NASA Astrophysics Data System (ADS)
Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan
2018-04-01
The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional and zonal components of global atmospheric circulation.
Sillitoe, Roy V; Künzle, Heinz; Hawkes, Richard
2003-01-01
The mammalian cerebellum is histologically uniform. However, underlying the simple laminar architecture is a complex arrangement of parasagittal stripes and transverse zones that can be revealed by the expression of zebrin II/aldolase C. The cerebellar cortex of rodents, for example, is organized into four transverse zones: anterior, central, posterior and nodular. Within the anterior and posterior zones, parasagittal stripes of Purkinje cells expressing zebrin II alternate with those that do not. Zonal boundaries appear to be independent of cerebellar lobulation. To explore this model further, and to broaden our understanding of the evolution of cerebellar patterning, zebrin II expression has been studied in the cerebellum of the Madagascan hedgehog tenrec (Echinops telfairi), a basal insectivore with a lissiform cerebellum with only five lobules. Zebrin II expression in the tenrec reveals an array of four transverse zones as in rodents, two with homogeneous zebrin II expression, two further subdivided into stripes, that closely resembles the expression pattern described in other mammals. We conclude that a zone-and-stripe organization may be a common feature of the mammalian cerebellar vermis and hemispheres, and that zonal boundaries and cerebellar lobules and fissures form independently. PMID:14529046
NASA Astrophysics Data System (ADS)
Bertaux, Jean-Loup; Khatunstsev, Igor; Hauchecorne, Alain; Markiewicz, Wojciech; Marcq, Emmanuel; Lebonnois, Sébastien; Patsaeva, Marina; Turin, Alexander
2015-04-01
UV images (at 365 nm) of Venus cloud top collected with VMC camera on board Venus Express allowed to derive a large number of wind measurements at altitude 67±2 km from tracking of cloud features in the period 2006-2012. Both manual (45,600) and digital (391,600) individual wind measurements over 127 orbits were analyzed showing various patterns with latitude and local time. A new longitude-latitude geographic map of the zonal wind shows a conspicuous region of strongly decreased zonal wind, a remarkable feature that was unknown up to now. While the average zonal wind near equator (from 5°S to 15°s) is -100.9 m/s in the longitude range 200-330°, it reaches -83.4 m/s in the range 60-100°, a difference of 17.5 m/s. When compared to the altimetry map of Venus, it is found that the zonal wind pattern is well correlated with the underlying relief in the region of Aphrodite Terra, with a downstream shift of about 30° (˜3,200 km). We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to cloud top level, break there and transfer their momentum to the zonal flow. A similar phenomenon is known to operate on Earth with an influence on mesospheric winds. The LMD-GCM for Venus was run with or without topography, with and without a parameterization of gravity waves and does not display such an observed change of velocity near equator. The cloud albedo map at 365 nm varies also in longitude and latitude. We speculate that it might be the result of increased vertical mixing associated to wave breaking, and decreased abundance of the UV absorber which makes the contrast in images. The impact of these new findings on current super rotation theories remains to be assessed. This work was triggered by the presence of a conspicuous peak at 117 days in a time series of wind measurements. This is the length of the solar day as seen at the ground of Venus. Since VMC measurements are done preferably in a local time window centred on the sub-solar point, any parameter having a geographic longitude dependence will show a peak at 117 days.
Evolution of the eastward shift in the quasi-stationary minimum of the Antarctic total ozone column
NASA Astrophysics Data System (ADS)
Grytsai, Asen; Klekociuk, Andrew; Milinevsky, Gennadi; Evtushevsky, Oleksandr; Stone, Kane
2017-02-01
The quasi-stationary pattern of the Antarctic total ozone has changed during the last 4 decades, showing an eastward shift in the zonal ozone minimum. In this work, the association between the longitudinal shift of the zonal ozone minimum and changes in meteorological fields in austral spring (September-November) for 1979-2014 is analyzed using ERA-Interim and NCEP-NCAR reanalyses. Regressive, correlative and anomaly composite analyses are applied to reanalysis data. Patterns of the Southern Annular Mode and quasi-stationary zonal waves 1 and 3 in the meteorological fields show relationships with interannual variability in the longitude of the zonal ozone minimum. On decadal timescales, consistent longitudinal shifts of the zonal ozone minimum and zonal wave 3 pattern in the middle-troposphere temperature at the southern midlatitudes are shown. Attribution runs of the chemistry-climate version of the Australian Community Climate and Earth System Simulator (ACCESS-CCM) model suggest that long-term shifts of the zonal ozone minimum are separately contributed by changes in ozone-depleting substances and greenhouse gases. As is known, Antarctic ozone depletion in spring is strongly projected on the Southern Annular Mode in summer and impacts summertime surface climate across the Southern Hemisphere. The results of this study suggest that changes in zonal ozone asymmetry accompanying ozone depletion could be associated with regional climate changes in the Southern Hemisphere in spring.
Zonal flow as pattern formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Jeffrey B.; Krommes, John A.
2013-10-15
Zonal flows are well known to arise spontaneously out of turbulence. We show that for statistically averaged equations of the stochastically forced generalized Hasegawa-Mima model, steady-state zonal flows, and inhomogeneous turbulence fit into the framework of pattern formation. There are many implications. First, the wavelength of the zonal flows is not unique. Indeed, in an idealized, infinite system, any wavelength within a certain continuous band corresponds to a solution. Second, of these wavelengths, only those within a smaller subband are linearly stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets.
How pattern is selected in drift wave turbulence: Role of parallel flow shear
NASA Astrophysics Data System (ADS)
Kosuga, Y.
2017-12-01
The role of parallel shear flow in the pattern selection problem in drift wave turbulence is discussed. Patterns of interest here are E × B convective cells, which include poloidally symmetric zonal flows and radially elongated streamers. The competition between zonal flow formation and streamer formation is analyzed in the context of modulational instability analysis, with the parallel flow shear as a parameter. For drift wave turbulence with k⊥ρs ≲ O (1 ) and without parallel flow coupling, zonal flows are preferred structures. While increasing the magnitude of parallel flow shear, streamer growth overcomes zonal flow growth. This is because the self-focusing effect of the modulational instability becomes more effective for streamers through density and parallel velocity modulation. As a consequence, the bursty release of free energy may result as the parallel flow shear increases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhi-Ying; White, C.C.; He, Cheng-Yi
1995-12-31
Both increased cell proliferation and {open_quotes}altered{close_quotes}CYP gene expression are prominent phenomena associated with liver tumor promotion by nongenotoxic carcinogen treatment. BRDU-labeled parenchymal nuclei were observed primarily in the periportal area of groups of rats, independent of nongenotoxic carcinogen treatment. Treatment with each of the 5 nongenotoxic carcinogens resulted in profound alterations in CPY gene expression at both the transcriptional and translational levels. Expression of CYP1A1, 1A1/2, 3A1, 2B1/2, and 4A immunoproteins demonstrated nongenotoxic carcinogen-specific patterns in both magnitude and zonal distribution. In agreement with the CYP immunoprotein data, treatment with each of the five nongenotoxic carcinogens resulted in a uniquemore » composition of mRNAs of CYP2B1, 2B2, 2C6, 2C11, 3A1, 3A2, and 4A1, which were variably increased or decreased relative to the untreated control livers, depending on the treatment. Similarly, the rate and pattern of CYP enzyme-mediated hydroxylation toward testosterone, 17{beta}-estradiol, corticosterone, and lauric acid were greatly altered by nongenotoxic carcinogen treatment. Because many endogenous substrates are modulators of DNA and RNA synthesis, intracellular kinetics of endogenous substrates of CYP enzymes in the corresponding hepatocytes could contribute, at least in part, to the differences in gene expression, differentiation, and cell proliferation among the hepatocytes in the cell plate. 64 refs., 11 figs., 2 tabs.« less
Equatorial Oscillations in Jupiter's and Saturn's Atmospheres
NASA Technical Reports Server (NTRS)
Flasar, F. Michael; Guerlet, S.; Fouchet, T.; Schinder, P. J.
2011-01-01
Equatorial oscillations in the zonal-mean temperatures and zonal winds have been well documented in Earth's middle atmosphere. A growing body of evidence from ground-based and Cassini spacecraft observations indicates that such phenomena also occur in the stratospheres of Jupiter and Saturn. Earth-based midinfrared measurements spanning several decades have established that the equatorial stratospheric temperatures on Jupiter vary with a cycle of 4-5 years and on Saturn with a cycle of approximately 15 years. Spectra obtained by the Composite Infrared Spectrometer (CIRS) during the Cassini swingby at the end of 2000, with much better vertical resolution than the ground-based data, indicated a series of vertically stacked warm and cold anomalics at Jupiter's equator; a similar structurc was seen at Saturn's equator in CIRS limb measurements made in 2005, in the early phase of Cassini's orbital tour. The thermal wind equation implied similar patterns of mean zonal winds increasing and decreasing with altitude. On Saturn the peak-to-pcak amplitude of this variation was nearly 200 meters per second. The alternating vertical pattern of wanner and colder cquatorial tcmperatures and easterly and westerly tendencies of the zonal winds is seen in Earth's equatorial oscillations, where the pattern descends with time, The Cassini Jupiter and early Saturn observations were snapshots within a limited time interval, and they did not show the temporal evolution of the spatial patterns. However, more recent Saturn observations by CIRS (2010) and Cassini radio-occultation soundings (2009-2010) have provided an opportunity to follow the change of the temperature-zonal wind pattern, and they suggest there is descent, at a rate of roughly one scale height over four years. On Earth, the observed descent in the zonal-mean structure is associated with the absorption of a combination of vertically propagating waves with easlerly and westerly phase velocities. The peak-to-peak zonal wind amplitude in the oscillation pattern and the rate of descent constrain the absorbed wave flux of zonal momentum. On Saturn this is approximately 0.05 square meters per square seconds, which is comparable to if not greater than that associated with the terrestrial oscillations. We discuss possible candidates for the absorbed waves on Saturn. On Earth the wave forcing of the equatorial oscillation generales secondary circulations that can affcct the temperature and wind structure at latitudes well away from the equator, and we discuss possible evidence of that on Saturn.
Koenig, Sarah; Probst, Irmelin; Becker, Heinz; Krause, Petra
2006-12-01
Oval cells constitute a heterogeneous population of proliferating progenitors found in rat livers following carcinogenic treatment (2-acetylaminofluorene and 70% hepatectomy). The aim of this study was to investigate the cellular pattern of various differentiation and cell type markers in this model of liver regeneration. Immunophenotypic characterisation revealed at least two subtypes emerging from the portal field. First, a population of oval cells formed duct-like structures and expressed bile duct (CD49f) as well as hepatocytic markers (alpha-foetoprotein, CD26). Second, a population of non-ductular oval cells was detected between and distally from the ductules expressing the neural marker nestin and the haematopoietic marker Thy1. Following oval cell isolation, a subset of the nestin-positive cells was shown to co-express hepatocytic and epithelial markers (albumin, CD26, pancytokeratin) and could be clearly distinguished from anti-desmin reactive hepatic stellate cells. The gene expression profiles (RT-PCR) of isolated oval cells and oval cell liver tissue were found to be similar to foetal liver (ED14). The present results suggest that the two oval cell populations are organised in a zonal hierarchy with a marker gradient from the inner (displaying hepatocytic and biliary markers) to the outer zone (showing hepatocytic and extrahepatic progenitor markers) of the proliferating progeny clusters.
Zonal flows and turbulence in fluids and plasmas
NASA Astrophysics Data System (ADS)
Parker, Jeffrey Bok-Cheung
In geophysical and plasma contexts, zonal flows are well known to arise out of turbulence. We elucidate the transition from statistically homogeneous turbulence without zonal flows to statistically inhomogeneous turbulence with steady zonal flows. Starting from the Hasegawa--Mima equation, we employ both the quasilinear approximation and a statistical average, which retains a great deal of the qualitative behavior of the full system. Within the resulting framework known as CE2, we extend recent understanding of the symmetry-breaking 'zonostrophic instability'. Zonostrophic instability can be understood in a very general way as the instability of some turbulent background spectrum to a zonally symmetric coherent mode. As a special case, the background spectrum can consist of only a single mode. We find that in this case the dispersion relation of zonostrophic instability from the CE2 formalism reduces exactly to that of the 4-mode truncation of generalized modulational instability. We then show that zonal flows constitute pattern formation amid a turbulent bath. Zonostrophic instability is an example of a Type I s instability of pattern-forming systems. The broken symmetry is statistical homogeneity. Near the bifurcation point, the slow dynamics of CE2 are governed by a well-known amplitude equation, the real Ginzburg-Landau equation. The important features of this amplitude equation, and therefore of the CE2 system, are multiple. First, the zonal flow wavelength is not unique. In an idealized, infinite system, there is a continuous band of zonal flow wavelengths that allow a nonlinear equilibrium. Second, of these wavelengths, only those within a smaller subband are stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets. These behaviors are shown numerically to hold in the CE2 system, and we calculate a stability diagram. The stability diagram is in agreement with direct numerical simulations of the quasilinear system. The use of statistically-averaged equations and the pattern formation methodology provide a path forward for further systematic investigations of zonal flows and their interactions with turbulence.
NASA Astrophysics Data System (ADS)
Stuckman, Scott Seele
This study is a first documentation of the structure of the entire AMO life cycle, including extreme and transition phases, throughout the global troposphere. The extreme phase climate signature is constructed based on the strongest and most robust patterns identified by two methods (linear correlation and composite analyses), two reanalysis datasets (the National Centers for Environmental Prediction/National Center for Atmospheric Research and Twentieth Century Reanalysis, supplemented with precipitation data from the University of Delaware dataset) and data from two consecutive AMO cycles. The first characterization of the AMO transition phases uses a transition index based on the time derivative of AMO index. When trying to compare the zonal mean structure of AMO with the El Niño-Southern Oscillation (ENSO), a literature search showed the zonal mean structure of ENSO remained unpublished, despite the otherwise generally well-characterized horizontal structures. Therefore this study includes a seasonal analysis of the ENSO zonal mean structure during boreal winter (DJF) and summer (JJA). The AMO extreme phase is characterized by a blend of low and middle latitude centers of action, with the associated tilt of geopotential height anomaly patterns consistent with off-equatorial heating patterns generated by the Held idealized model. The surface climate signature is connected to the upper air with baroclinic vertical structure over the North Atlantic but barotropic structures elsewhere. The associated zonal mean circulation features three circulation cells globally with strong inter-hemispheric mixing that suggests the traditional view of the AMO involving a Northern-Southern Hemisphere asymmetry is accurate only near the surface. The AMO transition phase features a more equatorial-based climate signature and associated geopotential height anomaly patterns consistent with the Matsuno-Gill idealized model. The zonal mean circulation of the transition phases features six, rather than three, circulation cells globally. The only baroclinic structure, over North America, and several barotropic structures are positioned west of corresponding similar structures during the AMO extreme phase, suggesting an eastward evolution of climate anomalies as the AMO progresses from a cool-to-warm transition phase to warm phase. The Pacific-based climate signature resembles the IPO warm phase and it is proposed the AMO and IPO are different basin-wide expressions of a single multidecadal oscillation. The identification of an AMO transition phase climate signature distinct from the extreme phase suggests transition phases are not neutral and may provide an additional source of information for characterizing climate cycles.
Characteristics and Mechanisms of Zonal Oscillation of Western Pacific Subtropical High in Summer
NASA Astrophysics Data System (ADS)
Guan, W.; Ren, X.; Hu, H.
2017-12-01
The zonal oscillation of the western Pacific subtropical high (WPSH) influences the weather and climate over East Asia significantly. This study investigates the features and mechanisms of the zonal oscillation of the WPSH during summer on subseasonal time scales. The zonal oscillation index of the WPSH is defined by normalized subseasonal geopotential height anomaly at 500hPa averaged over the WPSH's western edge (110° - 140°E, 10° - 30°N). The index shows a predominant oscillation with a period of 10-40 days. Large positive index indicates a strong anticyclonic anomaly over East Asia and its coastal region south of 30°N at both 850hPa and 500hPa. The WPSH stretches more westward accompanied by warmer SST anomalies beneath the western edge of the WPSH. Meanwhile, above-normal precipitation is seen over the Yangtze-Huaihe river basin and below-normal precipitation over the south of the Yangtze River. Negative index suggests a more eastward position of WPSH. The anomalies in circulation and SST for negative index are almost the mirror image of those for the positive index. In early summer, the zonal shift of the WPSH is affected by both the East Asia/Pacific (EAP) teleconnection pattern and the Silk road pattern (SRP). The positive (negative) phase of the EAP pattern is characterized by a low-level anticyclonic (cyclonic) anomaly over the subtropical western Pacific, indicating the western extension (eastward retreat) of the WPSH. Comparing with the EAP pattern, the SRP forms an upper-level anticyclonic (cyclonic) anomaly in mid-latitudes of East Asia, and then leads to the westward (eastward) movement of the WPSH. In late summer, the zonal shift of the WPSH is mainly affected by the EAP pattern, because the EAP pattern in late summer is stronger than that in early summer. The zonal shift of the WPSH is also influenced by the subseasonal air-sea interaction locally. During the early stage of WPSH's westward stretch, the local SST anomaly in late summer is colder than that in early summer. This forms a more favorable condition for the increasing of local anticyclonic anomaly. Thus, the anticyclonic anomaly in late summer is stronger than that in early summer.
Zonal Flows and Turbulence in Fluids and Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Jeffrey
2014-09-01
In geophysical and plasma contexts, zonal flows are well known to arise out of turbulence. We elucidate the transition from statistically homogeneous turbulence without zonal flows to statistically inhomogeneous turbulence with steady zonal flows. Starting from the Hasegawa--Mima equation, we employ both the quasilinear approximation and a statistical average, which retains a great deal of the qualitative behavior of the full system. Within the resulting framework known as CE2, we extend recent understanding of the symmetry-breaking `zonostrophic instability'. Zonostrophic instability can be understood in a very general way as the instability of some turbulent background spectrum to a zonally symmetricmore » coherent mode. As a special case, the background spectrum can consist of only a single mode. We find that in this case the dispersion relation of zonostrophic instability from the CE2 formalism reduces exactly to that of the 4-mode truncation of generalized modulational instability. We then show that zonal flows constitute pattern formation amid a turbulent bath. Zonostrophic instability is an example of a Type Is instability of pattern-forming systems. The broken symmetry is statistical homogeneity. Near the bifurcation point, the slow dynamics of CE2 are governed by a well-known amplitude equation, the real Ginzburg-Landau equation. The important features of this amplitude equation, and therefore of the CE2 system, are multiple. First, the zonal flow wavelength is not unique. In an idealized, infinite system, there is a continuous band of zonal flow wavelengths that allow a nonlinear equilibrium. Second, of these wavelengths, only those within a smaller subband are stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets. These behaviors are shown numerically to hold in the CE2 system, and we calculate a stability diagram. The stability diagram is in agreement with direct numerical simulations of the quasilinear system. The use of statistically-averaged equations and the pattern formation methodology provide a path forward for further systematic investigations of zonal flows and their interactions with turbulence.« less
The possible physical mechanism for the EAP-SR co-action
NASA Astrophysics Data System (ADS)
Gong, Zhiqiang; Feng, Guolin; Dogar, Muhammad Mubashar; Huang, Gang
2017-11-01
The anomalous characteristics of summer precipitation and atmospheric circulation in the East Asia-West Pacific Region (EA-WP) associated with the co-action of East Asia/Pacific teleconnection-Silk Road teleconnection (EAP-SR) are investigated in this study. The compositions of EAP-SR phase anomalies can be expressed as pattern I (+ +), pattern II (+ -), pattern III (- -), and pattern IV (- +) using EAP and SR indices. It is found that the spatial distribution of summer precipitation anomalies in EA-WP corresponding to pattern I (III) shows a tripole structure in the meridional direction and a zonal dipole structure in the subtropical region, while pattern II (IV) presents a tripole pattern in meridional direction with compressed and continuous anomalies in the zonal direction over the subtropical region. The similar meridional and zonal structures are also found in the geopotential height anomalies at 500-hPa, as well as wind anomalies and moisture convergence at 850-hPa. Finally, a schematic mechanism for the EAP-SR co-action upon the summer precipitation in EA-WP is built: (1) Pattern I (III) exhibits that the negative (positive) sea surface temperature (SST) anomalies over tropical East Pacific may cause the enhanced (weakened) convective activity dominating the West Pacific, trigger the positive (negative) EAP teleconnection and produce more (less) precipitation. Besides, the negative (positive) SST anomalies over the Indonesia Maritime Continent (IMC) may further weaken (strengthen) anomalous downward (upward) motion over the South China Sea (SCS), cause negative (positive) geopotential height anomalies at the middle troposphere and surrounding regions through the function of the tropical Hadley circulation. Then the negative (positive) geopotential height anomalies could motivate the positive (negative) EAP teleconnection through the northward propagation of wave-activity perturbation. Meanwhile, a positive (negative) geopotential height anomalous pattern over Eastern Europe motivates a Rossby wave train propagation from Western Europe to west-central Asia. This circumstance can cause suppressed (enhanced) convection and less (more) precipitation over northwestern India and Pakistan, which could strengthen the negative (positive) geopotential height and positive (negative) vorticity anomalies over central East Asia, resulting in a negative (positive) SR teleconnection along the Asian jet stream. A positive (negative) lobe over the Korean Peninsula and Japan corresponding to SR overlaps with a positive (negative) lobe of EAP, which strengthens the anomalous phase contrast on both sides of 120°E. Accordingly, summer precipitation anomalies in EA-WP exhibit the meridional tripole pattern and the zonal dipole pattern. (2) Pattern II (IV) indicates that the normal SST anomalies over the tropical East Pacific cause the weak tele-impact on the tropical West Pacific, while the positive (negative) SST anomalies over the IMC will lead to a negative (positive) lobe of EAP over the subtropical region. This circumstance can weaken the positive (negative) lobe of SR over subtropical region, causing compressed and continuous negative (positive) anomalies of 500-hPa geopotential height and positive (negative) surface precipitation anomalies from central East China to Japan.
Turtoi, Andrei; Blomme, Arnaud; Debois, Delphine; Somja, Joan; Delvaux, David; Patsos, Georgios; Di Valentin, Emmanuel; Peulen, Olivier; Mutijima, Eugène Nzaramba; De Pauw, Edwin; Delvenne, Philippe; Detry, Olivier; Castronovo, Vincent
2014-03-01
Tumor heterogeneity is a major obstacle for developing effective anticancer treatments. Recent studies have pointed to large stochastic genetic heterogeneity within cancer lesions, where no pattern seems to exist that would enable a more structured targeted therapy approach. Because to date no similar information is available at the protein (phenotype) level, we employed matrix assisted laser desorption ionization (MALDI) image-guided proteomics and explored the heterogeneity of extracellular and membrane subproteome in a unique collection of eight fresh human colorectal carcinoma (CRC) liver metastases. Monitoring the spatial distribution of over 1,000 proteins, we found unexpectedly that all liver metastasis lesions displayed a reproducible, zonally delineated pattern of functional and therapeutic biomarker heterogeneity. The peritumoral region featured elevated lipid metabolism and protein synthesis, the rim of the metastasis displayed increased cellular growth, movement, and drug metabolism, whereas the center of the lesion was characterized by elevated carbohydrate metabolism and DNA-repair activity. From the aspect of therapeutic targeting, zonal expression of known and novel biomarkers was evident, reinforcing the need to select several targets in order to achieve optimal coverage of the lesion. Finally, we highlight two novel antigens, LTBP2 and TGFBI, whose expression is a consistent feature of CRC liver metastasis. We demonstrate their in vivo antibody-based targeting and highlight their potential usefulness for clinical applications. The proteome heterogeneity of human CRC liver metastases has a distinct, organized pattern. This particular hallmark can now be used as part of the strategy for developing rational therapies based on multiple sets of targetable antigens. © 2014 by the American Association for the Study of Liver Diseases.
The observed life cycle of a baroclinic instability
NASA Technical Reports Server (NTRS)
Randel, W. J.; Stanford, J. L.
1985-01-01
Medium-scale waves (zonal wavenumbers 4-7) frequently dominate Southern Hemisphere summer circulation patterns. Randel and Stanford have studied the dynamics of these features, demonstrating that the medium-scale waves result from baroclinic excitation and exhibit well-defined life cycles. This study details the evolution of the medium-scale waves during a particular life cycle. The specific case chosen exhibits a high degree of zonal symmetry, prompting study based upon zonally averaged diagnostics. An analysis of the medium-scale wave energetics reveals a well-defined life cycle of baroclinic growth, maturity, and barotropic decay. Eliassen-Palm flux diagrams detail the daily wave structure and its interaction with the zonally-averaged flow.
Simulation of an Ice Giant-style Dynamo
NASA Astrophysics Data System (ADS)
Soderlund, K. M.; Aurnou, J. M.
2010-12-01
The Ice Giants, Uranus and Neptune, are unique in the solar system. These planets are the only known bodies to have multipolar magnetic fields where the quadrupole and octopole components have strengths comparable to or greater than that of the dipole. Cloud layer observations show that the planets also have zonal (east-west) flows that are fundamentally different from the banded winds of Jupiter and Saturn. The surface winds are characterized by strong retrograde equatorial jets that are flanked on either side by prograde jets at high latitudes. Thermal emission measurements of Neptune show that the surface energy flux pattern peaks in the equatorial and polar regions with minima at mid-latitudes. (The measurements for Uranus cannot adequately resolve the emission pattern.) The winds and magnetic fields are thought to be the result of convection in the planetary interior, which will also affect the heat flux pattern. Typically, it is implicitly assumed that the zonal winds are generated in a shallow layer, separate from the dynamo generation region. However, if the magnetic fields are driven near the surface, a single region can simultaneously generate both the zonal flows and the magnetic fields. Here, we present a novel numerical model of an Ice Giant-style dynamo to investigate this possibility. An order unity convective Rossby number (ratio of buoyancy to Coriolis forces) has been chosen because retrograde equatorial jets tend to occur in spherical shells when the effects of rotation are relatively weak. Our modeling results qualitatively reproduce all of the structural features of the global dynamical observations. Thus, a self-consistent model can generate magnetic field, zonal flow, and thermal emission patterns that agree with those of Uranus and Neptune. This model, then, leads us to hypothesize that the Ice Giants' zonal flows and magnetic fields are generated via dynamically coupled deep convection processes.
Predictability of Zonal Means During Boreal Summer
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Suarez, Max J.; Pegion, Philip J.; Kistler, Michael A.; Kumar, Arun; Einaudi, Franco (Technical Monitor)
2001-01-01
This study examines the predictability of seasonal means during boreal summer. The results are based on ensembles of June-July-August (JJA) simulations (started in mid May) carried out with the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) forced with observed sea surface temperatures (SSTS) and sea ice for the years 1980-1999. We find that the predictability of the JJA extra-tropical height field is primarily in the zonal mean component of the response to the SST anomalies. This contrasts with the cold season (January-February-March) when the predictability of seasonal means in the boreal extratropics is primarily in the wave component of the El Nino/Southern Oscillation (ENSO) response. Two patterns dominate the interannual variability of the ensemble mean JJA zonal mean height field. One has maximum variance in the tropical/subtropical upper troposphere, while the other has substantial variance in middle latitudes of both hemispheres. Both are symmetric with respect to the equator. A regression analysis suggests that the tropical/subtropical pattern is associated with SST anomalies in the far eastern tropical Pacific and the Indian Ocean, while the middle latitude pattern is forced by SST anomalies in the tropical Pacific just east of the dateline. The two leading zonal height patterns are reproduced in model runs forced with the two leading JJA SST patterns of variability. A comparison with observations shows a signature of the middle latitude pattern that is consistent with the occurrence of dry and wet summers over the United States. We hypothesize that both patterns, while imposing only weak constraints on extratropical warm season continental-scale climates, may play a role in the predilection for drought or pluvial conditions.
Jupiter: New estimates of mean zonal flow at the cloud level
NASA Technical Reports Server (NTRS)
Limaye, Sanjay S.
1986-01-01
In order to reexamine the magnitude differences of the Jovian atmosphere's jets, as determined by Voyager 1 and 2 images, a novel approach is used to ascertain the zonal mean east-west component of motion. This technique is based on digital pattern matching, and is applied on pairs of mapped images to yield a profile of the mean zonal component that reproduces the exact locations of the easterly and westerly jets between + and 60 deg latitude. Results were obtained for all of the Voyager 1 and 2 cylindrical mosaics; the correlation coefficient between Voyagers 1 and 2 in mean zonal flow between + and - 60 deg latitude, determined from violet filter mosaics, is 0.998.
NASA Astrophysics Data System (ADS)
Bertaux, Jean-Loup; Khatunstsev, Igor; Hauchecorne, Alain; Markiewicz, Wojtek; Emmanuel, Marcq; Sébastien, Lebonnois; Marina, Patsaeva; Alex, Turin; Anna, Fedorova
2016-04-01
Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67±2 km) collected with VMC (Venus Monitoring Camera) on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°s) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to cloud top level, break there and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth by Lindzen [1981], but is not reproduced in a current GCM of Venus atmosphere. Consistent with present findings, the two VEGA mission balloons experienced a small, but significant, difference of westward velocity, at their 53 km floating altitude. The albedo at 365 nm varies also with longitude and latitude in a pattern strikingly similar in the low latitude regions to a recent map of cloud top H2O [Fedorova et al., 2015], in which a lower UV albedo is correlated with increased H2O. We argue that H2O enhancement is the sign of upwelling, suggesting that the UV absorber is also brought to cloud top by upwelling.
NASA Technical Reports Server (NTRS)
North, G. R.; Bell, T. L.; Cahalan, R. F.; Moeng, F. J.
1982-01-01
Geometric characteristics of the spherical earth are shown to be responsible for the increase of variance with latitude of zonally averaged meteorological statistics. An analytic model is constructed to display the effect of a spherical geometry on zonal averages, employing a sphere labeled with radial unit vectors in a real, stochastic field expanded in complex spherical harmonics. The variance of a zonally averaged field is found to be expressible in terms of the spectrum of the vector field of the spherical harmonics. A maximum variance is then located at the poles, and the ratio of the variance to the zonally averaged grid-point variance, weighted by the cosine of the latitude, yields the zonal correlation typical of the latitude. An example is provided for the 500 mb level in the Northern Hemisphere compared to 15 years of data. Variance is determined to increase north of 60 deg latitude.
Generation of zonal flows by electrostatic drift waves in electron-positron-ion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaladze, T. D.; I. Vekua Institute of Applied Mathematics, Tbilisi State University, 2 University Str., 0186 Tbilisi; Shad, M.
2010-02-15
Generation of large-scale zonal flows by comparatively small-scale electrostatic drift waves in electron-positron-ion plasmas is considered. The generation mechanism is based on the parametric excitation of convective cells by finite amplitude drift waves having arbitrary wavelengths (as compared with the ion Larmor radius of plasma ions at the plasma electron temperature). Temperature inhomogeneity of electrons and positrons is taken into account assuming ions to be cold. To describe the generation of zonal flow generalized Hasegawa-Mima equation containing both vector and two scalar (of different nature) nonlinearities is used. A set of coupled equations describing the nonlinear interaction of drift wavesmore » and zonal flows is deduced. Explicit expressions for the maximum growth rate as well as for the optimal spatial dimensions of the zonal flows are obtained. Enriched possibilities of zonal flow generation with different growth rates are revealed. The present theory can be used for interpretations of drift wave observations in laboratory and astrophysical plasmas.« less
Wave Forcing of Saturn's Equatorial Oscillation
NASA Technical Reports Server (NTRS)
Flasar, F. M.; Schlinder, P. J.; Guerlet, S.; Fouchet, T.
2011-01-01
Ground-based measurements and Cassini data from CIRS thermal-infrared spectra and radio-occultation soundings have characterized the spatial structure and temporal behavior of a 15-year equatorial oscillation in Saturn's stratosphere. The equatorial region displays a vertical pattern of alternating warm and cold anomalies and, concomitantly, easterly and westerly winds relative to the cloud-top winds, with a peak-to-peak amplitude of 200 m/s. Comparison of the Cassini data over a four-year period has established that the pattern of mean zonal winds and temperatures descends at a rate of roughly I scale height over 4 years. This behavior is reminiscent of the equatorial oscillations in Earth's middle atmosphere. Here the zonal-mean spatial structure and descending pattern are driven by the absorption of vertically propagating waves. The maximum excursions in the pattern of easterly and westerly winds is determined by the limits of the zonal phase velocities of the waves. Here we report on the characterization of the waves seen in the temperature profiles retrieved from the Cassini radio-occultation soundings. The equatorial profiles exhibit a complex pattern of wavelike structure with dimensions one pressure scale height and smaller. We combine a spectral decomposition with a WKBJ analysis, where the vertical wavelength is assumed to vary slowly with the ambient static stability and doppler-shifted phase velocity of the wave. Use of the temperature and zonal wind maps from CIRS makes this approach viable. On Earth, the wave forcing associated with the equatorial oscillations generates secondary meridional circulations that affect the mean flow and planetary wave ducting well away from the equator. This may relate to the triggering of the recently reported mid-latitude storms on Saturn.
NASA Astrophysics Data System (ADS)
Wen, Zhiping; Guo, Yuanyuan; Wu, Renguang
2017-04-01
The leading mode of boreal spring precipitation variability over the tropical Pacific experienced a pronounced interdecadal change around the late 1990s. The pattern before 1998 features positive precipitation anomalies over the equatorial eastern Pacific (EP) with positive principle component years. The counterpart after 1998 exhibits a westward shift of the positive center to the equatorial central Pacific (CP). Observational evidence shows that this interdecadal change in the leading mode of precipitation variability is closely associated with a distinctive sea surface temperature (SST) anomaly pattern. The westward shift of the anomalous precipitation center after 1998 is in tandem with a similar shift of maximum warming from the EP to CP. Diagnostic analyses based on a linear equation of the mixed layer temperature anomaly exhibit that an interdecadal enhancement of zonal advection (ZA) feedback process plays a vital role in the shift in the leading mode of both the tropical Pacific SST and the precipitation anomaly during spring. Moreover, the variability of the anomalous zonal current at the upper ocean dominates the ZA feedback change, while the mean zonal SST gradient associated with a La Niña-like pattern of the mean state only accounts for a relatively trivial proportion of the ZA feedback change. It was found that both the relatively rapid decaying of the SST anomalies in the EP and the La Niña-like mean state make it conceivable that the shift of the leading mode of the tropical precipitation anomaly only occurs in spring. In addition, the largest variance of the anomalous zonal current in spring might contribute to the unique interdecadal change in the tropical spring precipitation anomaly pattern.
Theory of Fine-scale Zonal Flow Generation From Trapped Electron Mode Turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Wang and T.S. Hahm
Most existing zonal flow generation theory has been developed with a usual assumption of qrρθ¡ << 1 (qr is the radial wave number of zonal flow, and ρθ¡ is the ion poloidal gyrora- dius). However, recent nonlinear gyrokinetic simulations of trapped electron mode (TEM) turbulence exhibit a relatively short radial scale of the zonal flows with qrρθ¡ ~ 1 [Z. Lin et al., IAEA-CN/TH/P2-8 (2006); D. Ernst et al., Phys. Plasmas 16, 055906 (2009)]. This work reports an extension of zonal flow growth calculation to this short wavelength regime via the wave kinetics approach. A generalized expression for the polarizationmore » shielding for arbitrary radial wavelength [Lu Wang and T.S. Hahm, to appear in Phys. Plasmas (2009)] which extends the Rosenbluth-Hinton formula in the long wavelength limit is applied.« less
Stationary waves and slowly moving features in the night upper clouds of Venus
NASA Astrophysics Data System (ADS)
Peralta, J.; Hueso, R.; Sánchez-Lavega, A.; Lee, Y. J.; Muñoz, A. García; Kouyama, T.; Sagawa, H.; Sato, T. M.; Piccioni, G.; Tellmann, S.; Imamura, T.; Satoh, T.
2017-08-01
At the cloud top level of Venus (65-70 km altitude) the atmosphere rotates 60 times faster than the underlying surface—a phenomenon known as superrotation1,2. Whereas on Venus's dayside the cloud top motions are well determined3,4,5,6 and Venus general circulation models predict the mean zonal flow at the upper clouds to be similar on both the day and nightside2, the nightside circulation remains poorly studied except for the polar region7,8. Here, we report global measurements of the nightside circulation at the upper cloud level. We tracked individual features in thermal emission images at 3.8 and 5.0 μm obtained between 2006 and 2008 by the Visible and Infrared Thermal Imaging Spectrometer-Mapper onboard Venus Express and in 2015 by ground-based measurements with the Medium-Resolution 0.8-5.5 Micron Spectrograph and Imager at the National Aeronautics and Space Administration Infrared Telescope Facility. The zonal motions range from -110 to -60 m s-1, which is consistent with those found for the dayside but with larger dispersion6. Slow motions (-50 to -20 m s-1) were also found and remain unexplained. In addition, abundant stationary wave patterns with zonal speeds from -10 to +10 m s-1 dominate the night upper clouds and concentrate over the regions of higher surface elevation.
NASA Astrophysics Data System (ADS)
Huang, Tao; Lühr, Hermann; Wang, Hui; Xiong, Chao
2017-12-01
The relationship between high-latitude ionospheric currents (Hall current and field-aligned current) and thermospheric wind is investigated. The 2-D patterns of horizontal wind and equivalent current in the Northern Hemisphere derived from the CHAMP satellite are considered for the first time simultaneously. The equivalent currents show strong dependences on both interplanetary magnetic field (IMF) By and Bz components. However, IMF By orientation is more important in controlling the wind velocity patterns. The duskside wind vortex as well as the antisunward wind in the morning polar cap is more evident for positive By. To better understand their spatial relation in different sectors, a systematic superposed epoch analysis is applied. Our results show that in the dusk sector, the vectors of the zonal wind and equivalent current are anticorrelated, and both of them form a vortical flow pattern for different activity levels. The currents and zonal wind are intensified with the increase of merging electric field. However, on the dawnside, where the relation is less clear, antisunward zonal winds dominate. Plasma drift seems to play a less important role for the wind than neutral forces in this sector. In the noon sector, the best anticorrelation between equivalent current and wind is observed for a positive IMF By component and it is less obvious for negative By. A clear seasonal effect with current intensities increasing from winter to summer is observed in the noon sector. Different from the currents, the zonal wind intensity shows little dependence on seasons. Our results indicate that the plasma drift and the neutral forces are of comparable influence on the zonal wind at CHAMP altitude in the noon sector.
Contribution of zonal harmonics to gravitational moment
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos M.
1991-01-01
It is presently demonstrated that a recursive vector-dyadic expression for the contribution of a zonal harmonic of degree n to the gravitational moment about a small body's center-of-mass is obtainable with a procedure that involves twice differentiating a celestial body's gravitational potential with respect to a vector. The recursive property proceeds from taking advantage of a recursion relation for Legendre polynomials which appear in the gravitational potential. The contribution of the zonal harmonic of degree 2 is consistent with the gravitational moment exerted by an oblate spheroid.
Contribution of zonal harmonics to gravitational moment
NASA Astrophysics Data System (ADS)
Roithmayr, Carlos M.
1991-02-01
It is presently demonstrated that a recursive vector-dyadic expression for the contribution of a zonal harmonic of degree n to the gravitational moment about a small body's center-of-mass is obtainable with a procedure that involves twice differentiating a celestial body's gravitational potential with respect to a vector. The recursive property proceeds from taking advantage of a recursion relation for Legendre polynomials which appear in the gravitational potential. The contribution of the zonal harmonic of degree 2 is consistent with the gravitational moment exerted by an oblate spheroid.
Ockham's Razorblade Shaving Wind-Induced Circulation
NASA Astrophysics Data System (ADS)
Bergmann, Juan Carlos
2010-05-01
Terrestrial physical oceanography is fortunate because of the existence of the continents that divide the low-latitude oceans into basins. At first glance, the previous statement appears to be not obvious because an ocean-planet should be much simpler to describe. Simple-case explanation is the central aspect of Ockham's Razorblade: If a theory fails to describe the most-simple case properly, the theory is, at least, ‘not good'. Also Descartes' methodical rules take the most-simple case as starting point. The analysis of wind-induced circulation on an ocean-planet will support the initial statement. Earth's south hemisphere is dominated by the oceans. The continents' influence on the zonal-average zonal-wind climate is relatively small. Therefore, South Hemisphere's zonal wind pattern is a relatively good proxy for that of an ocean planet. Application of this wind-stress pattern to an ocean planet yields reasonable meridional mass-flow results from the polar-regions down to the high-pressure belts: Down-welling and up-welling of water-mass are approximately balanced. However, the entire tropical circulation can in principle not be closed because there is only down-welling - even if the extreme down-welling in the equatorial belt (± 8°, with a singularity at the equator) is disregarded. The only input to the calculations is the observed terrestrial south-hemisphere zonal wind-stress pattern. Meridional stress is irrelevant because it produces a closed zonal Ekman-transport around the ocean planet (sic!). Vertical mass-transport is calculated from the divergence of the wind-induced meridional Ekman-mass-transport, which in its turn is a necessary consequence of angular-momentum conservation. No assumptions are made on how the return-flows at depth are forced because the wind-force equations cannot contribute hereto. This circumstance expresses a fundamental difference to atmospheric circulation, where mechanical forcing is caused by the pressure-fields that result from differential heating/cooling and therefore ‘automatically' comprise the entire circulation system. Wind-caused oceanic flow is exclusively generated by frictional wind-forces at the surface, and other processes in the ocean are not causally connected hereto. In absence of continents it is quite difficult to ‘find' the corresponding forcing for the meridional return-flows - and it can definitely not be wind-force-caused - very strange! The fact that the wind-induced circulation can only be closed by the action of other processes, which are not causally connected to wind-forces, demonstrates that something must be fundamentally wrong. The singularity at the equator and the extreme down-welling in the equatorial belt indicate an additional severe problem that can only be avoided if zonal wind-stress is completely excluded. Escape to additional assumptions is similar to the introduction of the epicycles in order to explain the planets' retrograde motion in maintaining geocentric cosmology. Should the previous analysis be ignored in favour of maintaining the ‘established' ideas of wind-induced circulation or should there be an effort to formulate new ideas that provide closed and balanced circulation without employing other processes than wind-forces?
Cloud level winds from UV and IR images obtained by VMC onboard Venus Express
NASA Astrophysics Data System (ADS)
Khatuntsev, Igor; Patsaeva, Marina; Titov, Dmitri; Ignatiev, Nikolay; Turin, Alexander; Bertaux, Jean-Loup
2017-04-01
During eight years Venus Monitoring Camera (VMC) [1] onboard the Venus Express orbiter has observed the upper cloud layer of Venus. The largest set of images was obtained in the UV (365 nm), visible (513 nm) and two infrared channels - 965 nm and 1010 nm. The UV dayside images were used to study the atmospheric circulation at the Venus cloud tops [2], [3]. Mean zonal and meridional profiles of winds and their variability were derived from cloud tracking of UV images. In low latitudes the mean retrograde zonal wind at the cloud top (67±2 km) is about 95 m/s with a maximum of about 102 m/s at 40-50°S. Poleward from 50°S the zonal wind quickly fades out with latitude. The mean poleward meridional wind slowly increases from zero value at the equator to about 10 m/s at 50°S. Poleward from this latitude, the absolute value of the meridional component monotonically decreases to zero at the pole. The VMC observations suggest clear diurnal signature in the wind field. They also indicate a long term trend for the zonal wind speed at low latitudes to increase from 85 m/s in the beginning of the mission to 110 m/s by the middle of 2012. The trend was explained by influence of the surface topography on the zonal flow [4]. Cloud features tracking in the IR images provided information about winds in the middle cloud deck (55±4 km). In the low and middle latitudes (5-65°S) the IR mean retrograde zonal velocity is about 68-70 m/s. In contrast to poleward flow at the cloud tops, equatorward motions dominate in the middle cloud with maximum speed of 5.8±1.2 m/s at latitude 15°S. The meridional speed slowly decreases to 0 at 65-70°S. At low latitudes the zonal and meridional speed demonstrate long term variations. Following [4] we explain the observed long term trend of zonal and meridional components by the influence of surface topography of highland region Aphrodite Terra on dynamic processes in the middle cloud deck through gravity waves. Acknowledgements: I.V. Khatuntsev, M.V. Patsaeva, N.I. Ignatiev, J.-L. Bertaux were supported by the Ministry of Education and Science of Russian Federation grant 14.W03.31.0017. References: [1] Markiewicz W. J. et al.: Venus Monitoring Camera for Venus Express // Planet. Space Sci., 55(12), 1701-1711. doi:10.1016/j.pss.2007.01.004, 2007. [2] Khatuntsev I.V. et al.: Cloud level winds from the Venus Express Monitoring Camera imaging // Icarus, 226, 140-158. 2013. [3] Patsaeva M.V. et al.: The relationship between mesoscale circulation and cloud morphology at the upper cloud level of Venus from VMC/Venus Express // Planet. Space Sci., 113(08), 100-108, doi:10.1016/j.pss.2015.01.013, 2015. [4] Bertaux J.-L. et al.: Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves // J. Geophys. Res. Planets, 121, 1087-1101, doi:10.1002/2015JE004958, 2016.
A new model for the (geo)magnetic power spectrum, with application to planetary dynamo radii
NASA Astrophysics Data System (ADS)
Langlais, Benoit; Amit, Hagay; Larnier, Hugo; Thébault, Erwan; Mocquet, Antoine
2014-09-01
We propose two new analytical expressions to fit the Mauersberger-Lowes geomagnetic field spectrum at the core-mantle boundary. These can be used to estimate the radius of the outer liquid core where the geodynamo operates, or more generally the radius of the planetary dynamo regions. We show that two sub-families of the geomagnetic field are independent of spherical harmonics degree n at the core-mantle boundary and exhibit flat spectra. The first is the non-zonal field, i.e., for spherical harmonics order m different from zero. The second is the quadrupole family, i.e., n+m even. The flatness of their spectra is motivated by the nearly axisymmetric time-average paleomagnetic field (for the non-zonal field) and the dominance of rotational effects in core dynamics (for the quadrupole family). We test our two expressions with two approaches using the reference case of the Earth. First we estimate at the seismic core radius the agreement between the actual spectrum and the theoretical one. Second we estimate the magnetic core radius, where the spectrum flattens. We show that both sub-families offer a better agreement with the actual spectrum compared with previously proposed analytical expressions, and predict a magnetic core radius within less than 10 km of the Earth's seismic core radius. These new expressions supersede previous ones to infer the core radius from geomagnetic field information because the low degree terms are not ignored. Our formalism is then applied to infer the radius of the dynamo regions on Jupiter, Saturn, Uranus and Neptune. The axisymmetric nature of the magnetic field of Saturn prevents the use of the non-zonal expression. For the three other planets both expressions converge and offer independent constraints on the internal structure of these planets. These non-zonal and quadrupole family expressions may be implemented to extrapolate the geomagnetic field spectrum beyond observable degrees, or to further regularize magnetic field models constructed from modern or historical observations.
Diagnosis of the influence of the solar cycle in the annular character of the NAM using RAM.
NASA Astrophysics Data System (ADS)
de La Torre, L.; Gimeno, L.; Tesouro, M.; Nieto, R.; Añel, J. A.; Ribera, P.; García, R.; Hernández, E.
2003-04-01
It has been suggested that the North Atlantic Oscillation is a regional expression of the so called Northern Hemisphere Annular Mode (NAM), although some evidences have been found against this hypothesis. However, recent studies conect the spatial structure of the NAM with the phase of solar cycle, being annular-like only for the periods of high solar activity. With this work we try to make a contribution to the debate by using atmospheric relative angular momentum (RAM) to diagnose the annular character of the mode. Correlations of RAM vs. temperature and geopotential height at different levels for high activity years show a more zonally extended pattern than those for low activity years. Moreover, the Atlantic pattern is always shown, even when using RAM computed by 60º longitude sectors. On the other hand, the Pacific pattern almost dissapear.
NASA Astrophysics Data System (ADS)
Wettstein, J. J.; Li, C.; Bradshaw, S.
2016-12-01
Canonical tropospheric climate variability patterns and their corresponding indices are ubiquitous, yet a firm dynamical interpretation has remained elusive for many of even the leading extratropical patterns. Part of the lingering difficulty in understanding and predicting atmospheric low frequency variability is the fact that the identification itself of the different patterns is indistinct. This study characterizes three-dimensional structures in the low frequency variability of the extratropical zonal wind field within the entire period of record of the ERA-Interim reanalysis and suggests the foundations for a new paradigm in identifying and predicting extratropical atmospheric low-frequency variability. In concert with previous results, there is a surprisingly rich three-dimensional structure to the variance of the zonal wind field that is not (cannot be) captured by traditional identification protocols that explore covariance of pressure in the lower troposphere, flow variability in the zonal mean or, for that matter, in any variable on any planar surface. Correspondingly, many of the pressure-based canonical indices of low frequency atmospheric variability exhibit inconsistent relationships to physically intuitive reorganizations of the subtropical and polar front jets and with other forcing mechanisms. Different patterns exhibit these inconsistencies to a greater or lesser extent. The three-dimensional variance of the zonal wind field is, by contrast, naturally organized around dynamically intuitive atmospheric redistributions that have a surprisingly large amount of physically intuitive information in the vertical. These conclusions are robust in a variety of seasons and also in intra-seasonal and inter-annual explorations. Similar results and conclusions are also derived using detrended data, other reanalyses, and state-of-the-art coupled climate model output. In addition to providing a clearer perspective on the distinct three-dimensional patterns of atmospheric low frequency variability, the time evolution and potential predictability of the resultant patterns can be explored with much greater clarity because of an intrinsic link between the patterns and the requisite conservation of momentum (i.e. to the primitive equations and candidate forcing mechanisms).
Feedback process responsible for intermodel diversity of ENSO variability
NASA Astrophysics Data System (ADS)
An, Soon-Il; Heo, Eun Sook; Kim, Seon Tae
2017-05-01
The origin of the intermodel diversity of the El Niño-Southern Oscillation (ENSO) variability is investigated by applying a singular value decomposition (SVD) analysis between the intermodel tropical Pacific sea surface temperature anomalies (SSTA) variance and the intermodel ENSO stability index (BJ index). The first SVD mode features an ENSO-like pattern for the intermodel SSTA variance (74% of total variance) and the dominant thermocline feedback (TH) for the BJ index (51%). Intermodel TH is mainly modified by the intermodel sensitivity of the zonal thermocline gradient response to zonal winds over the equatorial Pacific (βh), and the intermodel βh is correlated higher with the intermodel off-equatorial wind stress curl anomalies than the equatorial zonal wind stress anomalies. Finally, the intermodel off-equatorial wind stress curl is associated with the meridional shape and intensity of ENSO-related wind patterns, which may cause a model-to-model difference in ENSO variability by influencing the off-equatorial oceanic Rossby wave response.
North-South precipitation patterns in western North America on interannual-to-decadal timescales
Dettinger, M.D.; Cayan, D.R.; Diaz, Henry F.; Meko, D.M.
1998-01-01
The overall amount of precipitation deposited along the West Coast and western cordillera of North America from 25??to 55??N varies from year to year, and superimposed on this domain-average variability are varying north-south contrasts on timescales from at least interannual to interdecadal. In order to better understand the north-south precipitation contrasts, their interannual and decadal variations are studied in terms of how much they affect overall precipitation amounts and how they are related to large-scale climatic patterns. Spatial empirical orthogonal functions (EOFs) and spatial moments (domain average, central latitude, and latitudinal spread) of zonally averaged precipitation anomalies along the westernmost parts of North America are analyzed, and each is correlated with global sea level pressure (SLP) and sea surface temperature series, on interannual (defined here as 3-7 yr) and decadal (>7 yr) timescales. The interannual band considered here corresponds to timescales that are particularly strong in tropical climate variations and thus is expected to contain much precipitation variability that is related to El Nino-Southern Oscillation; the decadal scale is defined so as to capture the whole range of long-term climatic variations affecting western North America. Zonal EOFs of the interannual and decadal filtered versions of the zonal-precipitation series are remarkably similar. At both timescales, two leading EOFs describe 1) a north-south seesaw of precipitation pivoting near 40??N and 2) variations in precipitation near 40??N, respectively. The amount of overall precipitation variability is only about 10% of the mean and is largely determined by precipitation variations around 40??-45??N and most consistently influenced by nearby circulation patterns; in this sense, domain-average precipitation is closely related to the second EOF. The central latitude and latitudinal spread of precipitation distributions are strongly influenced by precipitation variations in the southern parts of western North America and are closely related to the first EOF. Central latitude of precipitation moves south (north) with tropical warming (cooling) in association with midlatitude western Pacific SLP variations, on both interannual and decadal timescales. Regional patterns and zonal averages of precipitation-sensitive tree-ring series are used to corroborate these patterns and to extend them into the past and appear to share much long- and short-term information with the instrumentally based zonal precipitation EOFs and moments.The overall amount of precipitation deposited along the West Coast and western cordillera of North America from 25?? to 55 ??N varies from year to year, and superimposed on this domain-average variability are varying north-south contrasts on timescales from at least interannual to interdecadal. In order to better understand the north-south precipitation contrasts, their interannual and decadal variations are studied in terms of how much they affect overall precipitation amounts and how they are related to large-scale climatic patterns. Spatial empirical orthogonal functions (EOFs) and spatial moments (domain average, central latitude, and latitudinal spread) of zonally averaged precipitation anomalies along the westernmost parts of North America are analyzed, and each is correlated with global sea level pressure (SLP) and sea surface temperature series, on interannual (defined here as 3-7 yr) and decadal (>7 yr) timescales. The interannual band considered here corresponds to timescales that are particularly strong in tropical climate variations and thus is expected to contain much precipitation variability that is related to El Nino-Southern Oscillation; the decadal scale is defined so as to capture the whole range of long-term climatic variations affecting western North America. Zonal EOFs of the interannual and decadal filtered versions of the zonal-precipitation series are remarkably similar. At both tim
An ocean dynamical thermostat—dominant in observations, absent in climate models
NASA Astrophysics Data System (ADS)
Coats, S.; Karnauskas, K. B.
2016-12-01
The pattern of sea surface temperature (SST) in the tropical Pacific Ocean is coupled to the Walker circulation, necessitating an understanding of how this pattern will change in response to anthropogenic radiative forcing. State-of-the-art climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) overwhelmingly project a decrease in the tropical Pacific zonal SST gradient over the coming century. This decrease in the zonal SST gradient is a response of the ocean to a weakening Walker circulation in the CMIP5 models, a consequence of the mass and energy balances of the hydrologic cycle identified by Held and Soden (2006). CMIP5 models, however, are not able to reproduce the observed increase in the zonal SST gradient between 1900-2013 C.E., which we argue to be robust using advanced statistical techniques and new observational datasets. While the observed increase in the zonal SST gradient is suggestive of the ocean dynamical thermostat mechanism of Clement et al. (1996), a strengthening Equatorial Undercurrent (EUC) also contributes to eastern equatorial Pacific cooling. Importantly, the strengthening EUC is a response of the ocean to a seasonal weakening of the Walker circulation and thus can reconcile disparate observations of changes to the atmosphere and ocean in the equatorial Pacific. CMIP5 models do not capture the magnitude of this response of the EUC to anthropogenic radiative forcing potentially because of biases in the sensitivity of the EUC to changes in zonal wind stress, like the weakening Walker circulation. Consequently, they project a continuation of the opposite to what has been observed in the real world, with potentially serious consequences for projected climate impacts that are influenced by the tropical Pacific.
NASA Astrophysics Data System (ADS)
Bagiya, Mala S.; Vichare, Geeta; Sinha, A. K.; Sripathi, S.
2018-02-01
During quiet period, the nocturnal equatorial ionospheric plasma drifts eastward in the zonal direction and downward in the vertical direction. This quiet time drift pattern could be understood through dynamo processes in the nighttime equatorial ionosphere. The present case study reports the nocturnal simultaneous occurrence of the vertically downward and zonally westward plasma drifts over the Indian latitudes during the geomagnetic storm of 17 March 2015. After 17:00 UT ( 22:10 local time), the vertical plasma drift became downward and coincided with the westward zonal drift, a rarely observed feature of low latitude plasma drifts. The vertical drift turned upward after 18:00 UT, while the zonal drift became eastward. We mainly emphasize here the distinct bipolar type variations of vertical and zonal plasma drifts observed around 18:00 UT. We explain the vertical plasma drift in terms of the competing effects between the storm time prompt penetration and disturbance dynamo electric fields. Whereas, the westward drift is attributed to the storm time local electrodynamical changes mainly through the disturbance dynamo field in addition to the vertical Pedersen current arising from the spatial (longitudinal) gradient of the field aligned Pedersen conductivity.
NASA Technical Reports Server (NTRS)
Chaderjian, N. M.
1986-01-01
A computer code is under development whereby the thin-layer Reynolds-averaged Navier-Stokes equations are to be applied to realistic fighter-aircraft configurations. This transonic Navier-Stokes code (TNS) utilizes a zonal approach in order to treat complex geometries and satisfy in-core computer memory constraints. The zonal approach has been applied to isolated wing geometries in order to facilitate code development. Part 1 of this paper addresses the TNS finite-difference algorithm, zonal methodology, and code validation with experimental data. Part 2 of this paper addresses some numerical issues such as code robustness, efficiency, and accuracy at high angles of attack. Special free-stream-preserving metrics proved an effective way to treat H-mesh singularities over a large range of severe flow conditions, including strong leading-edge flow gradients, massive shock-induced separation, and stall. Furthermore, lift and drag coefficients have been computed for a wing up through CLmax. Numerical oil flow patterns and particle trajectories are presented both for subcritical and transonic flow. These flow simulations are rich with complex separated flow physics and demonstrate the efficiency and robustness of the zonal approach.
Detection of the secondary meridional circulation associated with the quasi-biennial oscillation
NASA Astrophysics Data System (ADS)
Ribera, P.; PeñA-Ortiz, C.; Garcia-Herrera, R.; Gallego, D.; Gimeno, L.; HernáNdez, E.
2004-09-01
The quasi-biennial oscillation (QBO) signal in stratospheric zonal and meridional wind, temperature, and geopotential height fields is analyzed based on the use of the National Centers for Environmental Prediction (NCEP) reanalysis (1958-2001). The multitaper method-singular value decomposition (MTM-SVD), a multivariate frequency domain analysis method, is used to detect significant and spatially coherent narrowband oscillations. The QBO is found as the most intense signal in the stratospheric zonal wind. Then, the MTM-SVD method is used to determine the patterns induced by the QBO at every stratospheric level and data field. The secondary meridional circulation associated with the QBO is identified in the obtained patterns. This circulation can be characterized by negative (positive) temperature anomalies associated with adiabatic rising (sinking) motions over zones of easterly (westerly) wind shear and over the subtropics and midlatitudes, while meridional convergence and divergence levels are found separated by a level of maximum zonal wind shear. These vertical and meridional motions form quasi-symmetric circulation cells over both hemispheres, though less intense in the Southern Hemisphere.
Zonal wind indices to reconstruct United States winter precipitation during El Niño
NASA Astrophysics Data System (ADS)
Farnham, D. J.; Steinschneider, S.; Lall, U.
2017-12-01
The highly discussed 2015/16 El Niño event, which many likened to the similarly strong 1997/98 El Niño event, led to precipitation impacts over the continental United States (CONUS) inconsistent with general expectations given past events and model-based forecasts. This presents a challenge for regional water managers and others who use seasonal precipitation forecasts who previously viewed El Niño events as times of enhanced confidence in seasonal water availability and flood risk forecasts. It is therefore useful to understand the extent to which wintertime CONUS precipitation during El Niño events can be explained by seasonal sea surface temperature heating patterns and the extent to which the precipitation is a product of natural variability. In this work, we define two seasonal indices based on the zonal wind field spanning from the eastern Pacific to the western Atlantic over CONUS that can explain El Niño precipitation variation spatially throughout CONUS over 11 historic El Niño events from 1950 to 2016. The indices reconstruct El Niño event wintertime (Jan-Mar) gridded precipitation over CONUS through cross-validated regression much better than the traditional ENSO sea surface temperature indices or other known modes of variability. Lastly, we show strong relationships between sea surface temperature patterns and the phases of the zonal wind indices, which in turn suggests that some of the disparate CONUS precipitation during El Niño events can be explained by different heating patterns. The primary contribution of this work is the identification of intermediate variables (in the form of zonal wind indices) that can facilitate further studies into the distinct hydroclimatic response to specific El Niño events.
Disturbance zonal and vertical plasma drifts in the Peruvian sector during solar minimum phases
NASA Astrophysics Data System (ADS)
Santos, A. M.; Abdu, M. A.; Souza, J. R.; Sobral, J. H. A.; Batista, I. S.
2016-03-01
In the present work, we investigate the behavior of the equatorial F region zonal plasma drifts over the Peruvian region under magnetically disturbed conditions during two solar minimum epochs, one of them being the recent prolonged solar activity minimum. The study utilizes the vertical and zonal components of the plasma drifts measured by the Jicamarca (11.95°S; 76.87°W) incoherent scatter radar during two events that occurred on 10 April 1997 and 24 June 2008 and model calculation of the zonal drift in a realistic ionosphere simulated by the Sheffield University Plasmasphere-Ionosphere Model-INPE. Two main points are focused: (1) the connection between electric fields and plasma drifts under prompt penetration electric field during a disturbed periods and (2) anomalous behavior of daytime zonal drift in the absence of any magnetic storm. A perfect anticorrelation between vertical and zonal drifts was observed during the night and in the initial and growth phases of the magnetic storm. For the first time, based on a realistic low-latitude ionosphere, we will show, on a detailed quantitative basis, that this anticorrelation is driven mainly by a vertical Hall electric field induced by the primary zonal electric field in the presence of an enhanced nighttime E region ionization. It is shown that an increase in the field line-integrated Hall-to-Pedersen conductivity ratio (∑H/∑P), which can arise from precipitation of energetic particles in the region of the South American Magnetic Anomaly, is capable of explaining the observed anticorrelation between the vertical and zonal plasma drifts. Evidence for the particle ionization is provided from the occurrence of anomalous sporadic E layers over the low-latitude station, Cachoeira Paulista (22.67°S; 44.9°W)—Brazil. It will also be shown that the zonal plasma drift reversal to eastward in the afternoon two hours earlier than its reference quiet time pattern is possibly caused by weakening of the zonal wind system during the prolonged solar minimum period.
NASA Astrophysics Data System (ADS)
Haoxiang, Chen; Qi, Chengzhi; Peng, Liu; Kairui, Li; Aifantis, Elias C.
2015-12-01
The occurrence of alternating damage zones surrounding underground openings (commonly known as zonal disintegration) is treated as a "far from thermodynamic equilibrium" dynamical process or a nonlinear continuous phase transition phenomenon. The approach of internal variable gradient theory with diffusive transport, which may be viewed as a subclass of Landau's phase transition theory, is adopted. The order parameter is identified with an irreversible strain quantity, the gradient of which enters into the expression for the free energy of the rock system. The gradient term stabilizes the material behavior in the post-softening regime, where zonal disintegration occurs. The results of a simplified linearized analysis are confirmed by the numerical solution of the nonlinear problem.
Zonal wavefront sensing with enhanced spatial resolution.
Pathak, Biswajit; Boruah, Bosanta R
2016-12-01
In this Letter, we introduce a scheme to enhance the spatial resolution of a zonal wavefront sensor. The zonal wavefront sensor comprises an array of binary gratings implemented by a ferroelectric spatial light modulator (FLCSLM) followed by a lens, in lieu of the array of lenses in the Shack-Hartmann wavefront sensor. We show that the fast response of the FLCSLM device facilitates quick display of several laterally shifted binary grating patterns, and the programmability of the device enables simultaneous capturing of each focal spot array. This eventually leads to a wavefront estimation with an enhanced spatial resolution without much sacrifice on the sensor frame rate, thus making the scheme suitable for high spatial resolution measurement of transient wavefronts. We present experimental and numerical simulation results to demonstrate the importance of the proposed wavefront sensing scheme.
Venus: Atmospheric motion and structure from Mariner 10 pictures
Murray, B.C.; Belton, M.J.S.; Danielson, G. Edward; Davies, M.E.; Gault, D.; Hapke, B.; O'Leary, B.; Strom, R.G.; Suomi, V.; Trask, N.
1974-01-01
The Mariner 10 television cameras imaged the planet Venus in the visible and near ultraviolet for a period of 8 days at resolutions ranging from 100 meters to 130 kilometers. The general pattern of the atmospheric circulation in the upper tropospheric/lower stratospheric region is displayed in the pictures. Atmospheric flow is symmetrical between north and south hemispheres. The equatorial motions are zonal (east-west) at approximately 100 meters per second, consistent with the previously inferred 4-day retrograde rotation. Angular velocity increases with latitude. The subsolar region, and the region downwind from it, show evidence of large-scale convection that persists in spite of the main zonal motion. Dynamical interaction between the zonal motion and the relatively stationary region of convection is evidenced by bowlike waves.
A Method for Optimal Load Dispatch of a Multi-zone Power System with Zonal Exchange Constraints
NASA Astrophysics Data System (ADS)
Hazarika, Durlav; Das, Ranjay
2018-04-01
This paper presented a method for economic generation scheduling of a multi-zone power system having inter zonal operational constraints. For this purpose, the generator rescheduling for a multi area power system having inter zonal operational constraints has been represented as a two step optimal generation scheduling problem. At first, the optimal generation scheduling has been carried out for the zone having surplus or deficient generation with proper spinning reserve using co-ordination equation. The power exchange required for the deficit zones and zones having no generation are estimated based on load demand and generation for the zone. The incremental transmission loss formulas for the transmission lines participating in the power transfer process among the zones are formulated. Using these, incremental transmission loss expression in co-ordination equation, the optimal generation scheduling for the zonal exchange has been determined. Simulation is carried out on IEEE 118 bus test system to examine the applicability and validity of the method.
Residual zonal flows in tokamaks and stellarators at arbitrary wavelengths
NASA Astrophysics Data System (ADS)
Monreal, Pedro; Calvo, Iván; Sánchez, Edilberto; Parra, Félix I.; Bustos, Andrés; Könies, Axel; Kleiber, Ralf; Görler, Tobias
2016-04-01
In the linear collisionless limit, a zonal potential perturbation in a toroidal plasma relaxes, in general, to a non-zero residual value. Expressions for the residual value in tokamak and stellarator geometries, and for arbitrary wavelengths, are derived. These expressions involve averages over the lowest order particle trajectories, that typically cannot be evaluated analytically. In this work, an efficient numerical method for the evaluation of such expressions is reported. It is shown that this method is faster than direct gyrokinetic simulations performed with the Gene and EUTERPE codes. Calculations of the residual value in stellarators are provided for much shorter wavelengths than previously available in the literature. Electrons must be treated kinetically in stellarators because, unlike in tokamaks, kinetic electrons modify the residual value even at long wavelengths. This effect, that had already been predicted theoretically, is confirmed by gyrokinetic simulations.
Gyroaverage effects on nontwist Hamiltonians: Separatrix reconnection and chaos suppression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del-Castillo-Negrete, Diego B; Martinell, J.
2012-01-01
A study of finite Larmor radius (FLR) effects on E x B test particle chaotic transport in non-monotonic zonal flows with drift waves in magnetized plasmas is presented. Due to the non-monotonicity of the zonal flow, the Hamiltonian does not satisfy the twist condition. The electrostatic potential is modeled as a linear superposition of a zonal flow and the regular neutral modes of the Hasegawa-Mima equation. FLR effects are incorporated by gyro-averaging the E x B Hamiltonian. It is shown that there is a critical value of the Larmor radius for which the zonal flow transitions from a profile withmore » one maximum to a profile with two maxima and a minimum. This bifurcation leads to the creation of additional shearless curves and resonances. The gyroaveraged nontwist Hamiltonian exhibits complex patterns of separatrix reconnection. A change in the Larmor radius can lead to heteroclinic-homoclinic bifurcations and dipole formation. For Larmor radii for which the zonal flow has bifurcated, double heteroclinic-heteroclinic, homoclinic-homoclinic and heteroclinic-homoclinic separatrix topologies are observed. It is also shown that chaotic transport is typically reduced as the Larmor radius increases. Poincare sections show that, for large enough Larmor radius, chaos can be practically suppressed. In particular, changes of the Larmor radius can restore the shearless curve.« less
Gyroaverage effects on nontwist Hamiltonians: separatrix reconnection and chaos suppression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del-Castillo-Negrete, Diego B; Martinell, J.
2012-01-01
A study of nite Larmor radius (FLR) eects on E B test particle chaotic transport in non- monotonic zonal ows with drift waves in magnetized plasmas is presented. Due to the non- monotonicity of the zonal ow, the Hamiltonian does not satisfy the twist condition. The electro- static potential is modeled as a linear superposition of a zonal ow and regular neutral modes of the Hasegawa-Mima equation. FLR eects are incorporated by gyro-averaging the EB Hamiltonian. It is shown that there is a critical value the Larmor radius for which the zonal ow transitions from a prole with one maximummore » to a prole with two maxima and a minimum. This bifurcation leads to the creation of additional shearless curves and resonances. The gyroaveraged nontwist Hamiltonian exhibits complex patterns of separatrix reconnection. A change in the Larmor ra- dius can lead to heteroclinic-homoclinic bifurcations and dipole formation. For Larmor radii for which the zonal ow has bifurcated, double heteroclinic-heteroclinic, homoclinic-homoclinic and heteroclinic-homoclinic topologies are observed. It is also shown that chaotic transport is typically reduced as the Larmor radius increases. Poincare sections shows that, for large enough Larmor radius, chaos can be practically suppressed. In particular, small changes on the Larmor radius can restore the shearless curve.« less
Dynamic Stall Computations Using a Zonal Navier-Stokes Model
1988-06-01
NAVAL POSTGRADUATE SCHOOL lotMonterey ,California CD Lj STATF ,-S THESIS DYNAMIC STALL CALCULATIONS USING A ZONAL.-,_ % 0 NVETESISDE by Jack H...Conroyd, Jr. June 1988 Thesis Co-advisors: M.F. Platzer Lawrence W. Carr Approved for public release; distribution is unlimitedDOTIC , ~~~~~~~~ELECT...OINT %, Master s Thesis OM To June 212 6 SLP;’LEENTARY NOTATION ri The views expressed in this thesis are those of the author and do not reflect the
SOLAR MERIDIONAL FLOW IN THE SHALLOW INTERIOR DURING THE RISING PHASE OF CYCLE 24
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Junwei; Bogart, R. S.; Kosovichev, A. G.
2014-07-01
Solar subsurface zonal- and meridional-flow profiles during the rising phase of solar cycle 24 are studied using the time-distance helioseismology technique. The faster zonal bands in the torsional-oscillation pattern show strong hemispheric asymmetries and temporal variations in both width and speed. The faster band in the northern hemisphere is located closer to the equator than the band in the southern hemisphere and migrates past the equator when the magnetic activity in the southern hemisphere is reaching maximum. The meridional-flow speed decreases substantially with the increase of magnetic activity, and the flow profile shows two zonal structures in each hemisphere. Themore » residual meridional flow, after subtracting a mean meridional-flow profile, converges toward the activity belts and shows faster and slower bands like the torsional-oscillation pattern. More interestingly, the meridional-flow speed above latitude 30° shows an anti-correlation with the poleward-transporting magnetic flux, slower when the following-polarity flux is transported and faster when the leading-polarity flux is transported. It is expected that this phenomenon slows the process of magnetic cancellation and polarity reversal in high-latitude areas.« less
Palaeocirculation across New Zealand during the last glacial maximum at ˜21 ka
NASA Astrophysics Data System (ADS)
Lorrey, Andrew M.; Vandergoes, Marcus; Almond, Peter; Renwick, James; Stephens, Tom; Bostock, Helen; Mackintosh, Andrew; Newnham, Rewi; Williams, Paul W.; Ackerley, Duncan; Neil, Helen; Fowler, Anthony M.
2012-03-01
What circulation pattern drove Southern Alps glacial advances at ˜21 ka? Late 20th century glacial advances in New Zealand are commonly attributed to a dual precipitation increase and cooler than normal temperatures associated with enhanced westerly flow that occur under synoptic pressure patterns termed 'zonal' regimes (Kidson, 2000). But was the circulation pattern that supported major Southern Alps glacial advances during the global LGM similar to the modern analog? Here, a Regional Climate Regime Classification (RCRC) time slice was used to infer past circulation for New Zealand during the LGM at ˜21 ka. Palaeoclimate information that supported the construction of the ˜21 ka time slice was derived from the NZ-INTIMATE Climate Event Stratigraphy (CES), one new Auckland maar proxy record, and additional low-resolution data sourced from the literature. The terrestrial evidence at ˜21 ka implicates several possibilities for past circulation, depending on how interpretations for some proxies are made. The interpretation considered most tenable for the LGM, based on the agreement between terrestrial evidence, marine reconstructions and palaeoclimate model results is an 'anticyclonic/zonal' circulation regime characterized by increased influences from blocking 'highs' over the South Island during winter and an increase in zonal and trough synoptic types (with southerly to westerly quarter wind flow) during summer. These seasonal circulation traits would have generated lower mean annual temperatures, cooler than normal summer temperatures, and overall lower mean annual precipitation for New Zealand (particularly in the western South Island) at ˜21 ka. The anticyclonic/zonal time slice reconstruction presented in this study has different spatial traits than the late 20th Century and the early Little Ice Age signatures, suggesting more than one type of regional circulation pattern can drive Southern Alps glacial activity. This finding lends support to the hypothesis that temperature over precipitation change is more important as the primary modulator of Southern Alps ice advances. The RCRC approach also demonstrates some subtle advantages of integrating multi-proxy data within a palaeocirculation context for New Zealand, notably because this reconstruction technique enables direct comparisons to coarsely resolved palaeoclimate model outputs that do not have downscaled information.
A new paradigm for predicting zonal-mean climate and climate change
NASA Astrophysics Data System (ADS)
Armour, K.; Roe, G.; Donohoe, A.; Siler, N.; Markle, B. R.; Liu, X.; Feldl, N.; Battisti, D. S.; Frierson, D. M.
2016-12-01
How will the pole-to-equator temperature gradient, or large-scale patterns of precipitation, change under global warming? Answering such questions typically involves numerical simulations with comprehensive general circulation models (GCMs) that represent the complexities of climate forcing, radiative feedbacks, and atmosphere and ocean dynamics. Yet, our understanding of these predictions hinges on our ability to explain them through the lens of simple models and physical theories. Here we present evidence that zonal-mean climate, and its changes, can be understood in terms of a moist energy balance model that represents atmospheric heat transport as a simple diffusion of latent and sensible heat (as a down-gradient transport of moist static energy, with a diffusivity coefficient that is nearly constant with latitude). We show that the theoretical underpinnings of this model derive from the principle of maximum entropy production; that its predictions are empirically supported by atmospheric reanalyses; and that it successfully predicts the behavior of a hierarchy of climate models - from a gray radiation aquaplanet moist GCM, to comprehensive GCMs participating in CMIP5. As an example of the power of this paradigm, we show that, given only patterns of local radiative feedbacks and climate forcing, the moist energy balance model accurately predicts the evolution of zonal-mean temperature and atmospheric heat transport as simulated by the CMIP5 ensemble. These results suggest that, despite all of its dynamical complexity, the atmosphere essentially responds to energy imbalances by simply diffusing latent and sensible heat down-gradient; this principle appears to explain zonal-mean climate and its changes under global warming.
NASA Astrophysics Data System (ADS)
Hu, Shujuan; Chou, Jifan; Cheng, Jianbo
2018-04-01
In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.
Expansion of the gravitational potential with computerized Poisson series
NASA Technical Reports Server (NTRS)
Broucke, R.
1976-01-01
The paper describes a recursive formulation for the expansion of the gravitational potential valid for both the tesseral and zonal harmonics. The expansion is primarily in rectangular coordinates, but the classical orbit elements or equinoctial orbit elements can be easily substituted. The equations of motion for the zonal harmonics in both classical and equinoctial orbital elements are described in a form which will result in closed-form expressions for the first-order perturbations. In order to achieve this result, the true longitude or true anomaly have to be used as independent variables.
NASA Technical Reports Server (NTRS)
Mather, R. S.; Lerch, F. J.; Rizos, C.; Masters, E. G.; Hirsch, B.
1978-01-01
The 1977 altimetry data bank is analyzed for the geometrical shape of the sea surface expressed as surface spherical harmonics after referral to the higher reference model defined by GEM 9. The resulting determination is expressed as quasi-stationary dynamic SST. Solutions are obtained from different sets of long arcs in the GEOS-3 altimeter data bank as well as from sub-sets related to the September 1975 and March 1976 equinoxes assembled with a view to minimizing seasonal effects. The results are compared with equivalent parameters obtained from the hydrostatic analysis of sporadic temperature, pressure and salinity measurements of the oceans and the known major steady state current systems with comparable wavelengths. The most clearly defined parameter (the zonal harmonic of degree 2) is obtained with an uncertainty of + or - 6 cm. The preferred numerical value is smaller than the oceanographic value due to the effect of the correction for the permanent earth tide. Similar precision is achieved for the zonal harmonic of degree 3. The precision obtained for the fourth degree zonal harmonic reflects more closely the accuracy expected from the level of noise in the orbital solutions.
Evolution of stationary wave patterns in mesospheric water vapor due to climate change
NASA Astrophysics Data System (ADS)
Demirhan Barı, Deniz; Gabriel, Axel; Sezginer Ünal, Yurdanur
2016-07-01
The variability in the observed stationary wave patterns of the mesospheric water vapor (H2O) is investigated using CMIP5 RCP 4.5 and RCP 8.5 projections. The change in the vertical and meridional wave structure at northern mid- and polar latitudes associated to the zonal and meridional eddy heat fluxes is discussed by analyzing the advection of H2O due to residual wind components. The alteration in the characteristics of the stationary wave-1 pattern of the lower mesospheric H2O (up to about 75km) related to change in the projected radiative forcing is observed for the years from 2006 to 2100. Additionally the remarkable effect of the increase in global temperature on the zonal asymmetries in small-scale transient waves and parameterized gravity waves, which largely contribute to the observed stationary wave patterns of H2O in the upper mesosphere, is analyzed. For validation purposes, the derived stratospheric patterns are verified against the eddy heat fluxes and residual advection terms derived from Aura/MLS satellite data between 2004-2010 and the reference period of the CMIP5 MPI dataset (1976-2005) providing confidence in the applied method.
van Straten, Giora; van Steenbeek, Frank G; Grinwis, Guy C M; Favier, Robert P; Kummeling, Anne; van Gils, Ingrid H; Fieten, Hille; Groot Koerkamp, Marian J A; Holstege, Frank C P; Rothuizen, Jan; Spee, Bart
2014-01-01
The detoxification of ammonia occurs mainly through conversion of ammonia to urea in the liver via the urea cycle and glutamine synthesis. Congenital portosystemic shunts (CPSS) in dogs cause hyperammonemia eventually leading to hepatic encephalopathy. In this study, the gene expression of urea cycle enzymes (carbamoylphosphate synthetase (CPS1), ornithine carbamoyltransferase (OTC), argininosuccinate synthetase (ASS1), argininosuccinate lyase (ASL), and arginase (ARG1)), N-acetylglutamate synthase (NAGS), Glutamate dehydrogenase (GLUD1), and glutamate-ammonia ligase (GLUL) was evaluated in dogs with CPSS before and after surgical closure of the shunt. Additionally, immunohistochemistry was performed on urea cycle enzymes and GLUL on liver samples of healthy dogs and dogs with CPSS to investigate a possible zonal distribution of these enzymes within the liver lobule and to investigate possible differences in distribution in dogs with CPSS compared to healthy dogs. Furthermore, the effect of increasing ammonia concentrations on the expression of the urea cycle enzymes was investigated in primary hepatocytes in vitro. Gene-expression of CPS1, OTC, ASL, GLUD1 and NAGS was down regulated in dogs with CPSS and did not normalize after surgical closure of the shunt. In all dogs GLUL distribution was localized pericentrally. CPS1, OTC and ASS1 were localized periportally in healthy dogs, whereas in CPSS dogs, these enzymes lacked a clear zonal distribution. In primary hepatocytes higher ammonia concentrations induced mRNA levels of CPS1. We hypothesize that the reduction in expression of urea cycle enzymes, NAGS and GLUD1 as well as the alterations in zonal distribution in dogs with CPSS may be caused by a developmental arrest of these enzymes during the embryonic or early postnatal phase.
van Straten, Giora; van Steenbeek, Frank G.; Grinwis, Guy C. M.; Favier, Robert P.; Kummeling, Anne; van Gils, Ingrid H.; Fieten, Hille; Groot Koerkamp, Marian J. A.; Holstege, Frank C. P.; Rothuizen, Jan; Spee, Bart
2014-01-01
The detoxification of ammonia occurs mainly through conversion of ammonia to urea in the liver via the urea cycle and glutamine synthesis. Congenital portosystemic shunts (CPSS) in dogs cause hyperammonemia eventually leading to hepatic encephalopathy. In this study, the gene expression of urea cycle enzymes (carbamoylphosphate synthetase (CPS1), ornithine carbamoyltransferase (OTC), argininosuccinate synthetase (ASS1), argininosuccinate lyase (ASL), and arginase (ARG1)), N-acetylglutamate synthase (NAGS), Glutamate dehydrogenase (GLUD1), and glutamate-ammonia ligase (GLUL) was evaluated in dogs with CPSS before and after surgical closure of the shunt. Additionally, immunohistochemistry was performed on urea cycle enzymes and GLUL on liver samples of healthy dogs and dogs with CPSS to investigate a possible zonal distribution of these enzymes within the liver lobule and to investigate possible differences in distribution in dogs with CPSS compared to healthy dogs. Furthermore, the effect of increasing ammonia concentrations on the expression of the urea cycle enzymes was investigated in primary hepatocytes in vitro. Gene-expression of CPS1, OTC, ASL, GLUD1 and NAGS was down regulated in dogs with CPSS and did not normalize after surgical closure of the shunt. In all dogs GLUL distribution was localized pericentrally. CPS1, OTC and ASS1 were localized periportally in healthy dogs, whereas in CPSS dogs, these enzymes lacked a clear zonal distribution. In primary hepatocytes higher ammonia concentrations induced mRNA levels of CPS1. We hypothesize that the reduction in expression of urea cycle enzymes, NAGS and GLUD1 as well as the alterations in zonal distribution in dogs with CPSS may be caused by a developmental arrest of these enzymes during the embryonic or early postnatal phase. PMID:24945279
High-Frequency Orographically Forced Variability in a Single-Layer Model of the Martian Atmosphere
NASA Technical Reports Server (NTRS)
Keppenne, C. L.; Ingersoll, A. P.
1993-01-01
A shallow water model with realistic topography and idealized zonal wind forcing is used toinvestigate orographically forced modes in the Martian atmosphere. Locally, the model reproduceswell the climatology at the sites of Viking Lander I and II (VL1 and VL2) as inferred from theViking Lander fall and spring observations. Its variability at those sites is dominated by a 3-sol(Martian solar day) oscillation in the region of VL1 and by a 6-sol oscillation in that of VL2. Theseoscillations are forced by the zonal asymmetries of the Martian mountain field. It is suggested thatthey contribute to the observed variability by reinforcing the baroclinic oscillations with nearbyperiods identified in observational studies. The spatial variability associated with the orographicallyforced oscillations is studied by means of extended empirical orthogonal function analysis. The 3-solVL1 oscillation corresponds to a tropical, eastward-traveling, zonal-wavenumber one pattern...
NASA Astrophysics Data System (ADS)
Varotsos, Costas A.; Sarlis, Nikos V.; Efstathiou, Maria
2017-07-01
Since February 2016, the equatorial quasi-biennial oscillation (QBO) in zonal wind of the lower stratosphere exhibited anomalous behavior. In more detail, it broke down from its typical pattern and the eastward stratospheric winds unexpectedly reversed to a westward direction. We herewith attempt to detect whether this unprecedented event could be considered as a result of plausible long-range correlations in the QBO temporal evolution. The analyses performed using all the available QBO data sets showed that such an interpretation could not be inferred, because the temporal evolution of the equatorial zonal wind in the lower stratosphere does not exhibit power-law behavior. Further, the natural time analysis of the QBO data indicates precursory behavior before the maximization of the zonal wind velocity and that the recent strong El Niño event might be related with the aforementioned unprecedented behavior.
Stable expression of hepatitis delta virus antigen in a eukaryotic cell line.
Macnaughton, T B; Gowans, E J; Reinboth, B; Jilbert, A R; Burrell, C J
1990-06-01
The gene encoding the hepatitis delta virus structural antigen (HDAg) was linked to a neomycin resistance gene in a retrovirus expression vector, and human HepG2 cells were transfected with the recombinant plasmid. A stable cell line was cloned that expressed HDAg in the nuclei of 100% of cells, in a pattern indicating a close relationship with cell nucleoli. Analysis of partially purified recombinant HDAg by HPLC showed an Mr in the range of 7 x 10(5) to 2 x 10(6), which appeared to contain conformation-dependent epitopes, whereas the density of the antigen was 1.19 g/ml by equilibrium centrifugation in caesium chloride, and in rate zonal centrifugation it sedimented with a value of 50S, close to that of particulate hepatitis B virus surface antigen. Immunoblotting demonstrated a single polypeptide with an Mr of 24K which corresponded to the smaller of the two HDAg-specific polypeptides present in infected sera. The recombinant HDAg polypeptide was shown to be a RNA-binding protein with specificity for both genomic and antigenomic species of hepatitis delta virus RNA.
NASA Astrophysics Data System (ADS)
Sidorova, L. N.; Filippov, S. V.
2018-03-01
In this paper we consider an idea of the troposphere tide influence on the character of the longitudinal variations in the distribution of the equatorial plasma bubbles (EPBs) observed in the topside ionosphere. For this purpose, the obtained EPB longitudinal patterns were compared with the thermosphere and ionosphere characteristics having the prominent "wave-like" longitudinal structures with wave number 4, which are uniquely associated with the influence of the troposphere DE3 tides. The characteristics of the equatorial mass density anomaly (EMA), equatorial ionization anomaly (EIA), zonal wind and pre-reversal E × B drift enhancement (PRE) were used for comparison. The equinox seasons during high solar activity were under consideration. It was obtained that the longitudinal patterns of the EMA and zonal wind show the surprising similarity with the EPB distributions (R ≅ 0.8, R ≅ 0.72). On the other hand, the resemblance with the ionosphere characteristics (EIA, PRE) is rather faint (R ≅ 0.37, R ≅ 0.12). It was shown that the thermosphere zonal winds are the most possible transfer mediator of the troposphere DE3 tide influence. The most successful moment for the transfer of the troposphere DE3 tide energy takes place in the beginning of the EPB production, namely, during the seed perturbation development.
NASA Astrophysics Data System (ADS)
Khatuntsev, I. V.; Patsaeva, M. V.; Titov, D. V.; Ignatiev, N. I.; Turin, A. V.; Fedorova, A. A.; Markiewicz, W. J.
2017-11-01
For more than 8 years the Venus Monitoring Camera (VMC) onboard the Venus Express orbiter performed continuous imaging of the Venus cloud layer in UV, visible and near-IR filters. We applied the correlation approach to sequences of the near-IR images at 965 nm to track cloud features and determine the wind field in the middle and lower cloud (49-57 km). From the VMC images that spanned from December of 2006 through August of 2013 we derived zonal and meridional components of the wind field. In low-to-middle latitudes (5-65°S) the velocity of the retrograde zonal wind was found to be 68-70 m/s. The meridional wind velocity slowly decreases from peak value of +5.8 ± 1.2 m/s at 15°S to 0 at 65-70°S. The mean meridional speed has a positive sign at 5-65°S suggesting equatorward flow. This result, together with the earlier measurements of the poleward flow at the cloud tops, indicates the presence of a closed Hadley cell in the altitude range 55-65 km. Long-term variations of zonal and meridional velocity components were found during 1,200 Earth days of observation. At 20° ± 5°S the zonal wind speed increases from -67.18 ± 1.81 m/s to -77.30 ± 2.49 m/s. The meridional wind gradually increases from +1.30 ± 1.82 m/s to +8.53 ± 2.14 m/s. Following Bertaux et al. (2016) we attribute this long-term trend to the influence from the surface topography on the dynamical process in the atmosphere via the upward propagation of gravity waves that became apparent in the VMC observations due to slow drift of the Venus Express orbit over Aphrodite Terra.
Propagating and Non-propagating Annular Modes and Principal Oscillation Patterns
NASA Astrophysics Data System (ADS)
Plumb, R. A.; Sheshadri, A.
2016-12-01
The leading "annular mode" in each hemisphere — usually defined as the dominant EOF of surface pressure or of zonal mean zonal wind variability — appears as a dipolar structure straddling the mean midlatitude jet and thus seems to describe north-south wobbling of the jet latitude. However, extratropical zonal wind anomalies frequently tend to migrate poleward. This behavior can be described by the first two EOFs, the first (AM1) being the dipolar structure, and the second (AM2) having a tripolar structure centered on the mean jet. (AM2 explains a significant amount of variance, though less than AM1.) Taken in isolation, AM1 thus describes a north-south wobbling of the jet position, while AM2 describes a strengthening and narrowing (or weakening and broadening) of the jet. However, despite the fact that they are spatially orthogonal, and their corresponding time series temporally orthogonal, AM1 and AM2 are not independent, but show significant lag-correlations which reveal the poleward propagation. The EOFs are not modes of the underlying dynamical system governing the zonal flow evolution. The true modes can be estimated using principal oscillation pattern (POP) analysis. The leading POPs manifest themselves as a pair of complex conjugate structures with conjugate eigenvalues thus, in reality, constituting a single, complex, mode that describes poleward propagating anomalies. This mode then shows up as AM1 and AM2 in EOF analyses. Even though the principal components associated with the two leading EOFs decay at different rates, each decays faster than the true mode. In the propagating regime, these facts have implications for the use of autocorrelations and cross-correlations to quantify eddy feedback and the susceptibility of the mode to external perturbations, including the response to stratospheric anomalies.
Ren, Xiang; Wang, Fuyou; Chen, Cheng; Gong, Xiaoyuan; Yin, Li; Yang, Liu
2016-07-20
Cartilage tissue engineering is a promising approach for repairing and regenerating cartilage tissue. To date, attempts have been made to construct zonal cartilage that mimics the cartilaginous matrix in different zones. However, little attention has been paid to the chondrocyte density gradient within the articular cartilage. We hypothesized that the chondrocyte density gradient plays an important role in forming the zonal distribution of extracellular matrix (ECM). In this study, collagen type II hydrogel/chondrocyte constructs were fabricated using a bioprinter. Three groups were created according to the total cell seeding density in collagen type II pre-gel: Group A, 2 × 10(7) cells/mL; Group B, 1 × 10(7) cells/mL; and Group C, 0.5 × 10(7) cells/mL. Each group included two types of construct: one with a biomimetic chondrocyte density gradient and the other with a single cell density. The constructs were cultured in vitro and harvested at 0, 1, 2, and 3 weeks for cell viability testing, reverse-transcription quantitative PCR (RT-qPCR), biochemical assays, and histological analysis. We found that total ECM production was positively correlated with the total cell density in the early culture stage, that the cell density gradient distribution resulted in a gradient distribution of ECM, and that the chondrocytes' biosynthetic ability was affected by both the total cell density and the cell distribution pattern. Our results suggested that zonal engineered cartilage could be fabricated by bioprinting collagen type II hydrogel constructs with a biomimetic cell density gradient. Both the total cell density and the cell distribution pattern should be optimized to achieve synergistic biological effects.
NASA Astrophysics Data System (ADS)
Hillesheim, Jon
2015-11-01
High spatial resolution measurements with Doppler backscattering in JET have provided new insights into the development of the edge radial electric field during pedestal formation. The characteristics of Er have been studied as a function of density at 2.5 MA plasma current and 3 T toroidal magnetic field. We observe fine-scale spatial structure in the edge Er well prior to the LH transition, consistent with stationary zonal flows. Zonal flows are a fundamental mechanism for the saturation of turbulence and this is the first direct evidence of stationary zonal flows in a tokamak. The radial wavelength of the zonal flows systematically decreases with density. The zonal flows are clearest in Ohmic conditions, weaker in L-mode, and absent in H-mode. Measurements also show that after neutral beam heating is applied, the edge Er builds up at a constant gradient into the core during L-mode, at radii where Er is mainly due to toroidal velocity. The local stability of velocity shear driven turbulence, such as the parallel velocity gradient mode, will be assessed with gyrokinetic simulations. This critical Er shear persists across the LH transition into H-mode. Surprisingly, a reduction in the apparent magnitude of the Er well depth is observed directly following the LH transition at high densities. Establishing the physics basis for the LH transition is important for projecting scalings to ITER and these observations challenge existing models based on increased Er shear or strong zonal flows as the trigger for the transition. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
NASA Astrophysics Data System (ADS)
Tamsitt, V. M.; Talley, L. D.; Mazloff, M. R.
2014-12-01
The Southern Ocean displays a zonal dipole (wavenumber one) pattern in sea surface temperature (SST), with a cool zonal anomaly in the Atlantic and Indian sectors and a warm zonal anomaly in the Pacific sector, associated with the large northward excursion of the Malvinas and southeastward flow of the Antarctic Circumpolar Current (ACC). To the north of the cool Indian sector is the warm, narrow Agulhas Return Current (ARC). Air-sea heat flux is largely the inverse of this SST pattern, with ocean heat gain in the Atlantic/Indian, cooling in the southeastward-flowing ARC, and cooling in the Pacific, based on adjusted fluxes from the Southern Ocean State Estimate (SOSE), a ⅙° eddy permitting model constrained to all available in situ data. This heat flux pattern is dominated by turbulent heat loss from the ocean (latent and sensible), proportional to perturbations in the difference between SST and surface air temperature, which are maintained by ocean advection. Locally in the Indian sector, intense heat loss along the ARC is contrasted by ocean heat gain of 0.11 PW south of the ARC. The IPCC AR5 50 year depth-averaged 0-700 m temperature trend shows surprising similarities in its spatial pattern, with upper ocean warming in the ARC contrasted by cooling to the south. Using diagnosed heat budget terms from the most recent (June 2014) 6-year run of the SOSE we find that surface cooling in the ARC is balanced by heating from south-eastward advection by the current whereas heat gain in the ACC is balanced by cooling due to northward Ekman transport driven by strong westerly winds. These results suggest that spatial patterns in multi-decadal upper ocean temperature trends depend on regional variations in upper ocean dynamics.
Autumn Cooling of Western East Antarctica Linked to the Tropical Pacific
NASA Astrophysics Data System (ADS)
Clem, Kyle R.; Renwick, James A.; McGregor, James
2018-01-01
Over the past 60 years, the climate of East Antarctica cooled while portions of West Antarctica were among the most rapidly warming regions on the planet. The East Antarctic cooling is attributed to a positive trend in the Southern Annular Mode (SAM) and a strengthening of the westerlies, while West Antarctic warming is tied to zonally asymmetric circulation changes forced by the tropics. This study finds recent (post-1979) surface cooling of East Antarctica during austral autumn to also be tied to tropical forcing, namely, an increase in La Niña events. The recent increase in La Niña conditions forces a Rossby wave into the Southern Hemisphere that increases anticyclonic circulation over the South Atlantic. The South Atlantic anticyclone is associated with cold air advection, weakened northerlies, and increased sea ice concentrations across the western East Antarctic coast, which has increased the rate of cooling at Novolazarevskaya and Syowa stations after 1979. This enhanced cooling over western East Antarctica is tied more broadly to a zonally asymmetric temperature trend pattern across East Antarctica during autumn that is consistent with a tropically forced Rossby wave rather than a SAM pattern; the positive SAM pattern is associated with ubiquitous cooling across East Antarctica, which is not seen in temperature observations after 1979. We conclude that El Niño-Southern Oscillation-related circulation anomalies, particularly zonal asymmetries that locally enhance meridional wind, are an important component of East Antarctic climate variability during autumn, and future changes in tropical Pacific climate will likely have implications for East Antarctica.
Hou, Xiyong; Li, Mingjie; Gao, Meng; Yu, Liangju; Bi, Xiaoli
2013-01-01
Annual normalized difference vegetation index (NDVI) and chlorophyll-a (Chl-a) concentration are the most important large-scale indicators of terrestrial and oceanic ecosystem net primary productivity. In this paper, the Sea-viewing Wide Field-of-view Sensor level 3 standard mapped image annual products from 1998 to 2009 are used to study the spatial-temporal characters of terrestrial NDVI and oceanic Chl-a concentration on two sides of the coastline of China by using the methods of mean value (M), coefficient of variation (CV), the slope of unary linear regression model (Slope), and the Hurst index (H). In detail, we researched and analyzed the spatial-temporal dynamics, the longitudinal zonality and latitudinal zonality, the direction, intensity, and persistency of historical changes. The results showed that: (1) spatial patterns of M and CV between NDVI and Chl-a concentration from 1998 to 2009 were very different. The dynamic variation of terrestrial NDVI was much mild, while the variation of oceanic Chl-a concentration was relatively much larger; (2) distinct longitudinal zonality was found for Chl-a concentration and NDVI due to their hypersensitivity to the distance to shoreline, and strong latitudinal zonality existed for Chl-a concentration while terrestrial NDVI had a very weak latitudinal zonality; (3) overall, the NDVI showed a slight decreasing trend while the Chl-a concentration showed a significant increasing trend in the past 12 years, and both of them exhibit strong self-similarity and long-range dependence which indicates opposite future trends between land and ocean.
Climate Intervention as an Optimization Problem
NASA Astrophysics Data System (ADS)
Caldeira, Ken; Ban-Weiss, George A.
2010-05-01
Typically, climate models simulations of intentional intervention in the climate system have taken the approach of imposing a change (eg, in solar flux, aerosol concentrations, aerosol emissions) and then predicting how that imposed change might affect Earth's climate or chemistry. Computations proceed from cause to effect. However, humans often proceed from "What do I want?" to "How do I get it?" One approach to thinking about intentional intervention in the climate system ("geoengineering") is to ask "What kind of climate do we want?" and then ask "What pattern of radiative forcing would come closest to achieving that desired climate state?" This involves defining climate goals and a cost function that measures how closely those goals are attained. (An important next step is to ask "How would we go about producing these desired patterns of radiative forcing?" However, this question is beyond the scope of our present study.) We performed a variety of climate simulations in NCAR's CAM3.1 atmospheric general circulation model with a slab ocean model and thermodynamic sea ice model. We then evaluated, for a specific set of climate forcing basis functions (ie, aerosol concentration distributions), the extent to which the climate response to a linear combination of those basis functions was similar to a linear combination of the climate response to each basis function taken individually. We then developed several cost functions (eg, relative to the 1xCO2 climate, minimize rms difference in zonal and annual mean land temperature, minimize rms difference in zonal and annual mean runoff, minimize rms difference in a combination of these temperature and runoff indices) and then predicted optimal combinations of our basis functions that would minimize these cost functions. Lastly, we produced forward simulations of the predicted optimal radiative forcing patterns and compared these with our expected results. Obviously, our climate model is much simpler than reality and predictions from individual models do not provide a sound basis for action; nevertheless, our model results indicate that the general approach outlined here can lead to patterns of radiative forcing that make the zonal annual mean climate of a high CO2 world markedly more similar to that of a low CO2 world simultaneously for both temperature and hydrological indices, where degree of similarity is measured using our explicit cost functions. We restricted ourselves to zonally uniform aerosol concentrations distributions that can be defined in terms of a positive-definite quadratic equation on the sine of latitude. Under this constraint, applying an aerosol distribution in a 2xCO2 climate that minimized a combination of rms difference in zonal and annual mean land temperature and runoff relative to the 1xCO2 climate, the rms difference in zonal and annual mean temperatures was reduced by ~90% and the rms difference in zonal and annual mean runoff was reduced by ~80%. This indicates that there may be potential for stratospheric aerosols to diminish simultaneously both temperature and hydrological cycle changes caused by excess CO2 in the atmosphere. Clearly, our model does not include many factors (eg, socio-political consequences, chemical consequences, ocean circulation changes, aerosol transport and microphysics) so we do not argue strongly for our specific climate model results, however, we do argue strongly in favor of our methodological approach. The proposed approach is general, in the sense that cost functions can be developed that represent different valuations. While the choice of appropriate cost functions is inherently a value judgment, evaluating those functions for a specific climate simulation is a quantitative exercise. Thus, the use of explicit cost functions in evaluating model results for climate intervention scenarios is a clear way of separating value judgments from purely scientific and technical issues.
Longitudinal structure of stationary planetary waves in the middle atmosphere - extraordinary years
NASA Astrophysics Data System (ADS)
Lastovicka, Jan; Krizan, Peter; Kozubek, Michal
2018-01-01
One important but little studied factor in the middle atmosphere meridional circulation is its longitudinal structure. Kozubek et al. (2015) disclosed the existence of the two-cell longitudinal structure in meridional wind at 10 hPa at higher latitudes in January. This two-cell structure is a consequence of the stratospheric stationary wave SPW1 in geopotential heights. Therefore here the longitudinal structure in geopotential heights and meridional wind is analysed based on MERRA data over 1979-2013 and limited NOGAPS-ALPHA data in order to find its persistence and altitudinal dependence with focus on extraordinary years. The SPW1 in geopotential heights and related two-cell structure in meridional wind covers the middle stratosphere (lower boundary ˜ 50 hPa), upper stratosphere and most of the mesosphere (almost up to about 0.01 hPa). The two-cell longitudinal structure in meridional wind is a relatively persistent feature; only 9 out of 35 winters (Januaries) display more complex structure. Morphologically the deviation of these extraordinary Januaries consists in upward propagation of the second (Euro-Atlantic) peak (i.e. SPW2 structure) to higher altitudes than usually, mostly up to the mesosphere. All these Januaries occurred under the positive phase of PNA (Pacific North American) index but there are also other Januaries under its positive phase, which behave in an ordinary way. The decisive role in the existence of extraordinary years (Januaries) appears to be played by the SPW filtering by the zonal wind pattern. In all ordinary years the mean zonal wind pattern in January allows the upward propagation of SPW1 (Aleutian peak in geopotential heights) up to the mesosphere but it does not allow the upward propagation of the Euro-Atlantic SPW2 peak to and above the 10 hPa level. On the other hand, the mean zonal wind filtering pattern in extraordinary Januaries is consistent with the observed pattern of geopotential heights at higher altitudes.
NASA Astrophysics Data System (ADS)
Patra, Anindita; Bhaskaran, Prasad K.; Jose, Felix
2018-06-01
A zonal dipole in the observed trends of wind speed and significant wave height over the Head Bay of Bengal region was recently reported in the literature attributed due to the variations in sea level pressure (SLP). The SLP in turn is governed by prevailing atmospheric conditions such as local temperature, humidity, rainfall, atmospheric pressure, wind field distribution, formation of tropical cyclones, etc. The present study attempts to investigate the inter-annual variability of atmospheric parameters and its role on the observed zonal dipole trend in sea level pressure, surface wind speed and significant wave height. It reports on the aspects related to linear trend as well as its spatial variability for several atmospheric parameters: air temperature, geopotential height, omega (vertical velocity), and zonal wind, over the head Bay of Bengal, by analyzing National Centers for Environmental Prediction (NCEP) Reanalysis 2 dataset covering a period of 38 years (1979-2016). Significant warming from sea level to 200 mb pressure level and thereafter cooling above has been noticed during all the seasons. Warming within the troposphere exhibits spatial difference between eastern and western side of the domain. This led to fall in lower tropospheric geopotential height and its east-west variability, exhibiting a zonal dipole pattern across the Head Bay. In the upper troposphere, uplift in geopotential height was found as a result of cooling in higher levels (10-100 mb). Variability in omega also substantiated the observed variations in geopotential height. The study also finds weakening in the upper level westerlies and easterlies. Interestingly, a linear trend in lower tropospheric u-wind component also reveals an east-west dipole pattern over the study region. Further, the study corroborates the reported dipole in trends of sea level pressure, wind speed and significant wave height by evaluating the influence of atmospheric variability on these parameters.
NASA Astrophysics Data System (ADS)
Andima, Geoffrey; Amabayo, Emirant B.; Jurua, Edward; Cilliers, Pierre J.
2018-01-01
Complex electrodynamic processes over the low latitude region often result in post sunset plasma density irregularities which degrade satellite communication and navigation. In order to forecast the density irregularities, their occurrence time, duration and location need to be quantified. Data from the Communication/Navigation Outage Forecasting System (C/NOFS) satellite was used to characterize the low latitude ion density irregularities from 2011 to 2013. This was supported by ground based data from the SCIntillation Network Decision Aid (SCINDA) receivers at Makerere (Geographic coordinate 32.6°E, 0.3°N, and dip latitude -9.3°N) and Nairobi (Geographic coordinate 36.8°E, -1.3°N, and dip latitude -10.8°N). The results show that irregularities in ion density have a daily pattern with peaks from 20:00 to 24:00 Local Time (LT). Scintillation activity at L band and VHF over East Africa peaked in 2011 and 2012 from 20:00 to 24:00 LT, though in many cases scintillation at VHF persisted longer than that at L band. A longitudinal pattern in ion density irregularity occurrence was observed with peaks over 135-180°E and 270-300°E. The likelihood of ion density irregularity occurrence decreased with increasing altitude. Analysis of C/NOFS zonal ion drift velocities showed that the largest nighttime and daytime drifts were in 270-300°E and 300-330°E longitude regions respectively. Zonal irregularity drift velocities over East Africa were for the first time estimated from L-band scintillation indices. The results show that the velocity of plasma density irregularities in 2011 and 2012 varied daily, and hourly in the range of 50-150 m s-1. The zonal drift velocity estimates from the L-band scintillation indices had good positive correlation with the zonal drift velocities derived from VHF receivers by the spaced receiver technique.
NASA Astrophysics Data System (ADS)
Balch, W. M.; Poulton, A. J.; Drapeau, D. T.; Bowler, B. C.; Windecker, L. A.; Booth, E. S.
2011-03-01
Primary production (P prim) and calcification (C calc) were measured in the eastern and central Equatorial Pacific during December 2004 and September 2005, between 110°W and 140°W. The design of the field sampling allowed partitioning of P prim and total chlorophyll a (B) between large (>3 μm) and small (0.45-3 μm) phytoplankton cells. The station locations allowed discrimination of meridional and zonal patterns. The cruises coincided with a warm El Niño Southern Oscillation (ENSO) phase and ENSO-neutral phase, respectively, which proved to be the major factors relating to the patterns of productivity. Production and biomass of large phytoplankton generally covaried with that of small cells; large cells typically accounted for 20-30% of B and 20% of P prim. Elevated biomass and primary production of all size fractions were highest along the equator as well as at the convergence zone between the North Equatorial Counter Current and the South Equatorial Current. C calc by >0.4 μm cells was 2-3% of P prim by the same size fraction, for both cruises. Biomass-normalized P prim values were, on average, slightly higher during the warm-phase ENSO period, inconsistent with a "bottom-up" control mechanism (such as nutrient supply). Another source of variability along the equator was Tropical Instability Waves (TIWs). Zonal variance in integrated phytoplankton biomass (along the equator, between 110° and 140°) was almost the same as the meridional variance across it (between 4° N and 4° S). However, the zonal variance in integrated P prim was half the variance observed meridionally. The variance in integrated C calc along the equator was half that seen meridionally during the warm ENSO phase cruise whereas during the ENSO-neutral period, it was identical. No relation could be observed between the patterns of integrated carbon fixation (P prim or C calc) and integrated nutrients (nitrate, ammonium, silicate or dissolved iron). This suggests that the factors controlling integrated P prim or C calc are more complex than a simple bottom-up supply model and likely also will involve a top-down grazer-control component, as well. The carbon fixation within the Equatorial Pacific is well balanced with diatom and coccolithophore production contributing a relatively steady proportion of the total primary production. This maintains a steady balance between organic and inorganic production, relevant to the ballasting of organic matter and the export flux of carbon from this important upwelling region.
Auroral effects in the D region of the ionosphere. [solar and corpuscular radiation
NASA Technical Reports Server (NTRS)
Akasofu, S. I.
1975-01-01
The possible effects are discussed of radiations and corpuscles on relatively short-term changes in the circulation of the atmosphere (the development of cellular patterns in the zonal westerly flow, leading to the formation of cyclones) and relatively long-term changes in climate.
A thickness-weighted average perspective of force balance in an idealized circumpolar current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ringler, Todd Darwin; Saenz, Juan Antonio; Wolfram, Jr., Phillip Justin
The exact, three-dimensional thickness-weighted averaged (TWA) Boussinesq equations are used to diagnose eddy-mean flow interaction in an idealized circumpolar current (ICC). The force exerted by mesoscale eddies on the TWA velocity is expressed as the divergence of the Eliassen-Palm flux tensor. Consistent with previous findings, the analysis indicates that the dynamically relevant definition of the ocean surface layer is comprised of the set of buoyancy coordinates that ever reside at the ocean surface at a given horizontal position. The surface layer is found to be a physically distinct object with a diabatic- and force-balance that is largely isolated from themore » underlying adiabatic region in the interior. Within the ICC surface layer, the TWA meridional velocity is southward/northward in the top/bottom half, and has a value near zero at the bottom. In the top half of the surface layer, the zonal forces due to wind stress and meridional advection of potential vorticity act to accelerate the TWA zonal velocity; equilibrium is obtained by eddies decelerating the zonal flow via a downward flux of eastward momentum that increases with depth. In the bottom half of the surface layer, the accelerating force of the wind stress is balanced by the eddy force and meridional advection of potential vorticity. The bottom of the surface layer coincides with the location where the zonal eddy force, meridional advection of potential vorticity and zonal wind stress force are all zero. The net meridional transport, S f, within the surface layer is a small residual of its southward and northward TWA meridional flows. Furthermore, the mean meridional gradient of surface-layer buoyancy is advected by S f to balance the surface buoyancy fluxs.« less
A thickness-weighted average perspective of force balance in an idealized circumpolar current
Ringler, Todd Darwin; Saenz, Juan Antonio; Wolfram, Jr., Phillip Justin; ...
2016-11-22
The exact, three-dimensional thickness-weighted averaged (TWA) Boussinesq equations are used to diagnose eddy-mean flow interaction in an idealized circumpolar current (ICC). The force exerted by mesoscale eddies on the TWA velocity is expressed as the divergence of the Eliassen-Palm flux tensor. Consistent with previous findings, the analysis indicates that the dynamically relevant definition of the ocean surface layer is comprised of the set of buoyancy coordinates that ever reside at the ocean surface at a given horizontal position. The surface layer is found to be a physically distinct object with a diabatic- and force-balance that is largely isolated from themore » underlying adiabatic region in the interior. Within the ICC surface layer, the TWA meridional velocity is southward/northward in the top/bottom half, and has a value near zero at the bottom. In the top half of the surface layer, the zonal forces due to wind stress and meridional advection of potential vorticity act to accelerate the TWA zonal velocity; equilibrium is obtained by eddies decelerating the zonal flow via a downward flux of eastward momentum that increases with depth. In the bottom half of the surface layer, the accelerating force of the wind stress is balanced by the eddy force and meridional advection of potential vorticity. The bottom of the surface layer coincides with the location where the zonal eddy force, meridional advection of potential vorticity and zonal wind stress force are all zero. The net meridional transport, S f, within the surface layer is a small residual of its southward and northward TWA meridional flows. Furthermore, the mean meridional gradient of surface-layer buoyancy is advected by S f to balance the surface buoyancy fluxs.« less
Climatological Impact of Atmospheric River Based on NARCCAP and DRI-RCM Datasets
NASA Astrophysics Data System (ADS)
Mejia, J. F.; Perryman, N. M.
2012-12-01
This study evaluates spatial responses of extreme precipitation environments, typically associated with Atmospheric River events, using Regional Climate Model (RCM) output from NARCCAP dataset (50km grid size) and the Desert Research Institute-RCM simulations (36 and 12 km grid size). For this study, a pattern-detection algorithm was developed to characterize Atmospheric Rivers (ARs)-like features from climate models. Topological analysis of the enhanced elongated moisture flux (500-300hPa; daily means) cores is used to objectively characterize such AR features in two distinct groups: (i) zonal, north Pacific ARs, and (ii) subtropical ARs, also known as "Pineapple Express" events. We computed the climatological responses of the different RCMs upon these two AR groups, from which intricate differences among RCMs stand out. This study presents these climatological responses from historical and scenario driven simulations, as well as implications for precipitation extreme-value analyses.
NASA Astrophysics Data System (ADS)
Paldor, N.
2017-12-01
The concise and elegant wave theory developed on the equatorial β-plane by Matsuno (1966, M66 hereafter) is based on the formulation of a Schrödinger equation associated with the governing Linear Rotating Shallow Water Equations (LRSWE). The theory yields explicit expressions for the dispersion relations and meridional amplitude structures of all zonally propagating waves - Rossby, Inertia-Gravity, Kelvin and Yanai. In contrast, the spherical wave theory of Longuet-Higgins (1968) is a collection of asymptotic expansions in many sub-ranges e.g. large, small (and even negative) Lamb Number; high and low frequency; low-latitudes, etc. that rests upon extensive numerical solutions of several Ordinary Differential Equations. The difference between the two theories is highlighted by their lengths. The essential elements of the former planar study are completely revealed in just 3-4 pages including the derivation of explicit formulae for the phase speeds and amplitude meridional structures. In comtrast, the latter spherical theory contains 97 pages and the results of the numerical calculations are summarized in 30 pages of tables filled with numerical values and about 31 figures, each of which containing many separate curves! In my talk I will re-visit the wave problem on a sphere by developing several Schrödinger equations that approximate the governing eigenvalue equation associated with zonally propagating waves. Each of the Schrödinger equations approximates the original second order Ordinary Differential Equation in a different range of the 3 parameters: Lamb-Number, frequency and zonal wavenumber. As in M66, each of the Schrödinger equations yields explicit expressions for the dispersion relations and meridional amplitude structure of Rossby and Inertia-Gravity waves. In addition, the analysis shows that Yanai wave exists on a sphere even tough the zonal velocity is regular everywhere there (in contrast to the β-plane where the zonal velocity is singular everywhere) and that Kelvin waves do not exist as a separate mode (but the eastward propagating n=0 Inertia-Gravity is nearly non-dispersive). References Longuet-Higgins, M. S. Phil. Trans. Roy. Soc. London; 262, 511-607; 1968 Matsuno, T.; J. Met. Soc. Japan. 44(1), 25-43; 1966
Mapping potential vorticity dynamics on saturn: Zonal mean circulation from Cassini and Voyager data
NASA Astrophysics Data System (ADS)
Read, P. L.; Conrath, B. J.; Fletcher, L. N.; Gierasch, P. J.; Simon-Miller, A. A.; Zuchowski, L. C.
2009-12-01
Maps of Ertel potential vorticity on isentropic surfaces (IPV) and quasi-geostrophic potential vorticity (QGPV) are well established in dynamical meteorology as powerful sources of insight into dynamical processes involving 'balanced' flow (i.e. geostrophic or similar). Here we derive maps of zonal mean IPV and QGPV in Saturn's upper troposphere and lower stratosphere by making use of a combination of velocity measurements, derived from the combined tracking of cloud features in images from the Voyager and Cassini missions, and thermal measurements from the Cassini Composite Infrared Spectrometer (CIRS) instrument. IPV and QGPV are mapped and compared for the entire globe between latitudes 89∘S-82∘N. As on Jupiter, profiles of zonally averaged PV show evidence for a step-like "stair-case" pattern suggestive of local PV homogenisation, separated by strong PV gradients in association with eastward jets. The northward gradient of PV (IPV or QGPV) is found to change sign in several places in each hemisphere, however, even when baroclinic contributions are taken into account. The stability criterion with respect to Arnol'd's second stability theorem may be violated near the peaks of westward jets. Visible, near-IR and thermal-IR Cassini observations have shown that these regions exhibit many prominent, large-scale eddies and waves, e.g. including 'storm alley'. This suggests the possibility that at least some of these features originate from instabilities of the background zonal flow.
Laboratory study of forced rotating shallow water turbulence
NASA Astrophysics Data System (ADS)
Espa, Stefania; Di Nitto, Gabriella; Cenedese, Antonio
2011-12-01
During the last three decades several authors have studied the appearance of multiple zonal jets in planetary atmospheres and in the Earths oceans. The appearance of zonal jets has been recovered in numerical simulations (Yoden & Yamada, 1993), laboratory experiments (Afanasyev & Wells, 2005; Espa et al., 2008, 2010) and in field measurements of the atmosphere of giant planets (Galperin et al., 2001). Recent studies have revealed the presence of zonation also in the Earths oceans, in fact zonal jets have been found in the outputs of Oceanic General Circulation Models-GCMs (Nakano & Hasumi, 2005) and from the analysis of satellite altimetry observations (Maximenko et al., 2005). In previous works (Espa et al., 2008, 2010) we have investigated the impact of the variation of the rotation rate and of the fluid depth on jets organization in decaying and forced regimes. In this work we show results from experiments performed in a bigger domain in which the fluid is forced continuously. The experimental set-up consists of a rotating tank (1m in diameter) where the initial distribution of vorticity has been generated via the Lorentz force in an electromagnetic cell. The latitudinal variation of the Coriolis parameter has been simulated by the parabolic profile assumed by the free surface of the rotating fluid. Flow measurements have been performed using an image analysis technique. Experiments have been performed changing the tank rotation rate and the fluid thickness. We have investigated the flow in terms of zonal and radial flow pattern, flow variability and jet scales.
NASA Astrophysics Data System (ADS)
Lisienko, V. G.; Malikov, G. K.; Titaev, A. A.
2014-12-01
The paper presents a new simple-to-use expression to calculate the total emissivity of a mixture of gases CO2 and H2O used for modeling heat transfer by radiation in industrial furnaces. The accuracy of this expression is evaluated using the exponential wide band model. It is found that the time taken to calculate the total emissivity in this expression is 1.5 times less than in other approximation methods.
Shifera, Amde Selassie; Pennesi, Mark E; Yang, Paul; Lin, Phoebe
2017-06-01
To determine whether ultra-wide-field fundus autofluorescence (UWFFAF) findings in acute zonal occult outer retinopathy correlated well with perimetry, optical coherence tomography, and electroretinography findings. Retrospective observational study on 16 eyes of 10 subjects with AZOOR seen at a single referral center from October 2012 to March 2015 who had UWFFAF performed. Chi-square analysis was performed to compare categorical variables, and Mann-Whitney U test used for comparisons of nonparametric continuous variables. All eyes examined within 3 months of symptom onset (five of the five eyes) had diffusely hyperautofluorescent areas on UWFFAF. The remaining eyes contained hypoautofluorescent lesions with hyperautofluorescent borders. In 11/16 (68.8%) eyes, UWFFAF showed the full extent of lesions that would not have been possible with standard fundus autofluorescence centered on the fovea. There were 3 patterns of spread: centrifugal spread (7/16, 43.8%), centripetal spread (5/16, 31.3%), and centrifugal + centripetal spread (4/16, 25.0%). The UWFFAF lesions corresponded well with perimetric, optical coherence tomography, and electroretinography abnormalities. The UWFFAF along with optical coherence tomography can be useful in the evaluation and monitoring of acute zonal occult outer retinopathy patients.
Simulation of Venus polar vortices with the non-hydrostatic general circulation model
NASA Astrophysics Data System (ADS)
Rodin, Alexander V.; Mingalev, Oleg; Orlov, Konstantin
2012-07-01
The dynamics of Venus atmosphere in the polar regions presents a challenge for general circulation models. Numerous images and hyperspectral data from Venus Express mission shows that above 60 degrees latitude atmospheric motion is substantially different from that of the tropical and extratropical atmosphere. In particular, extended polar hoods composed presumably of fine haze particles, as well as polar vortices revealing mesoscale wave perturbations with variable zonal wavenumbers, imply the significance of vertical motion in these circulation elements. On these scales, however, hydrostatic balance commonly used in the general circulation models is no longer valid, and vertical forces have to be taken into account to obtain correct wind field. We present the first non-hydrostatic general circulation model of the Venus atmosphere based on the full set of gas dynamics equations. The model uses uniform grid with the resolution of 1.2 degrees in horizontal and 200 m in the vertical direction. Thermal forcing is simulated by means of relaxation approximation with specified thermal profile and time scale. The model takes advantage of hybrid calculations on graphical processors using CUDA technology in order to increase performance. Simulations show that vorticity is concentrated at high latitudes within planetary scale, off-axis vortices, precessing with a period of 30 to 40 days. The scale and position of these vortices coincides with polar hoods observed in the UV images. The regions characterized with high vorticity are surrounded by series of small vortices which may be caused by shear instability of the zonal flow. Vertical velocity component implies that in the central part of high vorticity areas atmospheric flow is downwelling and perturbed by mesoscale waves with zonal wavenumbers 1-4, resembling observed wave structures in the polar vortices. Simulations also show the existence of areas with strong vertical flow, concentrated in spiral branches extending from low latitude to the circumpolar vortex. Qualitatively this pattern suggest that the dynamics of the polar Venus atmosphere resembles that of terrestrial hurricanes, but is characterized with preferentially poleward and downwelling motions.
NASA Astrophysics Data System (ADS)
Bertaux, Jean-Loup; Khatuntsev, I. V.; Hauchecorne, A.; Markiewicz, W. J.; Marcq, E.; Lebonnois, S.; Patsaeva, M.; Turin, A.; Fedorova, A.
2016-06-01
Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67 ± 2 km) collected with Venus Monitoring Camera on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°S) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the uplift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to the cloud top level, break there, and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth by Lindzen (1981) but is not reproduced in the current GCM of Venus atmosphere from LMD. (Laboratoire de Météorologie Dynamique) In the equatorial regions, the UV albedo at 365 nm varies also with longitude. We argue that this variation may be simply explained by the divergence of the horizontal wind field. In the longitude region (from 60° to -10°) where the horizontal wind speed is increasing in magnitude (stretch), it triggers air upwelling which brings the UV absorber at cloud top level and decreases the albedo and vice versa when the wind is decreasing in magnitude (compression). This picture is fully consistent with the classical view of Venus meridional circulation, with upwelling at equator revealed by horizontal air motions away from equator: the longitude effect is only an additional but important modulation of this effect. This interpretation is comforted by a recent map of cloud top H2O, showing that near the equator the lower UV albedo longitude region is correlated with increased H2O. We argue that H2O enhancement is the sign of upwelling, suggesting that the UV absorber is also brought to cloud top by upwelling.
NASA Astrophysics Data System (ADS)
Bertaux, Jean-Loup; Hauchecorne, Alain; khatuntsev, Igor; Markiewicz, Wojciech; Marcq, emmanuel; Lebonnois, Sebastien; Patsaeva, Marina; Turin, Alexander; Fedorova, Anna
2016-10-01
Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67±2 km) collected with VMC (Venus Monitoring Camera) on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°S) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to the cloud top level, break there and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth but is not reproduced in the current GCM of Venus atmosphere from LMD.In the equatorial regions, the UV albedo of clouds at 365 nm and the H2O mixing ratio at cloud top varies also with longitude, with an anti-correlation: the more H2O, the darker are the clouds. We argue that these variations may be simply explained by the divergence of the horizontal wind field. In the longitude region (from 60° to -10°) where the horizontal wind speed is increasing in magnitude (stretch), it triggers air upwelling which brings both the UV absorber and H2O at cloud top level and decreases the albedo, and vice-versa when the wind is decreasing in magnitude (compression). This picture is fully consistent with the classical view of Venus meridional circulation, with upwelling at equator revealed by horizontal air motions away from equator: the longitude effect is only an additional but important modulation of this effect. We argue that H2O enhancement is the sign of upwelling because the H2O mixing ratio decreases with altitude, comforting the view that the UV absorber is also brought to cloud top by upwelling.
Influence of large-scale zonal flows on the evolution of stellar and planetary magnetic fields
NASA Astrophysics Data System (ADS)
Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel; ENS Collaboration
2011-10-01
Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. The first author thanks DFG and PlanetMag project for financial support.
Geometrical constraint on the localization of deep water formation
NASA Astrophysics Data System (ADS)
Ferreira, D.; Marshall, J.
2008-12-01
That deep water formation occurs in the North Atlantic and not North Pacific is one of the most notable features of the present climate. In an effort to build a system able to mimic such basic aspects of climate using a minimal description, we study here the influence of ocean geometry on the localization of deep water formation. Using the MIT GCM, two idealized configurations of an ocean-atmosphere-sea ice climate system are studied: Drake and Double-Drake. In Drake, one narrow barrier extends from the North Pole to 35°S while, in Double-Drake, two such barriers set 90° apart join at the North Pole to delimit a Small and a Large basin. Despite the different continental configurations, the two climates are strikingly similar in the zonal average (almost identical heat and fresh water transports, and meridional overturning circulation). However, regional circulations in the Small and Large basins exhibit distinctive Atlantic-like and Pacific-like characteristics: the Small basin is warmer and saltier than the Large one, concentrates dense water formation and deep overturning circulation and achieve the largest fraction of the northward ocean heat transport. We show that the warmer temperature and higher evaporation over the Small basin is not its distinguishing factor. Rather, it is the width of the basin in relation to the zonal fetch of the precipitation pattern. This generates a deficit/excess of precipitation over the Small/Large basin: a fraction of the moisture evaporated from the Small basin is transported zonally and rains out over the Large basin. This creates a salt contrast between the 2 basins, leading to the localization of deep convection in the salty Small basin. Finally, given on the broad similarities between the Double-Drake and real World, we suggest that many gross features that define the present climate are a consequence of 2 asymmetries: a meridional asymmetry (a zonally unblocked southern/blocked northern ocean) and a zonal one (a small and a large basin in the northern hemisphere).
Results of a zonally truncated three-dimensional model of the Venus middle atmosphere
NASA Technical Reports Server (NTRS)
Newman, M.
1992-01-01
Although the equatorial rotational speed of the solid surface of Venus is only 4 m s(exp-1), the atmospheric rotational speed reaches a maximum of approximately 100 m s(exp-1) near the equatorial cloud top level (65 to 70 km). This phenomenon, known as superrotation, is the central dynamical problem of the Venus atmosphere. We report here the results of numerical simulations aimed at clarifying the mechanism for maintaining the equatorial cloud top rotation. Maintenance of an equatorial rotational speed maximum above the surface requires waves or eddies that systematically transport angular momentum against its zonal mean gradient. The zonally symmetric Hadley circulation is driven thermally and acts to reduce the rotational speed at the equatorial cloud top level; thus wave or eddy transport must counter this tendency as well as friction. Planetary waves arising from horizontal shear instability of the zonal flow (barotropic instability) could maintain the equatorial rotation by transporting angular momentum horizontally from midlatitudes toward the equator. Alternatively, vertically propagating waves could provide the required momentum source. The relative motion between the rotating atmosphere and the pattern of solar heating, which as a maximum where solar radiation is absorbed near the cloud tops, drives diurnal and semidiurnal thermal tides that propagate vertically away from the cloud top level. The effect of this wave propagation is to transport momentum toward the cloud top level at low latitudes and accelerate the mean zonal flow there. We employ a semispectral primitive equation model with a zonal mean flow and zonal wavenumbers 1 and 2. These waves correspond to the diurnal and semidiurnal tides, but they can also be excited by barotropic or baroclinic instability. Waves of higher wavenumbers and interactions between the waves are neglected. Symmetry about the equator is assumed, so the model applies to one hemisphere and covers the altitude range 30 to 110 km. Horizontal resolution is 1.5 deg latitude, and vertical resolution is 1.5 km. Solar and thermal infrared heating, based on Venus observations and calculations drive the model flow. Dissipation is accomplished mainly by Rayleigh friction, chosen to produce strong dissipation above 85 km in order to absorb upward propagating waves and limit extreme flow velocities there, yet to give very weak Rayleigh friction below 70 km; results in the cloud layer do not appear to be sensitive to the Rayleigh friction. The model also has weak vertical diffusion, and very weak horizontal diffusion, which has a smoothing effect on the flow only at the two grid points nearest the pole.
Venus winds at cloud level from VIRTIS during the Venus Express mission
NASA Astrophysics Data System (ADS)
Hueso, Ricardo; Peralta, Javier; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Piccioni, Giuseppe; Drossart, Pierre
2010-05-01
The Venus Express (VEX) mission has been in orbit to Venus for almost four years now. The VIRTIS instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. Images in the ultraviolet range are used to study the upper cloud at 66 km while images in the infrared (1.74 μm) map the opacity of the lower cloud deck at 48 km. Here we present our latest results on the analysis of the global atmospheric dynamics at these cloud levels using a large selection over the full VIRTIS dataset. We will show the atmospheric zonal superrotation at these levels and the mean meridional motions. The zonal winds are very stable in the lower cloud at mid-latitudes to the tropics while it shows different signatures of variability in the upper cloud where solar tide effects are manifest in the data. While the upper clouds present a net meridional motion consistent with the upper branch of a Hadley cell the lower cloud present almost null global meridional motions at all latitudes but with particular features traveling both northwards and southwards in a turbulent manner depending on the cloud morphology on the observations. A particular important atmospheric feature is the South Polar vortex which might be influencing the structure of the zonal winds in the lower cloud at latitudes from the vortex location up to 55°S. Acknowledgements This work has been funded by the Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464-07.
Effects of Bulk Composition on the Atmospheric Dynamics on Close-in Exoplanets
NASA Astrophysics Data System (ADS)
Zhang, Xi; Showman, Adam P.
2017-02-01
Super Earths and mini Neptunes likely have a wide range of atmospheric compositions, ranging from low molecular mass atmospheres of H2 to higher molecular atmospheres of water, CO2, N2, or other species. Here we systematically investigate the effects of atmospheric bulk compositions on temperature and wind distributions for tidally locked sub-Jupiter-sized planets, using an idealized 3D general circulation model (GCM). The bulk composition effects are characterized in the framework of two independent variables: molecular weight and molar heat capacity. The effect of molecular weight dominates. As the molecular weight increases, the atmosphere tends to have a larger day-night temperature contrast, a smaller eastward phase shift in the thermal phase curve, and a smaller zonal wind speed. The width of the equatorial super-rotating jet also becomes narrower, and the “jet core” region, where the zonal-mean jet speed maximizes, moves to a greater pressure level. The zonal-mean zonal wind is more prone to exhibit a latitudinally alternating pattern in a higher molecular weight atmosphere. We also present analytical theories that quantitatively explain the above trends and shed light on the underlying dynamical mechanisms. Those trends might be used to indirectly determine the atmospheric compositions on tidally locked sub-Jupiter-sized planets. The effects of the molar heat capacity are generally small. But if the vertical temperature profile is close to adiabatic, molar heat capacity will play a significant role in controlling the transition from a divergent flow in the upper atmosphere to a jet-dominated flow in the lower atmosphere.
NASA Astrophysics Data System (ADS)
Cerrone, Dario; Fusco, Giannetta; Simmonds, Ian; Aulicino, Giuseppe; Budillon, Giorgio
2017-04-01
A composite dataset (comprising geopotential height, sea surface temperature, zonal and meridional surface winds, precipitation, cloud cover, surface air temperature, latent plus sensible heat fluxes , and sea ice concentration) has been investigated with the aim of revealing the dominant timescales of variability from 1982 to 2013. Three covarying climate signals associated with variations in the sea ice distribution around Antarctica have been detected through the application of the Multiple-Taper Method with Singular Value Decomposition (MTM-SVD). Features of the established patterns of variation over the Southern Hemisphere (SH) extratropics have been identified in each of these three climate signals in the form of coupled or individual oscillations. The climate patterns considered here are the Southern Annular Mode (SAM), the Pacific-South America (PSA) teleconnection, the Semi-Annual Oscillation (SAO) and Zonal Wavenumber-3 (ZW3) mode. It is shown that most of the sea ice temporal variance is concentrated at the quasi-triennial scale resulting from the constructive superposition of the PSA and ZW3 patterns. In addition the combination of the SAM and SAO patterns is found to promote the interannual sea ice variations underlying a general change in the Southern Ocean atmospheric and oceanic circulations. These two modes of variability are also found consistent with the occurrence of the SAM+/PSA- or SAM-/PSA+ combinations, which could have favored the cooling of the sub-Antarctic and important changes in the Antarctic sea ice distribution since 2000.
Intermittency in flux driven kinetic simulations of trapped ion turbulence
NASA Astrophysics Data System (ADS)
Darmet, G.; Ghendrih, Ph.; Sarazin, Y.; Garbet, X.; Grandgirard, V.
2008-02-01
Flux driven kinetic transport is analysed for deeply trapped ion turbulence with the code GYSELA. The main observation is the existence of a steady state situation with respect to the statistics, in particular the balance between the injected energy and the time averaged energy flowing out through the outer edge boundary layer. The temperature is characterised by a very bursty behaviour with a skewed PDF. Superimposed to these short time scale fluctuations, one finds a regime with a strong increase of the zonal flows and a quenching of the turbulent energy. During this phase of such a predator-prey cycle, the core temperature rapidly increases while the edge temperature gradually decreases. The end of this reduced transport regime is governed by the onset of turbulence that governs large relaxation events, and a strong modification of the zonal flow pattern.
Moeinzadeh, Seyedsina; Shariati, Seyed Ramin Pajoum; Jabbari, Esmaiel
2016-01-01
Current tissue engineering approaches to regeneration of articular cartilage rarely restore the tissue to its normal state because the generated tissue lacks the intricate zonal organization of the native cartilage. Zonal regeneration of articular cartilage is hampered by the lack of knowledge for the relation between physical, mechanical, and biomolecular cues and zone-specific chondrogenic differentiation of progenitor cells. This work investigated in 3D the effect of TGF-β1, zone-specific growth factors, optimum matrix stiffness, and adding nanofibers on the expression of chondrogenic markers specific to the superficial, middle, and calcified zones of articular cartilage by the differentiating human mesenchymal stem cells (hMSCs). Growth factors included BMP-7, IGF-1, and hydroxyapatite (HA) for the superficial, middle, and calcified zones, respectively; optimum matrix stiffness was 80 kPa, 2.1 MPa, and 320 MPa; and nanofibers were aligned horizontal, random, and perpendicular to the gel surface. hMSCs with zone-specific cell densities were encapsulated in engineered hydrogels and cultured with or without TGF-β1, zone-specific growth factor, optimum matrix modulus, and fiber addition and cultured in basic chondrogenic medium. The expression of encapsulated cells was measured by mRNA, protein, and biochemical analysis. Results indicated that zone-specific matrix stiffness had a dominating effect on chondrogenic differentiation of hMSCs to the superficial and calcified zone phenotypes. Addition of aligned nanofibers parallel to the direction of gel surface significantly enhanced expression of Col II in the superficial zone chondrogenic differentiation of hMSCs. Conversely, biomolecular factor IGF-1 in combination with TGF-β1 had a dominating effect on the middle zone chondrogenic differentiation of hMSCs. Results of this work could potentially lead to the development of multilayer grafts mimicking the zonal organization of articular cartilage. PMID:27038568
Fujinami, Rieko; Imaichi, Ryoko
2015-06-01
Podostemaceae is a unique family of aquatic angiosperms that grow in swift-running water on rock surfaces in the tropics. Their plant bodies show a remarkable adaptation: the main plant body is mostly creeping or flattened, or in extreme cases foliose, functioning as an adhering and photosynthetic organ. In the subfamily Podostemoideae, the root is foliose, whereas in the subfamily Tristichoideae, the shoot is foliose. An evolutionary scenario for the foliose root has already been proposed, but that for the foliose shoot remains to be addressed. Shoots of Indodalzellia gracilis and Dalzellia ubonensis (subfamily Tristichoideae) were observed using light microscopy and scanning electron microscopy. Gene expression patterns of orthologs of marker genes for the shoot apical meristem, i.e., SHOOT MERISTEMLESS and WUSCHEL, in D. ubonensis were analyzed. When very young, the phyllotaxis is tristichous in both genera: a set of one dorsal and two marginal leaves forms. When the shoot branches, extra-axillary buds of two subsequent marginal leaves form as new (lateral) shoots, and the original shoot stops growing; this growth pattern is called sympodial branching. Due to zonal growth in the common zone just below the original and lateral shoot apices, flattened or foliose shoots result. The expression patterns of DuSTM and DuWUS in the shoot apices of Dalzellia were similar to those published for Terniopsis. The foliose shoots of Indodalzellia and Dalzellia evolved as a result of congenital fusion among several original and lateral branches, each of which grows separately in other Tristichoideae. © 2015 Botanical Society of America, Inc.
Doerflinger, Franziska C; Miller, William B; Nock, Jacqueline F; Watkins, Christopher B
2015-01-01
Patterns of starch hydrolysis in stem, equatorial, and calyx zones of ‘Honeycrisp’ and ‘Empire’ apples (Malus sylvestris (L.) Mill var. domestica (Borkh.) Mansf.) during maturation and ripening, and in ‘Gala’ apples in response to propylene or 1-methylcyclopropene (1-MCP) treatments after harvest, were studied. Differences in zonal starch concentrations were found for ‘Empire’ and ‘Gala’ fruits, but not for ‘Honeycrisp’. During maturation and ripening of ‘Empire’, the concentration of starch was highest in the calyx end and lowest in the stem region. Differences in rates of starch hydrolysis among zones were not detected. ‘Honeycrisp’ and ‘Empire’ had the highest concentration of sorbitol in the calyx region, whereas it was highest in the stem-end region in ‘Gala’. The distribution differences of glucose, fructose, and sucrose were similar in all three cultivars; higher fructose and glucose concentrations in the stem region, and higher sucrose concentrations in the calyx end of the fruit. Postharvest treatment of ‘Gala’ with propylene did not affect the internal ethylene concentration of the fruit but 1-MCP markedly inhibited it. Starch concentrations were highest in the calyx end but gradients of starch among zones were not changed by postharvest treatment. The rate of hydrolysis was slowed by 1-MCP treatment, but was unaffected by propylene. Postharvest treatments influenced sorbitol, glucose, and fructose concentrations. Patterns of starch concentration among the zones did not confirm differences in ripening, but reflected its uneven distribution throughout the fruit during development. Therefore, measured differences in zonal starch are most likely related to starch accumulation during fruit development, rather than differences in rates of starch degradation during ripening. PMID:26504584
Empirical prediction of the onset dates of South China Sea summer monsoon
NASA Astrophysics Data System (ADS)
Zhu, Zhiwei; Li, Tim
2017-03-01
The onset of South China Sea summer monsoon (SCSSM) signifies the commencement of the wet season over East Asia. Predicting the SCSSM onset date is of significant importance. In this study, we establish two different statistical models, namely the physical-empirical model (PEM) and the spatial-temporal projection model (STPM) to predict the SCSSM onset. The PEM is constructed from the seasonal prediction perspective. Observational diagnoses reveal that the early onset of the SCSSM is preceded by (a) a warming tendency in middle and lower troposphere (850-500 hPa) over central Siberia from January to March, (b) a La Niña-like zonal dipole sea surface temperature pattern over the tropical Pacific in March, and (c) a dipole sea level pressure pattern with negative center in subtropics and positive center over high latitude of Southern Hemisphere in January. The PEM built on these predictors achieves a cross-validated reforecast temporal correlation coefficient (TCC) skill of 0.84 for the period of 1979-2004, and an independent forecast TCC skill of 0.72 for the period 2005-2014. The STPM is built on the extended-range forecast perspective. Pentad data are used to predict a zonal wind index over the South China Sea region. Similar to PEM, the STPM is constructed using 1979-2004 data. Based on the forecasted zonal wind index, the independent forecast of the SCSSM onset dates achieves a TCC skill of 0.90 for 2005-2014. The STPM provides more detailed information for the intraseasonal evolution during the period of the SCSSM onset (pentad 25-35). The two models proposed herein are expected to facilitate the real-time prediction of the SCSSM onset.
NASA Astrophysics Data System (ADS)
Forsythe, Victoriya V.; Makarevich, Roman A.
2017-02-01
Occurrence of the E region plasma irregularities is investigated using two Super Dual Auroral Radar Network (SuperDARN) South Pole (SPS) and Zhongshan (ZHO) radars that sample the same magnetic latitude deep within the high-latitude plasma convection pattern but from two opposite directions. It is shown that the SPS and ZHO velocity distributions and their variations with the magnetic local time are different, with each distribution being asymmetric; i.e., a particular velocity polarity is predominant. This asymmetry in the E region velocity distribution is associated with the bump-on-tail of the distribution near the nominal ion acoustic speed Cs that is most likely due to the Farley-Buneman instability (FBI) echoes or an inflection point of the distribution below nominal Cs that is most likely due to the gradient drift instability echoes. In contrast, the distribution of the convection velocity component was found to be symmetric, i.e., with no bump-on-tail or an inflection point, but with a bias (i.e., uniform shift) toward a particular polarity. It is demonstrated that the asymmetry in the convection pattern between the eastward and westward zonal components is unexpectedly strong, with the westward zonal component being predominant, especially at lower latitudes, while also exhibiting a strong interplanetary magnetic field By dependence. The observations are consistent with the notion that the asymmetry in the E region velocity distribution is highly sensitive to the bias in the convection component caused by the zonal convection component asymmetry and that the bump-on-tail or inflection point features may also depend on the irregularity height and the presence of strong density gradients modifying the FBI threshold value.
NASA Astrophysics Data System (ADS)
Hulot, G.; Khokhlov, A.
2007-12-01
We recently introduced a method to rigorously test the statistical compatibility of combined time-averaged (TAF) and paleosecular variation (PSV) field models against any lava flow paleomagnetic database (Khokhlov et al., 2001, 2006). Applying this method to test (TAF+PSV) models against synthetic data produced from those shows that the method is very efficient at discriminating models, and very sensitive, provided those data errors are properly taken into account. This prompted us to test a variety of published combined (TAF+PSV) models against a test Bruhnes stable polarity data set extracted from the Quidelleur et al. (1994) data base. Not surprisingly, ignoring data errors leads all models to be rejected. But taking data errors into account leads to the stimulating conclusion that at least one (TAF+PSV) model appears to be compatible with the selected data set, this model being purely axisymmetric. This result shows that in practice also, and with the data bases currently available, the method can discriminate various candidate models and decide which actually best fits a given data set. But it also shows that likely non-zonal signatures of non-homogeneous boundary conditions imposed by the mantle are difficult to identify as statistically robust from paleomagnetic directional data sets. In the present paper, we will discuss the possibility that such signatures could eventually be identified as robust with the help of more recent data sets (such as the one put together under the collaborative "TAFI" effort, see e.g. Johnson et al. abstract #GP21A-0013, AGU Fall Meeting, 2005) or by taking additional information into account (such as the possible coincidence of non-zonal time-averaged field patterns with analogous patterns in the modern field).
On the Variation of Zonal Gravity Coefficients of a Giant Planet Caused by Its Deep Zonal Flows
NASA Astrophysics Data System (ADS)
Kong, Dali; Zhang, Keke; Schubert, Gerald
2012-04-01
Rapidly rotating giant planets are usually marked by the existence of strong zonal flows at the cloud level. If the zonal flow is sufficiently deep and strong, it can produce hydrostatic-related gravitational anomalies through distortion of the planet's shape. This paper determines the zonal gravity coefficients, J 2n , n = 1, 2, 3, ..., via an analytical method taking into account rotation-induced shape changes by assuming that a planet has an effective uniform density and that the zonal flows arise from deep convection and extend along cylinders parallel to the rotation axis. Two different but related hydrostatic models are considered. When a giant planet is in rigid-body rotation, the exact solution of the problem using oblate spheroidal coordinates is derived, allowing us to compute the value of its zonal gravity coefficients \\bar{J}_{2n}, n=1,2,3, \\dots, without making any approximation. When the deep zonal flow is sufficiently strong, we develop a general perturbation theory for estimating the variation of the zonal gravity coefficients, \\Delta {J}_{2n}={J}_{2n}-\\bar{J}_{2n}, n=1,2,3, \\dots, caused by the effect of the deep zonal flows for an arbitrarily rapidly rotating planet. Applying the general theory to Jupiter, we find that the deep zonal flow could contribute up to 0.3% of the J 2 coefficient and 0.7% of J 4. It is also found that the shape-driven harmonics at the 10th zonal gravity coefficient become dominant, i.e., \\Delta {J}_{2n} \\,{\\ge}\\, \\bar{J}_{2n} for n >= 5.
NASA Astrophysics Data System (ADS)
Patsaeva, Marina; Khatuntsev, Igor; Turin, Alexander; Zasova, Ludmila; Bertaux, Jean-loup
2017-04-01
A set of UV (365 nm) and IR (965 nm) images obtained by the Venus Monitoring Camera (VMC) was used to study the circulation of the mesosphere at two altitude levels. Displacement vectors were obtained by wind tracking in automated mode for observation period from 2006 to 2014 for UV images [1,2] and from 2006 to 2012 for IR images. The long observation period and good longitude-latitude coverage by single measurements allowed us to focus on the study of the slow-periodic component. The influence of the underlying surface topography on the change of speed of the average zonal wind at UV level at low latitudes, discovered by visual methods has been described in [3]. Analysis of the longitude-latitude distribution of the zonal and meridional components for 172000 (257 orbits) digital individual wind measurements at UV level and for 32,000 (150 orbits) digital individual wind measurements at IR level allows us to compare the influence of Venus topography on the change of the zonal and meridional components at both cloud levels. At the UV level (67±2 km) longitudinal profiles of the zonal speed for different latitude bins in low latitudes correlate with surface profiles. These correlations are most noticeable in the region of Aphrodite Terra. The correlation shift depends on the surface height. Albedo profiles correlate with surface profiles also at high latitudes. Zonal speed profiles at low latitude (5-15°S) depend not only on altitude, but also on local time. Minimum of the zonal speed is observed over Aphrodite Terra (90-100°E) at about 12 LT. A diurnal harmonic with an extremum over Aphrodite Terra was found. It can be considered as a superposition of a solar-synchronous tide and a stationary wave caused by interaction of the windstream with the surface. At the IR level (55±4 km) a correlation between surface topography and meridional speed was found in the region 10-30°S. The average meridional flow is equatorward at the IR level, but in the region Aphrodite Terra it is poleward. Acknowledgements: M.V. Patsaeva, I.V. Khatuntsev and J.-L. Bertaux were supported by the Ministry of Education and Science of Russian Federation grant 14.W03.31.0017. References: [1] Khatuntsev, I.V., M.V. Patsaeva, D.V. Titov, N.I. Ignatiev, A.V. Turin, S.S. Limaye, W.J. Markiewicz, M. Almeida, T. Roatsch and R. Moissl (2013), Cloud level winds from the Venus Express Monitoring Camera imaging., Icarus, 226, 140-158. [2] Patsaeva, M.V., I.V. Khatuntsev, D.V. Patsaev, D.V. Titov, N.I. Ignatiev, W.J. Markiewicz, A.V. Rodin (2015), The relationship between mesoscale circulation and cloud morphology at the upper cloud level of Venus from VMC/Venus Express, Planet. Space Sci. 113(08), 100-108, doi:10.1016/j.pss.2015.01.013. [3] Bertaux, J.-L., I. V. Khatuntsev, A. Hauchecorne, W. J. Markiewicz, E. Marcq, S. Lebonnois, M. Patsaeva, A. Turin, and A. Fedorova (2016), Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves, J. Geophys. Res. Planets, 121, 1087-1101, doi:10.1002/2015JE004958.
The structure and large-scale organization of extreme cold waves over the conterminous United States
NASA Astrophysics Data System (ADS)
Xie, Zuowei; Black, Robert X.; Deng, Yi
2017-12-01
Extreme cold waves (ECWs) occurring over the conterminous United States (US) are studied through a systematic identification and documentation of their local synoptic structures, associated large-scale meteorological patterns (LMPs), and forcing mechanisms external to the US. Focusing on the boreal cool season (November-March) for 1950‒2005, a hierarchical cluster analysis identifies three ECW patterns, respectively characterized by cold surface air temperature anomalies over the upper midwest (UM), northwestern (NW), and southeastern (SE) US. Locally, ECWs are synoptically organized by anomalous high pressure and northerly flow. At larger scales, the UM LMP features a zonal dipole in the mid-tropospheric height field over North America, while the NW and SE LMPs each include a zonal wave train extending from the North Pacific across North America into the North Atlantic. The Community Climate System Model version 4 (CCSM4) in general simulates the three ECW patterns quite well and successfully reproduces the observed enhancements in the frequency of their associated LMPs. La Niña and the cool phase of the Pacific Decadal Oscillation (PDO) favor the occurrence of NW ECWs, while the warm PDO phase, low Arctic sea ice extent and high Eurasian snow cover extent (SCE) are associated with elevated SE-ECW frequency. Additionally, high Eurasian SCE is linked to increases in the occurrence likelihood of UM ECWs.
Convection and Dynamo Action in Ice Giant Dynamo Models with Electrical Conductivity Stratification
NASA Astrophysics Data System (ADS)
Soderlund, K. M.; Featherstone, N. A.; Heimpel, M. H.; Aurnou, J. M.
2017-12-01
Uranus and Neptune are relatively unexplored, yet critical for understanding the physical and chemical processes that control the behavior and evolution of giant planets. Because their multipolar magnetic fields, three-jet zonal winds, and extreme energy balances are distinct from other planets in our Solar System, the ice giants provide a unique opportunity to test hypotheses for internal dynamics and magnetic field generation. While it is generally agreed that dynamo action in the ionic ocean generates their magnetic fields, the mechanisms that control the morphology, strength, and evolution of the dynamos - which are likely distinct from those in the gas giants and terrestrial planets - are not well understood. We hypothesize that the dynamos and zonal winds are dynamically coupled and argue that their characteristics are a consequence of quasi-three-dimensional turbulence in their interiors. Here, we will present new dynamo simulations with an inner electrically conducting region and outer electrically insulating layer to self-consistently couple the ionic oceans and molecular envelopes of these planets. For each simulation, the magnetic field morphology and amplitude, zonal flow profile, and internal heat flux pattern will be compared against corresponding observations of Uranus and Neptune. We will also highlight how these simulations will both contribute to and benefit from a future ice giant mission.
Radar studies of midlatitude ionospheric plasma drifts
NASA Astrophysics Data System (ADS)
Scherliess, L.; Fejer, B. G.; Holt, J.; Goncharenko, L.; Amory-Mazaudier, C.; Buonsanto, M. J.
2001-02-01
We use incoherent scatter radar measurements from Millstone Hill and Saint Santin to study the midlatitude F region electrodynamic plasma drifts during geomagnetically quiet and active periods. We present initially a local time, season, and solar flux dependent analytical model of the quiet time zonal and meridional
NASA Astrophysics Data System (ADS)
Liu, B.; Jin, Q.; He, J.
2017-12-01
More than 70% population living in the subtropics of the northern hemisphere are exposed to the serious air pollution. In the present, the zonal asymmetric evolution of the 550-nm aerosol optical depth (AOD) over this region has been observed between the East Asian (EA) and the East North American (ENA) continent from boreal winter to summer. The peak of AOD emerges in April over the EA and decreases evidently till June, meanwhile the AOD is still increasing over the ENA, although the low-level southerly is prevailing over the two areas. The diagnosis suggests that such zonal asymmetry is ascribed to the distinct feedback between general circulation and atmospheric heat source (AHS) in situ. The condensation heating becomes dominant in the AHS over the East Asia in April, along with the low-level southerly and the upper-tropospheric northerly, implicating the formation of summertime circulation pattern. Afterwards, the deep convection and the ventilation with strong ascending is generated to reduce the AOD over the EA. Whereas the similar configuration between circulation and AHS takes place over the ENA in June. Furthermore, the possible reason for the different evolution of atmospheric heating source between East Asia and East North America has been discussed.
Two dimensional wavefront retrieval using lateral shearing interferometry
NASA Astrophysics Data System (ADS)
Mancilla-Escobar, B.; Malacara-Hernández, Z.; Malacara-Hernández, D.
2018-06-01
A new zonal two-dimensional method for wavefront retrieval from a surface under test using lateral shearing interferometry is presented. A modified Saunders method and phase shifting techniques are combined to generate a method for wavefront reconstruction. The result is a wavefront with an error below 0.7 λ and without any global high frequency filtering. A zonal analysis over square cells along the surfaces is made, obtaining a polynomial expression for the wavefront deformations over each cell. The main advantage of this method over previously published methods is that a global filtering of high spatial frequencies is not present. Thus, a global smoothing of the wavefront deformations is avoided, allowing the detection of deformations with relatively small extensions, that is, with high spatial frequencies. Additionally, local curvature and low order aberration coefficients are obtained in each cell.
Differential rotation in Jupiter: A comparison of methods
NASA Astrophysics Data System (ADS)
Wisdom, J.; Hubbard, W. B.
2016-03-01
Whether Jupiter rotates as a solid body or has some element of differential rotation along concentric cylinders is unknown. But Jupiter's zonal wind is not north/south symmetric so at most some average of the north/south zonal winds could be an expression of cylinders. Here we explore the signature in the gravitational moments of such a smooth differential rotation. We carry out this investigation with two general methods for solving for the interior structure of a differentially rotating planet: the CMS method of Hubbard (Hubbard, W.B. [2013]. Astrophys. J. 768, 1-8) and the CLC method of Wisdom (Wisdom, J. [1996]. Non-Perturbative Hydrostatic Equilibrium. http://web.mit.edu/wisdom/www/interior.pdf). The two methods are in remarkable agreement. We find that for smooth differential rotation the moments do not level off as they do for strong differential rotation.
NASA Astrophysics Data System (ADS)
Hueso, Ricardo; Garate-Lopez, I.; Peralta, J.; Bandos, T.; Sánchez-Lavega, A.
2013-10-01
After more than 6 years orbiting Venus the Venus Express mission has provided the largest database of observations of Venus atmosphere at different cloud layers with the combination of VMC and VIRTIS instruments. We present measurements of cloud motions in the South hemisphere of Venus analyzing images from the VIRTIS-M visible channel at different wavelengths sensitive to the upper cloud haze at 65-70 km height (dayside ultraviolet images) and the middle cloud deck (dayside visible and near infrared images around 1 μm) about 5-8 km deeper in the atmosphere. We combine VIRTIS images in nearby wavelengths to increase the contrast of atmospheric details and measurements were obtained with a semi-automatic cloud correlation algorithm. Both cloud layers are studied simultaneously to infer similarities and differences in these vertical levels in terms of cloud morphologies and winds. For both levels we present global mean zonal and meridional winds, latitudinal distribution of winds with local time and the wind shear between both altitudes. The upper branch of the Hadley cell circulation is well resolved in UV images with an acceleration of the meridional circulation at mid-latitudes with increasing local time peaking at 14-16h. This organized meridional circulation is almost absent in NIR images. Long-term variability of zonal winds is also found in UV images with increasing winds over time during the VEX mission. This is in agreement with current analysis of VMC images (Kathuntsev et al. 2013). The possible long-term acceleration of zonal winds is also examined for NIR images. References Khatuntsev et al. Icarus 226, 140-158 (2013)
Apitz, Janina; Weihe, Andreas; Pohlheim, Frank; Börner, Thomas
2013-02-01
While uniparental transmission of mtDNA is widespread and dominating in eukaryotes leaving mutation as the major source of genotypic diversity, recently, biparental inheritance of mitochondrial genes has been demonstrated in reciprocal crosses of Pelargonium zonale and P. inquinans. The thereby arising heteroplasmy carries the potential for recombination between mtDNAs of different descent, i.e. between the parental mitochondrial genomes. We have analyzed these Pelargonium hybrids for mitochondrial intergenomic recombination events by examining differences in DNA blot hybridization patterns of the mitochondrial genes atp1 and cob. Further investigation of these genes and their flanking regions using nucleotide sequence polymorphisms and PCR revealed DNA segments in the progeny, which contained both P. zonale and P. inquinans sequences suggesting an intergenomic recombination in hybrids of Pelargonium. This turns Pelargonium into an interesting subject for studies of recombination and evolutionary dynamics of mitochondrial genomes.
Dynamical excitation of the tropical Pacific Ocean and ENSO variability by Little Ice Age cooling.
Rustic, Gerald T; Koutavas, Athanasios; Marchitto, Thomas M; Linsley, Braddock K
2015-12-18
Tropical Pacific Ocean dynamics during the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) are poorly characterized due to a lack of evidence from the eastern equatorial Pacific. We reconstructed sea surface temperature, El Niño-Southern Oscillation (ENSO) activity, and the tropical Pacific zonal gradient for the past millennium from Galápagos ocean sediments. We document a mid-millennium shift (MMS) in ocean-atmosphere circulation around 1500-1650 CE, from a state with dampened ENSO and strong zonal gradient to one with amplified ENSO and weak gradient. The MMS coincided with the deepest LIA cooling and was probably caused by a southward shift of the intertropical convergence zone. The peak of the MCA (900-1150 CE) was a warm period in the eastern Pacific, contradicting the paradigm of a persistent La Niña pattern. Copyright © 2015, American Association for the Advancement of Science.
Zonal wind observations during a geomagnetic storm
NASA Technical Reports Server (NTRS)
Miller, N. J.; Spencer, N. W.
1986-01-01
In situ measurements taken by the Wind and Temperature Spectrometer (WATS) onboard the Dynamics Explorer 2 spacecraft during a geomagnetic storm display zonal wind velocities that are reduced in the corotational direction as the storm intensifies. The data were taken within the altitudes 275 to 475 km in the dusk local time sector equatorward of the auroral region. Characteristic variations in the value of the Dst index of horizontal geomagnetic field strength are used to monitor the storm evolution. The detected global rise in atmospheric gas temperature indicates the development of thermospheric heating. Concurrent with that heating, reductions in corotational wind velocities were measured equatorward of the auroral region. Just after the sudden commencement, while thermospheric heating is intense in both hemispheres, eastward wind velocities in the northern hemisphere show reductions ranging from 500 m/s over high latitudes to 30 m/s over the geomagnetic equator. After 10 hours storm time, while northern thermospheric heating is diminishing, wind velocity reductions, distinct from those initially observed, begin to develop over southern latitudes. In the latter case, velocity reductions range from 300 m/s over the highest southern latitudes to 150 m/s over the geomagnetic equator and extend into the Northern Hemisphere. The observations highlight the interhemispheric asymmetry in the development of storm effects detected as enhanced gas temperatures and reduced eastward wind velocities. Zonal wind reductions over high latitudes can be attributed to the storm induced equatorward spread of westward polar cap plasma convection and the resulting plasma-neutral collisions. However, those collisions are less significant over low latitudes; so zonal wind reductions over low latitudes must be attributed to an equatorward extension of a thermospheric circulation pattern disrupted by high latitude collisions between neutrals transported via eastward winds and ions convecting westward.
NASA Astrophysics Data System (ADS)
Ortland, David A.
2017-04-01
Satellites provide a global view of the structure in the fields that they measure. In the mesosphere and lower thermosphere, the dominant features in these fields at low zonal wave number are contained in the zonal mean, quasi-stationary planetary waves, and tide components. Due to the nature of the satellite sampling pattern, stationary, diurnal, and semidiurnal components are aliased and spectral methods are typically unable to separate the aliased waves over short time periods. This paper presents a data processing scheme that is able to recover the daily structure of these waves and the zonal mean state. The method is validated by using simulated data constructed from a mechanistic model, and then applied to Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature measurements. The migrating diurnal tide extracted from SABER temperatures for 2009 has a seasonal variability with peak amplitude (20 K at 95 km) in February and March and minimum amplitude (less than 5 K at 95 km) in early June and early December. Higher frequency variability includes a change in vertical structure and amplitude during the major stratospheric warming in January. The migrating semidiurnal tide extracted from SABER has variability on a monthly time scale during January through March, minimum amplitude in April, and largest steady amplitudes from May through September. Modeling experiments were performed that show that much of the variability on seasonal time scales in the migrating tides is due to changes in the mean flow structure and the superposition of the tidal responses to water vapor heating in the troposphere and ozone heating in the stratosphere and lower mesosphere.
Chang, Loren C; Yue, Jia; Wang, Wenbin; Wu, Qian; Meier, R R
2014-01-01
Dissipating planetary waves in the mesosphere/lower thermosphere (MLT) region may cause changes in the background dynamics of that region, subsequently driving variability throughout the broader thermosphere/ionosphere system via mixing due to the induced circulation changes. We report the results of case studies examining the possibility of such coupling during the northern winter in the context of the quasi two day wave (QTDW)—a planetary wave that recurrently grows to large amplitudes from the summer MLT during the postsolstice period. Six distinct QTDW events between 2003 and 2011 are identified in the MLT using Sounding of the Atmosphere using Broadband Emission Radiometry temperature observations. Concurrent changes to the background zonal winds, zonal mean column O/N2 density ratio, and ionospheric total electron content (TEC) are examined using data sets from Thermosphere Ionosphere Mesosphere Energetics and Dynamics Doppler Interferometer, Global Ultraviolet Imager, and Global Ionospheric Maps, respectively. We find that in the 5–10 days following a QTDW event, the background zonal winds in the MLT show patterns of eastward and westward anomalies in the low and middle latitudes consistent with past modeling studies on QTDW-induced mean wind forcing, both below and at turbopause altitudes. This is accompanied by potentially related decreases in zonal mean thermospheric column O/N2, as well as to low-latitude TECs. The recurrent nature of the above changes during the six QTDW events examined point to an avenue for vertical coupling via background dynamics and chemistry of the thermosphere/ionosphere not previously observed. Key Points Dissipating planetary waves (PWs) in the MLT can drive background wind changes Mixing from dissipating PWs drive thermosphere/ionosphere composition changes First observations of QTDW-driven variability from this mechanism PMID:26312201
Chang, Loren C; Yue, Jia; Wang, Wenbin; Wu, Qian; Meier, R R
2014-06-01
Dissipating planetary waves in the mesosphere/lower thermosphere (MLT) region may cause changes in the background dynamics of that region, subsequently driving variability throughout the broader thermosphere/ionosphere system via mixing due to the induced circulation changes. We report the results of case studies examining the possibility of such coupling during the northern winter in the context of the quasi two day wave (QTDW)-a planetary wave that recurrently grows to large amplitudes from the summer MLT during the postsolstice period. Six distinct QTDW events between 2003 and 2011 are identified in the MLT using Sounding of the Atmosphere using Broadband Emission Radiometry temperature observations. Concurrent changes to the background zonal winds, zonal mean column O/N 2 density ratio, and ionospheric total electron content (TEC) are examined using data sets from Thermosphere Ionosphere Mesosphere Energetics and Dynamics Doppler Interferometer, Global Ultraviolet Imager, and Global Ionospheric Maps, respectively. We find that in the 5-10 days following a QTDW event, the background zonal winds in the MLT show patterns of eastward and westward anomalies in the low and middle latitudes consistent with past modeling studies on QTDW-induced mean wind forcing, both below and at turbopause altitudes. This is accompanied by potentially related decreases in zonal mean thermospheric column O/N 2 , as well as to low-latitude TECs. The recurrent nature of the above changes during the six QTDW events examined point to an avenue for vertical coupling via background dynamics and chemistry of the thermosphere/ionosphere not previously observed. Dissipating planetary waves (PWs) in the MLT can drive background wind changesMixing from dissipating PWs drive thermosphere/ionosphere composition changesFirst observations of QTDW-driven variability from this mechanism.
NASA Astrophysics Data System (ADS)
Wise, E.; Dannenberg, M. P.
2015-12-01
The trajectory of incoming storms from the Pacific Ocean is a key influence on drought and flood regimes in western North America. Flow is typically from the west in a zonal pattern, but decadal shifts between zonal and meridional flow have been identified as key features in hydroclimatic variability over the instrumental period. In Washington and most of the Pacific Northwest, there tend to be lower-latitude storm systems that result in decreased precipitation in El Niño years. However, the Columbia Basin in central Washington behaves in opposition to the surrounding region and typically has average to above-average precipitation in El Niño years due to changing storm-track trajectories and a decreasing rain shadow effect on the leeward side of the Cascades. This direct connection between storm-track position and precipitation patterns in Washington provided an exceptional opportunity for circulation-based field sampling and chronology development. New Pinus ponderosa (Ponderosa pine) tree-ring chronologies were developed from eight sites around the Columbia Basin in Washington and used to examine year-to-year changes in moisture regimes. Results show that these sites are representative of the two distinct climate response areas. The divergence points between these two site responses allowed us to reconstruct changing precipitation patterns since the late-17th century, and to link these patterns to previously reconstructed atmospheric pressure and El Niño indices. This study highlights the potential for using synoptic climatology to inform field-based proxy collection.
Soil salinization in different natural zones of intermontane depressions in Tuva
NASA Astrophysics Data System (ADS)
Chernousenko, G. I.; Kurbatskaya, S. S.
2017-11-01
Soil salinization features in semidesert, dry steppe, and chernozemic steppe zones within intermontane depressions in the central part of the Tuva Republic are discussed. Chernozems, chestnut soils, and brown desert-steppe soils of these zones are usually nonsaline. However, salinization of these zonal soils is possible in the case of the presence of salt-bearing parent materials (usually, the derivatives of Devonian deposits). In different natural zones of the intermontane depressions, salt-affected soils are mainly allocated to endorheic lake basins, where they are formed in places of discharge of mineral groundwater, and to river valleys. The composition and content of salts in the natural waters are dictated by the local hydrogeological conditions. The total content of dissolved solids in lake water varies from 1 to 370 g/L; the water is usually of the sulfate-chloride or chloride-sulfate salinity type; in some cases, soda-sulfate water is present. Soil salinity around the lakes is usually of the chloride-sulfate-sodium type; gypsum is often present in the profiles. Chloride salinization rarely predominates in this part of Tuva, because chlorides are easily leached off from the mainly coarse-textured soils. In some cases, the predominance of magnesium over sodium is observed in the composition of dissolved salts, which may be indicative of the cryogenic transformation of soil salts. Soda-saline soils are present in all the considered natural zones on minor areas. It is hardly possible to make unambiguous statements about the dominance of the particular type of salinity in the given natural zones. Zonal salinity patterns are weakly expressed in salinization of hydromorphic soils. However, a tendency for more frequent occurrence of soda-saline soils in steppe landscapes and chloride-sulfate salinization (often, with participation of gypsum) in the dry steppe and semidesert landscapes is observed.
Rossby waves and two-dimensional turbulence in a large-scale zonal jet
NASA Technical Reports Server (NTRS)
Shepherd, Theodor G.
1987-01-01
Homogeneous barotropic beta-plane turbulence is investigated, taking into account the effects of spatial inhomogeneity in the form of a zonal shear flows. Attention is given to the case of zonal flows that are barotropically stable and of larger scale than the resulting transient eddy field. Numerical simulations reveal that large-scale zonal flows alter the picture of classical beta-plane turbulence. It is found that the disturbance field penetrates to the largest scales of motion, that the larger disturbance scales show a tendency to meridional rather than zonal anisotropy, and that the initial spectral transfer rate away from an isotropic intermediate-scale source is enhanced by the shear-induced transfer associated with straining by the zonal flow.
Impact of impurities on zonal flow driven by trapped electron mode turbulence
NASA Astrophysics Data System (ADS)
Guo, Weixin; Wang, Lu; Zhuang, Ge
2017-12-01
The impact of impurities on the generation of zonal flow (ZF) driven by collisonless trapped electron mode turbulence in deuterium (D)-tritium (T) plasmas is investigated. An expression for ZF growth rate with impurities is derived by balancing the ZF potential shielded by polarization effects and the ZF modulated radial turbulent current. Then, it is shown that the maximum normalized ZF growth rate is reduced by the presence of fully ionized non-trace light impurities with relatively flat density profile, and slightly reduced by highly ionized trace tungsten, while the maximum normalized ZF growth rate can be enhanced by fully ionized non-trace light impurities with relatively steep density profile. In particular, the effects of high temperature helium from D-T reaction on ZF depend on the temperature ratio between electrons and high temperature helium. The possible relevance of our findings to recent experimental results and future burning plasmas is also discussed.
Transport in zonal flows in analogous geophysical and plasma systems
NASA Astrophysics Data System (ADS)
del-Castillo-Negrete, Diego
1999-11-01
Zonal flows occur naturally in the oceans and the atmosphere of planets. Important examples include the zonal flows in Jupiter, the stratospheric polar jet in Antarctica, and oceanic jets like the Gulf Stream. These zonal flows create transport barriers that have a crucial influence on mixing and confinement (e.g. the ozone depletion in Antarctica). Zonal flows also give rise to long-lasting vortices (e.g. the Jupiter red spot) by shear instability. Because of this, the formation and stability of zonal flows and their role on transport have been problems of great interest in geophysical fluid dynamics. On the other hand, zonal flows have also been observed in fusion plasmas and their impact on the reduction of transport has been widely recognized. Based on the well-known analogy between Rossby waves in quasigeostrophic flows and drift waves in magnetically confined plasmas, I will discuss the relevance to fusion plasmas of models and experiments recently developed in geophysical fluid dynamics. Also, the potential application of plasma physics ideas to geophysical flows will be discussed. The role of shear in the suppression of transport and the effect of zonal flows on the statistics of transport will be studied using simplified models. It will be shown how zonal flows induce large particle displacements that can be characterized as Lévy flights, and that the trapping effect of vortices combined with the zonal flows gives rise to anomalous diffusion and Lévy (non-Gaussian) statistics. The models will be compared with laboratory experiments and with atmospheric and oceanographic qualitative observations.
NASA Astrophysics Data System (ADS)
Yoshida, K.; Naoe, H.
2016-12-01
Whether climate models drive Quasi-Biennial Oscillation (QBO) appropriately is important to assess QBO impact on climate change such as global warming and solar related variation. However, there were few models generating QBO in the Coupled Model Intercomparison Project Phase 5 (CMIP5). This study focuses on dynamical structure of the QBO and its sensitivity to background wind pattern and model configuration. We present preliminary results of experiments designed by "Towards Improving the QBO in Global Climate Models (QBOi)", which is derived from the Stratosphere-troposphere processes and their role in climate (SPARC), in the Meteorological Research Institute earth system model, MRI-ESM2. The simulations were performed in present-day climate condition, repeated annual cycle condition with various CO2 level and sea surface temperatures, and QBO hindcast. In the present climate simulation, zonal wind in the equatorial stratosphere generally exhibits realistic behavior of the QBO. Equatorial zonal wind variability associated with QBO is overestimated in upper stratosphere and underestimated in lower stratosphere. In the MRI-ESM2, the QBO behavior is mainly driven by gravity wave drag parametrization (GWDP) introduced in Hines (1997). Comparing to reanalyses, shortage of resolved wave forcing is found especially in equatorial lower stratosphere. These discrepancies can be attributed to difference in wave forcing, background wind pattern and model configuration. We intend to show results of additional sensitivity experiments to examine how model configuration and background wind pattern affect resolved wave source, wave propagation characteristics, and QBO behavior.
Mesospheric circulation at the cloud top level of Venus according to Venus Monitoring Camera images
NASA Astrophysics Data System (ADS)
Khatuntsev, Igor; Patsaeva, Marina; Ignatiev, Nikolay; Titov, Dmitri; Markiewicz, Wojciech; Turin, Alexander
We present results of wind speed measurements at the cloud top level of Venus derived from manual cloud tracking in the UV (365 nm) and IR (965 nm) channels of the Venus Monitoring Camera Experiment (VMC) [1] on board the Venus Express mission. Cloud details have a maximal contrast in the UV range. More then 90 orbits have been processed. 30000 manual vectors were obtained. The period of the observations covers more than 4 venusian year. Zonal wind speed demonstrates the local solar time dependence. Possible diurnal and semidiurnal components are observed [2]. According to averaged latitude profile of winds at level of the upper clouds: -The zonal speed is slightly increasing by absolute values from 90 on the equator to 105 m/s at latitudes —47 degrees; -The period of zonal rotation has the maximum at the equator (5 earth days). It has the minimum (3 days) at altitudes —50 degrees. After minimum periods are slightly increasing toward the South pole; -The meridional speed has a value 0 on the equator, and then it is linear increasing up to 10 m/s (by absolute value) at 50 degrees latitude. "-" denotes movement from the equator to the pole. -From 50 to 80 degrees the meridional speed is again decreasing by absolute value up to 0. IR (965+10 nm) day side images can be used for wind tracking. The obtained speed of the zonal wind in the low and middle latitudes are systematically less than the wind speed derived from the UV images. The average zonal speed obtained from IR day side images in the low and average latitudes is about 65-70 m/s. The given fact can be interpreted as observation of deeper layers of mesosphere in the IR range in comparison with UV. References [1] Markiewicz W. J. et al. (2007) Planet. Space Set V55(12). P.1701-1711. [2] Moissl R., et al. (2008) J. Geophys. Res. 2008. doi:10.1029/2008JE003117. V.113.
Spatial Organization In Europe of Decadal and Interdecadal Fluctuations In Annual Rainfall
NASA Astrophysics Data System (ADS)
Lucero, O. A.; Rodriguez, N. C.
In this research the spatial patterns of decadal and bidecadal fluctuations in annual rainfall in Europe are identified. Filtering of time series of anomaly of annual rainfall is carried out using the Morlet wavelet technique. Reconstruction is achieved by sum- ming the contributions from bands of wavelet timescales; the decadal band and the bidecadal band are composed of contributions from the band of (10- to 17-year] and (17- to 27- year] timescales respectively. Results indicate that 1) the spatial organi- zation of decadal and bidecadal components of annual rainfall are standing wave-like organized patterns. Three standing decadal fluctuations zonally aligned formed the spatial pattern from 1900 until 1931; thereafter the pattern changed into a NW-SE orientation. The decadal band shows an average 12-year period. 2) The spatial orga- nization of bidecadal component was composed of three standing fluctuations since 1903 to 1986. After 1987 two standing bidecadal fluctuations were located on Europe. The orientation of bidecadal fluctuations changed during the period under study. Until 1913 the spatial pattern of the bidecadal component was zonally aligned. Since 1913 until 1986 the three bidecadal fluctuations composing the spatial pattern were aligned SW U NE; starting 1987 the spatial pattern is composed of two standing fluctuations zonally aligned. The bidecadal spatial pattern shows an average period of 20- to 22- year length. 3) At decadal and bidecadal timescales, the first principal component of the spatial field of anomaly of annual rainfall and the NAO index are connected. The upper positive third (lower negative third) of values of first principal component are indicative of extensive area with positive (negative) anomaly of annual rainfall. 4) At decadal timescale the relative phase between the first PC and the NAO index changes through the period under study; these changes define three regimes: 1) Dur- ing the regime covering the period 1900 (start of period under study) to about 1945, at the time of peak values of decadal NAO-index it takes place a transition between extremes (a neutral state) of the decadal rainfall spatial pattern (first PC takes small absolute values). Besides, for positive (negative) peak value of NAO index the spatial pattern of annual rainfall is evolving toward an area of predominantly positive (nega- tive) anomaly. 2) The second regime starts about 1946 and reaches up to early 1980s. At the time of negative (positive) peak of decadal NAO there is a prevailing spatial pattern of positive (negative) anomaly of decadal rainfall. 3) The third regime starts 1 about late 1970s and reaches to the end of the period under study (in 1996). There is a change of relative phase within this period in late 1980s. In this regime a spatial pattern of prevailing positive or negative anomaly of decadal rainfall takes place dur- ing values of decadal NAO close to zero. 5) At bidecadal timescale the relative phase between the first PC and the NAO index remains almost constant through the period under study. The first PC of the transformed bidecadal component of annual rainfall anomaly attains its positive (negative) peak about three years before the bidecadal component of NAO reaches its negative (positive) peak. 2
On the tertiary instability formalism of zonal flows in magnetized plasmas
NASA Astrophysics Data System (ADS)
Rath, F.; Peeters, A. G.; Buchholz, R.; Grosshauser, S. R.; Seiferling, F.; Weikl, A.
2018-05-01
This paper investigates the so-called tertiary instabilities driven by the zonal flow in gyro-kinetic tokamak core turbulence. The Kelvin Helmholtz instability is first considered within a 2D fluid model and a threshold in the zonal flow wave vector kZF>kZF,c for instability is found. This critical scale is related to the breaking of the rotational symmetry by flux-surfaces, which is incorporated into the modified adiabatic electron response. The stability of undamped Rosenbluth-Hinton zonal flows is then investigated in gyro-kinetic simulations. Absolute instability, in the sense that the threshold zonal flow amplitude tends towards zero, is found above a zonal flow wave vector kZF,cρi≈1.3 ( ρi is the ion thermal Larmor radius), which is comparable to the 2D fluid results. Large scale zonal flows with kZF
Saturn’s gravitational field induced by its equatorially antisymmetric zonal winds
NASA Astrophysics Data System (ADS)
Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John D.
2018-05-01
The cloud-level zonal winds of Saturn are marked by a substantial equatorially antisymmetric component with a speed of about 50ms‑1 which, if they are sufficiently deep, can produce measurable odd zonal gravitational coefficients ΔJ 2k+1, k = 1, 2, 3, 4. This study, based on solutions of the thermal-gravitational wind equation, provides a theoretical basis for interpreting the odd gravitational coefficients of Saturn in terms of its equatorially antisymmetric zonal flow. We adopt a Saturnian model comprising an ice-rock core, a metallic dynamo region and an outer molecular envelope. We use an equatorially antisymmetric zonal flow that is parameterized, confined in the molecular envelope and satisfies the solvability condition required for the thermal-gravitational wind equation. The structure and amplitude of the zonal flow at the cloud level are chosen to be consistent with observations of Saturn. We calculate the odd zonal gravitational coefficients ΔJ 2k+1, k = 1, 2, 3, 4 by regarding the depth of the equatorially antisymmetric winds as a parameter. It is found that ΔJ 3 is ‑4.197 × 10‑8 if the zonal winds extend about 13 000 km downward from the cloud tops while it is ‑0.765 × 10‑8 if the depth is about 4000 km. The depth/profile of the equatorially antisymmetric zonal winds can eventually be estimated when the high-precision measurements of the Cassini Grand Finale become available.
Garrison, Presley; Yue, Shanna; Hanson, Jeffrey; Baron, Jeffrey; Lui, Julian C.
2017-01-01
Articular and growth plate cartilage both arise from condensations of mesenchymal cells, but ultimately develop important histological and functional differences. Each is composed of three layers—the superficial, mid and deep zones of articular cartilage and the resting, proliferative and hypertrophic zones of growth plate cartilage. The bone morphogenetic protein (BMP) system plays an important role in cartilage development. A gradient in expression of BMP-related genes has been observed across growth plate cartilage, likely playing a role in zonal differentiation. To investigate the presence of a similar expression gradient in articular cartilage, we used laser capture microdissection (LCM) to separate murine growth plate and articular cartilage from the proximal tibia into their six constituent zones, and used a solution hybridization assay with color-coded probes (nCounter) to quantify mRNAs for 30 different BMP-related genes in each zone. In situ hybridization and immunohistochemistry were then used to confirm spatial expression patterns. Expression gradients for Bmp2 and 6 were observed across growth plate cartilage with highest expression in hypertrophic zone. However, intracellular BMP signaling, assessed by phospho-Smad1/5/8 immunohistochemical staining, appeared to be higher in the proliferative zone and prehypertrophic area than in hypertrophic zone, possibly due to high expression of Smad7, an inhibitory Smad, in the hypertrophic zone. We also found BMP expression gradients across the articular cartilage with BMP agonists primarily expressed in the superficial zone and BMP functional antagonists primarily expressed in the deep zone. Phospho-Smad1/5/8 immunohistochemical staining showed a similar gradient. In combination with previous evidence that BMPs regulate chondrocyte proliferation and differentiation, the current findings suggest that BMP signaling gradients exist across both growth plate and articular cartilage and that these gradients may contribute to the spatial differentiation of chondrocytes in the postnatal endochondral skeleton. PMID:28467498
Turbulence, transport, and zonal flows in the Madison symmetric torus reversed-field pinch
NASA Astrophysics Data System (ADS)
Williams, Z. R.; Pueschel, M. J.; Terry, P. W.; Hauff, T.
2017-12-01
The robustness and the effect of zonal flows in trapped electron mode (TEM) turbulence and Ion Temperature Gradient (ITG) turbulence in the reversed-field pinch (RFP) are investigated from numerical solutions of the gyrokinetic equations with and without magnetic external perturbations introduced to model tearing modes. For simulations without external magnetic field perturbations, zonal flows produce a much larger reduction of transport for the density-gradient-driven TEM turbulence than they do for the ITG turbulence. Zonal flows are studied in detail to understand the nature of their strong excitation in the RFP and to gain insight into the key differences between the TEM- and ITG-driven regimes. The zonal flow residuals are significantly larger in the RFP than in tokamak geometry due to the low safety factor. Collisionality is seen to play a significant role in the TEM zonal flow regulation through the different responses of the linear growth rate and the size of the Dimits shift to collisionality, while affecting the ITG only minimally. A secondary instability analysis reveals that the TEM turbulence drives zonal flows at a rate that is twice that of the ITG turbulence. In addition to interfering with zonal flows, the magnetic perturbations are found to obviate an energy scaling relation for fast particles.
Zonal wavefront reconstruction in quadrilateral geometry for phase measuring deflectometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lei; Xue, Junpeng; Gao, Bo
2017-06-14
There are wide applications for zonal reconstruction methods in slope-based metrology due to its good capability of reconstructing the local details on surface profile. It was noticed in the literature that large reconstruction errors occur when using zonal reconstruction methods designed for rectangular geometry to process slopes in a quadrilateral geometry, which is a more general geometry with phase measuring deflectometry. In this paper, we present a new idea for the zonal methods for quadrilateral geometry. Instead of employing the intermediate slopes to set up height-slope equations, we consider the height increment as a more general connector to establish themore » height-slope relations for least-squares regression. The classical zonal methods and interpolation-assisted zonal methods are compared with our proposal. Results of both simulation and experiment demonstrate the effectiveness of the proposed idea. In implementation, the modification on the classical zonal methods is addressed. Finally, the new methods preserve many good aspects of the classical ones, such as the ability to handle a large incomplete slope dataset in an arbitrary aperture, and the low computational complexity comparable with the classical zonal method. Of course, the accuracy of the new methods is much higher when integrating the slopes in quadrilateral geometry.« less
Dynamics of zonal flows in helical systems.
Sugama, H; Watanabe, T-H
2005-03-25
A theory for describing collisionless long-time behavior of zonal flows in helical systems is presented and its validity is verified by gyrokinetic-Vlasov simulation. It is shown that, under the influence of particles trapped in helical ripples, the response of zonal flows to a given source becomes weaker for lower radial wave numbers and deeper helical ripples while a high-level zonal-flow response, which is not affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing their bounce-averaged radial drift velocity. This implies a possibility that helical configurations optimized for reducing neoclassical ripple transport can simultaneously enhance zonal flows which lower anomalous transport.
Changes in Jupiter's Zonal Wind Profile Preceding and During the Juno Mission
NASA Technical Reports Server (NTRS)
Tollefson, Joshua; Wong, Michael H.; de Pater, Imke; Simon, Amy A.; Orton, Glenn S.; Rogers, John H.; Atreya, Sushil K.; Cosentino, Richard G.; Januszewski, William; Morales-Juberias, Raul;
2017-01-01
We present five epochs of WFC3 HST Jupiter observations taken between 2009-2016 and extract global zonal wind profiles for each epoch. Jupiter's zonal wind field is globally stable throughout these years, but significant variations in certain latitude regions persist. We find that the largest uncertainties in the wind field are due to vortices or hot-spots, and show residual maps which identify the strongest vortex flows. The strongest year-to-year variation in the zonal wind profiles is the 24 deg N jet peak. Numerous plume outbreaks have been observed in the Northern Temperate Belt and are associated with decreases in the zonal velocity and brightness. We show that the 24 deg N jet peak velocity and brightness decreased in 2012 and again in late 2016, following outbreaks during these years. Our February 2016 zonal wind profile was the last highly spatially resolved measurement prior to Juno s first science observations. The final 2016 data were taken in conjunction with Juno's perijove 3 pass on 11 December 2016, and show the zonal wind profile following the plume outbreak at 24 deg N in October 2016.
Ryan, John P; Green, Jonathan R; Espinoza, Eduardo; Hearn, Alex R
2017-01-01
Satellite tracking of 27 whale sharks in the eastern tropical Pacific, examined in relation to environmental data, indicates preferential occupancy of thermo-biological frontal systems. In these systems, thermal gradients are caused by wind-forced circulation and mixing, and biological gradients are caused by associated nutrient enrichment and enhanced primary productivity. Two of the frontal systems result from upwelling, driven by divergence in the current systems along the equator and the west coast of South America; the third results from wind jet dynamics off Central America. All whale sharks were tagged near Darwin Island, Galápagos, within the equatorial Pacific upwelling system. Occupancy of frontal habitat is pronounced in synoptic patterns of shark locations in relation to serpentine, temporally varying thermal fronts across a zonal expanse > 4000 km. 80% of shark positions in northern equatorial upwelling habitat and 100% of positions in eastern boundary upwelling habitat were located within the upwelling front. Analysis of equatorial shark locations relative to thermal gradients reveals occupancy of a transition point in environmental stability. Equatorial subsurface tag data show residence in shallow, warm (>22°C) water 94% of the time. Surface zonal current speeds for all equatorial tracking explain only 16% of the variance in shark zonal movement speeds, indicating that passive drifting is not a primary determinant of movement patterns. Movement from equatorial to eastern boundary frontal zones occurred during boreal winter, when equatorial upwelling weakens seasonally. Off Peru sharks tracked upwelling frontal positions within ~100-350 km from the coast. Off Central America, the largest tagged shark (12.8 m TL) occupied an oceanic front along the periphery of the Panama wind jet. Seasonal movement from waning equatorial upwelling to productive eastern boundary habitat is consistent with underlying trophic dynamics. Persistent shallow residence in thermo-biological frontal zones suggests the role of physical-biological interactions that concentrate food resources.
Green, Jonathan R.; Espinoza, Eduardo; Hearn, Alex R.
2017-01-01
Satellite tracking of 27 whale sharks in the eastern tropical Pacific, examined in relation to environmental data, indicates preferential occupancy of thermo-biological frontal systems. In these systems, thermal gradients are caused by wind-forced circulation and mixing, and biological gradients are caused by associated nutrient enrichment and enhanced primary productivity. Two of the frontal systems result from upwelling, driven by divergence in the current systems along the equator and the west coast of South America; the third results from wind jet dynamics off Central America. All whale sharks were tagged near Darwin Island, Galápagos, within the equatorial Pacific upwelling system. Occupancy of frontal habitat is pronounced in synoptic patterns of shark locations in relation to serpentine, temporally varying thermal fronts across a zonal expanse > 4000 km. 80% of shark positions in northern equatorial upwelling habitat and 100% of positions in eastern boundary upwelling habitat were located within the upwelling front. Analysis of equatorial shark locations relative to thermal gradients reveals occupancy of a transition point in environmental stability. Equatorial subsurface tag data show residence in shallow, warm (>22°C) water 94% of the time. Surface zonal current speeds for all equatorial tracking explain only 16% of the variance in shark zonal movement speeds, indicating that passive drifting is not a primary determinant of movement patterns. Movement from equatorial to eastern boundary frontal zones occurred during boreal winter, when equatorial upwelling weakens seasonally. Off Peru sharks tracked upwelling frontal positions within ~100–350 km from the coast. Off Central America, the largest tagged shark (12.8 m TL) occupied an oceanic front along the periphery of the Panama wind jet. Seasonal movement from waning equatorial upwelling to productive eastern boundary habitat is consistent with underlying trophic dynamics. Persistent shallow residence in thermo-biological frontal zones suggests the role of physical-biological interactions that concentrate food resources. PMID:28854201
Effects of finite poloidal gyroradius, shaping, and collisions on the zonal flow residuala)
NASA Astrophysics Data System (ADS)
Xiao, Yong; Catto, Peter J.; Dorland, William
2007-05-01
Zonal flow helps reduce and regulate the turbulent transport level in tokamaks. Rosenbluth and Hinton have shown that zonal flow damps to a nonvanishing residual level in collisionless [M. Rosenbluth and F. Hinton, Phys. Rev. Lett. 80, 724 (1998)] and collisional [F. Hinton and M. Rosenbluth, Plasma Phys. Control. Fusion 41, A653 (1999)] banana regime plasmas. Recent zonal flow advances are summarized including the evaluation of the effects on the zonal flow residual by plasma cross-section shaping, shorter wavelengths including those less than an electron gyroradius, and arbitrary ion collisionality relative to the zonal low frequency. In addition to giving a brief summary of these new developments, the analytic results are compared with GS2 numerical simulations [M. Kotschenreuther, G. Rewoldt, and W. Tang, Comput. Phys. Commun. 88, 128 (1991)] to demonstrate their value as benchmarks for turbulence codes.
Strong Temporal Variation Over One Saturnian Year: From Voyager to Cassini
NASA Technical Reports Server (NTRS)
Li, Liming; Achterberg, Richard K.; Conrath, Barney J.; Gierasch, Peter J.; Smith, Mark A.; Simon-Miller, Amy A.; Nixon, Conor A.; Orton, Glenn S.; Flasar, F. Michael; Jiang, Xun;
2013-01-01
Here we report the combined spacecraft observations of Saturn acquired over one Saturnian year (approximately 29.5 Earth years), from the Voyager encounters (1980-81) to the new Cassini reconnaissance (2009-10). The combined observations reveal a strong temporal increase of tropic temperature (approximately 10 Kelvins) around the tropopause of Saturn (i.e., 50 mbar), which is stronger than the seasonal variability (approximately a few Kelvins). We also provide the first estimate of the zonal winds at 750 mbar, which is close to the zonal winds at 2000 mbar. The quasi-consistency of zonal winds between these two levels provides observational support to a numerical suggestion inferring that the zonal winds at pressures greater than 500 mbar do not vary significantly with depth. Furthermore, the temporal variation of zonal winds decreases its magnitude with depth, implying that the relatively deep zonal winds are stable with time.
Strong Temporal Variation Over One Saturnian Year: From Voyager to Cassini
Li, Liming; Achterberg, Richard K.; Conrath, Barney J.; Gierasch, Peter J.; Smith, Mark A.; Simon-Miller, Amy A.; Nixon, Conor A.; Orton, Glenn S.; Flasar, F. Michael; Jiang, Xun; Baines, Kevin H.; Morales-Juberías, Raúl; Ingersoll, Andrew P.; Vasavada, Ashwin R.; Del Genio, Anthony D.; West, Robert A.; Ewald, Shawn P.
2013-01-01
Here we report the combined spacecraft observations of Saturn acquired over one Saturnian year (~29.5 Earth years), from the Voyager encounters (1980–81) to the new Cassini reconnaissance (2009–10). The combined observations reveal a strong temporal increase of tropic temperature (~10 Kelvins) around the tropopause of Saturn (i.e., 50 mbar), which is stronger than the seasonal variability (~a few Kelvins). We also provide the first estimate of the zonal winds at 750 mbar, which is close to the zonal winds at 2000 mbar. The quasi-consistency of zonal winds between these two levels provides observational support to a numerical suggestion inferring that the zonal winds at pressures greater than 500 mbar do not vary significantly with depth. Furthermore, the temporal variation of zonal winds decreases its magnitude with depth, implying that the relatively deep zonal winds are stable with time. PMID:23934437
The life cycles of persistent anomalies and blocking over the North Pacific
NASA Technical Reports Server (NTRS)
Dole, Randall M.
1986-01-01
The evolution of persistent anomaly patterns over the central North Pacific is investigated. Composite time evolution fields of the 500-mbar anomaly patterns are constructed from low-pass and unfiltered height anomaly data; the time scales for the development and decay of these persistent anomalies are analyzed. The relationship between zonal flow in the Pacific jet region and the development of the anomaly patterns is examined. The effect of baroclinic instabilities on the development of the anomalies is studied. The vertical structure and synoptic characteristics of the evolution of the anomalies are described. It is noted that the initial rapid growth of the main center may be associated with a propagating, intensifying, synoptic-scale disturbance which originates in the midlatitudes over eastern Asia.
The Role of Reversed Equatorial Zonal Transport in Terminating an ENSO Event
NASA Astrophysics Data System (ADS)
Chen, H. C.; Hu, Z. Z.; Huang, B.; Sui, C. H.
2016-02-01
In this study, we demonstrate that a sudden reversal of anomalous equatorial zonal current at the peaking ENSO phase triggers the rapid termination of an ENSO event. Throughout an ENSO cycle, the anomalous equatorial zonal current is strongly controlled by the concavity of the anomalous thermocline meridional structure near the equator. During the ENSO developing phase, the anomalous zonal current in the central and eastern Pacific generally enhances the ENSO growth through its zonal SST advection. In the mature phase of ENSO, however, the equatorial thermocline depth anomalies are reflected in the eastern Pacific and slowly propagate westward off the equator in both hemispheres. As a result, the concavity of the thermocline anomalies near the equator is reversed, i.e., the off-equatorial thermocline depth anomalies become higher than that on the equator for El Niño events and lower for La Niño events. This meridional change of thermocline structure reverses zonal transport rapidly in the central-to-eastern equatorial Pacific, which weakens the ENSO SST anomalies by reversed advection. More importantly, the reversed zonal mass transport weakens the existing zonal tilting of equatorial thermocline and suppresses the thermocline feedback. Both processes are concentrated in the eastern equatorial Pacific and can be effective on subseasonal time scales. These current reversal effects are built-in to the ENSO peak phase and independent of the zonal wind effect on thermocline slope. It functions as an oceanic control on ENSO evolution during both El Niño and La Niña events.
Excitation mechanism of non-migrating tides
NASA Astrophysics Data System (ADS)
Miyoshi, Yasunobu; Pancheva, Dora; Mukhtarov, Plamen; Jin, Hidekatsu; Fujiwara, Hitoshi; Shinagawa, Hiroyuki
2017-04-01
Using an atmosphere-ionosphere coupled model, the excitation source and temporal (seasonal and interannual) variations in non-migrating tides are investigated in this study. We first focus our attention on temporal variations in eastward moving diurnal tide with zonal wavenumber 3 (DE3), which is the largest of all the non-migrating tides in the mesosphere and lower thermosphere (MLT). Our simulation results indicate that upward propagation of the DE3 excited in the troposphere is sensitive to the zonal mean zonal wind in the stratosphere and mesosphere. The DE3 amplitude is enhanced in the region where the vertical shear of the zonal mean zonal wind is positive (westerly shear). Quasi-2-year variation in the DE3 amplitude in the MLT region is generated by quasi-2-year variation in the zonal mean zonal wind between 40 and 70 km, which is modulated by the stratospheric QBO. The excitation mechanisms of SW3 (westward moving semidiurnal tide with zonal wavenumber 3) and SW1 (westward moving semidiurnal tide with zonal wavenumber 1) are also investigated. During equinoxes, the SW3 and SW1 are excited by tropospheric heating (latent heat release and solar radiative heating) associated with cumulus convection in the tropics, and propagate upward into the MLT region. On the other hand, during solstices, SW3 and SW1 are generated in the winter stratosphere and mesosphere through the nonlinear interaction between the stationary planetary wave and migrating semidiurnal tide, and propagate upward to the lower thermosphere. The excitation sources of other non-migrating tides are also discussed.
On approximate formulas for the electrostatic force between two conducting spheres
NASA Astrophysics Data System (ADS)
Sliško, Josip; Brito-Orta, Raúl A.
1998-04-01
A series expression for the electrostatic force between two charged conducting spheres having equal radii and charges is derived using the method of electrical images. This expression is a special case of that for two spheres with arbitrary charges and radii, found by Maxwell using zonal harmonics. Keeping in mind the use of approximate formulas for the interpretation of classroom measurements of the electrostatic force between spheres, we comment on two incorrect approximate formulas and examine the contribution of the first few non-Coulomb terms of the correct formula by comparing with values obtained using a computational approach.
Shukla, P K
2004-04-01
It is shown that zonal magnetic fields can be parametrically excited by low-frequency dispersive driftlike compressional electromagnetic (DDCEM) modes in a nonuniform dusty magnetoplasma. For this purpose, we derive a pair of coupled equations which exhibits the nonlinear coupling between DDCEM modes and zonal magnetic fields. The coupled mode equations are Fourier analyzed to derive a nonlinear dispersion relation. The latter depicts that zonal magnetic fields are nonlinearly generated at the expense of the low-frequency DDCEM wave energy. The relevance of our investigation to the transfer of energy from short scale DDCEM waves to long scale zonal magnetic field structures in dark molecular clouds is discussed.
Forest response to rising CO 2 drives zonally asymmetric rainfall change over tropical land
Kooperman, Gabriel J.; Chen, Yang; Hoffman, Forrest M.; ...
2018-04-27
Understanding how anthropogenic CO 2 emissions will influence future precipitation is critical for sustainably managing ecosystems, particularly for drought-sensitive tropical forests. Although tropical precipitation change remains uncertain, nearly all models from the Coupled Model Intercomparison Project Phase 5 predict a strengthening zonal precipitation asymmetry by 2100, with relative increases over Asian and African tropical forests and decreases over South American forests. Here we show that the plant physiological response to increasing CO 2 is a primary mechanism responsible for this pattern. Applying a simulation design in the Community Earth System Model in which CO 2 increases are isolated over individualmore » continents, we demonstrate that different circulation, moisture and stability changes arise over each continent due to declines in stomatal conductance and transpiration. The sum of local atmospheric responses over individual continents explains the pan-tropical precipitation asymmetry. Our analysis suggests that South American forests may be more vulnerable to rising CO 2 than Asian or African forests.« less
Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land
NASA Astrophysics Data System (ADS)
Kooperman, Gabriel J.; Chen, Yang; Hoffman, Forrest M.; Koven, Charles D.; Lindsay, Keith; Pritchard, Michael S.; Swann, Abigail L. S.; Randerson, James T.
2018-05-01
Understanding how anthropogenic CO2 emissions will influence future precipitation is critical for sustainably managing ecosystems, particularly for drought-sensitive tropical forests. Although tropical precipitation change remains uncertain, nearly all models from the Coupled Model Intercomparison Project Phase 5 predict a strengthening zonal precipitation asymmetry by 2100, with relative increases over Asian and African tropical forests and decreases over South American forests. Here we show that the plant physiological response to increasing CO2 is a primary mechanism responsible for this pattern. Applying a simulation design in the Community Earth System Model in which CO2 increases are isolated over individual continents, we demonstrate that different circulation, moisture and stability changes arise over each continent due to declines in stomatal conductance and transpiration. The sum of local atmospheric responses over individual continents explains the pan-tropical precipitation asymmetry. Our analysis suggests that South American forests may be more vulnerable to rising CO2 than Asian or African forests.
Low-degree gravity change from GPS data of COSMIC and GRACE satellite missions
NASA Astrophysics Data System (ADS)
Lin, Tingjung; Hwang, Cheinway; Tseng, Tzu-Pang; Chao, B. F.
2012-01-01
This paper demonstrates estimation of time-varying gravity harmonic coefficients from GPS data of COSMIC and GRACE satellite missions. The kinematic orbits of COSMIC and GRACE are determined to the cm-level accuracy. The NASA Goddard's GEODYN II software is used to model the orbit dynamics of COSMIC and GRACE, including the effect of a static gravity field. The surface forces are estimated per one orbital period. Residual orbits generated from kinematic and reference orbits serve as observables to determine the harmonic coefficients in the weighted-constraint least-squares. The monthly COSMIC and GRACE GPS data from September 2006 to December 2007 (16 months) are processed to estimate harmonic coefficients to degree 5. The geoid variations from the GPS and CSR RL04 (GRACE) solutions show consistent patterns over space and time, especially in regions of active hydrological changes. The monthly GPS-derived second zonal coefficient closely resembles the SLR-derived and CSR RL04 values, and third and fourth zonal coefficients resemble the CSR RL04 values.
NASA Technical Reports Server (NTRS)
Takahashi, Masaaki; Holton, James R.
1991-01-01
Observations show that the westerly acceleration of the equatorial quasi-biennial oscillation (QBO) can be accounted for by Kelvin waves, but that there is a deficiency in the easterly acceleration due to Rossby-gravity waves. Rossby waves and westward propagating gravity waves have been suggested as alternative sources for the easterly acceleration. The possible role of these two wave modes has been tested in a two-dimensional model of the QBO. When the easterly acceleration is due to Rossby waves, the zonal-mean response is steady; when it is due to gravity waves, an oscillation with some features similar to the QBO occurs, but it is of short period and weak amplitude. A similar result occurs when a standing-wave forcing pattern is imposed. These results suggest that Rossby waves play only a minor role in the QBO, and that while the Rossby-gravity mode is essential, other gravity modes may also be important for the easterly phase.
Thermal zonal winds in the Venus mesosphere from the Venus Express temperature soundings
NASA Astrophysics Data System (ADS)
Piccialli, Arianna; Titov, Dmitri; Tellmann, Silvia; Migliorini, Alessandra; Read, Peter; Grassi, Davide; Paetzold, Martin; Haeusler, Bernd; Piccioni, Giuseppe; Drossart, Pierre
The Venus mesosphere (60-100 km altitude) is a transition region characterized by extremely complex dynamics: strong retrograde zonal winds dominate in the troposphere and lower meso-sphere while a solar-antisolar circulation can be observed in the upper mesosphere. The super-rotation extends from the surface up to the cloud top (˜65 km altitude) with wind speeds of only a few meters per second near the surface and reaching a maximum value of ˜100 m s-1 at cloud top, corresponding to a rotation period of ˜4 Earth days (˜60 times faster than Venus itself). The solar-antisolar circulation is driven by the day-night contrast in solar heating, and occurs above 110 km altitude with speeds of 120 m s-1 . The processes responsible for maintain-ing the zonal super-rotation in the lower atmosphere and its transition to the solar-antisolar circulation in the upper atmosphere are still poorly understood (Schubert et al.,2007). Different techniques have been used to obtain direct observations of wind at various altitudes: tracking of clouds in ultraviolet (UV) and near infrared (NIR) images give information on wind speeds at the cloud top (Moissl et al., 2009; Sanchez-Lavega et al., 2008) and within the clouds (˜47 km, ˜61 km) (Sanchez-Lavega et al., 2008) while ground-based measurements of Doppler shifts in the CO2 band at 10 µm (Sornig et al., 2008) and in several CO millimiter lines (Rengel et al., 2008) provide wind speeds above the clouds up to ˜110 km altitude. The deep atmosphere from the surface up to the cloud top has been investigated through the Doppler tracking of descent probes and balloons (Counselman et al., 1980; Kerzhanovich and Limaye, 1985). In the mesosphere, between 45-85 km of altitude, where direct observations of wind are not possible, the zonal wind field can be derived from the vertical temperature structure using a special approximation of the thermal wind equation: based on cyclostrophic balance. Previous studies (Leovy, 1973; Newman et al., 1984) showed that on a slowly rotating planet, like Venus, strong zonal winds at the cloud top can be described by a cyclostrophic balance in which the equatorward component of centrifugal force is balanced by the meridional pressure gradient. This equation gives a possibility to reconstruct the zonal wind if the temperature field is known, together with a suitable boundary condition on u. Two experiments onboard Venus Express are sounding the temperature structure of the Venus mesosphere: VIRTIS sounds the Venus Southern hemisphere in the altitude range 65-90 km with a very good spatial and temporal coverage (Grassi et al., 2008) and the Northern hemi-sphere but with more limited coverage; VeRa observes both northern and southern hemispheres between 40-90 km altitude with a vertical resolution of ˜500 m (Tellmann et al., 2008). Here we present zonal thermal winds derived applying cyclostrophic balance from VIRTIS and VeRa temperature retrievals. The main features of the retrieved winds are: (1) a midlatitude jet with a maximum speed up to 140 ± 15 m s-1 which occurs around 50° S latitude at 70 km altitude; (2) the fast decrease of the wind speed from 60° S toward the pole; (3) the decrease of the wind speed with increasing height above the jet (Piccialli et al., 2008). Cyclostrophic winds show satisfactory agreement with the cloud-tracked winds derived from the Venus Monitoring Camera (VMC/VEx) UV images, although a disagreement is observed at the equator and near the pole due to the breakdown of the cyclostrophic approximation. From zonal thermal winds the Richardson number has been evaluated. In good agreement with previous studies (Allison et al., 1994), we have found that the atmosphere is dominated by convection from ˜45 km altitude up to the cloud top. A high value of Richardson number has been determined, cor-responding to the midlatitude jet and indicating a highly stable atmosphere. Verification of the necessary condition for barotropic instability implies that barotropic instability may occur on the poleward side of the midlatitude jet where planetary waves are expected to play an important role in the maintenance of the circulation.
Characterization of the dynamics of the atmosphere of Venus with Doppler velocimetry
NASA Astrophysics Data System (ADS)
Machado, Pedro Miguel Borges do Canto Mota
Currently the study of the Venus' atmosphere grows as a theme of major interest among the astrophysics scientific community. The most significant aspect of the general circulation of the atmosphere of Venus is its retrograde super-rotation. A complete characterization of this dynamical phenomenon is crucial for understanding its driving mechanisms. This work participates in the international effort to characterize the atmospheric dynamics of this planet in coordination with orbiter missions, in particular with Venus Express. The objectives of this study are to investigate the nature of the processes governing the super-rotation of the atmosphere of Venus using ground-based observations, thereby complementing measurements by orbiter instruments. This thesis analyzes observations of Venus made with two different instruments and Doppler velocimetry techniques. The data analysis technique allowed an unambiguous characterization of the zonal wind latitudinal profile and its temporal variability, as well as an investigation of large-scale planetary waves signature and their role in the maintenance of the zonal super-rotation, and suggest that detection and investigation of large-scale planetary waves can be carried out with this technique.These studies complement the independent observations of the european space mission Venus Express, in particular as regards the study of atmospheric super-rotation, meridional flow and its variability. (Abstract shortened by ProQuest.).
Winter warming from large volcanic eruptions
NASA Technical Reports Server (NTRS)
Robock, Alan; Mao, Jianping
1992-01-01
An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robock, A.
An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95 percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming,more » while the cooling is caused by blocking of incoming sunlight.« less
Winter warming from large volcanic eruptions
NASA Technical Reports Server (NTRS)
Robock, Alan; Mao, Jianping
1992-01-01
An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95 percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.
Model test of anchoring effect on zonal disintegration in deep surrounding rock masses.
Chen, Xu-Guang; Zhang, Qiang-Yong; Wang, Yuan; Liu, De-Jun; Zhang, Ning
2013-01-01
The deep rock masses show a different mechanical behavior compared with the shallow rock masses. They are classified into alternating fractured and intact zones during the excavation, which is known as zonal disintegration. Such phenomenon is a great disaster and will induce the different excavation and anchoring methodology. In this study, a 3D geomechanics model test was conducted to research the anchoring effect of zonal disintegration. The model was constructed with anchoring in a half and nonanchoring in the other half, to compare with each other. The optical extensometer and optical sensor were adopted to measure the displacement and strain changing law in the model test. The displacement laws of the deep surrounding rocks were obtained and found to be nonmonotonic versus the distance to the periphery. Zonal disintegration occurs in the area without anchoring and did not occur in the model under anchoring condition. By contrasting the phenomenon, the anchor effect of restraining zonal disintegration was revealed. And the formation condition of zonal disintegration was decided. In the procedure of tunnel excavation, the anchor strain was found to be alternation in tension and compression. It indicates that anchor will show the nonmonotonic law during suppressing the zonal disintegration.
Model Test of Anchoring Effect on Zonal Disintegration in Deep Surrounding Rock Masses
Chen, Xu-Guang; Zhang, Qiang-Yong; Wang, Yuan; Liu, De-Jun; Zhang, Ning
2013-01-01
The deep rock masses show a different mechanical behavior compared with the shallow rock masses. They are classified into alternating fractured and intact zones during the excavation, which is known as zonal disintegration. Such phenomenon is a great disaster and will induce the different excavation and anchoring methodology. In this study, a 3D geomechanics model test was conducted to research the anchoring effect of zonal disintegration. The model was constructed with anchoring in a half and nonanchoring in the other half, to compare with each other. The optical extensometer and optical sensor were adopted to measure the displacement and strain changing law in the model test. The displacement laws of the deep surrounding rocks were obtained and found to be nonmonotonic versus the distance to the periphery. Zonal disintegration occurs in the area without anchoring and did not occur in the model under anchoring condition. By contrasting the phenomenon, the anchor effect of restraining zonal disintegration was revealed. And the formation condition of zonal disintegration was decided. In the procedure of tunnel excavation, the anchor strain was found to be alternation in tension and compression. It indicates that anchor will show the nonmonotonic law during suppressing the zonal disintegration. PMID:23997683
2007-08-28
Solar- QBO interaction and its impact on stratospheric ozone in a zonally averaged photochemical transport model of the middle atmosphere J. P...investigate the solar cycle modulation of the quasi-biennial oscillation ( QBO ) in stratospheric zonal winds and its impact on stratospheric ozone with an...updated version of the zonally averaged CHEM2D middle atmosphere model. We find that the duration of the westerly QBO phase at solar maximum is 3 months
NASA Astrophysics Data System (ADS)
Vavrus, S. J.; Wang, F.; Martin, J. E.; Francis, J. A.
2015-12-01
Recent research has suggested a relationship between mid-latitude weather and Arctic amplification (AA) of global climate change via a slower and wavier extratropical circulation inducing more extreme events. To test this hypothesis and to quantify the waviness of the extratropical flow, we apply a novel application of the geomorphological concept of sinuosity (SIN) over greater North America. SIN is defined as the ratio of the curvilinear length of a geopotential height contour to the perimeter of its equivalent latitude, where the contour and the equivalent latitude enclose the same area. We use 500 hPa daily heights from reanalysis and model simulations to calculate past and future SIN. The circulation exhibits a distinct annual cycle of maximum SIN (waviness) in summer and a minimum in winter, inversely related to the annual cycle of zonal wind speed. Positive trends in SIN have emerged in recent decades during winter and summer at several latitude bands, generally collocated with negative trends in zonal wind speeds. High values of SIN coincide with many prominent extreme-weather events, including Superstorm Sandy. RCP8.5 simulations (2006-2100) project a dipole pattern of zonal wind changes that varies seasonally. In winter, AA causes inflated heights over the Arctic relative to mid-latitudes and an associated weakening (strengthening) of the westerlies north (south) of 40N. The AA signal in summer is strongest over upper-latitude land, promoting localized atmospheric ridging aloft with lighter westerlies to the south and stronger zonal winds to the north. The changes in wind speeds in both seasons are inversely correlated with SIN, indicating a wavier circulation where the flow weakens. In summer the lighter winds over much of the U. S. resemble circulation anomalies observed during extreme summer heat and drought. Such changes may be linked to enhanced heating of upper-latitude land surfaces caused by earlier snow melt during spring-summer.
Properties of QBO and SAO Generated by Gravity Waves
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Reddy, C. A.; Chan, K. L.; Porter, H. S.
1999-01-01
We present an extension for the 2D (zonal mean) version of our Numerical Spectral Mode (NSM) that incorporates Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW). This model is applied to describe the seasonal variations and the semi-annual and quasi-biennial oscillations (SAO and QBO). Our earlier model reproduced the salient features of the mean zonal circulation in the middle atmosphere, including the QBO extension into the upper mesosphere inferred from UARS measurements. In the present model we incorporate also tropospheric heating to reproduce the upwelling at equatorial latitudes associated with the Brewer-Dobson circulation that affects significantly the dynamics of the stratosphere as Dunkerton had pointed out. Upward vertical winds increase the period of the QBO observed from the ground. To compensate for that, one needs to increase the eddy diffusivity and the GW momentum flux, bringing the latter closer to values recommended in the DSP. The QBO period in the model is 30 months (mo), which is conducive to synchronize this oscillation with the seasonal cycle of solar forcing. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. Quadratic non-linearities generate interseasonal variations to produce a complicated pattern of variability associated with the QBO. The computed temperature amplitudes for the SAO and QBO are in substantial agreement with observations at equatorial and extratropical latitudes. At high latitudes, however, the observed QBO amplitudes are significantly larger, which may be a signature of propagating planetary waves not included in the present model. The assumption of hydrostatic equilibrium not being imposed, we find that the effects from the vertical Coriolis force associated with the equatorial oscillations are large for the vertical winds and significant for the temperature variations even outside the tropics but are relatively small for the zonal winds.
NASA Astrophysics Data System (ADS)
Widlansky, M. J.; Webster, P. J.; Hoyos, C.
2010-12-01
Three semi-permanent convective cloud bands exist in the Southern Hemisphere extending southeastward from the equator, through the tropics, and into the subtropics. The most prominent of these features occurs in the South Pacific during summer and is referred to as the South Pacific Convergence Zone (SPCZ). Similar cloud bands, with less intensity, exist in the South Indian and Atlantic basins. To the east of each convective zone is a large-scale region of atmospheric subsidence. We attempt to explain the physical mechanisms that promote the diagonal orientation of the SPCZ and also teleconnections that may exist with stratocumulus cloud cover in the southeastern Pacific. It is argued that slowly varying sea surface temperature patterns produce upper tropospheric wind fields that vary substantially in longitude (∂U/∂x). Regions where 200 hPa zonal winds decrease with longitude (i.e., negative zonal stretching deformation, or ∂U/∂x<0) reduce the group speed of the eastward propagating synoptic (3-6 day period) Rossby waves and locally increase the wave energy density. Such a region of wave accumulation occurs in the vicinity of the SPCZ (see Figure), thus providing a hypothesis for the diagonal orientation and a physical basis for earlier observations that the zone traps eastward propagating synoptic disturbances. Controlled numerical experiments and composites of observed life cycles of synoptic waves confirm that disturbances slow in the SPCZ. From the hypothesis comes a more general theory accounting for the SPCZ’s spatial orientation and the lack of disturbances to the east. December-February climatology of 200 hPa zonal winds (shading) and negative zonal stretching deformation (red contours). Large black box located at 20°S-35°S, 165°W-135°W encloses the diagonal region of the SPCZ. 240 W m-2 OLR contour outlined by blue lines.
The role of zonal flows in disc gravito-turbulence
NASA Astrophysics Data System (ADS)
Vanon, R.
2018-07-01
The work presented here focuses on the role of zonal flows in the self-sustenance of gravito-turbulence in accretion discs. The numerical analysis is conducted using a bespoke pseudo-spectral code in fully compressible, non-linear conditions. The disc in question, which is modelled using the shearing sheet approximation, is assumed to be self-gravitating, viscous, and thermally diffusive; a constant cooling time-scale is also considered. Zonal flows are found to emerge at the onset of gravito-turbulence and they remain closely linked to the turbulent state. A cycle of zonal flow formation and destruction is established, mediated by a slow mode instability (which allows zonal flows to grow) and a non-axisymmetric instability (which disrupts the zonal flow), which is found to repeat numerous times. It is in fact the disruptive action of the non-axisymmetric instability to form new leading and trailing shearing waves, allowing energy to be extracted from the background flow and ensuring the self-sustenance of the gravito-turbulent regime.
The role of zonal flows in disc gravito-turbulence
NASA Astrophysics Data System (ADS)
Vanon, R.
2018-04-01
The work presented here focuses on the role of zonal flows in the self-sustenance of gravito-turbulence in accretion discs. The numerical analysis is conducted using a bespoke pseudo-spectral code in fully compressible, non-linear conditions. The disc in question, which is modelled using the shearing sheet approximation, is assumed to be self-gravitating, viscous, and thermally diffusive; a constant cooling timescale is also considered. Zonal flows are found to emerge at the onset of gravito-turbulence and they remain closely linked to the turbulent state. A cycle of zonal flow formation and destruction is established, mediated by a slow mode instability (which allows zonal flows to grow) and a non-axisymmetric instability (which disrupts the zonal flow), which is found to repeat numerous times. It is in fact the disruptive action of the non-axisymmetric instability to form new leading and trailing shearing waves, allowing energy to be extracted from the background flow and ensuring the self-sustenance of the gravito-turbulent regime.
Stationary eddies in the Mars general circulation as simulated by the NASA-Ames GCM
NASA Technical Reports Server (NTRS)
Barnes, J. R.; Pollack, J. B.; Haberle, Robert M.
1993-01-01
Quasistationary eddies are prominent in a large set of simulations of the Mars general circulation performed with the NASA-Ames GCM. Various spacecraft observations have at least hinted at the existence of such eddies in the Mars atmosphere. The GCM stationary eddies appear to be forced primarily by the large Mars topography, and (to a much lesser degree) by spatial variations in the surface albedo and thermal inertia. The stationary eddy circulations exhibit largest amplitudes at high altitudes (above 30-40 km) in the winter extratropical regions. In these regions they are of planetary scale, characterized largely by zonal wavenumbers 1 and 2. Southern Hemisphere winter appears to be dominated by a very strong wave 1 pattern, with both waves 1 and 2 being prominent in the Northern Hemisphere winter regime. This difference seems to be basically understandable in terms of differences in the topography in the two hemispheres. The stationary eddies in the northern winter extratropics are found to increase in amplitude with dust loading. This behavior appears to be at least partly associated with changes in the structure of the zonal-mean flow that favor a greater response to wave 1 topographic forcing. There are also strong stationary eddy circulations in the tropics and in the summer hemisphere. The eddies in the summer subtropics and extratropics arc substantially stronger in southern summer than in northern summer. The summer hemisphere stationary circulations are relatively shallow and are characterized by smaller zonal scales than those in the winter extratropics.
Zonal Acoustic Velocimetry in 30-cm, 60-cm, and 3-m Laboratory Models of the Outer Core
NASA Astrophysics Data System (ADS)
Rojas, R.; Doan, M. N.; Adams, M. M.; Mautino, A. R.; Stone, D.; Lekic, V.; Lathrop, D. P.
2016-12-01
A knowledge of zonal flows and shear is key in understanding magnetic field dynamics in the Earth and laboratory experiments with Earth-like geometries. Traditional techniques for measuring fluid flow using visualization and particle tracking are not well-suited to liquid metal flows. This has led us to develop a flow measurement technique based on acoustic mode velocimetry adapted from helioseismology. As a first step prior to measurements in the liquid sodium experiments, we implement this technique in our 60-cm diameter spherical Couette experiment in air. To account for a more realistic experimental geometry, including deviations from spherical symmetry, we compute predicted frequencies of acoustic normal modes using the finite element method. The higher accuracy of the predicted frequencies allows the identification of over a dozen acoustic modes, and mode identification is further aided by the use of multiple microphones and by analyzing spectra together with those obtained at a variety of nearby Rossby numbers. Differences between the predicted and observed mode frequencies are caused by differences in flow patterns present in the experiment. We compare acoustic mode frequency splittings with theoretical predictions for stationary fluid and solid body flow condition with excellent agreement. We also use this technique to estimate the zonal shear in those experiments across a range of Rossby numbers. Finally, we report on initial attempts to use this in liquid sodium in the 3-meter diameter experiment and parallel experiments performed in water in the 30-cm diameter experiment.
Can energy fluxes be used to interpret glacial/interglacial precipitation changes in the tropics?
NASA Astrophysics Data System (ADS)
Roberts, W. H. G.; Valdes, P. J.; Singarayer, J. S.
2017-06-01
Recent theoretical advances in the relationship between heat transport and the position of the Intertropical Convergence Zone (ITCZ) present an elegant framework through which to interpret past changes in tropical precipitation patterns. Using a very large ensemble of climate model simulations, we investigate whether it is possible to use this framework to interpret changes in the position of the ITCZ in response to glacial and interglacial boundary conditions. We find that the centroid of tropical precipitation, which represents the evolution of precipitation in the whole tropics, is best correlated with heat transport changes. We find that the response of the annual mean ITCZ to glacial and interglacial boundary conditions is quite different to the response of the climatological annual cycle of the ITCZ to the seasonal cycle of insolation. We show that the reason for this is that while the Hadley Circulation plays a dominant role in transporting heat over the seasonal cycle, in the annual mean response to forcing, the Hadley Circulation is not dominant. When we look regionally, rather than at the zonal mean, we find that local precipitation is poorly related either to the zonal mean ITCZ or to meridional heat transport. We demonstrate that precipitation is spatially highly variable even when the zonal mean ITCZ is in the same location. This suggests only limited use for heat transport in explaining local precipitation records; thus, there is limited scope for using heat transport changes to explain individual paleoprecipitation records.
NASA Astrophysics Data System (ADS)
Santos, Ângela M.; Abdu, Mangalathayil A.; Souza, Jonas R.; Batista, Inez S.; Sobral, José H. A.
2017-11-01
The influence of the recent deep and prolonged solar minimum on the daytime zonal and vertical plasma drift velocities during quiet time is investigated in this work. Analyzing the data obtained from incoherent scatter radar from Jicamarca (11.95° S, 76.87° W) we observe an anomalous behavior of the zonal plasma drift during June 2008 characterized by lower than usual daytime westward drift and its early afternoon reversal to eastward. As a case study the zonal drift observed on 24 June 2008 is modeled using a realistic low-latitude ionosphere simulated by the Sheffield University Plasmasphere-Ionosphere Model-INPE (SUPIM-INPE). The results show that an anomalously low zonal wind was mainly responsible for the observed anomalous behavior in the zonal drift. A comparative study of the vertical plasma drifts obtained from magnetometer data for some periods of maximum (2000-2002) and minimum solar activity (1998, 2008, 2010) phases reveal a considerable decrease on the E-region conductivity and the dynamo electric field during 2008. However, we believe that the contribution of these characteristics to the unusual behavior of the zonal plasma drift is significantly smaller than that arising from the anomalously low zonal wind. The SUPIM-INPE result of the critical frequency of the F layer (foF2) over Jicamarca suggested a lower radiation flux than that predicted by solar irradiance model (SOLAR2000) for June 2008.
NASA Astrophysics Data System (ADS)
Ernst, D. R.; Lang, J.; Nevins, W. M.; Hoffman, M.; Chen, Y.; Dorland, W.; Parker, S.
2009-05-01
Trapped electron mode (TEM) turbulence exhibits a rich variety of collisional and zonal flow physics. This work explores the parametric variation of zonal flows and underlying mechanisms through a series of linear and nonlinear gyrokinetic simulations, using both particle-in-cell and continuum methods. A new stability diagram for electron modes is presented, identifying a critical boundary at ηe=1, separating long and short wavelength TEMs. A novel parity test is used to separate TEMs from electron temperature gradient driven modes. A nonlinear scan of ηe reveals fine scale structure for ηe≳1, consistent with linear expectation. For ηe<1, zonal flows are the dominant saturation mechanism, and TEM transport is insensitive to ηe. For ηe>1, zonal flows are weak, and TEM transport falls inversely with a power law in ηe. The role of zonal flows appears to be connected to linear stability properties. Particle and continuum methods are compared in detail over a range of ηe=d ln Te/d ln ne values from zero to five. Linear growth rate spectra, transport fluxes, fluctuation wavelength spectra, zonal flow shearing spectra, and correlation lengths and times are in close agreement. In addition to identifying the critical parameter ηe for TEM zonal flows, this paper takes a challenging step in code verification, directly comparing very different methods of simulating simultaneous kinetic electron and ion dynamics in TEM turbulence.
Rossby and drift wave turbulence and zonal flows: The Charney-Hasegawa-Mima model and its extensions
NASA Astrophysics Data System (ADS)
Connaughton, Colm; Nazarenko, Sergey; Quinn, Brenda
2015-12-01
A detailed study of the Charney-Hasegawa-Mima model and its extensions is presented. These simple nonlinear partial differential equations suggested for both Rossby waves in the atmosphere and drift waves in a magnetically-confined plasma, exhibit some remarkable and nontrivial properties, which in their qualitative form, survive in more realistic and complicated models. As such, they form a conceptual basis for understanding the turbulence and zonal flow dynamics in real plasma and geophysical systems. Two idealised scenarios of generation of zonal flows by small-scale turbulence are explored: a modulational instability and turbulent cascades. A detailed study of the generation of zonal flows by the modulational instability reveals that the dynamics of this zonal flow generation mechanism differ widely depending on the initial degree of nonlinearity. The jets in the strongly nonlinear case further roll up into vortex streets and saturate, while for the weaker nonlinearities, the growth of the unstable mode reverses and the system oscillates between a dominant jet, which is slightly inclined to the zonal direction, and a dominant primary wave. A numerical proof is provided for the extra invariant in Rossby and drift wave turbulence-zonostrophy. While the theoretical derivations of this invariant stem from the wave kinetic equation which assumes weak wave amplitudes, it is shown to be relatively well-conserved for higher nonlinearities also. Together with the energy and enstrophy, these three invariants cascade into anisotropic sectors in the k-space as predicted by the Fjørtoft argument. The cascades are characterised by the zonostrophy pushing the energy to the zonal scales. A small scale instability forcing applied to the model has demonstrated the well-known drift wave-zonal flow feedback loop. The drift wave turbulence is generated from this primary instability. The zonal flows are then excited by either one of the generation mechanisms, extracting energy from the drift waves as they grow. Eventually the turbulence is completely suppressed and the zonal flows saturate. The turbulence spectrum is shown to diffuse in a manner which has been mathematically predicted. The insights gained from this simple model could provide a basis for equivalent studies in more sophisticated plasma and geophysical fluid dynamics models in an effort to fully understand the zonal flow generation, the turbulent transport suppression and the zonal flow saturation processes in both the plasma and geophysical contexts as well as other wave and turbulence systems where order evolves from chaos.
NASA Technical Reports Server (NTRS)
Vadyak, J.; Hoffman, J. D.
1982-01-01
The flow field in supersonic mixed compression aircraft inlets at angle of attack is calculated. A zonal modeling technique is employed to obtain the solution which divides the flow field into different computational regions. The computational regions consist of a supersonic core flow, boundary layer flows adjacent to both the forebody/centerbody and cowl contours, and flow in the shock wave boundary layer interaction regions. The zonal modeling analysis is described and some computational results are presented. The governing equations for the supersonic core flow form a hyperbolic system of partial differential equations. The equations for the characteristic surfaces and the compatibility equations applicable along these surfaces are derived. The characteristic surfaces are the stream surfaces, which are surfaces composed of streamlines, and the wave surfaces, which are surfaces tangent to a Mach conoid. The compatibility equations are expressed as directional derivatives along streamlines and bicharacteristics, which are the lines of tangency between a wave surface and a Mach conoid.
Inertial Waves and Steady Flows in a Liquid Filled Librating Cylinder
NASA Astrophysics Data System (ADS)
Subbotin, Stanislav; Dyakova, Veronika
2018-05-01
The fluid flow in a non-uniformly rotating (librating) cylinder about a horizontal axis is experimentally studied. In the absence of librations the fluid performs a solid-body rotation together with the cavity. Librations lead to the appearance of steady zonal flow in the whole cylinder and the intensive steady toroidal flows near the cavity corners. If the frequency of librations is twice lower than the mean rotation rate the inertial waves are excited. The oscillating motion associated with the propagation of inertial wave in the fluid bulk leads to the appearance of an additional steady flow in the Stokes boundary layers on the cavity side wall. In this case the heavy particles of the visualizer are assembled on the side wall into ring structures. The patterns are determined by the structure of steady flow, which in turn depends on the number of reflections of inertial wave beams from the cavity side wall. For some frequencies, inertial waves experience spatial resonance, resulting in inertial modes, which are eigenmodes of the cavity geometry. The resonance of the inertial modes modifies the steady flow structure close to the boundary layer that is manifested in the direct rebuilding of patterns. It is shown that the intensity of zonal flow, as well as the intensity of steady flows excited by inertial waves, is proportional to the square of the amplitude of librations.
Two- and three-dimensional natural and mixed convection simulation using modular zonal models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtz, E.; Nataf, J.M.; Winkelmann, F.
We demonstrate the use of the zonal model approach, which is a simplified method for calculating natural and mixed convection in rooms. Zonal models use a coarse grid and use balance equations, state equations, hydrostatic pressure drop equations and power law equations of the form {ital m} = {ital C}{Delta}{sup {ital n}}. The advantage of the zonal approach and its modular implementation are discussed. The zonal model resolution of nonlinear equation systems is demonstrated for three cases: a 2-D room, a 3-D room and a pair of 3-D rooms separated by a partition with an opening. A sensitivity analysis withmore » respect to physical parameters and grid coarseness is presented. Results are compared to computational fluid dynamics (CFD) calculations and experimental data.« less
Rossby Wave Propagation into the Northern Hemisphere Stratosphere: The Role of Zonal Phase Speed
NASA Astrophysics Data System (ADS)
Domeisen, Daniela I. V.; Martius, Olivia; Jiménez-Esteve, Bernat
2018-02-01
Sudden stratospheric warming (SSW) events are to a dominant part induced by upward propagating planetary waves. While theory predicts that the zonal phase speed of a tropospheric wave forcing affects wave propagation into the stratosphere, its relevance for SSW events has so far not been considered. This study shows in a linear wave diagnostic and in reanalysis data that phase speeds tend eastward as waves propagate upward, indicating that the stratosphere preselects eastward phase speeds for propagation, especially for zonal wave number 2. This also affects SSW events: Split SSW events tend to be preceded by anomalously eastward zonal phase speeds. Zonal phase speed may indeed explain part of the increased wave flux observed during the preconditioning of SSW events, as, for example, for the record 2009 SSW event.
Zonal wavefront estimation using an array of hexagonal grating patterns
NASA Astrophysics Data System (ADS)
Pathak, Biswajit; Boruah, Bosanta R.
2014-10-01
Accuracy of Shack-Hartmann type wavefront sensors depends on the shape and layout of the lenslet array that samples the incoming wavefront. It has been shown that an array of gratings followed by a focusing lens provide a substitution for the lensslet array. Taking advantage of the computer generated holography technique, any arbitrary diffraction grating aperture shape, size or pattern can be designed with little penalty for complexity. In the present work, such a holographic technique is implemented to design regular hexagonal grating array to have zero dead space between grating patterns, eliminating the possibility of leakage of wavefront during the estimation of the wavefront. Tessellation of regular hexagonal shape, unlike other commonly used shapes, also reduces the estimation error by incorporating more number of neighboring slope values at an equal separation.
Hepatocyte heterogeneity in the metabolism of carbohydrates.
Jungermann, K; Thurman, R G
1992-01-01
Periportal and perivenous hepatocytes possess different amounts and activities of the rate-generating enzymes of carbohydrate and oxidative energy metabolism and thus different metabolic capacities. This is the basis of the model of metabolic zonation, according to which periportal cells catalyze predominantly the oxidative catabolism of fatty and amino acids as well as glucose release and glycogen formation via gluconeogenesis, and perivenous cells carry out preferentially glucose uptake for glycogen synthesis and glycolysis coupled to liponeogenesis. The input of humoral and nervous signals into the periportal and perivenous zones is different; gradients of oxygen, substrates and products, hormones and mediators and nerve densities exist which are important not only for the short-term regulation of carbohydrate metabolism but also for the long-term regulation of zonal gene expression. The specialization of periportal and perivenous hepatocytes in carbohydrate metabolism has been well characterized. In vivo evidence is provided by the complex metabolic situation termed the 'glucose paradox' and by zonal flux differences calculated on the basis of the distribution of enzymes and metabolites. In vitro evidence is given by the different flux rates determined with classical invasive techniques, e.g. in periportal-like and perivenous-like hepatocytes in cell culture, in periportal- and perivenous-enriched hepatocyte populations and in perfused livers during orthograde and retrograde flow, as well as with noninvasive techniques using miniature oxygen electrodes, e.g. in livers perfused in either direction. Differences of opinion in the interpretation of studies with invasive and noninvasive techniques by the authors are discussed. The declining gradient in oxygen concentrations, the decreasing glucagon/insulin ratio and the different innervation could be important factors in the zonal expression of the genes of carbohydrate-metabolizing enzymes. While it is clear that the hepatocytes sense the glucagon/insulin gradients via the respective hormone receptors, it is not known how they sense different oxygen tensions; the O2 sensor may be an oxygen-binding heme protein. The zonal separation of glucose release and uptake appears to be important for the liver to operate as a 'glucostat'. Thus, zonation of carbohydrate metabolism develops gradually during the first weeks of life, in part before and in part with weaning, when (in rat and mouse) the fat- and protein-rich but carbohydrate-poor nutrition via milk is replaced by carbohydrate-rich food. Similarly, zonation of carbohydrate metabolism adapts to longer lasting alterations in the need of a 'glucostat', such as starvation, diabetes, portocaval anastomoses or partial hepatectomy.
Amplified summer warming in Europe-West Asia and Northeast Asia after the mid-1990s
NASA Astrophysics Data System (ADS)
Hong, Xiaowei; Lu, Riyu; Li, Shuanglin
2017-09-01
Regional temperature changes are a crucial factor in affecting agriculture, ecosystems and societies, which depend greatly on local temperatures. We identify a nonuniform warming pattern in summer around the mid-1990s over the Eurasian continent, with a predominant amplified warming over Europe-West Asia and Northeast Asia but much weaker warming over Central Asia. It is found that the nonuniform warming concurs with both the phase shift of the Atlantic Multi-decadal Oscillation (AMO) and the decadal change in the Silk Road Pattern (SRP), which is an upper-tropospheric teleconnection pattern over the Eurasian continent during summer. We suggest that the AMO may modulate the decadal change in SRP and then induce the zonal asymmetry in temperature changes. Our results have important implications for decadal prediction of regional warming pattern in Eurasia based on the predictable AMO.
Tao, Pingyang; Poddar, Saumen; Sun, Zuchen; Hage, David S; Chen, Jianzhong
2018-02-02
Many biological processes involve solute-protein interactions and solute-solute competition for protein binding. One method that has been developed to examine these interactions is zonal elution affinity chromatography. This review discusses the theory and principles of zonal elution affinity chromatography, along with its general applications. Examples of applications that are examined include the use of this method to estimate the relative extent of solute-protein binding, to examine solute-solute competition and displacement from proteins, and to measure the strength of these interactions. It is also shown how zonal elution affinity chromatography can be used in solvent and temperature studies and to characterize the binding sites for solutes on proteins. In addition, several alternative applications of zonal elution affinity chromatography are discussed, which include the analysis of binding by a solute with a soluble binding agent and studies of allosteric effects. Other recent applications that are considered are the combined use of immunoextraction and zonal elution for drug-protein binding studies, and binding studies that are based on immobilized receptors or small targets. Copyright © 2018 Elsevier Inc. All rights reserved.
Effect of external plasma flows on the interaction between turbulence and convective cells
NASA Astrophysics Data System (ADS)
Uzawa, Ken; Li, Jiquan
2005-10-01
It is widely recognized that large scale structures, such as zonal flows, streamers and also long wavelength Kelvin-Helmholtz modes are nonlinearly generated from maternal turbulence through modulational instability process and play a crucial role in regulating the transport in tokamaks. In order to control the transport, it is desirable to control such structures and/or modulational process. One of control parameters may be mean flow which intrinsically exists in tokamak plasmas. Besides the direct influence on the transport through vortex decorrelation, the mean flow may indirectly change the zonal flow generation by acting on the modulational process itself. In this work, we theoretically investigate the characteristics of zonal flow generation due to the electron temperature gradient (ETG) turbulence in the presence of long wavelength ITG driven zonal flow. This was done by extending our previous modulational analyses[1]. We have numerically analyzed the influence of mean flow on zonal flow generation. The main result is that the zonal flow generation is suppressed by the presence of the mean flow. [1]J. Li, Y. Kishimoto, Physics of Plasmas, 9, 1241 (2002)
The Role of Monsoon-Like Zonally Asymmetric Heating in Interhemispheric Transport
NASA Technical Reports Server (NTRS)
Chen, Gang; Orbe, Clara; Waugh, Darryn
2017-01-01
While the importance of the seasonal migration of the zonally averaged Hadley circulation on interhemispheric transport of trace gases has been recognized, few studies have examined the role of the zonally asymmetric monsoonal circulation. This study investigates the role of monsoon-like zonally asymmetric heating on interhemispheric transport using a dry atmospheric model that is forced by idealized Newtonian relaxation to a prescribed radiative equilibrium temperature. When only the seasonal cycle of zonally symmetric heating is considered, the mean age of air in the Southern Hemisphere since last contact with the Northern Hemisphere midlatitude boundary layer, is much larger than the observations. The introduction of monsoon-like zonally asymmetric heating not only reduces the mean age of tropospheric air to more realistic values, but also produces an upper-tropospheric cross-equatorial transport pathway in boreal summer that resembles the transport pathway simulated in the NASA Global Modeling Initiative (GMI) Chemistry Transport Model driven with MERRA meteorological fields. These results highlight the monsoon-induced eddy circulation plays an important role in the interhemispheric transport of long-lived chemical constituents.
Deck, Sébastien; Gand, Fabien; Brunet, Vincent; Ben Khelil, Saloua
2014-01-01
This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine–airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed. PMID:25024411
Stationary zonal flows during the formation of the edge transport barrier in the JET tokamak
Hillesheim, J. C.; Meyer, H.; Maggi, C. F.; ...
2016-02-10
In this study, high spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge E r. We observe fine-scale spatial structures in the edge E r well with a wave number k rρi ≈ 0.4-0.8, consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E x B shear increases. Above the minimum of the L-H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H-modemore » transition, while below the minimum they are reduced below measurable amplitude during L mode, before the L-H transition.« less
NASA Technical Reports Server (NTRS)
Kurzeja, R. J.; Haggard, K. V.; Grose, W. L.
1981-01-01
Three experiments have been performed using a three-dimensional, spectral quasi-geostrophic model in order to investigate the sensitivity of ozone transport to tropospheric orographic and thermal effects and to the zonal wind distribution. In the first experiment, the ozone distribution averaged over the last 30 days of a 60 day transport simulation was determined; in the second experiment, the transport simulation was repeated, but nonzonal orographic and thermal forcing was omitted; and in the final experiment, the simulation was conducted with the intensity and position of the stratospheric jets altered by addition of a Newtonian cooling term to the zonal-mean diabatic heating rate. Results of the three experiments are summarized by comparing the zonal-mean ozone distribution, the amplitude of eddy geopotential height, the zonal winds, and zonal-mean diabatic heating.
Climate model calculations of the effects of volcanoes on global climate
NASA Technical Reports Server (NTRS)
Robock, Alan
1992-01-01
An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95 percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.
Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model
NASA Astrophysics Data System (ADS)
Yamagishi, Osamu; Sugama, Hideo
2016-03-01
Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.
Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamagishi, Osamu, E-mail: yamagisi@nifs.ac.jp; Sugama, Hideo
Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.
NASA Astrophysics Data System (ADS)
Martineau, Patrick; Son, Seok-Woo; Taguchi, Masakazu; Butler, Amy H.
2018-05-01
The agreement between reanalysis datasets, in terms of the zonal-mean momentum budget, is evaluated during sudden stratospheric warming (SSW) events. It is revealed that there is a good agreement among datasets in the lower stratosphere and troposphere concerning zonal-mean zonal wind, but less so in the upper stratosphere. Forcing terms of the momentum equation are also relatively similar in the lower atmosphere, but their uncertainties are typically larger than uncertainties of the zonal-wind tendency. Similar to zonal-wind tendency, the agreement among forcing terms is degraded in the upper stratosphere. Discrepancies among reanalyses increase during the onset of SSW events, a period characterized by unusually large fluxes of planetary-scale waves from the troposphere to the stratosphere, and decrease substantially after the onset. While the largest uncertainties in the resolved terms of the momentum budget are found in the Coriolis torque, momentum flux convergence also presents a non-negligible spread among the reanalyses. Such a spread is reduced in the latest reanalysis products, decreasing the uncertainty of the momentum budget. It is also found that the uncertainties in the Coriolis torque depend on the strength of SSW events: the SSW events that exhibit the most intense deceleration of zonal-mean zonal wind are subject to larger discrepancies among reanalyses. These uncertainties in stratospheric circulation, however, are not communicated to the troposphere.
Jet and storm track variability and change: adiabatic QG zonal averages and beyond... (Invited)
NASA Astrophysics Data System (ADS)
Robinson, W. A.
2013-12-01
The zonally averaged structures of extratropical jets and stormtracks, their slow variations, and their responses to climate change are all tightly constrained on the one hand by thermal wind balance and the necessary application of eddy torques to produce zonally averaged meridional motion, and, on the other hand, by the necessity that eddies propagate upshear to extract energy from the mean flow. Combining these constraints with the well developed theory of linear Rossby-wave propagation on zonally symmetric basic states has led to a large and growing number of plausible mechanisms to explain observed and modeled jet/storm track variability and responses to climate change and idealized forcing. Hidden within zonal averages is the reality that most baroclinic eddy activity is destroyed at the same latitude at which is generated: from one end to another of the fixed stormtracks in the Northern Hemisphere and baroclinic wave packets in the Southern Hemisphere. Ignored within adiabatic QG theory is the reality that baroclinic eddies gain significant energy from latent heating that involves sub-syntopic scale structures and dynamics. Here we use results from high-resolution regional and global simulations of the Northern Hemisphere storm tracks to explore the importance of non-zonal and diabatic dynamics in influencing jet change and variability and their influences on the much-studied zonal means.
NASA Astrophysics Data System (ADS)
Yao, Chenyu; Huang, Qian; Zhu, Bin; Liu, Fei
2018-06-01
Using ECMWF ERA-Interim 6-h reanalysis data, zonal wind intra-seasonal oscillations (ISOs) in the entrance region of the East Asian subtropical westerly jet (EASWJ) in winter from 1979/1980 to 2012/2013 are studied. The results first show that there is an area with large ISO strength in the northwest of the EASWJ; in the key region, zonal wind has a dominant period of 10-30 days. The composite analysis reveals that zonal wind at 200 hPa in this key region has 10-30-day oscillation characteristics. On the 10-30-day time scale, the center of zonal wind anomaly moves eastward. The propagation of zonal wind oscillation relates to temperature tendencies at different latitudes. The remarkable increase (or decrease) in zonal wind in the key region is mostly determined by temperature anomalies to the north. The 10-30-day filtered temperature advection to the north of the key region leads to either a decrease or an increase in temperature; on the other hand, temperature variations south of the key region have trends opposite of the northern trends, which changes the temperature gradient. On the 10-30-day time scale, zonal wind anomalies are associated with precipitation in southern China. When there are easterly wind anomalies over the key region, precipitation occurs over the Yangtze River basin and its south. Diabatic heating during precipitation corresponds with warming to the south of the key region, which combines with the temperature advection to weaken the easterly wind and strengths the westerly wind. Then, the intra-seasonal precipitation moves to southwest China with warm advection and the enhanced westerly wind, which brings the positive relative vorticity advection there.
NASA Astrophysics Data System (ADS)
Li, T.; Ban, C.; Fang, X.; Li, J.; Wu, Z.; Xiong, J.; Feng, W.; Plane, J. M. C.
2017-12-01
The University of Science and Technology of China narrowband sodium temperature/wind lidar, located in Hefei, China (32°N, 117°E), was installed in November 2011 and have made routine nighttime measurements since January 2012. We obtained 154 nights ( 1400 hours) of vertical profiles of temperature, sodium density, and zonal wind, and 83 nights ( 800 hours) of vertical flux of gravity wave (GW) zonal momentum in the mesopause region (80-105 km) during the period of 2012 to 2016. In temperature, it is likely that the diurnal tide dominates below 100 km in spring, while the semidiurnal tide dominates above 100 km throughout the year. A clear semiannual variation in temperature is revealed near 90 km, likely related to the tropical mesospheric semiannual oscillation (MSAO). The variability of sodium density is positively correlated with temperature, suggesting that in addition to dynamics, the chemistry may also play an important role in the formation of sodium atoms. The observed sodium peak density is 1000 cm-3 higher than that simulated by the model. In zonal wind, the diurnal tide dominates in both spring and fall, while semidiurnal tide dominates in winter. The observed semiannual variation in zonal wind near 90 km is out-of-phase with that in temperature, consistent with tropical MSAO. The GW zonal momentum flux is mostly westward in fall and winter, anti-correlated with eastward zonal wind. The annual mean flux averaged over 87-97 km is -0.3 m2/s2 (westward), anti-correlated with eastward zonal wind of 10 m/s. The comparisons of lidar results with those observed by satellite, nearby radar, and simulated by model show generally good agreements.
NASA Astrophysics Data System (ADS)
Rao, R. R.; Horii, T.; Masumoto, Y.; Mizuno, K.
2017-08-01
The observed variability of zonal currents (ZC) at the Equator, 90°E shows a strong seasonal cycle in the near-surface 40-350 m water column with periodic east-west reversals most pronounced at semiannual frequency. Superposed on this, a strong intraseasonal variability of 30-90 day periodicity is also prominently seen in the near-surface layer (40-80 m) almost throughout the year with the only exception of February-March. An eastward flowing equatorial undercurrent (EUC) is present in the depth range of 80-160 m during March-April and October-November. The observed intraseasonal variability in the near-surface layer is primarily determined by the equatorial zonal westerly wind bursts (WWBs) through local frictional coupling between the zonal flow in the surface layer and surface zonal winds and shows large interannual variability. The eastward flowing EUC maintained by the ZPG set up by the east-west slope of the thermocline remotely controlled by the zonal wind (ZW) and zonally propagating wave fields also shows significant interannual variability. This observed variability on interannual time scales appears to be controlled by the corresponding variability in the alongshore winds off the Somalia coast during the preceding boreal winter, the ZW field along the equator, and the associated zonally propagating Kelvin and Rossby waves. The salinity induced vertical stratification observed in the near-surface layer through barrier layer thickness (BLT) effects also shows a significant influence on the ZC field on intraseasonal time scale. Interestingly, among all the 8 years (2001-2008), relatively weaker annual cycle is seen in both ZC in the 40-350 m water column and boreal spring sea surface temperature (SST) only during 2001 and 2008 along the equator caused through propagating wave dynamics.
NASA Technical Reports Server (NTRS)
Genthon, Christophe; Le Treut, Herve; Sadourny, Robert; Jouzel, Jean
1990-01-01
A Charney-Branscome based parameterization has been tested as a way of representing the eddy sensible heat transports missing in a zonally averaged dynamic model (ZADM) of the atmosphere. The ZADM used is a zonally averaged version of a general circulation model (GCM). The parameterized transports in the ZADM are gaged against the corresponding fluxes explicitly simulated in the GCM, using the same zonally averaged boundary conditions in both models. The Charney-Branscome approach neglects stationary eddies and transient barotropic disturbances and relies on a set of simplifying assumptions, including the linear appoximation, to describe growing transient baroclinic eddies. Nevertheless, fairly satisfactory results are obtained when the parameterization is performed interactively with the model. Compared with noninteractive tests, a very efficient restoring feedback effect between the modeled zonal-mean climate and the parameterized meridional eddy transport is identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asahi, Y., E-mail: y.asahi@nr.titech.ac.jp; Tsutsui, H.; Tsuji-Iio, S.
2014-05-15
Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger thanmore » or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.« less
Deck, Sébastien; Gand, Fabien; Brunet, Vincent; Ben Khelil, Saloua
2014-08-13
This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine-airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubbard, W. B.; Militzer, B.
In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen–helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second-more » and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen–helium-rich envelope with approximately three times solar metallicity.« less
Subsurface Zonal and Meridional Flows from SDO/HMI
NASA Astrophysics Data System (ADS)
Komm, Rudolf; Howe, Rachel; Hill, Frank
2016-10-01
We study the solar-cycle variation of the zonal and meridional flows in the near-surface layers of the solar convection zone from the surface to a depth of about 16 Mm. The flows are determined from SDO/HMI Dopplergrams using the HMI ring-diagram pipeline. The zonal and meridional flows vary with the solar cycle. Bands of faster-than-average zonal flows together with more-poleward-than-average meridional flows move from mid-latitudes toward the equator during the solar cycle and are mainly located on the equatorward side of the mean latitude of solar magnetic activity. Similarly, bands of slower-than-average zonal flows together with less-poleward-than-average meridional flows are located on the poleward side of the mean latitude of activity. Here, we will focus on the variation of these flows at high latitudes (poleward of 50 degree) that are now accessible using HMI data. We will present the latest results.
Interactions between Antarctic sea ice and large-scale atmospheric modes in CMIP5 models
NASA Astrophysics Data System (ADS)
Schroeter, Serena; Hobbs, Will; Bindoff, Nathaniel L.
2017-03-01
The response of Antarctic sea ice to large-scale patterns of atmospheric variability varies according to sea ice sector and season. In this study, interannual atmosphere-sea ice interactions were explored using observations and reanalysis data, and compared with simulated interactions by models in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Simulated relationships between atmospheric variability and sea ice variability generally reproduced the observed relationships, though more closely during the season of sea ice advance than the season of sea ice retreat. Atmospheric influence on sea ice is known to be strongest during advance, and it appears that models are able to capture the dominance of the atmosphere during advance. Simulations of ocean-atmosphere-sea ice interactions during retreat, however, require further investigation. A large proportion of model ensemble members overestimated the relative importance of the Southern Annular Mode (SAM) compared with other modes of high southern latitude climate, while the influence of tropical forcing was underestimated. This result emerged particularly strongly during the season of sea ice retreat. The zonal patterns of the SAM in many models and its exaggerated influence on sea ice overwhelm the comparatively underestimated meridional influence, suggesting that simulated sea ice variability would become more zonally symmetric as a result. Across the seasons of sea ice advance and retreat, three of the five sectors did not reveal a strong relationship with a pattern of large-scale atmospheric variability in one or both seasons, indicating that sea ice in these sectors may be influenced more strongly by atmospheric variability unexplained by the major atmospheric modes, or by heat exchange in the ocean.
NASA Astrophysics Data System (ADS)
Kanaji, Yu; Okazaki, Makoto; Miyashita, Tomio
2017-06-01
Spatial patterns of distribution, abundance, and species diversity of small odontocetes including species in the Delphinidae and Phocoenidae families were investigated using long-term dedicated sighting survey data collected between 1983 and 2006 in the North Pacific. Species diversity indices were calculated from abundance estimated using density surface modeling of line-transect data. The estimated abundance ranged from 19,521 individuals in killer whale to 1,886,022 in pantropical spotted dolphin. The predicted density maps showed that the habitats of small odontocetes corresponded well with distinct oceanic domains. Species richness was estimated to be highest between 30 and 40°N where warm- and cold-water currents converge. Simpson's Diversity Index showed latitudinal diversity gradients of decreasing species numbers toward the poles. Higher diversity was also estimated in the coastal areas and the zonal areas around 35-42°N. Coastal-offshore gradients and latitudinal gradients are known for many taxa. The zonal areas around 35°N and 40°N coincide with the Kuroshio Current and its extension and the subarctic boundary, respectively. These results suggest that the species diversity of small odontocetes primarily follows general patterns of latitudinal and longitudinal gradients, while the confluence of faunas originating in distinct water masses increases species diversify in frontal waters around 30-40°N. Population densities tended to be higher for the species inhabiting higher latitudes, but were highest for intermediate latitudes at approximately 35-40°N. According to latitudinal gradients in water temperature and biological productivity, the costs for thermoregulation will decrease in warmer low latitudes, while feeding efficiency will increase in colder high latitudes. These trade-offs could optimize population density in intermediate latitudes.
Serapide, M F; Parenti, R; Pantò, M R; Zappalà, A; Cicirata, F
2002-06-01
Compartmentalization (alternating labelled and unlabelled stripes) of mossy fibre terminals was found in the cerebellar cortex after iontophoretic injections of biotinylated dextran amine into discrete regions of the nucleus reticularis tegmenti pontis (NRTP). The zonal pattern was only observed when volumes of nuclear tissue ranging from 4.5 x 106 to 17.66 x 106 microm3 were impregnated. Up to nine compartments (i.e. up to five stripes separated by four interstripes) were found in crus I and in vermal lobule VI. Up to seven compartments (four stripes and three interstripes) were found in crus II; up to five compartments (three stripes and two interstripes) were identified in the lobulus simplex, the paraflocculus and vermal lobules IV, V and VII; up to three compartments (two stripes and one interstripe) were identified in the paramedian lobule and, finally, up to two compartments (one stripe and one interstripe) were identified in the copula pyramidis, in the flocculus and in vermal lobules II, III, VIII and IX. The projections of the NRTP are arranged according to a divergent/convergent projection pattern. From single injections in the NRTP, projections were traced to a set of cortical stripes widely distributed over the cerebellar cortex. The set of stripes labelled from different regions of the NRTP partially overlapped but complete overlap was never found. This finding revealed that the topographic combination of the projections of the NRTP to the cerebellar cortex is specific for each region of the NRTP. Finally, the projections to single cortical areas were arranged according to a pattern of compartmentalization that is specific for each cortical area, independent of the site of injection in the NRTP and of the number of stripes evident in the cortex.
NASA Astrophysics Data System (ADS)
Harrison, W. G.; Arístegui, J.; Head, E. J. H.; Li, W. K. W.; Longhurst, A. R.; Sameoto, D. D.
Three trans-Atlantic oceanographic surveys (Nova Scotia to Canary Islands) were carried out during fall 1992 and spring 1993 to describe the large-scale variability in hydrographic, chemical and biological properties of the upper water column of the subtropical gyre and adjacent waters. Significant spatial and temporal variability characterized a number of the biological pools and rate processes whereas others were relatively invariant. Systematic patterns were observed in the zonal distribution of some properties. Most notable were increases (eastward) in mixed-layer temperature and salinity, depths of the nitracline and chlorophyll- a maximum, regenerated production (NH 4 uptake) and bacterial production. Dissolved inorganic carbon (DIC) concentrations, phytoplankton biomass, mesozooplankton biomass and new production (NO 3 uptake) decreased (eastward). Bacterial biomass, primary production, and community respiration exhibited no discernible zonal distribution patterns. Seasonal variability was most evident in hydrography (cooler/fresher mixed-layer in spring), and chemistry (mixed-layer DIC concentration higher and nitracline shallower in spring) although primary production and bacterial production were significantly higher in spring than in fall. In general, seasonal variability was greater in the west than in the east; seasonality in most properties was absent west of Canary Islands (˜20°W). The distribution of autotrophs could be reasonably well explained by hydrography and nutrient structure, independent of location or season. Processes underlying the distribution of the microheterophs, however, were less clear. Heterotrophic biomass and metabolism was less variable than autotrophs and appeared to dominate the upper ocean carbon balance of the subtropical North Atlantic in both fall and spring. Geographical patterns in distribution are considered in the light of recent efforts to partition the ocean into distinct "biogeochemical provinces".
Joint Mobile Data Collection and Wireless Energy Transfer in Wireless Rechargeable Sensor Networks.
Zhong, Ping; Li, Ya-Ting; Liu, Wei-Rong; Duan, Gui-Hua; Chen, Ying-Wen; Xiong, Neal
2017-08-16
In wireless rechargeable sensor networks (WRSNs), there is a way to use mobile vehicles to charge node and collect data. It is a rational pattern to use two types of vehicles, one is for energy charging, and the other is for data collecting. These two types of vehicles, data collection vehicles (DCVs) and wireless charging vehicles (WCVs), are employed to achieve high efficiency in both data gathering and energy consumption. To handle the complex scheduling problem of multiple vehicles in large-scale networks, a twice-partition algorithm based on center points is proposed to divide the network into several parts. In addition, an anchor selection algorithm based on the tradeoff between neighbor amount and residual energy, named AS-NAE, is proposed to collect the zonal data. It can reduce the data transmission delay and the energy consumption for DCVs' movement in the zonal. Besides, we design an optimization function to achieve maximum data throughput by adjusting data rate and link rate of each node. Finally, the effectiveness of proposed algorithm is validated by numerical simulation results in WRSNs.
Tropical circulation and precipitation response to ozone depletion and recovery
NASA Astrophysics Data System (ADS)
Brönnimann, Stefan; Jacques-Coper, Martín; Rozanov, Eugene; Fischer, Andreas M.; Morgenstern, Olaf; Zeng, Guang; Akiyoshi, Hideharu; Yamashita, Yousuke
2017-06-01
Among the few well established changes in atmospheric circulation in recent decades are those caused by stratospheric ozone depletion. They include a strengthening and poleward contraction of the westerly atmospheric circulation over the Southern extratropics, i.e. a strengthening Southern Annular Mode (SAM), in austral spring and summer. Associated effects on extratropical temperature and precipitation and more recently subtropical precipitation have been documented and are understood in a zonal mean framework. We present zonally asymmetric effects of ozone depletion that reach into the tropics and affect atmospheric circulation and precipitation, including the South Pacific Convergence Zone (SPCZ), the most important rainband of the Southern Hemisphere. Using observation-based analyses and model simulations we show that over the 1961-1996 period, ozone depletion led to increased precipitation at the northern flank of the SPCZ and to decreased precipitation to the south. The effects originate from a flow pattern over the southwestern Pacific that extends equatorward and alters the propagation of synoptic waves and thus the position of the SPCZ. Model simulations suggest that anticipated stratospheric ozone recovery over the next decades will reverse these effects.
Joint Mobile Data Collection and Wireless Energy Transfer in Wireless Rechargeable Sensor Networks
Li, Ya-Ting; Liu, Wei-Rong; Duan, Gui-Hua; Chen, Ying-Wen
2017-01-01
In wireless rechargeable sensor networks (WRSNs), there is a way to use mobile vehicles to charge node and collect data. It is a rational pattern to use two types of vehicles, one is for energy charging, and the other is for data collecting. These two types of vehicles, data collection vehicles (DCVs) and wireless charging vehicles (WCVs), are employed to achieve high efficiency in both data gathering and energy consumption. To handle the complex scheduling problem of multiple vehicles in large-scale networks, a twice-partition algorithm based on center points is proposed to divide the network into several parts. In addition, an anchor selection algorithm based on the tradeoff between neighbor amount and residual energy, named AS-NAE, is proposed to collect the zonal data. It can reduce the data transmission delay and the energy consumption for DCVs’ movement in the zonal. Besides, we design an optimization function to achieve maximum data throughput by adjusting data rate and link rate of each node. Finally, the effectiveness of proposed algorithm is validated by numerical simulation results in WRSNs. PMID:28813029
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, M.; Holton, J.R.
1991-09-15
Observations show that the westerly acceleration of the equatorial quasi-biennial oscillation (QBO) can be accounted for by Kelvin waves, but that there is a deficiency in the easterly acceleration due to Rossby-gravity waves. Rossby waves and westward propagating gravity waves have been suggested as alternative sources for the easterly acceleration. We have tested the possible role of these two wave modes in a two-dimensional model of the QBO. When the easterly acceleration is due to Rossby waves, the zonal-mean response is steady; when it is due to gravity waves, an oscillation with some features similar to the QBO occurs, butmore » it is of short period and weak amplitude. A similar result occurs when a standing-wave forcing pattern is imposed. These results suggest that Rossby waves play only a minor role in the QBO, and that while the Rossby-gravity mode is essential, other gravity modes may also be important for the easterly phase. 12 refs., 22 figs.« less
NASA Astrophysics Data System (ADS)
Stryhal, Jan; Huth, Radan
2018-03-01
Winter midlatitude atmospheric circulation has been extensively studied for its tight link to surface weather, and automated circulation classifications have often been used to this end. Here, eight such classifications are applied to daily sea level pressure patterns simulated by an ensemble of CMIP5 GCMs twenty-first century projections for the British Isles and central Europe in order to robustly estimate future changes in frequency, persistence, and strength of synoptic-scale circulation there. All methods are able to identify present-day biases of models reported before, such as an overestimated occurrence of zonal flow and underestimation of anticyclonic conditions and easterly advection, although the strength of these biases varies among the methods. In future, models show that the zonal flow will become more frequent while the strength of the mean flow is not projected to change. Over the British Isles, the models that better simulate the latitude of zonal flow over the historical period indicate a slight equatorward shift of westerlies in their projections, while the poleward expansion of circulation—expected in future at global scale—is apparent in those models that have large errors. Over central Europe, some classifications indicate an increase in persistence and especially in frequency of anticyclonic types, which is, however, shown to be rather an artifact of some methods than a real feature. On the other hand, the easterly flow is robustly projected to become markedly weaker in central Europe, which we hypothesize might be an important factor contributing to the projected decrease of cold extremes there.
Soils and Vegetation of the Khaipudyr Bay Coast of the Barents Sea
NASA Astrophysics Data System (ADS)
Shamrikova, E. V.; Deneva, S. V.; Panyukov, A. N.; Kubik, O. S.
2018-04-01
Soils and vegetation of the coastal zone of the Khaipudyr Bay of the Barents Sea have been examined and compared with analogous objects in the Karelian coastal zone of the White Sea. The environmental conditions of these two areas are somewhat different: the climate of the Khaipudyr Bay coast is more severe, and the seawater salinity is higher (32-33‰ in the Khaipudyr Bay and 25-26‰ in the White Sea). The soil cover patterns of both regions are highly variable. Salt-affected marsh soils (Tidalic Fluvisols) are widespread. The complicated mesotopography includes high geomorphic positions that are not affected by tidal water. Under these conditions, zonal factors of pedogenesis predominate and lead to the development of Cryic Folic Histosols and Histic Reductaquic Cryosols. On low marshes, the concentrations of soluble Ca2+, K+ + Na+, Cl-, and SO2- 4 ions in the soils of the Khaipudyr Bay coast are two to four times higher than those in the analogous soils of Karelian coast. Cluster analysis of a number of soil characteristics allows separation of three soils groups: soils of low marshes, soils of middle-high marshes, and soils of higher positions developing under the impact of zonal factors together with the aerial transfer and deposition of seawater drops. The corresponding plant communities are represented by coastal sedge cenoses, forb-grassy halophytic cenoses, and zonal cenoses of hypoarctic tundra. It is argued that the grouping of marsh soils in the new substantivegenetic classification system of Russian soils requires further elaboration.
Sensitivity of Coupled Tropical Pacific Model Biases to Convective Parameterization in CESM1
NASA Astrophysics Data System (ADS)
Woelfle, M. D.; Yu, S.; Bretherton, C. S.; Pritchard, M. S.
2018-01-01
Six month coupled hindcasts show the central equatorial Pacific cold tongue bias development in a GCM to be sensitive to the atmospheric convective parameterization employed. Simulations using the standard configuration of the Community Earth System Model version 1 (CESM1) develop a cold bias in equatorial Pacific sea surface temperatures (SSTs) within the first two months of integration due to anomalous ocean advection driven by overly strong easterly surface wind stress along the equator. Disabling the deep convection parameterization enhances the zonal pressure gradient leading to stronger zonal wind stress and a stronger equatorial SST bias, highlighting the role of pressure gradients in determining the strength of the cold bias. Superparameterized hindcasts show reduced SST bias in the cold tongue region due to a reduction in surface easterlies despite simulating an excessively strong low-level jet at 1-1.5 km elevation. This reflects inadequate vertical mixing of zonal momentum from the absence of convective momentum transport in the superparameterized model. Standard CESM1simulations modified to omit shallow convective momentum transport reproduce the superparameterized low-level wind bias and associated equatorial SST pattern. Further superparameterized simulations using a three-dimensional cloud resolving model capable of producing realistic momentum transport simulate a cold tongue similar to the default CESM1. These findings imply convective momentum fluxes may be an underappreciated mechanism for controlling the strength of the equatorial cold tongue. Despite the sensitivity of equatorial SST to these changes in convective parameterization, the east Pacific double-Intertropical Convergence Zone rainfall bias persists in all simulations presented in this study.
NASA Astrophysics Data System (ADS)
Scroxton, N.; Burns, S. J.; McGee, D.; Hardt, B. F.; Godfrey, L.; Ranivoharimanana, L.; Faina, P.
2017-12-01
The behavior of the world's monsoon systems and the position of the Inter Tropical Convergence Zone (ITCZ) resulting from large global climatic changes is reasonably well understood at orbital and millennial timescales. However, under the boundary conditions and relatively modest forcing of the last 2000 years it is not yet clear how tropical monsoon systems changed and why. The traditional schema of north-south translation of the ITCZ is being challenged by new theories relating to meridional expansion and contraction of the tropical rain belt, and/or to changes in zonal circulation patterns resembling modern El-Niño Southern Oscillation end members. Located at a hotspot of zonal and meridional climate forcing, stalagmites from the western Indian Ocean can provide new insights into past rainfall variability and uncover the driving mechanisms. Here, we present results from a new southern hemisphere speleothem record from Anjohibe cave, northwestern Madagascar, covering the last 1,700 years. We demonstrate that our quasi-annual, precisely dated, stable oxygen isotope record serves as a proxy for the strength of the northwestern Madagascan monsoon. The record shows a multi-decadal, in-phase relationship with its northern hemisphere monsoon counterpart from Oman - contrary to the expected antiphase relationship that would result from north-south ITCZ translation. At the centennial scale, the Madagascan record correlates well with precipitation records from Eastern Africa. We discuss the potential causes of western Indian Ocean precipitation coherency, and how it relates to either symmetrical changes in continental sensible heating, or to a low frequency zonal sea-surface temperature mode.
External Influences on Modeled and Observed Cloud Trends
NASA Technical Reports Server (NTRS)
Marvel, Kate; Zelinka, Mark; Klein, Stephen A.; Bonfils, Celine; Caldwell, Peter; Doutriaux, Charles; Santer, Benjamin D.; Taylor, Karl E.
2015-01-01
Understanding the cloud response to external forcing is a major challenge for climate science. This crucial goal is complicated by intermodel differences in simulating present and future cloud cover and by observational uncertainty. This is the first formal detection and attribution study of cloud changes over the satellite era. Presented herein are CMIP5 (Coupled Model Intercomparison Project - Phase 5) model-derived fingerprints of externally forced changes to three cloud properties: the latitudes at which the zonally averaged total cloud fraction (CLT) is maximized or minimized, the zonal average CLT at these latitudes, and the height of high clouds at these latitudes. By considering simultaneous changes in all three properties, the authors define a coherent multivariate fingerprint of cloud response to external forcing and use models from phase 5 of CMIP (CMIP5) to calculate the average time to detect these changes. It is found that given perfect satellite cloud observations beginning in 1983, the models indicate that a detectable multivariate signal should have already emerged. A search is then made for signals of external forcing in two observational datasets: ISCCP (International Satellite Cloud Climatology Project) and PATMOS-x (Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmospheres - Extended). The datasets are both found to show a poleward migration of the zonal CLT pattern that is incompatible with forced CMIP5 models. Nevertheless, a detectable multivariate signal is predicted by models over the PATMOS-x time period and is indeed present in the dataset. Despite persistent observational uncertainties, these results present a strong case for continued efforts to improve these existing satellite observations, in addition to planning for new missions.
1976-03-01
beaches than any other part of the southeastern shoreline of Lake Erie . It is the only major sand accumulation zone with the exception of Presque Isle , in...52 20. Photographs of zonal site #10. 54 21. Photograph and map of zonal site #11, Presque Isle , Pa. 57 F22. Photographs and beach profiles at zonal...site #11. 59 23. Photograph of zonal site #12, the recurved spit area on Presque Isle , Pa. 62 24. Block diagram of recurved spit area of Presque Isle
Zonal wavefront estimation using an array of hexagonal grating patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathak, Biswajit, E-mail: b.pathak@iitg.ernet.in, E-mail: brboruah@iitg.ernet.in; Boruah, Bosanta R., E-mail: b.pathak@iitg.ernet.in, E-mail: brboruah@iitg.ernet.in
2014-10-15
Accuracy of Shack-Hartmann type wavefront sensors depends on the shape and layout of the lenslet array that samples the incoming wavefront. It has been shown that an array of gratings followed by a focusing lens provide a substitution for the lensslet array. Taking advantage of the computer generated holography technique, any arbitrary diffraction grating aperture shape, size or pattern can be designed with little penalty for complexity. In the present work, such a holographic technique is implemented to design regular hexagonal grating array to have zero dead space between grating patterns, eliminating the possibility of leakage of wavefront during themore » estimation of the wavefront. Tessellation of regular hexagonal shape, unlike other commonly used shapes, also reduces the estimation error by incorporating more number of neighboring slope values at an equal separation.« less
Frequency-dependent behavior of the barotropic and baroclinic modes of zonal jet variability
NASA Astrophysics Data System (ADS)
Sheshadri, A.; Plumb, R. A.
2016-12-01
Stratosphere-troposphere interactions are frequently described in terms of the leading modes of variability, i.e. the annular modes. An idealized dynamical core model is used to explore the differences between the low- and high- frequency (periods greater and less than 30 days) behavior of the first two principal components of zonal mean zonal wind and eddy kinetic energy, i.e., the barotropic/baroclinic annular modes of variability of the extratropical circulation. The modes show similar spatial characteristics in the different frequency ranges considered, however the ranking of the modes switches in some cases from one range to the other. There is some cancelation in the signatures of eddy heat flux and eddy kinetic energy in the leading low-pass and high-pass filtered zonal wind mode, partly explaining their small signature in the total. At low frequencies, the first zonal wind mode describes latitudinal shifts of both the midlatitude jet and its associated storm tracks, and the persistence of zonal wind anomalies appears to be sustained primarily by a baroclinic, rather than a barotropic, feedback. On shorter time scales, the behavior is more complicated and transient.
Numerical simulation on zonal disintegration in deep surrounding rock mass.
Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin
2014-01-01
Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks.
Numerical Simulation on Zonal Disintegration in Deep Surrounding Rock Mass
Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin
2014-01-01
Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks. PMID:24592166
NASA Astrophysics Data System (ADS)
Nakada, Masao; Okuno, Jun'ichi
2017-06-01
Secular variations in zonal harmonics of Earth's geopotential based on the satellite laser ranging observations, {\\dot{J}_n}, contain important information about the Earth's deformation due to the glacial isostatic adjustment (GIA) and recent melting of glaciers and the Greenland and Antarctic ice sheets. Here, we examine the GIA-induced {\\dot{J}_n}, \\dot{J}_n^{GIA} (2 ≤ n ≤ 6), derived from the available geopotential zonal secular rate and recent melting taken from the IPCC 2013 Report (AR5) to explore the possibility of additional information on the depth-dependent lower-mantle viscosity and GIA ice model inferred from the analyses of the \\dot{J}_2^{GIA} and relative sea level changes. The sensitivities of the \\dot{J}_n^{GIA} to lower-mantle viscosity and GIA ice model with a global averaged eustatic sea level (ESL) of ∼130 m indicate that the secular rates for n = 3 and 4 are mainly caused by the viscous response of the lower mantle to the melting of the Antarctic ice sheet regardless of GIA ice models adopted in this study. Also, the analyses of the \\dot{J}_n^{GIA} based on the available geopotential zonal secular rates indicate that permissible lower-mantle viscosity structure satisfying even zonal secular rates of n = 2, 4 and 6 is obtained for the GIA ice model with an Antarctic ESL component of ∼20 or ∼30 m, but there is no viscosity solution satisfying \\dot{J}_3^{GIA} and \\dot{J}_5^{GIA} values. Moreover, the inference model for the lower-mantle viscosity and GIA ice model from each odd zonal secular rate is distinctly different from that satisfying GIA-induced even zonal secular rate. The discrepancy between the inference models for the even and odd zonal secular rates may partly be attributed to uncertainties of the geopotential zonal secular rates for n > 2 and particularly those for odd zonal secular rates due to weakness in the orbital geometry. If this problem is overcome at least for the secular rates of n < 5, then the analyses of the \\dot{J}_n^{GIA} would make it possible to put more convincing constraints on the lower-mantle viscosity structure and GIA ice model, particularly for the controversial Antarctic melting history in GIA community.
NASA Astrophysics Data System (ADS)
Inatsu, Masaru; Mukougawa, Hitoshi; Xie, Shang-Ping
2003-10-01
Midwinter storm track response to zonal variations in midlatitude sea surface temperatures (SSTs) has been investigated using an atmospheric general circulation model under aquaplanet and perpetual-January conditions. Zonal wavenumber-1 SST variations with a meridionally confined structure are placed at various latitudes. Having these SST variations centered at 30°N leads to a zonally localized storm track, while the storm track becomes nearly zonally uniform when the same SST forcing is moved farther north at 40° and 50°N. Large (small) baroclinic energy conversion north of the warm (cold) SST anomaly near the axis of the storm track (near 40°N) is responsible for the large (small) storm growth. The equatorward transfer of eddy kinetic energy by the ageostrophic motion and the mechanical damping are important to diminish the storm track activity in the zonal direction.Significant stationary eddies form in the upper troposphere, with a ridge (trough) northeast of the warm (cold) SST anomaly at 30°N. Heat and vorticity budget analyses indicate that zonally localized condensational heating in the storm track is the major cause for these stationary eddies, which in turn exert a positive feedback to maintain the localized storm track by strengthening the vertical shear near the surface. These results indicate an active role of synoptic eddies in inducing deep, tropospheric-scale response to midlatitude SST variations. Finally, the application of the model results to the real atmosphere is discussed.
NASA Technical Reports Server (NTRS)
Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.
2013-01-01
A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air-sea interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum exchange and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.
NASA Astrophysics Data System (ADS)
Sheshadri, A.; Plumb, R. A.
2017-12-01
The leading "annular mode", defined as the dominant EOF of surface pressure or of zonal mean zonal wind variability, appears as a dipolar structure straddling the mean midlatitude jet and thus seems to describe north-south wobbling of the jet latitude. However, extratropical zonal wind anomalies frequently tend to migrate poleward. This behavior can be described by the first two EOFs, the first (AM1) being the dipolar structure, and the second (AM2) having a tripolar structure centered on the mean jet. Taken in isolation, AM1 thus describes a north-south wobbling of the jet position, while AM2 describes a strengthening and narrowing of the jet. However, despite the fact that they are spatially orthogonal, and their corresponding time series temporally orthogonal, AM1 and AM2 are not independent, but show significant lag-correlations which reveal the propagation. The EOFs are not modes of the underlying dynamical system governing the zonal flow evolution. The true modes can be estimated using principal oscillation pattern (POP) analysis. In the troposphere, the leading POPs manifest themselves as a pair of complex conjugate structures with conjugate eigenvalues thus, in reality, constituting a single, complex, mode that describes propagating anomalies. Even though the principal components associated with the two leading EOFs decay at different rates, each decays faster than the true mode. These facts have implications for eddy feedback and the susceptibility of the mode to external perturbations. If one interprets the annular modes as the modes of the system, then simple theory predicts that the response to steady forcing will usually be dominated by AM1 (with the longest time scale). However, such arguments should really be applied to the true modes. Experiments with a simplified GCM show that climate response to perturbations do not necessarily have AM1 structures. Implications of these results for stratosphere-troposphere interactions are explored. The POP structures are shown to be independent of any weighting (unlike the EOFs, the structures and time scales of which change substantially with pressure weighting), a fact that is particularly important for a deep system such as the troposphere and stratospere. The structure and time evolution of coupled modes of the troposphere-stratosphere system are studied.
Are Strong Zonal Winds in Giant Planets Caused by Density-Stratification?
NASA Astrophysics Data System (ADS)
Verhoeven, J.; Stellmach, S.
2012-12-01
One of the most striking features of giant planets like Jupiter and Saturn are the zonal wind patterns observed on their surfaces. The mechanism that drives this differential rotation is still not clearly identified and is currently strongly debated in the astro- and geophysics community. Different mechanisms have been proposed over the last decades. Here, a recently discovered mechanism based on background density stratification (Glatzmaier et al., 2009) is investigated. This mechanism has the potential to overcome known difficulties of previous explanations and its efficiency has been demonstrated in 2-d simulations covering equatorial planes. By performing highly resolved numerical simulations in a local Cartesian geometry, we are able to test the efficiency and functionality of this mechanism in turbulent, rotating convection in three spatial dimensions. The choice of a Cartesian model geometry naturally excludes other known mechanisms capable of producing differential rotation, thus allowing us to investigate the role of density stratification in isolation. Typically, the dynamics can be classified into two main regimes: A regime exhibiting strong zonal winds for weak to moderate thermal driving and a regime where zonal winds are largely absent in the case of a strong thermal forcing. Our results indicate that previous 2-d results must be handled with care and can only explain parts of the full 3-d behavior. We show that the density-stratification mechanism tends to operate in a more narrow parameter range in 3-d as compared to 2-d simulations. The dynamics of the regime transition is shown to differ in both cases, which renders scaling laws derived from two-dimensional studies questionable. Based on our results, we provide estimates for the importance of the density-stratification mechanism for giant planets like Jupiter (strong density stratification), for systems like the Earth's core (weak density stratification) and compare its efficiency with other suggested mechanisms for driving differential rotation. Gary A. Glatzmaier, Martha Evonuk and Tamara M. Rogers (2009), Differential rotation in giant planets maintained by density-stratified turbulent convection. Geophysical and Astrophysical Fluid Dynamics, Vol. 103, No. 1, 31-51.
Time-varying zonal asymmetries in stratospheric nitrous oxide and methane
NASA Technical Reports Server (NTRS)
Gao, H.; Stanford, J. L.
1993-01-01
Previously analyses of Stratospheric And Mesospheric Sounder (SAMS) data of atmospheric constituent gases have dealt almost exclusively with zonal means (and mostly monthly means), owing perhaps to concern over data quality. The purpose of this note is to show that, with care, time-dependent zonally-asymmetric features may be recovered from the SAMS nitrous oxide and methane data. As an example, we demonstrate the existence of zonal wave-1 constituent perturbations with periods of a few weeks in the middle and upper stratosphere. When the perturbations are normalized by the constituent zonal-mean mixing ratio to compensate for the slowly varying (in both space and time) background concentration of constituents, wavepacket-like features are found over all latitudes and seasons in the three-year SAMS record. One specific low-latitude case discussed had features which appear to be consistent with constituent oscillations induced by episodic equatorial Kelvin waves. Further studies are needed to better identify the nature of the plethora of observed wave-like phenomena.
NASA Astrophysics Data System (ADS)
Han, Fengshan; Wu, Xinli; Li, Xia; Zhu, Dekang
2018-02-01
Zonal disintegration phenomenon was found in deep mining roadway surrounding rock. It seriously affects the safety of mining and underground engineering and it may lead to the occurrence of natural disasters. in deep mining roadway surrounding rock, tectonic stress in deep mining roadway rock mass, horizontal stress is much greater than the vertical stress, When the direction of maximum principal stress is parallel to the axis of the roadway in deep mining, this is the main reasons for Zonal disintegration phenomenon. Using ABAQUS software to numerical simulation of the three-dimensional model of roadway rupture formation process systematically, and the study shows that when The Direction of maximum main stress in deep underground mining is along the roadway axial direction, Zonal disintegration phenomenon in deep underground mining is successfully reproduced by our numerical simulation..numerical simulation shows that using ABAQUA simulation can reproduce Zonal disintegration phenomenon and the formation process of damage of surrounding rock can be reproduced. which have important engineering practical significance.
Effect of resonant magnetic perturbations on secondary structures in drift-wave turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leconte, M.; Diamond, P. H.; CMTFO and CASS, UCSD, California 92093
2011-08-15
Recent experiments showed a decrease of long range correlations during the application of resonant magnetic perturbations (RMPs) [Y. Xu et al., Nucl. Fusion 51, 063020 (2011)]. This finding suggests that RMPs damp zonal flows. To elucidate the effect of the RMPs on zonal structures in drift wave turbulence, we construct a generalized Hasegawa-Wakatani model including RMP fields. The effect of the RMPs is to induce a linear coupling between the zonal electric field and the zonal density gradient, which drives the system to a state of electron radial force balance for large RMP amplitude. A predator-prey model coupling the primarymore » drift wave dynamics to the zonal modes evolution is derived. This model has both turbulence drive and RMP amplitude as control parameters and predicts a novel type of transport bifurcation in the presence of RMPs. The novel regime has a power threshold which increases with RMP amplitude as {gamma}{sub c}{approx}[({delta}B{sub r}/B)]{sup 2}.« less
The modulational instability in the extended Hasegawa-Mima equation with a finite Larmor radius
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallagher, S.; Hnat, B.; Rowlands, G.
2012-12-15
The effects of the finite Larmor radius on the generation of zonal flows by the four-wave modulational instability are investigated using an extended form of the Hasegawa-Mima equation. Growth rates of the zonal mode are quantified using analytical predictions from a four-mode truncated model, as well as from direct numerical simulation of the nonlinear extended Hasegawa-Mima equation. We not only consider purely zonal flows but also examine the generic oblique case and show that, for small Larmor radii, off-axis modes may become dominant. We find a key parameter M{sub {rho}} which characterises the behaviour of the system due to changesmore » in the Larmor radius. We find that, similarly to previous results obtained by changing the driving wave amplitude, two separate dynamical regimes can be accessed. These correspond to oscillatory energy transfer between zonal flows and a driving wave and the fully saturated zonal flow.« less
Gravitational Anomalies Caused by Zonal Winds in Jupiter
NASA Astrophysics Data System (ADS)
Schubert, G.; Kong, D.; Zhang, K.
2012-12-01
We present an accurate three-dimensional non-spherical numerical calculation of the gravitational anomalies caused by zonal winds in Jupiter. The calculation is based on a three-dimensional finite element method and accounts for the full effect of significant departure from spherical geometry caused by rapid rotation. Since the speeds of Jupiter's zonal winds are much smaller than that of its rigid-body rotation, our numerical calculation is carried out in two stages. First, we compute the non-spherical distributions of density and pressure at the equilibrium within Jupiter via a hybrid inverse approach by determining an a priori unknown coefficient in the polytropic equation of state that results in a match to the observed shape of Jupiter. Second, by assuming that Jupiter's zonal winds extend throughout the interior along cylinders parallel to the rotation axis, we compute gravitational anomalies produced by the wind-related density anomalies, providing an upper bound to the gravitational anomalies caused by the Jovian zonal winds.
Zonally Asymmetric Ozone and the Morphology of the Planetary Waveguide
2011-07-15
sections for the 271 troposphere , J. Atmos. Sci., 37, 2600-2616. 272 Eyring, V., et al. (2007), Multimodel projections of stratospheric ozone ...GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, JULY 15, 2011 Zonally asymmetric ozone and the morphology of the 1 planetary waveguide...that zonally asymmetric 6 ozone (ZAO) profoundly changes the morphology of the Northern Hemisphere planetary 7 waveguide (PWG). ZAO causes the PWG to
The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staebler, G. M.; Candy, J.; Howard, N. T.
2016-06-15
The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.« less
NASA Technical Reports Server (NTRS)
Hurwitz, Margaret M.; Oman, Luke David; Newman, Paul A.; Song, InSun
2013-01-01
A Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM) simulation with strong tropical non-orographic gravity wave drag (GWD) is compared to an otherwise identical simulation with near-zero tropical non-orographic GWD. The GEOSCCM generates a quasibiennial oscillation (QBO) zonal wind signal in response to a tropical peak in GWD that resembles the zonal and climatological mean precipitation field. The modelled QBO has a frequency and amplitude that closely resembles observations. As expected, the modelled QBO improves the simulation of tropical zonal winds and enhances tropical and subtropical stratospheric variability. Also, inclusion of the QBO slows the meridional overturning circulation, resulting in a generally older stratospheric mean age of air. Slowing of the overturning circulation, changes in stratospheric temperature and enhanced subtropical mixing all affect the annual mean distributions of ozone, methane and nitrous oxide. Furthermore, the modelled QBO enhances polar stratospheric variability in winter. Because tropical zonal winds are easterly in the simulation without a QBO, there is a relative increase in tropical zonal winds in the simulation with a QBO. Extratropical differences between the simulations with and without a QBO thus reflect the westerly shift in tropical zonal winds: a relative strengthening of the polar stratospheric jet, polar stratospheric cooling and a weak reduction in Arctic lower stratospheric ozone.
NASA Astrophysics Data System (ADS)
Guervilly, C.; Cardin, P.
2017-10-01
We study rapidly rotating Boussinesq convection driven by internal heating in a full sphere. We use a numerical model based on the quasi-geostrophic approximation for the velocity field, whereas the temperature field is 3-D. This approximation allows us to perform simulations for Ekman numbers down to 10-8, Prandtl numbers relevant for liquid metals (˜10-1) and Reynolds numbers up to 3 × 104. Persistent zonal flows composed of multiple jets form as a result of the mixing of potential vorticity. For the largest Rayleigh numbers computed, the zonal velocity is larger than the convective velocity despite the presence of boundary friction. The convective structures and the zonal jets widen when the thermal forcing increases. Prograde and retrograde zonal jets are dynamically different: in the prograde jets (which correspond to weak potential vorticity gradients) the convection transports heat efficiently and the mean temperature tends to be homogenized; by contrast, in the cores of the retrograde jets (which correspond to steep gradients of potential vorticity) the dynamics is dominated by the propagation of Rossby waves, resulting in the formation of steep mean temperature gradients and the dominance of conduction in the heat transfer process. Consequently, in quasi-geostrophic systems, the width of the retrograde zonal jets controls the efficiency of the heat transfer.
Future Effects of Southern Hemisphere Stratospheric Zonal Asymmetries on Climate
NASA Astrophysics Data System (ADS)
Stone, K.; Solomon, S.; Kinnison, D. E.; Fyfe, J. C.
2017-12-01
Stratospheric zonal asymmetries in the Southern Hemisphere have been shown to have significant influences on both stratospheric and tropospheric dynamics and climate. Accurate representation of stratospheric ozone in particular is important for realistic simulation of the polar vortex strength and temperature trends. This is therefore also important for stratospheric ozone change's effect on the troposphere, both through modulation of the Southern Annular Mode (SAM), and more localized climate. Here, we characterization the impact of future changes in Southern Hemisphere zonal asymmetry on tropospheric climate, including changes to future tropospheric temperature, and precipitation. The separate impacts of increasing GHGs and ozone recovery on the zonal asymmetric influence on the surface are also investigated. For this purpose, we use a variety of models, including Chemistry Climate Model Initiative simulations from the Community Earth System Model, version 1, with the Whole Atmosphere Community Climate Model (CESM1(WACCM)) and the Australian Community Climate and Earth System Simulator-Chemistry Climate Model (ACCESS-CCM). These models have interactive chemistry and can therefore more accurately represent the zonally asymmetric nature of the stratosphere. The CESM1(WACCM) and ACCESS-CCM models are also compared to simulations from the Canadian Can2ESM model and CESM-Large Ensemble Project (LENS) that have prescribed ozone to further investigate the importance of simulating stratospheric zonal asymmetry.
The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence
Staebler, Gary M.; Candy, John; Howard, Nathan T.; ...
2016-06-29
The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. Finally, the zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ionscale gyrokinetic simulations.« less
NASA Astrophysics Data System (ADS)
Clem, Kyle R.; Renwick, James A.; McGregor, James
2017-07-01
During 1979-2014, eastern tropical Pacific sea surface temperatures significantly cooled, which has generally been attributed to the transition of the Pacific Decadal Oscillation to its negative phase after 1999. We find the eastern tropical Pacific cooling to be associated with: (1) an intensified Walker Circulation during austral summer (December-February, DJF) and autumn (March-May, MAM); (2) a weakened South Pacific Hadley cell and subtropical jet during MAM; and (3) a strengthening of the circumpolar westerlies between 50 and 60°S during DJF and MAM. Observed cooling in the eastern tropical Pacific is linearly congruent with 60-80 % of the observed Southern Hemisphere positive zonal-mean zonal wind trend between 50 and 60°S during DJF ( 35 % of the interannual variability), and around half of the observed positive zonal-mean zonal wind trend during MAM ( 15 % of the interannual variability). Although previous studies have linked the strengthened DJF and MAM circumpolar westerlies to stratospheric ozone depletion and increasing greenhouse gases, we note that the continuation of the positive SAM trends into the twenty-first century is partially associated with eastern tropical Pacific cooling, especially during MAM when zonal wind anomalies associated with eastern tropical Pacific cooling project strongly onto the observed trends. Outside of DJF and MAM, eastern tropical Pacific cooling is associated with opposing zonal wind anomalies over the Pacific and Indian sectors, which we infer is the reason for the absence of significant positive SAM trends outside of DJF and MAM despite significant eastern tropical Pacific cooling seen during all seasons.
A zonal method for modeling powered-lift aircraft flow fields
NASA Technical Reports Server (NTRS)
Roberts, D. W.
1989-01-01
A zonal method for modeling powered-lift aircraft flow fields is based on the coupling of a three-dimensional Navier-Stokes code to a potential flow code. By minimizing the extent of the viscous Navier-Stokes zones the zonal method can be a cost effective flow analysis tool. The successful coupling of the zonal solutions provides the viscous/inviscid interations that are necessary to achieve convergent and unique overall solutions. The feasibility of coupling the two vastly different codes is demonstrated. The interzone boundaries were overlapped to facilitate the passing of boundary condition information between the codes. Routines were developed to extract the normal velocity boundary conditions for the potential flow zone from the viscous zone solution. Similarly, the velocity vector direction along with the total conditions were obtained from the potential flow solution to provide boundary conditions for the Navier-Stokes solution. Studies were conducted to determine the influence of the overlap of the interzone boundaries and the convergence of the zonal solutions on the convergence of the overall solution. The zonal method was applied to a jet impingement problem to model the suckdown effect that results from the entrainment of the inviscid zone flow by the viscous zone jet. The resultant potential flow solution created a lower pressure on the base of the vehicle which produces the suckdown load. The feasibility of the zonal method was demonstrated. By enhancing the Navier-Stokes code for powered-lift flow fields and optimizing the convergence of the coupled analysis a practical flow analysis tool will result.
Rethinking wave-kinetic theory applied to zonal flows
NASA Astrophysics Data System (ADS)
Parker, Jeffrey
2017-10-01
Over the past two decades, a number of studies have employed a wave-kinetic theory to describe fluctuations interacting with zonal flows. Recent work has uncovered a defect in this wave-kinetic formulation: the system is dominated by the growth of (arbitrarily) small-scale zonal structures. Theoretical calculations of linear growth rates suggest, and nonlinear simulations confirm, that this system leads to the concentration of zonal flow energy in the smallest resolved scales, irrespective of the numerical resolution. This behavior results from the assumption that zonal flows are extremely long wavelength, leading to the neglect of key terms responsible for conservation of enstrophy. A corrected theory, CE2-GO, is presented; it is free of these errors yet preserves the intuitive phase-space mathematical structure. CE2-GO properly conserves enstrophy as well as energy, and yields accurate growth rates of zonal flow. Numerical simulations are shown to be well-behaved and not dependent on box size. The steady-state limit simplifies into an exact wave-kinetic form which offers the promise of deeper insight into the behavior of wavepackets. The CE2-GO theory takes its place in a hierarchy of models as the geometrical-optics reduction of the more complete cumulant-expansion statistical theory CE2. The new theory represents the minimal statistical description, enabling an intuitive phase-space formulation and an accurate description of turbulence-zonal flow dynamics. This work was supported by an NSF Graduate Research Fellowship, a US DOE Fusion Energy Sciences Fellowship, and US DOE Contract Nos. DE-AC52-07NA27344 and DE-AC02-09CH11466.
Inventory of File sref.t03z.pgrb212_SPC.prob_1hrly.grib2
analysis Total Precipitation [prob] prob >0.25 002 cloud base U-GWD 1 hour fcst Zonal Flux of Gravity Precipitation [prob] prob >0.25 007 cloud base U-GWD 2 hour fcst Zonal Flux of Gravity Wave Stress [prob ;0.25 012 cloud base U-GWD 4 hour fcst Zonal Flux of Gravity Wave Stress [prob] prob =1 013 entire
Oceanic eddy detection and lifetime forecast using machine learning methods
NASA Astrophysics Data System (ADS)
Ashkezari, Mohammad D.; Hill, Christopher N.; Follett, Christopher N.; Forget, Gaël.; Follows, Michael J.
2016-12-01
We report a novel altimetry-based machine learning approach for eddy identification and characterization. The machine learning models use daily maps of geostrophic velocity anomalies and are trained according to the phase angle between the zonal and meridional components at each grid point. The trained models are then used to identify the corresponding eddy phase patterns and to predict the lifetime of a detected eddy structure. The performance of the proposed method is examined at two dynamically different regions to demonstrate its robust behavior and region independency.
Arctic-midlatitude weather linkages in North America
NASA Astrophysics Data System (ADS)
Overland, James E.; Wang, Muyin
2018-06-01
There is intense public interest in whether major Arctic changes can and will impact midlatitude weather such as cold air outbreaks on the central and east side of continents. Although there is progress in linkage research for eastern Asia, a clear gap is conformation for North America. We show two stationary temperature/geopotential height patterns where warmer Arctic temperatures have reinforced existing tropospheric jet stream wave amplitudes over North America: a Greenland/Baffin Block pattern during December 2010 and an Alaska Ridge pattern during December 2017. Even with continuing Arctic warming over the past decade, other recent eastern US winter months were less susceptible for an Arctic linkage: the jet stream was represented by either zonal flow, progressive weather systems, or unfavorable phasing of the long wave pattern. The present analysis lays the scientific controversy over the validity of linkages to the inherent intermittency of jet stream dynamics, which provides only an occasional bridge between Arctic thermodynamic forcing and extended midlatitude weather events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candy, J.
2015-12-01
This work was motivated by the observation, as early as 2008, that GYRO simulations of some ITER operating scenarios exhibited nonlinear zonal-flow generation large enough to effectively quench turbulence inside r /a ~ 0.5. This observation of flow-dominated, low-transport states persisted even as more accurate and comprehensive predictions of ITER profiles were made using the state-of-the-art TGLF transport model. This core stabilization is in stark contrast to GYRO-TGLF comparisons for modern-day tokamaks, for which GYRO and TGLF are typically in very close agreement. So, we began to suspect that TGLF needed to be generalized to include the effect of zonal-flowmore » stabilization in order to be more accurate for the conditions of reactor simulations. While the precise cause of the GYRO-TGLF discrepancy for ITER parameters was not known, it was speculated that closeness to threshold in the absence of driven rotation, as well as electromagnetic stabilization, created conditions more sensitive the self-generated zonal-flow stabilization than in modern tokamaks. Need for nonlinear zonal-flow stabilization: To explore the inclusion of a zonal-flow stabilization mechanism in TGLF, we started with a nominal ITER profile predicted by TGLF, and then performed linear and nonlinear GYRO simulations to characterize the behavior at and slightly above the nominal temperature gradients for finite levels of energy transport. Then, we ran TGLF on these cases to see where the discrepancies were largest. The predicted ITER profiles were indeed near to the TGLF threshold over most of the plasma core in the hybrid discharge studied (weak magnetic shear, q > 1). Scanning temperature gradients above the TGLF power balance values also showed that TGLF overpredicted the electron energy transport in the low-collisionality ITER plasma. At first (in Q3), a model of only the zonal-flow stabilization (Dimits shift) was attempted. Although we were able to construct an ad hoc model of the zonal flows that fit the GYRO simulations, the parameters of the model had to be tuned to each case. A physics basis for the zonal flow model was lacking. Electron energy transport at short wavelength: A secondary issue – the high-k electron energy flux – was initially assumed to be independent of the zonal flow effect. However, detailed studies of the fluctuation spectra from recent multiscale (electron and ion scale) GYRO simulations provided a critical new insight into the role of zonal flows. The multiscale simulations suggested that advection by the zonal flows strongly suppressed electron-scale turbulence. Radial shear of the zonal E×B fluctuation could not compete with the large electron-scale linear growth rate, but the k x-mixing rate of the E×B advection could. This insight led to a preliminary new model for the way zonal flows saturate both electron- and ion-scale turbulence. It was also discovered that the strength of the zonal E×B velocity could be computed from the linear growth rate spectrum. The new saturation model (SAT1), which replaces the original model (SAT0), was fit to the multiscale GYRO simulations as well as the ion-scale GYRO simulations used to calibrate the original SAT0 model. Thus, SAT1 captures the physics of both multiscale electron transport and zonal-flow stabilization. In future work, the SAT1 model will require significant further testing and (expensive) calibration with nonlinear multiscale gyrokinetic simulations over a wider variety of plasma conditions – certainly more than the small set of scans about a single C-Mod L-mode discharge. We believe the SAT1 model holds great promise as a physics-based model of the multiscale turbulent transport in fusion devices. Correction to ITER performance predictions: Finally, the impact of the SAT1model on the ITER hybrid case is mixed. Without the electron-scale contribution to the fluxes, the Dimits shift makes a significant improvement in the predicted fusion power as originally posited. Alas, including the high-k electron transport reduces the improvement, yielding a modest net increase in predicted fusion power compared to the TGLF prediction with the original SAT0 model.« less
NASA Technical Reports Server (NTRS)
Bowman, K. W.; Jones, D.; Logan, J.; Worden, H.; Boersma, F.; Chang, R.; Kulawik, S.; Osterman, G.; Worden, J.
2008-01-01
The chemical and dynamical processes governing the zonal variability of tropical tropospheric ozone and carbon monoxide are investigated for November 2004 using satellite observations, in-situ measurements, and chemical transport models in conjunction with inverse-estimated surface emissions. Vertical ozone profile estimates from the Tropospheric Emission Spectrometer (TES) and ozone sonde measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ) network show the so called zonal 'wave-one' pattern, which is characterized by peak ozone concentrations (70-80 ppb) centered over the Atlantic, as well as elevated concentrations of ozone over Indonesia and Australia (60-70 ppb) in the lower troposphere. Observational evidence from TES CO vertical profiles and Ozone Monitoring Instrument (OMI) NO2 columns point to regional surface emissions as an important contributor to the elevated ozone over Indonesia. This contribution is investigated with the GEOS-Chem chemistry and transport model using surface emission estimates derived from an optimal inverse model, which was constrained by TES and Measurements Of Pollution In The Troposphere (MOPITT) CO profiles (Jones et al., 2007). These a posteriori estimates, which were over a factor of 2 greater than climatological emissions, reduced differences between GEOS-Chem and TES ozone observations by 30-40% and led to changes in GEOS-Chem upper tropospheric ozone of up to 40% over Indonesia. The remaining residual differences can be explained in part by upper tropospheric ozone produced from lightning NOx in the South Atlantic. Furthermore, model simulations from GEOS-Chem indicate that ozone over Indonesian/Australian is more sensitive to changes in surface emissions of NOx than ozone over the tropical Atlantic.
NASA Technical Reports Server (NTRS)
Remsberg, Ellis E.; Bhatt, Praful P.; Miles, Thomas
1994-01-01
Determinations of the zonally averaged and diabatically derived residual mean circulation (RMC) are particularly sensitive to the assumed zonal mean temperature distribution used as input. Several different middle atmosphere satellite temperature distributions have been employed in models and are compared here: a 4-year (late 1978 to early 1982) National Meteorological Center (NMC) climatology, the Barnett and Corney (or BC) climatology, and the 7 months of Nimbus 7 limb infrared monitor of the stratosphere (LIMS) temperatures. All three climatologies are generally accurate below the 10 hPa level, but there are systematic differences between them of up to +/-5 K in the upper stratosphere and lower mesosphere. The NMC/LIMS differences are evaluated using time series of rocketsonde and reconstructed satellite temperatures at station locations. Much of those biases can be explained by the differing vertical resolutions for the satellite-derived temperatures; the time series of reconstructed LIMS profiles have higher resolution and are more accurate. Because the LIMS temperatures are limited to just two full seasons, one cannot obtain monthly RMCs from them for an annual model calculation. Two alternate monthly climatologies are examined briefly: the 4-year Nimbus 7 stratospheric and mesospheric sounder (SAMS) temperatures and for the mesosphere the distribution from the Solar Mesosphere Explorer (SME), both of which are limb viewers of medium vertical resolution. There are also differences of the order of +/-5 K for those data sets. It is concluded that a major source of error in the determination of diabatic RMCs is a persistent pattern of temperature bias whose characteristics vary according to the vertical resolution of each individual climatology.
Climatology of the quasi-2-day waves observed in the MLS/Aura measurements (2005-2014)
NASA Astrophysics Data System (ADS)
Pancheva, Dora; Mukhtarov, Plamen; Siskind, David E.
2018-06-01
The paper presents the climatology and interannual variability of both eastward- and westward-propagating ∼2-day waves (QTDW) observed in the MLS/Aura geopotential height data for a period of 10 full years (2005-2014). The climatology of the QTDWs has been studied in two steps: (i) by using average 2D-wavelet spectra both the dominant modes of variability and how these modes vary in time and space have been determined, and (ii) by applying a 2D decomposition procedure, where all planetary waves are simultaneously extracted from the data, the average global spatio-temporal distributions of all defined by the 2D-wavelet analysis modes have been obtained. It is found that the westward-propagating waves at mid-high latitudes have zonal wave numbers 2, 3 and 4 and are observed mainly in summer hemisphere. Two different types of eastward-propagating waves have been identified: (i) waves at mid-high latitudes with zonal wave numbers 2 and 3 observed in the winter hemisphere, and (ii) waves observed predominantly over the equator with zonal wave number 2, which do not have a well-defined seasonal variability but show some enhancement in both solstices. While the climatological features of the MLS/Aura QTDWs for the considered period are robust the interannual variations have to be adopted cautiously. The primary reason is that the length of the considered period of 10 years is not enough for finding clear variability pattern. The only long-term variability which appears to have some robustness is that of the W3 wave in the Southern Hemisphere where the influence of the solar cycle has been distinguished.
On the day-to-day variation of the equatorial electrojet during quiet periods
NASA Astrophysics Data System (ADS)
Yamazaki, Y.; Richmond, A. D.; Maute, A.; Liu, H.-L.; Pedatella, N.; Sassi, F.
2014-08-01
It has been known for a long time that the equatorial electrojet varies from day to day even when solar and geomagnetic activities are very low. The quiet time day-to-day variation is considered to be due to irregular variability of the neutral wind, but little is known about how variable winds drive the electrojet variability. We employ a numerical model introduced by Liu et al. (2013), which takes into account weather changes in the lower atmosphere and thus can reproduce ionospheric variability due to forcing from below. The simulation is run for May and June 2009. Constant solar and magnetospheric energy inputs are used so that day-to-day changes will arise only from lower atmospheric forcing. The simulated electrojet current shows day-to-day variability of ±25%, which produces day-to-day variations in ground level geomagnetic perturbations near the magnetic equator. The current system associated with the day-to-day variation of the equatorial electrojet is traced based on a covariance analysis. The current pattern reveals return flow at both sides of the electrojet, in agreement with those inferred from ground-based magnetometer data in previous studies. The day-to-day variation in the electrojet current is compared with those in the neutral wind at various altitudes, latitudes, and longitudes. It is found that the electrojet variability is dominated by the zonal wind at 100-120 km altitudes near the magnetic equator. These results suggest that the response of the zonal polarization electric field to variable zonal winds is the main source of the day-to-day variation of the equatorial electrojet during quiet periods.
Molecular Cooperativity Governs Diverse and Monoallelic Olfactory Receptor Expression
NASA Astrophysics Data System (ADS)
Xing, Jianhua; Tian, Xiaojun; Zhang, Hang; Sannerud, Jens
Multiple-objective optimization is common in biological systems. In the mammalian olfactory system, each sensory neuron stochastically expresses only one out of up to thousands of olfactory receptor (OR) gene alleles; at organism level the types of expressed ORs need to be maximized. The molecular mechanism of this Nobel-Prize winning puzzle remains unresolved after decades of extensive studies. Existing models focus only on monoallele activation, and cannot explain recent observations in mutants, especially the reduced global diversity of expressed ORs in G9a/GLP knockouts. In this work we integrated existing information on OR expression, and proposed an evolutionarily optimized three-layer regulation mechanism, which includes zonal segregation, epigenetic and enhancer competition coupled to a negative feedback loop. This model not only recapitulates monoallelic OR expression, but also elucidates how the olfactory system maximizes and maintains the diversity of OR expression. The model is validated by several experimental results, and particularly underscores cooperativity and synergy as a general design principle of multi-objective optimization in biology. The work is supported by the NIGMS/DMS Mathematical Biology program.
NASA Astrophysics Data System (ADS)
Sathishkumar, S.; Sridharan, S.; Muhammed Kutty, P. V.; Gurubaran, S.
2017-10-01
The medium frequency radar deployed at Tirunelveli (8.7°N, 77.8°E), which is located near the southmost tip of peninsular India, have been providing continuous data from the year 1993 to the year 2012 that helped to study the long term tendencies in the lunar tidal variabilities over this geographic location. In the present paper we present the results of seasonal, interannual and long-term variabilities of lunar semi-diurnal tides in the upper mesosphere over Tirunelveli. The present study also includes comparison with model values. The study shows that the tidal amplitudes are larger in the meridional components of the mesospheric winds than the zonal winds. The seasonal variations of the tides are similar in both the components. The tides show maximum amplitudes of about ∼5 m/s in February/March, secondary maximum amplitudes of about ∼3 m/s in September and minimum amplitudes during summer months (May-August). The observed seasonal variation of the lunar tides do not compare well with Vial and Forbes (1994) model values, though it is consistent with earlier observations. The lunar tidal phase in meridional winds leads that in zonal winds from January to June and from September to November, while the latter leads the former during July/August. The lunar tides show large interannual variability. There are unusual amplitude enhancements in the lunar tide in meridional winds during the winters of 2006 and 2009, when major sudden stratospheric warmings (SSW) occurred at high latitude northern hemisphere, whereas zonal lunar tide does not show any clear association with the SSW. Vertical wavelengths of lunar tides in zonal and meridional wind are in the range of 20-90 km. The vertical wavelengths of lunar tides in both zonal and meridional component are smaller in June and larger in November and December. The monthly mean zonal and meridional winds are subjected to regression analysis to study the tidal response to long-period oscillations, namely, quasi-biennial oscillation (QBO), solar cycle variation and El-nino southern oscillation (ENSO). It is found the lunar tide in both zonal and meridional winds show significant QBO response, whereas zonal tide only shows significant negative response to solar cycle and positive response to ENSO. Besides, zonal tide only shows significant long-term increasing trend.
The Relationship Between the Zonal Mean ITCZ and Regional Precipitation during the mid-Holocene
NASA Astrophysics Data System (ADS)
Niezgoda, K.; Noone, D.; Konecky, B.
2017-12-01
Characteristics of the zonal mean Tropical Rain Belt (TRB, i.e. the ITCZ + the land-based monsoons) are often inferred from individual proxy records of precipitation or other hydroclimatic variables. However, these inferences can be misleading. Here, an isotope-enabled climate model simulation is used to evaluate metrics of the zonal mean ITCZ vs. regional hydrological characteristics during the mid-Holocene (MH, 6 kya). The MH provides a unique perspective on the relationship between the ITCZ and regional hydrology because of large, orbitally-driven shifts in tropical precipitation as well as a critical mass of proxy records. By using a climate model with simulated water isotopes, characteristics of atmospheric circulation and water transport processes can be inferred, and comparison with isotope proxies can be made more directly. We find that estimations of the zonal-mean ITCZ are insufficient for evaluating regional responses of hydrological cycles to forcing changes. For example, one approximation of a 1.5-degree northward shift in the zonal-mean ITCZ position during the MH corresponded well with northward shifts in maximum rainfall in tropical Africa, but did not match southward shifts in the tropical Pacific or longitudinal shifts in the Indian monsoon region. In many regions, the spatial distribution of water vapor isotopes suggests that changes in moisture source and atmospheric circulation were a greater influence on precipitation distribution, intensity, and isotope ratio than the average northward shift in ITCZ latitude. These findings reinforce the idea that using tropical hydrological proxy records to infer zonal-mean characteristics of the ITCZ may be misleading. Rather, tropical proxy records of precipitation, particularly those that record precipitation isotopes, serve as a guideline for regional hydrological changes while model simulations can put them in the context of zonal mean tropical convergence.
Deep Zonal Flow and Time Variation of Jupiter’s Magnetic Field
NASA Astrophysics Data System (ADS)
Cao, Hao; Stevenson, David J.
2017-10-01
All four giant planets in the Solar System feature zonal flows on the order of 100 m/s in the cloud deck, and large-scale intrinsic magnetic fields on the order of 1 Gauss near the surface. The vertical structure of the zonal flows remains obscure. The end-member scenarios are shallow flows confined in the radiative atmosphere and deep flows throughout the entire planet. The electrical conductivity increases rapidly yet smoothly as a function of depth inside Jupiter and Saturn. Deep zonal flows will advect the non-axisymmetric component of the magnetic field, at depth with even modest electrical conductivity, and create time variations in the magnetic field.The observed time variations of the geomagnetic field has been used to derive surface flows of the Earth’s outer core. The same principle applies to Jupiter, however, the connection between the time variation of the magnetic field (dB/dt) and deep zonal flow (Uphi) at Jupiter is not well understood due to strong radial variation of electrical conductivity. Here we perform a quantitative analysis of the connection between dB/dt and Uphi for Jupiter adopting realistic interior electrical conductivity profile, taking the likely presence of alkali metals into account. This provides a tool to translate expected measurement of the time variation of Jupiter’s magnetic field to deep zonal flows. We show that the current upper limit on the dipole drift rate of Jupiter (3 degrees per 20 years) is compatible with 10 m/s zonal flows with < 500 km vertical scale height below 0.972 Rj. We further demonstrate that fast drift of resolved magnetic features (e.g. magnetic spots) at Jupiter is a possibility.
Schuurman, W; Harimulyo, E B; Gawlitta, D; Woodfield, T B F; Dhert, W J A; van Weeren, P R; Malda, J
2016-04-01
Articular cartilage has limited regenerative capabilities. Chondrocytes from different layers of cartilage have specific properties, and regenerative approaches using zonal chondrocytes may yield better replication of the architecture of native cartilage than when using a single cell population. To obtain high seeding efficiency while still mimicking zonal architecture, cell pellets of expanded deep zone and superficial zone equine chondrocytes were seeded and cultured in two layers on poly(ethylene glycol)-terephthalate-poly(butylene terephthalate) (PEGT-PBT) scaffolds. Scaffolds seeded with cell pellets consisting of a 1:1 mixture of both cell sources served as controls. Parallel to this, pellets of superficial or deep zone chondrocytes, and combinations of the two cell populations, were cultured without the scaffold. Pellet cultures of zonal chondrocytes in scaffolds resulted in a high seeding efficiency and abundant cartilaginous tissue formation, containing collagen type II and glycosaminoglycans (GAGs) in all groups, irrespective of the donor (n = 3), zonal population or stratified scaffold-seeding approach used. However, whereas total GAG production was similar, the constructs retained significantly more GAG compared to pellet cultures, in which a high percentage of the produced GAGs were secreted into the culture medium. Immunohistochemistry for zonal markers did not show any differences between the conditions. We conclude that spatially defined pellet culture in 3D scaffolds is associated with high seeding efficiency and supports cartilaginous tissue formation, but did not result in the maintenance or restoration of the original zonal phenotype. The use of pellet-assembled constructs leads to a better retainment of newly produced GAGs than the use of pellet cultures alone. Copyright © 2013 John Wiley & Sons, Ltd.
Detecting Global Hydrological Cycle Intensification in Sea Surface Salinity
NASA Astrophysics Data System (ADS)
Poague, J.; Stine, A.
2016-12-01
Global warming is expected to intensify the global hydrological cycle, but significant regional differences exist in the predicted response. The proposed zonal mean thermodynamic response is enhanced horizontal moisture transport associated with increased saturation vapor pressure, which in turn drives additional net precipitation in the tropics and at high latitudes and additional net evaporation in the subtropics. Sea surface salinity (SSS) anomalies are forced from above by changes in evaporation minus precipitation (E-P) and thus will respond to changes in the global hydrological cycle, opening the possibility of using historical SSS anomalies to diagnose the response of the hydrological cycle to warming. We estimate zonal mean SSS trends in the Atlantic and Pacific ocean basins from 1955-2015 to test whether historical changes in the global hydrological cycle are consistent with a primarily thermodynamic response. Motivated by this observation, we calculate the sensitivity of basin zonal-mean SSS anomalies to sea surface temperature (SST) forcing as a function of timescale to diagnose and estimate the signal-to-noise ratio of the purely thermodynamic signal as a function of timescale. High-frequency variability in SSS anomalies is likely to be influenced by variability in atmospheric circulation, complicating the attribution of the link between basin zonal-mean SSS anomalies and global SST anomalies. We therefore estimate the basin zonal mean SSS anomaly response to the major modes of large-scale dynamic variability. We find a strong correlation between detrended zonal-mean SSS anomalies and the Pacific-North American index (R=0.71,P<0.01) in the Pacific Ocean. We interpret the relationship between zonal mean SSS anomalies and temperature in terms of the relative contribution of thermodynamic and dynamic processes.
NASA Technical Reports Server (NTRS)
Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo
2004-01-01
Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.
Amplification of warming due to intensification of zonal circulation in the mid-latitudes
NASA Astrophysics Data System (ADS)
Alekseev, Genrikh; Ivanov, Nikolai; Kharlanenkova, Natalia; Kuzmina, Svetlana
2015-04-01
We propose a new index to evaluate the impact of atmospheric zonal transport oscillations on inter-annual variability and trends of average air temperature in mid-latitudes, Northern Hemisphere and globe. A simple model of mid-latitude channel "ocean-land-atmosphere" was used to produce the analytic relationship between the zonal circulation and the land-ocean temperature contrast which was used as a basis for index. An inverse relationship was found between indexes and average mid-latitude, hemisphere and global temperatures during the cold half of year and opposite one in summer. These relationships keep under 400 mb height. In winter relationship describes up to 70, 50 and 40 % of surface air temperature inter-annual variability of these averages, respectively. The contribution of zonal circulation to the increase in the average surface air temperature during warming period 1969-2008 reaches 75% in the mid-latitudes and 40% in the Northern Hemisphere. Proposed mid-latitude index correlates negatively with surface air temperature in the Arctic except summer. ECHAM4 projections with the A1B scenario show that increase of zonal circulation defines more than 74% of the warming in the Northern Hemisphere for 2001-2100. Our analysis confirms that the proposed index is an effective indicator of the climate change caused by variations of the zonal circulation that arise due to anthropogenic and/or natural global forcing mechanisms.
Impact of Stratospheric Ozone Zonal Asymmetries on the Tropospheric Circulation
NASA Technical Reports Server (NTRS)
Tweedy, Olga; Waugh, Darryn; Li, Feng; Oman, Luke
2015-01-01
The depletion and recovery of Antarctic ozone plays a major role in changes of Southern Hemisphere (SH) tropospheric climate. Recent studies indicate that the lack of polar ozone asymmetries in chemistry climate models (CCM) leads to a weaker and warmer Antarctic vortex, and smaller trends in the tropospheric mid-latitude jet and the surface pressure. However, the tropospheric response to ozone asymmetries is not well understood. In this study we report on a series of integrations of the Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) to further examine the effect of zonal asymmetries on the state of the stratosphere and troposphere. Integrations with the full, interactive stratospheric chemistry are compared against identical simulations using the same CCM except that (1) the monthly mean zonal mean stratospheric ozone from first simulation is prescribed and (2) ozone is relaxed to the monthly mean zonal mean ozone on a three day time scale. To analyze the tropospheric response to ozone asymmetries, we examine trends and quantify the differences in temperatures, zonal wind and surface pressure among the integrations.
Eastern Tropical Pacific Precipitation Response to Zonal SPCZ events
NASA Astrophysics Data System (ADS)
Durán-Quesada, A. M.; Lintner, B. R.
2014-12-01
Extreme El Niño events and warming conditions in the eastern tropical Pacific have been linked to pronounced spatial displacements of the South Pacific Convergence Zone known as "zonal SPCZ" events.. Using a global dataset of Lagrangian back trajectories computed with the FLEXPART model for the period 1980-2013, comprehensive analysis of the 3D circulation characteristics associated with the SPCZ is undertaken. Ten days history of along-trajectory specific humidity, potential vorticity and temperature are reconstructed for zonal SPCZ events as well as other states,, with differences related to El Niño intensity and development stage as well as the state of the Western Hemisphere Warm Pool. How zonal events influence precipitation over the Eastern Tropical Pacific is examined using back trajectories, reanalysis, TRMM precipitation, and additional satellite derived cloud information. It is found that SPCZ displacements are associated with enhanced convection over the Eastern Tropical Pacific in good agreement with prior work. The connection between intensification of precipitation over the eastern Tropical Pacific during zonal events and suppression of rainfall over the Maritime continent is also described.
A model of the saturation of coupled electron and ion scale gyrokinetic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staebler, Gary M.; Howard, Nathan T.; Candy, Jeffrey M.
A new paradigm of zonal flow mixing as the mechanism by which zonal E × B fluctuations impact the saturation of gyrokinetic turbulence has recently been deduced from the nonlinear 2D spectrum of electric potential fluctuations in gyrokinetic simulations. These state of the art simulations span the physical scales of both ion and electron turbulence. It was found that the zonal flow mixing rate, rather than zonal flow shearing rate, competes with linear growth at both electron and ion scales. A model for saturation of the turbulence by the zonal flow mixing was developed and applied to the quasilinear trappedmore » gyro-Landau fluid transport model (TGLF). The first validation tests of the new saturation model are reported in this paper with data from L-mode and high-β p regime discharges from the DIII-D tokamak. Lastly, the shortfall in the predicted L-mode edge electron energy transport is improved with the new saturation model for these discharges but additional multiscale simulations are required in order to verify the safety factor and collisionality dependencies found in the modeling.« less
A model of the saturation of coupled electron and ion scale gyrokinetic turbulence
Staebler, Gary M.; Howard, Nathan T.; Candy, Jeffrey M.; ...
2017-05-09
A new paradigm of zonal flow mixing as the mechanism by which zonal E × B fluctuations impact the saturation of gyrokinetic turbulence has recently been deduced from the nonlinear 2D spectrum of electric potential fluctuations in gyrokinetic simulations. These state of the art simulations span the physical scales of both ion and electron turbulence. It was found that the zonal flow mixing rate, rather than zonal flow shearing rate, competes with linear growth at both electron and ion scales. A model for saturation of the turbulence by the zonal flow mixing was developed and applied to the quasilinear trappedmore » gyro-Landau fluid transport model (TGLF). The first validation tests of the new saturation model are reported in this paper with data from L-mode and high-β p regime discharges from the DIII-D tokamak. Lastly, the shortfall in the predicted L-mode edge electron energy transport is improved with the new saturation model for these discharges but additional multiscale simulations are required in order to verify the safety factor and collisionality dependencies found in the modeling.« less
Conservative zonal schemes for patched grids in 2 and 3 dimensions
NASA Technical Reports Server (NTRS)
Hessenius, Kristin A.
1987-01-01
The computation of flow over complex geometries, such as realistic aircraft configurations, poses difficult grid generation problems for computational aerodynamicists. The creation of a traditional, single-module grid of acceptable quality about an entire configuration may be impossible even with the most sophisticated of grid generation techniques. A zonal approach, wherein the flow field is partitioned into several regions within which grids are independently generated, is a practical alternative for treating complicated geometries. This technique not only alleviates the problems of discretizing a complex region, but also facilitates a block processing approach to computation thereby circumventing computer memory limitations. The use of such a zonal scheme, however, requires the development of an interfacing procedure that ensures a stable, accurate, and conservative calculation for the transfer of information across the zonal borders.
Zonal flow generation and its feedback on turbulence production in drift wave turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pushkarev, Andrey V.; Bos, Wouter J. T.; Nazarenko, Sergey V.
2013-04-15
Plasma turbulence described by the Hasegawa-Wakatani equations is simulated numerically for different models and values of the adiabaticity parameter C. It is found that for low values of C turbulence remains isotropic, zonal flows are not generated and there is no suppression of the meridional drift waves and particle transport. For high values of C, turbulence evolves towards highly anisotropic states with a dominant contribution of the zonal sector to the kinetic energy. This anisotropic flow leads to a decrease of turbulence production in the meridional sector and limits the particle transport across the mean isopycnal surfaces. This behavior allowsmore » to consider the Hasegawa-Wakatani equations a minimal PDE model, which contains the drift-wave/zonal-flow feedback loop mechanism.« less
Jovian vortices by simulated annealing
NASA Astrophysics Data System (ADS)
Morrison, P. J.; Flierl, G. R.; Swaminathan, R. V.
2017-11-01
We explore the conditions required for isolated vortices to exist in sheared zonal flows and the stability of the underlying zonal winds. This is done using the standard 2-layer quasigeostrophic model with the lower layer depth becoming infinite; however, this model differs from the usual layer model because the lower layer is not assumed to be motionless but has a steady configuration of alternating zonal flows. Steady state vortices are obtained by a simulated annealing computational method introduced in, generalized and applied in in fluid flow, and used in the context of magnetohydrodynamics in. Various cases of vortices with a constant potential vorticity anomaly atop zonal winds and the stability of the underlying winds are considered using a mix of computational and analytical techniques. U.S. Department of Energy Contract DE-FG05-80ET-53088.
Shifera, Amde Selassie; Pennesi, Mark E.; Yang, Paul; Lin, Phoebe
2016-01-01
Purpose To determine if ultra-wide-field fundus autofluorescence (UWFFAF) findings in acute zonal occult outer retinopathy (AZOOR) correlated well with perimetry, optical coherence tomography (OCT), and electroretinography (ERG) findings. Methods Retrospective observational study on 16 eyes of 10 subjects with AZOOR seen at a single referral center from October 2012 to March 2015 who had UWFFAF performed. Chi-square analysis was performed to compare categorical variables and Mann-Whitney U-test used for comparisons of non-parametric continuous variables. Results All eyes examined within 3 months of symptom onset (5 of 5 eyes) had diffusely hyperautofluorescent areas on UWFFAF. The remaining eyes contained hypoautofluorescent lesions with hyperautofluorescent borders. In 11/16 (68.8%) eyes, UWFFAF showed the full extent of lesions that would not have been possible with standard FAF centered on the fovea. There were 3 patterns of spread: centrifugal spread (7/16, 43.8%), centripetal spread (5/16, 31.3%), and centrifugal + centripetal spread (4/16, 25.0%). UWFFAF lesions corresponded well with perimetric, OCT, and ERG abnormalities. Conclusions UWFFAF along with OCT can be useful in the evaluation and monitoring of AZOOR patients. PMID:27755372
NASA Astrophysics Data System (ADS)
Mo, X. H.; Zhang, D. H.
2018-02-01
Using the location of equatorial ionization anomaly (EIA) crest derived from GPS observations in China and Brazilian sector, we investigated the longitudinal dependence of periodic meridional movement of EIA crest during sudden stratospheric warming events in 2003, 2006, and 2009. The solar activity was from high to low for the three events. Results show that the locations of EIA crests in both China and Brazilian sectors exhibit obvious and constant 14- to 15-day periodic oscillation being in-phase in two sectors, which coincide with the half of the lunar revolution period (29.53 days) and the lunar phase. The temporal extent of wave power at 14-15 days is consistent with the temporal extent of stratospheric zonal wind, indicating that 14- to 15-day periodic meridional movement of EIA crest is due to enhanced lunar tide modulated by zonal wind. In addition, it is also found that the amplitude of 14- to 15-day periodic oscillation of EIA crest in China sector is larger than that in Brazilian sector, which may be caused by the longitudinal variation of tides and neutral wind pattern.
NASA Technical Reports Server (NTRS)
Cess, R. D.; Zhang, M. H.; Potter, G. L.; Alekseev, V.; Barker, H. W.; Bony, S.; Colman, R. A.; Dazlich, D. A.; DelGenio, A. D.; Deque, M.;
1997-01-01
We compare seasonal changes in cloud-radiative forcing (CRF) at the top of the atmosphere from 18 atmospheric general circulation models, and observations from the Earth Radiation Budget Experiment (ERBE). To enhance the CRF signal and suppress interannual variability, we consider only zonal mean quantities for which the extreme months (January and July), as well as the northern and southern hemispheres, have been differenced. Since seasonal variations of the shortwave component of CRF are caused by seasonal changes in both cloudiness and solar irradiance, the latter was removed. In the ERBE data, seasonal changes in CRF are driven primarily by changes in cloud amount. The same conclusion applies to the models. The shortwave component of seasonal CRF is a measure of changes in cloud amount at all altitudes, while the longwave component is more a measure of upper level clouds. Thus important insights into seasonal cloud amount variations of the models have been obtained by comparing both components, as generated by the models, with the satellite data. For example, in 10 of the 18 models the seasonal oscillations of zonal cloud patterns extend too far poleward by one latitudinal grid.
Ion Layer Separation and Equilibrium Zonal Winds in Midlatitude Sporadic E
NASA Technical Reports Server (NTRS)
Earle, G. D.; Kane, T. J.; Pfaff, R. F.; Bounds, S. R.
2000-01-01
In-situ observations of a moderately strong mid-latitude sporadic-E layer show a separation in altitude between distinct sublayers composed of Fe(+), Mg(+), and NO(+). From these observations it is possible to estimate the zonal wind field consistent with diffusive equilibrium near the altitude of the layer. The amplitude of the zonal wind necessary to sustain the layer against diffusive effects is less than 10 meters per second, and the vertical wavelength is less than 10 km.
NASA Astrophysics Data System (ADS)
Carrano, C. S.; Groves, K. M.; Valladares, C. E.; Delay, S. H.
2014-12-01
A complete characterization of field-aligned ionospheric irregularities responsible for the scintillation of satellite signals includes not only their spectral properties (power spectral strength, spectral index, anisotropy ratio, and outer-scale) but also their horizontal drift velocity. From a system impacts perspective, the horizontal drift velocity is important in that it dictates the rate of signal fading and also, to an extent, the level of phase fluctuations encountered by the receiver. From a physics perspective, studying the longitudinal morphology of zonal irregularity may lead to an improved understanding of the F region dynamo and regional electrodynamics at low latitudes. The irregularity drift at low latitudes is predominantly zonal and is most commonly measured by cross-correlating observations of satellite signals made by a pair of closely-spaced antennas. The AFRL-SCINDA network operates a small number of VHF spaced-antenna systems at low latitude stations for this purpose. A far greater number of GPS scintillation monitors are operated by AFRL-SCINDA (25-30) and the Low Latitude Ionospheric Sensor Network (35-50), but the receivers are situated too far apart to monitor the drift using cross-correlation techniques. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory (Rino, Radio Sci., 1979) to infer the zonal irregularity drift from single-station GPS measurements of S4, sigma-phi, and the propagation geometry alone. Unlike the spaced-receiver technique, this technique requires assumptions for the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment show that the ratio of sigma-phi to S4 is less sensitive to these parameters than it is to the zonal drift, and hence the zonal drift can be estimated with reasonable accuracy. In this talk, we first validate the technique using spaced VHF-antenna measurements of zonal irregularity drift from the AFRL-SCINDA network. Next, we discuss preliminary results from our investigation into the longitudinal morphology of zonal irregularity drift using the AFRL-SCINDA and LISN networks of GPS scintillation monitors.
Zonal structure and variability of the Western Pacific dynamic warm pool edge in CMIP5
NASA Astrophysics Data System (ADS)
Brown, Jaclyn N.; Langlais, Clothilde; Maes, Christophe
2014-06-01
The equatorial edge of the Western Pacific Warm Pool is operationally identified by one isotherm ranging between 28° and 29 °C, chosen to align with the interannual variability of strong zonal salinity gradients and the convergence of zonal ocean currents. The simulation of this edge is examined in 19 models from the World Climate Research Program Coupled Model Intercomparison Project Phase 5 (CMIP5), over the historical period from 1950 to 2000. The dynamic warm pool edge (DWPE), where the zonal currents converge, is difficult to determine from limited observations and biased models. A new analysis technique is introduced where a proxy for DWPE is determined by the isotherm that most closely correlates with the movements of the strong salinity gradient. It can therefore be a different isotherm in each model. The DWPE is simulated much closer to observations than if a direct temperature-only comparison is made. Aspects of the DWPE remain difficult for coupled models to simulate including the mean longitude, the interannual excursions, and the zonal convergence of ocean currents. Some models have only very weak salinity gradients trapped to the western side of the basin making it difficult to even identify a DWPE. The model's DWPE are generally 1-2 °C cooler than observed. In line with theory, the magnitude of the zonal migrations of the DWPE are strongly related to the amplitudes of the Nino3.4 SST index. Nevertheless, a better simulation of the mean location of the DWPE does not necessarily improve the amplitude of a model's ENSO. It is also found that in a few models (CSIROMk3.6, inmcm and inmcm4-esm) the warm pool displacements result from a net heating or cooling rather than a zonal advection of warm water. The simulation of the DWPE has implications for ENSO dynamics when considering ENSO paradigms such as the delayed action oscillator mechanism, the Advective-Reflective oscillator, and the zonal-advective feedback. These are also discussed in the context of the CMIP5 simulations.
Holt, L A; Alexander, M J; Coy, L; Liu, C; Molod, A; Putman, W; Pawson, S
2017-07-01
In this study, gravity waves (GWs) in the high-resolution GEOS-5 Nature Run are first evaluated with respect to satellite and other model results. Southern Hemisphere winter sources of non-orographic GWs in the model are then investigated by linking measures of tropospheric non-orographic gravity wave generation tied to precipitation and frontogenesis with absolute gravity wave momentum flux in the lower stratosphere. Finally, non-orographic GW momentum flux is compared to orographic gravity wave momentum flux and compared to previous estimates. The results show that the global patterns in GW amplitude, horizontal wavelength, and propagation direction are realistic compared to observations. However, as in other global models, the amplitudes are weaker and horizontal wavelengths longer than observed. The global patterns in absolute GW momentum flux also agree well with previous model and observational estimates. The evaluation of model non-orographic GW sources in the Southern Hemisphere winter shows that strong intermittent precipitation (greater than 10 mm h -1 ) is associated with GW momentum flux over the South Pacific, whereas frontogenesis and less intermittent, lower precipitation rates (less than 10 mm h -1 ) are associated with GW momentum flux near 60°S. In the model, orographic GWs contribute almost exclusively to a peak in zonal mean momentum flux between 70 and 75°S, while non-orographic waves dominate at 60°S, and non-orographic GWs contribute a third to a peak in zonal mean momentum flux between 25 and 30°S.
Soilscapes in the dynamic tropical environments: The case of Sierra Madre del Sur
NASA Astrophysics Data System (ADS)
Krasilnikov, P. V.; García-Calderón, N. E.; Ibáñez-Huerta, A.; Bazán-Mateos, M.; Hernández-Santana, J. R.
2011-12-01
The paper gives an analysis of the pattern of soil cover of the Sierra Madre del Sur, one of the most complex physiographic regions of Mexico. It presents the results of the study of four latitudinal traverses across the region. We show that the distribution of soils in the Sierra Madre del Sur is associated with major climatic gradients, namely by vertical bioclimatic zonality in the mountains and by the effect of mountain shadow. Altitudinal distribution of soil-bioclimatic belts is complex due to non-uniform gradients of temperature and rainfall, and varies with the configuration of the mountain range. The distribution of soils is associated with the erosion and accumulation rates both on mountain slopes and in river valleys. The abundance of poorly developed soils in (semi)arid areas was ascribed to high erosion rate rather than to low pedogenetic potential. The formation of soil mosaic at a larger scale might be ascribed to the complex net of gully erosion and to the system of seismically triggered landslides of various ages. In the valleys, the distribution of soils depends upon the dynamics of sedimentation and erosion, which eventually exposes paleosols. Red-colored clayey sediments are remains of ancient weathering and pedogenesis. Their distribution is associated mainly with the intensity of recent slope processes. The soil cover pattern of the Sierra Madre del Sur cannot be explained by simplified schemes of bioclimatic zonality. The soil ranges can be explained by the distribution of climates, lithology, complex geological history of the region, and recent geomorphological processes.
Uranus' Persistent Patterns and Features from High-SNR Imaging in 2012-2014
NASA Astrophysics Data System (ADS)
Fry, Patrick M.; Sromovsky, Lawrence A.; de Pater, Imke; Hammel, Heidi B.; Marcus, Phillip
2015-11-01
Since 2012, Uranus has been the subject of an observing campaign utilizing high signal-to-noise imaging techniques at Keck Observatory (Fry et al. 2012, Astron. J. 143, 150-161). High quality observing conditions on four observing runs of consecutive nights allowed longitudinally-complete coverage of the atmosphere over a period of two years (Sromovsky et al. 2015, Icarus 258, 192-223). Global mosaic maps made from images acquired on successive nights in August 2012, November 2012, August 2013, and August 2014, show persistent patterns, and six easily distinguished long-lived cloud features, which we were able to track for long periods that ranged from 5 months to over two years. Two at similar latitudes are associated with dark spots, and move with the atmospheric zonal flow close to the location of their associated dark spot instead of following the flow at the latitude of the bright features. These features retained their morphologies and drift rates in spite of several close interactions. A second pair of features at similar latitudes also survived several close approaches. Several of the long-lived features also exhibited equatorward drifts and latitudinal oscillations. Also persistent are a remarkable near-equatorial wave feature and global zonal band structure. We will present imagery, maps, and analyses of these phenomena.PMF and LAS acknowledge support from NASA Planetary Astronomy Program; PMF and LAS acknowledge funding and technical support from W. M. Keck Observatory. We thank those of Hawaiian ancestry on whose sacred mountain we are privileged to be guests. Without their generous hospitality none of our groundbased observations would have been possible.
Climate contributes to zonal forest mortality in Southern California's San Jacinto Mountains
NASA Astrophysics Data System (ADS)
Fellows, A.; Goulden, M.
2010-12-01
An estimated 4.6 million trees died over ~375,000 acres of Southern California forest in 2002-2004. This mortality punctuated a decline in forest health that has been attributed to air pollution, stem densification, or drought. Bark beetles were the proximate cause of most tree death but the underlying cause of this extensive mortality is arguably poor forest health. We investigated the contributions that climate, particularly drought, played in tree mortality and how physiological drought stress may have structured the observed patterns of mortality. Field surveys showed that conifer mortality was zonal in the San Jacinto Mountains of Southern California. The proportion of conifer mortality increased with decreasing elevation (p=0.01). Mid-elevation conifers (White Fir, Incense Cedar, Coulter Pine, Sugar Pine, Ponderosa and Jeffrey Pine) died in the lower portions of their respective ranges, which resulted in an upslope lean in species’ distribution and an upslope shift in species’ mean elevation. Long-term precipitation (P) is consistent with elevation over the conifer elevation range (p=0.43). Potential evapotranspiration (ET) estimated by Penman Monteith declines with elevation by nearly half over the same range. These trends suggest that ET, more than P, is critical in structuring the elevational trend in drought stress and may have contributed to the patterns of mortality that occurred in 2002-04. Physiological measurements in a mild drought year (2009) showed late summer declines in plant water availability with decreasing elevation (p < 0.01) and concomitant reductions in carbon assimilation and stomatal conductance with decreasing elevation. We tie these observations together with a simple water balance model.
Climatic influence of background and volcanic stratosphere aerosol models
NASA Technical Reports Server (NTRS)
Deschamps, P. Y.; Herman, M.; Lenoble, J.; Tanre, D.
1982-01-01
A simple modelization of the earth atmosphere system including tropospheric and stratospheric aerosols has been derived and tested. Analytical expressions are obtained for the albedo variation due to a thin stratospheric aerosol layer. Also outlined are the physical procedures and the respective influence of the main parameters: aerosol optical thickness, single scattering albedo and asymmetry factor, and sublayer albedo. The method is applied to compute the variation of the zonal and planetary albedos due to a stratospheric layer of background H2SO4 particles and of volcanic ash.
Observations of planetary mixed Rossby-gravity waves in the upper stratosphere
NASA Technical Reports Server (NTRS)
Randel, William J.; Boville, Byron A.; Gille, John C.
1990-01-01
Observational evidence is presented for planetary scale (zonal wave number 1-2) mixed Rossby-gravity (MRG) waves in the equatorial upper stratosphere (35-50 km). These waves are detected in LIMS measurements as coherently propagating temperature maxima of amplitude 0.1-0.3 K, which are antisymmetric (out of phase) about the equator, centered near 10-15 deg north and south latitude. These features have vertical wavelengths of order 10-15 km, periods near 2-3 days, and zonal phase velocities close to 200 m/s. Both eastward and westward propagating waves are found, and the observed vertical wavelengths and meridional structures are in good agreement with the MRG dispersion relation. Theoretical estimates of the zonal accelerations attributable to these waves suggest they do not contribute substantially to the zonal momentum balance in the middle atmosphere.
Nonlinear saturation of the slab ITG instability and zonal flow generation with fully kinetic ions
NASA Astrophysics Data System (ADS)
Miecnikowski, Matthew T.; Sturdevant, Benjamin J.; Chen, Yang; Parker, Scott E.
2018-05-01
Fully kinetic turbulence models are of interest for their potential to validate or replace gyrokinetic models in plasma regimes where the gyrokinetic expansion parameters are marginal. Here, we demonstrate fully kinetic ion capability by simulating the growth and nonlinear saturation of the ion-temperature-gradient instability in shearless slab geometry assuming adiabatic electrons and including zonal flow dynamics. The ion trajectories are integrated using the Lorentz force, and the cyclotron motion is fully resolved. Linear growth and nonlinear saturation characteristics show excellent agreement with analogous gyrokinetic simulations across a wide range of parameters. The fully kinetic simulation accurately reproduces the nonlinearly generated zonal flow. This work demonstrates nonlinear capability, resolution of weak gradient drive, and zonal flow physics, which are critical aspects of modeling plasma turbulence with full ion dynamics.
Zonally averaged model of dynamics, chemistry and radiation for the atmosphere
NASA Technical Reports Server (NTRS)
Tung, K. K.
1985-01-01
A nongeostrophic theory of zonally averaged circulation is formulated using the nonlinear primitive equations on a sphere, taking advantage of the more direct relationship between the mean meridional circulation and diabatic heating rate which is available in isentropic coordinates. Possible differences between results of nongeostrophic theory and the commonly used geostrophic formulation are discussed concerning: (1) the role of eddy forcing of the diabatic circulation, and (2) the nonlinear nearly inviscid limit vs the geostrophic limit. Problems associated with the traditional Rossby number scaling in quasi-geostrophic formulations are pointed out and an alternate, more general scaling based on the smallness of mean meridional to zonal velocities for a rotating planet is suggested. Such a scaling recovers the geostrophic balanced wind relationship for the mean zonal flow but reveals that the mean meridional velocity is in general ageostrophic.
Validity of the "Laplace Swindle" in Calculation of Giant-Planet Gravity Fields
NASA Astrophysics Data System (ADS)
Hubbard, William B.
2014-11-01
Jupiter and Saturn have large rotation-induced distortions, providing an opportunity to constrain interior structure via precise measurement of external gravity. Anticipated high-precision gravity measurements close to the surfaces of Jupiter (Juno spacecraft) and Saturn (Cassini spacecraft), possibly detecting zonal harmonics to J10 and beyond, will place unprecedented requirements on gravitational modeling via the theory of figures (TOF). It is not widely appreciated that the traditional TOF employs a formally nonconvergent expansion attributed to Laplace. This suspect expansion is intimately related to the standard zonal harmonic (J-coefficient) expansion of the external gravity potential. It can be shown (Hubbard, Schubert, Kong, and Zhang: Icarus, in press) that both Jupiter and Saturn are in the domain where Laplace's "swindle" works exactly, or at least as well as necessary. More highly-distorted objects such as rapidly spinning asteroids may not be in this domain, however. I present a numerical test for the validity and precision of TOF via polar "audit points". I extend the audit-point test to objects rotating differentially on cylinders, obtaining zonal harmonics to J20 and beyond. Models with only low-order differential rotation do not exhibit dramatic effects in the shape of the zonal harmonic spectrum. However, a model with Jupiter-like zonal winds exhibits a break in the zonal harmonic spectrum above about J10, and generally follows the more shallow Kaula power rule at higher orders. This confirms an earlier result obtained by a different method (Hubbard: Icarus 137, 357-359, 1999).
GRAVOTURBULENT PLANETESIMAL FORMATION: THE POSITIVE EFFECT OF LONG-LIVED ZONAL FLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, K.; Klahr, H.; Johansen, A., E-mail: dittrich@mpia.de
2013-02-15
Recent numerical simulations have shown long-lived axisymmetric sub- and super-Keplerian flows in protoplanetary disks. These zonal flows are found in local as well as global simulations of disks unstable to the magnetorotational instability. This paper covers our study of the strength and lifetime of zonal flows and the resulting long-lived gas over- and underdensities as functions of the azimuthal and radial size of the local shearing box. We further investigate dust particle concentrations without feedback on the gas and without self-gravity. The strength and lifetime of zonal flows increase with the radial extent of the simulation box, but decrease withmore » the azimuthal box size. Our simulations support earlier results that zonal flows have a natural radial length scale of 5-7 gas pressure scale heights. This is the first study that combines three-dimensional MHD simulations of zonal flows and dust particles feeling the gas pressure. The pressure bumps trap particles with St = 1 very efficiently. We show that St = 0.1 particles (of some centimeters in size if at 5 AU in a minimum mass solar nebula) reach a hundred-fold higher density than initially. This opens the path for particles of St = 0.1 and dust-to-gas ratio of 0.01 or for particles of St {>=} 0.5 and dust-to-gas ratio 10{sup -4} to still reach densities that potentially trigger the streaming instability and thus gravoturbulent formation of planetesimals.« less
Indian Ocean zonal mode activity in 20th century observations and simulations
NASA Astrophysics Data System (ADS)
Sendelbeck, Anja; Mölg, Thomas
2016-04-01
The Indian Ocean zonal mode (IOZM) is a coupled ocean-atmosphere system with anomalous cooling in the east, warming in the west and easterly wind anomalies, resulting in a complete reversal of the climatological zonal sea surface temperature (SST) gradient. The IOZM has a strong influence on East African climate by causing anomalously strong October - December (OND) precipitation. Using observational data and historical CMIP5 (Coupled Model Intercomparison Project phase 5) model output, the September - November (SON) dipole mode index (DMI), OND East African precipitation and SON zonal wind index (ZWI) are calculated. We pay particular attention to detrending SSTs for calculating the DMI, which seems to have been neglected in some published research. The ZWI is defined as the area-averaged zonal wind component at 850 hPa over the central Indian Ocean. Regression analysis is used to evaluate the models' capability to represent the IOZM and its impact on east African climate between 1948 and 2005. Simple correlations are calculated between SST, zonal wind and precipitation to show their interdependence. High correlation in models implies a good representation of the influence of IOZM on East African climate variability and our goal is to detect the models with the highest correlation coefficients. In future research, these model data might be used to investigate the impact of IOZM on the East African climate variability in the late 20's century with regard to anthropogenic causes and internal variability.
NASA Astrophysics Data System (ADS)
Abadi, P.; Otsuka, Y.; Shiokawa, K.; Husin, A.; Liu, Huixin; Saito, S.
2017-08-01
We investigate the azimuthal distribution of amplitude scintillation observed by Global Positioning System (GPS) ground receivers at Pontianak (0.0°S, 109.3°E; magnetic latitude: 9.8°S) and Bandung (6.9°S, 107.6°E; magnetic latitude: 16.7°S) in Indonesia in March and September from 2011 to 2015. The scintillation is found to occur more to the west than to the east in March at both stations, whereas no such zonal difference is found in September. We also analyze the zonal scintillation drift as estimated using three closely spaced single-frequency GPS receivers at Kototabang (0.2°S, 100.3°E; magnetic latitude: 9.9°S) in Indonesia during 2003-2015 and the zonal thermospheric neutral wind as measured by the CHAMP satellite at longitudes of 90°-120°E during 2001-2008. We find that the velocities of both the zonal scintillation drift and the neutral wind decrease with increasing latitudes. Interestingly, the latitudinal gradients of both the zonal scintillation drift and the neutral wind are steeper in March than in September. These steeper March gradients may be responsible for the increased westward altitudinal and latitudinal tilting of plasma bubbles in March. This equinoctial asymmetry could be responsible for the observed westward bias in scintillation in March, because the scintillation is more likely to occur when radio waves pass through longer lengths of plasma irregularities in the plasma bubbles.
NASA Technical Reports Server (NTRS)
Shiotani, Masato; Hasebe, Fumio
1994-01-01
An analysis is made of equatorial ozone variations for 5 years, 1984-1989, using the ozone profile data derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument. Attention is focused on the annual cycle and also on interannual variability, particularly the quasi-biennial oscillation (QBO) and El Nino-Southern Oscillation (ENSO) variations in the lower stratosphere, where the largest contribution to total column ozone takes place. The annual variation in zonal mean total ozone around the equator is composed of symmetric and asymmetric modes with respect to the equator, with maximum contributions being around 19 km for the symmetric mode and around 25 km for the asymmetric mode. The persistent zonal wavenumber 1 structure observed by the total ozone mapping spectrometer over the equator is almost missing in the SAGE-derived column amounts integrated in the stratosphere, suggesting a significant contribution from tropospheric ozone. Interannual variations in the equatorial ozone are dominated by the QBO above 20 km and the ENSO-related variation below 20 km. The ozone QBO is characterized by zonally uniform phase changes in association with the zonal wind QBO in the equatorial lower stratosphere. The ENSO-related ozone variation consists of both the east-west vacillation and the zonally uniform phase variation. During the El Nino event, the east-west contrast with positive (negative) deviations in the eastern (western) hemisphere is conspicuous, while the decreasing tendency of the zonal mean values is maximum at the same time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drouot, T.; Gravier, E.; Reveille, T.
This paper presents a study of zonal flows generated by trapped-electron mode and trapped-ion mode micro turbulence as a function of two plasma parameters—banana width and electron temperature. For this purpose, a gyrokinetic code considering only trapped particles is used. First, an analytical equation giving the predicted level of zonal flows is derived from the quasi-neutrality equation of our model, as a function of the density fluctuation levels and the banana widths. Then, the influence of the banana width on the number of zonal flows occurring in the system is studied using the gyrokinetic code. Finally, the impact of themore » temperature ratio T{sub e}/T{sub i} on the reduction of zonal flows is shown and a close link is highlighted between reduction and different gyro-and-bounce-average ion and electron density fluctuation levels. This reduction is found to be due to the amplitudes of gyro-and-bounce-average density perturbations n{sub e} and n{sub i} gradually becoming closer, which is in agreement with the analytical results given by the quasi-neutrality equation.« less
Impact of resonant magnetic perturbations on nonlinearly driven modes in drift-wave turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leconte, M.; Diamond, P. H.; CMTFO and CASS, UCSD, California 92093
2012-05-15
In this work, we study the effects of resonant magnetic perturbations (RMPs) on turbulence, flows, and confinement in the framework of resistive drift wave turbulence. We extend the Hasegawa-Wakatani model to include RMP fields. The effect of the RMPs is to induce a linear coupling between the zonal electric field and the zonal density gradient, which drives the system to a state of electron radial force balance for large ({delta}B{sub r}/B{sub 0}). Both the vorticity flux (Reynolds stress) and particle flux are modulated. We derive an extended predator prey model which couples zonal potential and density dynamics to the evolutionmore » of turbulence intensity. This model has both turbulence drive and RMP amplitude as control parameters and predicts a novel type of transport bifurcation in the presence of RMPs. We find states that are similar to the ZF-dominated state of the standard predator-prey model, but for which the power threshold is now a function of the RMP strength. For small RMP amplitude, the energy of zonal flows decreases and the turbulence energy increases with ({delta}B{sub r}/B{sub 0}), corresponding to a damping of zonal flows.« less
An Assessment of Research Gaps Related to Deep Water Wellbore Integrity
NASA Astrophysics Data System (ADS)
Tkach, M. K.; Radonjic, M.; Kutchko, B. G.
2017-12-01
In order for a deep-water wellbore to uphold its integrity under high pressure - high temperature conditions, the wellbore must possess complete zonal isolation while surrounded in an extreme environment. Highly variable temperature and pressure ranges, shallow flow zones, as well as potentially corrosive fluids and gasses all present unique challenges to the job of the cement which maintains that zonal isolation. As such, alternative options to mainstream choices often present themselves as attractive avenues of discovery. As it is of utmost importance to maintain structural integrity under HPHT conditions, cement slurries are pumped downhole to provide zonal isolation and structural support to offshore wells. The wellbore system potentially faces a variety of temperature and pressure fluctuations from the immediate onset. These fluctuations may affect the hydration properties of the cement. It is also important to consider the chemical interactions that the cement may have at the rock-cement interface where potential degradation or annulus gaps may occur further risking a decrease in zonal isolation. This presentation intends to review some of the important issues regarding zonal isolation in HPHT conditions and to highlight critical knowledge gaps in order to generate important research questions.
Periodical oscillation of zonal wind velocities at the cloud top of Venus
NASA Astrophysics Data System (ADS)
Kouyama, T.; Imamura, T.; Nakamura, M.; Satoh, T.; Futaana, Y.
2010-12-01
Zonal wind velocity of Venus increases with height and reaches about 100 m s-1 at the cloud top level (~70km). The speed is approximately 60 times faster than the rotation speed of the solid body of Venus (~1.6 m s-1, at the equator) and this phenomenon is called a "super-rotation". From previous observations, it is known that the super-rotation changes on a long timescale. At the cloud top level, it was suggested that the super-rotation has a few years period oscillation based on observations made by Pioneer Venus orbiter of USA from 1979 to 1985 (Del Genio et al.,1990). However, the period, the amplitude, the spatial structure and the mechanism of the long period oscillation have not been understood well. Venus Express (VEX) of European Space Agency has been observing Venus since its orbital insertion in April 2006. Venus Monitoring Camera (VMC) onboard VEX has an ultra violet (UV) filter (365 nm), and VMC has taken day-side cloud images at the cloud top level with this filter. Such images exhibit various cloud features made by unknown UV absorber in the atmosphere. For investigating the characteristics of long-timescale variations of the super-rotation, we analyzed zonal velocity fields derived from UV cloud images from May 2006 to January 2010 using a cloud tracking method. UV imaging of VMC is done when the spacecraft is in the ascending portion of its elongated polar orbit. Since the orbital plane is nearly fixed in the inertial space, the local time of VMC/UV observation changes with a periodicity of one Venus year. As a result, periods when VMC observation covered day-side areas of Venus, large enough for cloud trackings, are not continuous. For deriving wind velocities we were able to use cloud images taken in 280 orbits during this period. The derived zonal wind velocity from 10°S to 40°S latitude shows a prominent year-to-year variation, and the variation is well fitted by a periodical oscillation with a period of about 260 Earth days, although not all phases of the variation were observed. The 260 day period is longer than the length of one day of Venus (~117 days) and somewhat longer than the orbital revolution period (~225 days) of Venus. In the equatorial region, the amplitude of this oscillation is about 12 m s-1 with the background zonal wind speed of about 95 m s-1. The oscillation period is shorter than the long-term oscillation reported by PVO. Such oscillation has not been reported most probably because previous Venus observations had limitations of observation chances to identify the oscillations with such a period.
Interannual Variability and Trends of Extratropical Ozone. Part 1; Northern Hemisphere
NASA Technical Reports Server (NTRS)
Yung, Yuk L.
2008-01-01
The authors apply principal component analysis (PCA) to the extratropical total column ozone from the combined merged ozone data product and the European Centre for Medium-Range Weather Forecasts assimilated ozone from January 1979 to August 2002. The interannual variability (IAV) of extratropical O-3 in the Northern Hemisphere (NH) is characterized by four main modes. Attributable to dominant dynamical effects, these four modes account for nearly 60% of the total ozone variance in the NH. The patterns of variability are distinctly different from those derived for total O-3 in the tropics. To relate the derived patterns of O-3 to atmospheric dynamics, similar decompositions are performed for the 30 100-Wa geopotential thickness. The results reveal intimate connections between the IAV of total ozone and the atmospheric circulation. The first two leading modes are nearly zonally symmetric and represent the connections to the annular modes and the quasi-biennial oscillation. The other two modes exhibit in-quadrature, wavenumber-1 structures that, when combined, describe the displacement of the polar vortices in response to planetary waves. In the NH, the extrema of these combined modes have preferred locations that suggest fixed topographical and land-sea thermal forcing of the involved planetary waves. Similar spatial patterns and trends in extratropical column ozone are simulated by the Goddard Earth Observation System chemistryclimate model (GEOS-CCM). The decreasing O-3 trend is captured in the first mode. The largest trend occurs at the North Pole, with values similar to-1 Dobson Unit (DU) yr(-1). There is almost no trend in tropical O-3. The trends derived from PCA are confirmed using a completely independent method, empirical mode decomposition, for zonally averaged O-3 data. The O-3 trend is also captured by mode 1 in the GEOS-CCM, but the decrease is substantially larger than that in the real atmosphere.
Johnsen, Hanne R; Striberny, Bernd; Olsen, Stian; Vidal-Melgosa, Silvia; Fangel, Jonatan U; Willats, William G T; Rose, Jocelyn K C; Krause, Kirsten
2015-08-01
Host plant penetration is the gateway to survival for holoparasitic Cuscuta and requires host cell wall degradation. Compositional differences of cell walls may explain why some hosts are amenable to such degradation while others can resist infection. Antibody-based techniques for comprehensive profiling of cell wall epitopes and cell wall-modifying enzymes were applied to several susceptible hosts and a resistant host of Cuscuta reflexa and to the parasite itself. Infected tissue of Pelargonium zonale contained high concentrations of de-esterified homogalacturonans in the cell walls, particularly adjacent to the parasite's haustoria. High pectinolytic activity in haustorial extracts and high expression levels of pectate lyase genes suggest that the parasite contributes directly to wall remodeling. Mannan and xylan concentrations were low in P. zonale and in five susceptible tomato introgression lines, but high in the resistant Solanum lycopersicum cv M82, and in C. reflexa itself. Knowledge of the composition of resistant host cell walls and the parasite's own cell walls is useful in developing strategies to prevent infection by parasitic plants. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Nongeostrophic theory of zonally averaged circulation. I - Formulation
NASA Technical Reports Server (NTRS)
Tung, Ka Kit
1986-01-01
A nongeostrophic theory of zonally averaged circulation is formulated using the nonlinear primitive equations (mass conservation, thermodynamics, and zonal momentum) on a sphere. The relationship between the mean meridional circulation and diabatic heating rate is studied. Differences between results of nongeostropic theory and the geostrophic formulation concerning the role of eddy forcing of the diabatic circulation and the nonlinear nearly inviscid limit versus the geostrophic limit are discussed. Consideration is given to the Eliassen-Palm flux divergence, the Eliassen-Palm pseudodivergence, the nonacceleration theorem, and the nonlinear nongeostrophic Taylor relationship.
Zonal NePhRO scoring system: a superior renal tumor complexity classification model.
Hakky, Tariq S; Baumgarten, Adam S; Allen, Bryan; Lin, Hui-Yi; Ercole, Cesar E; Sexton, Wade J; Spiess, Philippe E
2014-02-01
Since the advent of the first standardized renal tumor complexity system, many subsequent scoring systems have been introduced, many of which are complicated and can make it difficult to accurately measure data end points. In light of these limitations, we introduce the new zonal NePhRO scoring system. The zonal NePhRO score is based on 4 anatomical components that are assigned a score of 1, 2, or 3, and their sum is used to classify renal tumors. The zonal NePhRO scoring system is made up of the (Ne)arness to collecting system, (Ph)ysical location of the tumor in the kidney, (R)adius of the tumor, and (O)rganization of the tumor. In this retrospective study, we evaluated patients exhibiting clinical stage T1a or T1b who underwent open partial nephrectomy performed by 2 genitourinary surgeons. Each renal unit was assigned both a zonal NePhRO score and a RENAL (radius, exophytic/endophytic properties, nearness of tumor to the collecting system or sinus in millimeters, anterior/posterior, location relative to polar lines) score, and a blinded reviewer used the same preoperative imaging study to obtain both scores. Additional data points gathered included age, clamp time, complication rate, urine leak rate, intraoperative blood loss, and pathologic tumor size. One hundred sixty-six patients underwent open partial nephrectomy. There were 37 perioperative complications quantitated using the validated Clavien-Dindo system; their occurrence was predicted by the NePhRO score on both univariate and multivariate analyses (P = .0008). Clinical stage, intraoperative blood loss, and tumor diameter were all correlated with the zonal NePhRO score on univariate analysis only. The zonal NePhRO scoring system is a simpler tool that accurately predicts the surgical complexity of a renal lesion. Copyright © 2014 Elsevier Inc. All rights reserved.
Clouds on Neptune: Motions, Evolution, and Structure
NASA Technical Reports Server (NTRS)
Sromovsky, Larry A.; Morgan, Thomas (Technical Monitor)
2001-01-01
The aims of our original proposal were these: (1) improving measurements of Neptune's circulation, (2) understanding the spatial distribution of cloud features, (3) discovery of new cloud features and understanding their evolutionary process, (4) understanding the vertical structure of zonal cloud patterns, (5) defining the structure of discrete cloud features, and (6) defining the near IR albedo and light curve of Triton. Towards these aims we proposed analysis of existing 1996 groundbased NSFCAM/IRTF observations and nearly simultaneous WFPC2 observations from the Hubble Space Telescope. We also proposed to acquire new observations from both HST and the IRTF.
Login, Hande; Håglin, Sofia; Berghard, Anna; Bohm, Staffan
2015-10-07
Stimulus-dependent expression of the retinoic acid-inactivating enzyme Cyp26B1 in olfactory sensory neurons (OSNs) forms a dorsomedial (DM)-ventrolateral (VL) gradient in the mouse olfactory epithelium. The gradient correlates spatially with different rates of OSN turnover, as well as the functional organization of the olfactory sensory map, into overlapping zones of OSNs that express different odorant receptors (ORs). Here, we analyze transgenic mice that, instead of a stimulus-dependent Cyp26B1 gradient, have constitutive Cyp26B1 levels in all OSNs. Starting postnatally, OSN differentiation is decreased and progenitor proliferation is increased. Initially, these effects are selective to the VL-most zone and correlate with reduced ATF5 expression and accumulation of OSNs that do not express ORs. Transcription factor ATF5 is known to stabilize OR gene choice via onset of the stimulus-transducing enzyme adenylyl cyclase type 3. During further postnatal development of Cyp26B1 mice, an anomalous DM(high)-VL(low) expression gradient of adenylyl cyclase type 3 appears, which coincides with altered OR frequencies and OR zones. All OR zones expand ventrolaterally except for the VL-most zone, which contracts. The expansion results in an increased zonal overlap that is also evident in the innervation pattern of OSN axon terminals in olfactory bulbs. These findings together identify a mechanism by which postnatal sensory-stimulated vitamin A metabolism modifies the generation of spatially specified neurons and their precise topographic connectivity. The distributed patterns of vitamin A-metabolizing enzymes in the nervous system suggest the possibility that the mechanism may also regulate neuroplasticity in circuits other than the olfactory sensory map. The mouse olfactory sensory map is functionally wired according to precise axonal projections of spatially organized classes of olfactory sensory neurons in the nose. The genetically controlled mechanisms that regulate the development of the olfactory sensory map are beginning to be elucidated. Little is known about mechanisms by which sensory stimuli shape the organization of the map after birth. We show that a stimulus-dependent gradient of a retinoic acid-inactivating enzyme Cyp26B1 modifies the composition, localization, and axonal projections of olfactory sensory neuron classes. The mechanism is novel and suggests the interesting possibility that local vitamin A metabolism could also be a mediator of stimulus-dependent modifications of precise spatial connectivity in other parts of the nervous system. Copyright © 2015 the authors 0270-6474/15/3513807-12$15.00/0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghizzo, A., E-mail: alain.ghizzo@univ-lorraine.fr; Palermo, F.
We address the mechanisms underlying low-frequency zonal flow generation in turbulent system and the associated intermittent regime of ion-temperature-gradient (ITG) turbulence. This model is in connection with the recent observation of quasi periodic zonal flow oscillation at a frequency close to 2 kHz, at the low-high transition, observed in the ASDEX Upgrade [Conway et al., Phys. Rev. Lett. 106, 065001 (2011)] and EAST tokamak [Xu et al., Phys. Rev. Lett 107, 125001 (2011)]. Turbulent bursts caused by the coupling of Kelvin-Helmholtz (KH) driven shear flows with trapped ion modes (TIMs) were investigated by means of reduced gyrokinetic simulations. It was foundmore » that ITG turbulence can be regulated by low-frequency meso-scale zonal flows driven by resonant collisionless trapped ion modes (CTIMs), through parametric-type scattering, a process in competition with the usual KH instability.« less
Eddy, drift wave and zonal flow dynamics in a linear magnetized plasma
Arakawa, H.; Inagaki, S.; Sasaki, M.; Kosuga, Y.; Kobayashi, T.; Kasuya, N.; Nagashima, Y.; Yamada, T.; Lesur, M.; Fujisawa, A.; Itoh, K.; Itoh, S.-I.
2016-01-01
Turbulence and its structure formation are universal in neutral fluids and in plasmas. Turbulence annihilates global structures but can organize flows and eddies. The mutual-interactions between flow and the eddy give basic insights into the understanding of non-equilibrium and nonlinear interaction by turbulence. In fusion plasma, clarifying structure formation by Drift-wave turbulence, driven by density gradients in magnetized plasma, is an important issue. Here, a new mutual-interaction among eddy, drift wave and flow in magnetized plasma is discovered. A two-dimensional solitary eddy, which is a perturbation with circumnavigating motion localized radially and azimuthally, is transiently organized in a drift wave – zonal flow (azimuthally symmetric band-like shear flows) system. The excitation of the eddy is synchronized with zonal perturbation. The organization of the eddy has substantial impact on the acceleration of zonal flow. PMID:27628894
Longitudinal variability in Jupiter's zonal winds derived from multi-wavelength HST observations
NASA Astrophysics Data System (ADS)
Johnson, Perianne E.; Morales-Juberías, Raúl; Simon, Amy; Gaulme, Patrick; Wong, Michael H.; Cosentino, Richard G.
2018-06-01
Multi-wavelength Hubble Space Telescope (HST) images of Jupiter from the Outer Planets Atmospheres Legacy (OPAL) and Wide Field Coverage for Juno (WFCJ) programs in 2015, 2016, and 2017 are used to derive wind profiles as a function of latitude and longitude. Wind profiles are typically zonally averaged to reduce measurement uncertainties. However, doing this destroys any variations of the zonal-component of winds in the longitudinal direction. Here, we present the results derived from using a "sliding-window" correlation method. This method adds longitudinal specificity, and allows for the detection of spatial variations in the zonal winds. Spatial variations are identified in two jets: 1 at 17 ° N, the location of a prominent westward jet, and the other at 7 ° S, the location of the chevrons. Temporal and spatial variations at the 24°N jet and the 5-μm hot spots are also examined.
Shrestha, Sudeep; Thorne-Lyman, Andrew L; Manohar, Swetha; Shrestha, Binod; Neupane, Sumanta; Rajbhandary, Ruchita; Shrestha, Raman; Klemm, Rolf Dw; Nonyane, Bareng As; Adhikari, Ramesh K; Webb, Patrick; West, Keith P
2018-01-01
Preschool undernutrition remains a burden in Nepal. This paper reports results of surveys in 2013 and 2014, examining patterns of child nutritional status across the country, associations with household food insecurity and antecedent comparative national data for subsequent evaluations of nutritional status following the earthquake in Nepal in 2015. A multi-stage sample was drawn comprising 21 sites in 75 districts of the country, representing the mountains, hills and Terai zones, providing proportionate to zonal samples of 4286 and 4947 households and 5401 and 5474 preschool children in each year, respectively. Children 6 to 59 months of age were measured for weight and height, expressed as standardized z-scores for height-for-age (HAZ), weight-for-height (WHZ), and stunting and wasting (<-2 z for each). The household food insecurity access scale (HFIAS) was used to measure food security. Between 2013 and 2014, HAZ decreased from a mean (SD) of -1.46 (1.39) to -1.54 (1.33) z-scores, while the prevalence of stunting increased from 35.5% to 37.4% (p<0.05 for both), evident in the mountains and Terai but not hills. In both years, wasting was highest (~22%) in the Terai versus mountains or hills (~8%). More households were classified food secure in 2014 (73%) than 2013 (59%), evident in all zones. Two midyear surveys in Nepal revealed a stable nutritional situation among preschool children, reflecting a pause in the long-term decline in stunting noted in previous years. The same period saw a slight reduction in wasting and improved household food security.
Trends in the Zonal Winds over the Southern Ocean from the NCEP/NCAR Reanalysis and Scatterometers
NASA Astrophysics Data System (ADS)
Richman, J. G.
2002-12-01
The winds over the Southern Ocean for the entire 54-year (1948-2001) period of the NCEP/NCAR Reanalysis have been decomposed into Principal Components (Empirical Orthogonal Functions). The first EOF describes 83 percent of the variance in the zonal wind. The loading of the EOF shows the predominately westerly surface flow with strongest winds in the Indian sector of the Southern Ocean. The structure of this EOF is similar to the Southern Annular Mode (SAM) identified by Thompson, et al 2000. The amplitude of this EOF reveals a large trend of 4.42 cm/s/yr in the strength of the zonal wind corresponding to a nearly 50 percent increase in the wind stress over the Southern Ocean. Such a trend, if real, would be important in the dynamics of the Antarctic Circumpolar Current (ACC). Recent studies by Gille, et al. (2001), Olbers and Ivchenko (2001) and Gent et al. (2001) have shown that the transport of the ACC is correlated to the variability in the zonal wind with a monotonic increase in the transport with increasing zonal wind strength. However, errors in the data assimilation scheme for surface pressure observations on the Antarctic continent appears to have caused a spurious trend in the sea level pressure south of 40S of -0.2 hPa/yr (Hines, et al. 2000 and Marshall, 2002). The sea level pressure difference between 40S and 60S has risen by 8 hPa over the same period. This sea level pressure difference is used as a proxy for the strength of the zonal winds. Thus, the trend in the zonal wind EOF amplitude may be an artifact of model errors in the NCEP Reanalysis. To check this trend, we analyzed scatterometer winds over the Southern Ocean from the SEASAT, ERS (1 and 2), NSCAT and QuikScat satellites. The scatterometer data is not used in the NCEP Reanalysis and, thus, is an independent estimate of the winds. The SEASAT Scatterometer (SASS) operated for 90 days in July-September, 1978, while the ERS, NSCAT and QuikScat scatterometers provide a continuous dataset from September 1992 through the present. The zonal winds for the combined ERS/NSCAT dataset were decomposed into Principal Components, similar to the NCEP winds. The first EOF describes 78 percent of the variance in the zonal wind. The loading of the EOF is nearly identical in structure to the loading of the NCEP EOF, and the correlation between the amplitudes is 0.93 for the coincident period. The trend in the scatterometer winds is 3.9 cm/s/yr for the eight years, which is not significantly different from the 4.4 cm /s/yr trend of the NCEP winds. The three months of SASS data were projected onto the scatterometer EOF and the amplitudes compared to the long-term NCEP amplitudes. The agreement between the scatterometer amplitudes and the NCEP is remarkable. The comparison between the scatterometer winds and NCEP Reanalysis winds suggests that the trend towards increasing zonal winds is real. The increasing zonal winds over the Southern Ocean may lead to a substantial increase in the transport of the ACC over the past 50 years.
Comparative analysis of zonal systems for macro-level crash modeling.
Cai, Qing; Abdel-Aty, Mohamed; Lee, Jaeyoung; Eluru, Naveen
2017-06-01
Macro-level traffic safety analysis has been undertaken at different spatial configurations. However, clear guidelines for the appropriate zonal system selection for safety analysis are unavailable. In this study, a comparative analysis was conducted to determine the optimal zonal system for macroscopic crash modeling considering census tracts (CTs), state-wide traffic analysis zones (STAZs), and a newly developed traffic-related zone system labeled traffic analysis districts (TADs). Poisson lognormal models for three crash types (i.e., total, severe, and non-motorized mode crashes) are developed based on the three zonal systems without and with consideration of spatial autocorrelation. The study proposes a method to compare the modeling performance of the three types of geographic units at different spatial configurations through a grid based framework. Specifically, the study region is partitioned to grids of various sizes and the model prediction accuracy of the various macro models is considered within these grids of various sizes. These model comparison results for all crash types indicated that the models based on TADs consistently offer a better performance compared to the others. Besides, the models considering spatial autocorrelation outperform the ones that do not consider it. Based on the modeling results and motivation for developing the different zonal systems, it is recommended using CTs for socio-demographic data collection, employing TAZs for transportation demand forecasting, and adopting TADs for transportation safety planning. The findings from this study can help practitioners select appropriate zonal systems for traffic crash modeling, which leads to develop more efficient policies to enhance transportation safety. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.
NASA Astrophysics Data System (ADS)
Arruda, Daniela C. S.; Sobral, J. H. A.; Abdu, M. A.; Castilho, Vivian M.; Takahashi, H.; Medeiros, A. F.; Buriti, R. A.
2006-01-01
This work presents equatorial ionospheric plasma bubble zonal drift velocity observations and their comparison with model calculations. The bubble zonal velocities were measured using airglow OI630 nm all-sky digital images and the model calculations were performed taking into account flux-tube integrated Pedersen conductivity and conductivity weighted neutral zonal winds. The digital images were obtained from an all-sky imaging system operated over the low-latitude station Cachoeira Paulista (Geogr. 22.5S, 45W, dip angle 31.5S) during the period from October 1998 to August 2000. Out of the 138 nights of imager observation, 29 nights with the presence of plasma bubbles are used in this study. These 29 nights correspond to geomagnetically rather quiet days (∑K P < 24+) and were grouped according to season. During the early night hours, the calculated zonal drift velocities were found to be larger than the experimental values. The best matching between the calculated and observed zonal velocities were seen to be for a few hours around midnight. The model calculation showed two humps around 20 LT and 24 LT that were not present in the data. Average decelerations obtained from linear regression between 20 LT and 24 LT were found to be: (a) Spring 1998, -8.61 ms -1 h -1; (b) Summer 1999, -0.59 ms -1 h -1; (c) Spring 1999, -11.72 ms -1 h -1; and (d) Summer 2000, -8.59 ms -1 h -1. Notice that Summer and Winter here correspond to southern hemisphere Summer and Winter, not northern hemisphere.
Alió, Jorge L; Plaza-Puche, Ana B; Javaloy, Jaime; Ayala, María José
2012-02-01
To compare the visual outcomes and intraocular optical quality observed postoperatively in patients implanted with a rotationally asymmetric multifocal intraocular lens (IOL) and an apodized diffractive multifocal IOL. Seventy-four consecutive eyes of 40 cataract patients (age range: 36 to 79 years) were divided into two groups: zonal refractive group, 39 eyes implanted with a rotationally asymmetric multifocal IOL (Lentis Mplus LS-312 IOL, Oculentis GmbH); and diffractive group, 35 eyes implanted with an apodized diffractive multifocal IOL (ReSTOR SN6AD3, Alcon Laboratories Inc). Distance and near visual acuity outcomes, contrast sensitivity, intraocular optical quality, and defocus curves were evaluated during 3-month follow-up. Calculation of the intraocular aberrations was performed by subtracting corneal aberrations from total ocular aberrations. Uncorrected near visual acuity and distance-corrected near visual acuity were better in the diffractive group than in the zonal refractive group (P=.01), whereas intermediate visual acuity (defocus +1.00 and +1.50 diopters) was better in the zonal refractive group. Photopic contrast sensitivity was significantly better in the zonal refractive group (P=.04). Wavefront aberrations (total, higher order, tilt, primary coma) were significantly higher in the zonal refractive group than in the diffractive group (P=.02). Both multifocal IOLs are able to successfully restore visual function after cataract surgery. The zonal refractive multifocal IOL provides better results in contrast sensitivity and intermediate vision, whereas the diffractive multifocal IOL provides better near vision at a closer distance. Copyright 2012, SLACK Incorporated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiotani, M.; Hasebe, F.
1994-07-01
An analysis is made of equatorial ozone variations for 5 years, 1984-1989, using the ozone profile data derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument. Attention is focused on the annual cycle and also on interannual variability, particularly the quasi-biennial oscillation (QBO) and El Nino-Southern Oscillation (ENSO) variations in the lower stratosphere, where the largest contribution to total column ozone takes place. The annual variation in zonal mean total ozone around the equator is composed of symmetric and asymmetric modes with respect to the equator, with maximum contributions being around 19 km for the symmetric modemore » and around 25 km for the asymmetric mode. The persistent zonal wavenumber 1 structure observed by the total ozone mapping spectrometer over the equator is almost missing in the SAGE-derived column amounts integrated in the stratosphere, suggesting a significant contribution from tropospheric ozone. Interannual variations in the equatorial ozone are dominated by the QBO above 20 km and the ENSO-related variation below 20 km. The ozone QBO is characterized by zonally uniform phase changes in association with the zonal wind QBO in the equatorial lower stratosphere. The ENSO-related ozone variation consists of both the east-west vacillation and the zonally uniform phase variation. During the El Nino event, the east-west contrast with positive (negative) deviations in the eastern (western) hemisphere is conspicuous, while the decreasing tendency of the zonal mean values is maximum at the same time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masato Shiotani; Fumio Hasebe
1994-07-20
An analysis is made of equatorial ozone variations for 5 years, 1984-1989, using the ozone profile data derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument. Attention is focused on the annual cycle and also on interannual variability, particularly the quasi-biennial oscillation (QBO) and El Nino-Southern Oscillation (ENSO) variations in the lower stratosphere, where the largest contribution to total column ozone takes place. The annual variation in zonal mean total ozone around the equator is composed of symmetric and asymmetric modes with respect to the equator, with maximum contributions being around 19 km for the symmetric modemore » and around 25 km for the asymmetric mode. The persistent zonal wavenumber 1 structure observed by the total ozone mapping spectrometer over the equator is almost missing in the SAGE-derived column amounts integrated in the stratosphere, suggesting a significant contribution from tropospheric ozone. Interannual variations in the equatorial ozone are dominated by the QBO above 20 km and the ENSO-related variation below 20 km. The ozone QBO is characterized by zonally uniform phase changes in association with the zonal wind QBO in the equatorial lower stratosphere. The ENSO-related ozone variation consists of both the east-west vacillation and the zonally uniform phase variation. During the El Nino event, the east-west contrast with positive (negative) deviations in the eastern (western) hemisphere is conspicuous, while the decreasing tendency of the zonal mean values is maximum at the same time. 28 refs., 13 figs.« less
Shape, zonal winds and gravitational field of Jupiter: a fully self-consistent, multi-layered model
NASA Astrophysics Data System (ADS)
Schubert, Gerald; Kong, Dali; Zhang, Keke
2016-10-01
We construct a three-dimensional, finite-element, fully self-consistent, multi-layered,non-spheroidal model of Jupiter consisting of an inner core, a metallic electrically conducting dynamo region and an outer molecular electrically insulating envelope. We assume that the Jovian zonal winds are on cylinders parallel to the rotation axis but, due to the effect of magnetic braking, are confined within the outer molecular envelope. Two related calculations are carried out. The first provides an accurate description of the shape and internal density profile of Jupiter; the effect of rotational distortion is not treated as a small perturbation on a spherically symmetric state. This calculation determines the density, size and shape of the inner core, the irregular shape of the 1-bar pressure level, and the internal structure of Jupiter; the full effect of rotational distortion, without the influence of the zonal winds, is accounted for. Our multi-layered model is able to produce the known mass, the known equatorial and polar radii, and the known zonal gravitational coefficient J2 of Jupiter within their error bars; it also yields the coefficients J4 and J6 within about 5% accuracy, and the core equatorial radius 0.09RJ containing 3.73 Earth masses.The second calculation determines the variation of the gravitational field caused solely by the effect of the zonal winds on the rotationally distorted non-spheroidal Jupiter. Four different cases, ranging from a deep wind profile to a very shallow profile, are considered and implications for accurate interpretation of the zonal gravitational coefficients expected from the Juno mission are discussed.
NASA Astrophysics Data System (ADS)
Seidov, D.; Haupt, B. J.
2003-12-01
The role of sea surface salinity (SSS) contrasts in maintaining vigorous global ocean thermohaline circulation (THC) is revisited. Relative importance of different generalizations of sea surface conditions in climate studies is explored. In numerical experiments using an ocean general circulation model, we have aggregated the observed sea surface temperature (SST) and SSS in several different ways: we used observed unchanged SST with SSS taken as constant (34.25 psu) everywhere; SST unchanged, and SSS zonally averaged globally, i.e., in the whole World Ocean; SST averaged globally, and SSS unchanged; SST zonally averaged globally and SSS zonally averaged basin-wide in individual basins, i.e., in the Atlantic, Indian, Pacific, and Southern Oceans separately; and, finally, both SST and SSS zonally averaged in individual basins. Global zonal averaging removes all longitudinal differences in sea surface climatology among ocean basins. However, latitudinal profiles of zonally averaged parameters preserve the main character of large-scale equator-to-pole sea surface variability. Basin-wide zonal averaging does an even better job of preserving latitudinal distributions within each basin. The results of the experiments could hardly be anticipated a priory. Surprisingly, SST could be used as a 2-D field, or as a zonally-averaged field without much difference in the THC dynamics. Moreover, SST could be averaged either globally, or basin-wide, and it also did not change the overall character of THC. At the same time, THC responded vigorously to how the SSS has been changed. It appeared that the THC structure with the globally averaged SST and basin-wide averaged SSS was very close to the one obtained in the control run (control run operates with 2-D observed SST and SSS). Our main conclusion is that ocean-wide inter-basin sea surface salinity contrasts serve as the major controlling element in global thermohaline circulation. Thermal inter-basin contrasts, as well as longitudinal variation in SSS, are less important than latitudinal thermal gradients and inter-basin salinity contrasts. Details of SSS also decrease in importance as soon as its inter-basin contrasts are retained. This is especially important for paleoclimate and future climate simulations, as only the large-scale inter-basin contrasts of the sea surface conditions really matter.
Effect of Resonant Magnetic Perturbations on secondary structures in Drift-Wave turbulence
NASA Astrophysics Data System (ADS)
Leconte, Michael
2011-10-01
In this work, we study the effects of RMPs on turbulence, flows and confinement, in the framework of two paradigmatic models, resistive ballooning and resistive drift waves. For resistive ballooning turbulence, we use 3D global numerical simulations, including RMP fields and (externally-imposed) sheared rotation profile. Without RMPs, relaxation oscillations of the pressure profile occur. With RMPs, results show that long-lived convection cells are generated by the combined effects of pressure modulation and toroidal curvature coupling. These modify the global structure of the turbulence and eliminate relaxation oscillations. This effect is due mainly to a modification of the pressure profile linked to the presence of residual magnetic island chains. Hence convection-cell generation increases for increasing δBr/B0. For RMP effect on zonal flows in drift wave turbulence, we extend the Hasegawa-Wakatani model to include RMP fields. The effect of the RMPs is to induce a linear coupling between the zonal electric field and the zonal density gradient, which drives the system to a state of electron radial force balance for large δBr/B0. Both the vorticity flux (Reynolds stress), and particle flux are modulated. We derive an extended predator prey model which couples zonal potential and density dynamics to the evolution of turbulence intensity. This model has both turbulence drive and RMP amplitude as control parameters, and predicts a novel type of transport bifurcation in the presence of RMPs. We find a novel set of system states that are similar to the Hmode-like state of the standard predator-prey model, but for which the power threshold is now a function of the RMP strength. For small RMP amplitude and low collisionality, both the ambient turbulence and zonal flow energy increase with δBr/B0. For larger RMP strength, the turbulence energy increases, but the energy of zonal flows decreases with δBr/B0, corresponding to a damping of zonal flows. At high collisionnality, zonal flow damping occurs even at small RMP amplitude. Finally, for very strong values of δBr/B0, the system bifurcates back to an Lmode-like state. This work was supported by the World Class Institute (WCI) Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology of Korea (MEST).
NASA Astrophysics Data System (ADS)
Abadi, P.; Otsuka, Y.; Shiokawa, K.; Yamamoto, M.; M Buhari, S.; Abdullah, M.
2017-12-01
We investigate the 3-m ionospheric irregularities and the height variation of equatorial F-region observed by the Equatorial Atmosphere Radar (EAR) at Kototabang (100.3°E, 0.2°S, dip. Lat.: 10.1°S) in Indonesia and ionosondes at Chumphon (99.3°E, 10.7°N, dip. Lat.: 3°N) in Thailand and at Bac Lieu (105.7°E, 9.3°N, dip. Lat.; 1.5°N) in Vietnam, respectively, during March-April from 2011 to 2014. We aim to disclose the relation between pre-reversal enhancement (PRE) of evening eastward electric field and the sequential occurrence of the equatorial plasma bubble (EPB) in the period of 19-22 LT. In summary, (i) we found that the zonal spacing between consecutive EPBs ranges from less than 100 km up to 800 km with a maximum occurrence around 100-300 km as shown in Figure 1(a), and this result is consistent with the previous study [e.g. Makela et al., 2010]; (ii) the probability of the sequential occurrence of the EPB enhances with the increase of PRE strength (see Figure 1(b)); and (iii) Figure 1(c) shows that the zonal spacing between consecutive EPBs is less than 300 km for the weaker PRE (<30 m/s), whereas the zonal spacing is more varied for the stronger PRE (≥30 m/s). Our results remark that the PRE strength is a prominent factor of the sequential occurrence of the EPB. However, we also consider another factor, namely the zonal structure of seed perturbation modulated by gravity wave (GW), and the zonal spacing between consecutive EPBs may fit with the wavelength of the zonal structure of seed perturbation. We particularly attribute the result (iii) to the effects of PRE and seed perturbation on the sequential occurrence of the EPB, that is, we suggest that the weaker PRE could cause the sequential occurrence of the EPB when the zonal structure of seed perturbation has a shorter wavelength. We, however, need a further investigation for confirming the periodic seeding mechanism, and we will use a network of GPS receivers in the western part of Southeast Asia to analyze the zonal wavy structure in the TEC as a manifestation of the seed perturbations.
Non-hydrostatic general circulation model of the Venus atmosphere
NASA Astrophysics Data System (ADS)
Rodin, Alexander V.; Mingalev, Igor; Orlov, Konstantin; Ignatiev, Nikolay
We present the first non-hydrostatic global circulation model of the Venus atmosphere based on the complete set of gas dynamics equations. The model employs a spatially uniform triangular mesh that allows to avoid artificial damping of the dynamical processes in the polar regions, with altitude as a vertical coordinate. Energy conversion from the solar flux into atmospheric motion is described via explicitly specified heating and cooling rates or, alternatively, with help of the radiation block based on comprehensive treatment of the Venus atmosphere spectroscopy, including line mixing effects in CO2 far wing absorption. Momentum equations are integrated using the semi-Lagrangian explicit scheme that provides high accuracy of mass and energy conservation. Due to high vertical grid resolution required by gas dynamics calculations, the model is integrated on the short time step less than one second. The model reliably repro-duces zonal superrotation, smoothly extending far below the cloud layer, tidal patterns at the cloud level and above, and non-rotating, sun-synchronous global convective cell in the upper atmosphere. One of the most interesting features of the model is the development of the polar vortices resembling those observed by Venus Express' VIRTIS instrument. Initial analysis of the simulation results confirms the hypothesis that it is thermal tides that provides main driver for the superrotation.
NASA Astrophysics Data System (ADS)
Vasenev, Ivan; Yashin, Ivan; Lukin, Sergey; Valentini, Riccardo
2015-04-01
First decades of XXI century actualized for soil researches the principal methodical problem of most modern geosciences: what spatial and temporal scale would be optimal for land quality evaluation and land-use practice optimizing? It is becoming obvious that this question cannot have one solution and have to be solved with especial attention on the features of concrete region and landscape, land-use history and practical issues, land current state and environmental functions, soil cover patterns and variability, governmental requirements and local society needs, best available technologies and their potential profitability. Central Russia is one of the most dynamical economic regions with naturally high and man-made complicated landscape and soil cover variability, long-term land-use history and self-contradictory issues, high potential of profitable farming and increased risks of land degradation. Global climate and technological changes essentially complicate the originally high and sharply increased in XX century farming land heterogeneity in the Central Russia that actualizes system analysis of its zonal, intra-zonal and azonal soil cover patterns according to their influence on land environmental functions, agroecological quality, and land-use and monitoring efficiency variability. Developed by the Laboratory of agroecological monitoring, ecosystem modeling & prediction (LAMP / RTSAU with support of RF Governmental projects #11.G34.31.0079 and #14.120.14.4266) regional systems of greenhouse gases environmental monitoring RusFluxNet (6 fixed & 1 mobile eddy covariance stations with zonal functional sets of key plots with chamber investigations in 5 Russian regions) and of agroecological monitoring (in representative key plots with different farming practice in 9 RF regions) allow to do this analysis in frame of enough representative regional multi-factorial matrix of soil cover patterns, bioclimatic conditions, landscape features, and land-use history and current practice versions. Well-elaborated monitoring collaboration with the principal natural reserves in south-taiga and forest-steppe zones provides process-based interaction with long-term data on zonal climatic, landscape and soil features necessary to test the process, functional and evaluation models in the specific conditions of each bioclimatic zone. The dominated erosion and dehumification trends have been essentially activated for last 3-4 decades due to hu¬mus negative balance around 0.6-0.7 t ha-1year-1 and connected disaggregation with annual rate between 1 and 25 g/kg for aggregates 10-0.25 mm. "Standard" monitoring objects and regionally generalized data showed characteristic for Chernozems 2-2.5 % humus drop during this period and active processes of CO2 emission and humus eluvial-illuvial profile redistribution too. Forest-steppe Chernozems are usually characterized by higher stability than steppe ones. The ratio between erosive and biological losses in humus stock can be ten¬tatively estimated as fifty-fifty with essential variability within slope landscape. Both these processes have essential impacts on different sets of soil environmental and agroecological functions (including atmospheric air, surface and ground water quality, biodiversity and profitability) that we need to understand and predict. A drop of humus content below threshold values (for different soils between 1.5 and 6%) considerably reduces not only soil environmental regulation functions but also effectiveness of used fertilizers, crop yield quality and possibility of sustainable agricultural land-use. The carried out long-term researches of representative natural, rural and urban landscapes in Tver, Yaroslavl, Vladimir, Moscow, Kaluga, Kursk, Belgorod, Tambov, Voronezh and Saratov regions give us validation and ranging of the limiting factors of the elementary soil cover patterns current features and transformation processes, environmental functions and agroecological quality, monitoring results functional interpretation, spatial and temporal interpolation and extrapolation. These data allow essentially improve our understanding and quantitative assessments of the regional and within-field variability of land agroecological and environmental functions that is crucial for agroecosystem services evaluation, current and planned land-use environmental impacts, and DSS development for land-use agroecological optimizing taking into attention the regional and local landscapes features and most realistic scenarios of climate change and agro-technology transfer. Developed and verified within the project regionally adapted DSS (ACORD-R - RF #2012612944) gives effective informational and methodological support for land-use agroecological optimization.
NASA Astrophysics Data System (ADS)
Garate-Lopez, Itziar; Lebonnois, Sébastien
2017-04-01
A new simulation of Venus atmospheric circulation obtained with the LMD Venus GCM is described and the impact of cloud's latitudinal structure on the general circulation is analyzed. The model used here is based on that presented in Lebonnois et al. (2016). However, in the present simulation we consider the latitudinal variation of the cloud structure (Haus et al., 2014) both for the solar heating and to compute the infrared net-exchange rate matrix used in the radiative transfer module. The new cloud treatment affects mainly the balance in the angular momentum and the zonal wind distribution. Consequently, the agreement between the vertical profile of the modeled mean zonal wind and the profiles measured by different probes, is clearly improved from previous simulations in which zonal winds below the clouds were weak (roughly half the observed values). Moreover, the equatorial jet obtained at the base of the cloud deck is now more consistent with the observations. In Lebonnois et al. (2016) it was too strong compared to mid-latitudes, but in the present simulation the equatorial jet is less intense than the mid-latitude jets, in concordance with cloud-tracking measurements (Hueso et al., 2015). Since the atmospheric waves play a crucial role in the angular momentum budget of the Venus's atmospheric circulation, we analyze the wave activity by means of the Fast Fourier Transform technique studying the frequency spectrum of temperature, zonal and meridional wind fields. Modifications in the activity of the different types of waves present in the Venusian atmosphere compared to Lebonnois et al. (2016) are discussed, in terms of horizontal and vertical transport of the angular momentum by diurnal and semi-diurnal tides, barotropic and baroclinic waves, and Rossby and Kelvin type waves. Haus R., Kappel D. and Arnold G., 2014. Atmospheric thermal structure and cloud features in the southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements. Icarus 232, 232-248. Hueso R., Peralta J., Garate-Lopez I., et al., 2015. Six years of Venus winds at the upper cloud level from UV, visible and near infrared observations from VIRTIS on Venus express. Planet. Space Sci. 113-114, 78-99. Lebonnois S., Sugimoto N., and Gilli G., 2016. Wave analysis in the atmosphere of Venus below 100km altitude, simulated by the LMD Venus GCM. Icarus 278, 38-51.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Patrick; Kravitz, Ben; Lu, Jian
Here we demonstrate that changes of the North Atlantic subtropical high (NASH) and its regional rainfall pattern during mid-Holocene precessional changes and idealized 4xCO2 increase can both be understood as a remote response to changes in the African and Indian monsoon systems. Despite different sources and patterns of radiative forcing (increase in CO2 concentration vs. changes in orbital parameters), we find that the pattern of energy, circulation, and rainfall responses in the Northern Hemisphere summer subtropics are very similar in the two forcing scenarios because both are dominated by the same land-sea heating contrast in response to the forcing. Anmore » increase in energy input over land drives a westward displacement of the coupled NASH-monsoon circulation, consistent with increased precipitation in the Afro-Asia region and decreased precipitation in the America-Atlantic region. Ultimately, this study underscores the importance of land heating in dictating remote drying through zonal shifts of the subtropical circulation.« less
Triple Cascade Behavior in Quasigeostrophic and Drift Turbulence and Generation of Zonal Jets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazarenko, Sergey; Quinn, Brenda
2009-09-11
We study quasigeostrophic (QG) and plasma drift turbulence within the Charney-Hasegawa-Mima (CHM) model. We focus on the zonostrophy, an extra invariant in the CHM model, and on its role in the formation of zonal jets. We use a generalized Fjoertoft argument for the energy, enstrophy, and zonostrophy and show that they cascade anisotropically into nonintersecting sectors in k space with the energy cascading towards large zonal scales. Using direct numerical simulations of the CHM equation, we show that zonostrophy is well conserved, and the three invariants cascade as predicted by the Fjoertoft argument.
A Model Study of Zonal Forcing in the Equatorial Stratosphere by Convectively Induced Gravity Waves
NASA Technical Reports Server (NTRS)
Alexander, M. J.; Holton, James R.
1997-01-01
A two-dimensional cloud-resolving model is used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation (QBO) of the zonal winds in the equatorial stratosphere. A simulation with constant background stratospheric winds is compared to simulations with background winds characteristic of the westerly and easterly QBO phases, respectively. In all three cases a broad spectrum of both eastward and westward propagating gravity waves is excited. In the constant background wind case the vertical momentum flux is nearly constant with height in the stratosphere, after correction for waves leaving the model domain. In the easterly and westerly shear cases, however, westward and eastward propagating waves, respectively, are strongly damped as they approach their critical levels, owing to the strongly scale-dependent vertical diffusion in the model. The profiles of zonal forcing induced by this wave damping are similar to profiles given by critical level absorption, but displaced slightly downward. The magnitude of the zonal forcing is of order 5 m/s/day. It is estimated that if 2% of the area of the Tropics were occupied by storms of similar magnitude, mesoscale gravity waves could provide nearly 1/4 of the zonal forcing required for the QBO.
Müller, F J; Pezon, C F; Pita, J C
1989-06-13
A method to study the polydispersity of zonally sedimenting and slowly diffusing macromolecules or particles in isokinetic or isovolumetric density gradients is presented. First, a brief theory is given for predicting the zonal profile after a "triangular" (or "inverse") zone is centrifuged. This type of zone is essential to preserve hydrodynamic stability of the very slowly diffusing polydisperse solutes. It is proven, both by semitheoretical considerations and by computer calculations, that the resulting concentration profile of macrosolute is almost identical with that obtainable with a rectangular zone coextensive with the triangular one and carrying the same total mass. Next, practical procedures are described for the convectionless layering of very small triangular zones (50 microL or less). The linearity and stability of the zones are experimentally tested and verified. Finally, the method is applied to cartilage proteoglycan preparations that included either the monomeric molecules only or both the monomeric and the aggregated ones. The zonal results are compared with those obtained by using conventional boundary sedimentation. The two sets of results are seen to coincide fairly well, thus proving that the present technique can add to preparative zonal centrifugation the analytical precision of boundary sedimentation. A multimodal polydisperse system is suggested to describe the aggregated proteoglycan macromolecules.
Simulations of Turbulence in Tokamak Edge and Effects of Self-Consistent Zonal Flows
NASA Astrophysics Data System (ADS)
Cohen, Bruce; Umansky, Maxim
2013-10-01
Progress is reported on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge. This extends previous work to include self-consistent zonal flows and their effects. The previous work addressed simulation of L-mode tokamak edge turbulence using the turbulence code BOUT that solves Braginskii-based plasma fluid equations in tokamak edge domain. The calculations use realistic single-null geometry and plasma parameters of the DIII-D tokamak and produce fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.
Simulations of Tokamak Edge Turbulence Including Self-Consistent Zonal Flows
NASA Astrophysics Data System (ADS)
Cohen, Bruce; Umansky, Maxim
2013-10-01
Progress on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge is summarized in this mini-conference talk. A more detailed report on this work is presented in a poster at this conference. This work extends our previous work to include self-consistent zonal flows and their effects. The previous work addressed the simulation of L-mode tokamak edge turbulence using the turbulence code BOUT. The calculations used realistic single-null geometry and plasma parameters of the DIII-D tokamak and produced fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the US Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.
An atlas of objectively analyzed atmospheric cross sections, 1973-1980
NASA Technical Reports Server (NTRS)
Goodman, J.; Gaines, S. E.; Hipskind, R. S.
1985-01-01
Atmospheric variability over time scales greater than one month is conceptually simplified and readily recognized from vertical cross-sections of zonal-monthly mean data. The reduction to two dimensions, latitude and height, explicitly eliminates all zonal waves but implicity retains their effects on the thermal-pressure fields and the dynamically related zonal wind fields. This atlas contains 96 examples, spanning all latitudes in both the northern and southern hemispheres and two decades in pressure, from 1000 to 10 mb. Four analyses, representing each month from January 1973 through December 1980, depicts the potential virtual temperature, the observed zonal wind velocity, the virtual temperature and the geostrophic zonal wind velocity. Each variable is contoured at a close interval to facilitate visual estimates of stability and vorticity via their gradients. The analyses are generated and contoured by objective computer methods from just one data source: in situ measurements from the conventional rawin-radiosonde system. Although the analyses are independently made at constant pressure levels (the mandatory levels) the cross-sections are drawn with geopotential height as the ordinate. With this ordinate one can observe the seasonal expansion and contraction of the earth's atmosphere, especially that of the polar stratosphere. Also, the quasi-biannual cycle can be identified and studied directly from successive cross-sections.
Auctionable fixed transmission rights for congestion management
NASA Astrophysics Data System (ADS)
Alomoush, Muwaffaq Irsheid
Electric power deregulation has proposed a major change to the regulated utility monopoly. The change manifests the main part of engineers' efforts to reshape three components of today's regulated monopoly: generation, distribution and transmission. In this open access deregulated power market, transmission network plays a major role, and transmission congestion is a major problem that requires further consideration especially when inter-zonal/intra-zonal scheme is implemented. Declaring that engineering studies and experience are the criteria to define zonal boundaries or defining a zone based on the fact that a zone is a densely interconnected area (lake) and paths connecting these densely interconnected areas are inter-zonal lines will render insufficient and fuzzy definitions. Moreover, a congestion problem formulation should take into consideration interactions between intra-zonal and inter-zonal flows and their effects on power systems. In this thesis, we introduce a procedure for minimizing the number of adjustments of preferred schedules to alleviate congestion and apply control schemes to minimize interactions between zones. In addition, we give the zone definition a certain criterion based on the Locational Marginal Price (LMP). This concept will be used to define congestion zonal boundaries and to decide whether any zone should be merged with another zone or split into new zones. The thesis presents a unified scheme that combines zonal and FTR schemes to manage congestion. This combined scheme is utilized with LMPs to define zonal boundaries more appropriately. The presented scheme gains the best features of the FTR scheme, which are providing financial certainty, maximizing the efficient use of the system and making users pay for the actual use of congested paths. LMPs may give an indication of the impact of wheeling transactions, and calculations of and comparisons of LMPs with and without wheeling transactions should be adequate criteria to approve the transaction by the ISO, take a decision to expand the existing system, or retain the original structure of the system. Also, the thesis investigates the impact of wheeling transactions on congestion management, where we present a generalized mathematical model for the Fixed Transmission Right (FTR) auction. The auction guarantees FTR availability to all participants on a non-discriminatory basis, in which system users are permitted to buy, sell and trade FTRs through an auction. When FTRs are utilized with LMPs, they increase the efficient use of the transmission system and let a transmission customer gain advantageous features such as acquiring a mechanism to offset the extra cost due to congestion charges, providing financial and operational certainty and making system users pay for the actual use of the congested paths. The thesis also highlighted FTR trading in secondary markets to self-arrange access across different paths, create long-term transmission rights and provide more commercial certainty.
NASA Astrophysics Data System (ADS)
Ren, Rongcai; Rao, Jian; Wu, Guoxiong; Cai, Ming
2017-05-01
The concurrent effects of the El Niño-Southern Oscillation (ENSO) on the northern winter stratosphere have been widely recognized; however, the delayed effects of ENSO in the next winter after mature ENSO have yet to be confirmed in multi reanalyses and model simulations. This study uses three reanalysis datasets, a long-term fully coupled model simulation, and a high-top general circulation model to examine ENSO's delayed effects in the stratosphere. The warm-minus-cold composite analyses consistently showed that, except those quick-decaying quasi-biennial ENSO events that reverse signs during July-August-September (JAS) in their decay years, ENSO events particularly those quasi-quadrennial (QQ) that persist through JAS, always have a significant effect on the extratropical stratosphere in both the concurrent winter and the next winter following mature ENSO. During the concurrent winter, the QQ ENSO-induced Pacific-North American (PNA) pattern corresponds to an anomalous wavenumber-1 from the upper troposphere to the stratosphere, which acts to intensify/weaken the climatological wave pattern during warm/cold ENSO. Associated with the zonally quasi-homogeneous tropical forcing in spring of the QQ ENSO decay years, there appear persistent and zonally quasi-homogeneous temperature anomalies in the midlatitudes from the upper troposphere to the lower stratosphere until summer. With the reduction in ENSO forcing and the PNA responses in the following winter, an anomalous wavenumber-2 prevails in the extratropics. Although the anomalous wave flux divergence in the upper stratospheric layer is still dominated by wavenumber-1, it is mainly caused by wavenumber-2 in the lower stratosphere. However, the wavenumber-2 activity in the next winter is always underestimated in the model simulations, and wavenumber-1 activity dominates in both winters.
Climate Sensitivity of the Community Climate System Model, Version 4
Bitz, Cecilia M.; Shell, K. M.; Gent, P. R.; ...
2012-05-01
Equilibrium climate sensitivity of the Community Climate System Model Version 4 (CCSM4) is 3.20°C for 1° horizontal resolution in each component. This is about a half degree Celsius higher than in the previous version (CCSM3). The transient climate sensitivity of CCSM4 at 1° resolution is 1.72°C, which is about 0.2°C higher than in CCSM3. These higher climate sensitivities in CCSM4 cannot be explained by the change to a preindustrial baseline climate. We use the radiative kernel technique to show that from CCSM3 to CCSM4, the global mean lapse-rate feedback declines in magnitude, and the shortwave cloud feedback increases. These twomore » warming effects are partially canceled by cooling due to slight decreases in the global mean water-vapor feedback and longwave cloud feedback from CCSM3 to CCSM4. A new formulation of the mixed-layer, slab ocean model in CCSM4 attempts to reproduce the SST and sea ice climatology from an integration with a full-depth ocean, and it is integrated with a dynamic sea ice model. These new features allow an isolation of the influence of ocean dynamical changes on the climate response when comparing integrations with the slab ocean and full-depth ocean. The transient climate response of the full-depth ocean version is 0.54 of the equilibrium climate sensitivity when estimated with the new slab ocean model version for both CCSM3 and CCSM4. We argue the ratio is the same in both versions because they have about the same zonal mean pattern of change in ocean surface heat flux, which broadly resembles the zonal mean pattern of net feedback strength.« less
On Relations Between the Ozonosphere and the General Atmospheric Circulation in Tropics
NASA Astrophysics Data System (ADS)
Kuznetsov, G. I.; Kramarova, N. A.
2006-05-01
The main features of temporal and spatial ozone distribution over tropics and their relations with peculiarities of the general atmospheric circulation are obtained using the total ozone data for the tropical region (Ozone Data for the World and TOMS (version 8)). Among the factors influencing ozone regime in tropics the properties of the region, like intertropical convergence zone and a structure of tropical tropopause, and processes such as stratosphere-troposphere exchange, migration of ozone equator, Quasi Biennial Oscillation are analyzed. To investigate the long term variability of tropical ozone detrended and de-seasonalized fields of TOMS observations are analyzed by means of EOF method. The first four EOFs explain about 75% of residual total ozone variability in tropical region. Spatial patterns of EOFs and corresponding time coefficients are closely connected with the Quasi-Biennial Oscillation (EOF-1), the 11-years Solar Cycle (EOF-2), the QBO-annual beat (EOF-3) and with the South Oscillation (EOF-4) correspondingly. The detailed analyses of temporal and spatial distribution of ozone EOF patterns reveals a distinct change of ozone fields to the both sides of equator at 10-15 latitude as well as at the zones of tropical tropopause break. A time delay of ozone QBO phase is observed while moving towards higher latitudes. Some features of the tropical ozone regime manifest themselves in the peculiarities of Antarctic Ozone Anomalies. A time variability of ozone QBO passes three months ahead of the Singapore 30 mbar zonal wind. Obtained relations let us to construct a linear regression model based on EOF decomposition to estimate total ozone monthly means over tropics. This model is successfully applied to predict 30 mbar zonal wind in dependence on tropical ozone behavior.
[Climatic suitability of citrus in subtropical China].
Duan, Hai-Lai; Qian, Huai-Sui; Li, Ming-Xia; Du, Yao-Dong
2010-08-01
By applying the theories of ecological suitability and the methods of fuzzy mathematics, this paper established a climatic suitability model for citrus, calculated and evaluated the climatic suitability and its spatiotemporal differences for citrus production in subtropical China, and analyzed the climatic suitability of citrus at its different growth stages and the mean climatic suitability of citrus in different regions of subtropical China. The results showed that the citrus in subtropical China had a lower climatic suitability and a higher risk at its flower bud differentiation stage, budding stage, and fruit maturity stage, but a higher climatic suitability and a lower risk at other growth stages. Cold damage and summer drought were the key issues affecting the citrus production in subtropical China. The citrus temperature suitability represented a latitudinal zonal pattern, i. e., decreased with increasing latitude; its precipitation suitability was high in the line of "Sheyang-Napo", medium in the southeast of the line, low in the northwest of the line, and non in high mountainous area; while the sunlight suitability was in line with the actual duration of sunshine, namely, higher in high-latitude areas than in low-latitude areas, and higher in high-altitude areas than in plain areas. Limited by temperature factor, the climatic suitability was in accordance with temperature suitability, i. e., south parts had a higher suitability than north parts, basically representing latitudinal zonal pattern. From the analysis of the inter-annual changes of citrus climatic suitability, it could be seen that the citrus climatic suitability in subtropical China was decreasing, and had obvious regional differences, suggesting that climate change could bring about the changes in the regions suitable for citrus production and in the key stages of citrus growth.
Projecting Changes in S. Florida Rainfall for the 21st century: Scenarios, Downscaling and Analysis
NASA Astrophysics Data System (ADS)
Cioffi, F.; Lall, U.; Monti, A.
2013-12-01
A Non-Homogeneous hidden Markov Models (NHMM) is developed using a 65-years record (1948-2012) of daily rainfall amount at nineteen stations in South Florida and re-analysis atmospheric fields of Temperature (T) at 1000 hPa, Geo Potential Height (GPH) at 1000 hPa, Meridional Winds (MW) and Zonal Winds (ZW) at 850 hPa, and Zonal Winds on the specific latitude of 27N (ZW27N) from 10 to 1000 hPa. The NHMM fitted is then used for predicting future rainfall patterns under global warming scenario (RCP8.5), using predictors from the CMCC-CMS simulations from 1950-2100. The model directly includes a consideration of seasonality through changes in the driving variables thus addressing the question of how future changes in seasonality of precipitation can also be modeled. The results of the simulations obtained by using the downscaling model NHMM, with predictors derived from the simulations of CMCC-CMS CGM, in the worst conditions of global warming as simulated by RCP8.5 scenario, seems to indicate that, as a consequence of increase of CO2 concentration and temperature, South Florida should be subjected to more frequent dry conditions for the most part of the year, due mainly to a reduction of number of wet days and, at the same time, the territory should be also affected by extreme rainfall events that are more intense than the present ones. What appears from results is an increases of rainfall variability. This scenario seems coherent with the trends of rainfall patterns observed in the XX century. An investigation on the causes of such hydrologic changes, and specifically on the role of North Atlantic Subtropical High is pursued.
Malm, Keziah; Peprah, Nana Yaw; Silal, Sheetal P.
2018-01-01
Background Malaria incidence is largely influenced by vector abundance. Among the many interconnected factors relating to malaria transmission, weather conditions such as rainfall and temperature are known to create suitable environmental conditions that sustain reproduction and propagation of anopheles mosquitoes and malaria parasites. In Ghana, climatic conditions vary across the country. Understanding the heterogeneity of malaria morbidity using data sourced from a recently setup data repository for routine health facility data could support planning. Methods Monthly aggregated confirmed uncomplicated malaria cases from the District Health Information Management System and average monthly rainfall and temperature records obtained from the Ghana Meteorological Agency from 2008 to 2016 were analysed. Univariate time series models were fitted to the malaria, rainfall and temperature data series. After pre-whitening the morbidity data, cross correlation analyses were performed. Subsequently, transfer function models were developed for the relationship between malaria morbidity and rainfall and temperature. Results Malaria morbidity patterns vary across zones. In the Guinea savannah, morbidity peaks once in the year and twice in both the Transitional forest and Coastal savannah, following similar patterns of rainfall at the zonal level. While the effects of rainfall on malaria morbidity are delayed by a month in the Guinea savannah and Transitional Forest zones those of temperature are delayed by two months in the Transitional forest zone. In the Coastal savannah however, incidence of malaria is significantly associated with two months lead in rainfall and temperature. Conclusion Data captured on the District Health Information Management System has been used to demonstrate heterogeneity in the dynamics of malaria morbidity across the country. Timing of these variations could guide the deployment of interventions such as indoor residual spraying, Seasonal Malaria Chemoprevention or vaccines to optimise effectiveness on zonal basis. PMID:29377908
Global ozone observations from the UARS MLS: An overview of zonal-mean results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Froidevaux, L.; Waters, J.W.; Read, W.G.
1994-10-15
Global ozone observations from the Microwave Limb Sounder (MLS) aboard the Upper Atmosphere Research Satellite (UARS) are presented, in both vertically resolved and column abundance formats. The authors review the zonal-mean ozone variations measured over the two and a half years since launch in September 1991. Well-known features such as the annual and semiannual variations are ubiquitous. In the equatorial regions, longer-term changes are believed to be related to the quasi-biennial oscillation (QBO), with a strong semiannual signal above 20 hPa. Ozone values near 50 hPa exhibit an equatorial low from October 1991 to June 1992, after which the lowmore » ozone pattern splits into two subtropical lows (possibly in connection with residual circulation changes tied to the QBO) and returns to an equatorial low in September 1993. The ozone hole development at high southern latitudes is apparent in MLS column data integrated down to 100 hPa, with a pattern generally consistent with Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) measurements of total column; the MLS data reinforce current knowledge of this lower-stratospheric phenomenon by providing a height-dependent view of the variations. The region from 30{degrees}S to 30{degrees}N (an area equal to half the global area) shows very little change in the ozone column from year to year and within each year. Finally, residual ozone values extracted from TOMS-minus-MLS column data are briefly presented as a preliminary view into the potential usefulness of such studies, with information on tropospheric ozone as an ultimate goal. 99 refs., 13 figs.« less
Awine, Timothy; Malm, Keziah; Peprah, Nana Yaw; Silal, Sheetal P
2018-01-01
Malaria incidence is largely influenced by vector abundance. Among the many interconnected factors relating to malaria transmission, weather conditions such as rainfall and temperature are known to create suitable environmental conditions that sustain reproduction and propagation of anopheles mosquitoes and malaria parasites. In Ghana, climatic conditions vary across the country. Understanding the heterogeneity of malaria morbidity using data sourced from a recently setup data repository for routine health facility data could support planning. Monthly aggregated confirmed uncomplicated malaria cases from the District Health Information Management System and average monthly rainfall and temperature records obtained from the Ghana Meteorological Agency from 2008 to 2016 were analysed. Univariate time series models were fitted to the malaria, rainfall and temperature data series. After pre-whitening the morbidity data, cross correlation analyses were performed. Subsequently, transfer function models were developed for the relationship between malaria morbidity and rainfall and temperature. Malaria morbidity patterns vary across zones. In the Guinea savannah, morbidity peaks once in the year and twice in both the Transitional forest and Coastal savannah, following similar patterns of rainfall at the zonal level. While the effects of rainfall on malaria morbidity are delayed by a month in the Guinea savannah and Transitional Forest zones those of temperature are delayed by two months in the Transitional forest zone. In the Coastal savannah however, incidence of malaria is significantly associated with two months lead in rainfall and temperature. Data captured on the District Health Information Management System has been used to demonstrate heterogeneity in the dynamics of malaria morbidity across the country. Timing of these variations could guide the deployment of interventions such as indoor residual spraying, Seasonal Malaria Chemoprevention or vaccines to optimise effectiveness on zonal basis.
NASA Astrophysics Data System (ADS)
Coats, Sloan; Karnauskas, Kristopher
2017-04-01
The pattern of sea surface temperature (SST) in the tropical Pacific Ocean provides an important control on global climate, necessitating an understanding of how this pattern will change in response to anthropogenic radiative forcing. State-of-the-art climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) overwhelmingly project a decrease in the tropical Pacific zonal SST gradient over the coming century. This decrease is, in part, a response of the ocean to a weakening Walker circulation in the CMIP5 models, a consequence of the mass and energy balances of the hydrologic cycle identified by Held and Soden (2006). CMIP5 models, however, are not able to reproduce the observed increase in the zonal SST gradient between 1900-2013 C.E., which we argue to be robust using advanced statistical techniques and new observational datasets. While this increase is suggestive of the ocean dynamical thermostat mechanism of Clement et al. (1996), we provide evidence that a strengthening Equatorial Undercurrent (EUC) also contributes to eastern equatorial Pacific cooling. Importantly, the strengthening EUC is a response of the ocean to a weakening Walker circulation and thus can help to reconcile the range of opposing theories and observations of anthropogenic climate change in the tropical Pacific Ocean. Because of a newly identified bias in their simulation of equatorial coupled atmosphere-ocean dynamics, however, CMIP5 models do not capture the magnitude of the response of the EUC to anthropogenic radiative forcing. Consequently, they project a continuation of the opposite to what has been observed in the real world, with potentially serious consequences for projected climate impacts that are influenced by the tropical Pacific Ocean.
Atmospheric circulation of extrasolar giant planets
NASA Astrophysics Data System (ADS)
Showman, A. P.
2012-12-01
Of the many known extrasolar planets, over 100 have orbital semi-major axes less than 0.1 AU, and a significant fraction of these hot Jupiters and Neptunes are known to transit their stars, allowing them to be characterized with the Spitzer, Hubble, and groundbased telescopes. The stellar flux incident on these planets is expected to drive an atmospheric circulation that shapes the day-night temperature difference, infrared light curves, spectra, albedo, and atmospheric composition, and recent Spitzer infrared light curves show evidence for dynamical meteorology in these planets' atmospheres. Here, I will survey basic dynamical ideas and detailed 3D numerical models that illuminate the atmospheric circulation of these exotic, tidally locked planets. These models suggest that, generally, the circulation will be characterized by broad, fast zonal jets, with day-night temperature contrasts at the photosphere that may vary from small in some cases to large in others. I will discuss the dynamical mechanisms for maintaining the fast zonal jets that develop in these models, as well as the mechanisms for controlling the temperature patterns, including the day-night temperature contrasts. These mechanisms help to explain current observations, and they predict regime transitions for how the wind and temperature patterns should vary with the incident stellar flux, strength of atmospheric drag, and other parameters. These transitions are observable and in some cases are already becoming evident in the data. I will also compare the circulation of the hot Jupiters to that of young, massive giant planets being directly imaged around other stars, which will be the subject of a new observational vanguard over the next decade. To emphasize the similarities as well as differences, I will ground this discussion in our understanding of the more familiar atmospheric dynamical regime of Earth, as well as our "local" giant planets Jupiter, Saturn, Uranus, and Neptune.
Atmospheric circulation of extrasolar giant planets
NASA Astrophysics Data System (ADS)
Showman, A. P.
2011-12-01
Of the many known extrasolar planets, nearly 200 have orbital semi-major axes less than 0.1 AU, and a significant fraction of these hot Jupiters and Neptunes are known to transit their stars, allowing them to be characterized with the Spitzer, Hubble, and groundbased telescopes. The stellar flux incident on these planets is expected to drive an atmospheric circulation that shapes the day-night temperature difference, infrared light curves, spectra, albedo, and atmospheric composition, and recent Spitzer infrared light curves show evidence for dynamical meteorology in these planets' atmospheres. Here, I will survey basic dynamical ideas and detailed 3D numerical models that illuminate the atmospheric circulation of these exotic, tidally locked planets. These models suggest that, generally, the circulation will be characterized by broad, fast zonal jets, with day-night temperature contrasts at the photosphere that may vary from small in some cases to large in others. I will discuss the dynamical mechanisms for maintaining the fast zonal jets that develop in these models, as well as the mechanisms for controlling the temperature patterns, including the day-night temperature contrasts. These mechanisms help to explain current observations, and they predict regime transitions for how the wind and temperature patterns should vary with the incident stellar flux, strength of atmospheric drag, and other parameters. These transitions are observable and in some cases are already becoming evident in the data. I will also compare the circulation of the hot Jupiters to that of young, massive giant planets being directly imaged around other stars, which will be the subject of a new observational vanguard over the next decade. To emphasize the similarities as well as differences, I will ground this discussion in our understanding of the more familiar atmospheric dynamical regime of Earth, as well as our "local" giant planets Jupiter, Saturn, Uranus, and Neptune.
Fujiwara, Takamitsu; Imamura, Yutaka; Giovinazzo, Vincent J; Spaide, Richard F
2010-09-01
The purpose of this study was to investigate the fundus autofluorescence and optical coherence tomography findings in eyes with acute zonal occult outer retinopathy (AZOOR). A retrospective observational case series of the fundus autofluorescence and spectral domain optical coherence tomography in a series of patients with AZOOR. There were 19 eyes of 11 patients (10 women), who had a mean age of 49.1 +/- 13.9 years. Fundus autofluorescence abnormalities were seen in 17 of the 19 eyes, were more common in the peripapillary area, and were smaller in extent than the optical coherence tomography abnormalities. Nine eyes showed progression of hypoautofluorescence area during the mean follow-up of 69.7 months. The mean thickness of the photoreceptor layer at fovea was 177 microm in eyes with AZOOR, which was significantly thinner than controls (193 microm, P = 0.049). Abnormal retinal laminations were found in 12 eyes and were located over areas of loss of the photoreceptors. The subfoveal choroidal thickness was 243 microm, which is normal. Fundus autofluorescence abnormalities in AZOOR showed distinct patterns of retinal pigment epithelial involvement, which may be progressive. Thinning of photoreceptor cell layer with loss of the outer segments and abnormal inner retinal lamination in the context of a normal choroid are commonly found in AZOOR.
NASA Astrophysics Data System (ADS)
Guo, J.; Deng, Y.; Zhang, D.; Lu, Y.; Sheng, C.
2017-12-01
Sub-Auroral Polarization Streams (SAPS) are incorporated into the non-hydrostatic Global Ionosphere-Thermosphere Model (GITM), revealing the complex effects on neutral dynamics and ion-neutral coupling processes. The intense westward ion stream could enhance the neutral zonal wind within the SAPS channel. Through neutral dynamics the neutrals then divide into two streams, one turns poleward and the other turns equatorward, forming a two-cell pattern in the SAPS-changed wind. The significant Joule heating induced by SAPS also leads to traveling atmospheric disturbances (TAD) accompanied by traveling ionospheric disturbances (TID), increasing the total electron content (TEC) by 2-8 TECu in the mid-latitude ionosphere. We investigate the potential causes of the reported poleward wind surge during the St. Patrick's Day storm in 2015. It is confirmed that Coriolis force on the westward zonal wind can contribute the poleward wind during post-SAPS interval. In addition, the simulations imply that the sudden decrease of heating rate within auroral oval could result in a TAD propagating equatorward, which could also be responsible for the sudden poleward wind surge. This study highlights the complicated effects of SAPS on ion-neutral coupling and neutral dynamics.
NASA Technical Reports Server (NTRS)
Remsberg, Ellis E.; Bhatt, Praful P.
1994-01-01
Comparisons of satellite-derived temperatures with correlative temperatures indicate that the LIMS temperatures are accurate and contain more of the needed vertical resolution for calculating a residual mean circulation for transporting tracer-like species. Generally, the LIMS temperatures are accurate to at least 2 K. Other satellite data sets are comprised of temperatures with coarser vertical resolution, leading to biases that occur with an error pattern that is characteristic of their resolution. Their biases exceed 2 K at some altitudes. Retrievals of species using an infrared limb emission technique are sensitive to any temperature bias. Generally, the IMS comparisons with other data sets for ozone and water vapor are good to better than 20 percent; this represents an independent confirmation of the quality of LIMS and temperatures. Zonal mean comparisons between LIMS and SAMS temperatures also indicate agreement to better than 2 K from about 7 to 2hPa. Therefore, we are confident that SAMS N2O and CH4 are relatively free of temperature bias in that region. These factors support the generally good agreement in G90 between model N2O transported using a LIMS-derived RMC and the N2O contours from SAMS.
Day-to-day ionospheric variability due to lower atmosphere perturbations
NASA Astrophysics Data System (ADS)
Liu, H.; Yudin, V. A.; Roble, R. G.
2013-12-01
Ionospheric day-to-day variability is a ubiquitous feature, even in the absence of appreciable geomagnetic activities. Although meteorological perturbations have been recognized as an important source of the variability, it is not well represented in previous modeling studies, and the mechanism is not well understood. This study demonstrates that TIME-GCM (Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model) constrained in the stratosphere and mesosphere by the hourly Whole Atmosphere Community Climate Model (WACCM) simulations is capable of reproducing observed features of day-to-day variability in the thermosphere-ionosphere. Realistic weather patterns in the lower atmosphere in WACCM was specified by Modern Era Retrospective reanalysis for Research and Application (MERRA). The day-to-day variations in mean zonal wind, migrating and non-migrating tides in the thermosphere, vertical and zonal ExB drifts, and ionosphere F2 layer peak electron density (NmF2) are examined. The standard deviations of the drifts and NmF2 display local time and longitudinal dependence that compare favorably with observations. Their magnitudes are 50% or more of those from observations. The day-to-day thermosphere and ionosphere variability in the model is primarily caused by the perturbations originated in lower atmosphere, since the model simulation is under constant solar minimum and low geomagnetic conditions.
NASA Astrophysics Data System (ADS)
Carrano, Charles S.; Groves, Keith M.; Rino, Charles L.; Doherty, Patricia H.
2016-08-01
The zonal drift of ionospheric irregularities at low latitudes is most commonly measured by cross-correlating observations of a scintillating satellite signal made with a pair of closely spaced antennas. The Air Force Research Laboratory-Scintillation Network Decision Aid (AFRL-SCINDA) network operates a small number of very high frequency (VHF) spaced-receiver systems at low latitudes for this purpose. A far greater number of Global Navigation Satellite System (GNSS) scintillation monitors are operated by the AFRL-SCINDA network (25-30) and the Low-Latitude Ionospheric Sensor Network (35-50), but the receivers are too widely separated from each other for cross-correlation techniques to be effective. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory to infer the zonal irregularity drift from single-station GNSS measurements of S4, σφ, and the propagation geometry. Unlike the spaced-receiver technique, this approach requires assumptions regarding the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment suggest that the ratio of σφ to S4 is less sensitive to these parameters than it is to the zonal drift. We validate the technique using VHF spaced-receiver measurements of zonal irregularity drift obtained from the AFRL-SCINDA network. While the spaced-receiver technique remains the preferred way to monitor the drift when closely spaced antenna pairs are available, our technique provides a new opportunity to monitor zonal irregularity drift using regional or global networks of widely separated GNSS scintillation monitors.
NASA Technical Reports Server (NTRS)
Garfinkel, C. I.; Waugh, D. W.; Oman, L. D.; Wang, L.; Hurwitz, M. M.
2013-01-01
Satellite observations and chemistry-climate model experiments are used to understand the zonal structure of tropical lower stratospheric temperature, water vapor, and ozone trends. The warming in the tropical upper troposphere over the past 30 years is strongest near the Indo-Pacific warm pool, while the warming trend in the western and central Pacific is much weaker. In the lower stratosphere, these trends are reversed: the historical cooling trend is strongest over the Indo-Pacific warm pool and is weakest in the western and central Pacific. These zonal variations are stronger than the zonal-mean response in boreal winter. Targeted experiments with a chemistry-climate model are used to demonstrate that sea surface temperature (hereafter SST) trends are driving the zonal asymmetry in upper tropospheric and lower stratospheric tropical temperature trends. Warming SSTs in the Indian Ocean and in the warm pool region have led to enhanced moist heating in the upper troposphere, and in turn to a Gill-like response that extends into the lower stratosphere. The anomalous circulation has led to zonal structure in the ozone and water vapor trends near the tropopause, and subsequently to less water vapor entering the stratosphere. The radiative impact of these changes in trace gases is smaller than the direct impact of the moist heating. Projected future SSTs appear to drive a temperature and water vapor response whose zonal structure is similar to the historical response. In the lower stratosphere, the changes in water vapor and temperature due to projected future SSTs are of similar strength to, though slightly weaker than, that due directly to projected future CO2, ozone, and methane.
Global Increase in UV Irradiance during the Past 30 Years (1979-2008) Estimated from Satellite Data
NASA Technical Reports Server (NTRS)
Herman, Jay R.
2010-01-01
Zonal average ultraviolet irradiance (flux ultraviolet, F(sub uv)) reaching the Earth's surface has significantly increased since 1979 at all latitudes except the equatorial zone. Changes are estimated in zonal average F(sub uv) caused by ozone and cloud plus aerosol reflectivity using an approach based on Beer's law for monochromatic and action spectrum weighted irradiances. For four different cases, it is shown that Beer's Law leads to a power law form similar to that applied to erythemal action spectrum weighted irradiances. Zonal and annual average increases in F(sub uv) were caused by decreases in ozone amount from 1979 to 1998. After 1998, midlatitude annual average ozone amounts and UV irradiance levels have been approximately constant. In the Southern Hemisphere, zonal and annual average UV increase is partially offset by tropospheric cloud and aerosol transmission decreases (hemispherical dimming), and to a lesser extent in the Northern Hemisphere. Ozone and 340 nm reflectivity changes have been obtained from multiple joined satellite time series from 1978 to 2008. The largest zonal average increases in F(sub uv) have occurred in the Southern Hemisphere. For clear-sky conditions at 50 S, zonal average F(sub uv) changes are estimated (305 nm, 23%; erythemal, 8.5%; 310 nm, 10%; vitamin D production, 12%). These are larger than at 50 N (305 nm, 9%; erythemal, 4%; 310 nm, 4%; vitamin D production, 6%). At the latitude of Buenos Aires, Argentina (34.6 S), the clear-sky Fuv increases are comparable to the increases near Washington, D. C. (38.9 N): 305 nm, 9% and 7%; erythemal, 6% and 4%; and vitamin D production, 7% and 5%, respectively.
Cloud motions on Venus - Global structure and organization
NASA Technical Reports Server (NTRS)
Limaye, S. S.; Suomi, V. E.
1981-01-01
Results on cloud motions on Venus obtained over a period of 3.5 days from Mariner 10 television images are presented. The implied atmosphere flow is almost zonal everywhere on the visible disk, and is in the same retrograde sense as the solid planet. Objective analysis of motions suggests the presence of jet cores (-130 m/s) and organized atmospheric waves. The longitudinal mean meridional profile of the zonal component of motion of the ultraviolet features shows presence of a midlatitude jet stream (-110 m/s). The mean zonal component is -97 m/s at the equator. The mean meridional motion at most latitudes is directed toward the pole in either hemisphere and is at least an order of magnitude smaller so that the flow is nearly zonal. A tentative conclusion from the limited coverage available from Mariner 10 is that at the level of ultraviolet features mean meridional circulation is the dominant mode of poleward angular momentum transfer as opposed to the eddy circulation.
NASA Technical Reports Server (NTRS)
Srivatsangam, S.; Reiter, E. R.
1973-01-01
Extratropical eddy distributions in four months typical of the four seasons are treated in terms of temporal mean and temporal r.m.s. values of the geostrophic relative vorticity. The geographical distributions of these parameters at the 300 mb level show that the arithmetic mean fields are highly biased representatives of the extratropical eddy distributions. The zonal arithmetic means of these parameters are also presented. These show that the zonal-and-time mean relative vorticity is but a small fraction of the zonal mean of the temporal r.m.s. relative vorticity, K. The reasons for considering the r.m.s. values as the temporal normal values of vorticity in the extratropics are given in considerable detail. The parameter K is shown to be of considerable importance in locating the extratropical frontal jet streams (EFJ) in time-and-zonal average distributions. The study leads to an understanding of the seasonal migrations of the EFJ which have not been explored until now.
Venus' superrotation, mixing length theory and eddy diffusion - A parametric study
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.; Schatten, K. H.; Stevens-Rayburn, D. R.; Chan, K. L.
1988-01-01
The concept of the Hadley mechanism is adopted to describe the axisymmetric circulation of the Venus atmosphere. It is shown that, for the atmosphere of a slowly rotating planet such as Venus, a form of the nonliner 'closure' (self-consistent solution) of the fluid dynamics system which constrains the magnitude of the eddy diffusion coefficients can be postulated. A nonlinear one-layer spectral model of the zonally symmetric circulation was then used to establish the relationship between the heat source, the meridional circulation, and the eddy diffusion coefficients, yielding large zonal velocities. Computer experiments indicated that proportional changes in the heat source and eddy diffusion coefficients do not significantly change the zonal velocities. It was also found that, for large eddy diffusion coefficients, the meridional velocity is virtually constant; below a threshold in the diffusion rate, the meridional velocity decreases; and, for large eddy diffusion and small heating rates, the zonal velocities decrease with decreasing planetary rotation rates.
NASA Astrophysics Data System (ADS)
Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro
2017-12-01
Previous studies suggest large uncertainties in the stationary wave response under global warming. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface warming that mimics the effect of Arctic sea ice loss under global warming. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the warming response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the eddy driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface warming. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the eddy driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward eddy transport of heat and momentum. A stronger eddy-induced descending motion creates greater warming over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic warming response in a changing climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rind, D.; Balachandran, N.K.
1995-08-01
Results of experiments with a GCM involving changes in UV input ({plus_minus} 25%, {plus_minus}5% at wavelengths below 0.3 {mu}) and simulated equatorial QBO are presented, with emphasis on the tropospheric response. The QBO and UV changes alter the temperature in the lower stratosphere/upper troposphere warms, tropospheric eddy energy is reduced, leading to extratropical tropospheric cooling of some 0.5{degrees}C on the zonal average, and surface temperature changes up to {plus_minus}5{degrees}C locally. Opposite effects occur when the extratropical lower stratosphere/upper troposphere cools. Cooling or warming of the comparable region in the Tropics decreases/increases static stability, accelerating/decelerating the Hadley circulation. Tropospheric dynamical changesmore » are on the order of 5%. The combined UV/QBO effect in the troposphere results from its impact on the middle atmosphere; in the QBO east phase, more energy is refracted to higher latitudes, due to the increased horizontal shear of the zonal wind, but with increased UV, this energy propagates preferentially out of the polar lower stratosphere, in response to the increased vertical shear of the zonal winds; therefore, it is less effective in warming the polar lower stratosphere. Due to their impacts on planetary wave generation and propagation, all combinations of UV and QBO phases affect the longitudinal patterns of tropospheric temperatures and geopotential heights. The modeled perturbations often agree qualitatively with observations and are of generally similar orders of magnitude. The results are sensitive to the forcing employed. In particular, the nature of the tropospheric response depends upon the magnitude (and presumably wavelength) of the solar irradiance perturbation. The results of the smaller UV variations ({plus_minus}5%) are more in agreement with observations, showing clear differences between the UV impact in the east and west QBO phase. 34 refs., 15 figs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Onishchenko, O. G.; Pokhotelov, O. A.; Astafieva, N. M.
2008-06-01
The review deals with a theoretical description of the generation of zonal winds and vortices in a turbulent barotropic atmosphere. These large-scale structures largely determine the dynamics and transport processes in planetary atmospheres. The role of nonlinear effects on the formation of mesoscale vortical structures (cyclones and anticyclones) is examined. A new mechanism for zonal wind generation in planetary atmospheres is discussed. It is based on the parametric generation of convective cells by finite-amplitude Rossby waves. Weakly turbulent spectra of Rossby waves are considered. The theoretical results are compared to the results of satellite microwave monitoring of the Earth's atmosphere.
Observation of Oscillatory Radial Electric Field Relaxation in a Helical Plasma.
Alonso, J A; Sánchez, E; Calvo, I; Velasco, J L; McCarthy, K J; Chmyga, A; Eliseev, L G; Estrada, T; Kleiber, R; Krupnik, L I; Melnikov, A V; Monreal, P; Parra, F I; Perfilov, S; Zhezhera, A I
2017-05-05
Measurements of the relaxation of a zonal electrostatic potential perturbation in a nonaxisymmetric magnetically confined plasma are presented. A sudden perturbation of the plasma equilibrium is induced by the injection of a cryogenic hydrogen pellet in the TJ-II stellarator, which is observed to be followed by a damped oscillation in the electrostatic potential. The waveform of the relaxation is consistent with theoretical calculations of zonal potential relaxation in a nonaxisymmetric magnetic geometry. The turbulent transport properties of a magnetic confinement configuration are expected to depend on the features of the collisionless damping of zonal flows, of which the present Letter is the first direct observation.
Impact of the basic state and MJO representation on MJO Pacific teleconnections in GCMs
NASA Astrophysics Data System (ADS)
Henderson, S. A.; Maloney, E. D.; Son, S. W.
2017-12-01
Teleconnection patterns induced by the Madden-Julian Oscillation (MJO) are known to significantly alter extratropical weather and climate patterns. However, accurate MJO representation has been difficult for many General Circulation Models (GCMs). Furthermore, many GCMs contain large basic state biases. These issues present challenges to the simulation of MJO teleconnections and, in turn, their associated extratropical impacts. This study examines the impacts of basic state quality and MJO representation on the quality of MJO teleconnection patterns in GCMs from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Results suggest that GCMs assessed to have a good MJO but with large basic state biases have similarly low skill in reproducing MJO teleconnections as GCMs with poor MJO representation. In the good MJO models examined, poor teleconnection quality is associated with large errors in the zonal extent of the Pacific subtropical jet. Whereas the horizontal structure of MJO heating in the Indo-Pacific region is found to have modest impacts on the teleconnection patterns, results suggest that MJO heating east of the dateline can alter the teleconnection pattern characteristics over North America. These findings suggest that in order to accurately simulate the MJO teleconnection patterns and associated extratropical impacts, both the MJO and the basic state must be well represented.
The 4-5 day mode oscillation in zonal winds of Indian middle atmosphere during MONEX-79
NASA Astrophysics Data System (ADS)
Reddy, R. S.; Mukherjee, B. K.; Indira, K.; Murty, B. V. R.
1985-12-01
In the early studies based on time series of balloon observations, the existence of 4 to 5 day period waves and 10 to 20 day wind fluctuations were found in the tropical lower stratosphere, and they are identified theoretically as the mixed Rossby-gravity wave and the Kelvin wave, respectively. On the basis of these studies, it was established that the vertically propagating equatorial waves play an important role in producing the QBO (quasi-biennial oscillation) in the mean zonal wind through the mechanism of wave-zonal interaction. These studies are mainly concentrated over the equatorial Pacific and Atlantic Oceans. Similar prominent wave disturbances have been observed over the region east of the Indian Ocean during a quasi-biennial oscillation. Zonal winds in upper troposphere and lower stratosphere (10 to 20) km of the middle atmosphere over the Indian subcontinent may bear association with the activity of summer monsoon (June-September). Monsoon Experiment (MONEX-79) has provided upper air observations at Balasore (21 deg. 30 min.N; 85 deg. 56 min.E), during the peak of monsoon months July and August. A unique opportunity has, therefore, been provided to study the normal oscillations present in the zonal winds of lower middle atmosphere over India, which may have implication on large scale wave dynamics. This aspect is examined in the present study.
Development of a mobile Doppler lidar system for wind and temperature measurements at 30-70 km
NASA Astrophysics Data System (ADS)
Yan, Zhaoai; Hu, Xiong; Guo, Wenjie; Guo, Shangyong; Cheng, Yongqiang; Gong, Jiancun; Yue, Jia
2017-02-01
A mobile Doppler lidar system has been developed to simultaneously measure zonal and meridional winds and temperature from 30 to 70 km. Each of the two zonal and meridional wind subsystems employs a 15 W power, 532 nm laser and a 1 m diameter telescope. Iodine vapor filters are used to stabilize laser frequency and to detect the Doppler shift of backscattered signal. The integration method is used for temperature measurement. Experiments were carried out using the mobile Doppler lidar in August 2014 at Qinghai, China (91°E, 38°N). The zonal wind was measured from 20 to 70 km at a 3 km spatial resolution and 2 h temporal resolution. The measurement error is about 0.5 m/s at 30 km, and 10 m/s at 70 km. In addition, the temperature was measured from 30 to 70 km at 1 km spatial resolution and 1 h temporal resolution. The temperature measurement error is about 0.4 K at 30 km, and 8.0 K at 70 km. Comparison of the lidar results with the temperature of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER), the zonal wind of the Modern-Era Retrospective Analysis for Re-search and Applications (MERRA), and radiosonde zonal wind shows good agreement, indicating that the Doppler lidar results are reliable.
A GCM simulation of the earth-atmosphere radiation balance for winter and summer
NASA Technical Reports Server (NTRS)
Wu, M. L. C.
1979-01-01
The radiation balance of the earth-atmosphere system simulated by using the general circulation model (GCM) of the Laboratory for Atmospheric Sciences (GLAS) is examined in regards to its graphical distribution, zonally-averaged distribution, and global mean. Most of the main features of the radiation balance at the top of the atmosphere are reasonably simulated, with some differences in the detailed structure of the patterns and intensities for both summer and winter in comparison with values as derived from Nimbus and NOAA (National Oceanic and Atmospheric Administration) satellite observations. Both the capability and defects of the model are discussed.
Major dust storms and westward traveling waves on Mars
NASA Astrophysics Data System (ADS)
Wang, Huiqun
2017-04-01
Westward traveling waves are observed during major dust storm periods in northern fall and winter. The close correlation in timing makes westward traveling wave one of the signature responses of the Martian atmosphere to major dust storms. Westward traveling waves are dominated by zonal wave number m = 1 in the middle atmosphere and are typically characterized by long wave period. They are associated with significant temperature perturbations near the edge of the north polar vortex. Their wind signals extend to the low latitudes and the southern hemisphere. Their eddy momentum and heat fluxes exhibit complex patterns on a global scale in the middle atmosphere.
Analysis of Changes in the Lorenz Energy Budget of the Atmosphere
NASA Astrophysics Data System (ADS)
Ellis, T. D.
2009-12-01
Several recent papers have addressed the topic of changes in global precipitation rates related to changes in Earth's global energy balance. Less studied are the processes that may be governing the large-scale regional distribution of precipitation around the globe. This study uses the energy budget partition paradigm first put forth by Lorenz (1955) and follows the methodology of Arpé et al. (1986) and Oriol (1982) to identify latitude bands where the partition of energy amongst zonal and eddy kinetic and potential energy bins may account for the spatial patterns of precipitation change predicted by many IPCC AR4 models. In doing so, this study may help to identify whether or not the climate change predicted by these models is indeed creating enhanced baroclinic storms in the mid-latitudes or if there are other mechanisms at work producing the patterns of precipitation change.
Patterns and mechanisms of early Pliocene warmth.
Fedorov, A V; Brierley, C M; Lawrence, K T; Liu, Z; Dekens, P S; Ravelo, A C
2013-04-04
About five to four million years ago, in the early Pliocene epoch, Earth had a warm, temperate climate. The gradual cooling that followed led to the establishment of modern temperature patterns, possibly in response to a decrease in atmospheric CO2 concentration, of the order of 100 parts per million, towards preindustrial values. Here we synthesize the available geochemical proxy records of sea surface temperature and show that, compared with that of today, the early Pliocene climate had substantially lower meridional and zonal temperature gradients but similar maximum ocean temperatures. Using an Earth system model, we show that none of the mechanisms currently proposed to explain Pliocene warmth can simultaneously reproduce all three crucial features. We suggest that a combination of several dynamical feedbacks underestimated in the models at present, such as those related to ocean mixing and cloud albedo, may have been responsible for these climate conditions.
Self-Organization of Zonal Jets in Outer Planet Atmospheres: Uranus and Neptune
NASA Technical Reports Server (NTRS)
Friedson, A. James
1997-01-01
The statistical mechnical theory of a two-dimensional Euler fluid is appleid for the first time to explore the spontaneous self-oganization of zonal jets in outer planet atmospheres. Globally conserved integralls of motion are found to play a central role in defining jet structure.
NASA Astrophysics Data System (ADS)
Mengistu Tsidu, Gizaw; Ture, Kassahun; Sivakumar, V.
2013-07-01
MOZAIC instrument measured enhanced ozone on two occasions in February, 1996 and 1997 at cruise altitude over North Africa. The cause and source of ozone enhancements over the region are investigated using additional reanalysis data from ERA-Interim. The ERA-Interim reprocessed GOME ozone indicated existence of enhancement as well. Both observational data revealed that the increase in ozone has wider latitudinal coverage extending from North Europe upto North Africa. The geopotential heights and zonal wind from ERA-Interim have indicated existence of planetary-scale flow that allowed meridional airmass exchanges between subtropics and higher latitudes. The presence of troughs-ridge pattern are attributable to large amplitude waves of zonal wavenumber 1-5 propagating eastward in the winter hemisphere westerly current as determined from Hayashi spectra as well as local fractional variance spectra determined from Multitaper Method-Singular Value Decomposition (MTM-SVD) spectral method. MTM-SVD is also used to understand the role of these waves on ozone enhancement and variability during the observation period in a mechanistic approach. A joint analysis of driving field, such as wind and potential vorticity (PV) for which only signals of the dominant zonal wavenumbers of prevailing planetary waves are retained, has revealed strong linkage between wave activity and ozone enhancement over the region at a temporal cycle of 5.8 days. One of these features is the displacement of the polar vortex southward during the enhancements, allowing strong airmass, energy and momentum exchanges. Evidence of cutoff laws that are formed within the deep trough, characteristics of Rossby wave breaking, is also seen in the ozone horizontal distribution at different pressure levels during the events. The reconstruction of signals with the cycle of 5.8 days has shown that the time and strength of enhancement depend on the circulation patterns dictated by planetary-scale flow relative to the location of observation. The positive PV anomalies upstream or at the observation region bring ozone rich airmass to the region while a negative PV anomaly upstream does the opposite. The position of the anomalies with time changes in accordance with the period of the waves involved. The snap shot of coherent variation of PV and ozone at different time during half cycle of the 5.8-day period has indicated that a region could experience positive (enhancement) or negative (depletion) ozone anomalies of different degree as the wave propagates eastward.
NASA Astrophysics Data System (ADS)
Machado, Pedro; Widemann, Thomas; Luz, David; Peralta, Javier
2014-11-01
We present new results based on ground-based Doppler spectroscopic measurements, obtained with the ESPaDOnS spectrograph at Canada-France-Hawaii telescope (CFHT) and simultaneous observations of velocity fields, obtained from space by the VIRTIS-M instrument on board the Venus Express spacecraft. These measurements are based on high-resolution spectra of Fraunhofer lines in the visible to NIR range (0.37-1.05 μm) acquired on February 19-21, 2011 at a resolution of about 80,000, measuring Venus' winds at 70 km, using incoming solar radiation scattered by cloud top particles in the observer's direction (Widemann, T., et al., [2007]. Planet. Space Sci. 55, 1741-1756; Widemann, T., et al., [2008]. Planet. Space Sci. 56, 1320-1334). The zonal wind field has been characterized by latitudinal bands, at a phase angle Φ = (68.7 ± 0.3) ° , between +10°N and 60°S, by steps of 10°, and from [ ϕ -ϕE ] = - 50 ° to sub-Earth longitude ϕE = 0 ° , by steps of 12°. From space, VIRTIS-M UV (0.38 μm) imaging exposures on the dayside were acquired simultaneously in orbit 1786, providing the first simultaneous cloud-tracking measurements with Doppler velocimetry. From the ground, we measured a zonal mean background velocity of v‾z = (117.3 ± 18.0) ms-1 on February 19, and v‾z = (117.5 ± 14.5) ms-1 on February 21. We detect an unambiguous poleward meridional flow on the morning dayside hemisphere of (18.8 ± 12.3) m s-1 on February 19/21. Latitudinal variations of the zonal and meridional winds are further compared with the simultaneous VIRTIS data. We discuss temporal variability as well as its statistical significance.
Indonesian Rainfall Characteristic Based on the EAR and WPR Data Analysis
NASA Astrophysics Data System (ADS)
Hermawan, Eddy
2010-05-01
As one of the most real product of the joint research between RISH (Research Institute for Sustainable Humanosphere) of Kyoto University, Japan with the National Institute of Aeronautics and Space (LAPAN), is being applied the Equatorial Atmosphere Radar (EAR) at Kototabang, Bukittinggi, West Sumatera that has already operated since June, 2001. The other one, since March 2007, has also operated the other radar that called as WPR (Wind Profiling Radar) at Pontianak and Biak station under the JAMSTEC (Japan Marine Science Technology), Japan. Those radars give a good chance for the Indonesian young scientist to apply those data in applicable research for many people. One of them is the behavior of Indonesian rainfall variability over Kototabang, Pontianak, and Biak, respectively. This is very important, since rainfall is one of the most important parameter that has direct effect to daily living, not only in wet season (suspected related to flooding) or dry season (suspected related to drought) than normal condition. We understood that until now, no many significant result obtained from those data, especially from WPR, not only since that data is still new one, but also related well to the limitation of the other suppport data, facility (hardware and software), also the man power (reseracher) working on that data analysis. Based on this condition, the main purpose of this study is to investigate the Indonesian rainfall behavior, especially over Kototabang, Pontianak, and Biak, respectively. The others are we would like to investigate the pattern of zonal wind variation along the Indian Ocean passing away to Indonesia region, to investigate the MJO (Madden Julian Oscillation) phenomenon, and to investigate the relationship or correlation between rainfall and zonal wind variation. The results show that in the wet season (DJF=December-January-February), Kototabang and surrounded area is dominated by the Westerly wind that mostly contains of water vapor. While, in the dry season (JJA=June-July-August), the Easterly wind dominates this area. This condition, is a little bit different with Pontianak that mostly is dominated by the Westerly wind, both in wet and dry season. While, in Biak, the Easterly wind dominates, both in wet and dry season. We found also the zonal wind propagation over those cities, Kototabang, Pontianak, and Biak are about 45 days, 45 days, and 55 days oscillation. Although, we found a small positive correlation between the zonal wind variation with rainfall intensity over those area (below than 0.5), but it is still significant statistically. Keywords : EAR, WPR, HARIMAU, and Rainfall
On the wave forcing of the semi-annual zonal wind oscillation
NASA Technical Reports Server (NTRS)
Nagpal, O. P.; Raghavarao, R.
1991-01-01
Observational evidence of rather large period waves (23-60 d) in the troposphere/stratosphere, particularly during the winter months, is presented. Wind data collected on a regular basis employing high-altitude balloons and meteorological rockets over the past few years are used. Maximum entropy methods applied to the time series of zonal wind data indicate the presence of 23-60-waves more prominently than shorter-period waves. The waves have substantial amplitudes in the stratosphere and lower mesosphere, often larger than those noted in the troposphere. The mean zonal wind in the troposphere (5-15 km altitude) during December, January, and February exhibits the presence of strong westerlies at latitudes between 8 and 21 deg N.
A one-dimensional model of the semiannual oscillation driven by convectively forced gravity waves
NASA Technical Reports Server (NTRS)
Sassi, Fabrizio; Garcia, Rolando R.
1994-01-01
A one-dimensional model that solves the time-dependent equations for the zonal mean wind and a wave of specified zonal wavenumber has been used to illustrate the ability of gravity waves forced by time-dependent tropospheric heating to produce a semiannual oscillation (SAO) in the middle atmosphere. When the heating has a strong diurnal cycle, as observed over tropical landmasses, gravity waves with zonal wavelengths of a few thousand kilometers and phase velocities in the range +/- 40-50 m/sec are excited efficiently by the maximum vertical projection criterion (vertical wavelength approximately equals 2 x forcing depth). Calculations show that these waves can account for large zonal mean wind accelerations in the middle atmosphere, resulting in realistic stratopause and mesopause oscillations. Calculations of the temporal evolution of a quasi-conserved tracer indicate strong down-welling in the upper stratosphere near the equinoxes, which is associated with the descent of the SAO westerlies. In the upper mesosphere, there is a semiannual oscillation in tracer mixing ratio driven by seasonal variability in eddy mixing, which increases at the solstices and decreases at the equinoxes.
Physical mechanisms of the summer precipitation variations in the Taklimakan and Gobi Desert
NASA Astrophysics Data System (ADS)
Huang, W.; Feng, S.; Chen, J.; Chen, F.
2013-12-01
The Taklimakan and the adjacent Gobi Desert (TD in short) in northwestern China is one of the most arid regions in the middle latitudes, where water is scarce year round. Using observational precipitation and the reanalysis data, this study investigated the variations of summer precipitation in TD and their association with water vapor flux and atmospheric circulation. Though the long-term mean water vapor is mostly comes from the west, the variations of summer precipitation in TD is dominated by the water vapor flux from the south, originated from the Arabian Sea. The anomalous water vapor flux is closely associated with the meridional teleconnection pattern around 50-80°E and the zonal teleconection pattern along the Asian westerly jet in summer. The meridional teleconnection connecting the Central Asia and the tropical Indian Ocean, and the zonal pattern resembles the ';Silk Road pattern'. The two wave trains connected in Central Asia. The anomalous pressure gradient force between negative height anomalies in Central Asia and the positive height anomalies in Arabian Sea/India and North Central China lead to anomalous ascending motion in TD and bring more water vapor from the Arabian Sea to pass over the Tibetan Plateau to fuel the precipitation development in the study region. These mechanisms lead to out-of-phase relationship between TD precipitation and Indian summer monsoon in the instrumental period and the past 2000 years. The vertically integrated summer water vapor flux (arrows) and 300hPa geopotential height (contour) regressed against the summer precipitation in TD during 1960-2010. Shadings (blue arrows) indicate the correlations between the geopotential height (water vapor flux) and the TD precipitation are significant at the 95% confidence level. The Guliya ice core is marked as star and the proxy monsoon records in Arabian Sea (box cores 723A and RC2730) are marked as triangles. Summer climatological water vapor budget and the correaltion between the water vapor budget and TD precipitaiton during 1960-2010. For climatological water vapor budget, the results shown are the total water vapor across the boundaries. Positive (negative) numbers indicate northward/eastward (southward/westward) water vapor flows. '*' and '**' indicate the correaltions between TD precipitation and water budget are significant at 95% and 99% confidence levels, respectively.
NASA Technical Reports Server (NTRS)
Kato, Seiji; Rose, Fred G.; Rutan, David A.; Charlock, Thomas P.
2008-01-01
The zonal mean atmospheric cloud radiative effect, defined as the difference of the top-of-atmosphere (TOA) and surface cloud radiative effects, is estimated from three years of Clouds and the Earth's Radiant Energy System (CERES) data. The zonal mean shortwave effect is small, though it tends to be positive (warming). This indicates that clouds increase shortwave absorption in the atmosphere, especially in midlatitudes. The zonal mean atmospheric cloud radiative effect is, however, dominated by the longwave effect. The zonal mean longwave effect is positive in the tropics and decreases with latitude to negative values (cooling) in polar regions. The meridional gradient of cloud effect between midlatitude and polar regions exists even when uncertainties in the cloud effect on the surface enthalpy flux and in the modeled irradiances are taken into account. This indicates that clouds increase the rate of generation of mean zonal available potential energy. Because the atmospheric cooling effect in polar regions is predominately caused by low level clouds, which tend to be stationary, we postulate that the meridional and vertical gradients of cloud effect increase the rate of meridional energy transport by dynamics in the atmosphere from midlatitude to polar region, especially in fall and winter. Clouds then warm the surface in polar regions except in the Arctic in summer. Clouds, therefore, contribute in increasing the rate of meridional energy transport from midlatitude to polar regions through the atmosphere.
Role of Atmospheric Transport on the Arctic Amplification: Adjusting Role
NASA Astrophysics Data System (ADS)
KUG, J.; Yim, B.; Jin, F.
2013-12-01
It is controversial whether the atmospheric transport plays a role in arctic amplification. Recently, Hwang et al. (2011) showed that the magnitude of the arctic amplification is negatively correlated with anomalous poleward atmospheric transport. That is, when the arctic amplification is strong (weak), the atmospheric transport plays a negative (positive) role in the arctic amplification. In this study, it is discussed what is a physical mechanism to determine the role of atmospheric transport and relation with the arctic amplification. Here, we suggest adjusting roles of atmospheric transport. The strength of local feedback over the Arctic determines zonal wind changes. The zonal wind changes are determined by two factors. The first one is polar cap cooling, and second is surface warming. They play opposite roles. So, there will be two different zonal wind responses in high-latitude to the greenhouse warming. Depending on the zonal wind response, the atmospheric transport can play a different role because the zonal wind changes can organize synoptic eddy feedbacks including heat flux, which largely contributes to poleward energy transport. We show here that when polar cap cooling is strong, and surface warming over Arctic is relatively weak, the Jet stream tends to be shifted poleward, so it leads to poleward atmospheric transport. On the other hand, when the surface warming is too strong, it lead to southward shift of Jet stream and equatorward atmospheric transport, which paly a negative role in the Arctic amplification.
NASA Astrophysics Data System (ADS)
Parker, Jeffrey B.
2018-05-01
Zonal flows have been observed to appear spontaneously from turbulence in a number of physical settings. A complete theory for their behavior is still lacking. Recently, a number of studies have investigated the dynamics of zonal flows using quasilinear (QL) theories and the statistical framework of a second-order cumulant expansion (CE2). A geometrical-optics (GO) reduction of CE2, derived under an assumption of separation of scales between the fluctuations and the zonal flow, is studied here numerically. The reduced model, CE2-GO, has a similar phase-space mathematical structure to the traditional wave-kinetic equation, but that wave-kinetic equation has been shown to fail to preserve enstrophy conservation and to exhibit an ultraviolet catastrophe. CE2-GO, in contrast, preserves nonlinear conservation of both energy and enstrophy. We show here how to retain these conservation properties in a pseudospectral simulation of CE2-GO. We then present nonlinear simulations of CE2-GO and compare with direct simulations of quasilinear (QL) dynamics. We find that CE2-GO retains some similarities to QL. The partitioning of energy that resides in the zonal flow is in good quantitative agreement between CE2-GO and QL. On the other hand, the length scale of the zonal flow does not follow the same qualitative trend in the two models. Overall, these simulations indicate that CE2-GO provides a simpler and more tractable statistical paradigm than CE2, but CE2-GO is missing important physics.
Planetary-Scale Inertio Gravity Waves in the Numerical Spectral Model
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. R.; Talaat, E. R.; Porter, H. S.
2004-01-01
In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours. Waves with such a period are generated in our Numerical Spectral Model (NSM), and they are identified as planetary-scale inertio gravity waves (IGW). These IGWs have periods between 9 and 11 hours and appear above 60 km in the zonal mean (m = 0), as well as in zonal wavenumbers m = 1 to 4. The waves can propagate eastward and westward and have vertical wavelengths around 25 km. The amplitudes in the wind field are typically between 10 and 20 m/s and can reach 30 m/s in the westward propagating component for m = 1 at the poles. In the temperature perturbations, the wave amplitudes above 100 km are typically 5 K and as large as 10 K for m = 0 at the poles. The IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in late winter and spring. In the NSM, the IGW are generated like the planetary waves (PW). They are produced apparently by the instabilities that arise in the zonal mean circulation. Relative to the PWs, however, the IGWs propagate zonally with much larger velocities, such that they are not affected much by interactions with the background zonal winds. Since the IGWs can propagate through the mesosphere without much interaction, except for viscous dissipation, one should then expect that they reach the thermosphere with significant and measurable amplitudes.
The Galileo probe Doppler wind experiment: Measurement of the deep zonal winds on Jupiter
NASA Astrophysics Data System (ADS)
Atkinson, David H.; Pollack, James B.; Seiff, Alvin
1998-09-01
During its descent into the upper atmosphere of Jupiter, the Galileo probe transmitted data to the orbiter for 57.5 min. Accurate measurements of the probe radio frequency, driven by an ultrastable oscillator, allowed an accurate time history of the probe motions to be reconstructed. Removal from the probe radio frequency profile of known Doppler contributions, including the orbiter trajectory, the probe descent velocity, and the rotation of Jupiter, left a measurable frequency residual due to Jupiter's zonal winds, and microdynamical motion of the probe from spin, swing under the parachute, atmospheric turbulence, and aerodynamic buffeting. From the assumption of the dominance of the zonal horizontal winds, the frequency residuals were inverted and resulted in the first in situ measurements of the vertical profile of Jupiter's deep zonal winds. A number of error sources with the capability of corrupting the frequency measurements or the interpretation of the frequency residuals were considered using reasonable assumptions and calibrations from prelaunch and in-flight testing. It is found that beneath the cloud tops (about 700 mbar) the winds are prograde and rise rapidly to 170 m/s at 4 bars. Beyond 4 bars to the depth at which the link with the probe was lost, nearly 21 bars, the winds remain constant and strong. Corrections for the high temperatures encountered by the probe have recently been completed and provide no evidence of diminishing or strengthening of the zonal wind profile in the deeper regions explored by the Galileo probe.
Søgaard, Thomas F; Houborg, Esben; Pedersen, Michael M
2017-03-01
Zonal banning of disorderly and intoxicated young people has moved to centre stage in debates about nightlife governance. Whereas existing research has primarily focused on the use of zonal banning orders to address problems of alcohol-related harm and disorder, this article highlights how zonal banning is also used to target drug-using clubbers in Denmark. Based on ethnographic observations and interviews with nightlife control agents in two Danish cities, the article aims to provide new insights into how the enforcement of national drug policies on drug-using clubbers, is shaped by plural nightlife policing complexes. The paper demonstrates how the policing of drug-using clubbers is a growing priority for both police and private security agents. The article also demonstrates how the enforcement of zonal bans on drug-using clubbers involves complex collaborative relations between police, venue owners and private security agents. The paper argues that a third-party policing perspective combined with assemblage theory is useful for highlighting how the enforcement of national drug policies and nightlife banning systems is shaped by their embeddedness in local 'drug policing assemblages' characterized by inter-agency relation-building, the creative combination of public and private (legal) resources and internal power struggles. It also provides evidence of how drug policing assemblages give rise to many different, and often surprising, forms of jurisdiction involving divergent performances of spaces-, objects- and authorities of governance. Copyright © 2016 Elsevier B.V. All rights reserved.
The Diagnosis and application of a convective vorticity vector associated with convective systems
NASA Astrophysics Data System (ADS)
Gao, S.; Zhou, Y.; Tao, W.
2005-05-01
Although dry/moist potential vorticity is a very useful and powerful physical quantity in the large scale dynamics, it is not a quite ideal dynamical tool for the study of convective systems or severe storms. A new convective vorticity vector (CVV) is introduced in this study to identify the development of convective systems or severe storms. The daily Aviation (AVN) Model Data is used to diagnose the distribution of the CVV associated with rain storms occurred in the period of Meiyu in 1998. The results have clearly demonstrated that the CVV is an effective vector for indicating the convective actions along the Meiyu front. The CVV also is used to diagnose a 2-D cloud-resolving simulation data associated with 2-D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the Tropical cean-Global tmosphere (TOGA) Coupled Ocean-Atmosphere Response Experiment (COARE) and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2-D x-z frame. Analysis of zonally averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.
Grid generation about complex three-dimensional aircraft configurations
NASA Technical Reports Server (NTRS)
Klopfer, Goetz H.
1991-01-01
The problem of obtaining three dimensional grids with sufficient resolution to resolve all the flow or other physical features of interest is addressed. The generation of a computational grid involves a series of compromises to resolve several conflicting requirements. On one hand, one would like the grid to be fine enough and not too skewed to reduce the numerical errors and to adequately resolve the pertinent physical features of the flow field about the aircraft. On the other hand, the capabilities of present or even future supercomputers are finite and the number of mesh points must be limited to a reasonable number: one which is usually much less than desired for numerical accuracy. One technique to overcome this limitation is the 'zonal' grid approach. In this method, the overall field is subdivided into smaller zones or blocks in each of which an independent grid is generated with enough grid density to resolve the flow features in that zone. The zonal boundaries or interfaces require special boundary conditions such that the conservation properties of the governing equations are observed. Much work was done in 3-D zonal approaches with nonconservative zonal interfaces. A 3-D zonal conservative interfacing method that is efficient and easy to implement was developed during the past year. During the course of the work, it became apparent that it would be much more feasible to do the conservative interfacing with cell-centered finite volume codes instead of the originally planned finite difference codes. Accordingly, the CNS code was converted to finite volume form. This new version of the code is named CNSFV. The original multi-zonal interfacing capability of the CNS code was enhanced by generalizing the procedure to allow for completely arbitrarily shaped zones with no mesh continuity between the zones. While this zoning capability works well for most flow situations, it is, however, still nonconservative. The conservative interface algorithm was also implemented but was not completely validated.
Negative post sunset height rise of F layer: Causes and implications
NASA Astrophysics Data System (ADS)
Joshi, Lalit Mohan; Patra, Amit
Post sunset height rise (PSHR) of the F layer is a manifestation of the pre reversal enhancement (PRE) of zonal electric field in the equatorial and low latitude ionosphere. Ionosonde observations, made during the equinox period from Sriharikota (13.7 degree North, 80.1 degree East, 6.7 degree North magnetic latitude), a low latitude station in India, have been utilized to study the PSHR of the F layer. Normally, the height of the F layer increases during the early post sunset period (positive PSHR) whose magnitude has a direct bearing on the equatorial spread F (ESF). However, observations revealed that on a few nights (about 3% nights) the height of the F layer descended in the early post sunset period itself, indicating the absence of PRE of zonal field. Such events have been termed as negative PSHR events. Such events never preceded ESF. Detailed investigations revealed that the negative PSHR events were accompanied by an enhancement of low latitude sporadic E (Es) activity with increase in the Es blanketing (fbEs) and top (ftEs) frequencies, during the post sunset period. Numerical simulations have been carried out to evaluate the effectiveness of the westward Pedersen and Hall conductivity gradients that exists in the low latitude E region during the evening hours, in causing the PRE of zonal field and the PSHR of the F layer. Model simulation reveals that the dominant cause of PRE of zonal field is the divergence of Hall current in the low latitude E region. When the zonal conductivity gradient of the low latitude E region was assumed to be either zero or slightly eastward, owing to the intensification of Es, model computation resulted in the negative PSHR of the F layer. Thus, the observational and computational results highlight the important role of the low latitude Es in the PRE of the zonal electric field.
A Preliminary Study on the Circulation of an ocean covering a Synchronously Rotating Planet
NASA Astrophysics Data System (ADS)
Matsuo, H.; Ishiwatari, M.; Takehiro, S.; Hayashi, Y.; Nakajima, K.
2012-12-01
Recently, nearly 800 extrasolar planets have been detected. It seems that some of them present into habitable zone, in which planets can have ocean, and such planets rotate synchronously with their central stars. Ocean is necessary for life, and the circulation makes climate mild by heat transport on the earth. The earth is the only planet that has ocean in the solar system so that it has not been understood what oceanic circulation is like in another planets. The purpose of this study is prediction of oceanic circulation on extrasolar planets by using numerical simulation. As a first step, elementary consideration is made. The planet is almost entirely covered with ocean and whose rotation period corresponds with its orbital period. On synchronously rotating planets, the thermal contrast between day-hemisphere and night-hemisphere would be extreme. However, it may be lessend if there is significant zonal heat transport. The circulation in such conditions has not been known well. We performed a numerical experiment based on the linear shallow water equation, assuming that both the evaporation and the precipitation occur only on day-hemisphere (Noda et al., 2011). With these distributions of the evaporation and the precipitation, one may anticipate the circulation occurs in only day-hemisphere. However, the resulting calculation is characterized with zonally uniform zonal flow, which also covers night hemisphere. In addition, the intensity of the flow increases with time. That behavior can be understood by constructing asymptotic solution which is first degree in time. The importance of Coriolis force, which bends meridional flow to zonal flow, is identified. It is implied that, even when only day-hemisphere has the evaporation and precipitation, there may be significant amount of heat can be transported from the day-hemisphere to the night-hemisphere by the strong zonal flow. The growth of zonal flow would be stopped when the evaporation and the precipitation are balanced with mass transport in the bottom Ekman layer.
NASA Astrophysics Data System (ADS)
Holland, Christopher George
Studies of nonlinear couplings and dynamics in plasma turbulence are presented. Particular areas of focus are analytic studies of coherent structure formation in electron temperature gradient turbulence, measurement of nonlinear energy transfer in simulations of plasma turbulence, and bispectral analysis of experimental and computational data. The motivation for these works has been to develop and expand the existing theories of plasma transport, and verify the nonlinear predictions of those theories in simulation and experiment. In Chapter II, we study electromagnetic secondary instabilities of electron temperature gradient turbulence. The growth rate for zonal flow generation via modulational instability of electromagnetic ETG turbulence is calculated, as well as that for zonal (magnetic) field generation. In Chapter III, the stability and saturation of streamers in ETG turbulence is considered, and shown to depend sensitively upon geometry and the damping rates of the Kelvin-Helmholtz mode. Requirements for a credible theory of streamer transport are presented. In addition, a self-consistent model for interactions between ETG and ITG (ion temperature gradient) turbulence is presented. In Chapter IV, the nonlinear transfer of kinetic and internal energy is measured in simulations of plasma turbulence. The regulation of turbulence by radial decorrelation due to zonal flows and generation of zonal flows via the Reynolds stress are explicitly demonstrated, and shown to be symmetric facets of a single nonlinear process. Novel nonlinear saturation mechanisms for zonal flows are discussed. In Chapter V, measurements of fluctuation bicoherence in the edge of the DIII-D tokamak are presented. It is shown that the bicoherence increases transiently before a L-H transition, and decays to its initial value after the barrier has formed. The increase in bicoherence is localized to the region where the transport barrier forms, and shows strong coupling between well-separated frequencies. These results are qualitatively reproduced in a simple numerical "thought experiment," described in Chapter VI, which suggests that zonal flows may trigger the L-H transition.
Modeling Study of Planetary Waves in the Mesosphere Lower Thermosphere (MLT)
NASA Technical Reports Server (NTRS)
Mengel, J. G.; Mayr, H. g.; Drob, D.; Porter, H. S.; Hines, C. O.
2003-01-01
For comparison with measurements from the TIMED satellite and coordinated ground based observations, we present results from our Numerical Spectral Model (NSM) that incorporates the Doppler Spread Parameterization (Hines, 1997) for small-scale gravity waves (GWs). We discuss the planetary waves (PWs) that are purely generated by dynamical interactions, i.e., without explicitly specifying excitation sources related for example to tropospheric convection or topography. With tropospheric heating that reproduces the observed zonal jets near the tropopause and the accompanying reversal in the latitudinal temperature variation, which is conducive to baroclinic instability, long period PWs are produced that propagate up into the stratosphere to affect the wave driven equatorial oscillations (QBO and SAO) extending into the upper mesosphere. The PWs in the model that dominate higher up in the MLT region, however, are to a large extent produced by instabilities under the influence of the zonal circulation and temperature variations in the middle atmosphere and they are amplified by GW interactions. Three classes of PWs are generated there. (1) Rossby waves that slowly propagate westward but are carried by the zonal mean (m = 0) winds to produce eastward and westward propagating PWs respectively in the winter and summer hemispheres below 80 km. Depending on the zonal wave number and magnitudes of the zonal winds under the influence of the equatorial oscillations, the PWs typically have periods between 2 and 20 days and their horizontal wind amplitudes can exceed 40 m/s in the lower mesosphere. (2) Rossby gravity waves that propagate westward at low latitudes, having periods around 2 days for zonal wave numbers m = 2 to 4. (3) Eastward propagating equatorial Kelvin waves generated in the upper mesosphere with periods between 2 and 3 days for m = 1 & 2. The seasonal variations of the PWs reveal that the largest wind amplitudes tend to occur below 80 km in the winter hemisphere, but above that altitude in the summer hemisphere to approach magnitudes as large as 50 m/s.
An Analytical State Transition Matrix for Orbits Perturbed by an Oblate Spheroid
NASA Technical Reports Server (NTRS)
Mueller, A. C.
1977-01-01
An analytical state transition matrix and its inverse, which include the short period and secular effects of the second zonal harmonic, were developed from the nonsingular PS satellite theory. The fact that the independent variable in the PS theory is not time is in no respect disadvantageous, since any explicit analytical solution must be expressed in the true or eccentric anomaly. This is shown to be the case for the simple conic matrix. The PS theory allows for a concise, accurate, and algorithmically simple state transition matrix. The improvement over the conic matrix ranges from 2 to 4 digits accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Patrick; Kravitz, Ben; Lu, Jian
In this study, we demonstrate that changes of the North Atlantic subtropical high and its regional rainfall pattern during mid-Holocene precessional changes and idealized 4xCO 2 increase can both be understood as a remote response to increased land heating near North Africa. Despite different sources and patterns of radiative forcing (increase in CO 2 concentration versus changes in orbital parameters), we find that the pattern of energy, circulation, and rainfall responses in the Northern Hemisphere summer subtropics are remarkably similar in the two forcing scenarios because both are dominated by the same land-sea heating contrast in response to the forcing.more » An increase in energy input over arid land drives a westward displacement of the coupled North Atlantic subtropical high-monsoon circulation, consistent with increased precipitation in the Afro-Asia region and decreased precipitation in the America-Atlantic region. This study underscores the importance of land heating in dictating remote drying through zonal shifts of the subtropical circulation.« less
Kelly, Patrick; Kravitz, Ben; Lu, Jian; ...
2018-04-16
In this study, we demonstrate that changes of the North Atlantic subtropical high and its regional rainfall pattern during mid-Holocene precessional changes and idealized 4xCO 2 increase can both be understood as a remote response to increased land heating near North Africa. Despite different sources and patterns of radiative forcing (increase in CO 2 concentration versus changes in orbital parameters), we find that the pattern of energy, circulation, and rainfall responses in the Northern Hemisphere summer subtropics are remarkably similar in the two forcing scenarios because both are dominated by the same land-sea heating contrast in response to the forcing.more » An increase in energy input over arid land drives a westward displacement of the coupled North Atlantic subtropical high-monsoon circulation, consistent with increased precipitation in the Afro-Asia region and decreased precipitation in the America-Atlantic region. This study underscores the importance of land heating in dictating remote drying through zonal shifts of the subtropical circulation.« less
NASA Astrophysics Data System (ADS)
Brigham-Grette, J.; Melles, M.; Deconto, R.; Koenig, S.
2007-12-01
The common goal of recovering long high-resolution records is in testing relevant questions of Earth system dynamics, as well as documenting the drivers of regional and global scale change. Lake El'gygytgyn, located 100 km north of the Arctic Circle in NE Russia is a target for deep drilling a continuous record back to ~3.6 My in Spring 2009. Pilot cores dating to 250ka to 300 ka provide the impetus for evaluating the sensitivity of the Arctic to regional and global climate events on millennial timescales. A clear record of the Younger Dryas, rapid change within MIS 3, and events including interstadials 19, 20, events within Stage 5, and at the end of stage 6 seen in Greenland and marine records suggest that oceanographic and atmospheric changes over the North Atlantic are reflected in hydrologic and seasonal temperature proxies. Rapid events are recorded despite demonstrated precessional influences and the suggested upwind influence of the Eurasian Ice sheet and dramatic changes in continentality due to changes in sea level across the Bering/Chukchi shelves and the extent and seasonal persistence of sea ice in the Arctic Ocean and deeper Bering Sea. Regionally, lake cores throughout Beringia reflect patterns of precipitation and temperature that point to persistent zonal differences in the response of the landscape to environmental change.
NASA Astrophysics Data System (ADS)
Xiao, D.; Zhao, P.
2016-12-01
This study investigates the response of large-scale atmospheric circulation over the Asian-Pacific sector and precipitation over eastern China to the transient orbital changes during the Holocene summer. Corresponding to a variation of the incoming solar radiation, eddy sea level pressure (SLP) presented an out-of-phase relationship between the North Pacific and the Eurasian landmass, which is similar to the present-day Asia-Pacific Oscillation (APO) pattern and defined as the paleo-APO. Its index presented an increasing trend, which implies an enhancement of the zonal thermal contrast between Asia and North Pacific. Associated with the strengthening of thermal contrast was the westward shift of North Pacific high pressure. Accordingly, there were less summer precipitation over both the middle reach of the Yangtze River and Southwest China and more precipitation over North China during. The high-resolution stalagmite δ18O records further support this decrease in the simulated precipitation. From the negative phase of paleo-APO during the early Holocene to the recent positive phase, the eddy SLP anomalies show a decreasing/increasing trend over the Eurasian landmass/the North Pacific, with a phase change around 4.5 ka BP, and they both move westward. Meanwhile, less rainfall belt over East China shows a northward propagation from southern China.
NASA Astrophysics Data System (ADS)
van Sebille, Erik; Johns, William E.; Beal, Lisa M.
2012-05-01
As part of the global thermohaline circulation, some North Atlantic Deep Water (NADW) exits the Atlantic basin to the south of Africa. Observations have shown that there is a quasi-zonal pathway centered at 25°S carrying NADW eastward, connecting the Deep Western Boundary Current to the Cape Basin. However, it has been unclear what sets this pathway. In particular, waters must move southward through the Cape Basin, thereby crossing isolines of planetary vorticity, in order to exit the basin. Here, we find that an eddy thickness flux induced by Agulhas rings moving northwestward forces a circulation of NADW through the Cape Basin. The pathway at 25°S feeds the southeastward flow of this circulation while conserving potential vorticity. Using Lagrangian floats advected for 300 years in a 1/10° resolution ocean model, we show that the most common pathway for NADW in our model lies directly below the Agulhas ring corridor. By analyzing the velocity and density fields in the model, we find that the decay of these rings, and their forward tilt with depth, results in a southward velocity, across isolines of planetary vorticity, of 1 to 2 cm/s in the deep waters. The associated stream function pattern yields a deep circulation transporting 4 Sv of NADW from the Deep Western Boundary Current at 25°S to the southern tip of Africa.
Generation of zonal flows through symmetry breaking of statistical homogeneity
NASA Astrophysics Data System (ADS)
Parker, Jeffrey B.; Krommes, John A.
2014-03-01
In geophysical and plasma contexts, zonal flows (ZFs) are well known to arise out of turbulence. We elucidate the transition from homogeneous turbulence without ZFs to inhomogeneous turbulence with steady ZFs. Starting from the equation for barotropic flow on a β plane, we employ both the quasilinear approximation and a statistical average, which retains a great deal of the qualitative behavior of the full system. Within the resulting framework known as CE2, we extend recent understanding of the symmetry-breaking zonostrophic instability and show that it is an example of a Type {{\\text{I}}_{s}} instability within the pattern formation literature. The broken symmetry is statistical homogeneity. Near the bifurcation point, the slow dynamics of CE2 are governed by a well-known amplitude equation. The important features of this amplitude equation, and therefore of the CE2 system, are multiple. First, the ZF wavelength is not unique. In an idealized, infinite system, there is a continuous band of ZF wavelengths that allow a nonlinear equilibrium. Second, of these wavelengths, only those within a smaller subband are stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets. These behaviors are shown numerically to hold in the CE2 system. We also conclude that the stability of the equilibria near the bifurcation point, which is governed by the Eckhaus instability, is independent of the Rayleigh-Kuo criterion.
He, Jinhong; Tedersoo, Leho; Hu, Ang; Han, Conghai; He, Dan; Wei, Hui; Jiao, Min; Anslan, Sten; Nie, Yanxia; Jia, Yongxia; Zhang, Gengxin; Yu, Guirui; Liu, Shirong; Shen, Weijun
2017-07-01
Whether and how seasonality of environmental variables impacts the spatial variability of soil fungal communities remain poorly understood. We assessed soil fungal diversity and community composition of five Chinese zonal forests along a latitudinal gradient spanning 23°N to 42°N in three seasons to address these questions. We found that soil fungal diversity increased linearly or parabolically with latitude. The seasonal variations in fungal diversity were more distinguishable in three temperate deciduous forests than in two subtropical evergreen forests. Soil fungal diversity was mainly correlated with edaphic factors such as pH and nutrient contents. Both latitude and its interactions with season also imposed significant impacts on soil fungal community composition (FCC), but the effects of latitude were stronger than those of season. Vegetational properties such as plant diversity and forest age were the dominant factors affecting FCC in the subtropical evergreen forests while edaphic properties were the dominant ones in the temperate deciduous forests. Our results indicate that latitudinal variation patterns of soil fungal diversity and FCC may differ among seasons. The stronger effect of latitude relative to that of season suggests a more important influence by the spatial than temporal heterogeneity in shaping soil fungal communities across zonal forests. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Isolation of Intact Chloroplasts from Euglena gracilis by Zonal Centrifugation 1
Vasconcelos, Aurea; Pollack, Marilyn; Mendiola, Leticia R.; Hoffmann, H.-P.; Brown, D. H.; Price, C. A.
1971-01-01
Chloroplasts were separated from Euglena gracilis by zonal centrifugation at low speed in density gradients of Ficoll or dextran. The chloroplasts were intact by the criteria of ultrastructure and their content of ribulose diphosphate carboxylase and soluble protein. The chloroplasts also contained ribosomes and ribosomal RNA uncontaminated by the corresponding cytoplasmic particles. Images PMID:16657599
Fluidized bed selective pyrolysis of coal
Shang, J.Y.; Cha, C.Y.; Merriam, N.W.
1992-12-15
The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.
Fluidized bed selective pyrolysis of coal
Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.
1992-01-01
The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.
NASA Technical Reports Server (NTRS)
Larsen, J. C.; Chiou, E. W.; Chu, W. P.; Mccormick, M. P.; Mcmaster, L. R.; Oltmans, S.; Rind, D.
1993-01-01
Results are presented of a comparison beteen observations of the upper-tropospheric water vapor data obtained from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument and radiosonde observations for 1987 and radiosonde-based climatologies. Colocated SAGE II-radiosonde measurement pairs are compared individually and in a zonal mean sense. A straight comparison of monthly zonal means between SAGE II and radiosondes for 1987 and Global Atmospheric Statistics (1963-1973) indicates that the clear-sky SAGE II climatology is approximately half the level of clear/cloudy sky of both radiosonde climatologies. Annual zonal means calculated from the set of profile pairs again showed SAGE II to be significantly drier in many altitude bands.
Liu, Rui; Milkie, Daniel E; Kerlin, Aaron; MacLennan, Bryan; Ji, Na
2014-01-27
In traditional zonal wavefront sensing for adaptive optics, after local wavefront gradients are obtained, the entire wavefront can be calculated by assuming that the wavefront is a continuous surface. Such an approach will lead to sub-optimal performance in reconstructing wavefronts which are either discontinuous or undersampled by the zonal wavefront sensor. Here, we report a new method to reconstruct the wavefront by directly measuring local wavefront phases in parallel using multidither coherent optical adaptive technique. This method determines the relative phases of each pupil segment independently, and thus produces an accurate wavefront for even discontinuous wavefronts. We implemented this method in an adaptive optical two-photon fluorescence microscopy and demonstrated its superior performance in correcting large or discontinuous aberrations.
NASA Astrophysics Data System (ADS)
Arruda, D. C. S.; Sobral, J. H. A.; Abdu, M. A.; Castilho, V. M.; Takahashi, H.
The zonal drift velocities of the ionospheric plasma bubbles over the Brazilian region are analyzed in this study that is based on OI630nm airglow digital images. These digital images were obtained by an all-sky imager system between October 1998 and August 2000, at Cachoeira Paulista (22.5°S, 45°W), a low latitude region. In this period, 138 nights of OI 630 nm airglow experiments were carried out of which 30 nights detected the ionospheric plasma bubbles. These 30 nights correspond to magnetically quiet days (ΣK_P<24+) and were grouped according approximately to their season. KEY WORDS: Imager System, Ionospheric Plasma Bubbles, Zonal drift velocities, OI630nm.
Zonal wavefront sensing using a grating array printed on a polyester film
NASA Astrophysics Data System (ADS)
Pathak, Biswajit; Kumar, Suraj; Boruah, Bosanta R.
2015-12-01
In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing frame rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.
Linear simulation of the stationary eddies in a GCM. II - The 'Mountain' model
NASA Technical Reports Server (NTRS)
Nigam, Sumant; Held, Isaac M.; Lyons, Steven W.
1988-01-01
Linear stationary wave theory is used to account for zonal asymmetries of the winter-averaged tropospheric circulation obtained in a GCM. The eddy zonal velocity field in the upper troposphere indicates that the orographic and thermal plus transient contributions are nearly equal in amplitude, while the eddy meridional velocity field (which is dominated by shorter zonal scales) shows the orographic contribution to be dominant. The two contributions are found to be roughly in phase over the east Asian coast, and they contribute roughly equal amounts to the low level Siberian high. Results indicate that the 300 mb extratropical response to tropical forcing reaches 50 gpm over Alaska, and that the responses to sensible heating and lower tropospheric transients are strongly anticorrelated.
Eccentricity and argument of perigee control for orbits with repeat ground tracks
NASA Technical Reports Server (NTRS)
Vincent, Mark A.
1992-01-01
In order to gain an understanding into the problem of eccentricity (e) and argument of perigee (omega) control for TOPEX/Poseidon, the two cases where the highest latitude crossing time and one of the equator crossings are held constant are investigated. Variations in e and omega cause a significant effect on the satellite's ground-track repeatability. Maintaining e and omega near their frozen values will minimize this variation. Analytical expressions are found to express this relationship while keeping an arbitrary point of the ground track fixed. The initial offset of the ground track from its nominal path determines the subsequent evolution of e and omega about their frozen values. This long-term behavior is numerically determined using an earth gravitational field including the first 17 zonal harmonics. The numerical results are plotted together with the analytical constraints to see if the later values of e and omega cause unacceptable deviation in the ground track.
Acconcia, Christopher N; Leung, Ben Y C; Goertz, David E
2016-05-01
Serial two-photon microscopy of blood clots with fluorescently tagged fibrin networks was conducted during microbubble-mediated sonothrombolysis to examine the microscale evolution of the resulting erosion front. The development of a complex zonal erosion pattern was observed, comprised of a cell depleted layer of fibrin network overlying intact clot which then underwent progressive recession. The fibrin zone architecture was dependent on exposure conditions with 0.1 MPa causing no erosion, 0.39 MPa resulting in homogenous structure, and combination 0.39/0.96 MPa pulses forming large-scale tunnels. High speed imaging and Coulter counter data indicated the fibrin zone formation process involves the ejection of intact erythrocytes.
NASA Astrophysics Data System (ADS)
Ivanov, O. A.; Sukhanov, V. V.
2017-11-01
The article presents the results of biogeographic zoning of the epi- and mesopelagic region based on nekton areas using a new modification of the Shorygin method. It is shown that the position and boundaries of biogeographic areas are related to real relatively stable elements of the biotope (water masses, currents, frontal zones, eddies, and rings). A pronounced latitudinal pattern of the areas of natural zones is not always seen. Zoning becomes less detailed from the top layer of the epipelagic to mesopelagic region, and the zonalities of mesopelagic and epipelagic areas are not similar. We propose a new zoning approach to solve dynamic biogeography problems.
The Variability of the Horizontal Circulation in the Troposphere and Stratosphere: A Comparison
NASA Technical Reports Server (NTRS)
Perlwitz, Judith; Graf, Hans-F.; Hansem, James E. (Technical Monitor)
2001-01-01
The variability of the horizontal circulation in the stratosphere and troposphere of the Northern Hemisphere (NH) is compared by using various approaches. Spatial degrees of freedom (dof) on different time scales were derived. Modes of variability were computed in geopotential height fields at the tropospheric and stratospheric pressure levels by applying multivariate statistical approaches. Features of the spatial and temporal variability of the winterly zonal wind were studied with the help of recurrence and persistence analyses. The geopotential height and zonally-averaged zonal wind at the 50-, 500- and 1000-hPa level are used to investigate the behavior of the horizontal circulation in the lower stratosphere, mid-troposphere and at the near surface level, respectively. It is illustrated that the features of the variability of the horizontal circulation are very similar in the mid-troposphere and at the near surface level. Due to the filtering of tropospheric disturbances by the stratospheric and upper tropospheric zonal mean flow, the variability of the stratospheric circulation exhibits less spatial complexity than the circulation at tropospheric pressure levels. There exist enormous differences in the number of degrees of freedom (or free variability modes) between both atmospheric layers. Results of the analyses clearly show that the concept of a zonally symmetric AO with a simple structure in the troposphere similar to the one in the stratosphere is not valid. It is concluded that the spatially filtered climate change signal can be detected earlier in the stratosphere than in the mid-troposphere or at the near surface level.
The role of the winter residual circulation in the summer mesopause regions in WACCM
NASA Astrophysics Data System (ADS)
Sanne Kuilman, Maartje; Karlsson, Bodil
2018-03-01
High winter planetary wave activity warms the summer polar mesopause via a link between the two hemispheres. Complex wave-mean-flow interactions take place on a global scale, involving sharpening and weakening of the summer zonal flow. Changes in the wind shear occasionally generate flow instabilities. Additionally, an altering zonal wind modifies the breaking of vertically propagating gravity waves. A crucial component for changes in the summer zonal flow is the equatorial temperature, as it modifies latitudinal gradients. Since several mechanisms drive variability in the summer zonal flow, it can be hard to distinguish which one is dominant. In the mechanism coined interhemispheric coupling, the mesospheric zonal flow is suggested to be a key player for how the summer polar mesosphere responds to planetary wave activity in the winter hemisphere. We here use the Whole Atmosphere Community Climate Model (WACCM) to investigate the role of the summer stratosphere in shaping the conditions of the summer polar mesosphere. Using composite analyses, we show that in the absence of an anomalous summer mesospheric temperature gradient between the equator and the polar region, weak planetary wave forcing in the winter would lead to a warming of the summer mesosphere region instead of a cooling, and vice versa. This is opposing the temperature signal of the interhemispheric coupling that takes place in the mesosphere, in which a cold and calm winter stratosphere goes together with a cold summer mesopause. We hereby strengthen the evidence that the variability in the summer mesopause region is mainly driven by changes in the summer mesosphere rather than in the summer stratosphere.
3D shape reconstruction of specular surfaces by using phase measuring deflectometry
NASA Astrophysics Data System (ADS)
Zhou, Tian; Chen, Kun; Wei, Haoyun; Li, Yan
2016-10-01
The existing estimation methods for recovering height information from surface gradient are mainly divided into Modal and Zonal techniques. Since specular surfaces used in the industry always have complex and large areas, considerations must be given to both the improvement of measurement accuracy and the acceleration of on-line processing speed, which beyond the capacity of existing estimations. Incorporating the Modal and Zonal approaches into a unifying scheme, we introduce an improved 3D shape reconstruction version of specular surfaces based on Phase Measuring Deflectometry in this paper. The Modal estimation is firstly implemented to derive the coarse height information of the measured surface as initial iteration values. Then the real shape can be recovered utilizing a modified Zonal wave-front reconstruction algorithm. By combining the advantages of Modal and Zonal estimations, the proposed method simultaneously achieves consistently high accuracy and dramatically rapid convergence. Moreover, the iterative process based on an advanced successive overrelaxation technique shows a consistent rejection of measurement errors, guaranteeing the stability and robustness in practical applications. Both simulation and experimentally measurement demonstrate the validity and efficiency of the proposed improved method. According to the experimental result, the computation time decreases approximately 74.92% in contrast to the Zonal estimation and the surface error is about 6.68 μm with reconstruction points of 391×529 pixels of an experimentally measured sphere mirror. In general, this method can be conducted with fast convergence speed and high accuracy, providing an efficient, stable and real-time approach for the shape reconstruction of specular surfaces in practical situations.
Changes in atmospheric circulation between solar maximum and minimum conditions in winter and summer
NASA Astrophysics Data System (ADS)
Lee, Jae Nyung
2008-10-01
Statistically significant climate responses to the solar variability are found in Northern Annular Mode (NAM) and in the tropical circulation. This study is based on the statistical analysis of numerical simulations with ModelE version of the chemistry coupled Goddard Institute for Space Studies (GISS) general circulation model (GCM) and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The low frequency large scale variability of the winter and summer circulation is described by the NAM, the leading Empirical Orthogonal Function (EOF) of geopotential heights. The newly defined seasonal annular modes and its dynamical significance in the stratosphere and troposphere in the GISS ModelE is shown and compared with those in the NCEP/NCAR reanalysis. In the stratosphere, the summer NAM obtained from NCEP/NCAR reanalysis as well as from the ModelE simulations has the same sign throughout the northern hemisphere, but shows greater variability at low latitudes. The patterns in both analyses are consistent with the interpretation that low NAM conditions represent an enhancement of the seasonal difference between the summer and the annual averages of geopotential height, temperature and velocity distributions, while the reverse holds for high NAM conditions. Composite analysis of high and low NAM cases in both the model and observation suggests that the summer stratosphere is more "summer-like" when the solar activity is near a maximum. This means that the zonal easterly wind flow is stronger and the temperature is higher than normal. Thus increased irradiance favors a low summer NAM. A quantitative comparison of the anti-correlation between the NAM and the solar forcing is presented in the model and in the observation, both of which show lower/higher NAM index in solar maximum/minimum conditions. The summer NAM in the troposphere obtained from NCEP/NCAR reanalysis has a dipolar zonal structure with maximum variability over the Asian monsoon region. The corresponding EOF in ModelE has a qualitatively similar structure but with less variability in the Asian monsoon region which is displaced eastward of its observed position. In both the NCEP/NCAR reanalysis and the GISS GCM, the negative anomalies associated with the NAM in the Euro-Atlantic and Aleutian island regions are enhanced in the solar minimum conditions, though the results are not statistically significant. The difference of the downward propagation of NAM between solar maximum and solar minimum is shown with the NCEP/NCAR reanalysis. For the winter NAM, a much greater fraction of stratospheric circulation perturbations penetrate to the surface in solar maximum conditions than in minimum conditions. This difference is more striking when the zonal wind direction in the tropics is from the west: when equatorial 50 hPa winds are from the west, no stratospheric signals reach the surface under solar minimum conditions, while over 50 percent reach the surface under solar maximum conditions. This work also studies the response of the tropical circulation to the solar forcing in combination with different atmospheric compositions and with different ocean modules. Four model experiments have been designed to investigate the role of solar forcing in the tropical circulation: one with the present day (PD) greenhouse gases and aerosol conditions, one with the preindustrial (PI) conditions, one with the doubled minimum solar forcing, and finally one with the hybrid-isopycnic ocean model (HYCOM). The response patterns in the tropical humidity and in the vertical motion due to solar forcing are season dependent and spatially heterogeneous. The tropical humidity response from the model experiments are compared with the corresponding differences obtained from the NCEP/NCAR reanalysis with all years and with non-ENSO years. Both the model and the reanalysis consistently show that the specific humidity is significantly greater in the convective region in solar maximum compared to solar minimum for January and July. The column integrated humidity in all the model experiments with different composition, different solar forcing, and different ocean module, increased with solar forcing in the tropical band over the Atlantic sector in both seasons. The model's humidity response pattern is generally consistent with the paleoclimate records indicating increased precipitation near the equator that decreases at subtropical to middle latitudes with increased solar output. The differences in the zonally averaged vertical velocities indicate that the ascending branch of the Hadley cell is enhanced and shifted northward, and that the descending branch is weakened and shifted northward in the solar MAX simulation in January. The downward branch of the Hadley cell is strengthened in MAX in July. A possible link of climate response in midlatitudes to solar forcing is also presented by showing changes in zonal mean wind, changes in temperature gradient, and changes in E-P flux.
ERIC Educational Resources Information Center
Lamb, Janeen; Branson, Christopher M.
2015-01-01
This paper outlines actions that educational change leaders can take to better meet their curriculum change obligations and responsibilities. In order to do this we extend Vygotsky's (1978) zonal theory and its many extensions and elaborations by positioning educational change leadership within this theory. We rename the zones to Zone of Principal…
Halas, Dominik; Simons, Andrew M
2014-01-01
Mitochondrial and nuclear introgression among closely related taxa can greatly complicate the process of determining their phylogenetic relationships. In the Central Highlands of North America, many fish taxa have undergone introgression; in this study, we demonstrate the existence of an unusual introgression event in the Etheostoma zonale species group. We used one mitochondrial and seven nuclear loci to determine the relationships of the taxa within the E. zonale group, and their degree of differentiation. We found evidence of multiple divergent populations within each species; much of the divergence within species has taken place during the Pleistocene. We also found evidence of a previously unknown cryptic species in the Upper Tennessee River which diverged from the remainder of the group during the Pliocene, and has undergone mitochondrial and nuclear introgression with E. zonale, in an apparent process of speciation reversal. We examined the effects that using varying types of recombination tests to eliminate the signal of recombination from nuclear loci would have on the phylogenetic placement of this introgressed lineage in our species tree analyses. Copyright © 2013 Elsevier Inc. All rights reserved.
Nonmigrating tidal modulation of the equatorial thermosphere and ionosphere anomaly
NASA Astrophysics Data System (ADS)
Lei, Jiuhou; Thayer, Jeffrey P.; Wang, Wenbin; Yue, Jia; Dou, Xiankang
2014-04-01
The modulation of nonmigrating tides on both the ionospheric equatorial ionization anomaly (EIA) and the equatorial thermosphere anomaly (ETA) is investigated on the basis of simulations from the Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM). Our simulations demonstrate the distinct features of the EIA and ETA seen in observations after the inclusion of field-aligned ion drag in the model. Both the EIA and the ETA in the constant local time frame display an obvious zonal wave-4 structure associated with the modulation of nonmigrating tides. However, the modeled EIA and ETA show a primary zonal wave-1 structure when only the migrating tides are specified at the model lower boundary. Our simulations reveal that the zonal wave-4 structure of the ETA under both low and high solar activity conditions is mainly caused by the direct response of the upper thermosphere to the diurnal eastward wave number 3 and semidiurnal eastward wave number 2 nonmigrating tides from the lower atmosphere. There is a minor contribution from the ion-neutral coupling. The zonal wave-4 structure of the EIA is also caused by these nonmigrating tides but through the modulation of the neutral wind dynamo.
NASA Astrophysics Data System (ADS)
Cohen, Bruce; Umansky, Maxim; Joseph, Ilon
2015-11-01
Progress is reported on including self-consistent zonal flows in simulations of drift-resistive ballooning turbulence using the BOUT + + framework. Previous published work addressed the simulation of L-mode edge turbulence in realistic single-null tokamak geometry using the BOUT three-dimensional fluid code that solves Braginskii-based fluid equations. The effects of imposed sheared ExB poloidal rotation were included, with a static radial electric field fitted to experimental data. In new work our goal is to include the self-consistent effects on the radial electric field driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We describe a model for including self-consistent zonal flows and an algorithm for maintaining underlying plasma profiles to enable the simulation of steady-state turbulence. We examine the role of Braginskii viscous forces in providing necessary dissipation when including axisymmetric perturbations. We also report on some of the numerical difficulties associated with including the axisymmetric component of the fluctuating fields. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory (LLNL-ABS-674950).
Computation of transonic separated wing flows using an Euler/Navier-Stokes zonal approach
NASA Technical Reports Server (NTRS)
Kaynak, Uenver; Holst, Terry L.; Cantwell, Brian J.
1986-01-01
A computer program called Transonic Navier Stokes (TNS) has been developed which solves the Euler/Navier-Stokes equations around wings using a zonal grid approach. In the present zonal scheme, the physical domain of interest is divided into several subdomains called zones and the governing equations are solved interactively. The advantages of the Zonal Grid approach are as follows: (1) the grid for any subdomain can be generated easily; (2) grids can be, in a sense, adapted to the solution; (3) different equation sets can be used in different zones; and, (4) this approach allows for a convenient data base organization scheme. Using this code, separated flows on a NACA 0012 section wing and on the NASA Ames WING C have been computed. First, the effects of turbulence and artificial dissipation models incorporated into the code are assessed by comparing the TNS results with other CFD codes and experiments. Then a series of flow cases is described where data are available. The computed results, including cases with shock-induced separation, are in good agreement with experimental data. Finally, some futuristic cases are presented to demonstrate the abilities of the code for massively separated cases which do not have experimental data.
Statistical properties of Charney-Hasegawa-Mima zonal flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Johan, E-mail: anderson.johan@gmail.com; Botha, G. J. J.
2015-05-15
A theoretical interpretation of numerically generated probability density functions (PDFs) of intermittent plasma transport events in unforced zonal flows is provided within the Charney-Hasegawa-Mima (CHM) model. The governing equation is solved numerically with various prescribed density gradients that are designed to produce different configurations of parallel and anti-parallel streams. Long-lasting vortices form whose flow is governed by the zonal streams. It is found that the numerically generated PDFs can be matched with analytical predictions of PDFs based on the instanton method by removing the autocorrelations from the time series. In many instances, the statistics generated by the CHM dynamics relaxesmore » to Gaussian distributions for both the electrostatic and vorticity perturbations, whereas in areas with strong nonlinear interactions it is found that the PDFs are exponentially distributed.« less
Zonal wavefront sensing using a grating array printed on a polyester film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathak, Biswajit; Boruah, Bosanta R., E-mail: brboruah@iitg.ernet.in; Kumar, Suraj
2015-12-15
In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing framemore » rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.« less
Dyment, Nathaniel A.; Breidenbach, Andrew P.; Schwartz, Andrea G.; Russell, Ryan P.; Aschbacher-Smith, Lindsey; Liu, Han; Hagiwara, Yusuke; Jiang, Rulang; Thomopoulos, Stavros; Butler, David L.; Rowe, David W.
2015-01-01
The sequence of events that leads to the formation of a functionally graded enthesis is not clearly defined. The current study demonstrates that clonal expansion of Gdf5 progenitors contributes to linear growth of the enthesis. Prior to mineralization, Col1+ cells in the enthesis appose Col2+ cells of the underlying primary cartilage. At the onset of enthesis mineralization, cells at the base of the enthesis express alkaline phosphatase, Indian hedgehog, and ColX as they mineralize. The mineralization front then extends towards the tendon midsubstance as cells above the front become encapsulated in mineralized fibrocartilage over time. The hedgehog (Hh) pathway regulates this process, as Hh-responsive Gli1+ cells within the developing enthesis mature from unmineralized to mineralized fibrochondrocytes in response to activated signaling. Hh signaling is required for mineralization, as tissue-specific deletion of its obligate transducer Smoothened in the developing tendon and enthesis cells leads to significant reductions in the apposition of mineralized fibrocartilage. Together, these findings provide a spatiotemporal map of events – from expansion of the embryonic progenitor pool to synthesis of the collagen template and finally mineralization of this template – that leads to the formation of the mature zonal enthesis. These results can inform future tendon-to-bone repair strategies to create a mechanically functional enthesis in which tendon collagen fibers are anchored to bone through mineralized fibrocartilage. PMID:26141957
NASA Astrophysics Data System (ADS)
Zasova, L. V.; Moroz, V. I.; Formisano, V.; Ignatiev, N. I.; Khatuntsev, I. V.
2006-07-01
The infrared spectrometry of Venus in the range 6-45 μm allows one to sound the middle atmosphere of Venus in the altitude range 55-100 km and its cloud layer. This experiment was carried out onboard the Soviet automatic interplanetary Venera-15 station, where the Fourier spectrometer for this spectral range was installed. The measurements have shown that the main component of the cloud layer at all measured latitudes in the northern hemisphere is concentrated sulfuric acid (75-85%). The vertical profiles of temperature and aerosol were reconstructed in a self-consistent manner: the three-dimensional fields of temperature and zonal wind in the altitude range 55-100 km and aerosol at altitudes 55-70 km have been obtained, as well as vertical SO2 profiles and H2O concentration in the upper cloud layer. The solar-related waves at isobaric levels in the fields of temperature, zonal wind, and aerosol were investigated. This experiment has shown the efficiency of the method for investigation of the Venusian atmosphere. The Planetary Fourier Spectrometer has the spectral interval 0.9-45 μm and a spectral resolution of 1.8 cm-1. It will allow one to sound the middle atmosphere (55-100 km) of Venus and its cloud layer on the dayside, as well as the lower atmosphere and the planetary surface on the night side.
NASA Technical Reports Server (NTRS)
Shia, Run-Lie; Zhou, Shuntai; Ko, Malcolm K. W.; Sze, Nien-Dak; Salstein, David; Cady-Pereira, Karen
1997-01-01
A zonal mean chemistry transport model (2-D CTM) coupled with a semi-spectral dynamical model is used to simulate the distributions of trace gases in the present day atmosphere. The zonal-mean and eddy equations for the velocity and the geopotential height are solved in the semi-spectral dynamical model. The residual mean circulation is derived from these dynamical variables and used to advect the chemical species in the 2- D CTM. Based on a linearized wave transport equation, the eddy diffusion coefficients for chemical tracers are expressed in terms of the amplitude, frequency and growth rate of dynamical waves; local chemical loss rates; and a time constant parameterizing small scale mixing. The contributions to eddy flux are from the time varying wave amplitude (transient eddy), chemical reactions (chemical eddy) and small scale mixing. In spite of the high truncation in the dynamical module (only three longest waves are resolved), the model has simulated many observed characteristics of stratospheric dynamics and distribution of chemical species including ozone. Compared with the values commonly used in 2-D CTMs, the eddy diffusion coefficients for chemical species calculated in this model are smaller, especially in the subtropics. It is also found that the chemical eddy diffusion has only a small effects in determining the distribution of most slow species, including ozone in the stratosphere.
Molecular identity and gene expression of aldosterone synthase cytochrome P450
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamoto, Mitsuhiro; Nonaka, Yasuki; Takemori, Hiroshi
11{beta}-Hydroxylase (CYP11B1) of bovine adrenal cortex produced corticosterone as well as aldosterone from 11-deoxycorticosterone in the presence of the mitochondrial P450 electron transport system. CYP11B1s of pig, sheep, and bullfrog, when expressed in COS-7 cells, also performed corticosterone and aldosterone production. Since these CYP11B1s are present in the zonae fasciculata and reticularis as well as in the zona glomerulosa, the zonal differentiation of steroid production may occur by the action of still-unidentified factor(s) on the enzyme-catalyzed successive oxygenations at C11- and C18-positions of steroid. In contrast, two cDNAs, one encoding 11{beta}-hydroxylase and the other encoding aldosterone synthase (CYP11B2), were isolatedmore » from rat, mouse, hamster, guinea pig, and human adrenals. The expression of CYP11B1 gene was regulated by cyclic AMP (cAMP)-dependent signaling, whereas that of CYP11B2 gene by calcium ion-signaling as well as cAMP-signaling. Salt-inducible protein kinase, a cAMP-induced novel protein kinase, was one of the regulators of CYP11B2 gene expression.« less
Shallow water simulations of Saturn's giant storms at different latitudes
NASA Astrophysics Data System (ADS)
García-Melendo, E.; Sánchez-Lavega, A.
2017-04-01
Shallow water simulations are used to present a unified study of three major storms on Saturn (nicknamed as Great White Spots, GWS) at different latitudes, polar (1960), equatorial (1990), and mid-latitude (2010) (Sánchez-Lavega, 2004; Sánchez-Lavega et al., 2011). In our model, the three GWS are initiated by introducing a Gaussian function pulse at the latitude of the observed phenomena with controlled horizontal size and amplitude. This function represents the convective source that has been observed to trigger the storm. A growing disturbance forms when the pulse reacts to ambient winds, expanding zonally along the latitude band of the considered domain. We then compare the modeled potential vorticity with the cloud field, adjusting the model parameters to visually get the closest aspect between simulations and observations. Simulations of the 2010 GWS (planetographic latitude ∼+40º, zonal velocity of the source ∼-30 m s-1) indicate that the Coriolis forces and the wind profile structure shape the disturbance generating, as observed, a long region to the east of the convective source with a high speed peripheral anticyclonic circulation, and a long-lived anticyclonic compact vortex accompanied by strong zonal advection on the southern part of the storm forming a turbulent region. Simulations of the equatorial 1990 GWS (planetographic latitude +12º-+5º, zonal velocity of the source 365-400 m s-1) show a different behavior because of the intense eastward jet, meridional shear at the equatorial region, and low latitude dynamics. A round shaped source forms as observed, with the rapid growth of a Kelvin-Helmholtz instability on the north side of the source due to advection and to the strong meridional wind shear, whereas at the storm latitude the disturbance grows and propagates eastward. The storm nucleus is the manifestation of a Rossby wave, while the eastward propagating planetary-scale disturbance is a gravity-Rossby wave trapped around the equator. The simulated 1960 GWS disturbance (planetographic latitude +56º, zonal velocity 4 m s-1) formed a chain of periodic oval spots that mimic the few available observations of the phenomenon. For the mid and high latitude storms, simulations predict a strong injection of negative relative vorticity due to divergence of the upwelling storm material, which may produce large anticyclones on the anticyclonic side of the zonal profile, and a quick turbulent expansion on the background cyclonic regions. In general, simulations indicate that negative relative vorticity injected by storms determines the natural reaction to zonal winds at latitudes where Coriolis forces are dominant.
NASA Astrophysics Data System (ADS)
Yuan, Wei
2015-04-01
We analyzed the nighttime horizontal neutral winds in the middle atmosphere (˜87 and ˜98 km) and thermosphere (˜250 km) derived from a Fabry-Perot interferometer (FPI), which was installed at Xinglong station (40.2◦ N, 117.4◦ E) in central China. The wind data covered the period from April 2010 to July 2012. We studied the annual, semiannual and terannual variations of the midnight winds at ˜87 km, ˜98 km and ˜250 km for the first time and compared them with Horizontal Wind Model 2007 (HWM07). Our results show the following: (1) at ˜ 87 km, both the observed and model zonal winds have similar phases in the annual and semiannual variations. However, the HWM07 amplitudes are much larger. (2) At ˜98 km, the model shows strong eastward wind in the summer solstice, resulting in a large annual variation, while the observed strongest component is semiannual. The observation and model midnight meridional winds agree well. Both are equatorward throughout the year and have small amplitudes in the annual and semiannual variations. (3) There are large discrepancies between the observed and HWM07 winds at ˜250 km. This discrepancy is largely due to the strong semiannual zonal wind in the model and the phase difference in the annual variation of the meridional wind. The FPI annual variation coincides with the results from Arecibo, which has similar geomagnetic latitude as Xinglong station. In General, the consistency of FPI winds with model winds is better at ˜87 and ˜98 km than that at ˜250 km. We also studied the seasonally and monthly averaged nighttime winds. The most salient features include the following: (1) the seasonally averaged zonal winds at ˜87 and ˜98 km typically have small variations throughout the night. (2) The model zonal and meridional nighttime wind variations are typically much larger than those of observations at ˜87 km and ˜98 km. (3) At ˜250 km, model zonal wind compares well with the observation in the winter. For spring and autumn, the model wind is more eastward before ˜ 03:00 LT but more westward after. The observed nighttime zonal and meridional winds on average are close to zero in the summer and autumn, which indicates a lack of strong stable tides. The consistency of FPI zonal wind with model wind at ˜250 km is better than the meridional wind.
NASA Technical Reports Server (NTRS)
Chiou, E. W.; Bhartia, P. K.; McPeters, R. D.; Loyola, D. G.; Coldewey-Egbers, M.; Fioletov, V. E.; Van Roozendael, M.; Spurr, R.; Lerot, C.; Frith, S. M.
2014-01-01
This paper describes the comparison of the variability of total column ozone inferred from the three independent multi-year data records, namely, (i) Solar Backscatter Ultraviolet Instrument (SBUV) v8.6 profile total ozone, (ii) GTO (GOME-type total ozone), and (iii) ground-based total ozone data records covering the 16-year overlap period (March 1996 through June 2011). Analyses are conducted based on area-weighted zonal means for 0-30degS, 0-30degN, 50-30degS, and 30-60degN. It has been found that, on average, the differences in monthly zonal mean total ozone vary between -0.3 and 0.8% and are well within 1 %. For GTO minus SBUV, the standard deviations and ranges (maximum minus minimum) of the differences regarding monthly zonal mean total ozone vary between 0.6-0.7% and 2.8-3.8% respectively, depending on the latitude band. The corresponding standard deviations and ranges regarding the differences in monthly zonal mean anomalies show values between 0.4-0.6% and 2.2-3.5 %. The standard deviations and ranges of the differences ground-based minus SBUV regarding both monthly zonal means and anomalies are larger by a factor of 1.4-2.9 in comparison to GTO minus SBUV. The ground-based zonal means demonstrate larger scattering of monthly data compared to satellite-based records. The differences in the scattering are significantly reduced if seasonal zonal averages are analyzed. The trends of the differences GTO minus SBUV and ground-based minus SBUV are found to vary between -0.04 and 0.1%/yr (-0.1 and 0.3DU/yr). These negligibly small trends have provided strong evidence that there are no significant time-dependent differences among these multiyear total ozone data records. Analyses of the annual deviations from pre-1980 level indicate that, for the 15-year period of 1996 to 2010, all three data records show a gradual increase at 30-60degN from -5% in 1996 to -2% in 2010. In contrast, at 50-30degS and 30degS- 30degN there has been a leveling off in the 15 years after 1996. The deviations inferred from GTO and SBUV show agreement within 1 %, but a slight increase has been found in the differences during the period 1996-2010.
NASA Astrophysics Data System (ADS)
Koo, Ja-Ho; Kim, Jaemin; Kim, Jhoon; Lee, Hanlim; Noh, Young Min; Lee, Yun Gon
2016-12-01
Springtime trans-Pacific transport of Asian air pollutants has been investigated in many ways to figure out its mechanism. Based on the Western Pacific (WP) pattern, one of climate variabilities in the Northern Hemisphere known to be associated with the pattern of atmospheric circulation over the North Pacific Ocean, in this study, we characterize the pattern of springtime trans-Pacific transport using long-term satellite measurements and reanalysis datasets. A positive WP pattern is characterized by intensification of the dipole structure between the northern Aleutian Low and the southern Pacific High over the North Pacific. The TOMS/OMI Aerosol Index (AI) and MOPITT CO show the enhancement of Asian pollutant transport across the Pacific during periods of positive WP pattern, particularly between 40 and 50°N. This enhancement is confirmed by high correlations of WP index with AI and CO between 40 and 50°N. To evaluate the influence of the WP pattern, we examine several cases of trans-Pacific transport reported in previous research. Interestingly, most trans-Pacific transport cases are associated with the positive WP pattern. During the period of negative WP pattern, reinforced cyclonic wave breaking is consistently found over the western North Pacific, which obstructs zonal advection across the North Pacific. However, some cases show the trans-Pacific transport of CO in the period of negative WP pattern, implying that the WP pattern is more influential on the transport of particles mostly emitted near ∼40°N. This study reveals that the WP pattern can be utilized to diagnose the strength of air pollutant transport from East Asia to North America.
Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei
2015-03-01
Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods will become crucially important in the near future.
Dynamic Transitions and Baroclinic Instability for 3D Continuously Stratified Boussinesq Flows
NASA Astrophysics Data System (ADS)
Şengül, Taylan; Wang, Shouhong
2018-02-01
The main objective of this article is to study the nonlinear stability and dynamic transitions of the basic (zonal) shear flows for the three-dimensional continuously stratified rotating Boussinesq model. The model equations are fundamental equations in geophysical fluid dynamics, and dynamics associated with their basic zonal shear flows play a crucial role in understanding many important geophysical fluid dynamical processes, such as the meridional overturning oceanic circulation and the geophysical baroclinic instability. In this paper, first we derive a threshold for the energy stability of the basic shear flow, and obtain a criterion for local nonlinear stability in terms of the critical horizontal wavenumbers and the system parameters such as the Froude number, the Rossby number, the Prandtl number and the strength of the shear flow. Next, we demonstrate that the system always undergoes a dynamic transition from the basic shear flow to either a spatiotemporal oscillatory pattern or circle of steady states, as the shear strength of the basic flow crosses a critical threshold. Also, we show that the dynamic transition can be either continuous or catastrophic, and is dictated by the sign of a transition number, fully characterizing the nonlinear interactions of different modes. Both the critical shear strength and the transition number are functions of the system parameters. A systematic numerical method is carried out to explore transition in different flow parameter regimes. In particular, our numerical investigations show the existence of a hypersurface which separates the parameter space into regions where the basic shear flow is stable and unstable. Numerical investigations also yield that the selection of horizontal wave indices is determined only by the aspect ratio of the box. We find that the system admits only critical eigenmodes with roll patterns aligned with the x-axis. Furthermore, numerically we encountered continuous transitions to multiple steady states, as well as continuous and catastrophic transitions to spatiotemporal oscillations.
Geomagnetic Storm Effects in the Low- to Middle-Latitude Upper Thermosphere
NASA Technical Reports Server (NTRS)
Burns, A. G.; Killeen, T. L.; Deng, W.; Carignan, G. R.; Roble, R. G.
1995-01-01
In this paper, we use data from the Dynamics Explorer 2 (DE 2) satellite and a theoretical simulation made by using the National Center for Atmospheric Research thermosphere/ionosphere general circulation model (NCAR-TIGCM) to study storm-induced changes in the structure of the upper thermosphere in the low- to middle-latitude (20 deg-40 deg N) region of the winter hemisphere. Our principal results are as follows: (1) The winds associated with the diurnal tide weaken during geomagnetic storms, causing primarily zonally oriented changes in the evening sector, few changes in the middle of the afternoon, a combination of zonal and meridional changes in the late morning region, and mainly meridional changes early in the morning; (2) Decreases in the magnitudes of the horizontal winds associated with the diurnal tide lead to a net downward tendency in the vertical winds blowing through a constant pressure surface; (3) Because of these changes in the vertical wind, there is an increase in compressional heating (or a decrease in cooling through expansion), and thus temperatures in the low- to middle-latitudes of the winter hemisphere increase; (4) Densities of all neutral species increase on a constant height surface, but the pattern of changes in the O/N2 ratio is not well ordered on these surfaces; (5) The pattern of changes in the O/N2 ratio is better ordered on constant pressure surfaces. The increases in this ratio on constant pressure surfaces in the low- to middle-latitude, winter hemisphere are caused by a more downward tendency in the vertical winds that blow through the constant pressure surfaces. Nitrogen-poor air is then advected downward through the pressure surface, increasing the O/N2 ratio; (6) The daytime geographical distribution of the modeled increases in the O/N2 ratio on a constant pressure surface in the low- to middle-latitudes of the winter hemisphere correspond very closely with those of increases in the modeled electron densities at the F2 peak.
NASA Astrophysics Data System (ADS)
Wang, F.; Vavrus, S. J.
2017-12-01
Horizontal temperature advection plays an especially prominent role in affecting winter climate over continental interiors, where both climatological conditions and extreme weather are strongly regulated by transport of remote air masses. Central North America is one such region, and it experienced a major cold-air outbreak (CAO) a few years ago that some have related to amplified Arctic warming. Despite the known importance of dynamics in shaping the winter climate of this sector and the potential for climate change to modify heat transport, limited attention has been paid to the regional impact of thermal advection. Here, we use a reanalysis product and output from the Community Earth System Model's Large Ensemble to quantify the roles of zonal and meridional temperature advection over the central U. S. during winter, both in the late 20th and 21st centuries. We frame our findings as a "tug of war" between opposing influences of the two advection components and between these dynamical forcings vs. thermodynamic changes under greenhouse warming. For example, Arctic amplification leads to much warmer polar air masses, causing a moderation of cold-air advection into the central U. S., yet the model also simulates a wavier mean circulation and stronger northerly flow during CAOs, favoring lower regional temperatures. We also compare the predominant warming effect of zonal advection and overall cooling effect of meridional temperature advection as an additional tug of war. During both historical and future periods, zonal temperature advection is stronger than meridional advection over the Central U. S. The model simulates a future weakening of both zonal and meridional temperature advection, such that westerly flow provides less warming and northerly flow less cooling. On the most extreme warm days in the past and future, both zonal and meridional temperature advection have positive (warming) contributions. On the most extreme cold days, meridional cold air advection is more important than zonal warm air advection. CAOs in the future feature stronger northerly flow but less extreme temperatures (even relative to the warmer climate), exemplifying the complex competition between thermodynamic and dynamic influences.
NASA Astrophysics Data System (ADS)
Yamagishi, Osamu
2018-04-01
Radial wavenumber dependencies of the residual zonal potential for E × B flow in a circular, large aspect ratio tokamak is investigated by means of the collisionless gyrokinetic simulations of Rosenbluth-Hinton (RH) test and the semi-analytic approach using an analytic solution of the gyrokinetic equation Rosenbluth and Hinton (1998 Phys. Rev. Lett. 80 724). By increasing the radial wavenumber from an ion Larmor radius scale {k}r{ρ }i≲ 1 to an electron Larmor radius scale {k}r{ρ }e≲ 1, the well-known level ˜ O[1/(1+1.6{q}2/\\sqrt{r/{R}0})] is retained, while the level remains O(1) when the wavenumber is decreased from the electron to the ion Larmor radius scale, if physically same adiabatic assumption is presumed for species other than the main species that is treated kinetically. The conclusion is not modified by treating both species kinetically, so that in the intermediate scale between the ion and electron Larmor radius scale it seems difficult to determine the level uniquely. The toroidal momentum conservation property in the RH test is also investigated by including an initial parallel flow in addition to the perpendicular flow. It is shown that by taking a balance between the initial parallel flow and perpendicular flows which include both E × B flow and diamagnetic flow in the initial condition, the mechanical toroidal angular momentum is approximately conserved despite the toroidal symmetry breaking due to the finite radial wavenumber zonal modes. Effect of electromagnetic potentials is also investigated. When the electromagnetic potentials are applied initially, fast oscillations which are faster than the geodesic acoustic modes are introduced in the decay phase of the zonal modes. Although the residual level in the long time limit is not modified, this can make the time required to reach the stationary zonal flows longer and may weaken the effectiveness of the turbulent transport suppression by the zonal flows.
NASA Astrophysics Data System (ADS)
Kim, Ji-Won; An, Soon-Il; Jun, Sang-Yoon; Park, Hey-Jin; Yeh, Sang-Wook
2017-08-01
Using observational datasets and numerical model experiments, the mechanism on the slowly varying change in the relationship between the El Niño-Southern Oscillation (ENSO) and the East Asian winter monsoon (EAWM) is investigated. The decadal-window (11-, 15-, and 21-year) moving correlations show a significant change in the boreal wintertime ENSO-EAWM relationship between two sub-periods of 1976‒1992 and 1997‒2013. Such recent change in ENSO-EAWM relationship is mainly attributed to the changes in the intensity and zonal location of the anomalous lower-tropospheric northwest Pacific anticyclone (NWP-AC). NWP-AC commonly develops near the region of the Philippine Sea during the ENSO's peak phase and plays an important role of bridging the tropical convection and mid-latitude teleconnection. On one hand, the intensity of the NWP-AC is influenced by the interdecadal variation in a linkage between ENSO and the Indian Ocean sea surface temperature (SST) variability, referring that a strong connection between the Pacific and Indian Oceans results in the strengthening of NWP-AC response to ENSO. On the other hand, the zonal displacement of the NWP-AC is associated with the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). That is, the tropical Pacific mean state (i.e., zonal SST gradient between climatologically warm western Pacific and cold eastern Pacific)—strengthened by either the negative PDO phase or the positive AMO phase—drives the anomalous ENSO-induced convection to be shifted to the west. With this westward shift, the zonal center of the NWP-AC also migrates westward over the Philippine Islands and exerts stronger connection between ENSO and EAWM. In contrast, the relaxed zonal SST contrast associated with either the positive PDO phase or the negative AMO phase tends to exhibit weaker ENSO-EAWM relationship via both of eastward shifted zonal centers of the anomalous ENSO-induced convection and the NWP-AC. Finally, a series of the numerical experiments conducted by an atmospheric general circulation model supports the observational findings.
NASA Astrophysics Data System (ADS)
Totz, Sonja; Eliseev, Alexey V.; Petri, Stefan; Flechsig, Michael; Caesar, Levke; Petoukhov, Vladimir; Coumou, Dim
2018-02-01
We present and validate a set of equations for representing the atmosphere's large-scale general circulation in an Earth system model of intermediate complexity (EMIC). These dynamical equations have been implemented in Aeolus 1.0, which is a statistical-dynamical atmosphere model (SDAM) and includes radiative transfer and cloud modules (Coumou et al., 2011; Eliseev et al., 2013). The statistical dynamical approach is computationally efficient and thus enables us to perform climate simulations at multimillennia timescales, which is a prime aim of our model development. Further, this computational efficiency enables us to scan large and high-dimensional parameter space to tune the model parameters, e.g., for sensitivity studies.Here, we present novel equations for the large-scale zonal-mean wind as well as those for planetary waves. Together with synoptic parameterization (as presented by Coumou et al., 2011), these form the mathematical description of the dynamical core of Aeolus 1.0.We optimize the dynamical core parameter values by tuning all relevant dynamical fields to ERA-Interim reanalysis data (1983-2009) forcing the dynamical core with prescribed surface temperature, surface humidity and cumulus cloud fraction. We test the model's performance in reproducing the seasonal cycle and the influence of the El Niño-Southern Oscillation (ENSO). We use a simulated annealing optimization algorithm, which approximates the global minimum of a high-dimensional function.With non-tuned parameter values, the model performs reasonably in terms of its representation of zonal-mean circulation, planetary waves and storm tracks. The simulated annealing optimization improves in particular the model's representation of the Northern Hemisphere jet stream and storm tracks as well as the Hadley circulation.The regions of high azonal wind velocities (planetary waves) are accurately captured for all validation experiments. The zonal-mean zonal wind and the integrated lower troposphere mass flux show good results in particular in the Northern Hemisphere. In the Southern Hemisphere, the model tends to produce too-weak zonal-mean zonal winds and a too-narrow Hadley circulation. We discuss possible reasons for these model biases as well as planned future model improvements and applications.
NASA Astrophysics Data System (ADS)
Csank, A. Z.; Wise, E.; McAfee, S. A.
2015-12-01
The trajectory of incoming storms from the Pacific Ocean has a strong impact on hydroclimate in the Pacific Northwest. Shifts between zonal and meridional flow are a key influence on drought and pluvial regimes in both the PNW and the western United States as a whole. Circulation-dependent variability in the isotopic composition of precipitation can be recorded and potentially reconstructed using δ18O records derived from tree-rings. Here we present isotopic records of δ18O and δ13C from ponderosa pine (Pinus ponderosa) for the period 1950-2013 from six sites located in the lee of the Cascades in eastern Washington. Because of the orientation of the Cascades, zonal flow will result in an intensified rain shadow whereas meridional flow allows moisture to penetrate at a lower elevation leading to a lower rainout effect. This means zonal flow results in drier conditions in eastern Washington and the converse for meridional flow. We hypothesized that more depleted precipitation δ18O values will occur with periods of more zonal flow across the PNW and will be recorded by trees at our sites. Results show a strong relationship between our δ18O chronologies and winter precipitation (R = -0.50; p<0.001). δ13C chronologies from the same trees showed a relationship to prior fall/winter (pOct-pDec) precipitation (R = -0.46; p<0.005) suggesting a possible link to antecedent moisture conditions. With a focus on years with clear zonal and meridional flow regimes, we regressed the tree-ring δ18O anomaly against the instrumental record of total precipitation and compared the residual series to records of storm track for the period 1978-2008, and we found a detectable signal where the most depleted δ18O was generally associated with zonal flow and the most enriched δ18O with meridional flow. However, there are still some years where the relationship is unclear. Further work is aimed at understanding these anomalous years and extending our record beyond the instrumental period.
A PV view of the zonal mean distribution of temperature and wind in the extratropical troposphere
NASA Technical Reports Server (NTRS)
Sun, De-Zheng; Lindzen, Richard S.
1994-01-01
The dependence of the temperature and wind distribution of the zonal mean flow in the extratropical troposphere on the gradient of pontential vorticity along isentropes is examined. The extratropics here refer to the region outside the Hadley circulation. Of particular interest is whether the distribution of temperature and wind corresponding to a constant potential vorticity (PV) along isentropes resembles the observed, and the implications of PV homogenization along isentropes for the role of the tropics. With the assumption that PV is homogenized along isentropes, it is found that the temperature distribution in the extratropical troposphere may be determined by a linear, first-order partial differential equation. When the observed surface temperature distribution and tropical lapse rate are used as the boundary conditions, the solution of the equation is close to the observed temperature distribution except in the upper troposphere adjacent to the Hadley circulation, where the troposphere with no PV gradient is considerably colder. Consequently, the jet is also stronger. It is also found that the meridional distribution of the balanced zonal wind is very sensitive to the meridional distribution of the tropopause temperature. The result may suggest that the requirement of the global momentum balance has no practical role in determining the extratropical temperature distribution. The authors further investigated the sensitivity of the extratropical troposphere with constant PV along isentropes to changes in conditions at the tropical boundary (the edge of the Hadley circulation). It is found that the temperature and wind distributions in the extratropical troposphere are sensitive to the vertical distribution of PV at the tropical boundary. With a surface distribution of temperature that decreases linearly with latitude, the jet maximum occurs at the tropical boundary and moves with it. The overall pattern of wind distribution is not sensitive to the change of the position of the tropical boundary. Finally, the temperature and wind distributions of an extratropical troposphere with a finite PV gradient are calculated. It is found that the larger the isentropic PV gradient, the warmer the troposphere and the weaker the jet.
2014-01-01
Background Plasmodium falciparum transmission has decreased significantly in Zambia in the last decade. The malaria transmission is influenced by environmental variables. Incorporation of environmental variables in models of malaria transmission likely improves model fit and predicts probable trends in malaria disease. This work is based on the hypothesis that remotely-sensed environmental factors, including nocturnal dew point, are associated with malaria transmission and sustain foci of transmission during the low transmission season in the Southern Province of Zambia. Methods Thirty-eight rural health centres in Southern Province, Zambia were divided into three zones based on transmission patterns. Correlations between weekly malaria cases and remotely-sensed nocturnal dew point, nocturnal land surface temperature as well as vegetation indices and rainfall were evaluated in time-series analyses from 2012 week 19 to 2013 week 36. Zonal as well as clinic-based, multivariate, autoregressive, integrated, moving average (ARIMAX) models implementing environmental variables were developed to model transmission in 2011 week 19 to 2012 week 18 and forecast transmission in 2013 week 37 to week 41. Results During the dry, low transmission season significantly higher vegetation indices, nocturnal land surface temperature and nocturnal dew point were associated with the areas of higher transmission. Environmental variables improved ARIMAX models. Dew point and normalized differentiated vegetation index were significant predictors and improved all zonal transmission models. In the high-transmission zone, this was also seen for land surface temperature. Clinic models were improved by adding dew point and land surface temperature as well as normalized differentiated vegetation index. The mean average error of prediction for ARIMAX models ranged from 0.7 to 33.5%. Forecasts of malaria incidence were valid for three out of five rural health centres; however, with poor results at the zonal level. Conclusions In this study, the fit of ARIMAX models improves when environmental variables are included. There is a significant association of remotely-sensed nocturnal dew point with malaria transmission. Interestingly, dew point might be one of the factors sustaining malaria transmission in areas of general aridity during the dry season. PMID:24927747
Nygren, David; Stoyanov, Cristina; Lewold, Clemens; Månsson, Fredrik; Miller, John; Kamanga, Aniset; Shiff, Clive J
2014-06-13
Plasmodium falciparum transmission has decreased significantly in Zambia in the last decade. The malaria transmission is influenced by environmental variables. Incorporation of environmental variables in models of malaria transmission likely improves model fit and predicts probable trends in malaria disease. This work is based on the hypothesis that remotely-sensed environmental factors, including nocturnal dew point, are associated with malaria transmission and sustain foci of transmission during the low transmission season in the Southern Province of Zambia. Thirty-eight rural health centres in Southern Province, Zambia were divided into three zones based on transmission patterns. Correlations between weekly malaria cases and remotely-sensed nocturnal dew point, nocturnal land surface temperature as well as vegetation indices and rainfall were evaluated in time-series analyses from 2012 week 19 to 2013 week 36. Zonal as well as clinic-based, multivariate, autoregressive, integrated, moving average (ARIMAX) models implementing environmental variables were developed to model transmission in 2011 week 19 to 2012 week 18 and forecast transmission in 2013 week 37 to week 41. During the dry, low transmission season significantly higher vegetation indices, nocturnal land surface temperature and nocturnal dew point were associated with the areas of higher transmission. Environmental variables improved ARIMAX models. Dew point and normalized differentiated vegetation index were significant predictors and improved all zonal transmission models. In the high-transmission zone, this was also seen for land surface temperature. Clinic models were improved by adding dew point and land surface temperature as well as normalized differentiated vegetation index. The mean average error of prediction for ARIMAX models ranged from 0.7 to 33.5%. Forecasts of malaria incidence were valid for three out of five rural health centres; however, with poor results at the zonal level. In this study, the fit of ARIMAX models improves when environmental variables are included. There is a significant association of remotely-sensed nocturnal dew point with malaria transmission. Interestingly, dew point might be one of the factors sustaining malaria transmission in areas of general aridity during the dry season.
Simulation of carbon isotope discrimination of the terrestrial biosphere
NASA Astrophysics Data System (ADS)
Suits, N. S.; Denning, A. S.; Berry, J. A.; Still, C. J.; Kaduk, J.; Miller, J. B.; Baker, I. T.
2005-03-01
We introduce a multistage model of carbon isotope discrimination during C3 photosynthesis and global maps of C3/C4 plant ratios to an ecophysiological model of the terrestrial biosphere (SiB2) in order to predict the carbon isotope ratios of terrestrial plant carbon globally at a 1° resolution. The model is driven by observed meteorology from the European Centre for Medium-Range Weather Forecasts (ECMWF), constrained by satellite-derived Normalized Difference Vegetation Index (NDVI) and run for the years 1983-1993. Modeled mean annual C3 discrimination during this period is 19.2‰; total mean annual discrimination by the terrestrial biosphere (C3 and C4 plants) is 15.9‰. We test simulation results in three ways. First, we compare the modeled response of C3 discrimination to changes in physiological stress, including daily variations in vapor pressure deficit (vpd) and monthly variations in precipitation, to observed changes in discrimination inferred from Keeling plot intercepts. Second, we compare mean δ13C ratios from selected biomes (Broadleaf, Temperate Broadleaf, Temperate Conifer, and Boreal) to the observed values from Keeling plots at these biomes. Third, we compare simulated zonal δ13C ratios in the Northern Hemisphere (20°N to 60°N) to values predicted from high-frequency variations in measured atmospheric CO2 and δ13C from terrestrially dominated sites within the NOAA-Globalview flask network. The modeled response to changes in vapor pressure deficit compares favorably to observations. Simulated discrimination in tropical forests of the Amazon basin is less sensitive to changes in monthly precipitation than is suggested by some observations. Mean model δ13C ratios for Broadleaf, Temperate Broadleaf, Temperate Conifer, and Boreal biomes compare well with the few measurements available; however, there is more variability in observations than in the simulation, and modeled δ13C values for tropical forests are heavy relative to observations. Simulated zonal δ13C ratios in the Northern Hemisphere capture patterns of zonal δ13C inferred from atmospheric measurements better than previous investigations. Finally, there is still a need for additional constraints to verify that carbon isotope models behave as expected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balachandran, N.K.; Rind, D.
1995-08-01
Results of experiments with a GCM involving changes in UV input ({plus_minus}25%, {plus_minus}10%, {plus_minus}5% at wavelengths below 0.3 {mu}m) and simulated equatorial QBO are presented, with emphasis on the middle atmosphere response. The UV forcing employed is larger than observed during the last solar cycle and does not vary with wavelength, hence the relationship of these results to those from actual solar UV forcing should be treated with caution. The QBO alters the location of the zero wind line and the horizontal shear of the zonal wind in the low to middle stratosphere, while the UV change alters the magnitudemore » of the polar jet and the vertical shear of the zonal wind. Both mechanisms thus affect planetary wave propagation. The east phase of the QBO leads to tropical cooling and high-latitude warming in the lower stratosphere, with opposite effects in the upper stratosphere. This quadrupole pattern is also seen in the observations. The high-latitude responses are due to altered planetary wave effects, while the model`s tropical response in the upper stratosphere is due to gravity wave drag. Increased UV forcing warms tropical latitudes in the middle atmosphere, resulting in stronger extratropical west winds, an effect which peaks in the upper stratosphere/lower mesosphere with the more extreme UV forcing but at lower altitudes and smaller wind variations with the more realistic forcing. The increased vertical gradient of the zonal wind leads to increased vertical propagation of planetary waves, altering energy convergences and temperatures. The exact altitudes affected depend upon the UV forcing applied. Results with combined QBO and UV forcing show that in the Northern Hemisphere, polar warming for the east QBO is stronger when the UV input is reduced by 25% and 5% as increased wave propagation to high latitudes (east QBO effect) is prevented from then propagating vertically (reduced UV effect). 30 refs., 14 figs., 6 tabs.« less
Baseline predictability of daily east Asian summer monsoon circulation indices
NASA Astrophysics Data System (ADS)
Ai, Shucong; Chen, Quanliang; Li, Jianping; Ding, Ruiqiang; Zhong, Quanjia
2017-05-01
The nonlinear local Lyapunov exponent (NLLE) method is adopted to quantitatively determine the predictability limit of East Asian summer monsoon (EASM) intensity indices on a synoptic timescale. The predictability limit of EASM indices varies widely according to the definitions of indices. EASM indices defined by zonal shear have a limit of around 7 days, which is higher than the predictability limit of EASM indices defined by sea level pressure (SLP) difference and meridional wind shear (about 5 days). The initial error of EASM indices defined by SLP difference and meridional wind shear shows a faster growth than indices defined by zonal wind shear. Furthermore, the indices defined by zonal wind shear appear to fluctuate at lower frequencies, whereas the indices defined by SLP difference and meridional wind shear generally fluctuate at higher frequencies. This result may explain why the daily variability of the EASM indices defined by zonal wind shear tends be more predictable than those defined by SLP difference and meridional wind shear. Analysis of the temporal correlation coefficient (TCC) skill for EASM indices obtained from observations and from NCEP's Global Ensemble Forecasting System (GEFS) historical weather forecast dataset shows that GEFS has a higher forecast skill for the EASM indices defined by zonal wind shear than for indices defined by SLP difference and meridional wind shear. The predictability limit estimated by the NLLE method is shorter than that in GEFS. In addition, the June-September average TCC skill for different daily EASM indices shows significant interannual variations from 1985 to 2015 in GEFS. However, the TCC for different types of EASM indices does not show coherent interannual fluctuations.
NASA Astrophysics Data System (ADS)
Li, Junde; Liang, Chujin; Tang, Youmin; Liu, Xiaohui; Lian, Tao; Shen, Zheqi; Li, Xiaojing
2017-11-01
The study of Equatorial Undercurrent (EUC) has attracted a broad attention in recent years due to its strong response and feedback to the Indian Ocean Dipole. In this paper, we first produce a high-quality simulation of three-dimensional temperature, salinity and zonal current simulation from 1982 to 2014, using a high-resolution ocean general circulation model. On this basis, with two sensitivity experiments, we investigate the role of temperature and salinity anomalies in driving and enhancing the EUC during the positive IOD events by examining the variation of the EUC seasonal cycle and diagnosing the zonal momentum budget along the equatorial Indian Ocean. Our results show that during January-March, the EUC can appear along the entire equatorial Indian Ocean in all years, but during August-November, the EUC can appear and reach the eastern Indian Ocean only during the positive IOD events. The zonal momentum budget analysis indicates that the pressure gradient force contributes most to the variation of the eastward acceleration of zonal currents in the subsurface. During the positive IOD events, strong negative subsurface temperature anomalies exist in the eastern Indian Ocean, with negative surface salinity anomalies in the central and eastern Indian Ocean, resulting in a large pressure gradient force to drive EUC during the August-November. Further, the results of two sensitivity experiments indicate that the temperature anomalies significantly impact the pressure gradient force, playing a leading role in driving the EUC, while the surface salinity anomalies can secondarily help to intensify the eastward EUC through increasing the zonal density gradient in the eastern Indian Ocean and impacting the vertical momentum advection in the subsurface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harlim, John, E-mail: jharlim@psu.edu; Mahdi, Adam, E-mail: amahdi@ncsu.edu; Majda, Andrew J., E-mail: jonjon@cims.nyu.edu
2014-01-15
A central issue in contemporary science is the development of nonlinear data driven statistical–dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partialmore » noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east–west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model.« less
The effect of the equatorially symmetric zonal winds of Saturn on its gravitational field
NASA Astrophysics Data System (ADS)
Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John D.
2018-04-01
The penetration depth of Saturn’s cloud-level winds into its interior is unknown. A possible way of estimating the depth is through measurement of the effect of the winds on the planet’s gravitational field. We use a self-consistent perturbation approach to study how the equatorially symmetric zonal winds of Saturn contribute to its gravitational field. An important advantage of this approach is that the variation of its gravitational field solely caused by the winds can be isolated and identified because the leading-order problem accounts exactly for rotational distortion, thereby determining the irregular shape and internal structure of the hydrostatic Saturn. We assume that (i) the zonal winds are maintained by thermal convection in the form of non-axisymmetric columnar rolls and (ii) the internal structure of the winds, because of the Taylor-Proundman theorem, can be uniquely determined by the observed cloud-level winds. We calculate both the variation ΔJn , n = 2, 4, 6 … of the axisymmetric gravitational coefficients Jn caused by the zonal winds and the non-axisymmetric gravitational coefficients ΔJnm produced by the columnar rolls, where m is the azimuthal wavenumber of the rolls. We consider three different cases characterized by the penetration depth 0.36, R S, 0.2, R S and 0.1, R S, where R S is the equatorial radius of Saturn at the 1-bar pressure level. We find that the high-degree gravitational coefficient (J 12 + ΔJ 12) is dominated, in all the three cases, by the effect of the zonal flow with |ΔJ 12/J 12| > 100% and that the size of the non-axisymmetric coefficients ΔJ mn directly reflects the depth and scale of the flow taking place in the Saturnian interior.
NASA Astrophysics Data System (ADS)
Kumar, Karanam Kishore; Ramkumar, Geetha; Shelbi, S. T.
2007-12-01
In the present communication, initial results from the allSKy interferometric METeor (SKiYMET) radar installed at Thumba (8.5°N, 77°E) are presented. The meteor radar system provides hourly zonal and meridional winds in the mesosphere lower thermosphere (MLT) region. The meteor radar measured zonal and meridional winds are compared with nearby MF radar at Tirunalveli (8.7°N, 77.8°E). The present study provided an opportunity to compare the winds measured by the two different techniques, namely, interferometry and spaced antenna drift methods. Simultaneous wind measurements for a total number of 273 days during September 2004 to May 2005 are compared. The comparison showed a very good agreement between these two techniques in the height region 82-90 km and poor agreement above this height region. In general, the zonal winds compare very well as compared to the meridional winds. The observed discrepancies in the wind comparison above 90 km are discussed in the light of existing limitations of both the radars. The detailed analysis revealed the consistency of the measured winds by both the techniques. However, the discrepancies are observed at higher altitudes and are attributed to the contamination of MF radar neutral wind measurements with Equatorial Electro Jet (EEJ) induced inospheric drifts rather than the limitations of the spaced antenna technique. The comparison of diurnal variation of zonal winds above 90 km measured by both the radars is in reasonably good agreement in the absence of EEJ (during local nighttime). It is also been noted that the difference in the zonal wind measurements by both the radars is directly related to the strength of EEJ, which is a noteworthy result from the present study.
NASA Astrophysics Data System (ADS)
Sánchez-Lavega, A.; Rogers, J. H.; Orton, G. S.; García-Melendo, E.; Legarreta, J.; Colas, F.; Dauvergne, J. L.; Hueso, R.; Rojas, J. F.; Pérez-Hoyos, S.; Mendikoa, I.; Iñurrigarro, P.; Gomez-Forrellad, J. M.; Momary, T.; Hansen, C. J.; Eichstaedt, G.; Miles, P.; Wesley, A.
2017-05-01
We describe a huge planetary-scale disturbance in the highest-speed Jovian jet at latitude 23.5°N that was first observed in October 2016 during the Juno perijove-2 approach. An extraordinary outburst of four plumes was involved in the disturbance development. They were located in the range of planetographic latitudes from 22.2° to 23.0°N and moved faster than the jet peak with eastward velocities in the range 155 to 175 m s-1. In the wake of the plumes, a turbulent pattern of bright and dark spots (wave number 20-25) formed and progressed during October and November on both sides of the jet, moving with speeds in the range 100-125 m s-1 and leading to a new reddish and homogeneous belt when activity ceased in late November. Nonlinear numerical models reproduce the disturbance cloud patterns as a result of the interaction between local sources (the plumes) and the zonal eastward jet.
NASA Technical Reports Server (NTRS)
Zhen, Li; Adamec, David
2009-01-01
A state-of-the-art numerical model is used to investigate the possibility of determining freshwater flux fields from temporal changes io sea-surface salinity (SSS), a goal of the satellite salinity-measuring mission, Aquarius/SAC-D. Because the estimated advective temporal scale is usually longer than the Aquarius/SAC-D revisit time, the possibility of producing freshwater flux estimates from temporal salinity changes is first examined by using a correlation analysis. For the mean seasonal cycle, the patterns of the correlations between the freshwater fluxes and surface salinity temporal tendencies are mainly zonally oriented, and are highest where the local precipitation is also relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude moon tracks and are relatively small in the tropics. The complex correlation patterns presented here suggest that a global retrieval of the difference between evaporation and precipitation (E-P) from salinity changes requires more complex techniques than a simple consideration of local balance with surface forcing.
A numerical model of gravity wave breaking and stress in the mesosphere
NASA Technical Reports Server (NTRS)
Schoeberl, M. R.; Strobel, D. F.; Apruzese, J. P.
1983-01-01
The goal of the study is to calculate numerically the deceleration and heating caused by breaking gravity waves. The effect of the radiative dissipation of the wave is included as vertical-wavelength-dependent Newtonian cooling. The parameterization for zonal deceleration is extended by breaking gravity waves (Lindzen, 1981) to include the turbulent diffusion of heat and momentum. After describing the numerical model, the numerical results are presented and compared with the parameterizations in a noninteractive model of the mean zonal wind. Attention is then given to the transport of constituents by gravity waves and the attendant turbulent zone. It is noted that if gravity wave breaking were not an intermittent process, gravity wave stresses would produce an adiabatic mesosphere with a zonal mean velocity close to the phase speed of the breaking wave.
Low- and mid-latitude ionospheric electric fields during the January 1984 GISMOS campaign
NASA Technical Reports Server (NTRS)
Fejer, B. G.; Kelley, M. C.; Senior, C.; De La Beaujardiere, O.; Lepping, R.
1990-01-01
The electrical coupling between the high-, middle-, and low-latitude ionospheres during January 17-19, 1984 is examined, using interplanetary and high-latitude magnetic field data together with F region plasma drift measurements from the EISCAT, Sondre Stromfjord, Millstone Hill, Saint-Santin, Arecibo, and Jicamarca incoherent scatter radars. The penetration both the zonal and meridional electric field components of high-latitude origin into the low-latitude and the equatorial ionospheres are studied. The observations in the postmidnight sector are used to compare the longitudinal variations of the zonal perturbation electric field with predictions made from global convection models. The results show that the meridional electric field perturbations are considerably more attenuated with decreasing latitude than the zonal fluctuations. It is concluded that variations in the meridional electric field at low latitudes are largely due to dynamo effects.
Remote sensing of mesospheric winds with the High-Resolution Doppler Imager
NASA Technical Reports Server (NTRS)
Hays, Paul B.; Abreu, V. J.; Burrage, M. D.; Gell, D. A.; Grassi, H. J.; Marshall, A. R.; Morton, Y. T.; Ortland, D. A.; Skinner, W. R.; Wu, D. L.
1992-01-01
Observations of the winds in the upper atmosphere obtained with the High-Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) are discussed. This instrument is a very stable high-resolution triple-etalon Fabry-Perot interferometer, which is used to observe the slight Doppler shifts of absorption and emission lines in the O2 Atmospheric bands induced by atmospheric motions. Preliminary observations indicate that the winds in the mesosphere and lower thermosphere are a mixture of migrating and non-migrating tides, and planetary-scale waves. The mean meridional winds are dominated by the 1,1 diurnal tide which is easily extracted from the daily zonal means of the satellite observations. The daily mean zonal winds are a mixture of the diurnal tide and a zonal flow which is consistent with theoretical expectations.
Characteristics of Southern Hemisphere 200 mb flow as determined from satellite data
NASA Technical Reports Server (NTRS)
Adler, R. F.
1976-01-01
Characteristics of Southern Hemisphere 200 mb flow are examined using geopotential height fields constructed with the aid of satellite based thermal structure. Similar Northern Hemisphere, satellite based fields are developed in order to make interhemispheric comparisons. Results indicate that both the zonal and meridional components of the S.H. eddy kinetic energy are as large as their N.H. counterparts. In winter the principal interhemispheric difference with respect to eddy kinetic energy is that the S.H. standing eddies are much less important only to the meridional component. Zonal component standing energy is about equal in the two hemispheres. In summer the S.H. has larger zonal eddy kinetic energy than the N.H. and smaller standing eddy contributions in both components. The meridional spectra show a preference for intermediate size transient waves.
NASA Technical Reports Server (NTRS)
Stanford, J. L.; Short, D. A.
1981-01-01
Global microwave brightness temperature measurements are analyzed to investigate the range of meridional wavelengths 2000-3000 km where spectral studies reveal larger than expected variance. The data, from the TIROS-N Microwave Sounding Unit, are sensitive to lower stratospheric temperatures (30-150 mb). The results reveal striking temperature anomalies with short meridional wavelengths (2000-3000 km) and long zonal wavelengths (zonal wavenumbers 1-4). The anomalies, with amplitudes approximately 1-2 K, extend from the equatorial region to at least as high as 70 deg N and 70 deg S during January 1979. The features exhibit slow eastward movement or else are nearly stationary for several days. In the Northern Hemisphere, comparison with NMC data reveals that the strongest features tend to be associated with major jet streams.
Three-dimensional baroclinic instability of a Hadley cell for small Richardson number
NASA Technical Reports Server (NTRS)
Antar, B. N.; Fowlis, W. W.
1983-01-01
For the case of a baroclinic flow whose Richardson number, Ri, is of order unity, a three-dimensional linear stability analysis is conducted on the basis of a model for a thin, horizontal, rotating fluid layer which is subjected to horizontal and vertical temperature gradients. The Hadley cell basic state and stability analysis are both based on the Navier-Stokes and energy equations, and perturbations possessing zonal, meridional, and vertical structures are considered. An attempt is made to extend the previous theoretical work on three-dimensional baroclinic instability for small Ri to a more realistic model involving the Prandtl and Ekman numbers, as well as to finite growth rates and a wider range of the zonal wavenumber. In general, it is found that the symmetric modes of maximum growth are not purely symmetric, but have a weak zonal structure.
A model of stratospheric chemistry and transport on an isentropic surface
NASA Technical Reports Server (NTRS)
Austin, John; Holton, James R.
1990-01-01
This paper presents a new photochemical transport model designed to simulate the behavior of stratospheric trace species in the middle stratosphere. The model has an Eulerian grid with the latitude and longitude coordinates on a single isentropic surface (hemispheric or global), in which both the dynamical and the photochemical processes can be accurately represented. The model is intgegrated for 12 days with winds and temperatures supplied by three-dimensional integration of an idealized wavenumber-one disturbance. The results for the long-lived tracers such as N2O showed excellent correlation with the potential vorticity distribution, validating the transport scheme. Calculations with zonally averaged wind and temperature fields showed that discrepancies in the calculation of the zonal mean were less than 10 percent for O3 and HNO3, compared with the zonal mean of the previous results.
Cluster analysis of multiple planetary flow regimes
NASA Technical Reports Server (NTRS)
Mo, Kingtse; Ghil, Michael
1987-01-01
A modified cluster analysis method was developed to identify spatial patterns of planetary flow regimes, and to study transitions between them. This method was applied first to a simple deterministic model and second to Northern Hemisphere (NH) 500 mb data. The dynamical model is governed by the fully-nonlinear, equivalent-barotropic vorticity equation on the sphere. Clusters of point in the model's phase space are associated with either a few persistent or with many transient events. Two stationary clusters have patterns similar to unstable stationary model solutions, zonal, or blocked. Transient clusters of wave trains serve as way stations between the stationary ones. For the NH data, cluster analysis was performed in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters are found in the low-frequency band of more than 10 days, and transient clusters in the bandpass frequency window between 2.5 and 6 days. In the low-frequency band three pairs of clusters determine, respectively, EOFs 1, 2, and 3. They exhibit well-known regional features, such as blocking, the Pacific/North American (PNA) pattern and wave trains. Both model and low-pass data show strong bimodality. Clusters in the bandpass window show wave-train patterns in the two jet exit regions. They are related, as in the model, to transitions between stationary clusters.
Stratospheric ozone levels and their role for the dynamic response to volcanic eruptions
NASA Astrophysics Data System (ADS)
Muthers, Stefan; Anet, Julien G.; Raible, Christoph C.; Brönnimann, Stefan; Arfeuille, Florian; Peter, Tom; Rozanov, Eugene; Shapiro, Alexander; Beer, Juerg; Steinhilber, Friedhelm; Brugnara, Yuri; Schmutz, Werner
2013-04-01
The role of different background ozone climatologies for the dynamic response to tropical volcanic eruptions is analyzed using an ensemble of simulation with the atmospheric-chemistry-ocean model SOCOL/MPIOM. In this sensitivity study a single tropical eruption of Tambora-size is applied to an ensemble with either pre-industrial ozone concentrations or present day concentrations respectively. The analysis focuses on the characteristic of the Northern Europe winter warming pattern following the eruption, that has been identified after several eruptions in observations and in proxy data. The sensitivity study reveals a higher probability for a large and significant winter warming pattern with pre-industrial ozone levels, when the dynamic response of the chemistry to the eruption is disabled in the model. The positive temperature anomaly is driven by a positive NAO-like pressure pattern that lead to the advection of warm Atlantic air towards Northern Europe. With present day concentrations winter warmings are also found in some ensemble members, but overall the probability is strongly reduced. It is shown, that with pre-industial day ozone concentrations the coupling between positive anomalies of the polar vortex and the zonal wind in the troposphere is more effective, which could explain the higher likelihood of positive NAO-like pressure patterns and positive temperature anomalies in Northern Europe.
NASA Astrophysics Data System (ADS)
Chanyshev, AI; Belousova, OE
2018-03-01
The authors determine stress and deformation in a heterogeneous rock mass at the preset displacement and Cauchy stress vector at the boundary of an underground excavation. The influence of coordinates on Young’s modulus, shear modulus and ultimate strength is shown. It is found that regions of tension and compression alternate at the excavation boundary—i.e. zonal rock disintegration phenomenon is observed.
Nonlinear growth of zonal flows by secondary instability in general magnetic geometry
Plunk, G. G.; Navarro, A. Banon
2017-02-23
Here we present a theory of the nonlinear growth of zonal flows in magnetized plasma turbulence, by the mechanism of secondary instability. The theory is derived for general magnetic geometry, and is thus applicable to both tokamaks and stellarators. The predicted growth rate is shown to compare favorably with nonlinear gyrokinetic simulations, with the error scaling as expected with the small parameter of the theory.
Magnetic activity and radial electric field during I-phase in ASDEX Upgrade plasmas
NASA Astrophysics Data System (ADS)
Birkenmeier, Gregor; Cavedon, Marco; Conway, Garrard; Manz, Peter; Puetterich, Thomas; Stroth, Ulrich; ASDEX Upgrade Team Team
2016-10-01
At the transition from the low (L-mode) to the high (H-mode) confinement regime, so called limit-cycle oscillations (LCOs) can occur at the edge of a fusion plasma. During the LCO evolution, which is also called I-phase, the relative importance of background flows and turbulence-generated zonal flows can change, and it is still unclear whether a large contribution of zonal flows is a necessary condition for triggering the H-mode. At ASDEX Upgrade, I-phases have been studied in a wide range of parameters. The modulation of flows and gradients during I-phase is accompanied by a strong magnetic activity with a specific poloidal and toroidal structure. The magnetic activity increases during the development of an edge pedestal during I-phase, and is preceded by type-III ELM-like precursors. During all phases of the I-phase, the radial electric field Er is found to be close to the neoclassical prediction of the electric field Er , neo. These results suggest that zonal flows do not contribute significantly to the LCO dynamics, and the burst like behavior is reminiscent of a critical-gradient driven instability like edge localized modes. These observations on ASDEX Upgrade seem to be inconsistent with LCO models based on an interaction between zonal flows and turbulence.
Zonal Flows and Long-lived Axisymmetric Pressure Bumps in Magnetorotational Turbulence
NASA Astrophysics Data System (ADS)
Johansen, A.; Youdin, A.; Klahr, H.
2009-06-01
We study the behavior of magnetorotational turbulence in shearing box simulations with a radial and azimuthal extent up to 10 scale heights. Maxwell and Reynolds stresses are found to increase by more than a factor of 2 when increasing the box size beyond two scale heights in the radial direction. Further increase of the box size has little or no effect on the statistical properties of the turbulence. An inverse cascade excites magnetic field structures at the largest scales of the box. The corresponding 10% variation in the Maxwell stress launches a zonal flow of alternating sub- and super-Keplerian velocity. This, in turn, generates a banded density structure in geostrophic balance between pressure and Coriolis forces. We present a simplified model for the appearance of zonal flows, in which stochastic forcing by the magnetic tension on short timescales creates zonal flow structures with lifetimes of several tens of orbits. We experiment with various improved shearing box algorithms to reduce the numerical diffusivity introduced by the supersonic shear flow. While a standard finite difference advection scheme shows signs of a suppression of turbulent activity near the edges of the box, this problem is eliminated by a new method where the Keplerian shear advection is advanced in time by interpolation in Fourier space.
NASA Astrophysics Data System (ADS)
Yue, Jia; Xu, Jiyao; Chang, Loren C.; Wu, Qian; Liu, Han-Li; Lu, Xian; Russell, James
2013-12-01
The morphology of the migrating terdiurnal tide with zonal wavenumber 3 (TW3) in the mesosphere and lower thermosphere (MLT) is revealed using the TIMED satellite datasets from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) and the TIMED Doppler Interferometer (TIDI) instruments from 2002 to 2009, as well as the Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM). The annual mean structures of the TW3 from the TIME-GCM clearly resemble the first real symmetric (3,3) Hough mode. The TW3 temperature and zonal wind components have three peaks at midlatitudes and near the equator, while the TW3 meridional wind components show four peaks at mid and low latitudes. These features are consistent with those resolved in SABER temperature and TIDI zonal wind above ~95 km. TW3 components in the TIME-GCM are stronger during winter and spring months at midlatitudes, which is in agreement with previous ground-based radar measurements. On the other hand, TW3 components of temperature, zonal and meridional winds from SABER and TIDI display different seasonal variations at different altitudes and latitudes. The results presented in this paper will provide an observational basis for further modeling study of terdiurnal tide impacts on the thermosphere and ionosphere.
NASA Astrophysics Data System (ADS)
Smoniewski, J.; Faber, B. J.; Sánchez, E.; Calvo, I.; Pueschel, M. J.; Likin, K. M.; Deng, C. B.; Talmadge, J. N.
2017-10-01
The Helically Symmetric eXperiment (HSX) has demonstrated reduced neoclassical transport in the plasma core with quasi-symmetry [Lore Thesis 2010], while outside this region the electron thermal diffusivity is well above the neoclassical level, likely due to the Trapped Electron Mode (TEM) [Weir PoP 2015, Faber PoP 2015]. We compare gyrokinetic simulations of the TEM to experimental heat flux and density fluctuation measurements for two configurations: Quasi-Helical Symmetry (QHS) and broken symmetry (Mirror). Both experiment and simulation show that the heat flux for Mirror is larger than for QHS by about a factor of two. Initial interferometer measurements provide evidence that density-gradient-driven TEMs are driving turbulence. Calculations of the collisionless damping of zonal flows provide another perspective into the difference between geometries. Similar to other stellarators [Monreal PPCF 2016], the zonal flow residual goes to zero at long wavelengths in both configurations. Additionally, the very short time decay of the zonal flow due to neoclassical polarization is constant between configurations. However, the collisionless damping time is longer and the zonal flow oscillation frequency is smaller in QHS than Mirror, consistent with reduced radial particle drifts. Work supported by the US DOE under Grant DE-FG02-93ER54222.
NASA Astrophysics Data System (ADS)
He, Shengping; Gao, Yongqi; Furevik, Tore; Wang, Huijun; Li, Fei
2018-01-01
In contrast to previous studies that have tended to focus on the influence of the total Arctic sea-ice cover on the East Asian summer tripole rainfall pattern, the present study identifies the Barents Sea as the key region where the June sea-ice variability exerts the most significant impacts on the East Asian August tripole rainfall pattern, and explores the teleconnection mechanisms involved. The results reveal that a reduction in June sea ice excites anomalous upward air motion due to strong near-surface thermal forcing, which further triggers a meridional overturning wave-like pattern extending to midlatitudes. Anomalous downward motion therefore forms over the Caspian Sea, which in turn induces zonally oriented overturning circulation along the subtropical jet stream, exhibiting the east-west Rossby wave train known as the Silk Road pattern. It is suggested that the Bonin high, a subtropical anticyclone predominant near South Korea, shows a significant anomaly due to the eastward extension of the Silk Road pattern to East Asia. As a possible descending branch of the Hadley cell, the Bonin high anomaly ultimately triggers a meridional overturning, establishing the Pacific-Japan pattern. This in turn induces an anomalous anticyclone and cyclone pair over East Asia, and a tripole vertical convection anomaly meridionally oriented over East Asia. Consequently, a tripole rainfall anomaly pattern is observed over East Asia. Results from numerical experiments using version 5 of the Community Atmosphere Model support the interpretation of this chain of events.
NASA Astrophysics Data System (ADS)
He, S.; Gao, Y.; Furevik, T.; Huijun, W.; Li, F.
2017-12-01
In contrast to previous studies that have tended to focus on the influence of the total Arctic sea-ice cover on the East Asian summer tripole rainfall pattern, the present study identifies the Barents Sea as the key region where the June sea-ice variability exerts the most significant impacts on the East Asian August tripole rainfall pattern, and explores the teleconnection mechanisms involved. The results reveal that a reduction in June sea ice excites anomalous upward air motion due to strong near-surface thermal forcing, which further triggers a meridional overturning wave-like pattern extending to midlatitudes. Anomalous downward motion therefore forms over the Caspian Sea, which in turn induces zonally oriented overturning circulation along the subtropical jet stream, exhibiting the east-west Rossby wave train known as the Silk Road pattern. It is suggested that the Bonin high, a subtropical anticyclone predominant near South Korea, shows a significant anomaly due to the eastward extension of the Silk Road pattern to East Asia. As a possible descending branch of the Hadley cell, the Bonin high anomaly ultimately triggers a meridional overturning, establishing the Pacific-Japan pattern. This in turn induces an anomalous anticyclone and cyclone pair over East Asia, and a tripole vertical convection anomaly meridionally oriented over East Asia. Consequently, a tripole rainfall anomaly pattern is observed over East Asia. Results from numerical experiments using version 5 of the Community Atmosphere Model support the interpretation of this chain of events.
NASA Astrophysics Data System (ADS)
Xu, Zhiqing; Fan, Ke; Wang, HuiJun
2017-09-01
The severe drought over northeast Asia in summer 2014 and the contribution to it by sea surface temperature (SST) anomalies in the tropical Indo-Pacific region were investigated from the month-to-month perspective. The severe drought was accompanied by weak lower-level summer monsoon flow and featured an obvious northward movement during summer. The mid-latitude Asian summer (MAS) pattern and East Asia/Pacific teleconnection (EAP) pattern, induced by the Indian summer monsoon (ISM) and western North Pacific summer monsoon (WNPSM) rainfall anomalies respectively, were two main bridges between the SST anomalies in the tropical Indo-Pacific region and the severe drought. Warming in the Arabian Sea induced reduced rainfall over northeast India and then triggered a negative MAS pattern favoring the severe drought in June 2014. In July 2014, warming in the tropical western North Pacific led to a strong WNPSM and increased rainfall over the Philippine Sea, triggering a positive EAP pattern. The equatorial eastern Pacific and local warming resulted in increased rainfall over the off-equatorial western Pacific and triggered an EAP-like pattern. The EAP pattern and EAP-like pattern contributed to the severe drought in July 2014. A negative Indian Ocean dipole induced an anomalous meridional circulation, and warming in the equatorial eastern Pacific induced an anomalous zonal circulation, in August 2014. The two anomalous cells led to a weak ISM and WNPSM, triggering the negative MAS and EAP patterns responsible for the severe drought. Two possible reasons for the northward movement of the drought were also proposed.
Study of the lower stratospheric thermal structure and total ozone from Nimbus-4 IRIS
NASA Technical Reports Server (NTRS)
Prabhakara, C.
1976-01-01
The global distribution of temperature in the stratosphere from 100 to 10 mbar and the total ozone in the atmosphere are remotely sensed from the Nimbus-4 IRIS measurements for a period of about one year. The temperature and ozone data are presented in the form of monthly mean global maps. The standard deviations of temperature and ozone with respect to zonal averages are calculated. The mean and the variable state of the stratosphere are discussed with the help of these observations. The lower stratosphere in the tropical regions reveals a significant wave number one pattern in the circulation. The Arctic and Antarctic stratospheric winter circulation regimes display a different behavior apparently due to the ocean and orographic differences.
Benefit-cost evaluation of an intra-regional air service in the Bay area
NASA Technical Reports Server (NTRS)
Haefner, L. E.
1977-01-01
Utilization of an iterative statistical model is presented to evaluate combinations of commuter airport sites and surface transportation facilities in confunction with service by a given commuter aircraft type in light of Bay Area regional growth alternatives and peak and off-peak regional travel patterns. The model evaluates such transportation options with respect to criteria of airline profitability, public acceptance, and public and private nonuser costs. It incorporates information modal split, peak and off-peak use of the air commuter fleet, terminal and airport cost, development costs and uses of land in proximity to the airport sites, regional population shifts, and induced zonal shifts in travel demand. The model is multimodal in its analytical capability, and performs exhaustive sensitivity analysis.
NASA Astrophysics Data System (ADS)
Gorobtsova, O. N.; Khezheva, F. V.; Uligova, T. S.; Tembotov, R. Kh.
2015-03-01
The biochemical properties inherent to the main types of automorphic soils developed in different bioclimatic conditions of Elbrus and Terek variants of the vertical zonality within Kabardino-Balkaria were compared. The natural-climatic conditions of these variants noticeably affect the soil cover pattern. The ratio of the oxidase and hydrolase activities is sensitive to the moisture conditions in which these soils are formed. The redox processes are more active in drier conditions, whereas hydrolytic processes are more active under higher moisture. The level of the biological activity of the automorphic soils is estimated using the integral index of the ecological-biological soil status.
The Role of Gravity Waves in Modulating Atmospheric Tides
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G; Chan, K. L.; Porter, H. S.
1999-01-01
We discuss results for the diurnal and semidiurnal tides obtained from our 3-D, time dependent numerical spectral model (NMS), extending from the ground up into the thermosphere, which incorporates Hines' Doppler spread parameterization of small scale gravity waves (GW). In the DSP, GW momentum (and energy) are conserved as the waves modulate the background flow and are filtered by the flow.As a consequence, the GW interaction tightly couples the dynamic components of the middle atmosphere with strong non-linear interactions between mean zonal circulation, tides and planetary waves to produce complicated patterns of variability much like those observed. The major conclusions are: (1) Since GW momentum is deposited in the altitude regime of increasing winds, the amplitude of the diurnal tide is amplified and its vertical wavelength is reduced at altitudes between 80 and 120 km. Wave filtering by the mean zonal circulation (with peak velocities during solstice) causes the GW flux to peak during equinox, and this produces a large semi-annual variation in the tide that has been observed on UARS. (2) Without the diurnal tide, the semidiurnal tide would also be modulated in this way. But the diurnal tide filters out the GW preferentially during equinox, so that the semidiurnal tide, at higher altitudes, tends to peak during solstice. (3) Under the influence of GW, the tides are modulated also significantly by planetary waves, with periods between 2 and 30 days, which are generated preferentially during solstice in part due to baroclinic instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, J.S.
1992-05-01
Two quasi-periodic oscillations in the tropical atmosphere with similar oscillation period-the stratospheric quasi-biennial and the Southern oscillations-and the relationship between these two oscillations are examined using the Principal Oscillation Pattern (POP) analysis technique. The POP analysis of the equatorial stratospheric dataset provides a compact description of the QBO. The oscillation features identified by the POP analysis, namely, the spatial structure, the characteristic times of the oscillation, and the asymmetry in downward propagation, are almost identical to those found by earlier studies using more conventional analyses. The simultaneous POP analysis of the equatorial zonal surface wind and sea surface temperature indicatesmore » a well-defined cyclic behavior of the SO. In contrast to the very regular QBO, the SO appears to be much more noisy with intermittent quiet phases. A spectral analysis of the complex POP coefficient time series and the SO index reveals a negligible correlation between the two processes. A POP analysis of the combined equatorial dataset of stratospheric wind, zonal surface wind, and SST also indicates no relation between the QBO and the SO. Two independent modes are identified, one of them completely describing the QBO and the other representing the entire SO. No linear relationship is found between the two modes either in space or in time. It is concluded that the SO and the QBO are two independent processes in the tropical atmosphere with similar time scales. 26 refs., 17 figs.« less
Orebody Modelling for Exploration: The Western Mineralisation, Broken Hill, NSW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lotfolah Hamedani, Mohammad, E-mail: mlotfham@gmail.com; Plimer, Ian Rutherford; Xu Chaoshui
2012-09-15
The Western Mineralisation in the Broken Hill deposit was studied to identify the zonation sequence of lithogeochemical haloes along and across the strike of the orebody. Samples used are from 77 drill holes and the samples were assayed for Pb, Zn, Fe, S, Cu, Ag, Cd, Sb, Bi and As. Variogram analyses were calculated for all the elements and kriging was used to construct the 3D block model. Analysis of cross sections along and across the strike of the orebody shows that Bi and Sb form broader halos around sulphide masses and this suggests that they are pathfinder elements formore » the Pb and Zn elements of this orebody. The threshold concentrations (minimum anomaly) of the 10 elements were determined using the concentration-area analysis. On east-west vertical cross sections, the values of linear productivity, variability gradient and zonality index were calculated for each element. Based on the maximum zonality index of each element, the sequence of geochemical zonation pattern was determined from top to bottom of the orebody. The result shows that S, Pb, Zn and Cd tend to concentrate in the upper part of the mineralisation whereas Ag, Cu, Bi and As have a tendency to concentrate in the lower part of the mineralised rocks. Also, an empirical product ratio index was developed based on the position of the elements in the zonation sequence. The methods and results of this research are applicable to exploration of similar Zn and Pb sulphide ore deposits.« less
NASA Astrophysics Data System (ADS)
Bougher, S. W.; Rafkin, S.; Drossart, P.
2006-11-01
A consistent picture of the dynamics of the Venus upper atmosphere from ˜90 to 200 km has begun to emerge [e.g., Bougher, S.W., Alexander, M.J., Mayr, H.G., 1997. Upper Atmosphere Dynamics: Global Circulation and Gravity Waves. Venus II, CH. 2.4. University of Arizona Press, Tucson, pp. 259-292; Lellouch, E., Clancy, T., Crisp, D., Kliore, A., Titov, D., Bougher, S.W., 1997. Monitoring of Mesospheric Structure and Dynamics. Venus II, CH. 3.1. University of Arizona Press, Tucson, pp. 295-324]. The large-scale circulation of the Venus upper atmosphere (upper mesosphere and thermosphere) can be decomposed into two distinct flow patterns: (1) a relatively stable subsolar-to-antisolar (SS-AS) circulation cell driven by solar heating, and (2) a highly variable retrograde superrotating zonal (RSZ) flow. Wave-like perturbations have also been observed. However, the processes responsible for maintaining (and driving variations in) these SS-AS and RSZ winds are not well understood. Variations in winds are thought to result from gravity wave breaking and subsequent momentum and energy deposition in the upper atmosphere [Alexander, M.J., 1992. A mechanism for the Venus thermospheric superrotation. Geophys. Res. Lett. 19, 2207-2210; Zhang, S., Bougher, S.W., Alexander, M.J., 1996. The impact of gravity waves on the Venus thermosphere and O2 IR nightglow. J. Geophys. Res. 101, 23195-23205]. However, existing data sets are limited in their spatial and temporal coverage, thereby restricting our understanding of these changing circulation patterns. One of the major goals of the Venus Express (VEX) mission is focused upon increasing our understanding of the circulation and dynamical processes of the Venus atmosphere up to the exobase [Titov, D.V., Lellouch, E., Taylor, F.W., 2001. Venus Express: Response to ESA's call for ideas for the re-use of the Mars Express platform. Proposal to European Space Agency, 1-74]. Several VEX instruments are slated to obtain remote measurements (2006-2008) that will complement those obtained earlier by the Pioneer Venus Orbiter (PVO) between 1978 and 1992. These VEX measurements will provide a more comprehensive investigation of the Venus upper atmosphere (90-200 km) structure and dynamics over another period in the solar cycle and for variable lower atmosphere conditions. An expanded climatology of Venus upper atmosphere structure and wind components will be developed. In addition, gravity wave parameters above the cloud tops will be measured (or inferred), and used to constrain gravity wave breaking models. In this manner, the gravity wave breaking mechanism (thought to regulate highly variable RSZ winds) can be tested using Venus general circulation models (GCMs).
NASA Astrophysics Data System (ADS)
Sidorik, Vadim; Miulgauzen, Daria
2017-04-01
Ecosystems of East Fennoscandia have been affected by intensive anthropogenic influence that resulted in their significant transformation. Study of ecosystems in the framework of vegetation vertical zonality disturbance as well as its recovery allows to understand the trends of anthropogenically induced changes. The aim of the present research is the comparative analysis of vegetation vertical zonality of the two uplands in East Fennoscandia which may be considered as unaffected and affected by anthropogenic impact. The objects of key studies carried out in the north-west of Kola Peninsula in the vicinity of the Pechenganikel Mining and Metallurgical Plant are represented by ecosystems of Kalkupya (h 357 m) and Hangaslachdenvara (h 284 m) uplands. They are characterized by the similarity in sequence of altitudinal belts due to the position on the northern taiga - forest-tundra boundary. Plant communities of Kalkupya upland have no visible signs of anthropogenic influence, therefore, they can be considered as model ecosystems of the area. The sequence of altitudinal belts is the following: - up to 200 m - pine subshrub and green moss ("zonal") forest replaced by mixed pine and birch forest near the upper boundary; - 200-300 m - birch crooked subshrub wood; - above 300 m - tundra subshrub and lichen communities. Ecosystems of Hangaslachdenvara upland have been damaged by air pollution (SO2, Ni, Cu emissions) of the Pechenganikel Plant. This impact has led to plant community suppression and formation of barren lands. Besides the soil cover was significantly disturbed, especially upper horizons. Burying of soil profiles, represented by Podzols (WRB, 2015), also manifested itself in the exploited part of the area. The vegetation cover of Hangaslachdenvara upland is the following: - up to 130 m - birch and aspen subshrub and grass forest instead of pine forest ("zonal"); - 130-200 m - barren lands instead of pine forest ("zonal"); - above 200 m - barren lands instead of birch crooked subshrub wood, which stretched to the north-east, proving the leading role of prevailing southwestern winds in pollution spreading in the area. As the anthropogenic impact decreases due to the Plant's emissions decline, there have been identified signs of ecosystem restoration. The beginning restoration helps parvifoliate forests to grow in barren lands, including the above-mentioned birch and aspen forest on Hangaslachdenvara upland. Reductive processes of soil formation are responsible for the development of soddy or raw humus horizons in the substrate overlaying the well-developed Podzols. Nevertheless, there is no restoration above 130 m on Hangaslachdenvara upland owing to the barrier effect, in other words, intensive deposition and accumulation of air pollutants on the upland's top. Thus, there has been defined that the anthropogenic impact led to total vegetation vertical zonality modification and physical disturbance of soil cover in East Fennoscandia. The typical taiga scheme of "coniferous forest - birch crooked wood - tundra subshrub and lichen communities" altitudinal belts was replaced by that of "parvifoliate forest - barren land" altitudinal belts. However, after the reduction of anthropogenic influence "zonal" plant communities begin to restore gradually and weak developed soils are forming.
Omens of coupled model biases in the CMIP5 AMIP simulations
NASA Astrophysics Data System (ADS)
Găinuşă-Bogdan, Alina; Hourdin, Frédéric; Traore, Abdoul Khadre; Braconnot, Pascale
2018-02-01
Despite decades of efforts and improvements in the representation of processes as well as in model resolution, current global climate models still suffer from a set of important, systematic biases in sea surface temperature (SST), not much different from the previous generation of climate models. Many studies have looked at errors in the wind field, cloud representation or oceanic upwelling in coupled models to explain the SST errors. In this paper we highlight the relationship between latent heat flux (LH) biases in forced atmospheric simulations and the SST biases models develop in coupled mode, at the scale of the entire intertropical domain. By analyzing 22 pairs of forced atmospheric and coupled ocean-atmosphere simulations from the CMIP5 database, we show a systematic, negative correlation between the spatial patterns of these two biases. This link between forced and coupled bias patterns is also confirmed by two sets of dedicated sensitivity experiments with the IPSL-CM5A-LR model. The analysis of the sources of the atmospheric LH bias pattern reveals that the near-surface wind speed bias dominates the zonal structure of the LH bias and that the near-surface relative humidity dominates the east-west contrasts.
Probabilistic projections of 21st century climate change over Northern Eurasia
NASA Astrophysics Data System (ADS)
Monier, E.; Sokolov, A. P.; Schlosser, C. A.; Scott, J. R.; Gao, X.
2013-12-01
We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an earth system model of intermediate complexity, with a two-dimensional zonal-mean atmosphere, to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three dimensional atmospheric model; and a statistical downscaling, where a pattern scaling algorithm uses climate-change patterns from 17 climate models. This framework allows for key sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections; climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate); natural variability; and structural uncertainty. Results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also nd that dierent initial conditions lead to dierences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider all sources of uncertainty when modeling climate impacts over Northern Eurasia.
Probabilistic projections of 21st century climate change over Northern Eurasia
NASA Astrophysics Data System (ADS)
Monier, Erwan; Sokolov, Andrei; Schlosser, Adam; Scott, Jeffery; Gao, Xiang
2013-12-01
We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate complexity with a two-dimensional zonal-mean atmosphere to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three-dimensional atmospheric model, and a statistical downscaling, where a pattern scaling algorithm uses climate change patterns from 17 climate models. This framework allows for four major sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections, climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate), natural variability, and structural uncertainty. The results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also find that different initial conditions lead to differences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider these sources of uncertainty when modeling climate impacts over Northern Eurasia.
CHARACTERISTICS OF SOLAR MERIDIONAL FLOWS DURING SOLAR CYCLE 23
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, Sarbani; Antia, H. M., E-mail: sarbani.basu@yale.ed, E-mail: antia@tifr.res.i
2010-07-01
We have analyzed available full-disk data from the Michelson Doppler Imager on board SOHO using the 'ring diagram' technique to determine the behavior of solar meridional flows over solar cycle 23 in the outer 2% of the solar radius. We find that the dominant component of meridional flows during solar maximum was much lower than that during the minima at the beginning of cycles 23 and 24. There were differences in the flow velocities even between the two minima. The meridional flows show a migrating pattern with higher-velocity flows migrating toward the equator as activity increases. Additionally, we find thatmore » the migrating pattern of the meridional flow matches those of sunspot butterfly diagram and the zonal flows in the shallow layers. A high-latitude band in meridional flow appears around 2004, well before the current activity minimum. A Legendre polynomial decomposition of the meridional flows shows that the latitudinal pattern of the flow was also different during the maximum as compared to that during the two minima. The different components of the flow have different time dependences, and the dependence is different at different depths.« less
Migration history of air-breathing fishes reveals Neogene atmospheric circulation patterns
NASA Astrophysics Data System (ADS)
Böhme, M.
2004-05-01
The migration history of an air-breathing fish group (Channidae; snakehead fishes) is used for reconstructing Neogene Eurasian precipitation and atmospheric circulation patterns. The study shows that snakeheads are sensitive indicators of summer precipitation maxima in subtropical and temperate regions, and are present regularly if the wettest month exceeds 150 mm precipitation and 20 °C mean temperature. The analysis of 515 fossil freshwater fish deposits of the past 50 m.y. from Africa and Eurasia shows two continental-scale migration events from the snakeheads' center of origin in the south Himalayan region, events that can be related to changes in the Northern Hemisphere circulation pattern. The first migration, ca. 17.5 Ma, into western and central Eurasia may have been caused by a northward shift of the Intertropical Convergence Zone that brought western Eurasia under the influence of trade winds that produced a zonal and meridional precipitation gradient in Europe. During the second migration, between 8 and 4 Ma, into Africa and East Asia, snakeheads reached their present-day distribution. This migration could have been related to the intensification of the Asian monsoon that brought summer precipitation to their migratory pathways in East Africa Arabia and East Asia.
Fifty Years of Water Cycle Change expressed in Ocean Salinity
NASA Astrophysics Data System (ADS)
Durack, P. J.; Wijffels, S.
2010-12-01
Using over 1.6 million profiles of salinity, potential temperature and density from historical archives and Argo, we derive the global field of linear change for ocean state properties over the period 1950-2008, taking care to minimise aliasing associated with seasonal and El Nino Southern Oscillation modes. We find large, robust and spatially coherent multi-decadal linear trends in ocean surface salinities. Increases are found in evaporation-dominated regions and freshening in precipitation-dominated regions. The spatial patterns of surface change strongly resemble the climatological mean surface salinity field, consistent with an amplification of the global water cycle. A robust amplification of the mean salinity pattern of 8% (to 200m depth) is found globally and 5-9% is found in each of the 3 key ocean basins. 20th century runs from the CMIP3 model suite support the relationship between amplified patterns of freshwater flux driving an amplified pattern of ocean surface salinity only in models that warm substantially. Models with volcanic aerosols show a diminished warming response and a corresponding weak response in ocean surface salinity change, which implies dampened changes to the global water cycle. The warming response represented in realistic (when compared to observations) 20th century simulations appear quite similar in their broad zonal patterns to those of the projected 21st century simulations, these projected runs being strongly forced by greenhouse gases. This pattern amplification is mostly absent from 20th century simulations which include volcanic forcing. While we confirm that global mean precipitation only weakly change with surface warming (2-3% K-1), the pattern amplification rate in both the freshwater flux and ocean salinity fields indicate larger responses. Our new observed salinity estimates suggest a change of between 8-16% K-1, close to, or greater than, the theoretical response described by the Clausius-Clapeyron relation. The underestimation of change patterns by the CMIP3 model suite is well documented in recent literature describing changes to the atmospheric and terrestrial arms of the global water cycle. These new observational ocean results add emphasis to the conclusion that the rate of observed changes in the 20th century are larger than CMIP3 models, and simplified physical theories predict. A) The 50-year linear surface salinity trend (pss/50-years). Contours every 0.25 pss are plotted in white. B) Ocean-atmosphere freshwater flux (m3 yr-1) averaged over 1980-1993 (Josey et al., 1998). Contours every 1 m3 yr-1 are in white. On both panels, the 1975 surface mean salinity is contoured black (contour interval 0.5 pss for thin lines, 1 for thick lines).
NASA Astrophysics Data System (ADS)
Lee, Yun-Young
2017-04-01
West Pacific (WP) teleconnection pattern is one of the well-known primary modes of boreal winter low-frequency variability (LFV) resolved in 500 hPa geopotential height and its phase and amplitude strongly influence regional weather conditions including temperature and rainfall extremes [Baxter and Nigam, 2015; Hsu and Wallace, 1985; Linkin and Nigam, 2008; Mo and Livezey, 1986; Thompson and Wallace, 1998; Wallace and Gutzler, 1981]. This study primary aims to evaluate individual 11 GCMs seasonal hindcasts employed as members of multi-model ensemble (MME) produced in APEC Climate Center (APCC) in representing WP. For the extensive and comprehensive evaluation, this study applied seven verification metrics in three scopes: (a) temporal representation of observed indices, (b) spatial mode separation in the Northern Hemisphere (NH), and (c) regional mode isolated in the preset longitudinal domain. Verification results display quite large inter-model spread. Some models mimic observed index variability while others display large bias of index variability compared to climatology. Basic north-south dipole pattern is mostly well reproduced in both rotated and unrotated loading modes. However, each individual seasonal forecast model exhibits slightly different behavior (e.g. amplification/weakening, zonal and meridional shift, downstream extension and so forth) in representing spatial structure of WP. When taking all 7 metrics into account, one Europe (CMCC) model, one Oceania (POAMA) model and two North America (NASA and NCEP) models are classified as relatively good performers while PNU is classified as a matchless poor performer out of 11. Least WP representing skill of PNU is sort of consistent with the largest bias of NH total variability. This study further tries to examine winter mean biases of individual models and figure out how mean bias is linked to WP representation in model world. Model bias of winter climatology is investigated focusing on six large scale phenomena: East Asian winter monsoon (EAWM), Atlantic dipole, Pacific/Atlantic jets and Pacific/Atlantic Hadley circulations. Changes in structure and amplitude of them are diagnosed in terms of root mean square error, pattern correlation, intensity bias, zonal displacement and/or downstream extension. There is consistent strengthening/downstream extension of Atlantic jet and absence of southern divergence cell of Atlantic Hadley in most seasonal prediction models. It is demonstrated that WP representation has something to do with bias of Atlantic winter climatology (Atlantic dipole and Atlantic jet) from scatter plot and regression analysis. This implies the importance of realistic simulation of winter climatology further upstream for better WP representation. A fundamental conclusion of this study is that the representation of primary WP features varies among individual models of APCC-MME and it is significantly dependent on the deficiencies of some winter mean climatological patterns.
NASA Astrophysics Data System (ADS)
Pinke, Zsolt; Ferenczi, László; F. Romhányi, Beatrix; Gyulai, Ferenc; Laszlovszky, József; Mravcsik, Zoltán; Pósa, Patricia; Gábris, Gyula
2017-02-01
This investigation focuses on the transformation of the settlement pattern of a lowland landscape as a social response to the hydrological challenges emerging in the late 13th century (c.) overture of the Little Ice Age (LIA). Results of the applied zonal analysis suggested a strong spatial connection between the geomorphological conditions, the agro-ecological suitability (good-excellent, medium and low) and the stability or instability of settlement patterns. The elevation means of archaeological sites in the deserted zones proved significantly lower than those in zones with permanent settlement pattern (Brunner-Munzel test p ≤ 0.01; n = 377). Additionally, the late medieval (14th-mid-16th centuries) site group was situated, on average, significantly higher than the high medieval (late 10th-13th centuries) site group within the permanent zones (Brunner-Munzel test p ≤ 0.01; n = 219). These outcomes statistically confirm that not only did low-lying inhabited areas shrink significantly, but they also displaced vertically in the first phase of the LIA. When analysing the relation of settlement pattern to soil conditions, the proportion of areas with good-excellent agro-ecological suitability proved 1.5-2 times higher in the permanent zones than in the deserted and uninhabited settlement suitability zones. Using the linear model, different regression coefficients appeared between the extension of the high and medium agro-ecological suitability zones and the number of high and late medieval settlements. The different coefficients in the studied two periods suggest that the issue of agroecological suitability in the High Middle Ages did not bear such importance as in the late Middle Ages. The findings of the paper may contribute to answering the question why the relatively dense settlement pattern of the deserted zones was abandoned almost completely by the end of the 13th c. in areas where flood proneness and weak agro-ecological suitability both meant a serious risk for human communities. Finally, we presumed that if hydro-climatic changes increased water levels, they must have changed the plant composition of the studied landscape as well. Chi-squared test of macrofossil plant remains (narchaeological site = 55; ntaxon = 330) shows that the second part of the 13th c. saw the ratio of species from humid habitat types grow (Χ² = 7.81; df = 1; p = 0.02). Comparison of the two studied processes indicates a broad synchronism between the shrinkage of inhabited areas and the increasing proportion of plants with humid environment tolerance during the second part of the 13th c. The reconstructed transformations in the composition of plant remains and settlement structure signal not a mere transitional change, but a 'longue durée' structural transformation of the landscape.
NASA Astrophysics Data System (ADS)
Hueso, R.; Sánchez-Lavega, A.; Gómez-Forrellad, J. M.; Rojas, J. F.; Pérez-Hoyos, S.; Sanz-Requena, J. F.; Peralta, J.; Ordonez-Etxeberria, I.; Chen-Chen, H.; Mendikoa, I.; Peach, D.; Go, C.; Wesley, A.; Miles, P.; Olivetti, T.
2017-09-01
We present an analysis of Jupiter's atmospheric activity over Juno's first year around the planet based on ground-based observations. We present variability of the zonal winds associated to large outbreaks of convective activity at different belts in the planet, a study of short-scale atmospheric waves at low latitudes and examine polar views of the planet that can be compared with JunoCam observations.
NASA Astrophysics Data System (ADS)
Barnet, C. D.; Westphal, J. A.; Beebe, R. F.; Huber, L. F.
1992-12-01
The present comparison of two sets of HST data from August and November 1990 with Voyager 1 and 2 data acquired in 1980 and 1981 gives attention to Saturn's equatorial-region disturbance of September 1990. Longitudinal variations in the equatorial zonal winds are interpreted as evidence for interaction between the storm nucleus that was generated during the disturbance and the local wind field.
Modulation of Bjerknes feedback on the decadal variations in ENSO predictability
NASA Astrophysics Data System (ADS)
Zheng, Fei; Fang, Xiang-Hui; Zhu, Jiang; Yu, Jin-Yi; Li, Xi-Chen
2016-12-01
Clear decadal variations exist in the predictability of the El Niño-Southern Oscillation (ENSO), with the most recent decade having the lowest ENSO predictability in the past six decades. The Bjerknes Feedback (BF) intensity, which dominates the development of ENSO, has been proposed to determine ENSO predictability. Here we demonstrate that decadal variations in BF intensity are largely a result of the sensitivity of the zonal winds to the zonal sea level pressure (SLP) gradient in the equatorial Pacific. Furthermore, the results show that during low-ENSO predictability decades, zonal wind anomalies over the equatorial Pacific are more linked to SLP variations in the off-equatorial Pacific, which can then transfer this information into surface temperature and precipitation fields through the BF, suggesting a weakening in the ocean-atmosphere coupling in the tropical Pacific. This result indicates that more attention should be paid to off-equatorial processes in the prediction of ENSO.
Ranger, Christopher M; Winter, Rudolph E; Singh, Ajay P; Reding, Michael E; Frantz, Jonathan M; Locke, James C; Krause, Charles R
2011-01-25
The Japanese beetle (JB), Popillia japonica, exhibits rapid paralysis after consuming flower petals of zonal geranium, Pelargonium x hortorum. Activity-guided fractionations were conducted with polar flower petal extracts from P. x hortorum cv. Nittany Lion Red, which led to the isolation of a paralysis-inducing compound. High-resolution-MS and NMR ((1)H, (13)C, COSY, heteronuclear sequential quantum correlation, heteronuclear multiple bond correlation) analysis identified the paralytic compound as quisqualic acid (C(5)H(7)N(3)O(5)), a known but rare agonist of excitatory amino acid receptors. Optical rotation measurements and chiral HPLC analysis determined an L-configuration. Geranium-derived and synthetic L-quisqualic acid demonstrated the same positive paralytic dose-response. Isolation of a neurotoxic, excitatory amino acid from zonal geranium establishes the phytochemical basis for induced paralysis of the JB, which had remained uncharacterized since the phenomenon was first described in 1920.
Elevated Tropospheric Ozone over the Atlantic
NASA Technical Reports Server (NTRS)
Chandra, S.; Ziemke, J. R.; Tie, X.
2003-01-01
Tropospheric column ozone (TCO) is derived from differential measurements of TOMS total column ozone and Microwave Limb Sounder stratospheric column ozone. It is shown that TCO during summer months over the Atlantic and Pacific Oceans in northern midlatitudes is about the same (50 to 60 Dobson Units) as over the continents of North America, Europe, and Asia, where surface emissions of nitrogen oxides from industrial sources, biomass and biofuel burning and biogenic emissions are significantly larger. This nearly uniform zonal variation in TCO is modulated by surface topography of the Rocky and Himalayan mountains, and Tibetan plateau where TCO is reduced by 20 to 30 Dobson Units. The zonal variation in TCO is well simulated by a global chemical transport model called MOZART-2 (Model of Ozone and Related Chemical Tracers, version 2). The model results are analyzed to delineate the relative importance of various processes contributing to observed zonal characteristics of TCO.
Diffusion of Zonal Variables Using Node-Centered Diffusion Solver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, T B
2007-08-06
Tom Kaiser [1] has done some preliminary work to use the node-centered diffusion solver (originally developed by T. Palmer [2]) in Kull for diffusion of zonal variables such as electron temperature. To avoid numerical diffusion, Tom used a scheme developed by Shestakov et al. [3] and found their scheme could, in the vicinity of steep gradients, decouple nearest-neighbor zonal sub-meshes leading to 'alternating-zone' (red-black mode) errors. Tom extended their scheme to couple the sub-meshes with appropriate chosen artificial diffusion and thereby solved the 'alternating-zone' problem. Because the choice of the artificial diffusion coefficient could be very delicate, it is desirablemore » to use a scheme that does not require the artificial diffusion but still able to avoid both numerical diffusion and the 'alternating-zone' problem. In this document we present such a scheme.« less
Numerical solution of the full potential equation using a chimera grid approach
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1995-01-01
A numerical scheme utilizing a chimera zonal grid approach for solving the full potential equation in two spatial dimensions is described. Within each grid zone a fully-implicit approximate factorization scheme is used to advance the solution one interaction. This is followed by the explicit advance of all common zonal grid boundaries using a bilinear interpolation of the velocity potential. The presentation is highlighted with numerical results simulating the flow about a two-dimensional, nonlifting, circular cylinder. For this problem, the flow domain is divided into two parts: an inner portion covered by a polar grid and an outer portion covered by a Cartesian grid. Both incompressible and compressible (transonic) flow solutions are included. Comparisons made with an analytic solution as well as single grid results indicate that the chimera zonal grid approach is a viable technique for solving the full potential equation.
Global variations of zonal mean ozone during stratospheric warming events
NASA Technical Reports Server (NTRS)
Randel, William J.
1993-01-01
Eight years of Solar Backscatter Ultraviolet (SBUV) ozone data are examined to study zonal mean variations associated with stratospheric planetary wave (warming) events. These fluctuations are found to be nearly global in extent, with relatively large variations in the tropics, and coherent signatures reaching up to 50 deg in the opposite (summer) hemisphere. These ozone variations are a manifestation of the global circulation cells associated with stratospheric warming events; the ozone responds dynamically in the lower stratosphere to transport, and photochemically in the upper stratosphere to the circulation-induced temperature changes. The observed ozone variations in the tropics are of particular interest because transport is dominated by zonal-mean vertical motions (eddy flux divergences and mean meridional transports are negligible), and hence, substantial simplifications to the governing equations occur. The response of the atmosphere to these impulsive circulation changes provides a situation for robust estimates of the ozone-temperature sensitivity in the upper stratosphere.
Trapped waves on the mid-latitude β-plane
NASA Astrophysics Data System (ADS)
Paldor, Nathan; Sigalov, Andrey
2008-08-01
A new type of approximate solutions of the Linearized Shallow Water Equations (LSWE) on the mid-latitude β-plane, zonally propagating trapped waves with Airy-like latitude-dependent amplitude, is constructed in this work, for sufficiently small radius of deformation. In contrast to harmonic Poincare and Rossby waves, these newly found trapped waves vanish fast in the positive half-axis, and their zonal phase speed is larger than that of the corresponding harmonic waves for sufficiently large meridional domains. Our analysis implies that due to the smaller radius of deformation in the ocean compared with that in the atmosphere, the trapped waves are relevant to observations in the ocean whereas harmonic waves typify atmospheric observations. The increase in the zonal phase speed of trapped Rossby waves compared with that of harmonic ones is consistent with recent observations that showed that Sea Surface Height features propagated westwards faster than the phase speed of harmonic Rossby waves.
Design for and efficient dynamic climate model with realistic geography
NASA Technical Reports Server (NTRS)
Suarez, M. J.; Abeles, J.
1984-01-01
The long term climate sensitivity which include realistic atmospheric dynamics are severely restricted by the expense of integrating atmospheric general circulation models are discussed. Taking as an example models used at GSFC for this dynamic model is an alternative which is of much lower horizontal or vertical resolution. The model of Heid and Suarez uses only two levels in the vertical and, although it has conventional grid resolution in the meridional direction, horizontal resolution is reduced by keeping only a few degrees of freedom in the zonal wavenumber spectrum. Without zonally asymmetric forcing this model simulates a day in roughly 1/2 second on a CRAY. The model under discussion is a fully finite differenced, zonally asymmetric version of the Heid-Suarez model. It is anticipated that speeds can be obtained a few seconds a day roughly 50 times faster than moderate resolution, multilayer GCM's.
Structure of the middle atmosphere of Venus and future observation with PFS on Venus Express.
NASA Astrophysics Data System (ADS)
Zasova, L. V.; Formisano, V.; Moroz, V. I.; Ignatiev, N. I.; Khatountsev, I. A.
Investigation of the middle atmosphere of Venus (55 -- 100 km) will allow to advance our knowledge about the most puzzling phenomena of the Venus dynamics -- its superrotation. More than 70% of all absorbed by Venus Solar energy is deposited there, results in the thermal tides generation and giving energy to support the superrotation. The importance of the tides in the middle atmosphere is manifested by the tidal character of the local time variation of the structure of the thermal field, zonal wind field (especially, behavior of the wind speed in the mid latitude jet), upper clouds, with amplitudes depending on the altitude and latitude. Investigation of the middle atmosphere is a scientific goal of the long wavelength channel of PFS on Venus Express, as well as of its short wavelength channel (the latter on the day side). The 3D temperature, aerosol, thermal wind and SO2 abundance fields, spatial distribution of abundance of H2O (possibly vertical profile), CO, HCl, HF will be obtained.
Center for the Study of Plasma Microturbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Scott E.
We have discovered a possible "natural fueling" mechanism in tokamak fusion reactors using large scale gyrokinetic turbulence simulation. In the presence of a heat flux dominated tokamak plasma, cold ions naturally pinch radially inward. If cold DT fuel is introduced near the edge using shallow pellet injection, the cold fuel will pinch inward, at the expense of hot helium ash going radially outward. By adjusting the cold DT fuel concentration, the core DT density profiles can be maintained. We have also shown that cold source ions from edge recycling of cold neutrals are pinched radially inward. This mechanism may bemore » important for fully understanding the edge pedestal buildup after an ELM crash. Work includes benchmarking the gyrokinetic turbulence codes in the electromagnetic regime. This includes cyclone base case parameters with an increasing plasma beta. The code comparisons include GEM, GYRO and GENE. There is good linear agreement between the codes using the Cyclone base case, but including electromagnetics and scanning the plasma beta. All the codes have difficulty achieving nonlinear saturation as the kinetic ballooning limit is approached. GEM does not saturate well when beta gets above about 1/2 of the ideal ballooning limit. We find that the lack of saturation is due to the long wavelength k{sub y} modes being nonlinearly pumped to high levels. If the fundamental k{sub y} mode is zeroed out, higher values of beta nonlinearly saturate well. Additionally, there have been studies to better understand CTEM nonlinear saturation and the importance of zonal flows. We have continued our investigation of trapped electron mode (TEM) turbulence. More recently, we have focused on the nonlinear saturation of TEM turbulence. An important feature of TEM is that in many parameter regimes, the zonal flow is unimportant. We find that when zonal flows are unimportant, zonal density is the dominant saturation mechanism. We developed a simple theory that agrees with the simulation and predicts zonal density generation and feedback stabilization of the most unstable mode even in the absence of zonal flow. We are using GEM to simulate NSTX discharges. We have also done verification and validation on DIII-D. Good agreement with GYRO and DIII-D flux levels were reported in the core region.« less
Role of entrainment in convectively-coupled equatorial waves in an aquaplanet model
NASA Astrophysics Data System (ADS)
Peatman, Simon; Methven, John; Woolnough, Steve
2016-04-01
Equatorially-trapped waves are known to be one of the key phenomena in determining the distribution of convective precipitation in the tropics as well as being crucial to the dynamics of the Madden-Julian Oscillation. However, numerical weather prediction models struggle to sustain such waves for a realistic length of time, which has a significant impact on forecasting precipitation for regions such as equatorial Africa. It has been found in the past that enhancing the rate of moisture entrainment can improve certain aspects of parametrized tropical convection in climate models. A parameter F controls the rate of entrainment into the convective plume for deep- and mid-level convection, with F = 1 denoting the control case. Here it is found in an aquaplanet simulation that F > 1 produces more convective precipitation at all zonal wavenumbers. Furthermore, Kelvin wave activity increases for waves with low frequency and zonal wavenumber but is slightly suppressed for shorter, higher-frequency waves, and vice versa for westward-propagating waves. A change in entrainment rate also brings about a change in the basic state wind and humidity fields. Therefore, the question arises as to whether changes in wave activity are due directly to changes in the coupling to the humidity in the waves by entrainment or due to changes in the basic state. An experiment was devised in which the convective parametrization scheme is allowed to entrain a weighted sum of the environmental humidity and a prescribed zonally-symmetric climatology, with a parameter α controlling the extent of the decoupling from the environment. Experiments with this new mechanism in the parametrization scheme reveal a complex relationship. For long waves at low frequency (period > ˜13 days), removing zonal asymmetry in the humidity seen by the entrainment scheme has very little influence on the ratio of eastward- to westward-propagating power. At higher frequencies and zonal wavenumbers, removing this zonal asymmetry acts to suppress wave activity. Enhanced entrainment rate relative to the control case is also shown to slow the phase speed of Kelvin waves by around 20%. The phase speed depends also on the decoupling parameter α, with the minimum speed occurring around the special case α = 1 - 1/F , when the basic state humidity is entrained at the enhanced rate and perturbations from it are entrained at the control rate.
Dyment, Nathaniel A; Breidenbach, Andrew P; Schwartz, Andrea G; Russell, Ryan P; Aschbacher-Smith, Lindsey; Liu, Han; Hagiwara, Yusuke; Jiang, Rulang; Thomopoulos, Stavros; Butler, David L; Rowe, David W
2015-09-01
The sequence of events that leads to the formation of a functionally graded enthesis is not clearly defined. The current study demonstrates that clonal expansion of Gdf5 progenitors contributes to linear growth of the enthesis. Prior to mineralization, Col1+ cells in the enthesis appose Col2+ cells of the underlying primary cartilage. At the onset of enthesis mineralization, cells at the base of the enthesis express alkaline phosphatase, Indian hedgehog, and ColX as they mineralize. The mineralization front then extends towards the tendon midsubstance as cells above the front become encapsulated in mineralized fibrocartilage over time. The hedgehog (Hh) pathway regulates this process, as Hh-responsive Gli1+ cells within the developing enthesis mature from unmineralized to mineralized fibrochondrocytes in response to activated signaling. Hh signaling is required for mineralization, as tissue-specific deletion of its obligate transducer Smoothened in the developing tendon and enthesis cells leads to significant reductions in the apposition of mineralized fibrocartilage. Together, these findings provide a spatiotemporal map of events - from expansion of the embryonic progenitor pool to synthesis of the collagen template and finally mineralization of this template - that leads to the formation of the mature zonal enthesis. These results can inform future tendon-to-bone repair strategies to create a mechanically functional enthesis in which tendon collagen fibers are anchored to bone through mineralized fibrocartilage. Copyright © 2015 Elsevier Inc. All rights reserved.
Ryu, Hyang Joo; Kim, Eun Kyung; Heo, Su Jin; Cho, Byoung Chul; Kim, Hye Ryun; Yoon, Sun Och
2017-11-01
We evaluated the expression patterns of p16, which is used as a surrogate marker of HPV infection in head and neck squamous cell carcinoma (HNSCC), in regard to their biological and prognostic implications. p16 expression patterns and infiltrated immune cells were analyzed through immunohistochemistry of p16, CD3, CD8, PD-1, FOXP3, and CD163 on surgically resected HNSCCs (n = 393). Patterns of p16 immunoexpression were defined as STRONG (strong, diffuse expression in cytoplasm, and nucleus in >70% of tumor cells), MARGINAL (expression restricted to tumor margins), MOSAIC (ragged, discontinued expression), NUCLEAR (expression in nuclei only), and ABSENT (no expression). The STRONG pattern was more frequent in the oropharynx, and the MARGINAL pattern was noted only in the oral cavity. MOSAIC and NUCLEAR patterns were noted at variable sites. No two patterns of p16 expression showed the same immune cell composition of CD3+ T cells, CD8+ cytotoxic T cells, PD-1+ T cells, FOXP3+ regulatory T cells, and CD163+ macrophages. In overall and disease-free survival analyses, the STRONG pattern showed the most favorable prognosis, while the NUCLEAR pattern had the worst prognosis. HNSCC anatomical sites, tumor-related immune cell components, and patient outcomes were associated with p16 expression patterns. Each architectural pattern of p16 expression may be related to different biological and prognostic phenotypes. © 2017 APMIS. Published by John Wiley & Sons Ltd.
Toward a Global 1/25deg HYCOM Ocean Prediction System with Tides
2009-01-01
global, regional, and coastal applications. Figure 1 shows the cross-vertical section of the zonal baroclinic velocity after 5 days for two of the...Lorenzo et al., 2003). Figure 1: Snapshots (~4.7 days) of cross-vertical section of zonal baroclinic velocity for HYCOM (left panels) and ROMS...MITgcm, we used two idealized configurations: 1) the well known lock exchange problem (Haidvogel and Beckman, 1999) as a reference and 2) the pure
A study of quasi-biennial oscillation in the tropical stratosphere
NASA Astrophysics Data System (ADS)
Sasi, M. N.; Krishna Murthy, B. V.
1991-12-01
The characteristics of the quasi-biennial oscillation in zonal wind and temperature at Trivandrum (8.5°N, 77°E) have been studied using data covering 16 years. Similar study has been carried out for zonal wind at Balasore (21.5°N, 87°E) using data covering 9 years. The cycle to cycle variation of amplitudes, their altitude variation, periods and descent rates of the westerly and easterly regimes have been studied.
Algorithms for Zonal Methods and Development of Three Dimensional Mesh Generation Procedures.
1984-02-01
a r-re complete set of equations is used, but their effect is imposed by means of a right hand side forcing function, not by means of a zonal boundary...modifications of flow-simulation algorithms The explicit finite-difference code of Magnus and are discussed. Computational tests in two dimensions...used to simplify the task of grid generation without an adverse achieve computational efficiency. More recently, effect on flow-field algorithms and
Gunshot wounds to the thigh. Evaluation of vascular and subclinical vascular injuries.
Payne, W K; Gabriel, R A; Massoud, R P
1995-01-01
A retrospective review of 173 patient charts, angiograms, surgical reports, and plain radiographs were performed for all patients admitted with gunshot wounds to the thigh from May 1988 to January 1991 at Martin Luther King, Jr. Hospital. A zonal classification of gunshot wounds to the thigh was created and defined to determine if a zonal classification was predictive of a positive angiogram. Associations and relationships of patients with vascular injury are presented.
Geographical analysis of equatorial plasma bubbles by GPS and nightglow measurements
NASA Astrophysics Data System (ADS)
Nade, D. P.; Shetti, D. J.; Sharma, A. K.; Taori, A.; Chavan, G. A.; Patil, P. T.; Ghodpage, R. N.; Gurav, O. B.; Nikte, S. S.
2015-11-01
This work about the zonal drift velocity and signature of equatorial plasma bubbles (EPBs) by measurements of global positioning system (GPS) receiver and all sky imager (ASI) operating in India, at the low latitude region. The optical and radio observations have been made from Kolhapur (16.8° N, 74.2° E) and Hyderabad (17.37°N, 78.48°E), respectively. The zonal drift velocity of EPBs has estimated using images of nightglow OI 630.0 nm emission recorded by ASI at Kolhapur. The measurements of total electron content (TEC) using the GPS have carried from the nearby station, Hyderabad. When depletions occurred about 00:37 h (IST) in TEC, the EPBs were found to occur about 5:30 h in optical data of OI 630.0 nm emission. This work focuses on simultaneous measurements of TEC and intensity of OI 630.0 nm emissions for EPBs during nighttime. The occurrence period of EPBs in TEC and OI 630.0 nm has found to be different. To study this difference, the zonal drift velocity of EPBs has established. The averaged eastward velocity of EPBs was found to be 138 m/s. The calculated values of zonal drift velocities are well correlated with that of the empirical model values. This work may be helpful in finding the growth of EPBs over low latitude.
MPIRUN: A Portable Loader for Multidisciplinary and Multi-Zonal Applications
NASA Technical Reports Server (NTRS)
Fineberg, Samuel A.; Woodrow, Thomas S. (Technical Monitor)
1994-01-01
Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. One method for implementing the message passing portion of these codes is with the new Message Passing Interface (MPI) standard. Unfortunately, this standard only specifies the message passing portion of an application, but does not specify any portable mechanisms for loading an application. MPIRUN was developed to provide a portable means for loading MPI programs, and was specifically targeted at multidisciplinary and multi-zonal applications. Programs using MPIRUN for loading and MPI for message passing are then portable between all machines supported by MPIRUN. MPIRUN is currently implemented for the Intel iPSC/860, TMC CM5, IBM SP-1 and SP-2, Intel Paragon, and workstation clusters. Further, MPIRUN is designed to be simple enough to port easily to any system supporting MPI.
Zero potential vorticity envelopes for the zonal-mean velocity of the Venus/Titan atmospheres
NASA Technical Reports Server (NTRS)
Allison, Michael; Del Genio, Anthony D.; Zhou, Wei
1994-01-01
The diagnostic analysis of numerical simulations of the Venus/Titan wind regime reveals an overlooked constraint upon the latitudinal structure of their zonal-mean angular momentum. The numerical experiments, as well as the limited planetary observations, are approximately consistent with the hypothesis that within the latitudes bounded by the wind maxima the total Ertel potential vorticity associated with the zonal-mean motion is approximately well mixed with respect to the neutral equatorial value for a stable circulation. The implied latitudinal profile of angular momentum is of the form M equal to or less than M(sub e)(cos lambda)(exp 2/Ri), where lambda is the latitude and Ri the local Richardson number, generally intermediate between the two extremes of uniform angular momentum (Ri approaches infinity) and uniform angular velocity (Ri = 1). The full range of angular momentum profile variation appears to be realized within the observed meridional - vertical structure of the Venus atmosphere, at least crudely approaching the implied relationship between stratification and zonal velocity there. While not itself indicative of a particular eddy mechanism or specific to atmospheric superrotation, the zero potential vorticity (ZPV) constraint represents a limiting bound for the eddy - mean flow adjustment of a neutrally stable baroclinic circulation and may be usefully applied to the diagnostic analysis of future remote sounding and in situ measurements from planetary spacecraft.
NASA Astrophysics Data System (ADS)
Jolliet, S.; McMillan, B. F.; Vernay, T.; Villard, L.; Hatzky, R.; Bottino, A.; Angelino, P.
2009-07-01
In this paper, the influence of the parallel nonlinearity on zonal flows and heat transport in global particle-in-cell ion-temperature-gradient simulations is studied. Although this term is in theory orders of magnitude smaller than the others, several authors [L. Villard, P. Angelino, A. Bottino et al., Plasma Phys. Contr. Fusion 46, B51 (2004); L. Villard, S. J. Allfrey, A. Bottino et al., Nucl. Fusion 44, 172 (2004); J. C. Kniep, J. N. G. Leboeuf, and V. C. Decyck, Comput. Phys. Commun. 164, 98 (2004); J. Candy, R. E. Waltz, S. E. Parker et al., Phys. Plasmas 13, 074501 (2006)] found different results on its role. The study is performed using the global gyrokinetic particle-in-cell codes TORB (theta-pinch) [R. Hatzky, T. M. Tran, A. Könies et al., Phys. Plasmas 9, 898 (2002)] and ORB5 (tokamak geometry) [S. Jolliet, A. Bottino, P. Angelino et al., Comput. Phys. Commun. 177, 409 (2007)]. In particular, it is demonstrated that the parallel nonlinearity, while important for energy conservation, affects the zonal electric field only if the simulation is noise dominated. When a proper convergence is reached, the influence of parallel nonlinearity on the zonal electric field, if any, is shown to be small for both the cases of decaying and driven turbulence.
van der Poel, Erwin P; Ostilla-Mónico, Rodolfo; Verzicco, Roberto; Lohse, Detlef
2014-07-01
The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-Bénard convection. Combinations of no-slip, stress-free, and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between 10(8) and 10(11) the heat transport is lower for Γ=0.33 than for Γ=1 in case of no-slip sidewalls. This is, surprisingly, the opposite for stress-free sidewalls, where the heat transport increases for a lower aspect ratio. In wider cells the aspect-ratio dependence is observed to disappear for Ra ≥ 10(10). Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall simulations with a no-slip boundary condition on the plates also exhibit zonal flow. In all the other cases, the flow is roll like. In two-dimensional Rayleigh-Bénard convection, the velocity boundary conditions thus have large implications on both roll-like and zonal flow that have to be taken into consideration before the boundary conditions are imposed.
Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation
NASA Astrophysics Data System (ADS)
Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.; Dodin, I. Y.
2018-05-01
Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by the WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. We also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.
Jovian Vortices and Barges: HST observations 1994-1998
NASA Astrophysics Data System (ADS)
Morales, R.; Sanchez-Lavega, A.; Lecacheux, J.; Colas, F.; Miyazaki, I.
2000-10-01
We have used the HST-WFPC2 archived images of Jupiter in the period 1994-1998 to study the zonal and meridional distributions, long-term motions, lifetimes, interactions and other properties of the vortices larger than 2 degrees. The latitude range covered spans from +75 to -75 degrees. High-resolution images obtained with the 890nm, 410nm and 953nm wavelength filters allowed us to make a morphological classification based on their appearance in each filter. The vortices are anticyclones, and their long-term motions have been completed with ground-based images and are compared to the mean Jovian zonal wind profile. Significant differences are found between the vortex velocities and the mean zonal winds. Some vortices exhibited important drift changes in short period times. We analyze a possible correlation between their size and zonal wind velocity. On the other hand, the "barges" lie in the cyclone domains of the wind-profile and have been identified in several latitudes. Their latitudinal size is similar in all of them (typically 1.6 degrees) but their longitudinal size ranges from 1 to 32 degrees. We discuss the temporal evolution of some of these cyclonic regions. The Spanish team was supported by Gobierno Vasco PI 034/97. The French team was supported by the "Programme National de Planetologie." RM acknowledges a fellowship from Universidad Pais Vasco.
NASA Astrophysics Data System (ADS)
Nathan, Terrence
1991-09-01
Over the past forty years, numerous linear stability studies have been performed in order to explain the origin and structure of observed waves in the atmosphere. Of these studies, only a small fraction have considered the stability of time-dependent, zonally varying flow or the influence of radiative-photochemical feedbacks on the stability of zonally uniform flow. The stability of such flows is described, and these flows may yield important information concerning the origin, structure, and transient time scales of free waves in the atmosphere. During the period 1990 to 1991, a beta-plane model that couples radiative transfer, ozone advection, and ozone photochemistry with the quasigeostrophic dynamical circulation was developed in order to study the diabatic effects of Newtonian cooling and ozone-dynamics interaction on the linear stability of free planetary waves in the atmosphere. The stability of a basic state consisting of a westward-moving wave and a zonal mean jet was examined using a linearized, nondivergent barotropic model on sphere. The sensitivity of the stability of the flow to the strength and structure of the zonal jet was emphasized. The current research is focused on the following problems: (1) examination of the finite amplitude interactions among radiation, ozone, and dynamics; and (2) examination of the role of seasonal forcing in short-term climate variability. The plans for next year are presented.
Limitations in transmitter-receiver distances for terrestrial microwave transmissions
NASA Astrophysics Data System (ADS)
Njau, E. C.
1990-12-01
Directional microwave repeater systems are still in significant use for radio-telephone communications as well as terrestrial TV transmissions. In these systems, the optimally maximum distance D(sub 0) between one transmitter and the next repeater-receiver partly depends on meteorological conditions since the refractive index n for microwaves is considerably influenced by these conditions. We show that, under dry atmospheric conditions, certain zonally travelling heat/temperature waves which are normally in the weather/climate system significantly vary n and hence inevitably impose specific conditions on the evaluation of D(sub 0). Finally we use some Tanzanian meteorological records to arrive at an expression for D(sub 0) that is suitable for regions whose meteorological conditions are comparable to those in Tanzania.
NASA Astrophysics Data System (ADS)
Guryanov, Vladimir; Eliseev, Alexey
2016-07-01
The ERA-Interim geopotential height in the Northern Hemisphere from November to March, 1992-2015 in the layer from between pressure levels 1000 mb and 1 mb is expanded into stationary and travelling zonal waves with zonal wavenumbers, k, from 1 to 10, and with periods, T, from 2 to 156 days (the so called Hayashi spectra). Among the studied waves, the largest amplitude is attained by the stationary and travelling waves with zonal wavenumber k=1 and with periods from 3 to 4 weeks in the upper stratosphere over the latitudinal belt 60-70oN. The stationary waves with k from 1 to 3 and with T from 2 to 3 weeks are most pronounced in the stratosphere. In turn, the largest amplitudes of the travelling waves with zonal wavenumbers k ≥ 5 are found in the troposphere. The dominant periods of the latter waves are about 1 week or slightly higher, and this dominant period basically decrease with increasing wavenumber. In the upper stratosphere, the eastward travelling waves generally dominate over westward ones. The only exception is the longest zonal mode with k=1, for which the amplitude of the westward travelling wave is larger than that for the eastward one. The period of the travelling waves dominating in the upper stratosphere is close to 3 weeks. In the upper troposphere, the amplitudes of the eastward waves with k from 4 to 10 is several-fold larger than those for their westward counterparts. The latter is reflected in the larger average wavenumber of the eastward travelling wave in comparison to that of the westarward one. The period of the gravest of the dominant travelling waves in the upper troposphere is close to one week, and it decreases to 2-4 days for the dominant travelling waves with k=8-10.
A theory of self-organized zonal flow with fine radial structure in tokamak
NASA Astrophysics Data System (ADS)
Zhang, Y. Z.; Liu, Z. Y.; Xie, T.; Mahajan, S. M.; Liu, J.
2017-12-01
The (low frequency) zonal flow-ion temperature gradient (ITG) wave system, constructed on Braginskii's fluid model in tokamak, is shown to be a reaction-diffusion-advection system; it is derived by making use of a multiple spatiotemporal scale technique and two-dimensional (2D) ballooning theory. For real regular group velocities of ITG waves, two distinct temporal processes, sharing a very similar meso-scale radial structure, are identified in the nonlinear self-organized stage. The stationary and quasi-stationary structures reflect a particular feature of the poloidal group velocity. The equation set posed to be an initial value problem is numerically solved for JET low mode parameters; the results are presented in several figures and two movies that show the spatiotemporal evolutions as well as the spectrum analysis—frequency-wave number spectrum, auto power spectrum, and Lissajous diagram. This approach reveals that the zonal flow in tokamak is a local traveling wave. For the quasi-stationary process, the cycle of ITG wave energy is composed of two consecutive phases in distinct spatiotemporal structures: a pair of Cavitons growing and breathing slowly without long range propagation, followed by a sudden decay into many Instantons that carry negative wave energy rapidly into infinity. A spotlight onto the motion of Instantons for a given radial position reproduces a Blob-Hole temporal structure; the occurrence as well as the rapid decay of Caviton into Instantons is triggered by zero-crossing of radial group velocity. A sample of the radial profile of zonal flow contributed from 31 nonlinearly coupled rational surfaces near plasma edge is found to be very similar to that observed in the JET Ohmic phase [J. C. Hillesheim et al., Phys. Rev. Lett. 116, 165002 (2016)]. The theory predicts an interior asymmetric dipole structure associated with the zonal flow that is driven by the gradients of ITG turbulence intensity.
NASA Astrophysics Data System (ADS)
Dutta, Somenath; Narkhedkar, Sanjay G.; Mukhopadhyay, Parthasarathi; Yadav, Mamta; Sunitha Devi
2018-06-01
An attempt has been made to understand the dynamics of contrasting Indian summer monsoon rainfall (ISMR) in different years during 1979-2017, from large-scale atmospheric energetics aspects. Daily values of eddy and zonal available potential energy (APE), their generation, eddy and zonal kinetic energy (KE), conversions of zonal KE and eddy APE to eddy KE, and conversions of zonal APE to zonal KE and eddy APE were computed over the region bounded by 65°E-95°E and 5°N-35°N during the period 1 May to 30 September for 39 years (1979-2017), using daily ECMWF reanalyzed atmospheric data at 0.125° × 0.125° resolution (3 components of wind and temperature). ISMR was classified into three categories, viz., deficient and below normal, normal and above normal and excess. The daily anomaly of these energetics parameters in each of these years was computed using jackknife method and then the composite of the daily anomalies of these parameters constructed for the years with the above-mentioned three categories of ISMR. The following salient features emerge from this study: Analysis of composite anomaly shows that in case of excess and above normal (below normal and deficient) ISMR, C(A Z , K Z) was less (more) than normal. In case of excess and above normal (below normal and deficient) ISMR, C(A E , K E) was more (less) than normal. Broadly, C(A Z , A E) was more than normal in the years with deficient and below normal ISMR, whereas it was less than normal for years with excess and above normal ISMR. Broadly, G(A Z) was below normal for the years with above normal and excess ISMR, whereas it was above normal for the years with below normal and deficient ISMR. Total kinetic energy and total conversion to eddy kinetic energy was above normal for the years with above normal and excess ISMR.
NASA Astrophysics Data System (ADS)
Zhang, Tuantuan; Huang, Bohua; Yang, Song; Laohalertchai, Charoon
2018-06-01
The seasonal dependence of the prediction skill of 850-hPa monthly zonal wind over the tropical Indo-Pacific domain is examined using the ensemble reforecasts for 1983-2010 from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis and Reforecast (CFSRR) project. According to a maximum signal-to-noise empirical orthogonal function analysis, the most predictable patterns of atmospheric low-level circulation are associated with the developing and maturing phases of El Niño-Southern Oscillation (ENSO). The CFSv2 is capable of predicting these ENSO-related patterns up to 9-months in advance for all months, except for May-June when the effect of the spring barrier is strong. The other predictable climate processes associated with the low-level atmospheric circulation are more seasonally dependent. For winter and spring, the second most predictable patterns are associated with the ENSO decaying phase. Within these seasons, the monthly evolution of the predictable patterns is characterized by a southward shift of westerly wind anomalies, generated by the interaction between the annual cycle and the ENSO signals (i.e., the combination-mode). In general, the CFSv2 hindcast well predicts these patterns at least 5 months in advance for spring, while shows much lower skills for winter months. In summer, the second predictable patterns are associated with the western North Pacific (WNP) monsoon (i.e., the WNP anticyclone/cyclone) in short leads while associated with ENSO in longer leads (after 4-month lead). The second predictable patterns in fall are mainly associated with tropical Indian Ocean Dipole, which can be predicted 3 months in advance.
Where is the Geophysical Evidence for the Giant Impact Origin of the Pluto System?
NASA Astrophysics Data System (ADS)
McKinnon, W. B.; Singer, K. N.; Nimmo, F.; Spencer, J. R.; Young, L. A.; Weaver, H. A., Jr.; Stern, S. A.
2016-12-01
Prior to the New Horizons flyby of the Pluto system, it was anticipated that both Pluto and Charon might show geological or geophysical evidence of the giant impact thought responsible for the formation of Charon and the smaller satellites. Although dynamical and compositional evidence still supports the giant impact model (McKinnon et al., submitted to Icarus), the question remains as to whether the geology of Pluto or Charon records evidence of this cataclysm. The collision speed and energy were most likely not large enough to melt all the ices in the precursor bodies, so surviving geological evidence is not out of the question. Specifically, Pluto post-impact should have been rapidly rotating (with a period as short as 5-6 hr) and highly distorted; Charon under most circumstances would have rapidly despun but have been a highly distorted triaxial body. The tidal evolution end state for both is close to spherical, but fossil figures were anticipated, which in addition to providing direct evidence for post-impact tidal evolution, would provide important clues to thermal and structural evolution. For Pluto, McKinnon and Singer (DPS 2014, abs. 419.07) predicted a flattening >1% (radii differences >10 km) for a strengthless icy lithosphere and an unrelaxed rock core. For a fully relaxed core, they predicted a >2-3 km fossil bulge supported by icy lithospheric strength (corresponding to a minimum past lithosphere thickness of 50 km). New Horizons image analyses have limited any oblateness for Pluto to 0.6% (Nimmo et al., Icarus, in press), which corresponds to <7 km flattening. So Pluto may yet possess a geophysically meaningful oblateness, only one not yet directly detectable (moreover, in order to be consistent with the observations, Pluto's rock core either completed its formation post-spindown, or was too weak to support much non-hydrostatic topography). Such an equator-to-pole surface elevation difference, even a subtle one, could express itself through control of Pluto's zonal albedo pattern (i.e., dark, reddish Cthulhu Regio, Krun and other Macula are all equatorial [names are informal]). Even for a completely relaxed shape, the tectonic effects on Pluto's surface should be manifest. There is a rich variety of tectonic expression, but no obvious match to classic predicted tectonic despinning patterns.
Pizzuto, Daniele A; Müller, Julian; Mühlematter, Urs; Rupp, Niels J; Töpfer, Antonia; Mortezavi, Ashkan; Nagel, Hannes; Kranzbühler, Benedikt; Eberli, Daniel; Burger, Irene A
2018-03-09
Given the good correlation between PSMA expression and intraglandular tumour aggressiveness based on immunohistochemistry, there is increasing interest in 68 Ga-PSMA-11 PET/MRI for staging prostate cancer (PCA). Therefore, accurate knowledge of prostate anatomy as well as normal distribution of PSMA within the prostate gland is becoming essential. The aim of this study was to investigate the physiological intraprostatic distribution of 68 Ga-PSMA-11. We retrospectively analysed all patients who underwent a staging 68 Ga-PSMA-11 PET/MRI scan between June 2016 and January 2018 for high-risk PCA, underwent radical prostatectomy in our institution, and gave written consent for further data analysis. In each patient, standardized volumes of interest (VOIs) were placed bilaterally in the central, transition and peripheral zones within the zonal anatomy according to T2 weighted sequences in the axial and coronal planes. VOIs were only placed if they were safely within healthy tissue without spillover from the PCA. SUV max and SUV mean were determined and their differences among the regions were assessed using the Wilcoxon signed-ranks test. Of 283 consecutive patients scanned with 68 Ga-PSMA-11 PET/MR, 31 were analysed. A total of 133 VOIs were placed, 46 in the central zone, 41 in the transition zone and 46 in the peripheral zone. Differences in SUV max between the central zone (mean 3.9 ± 0.58) and transition zone (mean 3.2 ± 0.59) and between the central zone and peripheral zone (mean 2.7 ± 0.54) were statistically significant (both p < 0.001). Our results suggest that higher 68 Ga-PSMA-11 accumulation in the central zone than in the transition and peripheral zones is normal, and leads to a pattern resembling "Mickey Mouse ears" on 68 Ga-PSMA-11 PET. This pattern could be helpful in avoiding false-positive interpretations of PET scans.
The effects of ground hydrology on climate sensitivity to solar constant variations
NASA Technical Reports Server (NTRS)
Chou, S. H.; Curran, R. J.; Ohring, G.
1979-01-01
The effects of two different evaporation parameterizations on the climate sensitivity to solar constant variations are investigated by using a zonally averaged climate model. The model is based on a two-level quasi-geostrophic zonally averaged annual mean model. One of the evaporation parameterizations tested is a nonlinear formulation with the Bowen ratio determined by the predicted vertical temperature and humidity gradients near the earth's surface. The other is the linear formulation with the Bowen ratio essentially determined by the prescribed linear coefficient.
Zonal flow dynamics and control of turbulent transport in stellarators.
Xanthopoulos, P; Mischchenko, A; Helander, P; Sugama, H; Watanabe, T-H
2011-12-09
The relation between magnetic geometry and the level of ion-temperature-gradient (ITG) driven turbulence in stellarators is explored through gyrokinetic theory and direct linear and nonlinear simulations. It is found that the ITG radial heat flux is sensitive to details of the magnetic configuration that can be understood in terms of the linear behavior of zonal flows. The results throw light on the question of how the optimization of neoclassical confinement is related to the reduction of turbulence.
Zonal average earth radiation budget measurements from satellites for climate studies
NASA Technical Reports Server (NTRS)
Ellis, J. S.; Haar, T. H. V.
1976-01-01
Data from 29 months of satellite radiation budget measurements, taken intermittently over the period 1964 through 1971, are composited into mean month, season and annual zonally averaged meridional profiles. Individual months, which comprise the 29 month set, were selected as representing the best available total flux data for compositing into large scale statistics for climate studies. A discussion of spatial resolution of the measurements along with an error analysis, including both the uncertainty and standard error of the mean, are presented.
NASA Technical Reports Server (NTRS)
Choudhury, B. J.
1988-01-01
Global observations at 37 GHz by the Nimbus-7 SMMR are related to zonal variations of land surface evaporation and primary productivity, as well as to temporal variations of atmospheric CO2 concentration. The temporal variation of CO2 concentration and the zonal variations of evaporation and primary productivity are shown to be highly correlated with the satellite sensor data. The potential usefulness of the 37-GHz data for global biospheric and climate studies is noted.
Erosion patterns produced by the paleo Haizishan ice cap, SE Tibetan Plateau
NASA Astrophysics Data System (ADS)
Fu, P.; Stroeven, A. P.; Harbor, J.; Hättestrand, C.; Heyman, J.; Caffee, M. W.
2017-12-01
Erosion is a primary driver of landscape evolution, topographic relief production, geochemical cycles, and climate change. Combining in situ 10Be and 26Al exposure age dating, geomorphological mapping, and field investigations, we examine glacial erosion patterns of the almost 4,000 km2 paleo Haizishan ice cap on the southeastern Tibetan Plateau. Our results show that ice caps on the low relief Haizishan Plateau produced a zonal pattern of landscape modification. In locations where apparent exposure ages on bedrock are consistent with the last deglaciation, complete resetting of the cosmogenic exposure age clock indicates glacial erosion of at least a few meters. However, older apparent exposure ages on bedrock in areas known to have been covered by the paleo ice cap during the Last Glacial Maximum indicate inheritance and thus limited glacial erosion. Inferred surface exposure ages from cosmogenic depth profiles through two saprolites vary from resetting and thus saprolite profile truncation to nuclide inheritance indicating limited erosion. Finally, significant nuclide inheritance in river sand samples from basins on the scoured plateau surface also indicate limited glacial erosion during the last glaciation. Hence, for the first time, our study shows clear evidence of preservation under non-erosive ice on the Tibetan Plateau. As patterns of glacial erosion intensity are largely driven by the basal thermal regime, our results confirm earlier inferences from geomorphology for a concentric basal thermal pattern for the paleo Haizishan ice cap during the LGM.
Classification of Farmland Landscape Structure in Multiple Scales
NASA Astrophysics Data System (ADS)
Jiang, P.; Cheng, Q.; Li, M.
2017-12-01
Farmland is one of the basic terrestrial resources that support the development and survival of human beings and thus plays a crucial role in the national security of every country. Pattern change is the intuitively spatial representation of the scale and quality variation of farmland. Through the characteristic development of spatial shapes as well as through changes in system structures, functions and so on, farmland landscape patterns may indicate the landscape health level. Currently, it is still difficult to perform positioning analyses of landscape pattern changes that reflect the landscape structure variations of farmland with an index model. Depending on a number of spatial properties such as locations and adjacency relations, distance decay, fringe effect, and on the model of patch-corridor-matrix that is applied, this study defines a type system of farmland landscape structure on the national, provincial, and city levels. According to such a definition, the classification model of farmland landscape-structure type at the pixel scale is developed and validated based on mathematical-morphology concepts and on spatial-analysis methods. Then, the laws that govern farmland landscape-pattern change in multiple scales are analyzed from the perspectives of spatial heterogeneity, spatio-temporal evolution, and function transformation. The result shows that the classification model of farmland landscape-structure type can reflect farmland landscape-pattern change and its effects on farmland production function. Moreover, farmland landscape change in different scales displayed significant disparity in zonality, both within specific regions and in urban-rural areas.
Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul
2013-01-01
An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain. PMID:23440889
Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul
2013-01-01
An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain.
Gurunathan, Rajalakshmi; Van Emden, Bernard; Panchanathan, Sethuraman; Kumar, Sudhir
2004-01-01
Background Modern developmental biology relies heavily on the analysis of embryonic gene expression patterns. Investigators manually inspect hundreds or thousands of expression patterns to identify those that are spatially similar and to ultimately infer potential gene interactions. However, the rapid accumulation of gene expression pattern data over the last two decades, facilitated by high-throughput techniques, has produced a need for the development of efficient approaches for direct comparison of images, rather than their textual descriptions, to identify spatially similar expression patterns. Results The effectiveness of the Binary Feature Vector (BFV) and Invariant Moment Vector (IMV) based digital representations of the gene expression patterns in finding biologically meaningful patterns was compared for a small (226 images) and a large (1819 images) dataset. For each dataset, an ordered list of images, with respect to a query image, was generated to identify overlapping and similar gene expression patterns, in a manner comparable to what a developmental biologist might do. The results showed that the BFV representation consistently outperforms the IMV representation in finding biologically meaningful matches when spatial overlap of the gene expression pattern and the genes involved are considered. Furthermore, we explored the value of conducting image-content based searches in a dataset where individual expression components (or domains) of multi-domain expression patterns were also included separately. We found that this technique improves performance of both IMV and BFV based searches. Conclusions We conclude that the BFV representation consistently produces a more extensive and better list of biologically useful patterns than the IMV representation. The high quality of results obtained scales well as the search database becomes larger, which encourages efforts to build automated image query and retrieval systems for spatial gene expression patterns. PMID:15603586
Thin-section computed tomography findings in 104 immunocompetent patients with adenovirus pneumonia.
Park, Chan Kue; Kwon, Hoon; Park, Ji Young
2017-08-01
Background To date, there has been no computed tomography (CT) evaluation of adenovirus pneumonia in a large number of immunocompetent patients. Purpose To describe the thin-section CT findings of immunocompetent patients with adenovirus pneumonia. Material and Methods We prospectively enrolled 104 patients with adenovirus pneumonia from a military hospital. CT scans of each patient were retrospectively and independently assessed by two radiologists for the presence of abnormalities, laterality and zonal predominance of the parenchymal abnormalities, and dominant imaging patterns and their anatomic distributions. Results CT findings included consolidation (n = 92), ground-glass opacity (GGO; n = 82), septal thickening (n = 34), nodules (n = 46), bronchial wall thickening (n = 32), pleural effusion (n = 16), and lymphadenopathy (n = 3). Eighty-four patients (81%) exhibited unilateral parenchymal abnormalities and 57 (57%) exhibited lower lung zone abnormalities. The most frequently dominant CT pattern was consolidation with surrounding GGO (n = 50), with subpleural (70%) and peribronchovascular (94%) distributions. Consolidation-the second-most common pattern (n = 33)-also exhibited subpleural (79%) and peribronchovascular (97%) distributions. The dominant nodule pattern (n = 14) exhibited mixed (64%) and peribronchovascular (100%) distributions. A dominant GGO pattern was only observed in four patients; none had central distribution. Conclusion Although the manifestations of adenovirus pneumonia on CT are varied, we found the most frequent pattern was consolidation with or without surrounding GGO, with subpleural and peribronchovascular distributions. Parenchymal abnormalities were predominantly unilateral and located in the lower lung zone. If dominant consolidation findings are present in immunocompetent patients during the early stages, adenovirus pneumonia should be considered.
NASA Astrophysics Data System (ADS)
Li, Lei; Zhai, Panmao; Chen, Yang; Ni, Yunqi
2016-06-01
Based on the daily reanalysis data from NCEP-NCAR and daily precipitation data from the China National Meteorological Information Center, an ensemble empirical mode decomposition method is employed to extract the predominant oscillation modes of the East Asia-Pacific (EAP) teleconnection pattern. The influences of these low-frequency modes on persistent heavy precipitation in the Yangtze-Huai River (YHR) valley are investigated. The results indicate that the EAP pattern and rainfall in YHR valley both exhibit remarkable 10-30- and 30-60-day oscillations. The impacts of the EAP pattern on the YHR persistent heavy precipitation can be found on both the 10-30- and 30-60-day timescales—the 10-30-day scale for most cases. Composite analysis indicates that, on the 10-30-day timescale, formation of the EAP pattern in the lower and middle troposphere is determined by convective systems near the tropical western Pacific; whereas in the middle troposphere, the phase transition is jointly contributed by both the dispersion of zonal wave energies at higher latitudes and convective systems over the South China Sea. In the context of the 10-30-day EAP pattern, the anomalously abundant moisture is transported by an anomalous subtropical anticyclone system, and strong moisture convergence results from that anomalous anticyclone system and a cyclonic system in the midlatitude East Asia. Such a combination of systems persists for at least three days, contributing to the formation of persistent heavy precipitation in the YHR valley.
NASA Astrophysics Data System (ADS)
Makowski, Jessica; Chambers, Don; Bonin, Jennifer
2013-04-01
Previous studies have suggested that ocean bottom pressure (OBP) can be used to measure the transport variability of the Antarctic Circumpolar Current (ACC). The OBP observations from the Gravity Recovery and Climate Experiment (GRACE) will be used to calculate transport along the 150°E longitude choke point, between Antarctica and Australia. We will examine whether zonally averaged wind stress, wind stress curl, or local zonal winds are more coherent with zonal mass transport variability. Preliminary studies suggest that seasonal variation in transport across 150°E is more correlated with winds along and north of the northern front of the ACC: the Sub Tropical front (STF). It also appears that interannual variations in transport along 150°E are related to wind variations south of the STF and centered south of the Sub Antarctic Front (SAF). We have observed a strong anti-correlation across the SAF, in the Indian Ocean, which suggests wind stress curl may also be responsible for transport variations. Preliminary results will be presented.
NASA Astrophysics Data System (ADS)
Makowski, J.; Chambers, D. P.; Bonin, J. A.
2012-12-01
Previous studies have suggested that ocean bottom pressure (OBP) can be used to measure the transport variability of the Antarctic Circumpolar Current (ACC). Using OBP data from the JPL ECCO model and the Gravity Recovery and Climate Experiment (GRACE), we examine the zonal transport variability of the ACC integrated between the major fronts between 2003-2010. The JPL ECCO data are used to determine average front positions for the time period studies, as well as where transport is mainly zonal. Statistical analysis will be conducted to determine the uncertainty of the GRACE observations using a simulated data set. We will also begin looking at low frequency changes and how coherent transport variability is from region to region of the ACC. Correlations with bottom pressure south of the ACC and the average basin transports will also be calculated to determine the probability of using bottom pressure south of the ACC as a means for describing the ACC dynamics and transport.
NASA Astrophysics Data System (ADS)
Guervilly, C.; Cardin, P.
2017-12-01
Convection is the main heat transport process in the liquid cores of planets. The convective flows are thought to be turbulent and constrained by rotation (corresponding to high Reynolds numbers Re and low Rossby numbers Ro). Under these conditions, and in the absence of magnetic fields, the convective flows can produce coherent Reynolds stresses that drive persistent large-scale zonal flows. The formation of large-scale flows has crucial implications for the thermal evolution of planets and the generation of large-scale magnetic fields. In this work, we explore this problem with numerical simulations using a quasi-geostrophic approximation to model convective and zonal flows at Re 104 and Ro 10-4 for Prandtl numbers relevant for liquid metals (Pr 0.1). The formation of intense multiple zonal jets strongly affects the convective heat transport, leading to the formation of a mean temperature staircase. We also study the generation of magnetic fields by the quasi-geostrophic flows at low magnetic Prandtl numbers.
Temperature and circulation in the stratospheres of the outer planets
NASA Technical Reports Server (NTRS)
Conrath, Barney J.; Gierasch, Peter J.; Leroy, Stephen S.
1989-01-01
A zonally symmetric, linear radiative-dynamical model is compared with observations of the upper tropospheres and stratospheres of the outer planets. Seasonal variation is included in the model. Friction is parameterized by linear drag (Rayleigh friction). Gas opacities are accounted for but aerosols are omitted. Horizontal temperature gradients are small on all the planets. Seasonal effects are strongest on Saturn and Neptune but are weak even in these cases, because the latitudinal gradient of radiative heating is weak. Seasonal effects on Uranus are extremely weak because the radiative time constant is longer that the orbital period. One free parameter in the model is the frictional time constant. Comparison with observed temperature perturbations over zonal currents in the troposphere shows that the frictional time constant is on the same order as the radiative time constant for all these objects. Vertical motions predicted by the model are extremely weak. They are much smaller than one scale height per orbital period, except in the immediate neighborhood of tropospheric and zonal currents.
Variability simulations with a steady, linearized primitive equations model
NASA Technical Reports Server (NTRS)
Kinter, J. L., III; Nigam, S.
1985-01-01
Solutions of the steady, primitive equations on a sphere, linearized about a zonally symmetric basic state are computed for the purpose of simulating monthly mean variability in the troposphere. The basic states are observed, winter monthly mean, zonal means of zontal and meridional velocities, temperatures and surface pressures computed from the 15 year NMC time series. A least squares fit to a series of Legendre polynomials is used to compute the basic states between 20 H and the equator, and the hemispheres are assumed symmetric. The model is spectral in the zonal direction, and centered differences are employed in the meridional and vertical directions. Since the model is steady and linear, the solution is obtained by inversion of a block, pente-diagonal matrix. The model simulates the climatology of the GFDL nine level, spectral general circulation model quite closely, particularly in middle latitudes above the boundary layer. This experiment is an extension of that simulation to examine variability of the steady, linear solution.
GTC Turbulence Simulations near H-mode Pedestal with Resonant Magnetic Perturbations
NASA Astrophysics Data System (ADS)
Shi, Lei; Ferraro, Nathaniel; Taimourzadeh, Sam; Fu, Jingyuan; Lin, Zhihong; Nazikian, Raffi
2017-10-01
Full plasma responses to Resonant Magnetic Perturbations (RMPs) as provided by the resistive MHD code M3D-C1 are implemented into Gyrokinetic Toroidal Code (GTC) to study the effect of magnetic islands and stochastic field regions on microturbulence in realistic DIII-D geometry. Electrostatic turbulence simulations with adiabatic electrons show no significant increase of the saturated ion heat conductivity in the presence of RMP-induced islands. However, electron response to zonal flow in the presence of magnetic islands and stochastic fields can drastically increase zonal flow dielectric constant for long wavelength fluctuations. Zonal flow generation can then be reduced and the microturbulence can be enhanced greatly. Furthermore, because the RMP magnetic island size is comparable to the ion banana width, electron and ion responses to these islands may be fundamentally different, which could drive non-ambipolar particles fluxes leading to changes of the radial electric field shear. This work is supported by General Atomics subcontract.
NASA Astrophysics Data System (ADS)
Hueso, R.; Sánchez-Lavega, A.; Iñurrigarro, P.; Rojas, J. F.; Pérez-Hoyos, S.; Mendikoa, I.; Gómez-Forrellad, J. M.; Go, C.; Peach, D.; Colas, F.; Vedovato, M.
2017-05-01
We analyze Jupiter observations between December 2015 and August 2016 in the 0.38-1.7 μm wavelength range from the PlanetCam instrument at the 2.2 m telescope at Calar Alto Observatory and in the optical range by amateur observers contributing to the Planetary Virtual Observatory Laboratory. Over this time Jupiter was in a quiescent state without notable disturbances. Analysis of ground-based images and Hubble Space Telescope observations in February 2016 allowed the retrieval of mean zonal winds from -74.5° to +73.2°. These winds did not change over 2016 or when compared with winds from previous years with the sole exception of intense zonal winds at the North Temperate Belt. We also present results concerning the major wave systems in the North Equatorial Belt and in the upper polar hazes visible in methane absorption bands, a description of the planet's overall cloud morphology and observations of Jupiter hours before Juno's orbit insertion.
Application of zonal model on indoor air sensor network design
NASA Astrophysics Data System (ADS)
Chen, Y. Lisa; Wen, Jin
2007-04-01
Growing concerns over the safety of the indoor environment have made the use of sensors ubiquitous. Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is more informed by intuition and experience rather by systematic design. To develop a sensor system design methodology, a proper indoor airflow modeling approach is needed. Various indoor airflow modeling techniques, from complicated computational fluid dynamics approaches to simplified multi-zone approaches, exist in the literature. In this study, the effects of two airflow modeling techniques, multi-zone modeling technique and zonal modeling technique, on indoor air protection sensor system design are discussed. Common building attack scenarios, using a typical CBW agent, are simulated. Both multi-zone and zonal models are used to predict airflows and contaminant dispersion. Genetic Algorithm is then applied to optimize the sensor location and quantity. Differences in the sensor system design resulting from the two airflow models are discussed for a typical office environment and a large hall environment.
Estimation of Venus wind velocities from high-resolution infrared spectra. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Smith, M. A. H.
1978-01-01
Zonal velocity profiles in the Venus atmosphere above the clouds were estimated from measured asymmetries of HCl and HF infrared absorption lines in high-resolution Fourier interferometer spectra of the planet. These asymmetries are caused by both pressure-induced shifts in the positions of the hydrogen-halide lines perturbed by CO2 and Doppler shifts due to atmospheric motions. Particularly in the case of the HCl 2-0 band, the effects of the two types of line shifts can be easily isolated, making it possible to estimate a profile of average Venus equatorial zonal velocity as a function of pressure in the region roughly 60 to 70 km above the surface of the planet. The mean profiles obtained show strong vertical shear in the Venus zonal winds near the cloud-top level, and both the magnitude and direction of winds at all levels in this region appear to vary greatly with longitude relative to the sub-solar point.