis demonstrated the majority of the neural crest-selected 852 ESTs (Mel1 array) were differentially expressed in melanoma cell lines compared with a non-neural crest kidney epithelial cell line (P < 1 × 10−8). This was not observed with an array of 1,238 ESTs that was selected without library origin bias (P = 0.204). This study presents an approach for selecting tissue-appropriate cDNAs that can be used to examine the expression profiles of developmental processes and diseases. PMID:10430933

  9. In silico identification and comparative analysis of differentially expressed genes in human and mouse tissues

    PubMed Central

    Pao, Sheng-Ying; Lin, Win-Li; Hwang, Ming-Jing

    2006-01-01

    Background Screening for differentially expressed genes on the genomic scale and comparative analysis of the expression profiles of orthologous genes between species to study gene function and regulation are becoming increasingly feasible. Expressed sequence tags (ESTs) are an excellent source of data for such studies using bioinformatic approaches because of the rich libraries and tremendous amount of data now available in the public domain. However, any large-scale EST-based bioinformatics analysis must deal with the heterogeneous, and often ambiguous, tissue and organ terms used to describe EST libraries. Results To deal with the issue of tissue source, in this work, we carefully screened and organized more than 8 million human and mouse ESTs into 157 human and 108 mouse tissue/organ categories, to which we applied an established statistic test using different thresholds of the p value to identify genes differentially expressed in different tissues. Further analysis of the tissue distribution and level of expression of human and mouse orthologous genes showed that tissue-specific orthologs tended to have more similar expression patterns than those lacking significant tissue specificity. On the other hand, a number of orthologs were found to have significant disparity in their expression profiles, hinting at novel functions, divergent regulation, or new ortholog relationships. Conclusion Comprehensive statistics on the tissue-specific expression of human and mouse genes were obtained in this very large-scale, EST-based analysis. These statistical results have been organized into a database, freely accessible at our website , for easy searching of human and mouse tissue-specific genes and for investigating gene expression profiles in the context of comparative genomics. Comparative analysis showed that, although highly tissue-specific genes tend to exhibit similar expression profiles in human and mouse, there are significant exceptions, indicating that orthologous genes, while sharing basic genomic properties, could result in distinct phenotypes. PMID:16626500

  10. Expressed sequence tag analysis of adult human optic nerve for NEIBank: Identification of cell type and tissue markers

    PubMed Central

    Bernstein, Steven L; Guo, Yan; Peterson, Katherine; Wistow, Graeme

    2009-01-01

    Background The optic nerve is a pure white matter central nervous system (CNS) tract with an isolated blood supply, and is widely used in physiological studies of white matter response to various insults. We examined the gene expression profile of human optic nerve (ON) and, through the NEIBANK online resource, to provide a resource of sequenced verified cDNA clones. An un-normalized cDNA library was constructed from pooled human ON tissues and was used in expressed sequence tag (EST) analysis. Location of an abundant oligodendrocyte marker was examined by immunofluorescence. Quantitative real time polymerase chain reaction (qRT-PCR) and Western analysis were used to compare levels of expression for key calcium channel protein genes and protein product in primate and rodent ON. Results Our analyses revealed a profile similar in many respects to other white matter related tissues, but significantly different from previously available ON cDNA libraries. The previous libraries were found to include specific markers for other eye tissues, suggesting contamination. Immune/inflammatory markers were abundant in the new ON library. The oligodendrocyte marker QKI was abundant at the EST level. Immunofluorescence revealed that this protein is a useful oligodendrocyte cell-type marker in rodent and primate ONs. L-type calcium channel EST abundance was found to be particularly low. A qRT-PCR-based comparative mammalian species analysis reveals that L-type calcium channel expression levels are significantly lower in primate than in rodent ON, which may help account for the class-specific difference in responsiveness to calcium channel blocking agents. Several known eye disease genes are abundantly expressed in ON. Many genes associated with normal axonal function, mRNAs associated with axonal transport, inflammation and neuroprotection are observed. Conclusion We conclude that the new cDNA library is a faithful representation of human ON and EST data provide an initial overview of gene expression patterns in this tissue. The data provide clues for tissue-specific and species-specific properties of human ON that will help in design of therapeutic models. PMID:19778450

  11. Studies of a biochemical factory: tomato trichome deep expressed sequence tag sequencing and proteomics.

    PubMed

    Schilmiller, Anthony L; Miner, Dennis P; Larson, Matthew; McDowell, Eric; Gang, David R; Wilkerson, Curtis; Last, Robert L

    2010-07-01

    Shotgun proteomics analysis allows hundreds of proteins to be identified and quantified from a single sample at relatively low cost. Extensive DNA sequence information is a prerequisite for shotgun proteomics, and it is ideal to have sequence for the organism being studied rather than from related species or accessions. While this requirement has limited the set of organisms that are candidates for this approach, next generation sequencing technologies make it feasible to obtain deep DNA sequence coverage from any organism. As part of our studies of specialized (secondary) metabolism in tomato (Solanum lycopersicum) trichomes, 454 sequencing of cDNA was combined with shotgun proteomics analyses to obtain in-depth profiles of genes and proteins expressed in leaf and stem glandular trichomes of 3-week-old plants. The expressed sequence tag and proteomics data sets combined with metabolite analysis led to the discovery and characterization of a sesquiterpene synthase that produces beta-caryophyllene and alpha-humulene from E,E-farnesyl diphosphate in trichomes of leaf but not of stem. This analysis demonstrates the utility of combining high-throughput cDNA sequencing with proteomics experiments in a target tissue. These data can be used for dissection of other biochemical processes in these specialized epidermal cells.

  12. Studies of a Biochemical Factory: Tomato Trichome Deep Expressed Sequence Tag Sequencing and Proteomics1[W][OA

    PubMed Central

    Schilmiller, Anthony L.; Miner, Dennis P.; Larson, Matthew; McDowell, Eric; Gang, David R.; Wilkerson, Curtis; Last, Robert L.

    2010-01-01

    Shotgun proteomics analysis allows hundreds of proteins to be identified and quantified from a single sample at relatively low cost. Extensive DNA sequence information is a prerequisite for shotgun proteomics, and it is ideal to have sequence for the organism being studied rather than from related species or accessions. While this requirement has limited the set of organisms that are candidates for this approach, next generation sequencing technologies make it feasible to obtain deep DNA sequence coverage from any organism. As part of our studies of specialized (secondary) metabolism in tomato (Solanum lycopersicum) trichomes, 454 sequencing of cDNA was combined with shotgun proteomics analyses to obtain in-depth profiles of genes and proteins expressed in leaf and stem glandular trichomes of 3-week-old plants. The expressed sequence tag and proteomics data sets combined with metabolite analysis led to the discovery and characterization of a sesquiterpene synthase that produces β-caryophyllene and α-humulene from E,E-farnesyl diphosphate in trichomes of leaf but not of stem. This analysis demonstrates the utility of combining high-throughput cDNA sequencing with proteomics experiments in a target tissue. These data can be used for dissection of other biochemical processes in these specialized epidermal cells. PMID:20431087

  13. Broad host range vectors for expression of proteins with (Twin-) Strep-tag, His-tag and engineered, export optimized yellow fluorescent protein

    PubMed Central

    2013-01-01

    Background In current protein research, a limitation still is the production of active recombinant proteins or native protein associations to assess their function. Especially the localization and analysis of protein-complexes or the identification of modifications and small molecule interaction partners by co-purification experiments requires a controllable expression of affinity- and/or fluorescence tagged variants of a protein of interest in its native cellular background. Advantages of periplasmic and/or homologous expressions can frequently not be realized due to a lack of suitable tools. Instead, experiments are often limited to the heterologous production in one of the few well established expression strains. Results Here, we introduce a series of new RK2 based broad host range expression plasmids for inducible production of affinity- and fluorescence tagged proteins in the cytoplasm and periplasm of a wide range of Gram negative hosts which are designed to match the recently suggested modular Standard European Vector Architecture and database. The vectors are equipped with a yellow fluorescent protein variant which is engineered to fold and brightly fluoresce in the bacterial periplasm following Sec-mediated export, as shown from fractionation and imaging studies. Expression of Strep-tag®II and Twin-Strep-tag® fusion proteins in Pseudomonas putida KT2440 is demonstrated for various ORFs. Conclusion The broad host range constructs we have produced enable good and controlled expression of affinity tagged protein variants for single-step purification and qualify for complex co-purification experiments. Periplasmic export variants enable production of affinity tagged proteins and generation of fusion proteins with a novel engineered Aequorea-based yellow fluorescent reporter protein variant with activity in the periplasm of the tested Gram-negative model bacteria Pseudomonas putida KT2440 and Escherichia coli K12 for production, localization or co-localization studies. In addition, the new tools facilitate metabolic engineering and yield assessment for cytoplasmic or periplasmic protein production in a number of different expression hosts when yields in one initially selected are insufficient. PMID:23687945

  14. Messenger RNA Detection in Leukemia Cell lines by Novel Metal-Tagged in situ Hybridization using Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Ornatsky, Olga I; Baranov, Vladimir I; Bandura, Dmitry R; Tanner, Scott D; Dick, John

    2006-01-01

    Conventional gene expression profiling relies on using fluorescent detection of hybridized probes. Physical characteristics of fluorophores impose limitations on achieving a highly multiplex gene analysis of single cells. Our work demonstrates the feasibility of using metal-tagged in situ hybridization for mRNA detection by inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS as an analytical detector has a number of unique and relevant properties: 1) metals and their stable isotopes generate non-overlapping distinct signals that can be detected simultaneously; 2) these signals can be measured over a wide dynamic range; 3) ICP-MS is quantitative and very sensitive. We used commercial antibodies conjugated to europium (Eu) and gold together with biotinylated oligonucleotide probes reacted with terbium-labeled streptavidin to demonstrate simultaneous mRNA and protein detection by ICP-MS in leukemia cells.

  15. Messenger RNA Detection in Leukemia Cell lines by Novel Metal-Tagged in situ Hybridization using Inductively Coupled Plasma Mass Spectrometry

    PubMed Central

    Ornatsky, Olga I.; Baranov, Vladimir I.; Bandura, Dmitry R.; Tanner, Scott D.; Dick, John

    2006-01-01

    Conventional gene expression profiling relies on using fluorescent detection of hybridized probes. Physical characteristics of fluorophores impose limitations on achieving a highly multiplex gene analysis of single cells. Our work demonstrates the feasibility of using metal-tagged in situ hybridization for mRNA detection by inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS as an analytical detector has a number of unique and relevant properties: 1) metals and their stable isotopes generate non-overlapping distinct signals that can be detected simultaneously; 2) these signals can be measured over a wide dynamic range; 3) ICP-MS is quantitative and very sensitive. We used commercial antibodies conjugated to europium (Eu) and gold together with biotinylated oligonucleotide probes reacted with terbium-labeled streptavidin to demonstrate simultaneous mRNA and protein detection by ICP-MS in leukemia cells. PMID:23662035

  16. Gene Expression Profiling in the Thiamethoxam Resistant and Susceptible B-biotype Sweetpotato Whitefly, Bemisia tabaci

    PubMed Central

    Xie, Wen; Yang, Xin; Wang, Shao-Ii; Wu, Qing-jun; Yang, Ni-na; Li, Ru-mei; Jiao, Xiaoguo; Pan, Hui-peng; Liu, Bai-ming; Feng, Yun-tao; Xu, Bao-yun; Zhou, Xu-guo; Zhang, You-jun

    2012-01-01

    Thiamethoxam has been used as a major insecticide to control the B-biotype sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Due to its excessive use, a high level of resistance to thiamethoxam has developed worldwide over the past several years. To better understand the molecular mechanisms underlying this resistance in B. tabaci, gene profiles between the thiamethoxam-resistant and thiamethoxam-susceptible strains were investigated using the suppression subtractive hybridization (SSH) library approach. A total of 72 and 52 upand down-regulated genes were obtained from the forward and reverse SSH libraries, respectively. These expressed sequence tags (ESTs) belong to several functional categories based on their gene ontology annotation. Some categories such as cell communication, response to abiotic stimulus, lipid particle, and nuclear envelope were identified only in the forward library of thiamethoxam-resistant strains. In contrast, categories such as behavior, cell proliferation, nutrient reservoir activity, sequence-specific DNA binding transcription factor activity, and signal transducer activity were identified solely in the reverse library. To study the validity of the SSH method, 16 differentially expressed genes from both forward and reverse SSH libraries were selected randomly for further analyses using quantitative realtime PCR (qRT-PCR). The qRT-PCR results were fairly consistent with the SSH results; however, only 50% of the genes showed significantly different expression profiles between the thiamethoxam-resistant and thiamethoxam-susceptible whiteflies. Among these genes, a putative NAD-dependent methanol dehydrogenase was substantially over-expressed in the thiamethoxamresistant adults compared to their susceptible counterparts. The distributed profiles show that it was highly expressed during the egg stage, and was most abundant in the abdomen of adult females. PMID:22957505

  17. 75 FR 72686 - Express Mail Open and Distribute and Priority Mail Open and Distribute

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... POSTAL SERVICE 39 CFR Part 111 Express Mail Open and Distribute and Priority Mail Open and... ``DB'' prefix along with new Tag 257, Tag 267, or Label 257S, on all Express Mail[supreg] Open and Distribute containers. The Postal Service is also revising the service commitment for Express Mail Open and...

  18. Molecular phenotype of zebrafish ovarian follicle by serial analysis of gene expression and proteomic profiling, and comparison with the transcriptomes of other animals

    PubMed Central

    Knoll-Gellida, Anja; André, Michèle; Gattegno, Tamar; Forgue, Jean; Admon, Arie; Babin, Patrick J

    2006-01-01

    Background The ability of an oocyte to develop into a viable embryo depends on the accumulation of specific maternal information and molecules, such as RNAs and proteins. A serial analysis of gene expression (SAGE) was carried out in parallel with proteomic analysis on fully-grown ovarian follicles from zebrafish (Danio rerio). The data obtained were compared with ovary/follicle/egg molecular phenotypes of other animals, published or available in public sequence databases. Results Sequencing of 27,486 SAGE tags identified 11,399 different ones, including 3,329 tags with an occurrence superior to one. Fifty-eight genes were expressed at over 0.15% of the total population and represented 17.34% of the mRNA population identified. The three most expressed transcripts were a rhamnose-binding lectin, beta-actin 2, and a transcribed locus similar to the H2B histone family. Comparison with the large-scale expressed sequence tags sequencing approach revealed highly expressed transcripts that were not previously known to be expressed at high levels in fish ovaries, like the short-sized polarized metallothionein 2 transcript. A higher sensitivity for the detection of transcripts with a characterized maternal genetic contribution was also demonstrated compared to large-scale sequencing of cDNA libraries. Ferritin heavy polypeptide 1, heat shock protein 90-beta, lactate dehydrogenase B4, beta-actin isoforms, tubulin beta 2, ATP synthase subunit 9, together with 40 S ribosomal protein S27a, were common highly-expressed transcripts of vertebrate ovary/unfertilized egg. Comparison of transcriptome and proteome data revealed that transcript levels provide little predictive value with respect to the extent of protein abundance. All the proteins identified by proteomic analysis of fully-grown zebrafish follicles had at least one transcript counterpart, with two exceptions: eosinophil chemotactic cytokine and nothepsin. Conclusion This study provides a complete sequence data set of maternal mRNA stored in zebrafish germ cells at the end of oogenesis. This catalogue contains highly-expressed transcripts that are part of a vertebrate ovarian expressed gene signature. Comparison of transcriptome and proteome data identified downregulated transcripts or proteins potentially incorporated in the oocyte by endocytosis. The molecular phenotype described provides groundwork for future experimental approaches aimed at identifying functionally important stored maternal transcripts and proteins involved in oogenesis and early stages of embryo development. PMID:16526958

  19. Identification of Potential Biomarkers for Rhegmatogenous Retinal Detachment Associated with Choroidal Detachment by Vitreous iTRAQ-Based Proteomic Profiling

    PubMed Central

    Wu, Zhifeng; Ding, Nannan; Yu, Mengxi; Wang, Ke; Luo, Shasha; Zou, Wenjun; Zhou, Ying; Yan, Biao; Jiang, Qin

    2016-01-01

    Rhegmatogenous retinal detachment associated with choroidal detachment (RRDCD) is a complicated and serious type of rhegmatogenous retinal detachment (RRD). In this study, we identified differentially expressed proteins in the vitreous humors of RRDCD and RRD using isobaric tags for relative and absolute quantitation (iTRAQ) combined with nano-liquid chromatography-electrospray ion trap-mass spectrometry-mass spectrometry (nano-LC-ESI-MS/MS) and bioinformatic analysis. Our result shows that 103 differentially expressed proteins, including 54 up-regulated and 49 down-regulated proteins were identified in RRDCD. Gene ontology (GO) analysis suggested that most of the differentially expressed proteins were extracellular.The Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis suggested that proteins related to complement and coagulation cascades were significantly enriched. iTRAQ-based proteomic profiling reveals that complement and coagulation cascades and inflammation may play important roles in the pathogenesis of RRDCD. This study may provide novel insights into the pathogenesis of RRDCD and offer potential opportunities for the diagnosis and treatment of RRDCD. PMID:27941623

  20. Gene Discovery in Bladder Cancer Progression using cDNA Microarrays

    PubMed Central

    Sanchez-Carbayo, Marta; Socci, Nicholas D.; Lozano, Juan Jose; Li, Wentian; Charytonowicz, Elizabeth; Belbin, Thomas J.; Prystowsky, Michael B.; Ortiz, Angel R.; Childs, Geoffrey; Cordon-Cardo, Carlos

    2003-01-01

    To identify gene expression changes along progression of bladder cancer, we compared the expression profiles of early-stage and advanced bladder tumors using cDNA microarrays containing 17,842 known genes and expressed sequence tags. The application of bootstrapping techniques to hierarchical clustering segregated early-stage and invasive transitional carcinomas into two main clusters. Multidimensional analysis confirmed these clusters and more importantly, it separated carcinoma in situ from papillary superficial lesions and subgroups within early-stage and invasive tumors displaying different overall survival. Additionally, it recognized early-stage tumors showing gene profiles similar to invasive disease. Different techniques including standard t-test, single-gene logistic regression, and support vector machine algorithms were applied to identify relevant genes involved in bladder cancer progression. Cytokeratin 20, neuropilin-2, p21, and p33ING1 were selected among the top ranked molecular targets differentially expressed and validated by immunohistochemistry using tissue microarrays (n = 173). Their expression patterns were significantly associated with pathological stage, tumor grade, and altered retinoblastoma (RB) expression. Moreover, p33ING1 expression levels were significantly associated with overall survival. Analysis of the annotation of the most significant genes revealed the relevance of critical genes and pathways during bladder cancer progression, including the overexpression of oncogenic genes such as DEK in superficial tumors or immune response genes such as Cd86 antigen in invasive disease. Gene profiling successfully classified bladder tumors based on their progression and clinical outcome. The present study has identified molecular biomarkers of potential clinical significance and critical molecular targets associated with bladder cancer progression. PMID:12875971

  1. Solanum torvum responses to the root-knot nematode Meloidogyne incognita

    PubMed Central

    2013-01-01

    Background Solanum torvum Sw is worldwide employed as rootstock for eggplant cultivation because of its vigour and resistance/tolerance to the most serious soil-borne diseases as bacterial, fungal wilts and root-knot nematodes. The little information on Solanum torvum (hereafter Torvum) resistance mechanisms, is mostly attributable to the lack of genomic tools (e.g. dedicated microarray) as well as to the paucity of database information limiting high-throughput expression studies in Torvum. Results As a first step towards transcriptome profiling of Torvum inoculated with the nematode M. incognita, we built a Torvum 3’ transcript catalogue. One-quarter of a 454 full run resulted in 205,591 quality-filtered reads. De novo assembly yielded 24,922 contigs and 11,875 singletons. Similarity searches of the S. torvum transcript tags catalogue produced 12,344 annotations. A 30,0000 features custom combimatrix chip was then designed and microarray hybridizations were conducted for both control and 14 dpi (day post inoculation) with Meloidogyne incognita-infected roots samples resulting in 390 differentially expressed genes (DEG). We also tested the chip with samples from the phylogenetically-related nematode-susceptible eggplant species Solanum melongena. An in-silico validation strategy was developed based on assessment of sequence similarity among Torvum probes and eggplant expressed sequences available in public repositories. GO term enrichment analyses with the 390 Torvum DEG revealed enhancement of several processes as chitin catabolism and sesquiterpenoids biosynthesis, while no GO term enrichment was found with eggplant DEG. The genes identified from S. torvum catalogue, bearing high similarity to known nematode resistance genes, were further investigated in view of their potential role in the nematode resistance mechanism. Conclusions By combining 454 pyrosequencing and microarray technology we were able to conduct a cost-effective global transcriptome profiling in a non-model species. In addition, the development of an in silico validation strategy allowed to further extend the use of the custom chip to a related species and to assess by comparison the expression of selected genes without major concerns of artifacts. The expression profiling of S. torvum responses to nematode infection points to sesquiterpenoids and chitinases as major effectors of nematode resistance. The availability of the long sequence tags in S. torvum catalogue will allow precise identification of active nematocide/nematostatic compounds and associated enzymes posing the basis for exploitation of these resistance mechanisms in other species. PMID:23937585

  2. Study of cnidarian-algal symbiosis in the "omics" age.

    PubMed

    Meyer, Eli; Weis, Virginia M

    2012-08-01

    The symbiotic associations between cnidarians and dinoflagellate algae (Symbiodinium) support productive and diverse ecosystems in coral reefs. Many aspects of this association, including the mechanistic basis of host-symbiont recognition and metabolic interaction, remain poorly understood. The first completed genome sequence for a symbiotic anthozoan is now available (the coral Acropora digitifera), and extensive expressed sequence tag resources are available for a variety of other symbiotic corals and anemones. These resources make it possible to profile gene expression, protein abundance, and protein localization associated with the symbiotic state. Here we review the history of "omics" studies of cnidarian-algal symbiosis and the current availability of sequence resources for corals and anemones, identifying genes putatively involved in symbiosis across 10 anthozoan species. The public availability of candidate symbiosis-associated genes leaves the field of cnidarian-algal symbiosis poised for in-depth comparative studies of sequence diversity and gene expression and for targeted functional studies of genes associated with symbiosis. Reviewing the progress to date suggests directions for future investigations of cnidarian-algal symbiosis that include (i) sequencing of Symbiodinium, (ii) proteomic analysis of the symbiosome membrane complex, (iii) glycomic analysis of Symbiodinium cell surfaces, and (iv) expression profiling of the gastrodermal cells hosting Symbiodinium.

  3. Developmental staging of male murine embryonic gonad by SAGE analysis

    PubMed Central

    Lee, Tin-Lap; Li, Yunmin; Alba, Diana; Vong, Queenie P.; Wu, Shao-Ming; Baxendale, Vanessa; Rennert, Owen M.; Lau, Yun-Fai Chris; Chan, Wai-Yee

    2012-01-01

    Despite the identification of key genes such as Sry integral to embryonic gonadal development, the genomic classification and identification of chromosomal activation of this process is still poorly understood. To better understand the genetic regulation of gonadal development, we performed Serial Analysis of Gene Expression (SAGE) to profile the genes and novel transcripts, and an average of 152,000 tags from male embryonic gonads at E10.5 (embryonic day 10.5), E11.5, E12.5, E13.5, E15.5 and E17.5 were analyzed. A total of 275,583 non-singleton tags that do not map to any annotated sequence were identified in the six gonad libraries, and 47,255 tags were mapped to 24,975 annotated sequences, among which 987 sequences were uncharacterized. Utilizing an unsupervised pattern identification technique, we established molecular staging of male gonadal development. Rather than providing a static descriptive analysis, we developed algorithms to cluster the SAGE data and assign SAGE tags to a corresponding chromosomal position; these data are displayed in chromosome graphic format. A prominent increase in global genomic activity from E10.5 to E17.5 was observed. Important chromosomal regions related to the developmental processes were identified and validated based on established mouse models with developmental disorders. These regions may represent markers for early diagnosis for disorders of male gonad development as well as potential treatment targets. PMID:19376482

  4. Microplate-compatible total internal reflection fluorescence microscopy for receptor pharmacology

    NASA Astrophysics Data System (ADS)

    Chen, Minghan; Zaytseva, Natalya V.; Wu, Qi; Li, Min; Fang, Ye

    2013-05-01

    We report the use of total internal reflection fluorescence (TIRF) microscopy for analyzing receptor pharmacology and the development of a microplate-compatible TIRF imaging system. Using stably expressed green fluorescence protein tagged β2-adrenergic receptor as the reporter, we found that the activation of different receptors results in distinct kinetic signatures of the TIRF intensity of cells. These TIRF signatures closely resemble the characteristics of their respective label-free dynamic mass redistribution signals in the same cells. This suggests that TIRF in microplate can be used for profiling and screening drugs.

  5. Translational Profiles of Medullary Myofibroblasts during Kidney Fibrosis

    PubMed Central

    Grgic, Ivica; Krautzberger, A. Michaela; Hofmeister, Andreas; Lalli, Matthew; DiRocco, Derek P.; Fleig, Susanne V.; Liu, Jing; Duffield, Jeremy S.; McMahon, Andrew P.; Aronow, Bruce

    2014-01-01

    Myofibroblasts secrete matrix during chronic injury, and their ablation ameliorates fibrosis. Development of new biomarkers and therapies for CKD will be aided by a detailed analysis of myofibroblast gene expression during the early stages of fibrosis. However, dissociating myofibroblasts from fibrotic kidney is challenging. We therefore adapted translational ribosome affinity purification (TRAP) to isolate and profile mRNA from myofibroblasts and their precursors during kidney fibrosis. We generated and characterized a transgenic mouse expressing an enhanced green fluorescent protein (eGFP)–tagged L10a ribosomal subunit protein under control of the collagen1α1 promoter. We developed a one-step procedure for isolation of polysomal RNA from collagen1α1-eGFPL10a mice subject to unilateral ureteral obstruction and analyzed and validated the resulting transcriptional profiles. Pathway analysis revealed strong gene signatures for cell proliferation, migration, and shape change. Numerous novel genes and candidate biomarkers were upregulated during fibrosis, specifically in myofibroblasts, and we validated these results by quantitative PCR, in situ, and Western blot analysis. This study provides a comprehensive analysis of early myofibroblast gene expression during kidney fibrosis and introduces a new technique for cell-specific polysomal mRNA isolation in kidney injury models that is suited for RNA-sequencing technologies. PMID:24652793

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Meng; Cao, Xia; Jia, Qingli

    Triacylglycerol (TAG) is the main storage lipid in plant seeds and the major form of plant oil used for food and, increasingly, for industrial and biofuel applications. Several transcription factors, including FUSCA3 (At3 g26790, FUS3), are associated with embryo maturation and oil biosynthesis in seeds. However, the ability of FUS3 to increase TAG biosynthesis in other tissues has not been quantitatively examined. Here, we evaluated the ability of FUS3 to activate TAG accumulation in non-seed tissues. Overexpression of FUS3 driven by an estradiol-inducible promoter increased oil contents in Arabidopsis seedlings up to 6% of dry weight; more than 50-fold overmore » controls. Eicosenoic acid, a characteristic fatty acid of Arabidopsis seed oil, accumulated to over 20% of fatty acids in cotyledons and leaves. These large increases depended on added sucrose, although without sucrose TAG increased three- to four-fold. Inducing the expression of FUS3 in tobacco BY2 cells also increased TAG accumulation, and co-expression of FUS3 and diacylglycerol acyltransferase 1 (DGAT1) further increased TAG levels to 4% of dry weight. BY2 cell growth was not altered by FUS3 expression, although Arabidopsis seedling development was impaired, consistent with the ability of FUS3 to induce embryo characteristics in non-seed tissues. Microarrays of Arabidopsis seedlings revealed that FUS3 overexpression increased the expression of a higher proportion of genes involved in TAG biosynthesis than genes involved in fatty acid biosynthesis or other lipid pathways. Together these results provide additional insights into FUS3 functions in TAG metabolism and suggest complementary strategies for engineering vegetative oil accumulation.« less

  7. Alterations in gene expression profiles during prostate cancer progression: functional correlations to tumorigenicity and down-regulation of selenoprotein-P in mouse and human tumors.

    PubMed

    Calvo, Alfonso; Xiao, Nianqing; Kang, Jason; Best, Carolyn J M; Leiva, Isabel; Emmert-Buck, Michael R; Jorcyk, Cheryl; Green, Jeffrey E

    2002-09-15

    To identify molecular changes that occur during prostate tumor progression, we have characterized a series of prostate cancer cell lines isolated at different stages of tumorigenesis from C3(1)/Tag transgenic mice. Cell lines derived from low- and high-grade prostatic intraepithelial neoplasia, invasive carcinoma, and a lung metastasis exhibited significant differences in cell growth, tumorigenicity, invasiveness, and angiogenesis. cDNA microarray analysis of 8700 features revealed correlations between the tumorigenicity of the C3(1)/Tag-Pr cells and changes in the expression levels of genes regulating cell growth, angiogenesis, and invasion. Many changes observed in transcriptional regulation in this in vitro system are similar to those reported for human prostate cancer, as well as other types of human tumors. This analysis of expression patterns has also identified novel genes that may be involved in mechanisms of prostate oncogenesis or serve as potential biomarkers or therapeutic targets for prostate cancer. Examples include the L1-cell adhesion molecule, metastasis-associated gene (MTA-2), Rab-25, tumor-associated signal transducer-2 (Trop-2), and Selenoprotein-P, a gene that binds selenium and prevents oxidative stress. Many genes identified in the Pr-cell line model have been shown to be altered in human prostate cancer. The comprehensive microarray data provides a rational basis for using this model system for studies where alterations of specific genes or pathways are of particular interest. Quantitative real-time reverse transcription-PCR for Selenoprotein-P demonstrated a similar down-regulation of the transcript of this gene in a subset of human prostate tumors, mouse tumors, and prostate carcinoma cell lines. This work demonstrates that expression profiling in animal models may lead to the identification of novel genes involved in human prostate cancer biology.

  8. A novel expression system for intracellular production and purification of recombinant affinity-tagged proteins in Aspergillus niger.

    PubMed

    Roth, Andreas H F J; Dersch, Petra

    2010-03-01

    A set of different integrative expression vectors for the intracellular production of recombinant proteins with or without affinity tag in Aspergillus niger was developed. Target genes can be expressed under the control of the highly efficient, constitutive pkiA promoter or the novel sucrose-inducible promoter of the beta-fructofuranosidase (sucA) gene of A. niger in the presence or absence of alternative carbon sources. All expression plasmids contain an identical multiple cloning sequence that allows parallel construction of N- or C-terminally His6- and StrepII-tagged versions of the target proteins. Production of two heterologous model proteins, the green fluorescence protein and the Thermobifida fusca hydrolase, proved the functionality of the vector system. Efficient production and easy detection of the target proteins as well as their fast purification by a one-step affinity chromatography, using the His6- or StrepII-tag sequence, was demonstrated.

  9. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.

    PubMed

    Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh

    2016-10-01

    Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a cost-effective, rapid, and reliable avenue for the purification of recombinant proteins in heterologous hosts. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Bidirectional regulation of neurite elaboration by alternatively spliced metabotropic glutamate receptor 5 (mGluR5) isoforms.

    PubMed

    Mion, S; Corti, C; Neki, A; Shigemoto, R; Corsi, M; Fumagalli, G; Ferraguti, F

    2001-06-01

    Alternative splicing in the mGluR5 gene generates two different receptor isoforms, of which expression is developmentally regulated. However, little is known about the functional significance of mGluR5 splice variants. We have examined the functional coupling, subcellular targeting, and effect on neuronal differentiation of epitope-tagged mGluR5 isoforms by expression in neuroblastoma NG108-15 cells. We found that both mGluR5 splice variants give rise to comparable [Ca2+]i transients and have similar pharmacological profile. Tagged receptors were shown by immunofluorescence to be inserted in the plasma membrane. In undifferentiated cells the subcellular localization of the two mGluR5 isoforms was partially segregated, whereas in differentiated cells the labeling largely redistributed to the newly formed neurites. Interestingly, we demonstrate that mGluR5 splice variants dramatically influence the formation and maturation of neurites; mGluR5a hinders the acquisition of mature neuronal traits and mGluR5b fosters the elaboration and extension of neurites. These effects are partly inhibited by MPEP. Copyright 2001 Academic Press.

  11. Twist1 Transcriptional Targets in the Developing Atrio-Ventricular Canal of the Mouse

    PubMed Central

    Vrljicak, Pavle; Cullum, Rebecca; Xu, Eric; Chang, Alex C. Y.; Wederell, Elizabeth D.; Bilenky, Mikhail; Jones, Steven J. M.; Marra, Marco A.; Karsan, Aly; Hoodless, Pamela A.

    2012-01-01

    Malformations of the cardiovascular system are the most common type of birth defect in humans, frequently affecting the formation of valves and septa. During heart valve and septa formation, cells from the atrio-ventricular canal (AVC) and outflow tract (OFT) regions of the heart undergo an epithelial-to-mesenchymal transformation (EMT) and invade the underlying extracellular matrix to give rise to endocardial cushions. Subsequent maturation of newly formed mesenchyme cells leads to thin stress-resistant leaflets. TWIST1 is a basic helix-loop-helix transcription factor expressed in newly formed mesenchyme cells of the AVC and OFT that has been shown to play roles in cell survival, cell proliferation and differentiation. However, the downstream targets of TWIST1 during heart valve formation remain unclear. To identify genes important for heart valve development downstream of TWIST1, we performed global gene expression profiling of AVC, OFT, atria and ventricles of the embryonic day 10.5 mouse heart by tag-sequencing (Tag-seq). Using this resource we identified a novel set of 939 genes, including 123 regulators of transcription, enriched in the valve forming regions of the heart. We compared these genes to a Tag-seq library from the Twist1 null developing valves revealing significant gene expression changes. These changes were consistent with a role of TWIST1 in controlling differentiation of mesenchymal cells following their transformation from endothelium in the mouse. To study the role of TWIST1 at the DNA level we performed chromatin immunoprecipitation and identified novel direct targets of TWIST1 in the developing heart valves. Our findings support a role for TWIST1 in the differentiation of AVC mesenchyme post-EMT in the mouse, and suggest that TWIST1 can exert its function by direct DNA binding to activate valve specific gene expression. PMID:22815831

  12. Expressed sequence tag analysis of adult human lens for the NEIBank Project: over 2000 non-redundant transcripts, novel genes and splice variants.

    PubMed

    Wistow, Graeme; Bernstein, Steven L; Wyatt, M Keith; Behal, Amita; Touchman, Jeffrey W; Bouffard, Gerald; Smith, Don; Peterson, Katherine

    2002-06-15

    To explore the expression profile of the human lens and to provide a resource for microarray studies, expressed sequence tag (EST) analysis has been performed on cDNA libraries from adult lenses. A cDNA library was constructed from two adult (40 year old) human lenses. Over two thousand clones were sequenced from the unamplified, un-normalized library. The library was then normalized and a further 2200 sequences were obtained. All the data were analyzed using GRIST (GRouping and Identification of Sequence Tags), a procedure for gene identification and clustering. The lens library (by) contains a low percentage of non-mRNA contaminants and a high fraction (over 75%) of apparently full length cDNA clones. Approximately 2000 reads from the unamplified library yields 810 clusters, potentially representing individual genes expressed in the lens. After normalization, the content of crystallins and other abundant cDNAs is markedly reduced and a similar number of reads from this library (fs) yields 1455 unique groups of which only two thirds correspond to named genes in GenBank. Among the most abundant cDNAs is one for a novel gene related to glutamine synthetase, which was designated "lengsin" (LGS). Analyses of ESTs also reveal examples of alternative transcripts, including a major alternative splice form for the lens specific membrane protein MP19. Variant forms for other transcripts, including those encoding the apoptosis inhibitor Livin and the armadillo repeat protein ARVCF, are also described. The lens cDNA libraries are a resource for gene discovery, full length cDNAs for functional studies and microarrays. The discovery of an abundant, novel transcript, lengsin, and a major novel splice form of MP19 reflect the utility of unamplified libraries constructed from dissected tissue. Many novel transcripts and splice forms are represented, some of which may be candidates for genetic diseases.

  13. Differential expression and molecular characterisation of Lmo7, Myo1e, Sash1, and Mcoln2 genes in Btk-defective B-cells.

    PubMed

    Lindvall, Jessica M; Blomberg, K Emelie M; Wennborg, Anders; Smith, C I Edvard

    2005-05-01

    Bruton's tyrosine kinase is crucial for B-lymphocyte development. By the use of gene expression profiling, we have identified four expressed sequence tags among 38 potential Btk target genes, which have now been characterised. Bioinformatics tools including data mining of additional unpublished gene expression profiles, sequence verification of PCR products and qualitative RT-PCR were used. Stimulations targeting the B-cell receptor and the protein kinase C were used to activate whole B-cell splenocytes. Target genes were characterised as Lim domain only 7 (Lmo7); Myosin1e (Myo1e); SAM and SH3 domain containing 1 (Sash1); and Mucolipin2 (Mcoln2). Expression was found in cell lines of different origin and developmental stages as well as in whole B-cell splenocytes and Transitional type 1 (T1) splenic B-cells from wild type and Btk-defective mice, respectively. By the use of semi-quantitative RT-PCR we found Sash1 not to be expressed in the investigated haematopoietic cell lines, while transcripts were found in whole splenic B-cells from both wild type and Btk-defective mice, whereas Lmo7, Myo1e, and Mcoln2 were expressed in both B-cell lines and primary B-lymphocytes. Except for Lmo7, the transcript level was similarly affected by stimulation in control and Btk-defective cells.

  14. Protein Profiles Reveal Diverse Responsive Signaling Pathways in Kernels of Two Maize Inbred Lines with Contrasting Drought Sensitivity

    PubMed Central

    Yang, Liming; Jiang, Tingbo; Fountain, Jake C.; Scully, Brian T.; Lee, Robert D.; Kemerait, Robert C.; Chen, Sixue; Guo, Baozhu

    2014-01-01

    Drought stress is a major factor that contributes to disease susceptibility and yield loss in agricultural crops. To identify drought responsive proteins and explore metabolic pathways involved in maize tolerance to drought stress, two maize lines (B73 and Lo964) with contrasting drought sensitivity were examined. The treatments of drought and well water were applied at 14 days after pollination (DAP), and protein profiles were investigated in developing kernels (35 DAP) using iTRAQ (isobaric tags for relative and absolute quantitation). Proteomic analysis showed that 70 and 36 proteins were significantly altered in their expression under drought treatments in B73 and Lo964, respectively. The numbers and levels of differentially expressed proteins were generally higher in the sensitive genotype, B73, implying an increased sensitivity to drought given the function of the observed differentially expressed proteins, such as redox homeostasis, cell rescue/defense, hormone regulation and protein biosynthesis and degradation. Lo964 possessed a more stable status with fewer differentially expressed proteins. However, B73 seems to rapidly initiate signaling pathways in response to drought through adjusting diverse defense pathways. These changes in protein expression allow for the production of a drought stress-responsive network in maize kernels. PMID:25334062

  15. Gene expression profiles reveal that DCN, DIO1, and DIO2 are underexpressed in benign and malignant thyroid tumors.

    PubMed

    Arnaldi, L A T; Borra, R C; Maciel, R M B; Cerutti, J M

    2005-03-01

    To investigate the molecular events involved in the pathogenesis and/or progression of thyroid tumors, we compared the gene expression profiles of three thyroid carcinoma cell lines, which represent major tumor subtypes of thyroid cancer and normal thyroid tissue. Using cDNA array methodology, we investigated the expression of 1807 open reading frame expressed sequence tags (ORESTES), selected from head and neck tumor libraries generated through the Brazilian Human Cancer Project-LICR/FAPESP. We found that 505 transcripts were differentially expressed in the thyroid carcinoma cell lines. Using a more stringent criterion, transcripts underexpressed or overexpressed more than fivefold in 1 of 3 or 3 of 3 carcinoma cell lines, a list of 55 ESTs were detected. Five candidate genes were further validated by quantitative polymerase chain reaction (qPCR) in an independent set of 52 thyroid tumors and 22 matched normal thyroid tissues. DCN was found underexpressed in a high percentage of the follicular thyroid adenomas, follicular thyroid carcinomas, and follicular variant of papillary thyroid carcinomas. DIO1 and DIO2 were underexpressed in nearly all papillary thyroid carcinomas. These genes not only could help to better define a tumor signature for thyroid tumors, but may, in part, also become useful as potential targets for thyroid tumor treatment.

  16. Tryptophan tags and de novo designed complementary affinity ligands for the expression and purification of recombinant proteins.

    PubMed

    Pina, Ana Sofia; Carvalho, Sara; Dias, Ana Margarida G C; Guilherme, Márcia; Pereira, Alice S; Caraça, Luciana T; Coroadinha, Ana Sofia; Lowe, Christopher R; Roque, A Cecília A

    2016-11-11

    A common strategy for the production and purification of recombinant proteins is to fuse a tag to the protein terminal residues and employ a "tag-specific" ligand for fusion protein capture and purification. In this work, we explored the effect of two tryptophan-based tags, NWNWNW and WFWFWF, on the expression and purification of Green Fluorescence Protein (GFP) used as a model fusion protein. The titers obtained with the expression of these fusion proteins in soluble form were 0.11mgml -1 and 0.48mgml -1 for WFWFWF and NWNWNW, respectively. A combinatorial library comprising 64 ligands based on the Ugi reaction was prepared and screened for binding GFP-tagged and non-tagged proteins. Complementary ligands A2C2 and A3C1 were selected for the effective capture of NWNWNW and WFWFWF tagged proteins, respectively, in soluble forms. These affinity pairs displayed 10 6 M -1 affinity constants and Qmax values of 19.11±2.60ugg -1 and 79.39ugg -1 for the systems WFWFWF AND NWNWNW, respectively. GFP fused to the WFWFWF affinity tag was also produced as inclusion bodies, and a refolding-on column strategy was explored using the ligand A4C8, selected from the combinatorial library of ligands but in presence of denaturant agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Genetically Targeted Ratiometric and Activated pH Indicator Complexes (TRApHIC) for Receptor Trafficking.

    PubMed

    Perkins, Lydia A; Yan, Qi; Schmidt, Brigitte F; Kolodieznyi, Dmytro; Saurabh, Saumya; Larsen, Mads Breum; Watkins, Simon C; Kremer, Laura; Bruchez, Marcel P

    2018-02-06

    Fluorescent protein-based pH sensors are useful tools for measuring protein trafficking through pH changes associated with endo- and exocytosis. However, commonly used pH-sensing probes are ubiquitously expressed with their protein of interest throughout the cell, hindering our ability to focus on specific trafficking pools of proteins. We developed a family of excitation ratiometric, activatable pH responsive tandem dyes, consisting of a pH sensitive Cy3 donor linked to a fluorogenic malachite green acceptor. These cell-excluded dyes are targeted and activated upon binding to a genetically expressed fluorogen-activating protein and are suitable for selective labeling of surface proteins for analysis of endocytosis and recycling in live cells using both confocal and superresolution microscopy. Quantitative profiling of the endocytosis and recycling of tagged β2-adrenergic receptor (B2AR) at a single-vesicle level revealed differences among B2AR agonists, consistent with more detailed pharmacological profiling.

  18. Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions

    PubMed Central

    2013-01-01

    Background Soybean is an important crop that provides valuable proteins and oils for human use. Because soybean growth and development is extremely sensitive to water deficit, quality and crop yields are severely impacted by drought stress. In the face of limited water resources, drought-responsive genes are therefore of interest. Identification and analysis of dehydration- and rehydration-inducible differentially expressed genes (DEGs) would not only aid elucidation of molecular mechanisms of stress response, but also enable improvement of crop stress tolerance via gene transfer. Using Digital Gene Expression Tag profiling (DGE), a new technique based on Illumina sequencing, we analyzed expression profiles between two soybean genotypes to identify drought-responsive genes. Results Two soybean genotypes—drought-tolerant Jindou21 and drought-sensitive Zhongdou33—were subjected to dehydration and rehydration conditions. For analysis of DEGs under dehydration conditions, 20 cDNA libraries were generated from roots and leaves at two different time points under well-watered and dehydration conditions. We also generated eight libraries for analysis under rehydration conditions. Sequencing of the 28 libraries produced 25,000–33,000 unambiguous tags, which were mapped to reference sequences for annotation of expressed genes. Many genes exhibited significant expression differences among the libraries. DEGs in the drought-tolerant genotype were identified by comparison of DEGs among treatments and genotypes. In Jindou21, 518 and 614 genes were differentially expressed under dehydration in leaves and roots, respectively, with 24 identified both in leaves and roots. The main functional categories enriched in these DEGs were metabolic process, response to stresses, plant hormone signal transduction, protein processing, and plant-pathogen interaction pathway; the associated genes primarily encoded transcription factors, protein kinases, and other regulatory proteins. The seven most significantly expressed (|log2 ratio| ≥ 8) genes— Glyma15g03920, Glyma05g02470, Glyma15g15010, Glyma05g09070, Glyma06g35630, Glyma08g12590, and Glyma11g16000—are more likely to determine drought stress tolerance. The expression patterns of eight randomly-selected genes were confirmed by quantitative RT-PCR; the results of QRT-PCR analysis agreed with transcriptional profile data for 96 out of 128 (75%) data points. Conclusions Many soybean genes were differentially expressed between drought-tolerant and drought-sensitive genotypes. Based on GO functional annotation and pathway enrichment analysis, some of these genes encoded transcription factors, protein kinases, and other regulatory proteins. The seven most significant DEGs are candidates for improving soybean drought tolerance. These findings will be helpful for analysis and elucidation of molecular mechanisms of drought tolerance; they also provide a basis for cultivating new varieties of drought-tolerant soybean. PMID:24093224

  19. GEMINI: a computationally-efficient search engine for large gene expression datasets.

    PubMed

    DeFreitas, Timothy; Saddiki, Hachem; Flaherty, Patrick

    2016-02-24

    Low-cost DNA sequencing allows organizations to accumulate massive amounts of genomic data and use that data to answer a diverse range of research questions. Presently, users must search for relevant genomic data using a keyword, accession number of meta-data tag. However, in this search paradigm the form of the query - a text-based string - is mismatched with the form of the target - a genomic profile. To improve access to massive genomic data resources, we have developed a fast search engine, GEMINI, that uses a genomic profile as a query to search for similar genomic profiles. GEMINI implements a nearest-neighbor search algorithm using a vantage-point tree to store a database of n profiles and in certain circumstances achieves an [Formula: see text] expected query time in the limit. We tested GEMINI on breast and ovarian cancer gene expression data from The Cancer Genome Atlas project and show that it achieves a query time that scales as the logarithm of the number of records in practice on genomic data. In a database with 10(5) samples, GEMINI identifies the nearest neighbor in 0.05 sec compared to a brute force search time of 0.6 sec. GEMINI is a fast search engine that uses a query genomic profile to search for similar profiles in a very large genomic database. It enables users to identify similar profiles independent of sample label, data origin or other meta-data information.

  20. Evaluating gold standard corpora against gene/protein tagging solutions and lexical resources

    PubMed Central

    2013-01-01

    Motivation The identification of protein and gene names (PGNs) from the scientific literature requires semantic resources: Terminological and lexical resources deliver the term candidates into PGN tagging solutions and the gold standard corpora (GSC) train them to identify term parameters and contextual features. Ideally all three resources, i.e. corpora, lexica and taggers, cover the same domain knowledge, and thus support identification of the same types of PGNs and cover all of them. Unfortunately, none of the three serves as a predominant standard and for this reason it is worth exploring, how these three resources comply with each other. We systematically compare different PGN taggers against publicly available corpora and analyze the impact of the included lexical resource in their performance. In particular, we determine the performance gains through false positive filtering, which contributes to the disambiguation of identified PGNs. Results In general, machine learning approaches (ML-Tag) for PGN tagging show higher F1-measure performance against the BioCreative-II and Jnlpba GSCs (exact matching), whereas the lexicon based approaches (LexTag) in combination with disambiguation methods show better results on FsuPrge and PennBio. The ML-Tag solutions balance precision and recall, whereas the LexTag solutions have different precision and recall profiles at the same F1-measure across all corpora. Higher recall is achieved with larger lexical resources, which also introduce more noise (false positive results). The ML-Tag solutions certainly perform best, if the test corpus is from the same GSC as the training corpus. As expected, the false negative errors characterize the test corpora and – on the other hand – the profiles of the false positive mistakes characterize the tagging solutions. Lex-Tag solutions that are based on a large terminological resource in combination with false positive filtering produce better results, which, in addition, provide concept identifiers from a knowledge source in contrast to ML-Tag solutions. Conclusion The standard ML-Tag solutions achieve high performance, but not across all corpora, and thus should be trained using several different corpora to reduce possible biases. The LexTag solutions have different profiles for their precision and recall performance, but with similar F1-measure. This result is surprising and suggests that they cover a portion of the most common naming standards, but cope differently with the term variability across the corpora. The false positive filtering applied to LexTag solutions does improve the results by increasing their precision without compromising significantly their recall. The harmonisation of the annotation schemes in combination with standardized lexical resources in the tagging solutions will enable their comparability and will pave the way for a shared standard. PMID:24112383

  1. Global Analysis of Gene Expression Profiles in Developing Physic Nut (Jatropha curcas L.) Seeds

    PubMed Central

    Jiang, Huawu; Wu, Pingzhi; Zhang, Sheng; Song, Chi; Chen, Yaping; Li, Meiru; Jia, Yongxia; Fang, Xiaohua; Chen, Fan; Wu, Guojiang

    2012-01-01

    Background Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. Methodology/Principal Findings We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29–41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. Conclusions/Significance The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production. PMID:22574177

  2. Endoprotease profiling with double-tagged peptide substrates: a new diagnostic approach in oncology.

    PubMed

    Peccerella, Teresa; Lukan, Nadine; Hofheinz, Ralf; Schadendorf, Dirk; Kostrezewa, Markus; Neumaier, Michael; Findeisen, Peter

    2010-02-01

    The measurement of disease-related proteolytic activity in complex biological matrices like serum is of emerging interest to improve the diagnosis of malignant diseases. We developed a mass spectrometry (MS)-based functional proteomic profiling approach that tracks degradation of artificial endoprotease substrates in serum specimens. The synthetic reporter peptides that are cleaved by tumor-associated endopeptidases were systematically optimized with regard to flanking affinity tags, linkers, and stabilizing elements. Serum specimens were incubated with reporter peptides under standardized conditions and the peptides subsequently extracted with affinity chromatography before MS. In a pilot study an optimized reporter peptide with the cleavage motif WKPYDAADL was added to serum specimens from colorectal tumor patients (n = 50) and healthy controls (n = 50). This reporter peptide comprised a known cleavage site for the cysteine-endopeptidase "cancer procoagulant." Serial affinity chromatography using biotin- and 6xHis tags was superior to the single affinity enrichment using only 6xHis tags. Furthermore, protease-resistant stop elements ensured signal accumulation after prolonged incubation. In contrast, signals from reporter peptides without stop elements vanished completely after prolonged incubation owing to their total degradation. Reporter-peptide spiking showed good reproducibility, and the difference in proteolytic activity between serum specimens from cancer patients and controls was highly significant (P < 0.001). The introduction of a few structural key elements (affinity tags, linkers, d-amino acids) into synthetic reporter peptides increases the diagnostic sensitivity for MS-based protease profiling of serum specimens. This new approach might lead to functional MS-based protease profiling for improved disease classification.

  3. Production of recombinant proteins in Escherichia coli tagged with the fusion protein CusF3H.

    PubMed

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2017-04-01

    Recombinant protein expression in the bacterium Escherichia coli still is the number one choice for large-scale protein production. Nevertheless, many complications can arise using this microorganism, such as low yields, the formation of inclusion bodies, and the requirement for difficult purification steps. Most of these problems can be solved with the use of fusion proteins. Here, the use of the metal-binding protein CusF3H+ is described as a new fusion protein for recombinant protein expression and purification in E. coli. We have previously shown that CusF produces large amounts of soluble protein, with low levels of formation of inclusion bodies, and that proteins can be purified using IMAC resins charged with Cu(II) ions. CusF3H+ is an enhanced variant of CusF, formed by the addition of three histidine residues at the N-terminus. These residues then can bind Ni(II) ions allowing improved purity after affinity chromatography. Expression and purification of Green Fluorescent Protein tagged with CusF3H+ showed that the mutation did not alter the capacity of the fusion protein to increase protein expression, and purity improved considerably after affinity chromatography with immobilized nickel ions; high yields are obtained after tag-removal since CusF3H+ is a small protein of just 10 kDa. Furthermore, the results of experiments involving expression of tagged proteins having medium to large molecular weights indicate that the presence of the CusF3H+ tag improves protein solubility, as compared to a His-tag. We therefore endorse CusF3H+ as a useful alternative fusion protein/affinity tag for production of recombinant proteins in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A Comprehensive Tool and Analytical Pathway for Differential Molecular Profiling and Biomarker Discovery

    DTIC Science & Technology

    2014-10-20

    three possiblities: AKR , B6, and BALB_B) and MUP Protein (containing two possibilities: Intact and Denatured), then you can view a plot of the Strain...the tags for the last two labels. Again, if the attribute Strain has three tags: AKR , B6, 74 Distribution A . Approved for public release...AFRL-RH-WP-TR-2014-0131 A COMPREHENSIVE TOOL AND ANALYTICAL PATHWAY FOR DIFFERENTIAL MOLECULAR PROFILING AND BIOMARKER DISCOVERY

  5. Imaging Seafloor Massive Sulphides at the TAG hydrothermal fields, from the Blue Mining seismic project

    NASA Astrophysics Data System (ADS)

    Gil de la Iglesia, Alba; Vardy, Mark; Bialas, Jörg; Dannowski, Anke; Schröder, Henning; Minshull, Tim; Chidlow, Kasia; Murton, Bramly

    2017-04-01

    The Trans-Atlantic Geotraverse (TAG) hydrothermal field, located at the Mid-Atlantic Ridge (26°N), is known for the existence of Seafloor Massive Sulphides (SMS) discovered by the Trans-Atlantic Geotraverse cruise (Rona et al., 1986). The TAG comprises a low-temperature alteration zone, five inactive, high-temperature hydrothermal deposits, and the hydrothermal active TAG mound. TAG is also known for being one of the eight known SMS with a size larger than 2M tones (Hannington et al., 2011). The known SMS deposits do not have the same dimensions as the Massive Sulphides (MS) found on land, covering areas from 10s-100s m2 and their accessibility is more complicated, being located at 800-6000 m water depth. Although they do not seem to be economically exploitable at present, those deep-sea mineral resources could be important targets in the near future. One of the aims of the European-funded Blue Mining project is to identify the SMS deposit dimensions for the future environmentally sustainable and clean deep-sea mining. The Blue Mining project is focused on the extinct Seafloor Massive Sulphides (eSMS) in the TAG hydrothermal field, in particular Shinkai, Southern and Shimmering mounds. In May/June 2016 the German RV METEOR carried out a seismic refraction/reflection wide-angle (WA) experiment acquiring thirty multichannel seismic (MCS) profiles crossing the TAG hydrothermal field. GEOMAR's 2-unit air-gun array with a total volume of 760 cubic-inches was used, triggering seismic pulses every 12 s along the MCS profiles. Reflected and refracted events from the shallow-towed sources were recorded by 20 Ocean Bottom Seismometers (OBS) and 5 Ocean Bottom Hydrophones (OBH). To obtain the internal velocities and gross geometries of these deposits, 10 of 20 OBS were located on top of the eSMS, Shinaki and Southern mounds, while the other 10 instruments were located in extension of the profiles, covering Shimmering mounds and regional targets. In this presentation, we present results from controlled-source seismic forward modelling along two 5 km North-South profiles and a 10 km East-West profile. The 10 km profile cross over two eSMS (Shinkai and Southern mounds) deposits, while the other two 5 km profiles, pass through Shimmering and Shinkai mounds, and Southern mound, respectively. Despite the small size of all mounds we have been able to image their dimensions by using forward modelling. From Pg, PcP and PmP arrivals, we could model one 100 m and two 120 m thick deposits in 500 m slow thin upper crust layer (2900-5400 m/s), followed by 1500 m lower crust (6400-7200 m/s).

  6. Multiplexed quantitation of protein expression and phosphorylation based on functionalized soluble nanopolymers

    PubMed Central

    Pan, Li; Iliuk, Anton; Yu, Shuai; Geahlen, Robert L.; Tao, W. Andy

    2012-01-01

    We report here for the first time the multiplexed quantitation of phosphorylation and protein expression based on a functionalized soluble nanopolymer. The soluble nanopolymer, pIMAGO, is functionalized with Ti (IV) ions for chelating phosphoproteins in high specificity, and with infrared fluorescent tags for direct, multiplexed assays. The nanopolymer allows for direct competition for epitopes on proteins of interest, thus facilitating simultaneous detection of phosphorylation by pIMAGO and total protein amount by protein antibody in the same well of microplates. The new strategy has a great potential to measure cell signaling events by clearly distinguishing actual phosphorylation signals from protein expression changes, thus providing a powerful tool to accurately profile cellular signal transduction in healthy and disease cells. We anticipate broad applications of this new strategy in monitoring cellular signaling pathways and discovering new signaling events. PMID:23088311

  7. In Vivo Activity of Insulin-Like Growth Factor Binding Protein-3 in Prevention of Prostate Cancer Progression

    DTIC Science & Technology

    2008-10-01

    cell metastasis and survival through level of expression and differential phosphorylation. Phospho- HSP27 modulates cell motility; blocking...Phospho Hsp27 expression in prostate Compared to wt mice 0 10 20 30 40 50 60 9wk 11wk 13wk 15wk 17wk 19wk LPB-Tag LPB-Tag x PGKBP-3 LPB-Tag x PGKBP...3mut     Figure 7 Relative change in expression of phoshorylated HSP27 by immunoblot analyses using anti-pHSP27 (Santa Cruz; pHSP27(ser78): sc-16568

  8. Analysis of miRNA expression profile based on SVM algorithm

    NASA Astrophysics Data System (ADS)

    Ting-ting, Dai; Chang-ji, Shan; Yan-shou, Dong; Yi-duo, Bian

    2018-05-01

    Based on mirna expression spectrum data set, a new data mining algorithm - tSVM - KNN (t statistic with support vector machine - k nearest neighbor) is proposed. the idea of the algorithm is: firstly, the feature selection of the data set is carried out by the unified measurement method; Secondly, SVM - KNN algorithm, which combines support vector machine (SVM) and k - nearest neighbor (k - nearest neighbor) is used as classifier. Simulation results show that SVM - KNN algorithm has better classification ability than SVM and KNN alone. Tsvm - KNN algorithm only needs 5 mirnas to obtain 96.08 % classification accuracy in terms of the number of mirna " tags" and recognition accuracy. compared with similar algorithms, tsvm - KNN algorithm has obvious advantages.

  9. A genome-wide resource for the analysis of protein localisation in Drosophila

    PubMed Central

    Sarov, Mihail; Barz, Christiane; Jambor, Helena; Hein, Marco Y; Schmied, Christopher; Suchold, Dana; Stender, Bettina; Janosch, Stephan; KJ, Vinay Vikas; Krishnan, RT; Krishnamoorthy, Aishwarya; Ferreira, Irene RS; Ejsmont, Radoslaw K; Finkl, Katja; Hasse, Susanne; Kämpfer, Philipp; Plewka, Nicole; Vinis, Elisabeth; Schloissnig, Siegfried; Knust, Elisabeth; Hartenstein, Volker; Mann, Matthias; Ramaswami, Mani; VijayRaghavan, K; Tomancak, Pavel; Schnorrer, Frank

    2016-01-01

    The Drosophila genome contains >13000 protein-coding genes, the majority of which remain poorly investigated. Important reasons include the lack of antibodies or reporter constructs to visualise these proteins. Here, we present a genome-wide fosmid library of 10000 GFP-tagged clones, comprising tagged genes and most of their regulatory information. For 880 tagged proteins, we created transgenic lines, and for a total of 207 lines, we assessed protein expression and localisation in ovaries, embryos, pupae or adults by stainings and live imaging approaches. Importantly, we visualised many proteins at endogenous expression levels and found a large fraction of them localising to subcellular compartments. By applying genetic complementation tests, we estimate that about two-thirds of the tagged proteins are functional. Moreover, these tagged proteins enable interaction proteomics from developing pupae and adult flies. Taken together, this resource will boost systematic analysis of protein expression and localisation in various cellular and developmental contexts. DOI: http://dx.doi.org/10.7554/eLife.12068.001 PMID:26896675

  10. Heterologous expression of a thermophilic diacylglycerol acyltransferase triggers triglyceride accumulation in Escherichia coli.

    PubMed

    Lázaro, Beatriz; Villa, Juan A; Santín, Omar; Cabezas, Matilde; Milagre, Cintia D F; de la Cruz, Fernando; Moncalián, Gabriel

    2017-01-01

    Triglycerides (TAGs), the major storage molecules of metabolic energy and source of fatty acids, are produced as single cell oil by some oleogenic microorganisms. However, these microorganisms require strict culture conditions, show low carbon source flexibilities, lack efficient genetic modification tools and in some cases pose safety concerns. TAGs have essential applications such as behaving as a source for added-value fatty acids or giving rise to the production of biodiesel. Hence, new alternative methods are urgently required for obtaining these oils. In this work we describe TAG accumulation in the industrially appropriate microorganism Escherichia coli expressing the heterologous enzyme tDGAT, a wax ester synthase/triacylglycerol:acylCoA acyltranferase (WS/DGAT). With this purpose, we introduce a codon-optimized gene from the thermophilic actinomycete Thermomonospora curvata coding for a WS/DGAT into different E. coli strains, describe the metabolic effects associated to the expression of this protein and evaluate neutral lipid accumulation. We observe a direct relation between the expression of this WS/DGAT and TAG production within a wide range of culture conditions. More than 30% TAGs were detected within the bacterial neutral lipids in 90 minutes after induction. TAGs were observed to be associated with the hydrophobic enzyme while forming round intracytoplasmic bodies, which could represent a bottleneck for lipid accumulation in E. coli. We detected an increase of almost 3-fold in the monounsaturated fatty acids (MUFA) occurring in the recombinant strains. These MUFA were predominant in the accumulated TAGs achieving 46% of the TAG fatty acids. These results set the basis for further research on the achievement of a suitable method towards the sustainable production of these neutral lipids.

  11. FUSCA3 activates triacylglycerol accumulation in Arabidopsis seedlings and tobacco BY2 cells

    DOE PAGES

    Zhang, Meng; Cao, Xia; Jia, Qingli; ...

    2016-06-11

    Triacylglycerol (TAG) is the main storage lipid in plant seeds and the major form of plant oil used for food and, increasingly, for industrial and biofuel applications. Several transcription factors, including FUSCA3 (At3 g26790, FUS3), are associated with embryo maturation and oil biosynthesis in seeds. However, the ability of FUS3 to increase TAG biosynthesis in other tissues has not been quantitatively examined. Here, we evaluated the ability of FUS3 to activate TAG accumulation in non-seed tissues. Overexpression of FUS3 driven by an estradiol-inducible promoter increased oil contents in Arabidopsis seedlings up to 6% of dry weight; more than 50-fold overmore » controls. Eicosenoic acid, a characteristic fatty acid of Arabidopsis seed oil, accumulated to over 20% of fatty acids in cotyledons and leaves. These large increases depended on added sucrose, although without sucrose TAG increased three- to four-fold. Inducing the expression of FUS3 in tobacco BY2 cells also increased TAG accumulation, and co-expression of FUS3 and diacylglycerol acyltransferase 1 (DGAT1) further increased TAG levels to 4% of dry weight. BY2 cell growth was not altered by FUS3 expression, although Arabidopsis seedling development was impaired, consistent with the ability of FUS3 to induce embryo characteristics in non-seed tissues. Microarrays of Arabidopsis seedlings revealed that FUS3 overexpression increased the expression of a higher proportion of genes involved in TAG biosynthesis than genes involved in fatty acid biosynthesis or other lipid pathways. Together these results provide additional insights into FUS3 functions in TAG metabolism and suggest complementary strategies for engineering vegetative oil accumulation.« less

  12. FUSCA3 activates triacylglycerol accumulation in Arabidopsis seedlings and tobacco BY2 cells.

    PubMed

    Zhang, Meng; Cao, Xia; Jia, Qingli; Ohlrogge, John

    2016-10-01

    Triacylglycerol (TAG) is the main storage lipid in plant seeds and the major form of plant oil used for food and, increasingly, for industrial and biofuel applications. Several transcription factors, including FUSCA3 (At3 g26790, FUS3), are associated with embryo maturation and oil biosynthesis in seeds. However, the ability of FUS3 to increase TAG biosynthesis in other tissues has not been quantitatively examined. Here, we evaluated the ability of FUS3 to activate TAG accumulation in non-seed tissues. Overexpression of FUS3 driven by an estradiol-inducible promoter increased oil contents in Arabidopsis seedlings up to 6% of dry weight; more than 50-fold over controls. Eicosenoic acid, a characteristic fatty acid of Arabidopsis seed oil, accumulated to over 20% of fatty acids in cotyledons and leaves. These large increases depended on added sucrose, although without sucrose TAG increased three- to four-fold. Inducing the expression of FUS3 in tobacco BY2 cells also increased TAG accumulation, and co-expression of FUS3 and diacylglycerol acyltransferase 1 (DGAT1) further increased TAG levels to 4% of dry weight. BY2 cell growth was not altered by FUS3 expression, although Arabidopsis seedling development was impaired, consistent with the ability of FUS3 to induce embryo characteristics in non-seed tissues. Microarrays of Arabidopsis seedlings revealed that FUS3 overexpression increased the expression of a higher proportion of genes involved in TAG biosynthesis than genes involved in fatty acid biosynthesis or other lipid pathways. Together these results provide additional insights into FUS3 functions in TAG metabolism and suggest complementary strategies for engineering vegetative oil accumulation. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  13. De novo characterization of Larix gmelinii (Rupr.) Rupr. transcriptome and analysis of its gene expression induced by jasmonates.

    PubMed

    Men, Lina; Yan, Shanchun; Liu, Guanjun

    2013-08-13

    Larix gmelinii is a dominant tree species in China's boreal forests and plays an important role in the coniferous ecosystem. It is also one of the most economically important tree species in the Chinese timber industry due to excellent water resistance and anti-corrosion of its wood products. Unfortunately, in Northeast China, L. gmelinii often suffers from serious attacks by diseases and insects. The application of exogenous volatile semiochemicals may induce and enhance its resistance against insect or disease attacks; however, little is known regarding the genes and molecular mechanisms related to induced resistance. We performed de novo sequencing and assembly of the L. gmelinii transcriptome using a short read sequencing technology (Illumina). Chemical defenses of L. gmelinii seedlings were induced with jasmonic acid (JA) or methyl jasmonate (MeJA) for 6 hours. Transcriptomes were compared between seedlings induced by JA, MeJA and untreated controls using a tag-based digital gene expression profiling system. In a single run, 25,977,782 short reads were produced and 51,157 unigenes were obtained with a mean length of 517 nt. We sequenced 3 digital gene expression libraries and generated between 3.5 and 5.9 million raw tags, and obtained 52,040 reliable reference genes after removing redundancy. The expression of disease/insect-resistance genes (e.g., phenylalanine ammonialyase, coumarate 3-hydroxylase, lipoxygenase, allene oxide synthase and allene oxide cyclase) was up-regulated. The expression profiles of some abundant genes under different elicitor treatment were studied by using real-time qRT-PCR.The results showed that the expression levels of disease/insect-resistance genes in the seedling samples induced by JA and MeJA were higher than those in the control group. The seedlings induced with MeJA elicited the strongest increases in disease/insect-resistance genes. Both JA and MeJA induced seedlings of L. gmelinii showed significantly increased expression of disease/insect-resistance genes. MeJA seemed to have a stronger induction effect than JA on expression of disease/insect-resistance related genes. This study provides sequence resources for L. gmelinii research and will help us to better understand the functions of disease/insect-resistance genes and the molecular mechanisms of secondary metabolisms in L. gmelinii.

  14. Tight Junction Defects in Atopic Dermatitis

    PubMed Central

    De Benedetto, Anna; Rafaels, Nicholas M.; McGirt, Laura Y.; Ivanov, Andrei I.; Georas, Steve N.; Cheadle, Chris; Berger, Alan E.; Zhang, Kunzhong; Vidyasagar, Sadasivan; Yoshida, Takeshi; Boguniewicz, Mark; Hata, Tissa; Schneider, Lynda C.; Hanifin, Jon M.; Gallo, Richard L.; Novak, Natalija; Weidinger, Stephan; Beaty, Terri H.; Leung, Donald Y.; Barnes, Kathleen C.; Beck, Lisa A.

    2010-01-01

    Background Atopic dermatitis (AD) is characterized by dry skin and a hyperreactive immune response to allergens, two cardinal features that are caused in part by epidermal barrier defects. Tight junctions (TJ) reside immediately below the stratum corneum and regulate the selective permeability of the paracellular pathway. Objective We evaluated the expression/function of the TJ protein, claudin-1 in epithelium from AD and nonatopic (NA) subjects and screened two American populations for SNPs in CLDN1. Methods Expression profiles of nonlesional epithelium from extrinsic AD, NA and psoriasis subjects were generated using Illumina’s BeadChips. Dysregulated intercellular proteins were validated by tissue staining and qPCR. Bioelectric properties of epithelium were measured in Ussing chambers. Functional relevance of claudin-1 was assessed using a knockdown approach in primary human keratinocytes (PHK). Twenty seven haplotype-tagging SNPs in CLDN1 were screened in two independent AD populations. Results We observed strikingly reduced expression of the TJ proteins claudin-1 and -23 only in AD, which were validated at the mRNA and protein levels. Claudin-1 expression inversely correlated with Th2 biomarkers. We observed a remarkable impairment of the bioelectric barrier function in AD epidermis. In vitro, we confirmed that silencing claudin-1 expression in human keratinocytes diminishes TJ function while enhancing keratinocyte proliferation. Finally, CLDN1 haplotype-tagging single nucleotide polymorphisms revealed associations with AD in two North American populations. Conclusion Taken together, these data suggest that an impaired epidermal TJ is a novel feature of skin barrier dysfunction and immune dysregulation observed in AD, and that CLDN1 may be a new susceptibility gene in this disease. PMID:21163515

  15. Differential proteomic analysis of cancer stem cell properties in hepatocellular carcinomas by isobaric tag labeling and mass spectrometry.

    PubMed

    Ko, Ching-Huai; Cheng, Chieh-Fang; Lai, Chin-Pen; Tzu, Te-Hui; Chiu, Chih-Wei; Lin, Mei-Wei; Wu, Si-Yuan; Sun, Chung-Yuan; Tseng, Hsiang-Wen; Wang, Chun-Chung; Kuo, Zong-Keng; Wang, Ling-Mei; Chen, Sung-Fang

    2013-08-02

    Malignant tumors are relatively resistant to treatment due to their heterogeneous nature, drug resistance, and tendency for metastasis. Recent studies suggest that a subpopulation of cancer cells is responsible for the malignant outcomes. These cells are considered as cancer stem cells (CSC). Although a number of molecules have been identified in different cancer cells as markers for cancer stem cells, no promising markers are currently available for hepatocellular carcinoma cells. In this study, two clones of Hep3B cell lines were functionally characterized as control or CSC-like cells, based on properties including spheroid formation, drug resistance, and tumor initiation. Furthermore, their protein expression profiles were investigated by isobaric tags for relative and absolute quantitation (iTRAQ), and a total of 1,127 proteins were identified and quantified from the combined fractions; 50 proteins exhibited at least 2-fold differences between these two clones. These 50 proteins were analyzed by GeneGo and were found to be associated with liver neoplasms, hepatocellular carcinoma (HCC), and liver diseases. They were also components of metabolic pathways, immune responses, and cytoskeleton remodeling. Among these proteins, the expressions of S100P, S100A14, and vimentin were verified in several HCC cell lines, and their expressions were correlated with tumorigenicity in HCC cell lines. The functional significance of vimentin and S100A14 were also investigated and verified.

  16. Expression, purification, and characterization of almond (Prunus dulcis) allergen Pru du 4.

    PubMed

    Zhang, Yuzhu; Du, Wen-Xian; Fregevu, Cécile; Kothary, Mahendra H; Harden, Leslie; McHugh, Tara H

    2014-12-31

    Biochemical characterizations of food allergens are required for understanding the allergenicity of food allergens. Such studies require a relatively large amount of highly purified allergens. The level of Pru du 4 in almond is low, and its expression in a soluble form in Escherichia coli required an expression tag. An MBP tag was used to enhance its expression and solubility. Sumo was used for the first time as a peptidase recognition site. The expression tag was removed with a sumo protease, and the resulting wild-type Pru du 4 was purified chromatographically. The stability of the allergen was investigated with chemical denaturation. The Gibbs free energy of Pru du 4 folding-unfolding transition was determined to be 5.4 ± 0.7 kcal/mol.

  17. An integrated PCR colony hybridization approach to screen cDNA libraries for full-length coding sequences.

    PubMed

    Pollier, Jacob; González-Guzmán, Miguel; Ardiles-Diaz, Wilson; Geelen, Danny; Goossens, Alain

    2011-01-01

    cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) is a commonly used technique for genome-wide expression analysis that does not require prior sequence knowledge. Typically, quantitative expression data and sequence information are obtained for a large number of differentially expressed gene tags. However, most of the gene tags do not correspond to full-length (FL) coding sequences, which is a prerequisite for subsequent functional analysis. A medium-throughput screening strategy, based on integration of polymerase chain reaction (PCR) and colony hybridization, was developed that allows in parallel screening of a cDNA library for FL clones corresponding to incomplete cDNAs. The method was applied to screen for the FL open reading frames of a selection of 163 cDNA-AFLP tags from three different medicinal plants, leading to the identification of 109 (67%) FL clones. Furthermore, the protocol allows for the use of multiple probes in a single hybridization event, thus significantly increasing the throughput when screening for rare transcripts. The presented strategy offers an efficient method for the conversion of incomplete expressed sequence tags (ESTs), such as cDNA-AFLP tags, to FL-coding sequences.

  18. In vivo expression and purification of aptamer-tagged small RNA regulators

    PubMed Central

    Said, Nelly; Rieder, Renate; Hurwitz, Robert; Deckert, Jochen; Urlaub, Henning; Vogel, Jörg

    2009-01-01

    Small non-coding RNAs (sRNAs) are an emerging class of post-transcriptional regulators of bacterial gene expression. To study sRNAs and their potential protein interaction partners, it is desirable to purify sRNAs from cells in their native form. Here, we used RNA-based affinity chromatography to purify sRNAs following their expression as aptamer-tagged variants in vivo. To this end, we developed a family of plasmids to express sRNAs with any of three widely used aptamer sequences (MS2, boxB, eIF4A), and systematically tested how the aptamer tagging impacted on intracellular accumulation and target regulation of the Salmonella GcvB, InvR or RybB sRNAs. In addition, we successfully tagged the chromosomal rybB gene with MS2 to observe that RybB-MS2 is fully functional as an envelope stress-induced repressor of ompN mRNA following induction of sigmaE. We further demonstrate that the common sRNA-binding protein, Hfq, co-purifies with MS2-tagged sRNAs of Salmonella. The presented affinity purification strategy may facilitate the isolation of in vivo assembled sRNA–protein complexes in a wide range of bacteria. PMID:19726584

  19. Comparative expression profiling in grape (Vitis vinifera) berries derived from frequency analysis of ESTs and MPSS signatures.

    PubMed

    Iandolino, Alberto; Nobuta, Kan; da Silva, Francisco Goes; Cook, Douglas R; Meyers, Blake C

    2008-05-12

    Vitis vinifera (V. vinifera) is the primary grape species cultivated for wine production, with an industry valued annually in the billions of dollars worldwide. In order to sustain and increase grape production, it is necessary to understand the genetic makeup of grape species. Here we performed mRNA profiling using Massively Parallel Signature Sequencing (MPSS) and combined it with available Expressed Sequence Tag (EST) data. These tag-based technologies, which do not require a priori knowledge of genomic sequence, are well-suited for transcriptional profiling. The sequence depth of MPSS allowed us to capture and quantify almost all the transcripts at a specific stage in the development of the grape berry. The number and relative abundance of transcripts from stage II grape berries was defined using Massively Parallel Signature Sequencing (MPSS). A total of 2,635,293 17-base and 2,259,286 20-base signatures were obtained, representing at least 30,737 and 26,878 distinct sequences. The average normalized abundance per signature was approximately 49 TPM (Transcripts Per Million). Comparisons of the MPSS signatures with available Vitis species' ESTs and a unigene set demonstrated that 6,430 distinct contigs and 2,190 singletons have a perfect match to at least one MPSS signature. Among the matched sequences, ESTs were identified from tissues other than berries or from berries at different developmental stages. Additional MPSS signatures not matching to known grape ESTs can extend our knowledge of the V. vinifera transcriptome, particularly when these data are used to assist in annotation of whole genome sequences from Vitis vinifera. The MPSS data presented here not only achieved a higher level of saturation than previous EST based analyses, but in doing so, expand the known set of transcripts of grape berries during the unique stage in development that immediately precedes the onset of ripening. The MPSS dataset also revealed evidence of antisense expression not previously reported in grapes but comparable to that reported in other plant species. Finally, we developed a novel web-based, public resource for utilization of the grape MPSS data [1].

  20. Multi-targeted priming for genome-wide gene expression assays.

    PubMed

    Adomas, Aleksandra B; Lopez-Giraldez, Francesc; Clark, Travis A; Wang, Zheng; Townsend, Jeffrey P

    2010-08-17

    Complementary approaches to assaying global gene expression are needed to assess gene expression in regions that are poorly assayed by current methodologies. A key component of nearly all gene expression assays is the reverse transcription of transcribed sequences that has traditionally been performed by priming the poly-A tails on many of the transcribed genes in eukaryotes with oligo-dT, or by priming RNA indiscriminately with random hexamers. We designed an algorithm to find common sequence motifs that were present within most protein-coding genes of Saccharomyces cerevisiae and of Neurospora crassa, but that were not present within their ribosomal RNA or transfer RNA genes. We then experimentally tested whether degenerately priming these motifs with multi-targeted primers improved the accuracy and completeness of transcriptomic assays. We discovered two multi-targeted primers that would prime a preponderance of genes in the genomes of Saccharomyces cerevisiae and Neurospora crassa while avoiding priming ribosomal RNA or transfer RNA. Examining the response of Saccharomyces cerevisiae to nitrogen deficiency and profiling Neurospora crassa early sexual development, we demonstrated that using multi-targeted primers in reverse transcription led to superior performance of microarray profiling and next-generation RNA tag sequencing. Priming with multi-targeted primers in addition to oligo-dT resulted in higher sensitivity, a larger number of well-measured genes and greater power to detect differences in gene expression. Our results provide the most complete and detailed expression profiles of the yeast nitrogen starvation response and N. crassa early sexual development to date. Furthermore, our multi-targeting priming methodology for genome-wide gene expression assays provides selective targeting of multiple sequences and counter-selection against undesirable sequences, facilitating a more complete and precise assay of the transcribed sequences within the genome.

  1. [Differential gene expression in incompatible interaction between Lilium regale Wilson and Fusarium oxysporum f. sp. lilii revealed by combined SSH and microarray analysis].

    PubMed

    Rao, J; Liu, D; Zhang, N; He, H; Ge, F; Chen, C

    2014-01-01

    Fusarium wilt, caused by a soilborne pathogen Fusarium oxysporum f. sp. lilii, is the major disease of lily (Lilium L.). In order to isolate the genes differentially expressed in a resistant reaction to F. oxysporum in L. regale Wilson, a cDNA library was constructed with L. regale root during F. oxysporum infection using the suppression subtractive hybridization (SSH), and a total of 585 unique expressed sequence tags (ESTs) were obtained. Furthermore, the gene expression profiles in the incompatible interaction between L. regale and F. oxysporum were revealed by oligonucleotide microarray analysis of 585 unique ESTs comparison to the compatible interaction between a susceptible Lilium Oriental Hybrid 'Siberia' and F. oxysporum. The result of expression profile analysis indicated that the genes encoding pathogenesis-related proteins (PRs), antioxidative stress enzymes, secondary metabolism enzymes, transcription factors, signal transduction proteins as well as a large number of unknown genes were involved in early defense response of L. regale to F. oxysporum infection. Moreover, the following quantitative reverse transcription PCR (QRT-PCR) analysis confirmed reliability of the oligonucleotide microarray data. In the present study, isolation of differentially expressed genes in L. regale during response to F. oxysporum helped to uncover the molecular mechanism associated with the resistance of L. regale against F. oxysporum.

  2. Identification on Membrane and Characterization of Phosphoproteins Using an Alkoxide-Bridged Dinuclear Metal Complex as a Phosphate-Binding Tag Molecule

    PubMed Central

    Nakanishi, Tsuyoshi; Ando, Eiji; Furuta, Masaru; Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru; Tsunasawa, Susumu; Nishimura, Osamu

    2007-01-01

    We have developed a method for on-membrane direct identification of phosphoproteins, which are detected by a phosphate-binding tag (Phos-tag) that has an affinity to phosphate groups with a chelated Zn2+ ion. This rapid profiling approach for phosphoproteins combines chemical inkjet technology for microdispensing of reagents onto a tiny region of target proteins with mass spectrometry for on-membrane digested peptides. Using this method, we analyzed human epidermoid carcinoma cell lysates of A-431 cells stimulated with epidermal growth factor, and identified six proteins with intense signals upon affinity staining with the phosphate-binding tag. It was already known that these proteins are phosphorylated, and our new approach proved to be effective at rapid profiling of phosphoproteins. Furthermore, we tried to determine their phosphorylation sites by MS/MS analysis after in-gel digestion of the corresponding spots on the 2DE gel to the rapid on-membrane identifications. As one example of use of information gained from the rapid-profiling approach, we successfully characterized a phosphorylation site at Ser-113 on prostaglandin E synthase 3. PMID:18166671

  3. Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications.

    PubMed

    Young, Carissa L; Britton, Zachary T; Robinson, Anne S

    2012-05-01

    Protein fusion tags are indispensible tools used to improve recombinant protein expression yields, enable protein purification, and accelerate the characterization of protein structure and function. Solubility-enhancing tags, genetically engineered epitopes, and recombinant endoproteases have resulted in a versatile array of combinatorial elements that facilitate protein detection and purification in microbial hosts. In this comprehensive review, we evaluate the most frequently used solubility-enhancing and affinity tags. Furthermore, we provide summaries of well-characterized purification strategies that have been used to increase product yields and have widespread application in many areas of biotechnology including drug discovery, therapeutics, and pharmacology. This review serves as an excellent literature reference for those working on protein fusion tags. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. N-terminal processing of affinity-tagged recombinant proteins purified by IMAC procedures.

    PubMed

    Mooney, Jane T; Fredericks, Dale P; Christensen, Thorkild; Bruun Schiødt, Christine; Hearn, Milton T W

    2015-07-01

    The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S-transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine-containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7-triazacyclononane (tacn). The use of this tag-tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli-expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP-1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI-TOF MS analysis of the cleaved products from the DAP-1 digestion of the recombinant N-terminally tagged proteins confirmed the complete removal of the tag within 4-12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn-based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli-expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Expression and purification of the non-tagged LipL32 of pathogenic Leptospira.

    PubMed

    Hauk, P; Carvalho, E; Ho, P L

    2011-04-01

    Leptospirosis is a reemerging infectious disease and the most disseminated zoonosis worldwide. A leptospiral surface protein, LipL32, only occurs in pathogenic Leptospira, and is the most abundant protein on the bacterial surface, being described as an important factor in host immunogenic response and also in bacterial infection. We describe here an alternative and simple purification protocol for non-tagged recombinant LipL32. The recombinant LipL32(21-272) was expressed in Escherichia coli without His-tag or any other tag used to facilitate recombinant protein purification. The recombinant protein was expressed in the soluble form, and the purification was based on ion exchange (anionic and cationic) and hydrophobic interactions. The final purification yielded 3 mg soluble LipL32(21-272) per liter of the induced culture. Antiserum produced against the recombinant protein was effective to detect native LipL32 from cell extracts of several Leptospira serovars. The purified recombinant LipL32(21-272) produced by this protocol can be used for structural, biochemical and functional studies and avoids the risk of possible interactions and interferences of the tags commonly used as well as the time consuming and almost always inefficient methods to cleave these tags when a tag-free LipL32 is needed. Non-tagged LipL32 may represent an alternative antigen for biochemical studies, for serodiagnosis and for the development of a vaccine against leptospirosis.

  6. Application of Cydia pomonella expressed sequence tags: identification and expression of three general odorant binding proteins in codling moth

    USDA-ARS?s Scientific Manuscript database

    The codling moth, Cydia pomonella, is one of the most important pests of pome fruits in the world, yet the molecular genetics and physiology of this insect remains poorly understood. A combined assembly of 8340 expressed sequence tags (ESTs) was generated from Roche 454 GS-FLX sequencing of 8 tissu...

  7. Long-term intake of soyabean phytosterols lowers serum TAG and NEFA concentrations, increases bile acid synthesis and protects against fatty liver development in dyslipidaemic hamsters.

    PubMed

    Laos, Sirle; Caimari, Antoni; Crescenti, Anna; Lakkis, Jamileh; Puiggròs, Francesc; Arola, Lluís; del Bas, Josep Maria

    2014-09-14

    Various human trials and pre-clinical studies have suggested that dietary plant sterols possess hypotriacylglycerolaemic properties apart from their cholesterol-lowering properties. We hypothesised that phytosterols (PS) might attenuate triacylglycerolaemia by interfering with the deleterious effects of cholesterol overload in the liver. In the present study, twenty hamsters (Mesocricetus auratus) with diet-induced combined hyperlipidaemia were fed a high-fat diet (HFD, n 10) or a HFD supplemented with soyabean PS (n 10) for 40 d. In parallel, a healthy group was fed a standard diet (n 10). PS normalised fasting plasma cholesterol concentrations completely after 20 d and were also able to normalise serum TAG and NEFA concentrations after 40 d. HFD feeding caused microvesicular steatosis and impaired the expression of key genes related to fatty acid oxidation such as PPARA, carnitine palmitoyltransferase-Iα (CPT1A) and phosphoenolpyruvate carboxykinase 1 (PCK1) in the liver. PS treatment completely protected against HFD-induced steatosis and resulted in a normalised hepatic gene expression profile. The protection of the hepatic function by PS was paralleled by increased faecal cholesterol excretion along with a 2-fold increase in the biliary bile acid (BA):cholesterol ratio. The present study supports the conclusion that long-term consumption of PS can reduce serum TAG and NEFA concentrations and can protect against the development of fatty liver via different mechanisms, including the enhancement of BA synthesis. The results of the present study place these compounds as promising hepatoprotective agents against fatty liver and its derived pathologies.

  8. Activity Profiles and Physiological Responses of Representative Tag Football Players in Relation to Playing Position and Physical Fitness

    PubMed Central

    2015-01-01

    This study determined the physical fitness, match-activity profiles and physiological responses of representative tag football players and examined the relationship between physical fitness and the match-activity profile. Microtechnology devices and heart rate (HR) chest straps were used to determine the match-activity profiles of sixteen tag football players for five matches during the 2014 Australian National Championships. The relationships between lower body muscular power, straight line running speed and Yo-Yo intermittent recovery test level 2 (Yo-Yo IR2) and the match-activity profile were examined using Pearson’s correlation coefficients. Outside players had greater lower body muscular power (ES = 0.98) and straight line running speed (ES = 1.03–1.18) than inside players, and also covered greater very high-speed running (VHSR) distance/min (ES = 0.67) and reached higher peak running speeds (ES = 0.95) during matches. Inside and outside players performed a similar number of repeated high-intensity effort (RHIE) bouts and reported similar mean and maximum efforts per RHIE bout. However, there were differences between playing positions for mean and maximal RHIE effort durations (ES = 0.69–1.15) and mean RHIE bout recovery (ES = 0.56). Inside and outside players also reported small to moderate differences (ES = 0.43–0.80) for times spent in each HR zone. There were a number of moderate to very large correlations between physical fitness measures and match-activity profile variables. This study found lower body muscular power, straight line running speed and Yo-Yo IR2 to be related to the match-activities of representative tag football players, although differences between inside and outside players suggest that athlete testing and training practices should be modified for different playing positions. PMID:26642320

  9. Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth

    PubMed Central

    Kim, Hyun Uk; Lee, Kyeong-Ryeol; Jung, Su-Jin; Shin, Hyun A; Go, Young Sam; Suh, Mi-Chung; Kim, Jong Bum

    2017-01-01

    Summary The synthesis of fatty acids and glycerolipids in wild-type Arabidopsis leaves do not typically lead to strong triacylglycerol (TAG) accumulation. LEAFY COTYLEDON2 (LEC2) is a master regulator of seed maturation and oil accumulation in seeds. Constitutive ectopic LEC2 expression causes somatic embryogenesis and defects in seedling growth. Here, we report that senescence-inducible LEC2 expression caused a 3-fold increase in TAG levels in transgenic leaves compared with that in the leaves of wild-type plants. Plant growth was not severely affected by the accumulation the TAG in response to LEC2 expression. The levels of plastid-synthesized lipids, mono- and di-galactosyldiacylglycerol and phosphatidylglycerol, were reduced more in senescence-induced LEC2 than endoplasmic reticulum-synthesized lipids, including phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Senescence-induced LEC2 upregulated the expression of many genes involved in fatty acid and TAG biosynthesis at precise times in senescent leaves, including WRINKLED1 (WRI1), which encodes a fatty acid transcription factor. The expression of glycerol-3-phosphate dehydrogenase 1 and phospholipid:diacylglycerol 2 were increased in the transgenic leaves. Five seed-type oleosin-encoding genes, expressed during oil-body formation, and the seed-specific FAE1 gene, which encodes the enzyme responsible for the synthesis of C20:1 and C22:1 fatty acids, were also expressed at higher levels in senescing transgenic leaves than in wild-type leaves. Senescence-inducible LEC2 triggers the key metabolic steps that increase TAG accumulation in vegetative tissues. PMID:25790072

  10. Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth.

    PubMed

    Kim, Hyun Uk; Lee, Kyeong-Ryeol; Jung, Su-Jin; Shin, Hyun A; Go, Young Sam; Suh, Mi-Chung; Kim, Jong Bum

    2015-12-01

    The synthesis of fatty acids and glycerolipids in wild-type Arabidopsis leaves does not typically lead to strong triacylglycerol (TAG) accumulation. LEAFY COTYLEDON2 (LEC2) is a master regulator of seed maturation and oil accumulation in seeds. Constitutive ectopic LEC2 expression causes somatic embryogenesis and defects in seedling growth. Here, we report that senescence-inducible LEC2 expression caused a threefold increase in TAG levels in transgenic leaves compared with that in the leaves of wild-type plants. Plant growth was not severely affected by the accumulation the TAG in response to LEC2 expression. The levels of plastid-synthesized lipids, mono- and di-galactosyldiacylglycerol and phosphatidylglycerol were reduced more in senescence-induced LEC2 than in endoplasmic reticulum-synthesized lipids, including phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol. Senescence-induced LEC2 up-regulated the expression of many genes involved in fatty acid and TAG biosynthesis at precise times in senescent leaves, including WRINKLED1 (WRI1), which encodes a fatty acid transcription factor. The expressions of glycerol-3-phosphate dehydrogenase 1 and phospholipid:diacylglycerol 2 were increased in the transgenic leaves. Five seed-type oleosin-encoding genes, expressed during oil-body formation, and the seed-specific FAE1 gene, which encodes the enzyme responsible for the synthesis of C20:1 and C22:1 fatty acids, were also expressed at higher levels in senescing transgenic leaves than in wild-type leaves. Senescence-inducible LEC2 triggers the key metabolic steps that increase TAG accumulation in vegetative tissues. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. A Fast linking approach for CMYK to CMYK conversion preserving black separation in ICC color management system

    NASA Astrophysics Data System (ADS)

    Zeng, Huanzhao

    2003-12-01

    In the linking step of the standard ICC color management workflow for CMYK to CMYK conversion, a CMM takes an AToBn tag (n = 0, 1, or 2) from a source ICC profile to convert a color from the source color space to PCS (profile connection space), and then takes a BToAn tag from the destination ICC profile to convert the color from PCS to the destination color space. This approach may give satisfactory result perceptually or colorimetrically. However, it does not preserve the K channel for CMYK to CMYK conversion, which is often required in graphic art"s market. The problem is that the structure of a BtoAn tag is designed to convert colors from PCS to a device color space ignoring the K values from the source color space. Different approaches have been developed to control K in CMYK to CMYK printing, yet none of them well fits into the "Profile - PCS - Profile" model in the ICC color management system. A traditional approach is to transform the source CMYK to the destination CMYK by 1-D TRC curves and GCR/UCR tables. This method is so simple that it cannot accurately transform colors perceptually or colorimetrically. Another method is to build a 4-D CMYK to CMYK closed-loop lookup table (LUT) (or a deviceLink ICC profile) for the color transformation. However, this approach does not fit into opened color management workflows for it ties the source and the destination color spaces in the color characterization step. A specialized CMM may preserve K for a limit number of colors by mapping those CMYK colors to some carefully chosen PCS colors in both the AToBi tag and the BToAi tag. A more complete solution is to move to smart linking in which gamut mapping is performed in the real-time linking at a CMM. This method seems to solve all problems existed in the CMYK to CMYK conversion. However, it introduces new problems: 1) gamut mapping at real-time linking is often unacceptable slow; 2) gamut mapping may not be optimized or may be unreliable; 3) manual adjustment for building high quality maps does not fit to the smart CMM workflow. A new approach is described in this paper to solve these problems. Instead of using a BtoAn tag from the destination profile for color transformation, a new tag is created to map colors in PCS (L*a*b* or XYZ) with different K values to different CMY values. A set of 3-D LUTs for different K values are created for the conversion from PCS to CMY, and 1-D LUTs are created for the conversion from luminance to K and to guide a CMM to perform the interpolation from KPCS (K plus PCS) to CMYK. The gamut mapping is performed in the step to create the profile, thus avoiding realtime gamut mapping in a CMM. With this approach, the black channel is preserved; the "Profile - PCS - Profile" approach is still valid; and the gamut mapping is not performed during linking in a CMM. Therefore, gamut mapping can be manually adjusted for high quality color mapping, the linking is almost as easy and fast as the standard linking, and the black channel is preserved.

  12. Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense.

    PubMed

    Hu, Guanjing; Koh, Jin; Yoo, Mi-Jeong; Grupp, Kara; Chen, Sixue; Wendel, Jonathan F

    2013-10-01

    Pima cotton (Gossypium barbadense) is widely cultivated because of its long, strong seed trichomes ('fibers') used for premium textiles. These agronomically advanced fibers were derived following domestication and thousands of years of human-mediated crop improvement. To gain an insight into fiber development and evolution, we conducted comparative proteomic and transcriptomic profiling of developing fiber from an elite cultivar and a wild accession. Analyses using isobaric tag for relative and absolute quantification (iTRAQ) LC-MS/MS technology identified 1317 proteins in fiber. Of these, 205 were differentially expressed across developmental stages, and 190 showed differential expression between wild and cultivated forms, 14.4% of the proteome sampled. Human selection may have shifted the timing of developmental modules, such that some occur earlier in domesticated than in wild cotton. A novel approach was used to detect possible biased expression of homoeologous copies of proteins. Results indicate a significant partitioning of duplicate gene expression at the protein level, but an approximately equal degree of bias for each of the two constituent genomes of allopolyploid cotton. Our results demonstrate the power of complementary transcriptomic and proteomic approaches for the study of the domestication process. They also provide a rich database for mining for functional analyses of cotton improvement or evolution. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  13. Transcriptome profiling of sleeping, waking, and sleep deprived adult heterozygous Aldh1L1 - eGFP-L10a mice.

    PubMed

    Bellesi, Michele; de Vivo, Luisa; Tononi, Giulio; Cirelli, Chiara

    2015-12-01

    Transcriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping relative to awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is probably because the previous studies pooled transcripts from all brain cells, including neurons and glia. In Bellesi et al. 2015 [1], we used the translating ribosome affinity purification technology (TRAP) and microarray analysis to obtain a genome-wide mRNA profiling of astrocytes as a function of sleep and wake. We used bacterial artificial chromosome (BAC) transgenic mice expressing eGFP tagged ribosomal protein L10a under the promoter of the Aldh1L1 gene, a highly expressed astrocytic gene. Using this approach, we could extract only the astrocytic mRNAs, and only those already committed to be translated into proteins (L10a is part of the translational machinery). Here, we report a detailed description of the protocol used in the study [1]. Array data have been submitted to NCBI GEO under accession number (GSE69079).

  14. Sequence analysis of diacylglycerol acyltransferases

    USDA-ARS?s Scientific Manuscript database

    Diacylglycerol acyltransferases (DGATs) catalyze the final step of triacylglycerol (TAG) biosynthesis in eukaryotes. DGATs esterify sn-1,2-diacylglycerol with a long-chain fatty acyl-CoA. Plants and animals deficient in DGATs accumulate less TAG and over-expression of DGATs increases TAG. DGAT knock...

  15. Biotin-tagged proteins: Reagents for efficient ELISA-based serodiagnosis and phage display-based affinity selection

    PubMed Central

    Verma, Vaishali; Kaur, Charanpreet; Grover, Payal; Gupta, Amita

    2018-01-01

    The high-affinity interaction between biotin and streptavidin has opened avenues for using recombinant proteins with site-specific biotinylation to achieve efficient and directional immobilization. The site-specific biotinylation of proteins carrying a 15 amino acid long Biotin Acceptor Peptide tag (BAP; also known as AviTag) is effected on a specific lysine either by co-expressing the E. coli BirA enzyme in vivo or by using purified recombinant E. coli BirA enzyme in the presence of ATP and biotin in vitro. In this paper, we have designed a T7 promoter-lac operator-based expression vector for rapid and efficient cloning, and high-level cytosolic expression of proteins carrying a C-terminal BAP tag in E. coli with TEV protease cleavable N-terminal deca-histidine tag, useful for initial purification. Furthermore, a robust three-step purification pipeline integrated with well-optimized protocols for TEV protease-based H10 tag removal, and recombinant BirA enzyme-based site-specific in vitro biotinylation is described to obtain highly pure biotinylated proteins. Most importantly, the paper demonstrates superior sensitivities in indirect ELISA with directional and efficient immobilization of biotin-tagged proteins on streptavidin-coated surfaces in comparison to passive immobilization. The use of biotin-tagged proteins through specific immobilization also allows more efficient selection of binders from a phage-displayed naïve antibody library. In addition, for both these applications, specific immobilization requires much less amount of protein as compared to passive immobilization and can be easily multiplexed. The simplified strategy described here for the production of highly pure biotin-tagged proteins will find use in numerous applications, including those, which may require immobilization of multiple proteins simultaneously on a solid surface. PMID:29360877

  16. Biotin-tagged proteins: Reagents for efficient ELISA-based serodiagnosis and phage display-based affinity selection.

    PubMed

    Verma, Vaishali; Kaur, Charanpreet; Grover, Payal; Gupta, Amita; Chaudhary, Vijay K

    2018-01-01

    The high-affinity interaction between biotin and streptavidin has opened avenues for using recombinant proteins with site-specific biotinylation to achieve efficient and directional immobilization. The site-specific biotinylation of proteins carrying a 15 amino acid long Biotin Acceptor Peptide tag (BAP; also known as AviTag) is effected on a specific lysine either by co-expressing the E. coli BirA enzyme in vivo or by using purified recombinant E. coli BirA enzyme in the presence of ATP and biotin in vitro. In this paper, we have designed a T7 promoter-lac operator-based expression vector for rapid and efficient cloning, and high-level cytosolic expression of proteins carrying a C-terminal BAP tag in E. coli with TEV protease cleavable N-terminal deca-histidine tag, useful for initial purification. Furthermore, a robust three-step purification pipeline integrated with well-optimized protocols for TEV protease-based H10 tag removal, and recombinant BirA enzyme-based site-specific in vitro biotinylation is described to obtain highly pure biotinylated proteins. Most importantly, the paper demonstrates superior sensitivities in indirect ELISA with directional and efficient immobilization of biotin-tagged proteins on streptavidin-coated surfaces in comparison to passive immobilization. The use of biotin-tagged proteins through specific immobilization also allows more efficient selection of binders from a phage-displayed naïve antibody library. In addition, for both these applications, specific immobilization requires much less amount of protein as compared to passive immobilization and can be easily multiplexed. The simplified strategy described here for the production of highly pure biotin-tagged proteins will find use in numerous applications, including those, which may require immobilization of multiple proteins simultaneously on a solid surface.

  17. Regulation of Metastatic Breast Cancer Dormancy

    DTIC Science & Technology

    2015-09-01

    individual cell motility to disseminate and eventually extravasate into common metastatic niches such as the brain, bone and liver. Once attaining the...Engineer tagged MCF7 cells with shRNA against E-cadherin and engineer tagged MDA-MB-361 and MDA- MB-231 cells to express or prevent expression of E

  18. Optimized expression in Pichia pastoris eliminates common protein contaminants from subsequent His-tag purification.

    PubMed

    Chen, Yong; Li, Yang; Liu, Peng; Sun, Qun; Liu, Zhu

    2014-04-01

    A weakness of using immobilized metal affinity chromatography (IMAC) to purify recombinant proteins expressed in Pichia pastoris is the co-purification of native proteins that exhibit high affinities for Ni-IMAC. We have determined the elution profiles of P. pastoris proteins and have examined the native proteins that co-purify when eluting with 100 mM imidazole. Four major contaminants were identified: mitochondrial alcohol dehydrogenase isozyme III (mADH), nucleotide excision repair endonuclease, and the hypothetical proteins TPHA_0L01390 and TDEL_0B02190 which are homologous proteins derived from Tetrapisispora phaffii and Torulaspora delbrueckii, respectively. A new P. pastoris expression strain was engineered that eliminated the predominant contaminant, mADH, by gene disruption. The total amount of protein contaminants was reduced by 55 % without effecting cell growth. The present study demonstrates the feasibility of using a proteomic approach to facilitate bioprocess optimization.

  19. Differential expression of a novel gene during seed triacylglycerol accumulation in lupin species ( Lupinus angustifolius L. and L. mutabilis L.).

    PubMed

    Francki, Michael G; Whitaker, Peta; Smith, Penelope M; Atkins, Craig A

    2002-11-01

    Seed triacylglycerols (TAGs) are stored as energy reserves and extracted for various end-product uses. In lupins, seed oil content varies from 16% in Lupinus mutabilisto 8% in L. angustifolius. We have shown that TAGs rapidly accumulate during mid-stages of seed development in L. mutabilis compared to the lower seed oil species, L. angustifolius. In this study, we have targeted the key enzymes of the lipid biosynthetic pathway, acetyl-CoA carboxylase (ACCase) and diacylglycerol acyltransferase (DAGAT), to determine factors regulating TAG accumulation between two lupin species. A twofold increase in ACCase activity was observed in L. mutabilis relative to L. angustifolius and correlated with rapid TAG accumulation. No difference in DAGAT activity was detected. We have identified, cloned and partially characterised a novel gene differentially expressed during TAG accumulation between L. angustifolius and L. mutabilis. The gene has some identity to the glucose dehydrogenase family previously described in barley and bacteria and the significance of its expression levels during seed development in relation to TAG accumulation is discussed. DNA sequence analysis of the promoter in both L. angustifolius and L. mutabilis identified putative matrix attachment regions and recognition sequences for transcription binding sites similar to those found in the Adh1 gene from Arabidopsis. The identical promoter regions between species indicate that differential gene expression is controlled by alternative transcription factors, accessibility to binding sites or a combination of both.

  20. Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF.

    PubMed

    Cantu-Bustos, J Enrique; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Galbraith, David W; McEvoy, Megan M; Zarate, Xristo

    2016-05-01

    Production of recombinant proteins in Escherichia coli has been improved considerably through the use of fusion proteins, because they increase protein solubility and facilitate purification via affinity chromatography. In this article, we propose the use of CusF as a new fusion partner for expression and purification of recombinant proteins in E. coli. Using a cell-free protein expression system, based on the E. coli S30 extract, Green Fluorescent Protein (GFP) was expressed with a series of different N-terminal tags, immobilized on self-assembled protein microarrays, and its fluorescence quantified. GFP tagged with CusF showed the highest fluorescence intensity, and this was greater than the intensities from corresponding GFP constructs that contained MBP or GST tags. Analysis of protein production in vivo showed that CusF produces large amounts of soluble protein with low levels of inclusion bodies. Furthermore, fusion proteins can be exported to the cellular periplasm, if CusF contains the signal sequence. Taking advantage of its ability to bind copper ions, recombinant proteins can be purified with readily available IMAC resins charged with this metal ion, producing pure proteins after purification and tag removal. We therefore recommend the use of CusF as a viable alternative to MBP or GST as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Dietary DHA/EPA ratio affected tissue fatty acid profiles, antioxidant capacity, hematological characteristics and expression of lipid-related genes but not growth in juvenile black seabream (Acanthopagrus schlegelii)

    PubMed Central

    Monroig, Óscar; Lu, You; Yuan, Ye; Li, Yi; Ding, Liyun; Tocher, Douglas R.; Zhou, Qicun

    2017-01-01

    An 8-week feeding trial was conducted to investigate the effects of dietary docosahexaenoic to eicosapentaenoic acid ratio (DHA/EPA) on growth performance, fatty acid profiles, antioxidant capacity, hematological characteristics and expression of some lipid metabolism related genes of juvenile black seabream (Acanthopagrus schlegelii) of initial weight 9.47 ± 0.03 g. Five isonitrogenous and isolipidic diets (45% crude protein and 14% crude lipid) were formulated to contain graded DHA/EPA ratios of 0.65, 1.16, 1.60, 2.03 and 2.67. There were no differences in growth performance and feed utilization among treatments. Fish fed higher DHA/EPA ratios had higher malondialdehyde (MDA) contents in serum than lower ratios. Serum triacylglycerol (TAG) content was significantly higher in fish fed the lowest DHA/EPA ratio. Tissue fatty acid profiles reflected the diets despite down-regulation of LC-PUFA biosynthesis genes, fatty acyl desaturase 2 (fads2) and elongase of very long-chain fatty acids 5 (elovl5), by high DHA/EPA ratios. Expression of acetyl-CoA carboxylase alpha (accα) and carnitine palmitoyl transferase 1A (cpt1a) were up-regulated by high DHA/EPA ratio, whereas sterol regulatory element-binding protein-1 (srebp-1) and hormone-sensitive lipase (hsl) were down-regulated. Fatty acid synthase (fas), 6-phosphogluconate dehydrogenase (6pgd) and peroxisome proliferator-activated receptor alpha (pparα) showed highest expression in fish fed intermediate (1.16) DHA/EPA ratio. Overall, this study indicated that dietary DHA/EPA ratio affected fatty acid profiles and significantly influenced lipid metabolism including LC-PUFA biosynthesis and other anabolic and catabolic pathways, and also had impacts on antioxidant capacity and hematological characteristics. PMID:28430821

  2. Dietary DHA/EPA ratio affected tissue fatty acid profiles, antioxidant capacity, hematological characteristics and expression of lipid-related genes but not growth in juvenile black seabream (Acanthopagrus schlegelii).

    PubMed

    Jin, Min; Monroig, Óscar; Lu, You; Yuan, Ye; Li, Yi; Ding, Liyun; Tocher, Douglas R; Zhou, Qicun

    2017-01-01

    An 8-week feeding trial was conducted to investigate the effects of dietary docosahexaenoic to eicosapentaenoic acid ratio (DHA/EPA) on growth performance, fatty acid profiles, antioxidant capacity, hematological characteristics and expression of some lipid metabolism related genes of juvenile black seabream (Acanthopagrus schlegelii) of initial weight 9.47 ± 0.03 g. Five isonitrogenous and isolipidic diets (45% crude protein and 14% crude lipid) were formulated to contain graded DHA/EPA ratios of 0.65, 1.16, 1.60, 2.03 and 2.67. There were no differences in growth performance and feed utilization among treatments. Fish fed higher DHA/EPA ratios had higher malondialdehyde (MDA) contents in serum than lower ratios. Serum triacylglycerol (TAG) content was significantly higher in fish fed the lowest DHA/EPA ratio. Tissue fatty acid profiles reflected the diets despite down-regulation of LC-PUFA biosynthesis genes, fatty acyl desaturase 2 (fads2) and elongase of very long-chain fatty acids 5 (elovl5), by high DHA/EPA ratios. Expression of acetyl-CoA carboxylase alpha (accα) and carnitine palmitoyl transferase 1A (cpt1a) were up-regulated by high DHA/EPA ratio, whereas sterol regulatory element-binding protein-1 (srebp-1) and hormone-sensitive lipase (hsl) were down-regulated. Fatty acid synthase (fas), 6-phosphogluconate dehydrogenase (6pgd) and peroxisome proliferator-activated receptor alpha (pparα) showed highest expression in fish fed intermediate (1.16) DHA/EPA ratio. Overall, this study indicated that dietary DHA/EPA ratio affected fatty acid profiles and significantly influenced lipid metabolism including LC-PUFA biosynthesis and other anabolic and catabolic pathways, and also had impacts on antioxidant capacity and hematological characteristics.

  3. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield.

    PubMed

    Ma, Lin; Li, Tian; Hao, Chenyang; Wang, Yuquan; Chen, Xinhong; Zhang, Xueyong

    2016-05-01

    Grain size is a dominant component of grain weight in cereals. Earlier studies have shown that OsGS5 plays a major role in regulating both grain size and weight in rice via promotion of cell division. In this study, we isolated TaGS5 homoeologues in wheat and mapped them on chromosomes 3A, 3B and 3D. Temporal and spatial expression analysis showed that TaGS5 homoeologues were preferentially expressed in young spikes and developing grains. Two alleles of TaGS5-3A, TaGS5-3A-T and TaGS5-3A-G were identified in wheat accessions, and a functional marker was developed to discriminate them. Association analysis revealed that TaGS5-3A-T was significantly correlated with larger grain size and higher thousand kernel weight. Biochemical assays showed that TaGS5-3A-T possesses a higher enzymatic activity than TaGS5-3A-G. Transgenic rice lines overexpressing TaGS5-3A-T also exhibited larger grain size and higher thousand kernel weight than TaGS5-3A-G lines, and the transcript levels of cell cycle-related genes in TaGS5-3A-T lines were higher than those in TaGS5-3A-G lines. Furthermore, systematic evolution analysis in diploid, tetraploid and hexaploid wheat showed that TaGS5-3A underwent strong artificial selection during wheat polyploidization events and the frequency changes of two alleles demonstrated that TaGS5-3A-T was favoured in global modern wheat cultivars. These results suggest that TaGS5-3A is a positive regulator of grain size and its favoured allele TaGS5-3A-T exhibits a larger potential application in wheat high-yield breeding. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Induction of AGAMOUS gene expression plays a key role in ripening of tomato sepals in vitro.

    PubMed

    Ishida, B K; Jenkins, S M; Say, B

    1998-03-01

    In vitro culture of VFNT Cherry tomato sepals (calyx) at 16-21 degrees C results in developmental changes that are similar to those that occur in fruit tissue [10]. Sepals become swollen, red, and succulent, produce ethylene, and have increased levels of polygalacturonase RNA. They also produce many flavor volatiles characteristic of ripe tomato fruit and undergo similar changes in sugar content [11]. We examined the expression of the tomato AGAMOUS gene, TAG1, in ripening, in vitro sepal cultures and other tissues from the plant and found that TAG1 RNA accumulates to higher levels than expected from data from other plants. Contrary to reports on the absence of AGAMOUS in sepals, TAG1 RNA levels in green sepals from greenhouse-grown plants is detectable, its concentration increasing with in vitro ripening to levels that were even higher than in red, ripe fruit. Sepals of fruit on transgenic tomato plants that expressed TAG1 ectopically were induced by low temperature to ripen in vivo, producing lycopene and undergoing cell wall softening as is characteristic of pericarpic tissue. We therefore propose that the induction of elevated TAG1 gene expression plays a key role in developmental changes that result in sepal ripening.

  5. Tail proteins of phage T5: investigation of the effect of the His6-tag position, from expression to crystallisation.

    PubMed

    Noirclerc-Savoye, Marjolaine; Flayhan, Ali; Pereira, Cindy; Gallet, Benoit; Gans, Pierre; Ebel, Christine; Breyton, Cécile

    2015-05-01

    Upon binding to its bacterial host receptor, the tail tip of phage T5 perforates, by an unknown mechanism, the heavily armoured cell wall of the host. This allows the injection of phage DNA into the cytoplasm to hijack the cell machinery and enable the production of new virions. In the perspective of a structural study of the phage tail, we have systematically overproduced eight of the eleven T5 tail proteins, with or without a N- or a C-terminal His6-tag. The widely used Hi6-tag is very convenient to purify recombinant proteins using immobilised-metal affinity chromatography. The presence of a tag however is not always innocuous. We combined automated gene cloning and expression tests to rapidly identify the most promising constructs for proteins of phage T5 tail, and performed biochemical and biophysical characterisation and crystallisation screening on available proteins. Automated small-scale purification was adapted for two highly expressed proteins. We obtained structural information for three of the proteins. We showed that the presence of a His6-tag can have drastic effect on protein expression, solubility, oligomerisation propensity and crystal quality. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Transcriptome Analysis of Gene Expression during Chinese Water Chestnut Storage Organ Formation

    PubMed Central

    Chen, Sainan; Wang, Yan; Yu, Meizhen; Chen, Xuehao; Li, Liangjun; Yin, Jingjing

    2016-01-01

    The product organ (storage organ; corm) of the Chinese water chestnut has become a very popular food in Asian countries because of its unique nutritional value. Corm formation is a complex biological process, and extensive whole genome analysis of transcripts during corm development has not been carried out. In this study, four corm libraries at different developmental stages were constructed, and gene expression was identified using a high-throughput tag sequencing technique. Approximately 4.9 million tags were sequenced, and 4,371,386, 4,372,602, 4,782,494, and 5,276,540 clean tags, including 119,676, 110,701, 100,089, and 101,239 distinct tags, respectively, were obtained after removal of low-quality tags from each library. More than 39% of the distinct tags were unambiguous and could be mapped to reference genes, while 40% were unambiguous tag-mapped genes. After mapping their functions in existing databases, a total of 11,592, 10,949, 10,585, and 7,111 genes were annotated from the B1, B2, B3, and B4 libraries, respectively. Analysis of the differentially expressed genes (DEGs) in B1/B2, B2/B3, and B3/B4 libraries showed that most of the DEGs at the B1/B2 stages were involved in carbohydrate and hormone metabolism, while the majority of DEGs were involved in energy metabolism and carbohydrate metabolism at the B2/B3 and B3/B4 stages. All of the upregulated transcription factors and 9 important genes related to product organ formation in the above four stages were also identified. The expression changes of nine of the identified DEGs were validated using a quantitative PCR approach. This study provides a comprehensive understanding of gene expression during corm formation in the Chinese water chestnut. PMID:27716802

  7. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process.

    PubMed

    Sun, Xian; Cao, Yu; Xu, Hui; Liu, Yan; Sun, Jianrui; Qiao, Dairong; Cao, Yi

    2014-03-01

    Triacylglyceride (TAG) and carbohydrate are potential feedstock for biofuels production. In this study, a two-stage process was applied for enhancing TAG/carbohydrate production in the selected microalgae - Neochloris oleoabundans HK-129. In stage I, effects of nitrogen, light intensity and iron on cell growth were investigated, and the highest biomass productivity of 292.83±5.83mg/L/d was achieved. In stage II, different nitrogen-starvation periods, light intensities and iron concentrations were employed to trigger accumulation of TAG and carbohydrate. The culture under 2-day N-starvation, 200μmol/m(2)/s light intensity and 0.037mM Fe(3+) concentration produced the maximum TAG and carbohydrate productivity of 51.58mg/L/d and 90.70mg/L/d, respectively. Nitrogen starvation period and light intensity had marked effects on TAG/carbohydrate accumulation and fatty acids profile, compared to iron concentration. The microalgal lipid was mainly composed of C16/C18 fatty acids (90.02%), saturated fatty acids (29.82%), and monounsaturated fatty acids (32.67%), which is suitable for biodiesel synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Overview of Fusion Tags for Recombinant Proteins.

    PubMed

    Kosobokova, E N; Skrypnik, K A; Kosorukov, V S

    2016-03-01

    Virtually all recombinant proteins are now prepared using fusion domains also known as "tags". The use of tags helps to solve some serious problems: to simplify procedures of protein isolation, to increase expression and solubility of the desired protein, to simplify protein refolding and increase its efficiency, and to prevent proteolysis. In this review, advantages and disadvantages of such fusion tags are analyzed and data on both well-known and new tags are generalized. The authors own data are also presented.

  9. Analysis of expressed sequence tags from a single wheat cultivar facilitates interpretation of tandem mass spectrometry data and discrimination of gamma gliadin proteins that may play different functional roles in flour

    USDA-ARS?s Scientific Manuscript database

    The complement of gamma gliadin genes expressed in the wheat cultivar Butte 86 was evaluated by analyzing publicly available expressed sequence tag (EST) data. Eleven contigs were assembled from 153 Butte 86 ESTs. Nine of the contigs encoded full-length proteins and four of the proteins contained an...

  10. Sequencing-based gene network analysis provides a core set of gene resource for understanding thermal adaptation in Zhikong scallop Chlamys farreri.

    PubMed

    Fu, X; Sun, Y; Wang, J; Xing, Q; Zou, J; Li, R; Wang, Z; Wang, S; Hu, X; Zhang, L; Bao, Z

    2014-01-01

    Marine organisms are commonly exposed to variable environmental conditions, and many of them are under threat from increased sea temperatures caused by global climate change. Generating transcriptomic resources under different stress conditions are crucial for understanding molecular mechanisms underlying thermal adaptation. In this study, we conducted transcriptome-wide gene expression profiling of the scallop Chlamys farreri challenged by acute and chronic heat stress. Of the 13 953 unique tags, more than 850 were significantly differentially expressed at each time point after acute heat stress, which was more than the number of tags differentially expressed (320-350) under chronic heat stress. To obtain a systemic view of gene expression alterations during thermal stress, a weighted gene coexpression network was constructed. Six modules were identified as acute heat stress-responsive modules. Among them, four modules involved in apoptosis regulation, mRNA binding, mitochondrial envelope formation and oxidation reduction were downregulated. The remaining two modules were upregulated. One was enriched with chaperone and the other with microsatellite sequences, whose coexpression may originate from a transcription factor binding site. These results indicated that C. farreri triggered several cellular processes to acclimate to elevated temperature. No modules responded to chronic heat stress, suggesting that the scallops might have acclimated to elevated temperature within 3 days. This study represents the first sequencing-based gene network analysis in a nonmodel aquatic species and provides valuable gene resources for the study of thermal adaptation, which should assist in the development of heat-tolerant scallop lines for aquaculture. © 2013 John Wiley & Sons Ltd.

  11. Bag3-Induced Autophagy Is Associated with Degradation of JCV Oncoprotein, T-Ag

    PubMed Central

    Sariyer, Ilker Kudret; Merabova, Nana; Patel, Prem Kumer; Knezevic, Tijana; Rosati, Alessandra; Turco, Maria C.; Khalili, Kamel

    2012-01-01

    JC virus, JCV, is a human neurotropic polyomavirus whose replication in glial cells causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). In addition, JCV possesses oncogenic activity and expression of its transforming protein, large T-antigen (T-Ag), in several experimental animals induces tumors of neural origin. Further, the presence of JCV DNA and T-Ag have been repeatedly observed in several human malignant tissues including primitive neuroectodermal tumors and glioblastomas. Earlier studies have demonstrated that Bag3, a member of the Bcl-2-associated athanogene (Bag) family of proteins, which is implicated in autophagy and apoptosis, is downregulated upon JCV infection of glial cells and that JCV T-Ag is responsible for suppressing the activity of the BAG3 promoter. Here, we investigated the possible impact of Bag3 on T-Ag expression in JCV-infected human primary glial cells as well as in cells derived from T-Ag-induced medulloblastoma in transgenic animals. Results from these studies revealed that overexpression of Bag3 drastically decreases the level of T-Ag expression by inducing the autophagic degradation of the viral protein. Interestingly, this event leads to the inhibition of JCV infection of glial cells, suggesting that the reduced levels of T-antigen seen upon the overexpression of Bag3 has a biological impact on the viral lytic cycle. Results from protein-protein interaction studies showed that T-Ag and Bag3 physically interact with each other through the zinc-finger of T-Ag and the proline rich domains of Bag3, and this interaction is important for the autophagic degradation of T-Ag. Our observations open a new avenue of research for better understanding of virus-host interaction by investigating the interplay between T-Ag and Bag3, and their impact on the development of JCV-associated diseases. PMID:22984599

  12. Bag3-induced autophagy is associated with degradation of JCV oncoprotein, T-Ag.

    PubMed

    Sariyer, Ilker Kudret; Merabova, Nana; Patel, Prem Kumer; Knezevic, Tijana; Rosati, Alessandra; Turco, Maria C; Khalili, Kamel

    2012-01-01

    JC virus, JCV, is a human neurotropic polyomavirus whose replication in glial cells causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). In addition, JCV possesses oncogenic activity and expression of its transforming protein, large T-antigen (T-Ag), in several experimental animals induces tumors of neural origin. Further, the presence of JCV DNA and T-Ag have been repeatedly observed in several human malignant tissues including primitive neuroectodermal tumors and glioblastomas. Earlier studies have demonstrated that Bag3, a member of the Bcl-2-associated athanogene (Bag) family of proteins, which is implicated in autophagy and apoptosis, is downregulated upon JCV infection of glial cells and that JCV T-Ag is responsible for suppressing the activity of the BAG3 promoter. Here, we investigated the possible impact of Bag3 on T-Ag expression in JCV-infected human primary glial cells as well as in cells derived from T-Ag-induced medulloblastoma in transgenic animals. Results from these studies revealed that overexpression of Bag3 drastically decreases the level of T-Ag expression by inducing the autophagic degradation of the viral protein. Interestingly, this event leads to the inhibition of JCV infection of glial cells, suggesting that the reduced levels of T-antigen seen upon the overexpression of Bag3 has a biological impact on the viral lytic cycle. Results from protein-protein interaction studies showed that T-Ag and Bag3 physically interact with each other through the zinc-finger of T-Ag and the proline rich domains of Bag3, and this interaction is important for the autophagic degradation of T-Ag. Our observations open a new avenue of research for better understanding of virus-host interaction by investigating the interplay between T-Ag and Bag3, and their impact on the development of JCV-associated diseases.

  13. An expressed sequence tag (EST) data mining strategy succeeding in the discovery of new G-protein coupled receptors.

    PubMed

    Wittenberger, T; Schaller, H C; Hellebrand, S

    2001-03-30

    We have developed a comprehensive expressed sequence tag database search method and used it for the identification of new members of the G-protein coupled receptor superfamily. Our approach proved to be especially useful for the detection of expressed sequence tag sequences that do not encode conserved parts of a protein, making it an ideal tool for the identification of members of divergent protein families or of protein parts without conserved domain structures in the expressed sequence tag database. At least 14 of the expressed sequence tags found with this strategy are promising candidates for new putative G-protein coupled receptors. Here, we describe the sequence and expression analysis of five new members of this receptor superfamily, namely GPR84, GPR86, GPR87, GPR90 and GPR91. We also studied the genomic structure and chromosomal localization of the respective genes applying in silico methods. A cluster of six closely related G-protein coupled receptors was found on the human chromosome 3q24-3q25. It consists of four orphan receptors (GPR86, GPR87, GPR91, and H963), the purinergic receptor P2Y1, and the uridine 5'-diphosphoglucose receptor KIAA0001. It seems likely that these receptors evolved from a common ancestor and therefore might have related ligands. In conclusion, we describe a data mining procedure that proved to be useful for the identification and first characterization of new genes and is well applicable for other gene families. Copyright 2001 Academic Press.

  14. Central leptin regulates heart lipid content by selectively increasing PPAR β/δ expression.

    PubMed

    Mora, Cristina; Pintado, Cristina; Rubio, Blanca; Mazuecos, Lorena; López, Virginia; Fernández, Alejandro; Salamanca, Aurora; Bárcena, Brenda; Fernández-Agulló, Teresa; Arribas, Carmen; Gallardo, Nilda; Andrés, Antonio

    2018-01-01

    The role of central leptin in regulating the heart from lipid accumulation in lean leptin-sensitive animals has not been fully elucidated. Herein, we investigated the effects of central leptin infusion on the expression of genes involved in cardiac metabolism and its role in the control of myocardial triacylglyceride (TAG) accumulation in adult Wistar rats. Intracerebroventricular (icv) leptin infusion (0.2 µg/day) for 7 days markedly decreased TAG levels in cardiac tissue. Remarkably, the cardiac anti-steatotic effects of central leptin were associated with the selective upregulation of gene and protein expression of peroxisome proliferator-activated receptor β/δ (PPARβ/δ, encoded by Pparb/d ) and their target genes, adipose triglyceride lipase (encoded by Pnpla2 , herefater referred to as Atgl ), hormone sensitive lipase (encoded by Lipe , herefater referred to as Hsl ), pyruvate dehydrogenase kinase 4 ( Pdk4 ) and acyl CoA oxidase 1 ( Acox1 ), involved in myocardial intracellular lipolysis and mitochondrial/peroxisomal fatty acid utilization. Besides, central leptin decreased the expression of stearoyl-CoA deaturase 1 ( Scd1 ) and diacylglycerol acyltransferase 1 ( Dgat1 ) involved in TAG synthesis and increased the CPT-1 independent palmitate oxidation, as an index of peroxisomal β-oxidation. Finally, the pharmacological inhibition of PPARβ/δ decreased the effects on gene expression and cardiac TAG content induced by leptin. These results indicate that leptin, acting at central level, regulates selectively the cardiac expression of PPARβ/δ, contributing in this way to regulate the cardiac TAG accumulation in rats, independently of its effects on body weight. © 2018 Society for Endocrinology.

  15. The Use of Affinity Tags to Overcome Obstacles in Recombinant Protein Expression and Purification.

    PubMed

    Amarasinghe, Chinthaka; Jin, Jian-Ping

    2015-01-01

    Research and industrial demands for recombinant proteins continue to increase over time for their broad applications in structural and functional studies and as therapeutic agents. These applications often require large quantities of recombinant protein at desirable purity, which highlights the importance of developing and improving production approaches that provide high level expression and readily achievable purity of recombinant protein. E. coli is the most widely used host for the expression of a diverse range of proteins at low cost. However, there are common pitfalls that can severely limit the expression of exogenous proteins, such as stability, low solubility and toxicity to the host cell. To overcome these obstacles, one strategy that has found to be promising is the use of affinity tags or carrier peptide to aid in the folding of the target protein, increase solubility, lower toxicity and increase the level of expression. In the meantime, the tags and fusion proteins can be designed to facilitate affinity purification. Since the fusion protein may not exhibit the native conformation of the target protein, various strategies have been developed to remove the tag during or after purification to avoid potential complications in structural and functional studies and to obtain native biological activities. Despite extensive research and rapid development along these lines, there are unsolved problems and imperfect applications. This focused review compares and contrasts various strategies that employ affinity tags to improve bacterial expression and to facilitate purification of recombinant proteins. The pros and cons of the approaches are discussed for more effective applications and new directions of future improvement.

  16. Evaluation of anonymous and expressed sequence tag derived polymorphic microsatellite markers in the tobacco budworm Heliothis virescens (Lepidoptera: noctuidae)

    USDA-ARS?s Scientific Manuscript database

    Polymorphic genetic markers were identified and characterized using a partial genomic library of Heliothis virescens enriched for simple sequence repeats (SSR) and nucleotide sequences of expressed sequence tags (EST). Nucleotide sequences of 192 clones from the partial genomic library yielded 147 u...

  17. MicroRNA Profiling Reveals Marker of Motor Neuron Disease in ALS Models.

    PubMed

    Hoye, Mariah L; Koval, Erica D; Wegener, Amy J; Hyman, Theodore S; Yang, Chengran; O'Brien, David R; Miller, Rebecca L; Cole, Tracy; Schoch, Kathleen M; Shen, Tao; Kunikata, Tomonori; Richard, Jean-Philippe; Gutmann, David H; Maragakis, Nicholas J; Kordasiewicz, Holly B; Dougherty, Joseph D; Miller, Timothy M

    2017-05-31

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder marked by the loss of motor neurons (MNs) in the brain and spinal cord, leading to fatally debilitating weakness. Because this disease predominantly affects MNs, we aimed to characterize the distinct expression profile of that cell type to elucidate underlying disease mechanisms and to identify novel targets that inform on MN health during ALS disease time course. microRNAs (miRNAs) are short, noncoding RNAs that can shape the expression profile of a cell and thus often exhibit cell-type-enriched expression. To determine MN-enriched miRNA expression, we used Cre recombinase-dependent miRNA tagging and affinity purification in mice. By defining the in vivo miRNA expression of MNs, all neurons, astrocytes, and microglia, we then focused on MN-enriched miRNAs via a comparative analysis and found that they may functionally distinguish MNs postnatally from other spinal neurons. Characterizing the levels of the MN-enriched miRNAs in CSF harvested from ALS models of MN disease demonstrated that one miRNA (miR-218) tracked with MN loss and was responsive to an ALS therapy in rodent models. Therefore, we have used cellular expression profiling tools to define the distinct miRNA expression of MNs, which is likely to enrich future studies of MN disease. This approach enabled the development of a novel, drug-responsive marker of MN disease in ALS rodents. SIGNIFICANCE STATEMENT Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons (MNs) in the brain and spinal cord are selectively lost. To develop tools to aid in our understanding of the distinct expression profiles of MNs and, ultimately, to monitor MN disease progression, we identified small regulatory microRNAs (miRNAs) that were highly enriched or exclusive in MNs. The signal for one of these MN-enriched miRNAs is detectable in spinal tap biofluid from an ALS rat model, where its levels change as disease progresses, suggesting that it may be a clinically useful marker of disease status. Furthermore, rats treated with ALS therapy have restored expression of this MN RNA marker, making it an MN-specific and drug-responsive marker for ALS rodents. Copyright © 2017 the authors 0270-6474/17/375574-13$15.00/0.

  18. Purification of phage display-modified bacteriophage T4 by affinity chromatography

    PubMed Central

    2011-01-01

    Background Affinity chromatography is one of the most efficient protein purification strategies. This technique comprises a one-step procedure with a purification level in the order of several thousand-fold, adaptable for various proteins, differentiated in their size, shape, charge, and other properties. The aim of this work was to verify the possibility of applying affinity chromatography in bacteriophage purification, with the perspective of therapeutic purposes. T4 is a large, icosahedral phage that may serve as an efficient display platform for foreign peptides or proteins. Here we propose a new method of T4 phage purification by affinity chromatography after its modification with affinity tags (GST and Histag) by in vivo phage display. As any permanent introduction of extraneous DNA into a phage genome is strongly unfavourable for medical purposes, integration of foreign motifs with the phage genome was not applied. The phage was propagated in bacteria expressing fusions of the phage protein Hoc with affinity tags from bacterial plasmids, independently from the phage expression system. Results Elution profiles of phages modified with the specific affinity motifs (compared to non-specific phages) document their binding to the affinity resins and effective elution with standard competitive agents. Non-specific binding was also observed, but was 102-105 times weaker than the specific one. GST-modified bacteriophages were also effectively released from glutathione Sepharose by proteolytic cleavage. The possibility of proteolytic release was designed at the stage of expression vector construction. Decrease in LPS content in phage preparations was dependent on the washing intensity; intensive washing resulted in preparations of 11-40 EU/ml. Conclusions Affinity tags can be successfully incorporated into the T4 phage capsid by the in vivo phage display technique and they strongly elevate bacteriophage affinity to a specific resin. Affinity chromatography can be considered as a new phage purification method, appropriate for further investigations and development. PMID:21627821

  19. Cytokinin oxidase/dehydrogenase genes in barley and wheat: cloning and heterologous expression.

    PubMed

    Galuszka, Petr; Frébortová, Jitka; Werner, Tomás; Yamada, Mamoru; Strnad, Miroslav; Schmülling, Thomas; Frébort, Ivo

    2004-10-01

    The cloning of two novel genes that encode cytokinin oxidase/dehydrogenase (CKX) in barley is described in this work. Transformation of both genes into Arabidopsis and tobacco showed that at least one of the genes codes for a functional enzyme, as its expression caused a cytokinin-deficient phenotype in the heterologous host plants. Additional cloning of two gene fragments, and an in silico search in the public expressed sequence tag clone databases, revealed the presence of at least 13 more members of the CKX gene family in barley and wheat. The expression of three selected barley genes was analyzed by RT-PCR and found to be organ-specific with peak expression in mature kernels. One barley CKX (HvCKX2) was characterized in detail after heterologous expression in tobacco. Interestingly, this enzyme shows a pH optimum at 4.5 and a preference for cytokinin ribosides as substrates, which may indicate its vacuolar targeting. Different substrate specificities, and the pH profiles of cytokinin-degrading enzymes extracted from different barley tissues, are also presented.

  20. Molecular cloning of a putative gene encoding isopentenyltransferase from pingyitiancha (Malus hupehensis) and characterization of its response to nitrate.

    PubMed

    Peng, Jing; Peng, Futian; Zhu, Chunfu; Wei, Shaochong

    2008-06-01

    A putative isopentenyltransferase (IPT) encoding gene was identified from a pingyitiancha (Malus hupehensis Rehd.) expressed sequence tag database, and the full-length gene was cloned by RACE. Based on expression profile and sequence alignment, the nucleotide sequence of the clone, named MhIPT3, was most similar to AtIPT3, an IPT gene in Arabidopsis. The full-length cDNA contained a 963-bp open reading frame encoding a protein of 321 amino acids with a molecular mass of 37.3 kDa. Sequence analysis of genomic DNA revealed the absence of introns in the frame. Quantitative real-time PCR analysis demonstrated that the gene was expressed in roots, stems and leaves. Application of nitrate to roots of nitrogen-deprived seedlings strongly induced expression of MhIPT3 and was accompanied by the accumulation of cytokinins, whereas MhIPT3 expression was little affected by ammonium application to roots of nitrogen-deprived seedlings. Application of nitrate to leaves also up-regulated the expression of MhIPT3 and corresponded closely with the accumulation of isopentyladenine and isopentyladenosine in leaves.

  1. A Cross-Species Analysis in Pancreatic Neuroendocrine Tumors Reveals Molecular Subtypes with Distinctive Clinical, Metastatic, Developmental, and Metabolic Characteristics

    PubMed Central

    Sadanandam, Anguraj; Wullschleger, Stephan; Lyssiotis, Costas A.; Grötzinger, Carsten; Barbi, Stefano; Bersani, Samantha; Körner, Jan; Wafy, Ismael; Mafficini, Andrea; Lawlor, Rita T.; Simbolo, Michele; Asara, John M.; Bläker, Hendrik; Cantley, Lewis C.; Wiedenmann, Bertram; Scarpa, Aldo; Hanahan, Douglas

    2016-01-01

    Seeking to assess the representative and instructive value of an engineered mouse model of pancreatic neuroendocrine tumors (PanNET) for its cognate human cancer, we profiled and compared mRNA and miRNA transcriptomes of tumors from both. Mouse PanNET tumors could be classified into two distinctive subtypes, well-differentiated islet/insulinoma tumors (IT) and poorly differentiated tumors associated with liver metastases, dubbed metastasis-like primary (MLP). Human PanNETs were independently classified into these same two subtypes, along with a third, specific gene mutation–enriched subtype. The MLP subtypes in human and mouse were similar to liver metastases in terms of miRNA and mRNA transcriptome profiles and signature genes. The human/mouse MLP subtypes also similarly expressed genes known to regulate early pancreas development, whereas the IT subtypes expressed genes characteristic of mature islet cells, suggesting different tumorigenesis pathways. In addition, these subtypes exhibit distinct metabolic profiles marked by differential pyruvate metabolism, substantiating the significance of their separate identities. SIGNIFICANCE This study involves a comprehensive cross-species integrated analysis of multi-omics profiles and histology to stratify PanNETs into subtypes with distinctive characteristics. We provide support for the RIP1-TAG2 mouse model as representative of its cognate human cancer with prospects to better understand PanNET heterogeneity and consider future applications of personalized cancer therapy. PMID:26446169

  2. A Cross-Species Analysis in Pancreatic Neuroendocrine Tumors Reveals Molecular Subtypes with Distinctive Clinical, Metastatic, Developmental, and Metabolic Characteristics.

    PubMed

    Sadanandam, Anguraj; Wullschleger, Stephan; Lyssiotis, Costas A; Grötzinger, Carsten; Barbi, Stefano; Bersani, Samantha; Körner, Jan; Wafy, Ismael; Mafficini, Andrea; Lawlor, Rita T; Simbolo, Michele; Asara, John M; Bläker, Hendrik; Cantley, Lewis C; Wiedenmann, Bertram; Scarpa, Aldo; Hanahan, Douglas

    2015-12-01

    Seeking to assess the representative and instructive value of an engineered mouse model of pancreatic neuroendocrine tumors (PanNET) for its cognate human cancer, we profiled and compared mRNA and miRNA transcriptomes of tumors from both. Mouse PanNET tumors could be classified into two distinctive subtypes, well-differentiated islet/insulinoma tumors (IT) and poorly differentiated tumors associated with liver metastases, dubbed metastasis-like primary (MLP). Human PanNETs were independently classified into these same two subtypes, along with a third, specific gene mutation-enriched subtype. The MLP subtypes in human and mouse were similar to liver metastases in terms of miRNA and mRNA transcriptome profiles and signature genes. The human/mouse MLP subtypes also similarly expressed genes known to regulate early pancreas development, whereas the IT subtypes expressed genes characteristic of mature islet cells, suggesting different tumorigenesis pathways. In addition, these subtypes exhibit distinct metabolic profiles marked by differential pyruvate metabolism, substantiating the significance of their separate identities. This study involves a comprehensive cross-species integrated analysis of multi-omics profiles and histology to stratify PanNETs into subtypes with distinctive characteristics. We provide support for the RIP1-TAG2 mouse model as representative of its cognate human cancer with prospects to better understand PanNET heterogeneity and consider future applications of personalized cancer therapy. ©2015 American Association for Cancer Research.

  3. Comparison of Earthquake Damage Patterns and Shallow-Depth Vs Structure Across the Napa Valley, Inferred From Multichannel Analysis of Surface Waves (MASW) and Multichannel Analysis of Love Waves (MALW) Modeling of Basin-Wide Seismic Profiles

    NASA Astrophysics Data System (ADS)

    Chan, J. H.; Catchings, R.; Strayer, L. M.; Goldman, M.; Criley, C.; Sickler, R. R.; Boatwright, J.

    2017-12-01

    We conducted an active-source seismic investigation across the Napa Valley (Napa Valley Seismic Investigation-16) in September of 2016 consisting of two basin-wide seismic profiles; one profile was 20 km long and N-S-trending (338°), and the other 15 km long and E-W-trending (80°) (see Catchings et al., 2017). Data from the NVSI-16 seismic investigation were recorded using a total of 666 vertical- and horizontal-component seismographs, spaced 100 m apart on both seismic profiles. Seismic sources were generated by a total of 36 buried explosions spaced 1 km apart. The two seismic profiles intersected in downtown Napa, where a large number of buildings were red-tagged by the City following the 24 August 2014 Mw 6.0 South Napa earthquake. From the recorded Rayleigh and Love waves, we developed 2-Dimensional S-wave velocity models to depths of about 0.5 km using the multichannel analysis of surface waves (MASW) method. Our MASW (Rayleigh) and MALW (Love) models show two prominent low-velocity (Vs = 350 to 1300 m/s) sub-basins that were also previously identified from gravity studies (Langenheim et al., 2010). These basins trend N-W and also coincide with the locations of more than 1500 red- and yellow-tagged buildings within the City of Napa that were tagged after the 2014 South Napa earthquake. The observed correlation between low-Vs, deep basins, and the red-and yellow-tagged buildings in Napa suggests similar large-scale seismic investigations can be performed. These correlations provide insights into the likely locations of significant structural damage resulting from future earthquakes that occur adjacent to or within sedimentary basins.

  4. Single-step affinity and cost-effective purification of recombinant proteins using the Sepharose-binding lectin-tag from the mushroom Laetiporus sulphureus as fusion partner.

    PubMed

    Li, Xiao-Jing; Liu, Jin-Ling; Gao, Dong-Sheng; Wan, Wen-Yan; Yang, Xia; Li, Yong-Tao; Chang, Hong-Tao; Chen, Lu; Wang, Chuan-Qing; Zhao, Jun

    2016-03-01

    Previous research showed that a lectin from the mushroom Laetiporus sulphureus, designed LSL, bound to Sepharose and could be eluted by lactose. In this study, by taking advantage of the strong affinity of LSL-tag for Sepharose, we developed a single-step purification method for LSL-tagged fusion proteins. We utilized unmodified Sepharose-4B as a specific adsorbent and 0.2 M lactose solution as an elution buffer. Fusion proteins of LSL-tag and porcine circovirus capsid protein, designated LSL-Cap was recovered with purity of 90 ± 4%, and yield of 87 ± 3% from crude extract of recombinant Escherichia coli. To enable the remove of LSL-tag, tobacco etch virus (TEV) protease recognition sequence was placed downstream of LSL-tag in the expression vector, and LSL-tagged TEV protease, designated LSL-TEV, was also expressed in E. coli., and was recovered with purity of 82 ± 5%, and yield of 85 ± 2% from crude extract of recombinant E. coli. After digestion of LSL-tagged recombinant proteins with LSL-TEV, the LSL tag and LSL-TEV can be easily removed by passing the digested products through the Sepharose column. It is of worthy noting that the Sepharose can be reused after washing with PBS. The LSL affinity purification method enables rapid and inexpensive purification of LSL-tagged fusion proteins and scale-up production of native proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Profiling of wheat class III peroxidase genes derived from powdery mildew-attacked epidermis reveals distinct sequence-associated expression patterns.

    PubMed

    Liu, Guosheng; Sheng, Xiaoyan; Greenshields, David L; Ogieglo, Adam; Kaminskyj, Susan; Selvaraj, Gopalan; Wei, Yangdou

    2005-07-01

    A cDNA library was constructed from leaf epidermis of diploid wheat (Triticum monococcum) infected with the powdery mildew fungus (Blumeria graminis f. sp. tritici) and was screened for genes encoding peroxidases. From 2,500 expressed sequence tags (ESTs), 36 cDNAs representing 10 peroxidase genes (designated TmPRX1 to TmPRX10) were isolated and further characterized. Alignment of the deduced amino acid sequences and phylogenetic clustering with peroxidases from other plant species demonstrated that these peroxidases fall into four distinct groups. Differential expression and tissue-specific localization among the members were observed during the B. graminis f. sp. tritici attack using Northern blots and reverse-transcriptase polymerase chain reaction analyses. Consistent with its abundance in the EST collection, TmPRX1 expression showed the highest induction during pathogen attack and fluctuated in response to the fungal parasitic stages. TmPRX1 to TmPRX6 were expressed predominantly in mesophyll cells, whereas TmPRX7 to TmPRX10, which feature a putative C-terminal propeptide, were detectable mainly in epidermal cells. Using TmPRX8 as a representative, we demonstrated that its C-terminal propeptide was sufficient to target a green fluorescent protein fusion protein to the vacuoles in onion cells. Finally, differential expression profiles of the TmPRXs after abiotic stresses and signal molecule treatments were used to dissect the potential role of these peroxidases in multiple stress and defense pathways.

  6. Bisphenol S induces obesogenic effects through deregulating lipid metabolism in zebrafish (Danio rerio) larvae.

    PubMed

    Wang, Weiwei; Zhang, Xiaona; Wang, Zihao; Qin, Jingyu; Wang, Wei; Tian, Hua; Ru, Shaoguo

    2018-05-01

    It has been suggested that dramatic increase in obesity may be caused by growing exposure to environmental chemicals. In vitro data has suggested bisphenol S (BPS), a compound widely used in polycarbonate plastic production, can induce lipid accumulation in preadipocytes. However, the mechanisms responsible for BPS-induced obesity in vivo remain unclear. In this study, we used translucent zebrafish (Danio rerio) larvae as a model to investigate the effect of environmentally relevant BPS exposure (1, 10, and 100 μg/L from 2 h to 15 d post fertilization) on lipid accumulation, triacylglycerol (TAG) and lipoproteins content, and mRNA expression of genes involved in the regulation of lipid synthesis, transport, degradation, and storage. We also analyzed activities of two enzymes critical to TAG metabolism: lipoprotein lipase and diglyceride acyltransferase. Overfed, obese larvae were used as positive control. The results indicated that BPS-treated and overfed larvae had much higher TAG levels and visceral fat accumulation compared with control. BPS exhibited obesogenic effects by interfering with lipid metabolism as evidenced by (a) upregulation of the mRNA expression of fasn, acc1, and agpat4 genes encoding enzymes involved in the de novo synthesis of TAG in the liver, (b) downregulation of apolipoprotein expression, which should reduce TAG transport from the liver, and (c) increase in rxrα expression, which should promote visceral fat accumulation. Our study is the first to demonstrate that the obesogenic effects of BPS in zebrafish are related to the disruption of TAG metabolism. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. A SAGE based approach to human glomerular endothelium: defining the transcriptome, finding a novel molecule and highlighting endothelial diversity.

    PubMed

    Sengoelge, Guerkan; Winnicki, Wolfgang; Kupczok, Anne; von Haeseler, Arndt; Schuster, Michael; Pfaller, Walter; Jennings, Paul; Weltermann, Ansgar; Blake, Sophia; Sunder-Plassmann, Gere

    2014-08-27

    Large scale transcript analysis of human glomerular microvascular endothelial cells (HGMEC) has never been accomplished. We designed this study to define the transcriptome of HGMEC and facilitate a better characterization of these endothelial cells with unique features. Serial analysis of gene expression (SAGE) was used for its unbiased approach to quantitative acquisition of transcripts. We generated a HGMEC SAGE library consisting of 68,987 transcript tags. Then taking advantage of large public databases and advanced bioinformatics we compared the HGMEC SAGE library with a SAGE library of non-cultured ex vivo human glomeruli (44,334 tags) which contained endothelial cells. The 823 tags common to both which would have the potential to be expressed in vivo were subsequently checked against 822,008 tags from 16 non-glomerular endothelial SAGE libraries. This resulted in 268 transcript tags differentially overexpressed in HGMEC compared to non-glomerular endothelia. These tags were filtered using a set of criteria: never before shown in kidney or any type of endothelial cell, absent in all nephron regions except the glomerulus, more highly expressed than statistically expected in HGMEC. Neurogranin, a direct target of thyroid hormone action which had been thought to be brain specific and never shown in endothelial cells before, fulfilled these criteria. Its expression in glomerular endothelium in vitro and in vivo was then verified by real-time-PCR, sequencing and immunohistochemistry. Our results represent an extensive molecular characterization of HGMEC beyond a mere database, underline the endothelial heterogeneity, and propose neurogranin as a potential link in the kidney-thyroid axis.

  8. Differentially expressed genes in the ovary of the sixth day of pupal "Ming" lethal egg mutant of silkworm, Bombyx mori.

    PubMed

    Gao, Peng; Chen, An-Li; Zhao, Qiao-Ling; Shen, Xing-Jia; Qiu, Zhi-Yong; Xia, Ding-Guo; Tang, Shun-Ming; Zhang, Guo-Zheng

    2013-09-15

    The "Ming" lethal egg mutant (l-em) is a vitelline membrane mutant in silkworm, Bombyx mori. The eggs laid by the l-em mutant lose water, ultimately causing death within an hour. Previous studies have shown that the deletion of BmEP80 is responsible for the l-em mutation in silkworm, B. mori. In the current study, digital gene expression (DGE) was performed to investigate the difference of gene expression in ovaries between wild type and l-em mutant on the sixth day of the pupal stage to obtain a global view of gene expression profiles using the ovaries of three l-em mutants and three wild types. The results showed a total of 3,463,495 and 3,607,936 clean tags in the wild type and the l-em mutant libraries, respectively. Compared with those of wild type, 239 differentially expressed genes were detected in the l-em mutant, wherein 181 genes are up-regulated and 58 genes are down-regulated in the mutant strain. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis results showed that no pathway was significantly enriched and three pathways are tightly related to protein synthesis among the five leading pathways. Moreover, the expression profiles of eight important differentially expressed genes related to oogenesis changed. These results provide a comprehensive gene expression analysis of oogenesis and vitellogenesis in B. mori which facilitates understanding of both the specific molecular mechanism of the 1-em mutant and Lepidopteran oogenesis in general. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Impact of unusual fatty acid synthesis on futile cycling through beta-oxidation and on gene expression in transgenic plants.

    PubMed

    Moire, Laurence; Rezzonico, Enea; Goepfert, Simon; Poirier, Yves

    2004-01-01

    Arabidopsis expressing the castor bean (Ricinus communis) oleate 12-hydroxylase or the Crepis palaestina linoleate 12-epoxygenase in developing seeds typically accumulate low levels of ricinoleic acid and vernolic acid, respectively. We have examined the presence of a futile cycle of fatty acid degradation in developing seeds using the synthesis of polyhydroxyalkanoate (PHA) from the intermediates of the peroxisomal beta-oxidation cycle. Both the quantity and monomer composition of the PHA synthesized in transgenic plants expressing the 12-epoxygenase and 12-hydroxylase in developing seeds revealed the presence of a futile cycle of degradation of the corresponding unusual fatty acids, indicating a limitation in their stable integration into lipids. The expression profile of nearly 200 genes involved in fatty acid biosynthesis and degradation has been analyzed through microarray. No significant changes in gene expression have been detected as a consequence of the activity of the 12-epoxygenase or the 12-hydroxylase in developing siliques. Similar results have also been obtained for transgenic plants expressing the Cuphea lanceolata caproyl-acyl carrier protein thioesterase and accumulating high amounts of caproic acid. Only in developing siliques of the tag1 mutant, deficient in the accumulation of triacylglycerols and shown to have a substantial futile cycling of fatty acids toward beta-oxidation, have some changes in gene expression been detected, notably the induction of the isocitrate lyase gene. These results indicate that analysis of peroxisomal PHA is a better indicator of the flux of fatty acid through beta-oxidation than the expression profile of genes involved in lipid metabolism.

  10. Impact of Unusual Fatty Acid Synthesis on Futile Cycling through β-Oxidation and on Gene Expression in Transgenic Plants1[w

    PubMed Central

    Moire, Laurence; Rezzonico, Enea; Goepfert, Simon; Poirier, Yves

    2004-01-01

    Arabidopsis expressing the castor bean (Ricinus communis) oleate 12-hydroxylase or the Crepis palaestina linoleate 12-epoxygenase in developing seeds typically accumulate low levels of ricinoleic acid and vernolic acid, respectively. We have examined the presence of a futile cycle of fatty acid degradation in developing seeds using the synthesis of polyhydroxyalkanoate (PHA) from the intermediates of the peroxisomal β-oxidation cycle. Both the quantity and monomer composition of the PHA synthesized in transgenic plants expressing the 12-epoxygenase and 12-hydroxylase in developing seeds revealed the presence of a futile cycle of degradation of the corresponding unusual fatty acids, indicating a limitation in their stable integration into lipids. The expression profile of nearly 200 genes involved in fatty acid biosynthesis and degradation has been analyzed through microarray. No significant changes in gene expression have been detected as a consequence of the activity of the 12-epoxygenase or the 12-hydroxylase in developing siliques. Similar results have also been obtained for transgenic plants expressing the Cuphea lanceolata caproyl-acyl carrier protein thioesterase and accumulating high amounts of caproic acid. Only in developing siliques of the tag1 mutant, deficient in the accumulation of triacylglycerols and shown to have a substantial futile cycling of fatty acids toward β-oxidation, have some changes in gene expression been detected, notably the induction of the isocitrate lyase gene. These results indicate that analysis of peroxisomal PHA is a better indicator of the flux of fatty acid through β-oxidation than the expression profile of genes involved in lipid metabolism. PMID:14671017

  11. Regulation of FA and TAG biosynthesis pathway genes in endosperms and embryos of high and low oil content genotypes of Jatropha curcas L.

    PubMed

    Sood, Archit; Chauhan, Rajinder Singh

    2015-09-01

    The rising demand for biofuels has raised concerns about selecting alternate and promising renewable energy crops which do not compete with food supply. Jatropha (Jatropha curcas L.), a non-edible energy crop of the family euphorbiaceae, has the potential of providing biodiesel feedstock due to the presence of high proportion of unsaturated fatty acids (75%) in seed oil which is mainly accumulated in endosperm and embryo. The molecular basis of seed oil biosynthesis machinery has been studied in J. curcas, however, what genetic differences contribute to differential oil biosynthesis and accumulation in genotypes varying for oil content is poorly understood. We investigated expression profile of 18 FA and TAG biosynthetic pathway genes in different developmental stages of embryo and endosperm from high (42%) and low (30%) oil content genotypes grown at two geographical locations. Most of the genes showed relatively higher expression in endosperms of high oil content genotype, whereas no significant difference was observed in endosperms versus embryos of low oil content genotype. The promoter regions of key genes from FA and TAG biosynthetic pathways as well as other genes implicated in oil accumulation were analyzed for regulatory elements and transcription factors specific to oil or lipid accumulation in plants such as Dof, CBF (LEC1), SORLIP, GATA and Skn-1_motif etc. Identification of key genes from oil biosynthesis and regulatory elements specific to oil deposition will be useful not only in dissecting the molecular basis of high oil content but also improving seed oil content through transgenic or molecular breeding approaches. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Characterization and Comparative Expression Profiling of Browning Response in Medinilla formosana after Cutting.

    PubMed

    Wang, Yan; Wang, Yiting; Li, Kunfeng; Song, Xijiao; Chen, Jianping

    2016-01-01

    Plant browning is a recalcitrant problem for in vitro culture and often leads to poor growth of explants and even failure of tissue culture. However, the molecular mechanisms underlying browning-induced physiological processes remain unclear. Medinilla is considered one of the most difficult genera for tissue culture owning to its severe browning. In the present study, intact aseptic plantlets of Medinilla formosana Hayata previously obtained by ovary culture, were used to explore the characteristics and molecular mechanism of the browning response. Successive morphological and anatomical observations after cutting showed that the browning of M. formosana was not lethal but adaptive. De novo transcriptome and digital gene expression (DGE) profiling using Illumina high-throughput sequencing were then used to explore molecular regulation after cutting. About 7.5 million tags of de novo transcriptome were obtained and 58,073 unigenes were assembled and annotated. A total of 6,431 differentially expressed genes (DEGs) at three stages after cutting were identified, and the expression patterns of these browning-related genes were clustered and analyzed. A number of putative DEGs involved in signal transduction and secondary metabolism were particularly studied and the potential roles of these cutting-responsive mRNAs in plant defense to diverse abiotic stresses are discussed. The DGE profiling data were also validated by quantitative RT-PCR analysis. The data obtained in this study provide an excellent resource for unraveling the molecular mechanisms of browning processes during in vitro tissue culture, and lay a foundation for future studies to inhibit and eliminate browning damage.

  13. Characterization and Comparative Expression Profiling of Browning Response in Medinilla formosana after Cutting

    PubMed Central

    Wang, Yan; Wang, Yiting; Li, Kunfeng; Song, Xijiao; Chen, Jianping

    2016-01-01

    Plant browning is a recalcitrant problem for in vitro culture and often leads to poor growth of explants and even failure of tissue culture. However, the molecular mechanisms underlying browning-induced physiological processes remain unclear. Medinilla is considered one of the most difficult genera for tissue culture owning to its severe browning. In the present study, intact aseptic plantlets of Medinilla formosana Hayata previously obtained by ovary culture, were used to explore the characteristics and molecular mechanism of the browning response. Successive morphological and anatomical observations after cutting showed that the browning of M. formosana was not lethal but adaptive. De novo transcriptome and digital gene expression (DGE) profiling using Illumina high-throughput sequencing were then used to explore molecular regulation after cutting. About 7.5 million tags of de novo transcriptome were obtained and 58,073 unigenes were assembled and annotated. A total of 6,431 differentially expressed genes (DEGs) at three stages after cutting were identified, and the expression patterns of these browning-related genes were clustered and analyzed. A number of putative DEGs involved in signal transduction and secondary metabolism were particularly studied and the potential roles of these cutting-responsive mRNAs in plant defense to diverse abiotic stresses are discussed. The DGE profiling data were also validated by quantitative RT-PCR analysis. The data obtained in this study provide an excellent resource for unraveling the molecular mechanisms of browning processes during in vitro tissue culture, and lay a foundation for future studies to inhibit and eliminate browning damage. PMID:28066460

  14. Single nucleotide polymorphisms from Theobroma cacao expressed sequence tags associated with witches' broom disease in cacao.

    PubMed

    Lima, L S; Gramacho, K P; Carels, N; Novais, R; Gaiotto, F A; Lopes, U V; Gesteira, A S; Zaidan, H A; Cascardo, J C M; Pires, J L; Micheli, F

    2009-07-14

    In order to increase the efficiency of cacao tree resistance to witches' broom disease, which is caused by Moniliophthora perniciosa (Tricholomataceae), we looked for molecular markers that could help in the selection of resistant cacao genotypes. Among the different markers useful for developing marker-assisted selection, single nucleotide polymorphisms (SNPs) constitute the most common type of sequence difference between alleles and can be easily detected by in silico analysis from expressed sequence tag libraries. We report the first detection and analysis of SNPs from cacao-M. perniciosa interaction expressed sequence tags, using bioinformatics. Selection based on analysis of these SNPs should be useful for developing cacao varieties resistant to this devastating disease.

  15. Transcriptome and Gene Expression Analysis of the Rice Leaf Folder, Cnaphalocrosis medinalis

    PubMed Central

    Li, Shang-Wei; Yang, Hong; Liu, Yue-Feng; Liao, Qi-Rong; Du, Juan; Jin, Dao-Chao

    2012-01-01

    Background The rice leaf folder (RLF), Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae), is one of the most destructive pests affecting rice in Asia. Although several studies have been performed on the ecological and physiological aspects of this species, the molecular mechanisms underlying its developmental regulation, behavior, and insecticide resistance remain largely unknown. Presently, there is a lack of genomic information for RLF; therefore, studies aimed at profiling the RLF transcriptome expression would provide a better understanding of its biological function at the molecular level. Principal Findings De novo assembly of the RLF transcriptome was performed via the short read sequencing technology (Illumina). In a single run, we produced more than 23 million sequencing reads that were assembled into 44,941 unigenes (mean size = 474 bp) by Trinity. Through a similarity search, 25,281 (56.82%) unigenes matched known proteins in the NCBI Nr protein database. The transcriptome sequences were annotated with gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG orthology (KO). Additionally, we profiled gene expression during RLF development using a tag-based digital gene expression (DGE) system. Five DGE libraries were constructed, and variations in gene expression were compared between collected samples: eggs vs. 3rd instar larvae, 3rd instar larvae vs. pupae, pupae vs. adults. The results demonstrated that thousands of genes were significantly differentially expressed during various developmental stages. A number of the differentially expressed genes were confirmed by quantitative real-time PCR (qRT-PCR). Conclusions The RLF transcriptome and DGE data provide a comprehensive and global gene expression profile that would further promote our understanding of the molecular mechanisms underlying various biological characteristics, including development, elevated fecundity, flight, sex differentiation, olfactory behavior, and insecticide resistance in RLF. Therefore, these findings could help elucidate the intrinsic factors involved in the RLF-mediated destruction of rice and offer sustainable insect pest management. PMID:23185238

  16. Tandem SUMO fusion vectors for improving soluble protein expression and purification.

    PubMed

    Guerrero, Fernando; Ciragan, Annika; Iwaï, Hideo

    2015-12-01

    Availability of highly purified proteins in quantity is crucial for detailed biochemical and structural investigations. Fusion tags are versatile tools to facilitate efficient protein purification and to improve soluble overexpression of proteins. Various purification and fusion tags have been widely used for overexpression in Escherichia coli. However, these tags might interfere with biological functions and/or structural investigations of the protein of interest. Therefore, an additional purification step to remove fusion tags by proteolytic digestion might be required. Here, we describe a set of new vectors in which yeast SUMO (SMT3) was used as the highly specific recognition sequence of ubiquitin-like protease 1, together with other commonly used solubility enhancing proteins, such as glutathione S-transferase, maltose binding protein, thioredoxin and trigger factor for optimizing soluble expression of protein of interest. This tandem SUMO (T-SUMO) fusion system was tested for soluble expression of the C-terminal domain of TonB from different organisms and for the antiviral protein scytovirin. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Lipidomic Components Alterations of Human Follicular Fluid Reveal the Relevance of Improving Clinical Outcomes in Women Using Progestin-Primed Ovarian Stimulation Compared to Short-Term Protocol.

    PubMed

    Wen, Xiaowei; Kuang, Yanping; Zhou, Lixia; Yu, Baofeng; Chen, Qiuju; Fu, Yonglun; Yan, Zheng; Guo, Haiyan; Lyu, Qifeng; Xie, Jun; Chai, Weiran

    2018-05-21

    BACKGROUND Increasing the success rate of in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) is a duty of clinicians that has made many seek a variety of protocols. This study was undertaken to use a liquid chromatography-mass spectrometry (LC-MS) to define the alterations of follicular fluid (FF) lipid metabolites in patients undergoing progestin-primed ovarian stimulation (PPOS) compared with short-term protocol, revealing potential correlations between the differentially expressed lipids and ameliorative clinical outcomes. MATERIAL AND METHODS Ninety-three infertile women undergoing IVF/ICSI treatment with PPOS (n=62) or a short-term protocol (n=31) were prospectively enrolled in a randomized controlled trial. FF samples were obtained from dominant follicles at the time of oocyte retrieval. Lipid metabolism profiles were analyzed using LC-MS. RESULTS Twelve lipids were found to be higher in patients treated with the PPOS protocol than in those receiving the short-term protocol, including triacylglycerols (TAG-34: 1+NH4, TAG-58: 0+NH4, TAG-64: 3+NH4, and TAG-64: 8+NH4), diacylglycerol DAG-38: 6+NH4, phosphatidylglycerols (PG-26: 0, PG-30: 2, and PG-40: 5), phosphatidylethanolamine PE-32: 2, lysophosphatidylethanolamine LPE-14: 1, lysophosphatidylinositol LPI-12: 0, and lysophosphatidylcholine LPC-16: 0. CONCLUSIONS Our data demonstrate that the PPOS protocol increases the levels of 12 lipids in FF, which reveals a strong association between the differentially elevated lipids and better IVF/ICSI outcomes.

  18. Expression of proteins in Escherichia coli as fusions with maltose-binding protein to rescue non-expressed targets in a high-throughput protein-expression and purification pipeline

    PubMed Central

    Hewitt, Stephen N.; Choi, Ryan; Kelley, Angela; Crowther, Gregory J.; Napuli, Alberto J.; Van Voorhis, Wesley C.

    2011-01-01

    Despite recent advances, the expression of heterologous proteins in Escherichia coli for crystallization remains a nontrivial challenge. The present study investigates the efficacy of maltose-binding protein (MBP) fusion as a general strategy for rescuing the expression of target proteins. From a group of sequence-verified clones with undetectable levels of protein expression in an E. coli T7 expression system, 95 clones representing 16 phylogenetically diverse organisms were selected for recloning into a chimeric expression vector with an N-terminal histidine-tagged MBP. PCR-amplified inserts were annealed into an identical ligation-independent cloning region in an MBP-fusion vector and were analyzed for expression and solubility by high-throughput nickel-affinity binding. This approach yielded detectable expression of 72% of the clones; soluble expression was visible in 62%. However, the solubility of most proteins was marginal to poor upon cleavage of the MBP tag. This study offers large-scale evidence that MBP can improve the soluble expression of previously non-expressing proteins from a variety of eukaryotic and prokaryotic organisms. While the behavior of the cleaved proteins was disappointing, further refinements in MBP tagging may permit the more widespread use of MBP-fusion proteins in crystallographic studies. PMID:21904041

  19. Transcriptome Analysis of Chlorantraniliprole Resistance Development in the Diamondback Moth Plutella xylostella

    PubMed Central

    Hu, Zhendi; Chen, Huanyu; Yin, Fei; Li, Zhenyu; Dong, Xiaolin; Zhang, Deyong; Ren, Shunxiang; Feng, Xia

    2013-01-01

    Background The diamondback moth Plutella xyllostella has developed a high level of resistance to the latest insecticide chlorantraniliprole. A better understanding of P. xylostella’s resistance mechanism to chlorantraniliprole is needed to develop effective approaches for insecticide resistance management. Principal Findings To provide a comprehensive insight into the resistance mechanisms of P. xylostella to chlorantraniliprole, transcriptome assembly and tag-based digital gene expression (DGE) system were performed using Illumina HiSeq™ 2000. The transcriptome analysis of the susceptible strain (SS) provided 45,231 unigenes (with the size ranging from 200 bp to 13,799 bp), which would be efficient for analyzing the differences in different chlorantraniliprole-resistant P. xylostella stains. DGE analysis indicated that a total of 1215 genes (189 up-regulated and 1026 down-regulated) were gradient differentially expressed among the susceptible strain (SS) and different chlorantraniliprole-resistant P. xylostella strains, including low-level resistance (GXA), moderate resistance (LZA) and high resistance strains (HZA). A detailed analysis of gradient differentially expressed genes elucidated the existence of a phase-dependent divergence of biological investment at the molecular level. The genes related to insecticide resistance, such as P450, GST, the ryanodine receptor, and connectin, had different expression profiles in the different chlorantraniliprole-resistant DGE libraries, suggesting that the genes related to insecticide resistance are involved in P. xylostella resistance development against chlorantraniliprole. To confirm the results from the DGE, the expressional profiles of 4 genes related to insecticide resistance were further validated by qRT-PCR analysis. Conclusions The obtained transcriptome information provides large gene resources available for further studying the resistance development of P. xylostella to pesticides. The DGE data provide comprehensive insights into the gene expression profiles of the different chlorantraniliprole-resistant stains. These genes are specifically related to insecticide resistance, with different expressional profiles facilitating the study of the role of each gene in chlorantraniliprole resistance development. PMID:23977278

  20. DIGE compatible labelling of surface proteins on vital cells in vitro and in vivo.

    PubMed

    Mayrhofer, Corina; Krieger, Sigurd; Allmaier, Günter; Kerjaschki, Dontscho

    2006-01-01

    Efficient methods for profiling of the cell surface proteome are desirable to get a deeper insight in basic biological processes, to localise proteins and to uncover proteins differentially expressed in diseases. Here we present a strategy to target cell surface exposed proteins via fluorescence labelling using CyDye DIGE fluors. This method has been applied to human cell lines in vitro as well as to a complex biological system in vivo. It allows detection of fluorophore-tagged cell surface proteins and visualisation of the accessible proteome within a single 2-D gel, simplifying subsequent UV MALDI-MS analysis.

  1. In silico cloning, expression of Rieske-like apoprotein gene and protein subcellular localization in the Pacific oyster, Crassostrea gigas.

    PubMed

    He, Xiaocui; Zhang, Yang; Yu, Ziniu

    2010-10-01

    Rieske protein gene in the Pacific oyster Crassostrea gigas was obtained by in silico cloning for the first time, and its expression profiles and subcellular localization were determined, respectively. The full-length cDNA of Cgisp is 985 bp in length and contains a 5'- and 3'-untranslated regions of 35 and 161 bp, respectively, with an open reading frame of 786 bp encoding a protein of 262 amino acids. The predicted molecular weight of 30 kDa of Cgisp protein was verified by prokaryotic expression. Conserved Rieske [2Fe-2S] cluster binding sites and highly matched-pair tertiary structure with 3CWB_E (Gallus gallus) were revealed by homologous analysis and molecular modeling. Eleven putative SNP sites and two conserved hexapeptide sequences, box I (THLGC) and II (PCHGS), were detected by multiple alignments. Real-time PCR analysis showed that Cgisp is expressed in a wide range of tissues, with adductor muscle exhibiting the top expression level, suggesting its biological function of energy transduction. The GFP tagging Cgisp indicated a mitochondrial localization, further confirming its physiological function.

  2. Over-expressed maltose transporters in laboratory and lager yeasts: localization and competition with endogenous transporters.

    PubMed

    Vidgren, Virve; Londesborough, John

    2018-05-31

    Plain and fluorescently tagged versions of Agt1, Mtt1 and Malx1 maltose transporters were over-expressed in two laboratory yeasts and one lager yeast. The plain and tagged versions of each transporter supported similar transport activities, indicating that they are similarly trafficked and have similar catalytic activities. When they were expressed under the control of the strong constitutive PGK1 promoter only minor proportions of the fluorescent transporters were associated with the plasma membrane, the rest being found in intracellular structures. Transport activity of each tagged transporter in each host was roughly proportional to the plasma membrane-associated fluorescence. All three transporters were subject to glucose-triggered inactivation when the medium glucose concentration was abruptly raised. Results also suggest competition between endogenous and over-expressed transporters for access to the plasma membrane. This article is protected by copyright. All rights reserved.

  3. A tandem affinity purification tag of TGA2 for isolation of interacting proteins in Arabidopsis thaliana

    PubMed Central

    Stotz, Henrik U; Findling, Simone; Nukarinen, Ella; Weckwerth, Wolfram; Mueller, Martin J; Berger, Susanne

    2014-01-01

    Tandem affinity purification (TAP) tagging provides a powerful tool for isolating interacting proteins in vivo. TAP-tag purification offers particular advantages for the identification of stimulus-induced protein interactions. Type II bZIP transcription factors (TGA2, TGA5 and TGA6) play key roles in pathways that control salicylic acid, ethylene, xenobiotic and reactive oxylipin signaling. Although proteins interacting with these transcription factors have been identified through genetic and yeast 2-hybrid screening, others are still elusive. We have therefore generated a C-terminal TAP-tag of TGA2 to isolate additional proteins that interact with this transcription factor. Three lines most highly expressing TAP-tagged TGA2 were functional in that they partially complemented reactive oxylipin-responsive gene expression in a tga2 tga5 tga6 triple mutant. TAP-tagged TGA2 in the most strongly overexpressing line was proteolytically less stable than in the other 2 lines. Only this overexpressing line could be used in a 2-step purification process, resulting in isolation of co-purifying bands of larger molecular weight than TGA2. TAP-tagged TGA2 was used to pull down NPR1, a protein known to interact with this transcription factor. Mass spectrometry was used to identify peptides that co-purified with TAP-tagged TGA2. Having generated this TGA2 TAP-tag line will therefore be an asset to researchers interested in stimulus-induced signal transduction processes. PMID:25482810

  4. Difference in trafficking of brain-derived neurotrophic factor between axons and dendrites of cortical neurons, revealed by live-cell imaging

    PubMed Central

    Adachi, Naoki; Kohara, Keigo; Tsumoto, Tadaharu

    2005-01-01

    Background Brain-derived neurotrophic factor (BDNF), which is sorted into a regulated secretory pathway of neurons, is supposed to act retrogradely through dendrites on presynaptic neurons or anterogradely through axons on postsynaptic neurons. Depending on which is the case, the pattern and direction of trafficking of BDNF in dendrites and axons are expected to be different. To address this issue, we analyzed movements of green fluorescent protein (GFP)-tagged BDNF in axons and dendrites of living cortical neurons by time-lapse imaging. In part of the experiments, the expression of BDNF tagged with cyan fluorescent protein (CFP) was compared with that of nerve growth factor (NGF) tagged with yellow fluorescent protein (YFP), to see whether fluorescent protein-tagged BDNF is expressed in a manner specific to this neurotrophin. Results We found that BDNF tagged with GFP or CFP was expressed in a punctated manner in dendrites and axons in about two-thirds of neurons into which plasmid cDNAs had been injected, while NGF tagged with GFP or YFP was diffusely expressed even in dendrites in about 70% of the plasmid-injected neurons. In neurons in which BDNF-GFP was expressed as vesicular puncta in axons, 59 and 23% of the puncta were moving rapidly in the anterograde and retrograde directions, respectively. On the other hand, 64% of BDNF-GFP puncta in dendrites did not move at all or fluttered back and forth within a short distance. The rest of the puncta in dendrites were moving relatively smoothly in either direction, but their mean velocity of transport, 0.47 ± 0.23 (SD) μm/s, was slower than that of the moving puncta in axons (0.73 ± 0.26 μm/s). Conclusion The present results show that the pattern and velocity of the trafficking of fluorescence protein-tagged BDNF are different between axons and dendrites, and suggest that the anterograde transport in axons may be the dominant stream of BDNF to release sites. PMID:15969745

  5. Metabolic engineering of Saccharomyces cerevisiae to produce a reduced viscosity oil from lignocellulose

    DOE PAGES

    Tran, Tam N. T.; Breuer, Rebecca J.; Avanasi Narasimhan, Ragothaman; ...

    2017-03-20

    Background: Acetyl-triacylglycerols (acetyl-TAGs) are unusual triacylglycerol (TAG) molecules that contain an sn-3 acetate group. Compared to typical triacylglycerol molecules (here referred to as long chain TAGs; lcTAGs), acetyl-TAGs possess reduced viscosity and improved cold temperature properties, which may allow direct use as a drop-in diesel fuel. Their different chemical and physical properties also make acetyl-TAGs useful for other applications such as lubricants and plasticizers. Acetyl-TAGs can be synthesized by EaDAcT, a diacylglycerol acetyltransferase enzyme originally isolated from Euonymus alatus (Burning Bush). The heterologous expression of EaDAcT in different organisms, including Saccharomyces cerevisiae, resulted in the accumulation of acetyl-TAGs in storagemore » lipids. Microbial conversion of lignocellulose into acetyl-TAGs could allow biorefinery production of versatile molecules for biofuel and bioproducts. Results: In order to produce acetyl-TAGs from abundant lignocellulose feedstocks, we expressed EaDAcT in S. cerevisiae previously engineered to utilize xylose as a carbon source. The resulting strains were capable of producing acetyl-TAGs when grown on different media. The highest levels of acetyl-TAG production were observed with growth on synthetic lab media containing glucose or xylose. Importantly, acetyl-TAGs were also synthesized by this strain in ammonia fiber expansion (AFEX)-pretreated corn stover hydrolysate (ACSH) at higher volumetric titers than previously published strains. The deletion of the four endogenous enzymes known to contribute to lcTAG production increased the proportion of acetyl-TAGs in the total storage lipids beyond that in existing strains, which will make purification of these useful lipids easier. Surprisingly, the strains containing the four deletions were still capable of synthesizing lcTAG, suggesting that the particular strain used in this study possesses additional undetermined diacylglycerol acyltransferase activity. Additionally, the carbon source used for growth influenced the accumulation of these residual lcTAGs, with higher levels in strains cultured on xylose containing media. Conclusion: Our results demonstrate that S. cerevisiae can be metabolically engineered to produce acetyl-TAGs when grown on different carbon sources, including hydrolysate derived from lignocellulose. Deletion of four endogenous acyltransferases enabled a higher purity of acetyl-TAGs to be achieved, but lcTAGs were still synthesized. Longer incubation times also decreased the levels of acetyl-TAGs produced. Therefore, additional work is needed to further manipulate acetyl-TAG production in this strain of S. cerevisiae, including the identification of other TAG biosynthetic and lipolytic enzymes and a better understanding of the regulation of the synthesis and degradation of storage lipids.« less

  6. Genome-wide characterization and selection of expressed sequence tag simple sequence repeat primers for optimized marker distribution and reliability in peach

    USDA-ARS?s Scientific Manuscript database

    Expressed sequence tag (EST) simple sequence repeats (SSRs) in Prunus were mined, and flanking primers designed and used for genome-wide characterization and selection of primers to optimize marker distribution and reliability. A total of 12,618 contigs were assembled from 84,727 ESTs, along with 34...

  7. Evaluation of rice tetraticopeptide domain-containing thioredoxin as a novel solubility-enhancing fusion tag in Escherichia coli.

    PubMed

    Xiao, Wenjun; Jiang, Li; Wang, Weiyu; Wang, Ruyue; Fan, Jun

    2018-02-01

    Fusion of solubility-enhancing tag is frequently used for improving soluble production of target protein in Escherichia coli. The Arabidopsis tetraticopeptide domain-containing thioredoxin (TDX) has been documented to exhibit functions of disulfide reductase, foldase chaperone, and holdase chaperone. Here, we identified that fusion of rice TDX with the smaller size increased soluble expression levels of three fluorescent proteins with different fluorophores in the E. coli strain BL21(DE3) or the Rosetta (DE3) strain with coexpression of six rare tRNAs, but decreased conformational quality of certain fluorescent proteins, as comparison with the His6-tagged ones. Among five maize proteins, the rice TDX fusion carrier displayed higher solubility-enhancing activity than the yeast SUMO3 tag toward three proteins in both E. coli strains. Five fusion constructs were cleaved with the co-expressed TEV protease variant, but the released target proteins were partly insolubly aggregated in vivo. Attachment of the His6-tag to the TDX tagged proteins had little impact on protein solubility. After Ni-NTA purification, five His6-TDX tagged proteins displayed different apparent purities. Taken together, our work presents that rice TDX tag is a novel solubility enhancer. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Quantitative evaluation of his-tag purification and immunoprecipitation of tristetraprolin and its mutant proteins from transfected human cells

    USDA-ARS?s Scientific Manuscript database

    Histidine (His)-tag is widely used for affinity purification of recombinant proteins, but the yield and purity of expressed proteins are quite different. Little information is available about quantitative evaluation of this procedure. The objective of the current study was to evaluate the His-tag pr...

  9. Preparing and Analyzing Expressed Sequence Tags (ESTs) Library for the Mammary Tissue of Local Turkish Kivircik Sheep

    PubMed Central

    Omeroglu Ulu, Zehra; Ulu, Salih; Un, Cemal; Ozdem Oztabak, Kemal; Altunatmaz, Kemal

    2017-01-01

    Kivircik sheep is an important local Turkish sheep according to its meat quality and milk productivity. The aim of this study was to analyze gene expression profiles of both prenatal and postnatal stages for the Kivircik sheep. Therefore, two different cDNA libraries, which were taken from the same Kivircik sheep mammary gland tissue at prenatal and postnatal stages, were constructed. Total 3072 colonies which were randomly selected from the two libraries were sequenced for developing a sheep ESTs collection. We used Phred/Phrap computer programs for analysis of the raw EST and readable EST sequences were assembled with the CAP3 software. Putative functions of all unique sequences and statistical analysis were determined by Geneious software. Total 422 ESTs have over 80% similarity to known sequences of other organisms in NCBI classified by Panther database for the Gene Ontology (GO) category. By comparing gene expression profiles, we observed some putative genes that may be relative to reproductive performance or play important roles in milk synthesis and secretion. A total of 2414 ESTs have been deposited to the NCBI GenBank database (GW996847–GW999260). EST data in this study have provided a new source of information to functional genome studies of sheep. PMID:28239610

  10. Profiling the resting venom gland of the scorpion Tityus stigmurus through a transcriptomic survey.

    PubMed

    Almeida, Diego D; Scortecci, Katia C; Kobashi, Leonardo S; Agnez-Lima, Lucymara F; Medeiros, Silvia R B; Silva-Junior, Arnóbio A; Junqueira-de-Azevedo, Inácio de L M; Fernandes-Pedrosa, Matheus de F

    2012-08-01

    The scorpion Tityus stigmurus is widely distributed in Northeastern Brazil and known to cause severe human envenoming, inducing pain, hyposthesia, edema, erythema, paresthesia, headaches and vomiting. The present study uses a transcriptomic approach to characterize the gene expression profile from the non-stimulated venom gland of Tityus stigmurus scorpion. A cDNA library was constructed and 540 clones were sequenced and grouped into 153 clusters, with one or more ESTs (expressed sequence tags). Forty-one percent of ESTs belong to recognized toxin-coding sequences, with transcripts encoding antimicrobial toxins (AMP-like) being the most abundant, followed by alfa KTx- like, beta KTx-like, beta NaTx-like and alfa NaTx-like. Our analysis indicated that 34% of the transcripts encode "other possible venom molecules", which correspond to anionic peptides, hypothetical secreted peptides, metalloproteinases, cystein-rich peptides and lectins. Fifteen percent of ESTs are similar to cellular transcripts. Sequences without good matches corresponded to 11%. This investigation provides the first global view of gene expression of the venom gland from Tityus stigmurus under resting conditions. This approach enables characterization of a large number of venom gland component molecules, which belong either to known or non yet described types of venom peptides and proteins from the Buthidae family.

  11. Vectors for co-expression of an unrestricted number of proteins

    PubMed Central

    Scheich, Christoph; Kümmel, Daniel; Soumailakakis, Dimitri; Heinemann, Udo; Büssow, Konrad

    2007-01-01

    A vector system is presented that allows generation of E. coli co-expression clones by a standardized, robust cloning procedure. The number of co-expressed proteins is not limited. Five ‘pQLink’ vectors for expression of His-tag and GST-tag fusion proteins as well as untagged proteins and for cloning by restriction enzymes or Gateway cloning were generated. The vectors allow proteins to be expressed individually; to achieve co-expression, two pQLink plasmids are combined by ligation-independent cloning. pQLink co-expression plasmids can accept an unrestricted number of genes. As an example, the co-expression of a heterotetrameric human transport protein particle (TRAPP) complex from a single plasmid, its isolation and analysis of its stoichiometry are shown. pQLink clones can be used directly for pull-down experiments if the proteins are expressed with different tags. We demonstrate pull-down experiments of human valosin-containing protein (VCP) with fragments of the autocrine motility factor receptor (AMFR). The cloning method avoids PCR or gel isolation of restriction fragments, and a single resistance marker and origin of replication are used, allowing over-expression of rare tRNAs from a second plasmid. It is expected that applications are not restricted to bacteria, but could include co-expression in other hosts such as Bacluovirus/insect cells. PMID:17311810

  12. LlamaTags: A Versatile Tool to Image Transcription Factor Dynamics in Live Embryos.

    PubMed

    Bothma, Jacques P; Norstad, Matthew R; Alamos, Simon; Garcia, Hernan G

    2018-06-14

    Embryonic cell fates are defined by transcription factors that are rapidly deployed, yet attempts to visualize these factors in vivo often fail because of slow fluorescent protein maturation. Here, we pioneer a protein tag, LlamaTag, which circumvents this maturation limit by binding mature fluorescent proteins, making it possible to visualize transcription factor concentration dynamics in live embryos. Implementing this approach in the fruit fly Drosophila melanogaster, we discovered stochastic bursts in the concentration of transcription factors that are correlated with bursts in transcription. We further used LlamaTags to show that the concentration of protein in a given nucleus heavily depends on transcription of that gene in neighboring nuclei; we speculate that this inter-nuclear signaling is an important mechanism for coordinating gene expression to delineate straight and sharp boundaries of gene expression. Thus, LlamaTags now make it possible to visualize the flow of information along the central dogma in live embryos. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Transcriptome Analysis of Capsicum Chlorosis Virus-Induced Hypersensitive Resistance Response in Bell Capsicum.

    PubMed

    Widana Gamage, Shirani M K; McGrath, Desmond J; Persley, Denis M; Dietzgen, Ralf G

    2016-01-01

    Capsicum chlorosis virus (CaCV) is an emerging pathogen of capsicum, tomato and peanut crops in Australia and South-East Asia. Commercial capsicum cultivars with CaCV resistance are not yet available, but CaCV resistance identified in Capsicum chinense is being introgressed into commercial Bell capsicum. However, our knowledge of the molecular mechanisms leading to the resistance response to CaCV infection is limited. Therefore, transcriptome and expression profiling data provide an important resource to better understand CaCV resistance mechanisms. We assembled capsicum transcriptomes and analysed gene expression using Illumina HiSeq platform combined with a tag-based digital gene expression system. Total RNA extracted from CaCV/mock inoculated CaCV resistant (R) and susceptible (S) capsicum at the time point when R line showed a strong hypersensitive response to CaCV infection was used in transcriptome assembly. Gene expression profiles of R and S capsicum in CaCV- and buffer-inoculated conditions were compared. None of the genes were differentially expressed (DE) between R and S cultivars when mock-inoculated, while 2484 genes were DE when inoculated with CaCV. Functional classification revealed that the most highly up-regulated DE genes in R capsicum included pathogenesis-related genes, cell death-associated genes, genes associated with hormone-mediated signalling pathways and genes encoding enzymes involved in synthesis of defense-related secondary metabolites. We selected 15 genes to confirm DE expression levels by real-time quantitative PCR. DE transcript profiling data provided comprehensive gene expression information to gain an understanding of the underlying CaCV resistance mechanisms. Further, we identified candidate CaCV resistance genes in the CaCV-resistant C. annuum x C. chinense breeding line. This knowledge will be useful in future for fine mapping of the CaCV resistance locus and potential genetic engineering of resistance into CaCV-susceptible crops.

  14. Transcriptome Analysis of Capsicum Chlorosis Virus-Induced Hypersensitive Resistance Response in Bell Capsicum

    PubMed Central

    Widana Gamage, Shirani M. K.; McGrath, Desmond J.; Persley, Denis M.

    2016-01-01

    Background Capsicum chlorosis virus (CaCV) is an emerging pathogen of capsicum, tomato and peanut crops in Australia and South-East Asia. Commercial capsicum cultivars with CaCV resistance are not yet available, but CaCV resistance identified in Capsicum chinense is being introgressed into commercial Bell capsicum. However, our knowledge of the molecular mechanisms leading to the resistance response to CaCV infection is limited. Therefore, transcriptome and expression profiling data provide an important resource to better understand CaCV resistance mechanisms. Methodology/Principal Findings We assembled capsicum transcriptomes and analysed gene expression using Illumina HiSeq platform combined with a tag-based digital gene expression system. Total RNA extracted from CaCV/mock inoculated CaCV resistant (R) and susceptible (S) capsicum at the time point when R line showed a strong hypersensitive response to CaCV infection was used in transcriptome assembly. Gene expression profiles of R and S capsicum in CaCV- and buffer-inoculated conditions were compared. None of the genes were differentially expressed (DE) between R and S cultivars when mock-inoculated, while 2484 genes were DE when inoculated with CaCV. Functional classification revealed that the most highly up-regulated DE genes in R capsicum included pathogenesis-related genes, cell death-associated genes, genes associated with hormone-mediated signalling pathways and genes encoding enzymes involved in synthesis of defense-related secondary metabolites. We selected 15 genes to confirm DE expression levels by real-time quantitative PCR. Conclusion/Significance DE transcript profiling data provided comprehensive gene expression information to gain an understanding of the underlying CaCV resistance mechanisms. Further, we identified candidate CaCV resistance genes in the CaCV-resistant C. annuum x C. chinense breeding line. This knowledge will be useful in future for fine mapping of the CaCV resistance locus and potential genetic engineering of resistance into CaCV-susceptible crops. PMID:27398596

  15. RNA-Seq Reveals Dynamic Changes of Gene Expression in Key Stages of Intestine Regeneration in the Sea Cucumber Apostichopus japonicas

    PubMed Central

    Sun, Lina; Yang, Hongsheng; Chen, Muyan; Ma, Deyou; Lin, Chenggang

    2013-01-01

    Background Sea cucumbers (Holothuroidea; Echinodermata) have the capacity to regenerate lost tissues and organs. Although the histological and cytological aspects of intestine regeneration have been extensively studied, little is known of the genetic mechanisms involved. There has, however, been a renewed effort to develop a database of Expressed Sequence Tags (ESTs) in Apostichopus japonicus, an economically-important species that occurs in China. This is important for studies on genetic breeding, molecular markers and special physiological phenomena. We have also constructed a library of ESTs obtained from the regenerative body wall and intestine of A. japonicus. The database has increased to ∼30000 ESTs. Results We used RNA-Seq to determine gene expression profiles associated with intestinal regeneration in A. japonicus at 3, 7, 14 and 21 days post evisceration (dpe). This was compared to profiles obtained from a normally-functioning intestine. Approximately 5 million (M) reads were sequenced in every library. Over 2400 up-regulated genes (>10%) and over 1000 down-regulated genes (∼5%) were observed at 3 and 7dpe (log2Ratio≥1, FDR≤0.001). Specific “Go terms” revealed that the DEGs (Differentially Expressed Genes) performed an important function at every regeneration stage. Besides some expected pathways (for example, Ribosome and Spliceosome pathway term), the “Notch signaling pathway,” the “ECM-receptor interaction” and the “Cytokine-cytokine receptor interaction” were significantly enriched. We also investigated the expression profiles of developmental genes, ECM-associated genes and Cytoskeletal genes. Twenty of the most important differentially expressed genes (DEGs) were verified by Real-time PCR, which resulted in a trend concordance of almost 100% between the two techniques. Conclusion Our studies demonstrated dynamic changes in global gene expression during intestine regeneration and presented a series of candidate genes and enriched pathways that contribute to intestine regeneration in sea cucumbers. This provides a foundation for future studies on the genetics/molecular mechanisms associated with intestine regeneration. PMID:23936330

  16. Feeling Expression Using Avatars and Its Consistency for Subjective Annotation

    NASA Astrophysics Data System (ADS)

    Ito, Fuyuko; Sasaki, Yasunari; Hiroyasu, Tomoyuki; Miki, Mitsunori

    Consumer Generated Media(CGM) is growing rapidly and the amount of content is increasing. However, it is often difficult for users to extract important contents and the existence of contents recording their experiences can easily be forgotten. As there are no methods or systems to indicate the subjective value of the contents or ways to reuse them, subjective annotation appending subjectivity, such as feelings and intentions, to contents is needed. Representation of subjectivity depends on not only verbal expression, but also nonverbal expression. Linguistically expressed annotation, typified by collaborative tagging in social bookmarking systems, has come into widespread use, but there is no system of nonverbally expressed annotation on the web. We propose the utilization of controllable avatars as a means of nonverbal expression of subjectivity, and confirmed the consistency of feelings elicited by avatars over time for an individual and in a group. In addition, we compared the expressiveness and ease of subjective annotation between collaborative tagging and controllable avatars. The result indicates that the feelings evoked by avatars are consistent in both cases, and using controllable avatars is easier than collaborative tagging for representing feelings elicited by contents that do not express meaning, such as photos.

  17. Functional efficacy of human recombinant FGF-2s tagged with (His)6 and (His-Asn)6 at the N- and C-termini in human gingival fibroblast and periodontal ligament-derived cells.

    PubMed

    Lee, Ji-Hye; Lee, Ji-Eun; Kang, Kyung-Jung; Jang, Young-Joo

    2017-07-01

    Fibroblast growth factor (FGF) is a multifunctional growth factor that induces cell proliferation, survival, migration, and differentiation in various cell types and tissues. With these biological functions, FGF-2 has been evaluated for clinical use in the regeneration of damaged tissues. The expression of hFGF-2 in Escherichia coli and a purification system using the immobilized metal affinity chromatography (IMAC) is well established to generate a continuous supply of FGF-2. Although hexa-histidine tag (H 6 ) is commonly used for IMAC purification, hexa-histidine-asparagine tag (HN 6 ) is also efficient for purification as it is easily exposed on the surface of the protein. In this study, four different tagging constructs of hFGF-2 based on tag positions and types (H 6 -FGF2, FGF2-H 6 , HN 6 -FGF2, and FGF2-HN 6 ) were designed and expressed under the inducible T7 expression system in E. coli. The experimental conditions of expression and purification of each recombinant protein were optimized. The effective dosages of the recombinant proteins were determined based on the increase of cell proliferation in human gingival fibroblast. ED50s of H 6 -FGF2, FGF2-H 6 , HN 6 -FGF2, and FGF2-HN 6 were determined (4.42 ng/ml, 3.55 ng/ml, 3.54 ng/ml, and 4.14 ng/ml, respectively) and found to be comparable to commercial FGF-2 (3.67 ng/ml). All the recombinant hFGF-2s inhibit the osteogenic induction and mineralization in human periodontal ligament-derived cells. Our data suggested that biological activities of the recombinant hFGF-2 are irrelevant to types and positions of tags, but may have an influence on the expression efficiency and solubility. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Two Types of Threonine-Tagged Lipopeptides Synergize in Host Colonization by Pathogenic Burkholderia Species.

    PubMed

    Thongkongkaew, Tawatchai; Ding, Wei; Bratovanov, Evgeni; Oueis, Emilia; Garcı A-Altares, Marı A; Zaburannyi, Nestor; Harmrolfs, Kirsten; Zhang, Youming; Scherlach, Kirstin; Müller, Rolf; Hertweck, Christian

    2018-05-18

    Bacterial infections of agriculturally important mushrooms and plants pose a major threat to human food sources worldwide. However, structures of chemical mediators required by the pathogen for host colonization and infection remain elusive in most cases. Here, we report two types of threonine-tagged lipopeptides conserved among mushroom and rice pathogenic Burkholderia species that facilitate bacterial infection of hosts. Genome mining, metabolic profiling of infected mushrooms, and heterologous expression of orphan gene clusters allowed the discovery of these unprecedented metabolites in the mushroom pathogen Burkholderia gladioli (haereogladin, burriogladin) and the plant pathogen Burkholderia glumae (haereoglumin and burrioglumin). Through targeted gene deletions, the molecular basis of lipopeptide biosynthesis by nonribosomal peptide synthetases was revealed. Surprisingly, both types of lipopeptides feature unusual threonine tags, which yield longer peptide backbones than one would expect based on the canonical colinearity of the NRPS assembly lines. Both peptides play an indirect role in host infection as biosurfactants that enable host colonization by mediating swarming and biofilm formation abilities. Moreover, MALDI imaging mass spectrometry was applied to investigate the biological role of the lipopeptides. Our results shed light on conserved mechanisms that mushroom and plant pathogenic bacteria utilize for host infection and expand current knowledge on bacterial virulence factors that may represent a new starting point for the targeted development of crop protection measures in the future.

  19. Efficient and versatile one-step affinity purification of in vivo biotinylated proteins: Expression, characterization and structure analysis of recombinant human glutamate carboxypeptidase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tykvart, J.; Sacha, P.; Barinka, C.

    2012-02-07

    Affinity purification is a useful approach for purification of recombinant proteins. Eukaryotic expression systems have become more frequently used at the expense of prokaryotic systems since they afford recombinant eukaryotic proteins with post-translational modifications similar or identical to the native ones. Here, we present a one-step affinity purification set-up suitable for the purification of secreted proteins. The set-up is based on the interaction between biotin and mutated streptavidin. Drosophila Schneider 2 cells are chosen as the expression host, and a biotin acceptor peptide is used as an affinity tag. This tag is biotinylated by Escherichia coli biotin-protein ligase in vivo.more » We determined that localization of the ligase within the ER led to the most effective in vivo biotinylation of the secreted proteins. We optimized a protocol for large-scale expression and purification of AviTEV-tagged recombinant human glutamate carboxypeptidase II (Avi-GCPII) with milligram yields per liter of culture. We also determined the 3D structure of Avi-GCPII by X-ray crystallography and compared the enzymatic characteristics of the protein to those of its non-tagged variant. These experiments confirmed that AviTEV tag does not affect the biophysical properties of its fused partner. Purification approach, developed here, provides not only a sufficient amount of highly homogenous protein but also specifically and effectively biotinylates a target protein and thus enables its subsequent visualization or immobilization.« less

  20. Genomic signatures predict migration and spawning failure in wild Canadian salmon.

    PubMed

    Miller, Kristina M; Li, Shaorong; Kaukinen, Karia H; Ginther, Norma; Hammill, Edd; Curtis, Janelle M R; Patterson, David A; Sierocinski, Thomas; Donnison, Louise; Pavlidis, Paul; Hinch, Scott G; Hruska, Kimberly A; Cooke, Steven J; English, Karl K; Farrell, Anthony P

    2011-01-14

    Long-term population viability of Fraser River sockeye salmon (Oncorhynchus nerka) is threatened by unusually high levels of mortality as they swim to their spawning areas before they spawn. Functional genomic studies on biopsied gill tissue from tagged wild adults that were tracked through ocean and river environments revealed physiological profiles predictive of successful migration and spawning. We identified a common genomic profile that was correlated with survival in each study. In ocean-tagged fish, a mortality-related genomic signature was associated with a 13.5-fold greater chance of dying en route. In river-tagged fish, the same genomic signature was associated with a 50% increase in mortality before reaching the spawning grounds in one of three stocks tested. At the spawning grounds, the same signature was associated with 3.7-fold greater odds of dying without spawning. Functional analysis raises the possibility that the mortality-related signature reflects a viral infection.

  1. Serial analysis of gene expression in a rat lung model of asthma.

    PubMed

    Yin, Lei-Miao; Jiang, Gong-Hao; Wang, Yu; Wang, Yan; Liu, Yan-Yan; Jin, Wei-Rong; Zhang, Zen; Xu, Yu-Dong; Yang, Yong-Qing

    2008-11-01

    The pathogenesis and molecular mechanism underlying asthma remain undetermined. The purpose of this study was to identify genes and pathways involved in the early airway response (EAR) phase of asthma by using serial analysis of gene expression (SAGE). Two SAGE tag libraries of lung tissues derived from a rat model of asthma and controls were generated. Bioinformatic analyses were carried out using the Database for Annotation, Visualization and IntegratedDiscovery Functional Annotation Tool, Gene Ontology (GO) TreeMachine and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. A total of 26 552 SAGE tags of asthmatic rat lung were obtained, of which 12 221 were unique tags. Of the unique tags, 55.5% were matched with known genes. By comparison of the two libraries, 186 differentially expressed tags (P < 0.05) were identified, of which 103 were upregulated and 83 were downregulated. Using the bioinformatic tools these genes were classified into 23 functional groups, 15 KEGG pathways and 37 enriched GO categories. The bioinformatic analyses of gene distribution, enriched categories and the involvement of specific pathways in the SAGE libraries have provided information on regulatory networks of the EAR phase of asthma. Analyses of the regulated genes of interest may inform new hypotheses, increase our understanding of the disease and provide a foundation for future research.

  2. In vivo phosphorylation of a peptide tag for protein purification.

    PubMed

    Goux, Marine; Fateh, Amina; Defontaine, Alain; Cinier, Mathieu; Tellier, Charles

    2016-05-01

    To design a new system for the in vivo phosphorylation of proteins in Escherichia coli using the co-expression of the α-subunit of casein kinase II (CKIIα) and a target protein, (Nanofitin) fused with a phosphorylatable tag. The level of the co-expressed CKIIα was controlled by the arabinose promoter and optimal phosphorylation was obtained with 2 % (w/v) arabinose as inductor. The effectiveness of the phosphorylation system was demonstrated by electrophoretic mobility shift assay (NUT-PAGE) and staining with a specific phosphoprotein-staining gel. The resulting phosphorylated tag was also used to purify the phosphoprotein by immobilized metal affinity chromatography, which relies on the specific interaction of phosphate moieties with Fe(III). The use of a single tag for both the purification and protein array anchoring provides a simple and straightforward system for protein analysis.

  3. Expression of fluorescently tagged connexins: a novel approach to rescue function of oligomeric DsRed-tagged proteins.

    PubMed

    Lauf, U; Lopez, P; Falk, M M

    2001-06-01

    A novel, brilliantly red fluorescent protein, DsRed has become available recently opening up a wide variety of experimental opportunities for double labeling and fluorescence resonance electron transfer experiments in combination with green fluorescent protein (GFP). Unlike in the case of GFP, proteins tagged with DsRed were often found to aggregate within the cell. Here we report a simple method that allows rescuing the function of an oligomeric protein tagged with DsRed. We demonstrate the feasibility of this approach on the subunit proteins of an oligomeric membrane channel, gap junction connexins. Additionally, DsRed fluorescence was easily detected 12-16 h post transfection, much earlier than previously reported, and could readily be differentiated from co-expressed GFP. Thus, this approach can eliminate the major drawbacks of this highly attractive autofluorescent protein.

  4. Genes Required for Free Phage Production are Essential for Pseudomonas aeruginosa Chronic Lung Infections.

    PubMed

    Lemieux, Andrée-Ann; Jeukens, Julie; Kukavica-Ibrulj, Irena; Fothergill, Joanne L; Boyle, Brian; Laroche, Jérôme; Tucker, Nicholas P; Winstanley, Craig; Levesque, Roger C

    2016-02-01

    The opportunistic pathogen Pseudomonas aeruginosa causes chronic lung infection in patients with cystic fibrosis. The Liverpool Epidemic Strain LESB58 is highly resistant to antibiotics, transmissible, and associated with increased morbidity and mortality. Its genome contains 6 prophages and 5 genomic islands. We constructed a polymerase chain reaction (PCR)-based signature-tagged mutagenesis library of 9216 LESB58 mutants and screened the mutants in a rat model of chronic lung infection. A total of 162 mutants were identified as defective for in vivo maintenance, with 11 signature-tagged mutagenesis mutants having insertions in prophage and genomic island genes. Many of these mutants showed both diminished virulence and reduced phage production. Transcription profiling by quantitative PCR and RNA-Seq suggested that disruption of these prophages had a widespread trans-acting effect on the transcriptome. This study demonstrates that temperate phages play a pivotal role in the establishment of infection through modulation of bacterial host gene expression. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  5. Analysis of Renal Cell Carcinoma as a First Step for Developing Mass Spectrometry-Based Diagnostics

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kentaro; Chen, Lee Chuin; Mandal, Mridul Kanti; Nakazawa, Tadao; Yu, Zhan; Uchiyama, Takahito; Hori, Hirokazu; Tanabe, Kunio; Kubota, Takeo; Fujii, Hideki; Katoh, Ryohei; Hiraoka, Kenzo; Takeda, Sen

    2012-10-01

    Immediate diagnosis of human specimen is an essential prerequisites in medical routines. This study aimed to establish a novel cancer diagnostics system based on probe electrospray ionization-mass spectrometry (PESI-MS) combined with statistical data processing. PESI-MS uses a very fine acupuncture needle as a probe for sampling as well as for ionization. To demonstrate the applicability of PESI-MS for cancer diagnosis, we analyzed nine cases of clear cell renal cell carcinoma (ccRCC) by PESI-MS and processed the data by principal components analysis (PCA). Our system successfully delineated the differences in lipid composition between non-cancerous and cancerous regions. In this case, triacylglycerol (TAG) was reproducibly detected in the cancerous tissue of nine different individuals, the result being consistent with well-known profiles of ccRCC. Moreover, this system enabled us to detect the boundaries of cancerous regions based on the expression of TAG. These results strongly suggest that PESI-MS will be applicable to cancer diagnosis, especially when the number of data is augmented.

  6. TAGS 85/2N RTG Power for Viking Lander Capsule

    DOE R&D Accomplishments Database

    1969-08-01

    Results of studies performed by Isotopes, Inc., Nuclear Systems Division, to optimize and baseline a TAGS 85/2N RTG for the Viking Lander Capsule prime electrical power source are presented. These studies generally encompassed identifying the Viking RTG mission profile and design requirements, and establishing a baseline RTG design consistent with these requirements.

  7. Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains.

    PubMed

    Hernández, Martín A; Comba, Santiago; Arabolaza, Ana; Gramajo, Hugo; Alvarez, Héctor M

    2015-03-01

    Oleaginous Rhodococcus strains are able to accumulate large amounts of triacylglycerol (TAG). Phosphatidic acid phosphatase (PAP) enzyme catalyzes the dephosphorylation of phosphatidic acid (PA) to yield diacylglycerol (DAG), a key precursor for TAG biosynthesis. Studies to establish its role in lipid metabolism have been mainly focused in eukaryotes but not in bacteria. In this work, we identified and characterized a putative PAP type 2 (PAP2) encoded by the ro00075 gene in Rhodococcus jostii RHA1. Heterologous expression of ro00075 in Escherichia coli resulted in a fourfold increase in PAP activity and twofold in DAG content. The conditional deletion of ro00075 in RHA1 led to a decrease in the content of DAG and TAG, whereas its overexpression in both RHA1 and Rhodococcus opacus PD630 promoted an increase up to 10 to 15 % by cellular dry weight in TAG content. On the other hand, expression of ro00075 in the non-oleaginous strain Rhodococcus fascians F7 promoted an increase in total fatty acid content up to 7 % at the expense of free fatty acid (FFA), DAG, and TAG fractions. Moreover, co-expression of ro00075/atf2 genes resulted in a fourfold increase in total fatty acid content by a further increase of the FFA and TAG fractions. The results of this study suggest that ro00075 encodes for a PAP2 enzyme actively involved in TAG biosynthesis. Overexpression of this gene, as single one or with an atf gene, provides an alternative approach to increase the biosynthesis and accumulation of bacterial oils as a potential source of raw material for biofuel production.

  8. A mutant sumo facilitates quick plasmid construction for expressing proteins with native N-termini after fusion tag removal

    USDA-ARS?s Scientific Manuscript database

    Sumo is one of the fusion tags commonly used to enhance the solubility and yield of recombinant proteins. One advantage of using sumo is that the removal of the sumo tag is highly specific because its recognition by the ULP sumo protease is determined by its structural characteristics, instead of th...

  9. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae.

    PubMed

    Imamura, Sousuke; Kawase, Yasuko; Kobayashi, Ikki; Sone, Toshiyuki; Era, Atsuko; Miyagishima, Shin-Ya; Shimojima, Mie; Ohta, Hiroyuki; Tanaka, Kan

    2015-10-01

    Most microalgae produce triacylglycerol (TAG) under stress conditions such as nitrogen depletion, but the underlying molecular mechanism remains unclear. In this study, we focused on the role of target of rapamycin (TOR) in TAG accumulation. TOR is a serine/threonine protein kinase that is highly conserved and plays pivotal roles in nitrogen and other signaling pathways in eukaryotes. We previously constructed a rapamycin-susceptible Cyanidioschyzon merolae, a unicellular red alga, by expressing yeast FKBP12 protein to evaluate the results of TOR inhibition (Imamura et al. in Biochem Biophys Res Commun 439:264-269, 2013). By using this strain, we here report that rapamycin-induced TOR inhibition results in accumulation of cytoplasmic lipid droplets containing TAG. Transcripts for TAG synthesis-related genes, such as glycerol-3-phosphate acyltransferase and acyl-CoA:diacylglycerol acyltransferase (DGAT), were increased by rapamycin treatment. We also found that fatty acid synthase-dependent de novo fatty acid synthesis was required for the accumulation of lipid droplets. Induction of TAG and up-regulation of DGAT gene expression by rapamycin were similarly observed in the unicellular green alga, Chlamydomonas reinhardtii. These results suggest the general involvement of TOR signaling in TAG accumulation in divergent microalgae.

  10. An expression vector tailored for large-scale, high-throughput purification of recombinant proteins ☆

    PubMed Central

    Donnelly, Mark I.; Zhou, Min; Millard, Cynthia Sanville; Clancy, Shonda; Stols, Lucy; Eschenfeldt, William H.; Collart, Frank R.; Joachimiak, Andrzej

    2009-01-01

    Production of milligram quantities of numerous proteins for structural and functional studies requires an efficient purification pipeline. We found that the dual tag, his6-tag–maltose-binding protein (MBP), intended to facilitate purification and enhance proteins’ solubility, disrupted such a pipeline, requiring additional screening and purification steps. Not all proteins rendered soluble by fusion to MBP remained soluble after its proteolytic removal, and in those cases where the protein remained soluble, standard purification protocols failed to remove completely the stoichiometric amount of his6-tagged MBP generated by proteolysis. Both liabilities were alleviated by construction of a vector that produces fusion proteins in which MBP, the his6-tag and the target protein are separated by highly specific protease cleavage sites in the configuration MBP-site-his6-site-protein. In vivo cleavage at the first site by co-expressed protease generated untagged MBP and his6-tagged target protein. Proteins not truly rendered soluble by transient association with MBP precipitated, and untagged MBP was easily separated from the his-tagged target protein by conventional protocols. The second protease cleavage site allowed removal of the his6-tag. PMID:16497515

  11. A universal TagModule collection for parallel genetic analysis of microorganisms

    PubMed Central

    Oh, Julia; Fung, Eula; Price, Morgan N.; Dehal, Paramvir S.; Davis, Ronald W.; Giaever, Guri; Nislow, Corey; Arkin, Adam P.; Deutschbauer, Adam

    2010-01-01

    Systems-level analyses of non-model microorganisms are limited by the existence of numerous uncharacterized genes and a corresponding over-reliance on automated computational annotations. One solution to this challenge is to disrupt gene function using DNA tag technology, which has been highly successful in parallelizing reverse genetics in Saccharomyces cerevisiae and has led to discoveries in gene function, genetic interactions and drug mechanism of action. To extend the yeast DNA tag methodology to a wide variety of microorganisms and applications, we have created a universal, sequence-verified TagModule collection. A hallmark of the 4280 TagModules is that they are cloned into a Gateway entry vector, thus facilitating rapid transfer to any compatible genetic system. Here, we describe the application of the TagModules to rapidly generate tagged mutants by transposon mutagenesis in the metal-reducing bacterium Shewanella oneidensis MR-1 and the pathogenic yeast Candida albicans. Our results demonstrate the optimal hybridization properties of the TagModule collection, the flexibility in applying the strategy to diverse microorganisms and the biological insights that can be gained from fitness profiling tagged mutant collections. The publicly available TagModule collection is a platform-independent resource for the functional genomics of a wide range of microbial systems in the post-genome era. PMID:20494978

  12. The Combined Effects of Ethylene and MeJA on Metabolic Profiling of Phenolic Compounds in Catharanthus roseus Revealed by Metabolomics Analysis

    PubMed Central

    Liu, Jia; Liu, Yang; Wang, Yu; Zhang, Zhong-Hua; Zu, Yuan-Gang; Efferth, Thomas; Tang, Zhong-Hua

    2016-01-01

    Phenolic compounds belong to a class of secondary metabolites and are implicated in a wide range of responsive mechanisms in plants triggered by both biotic and abiotic elicitors. In this study, we approached the combinational effects of ethylene and MeJA (methyl jasmonate) on phenolic compounds profiles and gene expressions in the medicinal plant Catharanthus roseus. In virtue of a widely non-targeted metabolomics method, we identified a total of 34 kinds of phenolic compounds in the leaves, composed by 7 C6C1-, 11 C6C3-, and 16 C6C3C6 compounds. In addition, 7 kinds of intermediates critical for the biosynthesis of phenolic compounds and alkaloids were identified and discussed with phenolic metabolism. The combinational actions of ethylene and MeJA effectively promoted the total phenolic compounds, especially the C6C1 compounds (such as salicylic acid, benzoic acid) and C6C3 ones (such as cinnamic acid, sinapic acid). In contrast, the C6C3C6 compounds displayed a notably inhibitory trend in this case. Subsequently, the gene-to-metabolite networks were drawn up by searching for correlations between the expression profiles of 5 gene tags and the accumulation profiles of 41 metabolite peaks. Generally, we provide an insight into the controlling mode of ethylene-MeJA combination on phenolic metabolism in C. roseus leaves. PMID:27375495

  13. The Combined Effects of Ethylene and MeJA on Metabolic Profiling of Phenolic Compounds in Catharanthus roseus Revealed by Metabolomics Analysis.

    PubMed

    Liu, Jia; Liu, Yang; Wang, Yu; Zhang, Zhong-Hua; Zu, Yuan-Gang; Efferth, Thomas; Tang, Zhong-Hua

    2016-01-01

    Phenolic compounds belong to a class of secondary metabolites and are implicated in a wide range of responsive mechanisms in plants triggered by both biotic and abiotic elicitors. In this study, we approached the combinational effects of ethylene and MeJA (methyl jasmonate) on phenolic compounds profiles and gene expressions in the medicinal plant Catharanthus roseus. In virtue of a widely non-targeted metabolomics method, we identified a total of 34 kinds of phenolic compounds in the leaves, composed by 7 C6C1-, 11 C6C3-, and 16 C6C3C6 compounds. In addition, 7 kinds of intermediates critical for the biosynthesis of phenolic compounds and alkaloids were identified and discussed with phenolic metabolism. The combinational actions of ethylene and MeJA effectively promoted the total phenolic compounds, especially the C6C1 compounds (such as salicylic acid, benzoic acid) and C6C3 ones (such as cinnamic acid, sinapic acid). In contrast, the C6C3C6 compounds displayed a notably inhibitory trend in this case. Subsequently, the gene-to-metabolite networks were drawn up by searching for correlations between the expression profiles of 5 gene tags and the accumulation profiles of 41 metabolite peaks. Generally, we provide an insight into the controlling mode of ethylene-MeJA combination on phenolic metabolism in C. roseus leaves.

  14. Inventory of high-abundance mRNAs in skeletal muscle of normal men.

    PubMed

    Welle, S; Bhatt, K; Thornton, C A

    1999-05-01

    G42875rial analysis of gene expression (SAGE) method was used to generate a catalog of 53,875 short (14 base) expressed sequence tags from polyadenylated RNA obtained from vastus lateralis muscle of healthy young men. Over 12,000 unique tags were detected. The frequency of occurrence of each tag reflects the relative abundance of the corresponding mRNA. The mRNA species that were detected 10 or more times, each comprising >/=0.02% of the mRNA population, accounted for 64% of the mRNA mass but <10% of the total number of mRNA species detected. Almost all of the abundant tags matched mRNA or EST sequences cataloged in GenBank. Mitochondrial transcripts accounted for approximately 20% of the polyadenylated RNA. Transcripts encoding proteins of the myofibrils were the most abundant nuclear-encoded mRNAs. Transcripts encoding ribosomal proteins, and those encoding proteins involved in energy metabolism, also were very abundant. The database can be used as a reference for investigations of alterations in gene expression associated with conditions that influence muscle function, such as muscular dystrophies, aging, and exercise.

  15. Transcriptomic information from Pacific white shrimp (Litopenaeus vannamei) ovary and eyestalk, and expression patterns for genes putatively involved in the reproductive process.

    PubMed

    Ventura-López, Claudia; Galindo-Torres, Pavel E; Arcos, Fabiola G; Galindo-Sánchez, Clara; Racotta, Ilie S; Escobedo-Fregoso, Cristina; Llera-Herrera, Raúl; Ibarra, Ana M

    2017-05-15

    The increased use of massive sequencing technologies has enabled the identification of several genes known to be involved in different mechanisms associated with reproduction that so far have only been studied in vertebrates and other model invertebrate species. In order to further investigate the genes involved in Litopenaeus vannamei reproduction, cDNA and SSH libraries derived from female eyestalk and gonad were produced, allowing the identification of expressed sequences tags (ESTs) that potentially have a role in the regulation of gonadal maturation. In the present study, different transcripts involved in reproduction were identified and a number of them were characterized as full-length. These transcripts were evaluated in males and females in order to establish their tissue expression profiles during developmental stages (juvenile, subadult and adult), and in the case of females, their possible association with gonad maturation was assessed through expression analysis of vitellogenin. The results indicated that the expression of vitellogenin receptor (vtgr) and minichromosome maintenance (mcm) family members in the female gonad suggest an important role during previtellogenesis. Additionally, the expression profiles of genes such as famet, igfbp and gpcr in brain tissues suggest an interaction between the insulin/insulin-like growth factor signaling pathway (IIS) and methyl farnesoate (MF) biosynthesis for control of reproduction. Furthermore, the specific expression pattern of farnesoic acid O-methyltransferase suggests that final synthesis of MF is carried out in different target tissues, where it is regulated by esterase enzymes under a tissue-specific hormonal control. Finally, the presence of a vertebrate type steroid receptor in hepatopancreas and intestine besides being highly expressed in female gonads, suggest a role of that receptor during sexual maturation. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Bovine mammary gene expression profiling during the onset of lactation.

    PubMed

    Gao, Yuanyuan; Lin, Xueyan; Shi, Kerong; Yan, Zhengui; Wang, Zhonghua

    2013-01-01

    Lactogenesis includes two stages. Stage I begins a few weeks before parturition. Stage II is initiated around the time of parturition and extends for several days afterwards. To better understand the molecular events underlying these changes, genome-wide gene expression profiling was conducted using digital gene expression (DGE) on bovine mammary tissue at three time points (on approximately day 35 before parturition (-35 d), day 7 before parturition (-7 d) and day 3 after parturition (+3 d)). Approximately 6.2 million (M), 5.8 million (M) and 6.1 million (M) 21-nt cDNA tags were sequenced in the three cDNA libraries (-35 d, -7 d and +3 d), respectively. After aligning to the reference sequences, the three cDNA libraries included 8,662, 8,363 and 8,359 genes, respectively. With a fold change cutoff criteria of ≥ 2 or ≤-2 and a false discovery rate (FDR) of ≤ 0.001, a total of 812 genes were significantly differentially expressed at -7 d compared with -35 d (stage I). Gene ontology analysis showed that those significantly differentially expressed genes were mainly associated with cell cycle, lipid metabolism, immune response and biological adhesion. A total of 1,189 genes were significantly differentially expressed at +3 d compared with -7 d (stage II), and these genes were mainly associated with the immune response and cell cycle. Moreover, there were 1,672 genes significantly differentially expressed at +3 d compared with -35 d. Gene ontology analysis showed that the main differentially expressed genes were those associated with metabolic processes. The results suggest that the mammary gland begins to lactate not only by a gain of function but also by a broad suppression of function to effectively push most of the cell's resources towards lactation.

  17. Application of an E. coli signal sequence as a versatile inclusion body tag.

    PubMed

    Jong, Wouter S P; Vikström, David; Houben, Diane; van den Berg van Saparoea, H Bart; de Gier, Jan-Willem; Luirink, Joen

    2017-03-21

    Heterologous protein production in Escherichia coli often suffers from bottlenecks such as proteolytic degradation, complex purification procedures and toxicity towards the expression host. Production of proteins in an insoluble form in inclusion bodies (IBs) can alleviate these problems. Unfortunately, the propensity of heterologous proteins to form IBs is variable and difficult to predict. Hence, fusing the target protein to an aggregation prone polypeptide or IB-tag is a useful strategy to produce difficult-to-express proteins in an insoluble form. When screening for signal sequences that mediate optimal targeting of heterologous proteins to the periplasmic space of E. coli, we observed that fusion to the 39 amino acid signal sequence of E. coli TorA (ssTorA) did not promote targeting but rather directed high-level expression of the human proteins hEGF, Pla2 and IL-3 in IBs. Further analysis revealed that ssTorA even mediated IB formation of the highly soluble endogenous E. coli proteins TrxA and MBP. The ssTorA also induced aggregation when fused to the C-terminus of target proteins and appeared functional as IB-tag in E. coli K-12 as well as B strains. An additive effect on IB-formation was observed upon fusion of multiple ssTorA sequences in tandem, provoking almost complete aggregation of TrxA and MBP. The ssTorA-moiety was successfully used to produce the intrinsically unstable hEGF and the toxic fusion partner SymE, demonstrating its applicability as an IB-tag for difficult-to-express and toxic proteins. We present proof-of-concept for the use of ssTorA as a small, versatile tag for robust E. coli-based expression of heterologous proteins in IBs.

  18. A novel expression vector for the improved solubility of recombinant scorpion venom in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Tianqing; Ming, Hongyan; Deng, Lili

    Recombinant scorpion anti-excitation peptide (rANEP) has previously been expressed using the pET32a system and purified via affinity chromatography. However, rANEP is expressed in BL21(DE3) cells as an inclusion body, and the affinity tag can not be removed. To overcome this problem, we used a variety of protein, DsbA, MBP, TrxA, intein, and affinity tags in fusion and co-expression to achieve soluble and functional rANEP without any affinity tag. In the pCIT-ANEP expression vector, the highest soluble expression level was approximately 90% of the total cellular proteins in E. coli, and the rANEP was cleaved by the intein protein and subsequently purifiedmore » to obtain rANEP, which had the same activity as the natural ANEP. The purity of rANEP obtained using this method was over 95%, with a quantity of 5.1 mg from of purified rANEP from 1 L of culture. This method could expand the application of the soluble expression of disulfide-rich peptides in E. coli.« less

  19. Triacylglyceride composition and fatty acyl saturation profile of a psychrophilic and psychrotolerant fungal species grown at different temperatures.

    PubMed

    Pannkuk, Evan L; Blair, Hannah B; Fischer, Amy E; Gerdes, Cheyenne L; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-01-01

    Pseudogymnoascus destructans is a psychrophilic fungus that infects cutaneous tissues in cave dwelling bats, and it is the causal agent for white nose syndrome (WNS) in North American (NA) bat populations. Geomyces pannorum is a related psychrotolerant keratinolytic species that is rarely a pathogen of mammals. In this study, we grew P. destructans and G. pannorum in static liquid cultures at favourable and suboptimal temperatures to: 1) determine if triacylglyceride profiles are species-specific, and 2) determine if there are differences in fatty acyl (FA) saturation levels with respect to temperature. Total lipids isolated from both fungal spp. were separated by thin-layer chromatography and determined to be primarily sterols (∼15 %), free fatty acids (FFAs) (∼45 %), and triacylglycerides (TAGs) (∼50 %), with minor amounts of mono-/diacylglycerides and sterol esters. TAG compositions were profiled by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF). Total fatty acid methyl esters (FAMEs) and acyl lipid unsaturation levels were determined by gas chromatography-mass spectrometry (GC-MS). Pseudogymnoascus destructans produced higher proportions of unsaturated 18C fatty acids and TAGs than G. pannorum. Pseudogymnoascus destructans and G. pannorum produced up to a two-fold increase in 18:3 fatty acids at 5 °C than at higher temperatures. TAG proportion for P. destructans at upper and lower temperature growth limits was greater than 50 % of total dried mycelia mass. These results indicate fungal spp. alter acyl lipid unsaturation as a strategy to adapt to cold temperatures. Differences between their glycerolipid profiles also provide evidence for a different metabolic strategy to support psychrophilic growth, which may influence P. destructans' pathogenicity to bats. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  20. Dramatic secretion of recombinant protein expressed in tobacco cells with a designer glycopeptide tag is highly impacted by medium composition.

    PubMed

    Zhang, Ningning; Dolan, Maureen; Wu, Di; Phillips, Gregory C; Xu, Jianfeng

    2016-12-01

    Cell growth medium composition has profound impacts on the O -glycosylation of a "designer" arabinogalactan protein-based module; full glycosylation is essential in directing efficient extracellular secretion of the tagged recombinant protein. Expression of recombinant proteins in plant cells as fusion with a de novo designed hydroxyproline (Hyp)-O-glycosylated peptide (HypGP) tag, termed HypGP engineering technology, resulted in dramatically increased secreted protein yields. This is due to the function of the HypGP tag as a molecular carrier in promoting efficient transport of conjoined proteins into culture media. To optimize the cell culture to achieve the best secreted protein yields, the medium effects on the cell growth and protein secretion were investigated using as a model system the tobacco BY-2 cell expressing enhanced green fluorescence protein (EGFP) fused with a (SP) 32 tag (32 tandem repeats of "Ser-Pro" motif). The (SP) 32 tag was found to undergo two-stage Hyp-O-glycosylation in plant cells with the dramatic secretion of the conjoined EGFP correlating with the triggering of the second-stage glycosylation. The BY-2 cell culture in SH medium generated a high secreted protein yield (125 mg/L) with a low cell biomass accumulation (~7.5 gDW/L). In contrast, very low secreted protein yields (~1.5 mg/L) with a high cell biomass accumulation (13.5 gDW/L) were obtained in MS medium. The macronutrients, specifically, the nitrogen supply greatly impacted the glycosylation of the (SP) 32 tag and subsequent protein secretion. Modified MS medium with reduced nitrogen levels boosted the secreted EGFP yields to 168 mg/L. This study demonstrates the profound impacts of medium composition on the secreted yields of a HypGP-tagged protein, and provides a basis for medium design to achieve the highest productivity of the HypGP engineering technology.

  1. Soybean oil biosynthesis: role of diacylglycerol acyltransferases.

    PubMed

    Li, Runzhi; Hatanaka, Tomoko; Yu, Keshun; Wu, Yongmei; Fukushige, Hirotada; Hildebrand, David

    2013-03-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1,2-diacylglycerol to form seed oil triacylglycerol (TAG). To understand the features of genes encoding soybean (Glycine max) DGATs and possible roles in soybean seed oil synthesis and accumulation, two full-length cDNAs encoding type 1 diacylglycerol acyltransferases (GmDGAT1A and GmDGAT1B) were cloned from developing soybean seeds. These coding sequences share identities of 94 % and 95 % in protein and DNA sequences. The genomic architectures of GmDGAT1A and GmDGAT1B both contain 15 introns and 16 exons. Differences in the lengths of the first exon and most of the introns were found between GmDGAT1A and GmDGAT1B genomic sequences. Furthermore, detailed in silico analysis revealed a third predicted DGAT1, GmDGAT1C. GmDGAT1A and GmDGAT1B were found to have similar activity levels and substrate specificities. Oleoyl-CoA and sn-1,2-diacylglycerol were preferred substrates over vernoloyl-CoA and sn-1,2-divernoloylglycerol. Both transcripts are much more abundant in developing seeds than in other tissues including leaves, stem, roots, and flowers. Both soybean DGAT1A and DGAT1B are highly expressed at developing seed stages of maximal TAG accumulation with DGAT1B showing highest expression at somewhat later stages than DGAT1A. DGAT1A and DGAT1B show expression profiles consistent with important roles in soybean seed oil biosynthesis and accumulation.

  2. Expression, purification, and functional analysis of the C-terminal domain of Herbaspirillum seropedicae NifA protein.

    PubMed

    Monteiro, Rose A; Souza, Emanuel M; Geoffrey Yates, M; Steffens, M Berenice R; Pedrosa, Fábio O; Chubatsu, Leda S

    2003-02-01

    The Herbaspirillum seropedicae NifA protein is responsible for nif gene expression. The C-terminal domain of the H. seropedicae NifA protein, fused to a His-Tag sequence (His-Tag-C-terminal), was over-expressed and purified by metal-affinity chromatography to yield a highly purified and active protein. Band-shift assays showed that the NifA His-Tag-C-terminal bound specifically to the H. seropedicae nifB promoter region in vitro. In vivo analysis showed that this protein inhibited the Central + C-terminal domains of NifA protein from activating the nifH promoter of K. pneumoniae in Escherichia coli, indicating that the protein must be bound to the NifA-binding site (UAS site) at the nifH promoter region to activate transcription. Copyright 2002 Elsevier Science (USA)

  3. Novel bioresources for studies of Brassica oleracea: identification of a kale MYB transcription factor responsible for glucosinolate production.

    PubMed

    Araki, Ryoichi; Hasumi, Akiko; Nishizawa, Osamu Ishizaki; Sasaki, Katsunori; Kuwahara, Ayuko; Sawada, Yuji; Totoki, Yasushi; Toyoda, Atsushi; Sakaki, Yoshiyuki; Li, Yimeng; Saito, Kazuki; Ogawa, Toshiya; Hirai, Masami Yokota

    2013-10-01

    Plants belonging to the Brassicaceae family exhibit species-specific profiles of glucosinolates (GSLs), a class of defence compounds against pathogens and insects. GSLs also exhibit various human health-promoting properties. Among them, glucoraphanin (aliphatic 4-methylsulphinylbutyl GSL) has attracted the most attention because it hydrolyses to form a potent anticancer compound. Increased interest in developing commercial varieties of Brassicaceae crops with desirable GSL profiles has led to attempts to identify genes that are potentially valuable for controlling GSL biosynthesis. However, little attention has been focused on genes of kale (Brassica oleracea var. acephala). In this study, we established full-length kale cDNA libraries containing 59 904 clones, which were used to generate an expressed sequence tag (EST) data set with 119 204 entries. The EST data set clarified genes related to the GSL biosynthesis pathway in kale. We specifically focused on BoMYB29, a homolog of Arabidopsis MYB29/PMG2/HAG3, not only to characterize its function but also to demonstrate its usability as a biological resource. BoMYB29 overexpression in wild-type Arabidopsis enhanced the expression of aliphatic GSL biosynthetic genes and the accumulation of aliphatic GSLs. When expressed in the myb28myb29 mutant, which exhibited no detectable aliphatic GSLs, BoMYB29 restored the expression of biosynthetic genes and aliphatic GSL accumulation. Interestingly, the ratio of methylsulphinyl GSL content, including glucoraphanin, to that of methylthio GSLs was greatly increased, indicating the suitability of BoMYB29 as a regulator for increasing methylsulphinyl GSL content. Our results indicate that these biological resources can facilitate further identification of genes useful for modifications of GSL profiles and accumulation in kale. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Expression of castor LPAT2 enhances ricinoleic acid content at the sn-2 position of triacylglycerols in lesquerella seed

    USDA-ARS?s Scientific Manuscript database

    Lesquerella (Physaria fendelri) is a potential crop for hydroxy fatty acid (HFA) production. Its seed triacylglcerols (TAGs) contain 55–60% lesquerolic acid (20:1OH), mostly at the sn-1 and the sn-3 positions of TAG. Castor (Ricinus communis) TAGs contain 90% of ricinoleic acid (18:1OH) which is est...

  5. Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization

    PubMed Central

    Roberts, Brock; Haupt, Amanda; Tucker, Andrew; Grancharova, Tanya; Arakaki, Joy; Fuqua, Margaret A.; Nelson, Angelique; Hookway, Caroline; Ludmann, Susan A.; Mueller, Irina A.; Yang, Ruian; Horwitz, Rick; Rafelski, Susanne M.; Gunawardane, Ruwanthi N.

    2017-01-01

    We present a CRISPR/Cas9 genome-editing strategy to systematically tag endogenous proteins with fluorescent tags in human induced pluripotent stem cells (hiPSC). To date, we have generated multiple hiPSC lines with monoallelic green fluorescent protein tags labeling 10 proteins representing major cellular structures. The tagged proteins include alpha tubulin, beta actin, desmoplakin, fibrillarin, nuclear lamin B1, nonmuscle myosin heavy chain IIB, paxillin, Sec61 beta, tight junction protein ZO1, and Tom20. Our genome-editing methodology using Cas9/crRNA ribonuclear protein and donor plasmid coelectroporation, followed by fluorescence-based enrichment of edited cells, typically resulted in <0.1–4% homology-directed repair (HDR). Twenty-five percent of clones generated from each edited population were precisely edited. Furthermore, 92% (36/39) of expanded clonal lines displayed robust morphology, genomic stability, expression and localization of the tagged protein to the appropriate subcellular structure, pluripotency-marker expression, and multilineage differentiation. It is our conclusion that, if cell lines are confirmed to harbor an appropriate gene edit, pluripotency, differentiation potential, and genomic stability are typically maintained during the clonal line–generation process. The data described here reveal general trends that emerged from this systematic gene-tagging approach. Final clonal lines corresponding to each of the 10 cellular structures are now available to the research community. PMID:28814507

  6. A comparative study of triacylglycerol composition in Chinese human milk within different lactation stages and imported infant formula by SFC coupled with Q-TOF-MS.

    PubMed

    Tu, Anqi; Ma, Qiang; Bai, Hua; Du, Zhenxia

    2017-04-15

    Triacylglycerols (TAGs) as the major component of milk fat are significant factors to ensure the healthy growth of infants. An efficient method for identifying TAGs in human milk (HM) and infant formula (IF) was established using supercritical fluid chromatograph (SFC) coupled with quadruple time-of-flight mass spectrometry (Q-TOF-MS). The results indicated the feasibility of this method with satisfactory recoveries (>80%) and correlation coefficients (r 2 ⩾0.993). More than 60 TAGs in HM and 50 TAGs in IF were identified. The profiling results demonstrated that TAGs in HM were greatly affected by lactation stage. Significant differences were found between HM and IF, such as much higher medium chain TAGs and saturated TAGs in IF, indicating that the formulas developed by foreign manufacturers were not suitable for Chinese babies. This high-throughput method exhibits a huge potential for analysis of milk samples and the result may serve as an important guide for Chinese infants diet. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Barley as a green factory for the production of functional Flt3 ligand.

    PubMed

    Erlendsson, Lýdur S; Muench, Marcus O; Hellman, Ulf; Hrafnkelsdóttir, Soffía M; Jonsson, Anders; Balmer, Yves; Mäntylä, Einar; Orvar, Björn L

    2010-02-01

    Biologically active recombinant human Flt3 ligand was expressed and isolated from transgenic barley seeds. Its expression is controlled by a tissue specific promoter that confines accumulation of the recombinant protein to the endosperm tissue of the seed. The recombinant Flt3 ligand variant expressed in the seeds contains an HQ-tag for affinity purification on immobilized metal ion affinity chromatography (IMAC) resin. The tagged protein was purified from seed extracts to near homogeneity using sequential chromatography on IMAC affinity resin and cation exchange resin. We also show that the recombinant Flt3 ligand protein undergoes posttranslational modifications: it is a glycoprotein containing alpha-1,3-fucose and alpha-1,2-xylose. The HQ-tagged Flt3 ligand variant exhibits comparable biological activity to commercial Flt3 ligand. This is the first report showing expression and accumulation of recombinant human growth factor in barley seeds with a yield of active protein similar to a bacterial expression system. The present results demonstrate that plant molecular farming is a viable approach for the bioproduction of human-derived growth factors.

  8. Microarray expression profiling identifies genes with altered expression in HDL-deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callow, Matthew J.; Dudoit, Sandrine; Gong, Elaine L.

    2000-05-05

    Based on the assumption that severe alterations in the expression of genes known to be involved in HDL metabolism may affect the expression of other genes we screened an array of over 5000 mouse expressed sequence tags (ESTs) for altered gene expression in the livers of two lines of mice with dramatic decreases in HDL plasma concentrations. Labeled cDNA from livers of apolipoprotein AI (apo AI) knockout mice, Scavenger Receptor BI (SR-BI) transgenic mice and control mice were co-hybridized to microarrays. Two-sample t-statistics were used to identify genes with altered expression levels in the knockout or transgenic mice compared withmore » the control mice. In the SR-BI group we found 9 array elements representing at least 5 genes to be significantly altered on the basis of an adjusted p value of less than 0.05. In the apo AI knockout group 8 array elements representing 4 genes were altered compared with the control group (p < 0.05). Several of the genes identified in the SR-BI transgenic suggest altered sterol metabolism and oxidative processes. These studies illustrate the use of multiple-testing methods for the identification of genes with altered expression in replicated microarray experiments of apo AI knockout and SR-BI transgenic mice.« less

  9. Rapid Analysis of Microalgal Triacylglycerols with Direct-Infusion Mass Spectrometry

    DOE PAGES

    Christensen, Earl; Sudasinghe, Nilusha; Dandamudi, Kodanda Phani Raj; ...

    2015-09-01

    Cultivation of microalgae has the potential to provide lipid-derived feedstocks for conversion to liquid transportation fuels. Lipid extracts from microalgae are significantly more complex than those of traditional seed oils, and their composition changes significantly throughout the microalgal growth period. With three acyl side chains per molecule, triglycerides (TAGs) are an important fuel precursor, and the distribution of acyl chain composition for TAGs has a significant impact on fuel properties and processing. Therefore, determination of the distribution of microalgal TAG production is needed to assess the value of algal extracts designed for fuel production and to optimize strain, cultivation, andmore » harvesting practices. Methods utilized for TAG speciation commonly involve complicated and time-consuming chromatographic techniques. Here we present a method for TAG speciation and quantification based on direct-infusion mass spectrometry, which provides rapid characterization of TAG profiles without chromatographic separation. Specifically, we utilize Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to provide a reference library of TAGs for the microalgae Nannochloropsis sp. that provides the basis for high-throughput TAG quantitation by time-of-flight mass spectrometry (TOF MS). In conclusion, we demonstrate the application of this novel approach for lipid characterization with respect to TAG compound distribution, which informs both immediate and future strain and process optimization strategies.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Earl; Sudasinghe, Nilusha; Dandamudi, Kodanda Phani Raj

    Cultivation of microalgae has the potential to provide lipid-derived feedstocks for conversion to liquid transportation fuels. Lipid extracts from microalgae are significantly more complex than those of traditional seed oils, and their composition changes significantly throughout the microalgal growth period. With three acyl side chains per molecule, triglycerides (TAGs) are an important fuel precursor, and the distribution of acyl chain composition for TAGs has a significant impact on fuel properties and processing. Therefore, determination of the distribution of microalgal TAG production is needed to assess the value of algal extracts designed for fuel production and to optimize strain, cultivation, andmore » harvesting practices. Methods utilized for TAG speciation commonly involve complicated and time-consuming chromatographic techniques. Here we present a method for TAG speciation and quantification based on direct-infusion mass spectrometry, which provides rapid characterization of TAG profiles without chromatographic separation. Specifically, we utilize Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to provide a reference library of TAGs for the microalgae Nannochloropsis sp. that provides the basis for high-throughput TAG quantitation by time-of-flight mass spectrometry (TOF MS). In conclusion, we demonstrate the application of this novel approach for lipid characterization with respect to TAG compound distribution, which informs both immediate and future strain and process optimization strategies.« less

  11. The transcription factor GCN4 regulates PHM8 and alters triacylglycerol metabolism in Saccharomyces cerevisiae.

    PubMed

    Yadav, Kamlesh Kumar; Rajasekharan, Ram

    2016-11-01

    PHM8 is a very important enzyme in nonpolar lipid metabolism because of its role in triacylglycerol (TAG) biosynthesis under phosphate stress conditions. It is positively regulated by the PHO4 transcription factor under low phosphate conditions; however, its regulation has not been explored under normal physiological conditions. General control nonderepressible (GCN4), a basic leucine-zipper transcription factor activates the transcription of amino acids, purine biosynthesis genes and many stress response genes under various stress conditions. In this study, we demonstrate that the level of TAG is regulated by the transcription factor GCN4. GCN4 directly binds to its consensus recognition sequence (TGACTC) in the PHM8 promoter and controls its expression. The analysis of cells expressing the P PHM8 -lacZ reporter gene showed that mutations (TGACTC-GGGCCC) in the GCN4-binding sequence caused a significant increase in β-galactosidase activity. Mutation in the GCN4 binding sequence causes an increase in PHM8 expression, lysophosphatidic acid phosphatase activity and TAG level. PHM8, in conjunction with DGA1, a mono- and diacylglycerol transferase, controls the level of TAG. These results revealed that GCN4 negatively regulates PHM8 and that deletion of GCN4 causes de-repression of PHM8, which is responsible for the increased TAG content in gcn4∆ cells.

  12. Application of Strep-Tactin XT for affinity purification of Twin-Strep-tagged CB2, a G protein-coupled cannabinoid receptor.

    PubMed

    Yeliseev, Alexei; Zoubak, Lioudmila; Schmidt, Thomas G M

    2017-03-01

    Human cannabinoid receptor CB 2 belongs to the class A of G protein-coupled receptor (GPCR). CB 2 is predominantly expressed in membranes of cells of immune origin and is implicated in regulation of metabolic pathways of inflammation, neurodegenerative disorders and pain sensing. High resolution structural studies of CB 2 require milligram quantities of purified, structurally intact protein. While we previously reported on the methodology for expression of the recombinant CB 2 and its stabilization in a functional state, here we describe an efficient protocol for purification of this protein using the Twin-Strep-tag/Strep-Tactin XT system. To improve the affinity of interaction of the recombinant CB 2 with the resin, the double repeat of the Strep-tag (a sequence of eight amino acids WSHPQFEK), named the Twin-Strep-tag was attached either to the N- or C-terminus of CB 2 via a short linker, and the recombinant protein was expressed in cytoplasmic membranes of E. coli as a fusion with the N-terminal maltose binding protein (MBP). The CB 2 was isolated at high purity from dilute solutions containing high concentrations of detergents, glycerol and salts, by capturing onto the Strep-Tactin XT resin, and was eluted from the resin under mild conditions upon addition of biotin. Surface plasmon resonance studies performed on the purified protein demonstrate the high affinity of interaction between the Twin-Strep-tag fused to the CB 2 and Strep-Tactin XT with an estimated Kd in the low nanomolar range. The affinity of binding did not vary significantly in response to the position of the tag at either N- or C-termini of the fusion. The binding capacity of the resin was several-fold higher for the tag located at the N-terminus of the protein as opposed to the C-terminus- or middle of the fusion. The variation in the length of the linker between the double repeats of the Strep-tag from 6 to 12 amino acid residues did not significantly affect the binding. The novel purification protocol reported here enables efficient isolation of a recombinant GPCR expressed at low titers in host cells. This procedure is suitable for preparation of milligram quantities of stable isotope-labelled receptor for high-resolution NMR studies. Published by Elsevier Inc.

  13. Quantitative proteomic study of Aspergillus Fumigatus secretome revealed deamidation of secretory enzymes.

    PubMed

    Adav, Sunil S; Ravindran, Anita; Sze, Siu Kwan

    2015-04-24

    Aspergillus sp. plays an essential role in lignocellulosic biomass recycling and is also exploited as cell factories for the production of industrial enzymes. This study profiled the secretome of Aspergillus fumigatus when grown with cellulose, xylan and starch by high throughput quantitative proteomics using isobaric tags for relative and absolute quantification (iTRAQ). Post translational modifications (PTMs) of proteins play a critical role in protein functions. However, our understanding of the PTMs in secretory proteins is limited. Here, we present the identification of PTMs such as deamidation of secreted proteins of A. fumigatus. This study quantified diverse groups of extracellular secreted enzymes and their functional classification revealed cellulases and glycoside hydrolases (32.9%), amylases (0.9%), hemicellulases (16.2%), lignin degrading enzymes (8.1%), peptidases and proteases (11.7%), chitinases, lipases and phosphatases (7.6%), and proteins with unknown function (22.5%). The comparison of quantitative iTRAQ results revealed that cellulose and xylan stimulates expression of specific cellulases and hemicellulases, and their abundance level as a function of substrate. In-depth data analysis revealed deamidation as a major PTM of key cellulose hydrolyzing enzymes like endoglucanases, cellobiohydrolases and glucosidases. Hemicellulose degrading endo-1,4-beta-xylanase, monosidases, xylosidases, lignin degrading laccase, isoamyl alcohol oxidase and oxidoreductases were also found to be deamidated. The filamentous fungi play an essential role in lignocellulosic biomass recycling and fungal strains belonging to Aspergillus were also exploited as cell factories for the production of organic acids, pharmaceuticals, and industrially important enzymes. In this study, extracellular proteins secreted by thermophilic A. fumigatus when grown with cellulose, xylan and starch were profiled using isobaric tags for relative and absolute quantification (iTRAQ) by adopting liquid chromatography tandem mass spectrometry. The comparison of quantitative iTRAQ results revealed that cellulose and xylan stimulate expression of specific cellulases and hemicellulases, and expression level as a function of substrate. Post translational modifications revealed deamidation of key cellulases including endoglucanases, cellobiohydrolases and glucosidases; and hemicellulases and lignin degrading enzymes. The knowledge on deamidated enzymes along with specific sites of modifications could be crucial information for further functional studies of these enzymes of A. fumigatus. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Postprandial lipemia detects the effect of soy protein on cardiovascular disease risk compared with the fasting lipid profile.

    PubMed

    Santo, Antonio S; Santo, Ariana M; Browne, Richard W; Burton, Harold; Leddy, John J; Horvath, Steven M; Horvath, Peter J

    2010-12-01

    Studies examining the effect of soy protein on cardiovascular disease (CVD) risk factors have not taken advantage of the postprandial state as an adjunct to the fasting lipid profile. The American Heart Association has acknowledged the efficacy of soy protein in reducing CVD risk factors to be limited. We hypothesized that the postprandial state would be more sensitive to any favorable changes associated with consuming soy protein compared with the fasting lipid profile. Furthermore, the presence of isoflavones in soy would enhance this effect. Thirty sedentary males aged 18-30 years were randomly assigned to milk protein (Milk), isoflavone-poor soy (Soy-), or isoflavone-rich soy (Soy+). Usual diets were supplemented with 25 g/day of protein for 28 days. Serum samples were collected before and after supplementation in a fasted state and postprandially at 30, 60, 120, 240, and 360 min after a high-fat, 1,000 kcal shake. Triacylglycerol (TAG), total cholesterol, non-esterified fatty acids, apolipoproteins B-100 and A-I and glucose concentrations were quantified. Fasting concentrations were not different after any protein supplementation. Postprandial TAG and TAG AUC increased after Soy-consumption supporting the postprandial state as a more sensitive indicator of soy ingestion effects on CVD risk factors compared with the fasting lipid profile. Furthermore, the absence of isoflavones in soy protein may have deleterious consequences on purported cardio-protective effects.

  15. Methyl-CpG island-associated genome signature tags

    DOEpatents

    Dunn, John J

    2014-05-20

    Disclosed is a method for analyzing the organismic complexity of a sample through analysis of the nucleic acid in the sample. In the disclosed method, through a series of steps, including digestion with a type II restriction enzyme, ligation of capture adapters and linkers and digestion with a type IIS restriction enzyme, genome signature tags are produced. The sequences of a statistically significant number of the signature tags are determined and the sequences are used to identify and quantify the organisms in the sample. Various embodiments of the invention described herein include methods for using single point genome signature tags to analyze the related families present in a sample, methods for analyzing sequences associated with hyper- and hypo-methylated CpG islands, methods for visualizing organismic complexity change in a sampling location over time and methods for generating the genome signature tag profile of a sample of fragmented DNA.

  16. Particle tagging and its implications for stellar population dynamics

    NASA Astrophysics Data System (ADS)

    Le Bret, Theo; Pontzen, Andrew; Cooper, Andrew P.; Frenk, Carlos; Zolotov, Adi; Brooks, Alyson M.; Governato, Fabio; Parry, Owen H.

    2017-07-01

    We establish a controlled comparison between the properties of galactic stellar haloes obtained with hydrodynamical simulations and with 'particle tagging'. Tagging is a fast way to obtain stellar population dynamics: instead of tracking gas and star formation, it 'paints' stars directly on to a suitably defined subset of dark matter particles in a collisionless, dark-matter-only simulation. Our study shows that 'live' particle tagging schemes, where stellar masses are painted on to the dark matter particles dynamically throughout the simulation, can generate good fits to the hydrodynamical stellar density profiles of a central Milky Way-like galaxy and its most prominent substructure. Energy diffusion processes are crucial to reshaping the distribution of stars in infalling spheroidal systems and hence the final stellar halo. We conclude that the success of any particular tagging scheme hinges on this diffusion being taken into account, and discuss the role of different subgrid feedback prescriptions in driving this diffusion.

  17. Notes on SAW Tag Interrogation Techniques

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2010-01-01

    We consider the problem of interrogating a single SAW RFID tag with a known ID and known range in the presence of multiple interfering tags under the following assumptions: (1) The RF propagation environment is well approximated as a simple delay channel with geometric power-decay constant alpha >/= 2. (2) The interfering tag IDs are unknown but well approximated as independent, identically distributed random samples from a probability distribution of tag ID waveforms with known second-order properties, and the tag of interest is drawn independently from the same distribution. (3) The ranges of the interfering tags are unknown but well approximated as independent, identically distributed realizations of a random variable rho with a known probability distribution f(sub rho) , and the tag ranges are independent of the tag ID waveforms. In particular, we model the tag waveforms as random impulse responses from a wide-sense-stationary, uncorrelated-scattering (WSSUS) fading channel with known bandwidth and scattering function. A brief discussion of the properties of such channels and the notation used to describe them in this document is given in the Appendix. Under these assumptions, we derive the expression for the output signal-to-noise ratio (SNR) for an arbitrary combination of transmitted interrogation signal and linear receiver filter. Based on this expression, we derive the optimal interrogator configuration (i.e., transmitted signal/receiver filter combination) in the two extreme noise/interference regimes, i.e., noise-limited and interference-limited, under the additional assumption that the coherence bandwidth of the tags is much smaller than the total tag bandwidth. Finally, we evaluate the performance of both optimal interrogators over a broad range of operating scenarios using both numerical simulation based on the assumed model and Monte Carlo simulation based on a small sample of measured tag waveforms. The performance evaluation results not only provide guidelines for proper interrogator design, but also provide some insight on the validity of the assumed signal model. It should be noted that the assumption that the impulse response of the tag of interest is known precisely implies that the temperature and range of the tag are also known precisely, which is generally not the case in practice. However, analyzing interrogator performance under this simplifying assumption is much more straightforward and still provides a great deal of insight into the nature of the problem.

  18. Expressed sequence tags from Atta laevigata and identification of candidate genes for the control of pest leaf-cutting ants.

    PubMed

    Rodovalho, Cynara M; Ferro, Milene; Fonseca, Fernando Pp; Antonio, Erik A; Guilherme, Ivan R; Henrique-Silva, Flávio; Bacci, Maurício

    2011-06-17

    Leafcutters are the highest evolved within Neotropical ants in the tribe Attini and model systems for studying caste formation, labor division and symbiosis with microorganisms. Some species of leafcutters are agricultural pests controlled by chemicals which affect other animals and accumulate in the environment. Aiming to provide genetic basis for the study of leafcutters and for the development of more specific and environmentally friendly methods for the control of pest leafcutters, we generated expressed sequence tag data from Atta laevigata, one of the pest ants with broad geographic distribution in South America. The analysis of the expressed sequence tags allowed us to characterize 2,006 unique sequences in Atta laevigata. Sixteen of these genes had a high number of transcripts and are likely positively selected for high level of gene expression, being responsible for three basic biological functions: energy conservation through redox reactions in mitochondria; cytoskeleton and muscle structuring; regulation of gene expression and metabolism. Based on leafcutters lifestyle and reports of genes involved in key processes of other social insects, we identified 146 sequences potential targets for controlling pest leafcutters. The targets are responsible for antixenobiosis, development and longevity, immunity, resistance to pathogens, pheromone function, cell signaling, behavior, polysaccharide metabolism and arginine kynase activity. The generation and analysis of expressed sequence tags from Atta laevigata have provided important genetic basis for future studies on the biology of leaf-cutting ants and may contribute to the development of a more specific and environmentally friendly method for the control of agricultural pest leafcutters.

  19. Expressed sequence tags from Atta laevigata and identification of candidate genes for the control of pest leaf-cutting ants

    PubMed Central

    2011-01-01

    Background Leafcutters are the highest evolved within Neotropical ants in the tribe Attini and model systems for studying caste formation, labor division and symbiosis with microorganisms. Some species of leafcutters are agricultural pests controlled by chemicals which affect other animals and accumulate in the environment. Aiming to provide genetic basis for the study of leafcutters and for the development of more specific and environmentally friendly methods for the control of pest leafcutters, we generated expressed sequence tag data from Atta laevigata, one of the pest ants with broad geographic distribution in South America. Results The analysis of the expressed sequence tags allowed us to characterize 2,006 unique sequences in Atta laevigata. Sixteen of these genes had a high number of transcripts and are likely positively selected for high level of gene expression, being responsible for three basic biological functions: energy conservation through redox reactions in mitochondria; cytoskeleton and muscle structuring; regulation of gene expression and metabolism. Based on leafcutters lifestyle and reports of genes involved in key processes of other social insects, we identified 146 sequences potential targets for controlling pest leafcutters. The targets are responsible for antixenobiosis, development and longevity, immunity, resistance to pathogens, pheromone function, cell signaling, behavior, polysaccharide metabolism and arginine kynase activity. Conclusion The generation and analysis of expressed sequence tags from Atta laevigata have provided important genetic basis for future studies on the biology of leaf-cutting ants and may contribute to the development of a more specific and environmentally friendly method for the control of agricultural pest leafcutters. PMID:21682882

  20. Discovery and characterization of Coturnix chinensis avian β-defensin 10, with broad antibacterial activity.

    PubMed

    Ma, Deying; Lin, Lijuan; Zhang, Kexin; Han, Zongxi; Shao, Yuhao; Wang, Ruiqin; Liu, Shengwang

    2012-04-01

    A novel avian β-defensin (AvBD), AvBD10, was discovered in the liver and bone marrow tissues from Chinese painted quail (Coturnix chinensis) in the present study. The complete nucleotide sequence of quail AvBD10 contains a 207-bp open reading frame that encodes 68 amino acids. The quail AvBD10 was expressed widely in all the tissues from quails except the tongue, crop, breast muscle, and thymus and was highly expressed in the bone marrow. In contrast to the expression pattern of AvBD10 in tissues from quail, the chicken AvBD10 was expressed in all 21 tissues from the layer hens investigated, with a high level of expression in the kidney, lung, liver, bone marrow, and Harderian glands. Recombinant glutathione S-transferase (GST)-tagged AvBD10s of both quail and chicken were produced and purified by expression of the two cDNAs in Escherichia coli, respectively. In addition, peptide according to the respective AvBD10s sequence was synthesized, named synthetic AvBD10s. As expected, both recombinant GST-tagged AvBD10s and synthetic AvBD10s of quail and chicken exhibited similar bactericidal properties against most bacteria, including Gram-positive and Gram-negative forms. However, no significant bactericidal activity was found for quail recombinant GST-tagged AvBD10 against Salmonella choleraesuis or for chicken recombinant GST-tagged AvBD10 against Proteus mirabilis. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  1. A scalable strategy for high-throughput GFP tagging of endogenous human proteins.

    PubMed

    Leonetti, Manuel D; Sekine, Sayaka; Kamiyama, Daichi; Weissman, Jonathan S; Huang, Bo

    2016-06-21

    A central challenge of the postgenomic era is to comprehensively characterize the cellular role of the ∼20,000 proteins encoded in the human genome. To systematically study protein function in a native cellular background, libraries of human cell lines expressing proteins tagged with a functional sequence at their endogenous loci would be very valuable. Here, using electroporation of Cas9 nuclease/single-guide RNA ribonucleoproteins and taking advantage of a split-GFP system, we describe a scalable method for the robust, scarless, and specific tagging of endogenous human genes with GFP. Our approach requires no molecular cloning and allows a large number of cell lines to be processed in parallel. We demonstrate the scalability of our method by targeting 48 human genes and show that the resulting GFP fluorescence correlates with protein expression levels. We next present how our protocols can be easily adapted for the tagging of a given target with GFP repeats, critically enabling the study of low-abundance proteins. Finally, we show that our GFP tagging approach allows the biochemical isolation of native protein complexes for proteomic studies. Taken together, our results pave the way for the large-scale generation of endogenously tagged human cell lines for the proteome-wide analysis of protein localization and interaction networks in a native cellular context.

  2. Expression of recombinant CD59 with an N-terminal peptide epitope facilitates analysis of residues contributing to its complement-inhibitory function.

    PubMed

    Zhou, Q; Zhao, J; Hüsler, T; Sims, P J

    1996-10-01

    CD59 is a plasma membrane-anchored glycoprotein that serves to protect human cells from lysis by the C5b-9 complex of complement. The immunodominant epitopes of CD59 are known to be sensitive to disruption of native tertiary structure, complicating immunological measurement of expressed mutant constructs for structure function analysis. In order to quantify cell-surface expression of wild-type and mutant forms of this complement inhibitor, independent of CD59 antigen, an 11-residue peptide (TAG) recognized by monoclonal antibody (mAb) 9E10 was inserted before the N-terminal codon (L1) of mature CD59, in a pcDNA3 expression plasmid. SV-T2 cells were transfected with this plasmid, yielding cell lines expressing 0 to > 10(5) CD59/cell. The TAG-CD59 fusion protein was confirmed to be GPI-anchored, N-glycosylated and showed identical complement-inhibitory function to wild-type CD59, lacking the TAG peptide sequence. Using this construct, the contribution of each of four surface-localized aromatic residues (4Y, 47F, 61Y, and 62Y) to CD59's complement-inhibitory function was examined. These assays revealed normal surface expression with complete loss of complement-inhibitory function in the 4Y --> S, 47F --> G and 61Y --> S mutants. By contrast, 62Y --> S mutants retained approximately 40% of function of wild-type CD59. These studies confirmed the utility of the TAG-CD59 construct for quantifying CD59 surface expression and activity, and implicate surface aromatic residues 4Y, 47F, 61Y and 62Y as essential to maintenance of CD59's normal complement-regulatory function.

  3. An efficient annotation and gene-expression derivation tool for Illumina Solexa datasets.

    PubMed

    Hosseini, Parsa; Tremblay, Arianne; Matthews, Benjamin F; Alkharouf, Nadim W

    2010-07-02

    The data produced by an Illumina flow cell with all eight lanes occupied, produces well over a terabyte worth of images with gigabytes of reads following sequence alignment. The ability to translate such reads into meaningful annotation is therefore of great concern and importance. Very easily, one can get flooded with such a great volume of textual, unannotated data irrespective of read quality or size. CASAVA, a optional analysis tool for Illumina sequencing experiments, enables the ability to understand INDEL detection, SNP information, and allele calling. To not only extract from such analysis, a measure of gene expression in the form of tag-counts, but furthermore to annotate such reads is therefore of significant value. We developed TASE (Tag counting and Analysis of Solexa Experiments), a rapid tag-counting and annotation software tool specifically designed for Illumina CASAVA sequencing datasets. Developed in Java and deployed using jTDS JDBC driver and a SQL Server backend, TASE provides an extremely fast means of calculating gene expression through tag-counts while annotating sequenced reads with the gene's presumed function, from any given CASAVA-build. Such a build is generated for both DNA and RNA sequencing. Analysis is broken into two distinct components: DNA sequence or read concatenation, followed by tag-counting and annotation. The end result produces output containing the homology-based functional annotation and respective gene expression measure signifying how many times sequenced reads were found within the genomic ranges of functional annotations. TASE is a powerful tool to facilitate the process of annotating a given Illumina Solexa sequencing dataset. Our results indicate that both homology-based annotation and tag-count analysis are achieved in very efficient times, providing researchers to delve deep in a given CASAVA-build and maximize information extraction from a sequencing dataset. TASE is specially designed to translate sequence data in a CASAVA-build into functional annotations while producing corresponding gene expression measurements. Achieving such analysis is executed in an ultrafast and highly efficient manner, whether the analysis be a single-read or paired-end sequencing experiment. TASE is a user-friendly and freely available application, allowing rapid analysis and annotation of any given Illumina Solexa sequencing dataset with ease.

  4. Optimization of Soluble Expression and Purification of Recombinant Human Rhinovirus Type-14 3C Protease Using Statistically Designed Experiments: Isolation and Characterization of the Enzyme.

    PubMed

    Antoniou, Georgia; Papakyriacou, Irineos; Papaneophytou, Christos

    2017-10-01

    Human rhinovirus (HRV) 3C protease is widely used in recombinant protein production for various applications such as biochemical characterization and structural biology projects to separate recombinant fusion proteins from their affinity tags in order to prevent interference between these tags and the target proteins. Herein, we report the optimization of expression and purification conditions of glutathione S-transferase (GST)-tagged HRV 3C protease by statistically designed experiments. Soluble expression of GST-HRV 3C protease was initially optimized by response surface methodology (RSM), and a 5.5-fold increase in enzyme yield was achieved. Subsequently, we developed a new incomplete factorial (IF) design that examines four variables (bacterial strain, expression temperature, induction time, and inducer concentration) in a single experiment. The new design called Incomplete Factorial-Strain/Temperature/Time/Inducer (IF-STTI) was validated using three GST-tagged proteins. In all cases, IF-STTI resulted in only 10% lower expression yields than those obtained by RSM. Purification of GST-HRV 3C was optimized by an IF design that examines simultaneously the effect of the amount of resin, incubation time of cell lysate with resin, and glycerol and DTT concentration in buffers, and a further 15% increase in protease recovery was achieved. Purified GST-HRV 3C protease was active at both 4 and 25 °C in a variety of buffers.

  5. Determination of male strobilus developmental stages by cytological and gene expression analyses in Japanese cedar (Cryptomeria japonica).

    PubMed

    Tsubomura, Miyoko; Kurita, Manabu; Watanabe, Atsushi

    2016-05-01

    The molecular mechanisms that control male strobilus development in conifers are largely unknown because the developmental stages and related genes have not yet been characterized. The determination of male strobilus developmental stages will contribute to genetic research and reproductive biology in conifers. Our objectives in this study were to determine the developmental stages of male strobili by cytological and transcriptome analysis, and to determine the stages at which aberrant morphology is observed in a male-sterile mutant of Cryptomeria japonica D. Don to better understand the molecular mechanisms that control male strobilus and pollen development. Male strobilus development was observed for 8 months, from initiation to pollen dispersal. A set of 19,209 expressed sequence tags (ESTs) collected from a male reproductive library and a pollen library was used for microarray analysis. We divided male strobilus development into 10 stages by cytological and transcriptome analysis. Eight clusters (7324 ESTs) exhibited major changes in transcriptome profiles during male strobili and pollen development in C. japonica Two clusters showed a gradual increase and decline in transcript abundance, respectively, while the other six clusters exhibited stage-specific changes. The stages at which the male sterility trait of Sosyun was expressed were identified using information on male strobilus and pollen developmental stages and gene expression profiles. Aberrant morphology was observed cytologically at Stage 6 (microspore stage), and differences in expression patterns compared with wild type were observed at Stage 4 (tetrad stage). © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Transcriptome analysis of Schistosoma mansoni larval development using serial analysis of gene expression (SAGE).

    PubMed

    Taft, A S; Vermeire, J J; Bernier, J; Birkeland, S R; Cipriano, M J; Papa, A R; McArthur, A G; Yoshino, T P

    2009-04-01

    Infection of the snail, Biomphalaria glabrata, by the free-swimming miracidial stage of the human blood fluke, Schistosoma mansoni, and its subsequent development to the parasitic sporocyst stage is critical to establishment of viable infections and continued human transmission. We performed a genome-wide expression analysis of the S. mansoni miracidia and developing sporocyst using Long Serial Analysis of Gene Expression (LongSAGE). Five cDNA libraries were constructed from miracidia and in vitro cultured 6- and 20-day-old sporocysts maintained in sporocyst medium (SM) or in SM conditioned by previous cultivation with cells of the B. glabrata embryonic (Bge) cell line. We generated 21 440 SAGE tags and mapped 13 381 to the S. mansoni gene predictions (v4.0e) either by estimating theoretical 3' UTR lengths or using existing 3' EST sequence data. Overall, 432 transcripts were found to be differentially expressed amongst all 5 libraries. In total, 172 tags were differentially expressed between miracidia and 6-day conditioned sporocysts and 152 were differentially expressed between miracidia and 6-day unconditioned sporocysts. In addition, 53 and 45 tags, respectively, were differentially expressed in 6-day and 20-day cultured sporocysts, due to the effects of exposure to Bge cell-conditioned medium.

  7. Expression and Stability of Foreign Epitopes Introduced into 3A Nonstructural Protein of Foot-and-Mouth Disease Virus

    PubMed Central

    Li, Pinghua; Bai, Xingwen; Cao, Yimei; Han, Chenghao; Lu, Zengjun; Sun, Pu; Yin, Hong; Liu, Zaixin

    2012-01-01

    Foot-and-mouth disease virus (FMDV) is an aphthovirus that belongs to the Picornaviridae family and causes one of the most important animal diseases worldwide. The capacity of other picornaviruses to express foreign antigens has been extensively reported, however, little is known about FMDV. To explore the potential of FMDV as a viral vector, an 11-amino-acid (aa) HSV epitope and an 8 aa FLAG epitope were introduced into the C-terminal different regions of 3A protein of FMDV full-length infectious cDNA clone. Recombinant viruses expressing the HSV or FLAG epitope were successfully rescued after transfection of both modified constructs. Immunofluorescence assay, Western blot and sequence analysis showed that the recombinant viruses stably maintained the foreign epitopes even after 11 serial passages in BHK-21 cells. The 3A-tagged viruses shared similar plaque phenotypes and replication kinetics to those of the parental virus. In addition, mice experimentally infected with the epitope-tagged viruses could induce tag-specific antibodies. Our results demonstrate that FMDV can be used effectively as a viral vector for the delivery of foreign tags. PMID:22848509

  8. Digital gene expression analysis with sample multiplexing and PCR duplicate detection: A straightforward protocol.

    PubMed

    Rozenberg, Andrey; Leese, Florian; Weiss, Linda C; Tollrian, Ralph

    2016-01-01

    Tag-Seq is a high-throughput approach used for discovering SNPs and characterizing gene expression. In comparison to RNA-Seq, Tag-Seq eases data processing and allows detection of rare mRNA species using only one tag per transcript molecule. However, reduced library complexity raises the issue of PCR duplicates, which distort gene expression levels. Here we present a novel Tag-Seq protocol that uses the least biased methods for RNA library preparation combined with a novel approach for joint PCR template and sample labeling. In our protocol, input RNA is fragmented by hydrolysis, and poly(A)-bearing RNAs are selected and directly ligated to mixed DNA-RNA P5 adapters. The P5 adapters contain i5 barcodes composed of sample-specific (moderately) degenerate base regions (mDBRs), which later allow detection of PCR duplicates. The P7 adapter is attached via reverse transcription with individual i7 barcodes added during the amplification step. The resulting libraries can be sequenced on an Illumina sequencer. After sample demultiplexing and PCR duplicate removal with a free software tool we designed, the data are ready for downstream analysis. Our protocol was tested on RNA samples from predator-induced and control Daphnia microcrustaceans.

  9. iTRAQ-based quantitative protein expression profiling and MRM verification of markers in type 2 diabetes.

    PubMed

    Kaur, Prabhjit; Rizk, Nasser M; Ibrahim, Sereen; Younes, Noura; Uppal, Arushi; Dennis, Kevin; Karve, Tejaswita; Blakeslee, Kenneth; Kwagyan, John; Zirie, Mahmoud; Ressom, Habtom W; Cheema, Amrita K

    2012-11-02

    The pathogenesis of Type 2 diabetes mellitus (T2DM) is complex owing to molecular heterogeneity in the afflicted population. Current diagnostic methods rely on blood glucose measurements, which are noninformative with respect to progression of the disease to other associated pathologies. Thus, predicting the risk and development of T2DM-related complications, such as cardiovascular disease, remains a major challenge. We have used a combination of quantitative methods for characterization of circulating serum biomarkers of T2DM using a cohort of nondiabetic control subjects (n = 76) and patients diagnosed with T2DM (n = 106). In this case-control study, the samples were randomly divided as training and validation data sets. In the first step, iTRAQ (isobaric tagging for relative and absolute quantification) based protein expression profiling was performed for identification of proteins displaying a significant differential expression in the two study groups. Five of these protein markers were selected for validation using multiple reaction-monitoring mass spectrometry (MRM-MS) and further confirmed with Western blot and QPCR analysis. Functional pathway analysis identified perturbations in lipid and small molecule metabolism as well as pathways that lead to disruption of glucose homeostasis and blood coagulation. These putative biomarkers may be clinically useful for subset stratification of T2DM patients as well as for the development of novel therapeutics targeting the specific pathology.

  10. Transcriptional profiling reveals the expression of novel genes in response to various stimuli in the human dermatophyte Trichophyton rubrum

    PubMed Central

    2010-01-01

    Background Cutaneous mycoses are common human infections among healthy and immunocompromised hosts, and the anthropophilic fungus Trichophyton rubrum is the most prevalent microorganism isolated from such clinical cases worldwide. The aim of this study was to determine the transcriptional profile of T. rubrum exposed to various stimuli in order to obtain insights into the responses of this pathogen to different environmental challenges. Therefore, we generated an expressed sequence tag (EST) collection by constructing one cDNA library and nine suppression subtractive hybridization libraries. Results The 1388 unigenes identified in this study were functionally classified based on the Munich Information Center for Protein Sequences (MIPS) categories. The identified proteins were involved in transcriptional regulation, cellular defense and stress, protein degradation, signaling, transport, and secretion, among other functions. Analysis of these unigenes revealed 575 T. rubrum sequences that had not been previously deposited in public databases. Conclusion In this study, we identified novel T. rubrum genes that will be useful for ORF prediction in genome sequencing and facilitating functional genome analysis. Annotation of these expressed genes revealed metabolic adaptations of T. rubrum to carbon sources, ambient pH shifts, and various antifungal drugs used in medical practice. Furthermore, challenging T. rubrum with cytotoxic drugs and ambient pH shifts extended our understanding of the molecular events possibly involved in the infectious process and resistance to antifungal drugs. PMID:20144196

  11. Expression Profiling-Based Identification of CO2-Responsive Genes Regulated by CCM1 Controlling a Carbon-Concentrating Mechanism in Chlamydomonas reinhardtii1

    PubMed Central

    Miura, Kenji; Yamano, Takashi; Yoshioka, Satoshi; Kohinata, Tsutomu; Inoue, Yoshihiro; Taniguchi, Fumiya; Asamizu, Erika; Nakamura, Yasukazu; Tabata, Satoshi; Yamato, Katsuyuki T.; Ohyama, Kanji; Fukuzawa, Hideya

    2004-01-01

    Photosynthetic acclimation to CO2-limiting stress is associated with control of genetic and physiological responses through a signal transduction pathway, followed by integrated monitoring of the environmental changes. Although several CO2-responsive genes have been previously isolated, genome-wide analysis has not been applied to the isolation of CO2-responsive genes that may function as part of a carbon-concentrating mechanism (CCM) in photosynthetic eukaryotes. By comparing expression profiles of cells grown under CO2-rich conditions with those of cells grown under CO2-limiting conditions using a cDNA membrane array containing 10,368 expressed sequence tags, 51 low-CO2 inducible genes and 32 genes repressed by low CO2 whose mRNA levels were changed more than 2.5-fold in Chlamydomonas reinhardtii Dangeard were detected. The fact that the induction of almost all low-CO2 inducible genes was impaired in the ccm1 mutant suggests that CCM1 is a master regulator of CCM through putative low-CO2 signal transduction pathways. Among low-CO2 inducible genes, two novel genes, LciA and LciB, were identified, which may be involved in inorganic carbon transport. Possible functions of low-CO2 inducible and/or CCM1-regulated genes are discussed in relation to the CCM. PMID:15235119

  12. Transgene Expression and Repression in Transgenic Rats Bearing the Phosphoenolpyruvate Carboxykinase-Simian Virus 40 T Antigen or the Phosphoenolpyruvate Carboxykinase-Transforming Growth Factor-α Constructs

    PubMed Central

    Haas, Michael J.; Dragan, Yvonne P.; Hikita, Hiroshi; Shimel, Randee; Takimoto, Koichi; Heath, Susan; Vaughan, Jennifer; Pitot, Henry C.

    1999-01-01

    Transgenic Sprague-Dawley rats expressing either human transforming growth factor-α (TGFα) or simian virus 40 large and small T antigen (TAg), each under the control of the phosphoenolpyruvate carboxykinase (PEPCK) promoter, were developed as an approach to the study of the promotion of hepatocarcinogenesis in the presence of a transgene regulatable by diet and/or hormones. Five lines of PEPCK-TGFα transgenic rats were established, each genetic line containing from one to several copies of the transgene per haploid genome. Two PEPCK-TAg transgenic founder rats were obtained, each with multiple copies of the transgene. Expression of the transgene was undetectable in the TGFα transgenic rats and could not be induced when the animals were placed on a high-protein, low-carbohydrate diet. The transgene was found to be highly methylated in all of these lines. No pathological alterations in the liver and intestine were observed at any time (up to 2 years) during the lives of these rats. One line of transgenic rats expressing the PEPCK-TAg transgene developed pancreatic islet cell hyperplasias and carcinomas, with few normal islets evident in the pancreas. This transgene is integrated as a hypomethylated tandem array of 10 to 12 copies on chromosome 8q11. Expression of large T antigen is highest in pancreatic neoplasms, but is also detectable in the normal brain, kidney, and liver. Mortality is most rapid in males, starting at 5 months of age and reaching 100% by 8 months. Morphologically, islet cell differentiation in the tumors ranges from poor to well differentiated, with regions of necrosis and fibrosis. Spontaneous metastasis of TAg-positive tumor cells to regional lymph nodes was observed. These studies indicate the importance of DNA methylation in the repression of specific transgenes in the rat. However, the expression of the PEPCK-TAg induces neoplastic transformation in islet cells, probably late in neuroendocrine cell differentiation. T antigen expression during neoplastic development may result in a pervasive change in the islet cell growth properties with selection of a transformed phenotype as a possible requirement for cell viability. PMID:10393850

  13. Lipidomic profiling reveals protective function of fatty acid oxidation in cocaine-induced hepatotoxicity[S

    PubMed Central

    Shi, Xiaolei; Yao, Dan; Gosnell, Blake A.; Chen, Chi

    2012-01-01

    During cocaine-induced hepatotoxicity, lipid accumulation occurs prior to necrotic cell death in the liver. However, the exact influences of cocaine on the homeostasis of lipid metabolism remain largely unknown. In this study, the progression of subacute hepatotoxicity, including centrilobular necrosis in the liver and elevation of transaminase activity in serum, was observed in a three-day cocaine treatment, accompanying the disruption of triacylglycerol (TAG) turnover. Serum TAG level increased on day 1 of cocaine treatment but remained unchanged afterwards. In contrast, hepatic TAG level was elevated continuously during three days of cocaine treatment and was better correlated with the development of hepatotoxicity. Lipidomic analyses of serum and liver samples revealed time-dependent separation of the control and cocaine-treated mice in multivariate models, which was due to the accumulation of long-chain acylcarnitines together with the disturbances of many bioactive phospholipid species in the cocaine-treated mice. An in vitro function assay confirmed the progressive inhibition of mitochondrial fatty acid oxidation after the cocaine treatment. Cotreatment of fenofibrate significantly increased the expression of peroxisome proliferator-activated receptor α (PPARα)-targeted genes and the mitochondrial fatty acid oxidation activity in the cocaine-treated mice, resulting in the inhibition of cocaine-induced acylcarnitine accumulation and other hepatotoxic effects. Overall, the results from this lipidomics-guided study revealed that the inhibition of fatty acid oxidation plays an important role in cocaine-induced liver injury. PMID:22904346

  14. Macroarray expression analysis of barley susceptibility and nonhost resistance to Blumeria graminis.

    PubMed

    Eichmann, Ruth; Biemelt, Sophia; Schäfer, Patrick; Scholz, Uwe; Jansen, Carin; Felk, Angelika; Schäfer, Wilhelm; Langen, Gregor; Sonnewald, Uwe; Kogel, Karl-Heinz; Hückelhoven, Ralph

    2006-04-01

    Different formae speciales of the grass powdery mildew fungus Blumeria graminis undergo basic-compatible or basic-incompatible (nonhost) interactions with barley. Background resistance in compatible interactions and nonhost resistance require common genetic and mechanistic elements of plant defense. To build resources for differential screening for genes that potentially distinguish a compatible from an incompatible interaction on the level of differential gene expression of the plant, we constructed eight dedicated cDNA libraries, established 13.000 expressed sequence tag (EST) sequences and designed DNA macroarrays. Using macroarrays based on cDNAs derived from epidermal peels of plants pretreated with the chemical resistance activating compound acibenzolar-S-methyl, we compared the expression of barley gene transcripts in the early host interaction with B. graminis f.sp. hordei or the nonhost pathogen B. graminis f.sp. tritici, respectively. We identified 102 spots corresponding to 94 genes on the macroarray that gave significant B. graminis-responsive signals at 12 and/or 24 h after inoculation. In independent expression analyses, we confirmed the macroarray results for 11 selected genes. Although the majority of genes showed a similar expression profile in compatible versus incompatible interactions, about 30 of the 94 genes were expressed on slightly different levels in compatible versus incompatible interactions.

  15. Metal Ion-Induced Self-Assembly of a Multi-Responsive Block Copolypeptide into Well-Defined Nanocapsules.

    PubMed

    van Eldijk, Mark B; Schoonen, Lise; Cornelissen, Jeroen J L M; Nolte, Roeland J M; van Hest, Jan C M

    2016-05-01

    Protein cages are an interesting class of biomaterials with potential applications in bionanotechnology. Therefore, substantial effort is spent on the development of capsule-forming designer polypeptides with a tailor-made assembly profile. The expanded assembly profile of a triblock copolypeptide consisting of a metal ion chelating hexahistidine-tag, a stimulus-responsive elastin-like polypeptide block, and a pH-responsive morphology-controlling viral capsid protein is presented. The self-assembly of this multi-responsive protein-based block copolymer is triggered by the addition of divalent metal ions. This assembly process yields monodisperse nanocapsules with a 20 nm diameter composed of 60 polypeptides. The well-defined nanoparticles are the result of the emergent properties of all the blocks of the polypeptide. These results demonstrate the feasibility of hexahistidine-tags to function as supramolecular cross-linkers. Furthermore, their potential for the metal ion-mediated encapsulation of hexahistidine-tagged proteins is shown. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Purification of Microbially Expressed Recombinant Proteins via a Dual ELP Split Intein System.

    PubMed

    Shi, Changhua; Han, Tzu-Chiang; Wood, David W

    2017-01-01

    Fusions of elastin-like peptide (ELP) purification tags and self-cleaving inteins provide a powerful platform for purifying tagless recombinant proteins without the need for conventional packed-bed columns. A drawback to this method has been premature cleaving of the ELP tag during expression, before the purification procedure can take place. Here we demonstrate a split-intein method, where the self-cleaving intein is divided into two inactive segments during expression and purification. Spontaneous assembly of the purified intein segments then restores self-cleaving activity to deliver the tagless target protein.

  17. Expression of tung tree diacylglycerol acyltransferase 1 in E. coli

    USDA-ARS?s Scientific Manuscript database

    Diacylglycerol acyltransferases (DGATs) catalyze the last step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT isoforms have nonredundant functions in TAG biosynthesis in species such as tung tree (Vernicia fordii) which contains 80% high-value eleostearic acid in its seed oils. ...

  18. Expression and purification of recombinant tung tree diacylglycerol acyltransferase 2

    USDA-ARS?s Scientific Manuscript database

    Diacylglycerol acyltransferases (DGATs) are responsible for the last step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Different forms of DGATs have nonredundant functions in TAG biosynthesis in species such as tung tree (Vernicia fordii), which contains approximately 80% high-valu...

  19. Lactation-induced WAP-SV40 Tag transgene expression in C57BL/6J mice leads to mammary carcinoma.

    PubMed

    Hüsler, M R; Kotopoulis, K A; Sundberg, J P; Tennent, B J; Kunig, S V; Knowles, B B

    1998-07-01

    Two transgenic lineages were generated by directing the expression of SV40 T antigen to the mammary gland of inbred C57BL/6J mice using the whey acidic protein (WAP) promoter. In one lineage, WAPTag 1, multiparous female mice developed mammary adenocarcinoma with an average latency period of 13 months. The histopathological phenotype was heterogeneous, tumours occurred in a stochastic fashion, normal tissue was located next to neoplastic tissue, the mammary tumours usually developed and were remarkably similar to that observed in human cases. In addition, male and virgin females developed a poorly differentiated SV40 T antigen-positive soft tissue sarcoma, also at 13 months of age. In the other lineage, WAPTag 3, some parous females developed mammary tumours, but most mice succumbed to osteosarcomas arising from the os petrosum at 5.5 to 6 months of age and on necropsy, renal adenocarcinomas were also found. Appearance of these unexpected tumour types demonstrates the non-specific expression of SV40 Tag under the control of the WAP promoter. The expression of SV40 Tag in mammary glands at different stages of development was also examined, and only actively lactating glands were positive. This suggests that the abundant cyclic synthesis of SV40 Tag associated with pregnancy is required for mammary tumorigenesis in these lineages.

  20. HPLC-APCI-MS analysis of triacylglycerols (TAGs) in historical pharmaceutical ointments from the eighteenth century.

    PubMed

    Saliu, Francesco; Modugno, Francesca; Orlandi, Marco; Colombini, Maria Perla

    2011-10-01

    The lipid fractions of residues from historical pharmaceutical ointments were analysed by reversed-phase liquid chromatography coupled with atmospheric pressure chemical ionization and mass spectrometer detection. The residues were contained in a series of historical apothecary jars, dating from the eighteenth century and conserved at the "Aboca Museum" in Sansepolcro (Arezzo, Italy) and at the pharmacy of the "Real Cartuja de Valldemossa" in Palma de Majorca (Spain). The analytical protocol was set up using a comparative study based on the evaluation of triacylglycerol (TAG) compositions in raw natural lipid materials and in laboratory-reproduced ointments. These ointments were prepared following pharmaceutical recipes reported in historical treatises and used as reference materials. The reference materials were also subjected to stress treatments in order to evaluate the modification occurring in the TAG profiles as an effect of ageing. TAGs were successfully detected in the reproduced formulations even in mixtures of up to ten ingredients and after harsh degradative treatments, and also in real historical samples. No particular interferences were detected from other non-lipid ingredients of the formulations. The TAG compositions detected in the historical ointments indicated a predominant use of olive oil and pig adipose material as lipid ingredients. The detection of a high level of tristearine and myristyl-palmitoyl-stearyl glycerol in two of the samples suggested the presence of a fatty material of a different origin (maybe a ruminant). On the basis of the positional isomer ratio, sn-PPO/sn-POP, it was possible to hypothesize an exclusive use of pig fat in one sample. We also evaluated the application of principal component analysis of TAG profiles as an approach for the multivariate statistical comparison of the reference and historical ointments.

  1. Postprandial phase time influences the uptake of TAG from postprandial TAG-rich lipoproteins by THP-1 macrophages.

    PubMed

    Cabello-Moruno, Rosana; Sinausia, Laura; Botham, Kathleen M; Montero, Emilio; Avella, Michael; Perona, Javier S

    2014-11-14

    Postprandial TAG-rich lipoproteins (TRL) can be taken up by macrophages, leading to the formation of foam cells, probably via receptor-mediated pathways. The present study was conducted to investigate whether the postprandial time point at which TRL are collected modulates this process. A meal containing refined olive oil was given to nine healthy young men and TRL were isolated from their serum at 2, 4 and 6 h postprandially. The lipid class and apoB compositions of TRL were determined by HPLC and SDS-PAGE, respectively. The accumulation of lipids in macrophages was determined after the incubation of THP-1 macrophages with TRL. The gene expression of candidate receptors was measured by real-time PCR. The highest concentrations of TAG, apoB48 and apoB100 in TRL were observed at 2 h after the consumption of the test meal. However, excessive intracellular TAG accumulation in THP-1 macrophages was observed in response to incubation with TRL isolated at 4 h, when their particle size (estimated as the TAG:apoB ratio) was intermediate. The abundance of mRNA transcripts in macrophages in response to incubation with TRL was down-regulated for LDL receptor (LDLR), slightly up-regulated for VLDL receptor and remained unaltered for LDLR-related protein, but no effect of the postprandial time point was observed. In contrast, the mRNA expression of scavenger receptors SRB1, SRA2 and CD36 was higher when cells were incubated with TRL isolated at 4 h after the consumption of the test meal. In conclusion, TRL led to excessive intracellular TAG accumulation in THP-1 macrophages, which was greater when cells were incubated with intermediate-sized postprandial TRL isolated at 4 h and was associated with a significant increase in the mRNA expression of scavenger receptors.

  2. p53 elevation in human cells halt SV40 infection by inhibiting T-ag expression

    PubMed Central

    Drayman, Nir; Ben-nun-Shaul, Orly; Butin-Israeli, Veronika; Srivastava, Rohit; Rubinstein, Ariel M.; Mock, Caroline S.; Elyada, Ela; Ben-Neriah, Yinon; Lahav, Galit; Oppenheim, Ariella

    2016-01-01

    SV40 large T-antigen (T-ag) has been known for decades to inactivate the tumor suppressor p53 by sequestration and additional mechanisms. Our present study revealed that the struggle between p53 and T-ag begins very early in the infection cycle. We found that p53 is activated early after SV40 infection and defends the host against the infection. Using live cell imaging and single cell analyses we found that p53 dynamics are variable among individual cells, with only a subset of cells activating p53 immediately after SV40 infection. This cell-to-cell variabilty had clear consequences on the outcome of the infection. None of the cells with elevated p53 at the beginning of the infection proceeded to express T-ag, suggesting a p53-dependent decision between abortive and productive infection. In addition, we show that artificial elevation of p53 levels prior to the infection reduces infection efficiency, supporting a role for p53 in defending against SV40. We further found that the p53-mediated host defense mechanism against SV40 is not facilitated by apoptosis nor via interferon-stimulated genes. Instead p53 binds to the viral DNA at the T-ag promoter region, prevents its transcriptional activation by Sp1, and halts the progress of the infection. These findings shed new light on the long studied struggle between SV40 T-ag and p53, as developed during virus-host coevolution. Our studies indicate that the fate of SV40 infection is determined as soon as the viral DNA enters the nucleus, before the onset of viral gene expression. PMID:27462916

  3. Missense mutation in APOC3 within the C-terminal lipid binding domain of human ApoC-III results in impaired assembly and secretion of triacylglycerol-rich very low density lipoproteins: evidence that ApoC-III plays a major role in the formation of lipid precursors within the microsomal lumen.

    PubMed

    Qin, Wen; Sundaram, Meenakshi; Wang, Yuwei; Zhou, Hu; Zhong, Shumei; Chang, Chia-Ching; Manhas, Sanjay; Yao, Erik F; Parks, Robin J; McFie, Pamela J; Stone, Scot J; Jiang, Zhenghui G; Wang, Congrong; Figeys, Daniel; Jia, Weiping; Yao, Zemin

    2011-08-05

    Hepatic assembly of triacylglycerol (TAG)-rich very low density lipoproteins (VLDL) is achieved through recruitment of bulk TAG (presumably in the form of lipid droplets within the microsomal lumen) into VLDL precursor containing apolipoprotein (apo) B-100. We determined protein/lipid components of lumenal lipid droplets (LLD) in cells expressing recombinant human apoC-III (C3wt) or a mutant form (K58E, C3KE) initially identified in humans that displayed hypotriglyceridemia. Although expression of C3wt markedly stimulated secretion of TAG and apoB-100 as VLDL(1), the K58E mutation (located at the C-terminal lipid binding domain) abolished the effect in transfected McA-RH7777 cells and in apoc3-null mice. Metabolic labeling studies revealed that accumulation of TAG in LLD was decreased (by 50%) in cells expressing C3KE. A Fat Western lipid protein overlay assay showed drastically reduced lipid binding of the mutant protein. Substituting Lys(58) with Arg demonstrated that the positive charge at position 58 is crucial for apoC-III binding to lipid and for promoting TAG secretion. On the other hand, substituting both Lys(58) and Lys(60) with Glu resulted in almost entire elimination of lipid binding and loss of function in promoting TAG secretion. Thus, the lipid binding domain of apoC-III plays a key role in the formation of LLD for hepatic VLDL assembly and secretion.

  4. Quantitative measurements of tumoral p95HER2 protein expression in metastatic breast cancer patients treated with trastuzumab: independent validation of the p95HER2 clinical cutoff.

    PubMed

    Duchnowska, Renata; Sperinde, Jeff; Chenna, Ahmed; Haddad, Mojgan; Paquet, Agnes; Lie, Yolanda; Weidler, Jodi M; Huang, Weidong; Winslow, John; Jankowski, Tomasz; Czartoryska-Arłukowicz, Bogumiła; Wysocki, Piotr J; Foszczyńska-Kłoda, Małgorzata; Radecka, Barbara; Litwiniuk, Maria M; Zok, Jolanta; Wiśniewski, Michał; Zuziak, Dorota; Biernat, Wojciech; Jassem, Jacek

    2014-05-15

    P95HER2 (p95) is a truncated form of the HER2, which lacks the trastuzumab-binding site and contains a hyperactive kinase domain. Previously, an optimal clinical cutoff of p95 expression for progression-free survival (PFS) and overall survival (OS) was defined using a quantitative VeraTag assay (Monogram Biosciences) in a training set of trastuzumab-treated metastatic breast cancer (MBC) patients. In the current study, the predictive value of the p95 VeraTag assay cutoff established in the training set was retrospectively validated for PFS and OS in an independent series of 240 trastuzumab-treated MBC patients from multiple institutions. In the subset of 190 tumors assessed as HER2-total (H2T)-positive using the quantitative HERmark assay (Monogram Biosciences), p95 VeraTag values above the predefined cutoff correlated with shorter PFS (HR = 1.43; P = 0.039) and shorter OS (HR = 1.94; P = 0.0055) where both outcomes were stratified by hormone receptor status and tumor grade. High p95 expression correlated with shorter PFS (HR = 2.41; P = 0.0003) and OS (HR = 2.57; P = 0.0025) in the hormone receptor-positive subgroup of patients (N = 78), but not in the hormone receptor-negative group. In contrast with the quantitative p95 VeraTag measurements, p95 immunohistochemical expression using the same antibody was not significantly correlated with outcomes. The consistency in the p95 VeraTag cutoff across different cohorts of patients with MBC treated with trastuzumab justifies additional studies using blinded analyses in larger series of patients. ©2014 American Association for Cancer Research.

  5. Molecular Mechanisms of Increased Heart Rate in Shenxianshengmai-treated Bradycardia Rabbits.

    PubMed

    Liu, Zhou-Ying; Huang, Jian; Liu, Na-Na; Zheng, Min; Zhao, Tao; Zhao, Bu-Chang; Wang, Yi-Min; Pu, Jie-Lin

    2017-01-20

    The molecular mechanisms of Shenxianshengmai (SXSM), a traditional Chinese medicine, on bradycardia have been incompletely understood. The study tried to investigate the gene expression profile and proteomics of bradycardia rabbits' hearts after SXSM treatment. Twenty-four adult rabbits were randomly assigned in four groups: sham, model, model plus SXSM treatment, and sham plus SXSM treatment groups. Heart rate was recorded in all rabbits. Then, total RNA of atria and proteins of ventricle were isolated and quantified, respectively. Gene expression profiling was conducted by gene expression chip, and quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed to confirm the results of gene expression chip. We used isobaric tags for elative and absolute quantitation and Western blotting to identify altered proteins after SXSM treatment. There was a constant decrease in the mean heart rate (32%, from 238 ± 6 beats/min to 149 ± 12 beats/min) after six weeks in model compared with that in sham group. This effect was partially reversed by 4-week SXSM treatment. Complementary DNA microarray demonstrated that the increased acetylcholinesterase and reduced nicotinic receptor were take responsibility for the increased heart rate. In addition, proteins involved in calcium handling and signaling were affected by SXSM treatment. Real-time RT-PCR verified the results from gene chip. Results from proteomics demonstrated that SXSM enhanced oxidative phosphorylation and tricarboxylic acid (TCA) cycle in ventricular myocardium to improve ATP generation. Long-term SXSM stimulates sympathetic transmission by increasing the expression of acetylcholinesterase and reduces the expression of nicotinic receptor to increase heart rate. SXSM also restored the calcium handling genes and altered genes involved in signaling. In addition, SXSM improves the ATP supply of ventricular myocardium by increasing proteins involved in TCA cycle and oxidation-respiratory chain.

  6. Molecular Mechanisms of Increased Heart Rate in Shenxianshengmai-treated Bradycardia Rabbits

    PubMed Central

    Liu, Zhou-Ying; Huang, Jian; Liu, Na-Na; Zheng, Min; Zhao, Tao; Zhao, Bu-Chang; Wang, Yi-Min; Pu, Jie-Lin

    2017-01-01

    Background: The molecular mechanisms of Shenxianshengmai (SXSM), a traditional Chinese medicine, on bradycardia have been incompletely understood. The study tried to investigate the gene expression profile and proteomics of bradycardia rabbits’ hearts after SXSM treatment. Methods: Twenty-four adult rabbits were randomly assigned in four groups: sham, model, model plus SXSM treatment, and sham plus SXSM treatment groups. Heart rate was recorded in all rabbits. Then, total RNA of atria and proteins of ventricle were isolated and quantified, respectively. Gene expression profiling was conducted by gene expression chip, and quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed to confirm the results of gene expression chip. We used isobaric tags for elative and absolute quantitation and Western blotting to identify altered proteins after SXSM treatment. Results: There was a constant decrease in the mean heart rate (32%, from 238 ± 6 beats/min to 149 ± 12 beats/min) after six weeks in model compared with that in sham group. This effect was partially reversed by 4-week SXSM treatment. Complementary DNA microarray demonstrated that the increased acetylcholinesterase and reduced nicotinic receptor were take responsibility for the increased heart rate. In addition, proteins involved in calcium handling and signaling were affected by SXSM treatment. Real-time RT-PCR verified the results from gene chip. Results from proteomics demonstrated that SXSM enhanced oxidative phosphorylation and tricarboxylic acid (TCA) cycle in ventricular myocardium to improve ATP generation. Conclusions: Long-term SXSM stimulates sympathetic transmission by increasing the expression of acetylcholinesterase and reduces the expression of nicotinic receptor to increase heart rate. SXSM also restored the calcium handling genes and altered genes involved in signaling. In addition, SXSM improves the ATP supply of ventricular myocardium by increasing proteins involved in TCA cycle and oxidation-respiratory chain. PMID:28091410

  7. Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei.

    PubMed

    Coram, Tristan E; Pang, Edwin C K

    2006-11-01

    Using microarray technology and a set of chickpea (Cicer arietinum L.) unigenes, grasspea (Lathyrus sativus L.) expressed sequence tags (ESTs) and lentil (Lens culinaris Med.) resistance gene analogues, the ascochyta blight (Ascochyta rabiei (Pass.) L.) resistance response was studied in four chickpea genotypes, including resistant, moderately resistant, susceptible and wild relative (Cicer echinospermum L.) genotypes. The experimental system minimized environmental effects and was conducted in reference design, in which samples from mock-inoculated controls acted as reference against post-inoculation samples. Robust data quality was achieved through the use of three biological replicates (including a dye swap), the inclusion of negative controls and strict selection criteria for differentially expressed genes, including a fold change cut-off determined by self-self hybridizations, Student's t-test and multiple testing correction (P < 0.05). Microarray observations were also validated by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). The time course expression patterns of 756 microarray features resulted in the differential expression of 97 genes in at least one genotype at one time point. k-means clustering grouped the genes into clusters of similar observations for each genotype, and comparisons between A. rabiei-resistant and A. rabiei-susceptible genotypes revealed potential gene 'signatures' predictive of effective A. rabiei resistance. These genes included several pathogenesis-related proteins, SNAKIN2 antimicrobial peptide, proline-rich protein, disease resistance response protein DRRG49-C, environmental stress-inducible protein, leucine-zipper protein, polymorphic antigen membrane protein, Ca-binding protein and several unknown proteins. The potential involvement of these genes and their pathways of induction are discussed. This study represents the first large-scale gene expression profiling in chickpea, and future work will focus on the functional validation of the genes of interest.

  8. Transcriptome Analysis of Liangshan Pig Muscle Development at the Growth Curve Inflection Point and Asymptotic Stages Using Digital Gene Expression Profiling

    PubMed Central

    Du, Jingjing; Liu, Chendong; Wu, Xiaoqian; Pu, Qiang; Fu, Yuhua; Tang, Qianzi; Liu, Yuanrui; Li, Qiang; Yang, Runlin; Li, Xuewei; Tang, Guoqing; Jiang, Yanzhi; Li, Mingzhou; Zhang, Shunhua; Zhu, Li

    2015-01-01

    Animal growth curves can provide essential information for animal breeders to optimize feeding and management strategies. However, the genetic mechanism underlying the phenotypic differentiation between the inflection point and asymptotic stages of the growth curve is not well characterized. Here, we employed Liangshan pigs in stages of growth at the inflection point (under inflection point: UIP) and the two asymptotic stages (before the inflection point: BIP, after the inflection point: AIP) as models to survey global gene expression in the longissimus dorsi muscle using digital gene expression (DGE) tag profiling. We found Liangshan pigs reached maximum growth rate (UIP) at 163.6 days of age and a weight of 134.6 kg. The DGE libraries generated 117 million reads of 5.89 gigabases in length. 21,331, 20,996 and 20,139 expressed transcripts were identified BIP, UIP and AIP, respectively. Among them, we identified 757 differentially expressed genes (DEGs) between BIP and UIP, and 271 DEGs between AIP and UIP. An enrichment analysis of DEGs proved the immune system was strengthened in the AIP stage. Energy metabolism rate, global transcriptional activity and bone development intensity were highest UIP. Meat from Liangshan pigs had the highest intramuscular fat content and most favorable fatty acid composition in the AIP. Three hundred eighty (27.70%) specific expression genes were highly enriched in QTL regions for growth and meat quality traits. This study completed a comprehensive analysis of diverse genetic mechanisms underlying the inflection point and asymptotic stages of growth. Our findings will serve as an important resource in the understanding of animal growth and development in indigenous pig breeds. PMID:26292092

  9. Transcriptome Analysis of Liangshan Pig Muscle Development at the Growth Curve Inflection Point and Asymptotic Stages Using Digital Gene Expression Profiling.

    PubMed

    Shen, Linyuan; Luo, Jia; Du, Jingjing; Liu, Chendong; Wu, Xiaoqian; Pu, Qiang; Fu, Yuhua; Tang, Qianzi; Liu, Yuanrui; Li, Qiang; Yang, Runlin; Li, Xuewei; Tang, Guoqing; Jiang, Yanzhi; Li, Mingzhou; Zhang, Shunhua; Zhu, Li

    2015-01-01

    Animal growth curves can provide essential information for animal breeders to optimize feeding and management strategies. However, the genetic mechanism underlying the phenotypic differentiation between the inflection point and asymptotic stages of the growth curve is not well characterized. Here, we employed Liangshan pigs in stages of growth at the inflection point (under inflection point: UIP) and the two asymptotic stages (before the inflection point: BIP, after the inflection point: AIP) as models to survey global gene expression in the longissimus dorsi muscle using digital gene expression (DGE) tag profiling. We found Liangshan pigs reached maximum growth rate (UIP) at 163.6 days of age and a weight of 134.6 kg. The DGE libraries generated 117 million reads of 5.89 gigabases in length. 21,331, 20,996 and 20,139 expressed transcripts were identified BIP, UIP and AIP, respectively. Among them, we identified 757 differentially expressed genes (DEGs) between BIP and UIP, and 271 DEGs between AIP and UIP. An enrichment analysis of DEGs proved the immune system was strengthened in the AIP stage. Energy metabolism rate, global transcriptional activity and bone development intensity were highest UIP. Meat from Liangshan pigs had the highest intramuscular fat content and most favorable fatty acid composition in the AIP. Three hundred eighty (27.70%) specific expression genes were highly enriched in QTL regions for growth and meat quality traits. This study completed a comprehensive analysis of diverse genetic mechanisms underlying the inflection point and asymptotic stages of growth. Our findings will serve as an important resource in the understanding of animal growth and development in indigenous pig breeds.

  10. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees

    PubMed Central

    2011-01-01

    Background Malnutrition is a major factor affecting animal health, resistance to disease and survival. In honey bees (Apis mellifera), pollen, which is the main dietary source of proteins, amino acids and lipids, is essential to adult bee physiological development while reducing their susceptibility to parasites and pathogens. However, the molecular mechanisms underlying pollen's nutritive impact on honey bee health remained to be determined. For that purpose, we investigated the influence of pollen nutrients on the transcriptome of worker bees parasitized by the mite Varroa destructor, known for suppressing immunity and decreasing lifespan. The 4 experimental groups (control bees without a pollen diet, control bees fed with pollen, varroa-parasitized bees without a pollen diet and varroa-parasitized bees fed with pollen) were analyzed by performing a digital gene expression (DGE) analysis on bee abdomens. Results Around 36, 000 unique tags were generated per DGE-tag library, which matched about 8, 000 genes (60% of the genes in the honey bee genome). Comparing the transcriptome of bees fed with pollen and sugar and bees restricted to a sugar diet, we found that pollen activates nutrient-sensing and metabolic pathways. In addition, those nutrients had a positive influence on genes affecting longevity and the production of some antimicrobial peptides. However, varroa parasitism caused the development of viral populations and a decrease in metabolism, specifically by inhibiting protein metabolism essential to bee health. This harmful effect was not reversed by pollen intake. Conclusions The DGE-tag profiling methods used in this study proved to be a powerful means for analyzing transcriptome variation related to nutrient intake in honey bees. Ultimately, with such an approach, applying genomics tools to nutrition research, nutrigenomics promises to offer a better understanding of how nutrition influences body homeostasis and may help reduce the susceptibility of bees to (less virulent) pathogens. PMID:21985689

  11. Expression, purification, and kinetic characterization of full-length human fibroblast activation protein.

    PubMed

    Sun, Shaoxian; Albright, Charles F; Fish, Barbara H; George, Henry J; Selling, Bernard H; Hollis, Gregory F; Wynn, Richard

    2002-03-01

    Human fibroblast activation protein (FAP), an integral membrane serine protease, was produced in insect cells as a hexa-His-tagged protein using a recombinant baculovirus expression system. Two isoforms of FAP, glycosylated and nonglycosylated, were identified by Western blotting using an anti-His-tag antibody and separated by lectin chromatography. The glycosylated FAP was purified to near homogeneity using immobilized metal affinity chromatography and was shown to have both postprolyl dipeptidyl peptidase and postgelatinase activities. In contrast, the nonglycosylated isoform demonstrated no detectable gelatinase activity by either zymography or a fluorescence-based gelatinase activity assay. The kinetic parameters of the dipeptidyl peptidase activity for glycosylated FAP were determined using dipeptide Ala-Pro-7-amino-trifluoromethyl-coumarin as the substrate. The k(cat) is 2.0 s(-1) and k(cat)/K(m) is 1.0 x 10(4) M(-1) s(-1) at pH 8.5. The pH dependence of k(cat) reveals two ionization groups with pK(a1) of 7.0 and pK(a2) of 11.0. The pH profile of k(cat)/K(m) yields similar results with pK(a1) 6.2 and pK(a2) 11.0. The neutral pK(a1) is associated with His at the active site. The basic pK(a2) might be contributed from an ionization group that is not involved directly in catalysis, instead associated with the stability of the active site structure. Copyright 2002 Elsevier Science (USA).

  12. Designed Proteins as Novel Imaging Reagents in Living Escherichia coli.

    PubMed

    Pratt, Susan E; Speltz, Elizabeth B; Mochrie, Simon G J; Regan, Lynne

    2016-09-02

    Fluorescence imaging is a powerful tool to study protein function in living cells. Here, we introduce a novel imaging strategy that is fully genetically encodable, does not require the use of exogenous substrates, and adds a minimally disruptive tag to the protein of interest (POI). Our method was based on a set of designed tetratricopeptide repeat affinity proteins (TRAPs) that specifically and reversibly interact with a short, extended peptide tag. We co-expressed the TRAPs fused to fluorescent proteins (FPs) and the peptide tags fused to the POIs. We illustrated the method using the Escherichia coli protein FtsZ and showed that our system could track distinct FtsZ structures under both low and high expression conditions in live cells. We anticipate that our imaging strategy will be a useful tool for imaging the subcellular localization of many proteins, especially those recalcitrant to imaging by direct tagging with FPs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The catalytic activity of a recombinant single chain variable fragment nucleic acid-hydrolysing antibody varies with fusion tag and expression host.

    PubMed

    Lee, Joungmin; Kim, Minjae; Seo, Youngsil; Lee, Yeonjin; Park, Hyunjoon; Byun, Sung June; Kwon, Myung-Hee

    2017-11-01

    The antigen-binding properties of single chain Fv antibodies (scFvs) can vary depending on the position and type of fusion tag used, as well as the host cells used for expression. The issue is even more complicated with a catalytic scFv antibody that binds and hydrolyses a specific antigen. Herein, we investigated the antigen-binding and -hydrolysing activities of the catalytic anti-nucleic acid antibody 3D8 scFv expressed in Escherichia coli or HEK293f cells with or without additional amino acid residues at the N- and C-termini. DNA-binding activity was retained in all recombinant forms. However, the DNA-hydrolysing activity varied drastically between forms. The DNA-hydrolysing activity of E. coli-derived 3D8 scFvs was not affected by the presence of a C-terminal human influenza haemagglutinin (HA) or His tag. By contrast, the activity of HEK293f-derived 3D8 scFvs was completely lost when additional residues were included at the N-terminus and/or when a His tag was incorporated at the C-terminus, whereas a HA tag at the C-terminus did not diminish activity. Thus, we demonstrate that the antigen-binding and catalytic activities of a catalytic antibody can be separately affected by the presence of additional residues at the N- and C-termini, and by the host cell type. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. De Novo Transcriptome Sequencing Reveals Important Molecular Networks and Metabolic Pathways of the Plant, Chlorophytum borivilianum

    PubMed Central

    Kalra, Shikha; Puniya, Bhanwar Lal; Kulshreshtha, Deepika; Kumar, Sunil; Kaur, Jagdeep; Ramachandran, Srinivasan; Singh, Kashmir

    2013-01-01

    Chlorophytum borivilianum, an endangered medicinal plant species is highly recognized for its aphrodisiac properties provided by saponins present in the plant. The transcriptome information of this species is limited and only few hundred expressed sequence tags (ESTs) are available in the public databases. To gain molecular insight of this plant, high throughput transcriptome sequencing of leaf RNA was carried out using Illumina's HiSeq 2000 sequencing platform. A total of 22,161,444 single end reads were retrieved after quality filtering. Available (e.g., De-Bruijn/Eulerian graph) and in-house developed bioinformatics tools were used for assembly and annotation of transcriptome. A total of 101,141 assembled transcripts were obtained, with coverage size of 22.42 Mb and average length of 221 bp. Guanine-cytosine (GC) content was found to be 44%. Bioinformatics analysis, using non-redundant proteins, gene ontology (GO), enzyme commission (EC) and kyoto encyclopedia of genes and genomes (KEGG) databases, extracted all the known enzymes involved in saponin and flavonoid biosynthesis. Few genes of the alkaloid biosynthesis, along with anticancer and plant defense genes, were also discovered. Additionally, several cytochrome P450 (CYP450) and glycosyltransferase unique sequences were also found. We identified simple sequence repeat motifs in transcripts with an abundance of di-nucleotide simple sequence repeat (SSR; 43.1%) markers. Large scale expression profiling through Reads per Kilobase per Million mapped reads (RPKM) showed major genes involved in different metabolic pathways of the plant. Genes, expressed sequence tags (ESTs) and unique sequences from this study provide an important resource for the scientific community, interested in the molecular genetics and functional genomics of C. borivilianum. PMID:24376689

  15. De Novo transcriptome sequencing reveals important molecular networks and metabolic pathways of the plant, Chlorophytum borivilianum.

    PubMed

    Kalra, Shikha; Puniya, Bhanwar Lal; Kulshreshtha, Deepika; Kumar, Sunil; Kaur, Jagdeep; Ramachandran, Srinivasan; Singh, Kashmir

    2013-01-01

    Chlorophytum borivilianum, an endangered medicinal plant species is highly recognized for its aphrodisiac properties provided by saponins present in the plant. The transcriptome information of this species is limited and only few hundred expressed sequence tags (ESTs) are available in the public databases. To gain molecular insight of this plant, high throughput transcriptome sequencing of leaf RNA was carried out using Illumina's HiSeq 2000 sequencing platform. A total of 22,161,444 single end reads were retrieved after quality filtering. Available (e.g., De-Bruijn/Eulerian graph) and in-house developed bioinformatics tools were used for assembly and annotation of transcriptome. A total of 101,141 assembled transcripts were obtained, with coverage size of 22.42 Mb and average length of 221 bp. Guanine-cytosine (GC) content was found to be 44%. Bioinformatics analysis, using non-redundant proteins, gene ontology (GO), enzyme commission (EC) and kyoto encyclopedia of genes and genomes (KEGG) databases, extracted all the known enzymes involved in saponin and flavonoid biosynthesis. Few genes of the alkaloid biosynthesis, along with anticancer and plant defense genes, were also discovered. Additionally, several cytochrome P450 (CYP450) and glycosyltransferase unique sequences were also found. We identified simple sequence repeat motifs in transcripts with an abundance of di-nucleotide simple sequence repeat (SSR; 43.1%) markers. Large scale expression profiling through Reads per Kilobase per Million mapped reads (RPKM) showed major genes involved in different metabolic pathways of the plant. Genes, expressed sequence tags (ESTs) and unique sequences from this study provide an important resource for the scientific community, interested in the molecular genetics and functional genomics of C. borivilianum.

  16. Multiple Velocity Profile Measurements in Hypersonic Flows using Sequentially-Imaged Fluorescence Tagging

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Inmian, Jennifer A.; Jones, Stephen B.; Ivey, Christopher B.; Goyne, Christopher P.

    2010-01-01

    Nitric-oxide planar laser-induced fluorescence (NO PLIF) was used to perform velocity measurements in hypersonic flows by generating multiple tagged lines which fluoresce as they convect downstream. For each laser pulse, a single interline, progressive scan intensified CCD camera was used to obtain separate images of the initial undelayed and delayed NO molecules that had been tagged by the laser. The CCD configuration allowed for sub-microsecond acquisition of both images, resulting in sub-microsecond temporal resolution as well as sub-mm spatial resolution (0.5-mm x 0.7-mm). Determination of axial velocity was made by application of a cross-correlation analysis of the horizontal shift of individual tagged lines. Quantification of systematic errors, the contribution of gating/exposure duration errors, and influence of collision rate on fluorescence to temporal uncertainty were made. Quantification of the spatial uncertainty depended upon the analysis technique and signal-to-noise of the acquired profiles. This investigation focused on two hypersonic flow experiments: (1) a reaction control system (RCS) jet on an Orion Crew Exploration Vehicle (CEV) wind tunnel model and (2) a 10-degree half-angle wedge containing a 2-mm tall, 4-mm wide cylindrical boundary layer trip. The experiments were performed at the NASA Langley Research Center's 31-inch Mach 10 wind tunnel.

  17. Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass

    DOE PAGES

    Zale, Janice; Jung, Je Hyeong; Kim, Jae Yoon; ...

    2015-06-08

    Elevating the lipid content in vegetative tissues has emerged as a new strategy for increasing energy density and biofuel yield of crops. Storage lipids in contrast to structural and signaling lipids are mainly composed of glycerol esters of fatty acids, also known as triacylglycerol (TAG). TAGs are one of the most energy-rich and abundant forms of reduced carbon available in nature. Therefore, altering the carbon-partitioning balance in favour of TAG in vegetative tissues of sugarcane, one of the highest yielding biomass crops, is expected to drastically increase energy yields. We report metabolic engineering to elevate TAG accumulation in vegetative tissuesmore » of sugarcane. Constitutive co-expression of WRINKLED1 (WRI1), diacylglycerol acyltransferase1-2 (DGAT1-2) and oleosin1 (OLE1) and simultaneous cosuppression of ADP-glucose pyrophosphorylase (AGPase) and a subunit of the peroxisomal ABC transporter1 (PXA1) in transgenic sugarcane elevated TAG accumulation in leaves or stems by 95- or 43-fold to 1.9% or 0.9% of dry weight (DW), respectively, while expression or suppression of one to three of the target genes increased TAG levels by 1.5- to 9.5-fold. Accumulation of TAG in vegetative progeny plants was consistent with the results from primary transgenics and contributed to a total fatty acid content of up to 4.7% or 1.7% of DW in mature leaves or stems, respectively. We saw lipid droplets in mesophyll cells of transgenic leaves by confocal fluorescence microscopy. These results provide the basis for optimizations of TAG accumulation in sugarcane and other high yielding biomass grasses and will open new prospects for biofuel applications.« less

  18. Molecular profile of the unique species of traditional Chinese medicine, Chinese seahorse (Hippocampus kuda Bleeker).

    PubMed

    Zhang, Ning; Xu, Bin; Mou, Chunyan; Yang, Wenli; Wei, Jianwen; Lu, Liang; Zhu, Junjie; Du, Jingchun; Wu, Xiaokun; Ye, Lanting; Fu, Zhiyan; Lu, Yang; Lin, Jianghai; Sun, Zizi; Su, Jing; Dong, Meiling; Xu, Anlong

    2003-08-28

    A cDNA library of male Chinese seahorse (Hippocampus kuda Bleeker) was constructed to investigate the molecular profile of seahorse as one of the most famous traditional Chinese medicine materials, and to reveal immunological and physiological mechanisms of seahorse as one of the most primitive vertebrates at molecular level. A total of 3372 expressed sequence tags (ESTs) consisting of 1911 unique genes (345 clusters and 1566 singletons) were examined in the present study. Identification of the genes related to immune system, paternal brooding and physiological regulation provides not only valuable insights into the molecular mechanism of immune system in teleost fish but also plausible explanations for pharmacological activities of Chinese seahorse. Furthermore, the occurrence of high prevalent C-type lectins suggested that a lectin-complement pathway might exert a more dominant function in the innate immune system of teleost than mammal. Carbohydrate recognition domain (CRD) without a collagen-like region in the lectins of seahorse was likely an ancient characteristic of lectins similar to invertebrates.

  19. High-resolution metabolic mapping of cell types in plant roots

    PubMed Central

    Moussaieff, Arieh; Rogachev, Ilana; Brodsky, Leonid; Malitsky, Sergey; Toal, Ted W.; Belcher, Heather; Yativ, Merav; Brady, Siobhan M.; Benfey, Philip N.; Aharoni, Asaph

    2013-01-01

    Metabolite composition offers a powerful tool for understanding gene function and regulatory processes. However, metabolomics studies on multicellular organisms have thus far been performed primarily on whole organisms, organs, or cell lines, losing information about individual cell types within a tissue. With the goal of profiling metabolite content in different cell populations within an organ, we used FACS to dissect GFP-marked cells from Arabidopsis roots for metabolomics analysis. Here, we present the metabolic profiles obtained from five GFP-tagged lines representing core cell types in the root. Fifty metabolites were putatively identified, with the most prominent groups being glucosinolates, phenylpropanoids, and dipeptides, the latter of which is not yet explored in roots. The mRNA expression of enzymes or regulators in the corresponding biosynthetic pathways was compared with the relative metabolite abundance. Positive correlations suggest that the rate-limiting steps in biosynthesis of glucosinolates in the root are oxidative modifications of side chains. The current study presents a work flow for metabolomics analyses of cell-type populations. PMID:23476065

  20. NMR-based metabolomics reveals the metabolite profiles of Vibrio parahaemolyticus under ferric iron stimulation.

    PubMed

    Zhou, Jun; Lu, Chenyang; Zhang, Dijun; Ma, Chennv; Su, Xiurong

    2017-08-01

    Vibrio parahaemolyticus is a halophilic bacterium endemic to coastal areas, and its pathogenicity has caused widespread seafood poisoning. In our previous research, the protein expression of V. parahaemolyticus in Fe 3+ medium was determined using isobaric tags for relative and absolute quantitation (iTRAQ). Here, nuclear magnetic resonance (NMR) was used to detect changes in the V. parahaemolyticus metabolome. NMR spectra were obtained using methanol-water extracts of intracellular metabolites from V. parahaemolyticus under various culture conditions, and 62 metabolites were identified, including serine, arginine, alanine, ornithine, tryptophan, glutamine, malate, NAD + , NADP + , oxypurinol, xanthosine, dCTP, uracil, thymine, hypoxanthine, and betaine. Among these, 21 metabolites were up-regulated after the stimulation of the cells by ferric iron, and 9 metabolites were down-regulated. These metabolites are involved in amino acid and protein synthesis, energy metabolism, DNA and RNA synthesis and osmolality. Based on these results, we conclude that Fe 3+ influences the metabolite profiles of V. parahaemolyticus.

  1. Preponderance of toxigenic Escherichia coli in stool pathogens correlates with toxin detection in accessible drinking-water sources.

    PubMed

    Igbokwe, H; Bhattacharyya, S; Gradus, S; Khubbar, M; Griswold, D; Navidad, J; Igwilo, C; Masson-Meyers, D; Azenabor, A A

    2015-02-01

    Since early detection of pathogens and their virulence factors contribute to intervention and control strategies, we assessed the enteropathogens in diarrhoea disease and investigated the link between toxigenic strains of Escherichia coli from stool and drinking-water sources; and determined the expression of toxin genes by antibiotic-resistant E. coli in Lagos, Nigeria. This was compared with isolates from diarrhoeal stool and water from Wisconsin, USA. The new Luminex xTAG GPP (Gastroplex) technique and conventional real-time PCR were used to profile enteric pathogens and E. coli toxin gene isolates, respectively. Results showed the pathogen profile of stool and indicated a relationship between E. coli toxin genes in water and stool from Lagos which was absent in Wisconsin isolates. The Gastroplex technique was efficient for multiple enteric pathogens and toxin gene detection. The co-existence of antibiotic resistance with enteroinvasive E. coli toxin genes suggests an additional prognostic burden on patients.

  2. A review of Brazilian scientific output on crack--contributions to the political agenda.

    PubMed

    Moreira, Marcelo Rasga; Fernandes, Fernando Manuel Bessa; Ribeiro, José Mendes; Franco Neto, Thereza de Lamare

    2015-04-01

    scientific literature about crack abuse published in Brazilian journals indexed in SCIELO. systematic review of literature treating findings as a framework for agenda-setting orienting policy decision makers. SCIELO online journals research since 02/06/2013 on tag crack as "key word searched" and in indexes as "research amplitude". An amount of 199 references were identified and their abstracts were analyzed getting to a final group of 59 articles specifically studying crack issues in Brazil. institutional criteria (journal, subject area, and publishing time) and analytical categories created by the authors: "Social Risk", "Treatment", "Use/Abuse", "Profile", "Social Relations", and "Study". crack use impact Brazilian journals since 2011; health field is prominent; articles about "Associated Risk" and "Treatment" prevail; SUS cannot face demand;investment improvement in CAP and harm reduction; therapeutic communities need to match with SUS standards; youngers, black people and poor express users profile; rave style use; repressive policies were not well succeeded; and multidisciplinary approach are necessary.

  3. Targeted Elimination of PCDH-PC Expressing Prostate Cancer Cells for Control of Hormone-Resistant Prostate Cancer

    DTIC Science & Technology

    2007-11-01

    SDS-PAGE gel . The Western blot made from this gel was probed with antibody that recognizes the myc-tag. When compared to the extracts from the...SDS-PAGE gel and blotted onto a filter. The filter was probed with an anti-myc antibody. The levels of myc-tagged PCDH-PC protein in cells co...Specific Aim 2. Design and test antisense oligonucleotides ( ASOs ) that suppress PCDH-PC expression in prostate cancer cells. Work Done: We used

  4. The metabolism of structured triacylglycerols.

    PubMed

    Mu, Huiling; Porsgaard, Trine

    2005-11-01

    The triacylglycerol (TAG) structure in addition to the overall fatty acid profile is of importance when considering the nutritional effect of a dietary fat. This review aims at summarizing our current knowledge of the digestion, absorption, uptake, and transport of structured TAGs, with particular emphasis on the following aspects: gastric emptying, specificity of pancreatic lipase, lymphatic transport and clearance of chylomicrons, effects of lipid structure on tissue lipid compositions and the fecal loss of fats. So an overview will be provided for how the structure and fatty acid composition of TAGs affect their absorption and the distribution of the fatty acids in the body following digestion and absorption.

  5. Characterization of the cork oak transcriptome dynamics during acorn development.

    PubMed

    Miguel, Andreia; de Vega-Bartol, José; Marum, Liliana; Chaves, Inês; Santo, Tatiana; Leitão, José; Varela, Maria Carolina; Miguel, Célia M

    2015-06-25

    Cork oak (Quercus suber L.) has a natural distribution across western Mediterranean regions and is a keystone forest tree species in these ecosystems. The fruiting phase is especially critical for its regeneration but the molecular mechanisms underlying the biochemical and physiological changes during cork oak acorn development are poorly understood. In this study, the transcriptome of the cork oak acorn, including the seed, was characterized in five stages of development, from early development to acorn maturation, to identify the dominant processes in each stage and reveal transcripts with important functions in gene expression regulation and response to water. A total of 80,357 expressed sequence tags (ESTs) were de novo assembled from RNA-Seq libraries representative of the several acorn developmental stages. Approximately 7.6 % of the total number of transcripts present in Q. suber transcriptome was identified as acorn specific. The analysis of expression profiles during development returned 2,285 differentially expressed (DE) transcripts, which were clustered into six groups. The stage of development corresponding to the mature acorn exhibited an expression profile markedly different from other stages. Approximately 22 % of the DE transcripts putatively code for transcription factors (TF) or transcriptional regulators, and were found almost equally distributed among the several expression profile clusters, highlighting their major roles in controlling the whole developmental process. On the other hand, carbohydrate metabolism, the biological pathway most represented during acorn development, was especially prevalent in mid to late stages as evidenced by enrichment analysis. We further show that genes related to response to water, water deprivation and transport were mostly represented during the early (S2) and the last stage (S8) of acorn development, when tolerance to water desiccation is possibly critical for acorn viability. To our knowledge this work represents the first report of acorn development transcriptomics in oaks. The obtained results provide novel insights into the developmental biology of cork oak acorns, highlighting transcripts putatively involved in the regulation of the gene expression program and in specific processes likely essential for adaptation. It is expected that this knowledge can be transferred to other oak species of great ecological value.

  6. Model study of modern oil-based paint media by triacylglycerol profiling in positive and negative ionization modes.

    PubMed

    Degano, Ilaria; La Nasa, Jacopo; Ghelardi, Elisa; Modugno, Francesca; Colombini, Maria Perla

    2016-12-01

    Lipid binders have traditionally been determined in paintings by using gas chromatography/mass spectrometry (GC/MS) to identify the characteristic profiles and ratios of fatty acids . However, the presence of mixtures in contemporary and modern oil paints makes the GC/MS determination of fatty acids insufficient to fully characterize the lipid binding media. In this study we prove that triacylglycerol (TAG) profiling by high-performance liquid chromatography with high-resolution tandem mass spectrometry, using ESI in positive and negative ionization modes is highly effective. We exploited this analytical approach to study the curing and degradation processes undergone by six plant oils used in the formulation of media in modern paints, using both natural and artificial ageing experiments. We believe that is the first time that a negative ionization mode has been applied for this purpose and that a survey with HPLC-ESI-Q-ToF has been carried out to study the ageing kinetics of plant oils. TAG profiling enabled us to study the evolution over time of the constituents of modern oils, with respect to curing and ageing. The data analyzed in this study demonstrate that our approach is efficient to study the oxidation of TAGs during ageing. The data also improve current knowledge on the properties of vegetable oils, which could lead to the development of new paint materials and conservation treatments for modern and contemporary works of art. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Fatty acid methyl ester profiles of bat wing surface lipids.

    PubMed

    Pannkuk, Evan L; Fuller, Nathan W; Moore, Patrick R; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-11-01

    Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration.

  8. Structure-function analysis of diacylglycerol acyltransferase sequences for metabolic engineering and drug discovery

    USDA-ARS?s Scientific Manuscript database

    Diacylglycerol acyltransferase families (DGATs) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT knockout mice are resistant to diet-induced obesity and lack milk secretion. Over-expression of DGATs increases TAG in plants. Therefore, unde...

  9. Strep-Tagged Protein Purification.

    PubMed

    Maertens, Barbara; Spriestersbach, Anne; Kubicek, Jan; Schäfer, Frank

    2015-01-01

    The Strep-tag system can be used to purify recombinant proteins from any expression system. Here, protocols for lysis and affinity purification of Strep-tagged proteins from E. coli, baculovirus-infected insect cells, and transfected mammalian cells are given. Depending on the amount of Strep-tagged protein in the lysate, a protocol for batch binding and subsequent washing and eluting by gravity flow can be used. Agarose-based matrices with the coupled Strep-Tactin ligand are the resins of choice, with a binding capacity of up to 9 mg ml(-1). For purification of lower amounts of Strep-tagged proteins, the use of Strep-Tactin magnetic beads is suitable. In addition, Strep-tagged protein purification can also be automated using prepacked columns for FPLC or other liquid-handling chromatography instrumentation, but automated purification is not discussed in this protocol. The protocols described here can be regarded as an update of the Strep-Tag Protein Handbook (Qiagen, 2009). © 2015 Elsevier Inc. All rights reserved.

  10. Expression, purification, and DNA-binding activity of the Herbaspirillum seropedicae RecX protein.

    PubMed

    Galvão, Carolina W; Pedrosa, Fábio O; Souza, Emanuel M; Yates, M Geoffrey; Chubatsu, Leda S; Steffens, Maria Berenice R

    2004-06-01

    The Herbaspirillum seropedicae RecX protein participates in the SOS response: a process in which the RecA protein plays a central role. The RecX protein of the H. seropedicae, fused to a His-tag sequence (RecX His-tagged), was over-expressed in Escherichia coli and purified by metal-affinity chromatography to yield a highly purified and active protein. DNA band-shift assays showed that the RecX His-tagged protein bound to both circular and linear double-stranded DNA and also to circular single-stranded DNA. The apparent affinity of RecX for DNA decreased in the presence of Mg(2+) ions. The ability of RecX to bind DNA may be relevant to its function in the SOS response.

  11. Overview of the Purification of Recombinant Proteins

    PubMed Central

    Wingfield, Paul T.

    2015-01-01

    When the first version of this unit was written in 1995 protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches many of which were described and mentioned in this unit and elsewhere in the book. In the interim there has been a shift towards an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein and whether to engineer a self cleavage system or simply leave them on. We will briefly address some of these issues. Also although this overview focuses on E.coli, protein expression and purification from the other commonly used expression systems are mentioned and apart from cell breakage methods, the protein purification methods and strategies are essentially the same. PMID:25829302

  12. Subcellular localization of the five members of the human steroid 5α-reductase family.

    PubMed

    Scaglione, Antonella; Montemiglio, Linda Celeste; Parisi, Giacomo; Asteriti, Italia Anna; Bruni, Renato; Cerutti, Gabriele; Testi, Claudia; Savino, Carmelinda; Mancia, Filippo; Lavia, Patrizia; Vallone, Beatrice

    2017-06-01

    In humans the steroid 5alpha-reductase (SRD5A) family comprises five integral membrane enzymes that carry out reduction of a double bond in lipidic substrates: Δ 4 -3-keto steroids, polyprenol and trans-enoyl CoA. The best-characterized reaction is the conversion of testosterone into the more potent dihydrotestosterone carried out by SRD5A1-2. Some controversy exists on their possible nuclear or endoplasmic reticulum localization. We report the cloning and transient expression in HeLa cells of the five members of the human steroid 5α-reductase family as both N- and C-terminus green fluorescent protein tagged protein constructs. Following the intrinsic fluorescence of the tag, we have determined that the subcellular localization of these enzymes is in the endoplasmic reticulum, upon expression in HeLa cells. The presence of the tag at either end of the polypeptide chain can affect protein expression and, in the case of trans enoyl-CoA reductase, it induces the formation of protein aggregates.

  13. Overview of the purification of recombinant proteins.

    PubMed

    Wingfield, Paul T

    2015-04-01

    When the first version of this unit was written in 1995, protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches, many of which were described and mentioned throughout Current Protocols in Protein Science. In the interim, there has been a shift toward an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein, and whether to engineer a self-cleavage system or simply leave them on. We will briefly address some of these issues. Also, although this overview focuses on E.coli, protein expression and purification, other commonly used expression systems are mentioned and, apart from cell-breakage methods, protein purification methods and strategies are essentially the same. Copyright © 2015 John Wiley & Sons, Inc.

  14. Tab2, a novel recombinant polypeptide tag offering sensitive and specific protein detection and reliable affinity purification.

    PubMed

    Crusius, Kerstin; Finster, Silke; McClary, John; Xia, Wei; Larsen, Brent; Schneider, Douglas; Lu, Hong-Tao; Biancalana, Sara; Xuan, Jian-Ai; Newton, Alicia; Allen, Debbie; Bringmann, Peter; Cobb, Ronald R

    2006-10-01

    The detection and purification of proteins are often time-consuming and frequently involve complicated protocols. The addition of a peptide tag to recombinant proteins can make this process more efficient. Many of the commonly used tags, such as Flagtrade mark, Myc, HA and V5 are recognized by specific monoclonal antibodies and therefore, allow immunoaffinity-based purification. Enhancing the current scope of flexibility in using diverse peptide tags, we report here the development of a novel, short polypeptide tag (Tab2) for detection and purification of recombinant proteins. The Tab2 epitope corresponds to the NH2-terminal seven amino acid residues of human TGFalpha. A monoclonal anti-Tab2 antibody was raised and characterized. To investigate the potential of this peptide sequence as a novel tag for recombinant proteins, we expressed several different recombinant proteins containing this tag in E. coli, baculovirus, and mammalian cells. The data presented demonstrates the Tab2 tag-anti-Tab2 antibody combination is a reliable tool enabling specific Western blot detection, FACS analysis, and immunoprecipitation as well as non-denaturing protein affinity purification.

  15. Application of the accurate mass and time tag approach in studies of the human blood lipidome

    PubMed Central

    Ding, Jie; Sorensen, Christina M.; Jaitly, Navdeep; Jiang, Hongliang; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Metz, Thomas O.

    2008-01-01

    We report a preliminary demonstration of the accurate mass and time (AMT) tag approach for lipidomics. Initial data-dependent LC-MS/MS analyses of human plasma, erythrocyte, and lymphocyte lipids were performed in order to identify lipid molecular species in conjunction with complementary accurate mass and isotopic distribution information. Identified lipids were used to populate initial lipid AMT tag databases containing 250 and 45 entries for those species detected in positive and negative electrospray ionization (ESI) modes, respectively. The positive ESI database was then utilized to identify human plasma, erythrocyte, and lymphocyte lipids in high-throughput LC-MS analyses based on the AMT tag approach. We were able to define the lipid profiles of human plasma, erythrocytes, and lymphocytes based on qualitative and quantitative differences in lipid abundance. PMID:18502191

  16. Altered Lipid Composition and Enhanced Nutritional Value of Arabidopsis Leaves following Introduction of an Algal Diacylglycerol Acyltransferase 2[C][W

    PubMed Central

    Sanjaya; Miller, Rachel; Durrett, Timothy P.; Kosma, Dylan K.; Lydic, Todd A.; Muthan, Bagyalakshmi; Koo, Abraham J.K.; Bukhman, Yury V.; Reid, Gavin E.; Howe, Gregg A.; Ohlrogge, John; Benning, Christoph

    2013-01-01

    Enhancement of acyl-CoA–dependent triacylglycerol (TAG) synthesis in vegetative tissues is widely discussed as a potential avenue to increase the energy density of crops. Here, we report the identification and characterization of Chlamydomonas reinhardtii diacylglycerol acyltransferase type two (DGTT) enzymes and use DGTT2 to alter acyl carbon partitioning in plant vegetative tissues. This enzyme can accept a broad range of acyl-CoA substrates, allowing us to interrogate different acyl pools in transgenic plants. Expression of DGTT2 in Arabidopsis thaliana increased leaf TAG content, with some molecular species containing very-long-chain fatty acids. The acyl compositions of sphingolipids and surface waxes were altered, and cutin was decreased. The increased carbon partitioning into TAGs in the leaves of DGTT2-expressing lines had little effect on transcripts of the sphingolipid/wax/cutin pathway, suggesting that the supply of acyl groups for the assembly of these lipids is not transcriptionally adjusted. Caterpillars of the generalist herbivore Spodoptera exigua reared on transgenic plants gained more weight. Thus, the nutritional value and/or energy density of the transgenic lines was increased by ectopic expression of DGTT2 and acyl groups were diverted from different pools into TAGs, demonstrating the interconnectivity of acyl metabolism in leaves. PMID:23417035

  17. Gene Expression and Metabolite Profiling of Developing Highbush Blueberry Fruit Indicates Transcriptional Regulation of Flavonoid Metabolism and Activation of Abscisic Acid Metabolism1[W][OA

    PubMed Central

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A.; Zaharia, L. Irina; Schernthaner, Johann P.; Gesell, Andreas; Abrams, Suzanne R.; Kennedy, James A.; Constabel, C. Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3′-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3′5′-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of blueberry flavonoid biosynthesis. PMID:22086422

  18. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism.

    PubMed

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A; Zaharia, L Irina; Schernthaner, Johann P; Gesell, Andreas; Abrams, Suzanne R; Kennedy, James A; Constabel, C Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3'-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3'5'-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of blueberry flavonoid biosynthesis.

  19. A long-acting FGF21 alleviates hepatic steatosis and inflammation in NASH mice partly through an FGF21- adiponectin- IL17A axis.

    PubMed

    Bao, Lichen; Yin, Jun; Gao, Wen; Wang, Qun; Yao, Wenbing; Gao, Xiangdong

    2018-06-02

    NASH is the most severe form of NAFLD and is a serious public health problem around the world. There are currently no approved treatments for NASH. FGF21 has recently emerged as a promising drug candidate for metabolic diseases. However, the challenges in developing FGF21 as a novel medicine include its short plasma half-life and poor drug-like properties. Here, we explored the therapeutic effects of PsTag600-FGF21, an engineered long-acting FGF21 fusion protein, in NASH mice and revealed some of the mechanisms responsible for this activity. A long-acting FGF21 was prepared by genetic fusion with a 600 residues polypeptide (PsTag600). We conducted our studies using a choline-deficient high-fat diet (CD-HFD) induced NASH mouse model. In NASH mice, the effects on body weight, insulin sensitivity, inflammation and levels of hormones and metabolites were studied first. We further investigated whether PsTag600-FGF21 attenuated inflammation through the Th17-IL17A axis and the associated mechanisms. PsTag600-FGF21 dose-dependently reduced body weight, blood glucose, insulin and lipid levels and reversed hepatic steatosis. PsTag600-FGF21 enhanced fatty acid activation and mitochondrial β-oxidation in the liver. The profound reduction in hepatic inflammation in NASH mice was associated with PsTag600-FGF21 inhibition of IL17A expression in Th17 cells. Furthermore, PsTag600-FGF21 depended on adiponectin to exert its suppression effects on Th17 cell differentiation and IL17A expression. Our data begin to uncover the indirect mechanism by which PsTag600-FGF21 suppresses hepatic inflammation and further suggest that PsTag600-FGF21 could be an effective approach in NASH treatment. This article is protected by copyright. All rights reserved.

  20. Survey of the total fatty acid and triacylglycerol composition and content of 30 duckweed species and cloning of a Δ6-desaturase responsible for the production of γ-linolenic and stearidonic acids in Lemna gibba

    PubMed Central

    2013-01-01

    Background Duckweeds, i.e., members of the Lemnoideae family, are amongst the smallest aquatic flowering plants. Their high growth rate, aquatic habit and suitability for bio-remediation make them strong candidates for biomass production. Duckweeds have been studied for their potential as feedstocks for bioethanol production; however, less is known about their ability to accumulate reduced carbon as fatty acids (FA) and oil. Results Total FA profiles of thirty duckweed species were analysed to assess the natural diversity within the Lemnoideae. Total FA content varied between 4.6% and 14.2% of dry weight whereas triacylglycerol (TAG) levels varied between 0.02% and 0.15% of dry weight. Three FA, 16:0 (palmitic), 18:2Δ9,12 (Linoleic acid, or LN) and 18:3Δ9,12,15 (α-linolenic acid, or ALA) comprise more than 80% of total duckweed FA. Seven Lemna and two Wolffiela species also accumulate polyunsaturated FA containing Δ6-double bonds, i.e., GLA and SDA. Relative to total FA, TAG is enriched in saturated FA and deficient in polyunsaturated FA, and only five Lemna species accumulate Δ6-FA in their TAG. A putative Δ6-desaturase designated LgDes, with homology to a family of front-end Δ6-FA and Δ8-spingolipid desaturases, was identified in the assembled DNA sequence of Lemna gibba. Expression of a synthetic LgDes gene in Nicotiana benthamiana resulted in the accumulation of GLA and SDA, confirming it specifies a Δ6-desaturase. Conclusions Total accumulation of FA varies three-fold across the 30 species of Lemnoideae surveyed. Nine species contain GLA and SDA which are synthesized by a Δ6 front-end desaturase, but FA composition is otherwise similar. TAG accumulates up to 0.15% of total dry weight, comparable to levels found in the leaves of terrestrial plants. Polyunsaturated FA is underrepresented in TAG, and the Δ6-FA GLA and SDA are found in the TAG of only five of the nine Lemna species that produce them. When present, GLA is enriched and SDA diminished relative to their abundance in the total FA pool. PMID:24308551

  1. An Overview of Enzymatic Reagents for the Removal of Affinity Tags

    PubMed Central

    Waugh, David S.

    2011-01-01

    Although they are often exploited to facilitate the expression and purification of recombinant proteins, every affinity tag, whether large or small, has the potential to interfere with the structure and function of its fusion partner. For this reason, reliable methods for removing affinity tags are needed. Only enzymes have the requisite specificity to be generally useful reagents for this purpose. In this review, the advantages and disadvantages of some commonly used endo- and exoproteases are discussed in light of the latest information. PMID:21871965

  2. Transient expression of hemagglutinin antigen from low pathogenic avian influenza A (H7N7) in Nicotiana benthamiana.

    PubMed

    Kanagarajan, Selvaraju; Tolf, Conny; Lundgren, Anneli; Waldenström, Jonas; Brodelius, Peter E

    2012-01-01

    The influenza A virus is of global concern for the poultry industry, especially the H5 and H7 subtypes as they have the potential to become highly pathogenic for poultry. In this study, the hemagglutinin (HA) of a low pathogenic avian influenza virus of the H7N7 subtype isolated from a Swedish mallard Anas platyrhynchos was sequenced, characterized and transiently expressed in Nicotiana benthamiana. Recently, plant expression systems have gained interest as an alternative for the production of vaccine antigens. To examine the possibility of expressing the HA protein in N. benthamiana, a cDNA fragment encoding the HA gene was synthesized de novo, modified with a Kozak sequence, a PR1a signal peptide, a C-terminal hexahistidine (6×His) tag, and an endoplasmic retention signal (SEKDEL). The construct was cloned into a Cowpea mosaic virus (CPMV)-based vector (pEAQ-HT) and the resulting pEAQ-HT-HA plasmid, along with a vector (pJL3:p19) containing the viral gene-silencing suppressor p19 from Tomato bushy stunt virus, was agro-infiltrated into N. benthamiana. The highest gene expression of recombinant plant-produced, uncleaved HA (rHA0), as measured by quantitative real-time PCR was detected at 6 days post infiltration (dpi). Guided by the gene expression profile, rHA0 protein was extracted at 6 dpi and subsequently purified utilizing the 6×His tag and immobilized metal ion adsorption chromatography. The yield was 0.2 g purified protein per kg fresh weight of leaves. Further molecular characterizations showed that the purified rHA0 protein was N-glycosylated and its identity confirmed by liquid chromatography-tandem mass spectrometry. In addition, the purified rHA0 exhibited hemagglutination and hemagglutination inhibition activity indicating that the rHA0 shares structural and functional properties with native HA protein of H7 influenza virus. Our results indicate that rHA0 maintained its native antigenicity and specificity, providing a good source of vaccine antigen to induce immune response in poultry species.

  3. An efficient annotation and gene-expression derivation tool for Illumina Solexa datasets

    PubMed Central

    2010-01-01

    Background The data produced by an Illumina flow cell with all eight lanes occupied, produces well over a terabyte worth of images with gigabytes of reads following sequence alignment. The ability to translate such reads into meaningful annotation is therefore of great concern and importance. Very easily, one can get flooded with such a great volume of textual, unannotated data irrespective of read quality or size. CASAVA, a optional analysis tool for Illumina sequencing experiments, enables the ability to understand INDEL detection, SNP information, and allele calling. To not only extract from such analysis, a measure of gene expression in the form of tag-counts, but furthermore to annotate such reads is therefore of significant value. Findings We developed TASE (Tag counting and Analysis of Solexa Experiments), a rapid tag-counting and annotation software tool specifically designed for Illumina CASAVA sequencing datasets. Developed in Java and deployed using jTDS JDBC driver and a SQL Server backend, TASE provides an extremely fast means of calculating gene expression through tag-counts while annotating sequenced reads with the gene's presumed function, from any given CASAVA-build. Such a build is generated for both DNA and RNA sequencing. Analysis is broken into two distinct components: DNA sequence or read concatenation, followed by tag-counting and annotation. The end result produces output containing the homology-based functional annotation and respective gene expression measure signifying how many times sequenced reads were found within the genomic ranges of functional annotations. Conclusions TASE is a powerful tool to facilitate the process of annotating a given Illumina Solexa sequencing dataset. Our results indicate that both homology-based annotation and tag-count analysis are achieved in very efficient times, providing researchers to delve deep in a given CASAVA-build and maximize information extraction from a sequencing dataset. TASE is specially designed to translate sequence data in a CASAVA-build into functional annotations while producing corresponding gene expression measurements. Achieving such analysis is executed in an ultrafast and highly efficient manner, whether the analysis be a single-read or paired-end sequencing experiment. TASE is a user-friendly and freely available application, allowing rapid analysis and annotation of any given Illumina Solexa sequencing dataset with ease. PMID:20598141

  4. Differential proteomics profiling of the ova between healthy and Rice stripe virus-infected female insects of Laodelphax striatellus.

    PubMed

    Liu, Beibei; Qin, Faliang; Liu, Wenwen; Wang, Xifeng

    2016-06-09

    Rice stripe virus-infected females of the small brown planthopper (SBPH, Laodelphax striatellus) usually lay fewer eggs with a longer hatch period, low hatchability, malformation and retarded or defective development compared with healthy females. To explore the molecular mechanism of those phenomena, we analyzed the differential proteomics profiling of the ova between viruliferous and healthy female insects using an isobaric tag for relative and absolute quantitation (iTRAQ) approach. We obtained 147 differentially accumulated proteins: 98 (66.7%) proteins increased, but 49 (33.3%) decreased in the ova of the viruliferous females. RT-qPCR was used to verify the 12 differential expressed proteins from iTRAQ, finding that trends in the transcriptional change for the 12 genes were consistent with those at the proteomic level. Differentially expressed proteins that were associated with meiosis (serine/threonine-protein phosphatase 2B and cyclin B3) and mitosis (cyclin B3 and dynein heavy chain) in viruliferous ova may contribute to low hatchability and defective or retarded development. Alterations in the abundance of proteins involved in the respiratory chain and nutrition metabolism may affect embryonic development. Our study begins to explain macroscopical developmental phenomena and explore the mechanisms by which Rice stripe virus impacts the development of SBPH.

  5. Differential proteomics profiling of the ova between healthy and Rice stripe virus-infected female insects of Laodelphax striatellus

    PubMed Central

    Liu, Beibei; Qin, Faliang; Liu, Wenwen; Wang, Xifeng

    2016-01-01

    Rice stripe virus-infected females of the small brown planthopper (SBPH, Laodelphax striatellus) usually lay fewer eggs with a longer hatch period, low hatchability, malformation and retarded or defective development compared with healthy females. To explore the molecular mechanism of those phenomena, we analyzed the differential proteomics profiling of the ova between viruliferous and healthy female insects using an isobaric tag for relative and absolute quantitation (iTRAQ) approach. We obtained 147 differentially accumulated proteins: 98 (66.7%) proteins increased, but 49 (33.3%) decreased in the ova of the viruliferous females. RT-qPCR was used to verify the 12 differential expressed proteins from iTRAQ, finding that trends in the transcriptional change for the 12 genes were consistent with those at the proteomic level. Differentially expressed proteins that were associated with meiosis (serine/threonine-protein phosphatase 2B and cyclin B3) and mitosis (cyclin B3 and dynein heavy chain) in viruliferous ova may contribute to low hatchability and defective or retarded development. Alterations in the abundance of proteins involved in the respiratory chain and nutrition metabolism may affect embryonic development. Our study begins to explain macroscopical developmental phenomena and explore the mechanisms by which Rice stripe virus impacts the development of SBPH. PMID:27277140

  6. Identification of tissue-specific, abiotic stress-responsive gene expression patterns in wine grape (Vitis vinifera L.) based on curation and mining of large-scale EST data sets

    PubMed Central

    2011-01-01

    Background Abiotic stresses, such as water deficit and soil salinity, result in changes in physiology, nutrient use, and vegetative growth in vines, and ultimately, yield and flavor in berries of wine grape, Vitis vinifera L. Large-scale expressed sequence tags (ESTs) were generated, curated, and analyzed to identify major genetic determinants responsible for stress-adaptive responses. Although roots serve as the first site of perception and/or injury for many types of abiotic stress, EST sequencing in root tissues of wine grape exposed to abiotic stresses has been extremely limited to date. To overcome this limitation, large-scale EST sequencing was conducted from root tissues exposed to multiple abiotic stresses. Results A total of 62,236 expressed sequence tags (ESTs) were generated from leaf, berry, and root tissues from vines subjected to abiotic stresses and compared with 32,286 ESTs sequenced from 20 public cDNA libraries. Curation to correct annotation errors, clustering and assembly of the berry and leaf ESTs with currently available V. vinifera full-length transcripts and ESTs yielded a total of 13,278 unique sequences, with 2302 singletons and 10,976 mapped to V. vinifera gene models. Of these, 739 transcripts were found to have significant differential expression in stressed leaves and berries including 250 genes not described previously as being abiotic stress responsive. In a second analysis of 16,452 ESTs from a normalized root cDNA library derived from roots exposed to multiple, short-term, abiotic stresses, 135 genes with root-enriched expression patterns were identified on the basis of their relative EST abundance in roots relative to other tissues. Conclusions The large-scale analysis of relative EST frequency counts among a diverse collection of 23 different cDNA libraries from leaf, berry, and root tissues of wine grape exposed to a variety of abiotic stress conditions revealed distinct, tissue-specific expression patterns, previously unrecognized stress-induced genes, and many novel genes with root-enriched mRNA expression for improving our understanding of root biology and manipulation of rootstock traits in wine grape. mRNA abundance estimates based on EST library-enriched expression patterns showed only modest correlations between microarray and quantitative, real-time reverse transcription-polymerase chain reaction (qRT-PCR) methods highlighting the need for deep-sequencing expression profiling methods. PMID:21592389

  7. Development of a tissue-specific ribosome profiling approach in Drosophila enables genome-wide evaluation of translational adaptations

    PubMed Central

    2017-01-01

    Recent advances in next-generation sequencing approaches have revolutionized our understanding of transcriptional expression in diverse systems. However, measurements of transcription do not necessarily reflect gene translation, the process of ultimate importance in understanding cellular function. To circumvent this limitation, biochemical tagging of ribosome subunits to isolate ribosome-associated mRNA has been developed. However, this approach, called TRAP, lacks quantitative resolution compared to a superior technology, ribosome profiling. Here, we report the development of an optimized ribosome profiling approach in Drosophila. We first demonstrate successful ribosome profiling from a specific tissue, larval muscle, with enhanced resolution compared to conventional TRAP approaches. We next validate the ability of this technology to define genome-wide translational regulation. This technology is leveraged to test the relative contributions of transcriptional and translational mechanisms in the postsynaptic muscle that orchestrate the retrograde control of presynaptic function at the neuromuscular junction. Surprisingly, we find no evidence that significant changes in the transcription or translation of specific genes are necessary to enable retrograde homeostatic signaling, implying that post-translational mechanisms ultimately gate instructive retrograde communication. Finally, we show that a global increase in translation induces adaptive responses in both transcription and translation of protein chaperones and degradation factors to promote cellular proteostasis. Together, this development and validation of tissue-specific ribosome profiling enables sensitive and specific analysis of translation in Drosophila. PMID:29194454

  8. Survey of duckweed diversity in Lake Chao and total fatty acid, triacylglycerol, profiles of representative strains.

    PubMed

    Tang, J; Li, Y; Ma, J; Cheng, J J

    2015-09-01

    Lemnaceae (duckweeds) are widely distributed aquatic flowering plants. Their high growth rate, starch content and suitability for bioremediation make them potential feedstock for biofuels. However, few natural duckweed resources have been investigated in China, and there is no information about total fatty acid (TFA) and triacylglycerol (TAG) composition of duckweeds from China. Here, the genetic diversity of a natural duckweed population collected from Lake Chao, China, was investigated using multilocus sequence typing (MLST). The 54 strains were categorised into four species in four genera, representing 12 distinct sequence types. Strains representing Lemna aequinoctialis and Spirodela polyrhiza were predominant. Interestingly, a surprisingly high degree of genetic diversification within L. aequinoctialis was observed. The four duckweed species revealed a uniform fatty acid composition, with three fatty acids, palmitic acid, linoleic acid and linolenic acid, accounting for more than 80% of the TFA. The TFA in biomass varied among species, ranging from 1.05% (of dry weight, DW) for L. punctata and S. polyrhiza to 1.62% for Wolffia globosa. The four duckweed species contained similar TAG contents, 0.02% mg · DW(-1). The fatty acid profiles of TAG were different from those of TFA, and also varied among the four species. The survey investigated the genetic diversity of duckweeds from Lake Chao, and provides an initial insight into TFA and TAG of four duckweed species, indicating that intraspecific and interspecific variations exist in the content and composition of both TFA and TAG in comparison with other studies. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Proteomic evaluation of human umbilical cord tissue exposed to polybrominated diphenyl ethers in an e-waste recycling area.

    PubMed

    Li, Minghui; Huo, Xia; Pan, Yukui; Cai, Haoxing; Dai, Yifeng; Xu, Xijin

    2018-02-01

    Parental exposure to polybrominated diphenyl ethers (PBDEs) is associated with adverse birth outcomes. This study aims to examine differentially-expressed protein profiles in umbilical cord tissue, derived from mothers exposed to PBDEs, and investigate candidate biomarkers to reveal the underlying molecular mechanisms. Umbilical cord samples were obtained from women residing in an electronic waste (e-waste) recycling area (Guiyu) and reference area (Haojiang) in China. The concentration of PBDEs in umbilical cord tissue was determined by gas chromatography and mass spectrometry (GC/MS). Isobaric tagging for relative and absolute quantification (iTRAQ)-based proteomic technology was conducted to analyze differentially-expressed protein profiles. The total PBDE concentration was approximately five-fold higher in umbilical cords from Guiyu than from Haojiang (median 71.92ng/g vs. 15.52ng/g lipid, P<0.01). Neonatal head circumference, body-mass index (BMI) and Apgar1 score were lower in Guiyu and negatively correlated with PBDE concentration (P<0.01). Proteomic analysis showed 697 proteins were differentially expressed in the e-waste-exposed group compared with the reference group. The differentially-expressed proteins were principally involved in antioxidant defense, apoptosis, cell structure and metabolism. Among them, catalase and glutathione S-transferase omega-1, were down-regulated, and cytochrome c was found to be up-regulated, changes which were further verified by enzyme-linked immunosorbent assays. These results suggest that an antioxidant imbalance and cell apoptosis in the umbilical cord following PBDE exposure is associated with neonatal birth outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Describing the Diapause-Preparatory Proteome of the Beetle Colaphellus bowringi and Identifying Candidates Affecting Lipid Accumulation Using Isobaric Tags for Mass Spectrometry-Based Proteome Quantification (iTRAQ)

    PubMed Central

    Tan, Qian-Qian; Liu, Wen; Zhu, Fen; Lei, Chao-Liang; Hahn, Daniel A.; Wang, Xiao-Ping

    2017-01-01

    Prior to entering diapause, insects must prepare themselves physiologically to withstand the stresses of arresting their development for a lengthy period. While studies describing the biochemical and cellular milieu of the maintenance phase of diapause are accumulating, few studies have taken an “omics” approach to describing molecular events during the diapause preparatory phase. We used isobaric tags and mass spectrometry (iTRAQ) to quantitatively compare the expression profiles of proteins identified during the onset of diapause preparation phase in the heads of adult female cabbage beetles, Colaphellus bowringi. A total of 3,175 proteins were identified, 297 of which were differentially expressed between diapause-destined and non-diapause-destined female adults and could therefore be involved in diapause preparation in this species. Comparison of identified proteins with protein function databases shows that many of these differentially expressed proteins enhanced in diapause destined beetles are involved in energy production and conversion, carbohydrate metabolism and transport, and lipid metabolism. Further hand annotation of differentially abundant peptides nominates several associated with stress hardiness, including HSPs and antioxidants, as well as neural development. In contrast, non-diapause destined beetles show substantial increases in cuticle proteins, suggesting additional post-emergence growth. Using RNA interference to silence a fatty acid-binding protein (FABP) that was highly abundant in the head of diapause-destined females prevented the accumulation of lipids in the fat body, a common product of diapause preparation in this species and others. Surprisingly, RNAi against the FABP also affected the transcript abundance of several heat shock proteins. These results suggest that the identified differentially expressed proteins that play vital roles in lipid metabolism may also contribute somehow to enhanced hardiness to environmental stress that is characteristic of diapause. PMID:28491041

  11. Overexpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance.

    PubMed

    Chen, Qin-Fang; Xiao, Shi; Chye, Mee-Len

    2008-09-01

    Small 10-kD acyl-coenzyme A-binding proteins (ACBPs) are highly conserved proteins that are prevalent in eukaryotes. In Arabidopsis (Arabidopsis thaliana), other than the 10-kD ACBP homolog (designated Arabidopsis ACBP6), there are five larger forms of ACBPs ranging from 37.5 to 73.1 kD. In this study, the cytosolic subcellular localization of Arabidopsis ACBP6 was confirmed by analyses of transgenic Arabidopsis expressing autofluorescence-tagged ACBP6 and western-blot analysis of subcellular fractions using ACBP6-specific antibodies. The expression of Arabidopsis ACBP6 was noticeably induced at 48 h after 4 degrees C treatment by northern-blot analysis and western-blot analysis. Furthermore, an acbp6 T-DNA insertional mutant that lacked ACBP6 mRNA and protein displayed increased sensitivity to freezing temperature (-8 degrees C), while ACBP6-overexpressing transgenic Arabidopsis plants were conferred enhanced freezing tolerance. Northern-blot analysis indicated that ACBP6-associated freezing tolerance was not dependent on the induction of cold-regulated COLD-RESPONSIVE gene expression. Instead, ACBP6 overexpressors showed increased expression of mRNA encoding phospholipase Ddelta. Lipid profiling analyses of rosettes from cold-acclimated, freezing-treated (-8 degrees C) transgenic Arabidopsis plants overexpressing ACBP6 showed a decline in phosphatidylcholine (-36% and -46%) and an elevation of phosphatidic acid (73% and 67%) in comparison with wild-type plants. From our comparison, the gain in freezing tolerance in ACBP6 overexpressors that was accompanied by decreases in phosphatidylcholine and an accumulation of phosphatidic acid is consistent with previous findings on phospholipase Ddelta-overexpressing transgenic Arabidopsis. In vitro filter-binding assays indicating that histidine-tagged ACBP6 binds phosphatidylcholine, but not phosphatidic acid or lysophosphatidylcholine, further imply a role for ACBP6 in phospholipid metabolism in Arabidopsis, including the possibility of ACBP6 in the cytosolic trafficking of phosphatidylcholine.

  12. Mining genes involved in insecticide resistance of Liposcelis bostrychophila Badonnel by transcriptome and expression profile analysis.

    PubMed

    Dou, Wei; Shen, Guang-Mao; Niu, Jin-Zhi; Ding, Tian-Bo; Wei, Dan-Dan; Wang, Jin-Jun

    2013-01-01

    Recent studies indicate that infestations of psocids pose a new risk for global food security. Among the psocids species, Liposcelis bostrychophila Badonnel has gained recognition in importance because of its parthenogenic reproduction, rapid adaptation, and increased worldwide distribution. To date, the molecular data available for L. bostrychophila is largely limited to genes identified through homology. Also, no transcriptome data relevant to psocids infection is available. In this study, we generated de novo assembly of L. bostrychophila transcriptome performed through the short read sequencing technology (Illumina). In a single run, we obtained more than 51 million sequencing reads that were assembled into 60,012 unigenes (mean size = 711 bp) by Trinity. The transcriptome sequences from different developmental stages of L. bostrychophila including egg, nymph and adult were annotated with non-redundant (Nr) protein database, gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG orthology (KO). The analysis revealed three major enzyme families involved in insecticide metabolism as differentially expressed in the L. bostrychophila transcriptome. A total of 49 P450-, 31 GST- and 21 CES-specific genes representing the three enzyme families were identified. Besides, 16 transcripts were identified to contain target site sequences of resistance genes. Furthermore, we profiled gene expression patterns upon insecticide (malathion and deltamethrin) exposure using the tag-based digital gene expression (DGE) method. The L. bostrychophila transcriptome and DGE data provide gene expression data that would further our understanding of molecular mechanisms in psocids. In particular, the findings of this investigation will facilitate identification of genes involved in insecticide resistance and designing of new compounds for control of psocids.

  13. Mining Genes Involved in Insecticide Resistance of Liposcelis bostrychophila Badonnel by Transcriptome and Expression Profile Analysis

    PubMed Central

    Dou, Wei; Shen, Guang-Mao; Niu, Jin-Zhi; Ding, Tian-Bo; Wei, Dan-Dan; Wang, Jin-Jun

    2013-01-01

    Background Recent studies indicate that infestations of psocids pose a new risk for global food security. Among the psocids species, Liposcelis bostrychophila Badonnel has gained recognition in importance because of its parthenogenic reproduction, rapid adaptation, and increased worldwide distribution. To date, the molecular data available for L. bostrychophila is largely limited to genes identified through homology. Also, no transcriptome data relevant to psocids infection is available. Methodology and Principal Findings In this study, we generated de novo assembly of L. bostrychophila transcriptome performed through the short read sequencing technology (Illumina). In a single run, we obtained more than 51 million sequencing reads that were assembled into 60,012 unigenes (mean size = 711 bp) by Trinity. The transcriptome sequences from different developmental stages of L. bostrychophila including egg, nymph and adult were annotated with non-redundant (Nr) protein database, gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG orthology (KO). The analysis revealed three major enzyme families involved in insecticide metabolism as differentially expressed in the L. bostrychophila transcriptome. A total of 49 P450-, 31 GST- and 21 CES-specific genes representing the three enzyme families were identified. Besides, 16 transcripts were identified to contain target site sequences of resistance genes. Furthermore, we profiled gene expression patterns upon insecticide (malathion and deltamethrin) exposure using the tag-based digital gene expression (DGE) method. Conclusion The L. bostrychophila transcriptome and DGE data provide gene expression data that would further our understanding of molecular mechanisms in psocids. In particular, the findings of this investigation will facilitate identification of genes involved in insecticide resistance and designing of new compounds for control of psocids. PMID:24278202

  14. Characterization of transcriptome in the Indian meal moth Plodia interpunctella (Lepidoptera: Pyralidae) and gene expression analysis during developmental stages.

    PubMed

    Tang, Pei-An; Wu, Hai-Jing; Xue, Hao; Ju, Xing-Rong; Song, Wei; Zhang, Qi-Lin; Yuan, Ming-Long

    2017-07-30

    The Indian meal moth Plodia interpunctella (Lepidoptera: Pyralidae) is a worldwide pest that causes serious damage to stored foods. Although many efforts have been conducted on this species due to its economic importance, the study of genetic basis of development, behavior and insecticide resistance has been greatly hampered due to lack of genomic information. In this study, we used high throughput sequencing platform to perform a de novo transcriptome assembly and tag-based digital gene expression profiling (DGE) analyses across four different developmental stages of P. interpunctella (egg, third-instar larvae, pupae and adult). We obtained approximate 9gigabyte (GB) of clean data and recovered 84,938 unigenes, including 37,602 clusters and 47,336 singletons. These unigenes were annotated using BLAST against the non-redundant protein databases and then functionally classified based on Gene Ontology (GO), Clusters of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes databases (KEGG). A large number of differentially expressed genes were identified by pairwise comparisons among different developmental stages. Gene expression profiles dramatically changed between developmental stage transitions. Some of these differentially expressed genes were related to digestion and cuticularization. Quantitative real-time PCR results of six randomly selected genes conformed the findings in the DGEs. Furthermore, we identified over 8000 microsatellite markers and 97,648 single nucleotide polymorphisms which will be useful for population genetics studies of P. interpunctella. This transcriptomic information provided insight into the developmental basis of P. interpunctella and will be helpful for establishing integrated management strategies and developing new targets of insecticides for this serious pest. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Tyrphostin AG17 inhibits adipocyte differentiation in vivo and in vitro.

    PubMed

    Camacho, Alberto; Segoviano-Ramírez, Juan Carlos; Sánchez-Garcia, Adriana; de Jesus Herrera-de la Rosa, Jose; García-Juarez, Jaime; Hernandez-Puente, Carlos Alberto; Calvo-Anguiano, Geovana; Maltos-Uro, Sergio Rodolfo; Olguin, Alejandra; Gojon-Romanillos, Gabriel; Gojon-Zorrilla, Gabriel; Ortiz-Lopez, Rocio

    2018-05-29

    Excessive subcutaneous adiposity in obesity is associated to positive white adipocyte tissue (WAT) differentiation (adipogenesis) and WAT expandability. Here, we hypothesized that supplementation with the insulin inhibitor and mitochondrial uncoupler, Tyrphostin (T-AG17), in vitro and in vivo inhibits adipogenesis and adipocyte hypertrophy. We used a 3T3-L1 proadipocyte cell line to identify the potential effect of T-AG17 on adipocyte differentiation and fat accumulation in vitro. We evaluated the safety of T-AG17 and its effects on physiological and molecular metabolic parameters including hormonal profile, glucose levels, adipogenesis and adipocyte hypertrophy in a diet-induced obesity model using C57BL/6 mice. We found that T-AG17 is effective in preventing adipogenesis and lipid synthesis in the 3T3-L1 cell line, as evidenced by a significant decrease in oil red staining (p < 0.05). In obese C57BL/6 mice, oral administration of T-AG17 (0.175 mg/kg for 2 weeks) lead to decreased fat accumulation and WAT hypertrophy. Further, T-AG17 induced adipocyte apoptosis by activating caspase-3. In the hepatocytes of obese mice, T-AG17 promoted an increase in the size of lipid inclusions, which was accompanied by glycogen accumulation. T-AG17 did not alter serum biochemistry, including glucose, insulin, leptin, free fatty acids, creatinine, and aspartate aminotransferase. T-AG17 promotes adipocyte apoptosis in vivo and is an effective modulator of adipocyte differentiation and WAT hypertrophy in vitro and in vivo. Therefore, T-AG17 may be useful as a pharmacological obesity treatment.

  16. Identification of a pair of phospholipid:diacylglycerol acyltransferases from developing flax (Linum usitatissimum L.) seed catalyzing the selective production of trilinolenin.

    PubMed

    Pan, Xue; Siloto, Rodrigo M P; Wickramarathna, Aruna D; Mietkiewska, Elzbieta; Weselake, Randall J

    2013-08-16

    The oil from flax (Linum usitatissimum L.) has high amounts of α-linolenic acid (ALA; 18:3(cis)(Δ9,12,15)) and is one of the richest sources of omega-3 polyunsaturated fatty acids (ω-3-PUFAs). To produce ∼57% ALA in triacylglycerol (TAG), it is likely that flax contains enzymes that can efficiently transfer ALA to TAG. To test this hypothesis, we conducted a systematic characterization of TAG-synthesizing enzymes from flax. We identified several genes encoding acyl-CoA:diacylglycerol acyltransferases (DGATs) and phospholipid:diacylglycerol acyltransferases (PDATs) from the flax genome database. Due to recent genome duplication, duplicated gene pairs have been identified for all genes except DGAT2-2. Analysis of gene expression indicated that two DGAT1, two DGAT2, and four PDAT genes were preferentially expressed in flax embryos. Yeast functional analysis showed that DGAT1, DGAT2, and two PDAT enzymes restored TAG synthesis when produced recombinantly in yeast H1246 strain. The activity of particular PDAT enzymes (LuPDAT1 and LuPDAT2) was stimulated by the presence of ALA. Further seed-specific expression of flax genes in Arabidopsis thaliana indicated that DGAT1, PDAT1, and PDAT2 had significant effects on seed oil phenotype. Overall, this study indicated the existence of unique PDAT enzymes from flax that are able to preferentially catalyze the synthesis of TAG containing ALA acyl moieties. The identified LuPDATs may have practical applications for increasing the accumulation of ALA and other polyunsaturated fatty acids in oilseeds for food and industrial applications.

  17. A systems-genetics approach and data mining tool to assist in the discovery of genes underlying complex traits in Oryza sativa.

    PubMed

    Ficklin, Stephen P; Feltus, Frank Alex

    2013-01-01

    Many traits of biological and agronomic significance in plants are controlled in a complex manner where multiple genes and environmental signals affect the expression of the phenotype. In Oryza sativa (rice), thousands of quantitative genetic signals have been mapped to the rice genome. In parallel, thousands of gene expression profiles have been generated across many experimental conditions. Through the discovery of networks with real gene co-expression relationships, it is possible to identify co-localized genetic and gene expression signals that implicate complex genotype-phenotype relationships. In this work, we used a knowledge-independent, systems genetics approach, to discover a high-quality set of co-expression networks, termed Gene Interaction Layers (GILs). Twenty-two GILs were constructed from 1,306 Affymetrix microarray rice expression profiles that were pre-clustered to allow for improved capture of gene co-expression relationships. Functional genomic and genetic data, including over 8,000 QTLs and 766 phenotype-tagged SNPs (p-value < = 0.001) from genome-wide association studies, both covering over 230 different rice traits were integrated with the GILs. An online systems genetics data-mining resource, the GeneNet Engine, was constructed to enable dynamic discovery of gene sets (i.e. network modules) that overlap with genetic traits. GeneNet Engine does not provide the exact set of genes underlying a given complex trait, but through the evidence of gene-marker correspondence, co-expression, and functional enrichment, site visitors can identify genes with potential shared causality for a trait which could then be used for experimental validation. A set of 2 million SNPs was incorporated into the database and serve as a potential set of testable biomarkers for genes in modules that overlap with genetic traits. Herein, we describe two modules found using GeneNet Engine, one with significant overlap with the trait amylose content and another with significant overlap with blast disease resistance.

  18. A Systems-Genetics Approach and Data Mining Tool to Assist in the Discovery of Genes Underlying Complex Traits in Oryza sativa

    PubMed Central

    Ficklin, Stephen P.; Feltus, Frank Alex

    2013-01-01

    Many traits of biological and agronomic significance in plants are controlled in a complex manner where multiple genes and environmental signals affect the expression of the phenotype. In Oryza sativa (rice), thousands of quantitative genetic signals have been mapped to the rice genome. In parallel, thousands of gene expression profiles have been generated across many experimental conditions. Through the discovery of networks with real gene co-expression relationships, it is possible to identify co-localized genetic and gene expression signals that implicate complex genotype-phenotype relationships. In this work, we used a knowledge-independent, systems genetics approach, to discover a high-quality set of co-expression networks, termed Gene Interaction Layers (GILs). Twenty-two GILs were constructed from 1,306 Affymetrix microarray rice expression profiles that were pre-clustered to allow for improved capture of gene co-expression relationships. Functional genomic and genetic data, including over 8,000 QTLs and 766 phenotype-tagged SNPs (p-value < = 0.001) from genome-wide association studies, both covering over 230 different rice traits were integrated with the GILs. An online systems genetics data-mining resource, the GeneNet Engine, was constructed to enable dynamic discovery of gene sets (i.e. network modules) that overlap with genetic traits. GeneNet Engine does not provide the exact set of genes underlying a given complex trait, but through the evidence of gene-marker correspondence, co-expression, and functional enrichment, site visitors can identify genes with potential shared causality for a trait which could then be used for experimental validation. A set of 2 million SNPs was incorporated into the database and serve as a potential set of testable biomarkers for genes in modules that overlap with genetic traits. Herein, we describe two modules found using GeneNet Engine, one with significant overlap with the trait amylose content and another with significant overlap with blast disease resistance. PMID:23874666

  19. Developmental Transcriptomic Features of the Carcinogenic Liver Fluke, Clonorchis sinensis

    PubMed Central

    Cho, Pyo Yun; Kim, Tae Im; Cho, Shin-Hyeong; Choi, Sang-Haeng; Park, Hong-Seog; Kim, Tong-Soo; Hong, Sung-Jong

    2011-01-01

    Clonorchis sinensis is the causative agent of the life-threatening disease endemic to China, Korea, and Vietnam. It is estimated that about 15 million people are infected with this fluke. C. sinensis provokes inflammation, epithelial hyperplasia, and periductal fibrosis in bile ducts, and may cause cholangiocarcinoma in chronically infected individuals. Accumulation of a large amount of biological information about the adult stage of this liver fluke in recent years has advanced our understanding of the pathological interplay between this parasite and its hosts. However, no developmental gene expression profiles of C. sinensis have been published. In this study, we generated gene expression profiles of three developmental stages of C. sinensis by analyzing expressed sequence tags (ESTs). Complementary DNA libraries were constructed from the adult, metacercaria, and egg developmental stages of C. sinensis. A total of 52,745 ESTs were generated and assembled into 12,830 C. sinensis assembled EST sequences, and then these assemblies were further categorized into groups according to biological functions and developmental stages. Most of the genes that were differentially expressed in the different stages were consistent with the biological and physical features of the particular developmental stage; high energy metabolism, motility and reproduction genes were differentially expressed in adults, minimal metabolism and final host adaptation genes were differentially expressed in metacercariae, and embryonic genes were differentially expressed in eggs. The higher expression of glucose transporters, proteases, and antioxidant enzymes in the adults accounts for active uptake of nutrients and defense against host immune attacks. The types of ion channels present in C. sinensis are consistent with its parasitic nature and phylogenetic placement in the tree of life. We anticipate that the transcriptomic information on essential regulators of development, bile chemotaxis, and physico-metabolic pathways in C. sinensis that presented in this study will guide further studies to identify novel drug targets and diagnostic antigens. PMID:21738807

  20. Comparison of a simulated velocity profile of a turbulent boundary layer with measurements obtained by Femtosecond Laser Electronic Excitation Tagging (FLEET)

    NASA Astrophysics Data System (ADS)

    New-Tolley, Matthew; Zhang, Yibin; Shneider, Mikhail; Miles, Richard

    2017-11-01

    Accurate velocimetry measurements of turbulent flows are essential for improving our understanding of turbulent phenomena and validating numerical approaches. Femtosecond Laser Electronic Excitation Tagging (FLEET) is an unseeded molecular tagging method for velocimetry measurements in flows which contain nitrogen. A femtosecond laser pulse is used to ionize and dissociate nitrogen molecules within its focal zone. The decaying plasma fluoresces in the visible and infrared spectrum over a period of microseconds which allows the displacement of the tagged region to be photographed to determine velocity. This study compares the experimental and numerical advection of the tagged region in a turbulent boundary layer generated by a supersonic flow over a flat plate. The tagged region in the simulation is approximated as an infinitely thin cylinder while the flow field is generated using the steady state boundary layer equations with an algebraic turbulence model. This approximation is justified by previous computational analyses, using an unsteady three-dimensional Navier-Stokes solver, which indicate that the radial perturbations of the tagged region are negligible compared to its translation. This research was conducted with government support from the Air Force Office of Scientific Research under Dr. Ivett Leyva and the Army Research Office under Dr. Matthew Munson.

  1. Improved fatty acid analysis of conjugated linoleic acid rich egg yolk triacylglycerols and phospholipid species.

    PubMed

    Shinn, Sara; Liyanage, Rohana; Lay, Jack; Proctor, Andrew

    2014-07-16

    Reports from chicken conjugated linoleic acid (CLA) feeding trials are limited to yolk total fatty acid composition, which consistently described increased saturated fatty acids and decreased monounsaturated fatty acids. However, information on CLA triacylglycerol (TAG) and phospholipid (PL) species is limited. This study determined the fatty acid composition of total lipids in CLA-rich egg yolk produced with CLA-rich soy oil, relative to control yolks using gas chromatography with flame ionization detection (GC-FID), determined TAG and PL fatty acid compositions by thin-layer chromatography-GC-FID (TLC-GC-FID), identified intact PL and TAG species by TLC-matrix-assisted laser desorption/ionization mass spectrometry (TLC-MALDI-MS), and determined the composition of TAG and PL species in CLA and control yolks by direct flow infusion electrospray ionization MS (DFI ESI-MS). In total, 2 lyso-phosphatidyl choline (LPC) species, 1 sphingomyelin species, 17 phosphatidyl choline species, 19 TAG species, and 9 phosphatidyl ethanolamine species were identified. Fifty percent of CLA was found in TAG, occurring predominantly in C52:5 and C52:4 TAG species. CLA-rich yolks contained significantly more LPC than did control eggs. Comprehensive lipid profiling may provide insight on relationships between lipid composition and the functional properties of CLA-rich eggs.

  2. Lipid profiles of oil from trout (Oncorhynchus mykiss) heads, spines and viscera: trout by-products as a possible source of omega-3 lipids?

    PubMed

    Fiori, L; Solana, M; Tosi, P; Manfrini, M; Strim, C; Guella, G

    2012-09-15

    Lipid profiles of fish oil extracted from trout heads, spines and viscera using supercritical carbon dioxide and Randall extraction with hexane were measured. The amount of unsaturated fatty acids (as a percentage of total fatty acids) was within the range of 72.6-75.3% in all the substrates. A significant presence of the most important omega-3 fatty acids was detected. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content in oil from spines, heads and viscera resulted to be 8.7% and 7.3%, 7.9% and 6.3%, and 6.4% and 6.0%, respectively. A low (≈3%), but worth noting, presence of lipids with omega-1 polyunsaturated fatty chains was observed in all the oils. Finally, significant differences were noticed in the relative amounts of triacylglycerides (TAG), diacylglycerides (DAG) and free fatty acids (FFA). Whereas oil from heads and spines was essentially composed of TAG (≈98%), in viscera oil the molar distribution ratio became TAG:DAG:FFA=87:8:5. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Digital transcriptome analysis of putative sex-determination genes in papaya (Carica papaya).

    PubMed

    Urasaki, Naoya; Tarora, Kazuhiko; Shudo, Ayano; Ueno, Hiroki; Tamaki, Moritoshi; Miyagi, Norimichi; Adaniya, Shinichi; Matsumura, Hideo

    2012-01-01

    Papaya (Carica papaya) is a trioecious plant species that has male, female and hermaphrodite flowers on different plants. The primitive sex chromosomes genetically determine the sex of the papaya. Although draft sequences of the papaya genome are already available, the genes for sex determination have not been identified, likely due to the complicated structure of its sex-chromosome sequences. To identify the candidate genes for sex determination, we conducted a transcriptome analysis of flower samples from male, female and hermaphrodite plants using high-throughput SuperSAGE for digital gene expression analysis. Among the short sequence tags obtained from the transcripts, 312 unique tags were specifically mapped to the primitive sex chromosome (X or Y(h)) sequences. An annotation analysis revealed that retroelements are the most abundant sequences observed in the genes corresponding to these tags. The majority of tags on the sex chromosomes were located on the X chromosome, and only 30 tags were commonly mapped to both the X and Y(h) chromosome, implying a loss of many genes on the Y(h) chromosome. Nevertheless, candidate Y(h) chromosome-specific female determination genes, including a MADS-box gene, were identified. Information on these sex chromosome-specific expressed genes will help elucidating sex determination in the papaya.

  4. Digital Transcriptome Analysis of Putative Sex-Determination Genes in Papaya (Carica papaya)

    PubMed Central

    Urasaki, Naoya; Tarora, Kazuhiko; Shudo, Ayano; Ueno, Hiroki; Tamaki, Moritoshi; Miyagi, Norimichi; Adaniya, Shinichi; Matsumura, Hideo

    2012-01-01

    Papaya (Carica papaya) is a trioecious plant species that has male, female and hermaphrodite flowers on different plants. The primitive sex chromosomes genetically determine the sex of the papaya. Although draft sequences of the papaya genome are already available, the genes for sex determination have not been identified, likely due to the complicated structure of its sex-chromosome sequences. To identify the candidate genes for sex determination, we conducted a transcriptome analysis of flower samples from male, female and hermaphrodite plants using high-throughput SuperSAGE for digital gene expression analysis. Among the short sequence tags obtained from the transcripts, 312 unique tags were specifically mapped to the primitive sex chromosome (X or Yh) sequences. An annotation analysis revealed that retroelements are the most abundant sequences observed in the genes corresponding to these tags. The majority of tags on the sex chromosomes were located on the X chromosome, and only 30 tags were commonly mapped to both the X and Yh chromosome, implying a loss of many genes on the Yh chromosome. Nevertheless, candidate Yh chromosome-specific female determination genes, including a MADS-box gene, were identified. Information on these sex chromosome-specific expressed genes will help elucidating sex determination in the papaya. PMID:22815863

  5. Genes are differentially expressed at transcriptional level of Neocaridina denticulata following short-term exposure to nonylphenol.

    PubMed

    Liu, Chang-Lun; Sung, Hung-Hung

    2011-09-01

    To assess the toxicity of nonylphenol towards aquatic crustaceans, Neocaridina denticulata were exposed short-term to sublethal concentration (0.001-0.5 mg/L). Following treatment, differentially expressed genes were identified using suppression subtractive hybridization on samples prepared from whole specimens. There were 20 differentially expressed sequence tags that corresponded to known genes and could be divided into six functional classes: defence, translation, metabolism, ribosomal gene expression, respiration, and genes involved in the stress response. Using semi-quantitative RT-PCR, we found that 14 of the differentially expressed sequence tags significantly responded to nonylphenol, including six at a nominal concentration of 0.01 mg/L; among them, 12 genes were down-regulated. These results suggest that under non-lethal concentrations of nonylphenol, the polluted aquatic environment may still present a potential risk to N. denticulata.

  6. SAGE III/ISS L2 Solar Event Species Profiles (Native) V5 (g3bsspb)

    Atmospheric Science Data Center

    2017-12-21

    SAGE III/ISS L2 Solar Event Species Profiles (Native) V5 (g3bsspb)   Project ... present Temporal Resolution:  1 file per event File Format:  BINARY Tools:  Earthdata ... Radiation Longwave Radiation Shortwave Radiation Event Tag Event Type Obs Beta Angle Order Data:  ...

  7. SAGE III/ISS L2 Lunar Event Species Profiles (Native) V5 (g3blspb)

    Atmospheric Science Data Center

    2018-01-08

    SAGE III/ISS L2 Lunar Event Species Profiles (Native) V5 (g3blspb)   Project ... present Temporal Resolution:  1 file per event File Format:  BINARY Tools:  Earthdata ... Radiation Longwave Radiation Shortwave Radiation Event Tag Event Type Obs Beta Angle Order Data:  ...

  8. Time-course analysis of the Shewanella amazonensis SB2B proteome in response to sodium chloride shock.

    PubMed

    Parnell, J Jacob; Callister, Stephen J; Rompato, Giovanni; Nicora, Carrie D; Paša-Tolić, Ljiljana; Williamson, Ashley; Pfrender, Michael E

    2011-01-01

    Shewanellae are microbial models for environmental stress response; however, the sequential expression of mechanisms in response to stress is poorly understood. Here we experimentally determine the response mechanisms of Shewanella amazonensis SB2B during sodium chloride stress using a novel liquid chromatography and accurate mass-time tag mass spectrometry time-course proteomics approach. The response of SB2B involves an orchestrated sequence of events comprising increased signal transduction associated with motility and restricted growth. Following a metabolic shift to branched chain amino acid degradation, motility and cellular replication proteins return to pre-perturbed levels. Although sodium chloride stress is associated with a change in the membrane fatty acid composition in other organisms, this is not the case for SB2B as fatty acid degradation pathways are not expressed and no change in the fatty acid profile is observed. These findings suggest that shifts in membrane composition may be an indirect physiological response to high NaCl stress.

  9. Detection of receptor ligands by monitoring selective stabilization of a Renilla luciferase-tagged, constitutively active mutant, G-protein-coupled receptor

    PubMed Central

    Ramsay, Douglas; Bevan, Nicola; Rees, Stephen; Milligan, Graeme

    2001-01-01

    The wild-type β2-adrenoceptor and a constitutively active mutant of this receptor were C-terminally tagged with luciferase from the sea pansy Renilla reniformis. C-terminal addition of Renilla luciferase did not substantially alter the levels of expression of either form of the receptor, the elevated constitutive activity of the mutant β2-adrenoceptor nor the capacity of isoprenaline to elevate cyclic AMP levels in intact cells expressing these constructs. Treatment of cells expressing constitutively active mutant β2-adrenoceptor-Renilla luciferase with antagonist/inverse agonist ligands resulted in upregulation of levels of this polypeptide which could be monitored by the elevated luciferase activity. The pEC50 for ligand-induced luciferase upregulation and ligand affinity to bind the receptor were highly correlated. Similar upregulation could be observed following sustained treatment with agonist ligands. These effects were only observed at a constitutively active mutant of the β2-adrenoceptor. Co-expression of the wild-type β2-adrenoceptor C-terminally tagged with the luciferase from Photinus pyralis did not result in ligand-induced upregulation of the levels of activity of this luciferase. Co-expression of the constitutively active mutant β2-adrenoceptor-Renilla luciferase and an equivalent mutant of the α1b-adrenoceptor C-terminally tagged with green fluorescent protein allowed pharmacological selectivity of adrenoceptor antagonists to be demonstrated. This approach offers a sensitive and convenient means, which is amenable to high throughput analysis, to monitor ligand binding to a constitutively active mutant receptor. As no prior knowledge of receptor ligands is required this approach may be suitable to identify ligands at orphan G protein-coupled receptors. PMID:11350868

  10. How did nature engineer the highest surface lipid accumulation among plants? Exceptional expression of acyl-lipid-associated genes for the assembly of extracellular triacylglycerol by Bayberry ( Myrica pensylvanica ) fruits

    DOE PAGES

    Simpson, Jeffrey P.; Thrower, Nicholas; Ohlrogge, John B.

    2016-02-09

    Bayberry (Myrica pensylvanica) fruits are covered with a remarkably thick layer of crystalline wax consisting of triacylglycerol (TAG) and diacylglycerol (DAG) esterified exclusively with saturated fatty acids. As the only plant known to accumulate soluble glycerolipids as a major component of surface waxes, Bayberry represents a novel system to investigate neutral lipid biosynthesis and lipid secretion by vegetative plant cells. The assembly of Bayberry wax is distinct from conventional TAG and other surface waxes, and instead proceeds through a pathway related to cutin synthesis (Simpson and Ohlrogge, 2016). In this study, microscopic examination revealed that the fruit tissue that producesmore » and secretes wax (Bayberry knobs) is fully developed before wax accumulates and that wax is secreted to the surface without cell disruption. Comparison of transcript expression to genetically related tissues (Bayberry leaves, M. rubra fruits), cutin-rich tomato and cherry fruit epidermis, and to oil-rich mesocarp and seeds, revealed exceptionally high expression of 13 transcripts for acyl-lipid metabolism together with down-regulation of fatty acid oxidases and desaturases. The predicted protein sequences of the most highly expressed lipid-related enzyme-encoding transcripts in Bayberry knobs are 100% identical to the sequences from Bayberry leaves,which do not produce surface DAG or TAG. Together, these results indicate that TAG biosynthesis and secretion in Bayberry is achieved by both up and down-regulation of a small subset of genes related to the biosynthesis of cutin and saturated fatty acids, and also implies that modifications in gene expression, rather than evolution of new gene functions, was the major mechanism by which Bayberry evolved its specialized lipid metabolism.« less

  11. A grape polyphenol extract modulates muscle membrane fatty acid composition and lipid metabolism in high-fat--high-sucrose diet-fed rats.

    PubMed

    Aoun, Manar; Michel, Francoise; Fouret, Gilles; Schlernitzauer, Audrey; Ollendorff, Vincent; Wrutniak-Cabello, Chantal; Cristol, Jean-Paul; Carbonneau, Marie-Annette; Coudray, Charles; Feillet-Coudray, Christine

    2011-08-01

    Accumulation of muscle TAG content and modification of muscle phospholipid fatty acid pattern may have an impact on lipid metabolism, increasing the risk of developing diabetes. Some polyphenols have been reported to modulate lipid metabolism, in particular those issued from red grapes. The present study was designed to determine whether a grape polyphenol extract (PPE) modulates skeletal muscle TAG content and phospholipid fatty acid composition in high-fat-high-sucrose (HFHS) diet-fed rats. Muscle plasmalemmal and mitochondrial fatty acid transporters, GLUT4 and lipid metabolism pathways were also explored. The PPE decreased muscle TAG content in HFHS/PPE diet-fed rats compared with HFHS diet-fed rats and induced higher proportions of n-3 PUFA in phospholipids. The PPE significantly up-regulated GLUT4 mRNA expression. Gene and protein expression of muscle fatty acid transporter cluster of differentiation 36 (CD36) was increased in HFHS diet-fed rats but returned to control values in HFHS/PPE diet-fed rats. Carnitine palmitoyltransferase 1 protein expression was decreased with the PPE. Mitochondrial β-hydroxyacyl CoA dehydrogenase was increased in HFHS diet-fed rats and returned to control values with PPE supplementation. Lipogenesis, mitochondrial biogenesis and mitochondrial activity were not affected by the PPE. In conclusion, the PPE modulated membrane phospholipid fatty acid composition and decreased muscle TAG content in HFHS diet-fed rats. The PPE lowered CD36 gene and protein expression, probably decreasing fatty acid transport and lipid accumulation within skeletal muscle, and increased muscle GLUT4 expression. These effects of the PPE are in favour of a better insulin sensibility.

  12. Genome-Wide Identification and Expression Analysis of NBS-Encoding Genes in Malus x domestica and Expansion of NBS Genes Family in Rosaceae

    PubMed Central

    Arya, Preeti; Kumar, Gulshan; Acharya, Vishal; Singh, Anil K.

    2014-01-01

    Nucleotide binding site leucine-rich repeats (NBS-LRR) disease resistance proteins play an important role in plant defense against pathogen attack. A number of recent studies have been carried out to identify and characterize NBS-LRR gene families in many important plant species. In this study, we identified NBS-LRR gene family comprising of 1015 NBS-LRRs using highly stringent computational methods. These NBS-LRRs were characterized on the basis of conserved protein motifs, gene duplication events, chromosomal locations, phylogenetic relationships and digital gene expression analysis. Surprisingly, equal distribution of Toll/interleukin-1 receptor (TIR) and coiled coil (CC) (1∶1) was detected in apple while the unequal distribution was reported in majority of all other known plant genome studies. Prediction of gene duplication events intriguingly revealed that not only tandem duplication but also segmental duplication may equally be responsible for the expansion of the apple NBS-LRR gene family. Gene expression profiling using expressed sequence tags database of apple and quantitative real-time PCR (qRT-PCR) revealed the expression of these genes in wide range of tissues and disease conditions, respectively. Taken together, this study will provide a blueprint for future efforts towards improvement of disease resistance in apple. PMID:25232838

  13. Identification, classification and differential expression of oleosin genes in tung tree (Vernicia fordii)

    USDA-ARS?s Scientific Manuscript database

    Triacylglycerols (TAG) are the major molecules of energy storage in eukaryotes. TAG are packed in subcellular structures called oil bodies or lipid droplets. Oleosins (OLE) are the major proteins in plant oil bodies. Multiple isoforms of OLE are present in plants such as tung tree (Vernicia fordii),...

  14. Influence of SNPs in nutrient-sensitive candidate genes and gene-diet interactions on blood lipids: the DiOGenes study.

    PubMed

    Brahe, Lena K; Ängquist, Lars; Larsen, Lesli H; Vimaleswaran, Karani S; Hager, Jörg; Viguerie, Nathalie; Loos, Ruth J F; Handjieva-Darlenska, Teodora; Jebb, Susan A; Hlavaty, Petr; Larsen, Thomas M; Martinez, J Alfredo; Papadaki, Angeliki; Pfeiffer, Andreas F H; van Baak, Marleen A; Sørensen, Thorkild I A; Holst, Claus; Langin, Dominique; Astrup, Arne; Saris, Wim H M

    2013-09-14

    Blood lipid response to a given dietary intervention could be determined by the effect of diet, gene variants or gene-diet interactions. The objective of the present study was to investigate whether variants in presumed nutrient-sensitive genes involved in lipid metabolism modified lipid profile after weight loss and in response to a given diet, among overweight European adults participating in the Diet Obesity and Genes study. By multiple linear regressions, 240 SNPs in twenty-four candidate genes were investigated for SNP main and SNP-diet interaction effects on total cholesterol, LDL-cholesterol, HDL-cholesterol and TAG after an 8-week low-energy diet (only main effect) ,and a 6-month ad libitum weight maintenance diet, with different contents of dietary protein or glycaemic index. After adjusting for multiple testing, a SNP-dietary protein interaction effect on TAG was identified for lipin 1 (LPIN1) rs4315495, with a decrease in TAG of 20.26 mmol/l per A-allele/protein unit (95% CI 20.38, 20.14, P=0.000043). In conclusion, we investigated SNP-diet interactions for blood lipid profiles for 240 SNPs in twenty-four candidate genes, selected for their involvement in lipid metabolism pathways, and identified one significant interaction between LPIN1 rs4315495 and dietary protein for TAG concentration.

  15. Synthesis of CdTe quantum dot-conjugated CC49 and their application for in vitro imaging of gastric adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yun-Peng; Sun, Peng; Zhang, Xu-Rui; Yang, Wu-Li; Si, Cheng-Shuai

    2013-06-01

    The purpose of this experiment was to investigate the visible imaging of gastric adenocarcinoma cells in vitro by targeting tumor-associated glycoprotein 72 (TAG-72) with near-infrared quantum dots (QDs). QDs with an emission wavelength of about 550 to 780 nm were conjugated to CC49 monoclonal antibodies against TAG-72, resulting in a probe named as CC49-QDs. A gastric adenocarcinoma cell line (MGC80-3) expressing high levels of TAG-72 was cultured for fluorescence imaging, and a gastric epithelial cell line (GES-1) was used for the negative control group. Transmission electron microscopy indicated that the average diameter of CC49-QDs was 0.2 nm higher compared with that of the primary QDs. Also, fluorescence spectrum analysis indicated that the CC49-QDs did not have different optical properties compared to the primary QDs. Immunohistochemical examination and in vitro fluorescence imaging of the tumors showed that the CC49-QDs probe could bind TAG-72 expressed on MGC80-3 cells.

  16. Conjugated linoleic acid-rich soy oil triacylglycerol identification.

    PubMed

    Lall, Rahul K; Proctor, Andrew; Jain, Vishal P; Lay, Jackson O

    2009-03-11

    Conjugated linoleic acid (CLA)-rich soy oil has been produced by soy oil linoleic acid (LA) photoisomerization, but CLA-rich oil triacylglycerol (TAG) characterization was not described. Therefore, the objectives were to identify and quantify new TAG fractions in CLA-rich oil by nonaqueous reversed-phase high-performance liquid chromatography (NARP-HPLC). Analytical NARP-HPLC with an acetonitrile/dichloromethane (ACN/DCM) gradient and an evaporating light scattering detector/ultraviolet (ELSD/UV) detector was used. New TAG peaks from LA-containing TAGs were observed. The LnLL, LLL, LLO, and LLP (Ln, linolenic; L, linoleic; O, oleic; and P, palmitic) peaks reduced after isomerization with an increase in adjacent peaks that coeluted with LnLnO, LnLO, LnOO, and LnPP. The newly formed peaks were wider than those of the original oil and absorbed at 233 nm, suggesting the possibility of various CLA containing TAGs. The HPLC profile showed five fractions of mixed TAGs, and fatty acid analysis showed that CLA isomers were found predominately in fractions 2 and 3, which originally contained most LA. The CLA isomers were 70-80% trans,trans and 20-30% cis,trans and trans,cis.

  17. Choline supplementation restores substrate balance and alleviates complications of Pcyt2 deficiency.

    PubMed

    Schenkel, Laila C; Sivanesan, Sugashan; Zhang, Junzeng; Wuyts, Birgitte; Taylor, Adrian; Verbrugghe, Adronie; Bakovic, Marica

    2015-11-01

    Choline plays a critical role in systemic lipid metabolism and hepatic function. Here we conducted a series of experiments to investigate the effect of choline supplementation on metabolically altered Pcyt2(+/-) mice. In Pcyt2(+/-) mice, the membrane phosphatidylethanolamine (PE) turnover is reduced and the formation of fatty acids (FA) and triglycerides (TAG) increased, resulting in hypertriglyceridemia, liver steatosis and obesity. One month of choline supplementation reduced the incorporation of FA into TAG and facilitated TAG degradation in Pcyt2(+/-) adipocytes, plasma and liver. Choline particularly stimulated adipocyte and liver TAG lipolysis by specific lipases (ATGL, LPL and HSL) and inhibited TAG formation by DGAT1 and DGAT2. Choline also activated the liver AMPK and mitochondrial FA oxidation gene PPARα and reduced the FA synthesis genes SREBP1, SCD1 and FAS. Liver (HPLC) and plasma (tandem mass spectroscopy and (1)H-NMR) metabolite profiling established that Pcyt2(+/-) mice have reduced membrane cholesterol/sphingomyelin ratio and the homocysteine/methionine cycle that were improved by choline supplementation. These data suggest that supplementary choline is beneficial for restoring FA and TAG homeostasis under conditions of obesity caused by impaired PE synthesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Application of selected ion monitoring to the analysis of triacylglycerols in olive oil by high temperature-gas chromatography/mass spectrometry.

    PubMed

    Ruiz-Samblás, C; González-Casado, A; Cuadros-Rodríguez, L; García, F P Rodríguez

    2010-06-30

    The analysis of the triacylglycerol (TAG) composition of oils is a very challenging task, since the TAGs have very similar physico-chemical properties. In this work, a high temperature-gas chromatographic method coupled to electron ionization-mass spectrometry (HT-GC/EI-MS), in the Selected Ion Monitoring (SIM) mode, method was developed for the analysis of TAGs in the olive oil; this is a method suitable for routine analysis. This method was developed using commercially available standard TAGs. The TAGs studied were separated according to their equivalent carbon number and degree of unsaturation. The peak assignment was carried out by locating the characteristic fragment ions having the same retention time on the SIM profile such as [RCO+74](+) and [RCO+128](+) ions, due to the fatty acyl residues on sn-1, sn-2 and sn-3 positions of the TAG molecule and the [M-OCOR](+) ions corresponding to the acyl ions. The developed method was very useful to eliminate the interferences that appeared in the mass spectrum since electron ionization can prevent satisfactory interpretation of spectra. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Protein Profiles for Muscle Development and Intramuscular Fat Accumulation at Different Post-Hatching Ages in Chickens.

    PubMed

    Liu, Jie; Fu, Ruiqi; Liu, Ranran; Zhao, Guiping; Zheng, Maiqing; Cui, Huanxian; Li, Qinghe; Song, Jiao; Wang, Jie; Wen, Jie

    2016-01-01

    Muscle development and growth influences the efficiency of poultry meat production, and is closely related to deposition of intramuscular fat (IMF), which is crucial in meat quality. To clarify the molecular mechanisms underlying muscle development and IMF deposition in chickens, protein expression profiles were examined in the breast muscle of Beijing-You chickens at ages 1, 56, 98 and 140 days, using isobaric tags for relative and absolute quantification (iTRAQ). Two hundred and four of 494 proteins were expressed differentially. The expression profile at day 1 differed greatly from those at day 56, 98 and 140. KEGG pathway analysis of differential protein expression from pair-wise comparisons (day 1 vs. 56; 56 vs. 98; 98 vs. 140), showed that the fatty acid degradation pathway was more active during the stage from day 1 to 56 than at other periods. This was consistent with the change in IMF content, which was highest at day 1 and declined dramatically thereafter. When muscle growth was most rapid (days 56-98), pathways involved in muscle development were dominant, including hypertrophic cardiomyopathy, dilated cardiomyopathy, cardiac muscle contraction, tight junctions and focal adhesion. In contrast with hatchlings, the fatty acid degradation pathway was downregulated from day 98 to 140, which was consistent with the period for IMF deposition following rapid muscle growth. Changes in some key specific proteins, including fast skeletal muscle troponin T isoform, aldehyde dehydrogenase 1A1 and apolipoprotein A1, were verified by Western blotting, and could be potential biomarkers for IMF deposition in chickens. Protein-protein interaction networks showed that ribosome-related functional modules were clustered in all three stages. However, the functional module involved in the metabolic pathway was only clustered in the first stage (day 1 vs. 56). This study improves our understanding of the molecular mechanisms underlying muscle development and IMF deposition in chickens.

  20. Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization.

    PubMed

    Roberts, Brock; Haupt, Amanda; Tucker, Andrew; Grancharova, Tanya; Arakaki, Joy; Fuqua, Margaret A; Nelson, Angelique; Hookway, Caroline; Ludmann, Susan A; Mueller, Irina A; Yang, Ruian; Horwitz, Rick; Rafelski, Susanne M; Gunawardane, Ruwanthi N

    2017-10-15

    We present a CRISPR/Cas9 genome-editing strategy to systematically tag endogenous proteins with fluorescent tags in human induced pluripotent stem cells (hiPSC). To date, we have generated multiple hiPSC lines with monoallelic green fluorescent protein tags labeling 10 proteins representing major cellular structures. The tagged proteins include alpha tubulin, beta actin, desmoplakin, fibrillarin, nuclear lamin B1, nonmuscle myosin heavy chain IIB, paxillin, Sec61 beta, tight junction protein ZO1, and Tom20. Our genome-editing methodology using Cas9/crRNA ribonuclear protein and donor plasmid coelectroporation, followed by fluorescence-based enrichment of edited cells, typically resulted in <0.1-4% homology-directed repair (HDR). Twenty-five percent of clones generated from each edited population were precisely edited. Furthermore, 92% (36/39) of expanded clonal lines displayed robust morphology, genomic stability, expression and localization of the tagged protein to the appropriate subcellular structure, pluripotency-marker expression, and multilineage differentiation. It is our conclusion that, if cell lines are confirmed to harbor an appropriate gene edit, pluripotency, differentiation potential, and genomic stability are typically maintained during the clonal line-generation process. The data described here reveal general trends that emerged from this systematic gene-tagging approach. Final clonal lines corresponding to each of the 10 cellular structures are now available to the research community. © 2017 Roberts, Haupt, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Structurally divergent lysophosphatidic acid acyltransferases with high selectivity for saturated medium chain fatty acids from Cuphea seeds.

    PubMed

    Kim, Hae Jin; Silva, Jillian E; Iskandarov, Umidjon; Andersson, Mariette; Cahoon, Rebecca E; Mockaitis, Keithanne; Cahoon, Edgar B

    2015-12-01

    Lysophosphatidic acid acyltransferase (LPAT) catalyzes acylation of the sn-2 position on lysophosphatidic acid by an acyl CoA substrate to produce the phosphatidic acid precursor of polar glycerolipids and triacylglycerols (TAGs). In the case of TAGs, this reaction is typically catalyzed by an LPAT2 from microsomal LPAT class A that has high specificity for C18 fatty acids containing Δ9 unsaturation. Because of this specificity, the occurrence of saturated fatty acids in the TAG sn-2 position is infrequent in seed oils. To identify LPATs with variant substrate specificities, deep transcriptomic mining was performed on seeds of two Cuphea species producing TAGs that are highly enriched in saturated C8 and C10 fatty acids. From these analyses, cDNAs for seven previously unreported LPATs were identified, including cDNAs from Cuphea viscosissima (CvLPAT2) and Cuphea avigera var. pulcherrima (CpuLPAT2a) encoding microsomal, seed-specific class A LPAT2s and a cDNA from C. avigera var. pulcherrima (CpuLPATB) encoding a microsomal, seed-specific LPAT from the bacterial-type class B. The activities of these enzymes were characterized in Camelina sativa by seed-specific co-expression with cDNAs for various Cuphea FatB acyl-acyl carrier protein thioesterases (FatB) that produce a variety of saturated medium-chain fatty acids. CvLPAT2 and CpuLPAT2a expression resulted in accumulation of 10:0 fatty acids in the Camelina sativa TAG sn-2 position, indicating a 10:0 CoA specificity that has not been previously described for plant LPATs. CpuLPATB expression generated TAGs with 14:0 at the sn-2 position, but not 10:0. Identification of these LPATs provides tools for understanding the structural basis of LPAT substrate specificity and for generating altered oil functionalities. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  2. Mocr: A novel fusion tag for enhancing solubility that is compatible with structural biology applications

    PubMed Central

    DelProposto, James; Majmudar, Chinmay Y.; Smith, Janet L.; Brown, William Clay

    2010-01-01

    A persistent problem in heterologous protein production is insolubility of the target protein when expressed to high level in the host cell. A widely employed strategy for overcoming this problem is the use of fusion tags. The best fusion tags promote solubility, may function as purification handles and either do not interfere with downstream applications or may be removed from the passenger protein preparation. A novel fusion tag is identified that meets these criteria. This fusion tag is a monomeric mutant of the Ocr protein (0.3 gene product) of bacteriophage T7. This fusion tag displays solubilizing activity with a variety of different passenger proteins. We show that it may be used as a purification handle similar to other fusion tags. Its small size and compact structure are compatible with its use in downstream applications of the passenger protein or it may be removed and purified away from the passenger protein. The use of monomeric Ocr (Mocr) as a complement to other fusion tags such as maltose-binding protein will provide greater flexibility in protein production and processing for a wide variety of protein applications. PMID:18824232

  3. Mocr: a novel fusion tag for enhancing solubility that is compatible with structural biology applications.

    PubMed

    DelProposto, James; Majmudar, Chinmay Y; Smith, Janet L; Brown, William Clay

    2009-01-01

    A persistent problem in heterologous protein production is insolubility of the target protein when expressed to high level in the host cell. A widely employed strategy for overcoming this problem is the use of fusion tags. The best fusion tags promote solubility, may function as purification handles and either do not interfere with downstream applications or may be removed from the passenger protein preparation. A novel fusion tag is identified that meets these criteria. This fusion tag is a monomeric mutant of the Ocr protein (0.3 gene product) of bacteriophage T7. This fusion tag displays solubilizing activity with a variety of different passenger proteins. We show that it may be used as a purification handle similar to other fusion tags. Its small size and compact structure are compatible with its use in downstream applications of the passenger protein or it may be removed and purified away from the passenger protein. The use of monomeric Ocr (Mocr) as a complement to other fusion tags such as maltose-binding protein will provide greater flexibility in protein production and processing for a wide variety of protein applications.

  4. An efficient and scalable pipeline for epitope tagging in mammalian stem cells using Cas9 ribonucleoprotein

    PubMed Central

    Dewari, Pooran Singh; Southgate, Benjamin; Mccarten, Katrina; Monogarov, German; O'Duibhir, Eoghan; Quinn, Niall; Tyrer, Ashley; Leitner, Marie-Christin; Plumb, Colin; Kalantzaki, Maria; Blin, Carla; Finch, Rebecca; Bressan, Raul Bardini; Morrison, Gillian; Jacobi, Ashley M; Behlke, Mark A; von Kriegsheim, Alex; Tomlinson, Simon; Krijgsveld, Jeroen

    2018-01-01

    CRISPR/Cas9 can be used for precise genetic knock-in of epitope tags into endogenous genes, simplifying experimental analysis of protein function. However, Cas9-assisted epitope tagging in primary mammalian cell cultures is often inefficient and reliant on plasmid-based selection strategies. Here, we demonstrate improved knock-in efficiencies of diverse tags (V5, 3XFLAG, Myc, HA) using co-delivery of Cas9 protein pre-complexed with two-part synthetic modified RNAs (annealed crRNA:tracrRNA) and single-stranded oligodeoxynucleotide (ssODN) repair templates. Knock-in efficiencies of ~5–30%, were achieved without selection in embryonic stem (ES) cells, neural stem (NS) cells, and brain-tumor-derived stem cells. Biallelic-tagged clonal lines were readily derived and used to define Olig2 chromatin-bound interacting partners. Using our novel web-based design tool, we established a 96-well format pipeline that enabled V5-tagging of 60 different transcription factors. This efficient, selection-free and scalable epitope tagging pipeline enables systematic surveys of protein expression levels, subcellular localization, and interactors across diverse mammalian stem cells. PMID:29638216

  5. TCC: an R package for comparing tag count data with robust normalization strategies

    PubMed Central

    2013-01-01

    Background Differential expression analysis based on “next-generation” sequencing technologies is a fundamental means of studying RNA expression. We recently developed a multi-step normalization method (called TbT) for two-group RNA-seq data with replicates and demonstrated that the statistical methods available in four R packages (edgeR, DESeq, baySeq, and NBPSeq) together with TbT can produce a well-ranked gene list in which true differentially expressed genes (DEGs) are top-ranked and non-DEGs are bottom ranked. However, the advantages of the current TbT method come at the cost of a huge computation time. Moreover, the R packages did not have normalization methods based on such a multi-step strategy. Results TCC (an acronym for Tag Count Comparison) is an R package that provides a series of functions for differential expression analysis of tag count data. The package incorporates multi-step normalization methods, whose strategy is to remove potential DEGs before performing the data normalization. The normalization function based on this DEG elimination strategy (DEGES) includes (i) the original TbT method based on DEGES for two-group data with or without replicates, (ii) much faster methods for two-group data with or without replicates, and (iii) methods for multi-group comparison. TCC provides a simple unified interface to perform such analyses with combinations of functions provided by edgeR, DESeq, and baySeq. Additionally, a function for generating simulation data under various conditions and alternative DEGES procedures consisting of functions in the existing packages are provided. Bioinformatics scientists can use TCC to evaluate their methods, and biologists familiar with other R packages can easily learn what is done in TCC. Conclusion DEGES in TCC is essential for accurate normalization of tag count data, especially when up- and down-regulated DEGs in one of the samples are extremely biased in their number. TCC is useful for analyzing tag count data in various scenarios ranging from unbiased to extremely biased differential expression. TCC is available at http://www.iu.a.u-tokyo.ac.jp/~kadota/TCC/ and will appear in Bioconductor (http://bioconductor.org/) from ver. 2.13. PMID:23837715

  6. Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design

    NASA Astrophysics Data System (ADS)

    Reynolds, Nathan D.

    There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields an improvement in gain, or range, and in the ability to be mounted on multiple metallic surfaces.

  7. Defective heat shock factor 1 inhibits the growth of fibrosarcoma derived from simian virus 40/T antigen-transformed MEF cells

    PubMed Central

    JIANG, QIYING; ZHANG, ZHI; LI, SHULIAN; WANG, ZHAOYANG; MA, YUANFANG; HU, YANZHONG

    2015-01-01

    Heat shock factor 1 (Hsf1) serves an important role in regulating the proliferation of human tumor cell lines in vitro and tissue specific tumorigenesis in certain mouse models. However, its role in viral-oncogenesis remains to be fully elucidated. In the current study, the role of Hsf1 in fibroblastoma derived from simian virus 40/T antigen (SV40/TAG)-transformed mouse embryonic fibroblast (MEF) cell lines was investigated. Knockout of Hsf1 inhibited MEF cell proliferation in vitro and fibroblastoma growth and metastasis to the lungs in vivo in nude mice. Knockout of Hsf1 increased the protein expression levels of p53 and phosphorylated retinoblastoma protein (pRb), however reduced the expression of heat shock protein 25 (Hsp25) in addition to the expression of the angiogenesis markers vascular endothelial growth factor, cluster of differentiation 34 and factor VIII related antigen. Furthermore, immunoprecipitation indicated that knockout of Hsf1 inhibited the association between SV40/TAG and p53 or pRb. These data suggest that Hsf1 is involved in the regulation of SV40/TAG-derived fibroblastoma growth and metastasis by modulating the association between SV40/TAG and tumor suppressor p53 and pRb. The current study provides further evidence that Hsf1 may be a novel therapeutic target in the treatment of cancer. PMID:26352782

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Jeffrey P.; Thrower, Nicholas; Ohlrogge, John B.

    Bayberry (Myrica pensylvanica) fruits are covered with a remarkably thick layer of crystalline wax consisting of triacylglycerol (TAG) and diacylglycerol (DAG) esterified exclusively with saturated fatty acids. As the only plant known to accumulate soluble glycerolipids as a major component of surface waxes, Bayberry represents a novel system to investigate neutral lipid biosynthesis and lipid secretion by vegetative plant cells. The assembly of Bayberry wax is distinct from conventional TAG and other surface waxes, and instead proceeds through a pathway related to cutin synthesis (Simpson and Ohlrogge, 2016). In this study, microscopic examination revealed that the fruit tissue that producesmore » and secretes wax (Bayberry knobs) is fully developed before wax accumulates and that wax is secreted to the surface without cell disruption. Comparison of transcript expression to genetically related tissues (Bayberry leaves, M. rubra fruits), cutin-rich tomato and cherry fruit epidermis, and to oil-rich mesocarp and seeds, revealed exceptionally high expression of 13 transcripts for acyl-lipid metabolism together with down-regulation of fatty acid oxidases and desaturases. The predicted protein sequences of the most highly expressed lipid-related enzyme-encoding transcripts in Bayberry knobs are 100% identical to the sequences from Bayberry leaves,which do not produce surface DAG or TAG. Together, these results indicate that TAG biosynthesis and secretion in Bayberry is achieved by both up and down-regulation of a small subset of genes related to the biosynthesis of cutin and saturated fatty acids, and also implies that modifications in gene expression, rather than evolution of new gene functions, was the major mechanism by which Bayberry evolved its specialized lipid metabolism.« less

  9. Screening of broad spectrum natural pesticides against conserved target arginine kinase in cotton pests by molecular modeling.

    PubMed

    Sakthivel, Seethalakshmi; Habeeb, S K M; Raman, Chandrasekar

    2018-03-12

    Cotton is an economically important crop and its production is challenged by the diversity of pests and related insecticide resistance. Identification of the conserved target across the cotton pest will help to design broad spectrum insecticide. In this study, we have identified conserved sequences by Expressed Sequence Tag profiling from three cotton pests namely Aphis gossypii, Helicoverpa armigera, and Spodoptera exigua. One target protein arginine kinase having a key role in insect physiology and energy metabolism was studied further using homology modeling, virtual screening, molecular docking, and molecular dynamics simulation to identify potential biopesticide compounds from the Zinc natural database. We have identified four compounds having excellent inhibitor potential against the identified broad spectrum target which are highly specific to invertebrates.

  10. Proteomic Analysis of Responsive Proteins Induced in Japanese Birch Plantlet Treated with Salicylic Acid

    PubMed Central

    Suzuki, Hiromu; Takashima, Yuya; Ishiguri, Futoshi; Yoshizawa, Nobuo; Yokota, Shinso

    2014-01-01

    The present study was performed to unravel the mechanisms of systemic acquired resistance (SAR) establishment and resistance signaling pathways against the canker-rot fungus (Inonotus obliquus strain IO-U1) infection in Japanese birch plantlet No.8. Modulation of protein-profile induced by salicylic acid (SA)-administration was analyzed, and SA-responsive proteins were identified. In total, 5 specifically expressed, 3 significantly increased, and 3 significantly decreased protein spots were identified using liquid chromatography/tandem mass spectrometry (LC/MS/MS) and the sequence tag method. These proteins were malate dehydrogenase, succinate dehydrogenase, phosphoglycerate kinase, diaminopimalate decarboxylase, arginase, chorismate mutase, cyclophilin, aminopeptidase, and unknown function proteins. These proteins are considered to be involved in SAR-establishment mechanisms in the Japanese birch plantlet No 8. PMID:28250384

  11. GSyellow, a Multifaceted Tag for Functional Protein Analysis in Monocot and Dicot Plants.

    PubMed

    Besbrugge, Nienke; Van Leene, Jelle; Eeckhout, Dominique; Cannoot, Bernard; Kulkarni, Shubhada R; De Winne, Nancy; Persiau, Geert; Van De Slijke, Eveline; Bontinck, Michiel; Aesaert, Stijn; Impens, Francis; Gevaert, Kris; Van Damme, Daniel; Van Lijsebettens, Mieke; Inzé, Dirk; Vandepoele, Klaas; Nelissen, Hilde; De Jaeger, Geert

    2018-06-01

    The ability to tag proteins has boosted the emergence of generic molecular methods for protein functional analysis. Fluorescent protein tags are used to visualize protein localization, and affinity tags enable the mapping of molecular interactions by, for example, tandem affinity purification or chromatin immunoprecipitation. To apply these widely used molecular techniques on a single transgenic plant line, we developed a multifunctional tandem affinity purification tag, named GS yellow , which combines the streptavidin-binding peptide tag with citrine yellow fluorescent protein. We demonstrated the versatility of the GS yellow tag in the dicot Arabidopsis ( Arabidopsis thaliana ) using a set of benchmark proteins. For proof of concept in monocots, we assessed the localization and dynamic interaction profile of the leaf growth regulator ANGUSTIFOLIA3 (AN3), fused to the GS yellow tag, along the growth zone of the maize ( Zea mays ) leaf. To further explore the function of ZmAN3, we mapped its DNA-binding landscape in the growth zone of the maize leaf through chromatin immunoprecipitation sequencing. Comparison with AN3 target genes mapped in the developing maize tassel or in Arabidopsis cell cultures revealed strong conservation of AN3 target genes between different maize tissues and across monocots and dicots, respectively. In conclusion, the GS yellow tag offers a powerful molecular tool for distinct types of protein functional analyses in dicots and monocots. As this approach involves transforming a single construct, it is likely to accelerate both basic and translational plant research. © 2018 American Society of Plant Biologists. All rights reserved.

  12. Circulating triacylglycerol signatures in nonalcoholic fatty liver disease associated with the I148M variant in PNPLA3 and with obesity.

    PubMed

    Hyysalo, Jenni; Gopalacharyulu, Peddinti; Bian, Hua; Hyötyläinen, Tuulia; Leivonen, Marja; Jaser, Nabil; Juuti, Anne; Honka, Miikka-Juhani; Nuutila, Pirjo; Olkkonen, Vesa M; Oresic, Matej; Yki-Järvinen, Hannele

    2014-01-01

    We examined whether relative concentrations of circulating triacylglycerols (TAGs) between carriers compared with noncarriers of PNPLA3(I148M) gene variant display deficiency of TAGs, which accumulate in the liver because of defective lipase activity. We also analyzed the effects of obesity-associated nonalcoholic fatty liver disease (NAFLD) independent of genotype, and of NAFLD due to either PNPLA3(I148M) gene variant or obesity on circulating TAGs. A total of 372 subjects were divided into groups based on PNPLA3 genotype or obesity. Absolute and relative deficiency of distinct circulating TAGs was observed in the PNPLA3(148MM/148MI) compared with the PNPLA3(148II) group. Obese and 'nonobese' groups had similar PNPLA3 genotypes, but the obese subjects were insulin-resistant. Liver fat was similarly increased in obese and PNPLA3(148MM/148MI) groups. Relative concentrations of TAGs in the obese subjects versus nonobese displayed multiple changes. These closely resembled those between obese subjects with NAFLD but without PNPLA3(I148M) versus those with the I148M variant and NAFLD. The etiology of NAFLD influences circulating TAG profiles. 'PNPLA3 NAFLD' is associated with a relative deficiency of TAGs, supporting the idea that the I148M variant impedes intrahepatocellular lipolysis rather than stimulates TAG synthesis. 'Obese NAFLD' is associated with multiple changes in TAGs, which can be attributed to obesity/insulin resistance rather than increased liver fat content per se.

  13. Multiple Interests of Users in Collaborative Tagging Systems

    NASA Astrophysics Data System (ADS)

    Au Yeung, Ching-Man; Gibbins, Nicholas; Shadbolt, Nigel

    Performance of recommender systems depends on whether the user profiles contain accurate information about the interests of the users, and this in turn relies on whether enough information about their interests can be collected. Collaborative tagging systems allow users to use their own words to describe their favourite resources, resulting in some user-generated categorisation schemes commonly known as folksonomies. Folksonomies thus contain rich information about the interests of the users, which can be used to support various recommender systems. Our analysis of the folksonomy in Delicious reveals that the interests of a single user can be very diverse. Traditional methods for representing interests of users are usually not able to reflect such diversity. We propose a method to construct user profiles of multiple interests from folksonomies based on a network clustering technique. Our evaluation shows that the proposed method is able to generate user profiles which reflect the diversity of user interests and can be used as a basis of providing more focused recommendation to the users.

  14. Enzymatic Synthesis of Refined Olive Oil-Based Structured Lipid Containing Omega -3 and -6 Fatty Acids for Potential Application in Infant Formula.

    PubMed

    Li, Ruoyu; Sabir, Jamal S M; Baeshen, Nabih A; Akoh, Casimir C

    2015-11-01

    Structured lipids (SLs) containing palmitic, docosahexaenoic (DHA), and gamma-linolenic (GLA) acids were produced using refined olive oil, tripalmitin, and ethyl esters of DHA single cell oil and GLA ethyl esters. Immobilized Lipozyme TL IM lipase was used as the biocatalyst. The SLs were characterized for fatty acid profile, triacylglycerol (TAG) molecular species, solid fat content, oxidative stability index, and melting and crystallization profiles and compared to physical blend of substrates, extracted fat from commercial infant formula (IFF), and milk fat. 49.28 mol% of palmitic acid was found at the sn-2 position of SL TAG and total DHA and GLA composition were 0.73 and 5.00 mol%, respectively. The total oleic acid content was 36.13 mol% which was very close to the 30.49% present in commercial IFF. Comparable solid fat content profiles were also found between SLs and IFF. The SLs produced have potential for use in infant formulas. © 2015 Institute of Food Technologists®

  15. Passive wireless tags for tongue controlled assistive technology interfaces.

    PubMed

    Rakibet, Osman O; Horne, Robert J; Kelly, Stephen W; Batchelor, John C

    2016-03-01

    Tongue control with low profile, passive mouth tags is demonstrated as a human-device interface by communicating values of tongue-tag separation over a wireless link. Confusion matrices are provided to demonstrate user accuracy in targeting by tongue position. Accuracy is found to increase dramatically after short training sequences with errors falling close to 1% in magnitude with zero missed targets. The rate at which users are able to learn accurate targeting with high accuracy indicates that this is an intuitive device to operate. The significance of the work is that innovative very unobtrusive, wireless tags can be used to provide intuitive human-computer interfaces based on low cost and disposable mouth mounted technology. With the development of an appropriate reading system, control of assistive devices such as computer mice or wheelchairs could be possible for tetraplegics and others who retain fine motor control capability of their tongues. The tags contain no battery and are intended to fit directly on the hard palate, detecting tongue position in the mouth with no need for tongue piercings.

  16. Screening high oleaginous Chlorella strains from different climate zones.

    PubMed

    Xu, Jin; Hu, Hanhua

    2013-09-01

    In outdoor cultivation, screening strains adapted to a wide temperature range or suitable strains for different environmental temperatures is of great importance. In this study, triacylglycerol (TAG) content of 23 oil-producing Chlorella strains from different climate zones were analyzed by thin layer chromatography. Four selected Chlorella strains (NJ-18, NJ-7, NMX35N and NMX139N) with rather high TAG content had higher total lipid content compared with Chlorella vulgaris SAG 211-11b. In particular, NJ-18 displayed the highest TAG productivity among the four high oil-producing Chlorella strains. Accumulation of TAGs in strain NMX35N changed a little from 30 to 40°C, showing a desirable characteristic of accumulating TAGs at high temperatures. Our results demonstrated that NJ-18 and NMX35N had suitable fatty acid profiles and good adaption to low and high temperatures respectively. Therefore, cultivation of the two Chlorella strains together might be a good option for economic biodiesel production during the whole seasons of the year. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Adaptation of G-TAG Software for Validating Touch-and-Go Comet Surface Sampling Design Methodology

    NASA Technical Reports Server (NTRS)

    Mandic, Milan; Acikmese, Behcet; Blackmore, Lars

    2011-01-01

    The G-TAG software tool was developed under the R&TD on Integrated Autonomous Guidance, Navigation, and Control for Comet Sample Return, and represents a novel, multi-body dynamics simulation software tool for studying TAG sampling. The G-TAG multi-body simulation tool provides a simulation environment in which a Touch-and-Go (TAG) sampling event can be extensively tested. TAG sampling requires the spacecraft to descend to the surface, contact the surface with a sampling collection device, and then to ascend to a safe altitude. The TAG event lasts only a few seconds but is mission-critical with potentially high risk. Consequently, there is a need for the TAG event to be well characterized and studied by simulation and analysis in order for the proposal teams to converge on a reliable spacecraft design. This adaptation of the G-TAG tool was developed to support the Comet Odyssey proposal effort, and is specifically focused to address comet sample return missions. In this application, the spacecraft descends to and samples from the surface of a comet. Performance of the spacecraft during TAG is assessed based on survivability and sample collection performance. For the adaptation of the G-TAG simulation tool to comet scenarios, models are developed that accurately describe the properties of the spacecraft, approach trajectories, and descent velocities, as well as the models of the external forces and torques acting on the spacecraft. The adapted models of the spacecraft, descent profiles, and external sampling forces/torques were more sophisticated and customized for comets than those available in the basic G-TAG simulation tool. Scenarios implemented include the study of variations in requirements, spacecraft design (size, locations, etc. of the spacecraft components), and the environment (surface properties, slope, disturbances, etc.). The simulations, along with their visual representations using G-View, contributed to the Comet Odyssey New Frontiers proposal effort by indicating problems and/or benefits of different approaches and designs.

  18. Dopaminergic Neurons Respond to Iron-Induced Oxidative Stress by Modulating Lipid Acylation and Deacylation Cycles

    PubMed Central

    Sánchez Campos, Sofía; Rodríguez Diez, Guadalupe; Oresti, Gerardo Martín; Salvador, Gabriela Alejandra

    2015-01-01

    Metal-imbalance has been reported as a contributor factor for the degeneration of dopaminergic neurons in Parkinson Disease (PD). Specifically, iron (Fe)-overload and copper (Cu) mis-compartmentalization have been reported to be involved in the injury of dopaminergic neurons in this pathology. The aim of this work was to characterize the mechanisms of membrane repair by studying lipid acylation and deacylation reactions and their role in oxidative injury in N27 dopaminergic neurons exposed to Fe-overload and Cu-supplementation. N27 dopaminergic neurons incubated with Fe (1mM) for 24 hs displayed increased levels of reactive oxygen species (ROS), lipid peroxidation and elevated plasma membrane permeability. Cu-supplemented neurons (10, 50 μM) showed no evidence of oxidative stress markers. A different lipid acylation profile was observed in N27 neurons pre-labeled with [3H] arachidonic acid (AA) or [3H] oleic acid (OA). In Fe-exposed neurons, AA uptake was increased in triacylglycerols (TAG) whereas its incorporation into the phospholipid (PL) fraction was diminished. TAG content was 40% higher in Fe-exposed neurons than in controls. This increase was accompanied by the appearance of Nile red positive lipid bodies. Contrariwise, OA incorporation increased in the PL fractions and showed no changes in TAG. Lipid acylation profile in Cu-supplemented neurons showed AA accumulation into phosphatidylserine and no changes in TAG. The inhibition of deacylation/acylation reactions prompted an increase in oxidative stress markers and mitochondrial dysfunction in Fe-overloaded neurons. These findings provide evidence about the participation of lipid acylation mechanisms against Fe-induced oxidative injury and postulate that dopaminergic neurons cleverly preserve AA in TAG in response to oxidative stress. PMID:26076361

  19. Short-Term Effects of Dietary Fatty Acids on Muscle Lipid Composition and Serum Acylcarnitine Profile in Human Subjects

    PubMed Central

    Kien, C. Lawrence; Everingham, Karen I.; Stevens, Robert D.; Fukagawa, Naomi K.; Muoio, Deborah M.

    2010-01-01

    In cultured cells, palmitic acid (PA) and oleic acid (OA) confer distinct metabolic effects, yet, unclear, is whether changes in dietary fat intake impact cellular fatty acid (FA) composition. We hypothesized that short-term increases in dietary PA or OA would result in corresponding changes in the FA composition of skeletal muscle diacylglycerol (DAG) and triacylglycerol (TAG) and/or the specific FA selected for β-oxidation. Healthy males (N = 12) and females (N = 12) ingested a low-PA diet for 7 days. After fasting measurements of the serum acylcarnitine (AC) profile, subjects were randomized to either high-PA (HI PA) or low-PA/high-OA (HI OA) diets. After 7 days, the fasting AC measurement was repeated and a muscle/fat biopsy obtained. FA composition of intramyocellular DAG and TAG and serum AC was measured. HI PA increased, whereas HI OA decreased, serum concentration of 16:0 AC (P < 0.001). HI OA increased 18:1 AC (P = 0.005). HI PA was associated with a higher PA/OA ratio in muscle DAG and TAG (DAG: 1.03 ± 0.24 vs. 0.46 ± 0.08, P = 0.04; TAG: 0.63 ± 0.07 vs. 0.41 ± 0.03, P = 0.01). The PA concentration in the adipose tissue DAG (μg/mg adipose tissue) was 0.17 ± 0.02 in those receiving the HI PA diet (n = 6), compared to 0.11 ± 0.02 in the HI OA group (n = 4) (P = 0.067). The relative PA concentration in muscle DAG and TAG and the serum palmitoylcarnitine concentration was higher in those fed the high-PA diet. PMID:20559306

  20. Short-term effects of dietary fatty acids on muscle lipid composition and serum acylcarnitine profile in human subjects.

    PubMed

    Kien, C Lawrence; Everingham, Karen I; D Stevens, Robert; Fukagawa, Naomi K; Muoio, Deborah M

    2011-02-01

    In cultured cells, palmitic acid (PA) and oleic acid (OA) confer distinct metabolic effects, yet, unclear, is whether changes in dietary fat intake impact cellular fatty acid (FA) composition. We hypothesized that short-term increases in dietary PA or OA would result in corresponding changes in the FA composition of skeletal muscle diacylglycerol (DAG) and triacylglycerol (TAG) and/or the specific FA selected for β-oxidation. Healthy males (N = 12) and females (N = 12) ingested a low-PA diet for 7 days. After fasting measurements of the serum acylcarnitine (AC) profile, subjects were randomized to either high-PA (HI PA) or low-PA/high-OA (HI OA) diets. After 7 days, the fasting AC measurement was repeated and a muscle/fat biopsy obtained. FA composition of intramyocellular DAG and TAG and serum AC was measured. HI PA increased, whereas HI OA decreased, serum concentration of 16:0 AC (P < 0.001). HI OA increased 18:1 AC (P = 0.005). HI PA was associated with a higher PA/OA ratio in muscle DAG and TAG (DAG: 1.03 ± 0.24 vs. 0.46 ± 0.08, P = 0.04; TAG: 0.63 ± 0.07 vs. 0.41 ± 0.03, P = 0.01). The PA concentration in the adipose tissue DAG (µg/mg adipose tissue) was 0.17 ± 0.02 in those receiving the HI PA diet (n = 6), compared to 0.11 ± 0.02 in the HI OA group (n = 4) (P = 0.067). The relative PA concentration in muscle DAG and TAG and the serum palmitoylcarnitine concentration was higher in those fed the high-PA diet.

  1. Effects of triacylglycerol structure and solid fat content on fasting responses of mice.

    PubMed

    Wang, Xiaosan; Wang, Tong; Spurlock, Michael E; Wang, Xingguo

    2016-06-01

    Fat randomization and interesterification change triacylglycerol (TAG) structure and its solid fat content profile. It has not been thoroughly investigated whether these changes affect lipid metabolism. Two experiments were conducted to investigate the effects of TAG structure and solid fat content on feed intake, body weight change, and serum metabolite concentrations in mice. An experiment used two fats rich in 1,2-dipalmitoyl-3-oleoylglycerol (PPO) and 1,3-dipalmitoyl-2-oleoylglycerol (POP) as comparative pair of fats to assess the effect of TAG structure since PPO and POP have the same fatty acid composition and solid fat content at 37 °C. Another experiment used a fat rich in 1-palmitoyl-2,3-dioleoylglycerol (POO) with solid fat content of zero at 37 °C and a mixture of fats that had the same general fatty acid composition and palmitic acid positional distribution, but with solid fat content of 22 % at 37 °C. This pair of fats was used to examine the effect of solid fat content on blood lipid profile. After 6-week feeding, the pair of fats with different solid fat contents did not significantly affect the concentrations of total serum cholesterol, HDL cholesterol, TAG, non-esterified fatty acid (NEFA), or blood glucose. However, the PPO fat significantly reduced feed intake, body weight, and serum glucose concentration as compared to POP. These results suggest that the presence of solid fat at the level examined does not affect lipid metabolism and lipemia, but PPO diet significantly affects NEFA and glucose concentrations. Palmitic acid at the sn-2 position of the TAG may have significant effect on appetite, which may be mediated via the gut receptors.

  2. High-efficiency production of bioactive recombinant human fibroblast growth factor 18 in Escherichia coli and its effects on hair follicle growth.

    PubMed

    Song, Lintao; Huang, Zhifeng; Chen, Yu; Li, Haiyan; Jiang, Chao; Li, Xiaokun

    2014-01-01

    Using fusion tags, expression of recombinant human fibroblast growth factor 18 (rhFGF18) in mammalian cells and Escherichia coli has been extensively used for fundamental research and clinical applications, including chondrogenesis and osteogenesis, hair growth, and neuroprotection. However, high-level rhFGF18 expression is difficult and the products are often not homogeneous. Furthermore, fusion-tagged protein has higher immunogenicity and lower bioactivity, and the removal of the fused tag is expensive. To overcome the limitations of fusion-tagged expression of protein and to prepare soluble highly bioactive rhFGF18, we have developed a rapid and efficient expression strategy. Optimized hFGF18 gene was amplified by polymerase chain reaction and cloned into pET22b and pET3c vectors, then transformed into E. coli strains Origima (DE3) and BL21 (DE3)PlysS. The best combination of plasmid and host strain was selected, and only Origima (DE3)/pET3c-rhFGF18 was screened for high-level expressed rhFGF18. Under optimal conditions in a 30-L fermentor, the average bacterial yield and expression level of rhFGF18 of three batches were more than 652 g and 30 % respectively, after treatment with 1 mM isopropyl-thio-β-galactopyranoside for 10 h at 25 °C. The target protein was purified by CM Sepharose FF and heparin affinity chromatography. The purity of rhFGF18 was shown by HPLC to be higher than 95 %, and the yield was 155 mg/L. In vitro MTT assays demonstrated that the purified rhFGF18 could stimulate significant proliferation of NIH3T3 cells, and animal experiments showed that rhFGF18 could effectively regulate hair growth. In conclusion, this may be a better method of producing rhFGF18 to meet the increasing demand in its pharmacological application.

  3. Fine-Scale Focal Dtag Behavioral Study of Diel Trends in Activity Budgets and Sound Production of Endangered Baleen Whales in the Gulf of Maine

    DTIC Science & Technology

    2011-09-30

    endangered baleen whale species, the humpback whale (Megaptera novaengliae) and the right whale (Eubalaena glacialis), on the Stellwagen Bank National...in dive profiles and horizontal movement patterns for tagged humpback and right whales on the Stellwagen Bank National Marine Sanctuary; 2...determine the sound production behavior of individual tagged humpback and right whales on the Stellwagen Bank National Marine Sanctuary; and 3) examine the

  4. SAGE III/ISS L2 Solar Event Species Profiles (HDF-EOS) V5 (g3bssp)

    Atmospheric Science Data Center

    2017-12-21

    SAGE III/ISS L2 Solar Event Species Profiles (HDF-EOS) V5 (g3bssp)   Project ... present Temporal Resolution:  1 file per event File Format:  HDF-4 Tools:  Earthdata ... Radiation Longwave Radiation Shortwave Radiation Event Tag Event Type Obs Beta Angle Order Data:  ...

  5. SAGE III/ISS L2 Lunar Event Species Profiles (HDF-EOS) V5 (g3blsp)

    Atmospheric Science Data Center

    2018-01-04

    SAGE III/ISS L2 Lunar Event Species Profiles (HDF-EOS) V5 (g3blsp)   Project ... present Temporal Resolution:  1 file per event File Format:  HDF-4 Tools:  Earthdata ... Radiation Longwave Radiation Shortwave Radiation Event Tag Event Type Obs Beta Angle Order Data:  ...

  6. Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles

    PubMed Central

    2011-01-01

    Background Cultivated watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] is an important agriculture crop world-wide. The fruit of watermelon undergoes distinct stages of development with dramatic changes in its size, color, sweetness, texture and aroma. In order to better understand the genetic and molecular basis of these changes and significantly expand the watermelon transcript catalog, we have selected four critical stages of watermelon fruit development and used Roche/454 next-generation sequencing technology to generate a large expressed sequence tag (EST) dataset and a comprehensive transcriptome profile for watermelon fruit flesh tissues. Results We performed half Roche/454 GS-FLX run for each of the four watermelon fruit developmental stages (immature white, white-pink flesh, red flesh and over-ripe) and obtained 577,023 high quality ESTs with an average length of 302.8 bp. De novo assembly of these ESTs together with 11,786 watermelon ESTs collected from GenBank produced 75,068 unigenes with a total length of approximately 31.8 Mb. Overall 54.9% of the unigenes showed significant similarities to known sequences in GenBank non-redundant (nr) protein database and around two-thirds of them matched proteins of cucumber, the most closely-related species with a sequenced genome. The unigenes were further assigned with gene ontology (GO) terms and mapped to biochemical pathways. More than 5,000 SSRs were identified from the EST collection. Furthermore we carried out digital gene expression analysis of these ESTs and identified 3,023 genes that were differentially expressed during watermelon fruit development and ripening, which provided novel insights into watermelon fruit biology and a comprehensive resource of candidate genes for future functional analysis. We then generated profiles of several interesting metabolites that are important to fruit quality including pigmentation and sweetness. Integrative analysis of metabolite and digital gene expression profiles helped elucidating molecular mechanisms governing these important quality-related traits during watermelon fruit development. Conclusion We have generated a large collection of watermelon ESTs, which represents a significant expansion of the current transcript catalog of watermelon and a valuable resource for future studies on the genomics of watermelon and other closely-related species. Digital expression analysis of this EST collection allowed us to identify a large set of genes that were differentially expressed during watermelon fruit development and ripening, which provide a rich source of candidates for future functional analysis and represent a valuable increase in our knowledge base of watermelon fruit biology. PMID:21936920

  7. Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles.

    PubMed

    Guo, Shaogui; Liu, Jingan; Zheng, Yi; Huang, Mingyun; Zhang, Haiying; Gong, Guoyi; He, Hongju; Ren, Yi; Zhong, Silin; Fei, Zhangjun; Xu, Yong

    2011-09-21

    Cultivated watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] is an important agriculture crop world-wide. The fruit of watermelon undergoes distinct stages of development with dramatic changes in its size, color, sweetness, texture and aroma. In order to better understand the genetic and molecular basis of these changes and significantly expand the watermelon transcript catalog, we have selected four critical stages of watermelon fruit development and used Roche/454 next-generation sequencing technology to generate a large expressed sequence tag (EST) dataset and a comprehensive transcriptome profile for watermelon fruit flesh tissues. We performed half Roche/454 GS-FLX run for each of the four watermelon fruit developmental stages (immature white, white-pink flesh, red flesh and over-ripe) and obtained 577,023 high quality ESTs with an average length of 302.8 bp. De novo assembly of these ESTs together with 11,786 watermelon ESTs collected from GenBank produced 75,068 unigenes with a total length of approximately 31.8 Mb. Overall 54.9% of the unigenes showed significant similarities to known sequences in GenBank non-redundant (nr) protein database and around two-thirds of them matched proteins of cucumber, the most closely-related species with a sequenced genome. The unigenes were further assigned with gene ontology (GO) terms and mapped to biochemical pathways. More than 5,000 SSRs were identified from the EST collection. Furthermore we carried out digital gene expression analysis of these ESTs and identified 3,023 genes that were differentially expressed during watermelon fruit development and ripening, which provided novel insights into watermelon fruit biology and a comprehensive resource of candidate genes for future functional analysis. We then generated profiles of several interesting metabolites that are important to fruit quality including pigmentation and sweetness. Integrative analysis of metabolite and digital gene expression profiles helped elucidating molecular mechanisms governing these important quality-related traits during watermelon fruit development. We have generated a large collection of watermelon ESTs, which represents a significant expansion of the current transcript catalog of watermelon and a valuable resource for future studies on the genomics of watermelon and other closely-related species. Digital expression analysis of this EST collection allowed us to identify a large set of genes that were differentially expressed during watermelon fruit development and ripening, which provide a rich source of candidates for future functional analysis and represent a valuable increase in our knowledge base of watermelon fruit biology.

  8. Sugar Potentiation of Fatty Acid and Triacylglycerol Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Zhiyang; Liu, Hui; Xu, Changcheng

    Photosynthetically derived sugar provides carbon skeletons for lipid biosynthesis. We used mutants of Arabidopsis (Arabidopsis thaliana) and the expression of oleogenic factors to investigate relationships among sugar availability, lipid synthesis, and the accumulation of triacylglycerol (TAG) in leaf tissue. The adg1 mutation disables the small subunit of ADP-glucose pyrophosphorylase, the first step in starch synthesis, and the suc2 mutation disables a sucrose/proton symporter that facilitates sucrose loading from leaves into phloem. The adg1suc2 double mutant increases glucose plus sucrose content in leaves 80-fold relative to the wild type, total fatty acid (FA) content 1.8-fold to 8.3% dry weight, and TAGmore » more than 10-fold to 1.2% dry weight. The WRINKLED1 transcription factor also accumulates to higher levels in these leaves, and the rate of FA synthesis increases by 58%. Adding tt4, which disables chalcone synthase, had little effect, but adding the tgd1 mutation, which disables an importer of lipids into plastids to create adg1suc2tt4tgd1, increased total leaf FA to 13.5% dry weight and TAG to 3.8% dry weight, demonstrating a synergistic effect upon combining these mutations. Combining adg1suc2 with the sdp1 mutation, deficient in the predominant TAG lipase, had little effect on total FA content but increased the TAG accumulation by 66% to 2% dry weight. Expression of the WRINKLED1 transcription factor, along with DIACYLGLYCEROL ACYLTRANSFERASE1 and the OLEOSIN1 oil body-associated protein, in the adg1suc2 mutant doubled leaf FA content and increased TAG content to 2.3% dry weight, a level 4.6-fold higher than that resulting from expression of the same factors in the wild type.« less

  9. Sugar Potentiation of Fatty Acid and Triacylglycerol Accumulation

    DOE PAGES

    Zhai, Zhiyang; Liu, Hui; Xu, Changcheng; ...

    2017-10-01

    Photosynthetically derived sugar provides carbon skeletons for lipid biosynthesis. We used mutants of Arabidopsis (Arabidopsis thaliana) and the expression of oleogenic factors to investigate relationships among sugar availability, lipid synthesis, and the accumulation of triacylglycerol (TAG) in leaf tissue. The adg1 mutation disables the small subunit of ADP-glucose pyrophosphorylase, the first step in starch synthesis, and the suc2 mutation disables a sucrose/proton symporter that facilitates sucrose loading from leaves into phloem. The adg1suc2 double mutant increases glucose plus sucrose content in leaves 80-fold relative to the wild type, total fatty acid (FA) content 1.8-fold to 8.3% dry weight, and TAGmore » more than 10-fold to 1.2% dry weight. The WRINKLED1 transcription factor also accumulates to higher levels in these leaves, and the rate of FA synthesis increases by 58%. Adding tt4, which disables chalcone synthase, had little effect, but adding the tgd1 mutation, which disables an importer of lipids into plastids to create adg1suc2tt4tgd1, increased total leaf FA to 13.5% dry weight and TAG to 3.8% dry weight, demonstrating a synergistic effect upon combining these mutations. Combining adg1suc2 with the sdp1 mutation, deficient in the predominant TAG lipase, had little effect on total FA content but increased the TAG accumulation by 66% to 2% dry weight. Expression of the WRINKLED1 transcription factor, along with DIACYLGLYCEROL ACYLTRANSFERASE1 and the OLEOSIN1 oil body-associated protein, in the adg1suc2 mutant doubled leaf FA content and increased TAG content to 2.3% dry weight, a level 4.6-fold higher than that resulting from expression of the same factors in the wild type.« less

  10. A simple and effective strategy for solving the problem of inclusion bodies in recombinant protein technology: His-tag deletions enhance soluble expression.

    PubMed

    Zhu, Shaozhou; Gong, Cuiyu; Ren, Lu; Li, Xingzhou; Song, Dawei; Zheng, Guojun

    2013-01-01

    The formation of inclusion bodies (IBs) in recombinant protein biotechnology has become one of the most frequent undesirable occurrences in both research and industrial applications. So far, the pET System is the most powerful system developed for the production of recombinant proteins when Escherichia coli is used as the microbial cell factory. Also, using fusion tags to facilitate detection and purification of the target protein is a commonly used tactic. However, there is still a large fraction of proteins that cannot be produced in E. coli in a soluble (and hence functional) form. Intensive research efforts have tried to address this issue, and numerous parameters have been modulated to avoid the formation of inclusion bodies. However, hardly anyone has noticed that adding fusion tags to the recombinant protein to facilitate purification is a key factor that affects the formation of inclusion bodies. To test this idea, the industrial biocatalysts uridine phosphorylase from Aeropyrum pernix K1 and (+)-γ-lactamase and (-)-γ-lactamase from Bradyrhizobium japonicum USDA 6 were expressed in E. coli by using the pET System and then examined. We found that using a histidine tag as a fusion partner for protein expression did affect the formation of inclusion bodies in these examples, suggesting that removing the fusion tag can promote the solubility of heterologous proteins. The production of soluble and highly active uridine phosphorylase, (+)-γ-lactamase, and (-)-γ-lactamase in our results shows that the traditional process needs to be reconsidered. Accordingly, a simple and efficient structure-based strategy for the production of valuable soluble recombinant proteins in E. coli is proposed.

  11. Identification of a Pair of Phospholipid:Diacylglycerol Acyltransferases from Developing Flax (Linum usitatissimum L.) Seed Catalyzing the Selective Production of Trilinolenin*

    PubMed Central

    Pan, Xue; Siloto, Rodrigo M. P.; Wickramarathna, Aruna D.; Mietkiewska, Elzbieta; Weselake, Randall J.

    2013-01-01

    The oil from flax (Linum usitatissimum L.) has high amounts of α-linolenic acid (ALA; 18:3cisΔ9,12,15) and is one of the richest sources of omega-3 polyunsaturated fatty acids (ω-3-PUFAs). To produce ∼57% ALA in triacylglycerol (TAG), it is likely that flax contains enzymes that can efficiently transfer ALA to TAG. To test this hypothesis, we conducted a systematic characterization of TAG-synthesizing enzymes from flax. We identified several genes encoding acyl-CoA:diacylglycerol acyltransferases (DGATs) and phospholipid:diacylglycerol acyltransferases (PDATs) from the flax genome database. Due to recent genome duplication, duplicated gene pairs have been identified for all genes except DGAT2-2. Analysis of gene expression indicated that two DGAT1, two DGAT2, and four PDAT genes were preferentially expressed in flax embryos. Yeast functional analysis showed that DGAT1, DGAT2, and two PDAT enzymes restored TAG synthesis when produced recombinantly in yeast H1246 strain. The activity of particular PDAT enzymes (LuPDAT1 and LuPDAT2) was stimulated by the presence of ALA. Further seed-specific expression of flax genes in Arabidopsis thaliana indicated that DGAT1, PDAT1, and PDAT2 had significant effects on seed oil phenotype. Overall, this study indicated the existence of unique PDAT enzymes from flax that are able to preferentially catalyze the synthesis of TAG containing ALA acyl moieties. The identified LuPDATs may have practical applications for increasing the accumulation of ALA and other polyunsaturated fatty acids in oilseeds for food and industrial applications. PMID:23824186

  12. Integrated Quantitative Transcriptome Maps of Human Trisomy 21 Tissues and Cells

    PubMed Central

    Pelleri, Maria Chiara; Cattani, Chiara; Vitale, Lorenza; Antonaros, Francesca; Strippoli, Pierluigi; Locatelli, Chiara; Cocchi, Guido; Piovesan, Allison; Caracausi, Maria

    2018-01-01

    Down syndrome (DS) is due to the presence of an extra full or partial chromosome 21 (Hsa21). The identification of genes contributing to DS pathogenesis could be the key to any rational therapy of the associated intellectual disability. We aim at generating quantitative transcriptome maps in DS integrating all gene expression profile datasets available for any cell type or tissue, to obtain a complete model of the transcriptome in terms of both expression values for each gene and segmental trend of gene expression along each chromosome. We used the TRAM (Transcriptome Mapper) software for this meta-analysis, comparing transcript expression levels and profiles between DS and normal brain, lymphoblastoid cell lines, blood cells, fibroblasts, thymus and induced pluripotent stem cells, respectively. TRAM combined, normalized, and integrated datasets from different sources and across diverse experimental platforms. The main output was a linear expression value that may be used as a reference for each of up to 37,181 mapped transcripts analyzed, related to both known genes and expression sequence tag (EST) clusters. An independent example in vitro validation of fibroblast transcriptome map data was performed through “Real-Time” reverse transcription polymerase chain reaction showing an excellent correlation coefficient (r = 0.93, p < 0.0001) with data obtained in silico. The availability of linear expression values for each gene allowed the testing of the gene dosage hypothesis of the expected 3:2 DS/normal ratio for Hsa21 as well as other human genes in DS, in addition to listing genes differentially expressed with statistical significance. Although a fraction of Hsa21 genes escapes dosage effects, Hsa21 genes are selectively over-expressed in DS samples compared to genes from other chromosomes, reflecting a decisive role in the pathogenesis of the syndrome. Finally, the analysis of chromosomal segments reveals a high prevalence of Hsa21 over-expressed segments over the other genomic regions, suggesting, in particular, a specific region on Hsa21 that appears to be frequently over-expressed (21q22). Our complete datasets are released as a new framework to investigate transcription in DS for individual genes as well as chromosomal segments in different cell types and tissues. PMID:29740474

  13. A plasmid collection for PCR-based gene targeting in the filamentous ascomycete Ashbya gossypii.

    PubMed

    Kaufmann, Andreas

    2009-08-01

    PCR-based gene targeting with heterologous markers is an efficient method to delete genes, generate gene fusions, and modulate gene expression. For the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, several plasmid collections are available covering a wide range of tags and markers. For several reasons, many of these cassettes cannot be used in the filamentous ascomycete Ashbya gossypii. This article describes the construction of 93 heterologous modules for C- and N-terminal tagging and promoter replacements in A. gossypii. The performance of 12 different fluorescent tags was evaluated by monitoring their brightness, detectability, and photostability when fused to the myosin light-chain protein Mlc2. Furthermore, the thiamine-repressible S. cerevisiae THI13 promoter was established to regulate gene expression in A. gossypii. This collection will help accelerate analysis of gene function in A. gossypii and in other ascomycetes where S. cerevisiae promoter elements are functional.

  14. Two Variants of Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) with Additional Protein Domains: Synthesis in an Escherichia coli Heterologous Expression System.

    PubMed

    Karyagina, A S; Boksha, I S; Grunina, T M; Demidenko, A V; Poponova, M S; Sergienko, O V; Lyashchuk, A M; Galushkina, Z M; Soboleva, L A; Osidak, E O; Bartov, M S; Gromov, A V; Lunin, V G

    2017-05-01

    Two variants of recombinant human bone morphogenetic protein-2 (rhBMP-2) with additional N-terminal protein domains were obtained by expression in E. coli. The N-terminal domains were s-tag (15-a.a. oligopeptide from bovine pancreatic ribonuclease A) and lz (leucine zipper dimerization domain from yeast transcription factor GCN4). The s-tag-BMP-2 and lz-BMP-2 were purified by a procedure that excluded a long refolding stage. The resulting dimeric proteins displayed higher solubility compared to rhBMP-2 without additional protein domains. Biological activity of both proteins was demonstrated in vitro by induction of alkaline phosphatase in C2C12 cells, and the activity of s-tag-BMP-2 in vivo was shown in various experimental animal models.

  15. Diffusion in shear flow

    NASA Astrophysics Data System (ADS)

    Dufty, J. W.

    1984-09-01

    Diffusion of a tagged particle in a fluid with uniform shear flow is described. The continuity equation for the probability density describing the position of the tagged particle is considered. The diffusion tensor is identified by expanding the irreversible part of the probability current to first order in the gradient of the probability density, but with no restriction on the shear rate. The tensor is expressed as the time integral of a nonequilibrium autocorrelation function for the velocity of the tagged particle in its local fluid rest frame, generalizing the Green-Kubo expression to the nonequilibrium state. The tensor is evaluated from results obtained previously for the velocity autocorrelation function that are exact for Maxwell molecules in the Boltzmann limit. The effects of viscous heating are included and the dependence on frequency and shear rate is displayed explicitly. The mode-coupling contributions to the frequency and shear-rate dependent diffusion tensor are calculated.

  16. Identification and physiological characterization of phosphatidic acid phosphatase enzymes involved in triacylglycerol biosynthesis in Streptomyces coelicolor

    PubMed Central

    2013-01-01

    Background Phosphatidic acid phosphatase (PAP, EC 3.1.3.4) catalyzes the dephosphorylation of phosphatidate yielding diacylglycerol (DAG), the lipid precursor for triacylglycerol (TAG) biosynthesis. Despite the importance of PAP activity in TAG producing bacteria, studies to establish its role in lipid metabolism have been so far restricted only to eukaryotes. Considering the increasing interest of bacterial TAG as a potential source of raw material for biofuel production, we have focused our studies on the identification and physiological characterization of the putative PAP present in the TAG producing bacterium Streptomyces coelicolor. Results We have identified two S. coelicolor genes, named lppα (SCO1102) and lppβ (SCO1753), encoding for functional PAP proteins. Both enzymes mediate, at least in part, the formation of DAG for neutral lipid biosynthesis. Heterologous expression of lppα and lppβ genes in E. coli resulted in enhanced PAP activity in the membrane fractions of the recombinant strains and concomitantly in higher levels of DAG. In addition, the expression of these genes in yeast complemented the temperature-sensitive growth phenotype of the PAP deficient strain GHY58 (dpp1lpp1pah1). In S. coelicolor, disruption of either lppα or lppβ had no effect on TAG accumulation; however, the simultaneous mutation of both genes provoked a drastic reduction in de novo TAG biosynthesis as well as in total TAG content. Consistently, overexpression of Lppα and Lppβ in the wild type strain of S. coelicolor led to a significant increase in TAG production. Conclusions The present study describes the identification of PAP enzymes in bacteria and provides further insights on the genetic basis for prokaryotic oiliness. Furthermore, this finding completes the whole set of enzymes required for de novo TAG biosynthesis pathway in S. coelicolor. Remarkably, the overexpression of these PAPs in Streptomyces bacteria contributes to a higher productivity of this single cell oil. Altogether, these results provide new elements and tools for future cell engineering for next-generation biofuels production. PMID:23356794

  17. Functional Immunomics of the Squash Bug, Anasa tristis (De Geer) (Heteroptera: Coreidae)

    PubMed Central

    Shelby, Kent S.

    2013-01-01

    The Squash bug, Anasa tristis (De Geer), is a major piercing/sucking pest of cucurbits, causing extensive damage to plants and fruits, and transmitting phytopathogens. No genomic resources to facilitate field and laboratory studies of this pest were available; therefore the first de novo exome for this destructive pest was assembled. RNA was extracted from insects challenged with bacterial and fungal immunoelicitors, insects fed on different cucurbit species, and insects from all life stages from egg to adult. All treatments and replicates were separately barcoded for subsequent analyses, then pooled for sequencing in a single lane using the Illumina HiSeq2000 platform. Over 211 million 100-base tags generated in this manner were trimmed, filtered, and cleaned, then assembled into a de novo reference transcriptome using the Broad Institute Trinity assembly algorithm. The assembly was annotated using NCBIx NR, BLAST2GO, KEGG and other databases. Of the >130,000 total assemblies 37,327 were annotated identifying the sequences of candidate gene silencing targets from immune, endocrine, reproductive, cuticle, and other physiological systems. Expression profiling of the adult immune response was accomplished by aligning the 100-base tags from each biological replicate from each treatment and controls to the annotated reference assembly of the A. tristis transcriptome. PMID:26462532

  18. Behavioral tagging of extinction learning.

    PubMed

    de Carvalho Myskiw, Jociane; Benetti, Fernando; Izquierdo, Iván

    2013-01-15

    Extinction of contextual fear in rats is enhanced by exposure to a novel environment at 1-2 h before or 1 h after extinction training. This effect is antagonized by administration of protein synthesis inhibitors anisomycin and rapamycin into the hippocampus, but not into the amygdala, immediately after either novelty or extinction training, as well as by the gene expression blocker 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole administered after novelty training, but not after extinction training. Thus, this effect can be attributed to a mechanism similar to synaptic tagging, through which long-term potentiation can be enhanced by other long-term potentiations or by exposure to a novel environment in a protein synthesis-dependent fashion. Extinction learning produces a tag at the appropriate synapses, whereas novelty learning causes the synthesis of plasticity-related proteins that are captured by the tag, strengthening the synapses that generated this tag.

  19. Fiber type- and fatty acid composition-dependent effects of high-fat diets on rat muscle triacylglyceride and fatty acid transporter protein-1 content.

    PubMed

    Marotta, Mario; Ferrer-Martnez, Andreu; Parnau, Josep; Turini, Marco; Macé, Katherine; Gómez Foix, Anna M

    2004-08-01

    Intramuscular triacylglyceride (TAG) is considered an independent marker of insulin resistance in humans. Here, we examined the effect of high-fat diets, based on distinct fatty acid compositions (saturated, monounsaturated or n-6 polyunsaturated), on TAG levels and fatty acid transporter protein (FATP-1) expression in 2 rat muscles that differ in their fiber type, soleus, and gastrocnemius; the relationship to whole body glucose intolerance was also studied. Compared with carbohydrate-fed rats, the groups subjected to any one of the high-fat diets consistently exhibited enhanced body weight gain and adiposity, elevated plasma free fatty acids and TAG in the fed condition, hyperinsulinemia, and glucose intolerance. TAG content was consistently higher in soleus than in gastrocnemius, but was only significantly elevated by the n-6 polyunsaturated-based diet. FATP-1 levels in soleus were double those in gastrocnemius muscle in carbohydrate-fed animals. High-fat diets caused an elevation in FATP-1 protein content in soleus, but a reduction in gastrocnemius. In conclusion, the hyperinsulinemic hyperlipidemic condition upregulates FATP-1 expression in soleus and downregulates that of gastrocnemius. Hypercaloric saturated, monounsaturated, or n-6 polyunsaturated lipid diets cause equivalent whole body insulin resistance in rats, but only an n-6 polyunsaturated acid-based diet triggers intramuscular TAG accumulation. Copyright 2004 Elsevier Inc.

  20. Tagging methyl-CpG-binding domain proteins reveals different spatiotemporal expression and supports distinct functions.

    PubMed

    Wood, Kathleen H; Johnson, Brian S; Welsh, Sarah A; Lee, Jun Y; Cui, Yue; Krizman, Elizabeth; Brodkin, Edward S; Blendy, Julie A; Robinson, Michael B; Bartolomei, Marisa S; Zhou, Zhaolan

    2016-04-01

    DNA methylation is recognized by methyl-CpG-binding domain (MBD) proteins. Multiple MBDs are linked to neurodevelopmental disorders in humans and mice. However, the functions of MBD2 are poorly understood. We characterized Mbd2 knockout mice and determined spatiotemporal expression of MBDs and MBD2-NuRD (nucleosome remodeling deacetylase) interactions. We analyzed behavioral phenotypes, generated biotin-tagged MBD1 and MBD2 knockin mice, and performed biochemical studies of MBD2-NuRD. Most behavioral measures are minimally affected in Mbd2 knockout mice. In contrast to other MBDs, MBD2 shows distinct expression patterns. Unlike most MBDs, MBD2 is ubiquitously expressed in all tissues examined and appears dispensable for brain functions measured in this study. We provide novel genetic tools and reveal new directions to investigate MBD2 functions in vivo.

  1. An ordered EST catalogue and gene expression profiles of cassava (Manihot esculenta) at key growth stages.

    PubMed

    Li, You-Zhi; Pan, Ying-Hua; Sun, Chang-Bin; Dong, Hai-Tao; Luo, Xing-Lu; Wang, Zhi-Qiang; Tang, Ji-Liang; Chen, Baoshan

    2010-12-01

    A cDNA library was constructed from the root tissues of cassava variety Huanan 124 at the root bulking stage. A total of 9,600 cDNA clones from the library were sequenced with single-pass from the 5'-terminus to establish a catalogue of expressed sequence tags (ESTs). Assembly of the resulting EST sequences resulted in 2,878 putative unigenes. Blastn analysis showed that 62.6% of the unigenes matched with known cassava ESTs and the rest had no 'hits' against the cassava database in the integrative PlantGDB database. Blastx analysis showed that 1,715 (59.59%) of the unigenes matched with one or more GenBank protein entries and 1,163 (40.41%) had no 'hits'. A cDNA microarray with 2,878 unigenes was developed and used to analyze gene expression profiling of Huanan 124 at key growth stages including seedling, formation of root system, root bulking, and starch maturity. Array data analysis revealed that (1) the higher ratio of up-regulated ribosome-related genes was accompanied by a high ratio of up-regulated ubiquitin, proteasome-related and protease genes in cassava roots; (2) starch formation and degradation simultaneously occur at the early stages of root development but starch degradation is declined partially due to decrease in UDP-glucose dehydrogenase activity with root maturity; (3) starch may also be synthesized in situ in roots; (4) starch synthesis, translocation, and accumulation are also associated probably with signaling pathways that parallel Wnt, LAM, TCS and ErbB signaling pathways in animals; (5) constitutive expression of stress-responsive genes may be due to the adaptation of cassava to harsh environments during long-term evolution.

  2. Transcriptional profile of Paracoccidioides induced by oenothein B, a potential antifungal agent from the Brazilian Cerrado plant Eugenia uniflora

    PubMed Central

    2013-01-01

    Background The compound oenothein B (OenB), which is isolated from the leaves of Eugenia uniflora, a Brazilian Cerrado plant, interferes with Paracoccidioides yeast cell morphology and inhibits 1,3-β-D-glucan synthase (PbFKS1) transcript accumulation, which is involved in cell wall synthesis. In this work we examined the gene expression changes in Paracoccidioides yeast cells following OenB treatment in order to investigate the adaptive cellular responses to drug stress. Results We constructed differential gene expression libraries using Representational Difference Analysis (RDA) of Paracoccidioides yeast cells treated with OenB for 90 and 180 min. Treatment for 90 min resulted in the identification of 463 up-regulated expressed sequences tags (ESTs) and 104 down-regulated ESTs. For the 180 min treatment 301 up-regulated ESTs and 143 down-regulated were identified. Genes involved in the cell wall biosynthesis, such as GLN1, KRE6 and FKS1, were found to be regulated by OenB. Infection experiments in macrophages corroborated the in vitro results. Fluorescence microscopy showed increased levels of chitin in cells treated with OenB. The carbohydrate polymer content of the cell wall of the fungus was also evaluated, and the results corroborated with the transcriptional data. Several other genes, such as those involved in a variety of important cellular processes (i.e., membrane maintenance, stress and virulence) were found to be up-regulated in response to OenB treatment. Conclusions The exposure of Paracoccidioides to OenB resulted in a complex altered gene expression profile. Some of the changes may represent specific adaptive responses to this compound in this important pathogenic fungus. PMID:24119145

  3. cDNA microarrays as a tool for identification of biomineralization proteins in the coccolithophorid Emiliania huxleyi (Haptophyta).

    PubMed

    Quinn, Patrick; Bowers, Robert M; Zhang, Xiaoyu; Wahlund, Thomas M; Fanelli, Michael A; Olszova, Daniela; Read, Betsy A

    2006-08-01

    Marine unicellular coccolithophore algae produce species-specific calcite scales otherwise known as coccoliths. While the coccoliths and their elaborate architecture have attracted the attention of investigators from various scientific disciplines, our knowledge of the underpinnings of the process of biomineralization in this alga is still in its infancy. The processes of calcification and coccolithogenesis are highly regulated and likely to be complex, requiring coordinated expression of many genes and pathways. In this study, we have employed cDNA microarrays to investigate changes in gene expression associated with biomineralization in the most abundant coccolithophorid, Emiliania huxleyi. Expression profiling of cultures grown under calcifying and noncalcifying conditions has been carried out using cDNA microarrays corresponding to approximately 2,300 expressed sequence tags. A total of 127 significantly up- or down-regulated transcripts were identified using a P value of 0.01 and a change of >2.0-fold. Real-time reverse transcriptase PCR was used to test the overall validity of the microarray data, as well as the relevance of many of the proteins predicted to be associated with biomineralization, including a novel gamma-class carbonic anhydrase (A. R. Soto, H. Zheng, D. Shoemaker, J. Rodriguez, B. A. Read, and T. M. Wahlund, Appl. Environ. Microbiol. 72:5500-5511, 2006). Differentially regulated genes include those related to cellular metabolism, ion channels, transport proteins, vesicular trafficking, and cell signaling. The putative function of the vast majority of candidate transcripts could not be defined. Nonetheless, the data described herein represent profiles of the transcription changes associated with biomineralization-related pathways in E. huxleyi and have identified novel and potentially useful targets for more detailed analysis.

  4. cDNA Microarrays as a Tool for Identification of Biomineralization Proteins in the Coccolithophorid Emiliania huxleyi (Haptophyta)

    PubMed Central

    Quinn, Patrick; Bowers, Robert M.; Zhang, Xiaoyu; Wahlund, Thomas M.; Fanelli, Michael A.; Olszova, Daniela; Read, Betsy A.

    2006-01-01

    Marine unicellular coccolithophore algae produce species-specific calcite scales otherwise known as coccoliths. While the coccoliths and their elaborate architecture have attracted the attention of investigators from various scientific disciplines, our knowledge of the underpinnings of the process of biomineralization in this alga is still in its infancy. The processes of calcification and coccolithogenesis are highly regulated and likely to be complex, requiring coordinated expression of many genes and pathways. In this study, we have employed cDNA microarrays to investigate changes in gene expression associated with biomineralization in the most abundant coccolithophorid, Emiliania huxleyi. Expression profiling of cultures grown under calcifying and noncalcifying conditions has been carried out using cDNA microarrays corresponding to approximately 2,300 expressed sequence tags. A total of 127 significantly up- or down-regulated transcripts were identified using a P value of 0.01 and a change of >2.0-fold. Real-time reverse transcriptase PCR was used to test the overall validity of the microarray data, as well as the relevance of many of the proteins predicted to be associated with biomineralization, including a novel gamma-class carbonic anhydrase (A. R. Soto, H. Zheng, D. Shoemaker, J. Rodriguez, B. A. Read, and T. M. Wahlund, Appl. Environ. Microbiol. 72:5500-5511, 2006). Differentially regulated genes include those related to cellular metabolism, ion channels, transport proteins, vesicular trafficking, and cell signaling. The putative function of the vast majority of candidate transcripts could not be defined. Nonetheless, the data described herein represent profiles of the transcription changes associated with biomineralization-related pathways in E. huxleyi and have identified novel and potentially useful targets for more detailed analysis. PMID:16885305

  5. Expressed sequence tags related to nitrogen metabolism in maize inoculated with Azospirillum brasilense.

    PubMed

    Pereira-Defilippi, L; Pereira, E M; Silva, F M; Moro, G V

    2017-05-31

    The relative quantitative real-time expression of two expressed sequence tags (ESTs) codifying for key enzymes in nitrogen metabolism in maize, nitrate reductase (ZmNR), and glutamine synthetase (ZmGln1-3) was performed for genotypes inoculated with Azospirillum brasilense. Two commercial single-cross hybrids (AG7098 and 2B707) and two experimental synthetic varieties (V2 and V4) were raised under controlled greenhouse conditions, in six treatment groups corresponding to different forms of inoculation and different levels of nitrogen application by top-dressing. The genotypes presented distinct responses to inoculation with A. brasilense. Increases in the expression of ZmNR were observed for the hybrids, while V4 only displayed a greater level of expression when the plants received nitrogenous fertilization by top-dressing and there was no inoculation. The expression of the ZmGln1-3EST was induced by A. brasilense in the hybrids and the variety V4. In contrast, the variety V2 did not respond to inoculation.

  6. GAPTrap: A Simple Expression System for Pluripotent Stem Cells and Their Derivatives.

    PubMed

    Kao, Tim; Labonne, Tanya; Niclis, Jonathan C; Chaurasia, Ritu; Lokmic, Zerina; Qian, Elizabeth; Bruveris, Freya F; Howden, Sara E; Motazedian, Ali; Schiesser, Jacqueline V; Costa, Magdaline; Sourris, Koula; Ng, Elizabeth; Anderson, David; Giudice, Antonietta; Farlie, Peter; Cheung, Michael; Lamande, Shireen R; Penington, Anthony J; Parish, Clare L; Thomson, Lachlan H; Rafii, Arash; Elliott, David A; Elefanty, Andrew G; Stanley, Edouard G

    2016-09-13

    The ability to reliably express fluorescent reporters or other genes of interest is important for using human pluripotent stem cells (hPSCs) as a platform for investigating cell fates and gene function. We describe a simple expression system, designated GAPTrap (GT), in which reporter genes, including GFP, mCherry, mTagBFP2, luc2, Gluc, and lacZ are inserted into the GAPDH locus in hPSCs. Independent clones harboring variations of the GT vectors expressed remarkably consistent levels of the reporter gene. Differentiation experiments showed that reporter expression was reliably maintained in hematopoietic cells, cardiac mesoderm, definitive endoderm, and ventral midbrain dopaminergic neurons. Similarly, analysis of teratomas derived from GT-lacZ hPSCs showed that β-galactosidase expression was maintained in a spectrum of cell types representing derivatives of the three germ layers. Thus, the GAPTrap vectors represent a robust and straightforward tagging system that enables indelible labeling of PSCs and their differentiated derivatives. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Simultaneously achieve soluble expression and biomimetic immobilization of Candida antarctica lipase B by introducing polyamine tags.

    PubMed

    Zhou, Xiaoxue; Han, Yu; Lv, Zheng; Tian, Xuemei; Li, Han; Xie, Panpan; Zheng, Liangyu

    2017-05-10

    Polyamine tags fused in Candida antarctica lipase B (CalB) can help achieve high soluble expression of CalB in E. coli and can directly mediate silicification, which leads to rapid formation of a CalB-silica particle complex through a one-step approach. After optimization experiments, the fused lipase CalB tagged with 6-histidine at the N terminal and 10-lysine at the C terminal (6His-CalB-10Lys) is effectively expressed with high solubility (0.1mg/mL) and specific activity (10.1U/mg), and easily cross-linked in silica particles with a high immobilization efficiency of 96.8% and activity recovery of 81.5%. The immobilized lipase 6His-CalB-10Lys exhibits excellent performance at broad temperature ranges, high thermal and storage stabilities, and superior reusability. Michaelis-Menten kinetics indicates that the affinity and enantioselectivity of the free and immobilized 6His-CalB-10Lys toward the substrate are better than that of commercial Novozym 435 in enantioselective resolution of (S)-N-(2-ethyl-6-methylphenyl) alanine ((S)-NEMPA). The strategies described in this paper are useful for the facile expression and construction of diverse enzyme systems with high efficiency and excellent recyclability. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Generation of HIV-1 based bi-cistronic lentiviral vectors for stable gene expression and live cell imaging.

    PubMed

    Sehgal, Lalit; Budnar, Srikanth; Bhatt, Khyati; Sansare, Sneha; Mukhopadhaya, Amitabha; Kalraiya, Rajiv D; Dalal, Sorab N

    2012-10-01

    The study of protein-protein interactions, protein localization, protein organization into higher order structures and organelle dynamics in live cells, has greatly enhanced the understanding of various cellular processes. Live cell imaging experiments employ plasmid or viral vectors to express the protein/proteins of interest fused to a fluorescent protein. Unlike plasmid vectors, lentiviral vectors can be introduced into both dividing and non dividing cells, can be pseudotyped to infect a broad or narrow range of cells, and can be used to generate transgenic animals. However, the currently available lentiviral vectors are limited by the choice of fluorescent protein tag, choice of restriction enzyme sites in the Multiple Cloning Sites (MCS) and promoter choice for gene expression. In this report, HIV-1 based bi-cistronic lentiviral vectors have been generated that drive the expression of multiple fluorescent tags (EGFP, mCherry, ECFP, EYFP and dsRed), using two different promoters. The presence of a unique MCS with multiple restriction sites allows the generation of fusion proteins with the fluorescent tag of choice, allowing analysis of multiple fusion proteins in live cell imaging experiments. These novel lentiviral vectors are improved delivery vehicles for gene transfer applications and are important tools for live cell imaging in vivo.

  9. Generation and characterization of a Leishmania tarentolae strain for site-directed in vivo biotinylation of recombinant proteins.

    PubMed

    Klatt, Stephan; Hartl, Daniela; Fauler, Beatrix; Gagoski, Dejan; Castro-Obregón, Susana; Konthur, Zoltán

    2013-12-06

    Leishmania tarentolae is a non-human-pathogenic Leishmania species of growing interest in biotechnology, as it is well-suited for the expression of human recombinant proteins. For many applications it is desirable to express recombinant proteins with a tag allowing easy purification and detection. Hence, we adopted a scheme to express recombinant proteins with a His6-tag and, additionally, to site-specifically in vivo biotinylate them for detection. Biotinylation is a relatively rare modification of endogenous proteins that allows easy detection with negligible cross-reactivity. Here, we established a genetically engineered L. tarentolae strain constitutively expressing the codon-optimized biotin-protein ligase from Escherichia coli (BirA). We thoroughly analyzed the strain for functionality using 2-D polyacrylamide-gel electrophoresis (PAGE), mass spectrometry, and transmission electron microscopy (TEM). We could demonstrate that neither metabolic changes (growth rate) nor structural abnormalities (TEM) occurred. To our knowledge, we show the first 2-D PAGE analyses of L. tarentolae. Our results demonstrate the great benefit of the established L. tarentolae in vivo biotinylation strain for production of dual-tagged recombinant proteins. Additionally, 2-D PAGE and TEM results give insights into the biology of L. tarentolae, helping to better understand Leishmania species. Finally, we envisage that the system is transferable to human-pathogenic species.

  10. Multiple Velocity Profile Measurements in Hypersonic Flows Using Sequentially-Imaged Fluorescence Tagging

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Ivey,Christopher b.; Goyne, Christopher P.

    2010-01-01

    Nitric-oxide planar laser-induced fluorescence (NO PLIF) was used to perform velocity measurements in hypersonic flows by generating multiple tagged lines which fluoresce as they convect downstream. For each laser pulse, a single interline, progressive scan intensified CCD (charge-coupled device) camera was used to obtain two sequential images of the NO molecules that had been tagged by the laser. The CCD configuration allowed for sub-microsecond acquisition of both images, resulting in sub-microsecond temporal resolution as well as sub-mm spatial resolution (0.5-mm horizontal, 0.7-mm vertical). Determination of axial velocity was made by application of a cross-correlation analysis of the horizontal shift of individual tagged lines. A numerical study of measured velocity error due to a uniform and linearly-varying collisional rate distribution was performed. Quantification of systematic errors, the contribution of gating/exposure duration errors, and the influence of collision rate on temporal uncertainty were made. Quantification of the spatial uncertainty depended upon the signal-to-noise ratio of the acquired profiles. This velocity measurement technique has been demonstrated for two hypersonic flow experiments: (1) a reaction control system (RCS) jet on an Orion Crew Exploration Vehicle (CEV) wind tunnel model and (2) a 10-degree half-angle wedge containing a 2-mm tall, 4-mm wide cylindrical boundary layer trip. The experiments were performed at the NASA Langley Research Center's 31-Inch Mach 10 Air Tunnel.

  11. Therapeutic effect of probiotic dahi on plasma, aortic, and hepatic lipid profile of hypercholesterolemic rats.

    PubMed

    Mohania, Dheeraj; Kansal, Vinod Kumar; Shah, Dilip; Nagpal, Ravinder; Kumar, Manoj; Gautam, Sanjeev Kumar; Singh, Birbal; Behare, Pradip Vishnu

    2013-09-01

    This study examined the effects of probiotic dahi prepared by Lactobacillus plantarum Lp9 and dahi culture in buffalo milk on lowering cholesterol in rats fed a hypercholesterolemic basal diet. Male Wistar rats were divided into 3 groups and fed with probiotic dahi, dahi, or buffalo milk for 120 days. Following the consumption of supplements (probiotic dahi, dahi or buffalo milk), the animals were fed a basal hypercholesterolemic diet. Plasma total cholesterol and triglycerides (TAGs) were decreased by 35% and 72% in rats fed with probiotic dahi group, while cholesterol levels increased by 70% and TAGs increased by 97% in buffalo milk and 59% in dahi fed groups. Supplementation of probiotic dahi further lowered plasma low-density lipoprotein (LDL) + very-low-density lipoprotein (VLDL)- cholesterol by 59%, while it elevated plasma high-density lipoprotein (HDL)-cholesterol by 116%. As a result, atherogenic index, the ratio of HDL to LDL + VLDL was markedly improved. Deposition of cholesterol and TAGs in liver and aorta were significantly reduced in rats fed with probiotic dahi. These observations suggest that probiotic dahi may have therapeutic potential to decrease plasma, hepatic and aortic lipid profile, and attenuate diet-induced hypercholesterolemia.

  12. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism

    PubMed Central

    Yen, Chi-Liang Eric; Nelson, David W.; Yen, Mei-I

    2015-01-01

    The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation. PMID:25231105

  13. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism.

    PubMed

    Yen, Chi-Liang Eric; Nelson, David W; Yen, Mei-I

    2015-03-01

    The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora

    PubMed Central

    2011-01-01

    Background Coffee is one of the world's most important crops; it is consumed worldwide and plays a significant role in the economy of producing countries. Coffea arabica and C. canephora are responsible for 70 and 30% of commercial production, respectively. C. arabica is an allotetraploid from a recent hybridization of the diploid species, C. canephora and C. eugenioides. C. arabica has lower genetic diversity and results in a higher quality beverage than C. canephora. Research initiatives have been launched to produce genomic and transcriptomic data about Coffea spp. as a strategy to improve breeding efficiency. Results Assembling the expressed sequence tags (ESTs) of C. arabica and C. canephora produced by the Brazilian Coffee Genome Project and the Nestlé-Cornell Consortium revealed 32,007 clusters of C. arabica and 16,665 clusters of C. canephora. We detected different GC3 profiles between these species that are related to their genome structure and mating system. BLAST analysis revealed similarities between coffee and grape (Vitis vinifera) genes. Using KA/KS analysis, we identified coffee genes under purifying and positive selection. Protein domain and gene ontology analyses suggested differences between Coffea spp. data, mainly in relation to complex sugar synthases and nucleotide binding proteins. OrthoMCL was used to identify specific and prevalent coffee protein families when compared to five other plant species. Among the interesting families annotated are new cystatins, glycine-rich proteins and RALF-like peptides. Hierarchical clustering was used to independently group C. arabica and C. canephora expression clusters according to expression data extracted from EST libraries, resulting in the identification of differentially expressed genes. Based on these results, we emphasize gene annotation and discuss plant defenses, abiotic stress and cup quality-related functional categories. Conclusion We present the first comprehensive genome-wide transcript profile study of C. arabica and C. canephora, which can be freely assessed by the scientific community at http://www.lge.ibi.unicamp.br/coffea. Our data reveal the presence of species-specific/prevalent genes in coffee that may help to explain particular characteristics of these two crops. The identification of differentially expressed transcripts offers a starting point for the correlation between gene expression profiles and Coffea spp. developmental traits, providing valuable insights for coffee breeding and biotechnology, especially concerning sugar metabolism and stress tolerance. PMID:21303543

  15. Transferable green fluorescence-tagged pEI2 in Edwardsiella ictaluri

    USDA-ARS?s Scientific Manuscript database

    The pEI2 plasmid of Edwardsiella ictaluri isolate, I49, was tagged using a Tn10-GFP-kan cassette to create the green fluorescence-expressing derivative I49-gfp. The Tn10-GFP-kan insertion site was mapped by plasmid sequencing to 663 bp upstream of orf2 and appeared to be at a neutral site in the pla...

  16. Differential cellulolytic activity of native-form and C-terminal tagged-form cellulase derived from coptotermes formosanus and expressed in E. coli

    USDA-ARS?s Scientific Manuscript database

    The endogenous cellulase gene (CfEG3a) of Coptotermes formosanus, an economically important pest termite, was cloned and overexpressed in both native form (nCfEG) and C-terminal His-tagged form (tCfEG) in E.coli. Both forms of recombinant cellulases showed hydrolytic activity on cellulosic substrate...

  17. Recombinant Human Erythropoietin with Additional Processable Protein Domains: Purification of Protein Synthesized in Escherichia coli Heterologous Expression System.

    PubMed

    Grunina, T M; Demidenko, A V; Lyaschuk, A M; Poponova, M S; Galushkina, Z M; Soboleva, L A; Cherepushkin, S A; Polyakov, N B; Grumov, D A; Solovyev, A I; Zhukhovitsky, V G; Boksha, I S; Subbotina, M E; Gromov, A V; Lunin, V G; Karyagina, A S

    2017-11-01

    Three variants of human recombinant erythropoietin (rhEPO) with additional N-terminal protein domains were obtained by synthesis in an Escherichia coli heterologous expression system. These domains included (i) maltose-binding protein (MBP), (ii) MBP with six histidine residues (6His) in N-terminal position, (iii) s-tag (15-a.a. oligopeptide derived from bovine pancreatic ribonuclease A) with N-terminal 6His. Both variants of the chimeric protein containing MBP domain were prone to aggregation under nondenaturing conditions, and further purification of EPO after the domain cleavage by enterokinase proved to be impossible. In the case of 6His-s-tag-EPO chimeric protein, the products obtained after cleavage with enterokinase were successfully separated by column chromatography, and rhEPO without additional domains was obtained. Results of MALDI-TOF mass spectrometry showed that after refolding 6His-s-tag-EPO formed a structure similar to that of one of native EPO with two disulfide bonds. Both 6His-s-tag-EPO and rhEPO without additional protein domains purified after proteolysis possessed the same biological activity in vitro in the cell culture.

  18. A soluble diacylglycerol acyltransferase is involved in triacylglycerol biosynthesis in the oleaginous yeast Rhodotorula glutinis.

    PubMed

    Rani, Sapa Hima; Saha, Saikat; Rajasekharan, Ram

    2013-01-01

    The biosynthesis of triacylglycerol (TAG) occurs in the microsomal membranes of eukaryotes. Here, we report the identification and functional characterization of diacylglycerol acyltransferase (DGAT), a member of the 10 S cytosolic TAG biosynthetic complex (TBC) in Rhodotorula glutinis. Both a full-length and an N-terminally truncated cDNA clone of a single gene were isolated from R. glutinis. The DGAT activity of the protein encoded by RgDGAT was confirmed in vivo by the heterologous expression of cDNA in a Saccharomyces cerevisiae quadruple mutant (H1246) that is defective in TAG synthesis. RgDGAT overexpression in yeast was found to be capable of acylating diacylglycerol (DAG) in an acyl-CoA-dependent manner. Quadruple mutant yeast cells exhibit growth defects in the presence of oleic acid, but wild-type yeast cells do not. In an in vivo fatty acid supplementation experiment, RgDGAT expression rescued quadruple mutant growth in an oleate-containing medium. We describe a soluble acyl-CoA-dependent DAG acyltransferase from R. glutinis that belongs to the DGAT3 class of enzymes. The study highlights the importance of an alternative TAG biosynthetic pathway in oleaginous yeasts.

  19. Comparative proteomic analysis of the aging soleus and extensor digitorum longus rat muscles using TMT labeling and mass spectrometry

    PubMed Central

    Chaves, Daniela F. S.; Carvalho, Paulo C.; Lima, Diogo B.; Nicastro, Humberto; Lorenzetti, Fábio M.; Filho, Mário S.; Hirabara, Sandro M.; Alves, Paulo H. M.; Moresco, James J.; Yates, John R.; Lancha, Antonio H.

    2013-01-01

    Sarcopenia describes an age-related decline in skeletal muscle mass, strength, and function that ultimately impairs metabolism, leads to poor balance, frequent falling, limited mobility, and a reduction in quality of life. Here we investigate the pathogenesis of sarcopenia through a proteomic shotgun approach. Briefly, we employed tandem mass tags (TMT) to quantitate and compare the protein profiles obtained from young versus old rat slow-twitch type of muscle (soleus) and a fast-twitch type of muscle (extensor digitorum longus, EDL). Our results disclose 3452 and 1848 proteins identified from soleus and EDL muscles samples of which 78 and 174 were found to be differentially expressed, respectively. In general, most of the proteins were structural related, involved in energy metabolism, oxidative stress, detoxification, or transport. Aging affected soleus and EDL muscles differently and several proteins were regulated in opposite ways. For example, pyruvate kinase had its expression and activity different in both soleus and EDL muscles. We were able to verify with existing literature many of our differentially expressed proteins as candidate aging biomarkers, and most importantly, disclose several new candidate biomarkers such as the glioblastoma amplified sequence (GAS), zero beta-globin, and prolargin. PMID:24001182

  20. Comparative proteomic analysis of the aging soleus and extensor digitorum longus rat muscles using TMT labeling and mass spectrometry.

    PubMed

    Chaves, Daniela F S; Carvalho, Paulo C; Lima, Diogo B; Nicastro, Humberto; Lorenzeti, Fábio M; Siqueira-Filho, Mário; Hirabara, Sandro M; Alves, Paulo H M; Moresco, James J; Yates, John R; Lancha, Antonio H

    2013-10-04

    Sarcopenia describes an age-related decline in skeletal muscle mass, strength, and function that ultimately impairs metabolism and leads to poor balance, frequent falling, limited mobility, and a reduction in quality of life. Here we investigate the pathogenesis of sarcopenia through a proteomic shotgun approach. In brief, we employed tandem mass tags to quantitate and compare the protein profiles obtained from young versus old rat slow-twitch type of muscle (soleus) and a fast-twitch type of muscle (extensor digitorum longus, EDL). Our results disclose 3452 and 1848 proteins identified from soleus and EDL muscles samples, of which 78 and 174 were found to be differentially expressed, respectively. In general, most of the proteins were structural related and involved in energy metabolism, oxidative stress, detoxification, or transport. Aging affected soleus and EDL muscles differently, and several proteins were regulated in opposite ways. For example, pyruvate kinase had its expression and activity different in both soleus and EDL muscles. We were able to verify with existing literature many of our differentially expressed proteins as candidate aging biomarkers and, most importantly, disclose several new candidate biomarkers such as the glioblastoma amplified sequence, zero β-globin, and prolargin.

  1. A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae

    DOE PAGES

    Reider Apel, Amanda; d'Espaux, Leo; Wehrs, Maren; ...

    2016-11-28

    Despite the extensive use of Saccharomyces cerevisiae as a platform for synthetic biology, strain engineering remains slow and laborious. Here, we employ CRISPR/Cas9 technology to build a cloning-free toolkit that addresses commonly encountered obstacles in metabolic engineering, including chromosomal integration locus and promoter selection, as well as protein localization and solubility. The toolkit includes 23 Cas9-sgRNA plasmids, 37 promoters of various strengths and temporal expression profiles, and 10 protein-localization, degradation and solubility tags. We facilitated the use of these parts via a web-based tool, that automates the generation of DNA fragments for integration. Our system builds upon existing gene editingmore » methods in the thoroughness with which the parts are standardized and characterized, the types and number of parts available and the ease with which our methodology can be used to perform genetic edits in yeast. We demonstrated the applicability of this toolkit by optimizing the expression of a challenging but industrially important enzyme, taxadiene synthase (TXS). This approach enabled us to diagnose an issue with TXS solubility, the resolution of which yielded a 25-fold improvement in taxadiene production.« less

  2. A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reider Apel, Amanda; d'Espaux, Leo; Wehrs, Maren

    Despite the extensive use of Saccharomyces cerevisiae as a platform for synthetic biology, strain engineering remains slow and laborious. Here, we employ CRISPR/Cas9 technology to build a cloning-free toolkit that addresses commonly encountered obstacles in metabolic engineering, including chromosomal integration locus and promoter selection, as well as protein localization and solubility. The toolkit includes 23 Cas9-sgRNA plasmids, 37 promoters of various strengths and temporal expression profiles, and 10 protein-localization, degradation and solubility tags. We facilitated the use of these parts via a web-based tool, that automates the generation of DNA fragments for integration. Our system builds upon existing gene editingmore » methods in the thoroughness with which the parts are standardized and characterized, the types and number of parts available and the ease with which our methodology can be used to perform genetic edits in yeast. We demonstrated the applicability of this toolkit by optimizing the expression of a challenging but industrially important enzyme, taxadiene synthase (TXS). This approach enabled us to diagnose an issue with TXS solubility, the resolution of which yielded a 25-fold improvement in taxadiene production.« less

  3. Comparative proteomics of umbilical vein blood plasma from normal and gestational diabetes mellitus patients reveals differentially expressed proteins associated with childhood obesity.

    PubMed

    Miao, Zhijing; Wang, Jianqing; Wang, Fuqiang; Liu, Lan; Ding, Hongjuan; Shi, Zhonghua

    2016-11-01

    Offspring obesity is one of long-term complications of gestational diabetes mellitus (GDM). The aim of this study is to identify proteins differentially expressed in the umbilical vein blood plasma, which could become markers for early diagnosis of childhood obesity. Umbilical vein plasma samples were collected from 30 control and 30 GDM patients in 2007-2008 whose offspring were suffering from obesity at 6-7 years old. Multiplexed isobaric tandem mass tag labeling combined with LC-MS/MS was used to identify differentially expressed proteins. Ingenuity pathway analysis was performed to identify canonical pathways, biological functions, and networks of interacting proteins. Western blotting was used to verify the expression of three selected proteins. A total of 318 proteins were identified, of which 12 proteins were upregulated in GDM group while 24 downregulated. Lipid metabolism was the top category identified by ingenuity pathway analysis. Three randomly chosen proteins were validated by Western blotting, which were consistent with LC-MS. There are significant differences of protein profile in the umbilical vein blood plasma between normal and GDM patients with obese offspring. The results indicate that a variety of proteins and biological mechanisms may contribute to childhood obesity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Transcriptome Analysis of Kiwifruit (Actinidia chinensis) Bark in Response to Armoured Scale Insect (Hemiberlesia lataniae) Feeding

    PubMed Central

    Hill, M. Garry; Wurms, Kirstin V.; Davy, Marcus W.; Gould, Elaine; Allan, Andrew; Mauchline, Nicola A.; Luo, Zhiwei; Ah Chee, Annette; Stannard, Kate; Storey, Roy D.; Rikkerink, Erik H.

    2015-01-01

    The kiwifruit cultivar Actinidia chinensis ‘Hort16A’ is resistant to the polyphagous armoured scale insect pest Hemiberlesia lataniae (Hemiptera: Diaspididae). A cDNA microarray consisting of 17,512 unigenes selected from over 132,000 expressed sequence tags (ESTs) was used to measure the transcriptomic profile of the A. chinensis ‘Hort16A’ canes in response to a controlled infestation of H. lataniae. After 2 days, 272 transcripts were differentially expressed. After 7 days, 5,284 (30%) transcripts were differentially expressed. The transcripts were grouped into 22 major functional categories using MapMan software. After 7 days, transcripts associated with photosynthesis (photosystem II) were significantly down-regulated, while those associated with secondary metabolism were significantly up-regulated. A total of 643 transcripts associated with response to stress were differentially expressed. This included biotic stress-related transcripts orthologous with pathogenesis related proteins, the phenylpropanoid pathway, NBS-LRR (R) genes, and receptor-like kinase–leucine rich repeat signalling proteins. While transcriptional studies are not conclusive in their own right, results were suggestive of a defence response involving both ETI and PTI, with predominance of the SA signalling pathway. Exogenous application of an SA-mimic decreased H. lataniae growth on A. chinensis ‘Hort16A’ plants in two laboratory experiments. PMID:26571404

  5. A Dual Protease Approach for Expression and Affinity Purification of Recombinant Proteins

    PubMed Central

    Raran-Kurussi, Sreejith; Waugh, David S.

    2016-01-01

    We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to “stick” to its fusion partners during affinity purification. PMID:27105777

  6. A dual protease approach for expression and affinity purification of recombinant proteins.

    PubMed

    Raran-Kurussi, Sreejith; Waugh, David S

    2016-07-01

    We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to "stick" to its fusion partners during affinity purification. Published by Elsevier Inc.

  7. Isolation of viral ribonucleoprotein complexes from infected cells by tandem affinity purification.

    PubMed

    Mayer, Daniel; Baginsky, Sacha; Schwemmle, Martin

    2005-11-01

    The biochemical purification and analysis of viral ribonucleoprotein complexes (RNPs) of negative-strand RNA viruses is hampered by the lack of suitable tags that facilitate specific enrichment of these complexes. We therefore tested whether fusion of the tandem-affinity-purification (TAP) tag to the main component of viral RNPs, the nucleoprotein, might allow the isolation of these RNPs from cells. We constitutively expressed TAP-tagged nucleoprotein of Borna disease virus (BDV) in cells persistently infected with this virus. The TAP-tagged bait was efficiently incorporated into viral RNPs, did not interfere with BDV replication and was also packaged into viral particles. Native purification of the tagged protein complexes from BDV-infected cells by two consecutive affinity columns resulted in the isolation of several viral proteins, which were identified by MS analysis as the matrix protein, the two forms of the nucleoprotein and the phosphoprotein. In addition to the viral proteins, RT-PCR analysis revealed the presence of viral genomic RNA. Introduction of further protease cleavage sites within the TAP-tag significantly increased the purification yield. These results demonstrate that purification of TAP-tagged viral RNPs is possible and efficient, and may therefore provide new avenues for biochemical and functional studies of these complexes.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorensen, Christina M.; Ding, Jie; Zhang, Qibin

    Objectives: To characterize the lipid profile of individuals with newly diagnosed type 1 diabetes mellitus using LC-MS-based lipidomics and the accurate mass and time (AMT) tag approach. Design and methods: Lipids were extracted from plasma and sera of 10 subjects from the Diabetes Antibody Standardization Program (years 2000-2005) and 10 non-diabetic subjects and analyzed by capillary liquid chromatography coupled with a hybrid ion-trap-Fourier transform ion cyclotron resonance mass spectrometer. Lipids were identified and quantified using the AMT tag approach. Results: Five hundred sixty lipid features differentiated (q < 0.05) diabetic from healthy individuals in a partial least-squares analysis, characterizing ofmore » individuals with recently diagnosed type 1 diabetes mellitus. Conclusions: A lipid profile associated with newly diagnosed type 1 diabetes may aid in further characterization of biochemical pathways involved in lipid regulation or mobilization and lipotoxicity of pancreatic beta-cells.« less

  9. An orange fluorescent protein tagging system for real-time pollen tracking.

    PubMed

    Rice, J Hollis; Millwood, Reginald J; Mundell, Richard E; Chambers, Orlando D; Abercrombie, Laura L; Davies, H Maelor; Stewart, C Neal

    2013-09-27

    Monitoring gene flow could be important for future transgenic crops, such as those producing plant-made-pharmaceuticals (PMPs) in open field production. A Nicotiana hybrid (Nicotiana. tabacum × Nicotiana glauca) shows limited male fertility and could be used as a bioconfined PMP platform. Effective assessment of gene flow from these plants is augmented with methods that utilize fluorescent proteins for transgenic pollen identification. We report the generation of a pollen tagging system utilizing an orange fluorescent protein to monitor pollen flow and as a visual assessment of transgene zygosity of the parent plant. This system was created to generate a tagged Nicotiana hybrid that could be used for the incidence of gene flow. Nicotiana tabacum 'TN 90' and Nicotiana glauca were successfully transformed via Agrobacterium tumefaciens to express the orange fluorescent protein gene, tdTomato-ER, in pollen and a green fluorescent protein gene, mgfp5-er, was expressed in vegetative structures of the plant. Hybrids were created that utilized the fluorescent proteins as a research tool for monitoring pollen movement and gene flow. Manual greenhouse crosses were used to assess hybrid sexual compatibility with N. tabacum, resulting in seed formation from hybrid pollination in 2% of crosses, which yielded non-viable seed. Pollen transfer to the hybrid formed seed in 19% of crosses and 10 out of 12 viable progeny showed GFP expression. The orange fluorescent protein is visible when expressed in the pollen of N. glauca, N. tabacum, and the Nicotiana hybrid, although hybrid pollen did not appear as bright as the parent lines. The hybrid plants, which show limited ability to outcross, could provide bioconfinement with the benefit of detectable pollen using this system. Fluorescent protein-tagging could be a valuable tool for breeding and in vivo ecological monitoring.

  10. miR-148a and miR-17-5p synergistically regulate milk TAG synthesis via PPARGC1A and PPARA in goat mammary epithelial cells.

    PubMed

    Chen, Zhi; Luo, Jun; Sun, Shuang; Cao, Duoyao; Shi, Huaiping; Loor, Juan J

    2017-03-04

    MicroRNA (miRNA) are a class of '18-25' nt RNA molecules which regulate gene expression and play an important role in several biologic processes including fatty acid metabolism. Here we used S-Poly (T) and high-throughput sequencing to evaluate the expression of miRNA and mRNA during early-lactation and in the non-lactating ("dry") period in goat mammary gland tissue. Results indicated that miR-148a, miR-17-5p, PPARGC1A and PPARA are highly expressed in the goat mammary gland in early-lactation and non-lactating periods. Utilizing a Luciferase reporter assay and Western Blot, PPARA, an important regulator of fatty acid oxidation, and PGC1a (PPARGC1A), a major regulator of fat metabolism, were demonstrated to be targets of miR-148a and miR-17-5p in goat mammary epithelial cells (GMECs). It was also revealed that miR-148a expression can regulate PPARA, and miR-17-5p represses PPARGC1A in GMECs. Furthermore, the overexpression of miR-148a and miR-17-5p promoted triacylglycerol (TAG) synthesis while the knockdown of miR-148a and miR-17-5p impaired TAG synthesis in GMEC. These findings underscore the importance of miR-148a and miR-17-5p as key components in the regulation of TAG synthesis. In addition, miR-148a cooperates with miR-17-5p to regulate fatty acid metabolism by repressing PPARGC1A and PPARA in GMECs. Further studies on the functional role of miRNAs in lipid metabolism of ruminant mammary cells seem warranted.

  11. Pkd1 transgenic mice: adult model of polycystic kidney disease with extrarenal and renal phenotypes

    PubMed Central

    Kurbegovic, Almira; Côté, Olivier; Couillard, Martin; Ward, Christopher J.; Harris, Peter C.; Trudel, Marie

    2010-01-01

    While high levels of Pkd1 expression are detected in tissues of patients with autosomal dominant polycystic kidney disease (ADPKD), it is unclear whether enhanced expression could be a pathogenetic mechanism for this systemic disorder. Three transgenic mouse lines were generated from a Pkd1-BAC modified by introducing a silent tag via homologous recombination to target a sustained wild-type genomic Pkd1 expression within the native tissue and temporal regulation. These mice specifically overexpressed the Pkd1 transgene in extrarenal and renal tissues from ∼2- to 15-fold over Pkd1 endogenous levels in a copy-dependent manner. All transgenic mice reproducibly developed tubular and glomerular cysts leading to renal insufficiency. Interestingly, Pkd1TAG mice also exhibited renal fibrosis and calcium deposits in papilla reminiscent of nephrolithiasis as frequently observed in ADPKD. Similar to human ADPKD, these mice consistently displayed hepatic fibrosis and ∼15% intrahepatic cysts of the bile ducts affecting females preferentially. Moreover, a significant proportion of mice developed cardiac anomalies with severe left-ventricular hypertrophy, marked aortic arch distention and/or valvular stenosis and calcification that had profound functional impact. Of significance, Pkd1TAG mice displayed occasional cerebral lesions with evidence of ruptured and unruptured cerebral aneurysms. This Pkd1TAG mouse model demonstrates that overexpression of wild-type Pkd1 can trigger the typical adult renal and extrarenal phenotypes resembling human ADPKD. PMID:20053665

  12. Avocado fruit maturation and ripening: dynamics of aliphatic acetogenins and lipidomic profiles from mesocarp, idioblasts and seed.

    PubMed

    Rodríguez-López, Carlos Eduardo; Hernández-Brenes, Carmen; Treviño, Víctor; Díaz de la Garza, Rocío I

    2017-09-29

    Avocado fruit contains aliphatic acetogenins (oft-acetylated, odd-chain fatty alcohols) with promising bioactivities for both medical and food industries. However, we have scarce knowledge about their metabolism. The present work aimed to study changes in acetogenin profiles from mesocarp, lipid-containing idioblasts, and seeds from 'Hass' cultivar during fruit development, germination, and three harvesting years. An untargeted LC-MS based lipidomic analysis was also conducted to profile the lipidome of avocado fruit in each tissue. The targeted analysis showed that acetogenin profiles and contents remained unchanged in avocado mesocarp during maturation and postharvest ripening, germination, and different harvesting years. However, a shift in the acetogenin profile distribution, accompanied with a sharp increase in concentration, was observed in seed during early maturation. Untargeted lipidomics showed that this shift was accompanied with remodeling of glycerolipids: TAGs and DAGs decreased during fruit growing in seed. Remarkably, the majority of the lipidome in mature seed was composed by acetogenins; we suggest that this tissue is able to synthesize them independently from mesocarp. On the other hand, lipid-containing idioblasts accumulated almost the entire acetogenin pool measured in the whole mesocarp, while only having 4% of the total fatty acids. The lipidome of this cell type changed the most when the fruit was ripening after harvesting, TAGs decreased while odd-chain DAGs increased. Notably, idioblast lipidome was more diverse than that from mesocarp. Evidence shown here suggests that idioblasts are the main site of acetogenin biosynthesis in avocado mesocarp. This work unveiled the prevalence of aliphatic acetogenins in the avocado fruit lipidome and evidenced TAGs as initial donors of the acetogenin backbones in its biosynthesis. It also sets evidence for acetogenins being included in future works aimed at characterizing the avocado seed, as they are a main component of their lipidome.

  13. SPlinted Ligation Adapter Tagging (SPLAT), a novel library preparation method for whole genome bisulphite sequencing

    PubMed Central

    Manlig, Erika; Wahlberg, Per

    2017-01-01

    Abstract Sodium bisulphite treatment of DNA combined with next generation sequencing (NGS) is a powerful combination for the interrogation of genome-wide DNA methylation profiles. Library preparation for whole genome bisulphite sequencing (WGBS) is challenging due to side effects of the bisulphite treatment, which leads to extensive DNA damage. Recently, a new generation of methods for bisulphite sequencing library preparation have been devised. They are based on initial bisulphite treatment of the DNA, followed by adaptor tagging of single stranded DNA fragments, and enable WGBS using low quantities of input DNA. In this study, we present a novel approach for quick and cost effective WGBS library preparation that is based on splinted adaptor tagging (SPLAT) of bisulphite-converted single-stranded DNA. Moreover, we validate SPLAT against three commercially available WGBS library preparation techniques, two of which are based on bisulphite treatment prior to adaptor tagging and one is a conventional WGBS method. PMID:27899585

  14. Triacylglycerol Analysis in Human Milk and Other Mammalian Species: Small-Scale Sample Preparation, Characterization, and Statistical Classification Using HPLC-ELSD Profiles.

    PubMed

    Ten-Doménech, Isabel; Beltrán-Iturat, Eduardo; Herrero-Martínez, José Manuel; Sancho-Llopis, Juan Vicente; Simó-Alfonso, Ernesto Francisco

    2015-06-24

    In this work, a method for the separation of triacylglycerols (TAGs) present in human milk and from other mammalian species by reversed-phase high-performance liquid chromatography using a core-shell particle packed column with UV and evaporative light-scattering detectors is described. Under optimal conditions, a mobile phase containing acetonitrile/n-pentanol at 10 °C gave an excellent resolution among more than 50 TAG peaks. A small-scale method for fat extraction in these milks (particularly of interest for human milk samples) using minimal amounts of sample and reagents was also developed. The proposed extraction protocol and the traditional method were compared, giving similar results, with respect to the total fat and relative TAG contents. Finally, a statistical study based on linear discriminant analysis on the TAG composition of different types of milks (human, cow, sheep, and goat) was carried out to differentiate the samples according to their mammalian origin.

  15. Data for analysis of mannose-6-phosphate glycans labeled with fluorescent tags

    PubMed Central

    Kang, Ji-Yeon; Kwon, Ohsuk; Gil, Jin Young; Oh, Doo-Byoung

    2016-01-01

    Mannose-6-phosphate (M-6-P) glycan plays an important role in lysosomal targeting of most therapeutic enzymes for treatment of lysosomal storage diseases. This article provides data for the analysis of M-6-P glycans by high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The identities of M-6-P glycan peaks in HPLC profile were confirmed by measuring the masses of the collected peak eluates. The performances of three fluorescent tags (2-aminobenzoic acid [2-AA], 2-aminobenzamide [2-AB], and 3-(acetyl-amino)-6-aminoacridine [AA-Ac]) were compared focusing on the analysis of bi-phosphorylated glycan (containing two M-6-Ps). The bi-phosphorylated glycan analysis is highly affected by the attached fluorescent tag and the hydrophilicity of elution solvent used in HPLC. The data in this article is associated with the research article published in “Comparison of fluorescent tags for analysis of mannose-6-phosphate glycans” (Kang et al., 2016 [1]). PMID:27222848

  16. Data for analysis of mannose-6-phosphate glycans labeled with fluorescent tags.

    PubMed

    Kang, Ji-Yeon; Kwon, Ohsuk; Gil, Jin Young; Oh, Doo-Byoung

    2016-06-01

    Mannose-6-phosphate (M-6-P) glycan plays an important role in lysosomal targeting of most therapeutic enzymes for treatment of lysosomal storage diseases. This article provides data for the analysis of M-6-P glycans by high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The identities of M-6-P glycan peaks in HPLC profile were confirmed by measuring the masses of the collected peak eluates. The performances of three fluorescent tags (2-aminobenzoic acid [2-AA], 2-aminobenzamide [2-AB], and 3-(acetyl-amino)-6-aminoacridine [AA-Ac]) were compared focusing on the analysis of bi-phosphorylated glycan (containing two M-6-Ps). The bi-phosphorylated glycan analysis is highly affected by the attached fluorescent tag and the hydrophilicity of elution solvent used in HPLC. The data in this article is associated with the research article published in "Comparison of fluorescent tags for analysis of mannose-6-phosphate glycans" (Kang et al., 2016 [1]).

  17. A detailed gene expression study of the Miscanthus genus reveals changes in the transcriptome associated with the rejuvenation of spring rhizomes.

    PubMed

    Barling, Adam; Swaminathan, Kankshita; Mitros, Therese; James, Brandon T; Morris, Juliette; Ngamboma, Ornella; Hall, Megan C; Kirkpatrick, Jessica; Alabady, Magdy; Spence, Ashley K; Hudson, Matthew E; Rokhsar, Daniel S; Moose, Stephen P

    2013-12-09

    The Miscanthus genus of perennial C4 grasses contains promising biofuel crops for temperate climates. However, few genomic resources exist for Miscanthus, which limits understanding of its interesting biology and future genetic improvement. A comprehensive catalog of expressed sequences were generated from a variety of Miscanthus species and tissue types, with an emphasis on characterizing gene expression changes in spring compared to fall rhizomes. Illumina short read sequencing technology was used to produce transcriptome sequences from different tissues and organs during distinct developmental stages for multiple Miscanthus species, including Miscanthus sinensis, Miscanthus sacchariflorus, and their interspecific hybrid Miscanthus × giganteus. More than fifty billion base-pairs of Miscanthus transcript sequence were produced. Overall, 26,230 Sorghum gene models (i.e., ~ 96% of predicted Sorghum genes) had at least five Miscanthus reads mapped to them, suggesting that a large portion of the Miscanthus transcriptome is represented in this dataset. The Miscanthus × giganteus data was used to identify genes preferentially expressed in a single tissue, such as the spring rhizome, using Sorghum bicolor as a reference. Quantitative real-time PCR was used to verify examples of preferential expression predicted via RNA-Seq. Contiguous consensus transcript sequences were assembled for each species and annotated using InterProScan. Sequences from the assembled transcriptome were used to amplify genomic segments from a doubled haploid Miscanthus sinensis and from Miscanthus × giganteus to further disentangle the allelic and paralogous variations in genes. This large expressed sequence tag collection creates a valuable resource for the study of Miscanthus biology by providing detailed gene sequence information and tissue preferred expression patterns. We have successfully generated a database of transcriptome assemblies and demonstrated its use in the study of genes of interest. Analysis of gene expression profiles revealed biological pathways that exhibit altered regulation in spring compared to fall rhizomes, which are consistent with their different physiological functions. The expression profiles of the subterranean rhizome provides a better understanding of the biological activities of the underground stem structures that are essentials for perenniality and the storage or remobilization of carbon and nutrient resources.

  18. Expression and Purification of Recombinant Proteins in Escherichia coli with a His6 or Dual His6-MBP Tag.

    PubMed

    Raran-Kurussi, Sreejith; Waugh, David S

    2017-01-01

    Rapid advances in bioengineering and biotechnology over the past three decades have greatly facilitated the production of recombinant proteins in Escherichia coli. Affinity-based methods that employ protein or peptide based tags for protein purification have been instrumental in this progress. Yet insolubility of recombinant proteins in E. coli remains a persistent problem. One way around this problem is to fuse an aggregation-prone protein to a highly soluble partner. E. coli maltose-binding protein (MBP) is widely acknowledged as a highly effective solubilizing agent. In this chapter, we describe how to construct either a His 6 - or a dual His 6 -MBP tagged fusion protein by Gateway ® recombinational cloning and how to evaluate their yield and solubility. We also describe a simple and rapid procedure to test the solubility of proteins after removing their N-terminal fusion tags by tobacco etch virus (TEV) protease digestion. The choice of whether to use a His 6 tag or a His 6 -MBP tag can be made on the basis of this solubility test.

  19. Identification and characterization of a triacylglycerol lipase in Arabidopsis homologous to mammalian acid lipases.

    PubMed

    El-Kouhen, Karim; Blangy, Stéphanie; Ortiz, Emilia; Gardies, Anne-Marie; Ferté, Natalie; Arondel, Vincent

    2005-11-07

    Triacylglycerol (TAG) lipases have been thoroughly characterized in mammals and microorganisms. By contrast, very little is known on plant TAG lipases. An Arabidopsis cDNA called AtLip1 (At2g15230), which exhibits strong homology to lysosomal acid lipase, was found to drive the synthesis of an active TAG lipase when expressed in the baculovirus system. The lipase had a maximal activity at pH 6 and the specific activity was estimated to be about 45 micromol min(-1) mg(-1) protein using triolein as a substrate. Knock-out mutant analysis showed no phenotype during germination indicating that this enzyme is fully dispensable for TAG storage breakdown during germination. Northern blot analyses indicated that the transcript is present in all tissues tested.

  20. Mice exposed in situ to urban air pollution exhibit pulmonary alterations in gene expression in the lipid droplet synthesis pathways.

    PubMed

    Rowan-Carroll, Andrea; Halappanavar, Sabina; Williams, Andrew; Somers, Christophers M; Yauk, Carole L

    2013-05-01

    It is clear that particulate air pollution poses a serious risk to human health; however, the underlying mechanisms are not completely understood. We investigated pulmonary transcriptional responses in mice following in-situ exposure to ambient air in a heavily industrialized urban environment. Mature C57BL/CBA male mice were caged in sheds near two working steel mills and a major highway in Hamilton, Ontario, Canada in the spring/summer of 2004. Control mice were housed in the same environment, but received only high-efficiency particle filtered air (HEPA). Whole lung tissues were collected from mice exposed for 3, 10, or for 10 weeks followed by 6 weeks recovery in the laboratory (16 weeks). DNA microarrays were used to profile changes in pulmonary gene expression. Transcriptional profiling revealed changes in the expression of genes implicated in the lipid droplet synthesis (Plin I, Dgat2, Lpl, S3-12, and Agpat2), and antioxidant defense (Ucp1) pathways in mice breathing unfiltered air. We postulate that exposure to urban air, containing an abundance of particulate matter adsorbed with polycyclic aromatic hydrocarbons, triggers lipid droplet (holding depots for lipids and malformed/excess proteins tagged for degradation) synthesis in the lungs, which may act to sequester particulates. Increased lipid droplet synthesis could lead to endogenous/stressor-induced production of reactive oxygen species and activation of antioxidant mechanisms. Further investigation into the stimulation of lipid droplet synthesis in the lung in response to air pollution and the resulting health implications is warranted. Copyright © 2013 Wiley Periodicals, Inc.

  1. Mesenchymal precursor cells maintain the differentiation and proliferation potentials of breast epithelial cells

    PubMed Central

    2014-01-01

    Introduction Stromal-epithelial interactions play a fundamental role in tissue homeostasis, controlling cell proliferation and differentiation. Not surprisingly, aberrant stromal-epithelial interactions contribute to malignancies. Studies of the cellular and molecular mechanisms underlying these interactions require ex vivo experimental model systems that recapitulate the complexity of human tissue without compromising the differentiation and proliferation potentials of human primary cells. Methods We isolated and characterized human breast epithelial and mesenchymal precursors from reduction mammoplasty tissue and tagged them with lentiviral vectors. We assembled heterotypic co-cultures and compared mesenchymal and epithelial cells to cells in corresponding monocultures by analyzing growth, differentiation potentials, and gene expression profiles. Results We show that heterotypic culture of non-immortalized human primary breast epithelial and mesenchymal precursors maintains their proliferation and differentiation potentials and constrains their growth. We further describe the gene expression profiles of stromal and epithelial cells in co-cultures and monocultures and show increased expression of the tumor growth factor beta (TGFβ) family member inhibin beta A (INHBA) in mesenchymal cells grown as co-cultures compared with monocultures. Notably, overexpression of INHBA in mesenchymal cells increases colony formation potential of epithelial cells, suggesting that it contributes to the dynamic reciprocity between breast mesenchymal and epithelial cells. Conclusions The described heterotypic co-culture system will prove useful for further characterization of the molecular mechanisms mediating interactions between human normal or neoplastic breast epithelial cells and the stroma, and will provide a framework to test the relevance of the ever-increasing number of oncogenomic alterations identified in human breast cancer. PMID:24916766

  2. Profiling mRNAs of Two Cuscuta Species Reveals Possible Candidate Transcripts Shared by Parasitic Plants

    PubMed Central

    Wijeratne, Saranga; Fraga, Martina; Meulia, Tea; Doohan, Doug; Li, Zhaohu; Qu, Feng

    2013-01-01

    Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs) for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions. PMID:24312295

  3. Profiling mRNAs of two Cuscuta species reveals possible candidate transcripts shared by parasitic plants.

    PubMed

    Jiang, Linjian; Wijeratne, Asela J; Wijeratne, Saranga; Fraga, Martina; Meulia, Tea; Doohan, Doug; Li, Zhaohu; Qu, Feng

    2013-01-01

    Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs) for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions.

  4. How did nature engineer the highest surface lipid accumulation among plants? Exceptional expression of acyl-lipid-associated genes for the assembly of extracellular triacylglycerol by Bayberry (Myrica pensylvanica) fruits.

    PubMed

    Simpson, Jeffrey P; Thrower, Nicholas; Ohlrogge, John B

    2016-09-01

    Bayberry (Myrica pensylvanica) fruits are covered with a remarkably thick layer of crystalline wax consisting of triacylglycerol (TAG) and diacylglycerol (DAG) esterified exclusively with saturated fatty acids. As the only plant known to accumulate soluble glycerolipids as a major component of surface waxes, Bayberry represents a novel system to investigate neutral lipid biosynthesis and lipid secretion by vegetative plant cells. The assembly of Bayberry wax is distinct from conventional TAG and other surface waxes, and instead proceeds through a pathway related to cutin synthesis (Simpson and Ohlrogge, 2016). In this study, microscopic examination revealed that the fruit tissue that produces and secretes wax (Bayberry knobs) is fully developed before wax accumulates and that wax is secreted to the surface without cell disruption. Comparison of transcript expression to genetically related tissues (Bayberry leaves, M. rubra fruits), cutin-rich tomato and cherry fruit epidermis, and to oil-rich mesocarp and seeds, revealed exceptionally high expression of 13 transcripts for acyl-lipid metabolism together with down-regulation of fatty acid oxidases and desaturases. The predicted protein sequences of the most highly expressed lipid-related enzyme-encoding transcripts in Bayberry knobs are 100% identical to the sequences from Bayberry leaves, which do not produce surface DAG or TAG. Together, these results indicate that TAG biosynthesis and secretion in Bayberry is achieved by both up and down-regulation of a small subset of genes related to the biosynthesis of cutin and saturated fatty acids, and also implies that modifications in gene expression, rather than evolution of new gene functions, was the major mechanism by which Bayberry evolved its specialized lipid metabolism. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. TMV-Gate vectors: Gateway compatible tobacco mosaic virus based expression vectors for functional analysis of proteins

    PubMed Central

    Kagale, Sateesh; Uzuhashi, Shihomi; Wigness, Merek; Bender, Tricia; Yang, Wen; Borhan, M. Hossein; Rozwadowski, Kevin

    2012-01-01

    Plant viral expression vectors are advantageous for high-throughput functional characterization studies of genes due to their capability for rapid, high-level transient expression of proteins. We have constructed a series of tobacco mosaic virus (TMV) based vectors that are compatible with Gateway technology to enable rapid assembly of expression constructs and exploitation of ORFeome collections. In addition to the potential of producing recombinant protein at grams per kilogram FW of leaf tissue, these vectors facilitate either N- or C-terminal fusions to a broad series of epitope tag(s) and fluorescent proteins. We demonstrate the utility of these vectors in affinity purification, immunodetection and subcellular localisation studies. We also apply the vectors to characterize protein-protein interactions and demonstrate their utility in screening plant pathogen effectors. Given its broad utility in defining protein properties, this vector series will serve as a useful resource to expedite gene characterization efforts. PMID:23166857

  6. Gene Expression in Plant Lipid Metabolism in Arabidopsis Seedlings

    PubMed Central

    Hsiao, An-Shan; Haslam, Richard P.; Michaelson, Louise V.; Liao, Pan; Napier, Johnathan A.; Chye, Mee-Len

    2014-01-01

    Events in plant lipid metabolism are important during seedling establishment. As it has not been experimentally verified whether lipid metabolism in 2- and 5-day-old Arabidopsis thaliana seedlings is diurnally-controlled, quantitative real-time PCR analysis was used to investigate the expression of target genes in acyl-lipid transfer, β-oxidation and triacylglycerol (TAG) synthesis and hydrolysis in wild-type Arabidopsis WS and Col-0. In both WS and Col-0, ACYL-COA-BINDING PROTEIN3 (ACBP3), DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) and DGAT3 showed diurnal control in 2- and 5-day-old seedlings. Also, COMATOSE (CTS) was diurnally regulated in 2-day-old seedlings and LONG-CHAIN ACYL-COA SYNTHETASE6 (LACS6) in 5-day-old seedlings in both WS and Col-0. Subsequently, the effect of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) from the core clock system was examined using the cca1lhy mutant and CCA1-overexpressing (CCA1-OX) lines versus wild-type WS and Col-0, respectively. Results revealed differential gene expression in lipid metabolism between 2- and 5-day-old mutant and wild-type WS seedlings, as well as between CCA1-OX and wild-type Col-0. Of the ACBPs, ACBP3 displayed the most significant changes between cca1lhy and WS and between CCA1-OX and Col-0, consistent with previous reports that ACBP3 is greatly affected by light/dark cycling. Evidence of oil body retention in 4- and 5-day-old seedlings of the cca1lhy mutant in comparison to WS indicated the effect of cca1lhy on storage lipid reserve mobilization. Lipid profiling revealed differences in primary lipid metabolism, namely in TAG, fatty acid methyl ester and acyl-CoA contents amongst cca1lhy, CCA1-OX, and wild-type seedlings. Taken together, this study demonstrates that lipid metabolism is subject to diurnal regulation in the early stages of seedling development in Arabidopsis. PMID:25264899

  7. Dispersal Routes and Habitat Utilization of Juvenile Atlantic Bluefin Tuna, Thunnus thynnus, Tracked with Mini PSAT and Archival Tags

    PubMed Central

    Galuardi, Benjamin; Lutcavage, Molly

    2012-01-01

    Between 2005 and 2009, we deployed 58 miniature pop-up satellite archival tags (PSAT) and 132 implanted archival tags on juvenile Atlantic bluefin tuna (age 2–5) in the northwest Atlantic Ocean. Data returned from these efforts (n = 26 PSATs, 1 archival tag) revealed their dispersal routes, horizontal and vertical movements and habitat utilization. All of the tagged bluefin tuna remained in the northwest Atlantic for the duration observed, and in summer months exhibited core-use of coastal seas extending from Maryland to Cape Cod, MA, (USA) out to the shelf break. Their winter distributions were more spatially disaggregated, ranging south to the South Atlantic Bight, northern Bahamas and Gulf Stream. Vertical habitat patterns showed that juvenile bluefin tuna mainly occupied shallow depths (mean  = 5–12 m, sd  = 15–23.7 m) and relatively warm water masses in summer (mean  = 17.9–20.9°C, sd  = 4.2–2.6°C) and had deeper and more variable depth patterns in winter (mean  = 41–58 m, sd  = 48.9–62.2 m). Our tagging results reveal annual dispersal patterns, behavior and oceanographic associations of juvenile Atlantic bluefin tuna that were only surmised in earlier studies. Fishery independent profiling from electronic tagging also provide spatially and temporally explicit information for evaluating dispersals rates, population structure and fisheries catch patterns. PMID:22629461

  8. Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.)

    PubMed Central

    Zhao, Jie

    2010-01-01

    Arabinogalactan proteins (AGPs) comprise a family of hydroxyproline-rich glycoproteins that are implicated in plant growth and development. In this study, 69 AGPs are identified from the rice genome, including 13 classical AGPs, 15 arabinogalactan (AG) peptides, three non-classical AGPs, three early nodulin-like AGPs (eNod-like AGPs), eight non-specific lipid transfer protein-like AGPs (nsLTP-like AGPs), and 27 fasciclin-like AGPs (FLAs). The results from expressed sequence tags, microarrays, and massively parallel signature sequencing tags are used to analyse the expression of AGP-encoding genes, which is confirmed by real-time PCR. The results reveal that several rice AGP-encoding genes are predominantly expressed in anthers and display differential expression patterns in response to abscisic acid, gibberellic acid, and abiotic stresses. Based on the results obtained from this analysis, an attempt has been made to link the protein structures and expression patterns of rice AGP-encoding genes to their functions. Taken together, the genome-wide identification and expression analysis of the rice AGP gene family might facilitate further functional studies of rice AGPs. PMID:20423940

  9. Rapid in silico cloning of genes using expressed sequence tags (ESTs).

    PubMed

    Gill, R W; Sanseau, P

    2000-01-01

    Expressed sequence tags (ESTs) are short single-pass DNA sequences obtained from either end of cDNA clones. These ESTs are derived from a vast number of cDNA libraries obtained from different species. Human ESTs are the bulk of the data and have been widely used to identify new members of gene families, as markers on the human chromosomes, to discover polymorphism sites and to compare expression patterns in different tissues or pathologies states. Information strategies have been devised to query EST databases. Since most of the analysis is performed with a computer, the term "in silico" strategy has been coined. In this chapter we will review the current status of EST databases, the pros and cons of EST-type data and describe possible strategies to retrieve meaningful information.

  10. Expression of recombinant organophosphorus hydrolase in the original producer of the enzyme, Sphingobium fuliginis ATCC 27551.

    PubMed

    Nakayama, Kosuke; Ohmori, Takeshi; Ishikawa, Satoshi; Iwata, Natsumi; Seto, Yasuo; Kawahara, Kazuyoshi

    2016-05-01

    The plasmid encoding His-tagged organophosphorus hydrolase (OPH) cloned from Sphingobium fuliginis was modified to be transferred back to this bacterium. The replication function of S. amiense plasmid was inserted at downstream of OPH gene, and S. fuliginis was transformed with this plasmid. The transformant produced larger amount of active OPH with His-tag than E. coli.

  11. Neutron-Encoded Protein Quantification by Peptide Carbamylation

    NASA Astrophysics Data System (ADS)

    Ulbrich, Arne; Merrill, Anna E.; Hebert, Alexander S.; Westphall, Michael S.; Keller, Mark P.; Attie, Alan D.; Coon, Joshua J.

    2014-01-01

    We describe a chemical tag for duplex proteome quantification using neutron encoding (NeuCode). The method utilizes the straightforward, efficient, and inexpensive carbamylation reaction. We demonstrate the utility of NeuCode carbamylation by accurately measuring quantitative ratios from tagged yeast lysates mixed in known ratios and by applying this method to quantify differential protein expression in mice fed a either control or high-fat diet.

  12. Evaluation of the Implementation of a New Nurse-Led Express "Test-And-Go" Human Immunodeficiency Virus/Sexually Transmitted Infection Testing Service for Men Who Have Sex With Men at a Sexual Health Center in Melbourne, Australia.

    PubMed

    Chow, Eric P F; Fortune, Ria; Dobinson, Sheranne; Wakefield, Trish; Read, Tim R H; Chen, Marcus Y; Bradshaw, Catriona S; Fehler, Glenda; Fairley, Christopher K

    2018-06-01

    In August 2015, a nurse-led express human immunodeficiency virus (HIV)/sexually transmitted infection (STI) testing service "Test-And-Go" (TAG) for asymptomatic men who have sex with men (MSM) was implemented in a large public sexual health center in Melbourne, Australia. We aimed to compare the clients' characteristics between the TAG and routine walk-in service among asymptomatic MSM. This study was conducted at the Melbourne Sexual Health Centre, Australia, between August 5, 2015, and June 1, 2016. General estimating equation logistic regression models were constructed to examine the association between the use of TAG service and clients' demographic characteristics, sexual behaviors, and HIV/STI positivity. Clients' consultation and waiting times for both services were calculated. Of the 3520 consultations, 784 (22.3%) were TAG services and 2736 (77.7%) were routine walk-in services for asymptomatic MSM. Asymptomatic MSM were more likely to use the TAG service if they were born in Australia (adjusted odds ratio, 1.29; 95% confidence interval, 1.07-1.56), and had more than 6 male partners in the last 12 months (adjusted odds ratio, 1.13; 95% confidence interval, 1.08-1.58). Age, HIV status, condomless anal sex and HIV/STI positivity did not differ between the two services. The TAG service had a shorter median waiting time (8.4 minutes vs 52.9 minutes; p < 0.001) and consultation time (8.9 minutes vs 17.6 minutes; p < 0.001) than the routine walk-in service. Although country of birth and sexual behaviors differed between clients attending the 2 services, there were no differences in HIV and STI positivity. Importantly, the TAG service required less waiting and consultation time and hence created additional clinic capacity at the general clinic to see clients who are at higher risk.

  13. Systematic Localization and Identification of SUMOylation Substrates in Knock-In Mice Expressing Affinity-Tagged SUMO1.

    PubMed

    Tirard, Marilyn; Brose, Nils

    2016-01-01

    Protein SUMOylation is a posttranslational protein modification that is emerging as a key regulatory process in neurobiology. To date, however, SUMOylation in vivo has only been studied cursorily. Knock-in mice expressing His6-HA-SUMO1 from the Sumo1 locus allow for the highly specific localization and identification of endogenous SUMO1 substrates under physiological and pathophysiological conditions. By making use of the HA-tag and using wild-type mice for highly stringent negative control samples, SUMO1 targets can be specifically localized in and purified from cultured mouse nerve cells and mouse tissues.

  14. Cellular GFP Toxicity and Immunogenicity: Potential Confounders in in Vivo Cell Tracking Experiments.

    PubMed

    Ansari, Amir Mehdi; Ahmed, A Karim; Matsangos, Aerielle E; Lay, Frank; Born, Louis J; Marti, Guy; Harmon, John W; Sun, Zhaoli

    2016-10-01

    Green Fluorescent protein (GFP), used as a cellular tag, provides researchers with a valuable method of measuring gene expression and cell tracking. However, there is evidence to suggest that the immunogenicity and cytotoxicity of GFP potentially confounds the interpretation of in vivo experimental data. Studies have shown that GFP expression can deteriorate over time as GFP tagged cells are prone to death. Therefore, the cells that were originally marked with GFP do not survive and cannot be accurately traced over time. This review will present current evidence for the immunogenicity and cytotoxicity of GFP in in vivo studies by characterizing these responses.

  15. Development of expressed sequence tag-simple sequence repeat markers for genetic characterization and population structure analysis of Praxelis clematidea (Asteraceae).

    PubMed

    Wang, Q Z; Huang, M; Downie, S R; Chen, Z X

    2016-05-23

    Invasive plants tend to spread aggressively in new habitats and an understanding of their genetic diversity and population structure is useful for their management. In this study, expressed sequence tag-simple sequence repeat (EST-SSR) markers were developed for the invasive plant species Praxelis clematidea (Asteraceae) from 5548 Stevia rebaudiana (Asteraceae) expressed sequence tags (ESTs). A total of 133 microsatellite-containing ESTs (2.4%) were identified, of which 56 (42.1%) were hexanucleotide repeat motifs and 50 (37.6%) were trinucleotide repeat motifs. Of the 24 primer pairs designed from these 133 ESTs, 7 (29.2%) resulted in significant polymorphisms. The number of alleles per locus ranged from 5 to 9. The relatively high genetic diversity (H = 0.2667, I = 0.4212, and P = 100%) of P. clematidea was related to high gene flow (Nm = 1.4996) among populations. The coefficient of population differentiation (GST = 0.2500) indicated that most genetic variation occurred within populations. A Mantel test suggested that there was significant correlation between genetic distance and geographical distribution (r = 0.3192, P = 0.012). These results further support the transferability of EST-SSR markers between closely related genera of the same family.

  16. Analysis and Functional Annotation of an Expressed Sequence Tag Collection for Tropical Crop Sugarcane

    PubMed Central

    Vettore, André L.; da Silva, Felipe R.; Kemper, Edson L.; Souza, Glaucia M.; da Silva, Aline M.; Ferro, Maria Inês T.; Henrique-Silva, Flavio; Giglioti, Éder A.; Lemos, Manoel V.F.; Coutinho, Luiz L.; Nobrega, Marina P.; Carrer, Helaine; França, Suzelei C.; Bacci, Maurício; Goldman, Maria Helena S.; Gomes, Suely L.; Nunes, Luiz R.; Camargo, Luis E.A.; Siqueira, Walter J.; Van Sluys, Marie-Anne; Thiemann, Otavio H.; Kuramae, Eiko E.; Santelli, Roberto V.; Marino, Celso L.; Targon, Maria L.P.N.; Ferro, Jesus A.; Silveira, Henrique C.S.; Marini, Danyelle C.; Lemos, Eliana G.M.; Monteiro-Vitorello, Claudia B.; Tambor, José H.M.; Carraro, Dirce M.; Roberto, Patrícia G.; Martins, Vanderlei G.; Goldman, Gustavo H.; de Oliveira, Regina C.; Truffi, Daniela; Colombo, Carlos A.; Rossi, Magdalena; de Araujo, Paula G.; Sculaccio, Susana A.; Angella, Aline; Lima, Marleide M.A.; de Rosa, Vicente E.; Siviero, Fábio; Coscrato, Virginia E.; Machado, Marcos A.; Grivet, Laurent; Di Mauro, Sonia M.Z.; Nobrega, Francisco G.; Menck, Carlos F.M.; Braga, Marilia D.V.; Telles, Guilherme P.; Cara, Frank A.A.; Pedrosa, Guilherme; Meidanis, João; Arruda, Paulo

    2003-01-01

    To contribute to our understanding of the genome complexity of sugarcane, we undertook a large-scale expressed sequence tag (EST) program. More than 260,000 cDNA clones were partially sequenced from 26 standard cDNA libraries generated from different sugarcane tissues. After the processing of the sequences, 237,954 high-quality ESTs were identified. These ESTs were assembled into 43,141 putative transcripts. Of the assembled sequences, 35.6% presented no matches with existing sequences in public databases. A global analysis of the whole SUCEST data set indicated that 14,409 assembled sequences (33% of the total) contained at least one cDNA clone with a full-length insert. Annotation of the 43,141 assembled sequences associated almost 50% of the putative identified sugarcane genes with protein metabolism, cellular communication/signal transduction, bioenergetics, and stress responses. Inspection of the translated assembled sequences for conserved protein domains revealed 40,821 amino acid sequences with 1415 Pfam domains. Reassembling the consensus sequences of the 43,141 transcripts revealed a 22% redundancy in the first assembling. This indicated that possibly 33,620 unique genes had been identified and indicated that >90% of the sugarcane expressed genes were tagged. PMID:14613979

  17. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    NASA Astrophysics Data System (ADS)

    Wnęk, M.; Górzny, M. Ł.; Ward, M. B.; Wälti, C.; Davies, A. G.; Brydson, R.; Evans, S. D.; Stockley, P. G.

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating.

  18. Activation tagging in indica rice identifies ribosomal proteins as potential targets for manipulation of water-use efficiency and abiotic stress tolerance in plants.

    PubMed

    Moin, Mazahar; Bakshi, Achala; Saha, Anusree; Udaya Kumar, M; Reddy, Attipalli R; Rao, K V; Siddiq, E A; Kirti, P B

    2016-11-01

    We have generated 3900 enhancer-based activation-tagged plants, in addition to 1030 stable Dissociator-enhancer plants in a widely cultivated indica rice variety, BPT-5204. Of them, 3000 were screened for water-use efficiency (WUE) by analysing photosynthetic quantum efficiency and yield-related attributes under water-limiting conditions that identified 200 activation-tagged mutants, which were analysed for flanking sequences at the site of enhancer integration in the genome. We have further selected five plants with low Δ 13 C, high quantum efficiency and increased plant yield compared with wild type for a detailed investigation. Expression studies of 18 genes in these mutants revealed that in four plants one of the three to four tagged genes became activated, while two genes were concurrently up-regulated in the fifth plant. Two genes coding for proteins involved in 60S ribosomal assembly, RPL6 and RPL23A, were among those that became activated by enhancers. Quantitative expression analysis of these two genes also corroborated the results on activating-tagging. The high up-regulation of RPL6 and RPL23A in various stress treatments and the presence of significant cis-regulatory elements in their promoter regions along with the high up-regulation of several of RPL genes in various stress treatments indicate that they are potential targets for manipulating WUE/abiotic stress tolerance. © 2016 John Wiley & Sons Ltd.

  19. Molecular characterization of human ABHD2 as TAG lipase and ester hydrolase

    PubMed Central

    M., Naresh Kumar; V.B.S.C., Thunuguntla; G.K., Veeramachaneni; B., Chandra Sekhar; Guntupalli, Swapna; J.S., Bondili

    2016-01-01

    Alterations in lipid metabolism have been progressively documented as a characteristic property of cancer cells. Though, human ABHD2 gene was found to be highly expressed in breast and lung cancers, its biochemical functionality is yet uncharacterized. In the present study we report, human ABHD2 as triacylglycerol (TAG) lipase along with ester hydrolysing capacity. Sequence analysis of ABHD2 revealed the presence of conserved motifs G205XS207XG209 and H120XXXXD125. Phylogenetic analysis showed homology to known lipases, Drosophila melanogaster CG3488. To evaluate the biochemical role, recombinant ABHD2 was expressed in Saccharomyces cerevisiae using pYES2/CT vector and His-tag purified protein showed TAG lipase activity. Ester hydrolase activity was confirmed with pNP acetate, butyrate and palmitate substrates respectively. Further, the ABHD2 homology model was built and the modelled protein was analysed based on the RMSD and root mean square fluctuation (RMSF) of the 100 ns simulation trajectory. Docking the acetate, butyrate and palmitate ligands with the model confirmed covalent binding of ligands with the Ser207 of the GXSXG motif. The model was validated with a mutant ABHD2 developed with alanine in place of Ser207 and the docking studies revealed loss of interaction between selected ligands and the mutant protein active site. Based on the above results, human ABHD2 was identified as a novel TAG lipase and ester hydrolase. PMID:27247428

  20. Molecular characterization of human ABHD2 as TAG lipase and ester hydrolase.

    PubMed

    M, Naresh Kumar; V B S C, Thunuguntla; G K, Veeramachaneni; B, Chandra Sekhar; Guntupalli, Swapna; J S, Bondili

    2016-08-01

    Alterations in lipid metabolism have been progressively documented as a characteristic property of cancer cells. Though, human ABHD2 gene was found to be highly expressed in breast and lung cancers, its biochemical functionality is yet uncharacterized. In the present study we report, human ABHD2 as triacylglycerol (TAG) lipase along with ester hydrolysing capacity. Sequence analysis of ABHD2 revealed the presence of conserved motifs G(205)XS(207)XG(209) and H(120)XXXXD(125) Phylogenetic analysis showed homology to known lipases, Drosophila melanogaster CG3488. To evaluate the biochemical role, recombinant ABHD2 was expressed in Saccharomyces cerevisiae using pYES2/CT vector and His-tag purified protein showed TAG lipase activity. Ester hydrolase activity was confirmed with pNP acetate, butyrate and palmitate substrates respectively. Further, the ABHD2 homology model was built and the modelled protein was analysed based on the RMSD and root mean square fluctuation (RMSF) of the 100 ns simulation trajectory. Docking the acetate, butyrate and palmitate ligands with the model confirmed covalent binding of ligands with the Ser(207) of the GXSXG motif. The model was validated with a mutant ABHD2 developed with alanine in place of Ser(207) and the docking studies revealed loss of interaction between selected ligands and the mutant protein active site. Based on the above results, human ABHD2 was identified as a novel TAG lipase and ester hydrolase. © 2016 The Author(s).

Top