Radiation of extant cetaceans driven by restructuring of the oceans.
Steeman, Mette E; Hebsgaard, Martin B; Fordyce, R Ewan; Ho, Simon Y W; Rabosky, Daniel L; Nielsen, Rasmus; Rahbek, Carsten; Glenner, Henrik; Sørensen, Martin V; Willerslev, Eske
2009-12-01
The remarkable fossil record of whales and dolphins (Cetacea) has made them an exemplar of macroevolution. Although their overall adaptive transition from terrestrial to fully aquatic organisms is well known, this is not true for the radiation of modern whales. Here, we explore the diversification of extant cetaceans by constructing a robust molecular phylogeny that includes 87 of 89 extant species. The phylogeny and divergence times are derived from nuclear and mitochondrial markers, calibrated with fossils. We find that the toothed whales are monophyletic, suggesting that echolocation evolved only once early in that lineage some 36-34 Ma. The rorqual family (Balaenopteridae) is restored with the exclusion of the gray whale, suggesting that gulp feeding evolved 18-16 Ma. Delphinida, comprising all living dolphins and porpoises other than the Ganges/Indus dolphins, originated about 26 Ma; it contains the taxonomically rich delphinids, which began diversifying less than 11 Ma. We tested 2 hypothesized drivers of the extant cetacean radiation by assessing the tempo of lineage accumulation through time. We find no support for a rapid burst of speciation early in the history of extant whales, contrasting with expectations of an adaptive radiation model. However, we do find support for increased diversification rates during periods of pronounced physical restructuring of the oceans. The results imply that paleogeographic and paleoceanographic changes, such as closure of major seaways, have influenced the dynamics of radiation in extant cetaceans.
Radiation of Extant Cetaceans Driven by Restructuring of the Oceans
Steeman, Mette E.; Hebsgaard, Martin B.; Fordyce, R. Ewan; Ho, Simon Y. W.; Rabosky, Daniel L.; Nielsen, Rasmus; Rahbek, Carsten; Glenner, Henrik; Sørensen, Martin V.; Willerslev, Eske
2009-01-01
Abstract The remarkable fossil record of whales and dolphins (Cetacea) has made them an exemplar of macroevolution. Although their overall adaptive transition from terrestrial to fully aquatic organisms is well known, this is not true for the radiation of modern whales. Here, we explore the diversification of extant cetaceans by constructing a robust molecular phylogeny that includes 87 of 89 extant species. The phylogeny and divergence times are derived from nuclear and mitochondrial markers, calibrated with fossils. We find that the toothed whales are monophyletic, suggesting that echolocation evolved only once early in that lineage some 36–34 Ma. The rorqual family (Balaenopteridae) is restored with the exclusion of the gray whale, suggesting that gulp feeding evolved 18–16 Ma. Delphinida, comprising all living dolphins and porpoises other than the Ganges/Indus dolphins, originated about 26 Ma; it contains the taxonomically rich delphinids, which began diversifying less than 11 Ma. We tested 2 hypothesized drivers of the extant cetacean radiation by assessing the tempo of lineage accumulation through time. We find no support for a rapid burst of speciation early in the history of extant whales, contrasting with expectations of an adaptive radiation model. However, we do find support for increased diversification rates during periods of pronounced physical restructuring of the oceans. The results imply that paleogeographic and paleoceanographic changes, such as closure of major seaways, have influenced the dynamics of radiation in extant cetaceans. PMID:20525610
Vestibular evidence for the evolution of aquatic behaviour in early cetaceans.
Spoor, F; Bajpai, S; Hussain, S T; Kumar, K; Thewissen, J G M
2002-05-09
Early cetaceans evolved from terrestrial quadrupeds to obligate swimmers, a change that is traditionally studied by functional analysis of the postcranial skeleton. Here we assess the evolution of cetacean locomotor behaviour from an independent perspective by looking at the semicircular canal system, one of the main sense organs involved in neural control of locomotion. Extant cetaceans are found to be unique in that their canal arc size, corrected for body mass, is approximately three times smaller than in other mammals. This reduces the sensitivity of the canal system, most plausibly to match the fast body rotations that characterize cetacean behaviour. Eocene fossils show that the new sensory regime, incompatible with terrestrial competence, developed quickly and early in cetacean evolution, as soon as the taxa are associated with marine environments. Dedicated agile swimming of cetaceans thus appeared to have originated as a rapid and fundamental shift in locomotion rather than as the gradual transition suggested by postcranial evidence. We hypothesize that the unparalleled modification of the semicircular canal system represented a key 'point of no return' event in early cetacean evolution, leading to full independence from life on land.
Rod Monochromacy and the Coevolution of Cetacean Retinal Opsins
Meredith, Robert W.; Gatesy, John; Emerling, Christopher A.; York, Vincent M.; Springer, Mark S.
2013-01-01
Cetaceans have a long history of commitment to a fully aquatic lifestyle that extends back to the Eocene. Extant species have evolved a spectacular array of adaptations in conjunction with their deployment into a diverse array of aquatic habitats. Sensory systems are among those that have experienced radical transformations in the evolutionary history of this clade. In the case of vision, previous studies have demonstrated important changes in the genes encoding rod opsin (RH1), short-wavelength sensitive opsin 1 (SWS1), and long-wavelength sensitive opsin (LWS) in selected cetaceans, but have not examined the full complement of opsin genes across the complete range of cetacean families. Here, we report protein-coding sequences for RH1 and both color opsin genes (SWS1, LWS) from representatives of all extant cetacean families. We examine competing hypotheses pertaining to the timing of blue shifts in RH1 relative to SWS1 inactivation in the early history of Cetacea, and we test the hypothesis that some cetaceans are rod monochomats. Molecular evolutionary analyses contradict the “coastal” hypothesis, wherein SWS1 was pseudogenized in the common ancestor of Cetacea, and instead suggest that RH1 was blue-shifted in the common ancestor of Cetacea before SWS1 was independently knocked out in baleen whales (Mysticeti) and in toothed whales (Odontoceti). Further, molecular evidence implies that LWS was inactivated convergently on at least five occasions in Cetacea: (1) Balaenidae (bowhead and right whales), (2) Balaenopteroidea (rorquals plus gray whale), (3) Mesoplodon bidens (Sowerby's beaked whale), (4) Physeter macrocephalus (giant sperm whale), and (5) Kogia breviceps (pygmy sperm whale). All of these cetaceans are known to dive to depths of at least 100 m where the underwater light field is dim and dominated by blue light. The knockout of both SWS1 and LWS in multiple cetacean lineages renders these taxa rod monochromats, a condition previously unknown among mammalian species. PMID:23637615
Tsagkogeorga, Georgia; McGowen, Michael R; Davies, Kalina T J; Jarman, Simon; Polanowski, Andrea; Bertelsen, Mads F; Rossiter, Stephen J
2015-09-01
Recent studies have reported multiple cases of molecular adaptation in cetaceans related to their aquatic abilities. However, none of these has included the hippopotamus, precluding an understanding of whether molecular adaptations in cetaceans occurred before or after they split from their semi-aquatic sister taxa. Here, we obtained new transcriptomes from the hippopotamus and humpback whale, and analysed these together with available data from eight other cetaceans. We identified more than 11 000 orthologous genes and compiled a genome-wide dataset of 6845 coding DNA sequences among 23 mammals, to our knowledge the largest phylogenomic dataset to date for cetaceans. We found positive selection in nine genes on the branch leading to the common ancestor of hippopotamus and whales, and 461 genes in cetaceans compared to 64 in hippopotamus. Functional annotation revealed adaptations in diverse processes, including lipid metabolism, hypoxia, muscle and brain function. By combining these findings with data on protein-protein interactions, we found evidence suggesting clustering among gene products relating to nervous and muscular systems in cetaceans. We found little support for shared ancestral adaptations in the two taxa; most molecular adaptations in extant cetaceans occurred after their split with hippopotamids.
Tsagkogeorga, Georgia; McGowen, Michael R.; Davies, Kalina T. J.; Jarman, Simon; Polanowski, Andrea; Bertelsen, Mads F.; Rossiter, Stephen J.
2015-01-01
Recent studies have reported multiple cases of molecular adaptation in cetaceans related to their aquatic abilities. However, none of these has included the hippopotamus, precluding an understanding of whether molecular adaptations in cetaceans occurred before or after they split from their semi-aquatic sister taxa. Here, we obtained new transcriptomes from the hippopotamus and humpback whale, and analysed these together with available data from eight other cetaceans. We identified more than 11 000 orthologous genes and compiled a genome-wide dataset of 6845 coding DNA sequences among 23 mammals, to our knowledge the largest phylogenomic dataset to date for cetaceans. We found positive selection in nine genes on the branch leading to the common ancestor of hippopotamus and whales, and 461 genes in cetaceans compared to 64 in hippopotamus. Functional annotation revealed adaptations in diverse processes, including lipid metabolism, hypoxia, muscle and brain function. By combining these findings with data on protein–protein interactions, we found evidence suggesting clustering among gene products relating to nervous and muscular systems in cetaceans. We found little support for shared ancestral adaptations in the two taxa; most molecular adaptations in extant cetaceans occurred after their split with hippopotamids. PMID:26473040
Pyenson, Nicholas D.; Uhen, Mark D.; Marshall, Christopher D.
2017-01-01
The evolution of filter feeding in baleen whales (Mysticeti) facilitated a wide range of ecological diversity and extreme gigantism. The innovation of filter feeding evolved in a shift from a mineralized upper and lower dentition in stem mysticetes to keratinous baleen plates that hang only from the roof of the mouth in extant species, which are all edentulous as adults. While all extant mysticetes are born with a mandible lacking a specialized feeding structure (i.e., baleen), the bony surface retains small foramina with elongated sulci that often merge together in what has been termed the alveolar gutter. Because mysticete embryos develop tooth buds that resorb in utero, these foramina have been interpreted as homologous to tooth alveoli in other mammals. Here, we test this homology by creating 3D models of the internal mandibular morphology from terrestrial artiodactyls and fossil and extant cetaceans, including stem cetaceans, odontocetes and mysticetes. We demonstrate that dorsal foramina on the mandible communicate with the mandibular canal via smaller canals, which we explain within the context of known mechanical models of bone resorption. We suggest that these dorsal foramina represent distinct branches of the inferior alveolar nerve (or artery), rather than alveoli homologous with those of other mammals. As a functional explanation, we propose that these branches provide sensation to the dorsal margin of the mandible to facilitate placement and occlusion of the baleen plates during filer feeding. PMID:28542468
Origin of underwater hearing in whales.
Thewissen, J G; Hussain, S T
1993-02-04
All described fossil and Recent cetaceans have relatively similar ear bones (malleus, incus and stapes) that strongly diverge from those of land mammals. Here we report that the hearing organ of the oldest whale, Pakicetus, is the only known intermediate between that of land mammals and aquatic cetaceans (whales, dolphins and porpoises). The incus of Pakicetus is intermediate with respect to inflation, crural proportions, and position of the mallear joint. The incus and mandible of Pakicetus indicate that the path of soundwaves to its ear resembled that of land mammals. These fossils suggest that the first whale was amphibious, and corroborate the hypothesis that artiodactyls (for example, pigs, camels and ruminants) are the closest extant relatives of cetaceans.
Nikaido, Masato; Rooney, Alejandro P.; Okada, Norihiro
1999-01-01
Insertion analysis of short and long interspersed elements is a powerful method for phylogenetic inference. In a previous study of short interspersed element data, it was found that cetaceans, hippopotamuses, and ruminants form a monophyletic group. To further resolve the relationships among these taxa, we now have isolated and characterized 10 additional loci. A phylogenetic analysis of these data was able to resolve relationships among the major cetartiodactyl groups, thereby shedding light on the origin of whales. The results indicated (i) that cetaceans are deeply nested within Artiodactyla, (ii) that cetaceans and hippopotamuses form a monophyletic group, (iii) that pigs and peccaries form a monophyletic group to the exclusion of hippopotamuses, (iv) that chevrotains diverged first among ruminants, and (v) that camels diverged first among cetartiodactyls. These findings lead us to conclude that cetaceans evolved from an immediate artiodactyl, not mesonychian, ancestor. PMID:10468596
Sink or swim? Bone density as a mechanism for buoyancy control in early cetaceans.
Gray, Noel-Marie; Kainec, Kimberly; Madar, Sandra; Tomko, Lucas; Wolfe, Scott
2007-06-01
Previous analyses have shown that secondarily aquatic tetrapods, including whales, exhibit osteological adaptations to life in water as part of their complex buoyancy control systems. These structural specializations of bone span hyperostosis through osteoporosis. The past 15 years of paleontological effort has provided an unprecedented opportunity to examine the osteological transformation of whales as they make their transition to an obligate aquatic lifestyle over a 10-million-year period. It is hypothesized that whales manifest their osteological specialization in the same manner as extant semiaquatic and fully aquatic mammals. This study presents and analysis of the microstructural features of bone in early and late archaic cetaceans, and in a comparative sample of modern terrestrial, semiaquatic, and aquatic mammals. Bone histology was examined from the ribs of 10 fossilized individuals representing five early cetacean families, including Pakicetidae, Ambulocetidae, Protocetidae, Remintonocetidae, and Basilosauridae. Comparisons were then made with rib histology from nine genera of extant mammals including: Odocoileus (deer), Bos (cow), Equus (horse), Canis (dog), Lutra (river otter), Enhydra (sea otter), Choeropsis (pygmy hippo), Trichechus (sea cow), and Delphinus (dolphin). Results show that the transition from terrestrial, to semiaquatic, to obligate aquatic locomotion in archaeocetes involved a radical shift in bone function achieved by means of profound changes at the microstructural level. A surprising finding was that microstructural change predates gross anatomical shift in archaeocetes associated with swimming. Histological analysis shows that high bone density is an aquatic specialization that provides static buoyancy control (ballast) for animals living in shallow water, while low bone density is associated with dynamic buoyancy control for animals living in deep water. Thus, there was a shift from the typical terrestrial form, to osteopetrosis and pachyosteosclerosis, and then to osteoporosis in the first quarter of cetacean evolutionary history. 2007 Wiley-Liss, Inc.
Infrasonic and Ultrasonic Hearing Evolved after the Emergence of Modern Whales.
Mourlam, Mickaël J; Orliac, Maeva J
2017-06-19
Mysticeti (baleen whales) and Odontoceti (toothed whales) today greatly differ in their hearing abilities: Mysticeti are presumed to be sensitive to infrasonic noises [1-3], whereas Odontoceti are sensitive to ultrasonic sounds [4-6]. Two competing hypotheses exist regarding the attainment of hearing abilities in modern whales: ancestral low-frequency sensitivity [7-13] or ancestral high-frequency sensitivity [14, 15]. The significance of these evolutionary scenarios is limited by the undersampling of both early-diverging cetaceans (archaeocetes) and terrestrial hoofed relatives of cetaceans (non-cetacean artiodactyls). Here, we document for the first time the bony labyrinth, the hollow cavity housing the hearing organ, of two species of protocetid whales from Lutetian deposits (ca. 46-43 Ma) of Kpogamé, Togo. These archaeocete cetaceans, which are transitional between terrestrial and aquatic forms, prove to be a key for determining the hearing abilities of early whales. We propose a new evolutionary picture for the early stages of this history, based on qualitative and quantitative studies of the cochlear morphology of an unparalleled sample of extant and extinct land artiodactyls and cetaceans. Contrary to the hypothesis that archaeocetes have been more sensitive to high-frequency sounds than their terrestrial ancestors [15], we demonstrate that early cetaceans presented a cochlear functional pattern close to that of their terrestrial relatives, and that specialization for infrasonic or ultrasonic hearing in Mysticeti or Odontoceti, respectively, instead only occurred in fully aquatic whales, after the emergence of Neoceti (Mysticeti+Odontoceti). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mannino, Marcello A.; Talamo, Sahra; Tagliacozzo, Antonio; Fiore, Ivana; Nehlich, Olaf; Piperno, Marcello; Tusa, Sebastiano; Collina, Carmine; di Salvo, Rosaria; Schimmenti, Vittoria; Richards, Michael P.
2015-11-01
Cetacean mass strandings occur regularly worldwide, yet the compounded effects of natural and anthropogenic factors often complicate our understanding of these phenomena. Evidence of past stranding episodes may, thus, be essential to establish the potential influence of climate change. Investigations on bones from the site of Grotta dell’Uzzo in North West Sicily (Italy) show that the rapid climate change around 8,200 years ago coincided with increased strandings in the Mediterranean Sea. Stable isotope analyses on collagen from a large sample of remains recovered at this cave indicate that Mesolithic hunter-gatherers relied little on marine resources. A human and a red fox dating to the 8.2-kyr-BP climatic event, however, acquired at least one third of their protein from cetaceans. Numerous carcasses should have been available annually, for at least a decade, to obtain these proportions of meat. Our findings imply that climate-driven environmental changes, caused by global warming, may represent a serious threat to cetaceans in the near future.
Mannino, Marcello A; Talamo, Sahra; Tagliacozzo, Antonio; Fiore, Ivana; Nehlich, Olaf; Piperno, Marcello; Tusa, Sebastiano; Collina, Carmine; Di Salvo, Rosaria; Schimmenti, Vittoria; Richards, Michael P
2015-11-17
Cetacean mass strandings occur regularly worldwide, yet the compounded effects of natural and anthropogenic factors often complicate our understanding of these phenomena. Evidence of past stranding episodes may, thus, be essential to establish the potential influence of climate change. Investigations on bones from the site of Grotta dell'Uzzo in North West Sicily (Italy) show that the rapid climate change around 8,200 years ago coincided with increased strandings in the Mediterranean Sea. Stable isotope analyses on collagen from a large sample of remains recovered at this cave indicate that Mesolithic hunter-gatherers relied little on marine resources. A human and a red fox dating to the 8.2-kyr-BP climatic event, however, acquired at least one third of their protein from cetaceans. Numerous carcasses should have been available annually, for at least a decade, to obtain these proportions of meat. Our findings imply that climate-driven environmental changes, caused by global warming, may represent a serious threat to cetaceans in the near future.
Mannino, Marcello A.; Talamo, Sahra; Tagliacozzo, Antonio; Fiore, Ivana; Nehlich, Olaf; Piperno, Marcello; Tusa, Sebastiano; Collina, Carmine; Di Salvo, Rosaria; Schimmenti, Vittoria; Richards, Michael P.
2015-01-01
Cetacean mass strandings occur regularly worldwide, yet the compounded effects of natural and anthropogenic factors often complicate our understanding of these phenomena. Evidence of past stranding episodes may, thus, be essential to establish the potential influence of climate change. Investigations on bones from the site of Grotta dell’Uzzo in North West Sicily (Italy) show that the rapid climate change around 8,200 years ago coincided with increased strandings in the Mediterranean Sea. Stable isotope analyses on collagen from a large sample of remains recovered at this cave indicate that Mesolithic hunter-gatherers relied little on marine resources. A human and a red fox dating to the 8.2-kyr-BP climatic event, however, acquired at least one third of their protein from cetaceans. Numerous carcasses should have been available annually, for at least a decade, to obtain these proportions of meat. Our findings imply that climate-driven environmental changes, caused by global warming, may represent a serious threat to cetaceans in the near future. PMID:26573384
Nikaido, Masato; Matsuno, Fumio; Hamilton, Healy; Brownell, Robert L.; Cao, Ying; Ding, Wang; Zuoyan, Zhu; Shedlock, Andrew M.; Fordyce, R. Ewan; Hasegawa, Masami; Okada, Norihiro
2001-01-01
SINE (short interspersed element) insertion analysis elucidates contentious aspects in the phylogeny of toothed whales and dolphins (Odontoceti), especially river dolphins. Here, we characterize 25 informative SINEs inserted into unique genomic loci during evolution of odontocetes to construct a cladogram, and determine a total of 2.8 kb per taxon of the flanking sequences of these SINE loci to estimate divergence times among lineages. We demonstrate that: (i) Odontocetes are monophyletic; (ii) Ganges River dolphins, beaked whales, and ocean dolphins diverged (in this order) after sperm whales; (iii) three other river dolphin taxa, namely the Amazon, La Plata, and Yangtze river dolphins, form a monophyletic group with Yangtze River dolphins being the most basal; and (iv) the rapid radiation of extant cetacean lineages occurred some 28–33 million years B.P., in strong accord with the fossil record. The combination of SINE and flanking sequence analysis suggests a topology and set of divergence times for odontocete relationships, offering alternative explanations for several long-standing problems in cetacean evolution. PMID:11416211
A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea
2011-01-01
Background Cetacea (dolphins, porpoises, and whales) is a clade of aquatic species that includes the most massive, deepest diving, and largest brained mammals. Understanding the temporal pattern of diversification in the group as well as the evolution of cetacean anatomy and behavior requires a robust and well-resolved phylogenetic hypothesis. Although a large body of molecular data has accumulated over the past 20 years, DNA sequences of cetaceans have not been directly integrated with the rich, cetacean fossil record to reconcile discrepancies among molecular and morphological characters. Results We combined new nuclear DNA sequences, including segments of six genes (~2800 basepairs) from the functionally extinct Yangtze River dolphin, with an expanded morphological matrix and published genomic data. Diverse analyses of these data resolved the relationships of 74 taxa that represent all extant families and 11 extinct families of Cetacea. The resulting supermatrix (61,155 characters) and its sub-partitions were analyzed using parsimony methods. Bayesian and maximum likelihood (ML) searches were conducted on the molecular partition, and a molecular scaffold obtained from these searches was used to constrain a parsimony search of the morphological partition. Based on analysis of the supermatrix and model-based analyses of the molecular partition, we found overwhelming support for 15 extant clades. When extinct taxa are included, we recovered trees that are significantly correlated with the fossil record. These trees were used to reconstruct the timing of cetacean diversification and the evolution of characters shared by "river dolphins," a non-monophyletic set of species according to all of our phylogenetic analyses. Conclusions The parsimony analysis of the supermatrix and the analysis of morphology constrained to fit the ML/Bayesian molecular tree yielded broadly congruent phylogenetic hypotheses. In trees from both analyses, all Oligocene taxa included in our study fell outside crown Mysticeti and crown Odontoceti, suggesting that these two clades radiated in the late Oligocene or later, contra some recent molecular clock studies. Our trees also imply that many character states shared by river dolphins evolved in their oceanic ancestors, contradicting the hypothesis that these characters are convergent adaptations to fluvial habitats. PMID:21518443
A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea.
Geisler, Jonathan H; McGowen, Michael R; Yang, Guang; Gatesy, John
2011-04-25
Cetacea (dolphins, porpoises, and whales) is a clade of aquatic species that includes the most massive, deepest diving, and largest brained mammals. Understanding the temporal pattern of diversification in the group as well as the evolution of cetacean anatomy and behavior requires a robust and well-resolved phylogenetic hypothesis. Although a large body of molecular data has accumulated over the past 20 years, DNA sequences of cetaceans have not been directly integrated with the rich, cetacean fossil record to reconcile discrepancies among molecular and morphological characters. We combined new nuclear DNA sequences, including segments of six genes (~2800 basepairs) from the functionally extinct Yangtze River dolphin, with an expanded morphological matrix and published genomic data. Diverse analyses of these data resolved the relationships of 74 taxa that represent all extant families and 11 extinct families of Cetacea. The resulting supermatrix (61,155 characters) and its sub-partitions were analyzed using parsimony methods. Bayesian and maximum likelihood (ML) searches were conducted on the molecular partition, and a molecular scaffold obtained from these searches was used to constrain a parsimony search of the morphological partition. Based on analysis of the supermatrix and model-based analyses of the molecular partition, we found overwhelming support for 15 extant clades. When extinct taxa are included, we recovered trees that are significantly correlated with the fossil record. These trees were used to reconstruct the timing of cetacean diversification and the evolution of characters shared by "river dolphins," a non-monophyletic set of species according to all of our phylogenetic analyses. The parsimony analysis of the supermatrix and the analysis of morphology constrained to fit the ML/Bayesian molecular tree yielded broadly congruent phylogenetic hypotheses. In trees from both analyses, all Oligocene taxa included in our study fell outside crown Mysticeti and crown Odontoceti, suggesting that these two clades radiated in the late Oligocene or later, contra some recent molecular clock studies. Our trees also imply that many character states shared by river dolphins evolved in their oceanic ancestors, contradicting the hypothesis that these characters are convergent adaptations to fluvial habitats.
Berta, Annalisa; Lanzetti, Agnese; Ekdale, Eric G; Deméré, Thomas A
2016-12-01
The origin of baleen and filter feeding in mysticete cetaceans occurred sometime between approximately 34 and 24 million years ago and represents a major macroevolutionary shift in cetacean morphology (teeth to baleen) and ecology (raptorial to filter feeding). We explore this dramatic change in feeding strategy by employing a diversity of tools and approaches: morphology, molecules, development, and stable isotopes from the geological record. Adaptations for raptorial feeding in extinct toothed mysticetes provide the phylogenetic context for evaluating morphological apomorphies preserved in the skeletons of stem and crown edentulous mysticetes. In this light, the presence of novel vascular structures on the palates of certain Oligocene toothed mysticetes is interpreted as the earliest evidence of baleen and points to an intermediate condition between an ancestral condition with teeth only and a derived condition with baleen only. Supporting this step-wise evolutionary hypothesis, evidence from stable isotopes show how changes in dental chemistry in early toothed mysticetes tracked the changes in diet and environment. Recent discoveries also demonstrate how this transition was made possible by radical changes in cranial ontogeny. In addition, genetic mutations and the possession of dental pseudogenes in extant baleen whales support a toothed ancestry for mysticetes. Molecular and morphological data also document the dramatic developmental shifts that take place in extant fetal baleen whales, in skull development, resorption of a fetal dentition and growth of baleen. The mechanisms involved in this complex evolutionary transition that entails multiple, integrated aspects of anatomy and ecology are only beginning to be understood, and future work will further clarify the processes underlying this macroevolutionary pattern. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Kishida, Takushi; Thewissen, J G M
2012-01-25
Odontocetes and mysticetes are two extant suborders of cetaceans. It is reported that the former have no sense of olfaction, while the latter can smell in air. To explain the ecological reason why mysticetes still retain their sense of smell, two hypotheses have been proposed - the echolocation-priority hypothesis, which assumes that the acquisition of echolocation causes the reduction of the importance of olfaction, and the filter-feeder hypothesis, which assumes that olfactory ability is important for filter-feeders to locate their prey because clouds of plankton give off a peculiar odor. The olfactory marker protein (OMP) is almost exclusively expressed in vertebrate olfactory receptor neurons, and is considered to play important roles in olfactory systems. In this study, full-length open reading frames of OMP genes were identified in 6 cetacean species and we analyzed the nonsynonymous to synonymous substitution rate ratio based on the maximum likelihood method. The evolutionary changes of the selective pressures on OMP genes did fit better to the filter-feeder hypothesis than to the echolocation-priority hypothesis. In addition, no pseudogenization mutations are found in all five odontocetes OMP genes investigated in this study. It may suggest that OMP retains some function even in 'anosmic' odontocetes. Copyright © 2011 Elsevier B.V. All rights reserved.
Ekdale, Eric G
2016-12-01
Living mysticetes (baleen whales) and odontocetes (toothed whales) differ significantly in auditory function in that toothed whales are sensitive to high-frequency and ultrasonic sound vibrations and mysticetes to low-frequency and infrasonic noises. Our knowledge of the evolution and phylogeny of cetaceans, and mysticetes in particular, is at a point at which we can explore morphological and physiological changes within the baleen whale inner ear. Traditional comparative anatomy and landmark-based 3D-geometric morphometric analyses were performed to investigate the anatomical diversity of the inner ears of extinct and extant mysticetes in comparison with other cetaceans. Principal component analyses (PCAs) show that the cochlear morphospace of odontocetes is tangential to that of mysticetes, but odontocetes are completely separated from mysticetes when semicircular canal landmarks are combined with the cochlear data. The cochlea of the archaeocete Zygorhiza kochii and early diverging extinct mysticetes plot within the morphospace of crown mysticetes, suggesting that mysticetes possess ancestral cochlear morphology and physiology. The PCA results indicate variation among mysticete species, although no major patterns are recovered to suggest separate hearing or locomotor regimes. Phylogenetic signal was detected for several clades, including crown Cetacea and crown Mysticeti, with the most clades expressing phylogenetic signal in the semicircular canal dataset. Brownian motion could not be excluded as an explanation for the signal, except for analyses combining cochlea and semicircular canal datasets for Balaenopteridae. J. Morphol. 277:1599-1615, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Whale and dolphin behavioural responses to dead conspecifics.
Bearzi, Giovanni; Kerem, Dan; Furey, Nathan B; Pitman, Robert L; Rendell, Luke; Reeves, Randall R
2018-06-01
The scientific study of death across animal taxa-comparative thanatology-investigates how animals respond behaviourally, physiologically and psychologically to dead conspecifics, and the processes behind such responses. Several species of cetaceans have been long known to care for, attend to, be aroused by, or show interest in dead or dying individuals. We investigated patterns and variation in cetacean responses to dead conspecifics across cetacean taxa based on a comprehensive literature review. We analysed 78 records reported between 1970 and 2016, involving 20 of the 88 extant cetacean species. We adopted a weighted comparative approach to take observation effort into account and found that odontocetes (toothed cetaceans) were much more likely than mysticetes (baleen whales) to attend to dead conspecifics. Dolphins (Delphinidae) had the greatest occurrence of attentive behaviour (92.3% of all records), with a weighed attendance index 18 times greater than the average of all other cetacean families. Two dolphin genera, Sousa and Tursiops, constituted 55.1% of all cetacean records (N=43) and showed the highest incidence of attentive behaviour. Results of analyses intended to investigate the reasons behind these differences suggested that encephalisation may be an important predictor, consistent with the "social brain" hypothesis. Among attending individuals or groups of known sex (N=28), the majority (75.0%) were adult females with dead calves or juveniles (possibly their own offspring, with exceptions), consistent with the strong mother-calf bond, or, in a few cases, with the bond between mothers and other females in the group. The remaining records (25.0%) involved males either showing sexual interest in a dead adult or subadult, or carrying a dead calf in the presence of females. Because an inanimate individual is potentially rescuable, responses to dead conspecifics-especially by females-can be explained at least in part by attempts to revive and protect, having a clear adaptive value. In some cases such responses are followed by apparently maladaptive behaviour such as the long-term carrying of, or standing by, a decomposed carcass, similar to observations of certain terrestrial mammals. Among the possible explanations for the observed cetacean behavioural responses to dead conspecifics are strong attachment resulting in a difficulty of "letting go"-possibly related to grieving-or perhaps individuals failing to recognise or accept that an offspring or companion has died. Our current understanding is challenged by small sample size, incomplete descriptions, and lack of information on the physiology and neural processes underpinning the observed behaviour. We provide research recommendations that would improve such understanding. Copyright © 2018 Elsevier GmbH. All rights reserved.
Ekdale, Eric G; Racicot, Rachel A
2015-01-01
The evolution of hearing in cetaceans is a matter of current interest given that odontocetes (toothed whales) are sensitive to high frequency sounds and mysticetes (baleen whales) are sensitive to low and potentially infrasonic noises. Earlier diverging stem cetaceans (archaeocetes) were hypothesized to have had either low or high frequency sensitivity. Through CT scanning, the morphology of the bony labyrinth of the basilosaurid archaeocete Zygorhiza kochii is described and compared to novel information from the inner ears of mysticetes, which are less known than the inner ears of odontocetes. Further comparisons are made with published information for other cetaceans. The anatomy of the cochlea of Zygorhiza is in line with mysticetes and supports the hypothesis that Zygorhiza was sensitive to low frequency noises. Morphological features that support the low frequency hypothesis and are shared by Zygorhiza and mysticetes include a long cochlear canal with a high number of turns, steeply graded curvature of the cochlear spiral in which the apical turn is coiled tighter than the basal turn, thin walls separating successive turns that overlap in vestibular view, and reduction of the secondary bony lamina. Additional morphology of the vestibular system indicates that Zygorhiza was more sensitive to head rotations than extant mysticetes are, which likely indicates higher agility in the ancestral taxon. © 2014 Anatomical Society.
Ekdale, Eric G; Racicot, Rachel A
2015-01-01
The evolution of hearing in cetaceans is a matter of current interest given that odontocetes (toothed whales) are sensitive to high frequency sounds and mysticetes (baleen whales) are sensitive to low and potentially infrasonic noises. Earlier diverging stem cetaceans (archaeocetes) were hypothesized to have had either low or high frequency sensitivity. Through CT scanning, the morphology of the bony labyrinth of the basilosaurid archaeocete Zygorhiza kochii is described and compared to novel information from the inner ears of mysticetes, which are less known than the inner ears of odontocetes. Further comparisons are made with published information for other cetaceans. The anatomy of the cochlea of Zygorhiza is in line with mysticetes and supports the hypothesis that Zygorhiza was sensitive to low frequency noises. Morphological features that support the low frequency hypothesis and are shared by Zygorhiza and mysticetes include a long cochlear canal with a high number of turns, steeply graded curvature of the cochlear spiral in which the apical turn is coiled tighter than the basal turn, thin walls separating successive turns that overlap in vestibular view, and reduction of the secondary bony lamina. Additional morphology of the vestibular system indicates that Zygorhiza was more sensitive to head rotations than extant mysticetes are, which likely indicates higher agility in the ancestral taxon. PMID:25400023
Shen, Tong; Xu, Shixia; Wang, Xiaohong; Yu, Wenhua; Zhou, Kaiya; Yang, Guang
2012-03-24
Cetaceans (whales, dolphins and porpoises) are a group of adapted marine mammals with an enigmatic history of transition from terrestrial to full aquatic habitat and rapid radiation in waters around the world. Throughout this evolution, the pathogen stress-response proteins must have faced challenges from the dramatic change of environmental pathogens in the completely different ecological niches cetaceans occupied. For this reason, cetaceans could be one of the most ideal candidate taxa for studying evolutionary process and associated driving mechanism of vertebrate innate immune systems such as Toll-like receptors (TLRs), which are located at the direct interface between the host and the microbial environment, act at the first line in recognizing specific conserved components of microorganisms, and translate them rapidly into a defense reaction. We used TLR4 as an example to test whether this traditionally regarded pattern recognition receptor molecule was driven by positive selection across cetacean evolutionary history. Overall, the lineage-specific selection test showed that the dN/dS (ω) values along most (30 out of 33) examined cetartiodactylan lineages were less than 1, suggesting a common effect of functional constraint. However, some specific codons made radical changes, fell adjacent to the residues interacting with lipopolysaccharides (LPS), and showed parallel evolution between independent lineages, suggesting that TLR4 was under positive selection. Especially, strong signatures of adaptive evolution on TLR4 were identified in two periods, one corresponding to the early evolutionary transition of the terrestrial ancestors of cetaceans from land to semi-aquatic (represented by the branch leading to whale + hippo) and from semi-aquatic to full aquatic (represented by the ancestral branch leading to cetaceans) habitat, and the other to the rapid diversification and radiation of oceanic dolphins. This is the first study thus far to characterize the TLR gene in cetaceans. Our data present evidences that cetacean TLR4 has undergone adaptive evolution against the background of purifying selection in response to the secondary aquatic adaptation and rapid diversification in the sea. It is suggested that microbial pathogens in different environments are important factors that promote adaptive changes at cetacean TLR4 and new functions of some amino acid sites specialized for recognizing pathogens in dramatically contrasted environments to enhance the fitness for the adaptation and survival of cetaceans.
2012-01-01
Background Cetaceans (whales, dolphins and porpoises) are a group of adapted marine mammals with an enigmatic history of transition from terrestrial to full aquatic habitat and rapid radiation in waters around the world. Throughout this evolution, the pathogen stress-response proteins must have faced challenges from the dramatic change of environmental pathogens in the completely different ecological niches cetaceans occupied. For this reason, cetaceans could be one of the most ideal candidate taxa for studying evolutionary process and associated driving mechanism of vertebrate innate immune systems such as Toll-like receptors (TLRs), which are located at the direct interface between the host and the microbial environment, act at the first line in recognizing specific conserved components of microorganisms, and translate them rapidly into a defense reaction. Results We used TLR4 as an example to test whether this traditionally regarded pattern recognition receptor molecule was driven by positive selection across cetacean evolutionary history. Overall, the lineage-specific selection test showed that the dN/dS (ω) values along most (30 out of 33) examined cetartiodactylan lineages were less than 1, suggesting a common effect of functional constraint. However, some specific codons made radical changes, fell adjacent to the residues interacting with lipopolysaccharides (LPS), and showed parallel evolution between independent lineages, suggesting that TLR4 was under positive selection. Especially, strong signatures of adaptive evolution on TLR4 were identified in two periods, one corresponding to the early evolutionary transition of the terrestrial ancestors of cetaceans from land to semi-aquatic (represented by the branch leading to whale + hippo) and from semi-aquatic to full aquatic (represented by the ancestral branch leading to cetaceans) habitat, and the other to the rapid diversification and radiation of oceanic dolphins. Conclusions This is the first study thus far to characterize the TLR gene in cetaceans. Our data present evidences that cetacean TLR4 has undergone adaptive evolution against the background of purifying selection in response to the secondary aquatic adaptation and rapid diversification in the sea. It is suggested that microbial pathogens in different environments are important factors that promote adaptive changes at cetacean TLR4 and new functions of some amino acid sites specialized for recognizing pathogens in dramatically contrasted environments to enhance the fitness for the adaptation and survival of cetaceans. PMID:22443485
Ekdale, Eric G; Berta, Annalisa; Deméré, Thomas A
2011-01-01
Anatomical comparisons of the ear region of baleen whales (Mysticeti) are provided through detailed osteological descriptions and high-resolution photographs of the petrotympanic complex (tympanic bulla and petrosal bone) of all extant species of mysticete cetaceans. Salient morphological features are illustrated and identified, including overall shape of the bulla, size of the conical process of the bulla, morphology of the promontorium, and the size and shape of the anterior process of the petrosal. We place our comparative osteological observations into a phylogenetic context in order to initiate an exploration into petrotympanic evolution within Mysticeti. The morphology of the petrotympanic complex is diagnostic for individual species of baleen whale (e.g., sigmoid and conical processes positioned at midline of bulla in Balaenoptera musculus; confluence of fenestra cochleae and perilymphatic foramen in Eschrichtius robustus), and several mysticete clades are united by derived characteristics. Balaenids and neobalaenids share derived features of the bulla, such as a rhomboid shape and a reduced anterior lobe (swelling) in ventral aspect, and eschrichtiids share derived morphologies of the petrosal with balaenopterids, including loss of a medial promontory groove and dorsomedial elongation of the promontorium. Monophyly of Balaenoidea (Balaenidae and Neobalaenidae) and Balaenopteroidea (Balaenopteridae and Eschrichtiidae) was recovered in phylogenetic analyses utilizing data exclusively from the petrotympanic complex. This study fills a major gap in our knowledge of the complex structures of the mysticete petrotympanic complex, which is an important anatomical region for the interpretation of the evolutionary history of mammals. In addition, we introduce a novel body of phylogenetically informative characters from the ear region of mysticetes. Our detailed anatomical descriptions, illustrations, and comparisons provide valuable data for current and future studies on the phylogenetic relationships, evolution, and auditory physiology of mysticetes and other cetaceans throughout Earth's history.
Pause, K.C.; Bonde, R.K.; McGuire, P.M.; Zori, Roberto T.; Gray, B.A.
2006-01-01
Published cytogenetic data for extant cetacean species remain incomplete. In a review of the literature, we found karyotypic information for 6 of the 13 tentatively recognized species of the suborder Mysticeti (baleen whales). Among those yet to be described is the critically endangered North Atlantic right whale (Eubalaena glacialis). Herein, we describe and propose a first-generation G-banded karyotype and ideogram for this species (2n = 42), obtained from peripheral blood chromosome preparations from a stranded male calf. This information may prove useful for future genetic mapping projects and for interspecific and intraspecific genomic comparisons by techniques such as zoo-FISH.
Current and Future Patterns of Global Marine Mammal Biodiversity
Kaschner, Kristin; Tittensor, Derek P.; Ready, Jonathan; Gerrodette, Tim; Worm, Boris
2011-01-01
Quantifying the spatial distribution of taxa is an important prerequisite for the preservation of biodiversity, and can provide a baseline against which to measure the impacts of climate change. Here we analyse patterns of marine mammal species richness based on predictions of global distributional ranges for 115 species, including all extant pinnipeds and cetaceans. We used an environmental suitability model specifically designed to address the paucity of distributional data for many marine mammal species. We generated richness patterns by overlaying predicted distributions for all species; these were then validated against sightings data from dedicated long-term surveys in the Eastern Tropical Pacific, the Northeast Atlantic and the Southern Ocean. Model outputs correlated well with empirically observed patterns of biodiversity in all three survey regions. Marine mammal richness was predicted to be highest in temperate waters of both hemispheres with distinct hotspots around New Zealand, Japan, Baja California, the Galapagos Islands, the Southeast Pacific, and the Southern Ocean. We then applied our model to explore potential changes in biodiversity under future perturbations of environmental conditions. Forward projections of biodiversity using an intermediate Intergovernmental Panel for Climate Change (IPCC) temperature scenario predicted that projected ocean warming and changes in sea ice cover until 2050 may have moderate effects on the spatial patterns of marine mammal richness. Increases in cetacean richness were predicted above 40° latitude in both hemispheres, while decreases in both pinniped and cetacean richness were expected at lower latitudes. Our results show how species distribution models can be applied to explore broad patterns of marine biodiversity worldwide for taxa for which limited distributional data are available. PMID:21625431
Ando, Konami; Fujiwara, Shin-Ichi
2016-12-01
Habitat shifts from land to water have occurred independently in several mammal lineages. However, because we do not know completely about the relationship between skeletal morphology and function, both reliable life reconstructions of each extinct taxon and the timing of those shifts in locomotor strategies are yet to be fully understood. We estimated the strengths of rib cages against vertical compression in 26 extant and four extinct mammal specimens including cetartiodactyls, paenungulates, and carnivorans, representing 11 terrestrial, six semi-aquatic, and nine obligate aquatic taxa. Our analyses of extant taxa showed that strengths were high among terrestrial/semi-aquatic mammals, whose rib cages are subjected to vertical compression during the support on land, whereas strengths were low among obligate aquatic mammals, whose rib cages are not subjected to antigravity force in the water. We therefore propose rib strength as a new index to estimate the ability of an animal to be supported on land while being supported by either the forelimbs or thoracic region. According to our analyses of extinct taxa, this ability to be supported on land was rejected for a basal cetacean (Cetartiodactyla: Ambulocetus) and two desmostylians (Paenungulata: Paleoparadoxia and Neoparadoxia). However, this ability was not rejected for one desmostylian species (Desmostylus). Further study of the ribs of extant/extinct semi-aquatic taxa may help in understanding the ecological shifts in these groups. © 2016 Anatomical Society.
A phylogenetic blueprint for a modern whale.
Gatesy, John; Geisler, Jonathan H; Chang, Joseph; Buell, Carl; Berta, Annalisa; Meredith, Robert W; Springer, Mark S; McGowen, Michael R
2013-02-01
The emergence of Cetacea in the Paleogene represents one of the most profound macroevolutionary transitions within Mammalia. The move from a terrestrial habitat to a committed aquatic lifestyle engendered wholesale changes in anatomy, physiology, and behavior. The results of this remarkable transformation are extant whales that include the largest, biggest brained, fastest swimming, loudest, deepest diving mammals, some of which can detect prey with a sophisticated echolocation system (Odontoceti - toothed whales), and others that batch feed using racks of baleen (Mysticeti - baleen whales). A broad-scale reconstruction of the evolutionary remodeling that culminated in extant cetaceans has not yet been based on integration of genomic and paleontological information. Here, we first place Cetacea relative to extant mammalian diversity, and assess the distribution of support among molecular datasets for relationships within Artiodactyla (even-toed ungulates, including Cetacea). We then merge trees derived from three large concatenations of molecular and fossil data to yield a composite hypothesis that encompasses many critical events in the evolutionary history of Cetacea. By combining diverse evidence, we infer a phylogenetic blueprint that outlines the stepwise evolutionary development of modern whales. This hypothesis represents a starting point for more detailed, comprehensive phylogenetic reconstructions in the future, and also highlights the synergistic interaction between modern (genomic) and traditional (morphological+paleontological) approaches that ultimately must be exploited to provide a rich understanding of evolutionary history across the entire tree of Life. Copyright © 2012 Elsevier Inc. All rights reserved.
Ekdale, Eric G.; Berta, Annalisa; Deméré, Thomas A.
2011-01-01
Background Anatomical comparisons of the ear region of baleen whales (Mysticeti) are provided through detailed osteological descriptions and high-resolution photographs of the petrotympanic complex (tympanic bulla and petrosal bone) of all extant species of mysticete cetaceans. Salient morphological features are illustrated and identified, including overall shape of the bulla, size of the conical process of the bulla, morphology of the promontorium, and the size and shape of the anterior process of the petrosal. We place our comparative osteological observations into a phylogenetic context in order to initiate an exploration into petrotympanic evolution within Mysticeti. Principal Findings The morphology of the petrotympanic complex is diagnostic for individual species of baleen whale (e.g., sigmoid and conical processes positioned at midline of bulla in Balaenoptera musculus; confluence of fenestra cochleae and perilymphatic foramen in Eschrichtius robustus), and several mysticete clades are united by derived characteristics. Balaenids and neobalaenids share derived features of the bulla, such as a rhomboid shape and a reduced anterior lobe (swelling) in ventral aspect, and eschrichtiids share derived morphologies of the petrosal with balaenopterids, including loss of a medial promontory groove and dorsomedial elongation of the promontorium. Monophyly of Balaenoidea (Balaenidae and Neobalaenidae) and Balaenopteroidea (Balaenopteridae and Eschrichtiidae) was recovered in phylogenetic analyses utilizing data exclusively from the petrotympanic complex. Significance This study fills a major gap in our knowledge of the complex structures of the mysticete petrotympanic complex, which is an important anatomical region for the interpretation of the evolutionary history of mammals. In addition, we introduce a novel body of phylogenetically informative characters from the ear region of mysticetes. Our detailed anatomical descriptions, illustrations, and comparisons provide valuable data for current and future studies on the phylogenetic relationships, evolution, and auditory physiology of mysticetes and other cetaceans throughout Earth's history. PMID:21731700
First human-caused extinction of a cetacean species?
Turvey, Samuel T; Pitman, Robert L; Taylor, Barbara L; Barlow, Jay; Akamatsu, Tomonari; Barrett, Leigh A; Zhao, Xiujiang; Reeves, Randall R; Stewart, Brent S; Wang, Kexiong; Wei, Zhuo; Zhang, Xianfeng; Pusser, L T; Richlen, Michael; Brandon, John R; Wang, Ding
2007-10-22
The Yangtze River dolphin or baiji (Lipotes vexillifer), an obligate freshwater odontocete known only from the middle-lower Yangtze River system and neighbouring Qiantang River in eastern China, has long been recognized as one of the world's rarest and most threatened mammal species. The status of the baiji has not been investigated since the late 1990s, when the surviving population was estimated to be as low as 13 individuals. An intensive six-week multi-vessel visual and acoustic survey carried out in November-December 2006, covering the entire historical range of the baiji in the main Yangtze channel, failed to find any evidence that the species survives. We are forced to conclude that the baiji is now likely to be extinct, probably due to unsustainable by-catch in local fisheries. This represents the first global extinction of a large vertebrate for over 50 years, only the fourth disappearance of an entire mammal family since AD 1500, and the first cetacean species to be driven to extinction by human activity. Immediate and extreme measures may be necessary to prevent the extinction of other endangered cetaceans, including the sympatric Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis).
Seasonal variation of the Beaufort shelfbreak jet and its relationship to Arctic cetacean occurrence
NASA Astrophysics Data System (ADS)
Lin, Peigen; Pickart, Robert S.; Stafford, Kathleen M.; Moore, G. W. K.; Torres, Daniel J.; Bahr, Frank; Hu, Jianyu
2016-12-01
Using mooring time series from September 2008 to August 2012, together with ancillary atmospheric and satellite data sets, we quantify the seasonal variations of the shelfbreak jet in the Alaskan Beaufort Sea and explore connections to the occurrences of bowhead and beluga whales. Wind patterns during the 4 year study period are different from the long-term climatological conditions that the springtime peak in easterly winds shifted from May to June and the autumn peak was limited to October instead of extending farther into the fall. These changes were primarily due to the behavior of the two regional atmospheric centers of action, the Aleutian Low and Beaufort High. The volume transport of the shelfbreak jet, which peaks in the summer, was decomposed into a background (weak wind) component and a wind-driven component. The wind-driven component is correlated to the Pt. Barrow, AK alongcoast wind speed record although a more accurate prediction is obtained when considering the ice thickness at the mooring site. An upwelling index reveals that wind-driven upwelling is enhanced in June and October when storms are stronger and longer-lasting. The seasonal variation of Arctic cetacean occurrence is dominated by the eastward migration in spring, dictated by pack-ice patterns, and westward migration in fall, coincident with the autumn peak in shelfbreak upwelling intensity.
Enamel ultrastructure in fossil cetaceans (Cetacea: Archaeoceti and Odontoceti).
Loch, Carolina; Kieser, Jules A; Fordyce, R Ewan
2015-01-01
The transition from terrestrial ancestry to a fully pelagic life profoundly altered the body systems of cetaceans, with extreme morphological changes in the skull and feeding apparatus. The Oligocene Epoch was a crucial time in the evolution of cetaceans when the ancestors of modern whales and dolphins (Neoceti) underwent major diversification, but details of dental structure and evolution are poorly known for the archaeocete-neocete transition. We report the morphology of teeth and ultrastructure of enamel in archaeocetes, and fossil platanistoids and delphinoids, ranging from late Oligocene (Waitaki Valley, New Zealand) to Pliocene (Caldera, Chile). Teeth were embedded in epoxy resin, sectioned in cross and longitudinal planes, polished, etched, and coated with gold palladium for scanning electron microscopy (SEM) observation. SEM images showed that in archaeocetes, squalodontids and Prosqualodon (taxa with heterodont and nonpolydont/limited polydont teeth), the inner enamel was organized in Hunter-Schreger bands (HSB) with an outer layer of radial enamel. This is a common pattern in most large-bodied mammals and it is regarded as a biomechanical adaptation related to food processing and crack resistance. Fossil Otekaikea sp. and delphinoids, which were polydont and homodont, showed a simpler structure, with inner radial and outer prismless enamel. Radial enamel is regarded as more wear-resistant and has been retained in several mammalian taxa in which opposing tooth surfaces slide over each other. These observations suggest that the transition from a heterodont and nonpolydont/limited polydont dentition in archaeocetes and early odontocetes, to homodont and polydont teeth in crownward odontocetes, was also linked to a marked simplification in the enamel Schmelzmuster. These patterns probably reflect functional shifts in food processing from shear-and-mastication in archaeocetes and early odontocetes, to pierce-and-grasp occlusion in crownward odontocetes, with the implication of less demanding feeding biomechanics as seen in most extant odontocetes.
Enamel Ultrastructure in Fossil Cetaceans (Cetacea: Archaeoceti and Odontoceti)
Loch, Carolina; Fordyce, R. Ewan
2015-01-01
The transition from terrestrial ancestry to a fully pelagic life profoundly altered the body systems of cetaceans, with extreme morphological changes in the skull and feeding apparatus. The Oligocene Epoch was a crucial time in the evolution of cetaceans when the ancestors of modern whales and dolphins (Neoceti) underwent major diversification, but details of dental structure and evolution are poorly known for the archaeocete-neocete transition. We report the morphology of teeth and ultrastructure of enamel in archaeocetes, and fossil platanistoids and delphinoids, ranging from late Oligocene (Waitaki Valley, New Zealand) to Pliocene (Caldera, Chile). Teeth were embedded in epoxy resin, sectioned in cross and longitudinal planes, polished, etched, and coated with gold palladium for scanning electron microscopy (SEM) observation. SEM images showed that in archaeocetes, squalodontids and Prosqualodon (taxa with heterodont and nonpolydont/limited polydont teeth), the inner enamel was organized in Hunter-Schreger bands (HSB) with an outer layer of radial enamel. This is a common pattern in most large-bodied mammals and it is regarded as a biomechanical adaptation related to food processing and crack resistance. Fossil Otekaikea sp. and delphinoids, which were polydont and homodont, showed a simpler structure, with inner radial and outer prismless enamel. Radial enamel is regarded as more wear-resistant and has been retained in several mammalian taxa in which opposing tooth surfaces slide over each other. These observations suggest that the transition from a heterodont and nonpolydont/limited polydont dentition in archaeocetes and early odontocetes, to homodont and polydont teeth in crownward odontocetes, was also linked to a marked simplification in the enamel Schmelzmuster. These patterns probably reflect functional shifts in food processing from shear-and-mastication in archaeocetes and early odontocetes, to pierce-and-grasp occlusion in crownward odontocetes, with the implication of less demanding feeding biomechanics as seen in most extant odontocetes. PMID:25629995
Springer, Mark S; Gatesy, John
2017-04-01
Various toothed whales (Odontoceti) are unique among mammals in lacking olfactory bulbs as adults and are thought to be anosmic (lacking the olfactory sense). At the molecular level, toothed whales have high percentages of pseudogenic olfactory receptor genes, but species that have been investigated to date retain an intact copy of the olfactory marker protein gene (OMP), which is highly expressed in olfactory receptor neurons and may regulate the temporal resolution of olfactory responses. One hypothesis for the retention of intact OMP in diverse odontocete lineages is that this gene is pleiotropic with additional functions that are unrelated to olfaction. Recent expression studies provide some support for this hypothesis. Here, we report OMP sequences for representatives of all extant cetacean families and provide the first molecular evidence for inactivation of this gene in vertebrates. Specifically, OMP exhibits independent inactivating mutations in six different odontocete lineages: four river dolphin genera (Platanista, Lipotes, Pontoporia, Inia), sperm whale (Physeter), and harbor porpoise (Phocoena). These results suggest that the only essential role of OMP that is maintained by natural selection is in olfaction, although a non-olfactory role for OMP cannot be ruled out for lineages that retain an intact copy of this gene. Available genome sequences from cetaceans and close outgroups provide evidence of inactivating mutations in two additional genes (CNGA2, CNGA4), which imply further pseudogenization events in the olfactory cascade of odontocetes. Selection analyses demonstrate that evolutionary constraints on all three genes (OMP, CNGA2, CNGA4) have been greatly reduced in Odontoceti, but retain a signature of purifying selection on the stem Cetacea branch and in Mysticeti (baleen whales). This pattern is compatible with the 'echolocation-priority' hypothesis for the evolution of OMP, which posits that negative selection was maintained in the common ancestor of Cetacea and was not relaxed significantly until the evolution of echolocation in Odontoceti. Copyright © 2017 Elsevier Inc. All rights reserved.
Urbina, Mario; Lambert, Olivier
2016-01-01
The Ziphiidae (beaked whales) represent a large group of open-ocean odontocetes (toothed cetaceans), whose elusive and deep diving behavior prevents direct observation in their natural habitat. Despite their generally large body size, broad geographical distribution, and high species number, ziphiids thus remain poorly known. Furthermore, the evolutionary processes that have led to their extreme adaptations and impressive extant diversity are still poorly understood. Here we report new fossil beaked whales from the late Miocene of the Pisco Formation (southern Peru). The best preserved remains here described are referred to two new genera and species, the Messinian Chavinziphius maxillocristatus and the Tortonian Chimuziphius coloradensis, based on skull remains from two marine vertebrate-rich localities: Cerro Los Quesos and Cerro Colorado, respectively. C. maxillocristatus is medium sized retains a complete set of functional lower teeth, and bears robust rostral maxillary crests similar to those of the extant Berardius. By contrast, C. coloradensis is small and characterized by large triangular nasals and moderately thickened premaxillae that dorsally close the mesorostral groove. Both species confirm the high past diversity of Ziphiidae, the richest cetacean family in terms of the number of genera and species. Our new phylogenetic and biogeographical analyses depart markedly from earlier studies in dividing beaked whales into two major clades: the Messapicetus clade, which, along with other stem ziphiids, once dominated the southeastern Pacific and North Atlantic; and crown Ziphiidae, the majority of which are found in deep-water regions of the Southern Ocean, with possible subsequent dispersal both globally (Mesoplodon and Ziphius) and to the cooler waters of the northern oceans (Berardius and Hyperoodon). Despite this relatively clear separation, both lineages seem to follow similar evolutionary trends, including (1) a progressive reduction of dentition; (2) an increase in the compactness and thickness of the rostral bones; (3) similar changes in facial morphology (e.g., elevation of the vertex); and (4) an increase of body size. We suggest that these trends may be linked to a convergent ecological shift to deep diving and suction feeding. PMID:27688973
Bianucci, Giovanni; Di Celma, Claudio; Urbina, Mario; Lambert, Olivier
2016-01-01
The Ziphiidae (beaked whales) represent a large group of open-ocean odontocetes (toothed cetaceans), whose elusive and deep diving behavior prevents direct observation in their natural habitat. Despite their generally large body size, broad geographical distribution, and high species number, ziphiids thus remain poorly known. Furthermore, the evolutionary processes that have led to their extreme adaptations and impressive extant diversity are still poorly understood. Here we report new fossil beaked whales from the late Miocene of the Pisco Formation (southern Peru). The best preserved remains here described are referred to two new genera and species, the Messinian Chavinziphius maxillocristatus and the Tortonian Chimuziphius coloradensis, based on skull remains from two marine vertebrate-rich localities: Cerro Los Quesos and Cerro Colorado, respectively. C. maxillocristatus is medium sized retains a complete set of functional lower teeth, and bears robust rostral maxillary crests similar to those of the extant Berardius. By contrast, C. coloradensis is small and characterized by large triangular nasals and moderately thickened premaxillae that dorsally close the mesorostral groove. Both species confirm the high past diversity of Ziphiidae, the richest cetacean family in terms of the number of genera and species. Our new phylogenetic and biogeographical analyses depart markedly from earlier studies in dividing beaked whales into two major clades: the Messapicetus clade, which, along with other stem ziphiids, once dominated the southeastern Pacific and North Atlantic; and crown Ziphiidae, the majority of which are found in deep-water regions of the Southern Ocean, with possible subsequent dispersal both globally (Mesoplodon and Ziphius) and to the cooler waters of the northern oceans (Berardius and Hyperoodon). Despite this relatively clear separation, both lineages seem to follow similar evolutionary trends, including (1) a progressive reduction of dentition; (2) an increase in the compactness and thickness of the rostral bones; (3) similar changes in facial morphology (e.g., elevation of the vertex); and (4) an increase of body size. We suggest that these trends may be linked to a convergent ecological shift to deep diving and suction feeding.
Godfrey, Stephen J; Geisler, Jonathan; Fitzgerald, Erich M G
2013-02-01
The structure of the olfactory apparatus is not well known in both archaic and extant whales; the result of poor preservation in most fossils and locational isolation deep within the skulls in both fossil and Recent taxa. Several specimens now shed additional light on the subject. A partial skull of an archaic cetacean is reported from the Pamunkey River, Virginia, USA. The specimen probably derives from the upper middle Eocene (Piney Point Formation) and is tentatively assigned to the Protocetidae. Uncrushed cranial cavities associated with the olfactory apparatus were devoid of sediment. CT scans clearly reveal the dorsal nasal meatus, ethmoturbinates within the olfactory recess, the cribriform plate, the area occupied by the olfactory bulbs, and the olfactory nerve tract. Several sectioned skulls of the minke whale (Balaenoptera acutorostrata) were also examined, and olfactory structures are remarkably similar to those observed in the fossil skull from the Pamunkey River. One important difference between the two is that the fossil specimen has an elongate olfactory nerve tract. The more forward position of the external nares in extant balaenopterids when compared with those of extant odontocetes is interpreted to be the result of the need to retain a functional olfactory apparatus and the forward position of the supraoccipital/cranial vertex. An increase in the distance between the occipital condyles and the vertex in balaenopterids enhances the mechanical advantage of the epaxial musculature that inserts on the occiput, a specialization that likely stabilizes the head of these enormous mammals during lunge feeding. Copyright © 2012 Wiley Periodicals, Inc.
Tseng, Yung-Ping; Huang, Yu-Chin; Kyle, Gerard T; Yang, Ming-Ching
2011-01-01
Cetacean-focused tourism in Taiwan has grown rapidly since 1997. This development, measured in terms of both number of tour boats and visitors, has resulted in many resource management challenges stemming from the absence of regulation and scientific data. To fill this void in empirical evidence, we used 464 sighting records from 2002 to 2005 to model the impact of cetacean-focused tourism. Cox proportional hazard analysis indicated cetacean avoidance responses to cetacean watching boats were strongly associated with pod size, mother-calf pairs, and cetacean-vessel distances. Mother-calf pairs abandoned their avoidance tactic by 55% compared to noncalf groups when tour boats approached. Second, the hazard ratio of abundance was 0.996, suggesting that the odds of encountering avoidance responses by the cetaceans decreased by 42% for every 100-member increase in the cetacean pod size. Last, distances maintained by boats from the cetaceans was positively related to avoidance responses (i.e., less avoidance behavior with closer interaction). Based on our findings, we have the following recommendations: (a) limit vessels from approaching mothers with calves, (b) limit vessels from approaching small groups of cetaceans, (c) reduced avoidance behavior to boat traffic may be a red flag for potential long-term disturbance, and (d) apply the "precautionary principle" based on the best scientific information available in cetacean-based tourism in Taiwan. These recommendations will help contribute to the sustainable development of cetacean-focused tourism in Taiwan.
NASA Astrophysics Data System (ADS)
Tseng, Yung-Ping; Huang, Yu-Chin; Kyle, Gerard T.; Yang, Ming-Ching
2011-01-01
Cetacean-focused tourism in Taiwan has grown rapidly since 1997. This development, measured in terms of both number of tour boats and visitors, has resulted in many resource management challenges stemming from the absence of regulation and scientific data. To fill this void in empirical evidence, we used 464 sighting records from 2002 to 2005 to model the impact of cetacean-focused tourism. Cox proportional hazard analysis indicated cetacean avoidance responses to cetacean watching boats were strongly associated with pod size, mother-calf pairs, and cetacean-vessel distances. Mother-calf pairs abandoned their avoidance tactic by 55% compared to noncalf groups when tour boats approached. Second, the hazard ratio of abundance was 0.996, suggesting that the odds of encountering avoidance responses by the cetaceans decreased by 42% for every 100-member increase in the cetacean pod size. Last, distances maintained by boats from the cetaceans was positively related to avoidance responses (i.e., less avoidance behavior with closer interaction). Based on our findings, we have the following recommendations: (a) limit vessels from approaching mothers with calves, (b) limit vessels from approaching small groups of cetaceans, (c) reduced avoidance behavior to boat traffic may be a red flag for potential long-term disturbance, and (d) apply the "precautionary principle" based on the best scientific information available in cetacean-based tourism in Taiwan. These recommendations will help contribute to the sustainable development of cetacean-focused tourism in Taiwan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R.W.; Fargion, G.S.
1996-05-24
The purpose of the study was to determine the distribution and abundance of cetaceans in areas potentially affected by future oil and gas activities along the continental slope of the north-central and western Gulf of Mexico. This 3.75 year project commenced 1 October 1991 and finished 15 July 1995. The study area was bounded by the Florida-Alabama border, the Texas-Mexico border, and the 100 m and 2,000 m isobaths. Cetacean distribution and abundance were determined from seasonal aerial and shipboard visual surveys and shipboard acoustic surveys. In addition, hydrographic data were collected in situ and by satellite remote sensing tomore » characterize cetacean habitat. Finally, tagging and tracking of sperm whales using satellite telemetry was attempted. Appendix A contains: the cetacean, trutle, and bird sighting data from all shipboard and aerial visual surveys; contact data from the shipboard acoustic survey; and the cetacean environmental profiles. Cetaceans were observed throughout the study area during all four seasons. Nineteen species were identified, including two species (melon-headed whales and Fraser`s dolphins) previously thought to be rare in the Gulf. Pantropical spotted dolphins, bottlenose dolphins, clymene dolphins, striped dolphins, Atlantic spotted dolphins, and melon-headed whales were the most common small cetaceans and the sperm whale was the most common large cetacean. The mean annual abundance for all cetaceans was estimated to be 19,198. Although the study area had complex and dynamic oceanography, bottom depth was the only environmental variable which correlated to cetacean distribution.« less
Cetacean diversity on the Parnaiba Delta, Maranhão state, northeastern Brazil.
Magalhães, F A; Tosi, C H; Garri, R G; Chellappa, S; Silva, F L
2008-08-01
The increase in the research of cetacean surveys on the Brazilian coast has brought new data on the distribution of species never reported before. The present work reviews the current knowledge on cetaceans species and extends this knowledge with an analysis of cetaceans stranded in the Parnaiba Delta, on the coast of Maranhão State, Brazil. The studies on cetacean diversity on the coast of the Parnaíba Delta were made from August 2004 to August 2006. Fourteen strandings were reported, representing six distinct species, such as the estuarine dolphin (Sotalia guianensis), humpback whale (Megaptera novaeangliae), Bryde's whales (Balaenoptera edeni), dwarf minke whale (Balaenoptera acutorostrata), pigmy killer whale (Feresa attenuata), sperm whale (Physeter macrocephalus) and two specimens which have not yet been identified. The significant degree of cetacean diversity in the region shows that the Parnaíba Delta is, possibly, of an important area for cetacean studies in Brasil.
Cetacean morbillivirus in coastal Indo-Pacific bottlenose dolphins, Western Australia.
Stephens, Nahiid; Duignan, Pádraig J; Wang, Jianning; Bingham, John; Finn, Hugh; Bejder, Lars; Patterson, Anthony P; Holyoake, Carly
2014-04-01
Cetacean morbillivirus (CeMV) has caused several epizootics in multiple species of cetaceans globally and is an emerging disease among cetaceans in Australia. We detected CeMV in 2 stranded coastal Indo-Pacific bottlenose dolphins (Tursiops aduncus) in Western Australia. Preliminary phylogenetic data suggest that this virus variant is divergent from known strains.
Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls.
Thewissen, J G; Williams, E M; Roe, L J; Hussain, S T
2001-09-20
Modern members of the mammalian order Cetacea (whales, dolphins and porpoises) are obligate aquatic swimmers that are highly distinctive in morphology, lacking hair and hind limbs, and having flippers, flukes, and a streamlined body. Eocene fossils document much of cetaceans' land-to-water transition, but, until now, the most primitive representative for which a skeleton was known was clearly amphibious and lived in coastal environments. Here we report on the skeletons of two early Eocene pakicetid cetaceans, the fox-sized Ichthyolestes pinfoldi, and the wolf-sized Pakicetus attocki. Their skeletons also elucidate the relationships of cetaceans to other mammals. Morphological cladistic analyses have shown cetaceans to be most closely related to one or more mesonychians, a group of extinct, archaic ungulates, but molecular analyses have indicated that they are the sister group to hippopotamids. Our cladistic analysis indicates that cetaceans are more closely related to artiodactyls than to any mesonychian. Cetaceans are not the sister group to (any) mesonychians, nor to hippopotamids. Our analysis stops short of identifying any particular artiodactyl family as the cetacean sister group and supports monophyly of artiodactyls.
Towards a New Paradigm of Non-Captive Research on Cetacean Cognition
Marino, Lori; Frohoff, Toni
2011-01-01
Contemporary knowledge of impressive neurophysiology and behavior in cetaceans, combined with increasing opportunities for studying free-ranging cetaceans who initiate sociable interaction with humans, are converging to highlight serious ethical considerations and emerging opportunities for a new era of progressive and less-invasive cetacean research. Most research on cetacean cognition has taken place in controlled captive settings, e.g., research labs, marine parks. While these environments afford a certain amount of experimental rigor and logistical control they are fraught with limitations in external validity, impose tremendous stress on the part of the captive animals, and place burdens on populations from which they are often captured. Alternatively, over the past three decades, some researchers have sought to focus their attention on the presence of free-ranging cetacean individuals and groups who have initiated, or chosen to participate in, sociable interactions with humans in the wild. This new approach, defined as Interspecies Collaborative Research between cetacean and human, involves developing novel ways to address research questions under natural conditions and respecting the individual cetacean's autonomy. It also offers a range of potential direct benefits to the cetaceans studied, as well as allowing for unprecedented cognitive and psychological research on sociable mysticetes. Yet stringent precautions are warranted so as to not increase their vulnerability to human activities or pathogens. When conducted in its best and most responsible form, collaborative research with free-ranging cetaceans can deliver methodological innovation and invaluable new insights while not necessitating the ethical and scientific compromises that characterize research in captivity. Further, it is representative of a new epoch in science in which research is designed so that the participating cetaceans are the direct recipients of the benefits. PMID:21915286
Estes, James A.; Bodkin, James L.; Ben-David, M.; Perrin, William F.; Würsing, Bernd; Thewissen, J.G.M.
2009-01-01
The otters (Mustelidae; Lutrinae) provide an exceptional perspective into the evolution of marine living by mammals. Most extant marine mammals (e.g. the cetaceans, pinnipeds, and sirenians) have been so highly modified by long periods of selection for life in the sea that they bear little resemblance to their terrestrial ancestors. Marine otters, in contrast, are more recent expatriates from freshwater habitats and some species still live in both environments. Contrasts among species within the otters, and among the otters, terrestrial mammals, and the more highly adapted pinnipeds and cetaceans provide powerful insights into mammalian adaptations to life in the sea (Estes, 1989). Among the marine mammals, sea otters (Enhydra lutris, Fig. 1) provide the clearest understanding of consumer-induced effects on ecosystem function. This is due in part to opportunities provided by history and in part to the relative ease with which shallow coastal systems where sea otters live can be observed and studied. Although more difficult to study than sea otters, other otter species reveal the connectivity among the marine, freshwater, and terrestrial systems. These three qualities of the otters – their comparative biology, their role as predators, and their role as agents of ecosystem connectivity – are what make them interesting to marine mammalogy.The following account provides a broad overview of the comparative biology and ecology of the otters, with particular emphasis on those species or populations that live in the sea. Sea otters are features prominently, in part because they live exclusively in the sea whereas other otters have obligate associations with freshwater and terrestrial environments (Kenyon, 1969; Riedman and Estes, 1990).
Cetacean Morbillivirus in Coastal Indo-Pacific Bottlenose Dolphins, Western Australia
Duignan, Pádraig J.; Wang, Jianning; Bingham, John; Finn, Hugh; Bejder, Lars; Patterson, Anthony P.; Holyoake, Carly
2014-01-01
Cetacean morbillivirus (CeMV) has caused several epizootics in multiple species of cetaceans globally and is an emerging disease among cetaceans in Australia. We detected CeMV in 2 stranded coastal Indo-Pacific bottlenose dolphins (Tursiops aduncus) in Western Australia. Preliminary phylogenetic data suggest that this virus variant is divergent from known strains. PMID:24656203
Lo, Chieh; Chin, Li-Te; Chu, Chi-Shih; Wang, Yu-Ting; Chan, Kun-Wei; Yang, Wei-Cheng
2013-01-01
The consumption of cetacean meat is geographically common and often of undetermined sustainability. Besides, it can expose humans to contaminants and zoonotic pathogens. The illegality of possessing cetacean meat was likely under-reported in some countries due to lack of attention paid by the officials although DNA analysis of market products helped to show such practices. We developed two monoclonal antibodies against synthetic peptides of myoglobin (Mb) for constructing a rapid immune colloidal gold strip. Only cetacean Mb is capable of binding to both antibodies and presents positive signal while the Mb from other animals can bind only 1 of the antibodies and presents negative result. The strip for cetacean meat would be an applicable and cost-effective test for field inspectors and even the general public. It contributes to increase the reporting capacity and coverage of illegal cetacean meat possession, which has implications for global cetacean conservation and public health.
2013-01-01
Background Hair is one of the main distinguishing characteristics of mammals and it has many important biological functions. Cetaceans originated from terrestrial mammals and they have evolved a series of adaptations to aquatic environments, which are of evolutionary significance. However, the molecular mechanisms underlying their aquatic adaptations have not been well explored. This study provided insights into the evolution of hair loss during the transition from land to water by investigating and comparing two essential regulators of hair follicle development and hair follicle cycling, i.e., the Hairless (Hr) and FGF5 genes, in representative cetaceans and their terrestrial relatives. Results The full open reading frame sequences of the Hr and FGF5 genes were characterized in seven cetaceans. The sequence characteristics and evolutionary analyses suggested the functional loss of the Hr gene in cetaceans, which supports the loss of hair during their full adaptation to aquatic habitats. By contrast, positive selection for the FGF5 gene was found in cetaceans where a series of positively selected amino acid residues were identified. Conclusions This is the first study to investigate the molecular basis of the hair loss in cetaceans. Our investigation of Hr and FGF5, two indispensable regulators of the hair cycle, provide some new insights into the molecular basis of hair loss in cetaceans. The results suggest that positive selection for the FGF5 gene might have promoted the termination of hair growth and early entry into the catagen stage of hair follicle cycling. Consequently, the hair follicle cycle was disrupted and the hair was lost completely due to the loss of the Hr gene function in cetaceans. This suggests that cetaceans have evolved an effective and complex mechanism for hair loss. PMID:23394579
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R.W.; Fargion, G.S.
1996-05-24
The purpose of the study was to determine the distribution and abundance of cetaceans in areas potentially affected by future oil and gas activities along the continental slope of the north-central and western Gulf of Mexico. This 3.75 year project commenced 1 October 1991 and finished 15 July 1995. The study area was bounded by the Florida-Alabama border, the Texas-Mexico border, and the 100 m and 2,000 m isobaths. Cetacean distribution and abundance were determined from seasonal aerial and shipboard visual surveys and shipboard acoustic surveys. In addition, hydrographic data were collected in situ and by satellite remote sensing tomore » characterize cetacean habitat. Finally, tagging and tracking of sperm whales using satellite telemetry was attempted. Appendix C Part 2 contains the hydrogrpahic data collected during TIO Cruises 5-7. Cetaceans were observed throughout the study area during all four seasons. Nineteen species were identified, including two species (melon-headed whales and Fraser`s dolphins) previously thought to be rare in the Gulf. Pantropical spotted dolphins, bottlenose dolphins, clymene dolphins, striped dolphins, Atlantic spotted dolphins, and melon-headed whales were the most common small cetaceans and the sperm whale was the most common large cetacean. The mean annual abundance for all cetaceans was estimated to be 19,198. Although the study area had complex and dynamic oceanography, bottom depth was the only environmental variable which correlated to cetacean distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R.W.; Fargion, G.S.
1996-05-24
The purpose of the study was to determine the distribution and abundance of cetaceans in areas potentially affected by future oil and gas activities along the continental slope of the north-central and western Gulf of Mexico. This 3.75 year project commenced 1 October 1991 and finished 15 July 1995. The study area was bounded by the Florida-Alabama border, the Texas-Mexico border, and the 100 m and 2,000 m isobaths. Cetacean distribution and abundance were determined from seasonal aerial and shipboard visual surveys and shipboard acoustic surveys. In addition, hydrographic data were collected in situ and by satellite remote sensing tomore » characterize cetacean habitat. Finally, tagging and tracking of sperm whales using satellite telemetry was attempted. This volume summarizes the results of the study. Cetaceans were observed throughout the study area during all four seasons. Nineteen species were identified, including two species (melon-headed whales and Fraser`s dolphins) previously thought to be rare in the Gulf. Pantropical spotted dolphins, bottlenose dolphins, clymene dolphins, striped dolphins, Atlantic spotted dolphins, and melon-headed whales were the most common small cetaceans and the sperm whale was the most common large cetacean. The mean annual abundance for all cetaceans was estimated to be 19,198. Although the study area had complex and dynamic oceanography, bottom depth was the only environmental variable which correlated to cetacean distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-05-24
The purpose of the study was to determine the distribution and abundance of cetaceans in areas potentially affected by future oil and gas activities along the continental slope of the north-central and western Gulf of Mexico. This 3.75 year project commenced 1 October 1991 and finished 15 July 1995. The study area was bounded by the Florida-Alabama border, the Texas-Mexico border, and the 100 m and 2,000 m isobaths. Cetacean distribution and abundance were determined from seasonal aerial and shipboard visual surveys and shipboard acoustic surveys. In addition, hydrographic data were collected in situ and by satellite remote sensing tomore » characterize cetacean habitat. Finally, tagging and tracking of sperm whales using satellite telemetry was attempted. Appendix B contains the hydrographic data collected during all four NMFS-SEFSC cruises. Cetaceans were observed throughout the study area during all four seasons. Nineteen species were identified, including two species (melon-headed whales and Fraser`s dolphins) previously thought to be rare in the Gulf. Pantropical spotted dolphins, bottlenose dolphins, clymene dolphins, striped dolphins, Atlantic spotted dolphins, and melon-headed whales were the most common small cetaceans and the sperm whale was the most common large cetacean. The mean annual abundance for all cetaceans was estimated to be 19,198. Although the study area had complex and dynamic oceanography, bottom depth was the only environmental variable which correlated to cetacean distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R.W.; Fargion, G.S.
1996-05-24
The purpose of the study was to determine the distribution and abundance of cetaceans in areas potentially affected by future oil and gas activities along the continental slope of the north-central and western Gulf of Mexico. This 3.75 year project commenced 1 October 1991 and finished 15 July 1995. The study area was bounded by the Florida-Alabama border, the Texas-Mexico border, and the 100 m and 2,000 m isobaths. Cetacean distribution and abundance were determined from seasonal aerial and shipboard visual surveys and shipboard acoustic surveys. In addition, hydrographic data were collected in situ and by satellite remote sensing tomore » characterize cetacean habitat. Finally, tagging and tracking of sperm whales using satellite telemetry was attempted. This volume summarizes the results of the study. Cetaceans were observed throughout the study area during all four seasons. Nineteen species were identified, including two species (melon-headed whales and Fraser`s dolphins) previously thought to be rare in the Gulf. Pantropical spotted dolphins, bottlenose dolphins, clymene dolphins, striped dolphins, Atlantic spotted dolphins, and melon-headed whales were the most common small cetaceans and the sperm whale was the most common large cetacean. The mean annual abundance for all cetaceans was estimated to be 19,198. Although the study area had complex and dynamic oceanography, bottom depth was the only environmental variable which correlated to cetacean distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R.W.; Fargion, G.S.
1996-05-24
The purpose of the study was to determine the distribution and abundance of cetaceans in areas potentially affected by future oil and gas activities along the continental slope of the north-central and western Gulf of Mexico. This 3.75 year project commenced 1 October 1991 and finished 15 July 1995. The study area was bounded by the Florida-Alabama border, the Texas-Mexico border, and the 100 m and 2,000 m isobaths. Cetacean distribution and abundance were determined from seasonal aerial and shipboard visual surveys and shipboard acoustic surveys. In addition, hydrographic data were collected in situ and by satellite remote sensing tomore » characterize cetacean habitat. Finally, tagging and tracking of sperm whales using satellite telemetry was attempted. Appendix C Part 1 contains the hydrographic data collected during TIO Cruises 1-4. Cetaceans were observed throughout the study area during all four seasons. Nineteen species were identified, including two species (melon-headed whales and Fraser`s dolphins) previously thought to be rare in the Gulf. Pantropical spotted dolphins, bottlenose dolphins, clymene dolphins, striped dolphins, Atlantic spotted dolphins, and melon-headed whales were the most common small cetaceans and the sperm whale was the most common large cetacean. The mean annual abundance for all cetaceans was estimated to be 19,198. Although the study area had complex and dynamic oceanography, bottom depth was the only environmental variable which correlated to cetacean distribution.« less
A review of cetacean lung morphology and mechanics.
Piscitelli, Marina A; Raverty, Stephen A; Lillie, Margo A; Shadwick, Robert E
2013-12-01
Cetaceans possess diverse adaptations in respiratory structure and mechanics that are highly specialized for an array of surfacing and diving behaviors. Some of these adaptations and air management strategies are still not completely understood despite over a century of study. We have compiled the historical and contemporary knowledge of cetacean lung anatomy and mechanics in regards to normal lung function during ventilation and air management while diving. New techniques are emerging utilizing pulmonary mechanics to measure lung function in live cetaceans. Given the diversity of respiratory adaptations in cetaceans, interpretations of these results should consider species-specific anatomy, mechanics, and behavior. Copyright © 2013 Wiley Periodicals, Inc.
Boessenecker, Robert W; Ahmed, Erum; Geisler, Jonathan H
2017-01-01
We report five new specimens of xenorophid dolphins from North and South Carolina. Four of the specimens represent the xenorophid Albertocetus meffordorum, previously only known from the holotype skull. The other is a fragmentary petrosal from the upper Oligocene Belgrade Formation that we refer to Echovenator sp, indicating at least two xenorophids from that unit. Two of the Albertocetus meffordorum specimens are from the lower Oligocene Ashley Formation: 1) a partial skeleton with neurocranium, fragmentary mandible, ribs, vertebrae, and chevrons, and 2) an isolated braincase. The partial vertebral column indicates that Albertocetus retained the ancestral morphology and locomotory capabilities of basilosaurid archaeocetes, toothed mysticetes, and physeteroids, and caudal vertebrae that are as wide as tall suggest that the caudal peduncle, which occurs in all extant Cetacea, was either wide or lacking. CT data from the isolated braincase were used to generate a digital endocast of the cranial cavity. The estimated EQ of this specimen is relatively high for an Oligocene odontocete, and other aspects of the brain, such as its anteroposterior length and relative size of the temporal lobe, are intermediate in morphology between those of extant cetaceans and terrestrial artiodactyls. Ethmoturbinals are also preserved, and are similar in morphology and number to those described for the Miocene odontocete Squalodon. These fossils extend the temporal range of Albertocetus meffordorum into the early Oligocene, its geographic range into South Carolina, and expand our paleobiological understanding of the Xenorophidae.
Evolution of Digestive Enzymes and RNASE1 Provides Insights into Dietary Switch of Cetaceans
Wang, Zhengfei; Xu, Shixia; Du, Kexing; Huang, Fang; Chen, Zhuo; Zhou, Kaiya; Ren, Wenhua; Yang, Guang
2016-01-01
Although cetaceans (whales, porpoises, and dolphins) have multi-chambered stomachs, feeding habits of modern cetaceans have dramatically changed from herbivorous to carnivorous. However, the genetic basis underlying this dietary switch remains unexplored. Here, we present the first systematic investigation of 10 digestive enzymes genes (i.e., CYP7A1, CTRC, LIPC, LIPF, PNLIP, PGC, PRSS1, SI, SLC5A1, and TMPRSS15) of representative cetaceans, and the evolutionary trajectory of RNASE1 in cetartiodactylans. Positive selections were detected with proteinases (i.e., CTRC, PRSS1, and TMPRSS15) and lipases (i.e., CYP7A1, LIPF, and PNLIP) suggesting that cetaceans have evolved an enhanced digestion capacity for proteins and lipids, the major nutritional components of their prey (fishes and invertebrates). In addition, it was found that RNASE1 gene duplicated after the cetartiodactylan speciation and two independent gene duplication events took place in Camelidae and Ruminantia. Positive selection was detected with RNASE1 of Camelidae and Bovidae, suggesting enhanced digestive efficiency in the ruminants. Remarkably, even though the ancestors of cetaceans were terrestrial artiodactyls that are herbivorous, modern cetaceans lost the pancreatic RNASE1 copy with digestive function, which is in accordance with the dietary change from herbivorous to carnivorous. In sum, this is the first study that provides new insights into the evolutionary mechanism of dietary switch in cetaceans. PMID:27651393
A new Miocene baleen whale from the Peruvian desert
NASA Astrophysics Data System (ADS)
Marx, Felix G.; Kohno, Naoki
2016-10-01
The Pisco-Ica and Sacaco basins of southern Peru are renowned for their abundance of exceptionally preserved fossil cetaceans, several of which retain traces of soft tissue and occasionally even stomach contents. Previous work has mostly focused on odontocetes, with baleen whales currently being restricted to just three described taxa. Here, we report a new Late Miocene rorqual (family Balaenopteridae), Incakujira anillodefuego gen. et sp. nov., based on two exceptionally preserved specimens from the Pisco Formation exposed at Aguada de Lomas, Sacaco Basin, southern Peru. Incakujira overall closely resembles modern balaenopterids, but stands out for its unusually gracile ascending process of the maxilla, as well as a markedly twisted postglenoid process of the squamosal. The latter likely impeded lateral (omega) rotation of the mandible, in stark contrast with the highly flexible craniomandibular joint of extant lunge-feeding rorquals. Overall, Incakujira expands the still meagre Miocene record of balaenopterids and reveals a previously underappreciated degree of complexity in the evolution of their iconic lunge-feeding strategy.
The cochlea of the enigmatic pygmy right whale Caperea marginata informs mysticete phylogeny.
Park, Travis; Marx, Felix G; Fitzgerald, Erich M G; Evans, Alistair R
2017-06-01
The pygmy right whale, Caperea marginata, is the least understood extant baleen whale (Cetacea, Mysticeti). Knowledge on its basic anatomy, ecology, and fossil record is limited, even though its singular position outside both balaenids (right whales) and balaenopteroids (rorquals + grey whales) gives Caperea a pivotal role in mysticete evolution. Recent investigations of the cetacean cochlea have provided new insights into sensory capabilities and phylogeny. Here, we extend this advance to Caperea by describing, for the first time, the inner ear of this enigmatic species. The cochlea is large and appears to be sensitive to low-frequency sounds, but its hearing limit is relatively high. The presence of a well-developed tympanal recess links Caperea with cetotheriids and balaenopteroids, rather than balaenids, contrary to the traditional morphological view of a close Caperea-balaenid relationship. Nevertheless, a broader sample of the cetotheriid Herpetocetus demonstrates that the presence of a tympanal recess can be variable at the specific and possibly even the intraspecific level. © 2017 Wiley Periodicals, Inc.
Dell, Leigh-Anne; Patzke, Nina; Spocter, Muhammad A; Bertelsen, Mads F; Siegel, Jerome M; Manger, Paul R
2016-07-01
This study provides the first systematic analysis of the nuclear organization of the neural systems related to sleep and wake in the basal forebrain, diencephalon, midbrain, and pons of the river hippopotamus, one of the closest extant terrestrial relatives of the cetaceans. All nuclei involved in sleep regulation and control found in other mammals, including cetaceans, were present in the river hippopotamus, with no specific nuclei being absent, but novel features of the cholinergic system, including novel nuclei, were present. This qualitative similarity relates to the cholinergic, noradrenergic, serotonergic, and orexinergic systems and is extended to the γ-aminobutyric acid (GABA)ergic elements of these nuclei. Quantitative analysis reveals that the numbers of pontine cholinergic (259,578) and noradrenergic (127,752) neurons, and hypothalamic orexinergic neurons (68,398) are markedly higher than in other large-brained mammals. These features, along with novel cholinergic nuclei in the intralaminar nuclei of the dorsal thalamus and the ventral tegmental area of the midbrain, as well as a major expansion of the hypothalamic cholinergic nuclei and a large laterodorsal tegmental nucleus of the pons that has both parvocellular and magnocellular cholinergic neurons, indicates an unusual sleep phenomenology for the hippopotamus. Our observations indicate that the hippopotamus is likely to be a bihemispheric sleeper that expresses REM sleep. The novel features of the cholinergic system suggest the presence of an undescribed sleep state in the hippopotamus, as well as the possibility that this animal could, more rapidly than other mammals, switch cortical electroencephalographic activity from one state to another. J. Comp. Neurol. 524:2036-2058, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Stranding Events of Kogia Whales along the Brazilian Coast.
Moura, Jailson F; Acevedo-Trejos, Esteban; Tavares, Davi C; Meirelles, Ana C O; Silva, Cristine P N; Oliveira, Larissa R; Santos, Roberta A; Wickert, Janaína C; Machado, Rodrigo; Siciliano, Salvatore; Merico, Agostino
2016-01-01
The genus Kogia, which comprises only two extant species, Kogia sima and Kogia breviceps, represents one of the least known groups of cetaceans in the global ocean. In some coastal regions, however, stranding events of these species have been relatively common over the last decades. Stranding provides the opportunity to investigate the biology of these cetaceans and to explore the epidemiological aspects associated with the mortality of the organisms found on the beach. A number of disturbances (including pelagic fisheries, chemical pollution, boat strikes, and noise pollution) have been confirmed to pose a particular threat to the Kogia species. However, no study has yet investigated potential relationships between environmental conditions and stranding events. Here we analyse how a collection of environmental, physical, and biological variables, such as wind, sea surface temperature (SST), water depth, and chlorophyll-a, correlate to Kogia stranding events along the Brazilian coast. The results of our statistical analyses suggest that K. sima is more likely found in warm tropical waters, which provide an explanation for the high frequency of stranding in northeastern Brazilian coast. In contrast, K. breviceps appears to have a preference for temperate and productive waters. Wind speed results to be also an important factor for predicting Kogia strandings in Brazilian coast. Additionally, literature information in combination with our own data and analyses of stomach contents confirms that oceanic cephalopods constitute the primary nutritional source of both Kogia species. By using the available information as a qualitative proxy for habitat preference and feeding ecology, our study provides a novel and comprehensive assessment of Kogia stranding data in relation to environmental conditions along the Brazilian coast.
Spaulding, Michelle; O'Leary, Maureen A; Gatesy, John
2009-09-23
Integration of diverse data (molecules, fossils) provides the most robust test of the phylogeny of cetaceans. Positioning key fossils is critical for reconstructing the character change from life on land to life in the water. We reexamine relationships of critical extinct taxa that impact our understanding of the origin of Cetacea. We do this in the context of the largest total evidence analysis of morphological and molecular information for Artiodactyla (661 phenotypic characters and 46,587 molecular characters, coded for 33 extant and 48 extinct taxa). We score morphological data for Carnivoramorpha, Creodonta, Lipotyphla, and the raoellid artiodactylan Indohyus and concentrate on determining which fossils are positioned along stem lineages to major artiodactylan crown clades. Shortest trees place Cetacea within Artiodactyla and close to Indohyus, with Mesonychia outside of Artiodactyla. The relationships of Mesonychia and Indohyus are highly unstable, however--in trees only two steps longer than minimum length, Mesonychia falls inside Artiodactyla and displaces Indohyus from a position close to Cetacea. Trees based only on data that fossilize continue to show the classic arrangement of relationships within Artiodactyla with Cetacea grouping outside the clade, a signal incongruent with the molecular data that dominate the total evidence result. Integration of new fossil material of Indohyus impacts placement of another extinct clade Mesonychia, pushing it much farther down the tree. The phylogenetic position of Indohyus suggests that the cetacean stem lineage included herbivorous and carnivorous aquatic species. We also conclude that extinct members of Cetancodonta (whales+hippopotamids) shared a derived ability to hear underwater sounds, even though several cetancodontans lack a pachyostotic auditory bulla. We revise the taxonomy of living and extinct artiodactylans and propose explicit node and stem-based definitions for the ingroup.
Automated aural classification used for inter-species discrimination of cetaceans.
Binder, Carolyn M; Hines, Paul C
2014-04-01
Passive acoustic methods are in widespread use to detect and classify cetacean species; however, passive acoustic systems often suffer from large false detection rates resulting from numerous transient sources. To reduce the acoustic analyst workload, automatic recognition methods may be implemented in a two-stage process. First, a general automatic detector is implemented that produces many detections to ensure cetacean presence is noted. Then an automatic classifier is used to significantly reduce the number of false detections and classify the cetacean species. This process requires development of a robust classifier capable of performing inter-species classification. Because human analysts can aurally discriminate species, an automated aural classifier that uses perceptual signal features was tested on a cetacean data set. The classifier successfully discriminated between four species of cetaceans-bowhead, humpback, North Atlantic right, and sperm whales-with 85% accuracy. It also performed well (100% accuracy) for discriminating sperm whale clicks from right whale gunshots. An accuracy of 92% and area under the receiver operating characteristic curve of 0.97 were obtained for the relatively challenging bowhead and humpback recognition case. These results demonstrated that the perceptual features employed by the aural classifier provided powerful discrimination cues for inter-species classification of cetaceans.
Lambert, Charlotte; Mannocci, Laura; Lehodey, Patrick; Ridoux, Vincent
2014-01-01
To date, most habitat models of cetaceans have relied on static and oceanographic covariates, and very few have related cetaceans directly to the distribution of their prey, as a result of the limited availability of prey data. By simulating the distribution of six functional micronekton groups between the surface and ≃1,000 m deep, the SEAPODYM model provides valuable insights into prey distributions. We used SEAPODYM outputs to investigate the habitat of three cetacean guilds with increasing energy requirements: sperm and beaked whales, Globicephalinae and Delphininae. We expected High Energy Requirements cetaceans to preferentially forage in habitats of high prey biomass and/or production, where they might easily meet their high energetic needs, and Low Energy Requirements cetaceans to forage in habitats of either high or low prey biomass and/or production. Cetacean sightings were collected from dedicated aerial surveys in the South West Indian Ocean (SWIO) and French Polynesia (FP). We examined cetacean densities in relation to simulated distributions of their potential prey using Generalised Additive Models and predicted their habitats in both regions. Results supported their known diving abilities, with Delphininae mostly related to prey present in the upper layers of the water column, and Globicephalinae and sperm and beaked whales also related to prey present in deeper layers. Explained deviances ranged from 9% for sperm and beaked whales in the SWIO to 47% for Globicephalinae in FP. Delphininae and Globicephalinae appeared to select areas where high prey biomass and/or production were available at shallow depths. In contrast, sperm and beaked whales showed less clear habitat selection. Using simulated prey distributions as predictors in cetacean habitat models is crucial to understand their strategies of habitat selection in the three dimensions of the ocean. PMID:25162643
Chiarello, M; Villéger, S; Bouvier, C; Auguet, J C; Bouvier, T
2017-11-10
Marine animals surfaces host diverse microbial communities, which play major roles for host's health. Most inventories of marine animal surface microbiota have focused on corals and fishes, while cetaceans remain overlooked. The few studies focused on wild cetaceans, making difficult to distinguish intrinsic inter- and/or intraspecific variability in skin microbiota from environmental effects. We used high-throughput sequencing to assess the skin microbiota from 4 body zones of 8 bottlenose dolphins (Tursiops truncatus) and killer whales (Orcinus orca), housed in captivity (Marineland park, France). Overall, cetacean skin microbiota is more diverse than planktonic communities and is dominated by different phylogenetic lineages and functions. In addition, the two cetacean species host different skin microbiotas. Within each species, variability was higher between individuals than between body parts, suggesting a high individuality of cetacean skin microbiota. Overall, the skin microbiota of the assessed cetaceans related more to the humpback whale and fishes' than to microbiotas of terrestrial mammals.
Costa, Alexandra Fernandes; Siciliano, Salvatore; Emin-Lima, Renata; Martins, Bruna Maria Lima; Sousa, Maura Elisabeth Moraes; Giarrizzo, Tommaso; Júnior, José de Sousa e Silva
2017-01-01
Abstract Marine mammal stranding events are used as an important tool for understanding cetacean biology worldwide. Nonetheless, there are vast gaps of knowledge to be filled in for a wide range of species. Reputable information is required regarding species from large baleen whales to sperm and beaked whales, as well as pelagic dolphins. This paper describes new cetacean records from north and north-eastern Brazil, which are both the least surveyed areas regarding aquatic mammals. Regular beach surveys were conducted to recover cetacean carcasses along the coast of Pará beginning November 2005. At the coasts of the Maranhão and Piauí states, the surveys were conducted between 2003 and 2013. From 2003 to 2014, 34 strandings of cetaceans were registered. The study provides four additional species records’ in the area based on strandings (Balaenoptera borealis, Balaenoptera physalus, Peponocephala electra, and Pseudorca crassidens). A mass stranding of Guiana dolphins (Sotalia guianensis, N = 12), the most common species for the region, was reported for the first time. The records presented herein are of special concern, since they expand the knowledge on cetaceans from the Brazilian coast. In addition, this study conducted an analysis to verify the similarity between cetacean compositions described for north and north-eastern Brazil and the southern Caribbean region. The results showed a high similarity between these regions, proving the connection with the Caribbean cetacean fauna. PMID:29118593
Climate, critters, and cetaceans: Cenozoic drivers of the evolution of modern whales.
Marx, Felix G; Uhen, Mark D
2010-02-19
Modern cetaceans, a poster child of evolution, play an important role in the ocean ecosystem as apex predators and nutrient distributors, as well as evolutionary "stepping stones" for the deep sea biota. Recent discussions on the impact of climate change and marine exploitation on current cetacean populations may benefit from insights into what factors have influenced cetacean diversity in the past. Previous studies suggested that the rise of diatoms as dominant marine primary producers and global temperature change were key factors in the evolution of modern whales. Based on a comprehensive diversity data set, we show that much of observed cetacean paleodiversity can indeed be explained by diatom diversity in conjunction with variations in climate as indicated by oxygen stable isotope records (delta18O).
Wang, Zhengfei; Chen, Zhuo; Xu, Shixia; Ren, Wenhua; Zhou, Kaiya; Yang, Guang
2015-01-01
Cetaceans are a group of secondarily adapted marine mammals with an enigmatic history of transition from terrestrial to fully aquatic habitat and subsequent adaptive radiation in waters around the world. Numerous physiological and morphological cetacean characteristics have been acquired in response to this drastic habitat transition; for example, the thickened blubber is one of the most striking changes that increases their buoyancy, supports locomotion, and provides thermal insulation. However, the genetic basis underlying the blubber thickening in cetaceans remains poorly explored. Here, 88 candidate genes associated with triacylglycerol metabolism were investigated in representative cetaceans and other mammals to test whether the thickened blubber matched adaptive evolution of triacylglycerol metabolism-related genes. Positive selection was detected in 41 of the 88 candidate genes, and functional characterization of these genes indicated that these are involved mainly in triacylglycerol synthesis and lipolysis processes. In addition, some essential regulatory genes underwent significant positive selection in cetacean-specific lineages, whereas no selection signal was detected in the counterpart terrestrial mammals. The extensive occurrence of positive selection in triacylglycerol metabolism-related genes is suggestive of their essential role in secondary adaptation to an aquatic life, and further implying that ‘obesity’ might be an indicator of good health for cetaceans. PMID:26381091
Wang, Zhengfei; Chen, Zhuo; Xu, Shixia; Ren, Wenhua; Zhou, Kaiya; Yang, Guang
2015-09-18
Cetaceans are a group of secondarily adapted marine mammals with an enigmatic history of transition from terrestrial to fully aquatic habitat and subsequent adaptive radiation in waters around the world. Numerous physiological and morphological cetacean characteristics have been acquired in response to this drastic habitat transition; for example, the thickened blubber is one of the most striking changes that increases their buoyancy, supports locomotion, and provides thermal insulation. However, the genetic basis underlying the blubber thickening in cetaceans remains poorly explored. Here, 88 candidate genes associated with triacylglycerol metabolism were investigated in representative cetaceans and other mammals to test whether the thickened blubber matched adaptive evolution of triacylglycerol metabolism-related genes. Positive selection was detected in 41 of the 88 candidate genes, and functional characterization of these genes indicated that these are involved mainly in triacylglycerol synthesis and lipolysis processes. In addition, some essential regulatory genes underwent significant positive selection in cetacean-specific lineages, whereas no selection signal was detected in the counterpart terrestrial mammals. The extensive occurrence of positive selection in triacylglycerol metabolism-related genes is suggestive of their essential role in secondary adaptation to an aquatic life, and further implying that 'obesity' might be an indicator of good health for cetaceans.
2012-09-01
thermoregulate their acoustic fats through increased blood flow to both the melon and peri-mandibular fats (Houser et al., 2004). Cetaceans inhabiting...Fleischer G. 1976. Hearing in Extinct Cetaceans as Determined by Cochlear Structure. Journal of Paleontology 50:133-152. Fraser FC, Purves PE
Curé, Charlotte; Antunes, Ricardo; Samarra, Filipa; Alves, Ana Catarina; Visser, Fleur; Kvadsheim, Petter H; Miller, Patrick J O
2012-01-01
In cetaceans' communities, interactions between individuals of different species are often observed in the wild. Yet, due to methodological and technical challenges very little is known about the mediation of these interactions and their effect on cetaceans' behavior. Killer whales (Orcinus orca) are a highly vocal species and can be both food competitors and potential predators of many other cetaceans. Thus, the interception of their vocalizations by unintended cetacean receivers may be particularly important in mediating interspecific interactions. To address this hypothesis, we conducted playbacks of killer whale vocalizations recorded during herring-feeding activity to free-ranging long-finned pilot whales (Globicephala melas). Using a multi-sensor tag, we were able to track the whales and to monitor changes of their movements and social behavior in response to the playbacks. We demonstrated that the playback of killer whale sounds to pilot whales induced a clear increase in group size and a strong attraction of the animals towards the sound source. These findings provide the first experimental evidence that the interception of heterospecific vocalizations can mediate interactions between different cetacean species in previously unrecognized ways.
A comparative study of the inner ear structures of artiodactyls and early cetaceans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klingshirn, M.A.; Luo, Z.
1994-12-31
It has been suggested that the order Cetacea (whales and porpoises) are closely related to artiodactyls, even-hoofed ungulate mammals such as the pig and cow. Paleontological and molecular data strongly supports this concept of phylogenetic relationships. In a study of DNA sequences of two mitochondrial ribosomal gene segments of cetaceans, the artiodactyls were found to be closest related to Cetaceans. These well accepted studies on the phylogenetic affinities of artiodactyls and cetaceans cause us to conduct a comparative study of the bony structure of the inner ear of these two taxa.
Evolutionary Genetics of Hypoxia Tolerance in Cetaceans during Diving
Tian, Ran; Wang, Zhengfei; Niu, Xu; Zhou, Kaiya; Xu, Shixia; Yang, Guang
2016-01-01
Hypoxia was a major challenge faced by cetaceans during the course of secondary aquatic adaptation. Although physiological traits of hypoxia tolerance in cetaceans have been well characterized, the underlying molecular mechanisms remain unknown. We investigated the sequences of 17 hypoxia-tolerance-related genes in representative cetaceans to provide a comprehensive insight into the genetic basis of hypoxia tolerance in these animals. Genes involved in carrying and transporting oxygen in the blood and muscle (hemoglobin-α and β, myoglobin), and genes involved in the regulation of vasoconstriction (endothelin-1, -2, and -3; endothelin receptor type A and B; adrenergic receptor α-1D; and arginine vasopressin) appear to have undergone adaptive evolution, evidence for positive selection on their particular sites, and radical physiochemical property changes of selected condons. Interestingly, “long-diving” cetaceans had relatively higher ω (dN/dS) values than “short-diving” cetaceans for the hemoglobin β gene, indicating divergent selective pressure presented in cetacean lineages with different diving abilities. Additionally, parallel positive selection or amino acid changes (ADRA1D: P50A, A53G, AVPR1B: I/V270T) among animals exposed to different hypoxia habitats reflect functional convergence or similar genetic mechanisms of hypoxia tolerance. In summary, positive selection, divergent selective pressures, and parallel evolution at the molecular level provided some new insights into the genetic adaptation of hypoxia tolerance. PMID:26912402
Unique biochemical and mineral composition of whale ear bones.
Kim, Sora L; Thewissen, J G M; Churchill, Morgan M; Suydam, Robert S; Ketten, Darlene R; Clementz, Mark T
2014-01-01
Abstract Cetaceans are obligate aquatic mammals derived from terrestrial artiodactyls. The defining characteristic of cetaceans is a thick and dense lip (pachyosteosclerotic involucrum) of an ear bone (the tympanic). This unique feature is absent in modern terrestrial artiodactyls and is suggested to be important in underwater hearing. Here, we investigate the mineralogical and biochemical properties of the involucrum, as these may hold clues to the aquatic adaptations of cetaceans. We compared bioapatites (enamel, dentine, cementum, and skeletal bone) of cetaceans with those of terrestrial artiodactyls and pachyosteosclerotic ribs of manatees (Sirenia). We investigated organic, carbonate, and mineral composition as well as crystal size and crystallinity index. In all studied variables, bioapatites of the cetacean involucrum were intermediate in composition and structure between those of tooth enamel on the one hand and those of dentine, cementum, and skeletal bone on the other. We also studied the amino acid composition of the cetacean involucrum relative to that of other skeletal bone. The central involucrum had low glycine and hydroxyproline concentrations but high concentrations of nonessential amino acids, unlike most bone samples but similar to the tympanic of hippos and the (pachyosteosclerotic) ribs of manatees. These amino acid results are evidence of rapid bone development. We hypothesize that the mineralogical and amino acid composition of cetacean bullae differs from that of other bone because of (1) functional modifications for underwater sound reception and (2) structural adaptations related to rapid ossification.
Monitoring Cetaceans in the North Pacific
2009-04-01
Pacific by Kathleen M. Stafford April 2009 THIS PAGE INTENTIONALLY LEFT...September 2007-30 August 2008 4. TITLE AND SUBTITLE: Title (Mix case letters) Monitoring cetaceans in the North Pacific . 6. AUTHOR(S) Kathleen...words) Two projects were undertaken in order to monitor cetaceans in the North Pacific . The first was designed to obtain passive acoustic data from
2014-09-30
hours, in addition to other manipulations (e.g. blubber biopsies). This process has shown to significantly raise both cortisol and aldosterone above...cetacean skin samples will bring new possibilities for stress assessment in cetaceans, opening up a new avenue of research in physiological response
Whales, dolphins or fishes? The ethnotaxonomy of cetaceans in São Sebastião, Brazil
Souza, Shirley P; Begossi, Alpina
2007-01-01
The local knowledge of human populations about the natural world has been addressed through ethnobiological studies, especially concerning resources uses and their management. Several criteria, such as morphology, ecology, behavior, utility and salience, have been used by local communities to classify plants and animals. Studies regarding fishers' knowledge on cetaceans in the world, especially in Brazil, began in the last decade. Our objective is to investigate the folk classification by fishers concerning cetaceans, and the contribution of fishers' local knowledge to the conservation of that group. In particular, we aim to record fishers' knowledge in relation to cetaceans, with emphasis on folk taxonomy. The studied area is São Sebastião, located in the southeastern coast of Brazil, where 70 fishers from 14 communities were selected according to their fishing experience and interviewed through questionnaires about classification, nomenclature and ecological aspects of local cetaceans' species. Our results indicated that most fishers classified cetaceans as belonging to the life-form 'fish'. Fishers' citations for the nomenclature of the 11 biological species (10 biological genera), resulted in 14 folk species (3 generic names). Fishers' taxonomy was influenced mostly by the phenotypic and cultural salience of the studied cetaceans. Cultural transmission, vertical and horizontal, was intimately linked to fishers' classification process. The most salient species, therefore well recognized and named, were those most often caught by gillnets, in addition to the biggest ones and those most exposed by media, through TV programs, which were watched and mentioned by fishers. Our results showed that fishers' ecological knowledge could be a valuable contribution to cetaceans' conservation, helping to determine areas and periods for their protection, indicating priority topics for research and participating in alternative management related to the gillnet fisheries. PMID:17311681
NASA Astrophysics Data System (ADS)
Collareta, Alberto; Landini, Walter; Lambert, Olivier; Post, Klaas; Tinelli, Chiara; Di Celma, Claudio; Panetta, Daniele; Tripodi, Maria; Salvadori, Piero A.; Caramella, Davide; Marchi, Damiano; Urbina, Mario; Bianucci, Giovanni
2015-12-01
Instead of teeth, modern mysticetes bear hair-fringed keratinous baleen plates that permit various bulk-filtering predation techniques (from subsurface skimming to lateral benthic suction and engulfment) devoted to various target prey (from small invertebrates to schooling fish). Current knowledge about the feeding ecology of extant cetaceans is revealed by stomach content analyses and observations of behavior. Unfortunately, no fossil stomach contents of ancient mysticetes have been described so far; the investigation of the diet of fossil baleen whales, including the Neogene family Cetotheriidae, remains thus largely speculative. We report on an aggregate of fossil fish remains found within a mysticete skeleton belonging to an undescribed late Miocene (Tortonian) cetotheriid from the Pisco Formation (Peru). Micro-computed tomography allowed us to interpret it as the fossilized content of the forestomach of the host whale and to identify the prey as belonging to the extant clupeiform genus Sardinops. Our discovery represents the first direct evidence of piscivory in an ancient edentulous mysticete. Since among modern mysticetes only Balaenopteridae are known to ordinarily consume fish, this fossil record may indicate that part of the cetotheriids experimented some degree of balaenopterid-like engulfment feeding. Moreover, this report corresponds to one of the geologically oldest records of Sardinops worldwide, occurring near the Tortonian peak of oceanic primary productivity and cooling phase. Therefore, our discovery evokes a link between the rise of Cetotheriidae; the setup of modern coastal upwelling systems; and the radiation of epipelagic, small-sized, schooling clupeiform fish in such highly productive environments.
Ahmed, Erum; Geisler, Jonathan H.
2017-01-01
We report five new specimens of xenorophid dolphins from North and South Carolina. Four of the specimens represent the xenorophid Albertocetus meffordorum, previously only known from the holotype skull. The other is a fragmentary petrosal from the upper Oligocene Belgrade Formation that we refer to Echovenator sp, indicating at least two xenorophids from that unit. Two of the Albertocetus meffordorum specimens are from the lower Oligocene Ashley Formation: 1) a partial skeleton with neurocranium, fragmentary mandible, ribs, vertebrae, and chevrons, and 2) an isolated braincase. The partial vertebral column indicates that Albertocetus retained the ancestral morphology and locomotory capabilities of basilosaurid archaeocetes, toothed mysticetes, and physeteroids, and caudal vertebrae that are as wide as tall suggest that the caudal peduncle, which occurs in all extant Cetacea, was either wide or lacking. CT data from the isolated braincase were used to generate a digital endocast of the cranial cavity. The estimated EQ of this specimen is relatively high for an Oligocene odontocete, and other aspects of the brain, such as its anteroposterior length and relative size of the temporal lobe, are intermediate in morphology between those of extant cetaceans and terrestrial artiodactyls. Ethmoturbinals are also preserved, and are similar in morphology and number to those described for the Miocene odontocete Squalodon. These fossils extend the temporal range of Albertocetus meffordorum into the early Oligocene, its geographic range into South Carolina, and expand our paleobiological understanding of the Xenorophidae. PMID:29117197
Collareta, Alberto; Landini, Walter; Lambert, Olivier; Post, Klaas; Tinelli, Chiara; Di Celma, Claudio; Panetta, Daniele; Tripodi, Maria; Salvadori, Piero A; Caramella, Davide; Marchi, Damiano; Urbina, Mario; Bianucci, Giovanni
2015-12-01
Instead of teeth, modern mysticetes bear hair-fringed keratinous baleen plates that permit various bulk-filtering predation techniques (from subsurface skimming to lateral benthic suction and engulfment) devoted to various target prey (from small invertebrates to schooling fish). Current knowledge about the feeding ecology of extant cetaceans is revealed by stomach content analyses and observations of behavior. Unfortunately, no fossil stomach contents of ancient mysticetes have been described so far; the investigation of the diet of fossil baleen whales, including the Neogene family Cetotheriidae, remains thus largely speculative. We report on an aggregate of fossil fish remains found within a mysticete skeleton belonging to an undescribed late Miocene (Tortonian) cetotheriid from the Pisco Formation (Peru). Micro-computed tomography allowed us to interpret it as the fossilized content of the forestomach of the host whale and to identify the prey as belonging to the extant clupeiform genus Sardinops. Our discovery represents the first direct evidence of piscivory in an ancient edentulous mysticete. Since among modern mysticetes only Balaenopteridae are known to ordinarily consume fish, this fossil record may indicate that part of the cetotheriids experimented some degree of balaenopterid-like engulfment feeding. Moreover, this report corresponds to one of the geologically oldest records of Sardinops worldwide, occurring near the Tortonian peak of oceanic primary productivity and cooling phase. Therefore, our discovery evokes a link between the rise of Cetotheriidae; the setup of modern coastal upwelling systems; and the radiation of epipelagic, small-sized, schooling clupeiform fish in such highly productive environments.
Assessing the responses of coastal cetaceans to the construction of offshore wind turbines.
Thompson, Paul M; Lusseau, David; Barton, Tim; Simmons, Dave; Rusin, Jan; Bailey, Helen
2010-08-01
The expansion of offshore renewables has raised concerns over potential disturbance to coastal cetaceans. In this study, we used passive acoustic monitoring to assess whether cetaceans responded to pile-driving noise during the installation of two 5MW offshore wind turbines off NE Scotland in 2006. Monitoring was carried out at both the turbine site and a control site in 2005, 2006 and 2007. Harbour porpoises occurred regularly around the turbine site in all years, but there was some evidence that porpoises did respond to disturbance from installation activities. We use these findings to highlight how uncertainty over cetacean distribution and the scale of disturbance effects constrains opportunities for B-A-C-I studies. We explore alternative approaches to assessing the impact of offshore wind farm upon cetaceans, and make recommendations for the research and monitoring that will be required to underpin future developments. Copyright 2010 Elsevier Ltd. All rights reserved.
Evaluating the impacts of marine debris on cetaceans.
Baulch, Sarah; Perry, Clare
2014-03-15
Global in its distribution and pervading all levels of the water column, marine debris poses a serious threat to marine habitats and wildlife. For cetaceans, ingestion or entanglement in debris can cause chronic and acute injuries and increase pollutant loads, resulting in morbidity and mortality. However, knowledge of the severity of effects lags behind that for other species groups. This literature review examines the impacts of marine debris on cetaceans reported to date. It finds that ingestion of debris has been documented in 48 (56% of) cetacean species, with rates of ingestion as high as 31% in some populations. Debris-induced mortality rates of 0-22% of stranded animals were documented, suggesting that debris could be a significant conservation threat to some populations. We identify key data that need to be collected and published to improve understanding of the threat that marine debris poses to cetaceans. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cetacean response to summer maritime traffic in the Western Mediterranean Sea.
Campana, I; Crosti, R; Angeletti, D; Carosso, L; David, L; Di-Méglio, N; Moulins, A; Rosso, M; Tepsich, P; Arcangeli, A
2015-08-01
Maritime traffic is one of many anthropogenic pressures threatening the marine environment. This study was specifically designed to investigate the relationship between vessels presence and cetacean sightings in the high sea areas of the Western Mediterranean Sea region. We recorded and compared the total number of vessels in the presence and absence of cetacean sightings using data gathered during the summer season (2009-2013) along six fixed transects repeatedly surveyed. In locations with cetacean sightings (N = 2667), nautical traffic was significantly lower, by 20%, compared to random locations where no sightings occurred (N = 1226): all cetacean species, except bottlenose dolphin, were generally observed in locations with lower vessel abundance. In different areas the species showed variable results likely influenced by a combination of biological and local environmental factors. The approach of this research helped create, for the first time, a wide vision of the different responses of animals towards a common pressure. Copyright © 2015 Elsevier Ltd. All rights reserved.
POSTMORTEM FINDINGS IN CETACEANS FOUND STRANDED IN THE PELAGOS SANCTUARY, ITALY, 2007-14.
Giorda, Federica; Ballardini, Marco; Di Guardo, Giovanni; Pintore, Maria Domenica; Grattarola, Carla; Iulini, Barbara; Mignone, Walter; Goria, Maria; Serracca, Laura; Varello, Katia; Dondo, Alessandro; Acutis, Pier Luigi; Garibaldi, Fulvio; Scaglione, Frine Eleonora; Gustinelli, Andrea; Mazzariol, Sandro; Di Francesco, Cristina Esmeralda; Tittarelli, Cristiana; Casalone, Cristina; Pautasso, Alessandra
2017-10-01
Between 2007 and 2014, 83 cetaceans were found stranded along the Ligurian coast of Italy, in the Pelagos Sanctuary, the largest marine protected area in the Mediterranean basin. Forty-nine (59%) were submitted to complete or partial necropsy, depending on the conservation status of the carcass. Based on gross and histological pathology and ancillary testing, the cause of death was determined and categorized as anthropogenic or natural (i.e., nonanthropogenic) in origin for 33 animals (67%) and of undetermined origin in the remaining 16 (33%). Natural causes of death, accompanied by either poor or good nutritional status, were attributed to 29 animals (59%), whereas four (8%) were diagnosed with an anthropogenic cause of death, consisting of interaction with fishing activities. Infectious and noninfectious disease was the most common cause of death, involving 29 cetaceans (59%). These data are valuable for understanding health and mortality trends in cetacean populations and can provide information for establishing policies for cetacean conservation and management in such an important protected area of the Mediterranean basin.
A new Eocene archaeocete (Mammalia, Cetacea) from India and the time of origin of whales
Bajpai, Sunil; Gingerich, Philip D.
1998-01-01
Himalayacetus subathuensis is a new pakicetid archaeocete from the Subathu Formation of northern India. The type dentary has a small mandibular canal indicating a lack of auditory specializations seen in more advanced cetaceans, and it has Pakicetus-like molar teeth suggesting that it fed on fish. Himalayacetus is significant because it is the oldest archaeocete known and because it was found in marine strata associated with a marine fauna. Himalayacetus extends the fossil record of whales about 3.5 million years back in geological time, to the middle part of the early Eocene [≈53.5 million years ago (Ma)]. Oxygen in the tooth-enamel phosphate has an isotopic composition intermediate between values reported for freshwater and marine archaeocetes, indicating that Himalayacetus probably spent some time in both environments. When the temporal range of Archaeoceti is calibrated radiometrically, comparison of likelihoods constrains the time of origin of Archaeoceti and hence Cetacea to about 54–55 Ma (beginning of the Eocene), whereas their divergence from extant Artiodactyla may have been as early as 64–65 Ma (beginning of the Cenozoic). PMID:9860991
2012-05-01
the harbour porpois, Phocoena phocoena. MSc Thesis, University of Guelph, Guelph, Ontario, Canada Koopman HN (2007) Phylogenetic , ecological , and...FINAL REPORT Behavioral Ecology of Cetaceans: The Relationship of Body Condition with Behavior and Reproductive Success SERDP Project RC...2011 – 04-05-2012 4. TITLE AND SUBTITLE h i l l f 5a. CONTRACT NUMBER Behavioral ecology of cetaceans: the relationship of body condition
Cetacean high-use habitats of the northeast United States continental shelf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenney, R.D.; Winn, H.E.
1986-04-01
Results of the Cetacean and Turtle Assessment Program previously demonstrated at a qualitative level that specific areas of the continental shelf waters off the northeastern US coast consistently showed high-density utilization by several cetacean species. They have quantified, on a multispecies basis and with adjustment for level of survey effort, the intensity of habitat use by whales and dolphins, and defined areas of especially high-intensity utilization. The results demonstrate that the area off the northeast US, which is used most intensively as cetacean habitat, is the western margin of the Gulf of Maine, from the Great South Channel to Stellwagenmore » Bank and Jeffreys Ledge. Secondary high-use areas include the continental shelf edge and the region around the eastern end of Georges Bank. High-use areas for piseivorous cetaceans are concentrated mainly in the western Gulf of Maine and secondarily at mid-shelf east of the Chesapeake region, for planktivores in the western Gulf of Maine and the southwestern and eastern portions of Georges Bank, and for teuthivores in the western Gulf of Maine and the southwestern and eastern portions of Georges Bank, and for teuthivores along the edge of the shelf. In general, habitat use by cetaceans is highest in spring and summer, and lowest in fall and winter.« less
Domiciano, Isabela G.; Domit, Camila; Broadhurst, Matt K.; Koch, Mariana S.; Bracarense, Ana Paula F. R. L.
2016-01-01
Cetaceans are considered environmental sentinels and their health often reflects either anthropogenic or natural spatio-temporal disturbances. This study investigated the pathological findings and mortality of small cetaceans with the aim of detecting hazards and monitoring health trends in a high-biodiversity area. Between 2007 and 2012, 218 stranded cetaceans were recorded on the Paraná coast, southern Brazil. Fifty-seven (26.1%) of these animals, including 50 Sotalia guianensis, 2 Pontoporia blainvillei, 2 Stenella frontalis, 1 Stenella longirostris, 1 Tursiops truncatus and 1 Globicephala melas were necropsied and samples were collected for histopathology. Causes of death were determined in 46 of the 57 (80.7%) animals and most (30 or 65.2%) were ascribed to anthropogenic activities, including fisheries bycatch (28/30) and trauma (2/30). The remaining 16 fatalities were considered natural, and attributed to pneumonia (10/16), emaciation (3/16), septicemia (1/16), neonatal pathology (1/16) and choking via food obstruction (1/16). Irrespective of the cause, bronchointerstitial pneumonia, associated with parasitism, lymphadenitis and membranous glomerulonephritis were common findings among all fatalities. These results suggest, that while anthropogenic activities are a leading cause of cetacean strandings in Paraná, underlying pre-existing diseases may contribute towards deaths. Although the studied area is considered a biosphere reserve by UNESCO, complex anthropogenic and natural interactions might be occurring, increasing cetacean susceptibility to hazards. This study may help facilitate developing an effective conservation plan for coastal cetaceans focusing on reducing fisheries interactions, habitat degradation and pollution as mechanisms for ultimately increasing species resilience. PMID:26871703
Aznar, F J; Agustí, C; Littlewood, D T J; Raga, J A; Olson, P D
2007-02-01
Four types of tetraphyllidean larvae infect cetaceans worldwide: two plerocercoids differing in size, 'small' (SP) and 'large' (LP), and two merocercoids referred to as Phyllobothrium delphini and Monorygma grimaldii. The latter merocercoid larvae parasitize marine mammals exclusively and exhibit a specialised cystic structure. Adult stages are unknown for any of the larvae and thus the role of cetaceans in the life cycle of these species has been a long-standing problem. The SP and LP forms are thought to be earlier stages of P. delphini and M. grimaldii that are presumed to infect large pelagic sharks that feed on cetaceans. A molecular analysis of the D2 variable region of the large subunit ribosomal DNA gene based on several individuals of each larval type collected from three Mediterranean species of cetaceans showed consistent and unique molecular signatures for each type regardless of host species or site of infection. The degree of divergence suggested that LP, P. delphini and M. grimaldii larvae may represent separate species, whereas SP may be conspecific with M. grimaldii. In all host species, individuals of SP accumulated in the gut areas in which the lymphoid tissue was especially developed. We suggest therefore that these larvae use the lymphatic system to migrate to the abdominal peritoneum and mesenteries where they develop into forms recognizable as M. grimaldii. The plerocercoid stage of P. delphini remains unknown. In a partial phylogenetic tree of the Tetraphyllidea, all larvae formed a clade that included a representative of the genus Clistobothrium, some species of which parasitize sharks such as the great white which is known to feed on cetaceans. A bibliographic examination of tetraphyllidean infections in marine mammals indicated that these larvae are acquired mostly offshore. In summary, the evidence suggests that cetaceans play a significant role in the life cycle of these larvae. In addition, it seems clear that cetaceans act as natural intermediate hosts for P. delphini and M. grimaldii, as within these hosts they undergo development from the plerocercoid stage to the merocercoid stage. Because tetraphyllidean species use fish, cephalopods and other marine invertebrates as intermediate hosts, the inclusion of cetaceans in the life cycle would have facilitated their transmission to apex predators such as the large, lamnid sharks. The biological significance of infections of LP in cetaceans is unclear, but infections do not seem to be accidental as such larvae show high prevalence and abundance as well as a high degree of site specificity, particularly in the anal crypts and bile ducts.
Acoustic Moorings for Integrated Cetacean-Prey Studies
2015-09-30
Acoustic Recording Package ( HARP ), consisting of data logger and battery cases, and a hydrophone for passive acoustic monitoring of cetaceans (Wiggins...Hildebrand 2007). The HARPs will be able to record continuously at high enough bandwidth to monitor the full acoustic repertoire of cetaceans...likely to occur in the area. The HARP will be mounted near the bottom of the mooring at approximately 1,000 m depth. The HARPs are made in-house at the
NASA Astrophysics Data System (ADS)
Mateu, Paula; Nardi, Valentina; Fraija-Fernández, Natalia; Mattiucci, Simonetta; Gil de Sola, Luis; Raga, Juan Antonio; Fernández, Mercedes; Aznar, Francisco Javier
2015-01-01
Myctophids (lantern fish) and cephalopods play a key role in trophic webs from the continental slope and oceanic waters linking the zooplankton to top predators. Many cetaceans feed on both lantern fish and cephalopods, and such prey would thus be expected to bridge the trophic gap in the life-cycles of helminths infecting cetaceans. However, information on the life-cycles of most of these helminths is extremely scanty. We examined the parasite fauna of myctophids and cephalopods in two areas from the western Mediterranean where at least 21 helminth taxa from cetaceans have been reported and both cetacean diversity and abundance is high. A total of 1012 individuals of 8 lantern fish species, namely, Ceratoscopelus maderensis, Lampanyctus crocodilus, Notoscopelus elongatus, Benthosema glaciale, Myctophum punctatum, Lobianchia dofleini, Diaphus holti and Hygophum benoiti, and 792 individuals of 2 cephalopod species, Alloteuthis media and Sepietta oweniana, were collected from the Gulf of Valencia and Alboran Sea (Spanish Mediterranean) during 2010-2012 and examined for larval helminths. All these species have been reported as prey for at least some cetacean species in the area. Only five helminth taxa were found. The nematodes Anisakis pegreffii and Anisakis physeteris were detected in N. elongatus and C. maderensis (overall prevalence for Anisakis: 8.1% and 0.5%, respectively). Their prevalence in N. elongatus was significantly higher than that from the other three myctophid species with n>50 individuals. A single individual of Hysterothylacium sp. was found in N. elongatus (prevalence: 0.5%) and Raphidascarididae gen. spp. in N. elongatus and L. crocodilus (prevalence: 20.3% and 0.7%, respectively). Juvenile didymozoid digeneans (Torticaecum type) were detected in N. elongatus and L. crocodilus (prevalence: 18.5% and 4.3%, respectively). Two unidentified cestode plerocercoids were collected from N. elongatus. Our study suggests, for the first time, that myctophids could play a role as paratenic hosts in the oceanic life-cycle of A. pegreffii and A. physeteris in the western Mediterranean. None of the other larvae identified at least to family level infect cetaceans, but some of them can be transmitted to large predatory fish. The extreme scarcity of such cetacean parasites in this, and previous parasitological surveys of mesopelagic fish and cephalopods is at odds with the key role of these preys in the diet of oceanic cetaceans.
Adaptive evolution of the Hox gene family for development in bats and dolphins.
Liang, Lu; Shen, Yong-Yi; Pan, Xiao-Wei; Zhou, Tai-Cheng; Yang, Chao; Irwin, David M; Zhang, Ya-Ping
2013-01-01
Bats and cetaceans (i.e., whales, dolphins, porpoises) are two kinds of mammals with unique locomotive styles and occupy novel niches. Bats are the only mammals capable of sustained flight in the sky, while cetaceans have returned to the aquatic environment and are specialized for swimming. Associated with these novel adaptations to their environment, various development changes have occurred to their body plans and associated structures. Given the importance of Hox genes in many aspects of embryonic development, we conducted an analysis of the coding regions of all Hox gene family members from bats (represented by Pteropus vampyrus, Pteropus alecto, Myotis lucifugus and Myotis davidii) and cetaceans (represented by Tursiops truncatus) for adaptive evolution using the available draft genome sequences. Differences in the selective pressures acting on many Hox genes in bats and cetaceans were found compared to other mammals. Positive selection, however, was not found to act on any of the Hox genes in the common ancestor of bats and only upon Hoxb9 in cetaceans. PCR amplification data from additional bat and cetacean species, and application of the branch-site test 2, showed that the Hoxb2 gene within bats had significant evidence of positive selection. Thus, our study, with genomic and newly sequenced Hox genes, identifies two candidate Hox genes that may be closely linked with developmental changes in bats and cetaceans, such as those associated with the pancreatic, neuronal, thymus shape and forelimb. In addition, the difference in our results from the genome-wide scan and newly sequenced data reveals that great care must be taken in interpreting results from draft genome data from a limited number of species, and deep genetic sampling of a particular clade is a powerful tool for generating complementary data to address this limitation.
Adaptive Evolution of the Hox Gene Family for Development in Bats and Dolphins
Pan, Xiao-Wei; Zhou, Tai-Cheng; Yang, Chao; Irwin, David M.; Zhang, Ya-Ping
2013-01-01
Bats and cetaceans (i.e., whales, dolphins, porpoises) are two kinds of mammals with unique locomotive styles and occupy novel niches. Bats are the only mammals capable of sustained flight in the sky, while cetaceans have returned to the aquatic environment and are specialized for swimming. Associated with these novel adaptations to their environment, various development changes have occurred to their body plans and associated structures. Given the importance of Hox genes in many aspects of embryonic development, we conducted an analysis of the coding regions of all Hox gene family members from bats (represented by Pteropus vampyrus, Pteropus alecto, Myotis lucifugus and Myotis davidii) and cetaceans (represented by Tursiops truncatus) for adaptive evolution using the available draft genome sequences. Differences in the selective pressures acting on many Hox genes in bats and cetaceans were found compared to other mammals. Positive selection, however, was not found to act on any of the Hox genes in the common ancestor of bats and only upon Hoxb9 in cetaceans. PCR amplification data from additional bat and cetacean species, and application of the branch-site test 2, showed that the Hoxb2 gene within bats had significant evidence of positive selection. Thus, our study, with genomic and newly sequenced Hox genes, identifies two candidate Hox genes that may be closely linked with developmental changes in bats and cetaceans, such as those associated with the pancreatic, neuronal, thymus shape and forelimb. In addition, the difference in our results from the genome-wide scan and newly sequenced data reveals that great care must be taken in interpreting results from draft genome data from a limited number of species, and deep genetic sampling of a particular clade is a powerful tool for generating complementary data to address this limitation. PMID:23825528
Miyaji, Kazuki; Nagao, Kenji; Bannai, Makoto; Asakawa, Hiroshi; Kohyama, Kaoru; Ohtsu, Dai; Terasawa, Fumio; Ito, Shu; Iwao, Hajime; Ohtani, Nobuyo; Ohta, Mitsuaki
2010-01-01
From an evolutionary perspective, the ancestors of cetaceans first lived in terrestrial environments prior to adapting to aquatic environments. Whereas anatomical and morphological adaptations to aquatic environments have been well studied, few studies have focused on physiological changes. We focused on plasma amino acid concentrations (aminograms) since they show distinct patterns under various physiological conditions. Plasma and urine aminograms were obtained from bottlenose dolphins, pacific white-sided dolphins, Risso's dolphins, false-killer whales and C57BL/6J and ICR mice. Hierarchical cluster analyses were employed to uncover a multitude of amino acid relationships among different species, which can help us understand the complex interrelations comprising metabolic adaptations. The cetacean aminograms formed a cluster that was markedly distinguishable from the mouse cluster, indicating that cetaceans and terrestrial mammals have quite different metabolic machinery for amino acids. Levels of carnosine and 3-methylhistidine, both of which are antioxidants, were substantially higher in cetaceans. Urea was markedly elevated in cetaceans, whereas the level of urea cycle-related amino acids was lower. Because diving mammals must cope with high rates of reactive oxygen species generation due to alterations in apnea/reoxygenation and ischemia-reperfusion processes, high concentrations of antioxidative amino acids are advantageous. Moreover, shifting the set point of urea cycle may be an adaption used for body water conservation in the hyperosmotic sea water environment, because urea functions as a major blood osmolyte. Furthermore, since dolphins are kept in many aquariums for observation, the evaluation of these aminograms may provide useful diagnostic indices for the assessment of cetacean health in artificial environments in the future. PMID:21072195
Cetacean Community Ecology in the Waters of Sri Lanka and the Bay of Bengal
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Cetacean Community Ecology in the Waters of Sri Lanka ...evidence that a sub-population of blue whales in the waters of Sri Lanka (Alling et al. 2 1991, Branch et al. 2007) may be year-round residents...Oceans. OBJECTIVES We hypothesize that the cetacean community of the oceanic Bay of Bengal and the waters of Sri Lanka varies with seasonal
Birukawa, Naoko; Ando, Hironori; Goto, Mutsuo; Kanda, Naohisa; Pastene, Luis A; Nakatsuji, Hiroki; Hata, Hiroshi; Urano, Akihisa
2005-11-01
Cetaceans are well adapted to their hyperosmotic environment by properly developed osmoregulatory ability. A question here is how they regulate water and mineral balances in marine habitats. In the present study, we determined blood and urine levels of various chemicals involved in osmoregulation, compared them with those in artiodactyls, and characterized the values in the whales. Blood and urine samples obtained from baleen whales of common minke (Balaenoptera acutorostrata), sei (B. borealis), and Bryde's whales (B. brydei), and toothed whales of sperm whales (Physeter macrocephalus) were analyzed for osmolality, major electrolytes, urea, steroid hormones and glucose. The urine osmolality and Na(+) concentrations in the cetaceans were much higher than those in the cattle. Furthermore, the cetaceans had 5 to 11-fold urea in plasma than the cattle, and 2 to 4-fold urea in urine. There were no significant difference in the plasma concentrations of corticosteroids between the cetaceans and the cattle. The present results indicate that the osmoregulatory parameters seem to be not affected by the reproductive stage and sex steroid hormones. The concentrations of urea in plasma and urine of the baleen whales were higher than those of the sperm whales, indicating a possibility that their osmoregulatory mechanisms may be correlated to their feeding habits. The present results suggest that cetaceans have unique osmoregulatory mechanisms by which they excrete strongly hypertonic urine to maintain fluid homeostasis in marine habitats.
Spaulding, Michelle; O'Leary, Maureen A.; Gatesy, John
2009-01-01
Background Integration of diverse data (molecules, fossils) provides the most robust test of the phylogeny of cetaceans. Positioning key fossils is critical for reconstructing the character change from life on land to life in the water. Methodology/Principal Findings We reexamine relationships of critical extinct taxa that impact our understanding of the origin of Cetacea. We do this in the context of the largest total evidence analysis of morphological and molecular information for Artiodactyla (661 phenotypic characters and 46,587 molecular characters, coded for 33 extant and 48 extinct taxa). We score morphological data for Carnivoramorpha, †Creodonta, Lipotyphla, and the †raoellid artiodactylan †Indohyus and concentrate on determining which fossils are positioned along stem lineages to major artiodactylan crown clades. Shortest trees place Cetacea within Artiodactyla and close to †Indohyus, with †Mesonychia outside of Artiodactyla. The relationships of †Mesonychia and †Indohyus are highly unstable, however - in trees only two steps longer than minimum length, †Mesonychia falls inside Artiodactyla and displaces †Indohyus from a position close to Cetacea. Trees based only on data that fossilize continue to show the classic arrangement of relationships within Artiodactyla with Cetacea grouping outside the clade, a signal incongruent with the molecular data that dominate the total evidence result. Conclusions/Significance Integration of new fossil material of †Indohyus impacts placement of another extinct clade †Mesonychia, pushing it much farther down the tree. The phylogenetic position of †Indohyus suggests that the cetacean stem lineage included herbivorous and carnivorous aquatic species. We also conclude that extinct members of Cetancodonta (whales + hippopotamids) shared a derived ability to hear underwater sounds, even though several cetancodontans lack a pachyostotic auditory bulla. We revise the taxonomy of living and extinct artiodactylans and propose explicit node and stem-based definitions for the ingroup. PMID:19774069
Prostatic Lesions in Odontocete Cetaceans.
Suárez-Santana, Cristian M; Sierra, Eva; Díaz-Delgado, Josue; Zucca, Daniele; de Quirós, Yara Bernaldo; Puig-Lozano, Raquel; Câmara, Nakita; De la Fuente, Jesús; de Los Monteros, Antonio Espinosa; Rivero, Miguel; Arbelo, Manuel; Fernández, Antonio
2018-05-01
The prostate is the only accessory male genital gland described in cetaceans. Although few studies describe the gross and histologic anatomy of the prostate in cetaceans, there is no information on pathological findings involving this organ. The prostate glands of 45 cetaceans, including 8 different odontocete species ( n = 44) and 1 mysticete, were evaluated. The main pathologic diagnoses were verminous prostatitis, septic prostatitis, viral prostatitis, benign prostatic hyperplasia, and prostatitis of unknown etiology. Verminous prostatitis ( n = 12) was caused by nematodes of the genus Crassicauda, and different presentations were observed. Septic prostatitis, identified in 2 cases, both involved nematode infestation and Clostridium spp coinfection. One case of viral prostatitis was identified and was associated with morbillivirus infection. In prostatitis of unknown cause ( n = 7), varying degrees of prostatic lesions, mostly chronic inflammation, were identified. Impacts at individual levels (eg, localized disease, loss of reproductive capacity) and population levels (eg, decreased reproductive success) are plausible. Our results indicate a high occurrence of prostatic lesions in free-ranging odontocetes. For this reason, the prostate should be routinely inspected and sampled during necropsy of odontocete cetaceans.
Aquatic Habits of Cetacean Ancestors: Integrating Bone Microanatomy and Stable Isotopes.
Cooper, Lisa Noelle; Clementz, Mark T; Usip, Sharon; Bajpai, Sunil; Hussain, S Taseer; Hieronymus, Tobin L
2016-12-01
The earliest cetaceans were interpreted as semi-aquatic based on the presence of thickened bones and stable oxygen isotopes in tooth enamel. However, the origin of aquatic behaviors in cetacean relatives (e.g., raoellids, anthracotheres) remains unclear. This study reconstructs the origins of aquatic behaviors based on long bone microanatomy and stable oxygen isotopes of tooth enamel in modern and extinct cetartiodactylans. Our findings are congruent with published accounts that microanatomy can be a reliable indicator of aquatic behaviors in taxa that are obligatorily aquatic, and also highlight that some "semi-aquatic" behaviors (fleeing into the water to escape predation) may have a stronger relationship to bone microanatomy than others (herbivory in near-shore aquatic settings). Bone microanatomy is best considered with other lines of information in the land-to-sea transition of cetaceans, such as stable isotopes. This study extends our understanding of the progression of skeletal phenotypes associated with habitat shifts in the relatives of cetaceans. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
75 FR 22119 - Marine Mammals; File No. 14245
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-27
..., and Arctic Oceans on 33 cetacean species, including endangered blue (Balaenoptera musculus), sei (B... Arctic Oceans to monitor cetaceans for scientific and management purposes. NMML would conduct ongoing...
Testing for Depéret's Rule (Body Size Increase) in Mammals using Combined Extinct and Extant Data
Bokma, Folmer; Godinot, Marc; Maridet, Olivier; Ladevèze, Sandrine; Costeur, Loïc; Solé, Floréal; Gheerbrant, Emmanuel; Peigné, Stéphane; Jacques, Florian; Laurin, Michel
2016-01-01
Whether or not evolutionary lineages in general show a tendency to increase in body size has often been discussed. This tendency has been dubbed “Cope's rule” but because Cope never hypothesized it, we suggest renaming it after Depéret, who formulated it clearly in 1907. Depéret's rule has traditionally been studied using fossil data, but more recently a number of studies have used present-day species. While several paleontological studies of Cenozoic placental mammals have found support for increasing body size, most studies of extant placentals have failed to detect such a trend. Here, we present a method to combine information from present-day species with fossil data in a Bayesian phylogenetic framework. We apply the method to body mass estimates of a large number of extant and extinct mammal species, and find strong support for Depéret's rule. The tendency for size increase appears to be driven not by evolution toward larger size in established species, but by processes related to the emergence of new species. Our analysis shows that complementary data from extant and extinct species can greatly improve inference of macroevolutionary processes. PMID:26508768
Parental Expressiveness as a Moderator of Coparenting and Marital Relationship Quality
ERIC Educational Resources Information Center
Kolak, Amy M.; Volling, Brenda L.
2007-01-01
Driven by theory and extant research on the communication of emotions within the family, the current investigation examined marital quality and parents' emotional expressiveness as determinants of coparenting in a sample of 57 couples with young children. Specifically, mothers' and fathers' expressiveness was examined as moderators of the…
NASA Astrophysics Data System (ADS)
Cox, S. L.; Witt, M. J.; Embling, C. B.; Godley, B. J.; Hosegood, P. J.; Miller, P. I.; Votier, S. C.; Ingram, S. N.
2017-07-01
Shelf-seas are highly dynamic and oceanographically complex environments, which likely influences the spatio-temporal distributions of marine megafauna such as marine mammals. As such, understanding natural patterns in habitat use by these animals is essential when attempting to ascertain and assess the impacts of anthropogenically induced disturbances, such as those associated with marine renewable energy installations (MREIs). This study uses a five year (2009-2013) passive acoustics (C-POD) dataset to examine the use of an oceanographically dynamic marine renewable energy test site by small cetaceans, dolphins (unspecified delphinids) and harbour porpoises Phocoena phocoena, in the southern Celtic Sea. To examine how temporal patterns in habitat use across the site related to oceanographic changes occurring over broad seasonal scales as well as those driven by fine scale (bi-weekly) localised processes (that may be masked by seasonal trends), separate analyses were conducted using (1) all daily animal detection rates spanning the entire five year dataset and (2) daily animal detection rates taken only during the summer months (defined as mid-June to mid-October) of 2010 (when continuous monitoring was carried out at multiple discrete locations across the site). In both instances, generalised additive mixed effects models (GAMMs) were used to link detection rates to a suite of environmental variables representative of the oceanography of the region. We show that increased harbour porpoise detection rates in the late winter/early spring (January-March) are associated with low sea surface temperatures (SST), whilst peaks in dolphin detection rates in the summer (July-September) coincide with increased SSTs and the presence of a tidal-mixing front. Moreover, across the summer months of 2010, dolphin detection rates were found to respond to small scale changes in SST and position in the spring-neap cycle, possibly reflective of a preference for the stratified waters immediately offshore of the front. Together, these findings suggest that habitat use by small cetaceans within shelf-seas is temporally variable, species specific and likely driven by complex bottom-up processes. As such, the effective conservation management of shelf-seas requires that we understand the dynamic complexities of these systems and the species that inhabit them. In particular, we emphasise the need for a good understanding of the natural drivers of habitat use by marine megafauna before the potential impacts of anthropogenically induced disturbances, such as those associated with the construction, maintenance and operation of MREIs, can be assessed.
Brown, Susie; Reid, David; Rogan, Emer
2014-01-01
Fisheries bycatch is a key threat to cetacean species globally. Managing the impact requires an understanding of the conditions under which animals are caught and the sections of the population affected. We used observer data collected on an albacore tuna gillnet fishery in the northeast Atlantic, to assess operational and environmental factors contributing to bycatch of common and striped dolphins, using generalised linear models and model averaging. Life history demographics of the captured animals were also investigated. In both species, young males dominated the catch. The age ratio of common dolphins was significantly different from that estimated for the population in the region, based on life tables (G = 17.1, d.f. = 2, p = 0.002). Skewed age and sex ratios may reflect varying vulnerability to capture, through differences in behaviour or segregation in populations. Adult females constituted the second largest portion of the bycatch for both species, with potential consequences for population sustainability. Depth was the most important parameter influencing bycatch of both species and reflected what is known about common and striped dolphin habitat use in the region as the probability of catching common dolphins decreased, and striped dolphins increased, with increasing depth. Striped dolphin capture was similarly influenced by the extent to which operations were conducted in daylight, with the probability of capture increasing with increased operations in the pre-sunset and post-sunrise period, potentially driven by increased ability of observers to record animals during daylight operations, or by diurnal movements increasing contact with the fishery. Effort, based on net length and soak time, had little influence on the probability of capturing either species. Our results illustrate the importance of assessing the demographic of the animals captured during observer programmes and, perhaps more importantly, suggest that effort restrictions alone may not be sufficient to eradicate bycatch in areas where driftnets and small cetaceans co-occur.
Brown, Susie; Reid, David; Rogan, Emer
2014-01-01
Fisheries bycatch is a key threat to cetacean species globally. Managing the impact requires an understanding of the conditions under which animals are caught and the sections of the population affected. We used observer data collected on an albacore tuna gillnet fishery in the northeast Atlantic, to assess operational and environmental factors contributing to bycatch of common and striped dolphins, using generalised linear models and model averaging. Life history demographics of the captured animals were also investigated. In both species, young males dominated the catch. The age ratio of common dolphins was significantly different from that estimated for the population in the region, based on life tables (G = 17.1, d.f. = 2, p = 0.002). Skewed age and sex ratios may reflect varying vulnerability to capture, through differences in behaviour or segregation in populations. Adult females constituted the second largest portion of the bycatch for both species, with potential consequences for population sustainability. Depth was the most important parameter influencing bycatch of both species and reflected what is known about common and striped dolphin habitat use in the region as the probability of catching common dolphins decreased, and striped dolphins increased, with increasing depth. Striped dolphin capture was similarly influenced by the extent to which operations were conducted in daylight, with the probability of capture increasing with increased operations in the pre-sunset and post-sunrise period, potentially driven by increased ability of observers to record animals during daylight operations, or by diurnal movements increasing contact with the fishery. Effort, based on net length and soak time, had little influence on the probability of capturing either species. Our results illustrate the importance of assessing the demographic of the animals captured during observer programmes and, perhaps more importantly, suggest that effort restrictions alone may not be sufficient to eradicate bycatch in areas where driftnets and small cetaceans co-occur. PMID:25121802
Stomach contents of cetaceans incidentally caught along Mangalore and Chennai coasts of India
NASA Astrophysics Data System (ADS)
Krishnan, Anoop A.; Yousuf, K. S.; Kumaran, P. L.; Harish, N.; Anoop, B.; Afsal, V. V.; Rajagopalan, M.; Vivekanandan, E.; Krishnakumar, P. K.; Jayasankar, P.
2008-03-01
The stomachs of 32 individuals of seven cetacean species incidentally caught in gill net and purseseine fisheries along Mangalore and Chennai coasts (India) between 2004 and 2006 were examined. The whole stomach (fore-gut, mid-gut and hind-gut) was examined in all cases. Prey remains (666 prey items comprising six species of teleosts, one crustacean and one squid species) were found in the stomachs of eight individuals (the remaining 24 stomachs were found to be empty). All cetaceans were found to feed mostly on teleosts with wide range of trophic levels. Based on an index that included frequency of occurrence, percentage by number and by weight, the oil sardine Sardinella longiceps was the main prey in the sample. Cetaceans appear to favour both pelagic as well as demersal prey, possibly indicating surface and benthic feeding habits.
Nabi, Ghulam; McLaughlin, Richard William; Hao, Yujiang; Wang, Kexiong; Zeng, Xianyuan; Khan, Suliman; Wang, Ding
2018-05-26
For about 119 species of cetaceans and other aquatic animals, sound is the key source of learning about the environment, navigation, communication, foraging, and avoiding predators. However, in the recent era, the introduction of large quantities of anthropogenic noise into the ocean has significantly altered the ocean's acoustic environment. The anthropogenic noises travel very long distances, blanketing enormous areas. This can affect cetaceans, either by direct killing or compromising hearing, navigation, communication, predation, as well as normal behaviors. It has been suggested that acoustic pollution could possibly negatively affect cetacean reproduction, which is harmful for endangered and threatened species. However, it is still unknown how acoustic pollution can suppress cetacean reproduction. This is the first comprehensive review article, which focuses on the possible consequences affecting the reproduction of marine mammals resulting from acoustic pollution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brueggeman, J.J.; Green, G.A.; Grotefendt, R.A.
1987-09-01
Aerial surveys were conducted in the Northwestern Gulf of Alaska and southeastern Bering Sea to determine the abundance, distribution, and habitat use patterns of endangered cetaceans and other marine mammals. Four species of cetaceans listed by the Federal Government as endangered were observed: gray, humpback, finback, and sperm whales. Sightings were also made to seven nonendangered species of cetaceans: minke, Cuvier's beaked, Baird's beaked, belukha, and killer whales, and Dall and harbor porpoises. Results show that the project area is an important feeding ground for relatively large numbers of humpback and finback whales and lower numbers of gray whale migrationmore » route between seasonal ranges. The project area also supports a variety of other marine mammals both seasonally and annually.« less
Stable isotopes of captive cetaceans (killer whales and bottlenose dolphins).
Caut, Stéphane; Laran, Sophie; Garcia-Hartmann, Emmanuel; Das, Krishna
2011-02-15
There is currently a great deal of interest in using stable isotope methods to investigate diet, trophic level and migration in wild cetaceans. In order to correctly interpret the results stemming from these methods, it is crucial to understand how diet isotopic values are reflected in consumer tissues. In this study, we investigated patterns of isotopic discrimination between diet and blood constituents of two species of cetaceans (killer whale, Orcinus orca, and bottlenose dolphin, Tursiops truncatus) fed controlled diets over 308 and 312 days, respectively. Diet discrimination factors (Δ; mean ± s.d.) for plasma were estimated to Δ(13)C=2.3±0.6‰ and Δ(15)N=1.8±0.3‰, respectively, for both species and to Δ(13)C=2.7±0.3‰ and Δ(15)N=0.5±0.1‰ for red blood cells. Delipidation did not have a significant effect on carbon and nitrogen isotopic values of blood constituents, confirming that cetacean blood does not serve as a reservoir of lipids. In contrast, carbon isotopic values were higher in delipidated samples of blubber, liver and muscle from killer whales. The potential for conflict between fisheries and cetaceans has heightened the need for trophic information about these taxa. These results provide the first published stable isotope incorporation data for cetaceans, which are essential if conclusions are to be drawn on issues concerning trophic structures, carbon sources and diet reconstruction.
Hearing in cetaceans: from natural history to experimental biology.
Mooney, T Aran; Yamato, Maya; Branstetter, Brian K
2012-01-01
Sound is a primary sensory cue for most marine mammals, and this is especially true for cetaceans. To passively and actively acquire information about their environment, cetaceans have some of the most derived ears of all mammals, capable of sophisticated, sensitive hearing and auditory processing. These capabilities have developed for survival in an underwater world where sound travels five times faster than in air, and where light is quickly attenuated and often limited at depth, at night, and in murky waters. Cetacean auditory evolution has capitalized on the ubiquity of sound cues and the efficiency of underwater acoustic communication. The sense of hearing is central to cetacean sensory ecology, enabling vital behaviours such as locating prey, detecting predators, identifying conspecifics, and navigating. Increasing levels of anthropogenic ocean noise appears to influence many of these activities. Here, we describe the historical progress of investigations on cetacean hearing, with a particular focus on odontocetes and recent advancements. While this broad topic has been studied for several centuries, new technologies in the past two decades have been leveraged to improve our understanding of a wide range of taxa, including some of the most elusive species. This chapter addresses topics including how sounds are received, what sounds are detected, hearing mechanisms for complex acoustic scenes, recent anatomical and physiological studies, the potential impacts of noise, and mysticete hearing. We conclude by identifying emerging research topics and areas which require greater focus. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chen, Meng-Hsien; Zhuang, Ming-Feng; Chou, Lien-Siang; Liu, Jean-Yi; Shih, Chieh-Chih; Chen, Chiee-Young
2017-11-30
Muscle, lung, kidney and liver tissues of 45 bycatch and stranded cetaceans, including 14 Grampus griseus (Gg), 7 Kogia simus (Ks), 10 Lagenodelphis hosei (Lh), and 14 Stenella attenuata (Sa), were collected in the waters off Taiwan from 1994 to 1995, and from 2001 to 2012. Baseline concentrations (in μgg -1 dry weight) of the cetaceans were lung (<0.05)=muscle (<0.05)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvan, M.J. III.
1993-01-01
Cetaceans bioaccumulate high aromatic hydrocarbon tissue residues, and elevated levels of PCB residues in tissues are proposed to have occurred concurrently with recent epizootic deaths of dolphins. The objectives of this study were: (1) to develop and characterize an epithelial cell line derived from dolphin tissues, (2) to investigate the effects of hydrocarbon pollutants on those cells, and (3) to analyze the toxicity of hydrocarbon pollutants on cetacean tissues in vitro. An epithelial cell line, Carvan dolphin kidney (CDK), isolated from a spontaneously aborted female bottlenose dolphin, Tursiops truncatus, grew rapidly. These cells were neither transformed nor immortal. Velocity sedimentationmore » analysis showed CDK cells contained nuclear aryl hydrocarbon receptor, suggestive of cytochrome P450 inducibility. BaP inhibited mitosis in CDK cells in a dose-dependent manner. Data indicate that CDK cells metabolize BaP, that BaP metabolites bind to cellular DNA initiating unscheduled DNA synthesis, and that the inhibition of cytochrome P450 metabolism decrease the BaP-associated inhibition of mitosis in dolphin cells. The data also suggest that TCDD acts synergistically to increase the levels of DNA damage by the procarcinogen BaP. Cetacean liver microsomes was isolated and evaluated for the presence of cytochrome P450 proteins by SDS-PAGE, apparent minimum molecular weight determination, and immunoblot analysis. P450 activity was induced in cetacean tissue samples and CDK cells by exposure in vitro to one of several cytochrome P450-inducing chemicals. The data suggest that cetacean tissues and cells can be utilized to study the in vitro induction of cytochrome P450, resultant metabolism of xenobiotic contaminants, and the subsequent cellular and molecular responses. However, the identity of specific P450 isozymes involved in this process will remain undetermined until monoclonal antibodies that recognize cetacean P450s can be generated.« less
Lehnert, Kristina; Raga, Juan Antonio; Siebert, Ursula
2017-01-01
We studied the phylogeography and historical demography of the most generalist digenean from cetaceans, Pholeter gastrophilus, exploring the effects of isolation by distance, ecological barriers and hosts’ dispersal ability on the population structure of this parasite. The ITS2 rDNA, and the mitochondrial COI and ND1 from 68 individual parasites were analysed. Worms were collected from seven oceanic and coastal cetacean species from the south western Atlantic (SWA), central eastern Atlantic, north eastern Atlantic (NEA), and Mediterranean Sea. Pholeter gastrophilus was considered a single lineage because reciprocal monophyly was not detected in the ML cladogram of all individuals, and sequence variability was <1% for mtDNA and 0% for ITS2. These results rule out a recent suggestion that P. gastrophilus would actually be a cryptic-species complex. The genetic cohesion of P. gastrophilus could rely on the extensive exploitation of wide-ranging and highly mobile cetaceans, with a putative secondary role, if any, of intermediate hosts. Unique haplotypes were detected in SWA and NEA, and an AMOVA revealed significant population structure associated to the genetic variation in these regions. The Equator possibly acts as a significant geographical barrier for cetacean movements, possibly limiting gene flow between northern and southern populations of P. gastrophilus. A partial Mantel tests revealed that the significant isolation of NEA populations resulted from geographic clustering. Apparently, the limited mobility of cetaceans used by P. gastrophilus as definitive hosts in this region, coupled with oceanographic barriers and a patchy distribution of potential intermediate hosts could contribute to significant ecological isolation of P. gastrophilus in NEA. Rather unexpectedly, no genetic differentiation was found in the Mediterranean samples of this parasite. Historical demographic analyses suggested a recent population expansion of P. gastrophilus in the Atlantic Ocean, perhaps linked to initial association and subsequent spreading in cetaceans. PMID:28085945
The modelling and assessment of whale-watching impacts
New, Leslie; Hall, Ailsa J.; Harcourt, Robert; Kaufman, Greg; Parsons, E.C.M.; Pearson, Heidi C.; Cosentino, A. Mel; Schick, Robert S
2015-01-01
In recent years there has been significant interest in modelling cumulative effects and the population consequences of individual changes in cetacean behaviour and physiology due to disturbance. One potential source of disturbance that has garnered particular interest is whale-watching. Though perceived as ‘green’ or eco-friendly tourism, there is evidence that whale-watching can result in statistically significant and biologically meaningful changes in cetacean behaviour, raising the question whether whale-watching is in fact a long term sustainable activity. However, an assessment of the impacts of whale-watching on cetaceans requires an understanding of the potential behavioural and physiological effects, data to effectively address the question and suitable modelling techniques. Here, we review the current state of knowledge on the viability of long-term whale-watching, as well as logistical limitations and potential opportunities. We conclude that an integrated, coordinated approach will be needed to further understanding of the possible effects of whale-watching on cetaceans.
Standing in the Gap: Theory and Practice Impacting Educational Opportunity and Achievement Gaps
ERIC Educational Resources Information Center
Beard, Karen Stansberry
2018-01-01
This case study is the first known employing flow in educational administration in the United States. Using Csikszentmihalyi's flow theory and Dantley's purpose-driven leadership, an administrator's practices were examined with respect to two guiding questions: (a) is purposefulness integral to closing extant gaps in achievement, and (b) are the…
Litz, Jenny A; Baran, Melody A; Bowen-Stevens, Sabrina R; Carmichael, Ruth H; Colegrove, Kathleen M; Garrison, Lance P; Fire, Spencer E; Fougeres, Erin M; Hardy, Ron; Holmes, Secret; Jones, Wanda; Mase-Guthrie, Blair E; Odell, Daniel K; Rosel, Patricia E; Saliki, Jeremiah T; Shannon, Delphine K; Shippee, Steve F; Smith, Suzanne M; Stratton, Elizabeth M; Tumlin, Mandy C; Whitehead, Heidi R; Worthy, Graham A J; Rowles, Teresa K
2014-12-02
An unusual mortality event (UME) was declared for cetaceans in the northern Gulf of Mexico (GoM) for Franklin County, Florida, west through Louisiana, USA, beginning in February 2010 and was ongoing as of September 2014. The 'Deepwater Horizon' (DWH) oil spill began on 20 April 2010 in the GoM, raising questions regarding the potential role of the oil spill in the UME. The present study reviews cetacean mortality events that occurred in the GoM prior to 2010 (n = 11), including causes, durations, and some specific test results, to provide a historical context for the current event. The average duration of GoM cetacean UMEs prior to 2010 was 6 mo, and the longest was 17 mo (2005-2006). The highest number of cetacean mortalities recorded during a previous GoM event was 344 (in 1990). In most previous events, dolphin morbillivirus or brevetoxicosis was confirmed or suspected as a causal factor. In contrast, the current northern GoM UME has lasted more than 48 mo and has had more than 1000 reported mortalities within the currently defined spatial and temporal boundaries of the event. Initial results from the current UME do not support either morbillivirus or brevetoxin as primary causes of this event. This review is the first summary of cetacean UMEs in the GoM and provides evidence that the most common causes of previous UMEs are unlikely to be associated with the current UME.
Initial characterization of novel beaked whale morbillivirus in Hawaiian cetaceans.
Jacob, Jessica M; West, Kristi L; Levine, Gregg; Sanchez, Susan; Jensen, Brenda A
2016-01-13
Cetacean morbillivirus (CeMV) is a causative factor in epizootics that have resulted in thousands of deaths throughout the Atlantic and Mediterranean since 1987, but less is known of its presence and significance in the Pacific. The first case of CeMV reported in Hawai'i was in a Longman's beaked whale that stranded in 2010. The initial CeMV sequence from this individual indicated the possibility of a novel strain. To address this, archived samples from cetaceans that stranded in Hawai'i between 1997 and 2014 were screened for CeMV. The beaked whale morbillivirus (BWMV) was detected in 15 individuals representing 12 different species (24% of Code 1 and 2 stranded cetaceans). The earliest detected case was a humpback whale that stranded in 1998. Sequence comparisons of a 2.2 kb sequence spanning the phosphoprotein (P) and nucleocapsid (N) genes strongly suggest that the BWMV represents a novel strain of CeMV present in Hawai'i and the Central Pacific. In contrast to recently reported isolates from Brazil and Australia that may represent a distinct clade, BWMV appears to be more closely related to known strains of CeMV (dolphin morbillivirus; porpoise morbillivirus; and pilot whale morbillivirus). Detection rates with repeat sampling of positive lymph nodes were between 2 and 61%, illustrating the extreme heterogeneity that can occur in affected tissues. Taken together, these results suggest that BWMV may be common and established in Hawaiian cetacean populations. BWMV will be important for understanding CeMV and health threats in the relatively understudied cetaceans of the Pacific.
Ridgway, Sam H; Carlin, Kevin P; Van Alstyne, Kaitlin R; Hanson, Alicia C; Tarpley, Raymond J
2016-01-01
We compared mature dolphins with 4 other groupings of mature cetaceans. With a large data set, we found great brain diversity among 5 different taxonomic groupings. The dolphins in our data set ranged in body mass from about 40 to 6,750 kg and in brain mass from 0.4 to 9.3 kg. Dolphin body length ranged from 1.3 to 7.6 m. In our combined data set from the 4 other groups of cetaceans, body mass ranged from about 20 to 120,000 kg and brain mass from about 0.2 to 9.2 kg, while body length varied from 1.21 to 26.8 m. Not all cetaceans have large brains relative to their body size. A few dolphins near human body size have human-sized brains. On the other hand, the absolute brain mass of some other cetaceans is only one-sixth as large. We found that brain volume relative to body mass decreases from Delphinidae to a group of Phocoenidae and Monodontidae, to a group of other odontocetes, to Balaenopteroidea, and finally to Balaenidae. We also found the same general trend when we compared brain volume relative to body length, except that the Delphinidae and Phocoenidae-Monodontidae groups do not differ significantly. The Balaenidae have the smallest relative brain mass and the lowest cerebral cortex surface area. Brain parts also vary. Relative to body mass and to body length, dolphins also have the largest cerebellums. Cortex surface area is isometric with brain size when we exclude the Balaenidae. Our data show that the brains of Balaenidae are less convoluted than those of the other cetaceans measured. Large vascular networks inside the cranial vault may help to maintain brain temperature, and these nonbrain tissues increase in volume with body mass and with body length ranging from 8 to 65% of the endocranial volume. Because endocranial vascular networks and other adnexa, such as the tentorium cerebelli, vary so much in different species, brain size measures from endocasts of some extinct cetaceans may be overestimates. Our regression of body length on endocranial adnexa might be used for better estimates of brain volume from endocasts or from endocranial volume of living species or extinct cetaceans. © 2017 The Author(s) Published by S. Karger AG, Basel.
Ridgway, Sam H.; Carlin, Kevin P.; Van Alstyne, Kaitlin R.; Hanson, Alicia C.; Tarpley, Raymond J.
2017-01-01
We compared mature dolphins with 4 other groupings of mature cetaceans. With a large data set, we found great brain diversity among 5 different taxonomic groupings. The dolphins in our data set ranged in body mass from about 40 to 6,750 kg and in brain mass from 0.4 to 9.3 kg. Dolphin body length ranged from 1.3 to 7.6 m. In our combined data set from the 4 other groups of cetaceans, body mass ranged from about 20 to 120,000 kg and brain mass from about 0.2 to 9.2 kg, while body length varied from 1.21 to 26.8 m. Not all cetaceans have large brains relative to their body size. A few dolphins near human body size have human-sized brains. On the other hand, the absolute brain mass of some other cetaceans is only one-sixth as large. We found that brain volume relative to body mass decreases from Delphinidae to a group of Phocoenidae and Monodontidae, to a group of other odontocetes, to Balaenopteroidea, and finally to Balaenidae. We also found the same general trend when we compared brain volume relative to body length, except that the Delphinidae and Phocoenidae-Monodontidae groups do not differ significantly. The Balaenidae have the smallest relative brain mass and the lowest cerebral cortex surface area. Brain parts also vary. Relative to body mass and to body length, dolphins also have the largest cerebellums. Cortex surface area is isometric with brain size when we exclude the Balaenidae. Our data show that the brains of Balaenidae are less convoluted than those of the other cetaceans measured. Large vascular networks inside the cranial vault may help to maintain brain temperature, and these nonbrain tissues increase in volume with body mass and with body length ranging from 8 to 65% of the endocranial volume. Because endocranial vascular networks and other adnexa, such as the tentorium cerebelli, vary so much in different species, brain size measures from endocasts of some extinct cetaceans may be overestimates. Our regression of body length on endocranial adnexa might be used for better estimates of brain volume from endocasts or from endocranial volume of living species or extinct cetaceans. PMID:28122370
Comparative pathology of nocardiosis in marine mammals.
St Leger, J A; Begeman, L; Fleetwood, M; Frasca, S; Garner, M M; Lair, S; Trembley, S; Linn, M J; Terio, K A
2009-03-01
Nocardia spp. infections in mammals cause pyogranulomatous lesions in a variety of organs, most typically the lung. Members of the Nocardia asteroides complex are the most frequently recognized pathogens. Nine cases of nocardiosis in free-ranging pinnipeds and 10 cases of nocardiosis in cetaceans were evaluated. Host species included the hooded seal (Cystophora cristata, n = 8), leopard seal (Hydrurga leptonyx, n = 1), Atlantic bottlenose dolphin (Tursiops truncatus, n = 4), beluga whale (Delphinapterus leucas, n = 4), and killer whale (Orcinus orca, n = 2). The most common presentation of nocardiosis in both pinnipeds and cetaceans was the systemic form, involving 2 or more organs. Organs most frequently affected were lung and thoracic lymph nodes in 7 of 9 cases in pinnipeds and 8 of 10 cases in cetaceans. Molecular identification and bacterial isolation demonstrated a variety of pathogenic species. N. asteroides, N. farcinica, N. brasiliensis, and N. otitisdiscaviarum are pathogenic for pinnipeds. In cetaceans N. asteroides, N. farcinica, N. brasiliensis, N. cyriacigeorgica, and N. levis are pathogenic. Hematoxylin and eosin and acid fast staining failed to reveal bacteria in every case, whereas modified acid fast and Grocott's methenamine silver consistently demonstrated the characteristic organisms. In both pinnipeds and cetaceans, juvenile animals were affected more often than adults. Hooded seals demonstrated more cases of nocardiosis than other pinnipeds.
Cetacean Morbillivirus: Current Knowledge and Future Directions
Van Bressem, Marie-Françoise; Duignan, Pádraig J.; Banyard, Ashley; Barbieri, Michelle; Colegrove, Kathleen M; De Guise, Sylvain; Di Guardo, Giovanni; Dobson, Andrew; Domingo, Mariano; Fauquier, Deborah; Fernandez, Antonio; Goldstein, Tracey; Grenfell, Bryan; Groch, Kátia R.; Gulland, Frances; Jensen, Brenda A; Jepson, Paul D; Hall, Ailsa; Kuiken, Thijs; Mazzariol, Sandro; Morris, Sinead E; Nielsen, Ole; Raga, Juan A; Rowles, Teresa K; Saliki, Jeremy; Sierra, Eva; Stephens, Nahiid; Stone, Brett; Tomo, Ikuko; Wang, Jianning; Waltzek, Thomas; Wellehan, James FX
2014-01-01
We review the molecular and epidemiological characteristics of cetacean morbillivirus (CeMV) and the diagnosis and pathogenesis of associated disease, with six different strains detected in cetaceans worldwide. CeMV has caused epidemics with high mortality in odontocetes in Europe, the USA and Australia. It represents a distinct species within the Morbillivirus genus. Although most CeMV strains are phylogenetically closely related, recent data indicate that morbilliviruses recovered from Indo-Pacific bottlenose dolphins (Tursiops aduncus), from Western Australia, and a Guiana dolphin (Sotalia guianensis), from Brazil, are divergent. The signaling lymphocyte activation molecule (SLAM) cell receptor for CeMV has been characterized in cetaceans. It shares higher amino acid identity with the ruminant SLAM than with the receptors of carnivores or humans, reflecting the evolutionary history of these mammalian taxa. In Delphinidae, three amino acid substitutions may result in a higher affinity for the virus. Infection is diagnosed by histology, immunohistochemistry, virus isolation, RT-PCR, and serology. Classical CeMV-associated lesions include bronchointerstitial pneumonia, encephalitis, syncytia, and lymphoid depletion associated with immunosuppression. Cetaceans that survive the acute disease may develop fatal secondary infections and chronic encephalitis. Endemically infected, gregarious odontocetes probably serve as reservoirs and vectors. Transmission likely occurs through the inhalation of aerosolized virus but mother to fetus transmission was also reported. PMID:25533660
Near-Real-Time Acoustic Monitoring of Beaked Whales and Other Cetaceans Using a Seaglider(TM)
2012-05-18
their copepod prey observed from ocean gliders. Limnology and Oceanography 53: 2197–2209. Acoustic Monitoring of Cetaceans Using a Seaglider PLoS ONE | www.plosone.org 8 May 2012 | Volume 7 | Issue 5 | e36128
NASA Astrophysics Data System (ADS)
Correia, Ana M.; Tepsich, Paola; Rosso, Massimiliano; Caldeira, Rui; Sousa-Pinto, Isabel
2015-03-01
In the Portuguese Economic Exclusive Zone (EEZ) (NE Atlantic), little survey effort dedicated to cetacean species has been carried out in offshore waters. As a consequence, data on their occurrence, distribution and habitat preferences is scarce. In this area, 48 sea surveys along fixed transects within Continental Portugal and Madeira Island were performed in 2012 and 2013, from July to October, using platforms of opportunity. We used an environmental envelope approach and GAM habitat models to identify the role of oceanographic, topographic and geographical variables in shaping cetacean distribution. Results demonstrate the richness of offshore waters in this area as in 10,668 nmi sampled, we recorded 218 sightings from at least nine cetacean species, resulting in an overall ER of 2.04 sightings/100 nmi. The interaction of topographic and oceanographic features was shown to influence the distribution of the species/groups along the routes. Among the sighted species, only common dolphin showed a preference for coastal waters, while for all the other species high seas proved to be determinant. This result reinforces the need to address conservation issues in open ocean. This preliminary assessment showed the importance of the entire area for the distribution of different cetacean species and allowed the identification of several species/group specific potential suitable habitats. Considering the Habitats Directive resolutions, ACCOBAMS priorities, EEZ extension for the area and Maritime Spatial Planning Directive, and the urgent need for management plans, we suggest that the sampling strategy here presented is a cost-effective method to gather valuable data, to be used to improve cetacean habitat models in the area.
Dungan, Sarah Z; Kosyakov, Alexander; Chang, Belinda S W
2016-02-01
Cetaceans have undergone a remarkable evolutionary transition that was accompanied by many sensory adaptations, including modification of the visual system for underwater environments. Recent sequencing of cetacean genomes has made it possible to begin exploring the molecular basis of these adaptations. In this study we use in vitro expression methods to experimentally characterize the first step of the visual transduction cascade, the light activation of rhodopsin, for the killer whale. To investigate the spectral effects of amino acid substitutions thought to correspond with absorbance shifts relative to terrestrial mammals, we used the orca gene as a background for the first site-directed mutagenesis experiments in a cetacean rhodopsin. The S292A mutation had the largest effect, and was responsible for the majority of the spectral difference between killer whale and bovine (terrestrial) rhodopsin. Using codon-based likelihood models, we also found significant evidence for positive selection in cetacean rhodopsin sequences, including on spectral tuning sites we experimentally mutated. We then investigated patterns of ecological divergence that may be correlated with rhodopsin functional variation by using a series of clade models that partitioned the data set according to phylogeny, habitat, and foraging depth zone. Only the model partitioning according to depth was significant. This suggests that foraging dives might be a selective regime influencing cetacean rhodopsin divergence, and our experimental results indicate that spectral tuning may be playing an adaptive role in this process. Our study demonstrates that combining computational and experimental methods is crucial for gaining insight into the selection pressures underlying molecular evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bartonella species detection in captive, stranded and free-ranging cetaceans.
Harms, Craig A; Maggi, Ricardo G; Breitschwerdt, Edward B; Clemons-Chevis, Connie L; Solangi, Mobashir; Rotstein, David S; Fair, Patricia A; Hansen, Larry J; Hohn, Aleta A; Lovewell, Gretchen N; McLellan, William A; Pabst, D Ann; Rowles, Teri K; Schwacke, Lori H; Townsend, Forrest I; Wells, Randall S
2008-01-01
We present prevalence of Bartonella spp. for multiple cohorts of wild and captive cetaceans. One hundred and six cetaceans including 86 bottlenose dolphins (71 free-ranging, 14 captive in a facility with a dolphin experiencing debility of unknown origin, 1 stranded), 11 striped dolphins, 4 harbor porpoises, 3 Risso's dolphins, 1 dwarf sperm whale and 1 pygmy sperm whale (all stranded) were sampled. Whole blood (n = 95 live animals) and tissues (n = 15 freshly dead animals) were screened by PCR (n = 106 animals), PCR of enrichment cultures (n = 50 animals), and subcultures (n = 50 animals). Bartonella spp. were detected from 17 cetaceans, including 12 by direct extraction PCR of blood or tissues, 6 by PCR of enrichment cultures, and 4 by subculture isolation. Bartonella spp. were more commonly detected from the captive (6/14, 43%) than from free-ranging (2/71, 2.8%) bottlenose dolphins, and were commonly detected from the stranded animals (9/21, 43%; 3/11 striped dolphins, 3/4 harbor porpoises, 2/3 Risso's dolphins, 1/1 pygmy sperm whale, 0/1 dwarf sperm whale, 0/1 bottlenose dolphin). Sequencing identified a Bartonella spp. most similar to B. henselae San Antonio 2 in eight cases (4 bottlenose dolphins, 2 striped dolphins, 2 harbor porpoises), B. henselae Houston 1 in three cases (2 Risso's dolphins, 1 harbor porpoise), and untyped in six cases (4 bottlenose dolphins, 1 striped dolphin, 1 pygmy sperm whale). Although disease causation has not been established, Bartonella species were detected more commonly from cetaceans that were overtly debilitated or were cohabiting in captivity with a debilitated animal than from free-ranging animals. The detection of Bartonella spp. from cetaceans may be of pathophysiological concern.
The environmental history of cetaceans in Portugal: ten centuries of whale and dolphin records.
Brito, Cristina; Sousa, Andreia
2011-01-01
The history between cetaceans and humans is documented throughout time not only in reports, descriptions, and tales but also in legal documents, laws and regulations, and tithes. This wealth of information comes from the easy spotting and identification of individuals due to their large size, surface breathing, and conspicuous above water behaviour. This work is based on historical sources and accounts accounting for cetacean presence for the period between the 12th and 17th centuries, as well as scientific articles, newspapers, illustrations, maps, non-published scientific reports, and other grey literature from the 18th century onwards. Information on whale use in Portugal's mainland has been found since as early as the 12th century and has continued to be created throughout time. No certainty can be given for medieval and earlier events, but both scavenging of stranded whales or use of captured ones may have happened. There is an increasing number of accounts of sighted, stranded, used, or captured cetaceans throughout centuries which is clearly associated with a growing effort towards the study of these animals. Scientific Latin species denominations only started to be registered from the 18th century onwards, as a consequence of the evolution of natural sciences in Portugal and increasing interest from zoologists. After the 19th century, a larger number of observations were recorded, and from the 20th century to the present day, regular scientific records have been collected. Research on the environmental history of cetaceans in Portugal shows a several-centuries-old exploitation of whales and dolphins, as resources mainly for human consumption, followed in later centuries by descriptions of natural history documenting strandings and at sea encounters. Most cetaceans species currently thought to be present in Portuguese mainland waters were at some point historically recorded.
The Environmental History of Cetaceans in Portugal: Ten Centuries of Whale and Dolphin Records
Brito, Cristina; Sousa, Andreia
2011-01-01
The history between cetaceans and humans is documented throughout time not only in reports, descriptions, and tales but also in legal documents, laws and regulations, and tithes. This wealth of information comes from the easy spotting and identification of individuals due to their large size, surface breathing, and conspicuous above water behaviour. This work is based on historical sources and accounts accounting for cetacean presence for the period between the 12th and 17th centuries, as well as scientific articles, newspapers, illustrations, maps, non-published scientific reports, and other grey literature from the 18th century onwards. Information on whale use in Portugal's mainland has been found since as early as the 12th century and has continued to be created throughout time. No certainty can be given for medieval and earlier events, but both scavenging of stranded whales or use of captured ones may have happened. There is an increasing number of accounts of sighted, stranded, used, or captured cetaceans throughout centuries which is clearly associated with a growing effort towards the study of these animals. Scientific Latin species denominations only started to be registered from the 18th century onwards, as a consequence of the evolution of natural sciences in Portugal and increasing interest from zoologists. After the 19th century, a larger number of observations were recorded, and from the 20th century to the present day, regular scientific records have been collected. Research on the environmental history of cetaceans in Portugal shows a several-centuries-old exploitation of whales and dolphins, as resources mainly for human consumption, followed in later centuries by descriptions of natural history documenting strandings and at sea encounters. Most cetaceans species currently thought to be present in Portuguese mainland waters were at some point historically recorded. PMID:21931627
Mannocci, Laura; Roberts, Jason J; Miller, David L; Halpin, Patrick N
2017-06-01
As human activities expand beyond national jurisdictions to the high seas, there is an increasing need to consider anthropogenic impacts to species inhabiting these waters. The current scarcity of scientific observations of cetaceans in the high seas impedes the assessment of population-level impacts of these activities. We developed plausible density estimates to facilitate a quantitative assessment of anthropogenic impacts on cetacean populations in these waters. Our study region extended from a well-surveyed region within the U.S. Exclusive Economic Zone into a large region of the western North Atlantic sparsely surveyed for cetaceans. We modeled densities of 15 cetacean taxa with available line transect survey data and habitat covariates and extrapolated predictions to sparsely surveyed regions. We formulated models to reduce the extent of extrapolation beyond covariate ranges, and constrained them to model simple and generalizable relationships. To evaluate confidence in the predictions, we mapped where predictions were made outside sampled covariate ranges, examined alternate models, and compared predicted densities with maps of sightings from sources that could not be integrated into our models. Confidence levels in model results depended on the taxon and geographic area and highlighted the need for additional surveying in environmentally distinct areas. With application of necessary caution, our density estimates can inform management needs in the high seas, such as the quantification of potential cetacean interactions with military training exercises, shipping, fisheries, and deep-sea mining and be used to delineate areas of special biological significance in international waters. Our approach is generally applicable to other marine taxa and geographic regions for which management will be implemented but data are sparse. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
International Students with Dependent Children: The Reproduction of Gender Norms
ERIC Educational Resources Information Center
Brooks, Rachel
2015-01-01
Extant research on family migration for education has focused almost exclusively on the education of children. We thus know very little about family migration when it is driven by the educational projects of parents. To begin to redress this gap, this paper explores the experiences of families who have moved to the United Kingdom primarily to…
76 FR 78890 - Marine Mammals; File No. 15240
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-20
... Reef, Howland Island, Baker Island, Jarvis Island, and Wake Island. Research methodologies include... research on cetaceans. DATES: Written, telefaxed, or email comments must be received on or before January... five-year permit to conduct research on 20 cetacean species, including six species listed as endangered...
Currie, Jens J; Stack, Stephanie H; McCordic, Jessica A; Kaufman, Gregory D
2017-08-15
Marine debris poses considerable threat to biodiversity and ecosystems and has been identified as a stressor for a variety of marine life. Here we present results from the first study quantifying the amount and type of debris accumulation in Maui leeward waters and relate this to cetacean distribution to identify areas where marine debris may present a higher threat. Transect surveys were conducted within the 4-island region of Maui, Hawai'i from April 1, 2013 to April 15, 2016. Debris was found in all areas of the study region with higher concentrations observed where the Au'au, Kealaikahiki, and Alalakeiki channels converge. The degree of overlap between debris and cetaceans varied among species but was largest for humpback whales, which account for the largest portion of reported entanglements in the 4-island region of Maui. Identifying areas of high debris-cetacean density overlap can facilitate species management and debris removal efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Campana, I; Angeletti, D; Crosti, R; Luperini, C; Ruvolo, A; Alessandrini, A; Arcangeli, A
2017-02-15
Seasonal maritime traffic was investigated in relation to cetaceans, through direct observations (July 2013-June 2015) along three fixed transects in Western Mediterranean. Visually obtained vessel abundance was compared with Automatic Identification System data to explore if the two methods provided different results. Traffic intensity and composition were characterised by seasons and vessel categories. Finally, cetacean presence was investigated in relation to traffic by measuring the difference of vessel abundance in the presence and absence of animal sightings. Results showed that visual sampling was consistent with AIS data, providing more information on small-medium vessels. Traffic was more intense and diverse in Spring/Summer, and the highest vessel abundance and seasonal variations in composition emerged for inshore subareas. The difference of traffic in the presence and absence of cetaceans was higher in most offshore subareas in Spring/Summer, verified for B. physalus and S. coeruleoalba; in inshore waters, mostly occupied by T. truncatus, no significant differences emerged. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fossil evidence for the origin of aquatic locomotion in archaeocete whales.
Thewissen, J G; Hussain, S T; Arif, M
1994-01-14
Recent members of the order Cetacea (whales, dolphins, and porpoises) move in the water by vertical tail beats and cannot locomote on land. Their hindlimbs are not visible externally and the bones are reduced to one or a few splints that commonly lack joints. However, cetaceans originated from four-legged land mammals that used their limbs for locomotion and were probably apt runners. Because there are no relatively complete limbs for archaic archaeocete cetaceans, it is not known how the transition in locomotory organs from land to water occurred. Recovery of a skeleton of an early fossil cetacean from the Kuldana Formation, Pakistan, documents transitional modes of locomotion, and allows hypotheses concerning swimming in early cetaceans to be tested. The fossil indicates that archaic whales swam by undulating their vertebral column, thus forcing their feet up and down in a way similar to modern otters. Their movements on land probably resembled those of sea lions to some degree, and involved protraction and retraction of the abducted limbs.
NASA Astrophysics Data System (ADS)
Ferrari, Thomas E.
2017-04-01
The beaching and stranding of whales and dolphins around the world has been mystifying scientists for centuries. Although many theories have been proposed, few are substantiated by unequivocal statistical evidence. Advances in the field of animal magnetoreception have established that many organisms, including cetaceans, have an internal `compass,' which they use for orientation when traveling long distances. Astrobiology involves not only the origin and distribution of life in the universe, but also the scientific study of how extraterrestrial conditions affect evolution of life on planet Earth. The focus of this study is how cetacean life is influenced by disturbances in its environment that originate from an astrological phenomenon - in the present study that involves solar flares and cetacean beachings. Solar storms are caused by major coronal eruptions on the Sun. Upon reaching Earth, they cause disturbances in Earth's normally stable magnetosphere. Unable to follow an accurate magnetic bearing under such circumstances, cetaceans lose their compass reading while travelling and, depending on their juxtaposition and nearness to land, eventually beach themselves. (1) This hypothesis was supported by six separate, independent surveys of beachings: (A) in the Mediterranean Sea, (B) the northern Gulf of Mexico, (C) the east and (D) west coasts of the USA and two surveys (E and F) from around the world. When the six surveys were pooled (1614 strandings), a highly significant correlation (R 2 = 0.981) of when strandings occurred with when major geomagnetic disturbances in Earth's magnetosphere occurred was consistent with this hypothesis. (2) Whale and dolphin strandings in the northern Gulf of Mexico and the east coast of the USA were correlated (R 2 = 0.919, R 2 = 0.924) with the number of days before and after a geomagnetic storm. (3) Yearly strandings were correlated with annual geomagnetic storm days. (4) Annual beachings of cetaceans from 1998 to 2012 were linearly correlated (R 2 = 0.751) with frequency of annual sunspot numbers. Thus, consistently strong statistical correlation evidence indicates that an astronomical phenomenon - solar flares - can cause cetaceans to change their behaviour and become disoriented, which eventually causes them to swim onto a shore and beach themselves.
Oswald, Julie N; Norris, Thomas F; Yack, Tina M; Ferguson, Elizabeth L; Kumar, Anurag; Nissen, Jene; Bell, Joel
2016-01-01
Passive acoustic data collected from marine autonomous recording units deployed off Jacksonville, FL (from 13 September to 8 October 2009 and 3 December 2009 to 8 January 2010), were analyzed for detection of cetaceans and Navy sonar. Cetaceans detected included Balaenoptera acutorostrata, Eubalaena glacialis, B. borealis, Physeter macrocephalus, blackfish, and delphinids. E. glacialis were detected at shallow and, somewhat unexpectedly, deep sites. P. macrocephalus were characterized by a strong diel pattern. B. acutorostrata showed the strongest relationship between sonar activity and vocal behavior. These results provide a preliminary assessment of cetacean occurrence off Jacksonville and new insights on vocal responses to sonar.
78 FR 23908 - Marine Mammals; File No. 14809
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-23
... a five-year permit to conduct comparative research on cetaceans in the North Atlantic, North Pacific..., has applied in due form for a permit to conduct research on 34 cetacean species. DATES: Written... playbacks annually. The primary research objectives are to: (1) document baseline foraging and social...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
... field versus laboratory conditions. While multiple controlled studies of high-frequency cetaceans to... of behavioral response translates to other high-frequency cetaceans (Southall et al., 2007). There... exposures at higher levels. Jacobs and Terhune (2002) observed wild harbor seal reactions to high-frequency...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-18
... 92106, has applied in due form for a permit to conduct scientific research on cetaceans stranded or in... sensors or subcutaneous pin electrodes on up to 15 individuals of each species of cetacean. Research will... forwarding copies of the application to the Marine Mammal Commission and its Committee of Scientific Advisors...
78 FR 29117 - Marine Mammals; File No. 17005
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-17
... Mechanical Engineering, Atlanta, GA 30332 to conduct research on cetacean species not listed under the... elastic properties of cetacean head tissues. The work also would allow researchers to: (1) Determine any short term changes in soft tissue elasticity if an animal dies during the stranding response, and (2...
A Review of Research on Content-Based Foreign/Second Language Education in US K-12 Contexts
ERIC Educational Resources Information Center
Tedick, Diane J.; Wesely, Pamela M.
2015-01-01
This review of the extant research literature focuses on research about content-based language instruction (CBI) programmes in K-12 foreign/second language education in the USA. The review emphasises studies on one-way language immersion (OWI) and two-way language immersion (TWI) programmes, which are school-based and subject matter-driven. OWI…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-24
...-frequency, and high-frequency. Bryde's whale, humpback whale, and minke whale are considered low-frequency... to 160 kHz. Dwarf sperm whale and pygmy sperm whale are considered high-frequency cetaceans and their... field versus laboratory conditions. While multiple controlled studies of high-frequency cetaceans to...
Development and Field testing of the DTAG for Deep-Diving Odontocetes
2005-01-12
34Resident and reproductive populations of beaked whales in El Hierro , Canary Islands", European Research on Cetaceans 19th, France, April 2005. Aguilar... Hierro (Canary Islands)", European Research on Cetaceans 18th, Sweden, 2004. Tregenza N.J.C., Johnson M., Aguilar de Soto N., "Automated detection of
Dolphins and Children: A Blueprint for Marine Environmental Education in Peru
ERIC Educational Resources Information Center
Van Bressem, Marie-Francoise; Alfaro-Shigueto, Joanna; Geysen, Karen; Onton, Karina; Vega, Diana; Chavez-Lisambart, Laura; Van Waerebeek, Koen
2006-01-01
To complement legislative measures protecting cetaceans and other marine animals, the Peruvian Centre for Cetacean Research in the period 1993-2000 implemented an environmental education program at the kindergartens, primary and high schools of several fishing towns and in Lima, Peru. This program included environmental classes based on selected…
Di-Méglio, Nathalie; Campana, Ilaria
2017-05-15
This study investigated the composition, density and distribution of floating macro-litter along the Liguro-Provençal basin with respect to cetaceans presence. Survey transects were performed in summer between 2006 and 2015 from sailing vessels with simultaneous cetaceans observations. During 5171km travelled, 1993 floating items were recorded, widespread in the whole study area. Plastics was the predominant category, with bags/packaging always representing >45% of total items. Overall mean density (14.98 items/km 2 ) was stable with significant increase reported only in 2010-2011; monthly analysis showed lower litter densities in July-September, suggesting possible seasonal patterns. Kernel density estimation for plastics revealed ubiquitous distribution rather than high accumulation areas, mainly due to the circulation dynamics of this area. The presence range of cetaceans (259 sightings, 6 species) corresponded by ~50% with plastic distribution, indicating high potential of interaction, especially in the eastern part of the area, but effective risks for marine species might be underrepresented. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, C.E.; Adams, J.K.
1983-02-01
The purpose of the workshop was to assemble scientists knowledgeable about cetaceans, sea turtles, and the Gulf of Mexico to discuss the potential impacts of offshore oil and gas development on these animals and make recommendations for future research. The workshop began with brief presentations about the environment of the Gulf of Mexico and the cetaceans and sea turtles found there, and a review of petroleum effects on these animals. The following points were then discussed: (1) ways in which cetaceans and sea turtles have been or could be affected, either directly or indirectly by activities and events associated withmore » offshore oil and gas development were identified; (2) the types and specificity of data needed to predict, detect, and mitigate possible adverse effects were identified; (3) the advantages and disadvatages of various methods that might be used to obtain needed data were discussed; and (4) specific research and monitoring programs that would be required to obtain needed data, including the necessary expertise, level of effort, equipment, and facilities were identified.« less
The Ecological Rise of Whales Chronicled by the Fossil Record.
Pyenson, Nicholas D
2017-06-05
The evolution of cetaceans is one of the best examples of macroevolution documented from the fossil record. While ecological transitions dominate each phase of cetacean history, this context is rarely stated explicitly. The first major ecological phase involves a transition from riverine and deltaic environments to marine ones, concomitant with dramatic evolutionary transformations documented in their early fossil record. The second major phase involves ecological shifts associated with evolutionary innovations: echolocation (facilitating hunting prey at depth) and filter-feeding (enhancing foraging efficiency on small prey). This latter phase involves body size shifts, attributable to changes in foraging depth and environmental forcing, as well as re-invasions of freshwater systems on continental basins by multiple lineages. Modern phenomena driving cetacean ecology, such as trophic dynamics and arms races, have an evolutionary basis that remains mostly unexamined. The fossil record of cetaceans provides an historical basis for understanding current ecological mechanisms and consequences, especially as global climate change rapidly alters ocean and river ecosystems at rates and scales comparable to those over geologic time. Published by Elsevier Ltd.
Curé, Charlotte; Antunes, Ricardo; Samarra, Filipa; Alves, Ana Catarina; Visser, Fleur; Kvadsheim, Petter H.; Miller, Patrick J. O.
2012-01-01
In cetaceans’ communities, interactions between individuals of different species are often observed in the wild. Yet, due to methodological and technical challenges very little is known about the mediation of these interactions and their effect on cetaceans’ behavior. Killer whales (Orcinus orca) are a highly vocal species and can be both food competitors and potential predators of many other cetaceans. Thus, the interception of their vocalizations by unintended cetacean receivers may be particularly important in mediating interspecific interactions. To address this hypothesis, we conducted playbacks of killer whale vocalizations recorded during herring-feeding activity to free-ranging long-finned pilot whales (Globicephala melas). Using a multi-sensor tag, we were able to track the whales and to monitor changes of their movements and social behavior in response to the playbacks. We demonstrated that the playback of killer whale sounds to pilot whales induced a clear increase in group size and a strong attraction of the animals towards the sound source. These findings provide the first experimental evidence that the interception of heterospecific vocalizations can mediate interactions between different cetacean species in previously unrecognized ways. PMID:23300613
Genetic Evidence Highlights Potential Impacts of By-Catch to Cetaceans
Mendez, Martin; Rosenbaum, Howard C.; Wells, Randall S.; Stamper, Andrew; Bordino, Pablo
2010-01-01
Incidental entanglement in fishing gear is arguably the most serious threat to many populations of small cetaceans, judging by the alarming number of captured animals. However, other aspects of this threat, such as the potential capture of mother-offspring pairs or reproductive pairs, could be equally or even more significant but have rarely been evaluated. Using a combination of demographic and genetic data we provide evidence that i) Franciscana dolphin pairs that are potentially reproductive and mother-offspring pairs form temporal bonds, and ii) are entangled simultaneously. Our results highlight potential demographic and genetic impacts of by-catch to cetacean populations: the joint entanglement of mother-offspring or reproductive pairs, compared to random individuals, might exacerbate the demographic consequences of by-catch, and the loss of groups of relatives means that significant components of genetic diversity could be lost together. Given the social nature of many odontocetes (toothed cetaceans), we suggest that these potential impacts could be rather general to the group and therefore by-catch could be more detrimental than previously considered. PMID:21179542
Patterns of cetacean vaginal folds yield insights into functionality
Orbach, Dara N.; Marshall, Christopher D.; Mesnick, Sarah L.; Würsig, Bernd
2017-01-01
Complex foldings of the vaginal wall are unique to some cetaceans and artiodactyls and are of unknown function(s). The patterns of vaginal length and cumulative vaginal fold length were assessed in relation to body length and to each other in a phylogenetic context to derive insights into functionality. The reproductive tracts of 59 female cetaceans (20 species, 6 families) were dissected. Phylogenetically-controlled reduced major axis regressions were used to establish a scaling trend for the female genitalia of cetaceans. An unparalleled level of vaginal diversity within a mammalian order was found. Vaginal folds varied in number and size across species, and vaginal fold length was positively allometric with body length. Vaginal length was not a significant predictor of vaginal fold length. Functional hypotheses regarding the role of vaginal folds and the potential selection pressures that could lead to evolution of these structures are discussed. Vaginal folds may present physical barriers, which obscure the pathway of seawater and/or sperm travelling through the vagina. This study contributes broad insights to the evolution of reproductive morphology and aquatic adaptations and lays the foundation for future functional morphology analyses. PMID:28362830
Evolutionary History of Lagomorphs in Response to Global Environmental Change
Ge, Deyan; Wen, Zhixin; Xia, Lin; Zhang, Zhaoqun; Erbajeva, Margarita; Huang, Chengming; Yang, Qisen
2013-01-01
Although species within Lagomorpha are derived from a common ancestor, the distribution range and body size of its two extant groups, ochotonids and leporids, are quite differentiated. It is unclear what has driven their disparate evolutionary history. In this study, we compile and update all fossil records of Lagomorpha for the first time, to trace the evolutionary processes and infer their evolutionary history using mitochondrial genes, body length and distribution of extant species. We also compare the forage selection of extant species, which offers an insight into their future prospects. The earliest lagomorphs originated in Asia and later diversified in different continents. Within ochotonids, more than 20 genera occupied the period from the early Miocene to middle Miocene, whereas most of them became extinct during the transition from the Miocene to Pliocene. The peak diversity of the leporids occurred during the Miocene to Pliocene transition, while their diversity dramatically decreased in the late Quaternary. Mantel tests identified a positive correlation between body length and phylogenetic distance of lagomorphs. The body length of extant ochotonids shows a normal distribution, while the body length of extant leporids displays a non-normal pattern. We also find that the forage selection of extant pikas features a strong preference for C3 plants, while for the diet of leporids, more than 16% of plant species are identified as C4 (31% species are from Poaceae). The ability of several leporid species to consume C4 plants is likely to result in their size increase and range expansion, most notably in Lepus. Expansion of C4 plants in the late Miocene, the so-called ‘nature’s green revolution’, induced by global environmental change, is suggested to be one of the major ‘ecological opportunities’, which probably drove large-scale extinction and range contraction of ochotonids, but inversely promoted diversification and range expansion of leporids. PMID:23573205
Gene-culture coevolution in whales and dolphins.
Whitehead, Hal
2017-07-24
Whales and dolphins (Cetacea) have excellent social learning skills as well as a long and strong mother-calf bond. These features produce stable cultures, and, in some species, sympatric groups with different cultures. There is evidence and speculation that this cultural transmission of behavior has affected gene distributions. Culture seems to have driven killer whales into distinct ecotypes, which may be incipient species or subspecies. There are ecotype-specific signals of selection in functional genes that correspond to cultural foraging behavior and habitat use by the different ecotypes. The five species of whale with matrilineal social systems have remarkably low diversity of mtDNA. Cultural hitchhiking, the transmission of functionally neutral genes in parallel with selective cultural traits, is a plausible hypothesis for this low diversity, especially in sperm whales. In killer whales the ecotype divisions, together with founding bottlenecks, selection, and cultural hitchhiking, likely explain the low mtDNA diversity. Several cetacean species show habitat-specific distributions of mtDNA haplotypes, probably the result of mother-offspring cultural transmission of migration routes or destinations. In bottlenose dolphins, remarkable small-scale differences in haplotype distribution result from maternal cultural transmission of foraging methods, and large-scale redistributions of sperm whale cultural clans in the Pacific have likely changed mitochondrial genetic geography. With the acceleration of genomics new results should come fast, but understanding gene-culture coevolution will be hampered by the measured pace of research on the socio-cultural side of cetacean biology.
Gene–culture coevolution in whales and dolphins
Whitehead, Hal
2017-01-01
Whales and dolphins (Cetacea) have excellent social learning skills as well as a long and strong mother–calf bond. These features produce stable cultures, and, in some species, sympatric groups with different cultures. There is evidence and speculation that this cultural transmission of behavior has affected gene distributions. Culture seems to have driven killer whales into distinct ecotypes, which may be incipient species or subspecies. There are ecotype-specific signals of selection in functional genes that correspond to cultural foraging behavior and habitat use by the different ecotypes. The five species of whale with matrilineal social systems have remarkably low diversity of mtDNA. Cultural hitchhiking, the transmission of functionally neutral genes in parallel with selective cultural traits, is a plausible hypothesis for this low diversity, especially in sperm whales. In killer whales the ecotype divisions, together with founding bottlenecks, selection, and cultural hitchhiking, likely explain the low mtDNA diversity. Several cetacean species show habitat-specific distributions of mtDNA haplotypes, probably the result of mother–offspring cultural transmission of migration routes or destinations. In bottlenose dolphins, remarkable small-scale differences in haplotype distribution result from maternal cultural transmission of foraging methods, and large-scale redistributions of sperm whale cultural clans in the Pacific have likely changed mitochondrial genetic geography. With the acceleration of genomics new results should come fast, but understanding gene–culture coevolution will be hampered by the measured pace of research on the socio-cultural side of cetacean biology. PMID:28739936
Houssaye, Alexandra; Lindgren, Johan; Pellegrini, Rodrigo; Lee, Andrew H.; Germain, Damien; Polcyn, Michael J.
2013-01-01
Background During their evolution in the Late Cretaceous, mosasauroids attained a worldwide distribution, accompanied by a marked increase in body size and open ocean adaptations. This transition from land-dwellers to highly marine-adapted forms is readily apparent not only at the gross anatomic level but also in their inner bone architecture, which underwent profound modifications. Methodology/Principal Findings The present contribution describes, both qualitatively and quantitatively, the internal organization (microanatomy) and tissue types and characteristics (histology) of propodial and epipodial bones in one lineage of mosasauroids; i.e., the subfamily Mosasaurinae. By using microanatomical and histological data from limb bones in combination with recently acquired knowledge on the inner structure of ribs and vertebrae, and through comparisons with extant squamates and semi-aquatic to fully marine amniotes, we infer possible implications on mosasaurine evolution, aquatic adaptation, growth rates, and basal metabolic rates. Notably, we observe the occurrence of an unusual type of parallel-fibered bone, with large and randomly shaped osteocyte lacunae (otherwise typical of fibrous bone) and particular microanatomical features in Dallasaurus, which displays, rather than a spongious inner organization, bone mass increase in its humeri and a tubular organization in its femora and ribs. Conclusions/Significance The dominance of an unusual type of parallel-fibered bone suggests growth rates and, by extension, basal metabolic rates intermediate between that of the extant leatherback turtle, Dermochelys, and those suggested for plesiosaur and ichthyosaur reptiles. Moreover, the microanatomical features of the relatively primitive genus Dallasaurus differ from those of more derived mosasaurines, indicating an intermediate stage of adaptation for a marine existence. The more complete image of the various microanatomical trends observed in mosasaurine skeletal elements supports the evolutionary convergence between this lineage of secondarily aquatically adapted squamates and cetaceans in the ecological transition from a coastal to a pelagic lifestyle. PMID:24146919
Houssaye, Alexandra; Lindgren, Johan; Pellegrini, Rodrigo; Lee, Andrew H; Germain, Damien; Polcyn, Michael J
2013-01-01
During their evolution in the Late Cretaceous, mosasauroids attained a worldwide distribution, accompanied by a marked increase in body size and open ocean adaptations. This transition from land-dwellers to highly marine-adapted forms is readily apparent not only at the gross anatomic level but also in their inner bone architecture, which underwent profound modifications. The present contribution describes, both qualitatively and quantitatively, the internal organization (microanatomy) and tissue types and characteristics (histology) of propodial and epipodial bones in one lineage of mosasauroids; i.e., the subfamily Mosasaurinae. By using microanatomical and histological data from limb bones in combination with recently acquired knowledge on the inner structure of ribs and vertebrae, and through comparisons with extant squamates and semi-aquatic to fully marine amniotes, we infer possible implications on mosasaurine evolution, aquatic adaptation, growth rates, and basal metabolic rates. Notably, we observe the occurrence of an unusual type of parallel-fibered bone, with large and randomly shaped osteocyte lacunae (otherwise typical of fibrous bone) and particular microanatomical features in Dallasaurus, which displays, rather than a spongious inner organization, bone mass increase in its humeri and a tubular organization in its femora and ribs. The dominance of an unusual type of parallel-fibered bone suggests growth rates and, by extension, basal metabolic rates intermediate between that of the extant leatherback turtle, Dermochelys, and those suggested for plesiosaur and ichthyosaur reptiles. Moreover, the microanatomical features of the relatively primitive genus Dallasaurus differ from those of more derived mosasaurines, indicating an intermediate stage of adaptation for a marine existence. The more complete image of the various microanatomical trends observed in mosasaurine skeletal elements supports the evolutionary convergence between this lineage of secondarily aquatically adapted squamates and cetaceans in the ecological transition from a coastal to a pelagic lifestyle.
Absence of Suction Feeding Ichthyosaurs and Its Implications for Triassic Mesopelagic Paleoecology
Motani, Ryosuke; Ji, Cheng; Tomita, Taketeru; Kelley, Neil; Maxwell, Erin; Jiang, Da-yong; Sander, Paul Martin
2013-01-01
Mesozoic marine reptiles and modern marine mammals are often considered ecological analogs, but the extent of their similarity is largely unknown. Particularly important is the presence/absence of deep-diving suction feeders among Mesozoic marine reptiles because this would indicate the establishment of mesopelagic cephalopod and fish communities in the Mesozoic. A recent study suggested that diverse suction feeders, resembling the extant beaked whales, evolved among ichthyosaurs in the Triassic. However, this hypothesis has not been tested quantitatively. We examined four osteological features of jawed vertebrates that are closely linked to the mechanism of suction feeding, namely hyoid corpus ossification/calcification, hyobranchial apparatus robustness, mandibular bluntness, and mandibular pressure concentration index. Measurements were taken from 18 species of Triassic and Early Jurassic ichthyosaurs, including the presumed suction feeders. Statistical comparisons with extant sharks and marine mammals of known diets suggest that ichthyosaurian hyobranchial bones are significantly more slender than in suction-feeding sharks or cetaceans but similar to those of ram-feeding sharks. Most importantly, an ossified hyoid corpus to which hyoid retractor muscles attach is unknown in all but one ichthyosaur, whereas a strong integration of the ossified corpus and cornua of the hyobranchial apparatus has been identified in the literature as an important feature of suction feeders. Also, ichthyosaurian mandibles do not narrow rapidly to allow high suction pressure concentration within the oral cavity, unlike in beaked whales or sperm whales. In conclusion, it is most likely that Triassic and Early Jurassic ichthyosaurs were ‘ram-feeders’, without any beaked-whale-like suction feeder among them. When combined with the inferred inability for dim-light vision in relevant Triassic ichthyosaurs, the fossil record of ichthyosaurs does not suggest the establishment of modern-style mesopelagic animal communities in the Triassic. This new interpretation matches the fossil record of coleoids, which indicates the absence of soft-bodied deepwater species in the Triassic. PMID:24348983
Segniagbeto, Gabriel H; VAN Waerebeek, Koen; Bowessidjaou, Joseph E; Ketoh, Koffivi; Kpatcha, Takouda K; Okoumassou, Kotchikpa; Ahoedo, Kossi
2014-01-01
Based on strandings and captures, 9 cetacean species, including 6 odontocetes and 3 mysticetes, are documented (photos and specimens) in Togo's coastal waters (newly-recorded species marked with an asterisk): Antarctic minke whale (Balaenoptera bonaerensis*), Bryde's whale (Balaenoptera brydei or B. edeni), humpback whale (Megaptera novaeangliae), sperm whale (Physeter macrocephalus), pygmy sperm whale (Kogia breviceps*), short-finned pilot whale (Globicephala macrorhynchus*), pantropical spotted dolphin (Stenella attenuata*), common bottlenose dolphin (Tursiops truncatus) and common dolphin Delphinus sp. An anecdotal sighting record for killer whale (Orcinus orca) is considered reliable. The lack of Sousa teuszii records in Togo is consistent with its apparent contemporaneous absence in Ghana. The B. bonaerensis specimen, entangled in a purse seine set on small pelagics, is a first record for the Gulf of Guinea. The occurrence of this Southern Ocean species north of the equator underscores the severe gaps in our understanding of cetacean distribution off western Africa. The majority of artisanal fishermen operating in Togolese coastal waters are of Ghanaian origin and are thought to promote trade and consumption of cetacean bushmeat. Because captures are illegal, enforced with some success in the main fishing centers, covert landings of cetaceans are exceedingly difficult to monitor, quantify or sample. Concern is expressed about pollution of Togo's coastal waters with heavy metals due to phosphorite mining and export from the coastal basin near Hahotoé and Kpogamé. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.
NASA Astrophysics Data System (ADS)
Jungblut, Simon; Nachtsheim, Dominik A.; Boos, Karin; Joiris, Claude R.
2017-07-01
The distribution, abundance, and species assemblage of top predators - seabirds and cetaceans - can be correlated to water masses as defined by hydrological parameters. In comparison to other oceans, information about the structuring effects of water masses on top predators in the Atlantic Ocean is limited. The present study aims 1) to provide baseline distributional data of top predators for future comparisons, for instance in the course of climate change, and 2) to test how water masses and seasons affect distributional patterns of seabirds and cetaceans in the temperate and tropical Atlantic. During four trans-equatorial expeditions of the RV Polarstern between 2011 and 2014, at-sea observation data of seabirds, cetaceans and other megafauna were collected. Counts of top predators were generally low in the surveyed regions. Statistical analyses for the eight most abundant seabird species and the pooled number of cetaceans revealed water masses and seasons to account for differences in counts and thus also distribution. In most cases, borders between water masses were not very distinct due to gradual changes in surface water properties. Thus, top predator counts were correlated to water masses but, in contrast to polar waters, not strongly linked to borders between water masses. Additional factors, e.g. distance to locally productive areas (upwelling), competition effects, and seabird associations to prey-accumulating subsurface predators may be similarly important in shaping distributional patterns of top predators in the tropical and temperate Atlantic, but could not be specifically tested for here.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-03
... approximately 150 Hz and 160 kHz; High frequency cetaceans (six species of true porpoises, four species of river... porpoise and Dall's porpoise are classified as high frequency cetaceans (Southall et al., 2007). Pacific...) observed wild harbor seal reactions to high-frequency acoustic harassment devices around nine sites. Seals...
1991-06-01
echolocation signals are guided to the inner ear of odonto - relatively little loss of energy. The biochemical composition cete cetaceans via areas of fatty...pool, on the range of useful al. (1986), and others have provided evidence that odonto - energy in the emitted clicks. cete cetaceans emit echolocation
Hepatic lesions in cetaceans stranded in the Canary Islands.
Jaber, J R; Pérez, J; Arbelo, M; Andrada, M; Hidalgo, M; Gómez-Villamandos, J C; Van Den Ingh, T; Fernández, A
2004-03-01
This article describes the gross, histopathologic, and ultrastructural findings of the livers of cetaceans stranded on the coast of the Canary Islands between 1992 and 2000. A total of 135 cetaceans were included in the study, among which 25 were common dolphins (Delphinus delphis), 23 Atlantic spotted dolphins (Stenella frontalis), 19 striped dolphins (Stenella coeruleoalba), and 15 other species of dolphins and whales. The most common lesion observed in these animals was a nonspecific chronic reactive hepatitis (47/135), followed by hyaline intracytoplasmic inclusions in hepatocytes (33/135). Parasitic cholangitis was detected in 8/135 animals, whereas hepatic lipidosis was presented in 7/135 animals. The ultrastructure of hyaline hepatocytic cytoplasmic inclusions is described, and possible causes of these inclusions are discussed.
Propulsive efficiency of the underwater dolphin kick in humans.
von Loebbecke, Alfred; Mittal, Rajat; Fish, Frank; Mark, Russell
2009-05-01
Three-dimensional fully unsteady computational fluid dynamic simulations of five Olympic-level swimmers performing the underwater dolphin kick are used to estimate the swimmer's propulsive efficiencies. These estimates are compared with those of a cetacean performing the dolphin kick. The geometries of the swimmers and the cetacean are based on laser and CT scans, respectively, and the stroke kinematics is based on underwater video footage. The simulations indicate that the propulsive efficiency for human swimmers varies over a relatively wide range from about 11% to 29%. The efficiency of the cetacean is found to be about 56%, which is significantly higher than the human swimmers. The computed efficiency is found not to correlate with either the slender body theory or with the Strouhal number.
Molecular evolution tracks macroevolutionary transitions in Cetacea.
McGowen, Michael R; Gatesy, John; Wildman, Derek E
2014-06-01
Cetacea (whales, dolphins, and porpoises) is a model group for investigating the molecular signature of macroevolutionary transitions. Recent research has begun to reveal the molecular underpinnings of the remarkable anatomical and behavioral transformation in this clade. This shift from terrestrial to aquatic environments is arguably the best-understood major morphological transition in vertebrate evolution. The ancestral body plan and physiology were extensively modified and, in many cases, these crucial changes are recorded in cetacean genomes. Recent studies have highlighted cetaceans as central to understanding adaptive molecular convergence and pseudogene formation. Here, we review current research in cetacean molecular evolution and the potential of Cetacea as a model for the study of other macroevolutionary transitions from a genomic perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.
Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock
Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; ...
2016-10-14
A significant fraction (~ 20%) of microbial life is found in the terrestrial deep subsurface, yet the metabolic processes extant in those environments are poorly understood. Here we show that H 2, injected into the Opalinus Clay formation in a borehole located 300 meters below the surface, fuels a community of microorganisms with interconnected metabolisms. Metagenomic binning and metaproteomic analysis reveal a complete carbon cycle, driven by autotrophic hydrogen oxidizers. Dead biomass from these organisms is a substrate for a fermenting bacterium that produces acetate as a product. In turn, complete oxidizer heterotrophic sulfate- reducing bacteria utilize acetate and oxidizemore » it to CO 2, closing the cycle. This metabolic reconstruction sheds light onto a hydrogen-driven carbon cycle, and a sunlight-independent ecosystem in the deep subsurface.« less
McGowen, Michael R
2011-09-01
Oceanic dolphins (Delphinidae) are the product of a rapid radiation that yielded ∼36 extant species of small to medium-sized cetaceans that first emerged in the Late Miocene. Although they are a charismatic group of organisms that have become poster children for marine conservation, many phylogenetic relationships within Delphinidae remain elusive due to the slow molecular evolution of the group and the difficulty of resolving short branches from successive cladogenic events. Here I combine existing and newly generated sequences from four mitochondrial (mt) genes and 20 nuclear (nu) genes to reconstruct a well-supported phylogenetic hypothesis for Delphinidae. This study compares maximum-likelihood and Bayesian inference methods of several data sets including mtDNA, combined nuDNA, gene trees of individual nuDNA loci, and concatenated mtDNA+nuDNA. In addition, I contrast these standard phylogenetic analyses with the species tree reconstruction method of Bayesian concordance analysis (BCA). Despite finding discordance between mtDNA and individual nuDNA loci, the concatenated matrix recovers a completely resolved and robustly supported phylogeny that is also broadly congruent with BCA trees. This study strongly supports groupings such as Delphininae, Lissodelphininae, Globicephalinae, Sotalia+Delphininae, Steno+Orcaella+Globicephalinae, and Leucopleurus acutus, Lagenorhynchus albirostris, and Orcinus orca as basal delphinid taxa. Copyright © 2011 Elsevier Inc. All rights reserved.
The Origin of High-Frequency Hearing in Whales.
Churchill, Morgan; Martinez-Caceres, Manuel; de Muizon, Christian; Mnieckowski, Jessica; Geisler, Jonathan H
2016-08-22
Odontocetes (toothed whales) rely upon echoes of their own vocalizations to navigate and find prey underwater [1]. This sensory adaptation, known as echolocation, operates most effectively when using high frequencies, and odontocetes are rivaled only by bats in their ability to perceive ultrasonic sound greater than 100 kHz [2]. Although features indicative of ultrasonic hearing are present in the oldest known odontocetes [3], the significance of this finding is limited by the methods employed and taxa sampled. In this report, we describe a new xenorophid whale (Echovenator sandersi, gen. et sp. nov.) from the Oligocene of South Carolina that, as a member of the most basal clade of odontocetes, sheds considerable light on the evolution of ultrasonic hearing. By placing high-resolution CT data from Echovenator sandersi, 2 hippos, and 23 fossil and extant whales in a phylogenetic context, we conclude that ultrasonic hearing, albeit in a less specialized form, evolved at the base of the odontocete radiation. Contrary to the hypothesis that odontocetes evolved from low-frequency specialists [4], we find evidence that stem cetaceans, the archaeocetes, were more sensitive to high-frequency sound than their terrestrial ancestors. This indicates that selection for high-frequency hearing predates the emergence of Odontoceti and the evolution of echolocation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anthropogenic (PBDE) and naturally-produced (MeO-PBDE) brominated compounds in cetaceans--a review.
Alonso, Mariana B; Azevedo, Alexandre; Torres, João Paulo M; Dorneles, Paulo R; Eljarrat, Ethel; Barceló, Damià; Lailson-Brito, José; Malm, Olaf
2014-05-15
This paper reviews the available data on brominated flame retardants, the polybrominated diphenyl ethers (PBDEs), as well as on the naturally-produced methoxylated polybrominated diphenyl ethers (MeO-PBDEs) in cetacean tissues around the world. Levels and possible sources of both compound classes are discussed. Odontocete cetaceans accumulate higher PBDE concentrations than mysticete species. PBDE contamination was higher in cetaceans from the Northern hemisphere, whereas MeO-PBDE levels were higher in animals from the Southern hemisphere. Southern resident killer whales from NE Pacific presented the highest levels reported in biota, followed by bottlenose dolphins from North Atlantic (U.K. and U.S. coast). Many species presented PBDE concentrations above threshold levels for health effects in odontocetes. Time trend studies indicate that PBDE concentrations in odontocetes from Japan, China, U.S. and Canada coastal zones have increased significantly over the past 30 years. Studies from U.K. waters and NE Atlantic showed a decrease and/or stability of PBDE levels in cetacean tissues in recent decades. The highest MeO-PBDE concentrations were found in dolphins from Tanzania (Indian Ocean), bottlenose dolphins from Queensland, Australia (SW Pacific), and odontocetes from coastal and continental shelf waters off southeastern Brazil (SW Atlantic). The upwelling phenomenon and the presence of coral reef complexes in these tropical oceans may explain the large amounts of the naturally-produced organobromines. Considering that these bioaccumulative chemicals have properties that could cause many deleterious effects in those animals, future studies are required to evaluate the potential ecotoxicological risks. Copyright © 2014 Elsevier B.V. All rights reserved.
9 CFR 3.104 - Space requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... required minimum horizontal dimension (MHD) of a pool for Group I cetaceans shall be 7.32 meters (24.0 feet... area requirements are met based on an MHD of 7.32 meters (24.0 feet) or two times the average adult... maturity. (ii) The MHD of a pool for Group II cetaceans shall be 7.32 meters (24.0 feet) or four times the...
2016-03-21
Ocean Acoustics Human Effects Analysis NMFS National Marine Fisheries Service NOAA National Oceanic and Atmospheric Administration ODBA...dive basis, switch effectively between different diving states, and do so while maintaining foraging efficiency and social cohesion. Benefits...adverse effects on some species of odontocete cetaceans under certain environmental conditions. Some beaked whales appeared to be particularly sensitive
Arcangeli, Antonella; Prado Fonseca, Vinícius; Campana, Ilaria; Pierce, Graham J.; Rotta, Andrea; Bellido, Jose Maria
2017-01-01
Spatially explicit risk assessment is an essential component of Marine Spatial Planning (MSP), which provides a comprehensive framework for managing multiple uses of the marine environment, minimizing environmental impacts and conflicts among users. In this study, we assessed the risk of the exposure to high intensity vessel traffic areas for the three most abundant cetacean species (Stenella coeruleoalba, Tursiops truncatus and Balaenoptera physalus) in the southern area of the Pelagos Sanctuary, which is the only pelagic Marine Protected Area (MPA) for marine mammals in the Mediterranean Sea. In particular, we modeled the occurrence of the three cetacean species as a function of habitat variables in June by using hierarchical Bayesian spatial-temporal models. Similarly, we modelled the marine traffic intensity in order to find high risk areas and estimated the potential conflict due to the overlap with the cetacean home ranges. Results identified two main hot-spots of high intensity marine traffic in the area, which partially overlap with the area of presence of the studied species. Our findings emphasize the need for nationally relevant and transboundary planning and management measures for these marine species. PMID:28644882
Interspecific Introgression in Cetaceans: DNA Markers Reveal Post-F1 Status of a Pilot Whale
Miralles, Laura; Lens, Santiago; Rodríguez-Folgar, Antonio; Carrillo, Manuel; Martín, Vidal; Mikkelsen, Bjarni; Garcia-Vazquez, Eva
2013-01-01
Visual species identification of cetacean strandings is difficult, especially when dead specimens are degraded and/or species are morphologically similar. The two recognised pilot whale species (Globicephala melas and Globicephala macrorhynchus) are sympatric in the North Atlantic Ocean. These species are very similar in external appearance and their morphometric characteristics partially overlap; thus visual identification is not always reliable. Genetic species identification ensures correct identification of specimens. Here we have employed one mitochondrial (D-Loop region) and eight nuclear loci (microsatellites) as genetic markers to identify six stranded pilot whales found in Galicia (Northwest Spain), one of them of ambiguous phenotype. DNA analyses yielded positive amplification of all loci and enabled species identification. Nuclear microsatellite DNA genotypes revealed mixed ancestry for one individual, identified as a post-F1 interspecific hybrid employing two different Bayesian methods. From the mitochondrial sequence the maternal species was Globicephala melas. This is the first hybrid documented between Globicephala melas and G. macrorhynchus, and the first post-F1 hybrid genetically identified between cetaceans, revealing interspecific genetic introgression in marine mammals. We propose to add nuclear loci to genetic databases for cetacean species identification in order to detect hybrid individuals. PMID:23990883
Pennino, Maria Grazia; Arcangeli, Antonella; Prado Fonseca, Vinícius; Campana, Ilaria; Pierce, Graham J; Rotta, Andrea; Bellido, Jose Maria
2017-01-01
Spatially explicit risk assessment is an essential component of Marine Spatial Planning (MSP), which provides a comprehensive framework for managing multiple uses of the marine environment, minimizing environmental impacts and conflicts among users. In this study, we assessed the risk of the exposure to high intensity vessel traffic areas for the three most abundant cetacean species (Stenella coeruleoalba, Tursiops truncatus and Balaenoptera physalus) in the southern area of the Pelagos Sanctuary, which is the only pelagic Marine Protected Area (MPA) for marine mammals in the Mediterranean Sea. In particular, we modeled the occurrence of the three cetacean species as a function of habitat variables in June by using hierarchical Bayesian spatial-temporal models. Similarly, we modelled the marine traffic intensity in order to find high risk areas and estimated the potential conflict due to the overlap with the cetacean home ranges. Results identified two main hot-spots of high intensity marine traffic in the area, which partially overlap with the area of presence of the studied species. Our findings emphasize the need for nationally relevant and transboundary planning and management measures for these marine species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez, B.; Gonzalez, M.J.; Jimenez, O.
2000-03-01
The present study investigates individual 2,3,7,8-substituted polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofuran (PCDF) concentrations in cetaceans and assesses the PCDD and PCDF contributions to the total TCDD equivalent concentration. Liver samples of a variety of cetaceans species found stranded along the Italian coasts during the period of 1987--1992 were analyzed for PCDDs and PCDFs. The main aims were to scrutinize levels and patterns of PCDDs and PCDFs for the first time in cetaceans from the Mediterranean Sea and to estimate whether chlorinated compounds mentioned are implicated in the exceptionally high mortality of dolphins that occurred in the Mediterranean sea duringmore » 1990--1992. PCDD and PCDF profiles were dominated by congeners OCCD and OCDF. The new toxic equivalency factors recommended by WHO in 1997 were used for calculation of dioxin-like toxicity. On the basis of their previous study of PCBs, the overall TEQ calculated from the 2,3,7,8-substituted PCDDs and PCDFs do not contribute as much dioxin-like toxicity as PCBs.« less
Statistical Assessment of Cetacean Stranding Events in Cape Cod Area
NASA Technical Reports Server (NTRS)
Zellar, R.; Pulkkinen, A.; Moore, K.; Reeb, D.; Karakoylu, E.; Uritskaya, O.
2017-01-01
Cetacean (whales, dolphins and porpoises) mass strandings are a longstanding mystery in the field of marine biology that continue to be recorded in coastal environments around the world. For each of these events, anywhere from a few to several hundred otherwise healthy animals strand in onshore environments, often for no apparent reason. While the causes of these events remain unclear, anthropogenic and naturogenic mechanisms have been suggested. We present results of an inter-disciplinary study that draws expertise from space weather, marine mammal biology and ecology, and marine mammal stranding response. This study assessed 16 years of cetacean stranding events in the Cape Cod (Massachusetts, USA) area concurrently with a large dataset of meteorological, geophysical, biological, oceanographic and space weather data to produce inferences about possible causes for these unexplained events.
Statistical Assessment of Cetacean Stranding Events in Cape Cod (Massachusetts, USA) area.
NASA Astrophysics Data System (ADS)
Zellar, R.; Pulkkinen, A. A.; Moore, K.; Reeb, D.; Karakoylu, E.; Uritskaya, O.
2017-12-01
Cetacean (whales, dolphins and porpoises) mass strandings are a longstanding mystery in the field of marine biology that continue to be recorded in coastal environments around the world. For each of these events, anywhere from a few to several hundred otherwise healthy animals strand in onshore environments, often for no apparent reason. While the causes of these events remain unclear, anthropogenic and naturogenic mechanisms have been suggested. We present results of an inter-disciplinary study that draws expertise from space weather, marine mammal biology and ecology, and marine mammal stranding response. This study assessed 16 years of cetacean stranding events in the Cape Cod (Massachusetts, USA) area concurrently with a large dataset of meteorological, geophysical, biological, oceanographic and space weather data to produce inferences about possible causes for these unexplained events.
Cetacean distributions relative to ocean processes in the northern California Current System
NASA Astrophysics Data System (ADS)
Tynan, Cynthia T.; Ainley, David G.; Barth, John A.; Cowles, Timothy J.; Pierce, Stephen D.; Spear, Larry B.
2005-01-01
Associations between cetacean distributions, oceanographic features, and bioacoustic backscatter were examined during two process cruises in the northern California Current System (CCS) during late spring and summer 2000. Line-transect surveys of cetaceans were conducted across the shelf and slope, out to 150 km offshore from Newport, Oregon (44.6°N) to Crescent City, California (41.9°N), in conjunction with multidisciplinary mesoscale and fine-scale surveys of ocean and ecosystem structure. Occurrence patterns (presence/absence) of cetaceans were compared with hydrographic and ecological variables (e.g., sea surface salinity, sea surface temperature, thermocline depth, halocline depth, chlorophyll maximum, distance to the center of the equatorward jet, distance to the shoreward edge of the upwelling front, and acoustic backscatter at 38, 120, 200 and 420 kHz) derived from a towed, undulating array and a bioacoustic system. Using a multiple logistic regression model, 60.2% and 94.4% of the variation in occurrence patterns of humpback whales Megaptera novaeangliae during late spring and summer, respectively, were explained. Sea surface temperature, depth, and distance to the alongshore upwelling front were the most important environmental variables during June, when humpbacks occurred over the slope (200-2000 m). During August, when humpbacks concentrated over a submarine bank (Heceta Bank) and off Cape Blanco, sea surface salinity was the most important variable, followed by latitude and depth. Humpbacks did not occur in the lowest salinity water of the Columbia River plume. For harbor porpoise Phocoena phocoena, the model explained 79.2% and 70.1% of the variation in their occurrence patterns during June and August, respectively. During spring, latitude, sea surface salinity, and thermocline gradient were the most important predictors. During summer, latitude and distance to the inshore edge of the upwelling front were the most important variables. Typically a coastal species, harbor porpoises extended their distribution farther offshore at Heceta Bank and at Cape Blanco, where they were associated with the higher chlorophyll concentrations in these regions. Pacific white-sided dolphin Lagenorhynchus obliquidens was the most numerous small cetacean in early June, but was rare during August. The model explained 44.5% of the variation in their occurrence pattern, which was best described by distance to the upwelling front and acoustic backscatter at 38 kHz. The model of the occurrence pattern of Dall's porpoise Phocoenoides dalli was more successful when mesoscale variability in the CCS was higher during summer. Thus, the responses of cetaceans to biophysical features and upwelling processes in the northern CCS were both seasonally and spatially specific. Heceta Bank and associated flow-topography interactions were very important to a cascade of trophic dynamics that ultimately influenced the distribution of foraging cetaceans. The higher productivity associated with upwelling near Cape Blanco also had a strong influence on the distribution of cetaceans.
The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals
Ahrens, Dirk; Schwarzer, Julia; Vogler, Alfried P.
2014-01-01
Extant terrestrial biodiversity arguably is driven by the evolutionary success of angiosperm plants, but the evolutionary mechanisms and timescales of angiosperm-dependent radiations remain poorly understood. The Scarabaeoidea is a diverse lineage of predominantly plant- and dung-feeding beetles. Here, we present a phylogenetic analysis of Scarabaeoidea based on four DNA markers for a taxonomically comprehensive set of specimens and link it to recently described fossil evidence. The phylogeny strongly supports multiple origins of coprophagy, phytophagy and anthophagy. The ingroup-based fossil calibration of the tree widely confirmed a Jurassic origin of the Scarabaeoidea crown group. The crown groups of phytophagous lineages began to radiate first (Pleurostict scarabs: 108 Ma; Glaphyridae between 101 Ma), followed by the later diversification of coprophagous lineages (crown-group age Scarabaeinae: 76 Ma; Aphodiinae: 50 Ma). Pollen feeding arose even later, at maximally 62 Ma in the oldest anthophagous lineage. The clear time lag between the origins of herbivores and coprophages suggests an evolutionary path driven by the angiosperms that first favoured the herbivore fauna (mammals and insects) followed by the secondary radiation of the dung feeders. This finding makes it less likely that extant dung beetle lineages initially fed on dinosaur excrements, as often hypothesized. PMID:25100705
Ishengoma, Edson; Agaba, Morris
2017-02-16
Toll-like receptors (TLRs) are the frontline actors in the innate immune response to various pathogens and are expected to be targets of natural selection in species adapted to habitats with contrasting pathogen burdens. The recent publication of genome sequences of giraffe and okapi together afforded the opportunity to examine the evolution of selected TLRs in broad range of terrestrial ungulates and cetaceans during their complex habitat diversification. Through direct sequence comparisons and standard evolutionary approaches, the extent of nucleotide and protein sequence diversity in seven Toll-like receptors (TLR2, TLR3, TLR4, TLR5, TLR7, TLR9 and TLR10) between giraffe and closely related species was determined. In addition, comparison of the patterning of key TLR motifs and domains between giraffe and related species was performed. The quantification of selection pressure and divergence on TLRs among terrestrial ungulates and cetaceans was also performed. Sequence analysis shows that giraffe has 94-99% nucleotide identity with okapi and cattle for all TLRs analyzed. Variations in the number of Leucine-rich repeats were observed in some of TLRs between giraffe, okapi and cattle. Patterning of key TLR domains did not reveal any significant differences in the domain architecture among giraffe, okapi and cattle. Molecular evolutionary analysis for selection pressure identifies positive selection on key sites for all TLRs examined suggesting that pervasive evolutionary pressure has taken place during the evolution of terrestrial ungulates and cetaceans. Analysis of positively selected sites showed some site to be part of Leucine-rich motifs suggesting functional relevance in species-specific recognition of pathogen associated molecular patterns. Notably, clade analysis reveals significant selection divergence between terrestrial ungulates and cetaceans in viral sensing TLR3. Mapping of giraffe TLR3 key substitutions to the structure of the receptor indicates that at least one of giraffe altered sites coincides with TLR3 residue known to play a critical role in receptor signaling activity. There is overall structural conservation in TLRs among giraffe, okapi and cattle indicating that the mechanism for innate immune response utilizing TLR pathways may not have changed very much during the evolution of these species. However, a broader phylogenetic analysis revealed signatures of adaptive evolution among terrestrial ungulates and cetaceans, including the observed selection divergence in TLR3. This suggests that long term ecological dynamics has led to species-specific innovation and functional variation in the mechanisms mediating innate immunity in terrestrial ungulates and cetaceans.
ERIC Educational Resources Information Center
Minton, Gianna; Poh, Anna Norliza Zulkifli; Ngeian, Jenny; Peter, Cindy; Tuen, Andrew Alek
2012-01-01
Community workshops were held in coastal locations in Sarawak to raise awareness of cetacean conservation. Interviews were conducted up to 2 years later in four "workshop communities" as well as four villages where workshops were not conducted. Comparison of responses between respondents who had attended workshops (n = 127) versus those…
Hansen, Angela M. K.; Bryan, Colleen E.; West, Kristi; Jensen, Brenda A.
2016-01-01
The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997–2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (µg/g wet mass fraction) for non-essential trace elements such as Cd (0.0031–58.93) and Hg (0.0062–1571.75) were much greater than essential trace elements such as Mn (0.590–17.31) and Zn (14.72–245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean. PMID:26283019
[Determination of Trace Elements in Marine Cetaceans by ICP-MS and Health Risk Assessment].
Ding, Yu-long; Ning, Xi; Gui, Duan; Mo, Hui; Li, Yu-sen; Wu, Yu-ping
2015-09-01
The liver, kidney and muscle samples from seven cetaceans were digested by microwave digestion, and trace elements amounts of V, Cd, Cu, Zn, As, Cr, Ni, Mn, Se, Hg and Pb were determined by inductively coupled plasma mass spectrometry (ICP-MS), and the health risk assessment for Zn, Cu, Cd, Hg, Se in the liver was conducted. The results of international lobster hepatopancreas standard (TORT-2) showed acceptable agreement with the certified values, and the relative standard deviation (RSD) of eleven kinds of trace elements were less than 3.54%, showing that the method is suitable for the determination of trace elements in cetaceans. The experimental results indicated that different tissues and organs of the dolphins had different trace elements, presenting the tissue specificity. There is a certain inter-species difference among different dolphins about the bioaccumulation ability of the trace elements. The distribution of trace elements in whales presented a certain regularity: the contents of most elements in liver, kidney were much higher than the contents of muscle tissues, Cu, Mn, Hg, Se, and Zn exhibit the higher concentrations in liver, while Cd was mainly accumulated in kidney. And according to the health risk assessment in liver, the exceeding standardrate of selenium and copper in seven kinds of whales was 100%, suggesting that these whales were suffering the contamination of trace elements. The experimental results is instructive to the study of trace elements in cetaceans, while this is the first report for the concentrations in organs of Striped dolphin, Bottlenose dolphin, Fraser's Dolphin and Risso's dolphin in China, it may provide us valuable data for the conservation of cetaceans.
Hansen, Angela M K; Bryan, Colleen E; West, Kristi; Jensen, Brenda A
2016-01-01
The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997 to 2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (μg/g wet mass fraction) for non-essential trace elements, such as Cd (0.0031-58.93) and Hg (0.0062-1571.75) were much greater than essential trace elements, such as Mn (0.590-17.31) and Zn (14.72-245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean.
Costidis, Alex; Rommel, Sentiel A.
2012-01-01
Cetaceans have long been considered capable of limiting diving-induced nitrogen absorption and subsequent decompression sickness through a series of behavioral, anatomical, and physiological adaptations. Recent studies however suggest that in some situations these adaptive mechanisms might be overcome, resulting in lethal and sublethal injuries. Perhaps most relevant to this discussion is the finding of intravascular gas and fat emboli in mass-stranded beaked whales. Although the source of the gas emboli has as yet to been ascertained, preliminary findings suggest nitrogen is the primary component. Since nitrogen gas embolus formation in divers is linked to nitrogen saturation, it seems premature to dismiss similar pathogenic mechanisms in breath-hold diving cetaceans. Due to the various anatomical adaptations in cetacean lungs, the pulmonary system is thought of as an unlikely site of significant nitrogen absorption. The accessory sinus system on the ventral head of odontocete cetaceans contains a sizeable volume of air that is exposed to the changing hydrostatic pressures during a dive, and is intimately associated with vasculature potentially capable of absorbing nitrogen through its walls. The source of the fat emboli has also remained elusive. Most mammalian fat deposits are considered poorly vascularized and therefore unlikely sites of intravascular introduction of lipid, although cetacean blubber may not be as poorly vascularized as previously thought. We present new data on the vasculature of air sinuses and acoustic fat bodies in the head of bottlenose dolphins and compare it to published accounts. We show that the mandibular fat bodies and accessory sinus system are associated with extensive venous plexuses and suggest potential physiological and pathological implications. PMID:22969724
Social welfare as small-scale help: evolutionary psychology and the deservingness heuristic.
Petersen, Michael Bang
2012-01-01
Public opinion concerning social welfare is largely driven by perceptions of recipient deservingness. Extant research has argued that this heuristic is learned from a variety of cultural, institutional, and ideological sources. The present article provides evidence supporting a different view: that the deservingness heuristic is rooted in psychological categories that evolved over the course of human evolution to regulate small-scale exchanges of help. To test predictions made on the basis of this view, a method designed to measure social categorization is embedded in nationally representative surveys conducted in different countries. Across the national- and individual-level differences that extant research has used to explain the heuristic, people categorize welfare recipients on the basis of whether they are lazy or unlucky. This mode of categorization furthermore induces people to think about large-scale welfare politics as its presumed ancestral equivalent: small-scale help giving. The general implications for research on heuristics are discussed.
3D Kinematics and Hydrodynamic Analysis of Freely Swimming Cetacean
NASA Astrophysics Data System (ADS)
Ren, Yan; Sheinberg, Dustin; Liu, Geng; Dong, Haibo; Fish, Frank; Javed, Joveria
2015-11-01
It's widely thought that flexibility and the ability to control flexibility are crucial elements in determining the performance of animal swimming. However, there is a lack of quantification of both span-wise and chord-wise deformation of Cetacean's flukes and associated hydrodynamic performance during actively swimming. To fill this gap, we examined the motion and flexure of both dolphin fluke and orca fluke in steady swimming using a combined experimental and computational approach. It is found that the fluke surface morphing can effectively modulate the flow structures and influence the propulsive performance. Findings from this work are fundamental for understanding key kinematic features of effective Cetacean propulsors, and for quantifying the hydrodynamic force production that naturally occurs during different types of swimming. This work is supported by ONR MURI N00014-14-1-0533 and NSF CBET-1313217.
The Metabolic Cost of Sound Production in Odontocete Cetaceans
2011-09-30
Cetaceans Marla M. Holt NOAA NMFS Northwest Fisheries Science Center 2725 Montlake Blvd. East Seattle, WA 98112 phone: (206) 860-3261 fax...206) 860-3475 email: marla.holt@noaa.gov Dawn P. Noren NOAA NMFS Northwest Fisheries Science Center 2725 Montlake Blvd. East Seattle, WA...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NOAA NMFS Northwest Fisheries Science Center,2725 Montlake Blvd
Automatic Classification of Cetacean Vocalizations Using an Aural Classifier
2013-09-30
and K. Wong, Humpback whale (Megaptera novaeangliae) song occurrence at American Samoa in long-term passive acoustic recordings, 2008–2009, J. Acoust...vocalizations primarily from four1 cetacean species – the sperm whale , northern right whale , the bowhead whale and the humpback whale . These species...with the classifier as time permits. For example, Minke whale vocalizations, available on the Mobysound website, were the focal topic for the 5th
Epidermal lipid in several cetacean species: ultrastructural observations.
Pfeiffer, C J; Jones, F M
1993-09-01
The ultrastructure of the skin of four cetacean species, bottlenose dolphin (Tursiops truncatus) long-finned pilot whale (Globicephala melaena), humpback whale (Megaptera novaeangliae), and fin whale (Balaenoptera physalus) was investigated with particular reference to epidermal lipid. It has already been established that massive lipid reservoirs exist in whales, that the biochemical structures of cetacean lipids are unique, and that unusual intracellular lipid droplets appear in the epidermis. We report here some novel findings on scanning electron microscopic morphology of epidermal lipid, and on its ultrastructural morphology in general and specialized integumentary sites, including species not previously investigated. The intracellular epidermal lipid droplets were more extensive than lamellar body-derived intercellular lipid which is within the interstices of stratum externum cells. The intracellular droplets were spherical, highly variable in size ranging from 0.24 micron to 3.0 microns in diameter, appeared singly or were aggregated in cytoplasmic cavitations, and often were closely associated with epidermal cell nuclei. Evidence for exocytosis of the intracellular droplets was not observed. Significant numbers of intracellular lipid droplets are not observed in the epidermis of terrestrial mammals, so their presence is one of several aquatic specializations of the cetacean integument. Its full significance remains obscure, but it is more probably associated with epidermal cell metabolism than with secretion of lipid.
Epistatic interactions influence terrestrial–marine functional shifts in cetacean rhodopsin
2017-01-01
Like many aquatic vertebrates, whales have blue-shifting spectral tuning substitutions in the dim-light visual pigment, rhodopsin, that are thought to increase photosensitivity in underwater environments. We have discovered that known spectral tuning substitutions also have surprising epistatic effects on another function of rhodopsin, the kinetic rates associated with light-activated intermediates. By using absorbance spectroscopy and fluorescence-based retinal release assays on heterologously expressed rhodopsin, we assessed both spectral and kinetic differences between cetaceans (killer whale) and terrestrial outgroups (hippo, bovine). Mutation experiments revealed that killer whale rhodopsin is unusually resilient to pleiotropic effects on retinal release from key blue-shifting substitutions (D83N and A292S), largely due to a surprisingly specific epistatic interaction between D83N and the background residue, S299. Ancestral sequence reconstruction indicated that S299 is an ancestral residue that predates the evolution of blue-shifting substitutions at the origins of Cetacea. Based on these results, we hypothesize that intramolecular epistasis helped to conserve rhodopsin's kinetic properties while enabling blue-shifting spectral tuning substitutions as cetaceans adapted to aquatic environments. Trade-offs between different aspects of molecular function are rarely considered in protein evolution, but in cetacean and other vertebrate rhodopsins, may underlie multiple evolutionary scenarios for the selection of specific amino acid substitutions. PMID:28250185
Assessing cetacean surveys throughout the Mediterranean Sea: a gap analysis in environmental space.
Mannocci, Laura; Roberts, Jason J; Halpin, Patrick N; Authier, Matthieu; Boisseau, Oliver; Bradai, Mohamed Nejmeddine; Cañadas, Ana; Chicote, Carla; David, Léa; Di-Méglio, Nathalie; Fortuna, Caterina M; Frantzis, Alexandros; Gazo, Manel; Genov, Tilen; Hammond, Philip S; Holcer, Draško; Kaschner, Kristin; Kerem, Dani; Lauriano, Giancarlo; Lewis, Tim; Notarbartolo di Sciara, Giuseppe; Panigada, Simone; Raga, Juan Antonio; Scheinin, Aviad; Ridoux, Vincent; Vella, Adriana; Vella, Joseph
2018-02-15
Heterogeneous data collection in the marine environment has led to large gaps in our knowledge of marine species distributions. To fill these gaps, models calibrated on existing data may be used to predict species distributions in unsampled areas, given that available data are sufficiently representative. Our objective was to evaluate the feasibility of mapping cetacean densities across the entire Mediterranean Sea using models calibrated on available survey data and various environmental covariates. We aggregated 302,481 km of line transect survey effort conducted in the Mediterranean Sea within the past 20 years by many organisations. Survey coverage was highly heterogeneous geographically and seasonally: large data gaps were present in the eastern and southern Mediterranean and in non-summer months. We mapped the extent of interpolation versus extrapolation and the proportion of data nearby in environmental space when models calibrated on existing survey data were used for prediction across the entire Mediterranean Sea. Using model predictions to map cetacean densities in the eastern and southern Mediterranean, characterised by warmer, less productive waters, and more intense eddy activity, would lead to potentially unreliable extrapolations. We stress the need for systematic surveys of cetaceans in these environmentally unique Mediterranean waters, particularly in non-summer months.
Implementation of a method to visualize noise-induced hearing loss in mass stranded cetaceans
NASA Astrophysics Data System (ADS)
Morell, Maria; Brownlow, Andrew; McGovern, Barry; Raverty, Stephen A.; Shadwick, Robert E.; André, Michel
2017-02-01
Assessment of the impact of noise over-exposure in stranded cetaceans is challenging, as the lesions that lead to hearing loss occur at the cellular level and inner ear cells are very sensitive to autolysis. Distinguishing ante-mortem pathology from post-mortem change has been a major constraint in diagnosing potential impact. Here, we outline a methodology applicable to the detection of noise-induced hearing loss in stranded cetaceans. Inner ears from two mass strandings of long-finned pilot whales in Scotland were processed for scanning electron microscopy observation. In one case, a juvenile animal, whose ears were fixed within 4 hours of death, revealed that many sensory cells at the apex of the cochlear spiral were missing. In this case, the absence of outer hair cells would be compatible with overexposure to underwater noise, affecting the region which transduces the lowest frequencies of the pilot whales hearing spectrum. Perfusion of cochlea with fixative greatly improved preservation and enabled diagnostic imaging of the organ of Corti, even 30 hours after death. This finding supports adopting a routine protocol to detect the pathological legacy of noise overexposure in mass stranded cetaceans as a key to understanding the complex processes and implications that lie behind such stranding events.
Richman, Nadia I.; Gibbons, James M.; Turvey, Samuel T.; Akamatsu, Tomonari; Ahmed, Benazir; Mahabub, Emile; Smith, Brian D.; Jones, Julia P. G.
2014-01-01
Detection of animals during visual surveys is rarely perfect or constant, and failure to account for imperfect detectability affects the accuracy of abundance estimates. Freshwater cetaceans are among the most threatened group of mammals, and visual surveys are a commonly employed method for estimating population size despite concerns over imperfect and unquantified detectability. We used a combined visual-acoustic survey to estimate detectability of Ganges River dolphins (Platanista gangetica gangetica) in four waterways of southern Bangladesh. The combined visual-acoustic survey resulted in consistently higher detectability than a single observer-team visual survey, thereby improving power to detect trends. Visual detectability was particularly low for dolphins close to meanders where these habitat features temporarily block the view of the preceding river surface. This systematic bias in detectability during visual-only surveys may lead researchers to underestimate the importance of heavily meandering river reaches. Although the benefits of acoustic surveys are increasingly recognised for marine cetaceans, they have not been widely used for monitoring abundance of freshwater cetaceans due to perceived costs and technical skill requirements. We show that acoustic surveys are in fact a relatively cost-effective approach for surveying freshwater cetaceans, once it is acknowledged that methods that do not account for imperfect detectability are of limited value for monitoring. PMID:24805782
Richman, Nadia I; Gibbons, James M; Turvey, Samuel T; Akamatsu, Tomonari; Ahmed, Benazir; Mahabub, Emile; Smith, Brian D; Jones, Julia P G
2014-01-01
Detection of animals during visual surveys is rarely perfect or constant, and failure to account for imperfect detectability affects the accuracy of abundance estimates. Freshwater cetaceans are among the most threatened group of mammals, and visual surveys are a commonly employed method for estimating population size despite concerns over imperfect and unquantified detectability. We used a combined visual-acoustic survey to estimate detectability of Ganges River dolphins (Platanista gangetica gangetica) in four waterways of southern Bangladesh. The combined visual-acoustic survey resulted in consistently higher detectability than a single observer-team visual survey, thereby improving power to detect trends. Visual detectability was particularly low for dolphins close to meanders where these habitat features temporarily block the view of the preceding river surface. This systematic bias in detectability during visual-only surveys may lead researchers to underestimate the importance of heavily meandering river reaches. Although the benefits of acoustic surveys are increasingly recognised for marine cetaceans, they have not been widely used for monitoring abundance of freshwater cetaceans due to perceived costs and technical skill requirements. We show that acoustic surveys are in fact a relatively cost-effective approach for surveying freshwater cetaceans, once it is acknowledged that methods that do not account for imperfect detectability are of limited value for monitoring.
Automatic Classification of Cetacean Vocalizations Using an Aural Classifier
2012-09-30
were used to test the classifier. A band-limited energy detector was used to process the baleen ( humback , bowhead, and right whale ) vocalizations and...from four1 cetacean species – the sperm whale , northern right whale , the bowhead whale and the humpback whale . These species were chosen for the...if time permits. For example, Minke whale vocalizations have recently been made available on the Mobysound website as the focal topic for the 5th
2013-09-30
Designs to Maximize Tag Robustness and Minimize Health Effects to Individual Animals Alexandre N. Zerbini Cascadia Research Collective 218 ½ 4th...the blubber-muscle interface and minimize physical and physiological effects of body penetrating tags to individual animals . OBJECTIVES (1...integrity of designs created in Objective (1) during laboratory experiments and in cetacean carcasses ; (3) Examine structural tissue damage in the
Ramu, Karri; Kajiwara, Natsuko; Tanabe, Shinsuke; Lam, Paul K S; Jefferson, Thomas A
2005-01-01
Polybrominated diphenyl ethers (PBDEs) and organochlorine compounds (OCs) were determined in the blubber, liver and kidney of Indo-Pacific humpback dolphins (Sousa chinensis) and finless porpoises (Neophocaena phocaenoides) stranded in Hong Kong coastal waters during 1995-2001. Among the organohalogen compounds analyzed, DDTs were the most dominant contaminants with concentrations ranging from 9.9 to 470 microg/g lipid wt. PBDEs in Hong Kong cetaceans, which are reported for the first time, were detected in all the samples with values ranging from 0.23 to 6.0 microg/g lipid wt., with a predominance of BDE-47. Results from this study suggest PBDEs should be classified as priority pollutants in Asia. Higher concentrations were found in humpback dolphins than in finless porpoises, and this was attributed mainly to differences in habitat. Elevated residues of PCBs and DDTs in some cetaceans suggest these species may be at risk.
Diversity of deep-water cetaceans in relation to temperature: implications for ocean warming.
Whitehead, Hal; McGill, Brian; Worm, Boris
2008-11-01
Understanding the effects of natural environmental variation on biodiversity can help predict response to future anthropogenic change. Here we analyse a large, long-term data set of sightings of deep-water cetaceans from the Atlantic, Pacific and Indian Oceans. Seasonal and geographic changes in the diversity of these genera are well predicted by a convex function of sea-surface temperature peaking at c. 21 degrees C. Thus, diversity is highest at intermediate latitudes - an emerging general pattern for the pelagic ocean. When applied to a range of Intergovernmental Panel on Climate Change global change scenarios, the predicted response is a decline of cetacean diversity across the tropics and increases at higher latitudes. This suggests that deep-water oceanic communities that dominate > 60% of the planet's surface may reorganize in response to ocean warming, with low-latitude losses of diversity and resilience.
Harrison, Jolie; Ferguson, Megan; Gedamke, Jason; Hatch, Leila; Southall, Brandon; Van Parijs, Sofie
2016-01-01
To help manage chronic and cumulative impacts of human activities on marine mammals, the National Oceanic and Atmospheric Administration (NOAA) convened two working groups, the Underwater Sound Field Mapping Working Group (SoundMap) and the Cetacean Density and Distribution Mapping Working Group (CetMap), with overarching effort of both groups referred to as CetSound, which (1) mapped the predicted contribution of human sound sources to ocean noise and (2) provided region/time/species-specific cetacean density and distribution maps. Mapping products were presented at a symposium where future priorities were identified, including institutionalization/integration of the CetSound effort within NOAA-wide goals and programs, creation of forums and mechanisms for external input and funding, and expanded outreach/education. NOAA is subsequently developing an ocean noise strategy to articulate noise conservation goals and further identify science and management actions needed to support them.
Hydrodynamic Performance of the Flippers of Large-bodied Cetaceans in Relation to Locomotor Ecology
2014-04-01
flow velocity (m/s) m Kinematic viscosity (m2/s) Table 2. Morphometrics of cetaceans and flippers. Fin whale Balaenoptera physalus Killer whale Orcinus...chord (m), and m is the kinematic viscosity (m2/s). Fluid kinematic similarity was obtained by ensuring both geometric and dynamic similarity between...the model and the flipper. Equation (2) was used to determine appropriate water tunnel testing speeds given the geometric parameters and water
Cetacean Community Ecology in the Waters of Sri Lanka and the Bay of Bengal
2014-09-30
dolphins, “blackfish” (pilot, melon-headed, and false killer whales ), sperm whales , beaked whales , pygmy and dwarf sperm whales , and several baleen... whale species occur over the continental slope and abyssal plain of the oceanic Bay (Leatherwood et al. 1984, Ballance and Pittman 1998, de Boer et...al. 2002). Among all the cetaceans, the presence of baleen whales in this low-latitude habitat, including blue, humpback, fin, minke, and Bryde’s
Cetacean Community Ecology in the Waters of Sri Lanka and the Bay of Bengal
2013-09-30
variety of oceanic dolphins, “blackfish” (pilot, melon-headed, and false killer whales ), sperm whales , beaked whales , pygmy and dwarf sperm whales , and...several baleen whale species occur over the continental slope and abyssal plain of the oceanic Bay (Leatherwood et al. 1984, Ballance and Pittman 1998...de Boer et al. 2002). Among all the cetaceans, the presence of baleen whales in this low-latitude habitat, including blue, humpback, fin, minke
2011-01-18
University of Hawaii , Hilo , 200 W. Kawili St., Hilo , Hi, 8 96720, USA 9 10 KEYWORDS 11 Blainville’s beaked whale, hearing, marine mammals, acoustics...was 103 transported to the Hawaii Cetacean Rehabilitation Center in Hilo , Hawaii (HCRF). Hearing measurements 104 were collected for frequencies...given mineral and 114 electrolyte injections and transported via a Coast Guard flight to the University of Hawaii Hilo Cetacean 115 Rehabilitation
Comparative genomics reveals conservation of filaggrin and loss of caspase-14 in dolphins.
Strasser, Bettina; Mlitz, Veronika; Fischer, Heinz; Tschachler, Erwin; Eckhart, Leopold
2015-05-01
The expression of filaggrin and its stepwise proteolytic degradation are critical events in the terminal differentiation of epidermal keratinocytes and in the formation of the skin barrier to the environment. Here, we investigated whether the evolutionary transition from a terrestrial to a fully aquatic lifestyle of cetaceans, that is dolphins and whales, has been associated with changes in genes encoding filaggrin and proteins involved in the processing of filaggrin. We used comparative genomics, PCRs and re-sequencing of gene segments to screen for the presence and integrity of genes coding for filaggrin and proteases implicated in the maturation of (pro)filaggrin. Filaggrin has been conserved in dolphins (bottlenose dolphin, orca and baiji) but has been lost in whales (sperm whale and minke whale). All other S100 fused-type genes have been lost in cetaceans. Among filaggrin-processing proteases, aspartic peptidase retroviral-like 1 (ASPRV1), also known as saspase, has been conserved, whereas caspase-14 has been lost in all cetaceans investigated. In conclusion, our results suggest that filaggrin is dispensable for the acquisition of fully aquatic lifestyles of whales, whereas it appears to confer an evolutionary advantage to dolphins. The discordant evolution of filaggrin, saspase and caspase-14 in cetaceans indicates that the biological roles of these proteins are not strictly interdependent. © 2015 The Authors. Experimental Dermatology Published by John Wiley & Sons Ltd.
Immunology of whales and dolphins.
Beineke, Andreas; Siebert, Ursula; Wohlsein, Peter; Baumgärtner, Wolfgang
2010-02-15
The increasing disease susceptibility in different whale and dolphin populations has led to speculation about a possible negative influence of environmental contaminants on the immune system and therefore on the health status of marine mammals. Despite current efforts in the immunology of marine mammals several aspects of immune functions in aquatic mammals remain unknown. However, assays for evaluating cellular immune responses, such as lymphocyte proliferation, respiratory burst as well as phagocytic and cytotoxic activity of leukocytes and humoral immune responses have been established for different cetacean species. Additionally, immunological and molecular techniques enable the detection and quantification of pro- and anti-inflammatory cytokines in lymphoid cells during inflammation or immune responses, respectively. Different T and B cell subsets as well as antigen-presenting cells can be detected by flow cytometry and immunohistochemistry. Despite great homologies between marine and terrestrial mammal lymphoid organs, some unique anatomical structures, particularly the complex lymphoepithelial laryngeal glands in cetaceans represent an adaptation to the marine environment. Additionally, physiological changes, such as age-related thymic atrophy and cystic degeneration of the "anal tonsil" of whales have to be taken into account when investigating these lymphoid structures. Systemic morbillivirus infections lead to fatalities in cetaceans associated with generalized lymphoid depletion. Similarly, chronic diseases and starvation are associated with a loss of functional lymphoid cells and decreased resistance against opportunistic infections. There is growing evidence for an immunotoxic effect of different environmental contaminants in whales and dolphins, as demonstrated in field studies. Furthermore, immunomodulatory properties of different persistent xenobiotics have been confirmed in cetacean lymphoid cells in vitro as well as in animal models in vivo. However, species-specific differences of the immune system and detoxification of xenobiotics between cetaceans and laboratory rodents have to be considered when interpreting these toxicological data for risk assessment in whales and dolphins. Copyright 2009 Elsevier B.V. All rights reserved.
Developing a Passive Acoustic Monitoring Network for Harbor Porpoise in California
NASA Astrophysics Data System (ADS)
Jacobson, Eiren Kate
Assessing the abundance of and trends in whale, dolphin, and porpoise (cetacean) populations using traditional visual methods can be challenging due primarily to their limited availability at the surface of the ocean. As a result, researchers are increasingly interested in incorporating non-visual and remote observations to improve cetacean population assessments. Passive acoustic monitoring (PAM) can complement or replace visual surveys for cetaceans that produce echolocation clicks, whistles, and other vocalizations. My doctoral dissertation is focused on developing methods to improve PAM of cetaceans. I used the Monterey Bay population of harbor porpoise (Phocoena phocoena ) as a case study for methods development. In Chapter 2, I used passive acoustic data to document that harbor porpoises avoid bottlenose dolphins (Tursiops truncatus) in nearshore Monterey Bay. In Chapter 3, I investigated whether different passive acoustic instruments could be used to monitor harbor porpoise. I recorded harbor porpoise echolocation clicks simultaneously on two different passive acoustic instruments and compared the number and peak frequency of echolocation signals recorded on the two instruments. I found that the number of echolocation clicks was highly correlated between instruments but that the peak frequency of echolocation clicks was not well-correlated, suggesting that some instruments may not be capable of discriminating harbor porpoise echolocation clicks in regions where multiple species with similar echolocation signals are present. In Chapter 4, I used paired visual and passive acoustic surveys to estimate the effective detection area of the passive acoustic sensors in a Bayesian framework. This approach resulted in a posterior distribution of the effective detection area that was consistent with previously published values. In Chapter 5, I used aerial survey and passive acoustic data in a simulation framework to investigate the statistical power of different passive acoustic network designs and hypothetical changes in harbor porpoise abundance. As a whole, this dissertation used an applied approach to methods development to advance the use of PAM for cetaceans.
Lusher, Amy L; Hernandez-Milian, Gema; Berrow, Simon; Rogan, Emer; O'Connor, Ian
2018-01-01
Interactions between marine mammals and plastic debris have been the focus of studies for many years. Examples of interactions include entanglement in discarded fishing items or the presence of ingested debris in digestive tracts. Plastics, including microplastics, are a form of marine debris globally distributed in coastal areas, oceanic waters and deep seas. Cetaceans which strand along the coast present a unique opportunity to study interactions between animals with macro- and microplastics. A combination of novel techniques and a review of historical data was used to complete an extensive study of cetaceans interacting with marine debris within Irish waters. Of the 25 species of marine mammals reported in Irish waters, at least 19 species were reported stranded between 1990 and 2015 (n = 2934). Two hundred and forty-one of the stranded cetaceans presented signs of possible entanglement or interactions with fisheries. Of this number, 52.7% were positively identified as bycatch or as entangled in fisheries items, 26.6% were classified as mutilated and 20.7% could not be related to fisheries but showed signs of entanglement. In addition, 274 cetaceans were recorded as by-catch during observer programmes targeting albacore tuna. Post-mortem examinations were carried out on a total of 528 stranded and bycaught individuals and 45 (8.5%) had marine debris in their digestive tracts: 21 contained macrodebris, 21 contained microdebris and three had both macro- and microdebris. Forty percent of the ingested debris were fisheries related items. All 21 individuals investigated with the novel method for microplastics contained microplastics, composed of fibres (83.6%) and fragments (16.4%). Deep diving species presented more incidences of macrodebris ingestion but it was not possible to investigate this relationship to ecological habitat. More research on the plastic implications to higher trophic level organisms is required to understand the effects of these pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Diogo, Rui; Bello-Hellegouarch, Gaelle; Kohlsdorf, Tiana; Esteve-Altava, Borja; Molnar, Julia L
2016-09-01
Opossums are frequent subjects of developmental studies because marsupials share developmental features not seen in placentals and because Didelphimorpha is the sister-group of other extant Marsupialia. But is the adult marsupial muscular system markedly different from that of placentals or is it, like the skeletal system, very similar? We provide, for the first time, a brief description of all head and limb muscles of Didelphis virginiana based on our dissections and using a unifying nomenclature by integrating the data gathered in our long-term project on the development, homologies, and evolution of the muscles of all major vertebrate taxa. Our data indicate that there were many more muscle synapomorphic changes from the last common ancestor (LCA) of amniotes to the mammalian LCA (63) and from this LCA to the LCA of extant therians (48) than from this latter LCA to the LCA of extant placentals (10 or 11). Importantly, Didelphis is anatomically more plesiomorphic (only 14 changes from LCA of extant therians) than are rats (37 changes) and humans (63 changes), but its musculature is more complex (193 muscles) than that of humans (only 180 muscles). Of the 194 muscles of Didelphis, 172 (89%) are present in rats, meaning that their adult muscle anatomy is indeed very similar. This similarity supports the existence of a common, easy recognizable therian Bauplan, but one that is caused by developmental constraints and by evolutionary change driven by the needs of the embryos/neonates, rather than by a "goal" toward a specific adult plan/"archetype," as the name Bauplan suggests. Anat Rec, 299:1224-1255, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Cetacean Bioacoustics with Emphasis on Recording and Monitoring
NASA Astrophysics Data System (ADS)
Akamatsu, Tomonari
More than 80 cetacean species live in oceans, lakes, and rivers. For underwater navigation and recognition, whales and dolphins have developed unique sensory systems using acoustic signals. Toothed whales, such as dolphins and porpoises, have sonar using ultrasonic pulse trains called echolocations (Au, 1993). As top predators in the water, dolphins and porpoises rely on accurate and long-range sensory systems for catching prey. Dolphins have another type of vocalization called a whistle that is narrowband with a long duration.
Johnson, Douglas H.; Cook, R.D.
2013-01-01
In her AAAS News & Notes piece "Can the Southwest manage its thirst?" (26 July, p. 362), K. Wren quotes Ajay Kalra, who advocates a particular method for predicting Colorado River streamflow "because it eschews complex physical climate models for a statistical data-driven modeling approach." A preference for data-driven models may be appropriate in this individual situation, but it is not so generally, Data-driven models often come with a warning against extrapolating beyond the range of the data used to develop the models. When the future is like the past, data-driven models can work well for prediction, but it is easy to over-model local or transient phenomena, often leading to predictive inaccuracy (1). Mechanistic models are built on established knowledge of the process that connects the response variables with the predictors, using information obtained outside of an extant data set. One may shy away from a mechanistic approach when the underlying process is judged to be too complicated, but good predictive models can be constructed with statistical components that account for ingredients missing in the mechanistic analysis. Models with sound mechanistic components are more generally applicable and robust than data-driven models.
NASA Astrophysics Data System (ADS)
de Quirós, Yara Bernaldo; González-Díaz, Óscar; Saavedra, Pedro; Arbelo, Manuel; Sierra, Eva; Sacchini, Simona; Jepson, Paul D.; Mazzariol, Sandro; di Guardo, Giovanni; Fernández, Antonio
2011-12-01
Gas-bubble lesions were described in cetaceans stranded in spatio-temporal concordance with naval exercises using high-powered sonars. A behaviourally induced decompression sickness-like disease was proposed as a plausible causal mechanism, although these findings remain scientifically controversial. Investigations into the constituents of the gas bubbles in suspected gas embolism cases are highly desirable. We have found that vacuum tubes, insulin syringes and an aspirometer are reliable tools for in situ gas sampling, storage and transportation without appreciable loss of gas and without compromising the accuracy of the analysis. Gas analysis is conducted by gas chromatography in the laboratory. This methodology was successfully applied to a mass stranding of sperm whales, to a beaked whale stranded in spatial and temporal association with military exercises and to a cetacean chronic gas embolism case. Results from the freshest animals confirmed that bubbles were relatively free of gases associated with putrefaction and consisted predominantly of nitrogen.
Seasonal and diel patterns in cetacean use and foraging at a potential marine renewable energy site.
Nuuttila, Hanna K; Bertelli, Chiara M; Mendzil, Anouska; Dearle, Nessa
2018-04-01
Marine renewable energy (MRE) developments often coincide with sites frequented by small cetaceans. To understand habitat use and assess potential impact from development, echolocation clicks were recorded with acoustic click loggers (C-PODs) in Swansea Bay, Wales (UK). General Additive Models (GAMs) were applied to assess the effects of covariates including month, hour, tidal range and temperature. Analysis of inter-click intervals allowed the identification of potential foraging events as well as patterns of presence and absence. Data revealed year-round presence of porpoise, with distinct seasonal and diel patterns. Occasional acoustic encounters of dolphins were also recorded. This study provides further evidence of the need for assessing temporal trends in cetacean presence and habitat use in areas considered for development. These findings could assist MRE companies to monitor and mitigate against disturbance from construction, operation and decommissioning activities by avoiding times when porpoise presence and foraging activity is highest in the area. Copyright © 2017 Elsevier Ltd. All rights reserved.
de Quirós, Yara Bernaldo; González-Díaz, Óscar; Saavedra, Pedro; Arbelo, Manuel; Sierra, Eva; Sacchini, Simona; Jepson, Paul D.; Mazzariol, Sandro; Di Guardo, Giovanni; Fernández, Antonio
2011-01-01
Gas-bubble lesions were described in cetaceans stranded in spatio-temporal concordance with naval exercises using high-powered sonars. A behaviourally induced decompression sickness-like disease was proposed as a plausible causal mechanism, although these findings remain scientifically controversial. Investigations into the constituents of the gas bubbles in suspected gas embolism cases are highly desirable. We have found that vacuum tubes, insulin syringes and an aspirometer are reliable tools for in situ gas sampling, storage and transportation without appreciable loss of gas and without compromising the accuracy of the analysis. Gas analysis is conducted by gas chromatography in the laboratory. This methodology was successfully applied to a mass stranding of sperm whales, to a beaked whale stranded in spatial and temporal association with military exercises and to a cetacean chronic gas embolism case. Results from the freshest animals confirmed that bubbles were relatively free of gases associated with putrefaction and consisted predominantly of nitrogen. PMID:22355708
Curé, Charlotte; Antunes, Ricardo; Alves, Ana Catarina; Visser, Fleur; Kvadsheim, Petter H.; Miller, Patrick J. O.
2013-01-01
Interactions between individuals of different cetacean species are often observed in the wild. Killer whales (Orcinus orca) can be potential predators of many other cetaceans, and the interception of their vocalizations by unintended cetacean receivers may trigger anti-predator behavior that could mediate predator-prey interactions. We explored the anti-predator behaviour of five typically-solitary male sperm whales (Physeter macrocephalus) in the Norwegian Sea by playing sounds of mammal-feeding killer whales and monitoring behavioural responses using multi-sensor tags. Our results suggest that, rather than taking advantage of their large aerobic capacities to dive away from the perceived predator, sperm whales responded to killer whale playbacks by interrupting their foraging or resting dives and returning to the surface, changing their vocal production, and initiating a surprising degree of social behaviour in these mostly solitary animals. Thus, the interception of predator vocalizations by male sperm whales disrupted functional behaviours and mediated previously unrecognized anti-predator responses. PMID:23545484
Hearing Loss in Stranded Odontocete Dolphins and Whales
Mann, David; Hill-Cook, Mandy; Manire, Charles; Greenhow, Danielle; Montie, Eric; Powell, Jessica; Wells, Randall; Bauer, Gordon; Cunningham-Smith, Petra; Lingenfelser, Robert; DiGiovanni, Robert; Stone, Abigale; Brodsky, Micah; Stevens, Robert; Kieffer, George; Hoetjes, Paul
2010-01-01
The causes of dolphin and whale stranding can often be difficult to determine. Because toothed whales rely on echolocation for orientation and feeding, hearing deficits could lead to stranding. We report on the results of auditory evoked potential measurements from eight species of odontocete cetaceans that were found stranded or severely entangled in fishing gear during the period 2004 through 2009. Approximately 57% of the bottlenose dolphins and 36% of the rough-toothed dolphins had significant hearing deficits with a reduction in sensitivity equivalent to severe (70–90 dB) or profound (>90 dB) hearing loss in humans. The only stranded short-finned pilot whale examined had profound hearing loss. No impairments were detected in seven Risso's dolphins from three different stranding events, two pygmy killer whales, one Atlantic spotted dolphin, one spinner dolphin, or a juvenile Gervais' beaked whale. Hearing impairment could play a significant role in some cetacean stranding events, and the hearing of all cetaceans in rehabilitation should be tested. PMID:21072206
Yeast infection in a beached southern right whale (Eubalaena australis) neonate.
Mouton, Marnel; Reeb, Desray; Botha, Alfred; Best, Peter
2009-07-01
A female southern right whale (Eubalaena australis) neonate was found stranded on the Western Cape coast of southern Africa. Skin samples were taken the same day from three different locations on the animal's body and stored at -20 C. Isolation through repetitive culture of these skin sections yielded a single yeast species, Candida zeylanoides. Total genomic DNA also was isolated directly from skin samples. Polymerase chain reaction analysis of the internal transcribed spacer region of the fungal ribosomal gene cluster revealed the presence of Filobasidiella neoformans var. neoformans, the teleomorphic state of Cryptococcus neoformans. Fungal infections in cetaceans seem to be limited when compared to infections caused by bacteria, viruses and parasites. However, Candida species appear to be the most common type of fungal infection associated with cetaceans. To our knowledge this is the first report of a C. zeylanoides infection in a mysticete, as well as the first report of a dual infection involving two opportunistic pathogenic yeast species in a cetacean.
2012-01-01
Background The capacity for herpesvirus to cause disease in cetaceans is unclear and may be varied depending on the different conditions of individuals and between different species. Kidney pathology and intralesional virus-associated infection have been rarely reported in cetaceans. Result On April 2004, an old adult male Blainville’s beaked whale (Mesoplodon densirostris) 420 cm long with a poor body condition was stranded on Tenerife Island. During necropsy, no gross lesions were observed in the kidneys. However, membranous glomerulonephritis, multifocal interstitial lymphoplasmacytic nephritis and acute multifocal necrotizing tubulointerstitial nephritis with intranuclear inclusion bodies was diagnosed by histological analysis. Tissue samples were submitted for bacteriological analysis and molecular viral screening. Conclusion A novel alpha herpesvirus associated with interstitial nephritis was identified in an old adult male Blainville's beaked whale (M. densirostris) with a poor body condition stranded in the Canary Islands. This report suggests that identification of herpesvirus infection could be used as a differential diagnosis for interstitial nephritis in cetaceans. PMID:23237059
Fossi, Maria Cristina; Panti, Cristina; Marsili, Letizia; Maltese, Silvia; Spinsanti, Giacomo; Casini, Silvia; Caliani, Ilaria; Gaspari, Stefania; Muñoz-Arnanz, Juan; Jimenez, Begoña; Finoia, Maria Grazia
2013-05-15
The concurrence of man-made pressures on cetaceans in the Mediterranean Sea is potentially affecting population stability and marine biodiversity. This needs to be proven for the only pelagic marine protected area in the Mediterranean Sea: the Pelagos Sanctuary for Mediterranean Marine Mammals. Here we applied a multidisciplinary tool, using diagnostic markers elaborated in a statistical model to rank toxicological stress in Mediterranean cetaceans. As a case study we analyzed persistent, bioaccumulative and toxic chemicals combined with a wide range of diagnostic markers of exposure to anthropogenic contaminants and genetic variation as marker of genetic erosion in striped dolphin (Stenella coeruleoalba) skin biopsies. Finally, a statistical model was applied to obtain a complete toxicological profile of the striped dolphin in the Pelagos Sanctuary and other Mediterranean areas (Ionian Sea and Strait of Gibraltar). Here we provide the first complete evidence of the toxicological stress in cetaceans living in Pelagos Sanctuary. Copyright © 2013 Elsevier Ltd. All rights reserved.
Curé, Charlotte; Antunes, Ricardo; Alves, Ana Catarina; Visser, Fleur; Kvadsheim, Petter H; Miller, Patrick J O
2013-01-01
Interactions between individuals of different cetacean species are often observed in the wild. Killer whales (Orcinus orca) can be potential predators of many other cetaceans, and the interception of their vocalizations by unintended cetacean receivers may trigger anti-predator behavior that could mediate predator-prey interactions. We explored the anti-predator behaviour of five typically-solitary male sperm whales (Physeter macrocephalus) in the Norwegian Sea by playing sounds of mammal-feeding killer whales and monitoring behavioural responses using multi-sensor tags. Our results suggest that, rather than taking advantage of their large aerobic capacities to dive away from the perceived predator, sperm whales responded to killer whale playbacks by interrupting their foraging or resting dives and returning to the surface, changing their vocal production, and initiating a surprising degree of social behaviour in these mostly solitary animals. Thus, the interception of predator vocalizations by male sperm whales disrupted functional behaviours and mediated previously unrecognized anti-predator responses.
Hearing loss in stranded odontocete dolphins and whales.
Mann, David; Hill-Cook, Mandy; Manire, Charles; Greenhow, Danielle; Montie, Eric; Powell, Jessica; Wells, Randall; Bauer, Gordon; Cunningham-Smith, Petra; Lingenfelser, Robert; DiGiovanni, Robert; Stone, Abigale; Brodsky, Micah; Stevens, Robert; Kieffer, George; Hoetjes, Paul
2010-11-03
The causes of dolphin and whale stranding can often be difficult to determine. Because toothed whales rely on echolocation for orientation and feeding, hearing deficits could lead to stranding. We report on the results of auditory evoked potential measurements from eight species of odontocete cetaceans that were found stranded or severely entangled in fishing gear during the period 2004 through 2009. Approximately 57% of the bottlenose dolphins and 36% of the rough-toothed dolphins had significant hearing deficits with a reduction in sensitivity equivalent to severe (70-90 dB) or profound (>90 dB) hearing loss in humans. The only stranded short-finned pilot whale examined had profound hearing loss. No impairments were detected in seven Risso's dolphins from three different stranding events, two pygmy killer whales, one Atlantic spotted dolphin, one spinner dolphin, or a juvenile Gervais' beaked whale. Hearing impairment could play a significant role in some cetacean stranding events, and the hearing of all cetaceans in rehabilitation should be tested.
Evolution of the alternative AQP2 gene: Acquisition of a novel protein-coding sequence in dolphins.
Kishida, Takushi; Suzuki, Miwa; Takayama, Asuka
2018-01-01
Taxon-specific de novo protein-coding sequences are thought to be important for taxon-specific environmental adaptation. A recent study revealed that bottlenose dolphins acquired a novel isoform of aquaporin 2 generated by alternative splicing (alternative AQP2), which helps dolphins to live in hyperosmotic seawater. The AQP2 gene consists of four exons, but the alternative AQP2 gene lacks the fourth exon and instead has a longer third exon that includes the original third exon and a part of the original third intron. Here, we show that the latter half of the third exon of the alternative AQP2 arose from a non-protein-coding sequence. Intact ORF of this de novo sequence is shared not by all cetaceans, but only by delphinoids. However, this sequence is conservative in all modern cetaceans, implying that this de novo sequence potentially plays important roles for marine adaptation in cetaceans. Copyright © 2017 Elsevier Inc. All rights reserved.
Beluga whale pVHL enhances HIF-2α activity via inducing HIF-2α proteasomal degradation under hypoxia
Bi, Jianling; Hu, Bo; Wang, Jing; Liu, Xing; Zheng, Jinsong; Wang, Ding; Xiao, Wuhan
2017-01-01
Aquatic mammals, such as cetaceans experience various depths, with accordingly diverse oxygenation, thus, cetaceans have developed adaptations for hypoxia, but mechanisms underlying this tolerance to low oxygen are unclear. Here we analyzed VHL and HIF-2α, in the hypoxia signaling pathway. Variations in VHL are greater than HIF-2α between cetaceans and terrestrial mammals, and beluga whale VHL (BW-VHL) promotes HIF-2α degradation under hypoxia. BW-VHL catalyzes BW-HIF-2α to form K48-linked poly-ubiquitin chains mainly at the lysine 429 of BW-HIF-2α (K429) and induces BW-HIF-2α for proteasomal degradation. W100 within BW-VHL is a key site for BW-VHL functionally and BW-VHL enhances transcriptional activity of BW-HIF-2α under hypoxia. Our data therefore reveal that BW-VHL has a unique function that may contribute to hypoxic adaptation. PMID:28178687
Schwartz, Joseph A; Beaver, Kevin M
2016-09-01
A substantial number of previous studies have reported significant associations between television viewing habits and a host of detrimental outcomes including increased contact with the criminal justice system. However, it remains unclear whether the results flowing from this literature are generalizable to other samples and whether previously observed associations are confounded due to uncontrolled genetic influences. The current study addresses these limitations using the National Longitudinal Study of Adolescent to Adult Health (Add Health). The results of the preliminary models, which do not include controls for genetic influences, produced a pattern of results similar to those previously reported in the extant literature. The results of the genetically informed models revealed that the associations between television viewing and antisocial outcomes are not causal, but rather are driven by uncontrolled genetic influences. Further replication is required, but these findings suggest that results drawn from the extant literature may not be trustworthy. © The Author(s) 2015.
Distribution, abundance and habitat use of deep diving cetaceans in the North-East Atlantic
NASA Astrophysics Data System (ADS)
Rogan, Emer; Cañadas, Ana; Macleod, Kelly; Santos, M. Begoña; Mikkelsen, Bjarni; Uriarte, Ainhize; Van Canneyt, Olivier; Vázquez, José Antonio; Hammond, Philip S.
2017-07-01
In spite of their oceanic habitat, deep diving cetacean species have been found to be affected by anthropogenic activities, with potential population impacts of high intensity sounds generated by naval research and oil prospecting receiving the most attention. Improving the knowledge of the distribution and abundance of this poorly known group is an essential prerequisite to inform mitigation strategies seeking to minimize their spatial and temporal overlap with human activities. We provide for the first time abundance estimates for five deep diving cetacean species (sperm whale, long-finned pilot whale, northern bottlenose whale, Cuvier's beaked whale and Sowerby's beaked whale) using data from three dedicated cetacean sighting surveys that covered the oceanic and shelf waters of the North-East Atlantic. Density surface modelling was used to obtain model-based estimates of abundance and to explore the physical and biological characteristics of the habitat used by these species. Distribution of all species was found to be significantly related to depth, distance from the 2000m depth contour, the contour index (a measure of variability in the seabed) and sea surface temperature. Predicted distribution maps also suggest that there is little spatial overlap between these species. Our results represent the best abundance estimates for deep-diving whales in the North-East Atlantic, predict areas of high density during summer and constitute important baseline information to guide future risk assessments of human activities on these species, evaluate potential spatial and temporal trends and inform EU Directives and future conservation efforts.
Genome-wide scans for candidate genes involved in the aquatic adaptation of dolphins.
Sun, Yan-Bo; Zhou, Wei-Ping; Liu, He-Qun; Irwin, David M; Shen, Yong-Yi; Zhang, Ya-Ping
2013-01-01
Since their divergence from the terrestrial artiodactyls, cetaceans have fully adapted to an aquatic lifestyle, which represents one of the most dramatic transformations in mammalian evolutionary history. Numerous morphological and physiological characters of cetaceans have been acquired in response to this drastic habitat transition, such as thickened blubber, echolocation, and ability to hold their breath for a long period of time. However, knowledge about the molecular basis underlying these adaptations is still limited. The sequence of the genome of Tursiops truncates provides an opportunity for a comparative genomic analyses to examine the molecular adaptation of this species. Here, we constructed 11,838 high-quality orthologous gene alignments culled from the dolphin and four other terrestrial mammalian genomes and screened for positive selection occurring in the dolphin lineage. In total, 368 (3.1%) of the genes were identified as having undergone positive selection by the branch-site model. Functional characterization of these genes showed that they are significantly enriched in the categories of lipid transport and localization, ATPase activity, sense perception of sound, and muscle contraction, areas that are potentially related to cetacean adaptations. In contrast, we did not find a similar pattern in the cow, a closely related species. We resequenced some of the positively selected sites (PSSs), within the positively selected genes, and showed that most of our identified PSSs (50/52) could be replicated. The results from this study should have important implications for our understanding of cetacean evolution and their adaptations to the aquatic environment.
O'Shea, T.J.; Brownell, R.L.; Clark, D.R.; Walker, W.A.; Gay, M.L.; Lamont, T.G.
1980-01-01
Organochlorine residues were analyzed in blubber, brain, or muscle tissues of 69 individuals representing 10 species of small cetaceans. Collections were made from November 1968 through June 1976 at localities in the Eastern Tropical Pacific and along the coasts of California, Hawaii, Japan, and Uruguay, Relations of residue concentrations between tissues are described for DDE and PCBs in two dolphin species. sigma DDT and PCB residues in blubber of most of the 19 individuals of the five southern California species sampled exceed concentrations that are associated with reproductive impairment in pinnipeds, although the nature of such associations is not well defined. The sigma DDT residue of 2,695 ppm in blubber of one California coastal Tursiops truncatus is one of the highest concentrations reported in tissues of members of any population of wild mammals. Except for one rough-toothed dolphin (Steno bredanensis) from Maui, Hawaii, all individuals from all localities surveyed were contaminated with organochlorine compounds. Seventeen different organochlorines were detected; greatest diversity occurred near Japan and California. This is the first report of several of these compounds in tissues of any species of marine mammals. The o,p'-isomers and metabolites of DDT were detected unusually frequently. Ratios of p,p'-DDT to p,p'-DDE in blubber of cetaceans from waters off countries where use of this pesticide has been relatively recent and ongoing were at least an order of magnitude higher than in cetaceans from United States waters.
Centelleghe, Cinzia; Beffagna, Giorgia; Zanetti, Rossella; Zappulli, Valentina; Di Guardo, Giovanni; Mazzariol, Sandro
2016-09-01
Cetacean Morbillivirus (CeMV) has been identified as the most pathogenic virus for cetaceans. Over the past three decades, this RNA virus has caused several outbreaks of lethal disease in odontocetes and mysticetes worldwide. Isolation and identification of CeMV RNA is very challenging in whales because of the poor preservation status frequently shown by tissues from stranded animals. Nested reverse transcription polymerase chain reaction (nested RT-PCR) is used instead of conventional RT-PCR when it is necessary to increase the sensitivity and the specificity of the reaction. This study describes a new nested RT-PCR technique useful to amplify small amounts of the cDNA copy of Cetacean morbillivirus (CeMV) when it is present in scant quantity in whales' biological specimens. This technique was used to analyze different tissues (lung, brain, spleen and other lymphoid tissues) from one under human care seal and seven cetaceans stranded along the Italian coastline between October 2011 and September 2015. A well-characterized, 200 base pair (bp) fragment of the dolphin Morbillivirus (DMV) haemagglutinin (H) gene, obtained by nested RT-PCR, was sequenced and used to confirm DMV positivity in all the eight marine mammals under study. In conclusion, this nested RT-PCR protocol can represent a sensitive detection method to identify CeMV-positive, poorly preserved tissue samples. Furthermore, this is also a rather inexpensive molecular technique, relatively easy to apply. Copyright © 2016 Elsevier B.V. All rights reserved.
Anatomic features of the cetacean globe.
Miller, Sarah; Samuelson, Don; Dubielzig, Richard
2013-07-01
To provide measurements of globe dimensions and describe morphological characteristics of the cetacean globe with an emphasis on Bowman's layer and encapsulated sensory corpuscles (ESC) for available cetacean species. Cetacean globes housed at the Comparative Ocular Pathology Laboratory of Wisconsin from various odontocete and two mysticete species. Measurements were taken from formalin fixed globes and images of formalin fixed globes with embedded rulers. Histological sections of globes were used to count ESC and measure Bowman's layer. The horizontal diameter of the globe was longer than the vertical diameter. The posterior sclera was thick, causing the internal axial length (and therefore the optical axis) to be shorter than the vertical diameter. The cornea was composed of an epithelium, Bowman's layer, collagenous stroma, thin Descemet's membrane and endothelial layer. Bowman's layer was present in all specimens except one Kogia breviceps. The thickness was variable, with the acellular layer thickest in Tursiops truncatus and thinnest in Kogia sp. The iris was well vascularized and muscled while the ciliary body lacked musculature, but retained vasculature. Single and clustered ESC were found in the anterior uvea, sclera surrounding the anterior uvea, trabecular meshwork, or some combination of these locations. They were often regionally grouped and varied from 0 to 21. There were three species where no ESC were found, L. borealis, D. capensis, and S. bredanensis, but the presence of these corpuscles cannot be ruled as only one section of the globe was analyzed. © 2013 American College of Veterinary Ophthalmologists.
What factors shape genetic diversity in cetaceans?
Vachon, Felicia; Whitehead, Hal; Frasier, Timothy R
2018-02-01
Understanding what factors drive patterns of genetic diversity is a central aspect of many biological questions, ranging from the inference of historical demography to assessing the evolutionary potential of a species. However, as a larger number of datasets have become available, it is becoming clear that the relationship between the characteristics of a species and its genetic diversity is more complex than previously assumed. This may be particularly true for cetaceans, due to their relatively long lifespans, long generation times, complex social structures, and extensive ranges. In this study, we used microsatellite and mitochondrial DNA data from a systematic literature review to produce estimates of diversity for both markers across 42 cetacean species. Factors relating to demography, distribution, classification, biology, and behavior were then tested using phylogenetic methods and linear models to assess their relative influence on the genetic diversity of both marker types. The results show that while relative nuclear diversity is correlated with population size, mitochondrial diversity is not. This is particularly relevant given the widespread use of mitochondrial DNA to infer historical demography. Instead, mitochondrial diversity was mostly influenced by the range and social structure of the species. In addition to population size, habitat type (neritic vs. oceanic) had a significant correlation with relative nuclear diversity. Combined, these results show that many often-unconsidered factors are likely influencing patterns of genetic diversity in cetaceans, with implications regarding how to interpret, and what can be inferred from, existing patterns of diversity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Shea, T.J.; Brownell, R.L. Jr.; Clark, D.R. Jr.
1980-09-01
Organochlorine residues were analyzed in blubber, brain, or muscle tissues of 69 individuals representing 10 species of small cetaceans. Collections were made from November 1968 through June 1976 at localities in the Eastern Tropical Pacific and along the coasts of California, Hawaii, Japan, and Uruguay, Relations of residue concentrations between tissues are described for DDE and PCBs in two dolphin species. sigma DDT and PCB residues in blubber of most of the 19 individuals of the five southern California species sampled exceed concentrations that are associated with reproductive impairment in pinnipeds, although the nature of such associations is not wellmore » defined. The sigma DDT residue of 2,695 ppm in blubber of one California coastal Tursiops truncatus is one of the highest concentrations reported in tissues of members of any population of wild mammals. Except for one rough-toothed dolphin (Steno bredanensis) from Maui, Hawaii, all individuals from all localities surveyed were contaminated with organochlorine compounds. Seventeen different organochlorines were detected; greatest diversity occurred near Japan and California. This is the first report of several of these compounds in tissues of any species of marine mammals. The o,p'-isomers and metabolites of DDT were detected unusually frequently. Ratios of p,p'-DDT to p,p'-DDE in blubber of cetaceans from waters off countries where use of this pesticide has been relatively recent and ongoing were at least an order of magnitude higher than in cetaceans from United States waters.« less
NASA Astrophysics Data System (ADS)
Pennino, Maria Grazia; Mérigot, Bastien; Fonseca, Vinícius Prado; Monni, Virginia; Rotta, Andrea
2017-07-01
Effective management and conservation of wild populations requires knowledge of their habitats, especially by mean of quantitative analyses of their spatial distributions. The Pelagos Sanctuary is a dedicated marine protected area for Mediterranean marine mammals covering an area of 90,000 km2 in the north-western Mediterranean Sea between Italy, France and the Principate of Monaco. In the south of the Sanctuary, i.e. along the Sardinian coast, a range of diverse human activities (cities, industry, fishery, tourism) exerts several current ad potential threats to cetacean populations. In addition, marine mammals are recognized by the EU Marine Strategy Framework Directive as essential components of sustainable ecosystems. Yet, knowledge on the spatial distribution and ecology of cetaceans in this area is quite scarce. Here we modeled occurrence of the three most abundant species known in the Sanctuary, i.e. the striped dolphin (Stenella coeruleoalba), the bottlenose dolphin (Tursiops truncatus) and the fin whales (Balaenoptera physalus), using sighting data from scientific surveys collected from 2012 to 2014 during summer time. Bayesian site-occupancy models were used to model their spatial distribution in relation to habitat taking into account oceanographic (sea surface temperature, primary production, photosynthetically active radiation, chlorophyll-a concentration) and topographic (depth, slope, distance of the land) variables. Cetaceans responded differently to the habitat features, with higher occurrence predicted in the more productive areas on submarine canyons. These results provide ecological information useful to enhance management plans and establish baseline for future population trend studies.
NASA Astrophysics Data System (ADS)
Laran, Sophie; Pettex, Emeline; Authier, Matthieu; Blanck, Aurélie; David, Léa; Dorémus, Ghislain; Falchetto, Hélène; Monestiez, Pascal; Van Canneyt, Olivier; Ridoux, Vincent
2017-07-01
The biodiversity of the Mediterranean Sea is undergoing important changes. Cetaceans, as top predators, are an important component of marine ecosystems. The seasonal distribution and abundance of several cetacean species were studied with a large aerial survey over the North-Western Mediterranean Sea, including the international Pelagos sanctuary, the largest Marine Protected Area (MPA) designed for marine mammals in the Mediterranean. A total of 8 distinct species of cetaceans were identified, and their occurrence within the sanctuary was investigated. Abundance estimates were obtained for three groups of species: the small delphinids (striped dolphins mainly), the bottlenose dolphin and the fin whale. There was a seasonal variation in striped dolphin abundance between winter (57,300 individuals, 95% CI: 34,500-102,000) and summer (130,000, 95% CI: 76,800-222,100). In contrast, bottlenose dolphin winter abundance was thrice that of summer. It was also the only species to exhibit any preference for the Pelagos sanctuary. Fin whale abundance had the reverse pattern with winter abundance (1000 individuals, 95% CI: 500-2500) and summer (2500 individuals, 95% CI: 1500-4300), without any preference for the sanctuary. Risso's dolphins, pilot whales and sperm whales did not exhibit strong seasonal pattern in their abundance. These results provide baseline estimates which can be used to inform conservation policies and instruments such as the Habitats Directive or the recent European Marine Strategy Framework Directive.
2015-09-30
TERM GOALS In this project, which started in April 2015, we focus on cetacean density estimation using autonomous underwater vehicles such as ocean...incorporated into the analysis. The data are from a 2-week deployment in the Quinault Underwater Tracking Range (QUTR) in September 2014 using a single...to prevent and mitigate harm to those species, better comply with the law, and reduce negative public perception of Navy impacts on these species
Grossi, Bruno; Iriarte-Díaz, José; Larach, Omar; Canals, Mauricio; Vásquez, Rodrigo A
2014-01-01
Birds still share many traits with their dinosaur ancestors, making them the best living group to reconstruct certain aspects of non-avian theropod biology. Bipedal, digitigrade locomotion and parasagittal hindlimb movement are some of those inherited traits. Living birds, however, maintain an unusually crouched hindlimb posture and locomotion powered by knee flexion, in contrast to the inferred primitive condition of non-avian theropods: more upright posture and limb movement powered by femur retraction. Such functional differences, which are associated with a gradual, anterior shift of the centre of mass in theropods along the bird line, make the use of extant birds to study non-avian theropod locomotion problematic. Here we show that, by experimentally manipulating the location of the centre of mass in living birds, it is possible to recreate limb posture and kinematics inferred for extinct bipedal dinosaurs. Chickens raised wearing artificial tails, and consequently with more posteriorly located centre of mass, showed a more vertical orientation of the femur during standing and increased femoral displacement during locomotion. Our results support the hypothesis that gradual changes in the location of the centre of mass resulted in more crouched hindlimb postures and a shift from hip-driven to knee-driven limb movements through theropod evolution. This study suggests that, through careful experimental manipulations during the growth phase of ontogeny, extant birds can potentially be used to gain important insights into previously unexplored aspects of bipedal non-avian theropod locomotion.
Grossi, Bruno; Iriarte-Díaz, José; Larach, Omar; Canals, Mauricio; Vásquez, Rodrigo A.
2014-01-01
Birds still share many traits with their dinosaur ancestors, making them the best living group to reconstruct certain aspects of non-avian theropod biology. Bipedal, digitigrade locomotion and parasagittal hindlimb movement are some of those inherited traits. Living birds, however, maintain an unusually crouched hindlimb posture and locomotion powered by knee flexion, in contrast to the inferred primitive condition of non-avian theropods: more upright posture and limb movement powered by femur retraction. Such functional differences, which are associated with a gradual, anterior shift of the centre of mass in theropods along the bird line, make the use of extant birds to study non-avian theropod locomotion problematic. Here we show that, by experimentally manipulating the location of the centre of mass in living birds, it is possible to recreate limb posture and kinematics inferred for extinct bipedal dinosaurs. Chickens raised wearing artificial tails, and consequently with more posteriorly located centre of mass, showed a more vertical orientation of the femur during standing and increased femoral displacement during locomotion. Our results support the hypothesis that gradual changes in the location of the centre of mass resulted in more crouched hindlimb postures and a shift from hip-driven to knee-driven limb movements through theropod evolution. This study suggests that, through careful experimental manipulations during the growth phase of ontogeny, extant birds can potentially be used to gain important insights into previously unexplored aspects of bipedal non-avian theropod locomotion. PMID:24505491
Peltier, Helene; Baagøe, Hans J.; Camphuysen, Kees C. J.; Czeck, Richard; Dabin, Willy; Daniel, Pierre; Deaville, Rob; Haelters, Jan; Jauniaux, Thierry; Jensen, Lasse F.; Jepson, Paul D.; Keijl, Guido O.; Siebert, Ursula; Van Canneyt, Olivier; Ridoux, Vincent
2013-01-01
Ecological indicators for monitoring strategies are expected to combine three major characteristics: ecological significance, statistical credibility, and cost-effectiveness. Strategies based on stranding networks rank highly in cost-effectiveness, but their ecological significance and statistical credibility are disputed. Our present goal is to improve the value of stranding data as population indicator as part of monitoring strategies by constructing the spatial and temporal null hypothesis for strandings. The null hypothesis is defined as: small cetacean distribution and mortality are uniform in space and constant in time. We used a drift model to map stranding probabilities and predict stranding patterns of cetacean carcasses under H0 across the North Sea, the Channel and the Bay of Biscay, for the period 1990–2009. As the most common cetacean occurring in this area, we chose the harbour porpoise Phocoena phocoena for our modelling. The difference between these strandings expected under H0 and observed strandings is defined as the stranding anomaly. It constituted the stranding data series corrected for drift conditions. Seasonal decomposition of stranding anomaly suggested that drift conditions did not explain observed seasonal variations of porpoise strandings. Long-term stranding anomalies increased first in the southern North Sea, the Channel and Bay of Biscay coasts, and finally the eastern North Sea. The hypothesis of changes in porpoise distribution was consistent with local visual surveys, mostly SCANS surveys (1994 and 2005). This new indicator could be applied to cetacean populations across the world and more widely to marine megafauna. PMID:23614031
Seasonal presence of cetaceans and ambient noise levels in polar waters of the North Atlantic.
Klinck, Holger; Nieukirk, Sharon L; Mellinger, David K; Klinck, Karolin; Matsumoto, Haruyoshi; Dziak, Robert P
2012-09-01
In 2009 two calibrated acoustic recorders were deployed in polar waters of the North Atlantic to study the seasonal occurrence of blue, fin, and sperm whales and to assess current ambient noise levels. Sounds from these cetaceans were recorded at both locations in most months of the year. During the summer months, seismic airguns associated with oil and gas exploration were audible for weeks at a time and dominated low frequency noise levels. Noise levels might further increase in the future as the receding sea ice enables extended human use of the area.
Dell, Leigh-Anne; Patzke, Nina; Spocter, Muhammad A; Siegel, Jerome M; Manger, Paul R
2016-07-01
The present study provides the first systematic immunohistochemical neuroanatomical investigation of the systems involved in the control and regulation of sleep in an odontocete cetacean, the harbor porpoise (Phocoena phocoena). The odontocete cetaceans show an unusual form of mammalian sleep, with unihemispheric slow waves, suppressed REM sleep, and continuous bodily movement. All the neural elements involved in sleep regulation and control found in bihemispheric sleeping mammals were present in the harbor porpoise, with no specific nuclei being absent, and no novel nuclei being present. This qualitative similarity of nuclear organization relates to the cholinergic, noradrenergic, serotonergic, and orexinergic systems and is extended to the γ-aminobutyric acid (GABA)ergic elements involved with these nuclei. Quantitative analysis of the cholinergic and noradrenergic nuclei of the pontine region revealed that in comparison with other mammals, the numbers of pontine cholinergic (126,776) and noradrenergic (122,878) neurons are markedly higher than in other large-brained bihemispheric sleeping mammals. The diminutive telencephalic commissures (anterior commissure, corpus callosum, and hippocampal commissure) along with an enlarged posterior commissure and supernumerary pontine cholinergic and noradrenergic neurons indicate that the control of unihemispheric slow-wave sleep is likely to be a function of interpontine competition, facilitated through the posterior commissure, in response to unilateral telencephalic input related to the drive for sleep. In addition, an expanded peripheral division of the dorsal raphe nuclear complex appears likely to play a role in the suppression of REM sleep in odontocete cetaceans. Thus, the current study provides several clues to the understanding of the neural control of the unusual sleep phenomenology present in odontocete cetaceans. J. Comp. Neurol. 524:1999-2017, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Oviedo, Lenin; Silva, Noemi
2005-01-01
The study of local cetaceans in Venezuela has a very recent history, and few efforts have been made in the assessment of coastal populations based on field research. The occurrence of whales and dolphins along the northeast coast of Venezuela has been documented through sightings and stranding records. Given the underwater topographical features and the influence of upwelling processes, this area is considered a very productive coastal ecosystem. Our objective was to establish the sighting frequency and relative abundance of bottlenose dolphins in the area. Sighting records were gathered on bottlenose dolphins and other cetacean species occurring along the northeast coast of Margarita Island and Los Frailes Archipelago through direct observation during land-based (6 surveys, 48 hours of observation) and boat-based surveys (24 surveys, 121 hours of observation, 1295 km covered). A sighting frequency was calculated using two methodologies and then compared, considering: 1) a mean effective observation time (4.27 hours), and 2) distance covered with cetacean sightings (1108 kin). A third method is proposed relating a mean effective distance covered with cetacean sightings and expressed as a percentage. The abundance index was calculated using the mean effective observation time. The sighting frequency of Tursiops truncattus in the study area was 3 - 4 sightings per day of 4.27 observation hours, or by 185 kilometers covered. The relative abundance was calculated as 35 dolphins in the study area, so a total population of less than 60 dolphins could inhabit the proposed range. Tursiops truncatus is the dominant species in the northeast coast of Margarita Island and Los Frailes Archipelago with 70% of all the sightings, so this locality could be termed as the distribution range of a possible local population of bottlenose dolphins.
Wild, Lauren A; Chenoweth, Ellen M; Mueter, Franz J; Straley, Janice M
2018-05-18
Stable isotope analysis integrates diet information over a time period specific to the type of tissue sampled. For metabolically active skin of free-ranging cetaceans, cells are generated at the basal layer of the skin and migrate outward until they eventually slough off, suggesting potential for a dietary time series. Skin samples from cetaceans were analyzed using continuous-flow elemental analyzer isotope ratio mass spectrometery (EA-IRMS). We used ANOVAs to compare the variability of δ 13 C and δ 15 N values within and among layers and columns ("cores") of the skin of a fin, humpback, and sperm whale. We then used mixed-effects models to analyze isotopic variability among layers of 28 sperm whale skin samples, over the course of a season and among years. We found layer to be a significant predictor of δ 13 C values in the sperm whale's skin, and δ 15 N values the humpback whale's skin. There was no evidence for significant differences in δ 15 N or δ 13 C values among cores for any species. Mixed effects models selected layer and day of the year as significant predictors of δ 13 C and δ 15 N values in sperm whale skin across individuals sampled during the summer months in the Gulf of Alaska. These results suggest that skin samples from cetaceans may be subsampled to reflect diet during a narrower time period; specifically different layers of skin may contain a dietary time series. This underscores the importance of selecting an appropriate portion of skin to analyze based on the species and objectives of the study. This article is protected by copyright. All rights reserved.
The incidence of bent dorsal fins in free-ranging cetaceans.
Alves, F; Towers, J R; Baird, R W; Bearzi, G; Bonizzoni, S; Ferreira, R; Halicka, Z; Alessandrini, A; Kopelman, A H; Yzoard, C; Rasmussen, M H; Bertulli, C G; Jourdain, E; Gullan, A; Rocha, D; Hupman, K; Mrusczok, M-T; Samarra, F I P; Magalhães, S; Weir, C R; Ford, J K B; Dinis, A
2018-02-01
Laterally bent dorsal fins are rarely observed in free-ranging populations of cetaceans, contrary to captivity, where most killer whale Orcinus orca adult males have laterally collapsed fins. This topic has been poorly explored, and data/information on its occurrence and possible causes are limited. The present study: (i) undertakes a review of the available information on bent dorsal fins in free-ranging cetaceans, and updates it with new records, (ii) reports on the proportion of bent fins in different study populations, and (iii) discusses possible causes. An empirical approach based on bibliographic research and compilation of 52 new records collected worldwide resulted in a total of 17 species of cetaceans displaying bent dorsal fins. The species with the highest number of records (64%) and from most locations was O. orca. On average, individuals with bent dorsal fins represent < 1% of their populations, with the exception of false killer whales Pseudorca crassidens and O. orca. While line injuries associated with fisheries interactions may be the main cause for P. crassidens, and the vulnerability to health issues caused by the evolutionary enlargement of the fin may be the cause for O. orca adult males, factors contributing to this abnormality for other species are still unclear. The occurrence of bent dorsals could be influenced by a set of variables rather than by a single factor but, irrespective of the cause, it is suggested that it does not directly affect the animals' survivorship. While still rare in nature, this incident is more common (at least 101 known cases) and widespread (geographically and in species diversity) than hypothesized, and is not confined only to animals in captive environments. Investigation into the occurrence of bent fins may be an interesting avenue of research. © 2017 Anatomical Society.
NASA Astrophysics Data System (ADS)
Mouton, M.; Botha, A.; Thornton, M.; Mesjasz-Przybyłowicz, J.; Przybyłowicz, W. J.
2015-11-01
Several studies revealed that anthropogenic activities often cause toxic concentrations of some elements, such as mercury, which bio-accumulate through the marine food chain, impacting negatively on the health of animals in the top trophic levels, such as a variety of marine mammals. Moreover, analysis of cetacean skin has been reported to be a reliable, long-term and mostly non-invasive method to monitor bio-accumulation of chemicals in cetacean populations. Several elements, including trace elements, occur naturally in cetacean skin, although nothing is known about their distribution patterns and little about safe base line concentrations. In May 2009, 42 false killer whales (FKWs) beached and died at Kommetjie in the Western Cape of South Africa. Skin samples of these FKWs were collected and analysed to determine elemental distribution patterns. The concentrations and distribution patterns of the major, as well as detectable trace elements were determined in skin samples from ten randomly selected FKW individuals, using micro-PIXE (particle-induced X-ray emission) analysis. Results revealed differences between the distribution patterns of elements in the skin sections. Fe, for example, was found to be concentrated in the dermal papillae, whereas the highest Zn concentrations occurred in the epidermis and particularly in the epidermal papillae. Since these essential elements mediate factors such as host immunity, from skin integrity to humoral immunity, knowledge of their typical distribution patterns can be of great value in studies of bio-accumulation. This is the first report of micro-PIXE being employed to study elemental distribution in cetacean skin and the resulting elemental distribution maps can serve as reference in future environmental pollution studies.
Trego, Marisa L.; Kellar, Nicholas M.; Danil, Kerri
2013-01-01
Recent studies have validated the use of biopsies as a minimally invasive way to identify pregnant females in several species of wild cetaceans: Balaenaptera acutorostrata , Delphinus delphis , Lissodelphis borealis , and Lagenorhynchus obliquidens . These studies found that progesterone (P4) concentrations quantified from blubber attached to biopsy samples is diagnostic of pregnancy. Here we examine a broader group of cetacean species in efforts to investigate how progesterone levels vary between species with respect to pregnancy status. We compared P4 concentrations in blubber collected from fishery bycatch and beach-stranded specimens for 40 females of known reproductive condition from Delphinus capensis (n = 18), Stenella attenuata (n = 8), S . longirostris (n = 6), and Phocoenoides dalli (n = 8). The P4 concentrations were different (t = -7.1, p = 1.79E-08) between pregnant and non-pregnant animals in all species, with the mean blubber P4 concentration for pregnant animals 164 times higher than that of non-pregnant animals. There was no overlap in concentration levels between sexually immature or non-pregnant sexually mature animals and pregnant animals. No significant differences (F = 0.354, p = 0.559) were found between mature non-pregnant and immature D . capensis and P dalli , suggesting P4 level is not indicative of maturity state in female delphinoids. P4 concentrations in relation to reproductive state were remarkably similar across species. All samples were analyzed with two different enzyme immunoassay kits to gauge assay sensitivity to measure progesterone in small samples, such as biopsies. With the technique now validated for these cetacean species, blubber P4 is a reliable diagnostic of pregnancies across multiple species, and thus expands the utility of this method to study reproduction in free-ranging cetaceans using biopsies. PMID:23936083
Noren, Shawn R; Suydam, Robert
2016-09-15
Little is known about the postnatal development of the physiological characteristics that support breath-hold in cetaceans, despite their need to swim and dive at birth. Arctic species have the additional demand of avoiding entrapment while navigating under sea ice, where breathing holes are patchily distributed and ephemeral. This is the first investigation of the ontogeny of the biochemistry of the locomotor muscle in a year-round Arctic-dwelling cetacean (beluga whale, Delphinapterus leucas). Compared with what we know about other cetaceans, belugas are born with high myoglobin content (1.56±0.02 g 100 g -1 wet muscle mass, N=2) that matures rapidly. Myoglobin increased by 452% during the first year after birth and achieved adult levels (6.91±0.35 g 100 g -1 wet muscle mass, N=9) by 14 months postpartum. Buffering capacity was 48.88±0.69 slykes (N=2) at birth; adult levels (84.31±1.38 slykes, N=9) were also achieved by 14 months postpartum. As the oxygen stores matured, calculated aerobic dive limit more than doubled over the first year of life, undoubtedly facilitating the movements of calves under sea ice. Nonetheless, small body size theoretically continues to constrain the diving ability of newly weaned 2 year olds, as they only had 74% and 69% of the aerobic breath-hold capacity of larger adult female and male counterparts. These assessments enhance our knowledge of the biology of cetaceans and provide insight into age-specific flexibility to alter underwater behaviors, as may be required with the ongoing alterations in the Arctic marine ecosystem associated with climate change and increased anthropogenic activities. © 2016. Published by The Company of Biologists Ltd.
Cetacean vocal learning and communication.
Janik, Vincent M
2014-10-01
The cetaceans are one of the few mammalian clades capable of vocal production learning. Evidence for this comes from synchronous changes in song patterns of baleen whales and experimental work on toothed whales in captivity. While baleen whales like many vocal learners use this skill in song displays that are involved in sexual selection, toothed whales use learned signals in individual recognition and the negotiation of social relationships. Experimental studies demonstrated that dolphins can use learned signals referentially. Studies on wild dolphins demonstrated how this skill appears to be useful in their own communication system, making them an interesting subject for comparative communication studies. Copyright © 2014. Published by Elsevier Ltd.
Sexual selection targets cetacean pelvic bones
Dines, J. P.; Otárola-Castillo, E.; Ralph, P.; Alas, J.; Daley, T.; Smith, A. D.; Dean, M. D.
2014-01-01
Male genitalia evolve rapidly, probably as a result of sexual selection. Whether this pattern extends to the internal infrastructure that influences genital movements remains unknown. Cetaceans (whales and dolphins) offer a unique opportunity to test this hypothesis: since evolving from land-dwelling ancestors, they lost external hind limbs and evolved a highly reduced pelvis which seems to serve no other function except to anchor muscles that maneuver the penis. Here we create a novel morphometric pipeline to analyze the size and shape evolution of pelvic bones from 130 individuals (29 species) in the context of inferred mating system. We present two main findings: 1) males from species with relatively intense sexual selection (inferred by relative testes size) have evolved relatively large penises and pelvic bones compared to their body size, and 2) pelvic bone shape diverges more quickly in species pairs that have diverged in inferred mating system. Neither pattern was observed in the anterior-most pair of vertebral ribs, which served as a negative control. This study provides evidence that sexual selection can affect internal anatomy that controls male genitalia. These important functions may explain why cetacean pelvic bones have not been lost through evolutionary time. PMID:25186496
Evoked potential application to study of echolocation in cetaceans
NASA Astrophysics Data System (ADS)
Supin, Alexander Ya.; Nactigall, Paul E.; Pawloski, Jeffrey; Au, Whitlow W. L.
2002-05-01
The evoked-potential (EP) method is effective in studies of hearing capabilities of cetaceans. However, until now EP studies in cetaceans were performed only in conditions of passive hearing by recording EP to external stimuli. Can this method be applied to study active echolocation in odontocetes? To answer this question, auditory brainstem evoked responses (ABR) were recorded in a false killer whale while the animal echolocated a target within an experiment in which the animal reported the target present or absent. The ABR collection was triggered by echolocation clicks. In these conditions, the recorded ABR pattern contained a duplicate set of waves. A comparison of ABR wave delays recorded during echolocation with those recorded during regular external stimulation has shown that the first set of waves is a response to the emitted click whereas the second one is a response to the echo. Both responses, to the emitted click and to the echo, were of comparable amplitude in spite of the intensity difference of these two sounds of more than 40 dB near the animal's head. This finding indicates some mechanisms releasing responses to echoes from masking by loud emitted clicks. The evoked-potential method may be productive to investigate these mechanisms.
A trade-off between precopulatory and postcopulatory trait investment in male cetaceans.
Dines, James P; Mesnick, Sarah L; Ralls, Katherine; May-Collado, Laura; Agnarsson, Ingi; Dean, Matthew D
2015-06-01
Mating with multiple partners is common across species, and understanding how individual males secure fertilization in the face of competition remains a fundamental goal of evolutionary biology. Game theory stipulates that males have a fixed budget for reproduction that can lead to a trade-off between investment in precopulatory traits such as body size, armaments, and ornaments, and postcopulatory traits such as testis size and spermatogenic efficiency. Recent theoretical and empirical studies have shown that if males can monopolize access to multiple females, they will invest disproportionately in precopulatory traits and less in postcopulatory traits. Using phylogenetically controlled comparative methods, we demonstrate that across 58 cetacean species with the most prominent sexual dimorphism in size, shape, teeth, tusks, and singing invest significantly less in relative testes mass. In support of theoretical predictions, these species tend to show evidence of male contests, suggesting there is opportunity for winners to monopolize access to multiple females. Our approach provides a robust dataset with which to make predictions about male mating strategies for the many cetacean species for which adequate behavioral observations do not exist. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Rosenbom, Sónia; Costa, Vânia; Chen, Shanyuan; Khalatbari, Leili; Yusefi, Gholam Hosein; Abdukadir, Ablimit; Yangzom, Chamba; Kebede, Fanuel; Teclai, Redae; Yohannes, Hagos; Hagos, Futsum; Moehlman, Patricia D; Beja-Pereira, Albano
2015-04-01
All extant equid species are grouped in a single genus - Equus. Among those, ass-like equids have remained particularly unstudied and their phylogenetic relations were poorly understood, most probably because they inhabit extreme environments in remote geographic areas. To gain further insights into the evolutionary history of ass-like equids, we have used a non-invasive sampling approach to collect representative fecal samples of extant African and Asiatic ass-like equid populations across their distribution range and mitochondrial DNA (mtDNA) sequencing analyses to examine intraspecific genetic diversity and population structure, and to reconstruct phylogenetic relations among wild ass species/subspecies. Sequence analyses of 410 base pairs of the fast evolving mtDNA control region identified the Asiatic wild ass population of Kalamaili (China) as the one displaying the highest diversity among all wild ass populations. Phylogenetic analyses of complete cytochrome b sequences revealed that African and Asiatic wild asses shared a common ancestor approximately 2.3Mya and that diversification in both groups occurred much latter, probably driven by climatic events during the Pleistocene. Inferred genetic relationships among Asiatic wild ass species do not support E. kiang monophyly, highlighting the need of more extensive studies in order to clarify the taxonomic status of species/subspecies belonging to this branch of the Equus phylogeny. These results highlight the importance of re-assessing the evolutionary history of ass-like equid species, and urge to extend studies at the population level to efficiently design conservation and management actions for these threatened species. Copyright © 2015 Elsevier Inc. All rights reserved.
Bone Inner Structure Suggests Increasing Aquatic Adaptations in Desmostylia (Mammalia, Afrotheria)
Hayashi, Shoji; Houssaye, Alexandra; Nakajima, Yasuhisa; Chiba, Kentaro; Ando, Tatsuro; Sawamura, Hiroshi; Inuzuka, Norihisa; Kaneko, Naotomo; Osaki, Tomohiro
2013-01-01
Background The paleoecology of desmostylians has been discussed controversially with a general consensus that desmostylians were aquatic or semi-aquatic to some extent. Bone microanatomy can be used as a powerful tool to infer habitat preference of extinct animals. However, bone microanatomical studies of desmostylians are extremely scarce. Methodology/Principal Findings We analyzed the histology and microanatomy of several desmostylians using thin-sections and CT scans of ribs, humeri, femora and vertebrae. Comparisons with extant mammals allowed us to better understand the mode of life and evolutionary history of these taxa. Desmostylian ribs and long bones generally lack a medullary cavity. This trait has been interpreted as an aquatic adaptation among amniotes. Behemotops and Paleoparadoxia show osteosclerosis (i.e. increase in bone compactness), and Ashoroa pachyosteosclerosis (i.e. combined increase in bone volume and compactness). Conversely, Desmostylus differs from these desmostylians in displaying an osteoporotic-like pattern. Conclusions/Significance In living taxa, bone mass increase provides hydrostatic buoyancy and body trim control suitable for poorly efficient swimmers, while wholly spongy bones are associated with hydrodynamic buoyancy control in active swimmers. Our study suggests that all desmostylians had achieved an essentially, if not exclusively, aquatic lifestyle. Behemotops, Paleoparadoxia and Ashoroa are interpreted as shallow water swimmers, either hovering slowly at a preferred depth, or walking on the bottom, and Desmostylus as a more active swimmer with a peculiar habitat and feeding strategy within Desmostylia. Therefore, desmostylians are, with cetaceans, the second mammal group showing a shift from bone mass increase to a spongy inner organization of bones in their evolutionary history. PMID:23565143
Ekdale, Eric G; Deméré, Thomas A; Berta, Annalisa
2015-04-01
The origin of baleen in mysticetes heralded a major transition during cetacean evolution. Extant mysticetes are edentulous in adulthood, but rudimentary teeth develop in utero within open maxillary and mandibular alveolar grooves. The teeth are resorbed prenatally and the alveolar grooves close as baleen germ develops. Arteries supplying blood to highly vascularized epithelial tissue from which baleen develops pass through lateral nutrient foramina in the area of the embryonic alveolar grooves and rudimentary teeth. Those vessels are hypothesized to be branches of the superior alveolar artery, but branches of the greater palatine arteries may play a role in the baleen vascularization. Through a combination of latex injection, CT, and traditional dissection of the palate of a neonatal gray whale (Eschrichtius robustus), we confirm that the baleen receives blood from vessels within the superior alveolar canal via the lateral foramina. The greater palatine artery is restricted to its own passage with no connections to the baleen. This study has implications for the presence of baleen in extinct taxa by identifying the vessels and bony canals that supply blood to the epithelium from which baleen develops. The results indicate that the lateral foramina in edentulous mysticete fossils are bony correlates for the presence of baleen, and the results can be used to help identify bony canals and foramina that have been used to reconstruct baleen in extinct mysticetes that retained teeth in adulthood. Further comparisons are made with mammals that also possess oral keratin structures, including ruminants, ornithorhynchid monotremes, and sirenians. © 2015 Wiley Periodicals, Inc.
Garey, L J; Takács, J; Revishchin, A V; Hámori, J
1989-04-24
Sections of the anterior portion of the visual cortex in the lateral gyrus of the Black Sea porpoise were studied to determine the neuronal architecture and numerical density, and the distribution of neurons immunoreactive to gamma-aminobutyric acid (GABA). Cytoarchitecture and neuronal density are similar to those described in another cetacean, the bottlenose dolphin. GABA-positive neurons are distributed through all layers of the visual cortex but are especially dense in layers II and III, and comprise some 20% of the total neuronal population in this part of the cortex. The distribution of GABA-positive neurons is similar to that found in land mammals.
Habitat-based cetacean density models for the U.S. Atlantic and Gulf of Mexico
NASA Astrophysics Data System (ADS)
Roberts, Jason J.; Best, Benjamin D.; Mannocci, Laura; Fujioka, Ei; Halpin, Patrick N.; Palka, Debra L.; Garrison, Lance P.; Mullin, Keith D.; Cole, Timothy V. N.; Khan, Christin B.; McLellan, William A.; Pabst, D. Ann; Lockhart, Gwen G.
2016-03-01
Cetaceans are protected worldwide but vulnerable to incidental harm from an expanding array of human activities at sea. Managing potential hazards to these highly-mobile populations increasingly requires a detailed understanding of their seasonal distributions and habitats. Pursuant to the urgent need for this knowledge for the U.S. Atlantic and Gulf of Mexico, we integrated 23 years of aerial and shipboard cetacean surveys, linked them to environmental covariates obtained from remote sensing and ocean models, and built habitat-based density models for 26 species and 3 multi-species guilds using distance sampling methodology. In the Atlantic, for 11 well-known species, model predictions resembled seasonal movement patterns previously suggested in the literature. For these we produced monthly mean density maps. For lesser-known taxa, and in the Gulf of Mexico, where seasonal movements were less well described, we produced year-round mean density maps. The results revealed high regional differences in small delphinoid densities, confirmed the importance of the continental slope to large delphinoids and of canyons and seamounts to beaked and sperm whales, and quantified seasonal shifts in the densities of migratory baleen whales. The density maps, freely available online, are the first for these regions to be published in the peer-reviewed literature.
The implications of developments on the Atlantic Frontier for marine mammals
NASA Astrophysics Data System (ADS)
Harwood, John; Wilson, Ben
2001-05-01
We review the available information on the distribution and abundance of marine mammals in the Atlantic Frontier area, and the literature on the potential effects of oil exploration and extraction on these species. Reliable estimates of seal abundance are only available for two species (grey and harbour seals). For grey seals and hooded seals there is also information from telemetry studies on their distribution at sea. Data on cetaceans comes from a variety of sources including whaling statistics, dedicated surveys, observers placed on vessels of opportunity, and from bottom-mounted hydrophone arrays. These indicate that the Atlantic Frontier region is of national, and possibly international, importance for a number of cetacean species. The most abundant small cetacean is likely to be the white-sided dolphin; however, smaller numbers of large whales, including endangered blue, right, fin and sei whales, and vulnerable humpback and sperm whales are also likely to be present in summer. There is growing evidence that a number of marine mammal species respond to the acoustic and physical disturbance associated with exploration for oil and gas resources, although the ecological impact of these responses is unclear. We describe how risk assessment frameworks, initially developed for evaluating the environmental impacts of hazardous chemicals, can be used to address this problem.
Morphology of the core fibrous layer of the cetacean tail fluke.
Gough, William T; Fish, Frank E; Wainwright, Dylan K; Bart-Smith, Hilary
2018-06-01
The cetacean tail fluke blades are not supported by any vertebral elements. Instead, the majority of the blades are composed of a densely packed collagenous fiber matrix known as the core layer. Fluke blades from six species of odontocete cetaceans were examined to compare the morphology and orientation of fibers at different locations along the spanwise and chordwise fluke blade axes. The general fiber morphology was consistent with a three-dimensional structure comprised of two-dimensional sheets of fibers aligned tightly in a laminated configuration along the spanwise axis. The laminated configuration of the fluke blades helps to maintain spanwise rigidity while allowing partial flexibility during swimming. When viewing the chordwise sectional face at the leading edge and mid-chord regions, fibers displayed a crossing pattern. This configuration relates to bending and structural support of the fluke blade. The trailing edge core was found to have parallel fibers arranged more dorso-ventrally. The fiber morphology of the fluke blades was dorso-ventrally symmetrical and similar in all species except the pygmy sperm whale (Kogia breviceps), which was found to have additional core layer fiber bundles running along the span of the fluke blade. These additional fibers may increase stiffness of the structure by resisting tension along their long spanwise axis. © 2018 Wiley Periodicals, Inc.
Sierra, Eva; Fernández, Antonio; Espinosa de los Monteros, Antonio; Arbelo, Manuel; Díaz-Delgado, Josué; Andrada, Marisa; Herráez, Pedro
2014-01-01
Ship strikes are a major issue for the conservation of may cetacean species. Certain gross and microscopic criteria have been previously reported for establishing a diagnosis of death due to ship strikes in these animals. However, some ship-strike injuries may be masked by advanced carcass decomposition and may be undetectable due to restricted access to the animals. In this report we describe histopathological muscular findings in 13 cetaceans with sharp trauma from ship strikes as the cause of death. Skeletal muscle samples were taken from the incision site and from the main locomotor muscle, the longissimus dorsi, in areas not directly affected by the sharp injury. The microscopic findings in tissues from both sites mainly consisted of haemorrhages; oedema; flocculent, granular or/and hyalinised segmentary degeneration; contraction band necrosis; and discoid degeneration or fragmentation of myofibres. We propose that skeletal muscle histopathology provides evidence of ante-mortem injuries even if the sample was taken elsewhere in the carcass and not only within or adjacent to the sharp trauma site and despite the advanced decomposition of some of the carcasses. This method helps to establish the diagnosis of ship strike as the cause of death. PMID:24551162
Speller, Camilla; van den Hurk, Youri; Charpentier, Anne; Rodrigues, Ana; Gardeisen, Armelle; Wilkens, Barbara; McGrath, Krista; Rowsell, Keri; Spindler, Luke; Collins, Matthew
2016-01-01
Over the last few centuries, many cetacean species have witnessed dramatic global declines due to industrial overharvesting and other anthropogenic influences, and thus are key targets for conservation. Whale bones recovered from archaeological and palaeontological contexts can provide essential baseline information on the past geographical distribution and abundance of species required for developing informed conservation policies. Here we review the challenges with identifying whale bones through traditional anatomical methods, as well as the opportunities provided by new molecular analyses. Through a case study focused on the North Sea, we demonstrate how the utility of this (pre)historic data is currently limited by a lack of accurate taxonomic information for the majority of ancient cetacean remains. We then discuss current opportunities presented by molecular identification methods such as DNA barcoding and collagen peptide mass fingerprinting (zooarchaeology by mass spectrometry), and highlight the importance of molecular identifications in assessing ancient species’ distributions through a case study focused on the Mediterranean. We conclude by considering high-throughput molecular approaches such as hybridization capture followed by next-generation sequencing as cost-effective approaches for enhancing the ecological informativeness of these ancient sample sets. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481784
Sacristán, Carlos; Carballo, Matilde; Muñoz, María Jesús; Bellière, Edwige Nina; Neves, Elena; Nogal, Verónica; Esperón, Fernando
2015-12-15
Cetacean morbillivirus (CeMV) (family Paramyxoviridae, genus Morbillivirus) is considered the most pathogenic virus of cetaceans. It was first implicated in the bottlenose dolphin (Tursiops truncatus) mass stranding episode along the Northwestern Atlantic coast in the late 1980s, and in several more recent worldwide epizootics in different Odontoceti species. This study describes a new one step real-time reverse transcription fast polymerase chain reaction (real-time RT-fast PCR) method based on SYBR(®) Green to detect a fragment of the CeMV fusion protein gene. This primer set also works for conventional RT-PCR diagnosis. This method detected and identified all three well-characterized strains of CeMV: porpoise morbillivirus (PMV), dolphin morbillivirus (DMV) and pilot whale morbillivirus (PWMV). Relative sensitivity was measured by comparing the results obtained from 10-fold dilution series of PMV and DMV positive controls and a PWMV field sample, to those obtained by the previously described conventional phosphoprotein gene based RT-PCR method. Both the conventional and real-time RT-PCR methods involving the fusion protein gene were 100- to 1000-fold more sensitive than the previously described conventional RT-PCR method. Copyright © 2015 Elsevier B.V. All rights reserved.
PCB pollution continues to impact populations of orcas and other dolphins in European waters
NASA Astrophysics Data System (ADS)
Jepson, Paul D.; Deaville, Rob; Barber, Jonathan L.; Aguilar, Àlex; Borrell, Asunción; Murphy, Sinéad; Barry, Jon; Brownlow, Andrew; Barnett, James; Berrow, Simon; Cunningham, Andrew A.; Davison, Nicholas J.; Ten Doeschate, Mariel; Esteban, Ruth; Ferreira, Marisa; Foote, Andrew D.; Genov, Tilen; Giménez, Joan; Loveridge, Jan; Llavona, Ángela; Martin, Vidal; Maxwell, David L.; Papachlimitzou, Alexandra; Penrose, Rod; Perkins, Matthew W.; Smith, Brian; de Stephanis, Renaud; Tregenza, Nick; Verborgh, Philippe; Fernandez, Antonio; Law, Robin J.
2016-01-01
Organochlorine (OC) pesticides and the more persistent polychlorinated biphenyls (PCBs) have well-established dose-dependent toxicities to birds, fish and mammals in experimental studies, but the actual impact of OC pollutants on European marine top predators remains unknown. Here we show that several cetacean species have very high mean blubber PCB concentrations likely to cause population declines and suppress population recovery. In a large pan-European meta-analysis of stranded (n = 929) or biopsied (n = 152) cetaceans, three out of four species:- striped dolphins (SDs), bottlenose dolphins (BNDs) and killer whales (KWs) had mean PCB levels that markedly exceeded all known marine mammal PCB toxicity thresholds. Some locations (e.g. western Mediterranean Sea, south-west Iberian Peninsula) are global PCB “hotspots” for marine mammals. Blubber PCB concentrations initially declined following a mid-1980s EU ban, but have since stabilised in UK harbour porpoises and SDs in the western Mediterranean Sea. Some small or declining populations of BNDs and KWs in the NE Atlantic were associated with low recruitment, consistent with PCB-induced reproductive toxicity. Despite regulations and mitigation measures to reduce PCB pollution, their biomagnification in marine food webs continues to cause severe impacts among cetacean top predators in European seas.
PCB pollution continues to impact populations of orcas and other dolphins in European waters.
Jepson, Paul D; Deaville, Rob; Barber, Jonathan L; Aguilar, Àlex; Borrell, Asunción; Murphy, Sinéad; Barry, Jon; Brownlow, Andrew; Barnett, James; Berrow, Simon; Cunningham, Andrew A; Davison, Nicholas J; Ten Doeschate, Mariel; Esteban, Ruth; Ferreira, Marisa; Foote, Andrew D; Genov, Tilen; Giménez, Joan; Loveridge, Jan; Llavona, Ángela; Martin, Vidal; Maxwell, David L; Papachlimitzou, Alexandra; Penrose, Rod; Perkins, Matthew W; Smith, Brian; de Stephanis, Renaud; Tregenza, Nick; Verborgh, Philippe; Fernandez, Antonio; Law, Robin J
2016-01-14
Organochlorine (OC) pesticides and the more persistent polychlorinated biphenyls (PCBs) have well-established dose-dependent toxicities to birds, fish and mammals in experimental studies, but the actual impact of OC pollutants on European marine top predators remains unknown. Here we show that several cetacean species have very high mean blubber PCB concentrations likely to cause population declines and suppress population recovery. In a large pan-European meta-analysis of stranded (n = 929) or biopsied (n = 152) cetaceans, three out of four species:- striped dolphins (SDs), bottlenose dolphins (BNDs) and killer whales (KWs) had mean PCB levels that markedly exceeded all known marine mammal PCB toxicity thresholds. Some locations (e.g. western Mediterranean Sea, south-west Iberian Peninsula) are global PCB "hotspots" for marine mammals. Blubber PCB concentrations initially declined following a mid-1980s EU ban, but have since stabilised in UK harbour porpoises and SDs in the western Mediterranean Sea. Some small or declining populations of BNDs and KWs in the NE Atlantic were associated with low recruitment, consistent with PCB-induced reproductive toxicity. Despite regulations and mitigation measures to reduce PCB pollution, their biomagnification in marine food webs continues to cause severe impacts among cetacean top predators in European seas.
Habitat-based cetacean density models for the U.S. Atlantic and Gulf of Mexico
Roberts, Jason J.; Best, Benjamin D.; Mannocci, Laura; Fujioka, Ei; Halpin, Patrick N.; Palka, Debra L.; Garrison, Lance P.; Mullin, Keith D.; Cole, Timothy V. N.; Khan, Christin B.; McLellan, William A.; Pabst, D. Ann; Lockhart, Gwen G.
2016-01-01
Cetaceans are protected worldwide but vulnerable to incidental harm from an expanding array of human activities at sea. Managing potential hazards to these highly-mobile populations increasingly requires a detailed understanding of their seasonal distributions and habitats. Pursuant to the urgent need for this knowledge for the U.S. Atlantic and Gulf of Mexico, we integrated 23 years of aerial and shipboard cetacean surveys, linked them to environmental covariates obtained from remote sensing and ocean models, and built habitat-based density models for 26 species and 3 multi-species guilds using distance sampling methodology. In the Atlantic, for 11 well-known species, model predictions resembled seasonal movement patterns previously suggested in the literature. For these we produced monthly mean density maps. For lesser-known taxa, and in the Gulf of Mexico, where seasonal movements were less well described, we produced year-round mean density maps. The results revealed high regional differences in small delphinoid densities, confirmed the importance of the continental slope to large delphinoids and of canyons and seamounts to beaked and sperm whales, and quantified seasonal shifts in the densities of migratory baleen whales. The density maps, freely available online, are the first for these regions to be published in the peer-reviewed literature. PMID:26936335
PCB pollution continues to impact populations of orcas and other dolphins in European waters
Jepson, Paul D.; Deaville, Rob; Barber, Jonathan L.; Aguilar, Àlex; Borrell, Asunción; Murphy, Sinéad; Barry, Jon; Brownlow, Andrew; Barnett, James; Berrow, Simon; Cunningham, Andrew A.; Davison, Nicholas J.; ten Doeschate, Mariel; Esteban, Ruth; Ferreira, Marisa; Foote, Andrew D.; Genov, Tilen; Giménez, Joan; Loveridge, Jan; Llavona, Ángela; Martin, Vidal; Maxwell, David L.; Papachlimitzou, Alexandra; Penrose, Rod; Perkins, Matthew W.; Smith, Brian; de Stephanis, Renaud; Tregenza, Nick; Verborgh, Philippe; Fernandez, Antonio; Law, Robin J.
2016-01-01
Organochlorine (OC) pesticides and the more persistent polychlorinated biphenyls (PCBs) have well-established dose-dependent toxicities to birds, fish and mammals in experimental studies, but the actual impact of OC pollutants on European marine top predators remains unknown. Here we show that several cetacean species have very high mean blubber PCB concentrations likely to cause population declines and suppress population recovery. In a large pan-European meta-analysis of stranded (n = 929) or biopsied (n = 152) cetaceans, three out of four species:- striped dolphins (SDs), bottlenose dolphins (BNDs) and killer whales (KWs) had mean PCB levels that markedly exceeded all known marine mammal PCB toxicity thresholds. Some locations (e.g. western Mediterranean Sea, south-west Iberian Peninsula) are global PCB “hotspots” for marine mammals. Blubber PCB concentrations initially declined following a mid-1980s EU ban, but have since stabilised in UK harbour porpoises and SDs in the western Mediterranean Sea. Some small or declining populations of BNDs and KWs in the NE Atlantic were associated with low recruitment, consistent with PCB-induced reproductive toxicity. Despite regulations and mitigation measures to reduce PCB pollution, their biomagnification in marine food webs continues to cause severe impacts among cetacean top predators in European seas. PMID:26766430
de Quirós, Yara Bernaldo; González-Diaz, Oscar; Arbelo, Manuel; Sierra, Eva; Sacchini, Simona; Fernández, Antonio
2012-01-01
Gas embolic lesions linked to military sonar have been described in stranded cetaceans including beaked whales. These descriptions suggest that gas bubbles in marine mammal tissues may be more common than previously thought. In this study we have analyzed gas amount (by gas score) and gas composition within different decomposition codes using a standardized methodology. This broad study has allowed us to explore species-specific variability in bubble prevalence, amount, distribution, and composition, as well as masking of bubble content by putrefaction gases. Bubbles detected within the cardiovascular system and other tissues related to both pre- and port-mortem processes are a common finding on necropsy of stranded cetaceans. To minimize masking by putrefaction gases, necropsy, and gas sampling must be performed as soon as possible. Before 24 h post mortem is recommended but preferably within 12 h post mortem. At necropsy, amount of bubbles (gas score) in decomposition code 2 in stranded cetaceans was found to be more important than merely presence vs. absence of bubbles from a pathological point of view. Deep divers presented higher abundance of gas bubbles, mainly composed of 70% nitrogen and 30% CO2, suggesting a higher predisposition of these species to suffer from decompression-related gas embolism. PMID:22675306
Di Tullio, Juliana Couto; Gandra, Tiago B. R.; Zerbini, Alexandre N.; Secchi, Eduardo R.
2016-01-01
Temporal and spatial patterns of cetacean diversity and distribution were investigated through eight ship-based surveys carried out during spring and autumn between 2009 and 2014 on the outer continental shelf (~150m) and slope (1500m) off southeastern and southern Brazil (~23°S to ~34°S). The survey area was divided into southeast and south areas according to their oceanographic characteristics. Twenty-one species were observed in 503 sightings. The overall number of species was similar between the two areas, though it was higher in the spring in the south area. Five species were dominant and diversity varied more seasonally than spatially. ANOVA and kernel analyses showed that overall cetacean densities were higher in spring compared to autumn. Physeter macrocephalus, the most frequent species, concentrated throughout the south area at depths over 1000m in both seasons. Despite the overlapped occurrence at a broader scale, small delphinids presented latitudinal and in-offshore gradients as well as seasonal variation in distribution patterns, which could indicate habitat partitioning between some species. Delphinus delphis was only recorded in the south and its density decreased in areas where the presence of Stenella frontalis increased, mainly beyond the 250m isobath. Densities of S. longirostris and S. attenuata increased in lower latitudes and beyond the shelf break. The large delphinids Tursiops truncatus and Globicephala melas formed mixed groups in many occasions and were observed along the study area around depths of 500m. Grampus griseus was twice as frequent in the south area and densities increased in waters deeper than 600m. As expected, densities of both small and large migratory whales were higher during spring, over the continental slope, in the southeast area. The results presented here provided strong evidence on the importance of the outer continental shelf and slope to a diverse community of cetaceans occurring in the subtropical Southwestern Atlantic. PMID:27243455
Di Tullio, Juliana Couto; Gandra, Tiago B R; Zerbini, Alexandre N; Secchi, Eduardo R
2016-01-01
Temporal and spatial patterns of cetacean diversity and distribution were investigated through eight ship-based surveys carried out during spring and autumn between 2009 and 2014 on the outer continental shelf (~150m) and slope (1500m) off southeastern and southern Brazil (~23°S to ~34°S). The survey area was divided into southeast and south areas according to their oceanographic characteristics. Twenty-one species were observed in 503 sightings. The overall number of species was similar between the two areas, though it was higher in the spring in the south area. Five species were dominant and diversity varied more seasonally than spatially. ANOVA and kernel analyses showed that overall cetacean densities were higher in spring compared to autumn. Physeter macrocephalus, the most frequent species, concentrated throughout the south area at depths over 1000m in both seasons. Despite the overlapped occurrence at a broader scale, small delphinids presented latitudinal and in-offshore gradients as well as seasonal variation in distribution patterns, which could indicate habitat partitioning between some species. Delphinus delphis was only recorded in the south and its density decreased in areas where the presence of Stenella frontalis increased, mainly beyond the 250m isobath. Densities of S. longirostris and S. attenuata increased in lower latitudes and beyond the shelf break. The large delphinids Tursiops truncatus and Globicephala melas formed mixed groups in many occasions and were observed along the study area around depths of 500m. Grampus griseus was twice as frequent in the south area and densities increased in waters deeper than 600m. As expected, densities of both small and large migratory whales were higher during spring, over the continental slope, in the southeast area. The results presented here provided strong evidence on the importance of the outer continental shelf and slope to a diverse community of cetaceans occurring in the subtropical Southwestern Atlantic.
Aznar, F J; Perdiguero, D; Pérez del Olmo, A; Repullés, A; Agustí, C; Raga, J A
2005-11-28
In the summer and autumn of 1990, a cetacean morbillivirus caused a massive epizootic mortality of striped dolphins Stenella coeruleoalba in the western Mediterranean. Previous circumstantial evidence suggested that the disease could also have increased host susceptibility to infestations with epizoic crustaceans. In this study we provide strong evidence supporting this hypothesis. We examined striped dolphins stranded along the Mediterranean central coast of Spain from 1981 to 2004 (n = 136), and recorded data on prevalence, intensity of infestation, size and reproductive status of 2 sessile crustacean species specific to cetaceans, the phoront cirriped Xenobalanus globicipitis and the mesoparasitic copepod Pennella balaenopterae. Compared with the pre-epizootic (n = 12) and post-epizootic (n = 62) dolphin samples, the following changes were noted in the dolphins stranded during the epizootic (n = 62): (1) the prevalence of both X. globicipitis and P. balaenopterae increased; (2) the intensity of X. globicipitis and P. balaenopterae infestations did not increase; indeed, it was even slightly lower than in the other periods, as was their degree of aggregation; (3) individuals of both species were smaller, and a higher proportion were non-gravid; (4) the 2 species tended to co-occur in the same dolphins, but their numbers did not co-vary. These patterns strongly suggest that, during the epizootic, there was a short-term increase in the probability of infestation of these 2 species because of the sudden rise in the population of susceptible hosts; the growth of the new recruits was limited by the early death of dolphins. The high susceptibility was likely related to the immunosuppressive effects of viral infection and the abnormally heavy loads of polychlorinated biphenyls found in sick dolphins; the level of inbreeding was also higher in dolphins from the 'epizootic' sample. Epizoic crustaceans could be suitable indicators of health in cetacean populations.
NASA Astrophysics Data System (ADS)
Campbell, Gregory S.; Thomas, Len; Whitaker, Katherine; Douglas, Annie B.; Calambokidis, John; Hildebrand, John A.
2015-02-01
Trends in cetacean density and distribution off southern California were assessed through visual line-transect surveys during thirty-seven California Cooperative Oceanic Fisheries Investigations (CalCOFI) cruises from July 2004-November 2013. From sightings of the six most commonly encountered cetacean species, seasonal, annual and overall density estimates were calculated. Blue whales (Balaenoptera musculus), fin whales (Balaenoptera physalus) and humpback whales (Megaptera novaeangliae) were the most frequently sighted baleen whales with overall densities of 0.91/1000 km2 (CV=0.27), 2.73/1000 km2 (CV=0.19), and 1.17/1000 km2 (CV=0.21) respectively. Species specific density estimates, stratified by cruise, were analyzed using a generalized additive model to estimate long-term trends and correct for seasonal imbalances. Variances were estimated using a non-parametric bootstrap with one day of effort as the sampling unit. Blue whales were primarily observed during summer and fall while fin and humpback whales were observed year-round with peaks in density during summer and spring respectively. Short-beaked common dolphins (Delphinus delphis), Pacific white-sided dolphins (Lagenorhynchus obliquidens) and Dall's porpoise (Phocoenoidesdalli) were the most frequently encountered small cetaceans with overall densities of 705.83/1000 km2 (CV=0.22), 51.98/1000 km2 (CV=0.27), and 21.37/1000 km2 (CV=0.19) respectively. Seasonally, short-beaked common dolphins were most abundant in winter whereas Pacific white-sided dolphins and Dall's porpoise were most abundant during spring. There were no significant long-term changes in blue whale, fin whale, humpback whale, short-beaked common dolphin or Dall's porpoise densities while Pacific white-sided dolphins exhibited a significant decrease in density across the ten-year study. The results from this study were fundamentally consistent with earlier studies, but provide greater temporal and seasonal resolution.
NASA Astrophysics Data System (ADS)
Friday, Nancy A.; Waite, Janice M.; Zerbini, Alexandre N.; Moore, Sue E.
2012-06-01
Visual line transect surveys for cetaceans were conducted on the eastern Bering Sea shelf in association with pollock stock assessment surveys aboard the NOAA ship Miller Freeman in June and July of 1999, 2000, 2002, and 2004. Transect survey effort ranged from 1188 km in 1999 to 3761 km in 2002. Fin whales (Balaenoptera physalus) were the most common large whale in all years except 2004 when humpback whales (Megaptera novaeangliae) were more abundant. Dall's porpoise (Phocoenoides dalli) were the most common small cetacean in all years. Abundance estimates were calculated by year for each oceanographic domain: coastal, middle, and outer/slope. The middle and outer/slope domains were divided into two strata ("north" and "south") because of variable survey effort. The distribution and abundance of baleen whales changed between the earlier (colder) and later (warmer) survey years. Fin whales consistently occupied the outer shelf and secondarily the middle shelf, and their abundance was an order of magnitude greater in cold compared to warm years. Humpback whales "lived on the margin" of the northern Alaska Peninsula, eastern Aleutian Islands and Bristol Bay; their preferred habitat is possibly associated with areas of high prey availability due to nutrient upwelling and aggregation mechanisms. Minke whales (Balaenoptera acutorostrata) occur shoreward of fin whales in the outer and middle shelf and in coastal habitats along the Alaska Peninsula. The highest abundance for this species was observed in a cold (1999) year. No clear relationship emerged for odontocetes with regard to warm and cold years. Dall's porpoise occupied both outer and middle domains and harbor porpoise (Phocoena phocoena) were more common in middle and coastal domains. This study provided a unique, broad-scale assessment of cetacean distribution and abundance on the eastern Bering Sea shelf and a baseline for future comparisons.
Caballero, Susana; Duchêne, Sebastian; Garavito, Manuel F; Slikas, Beth; Baker, C Scott
2015-01-01
A small number of cetaceans have adapted to an entirely freshwater environment, having colonized rivers in Asia and South America from an ancestral origin in the marine environment. This includes the 'river dolphins', early divergence from the odontocete lineage, and two species of true dolphins (Family Delphinidae). Successful adaptation to the freshwater environment may have required increased demands in energy involved in processes such as the mitochondrial osmotic balance. For this reason, riverine odontocetes provide a compelling natural experiment in adaptation of mammals from marine to freshwater habitats. Here we present initial evidence of positive selection in the NADH dehydrogenase subunit 2 of riverine odontocetes by analyses of full mitochondrial genomes, using tests of selection and protein structure modeling. The codon model with highest statistical support corresponds to three discrete categories for amino acid sites, those under positive, neutral, and purifying selection. With this model we found positive selection at site 297 of the NADH dehydrogenase subunit 2 (dN/dS>1.0,) leading to a substitution of an Ala or Val from the ancestral state of Thr. A phylogenetic reconstruction of 27 cetacean mitogenomes showed that an Ala substitution has evolved at least four times in cetaceans, once or more in the three 'river dolphins' (Families Pontoporidae, Lipotidae and Inidae), once in the riverine Sotalia fluviatilis (but not in its marine sister taxa), once in the riverine Orcaella brevirostris from the Mekong River (but not in its marine sister taxa) and once in two other related marine dolphins. We located the position of this amino acid substitution in an alpha-helix channel in the trans-membrane domain in both the E. coli structure and Sotalia fluviatilis model. In E. coli this position is located in a helix implicated in a proton translocation channel of respiratory complex 1 and may have a similar role in the NADH dehydrogenases of cetaceans.
Colitz, Carmen M H; Walsh, Michael T; McCulloch, Stephen D
2016-03-01
Cetaceans in the wild and under human care develop a variety of ocular lesions. Although they have echolocation, cetacean species have good sight, making ocular health an important part of overall health care. The cornea is the primary site of abnormalities in both populations. Typical lesions of cetaceans under human care are characterized in this retrospective review of cases. One hundred eighty animals (n = 360 eyes) were chosen from the author's ophthalmologic examination reports from different geographic areas; they included Atlantic bottlenose dolphins (Tursiops truncatus), Pacific bottle nose dolphins (Tursiopstruncatus gilli), Indopacific bottlenose dolphins (Steno bredanensis), Indopacific humpback dolphins (Sousa chinensis), and roughtooth dolphins (Steno bredanensis). These animals were examined at least once, although most were examined numerous times over many years; lesions were categorized and are described. Seventy-seven eyes from 47 animals were normal. Medial keratopathy was the most common lesion and identified in 180 eyes from 97 animals, with 83 affected bilaterally. Horizontal keratopathy was identified in 69 eyes from 41 animals, with 28 affected bilaterally. Axial keratopathy and nonspecific axial opacities were identified in 67 eyes from 44 animals, with 21 affected bilaterally. Seventy-eight eyes from 50 animals, with 28 affected bilaterally, had more than one type of corneal lesion. Cataracts were identified in 32 eyes from 19 animals, with 13 affected bilaterally. Traumatic injuries were also common and involved eyelids and cornea. Sixteen eyes from 11 animals were blind; five dolphins were blind bilaterally due to phthisis bulbi secondary to corneal perforation or severe trauma. None of the diseases had a sex predisposition; however, medial keratopathy was significantly more common as a bilateral presentation than as a unilateral presentation. Cetaceans under human care with impaired sight can use echolocation; however, ocular health should definitely be a priority in their overall health plan.
Visual Laterality of Calf–Mother Interactions in Wild Whales
Baranov, Vladimir; Osipova, Ludmila; Krasnova, Vera; Malashichev, Yegor
2010-01-01
Background Behavioral laterality is known for a variety of vertebrate and invertebrate animals. Laterality in social interactions has been described for a wide range of species including humans. Although evidence and theoretical predictions indicate that in social species the degree of population level laterality is greater than in solitary ones, the origin of these unilateral biases is not fully understood. It is especially poorly studied in the wild animals. Little is known about the role, which laterality in social interactions plays in natural populations. A number of brain characteristics make cetaceans most suitable for investigation of lateralization in social contacts. Methodology/Principal Findings Observations were made on wild beluga whales (Delphinapterus leucas) in the greatest breeding aggregation in the White Sea. Here we show that young calves (in 29 individually identified and in over a hundred of individually not recognized mother-calf pairs) swim and rest significantly longer on a mother's right side. Further observations along with the data from other cetaceans indicate that found laterality is a result of the calves' preference to observe their mothers with the left eye, i.e., to analyze the information on a socially significant object in the right brain hemisphere. Conclusions/Significance Data from our and previous work on cetacean laterality suggest that basic brain lateralizations are expressed in the same way in cetaceans and other vertebrates. While the information on social partners and novel objects is analyzed in the right brain hemisphere, the control of feeding behavior is performed by the left brain hemisphere. Continuous unilateral visual contacts of calves to mothers with the left eye may influence social development of the young by activation of the contralateral (right) brain hemisphere, indicating a possible mechanism on how behavioral lateralization may influence species life and welfare. This hypothesis is supported by evidence from other vertebrates. PMID:21072179
URI's ARMADA Research Experience Leads to Inspiring Middle School Students to Become Ocean Stewards
NASA Astrophysics Data System (ADS)
Barrett, M.
2010-12-01
After spending three weeks aboard NOAA’s David Starr Jordon, my classroom has come alive with ocean life. My research experience was part of URI’s ARMADA project. I worked alongside scientists as they conducted ‘business as usual’ on the CSCAPE expedition. CSCAPE’s mission was to survey the cetacean abundance in the Pacific Ocean. My leg of the voyage took us as far out as 300 nautical miles from the coast and from points between Newport, Oregon and San Francisco, California. Throughout the three weeks, I learned with the best of them how cetaceans are identified, photographed, counted, and biopsied. This 2005 research experience is still with me today in the classroom. I have created a “Bring the Sea to Me” program in which my middle school students teach elementary students about ocean life. My students also use video footage and photographs from my expedition to create wildlife documentaries shown at our annual Film Festival. My students have also worked with engineering students from a local university to create a life-size fin whale, which travels with us on our teaching trips, and I have since purchased a 100-gallon touch tank to give the students a hands-on experience with the organisms we collect while seining along the New Jersey coast. The science I learned while on the Jordan has allowed me to teach my students how cetaceans are surveyed, how to identify cetaceans by their blows and dorsal fins, and how to identify individuals within a species. Survey graphs are interpreted and conclusions are drawn. The students also see the importance of writing in science when they explore my journals from the expedition (www.armadaproject.org/journals/2005-2006/barrett/barrett-8-21.htm). My participation in CSCAPE inspired me beyond belief, and I can only hope that my enthusiasm for the ocean is inspiring students to become stewards of our oceans.
Caballero, Susana; Duchêne, Sebastian; Garavito, Manuel F.; Slikas, Beth; Baker, C. Scott
2015-01-01
A small number of cetaceans have adapted to an entirely freshwater environment, having colonized rivers in Asia and South America from an ancestral origin in the marine environment. This includes the ‘river dolphins’, early divergence from the odontocete lineage, and two species of true dolphins (Family Delphinidae). Successful adaptation to the freshwater environment may have required increased demands in energy involved in processes such as the mitochondrial osmotic balance. For this reason, riverine odontocetes provide a compelling natural experiment in adaptation of mammals from marine to freshwater habitats. Here we present initial evidence of positive selection in the NADH dehydrogenase subunit 2 of riverine odontocetes by analyses of full mitochondrial genomes, using tests of selection and protein structure modeling. The codon model with highest statistical support corresponds to three discrete categories for amino acid sites, those under positive, neutral, and purifying selection. With this model we found positive selection at site 297 of the NADH dehydrogenase subunit 2 (dN/dS>1.0,) leading to a substitution of an Ala or Val from the ancestral state of Thr. A phylogenetic reconstruction of 27 cetacean mitogenomes showed that an Ala substitution has evolved at least four times in cetaceans, once or more in the three ‘river dolphins’ (Families Pontoporidae, Lipotidae and Inidae), once in the riverine Sotalia fluviatilis (but not in its marine sister taxa), once in the riverine Orcaella brevirostris from the Mekong River (but not in its marine sister taxa) and once in two other related marine dolphins. We located the position of this amino acid substitution in an alpha-helix channel in the trans-membrane domain in both the E. coli structure and Sotalia fluviatilis model. In E. coli this position is located in a helix implicated in a proton translocation channel of respiratory complex 1 and may have a similar role in the NADH dehydrogenases of cetaceans. PMID:25946045
Sakai, Mai; Wang, Ding; Wang, Kexiong; Li, Songhai; Akamatsu, Tomonari
2011-01-01
Background Observing and monitoring the underwater social interactions of cetaceans is challenging. Therefore, previous cetacean studies have monitored these interactions by surface observations. However, because cetaceans spend most of their time underwater, it is important that their underwater behavior is also continuously monitored to better understand their social relationships and social structure. The finless porpoise is small and has no dorsal fin. It is difficult to observe this species in the wild, and little is known of its sociality. Methodology/Principal Findings The swim depths of 6 free-ranging finless porpoises were simultaneously recorded using a time-synchronized bio-logging system. Synchronous diving was used as an index of association. Two pairs, #27 (an immature female estimated to be 3.5 years old) and #32 (an adult male), #28 (a juvenile male estimated to be 2 years old) and #29 (an adult male), tended to participate in long periods of synchronized diving more frequently than 13 other possible pairs, indicating that the 4 porpoises chose their social partners. The adult males (#32, #29) tended to follow the immature female (#27) and juvenile male (#28), respectively. However, during synchronized diving, the role of an initiator often changed within the pair, and their body movements appeared to be non-agonistic, e.g., rubbing of bodies against one another instead of that on one-side, as observed with chasing and escaping behaviors. Conclusions/Significance The present study employed a time-synchronized bio-logging method to observe the social relationships of free-ranging aquatic animals based on swimming depth. The results suggest that certain individuals form associations even if they are not a mother and calf pair. Long synchronized dives occurred when particular members were reunited, and this suggests that the synchronized dives were not a by-product of opportunistic aggregation. PMID:22216123
Heffner, Henry E; Heffner, Rickye S
2018-01-01
Branstetter and his colleagues present the audiograms of eight killer whales and provide a comprehensive review of previous killer whale audiograms. In their paper, they say that the present authors have reported a relationship between size and high-frequency hearing but that echolocating cetaceans might be a special case. The purpose of these comments is to clarify that the relationship of a species' high-frequency hearing is not to its size (mass) but to its "functional interaural distance" (a measure of the availability of sound-localization cues). Moreover, it has previously been noted that echolocating animals, cetaceans as well as bats, have extended their high-frequency hearing somewhat beyond the frequencies used by comparable non-echolocators for passive localization.
The fluid mechanics of continuous flow electrophoresis
NASA Technical Reports Server (NTRS)
Saville, D. A.
1990-01-01
The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.
Pyenson, Nicholas D; Haasl, David M
2007-12-22
Whale-fall communities support a deep-sea invertebrate assemblage that subsists entirely on the decaying carcasses of large cetaceans. The oldest whale-falls are Late Eocene in age, but these early whale-falls differ in faunal content and host cetacean size from Neogene and Recent whale-falls. Vesicomyid bivalves, for example, are major components of the sulphophilic stage in Miocene and Recent whale-fall communities, but they are absent from Palaeogene fossil whale-falls. The differences between Palaeogene and Neogene communities led to the hypothesis that the origin of modern whale-fall communities was linked with the evolution of extremely large mysticetes, which provided sufficient biomass and oil to sustain the modern complement of whale-fall invertebrates. Here, we describe a fossil whale-fall community from the Miocene of California, showing vesicomyid bivalves in direct association with a host mysticete smaller than the adult individuals of any living mysticete species. This association, which is the youngest yet reported from the Neogene of North America, demonstrates that body size is not a necessary factor for the formation of modern whale-fall communities. Instead, we suggest that high skeletal oil content may have been a more important factor, which, based on the age of the fossil whale-fall, evolved at least by the Late Miocene.
Díaz-Delgado, J; Ressio, R; Groch, K R; Catão-Dias, J L
2018-06-01
A considerable amount of knowledge on natural and anthropogenic pathologic conditions affecting different cetacean species has been gained over the last decades. Nonetheless, the immunopathological bases for most of these processes have been poorly documented or remain unknown. Comparative immunopathological investigations in these species are precluded by the limited number of specific antibodies, most of which are not commercially available, and the reduced spectrum of validated and/or cross-reactive ones. To partially fill in this gap of knowledge, a set of commercially available primary antibodies were tested for cross-reactivity against leukocytes and cytokines in formalin-fixed, paraffin-embedded (FFPE) lymphoid tissues (lymph nodes, spleen and thymus) of three bycaught, apparently healthy and fresh Franciscanas (Pontoporia blainvillei) using immunohistochemistry. On the basis of similar region specificity within the lymphoid organs, cellular morphology and staining pattern with human control tissues, 13/19 primary antibodies (caspase 3, CD3, CD57, CD68, FoxP3, HLA-DRα, IFNγ, IgG, IL4, IL10, Lysozyme, TGFβ and PAX-5) exhibited satisfactory cross-reactivity. Our results expand the spectrum of suitable cross-reactive primary antibodies in FFPE cetacean tissues. Further comparative immunopathological studies focused on infectious diseases and ecotoxicology may benefit from establishment of baseline expression of immunologically relevant molecules in various cetaceans species. Copyright © 2018 Elsevier B.V. All rights reserved.
Brucella ceti and Brucellosis in Cetaceans
Guzmán-Verri, Caterina; González-Barrientos, Rocío; Hernández-Mora, Gabriela; Morales, Juan-Alberto; Baquero-Calvo, Elías; Chaves-Olarte, Esteban; Moreno, Edgardo
2012-01-01
Since the first case of brucellosis detected in a dolphin aborted fetus, an increasing number of Brucella ceti isolates has been reported in members of the two suborders of cetaceans: Mysticeti and Odontoceti. Serological surveys have shown that cetacean brucellosis may be distributed worldwide in the oceans. Although all B. ceti isolates have been included within the same species, three different groups have been recognized according to their preferred host, bacteriological properties, and distinct genetic traits: B. ceti dolphin type, B. ceti porpoise type, and B. ceti human type. It seems that B. ceti porpoise type is more closely related to B. ceti human isolates and B. pinnipedialis group, while B. ceti dolphin type seems ancestral to them. Based on comparative phylogenetic analysis, it is feasible that the B. ceti ancestor radiated in a terrestrial artiodactyl host close to the Raoellidae family about 58 million years ago. The more likely mode of transmission of B. ceti seems to be through sexual intercourse, maternal feeding, aborted fetuses, placental tissues, vertical transmission from mother to the fetus or through fish or helminth reservoirs. The B. ceti dolphin and porpoise types seem to display variable virulence in land animal models and low infectivity for humans. However, brucellosis in some dolphins and porpoises has been demonstrated to be a severe chronic disease, displaying significant clinical and pathological signs related to abortions, male infertility, neurobrucellosis, cardiopathies, bone and skin lesions, strandings, and death. PMID:22919595
A hydrodynamically active flipper-stroke in humpback whales.
Segre, Paolo S; Seakamela, S Mduduzi; Meÿer, Michael A; Findlay, Ken P; Goldbogen, Jeremy A
2017-07-10
A central paradigm of aquatic locomotion is that cetaceans use fluke strokes to power their swimming while relying on lift and torque generated by the flippers to perform maneuvers such as rolls, pitch changes and turns [1]. Compared to other cetaceans, humpback whales (Megaptera novaeangliae) have disproportionately large flippers with added structural features to aid in hydrodynamic performance [2,3]. Humpbacks use acrobatic lunging maneuvers to attack dense aggregations of krill or small fish, and their large flippers are thought to increase their maneuverability and thus their ability to capture prey. Immediately before opening their mouths, humpbacks will often rapidly move their flippers, and it has been hypothesized that this movement is used to corral prey [4,5] or to generate an upward pitching moment to counteract the torque caused by rapid water engulfment [6]. Here, we demonstrate an additional function for the rapid flipper movement during lunge feeding: the flippers are flapped using a complex, hydrodynamically active stroke to generate lift and increase propulsive thrust. We estimate that humpback flipper-strokes are capable of producing large forward oriented forces, which may be used to enhance lunge feeding performance. This behavior is the first observation of a lift-generating flipper-stroke for propulsion cetaceans and provides an additional function for the uniquely shaped humpback whale flipper. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, B.A.; Hahn, M.E.
1995-12-31
The aryl hydrocarbon receptor (AhR) mediates the effects of many common and potentially toxic organic hydrocarbons, including some polychlorinated biphenyls and dioxins. Since small cetaceans often inhabit industrially polluted coastal waters, comparison of the molecular structure and function of this protein in cetaeans with other marine and mammalian species is important for evaluating the sensitivity of cetaceans to these pollutants. An AhR protein has been identified in beluga liver by photoaffinity labeling. In the present study, the authors sought to clone and sequence an AhR cDNA from beluga as a prelude to studying its structure and function, using reverse-transcription polymerasemore » chain reaction (RT-PCR) and degenerate primers, a 515 base pair fragment was amplified, cloned and sequenced, revealing homology to the PAS domain (ligand binding and dimerization region) of AhRs from terrestrial mammals. This portion of the putative beluga AhR has 82% amino acid and 81% nucleotide sequence identity to the mouse AhR, and 63% amino acid and 64% nucleotide sequence identity to an AhR from the marine fish Fundulus heteroclitus. A beluga cDNA library was synthesized and is currently being screened with the PCR-generated fragment to obtain the complete coding sequence. This is the first molecular evidence of AhR presence in cetaceans.« less
Metazoan parasites from odontocetes off New Zealand: new records.
Lehnert, Kristina; Randhawa, Haseeb; Poulin, Robert
2017-10-01
Information about the parasite fauna of spectacled porpoises and cetaceans from New Zealand waters in general is scarce. This study takes advantage of material archived in collections of the Otago Museum in Dunedin and Massey University in Auckland, sampled from cetacean species found stranded along the New Zealand coastline between 2007 and 2014. Parasites from seven species of cetaceans (spectacled porpoise, Phocoena dioptrica (n = 2 individuals examined); pygmy sperm whale (n = 1); long-finned pilot whale, Globicephala melas (n = 1); Risso's dolphin, Grampus griseus (n = 1); short-beaked common dolphin, Delphinus delphis (n = 7); striped dolphin, Stenella coeruleoalba (n = 3) and dusky dolphin, Lagenorhynchus obscurus (n = 2)) from the respiratory and gastro-intestinal tract, cranial sinus, liver, urogenital and mammary tract, fascia and blubber were investigated. Ten parasite species were identified, belonging to the Nematoda (Stenurus minor, Stenurus globicephalae, Halocercus sp. (Pseudaliidae), Anisakis sp. (Anisakidae), Crassicauda sp. (Crassicaudidae)), Cestoda (Phyllobothrium delphini and Monorygma grimaldii (Phyllobothriidae)), Trematoda (Brachicladium palliata and Brachicladium delphini (Brachicladiidae)) and Crustacea (Scutocyamus antipodensis (Cyamidae)). Some of the parasite species encountered comprises new records for their host. Although the material was not sampled within a systematic parasitological survey, the findings contain valuable new information about the parasite fauna of rare, vagile and vulnerable marine wildlife from a remote oceanic environment.
Origin of whales in epicontinental remnant seas: new evidence from the early eocene of pakistan.
Gingerich, P D; Wells, N A; Russell, D E; Shah, S M
1983-04-22
Pakicetus inachus from the early Eocene of Pakistan is the oldest and most primitive cetacean known. The dentition of Pakicetus resembles that of carnivorous mesonychid land mammals as well as middle Eocene cetaceans. The otic region of the cranium lacks characteristic specializations of whales necessary for efficient directional hearing under water. Pakicetus occurs with a land-mammal fauna in fluvial sediments bordering epicontinental Eocene remnants of the eastern Tethys seaway. Discovery of Pakicetus strengthens earlier inferences that whales originated from terrestrial carnivorous mammals and suggests that whales made a gradual transition from land to sea in the early Eocene, spending progressively more time feeding on planktivorous fishes in shallow, highly productive seas and embayments associated with tectonic closure of eastern Tethys.
Pyenson, Nicholas D.
2016-01-01
The diversification of crown cetacean lineages (i.e., crown Odontoceti and crown Mysticeti) occurred throughout the Oligocene, but it remains an ongoing challenge to resolve the phylogenetic pattern of their origins, especially with respect to stem lineages. One extant monotypic lineage, Platanista gangetica (the Ganges and Indus river dolphin), is the sole surviving member of the broader group Platanistoidea, with many fossil relatives that range from Oligocene to Miocene in age. Curiously, the highly threatened Platanista is restricted today to freshwater river systems of South Asia, yet nearly all fossil platanistoids are known globally from marine rocks, suggesting a marine ancestry for this group. In recent years, studies on the phylogenetic relationships in Platanistoidea have reached a general consensus about the membership of different sub-clades and putative extinct groups, although the position of some platanistoid groups (e.g., Waipatiidae) has been contested. Here we describe a new genus and species of fossil platanistoid, Arktocara yakataga, gen. et sp. nov. from the Oligocene of Alaska, USA. The type and only known specimen was collected from the marine Poul Creek Formation, a unit known to include Oligocene strata, exposed in the Yakutat City and Borough of Southeast Alaska. In our phylogenetic analysis of stem and node-based Platanistoidea, Arktocara falls within the node-based sub-clade Allodelphinidae as the sister taxon to Allodelphis pratti. With a geochronologic age between ∼29–24 million years old, Arktocara is among the oldest crown Odontoceti, reinforcing the long-standing view that the diversification for crown lineages must have occurred no later than the early Oligocene. PMID:27602287
9 CFR 3.111 - Swim-with-the-dolphin programs.
Code of Federal Regulations, 2010 CFR
2010-01-01
... sexual contact with humans, such cetaceans shall either be removed from the interactive area or the... pre-encounter orientation, rules, and instructions, including restrictions on types of physical...
77 FR 37878 - Marine Mammals; File No. 16163
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-25
... imaging with echosounders, and aerial surveys. Twenty-seven cetacean species and unidentified mesoplodon species will be biopsied, dart, and/or suction-cup tagged. Ultrasound sampling will be directed at killer...
ERIC Educational Resources Information Center
Gilliland, Denise DelGrosso
1991-01-01
Suggested are activities about whales for children in schools not near the ocean. Activities designed to pique students' interest in whales and to investigate the size, breathing, buoyancy, and feeding strategies of whales are discussed. (CW)
NASA Astrophysics Data System (ADS)
Ressler, Patrick Henry
2001-12-01
In the Gulf of Mexico (GOM), coarse to mesoscale eddies can enhance the supply of limiting nutrients into the euphotic zone, elevating primary production. This leads to 'oases' of enriched standing stocks of zooplankton and micronekton in otherwise oligotrophic deepwater (>200 m bottom depth). A combination of acoustic volume backscattering (Sv) measurements with an acoustic Doppler current profiler (ADCP) and concurrent net sampling of zooplankton and micronekton biomass in GOM eddy fields between October 1996 and November 1998 confirmed that cyclones and flow confluences were areas of locally enhanced Sv and standing stock biomass. Net samples were used both to 'sea-truth' the acoustic measurements and to assess the influence of taxonomic composition on measured Sv. During October 1996 and August 1997, a mesoscale (200--300 km diameter) cyclone-anticyclone pair in the northeastern GOM was surveyed as part of a cetacean (whale and dolphin) and seabird habitat, study. Acoustic estimates of biomass in the upper 10--50 m of the water column showed that the cyclone and flow confluence were enriched relative to anticyclonic Loop Current Eddies during both years. Cetacean and seabird survey results reported by other project researchers imply that these eddies provide preferential habitat because they foster locally higher concentrations of higher-trophic-level prey. Sv measurements in November 1997 and 1998 showed that coarse scale eddies (30--150 km diameter) probably enhanced nutrients and S, in the deepwater GOM within 100 km of the Mississippi delta, an area suspected to be important habitat for cetaceans and seabirds. Finally, Sv, data collected during November-December 1997 and October-December 1998 from a mooring at the head of DeSoto Canyon in the northeastern GOM revealed temporal variability at a single location: characteristic temporal decorrelation scales were 1 day (diel vertical migration of zooplankton and micronekton) and 5 days (advective processes). A combination of acoustic and net sampling is a useful way to survey temporal and spatial patterns in zooplankton and micronekton biomass in coarse to mesoscale eddies. Further research should employ such a combination of methods to investigate plankton patterns in eddies and their implications for cetacean and seabird habitat.
Bachman, Melannie J; Keller, Jennifer M; West, Kristi L; Jensen, Brenda A
2014-08-01
Persistent organic pollutants (POPs) are toxic man-made chemicals that bioaccumulate and biomagnify in food webs, making them a ubiquitous threat to the marine environment. Although many studies have determined concentrations of POPs in top predators, no studies have quantified POPs in stranded cetaceans within the last 30 years around the Hawaiian Islands. A suite of POPs was measured in the blubber of 16 cetacean species that stranded in the tropical Pacific, including Hawai'i from 1997 to 2011. The sample set includes odontocetes (n=39) and mysticetes (n=3). Median (range) contaminant concentrations in ng/g lipid for the most representative species category (delphinids excluding killer whales [n=27]) are: 9650 (44.4-99,100) for ∑DDTs, 6240 (40.8-50,200) for ∑PCBs, 1380 (6.73-9520) for ∑chlordanes, 1230 (13.4-5510) for ∑toxaphenes, 269 (1.99-10,100) for ∑PBDEs, 280 (2.14-4190) for mirex, 176 (5.43-857) for HCB, 48.1 (<5.42-566) for ∑HCHs, 33.9 (<2.42-990) for ∑HBCDs, 1.65 (<0.435-11.7) for octachlorostyrene and 1.49 (<2.07-13.1) for pentachlorobenzene. ∑PCB concentrations in these Pacific Island cetaceans approach and sometimes exceed proposed toxic threshold values. Backward stepwise multiple regressions indicated the influence of life history parameters on contaminant concentrations when performed with three independent variables (species category, year of stranding, and sex/age class). No temporal trends were noted (p>0.063), but sex/age class influences were evident with adult males exhibiting greater contaminant loads than adult females and juveniles for ∑DDT, ∑PCBs, ∑CHLs, and mirex (p≤0.036). POP concentrations were lower in mysticetes than odontocetes for many compound classes (p≤0.003). p,p'-DDE/∑DDTs ratios were greater than 0.6 for all species except humpback whales, suggesting exposure to an old DDT source. These POP levels are high enough to warrant concern and continued monitoring. Published by Elsevier B.V.
77 FR 35657 - Marine Mammals; File Nos. 16163, 16160, and 15569
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-14
... remains), acoustic imaging with echosounders, and aerial surveys. Twenty seven cetacean species and unidentified mesoplodon species will be biopsied, dart, and/or suction- cup tagged. Ultrasound sampling will be...
ERIC Educational Resources Information Center
Naturescope, 1986
1986-01-01
Presents information on sea mammals, including definitions and characteristics of cetaceans, pinnipeds, and sirenians. Contains descriptions of the teaching activities "Whale Music,""Draw A Whale to Scale,""Adopt a Sea Mammal," and "Sea Mammal Sleuths." (TW)
Behavioural evidence of magnetoreception in dolphins: detection of experimental magnetic fields
NASA Astrophysics Data System (ADS)
Kremers, Dorothee; López Marulanda, Juliana; Hausberger, Martine; Lemasson, Alban
2014-11-01
Magnetoreception, meaning the perception of magnetic fields, is supposed to play an important role for orientation/navigation in some terrestrial and aquatic species. Although some spatial observations of free-ranging cetaceans' migration routes and stranding sites led to the assumption that cetaceans may be sensitive to the geomagnetic field, experimental evidence is lacking. Here, we tested the spontaneous response of six captive bottlenose dolphins to the presentation of two magnetized and demagnetized controlled devices while they were swimming freely. Dolphins approached the device with shorter latency when it contained a strongly magnetized neodymium block compared to a control demagnetized block that was identical in form and density and therefore undistinguishable with echolocation. We conclude that dolphins are able to discriminate the two stimuli on the basis of their magnetic properties, a prerequisite for magnetoreception-based navigation.
NEUROPATHOLOGIC FINDINGS IN CETACEANS STRANDED IN ITALY (2002-14).
Pintore, Maria Domenica; Mignone, Walter; Di Guardo, Giovanni; Mazzariol, Sandro; Ballardini, Marco; Florio, Caterina Lucia; Goria, Maria; Romano, Angelo; Caracappa, Santo; Giorda, Federica; Serracca, Laura; Pautasso, Alessandra; Tittarelli, Cristiana; Petrella, Antonio; Lucifora, Giuseppe; Di Nocera, Fabio; Uberti, Barbara Degli; Corona, Cristiano; Casalone, Cristina; Iulini, Barbara
2018-04-01
We summarized the neuropathologic findings in 60 cetaceans stranded along the Italian coastline from 2002 to 2014. The following neuropathologic changes were detected in 45% (27/60) of animals: nonsuppurative meningo-encephalitides (30%, 18/60), nonspecific lesions (12%, 7/60), suppurative encephalitis (2%, 1/60), and neoplasm (2%, 1/60). No histologic lesions were found in 47% (28/60) of the specimens. Five (8%, 5/60) samples were unsuitable for analysis. Analysis with PCR detected Brucella spp., morbillivirus, and Toxoplasma gondii infection in one, six, and seven individuals, respectively. Immunohistochemical analysis confirmed positivity for morbillivirus and for T. gondii infection in three cases each. No evidence of the scrapie-associated prion protein PrPSc was detected. Our findings underscore the importance of an adequate surveillance system for monitoring aquatic mammal pathologies and for protecting both animal and human health.
Rafinesque's Sicilian whale, Balena gastrytis
Woodman, Neal; Mead, James G.
2017-01-01
In 1815, the naturalist Constantine S. Rafinesque described a new species of cetacean, Balena gastrytis, from Sicily, based on a whale that stranded on Carini beach near Palermo. In comparing the characteristics of his new whale with known species, Rafinesque also took the opportunity to name a new genus, Cetoptera, to replace Balaenoptera Lacépède, 1804. Unfortunately, few of Rafinesque's contemporaries saw his article, which appeared in Il Portafoglio, a local journal that he published and distributed. The journal remains rare, and awareness of the whale remains minimal, despite its relevance to cetacean taxonomy and understanding of whale diversity and distribution in the Mediterranean. We describe the circumstances of the stranding of the Sicilian whale and provide Rafinesque's original description of the whale, as well as an evaluation of its reported characteristics and its current identity.
Behavioural evidence of magnetoreception in dolphins: detection of experimental magnetic fields.
Kremers, Dorothee; López Marulanda, Juliana; Hausberger, Martine; Lemasson, Alban
2014-11-01
Magnetoreception, meaning the perception of magnetic fields, is supposed to play an important role for orientation/navigation in some terrestrial and aquatic species. Although some spatial observations of free-ranging cetaceans' migration routes and stranding sites led to the assumption that cetaceans may be sensitive to the geomagnetic field, experimental evidence is lacking. Here, we tested the spontaneous response of six captive bottlenose dolphins to the presentation of two magnetized and demagnetized controlled devices while they were swimming freely. Dolphins approached the device with shorter latency when it contained a strongly magnetized neodymium block compared to a control demagnetized block that was identical in form and density and therefore undistinguishable with echolocation. We conclude that dolphins are able to discriminate the two stimuli on the basis of their magnetic properties, a prerequisite for magnetoreception-based navigation.
Beaked whales demonstrate a marked acoustic response to the use of shipboard echosounders
DeAngelis, Annamaria I.; Palka, Debra; Corkeron, Peter J.; Van Parijs, Sofie M.
2017-01-01
The use of commercial echosounders for scientific and industrial purposes is steadily increasing. In addition to traditional navigational and fisheries uses, commercial sonars are used extensively for oceanographic research, benthic habitat mapping, geophysical exploration, and ecosystem studies. Little is known about the effects of these acoustic sources on marine animals, though several studies have already demonstrated behavioural responses of cetaceans to shipboard echosounders. Some species of cetaceans are known to be particularly sensitive to acoustic disturbance, including beaked whales. In 2011 and 2013, we conducted cetacean assessment surveys in the western North Atlantic in which a suite of Simrad EK60 echosounders was used to characterize the distribution of prey along survey tracklines. Echosounders were alternated daily between active and passive mode, to determine whether their use affected visual and acoustic detection rates of beaked whales. A total of 256 groups of beaked whales were sighted, and 118 definitive acoustic detections were recorded. Regression analyses using generalized linear models (GLM) found that sea state and region were primary factors in determining visual sighting rates, while echosounder state was the primary driver for acoustic detections, with significantly fewer detections (only 3%) occurring when echosounders were active. These results indicate that beaked whales both detect and change their behaviour in response to commercial echosounders. The mechanism of this response is unknown, but could indicate interruption of foraging activity or vessel avoidance, with potential implications for management and mitigation of anthropogenic impacts. PMID:29308236
Ball, H.C.; Londraville, R.L.; Prokop, J.W.; George, John C.; Suydam, R.S.; Vinyard, C.; Thewissen, J.G.M.; Duff, R.J.
2017-01-01
The processes of lipid deposition and utilization, via the gene leptin (Lep), are poorly understood in taxa with varying degrees of adipose storage. This study examines how these systems may have adapted in marine aquatic environments inhabited by cetaceans. Bowhead (Balaena mysticetus) and beluga whales (Delphinapterus leucas) are ideal study animals- they possess large subcutaneous adipose stores (blubber) and undergo bi-annual migrations concurrent with variations in food availability. To answer long-standing questions regarding how (or if) energy and lipid utilization adapted to aquatic stressors, we quantified variations in gene transcripts critical to lipid metabolism related to season, age and blubber depth. We predicted Leptin tertiary structure conservation and assessed inter-specific variations in Lep transcript numbers between bowheads and other mammals. Our study is the first to identify seasonal and age-related variations in Lep and lipolysis in these cetaceans. While Lep transcripts and protein oscillate with season in adult bowheads reminiscent of hibernating mammals, transcript levels reach up to 10-times higher in bowheads than any other mammal. Data from immature bowheads are consistent with the hypothesis that short baleen inhibits efficient feeding. Lipolysis transcripts also indicate young Fall bowheads and those sampled during Spring months limit energy utilization. These novel data from rarely examined species expand existing knowledge and offer unique insight into how the regulation of Lep and lipolysis has adapted to permit seasonal deposition and maintain vital blubber stores. PMID:27573204
Comparative Chromosome Map and Heterochromatin Features of the Gray Whale Karyotype (Cetacea).
Kulemzina, Anastasia I; Proskuryakova, Anastasia A; Beklemisheva, Violetta R; Lemskaya, Natalia A; Perelman, Polina L; Graphodatsky, Alexander S
2016-01-01
Cetacean karyotypes possess exceptionally stable diploid numbers and highly conserved chromosomes. To date, only toothed whales (Odontoceti) have been analyzed by comparative chromosome painting. Here, we studied the karyotype of a representative of baleen whales, the gray whale (Eschrichtius robustus, Mysticeti), by Zoo-FISH with dromedary camel and human chromosome-specific probes. We confirmed a high degree of karyotype conservation and found an identical order of syntenic segments in both branches of cetaceans. Yet, whale chromosomes harbor variable heterochromatic regions constituting up to a third of the genome due to the presence of several types of repeats. To investigate the cause of this variability, several classes of repeated DNA sequences were mapped onto chromosomes of whale species from both Mysticeti and Odontoceti. We uncovered extensive intrapopulation variability in the size of heterochromatic blocks present in homologous chromosomes among 3 individuals of the gray whale by 2-step differential chromosome staining. We show that some of the heteromorphisms observed in the gray whale karyotype are due to distinct amplification of a complex of common cetacean repeat and heavy satellite repeat on homologous autosomes. Furthermore, we demonstrate localization of the telomeric repeat in the heterochromatin of both gray and pilot whale (Globicephala melas, Odontoceti). Heterochromatic blocks in the pilot whale represent a composite of telomeric and common repeats, while heavy satellite repeat is lacking in the toothed whale consistent with previous studies. © 2016 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Burnik Šturm, Martina; Spasskaya, Natalia N.; Sablin, Mikhail V.; Voigt, Christian C.; Kaczensky, Petra
2016-04-01
In historic times, two wild equid species, the Przewalski᾽s horse (PH; Equus ferus przewalskii) and the Asiatic wild ass (khulan, KH; Equus hemionus), roamed the Eurasian steppes. By the end of the 1960s, PHs had been driven to extinction in the wild and the range of KHs became severely restricted to the least productive habitats. However, PHs survived in captivity and reintroductions since the 1990s have brought the species back to parts of its native range in Mongolia and northern China where they again overlap with KHs. Ecological research on PHs and KHs has increased in recent years, but very little information is available on the ecology of the original PHs prior to extinction in the wild. We applied stable isotope analysis (13C, 15N, and 2H) of segmentally cut tail hair of PHs and KHs, collected during expeditions in NW China and SW Mongolia in 1889-1899, to draw inferences about the species feeding ecology. We compared tail hair isotope patterns of historic individuals to those of their extant counterparts from the Mongolian Gobi. A previous study of isotopic tail hair signatures of extant PHs (N=6) and KHs (N=6) suggested species specific differences in diet, with PHs being year-round grazers, but KHs switching between being grazers in summer and mixed feeders in winter (Burnik Šturm et al., in prep.). The comparison of isotope patterns of extant with historic samples confirms diet seasonality in historic KHs (N=3), but detects the same seasonality in five out of six PHs, suggesting that historic PHs had a different isotopic dietary niche than extant PHs. While we are still unable to fully understand the underlying reasons for this change in PHs, our results clearly suggest that the isotopic dietary niche of PHs was wider in the past, suggesting a higher diet flexibility, and overlapped with that of KHs, suggesting a high competition potential over Gobi pastures between the two equid species in historic times. Reference: Burnik Šturm, M., Ganbaatar, O., Voigt, C.C., Kaczensky, P. Stable isotopes reveal differences in the feeding ecology of three sympatric equid species in Dzungarian Gobi, Mongolia (in prep.)
Beebe, Nigel W.; Ambrose, Luke; Hill, Lydia A.; Davis, Joseph B.; Hapgood, George; Cooper, Robert D.; Russell, Richard C.; Ritchie, Scott A.; Reimer, Lisa J.; Lobo, Neil F.; Syafruddin, Din; van den Hurk, Andrew F.
2013-01-01
Background The range of the Asian tiger mosquito Aedes albopictus is expanding globally, raising the threat of emerging and re-emerging arbovirus transmission risks including dengue and chikungunya. Its detection in Papua New Guinea's (PNG) southern Fly River coastal region in 1988 and 1992 placed it 150 km from mainland Australia. However, it was not until 12 years later that it appeared on the Torres Strait Islands. We hypothesized that the extant PNG population expanded into the Torres Straits as an indirect effect of drought-proofing the southern Fly River coastal villages in response to El Nino-driven climate variability in the region (via the rollout of rainwater tanks and water storage containers). Methodology/Principal Findings Examination of the mosquito's mitochondrial DNA cytochrome oxidase I (COI) sequences and 13 novel nuclear microsatellites revealed evidence of substantial intermixing between PNG's southern Fly region and Torres Strait Island populations essentially compromising any island eradication attempts due to potential of reintroduction. However, two genetically distinct populations were identified in this region comprising the historically extant PNG populations and the exotic introduced population. Both COI sequence data and microsatellites showed the introduced population to have genetic affinities to populations from Timor Leste and Jakarta in the Indonesian region. Conclusions/Significance The Ae. albopictus invasion into the Australian region was not a range expansion out of PNG as suspected, but founded by other, genetically distinct population(s), with strong genetic affinities to populations sampled from the Indonesian region. We now suspect that the introduction of Ae. albopictus into the Australian region was driven by widespread illegal fishing activity originating from the Indonesian region during this period. Human sea traffic is apparently shuttling this mosquito between islands in the Torres Strait and the southern PNG mainland and this extensive movement may well compromise Ae. albopictus eradication attempts in this region. PMID:23951380
50 CFR 216.171 - Effective dates and definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... following: (i) Two or more individuals of any cetacean species (not including mother/calf pairs, unless of... occurring on same shore lines or facing shorelines of different islands. (ii) A single individual or mother...
50 CFR 216.271 - Effective dates and definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... individuals of any cetacean species (not including mother/calf pairs, unless of species of concern listed in... one another. (ii) A single individual or mother/calf pair of any of the following marine mammals of...
50 CFR 216.241 - Effective dates and definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... one of the following: (i) Two or more individuals of any cetacean species (not including mother/calf... 2-day period and occurring within 30 miles of one another. (ii) A single individual or mother/calf...
50 CFR 216.271 - Effective dates and definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... cetacean species (not including mother/calf pairs, unless of species of concern listed in § 216.271(b)(1.... (ii) A single individual or mother/calf pair of any of the following marine mammals of concern: Beaked...
50 CFR 216.241 - Effective dates and definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... any one of the following: (i) Two or more individuals of any cetacean species (not including mother... within a 2-day period and occurring within 30 miles of one another. (ii) A single individual or mother...
Cytochrome P450 1A1 expression in cetacean skin biopsies from the Indian Ocean.
Jauniaux, Thierry; Farnir, Frédéric; Fontaine, Michaël; Kiszka, Jeremy; Sarlet, Michael; Coignoul, Freddy
2011-06-01
The study describes cytochrome P450 1A1 (CYPA1) expression in the skin of different cetacean species (Megaptera novaeangliae, n=15; Stenella attenuata, n=7 and Stenella longirostris, n=24) from the Mozambique Channel island of Mayotte. Immunohistochemical examination was performed with a monoclonal antibody against scup cytochrome CYPA1. The sex was determined using a molecular approach consisting in the genotyping sex-specific genes. CYPA1 was detected at the junction between epidermis and blubber on dolphins only, mostly in the endothelial cells. Similar observation was obtained in the dermis of one M. novaeangliae. Immunohistochemical slides were scored to evaluate the expression of the CYPA1 and a higher expression was observed in S. longirostris, suggesting a higher exposure to pollutants for this species. The difference of expression between sexes was not significant. Copyright © 2011 Elsevier Ltd. All rights reserved.
Phylogenetic Status and Timescale for the Diversification of Steno and Sotalia Dolphins
Cunha, Haydée A.; Moraes, Lucas C.; Medeiros, Bruna V.; Lailson-Brito, José; da Silva, Vera M. F.; Solé-Cava, Antonio M.; Schrago, Carlos G.
2011-01-01
Molecular data have provided many insights into cetacean evolution but some unsettled issues still remain. We estimated the topology and timing of cetacean evolutionary relationships using Bayesian and maximum likelihood analyses of complete mitochondrial genomes. In order to clarify the phylogenetic placement of Sotalia and Steno within the Delphinidae, we sequenced three new delphinid mitogenomes. Our analyses support three delphinid clades: one joining Steno and Sotalia (supporting the revised subfamily Stenoninae); another placing Sousa within the Delphininae; and a third, the Globicephalinae, which includes Globicephala, Feresa, Pseudorca, Peponocephala and Grampus. We also conclude that Orcinus does not belong in the Globicephalinae, but Orcaella may be part of that subfamily. Divergence dates were estimated using the relaxed molecular clock calibrated with fossil data. We hypothesise that the timing of separation of the marine and Amazonian Sotalia species (2.3 Ma) coincided with the establishment of the modern Amazon River basin. PMID:22163290
Phylogenetic status and timescale for the diversification of Steno and Sotalia dolphins.
Cunha, Haydée A; Moraes, Lucas C; Medeiros, Bruna V; Lailson-Brito, José; da Silva, Vera M F; Solé-Cava, Antonio M; Schrago, Carlos G
2011-01-01
Molecular data have provided many insights into cetacean evolution but some unsettled issues still remain. We estimated the topology and timing of cetacean evolutionary relationships using bayesian and maximum likelihood analyses of complete mitochondrial genomes. In order to clarify the phylogenetic placement of Sotalia and Steno within the Delphinidae, we sequenced three new delphinid mitogenomes. Our analyses support three delphinid clades: one joining Steno and Sotalia (supporting the revised subfamily Stenoninae); another placing Sousa within the Delphininae; and a third, the Globicephalinae, which includes Globicephala, Feresa, Pseudorca, Peponocephala and Grampus. We also conclude that Orcinus does not belong in the Globicephalinae, but Orcaella may be part of that subfamily. Divergence dates were estimated using the relaxed molecular clock calibrated with fossil data. We hypothesise that the timing of separation of the marine and Amazonian Sotalia species (2.3 Ma) coincided with the establishment of the modern Amazon River basin.
Listening to the Deep: live monitoring of ocean noise and cetacean acoustic signals.
André, M; van der Schaar, M; Zaugg, S; Houégnigan, L; Sánchez, A M; Castell, J V
2011-01-01
The development and broad use of passive acoustic monitoring techniques have the potential to help assessing the large-scale influence of artificial noise on marine organisms and ecosystems. Deep-sea observatories have the potential to play a key role in understanding these recent acoustic changes. LIDO (Listening to the Deep Ocean Environment) is an international project that is allowing the real-time long-term monitoring of marine ambient noise as well as marine mammal sounds at cabled and standalone observatories. Here, we present the overall development of the project and the use of passive acoustic monitoring (PAM) techniques to provide the scientific community with real-time data at large spatial and temporal scales. Special attention is given to the extraction and identification of high frequency cetacean echolocation signals given the relevance of detecting target species, e.g. beaked whales, in mitigation processes, e.g. during military exercises. Copyright © 2011. Published by Elsevier Ltd.
Novel locomotor muscle design in extreme deep-diving whales.
Velten, B P; Dillaman, R M; Kinsey, S T; McLellan, W A; Pabst, D A
2013-05-15
Most marine mammals are hypothesized to routinely dive within their aerobic dive limit (ADL). Mammals that regularly perform deep, long-duration dives have locomotor muscles with elevated myoglobin concentrations that are composed of predominantly large, slow-twitch (Type I) fibers with low mitochondrial volume densities (V(mt)). These features contribute to extending ADL by increasing oxygen stores and decreasing metabolic rate. Recent tagging studies, however, have challenged the view that two groups of extreme deep-diving cetaceans dive within their ADLs. Beaked whales (including Ziphius cavirostris and Mesoplodon densirostris) routinely perform the deepest and longest average dives of any air-breathing vertebrate, and short-finned pilot whales (Globicephala macrorhynchus) perform high-speed sprints at depth. We investigated the locomotor muscle morphology and estimated total body oxygen stores of several species within these two groups of cetaceans to determine whether they (1) shared muscle design features with other deep divers and (2) performed dives within their calculated ADLs. Muscle of both cetaceans displayed high myoglobin concentrations and large fibers, as predicted, but novel fiber profiles for diving mammals. Beaked whales possessed a sprinter's fiber-type profile, composed of ~80% fast-twitch (Type II) fibers with low V(mt). Approximately one-third of the muscle fibers of short-finned pilot whales were slow-twitch, oxidative, glycolytic fibers, a rare fiber type for any mammal. The muscle morphology of beaked whales likely decreases the energetic cost of diving, while that of short-finned pilot whales supports high activity events. Calculated ADLs indicate that, at low metabolic rates, both beaked and short-finned pilot whales carry sufficient onboard oxygen to aerobically support their dives.
NASA Astrophysics Data System (ADS)
Laran, Sophie; Authier, Matthieu; Blanck, Aurélie; Doremus, Ghislain; Falchetto, Hélène; Monestiez, Pascal; Pettex, Emeline; Stephan, Eric; Van Canneyt, Olivier; Ridoux, Vincent
2017-07-01
From the Habitat Directive to the recent Marine Strategy Framework Directive, the conservation status of cetaceans in European water has been of concern for over two decades. In this study, a seasonal comparison of the abundance and distribution of cetaceans was carried out in two contrasted regions of the Eastern North Atlantic, the Bay of Biscay and the English Channel. Estimates were obtained in the two sub-regions (375,000 km²) from large aerial surveys conducted in the winter (November 2011 to February 2012) and in the summer (May to August 2012). The most abundant species encountered in the Channel, the harbour porpoise, displayed strong seasonal variations in its distribution but a stable abundance (18,000 individuals, CV=30%). In the Bay of Biscay, abundance and distribution patterns of common / striped dolphins varied from 285,000 individuals (95% CI: 174,000-481,000) in the winter, preferentially distributed close to the shelf break, to 494,000 individuals (95% CI: 342,000-719,000) distributed beyond the shelf break in summer. Baleen whales also exhibited an increase of their density in summer. Seasonal abundances of bottlenose dolphins were quite stable, with a large number of 'pelagic' encounters offshore in winter. No significant seasonal difference was estimated for pilot whales and sperm whale. These surveys provided baseline estimates to inform policies to be developed, or for existing conservation instruments such as the Habitats Directive. In addition, our results supported the hypothesis of a shift in the summer distributions of some species such as harbour porpoise and minke whale in European waters.
Insights using a molecular approach into the life cycle of a tapeworm infecting great white sharks.
Randhawa, Haseeb S
2011-04-01
The great white shark Carcharodon carcharias Linnaeus, 1758 is a versatile and fierce predator (and responsible for many shark attacks on humans). This apex predator feeds on a wide range of organisms including teleosts, other elasmobranchs, cephalopods, pinnipeds, and cetaceans. Although much is known about its diet, no trophic links have been empirically identified as being involved in the transmission of its tapeworm parasites. Recently, the use of molecular tools combined with phylogenetics has proven useful to identify larval and immature stages of marine tapeworms; utilization of the technique has been increasing rapidly. However, the usefulness of this approach remains limited by the availability of molecular data. Here, I employed gene sequence data from the D2 region of the large subunit of ribosomal DNA to link adults of the tapeworm Clistobothrium carcharodoni Dailey and Vogelbein, 1990 (Cestoda: Tetraphyllidea) to larvae for which sequence data for this gene are available. The sequences from the adult tapeworms were genetically identical (0% sequence divergence) to those available on GenBank for "SP" 'small' Scolex pleuronectis recovered from the striped dolphin (Stenella coeruleoalba) and Risso's dolphin (Grampus griseus). This study is the first to provide empirical evidence linking the trophic interaction between great white sharks and cetaceans as a definitive route for the successful transmission of a tetraphyllidean tapeworm. Using the intensity of infection data from this shark and from cetaceans as proxies for the extent of predation, I estimate that this individual shark would have consumed between 9 to 83 G. griseus , fresh, dead, or both, in its lifetime.
Lam, James C W; Lyu, Jinling; Kwok, Karen Y; Lam, Paul K S
2016-07-05
Perfluorinated sulfonic acids (PFSAs) and perfluorinated carboxylic acids (PFCAs), as well as the replacement for the phase-out C8 PFSAs were determined in the liver samples of Indo-Pacific humpback dolphins (Sousa chinensis) and finless porpoises (Neophocaena phocaenoides) from the South China Sea between 2002 and 2014. Levels of total perfluoroalkyl substances (PFASs) in samples ranged from 136-15,300 and 30.5-2,720 ng/g dw for dolphin and porpoise, respectively. Significant increasing trends of several individual PFCAs and perfluorobutane sulfonate (PFBS) were found in cetacean samples from 2002 to 2014, whereas no significant temporal trends of ∑PFASs appeared over the sampling period. This pattern may be attributed to the increasing usage of PFCAs and C4-based PFSAs following the restriction/voluntary withdrawal of the production and use of perfluorooctane sulfonate (PFOS) related products. In addition, significantly increasing temporal shifting trends of PFOS to PFBS were observed in the dolphin liver samples. This pattern may be attributed to the substitution of PFOS by its alternative, PFBS. The highest levels of PFOS were observed in the liver samples of dolphin as compared with other marine mammal studies published since 2006, indicating high contamination of PFAS in the South China region. An assessment of relatively high concentrations of C8-based PFASs in the liver samples of cetaceans predicted that concentrations of PFOS would be expected to affect some proportion of the cetacean populations studied, based on the toxicity thresholds derived.
Osmoregulation in marine mammals
NASA Technical Reports Server (NTRS)
Ortiz, R. M.
2001-01-01
Osmoregulation in marine mammals has been investigated for over a century; however, a review of recent advances in our understanding of water and electrolyte balance and of renal function in marine mammals is warranted. The following topics are discussed: (i) kidney structure and urine concentrating ability, (ii) sources of water, (iii) the effects of feeding, fasting and diving, (iv) the renal responses to infusions of varying salinity and (v) hormonal regulation. The kidneys of pinnipeds and cetaceans are reniculate in structure, unlike those of terrestrial mammals (except bears), but this difference does not confer any greater concentrating ability. Pinnipeds, cetaceans, manatees and sea otters can concentrate their urine above the concentration of sea water, but only pinnipeds and otters have been shown to produce urine concentrations of Na+ and Cl- that are similar to those in sea water. This could afford them the capacity to drink sea water and not lose fresh water. However, with few exceptions, drinking is not a common behavior in pinnipeds and cetaceans. Water balance is maintained in these animals via metabolic and dietary water, while incidental ingestion and dietary salt may help maintain electrolyte homeostasis. Unlike most other aquatic mammals, sea otters commonly drink sea water and manatees frequently drink fresh water. Among the various taxonomic groups of marine mammals, the sensitivity of the renin-angiotensin-aldosterone system appears to be influenced by the availability of Na+. The antidiuretic role of vasopressin remains inconclusive in marine mammals, while the natriuretic function of atrial natriuretic peptide has yet to be examined. Ideas on the direction of future studies are presented.
Orliac, Maeva; Boisserie, Jean-Renaud; MacLatchy, Laura; Lihoreau, Fabrice
2010-01-01
The affinities of the Hippopotamidae are at the core of the phylogeny of Cetartiodactyla (even-toed mammals: cetaceans, ruminants, camels, suoids, and hippos). Molecular phylogenies support Cetacea as sister group of the Hippopotamidae, implying a long ghost lineage between the earliest cetaceans (∼53 Ma) and the earliest hippopotamids (∼16 Ma). Morphological studies have proposed two different sister taxa for hippopotamids: suoids (notably palaeochoerids) or anthracotheriids. Evaluating these phylogenetic hypotheses requires substantiating the poorly known early history of the Hippopotamidae. Here, we undertake an original morphological phylogenetic analysis including several “suiform” families and previously unexamined early Miocene taxa to test previous conflicting hypotheses. According to our results, Morotochoerus ugandensis and Kulutherium rusingensis, until now regarded as the sole African palaeochoerid and the sole African bunodont anthracotheriid, respectively, are unambiguously included within the Hippopotamidae. They are the earliest known hippopotamids and set the family fossil record back to the early Miocene (∼21 Ma). The analysis reveals that hippopotamids displayed an unsuspected taxonomic and body size diversity and remained restricted to Africa during most of their history, until the latest Miocene. Our results also confirm the deep nesting of Hippopotamidae within the paraphyletic Anthracotheriidae; this finding allows us to reconstruct the sequence of dental innovations that links advanced selenodont anthracotheriids to hippopotamids, previously a source of major disagreements on hippopotamid origins. The analysis demonstrates a close relationship between Eocene choeropotamids and anthracotheriids, a relationship that potentially fills the evolutionary gap between earliest hippopotamids and cetaceans implied by molecular analyses. PMID:20547829
Finarelli, John A; Goswami, Anjali
2013-12-01
Reconstructing evolutionary patterns and their underlying processes is a central goal in biology. Yet many analyses of deep evolutionary histories assume that data from the fossil record is too incomplete to include, and rely solely on databases of extant taxa. Excluding fossil taxa assumes that character state distributions across living taxa are faithful representations of a clade's entire evolutionary history. Many factors can make this assumption problematic. Fossil taxa do not simply lead-up to extant taxa; they represent now-extinct lineages that can substantially impact interpretations of character evolution for extant groups. Here, we analyze body mass data for extant and fossil canids (dogs, foxes, and relatives) for changes in mean and variance through time. AIC-based model selection recovered distinct models for each of eight canid subgroups. We compared model fit of parameter estimates for (1) extant data alone and (2) extant and fossil data, demonstrating that the latter performs significantly better. Moreover, extant-only analyses result in unrealistically low estimates of ancestral mass. Although fossil data are not always available, reconstructions of deep-time organismal evolution in the absence of deep-time data can be highly inaccurate, and we argue that every effort should be made to include fossil data in macroevolutionary studies. © 2013 The Authors. Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Bee Dances, Bird Songs, Monkey Calls, and Cetacean Sonar: Is Speech Unique?
ERIC Educational Resources Information Center
Liska, Jo
1993-01-01
Examines to what extent, and in what ways, speech is unusual and how it compares to other semiotic systems. Discusses language and speech, neurolinguistic processing, comparative vocal/auditory abilities, primate evolution, and semiogenesis. (SR)
76 FR 40338 - Marine Mammals; Photography Permit No. 16360
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-08
...Notice is hereby given that a permit has been issued to Oceanic Nature Film Productions (Responsible Party: Dieter Paulmann), P.O. Box 301 722, Albany 0752, Auckland, New Zealand to conduct commercial/educational photography of cetaceans off Hawaii.
The Use of Returned Martian Samples to Evaluate the Possibility of Extant Life on Mars
NASA Astrophysics Data System (ADS)
iMOST Team; ten Kate, I. L.; Mackelprang, R.; Rettberg, P.; Smith, C. L.; Altieri, F.; Amelin, Y.; Ammannito, E.; Anand, M.; Beaty, D. W.; Benning, L. G.; Bishop, J. L.; Borg, L. E.; Boucher, D.; Brucato, J. R.; Busemann, H.; Campbell, K. A.; Carrier, B. L.; Czaja, A. D.; Debaille, V.; Des Marais, D. J.; Dixon, M.; Ehlmann, B. L.; Farmer, J. D.; Fernandez-Remolar, D. C.; Fogarty, J.; Glavin, D. P.; Goreva, Y. S.; Grady, M. M.; Hallis, L. J.; Harrington, A. D.; Hausrath, E. M.; Herd, C. D. K.; Horgan, B.; Humayun, M.; Kleine, T.; Kleinhenz, J.; Mangold, N.; Mayhew, L. E.; McCoy, J. T.; McCubbin, F. M.; McLennan, S. M.; McSween, H. Y.; Moser, D. E.; Moynier, F.; Mustard, J. F.; Niles, P. B.; Ori, G. G.; Raulin, F.; Rucker, M. A.; Schmitz, N.; Sefton-Nash, E.; Sephton, M. A.; Shaheen, R.; Shuster, D. L.; Siljestrom, S.; Spry, J. A.; Steele, A.; Swindle, T. D.; Tosca, N. J.; Usui, T.; Van Kranendonk, M. J.; Wadhwa, M.; Weiss, B. P.; Werner, S. C.; Westall, F.; Wheeler, R. M.; Zipfel, J.; Zorzano, M. P.
2018-04-01
The astrobiological community is highly interested in interrogating returned martian samples for evidence of extant life. A single observation with one method will not constitute evidence of extant life — it will require a suite of investigations.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-19
... the Antarctic Science, Tourism and Conservation Act of 1996, has developed regulations for the... and structure of the cetacean communities. In order to understand the diet of different marine mammals...
Huang, Shi
2009-01-01
There exists a remarkable correlation between genetic distance as measured by protein or DNA dissimilarity and time of species divergence as inferred from fossil records. This observation has provoked the molecular clock hypothesis. However, data inconsistent with the hypothesis have steadily accumulated in recent years from studies of extant organisms. Here the published DNA and protein sequences from ancient fossil specimens were examined to see if they would support the molecular clock hypothesis. The hypothesis predicts that ancient specimens cannot be genetically more distant to an outgroup than extant sister species are. Also, two distinct ancient specimens cannot be genetically more distant than their extant sister species are. The findings here do not conform to these predictions. Neanderthals are more distant to chimpanzees and gorillas than modern humans are. Dinosaurs are more distant to frogs than extant birds are. Mastodons are more distant to opossums than other placental mammals are. The genetic distance between dinosaurs and mastodons is greater than that between extant birds and mammals. Therefore, while the molecular clock hypothesis is consistent with some data from extant organisms, it has yet to find support from ancient fossils. Far more damaging to the hypothesis than data from extant organisms, which merely question the constancy of mutation rate, the study of ancient fossil organisms here challenges for the first time the fundamental premise of modern evolution theory that genetic distances had always increased with time in the past history of life on Earth. PMID:18600632
76 FR 27307 - Marine Mammals; Photography Permit Application No. 16360
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-11
...Notice is hereby given that Oceanic Nature Film Productions (Responsible Party: Dietrich Paulmann), P.O. Box 301 722, Albany 0752, Auckland, New Zealand has applied in due form for a permit to conduct commercial/educational photography of cetaceans off Hawaii.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-02
... FR 3668), authorizes the permit holder to conduct research on cetacean behavior, sound production, and responses to sound. The research methods include tagging marine mammals with an advanced digital... an amendment to Permit No. 14241-02 to conduct research on marine mammals. ADDRESSES: The application...
77 FR 13295 - Marine Mammals; File No. 16053
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-06
... Marine Biology, P.O. Box 1106, Kailua, Hawaii 96734, to conduct scientific research on cetaceans stranded... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA384 Marine Mammals; File No. 16053 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric...
Evaluation of Tag Attachments on Small Cetaceans
2012-09-30
Computers incorporated these suggestions into an experimental design for field tests. They also recommended a silicon-based antifouling coating...Wildlife Computers (Figure 1). Half of these were treated with Propspeed antifouling coating, and the other half were left uncoated. In three cases, both
Extant fold-switching proteins are widespread.
Porter, Lauren L; Looger, Loren L
2018-06-05
A central tenet of biology is that globular proteins have a unique 3D structure under physiological conditions. Recent work has challenged this notion by demonstrating that some proteins switch folds, a process that involves remodeling of secondary structure in response to a few mutations (evolved fold switchers) or cellular stimuli (extant fold switchers). To date, extant fold switchers have been viewed as rare byproducts of evolution, but their frequency has been neither quantified nor estimated. By systematically and exhaustively searching the Protein Data Bank (PDB), we found ∼100 extant fold-switching proteins. Furthermore, we gathered multiple lines of evidence suggesting that these proteins are widespread in nature. Based on these lines of evidence, we hypothesized that the frequency of extant fold-switching proteins may be underrepresented by the structures in the PDB. Thus, we sought to identify other putative extant fold switchers with only one solved conformation. To do this, we identified two characteristic features of our ∼100 extant fold-switching proteins, incorrect secondary structure predictions and likely independent folding cooperativity, and searched the PDB for other proteins with similar features. Reassuringly, this method identified dozens of other proteins in the literature with indication of a structural change but only one solved conformation in the PDB. Thus, we used it to estimate that 0.5-4% of PDB proteins switch folds. These results demonstrate that extant fold-switching proteins are likely more common than the PDB reflects, which has implications for cell biology, genomics, and human health. Copyright © 2018 the Author(s). Published by PNAS.
Investigating Methylmercury Exposure in North Atlantic Cetaceans Using Multiple Isotope Tracers
NASA Astrophysics Data System (ADS)
Li, M.; Mikkelsen, B.; Yin, R.; Krabbenhoft, D. P.; Sunderland, E. M.
2016-12-01
Anthropogenic emissions have substantially perturbed the global biogeochemical cycle of mercury (Hg) and high latitude ecosystems are particularly vulnerable to Hg pollution and climate change. We investigated temporal changes in methylmercury (MeHg) exposures of long-finned pilot whales (Globicephala melas, n=59) between 1985-2015 using multiple isotopes (δ202Hg, Δ199Hg, Δ200Hg, Δ201Hg, δ13C, δ15N) as tracers of the physical environment and foraging ecology. Mass-independent fraction (MIF) of Hg (Δ199Hg, Δ201Hg) is mainly driven by photochemical demethylation in seawater. Enriched δ202Hg has been shown to result from demethylation. The ranges in Δ199Hg and Δ201Hg values in whales are similar across time periods with the exception of a few years following the 2010 volcanic eruption in Iceland that may have affected light penetration in surface waters. The mean δ202Hg values of whale muscle samples are consistently 1.5 ‰ across the study period, which is 1 ‰ higher than their prey (squid, blue whiting, and greater argentine). This fractionation is consistent with in vivo demethylation as a detoxification mechanism in the whales. Individuals with the highest MeHg concentrations have the lowest δ202Hg values and we infer this may result from more limited MeHg demethylation. We find a linear relationship between Δ200Hg anomalies (-0.1 to 0.2‰) and Δ199Hg (R2=0.76) that has not previously been reported. Variability in Δ200Hg is thought to be driven by photochemical reactions in the tropopause and may provide an effective tracer for atmospheric Hg inputs to the ocean that are methylated and accumulated in aquatic biota.
NASA Astrophysics Data System (ADS)
Azzellino, Arianna; Airoldi, Sabina; Lanfredi, Caterina; Podestà, Michela; Zanardelli, Margherita
2017-12-01
Marine mammals are in many situations one of the most studied component of marine ecosystems. Their habitat requirements may be used to detect and describe the impacts of changes in the environmental conditions or in the human-induced pressures affecting the area where they live. The aim of this study is to investigate the distribution patterns of the most frequent cetacean species occurring in the area of the Pelagos Sanctuary (Northwestern Mediterranean Sea) and their potential correlations with both environmental and anthropogenic drivers of changes. Two different types of data were used: sighting data from ship-board surveys and strandings data collected along the Ligurian coast by the Italian Stranding Network, spanning from 1986 to 2014. Sighting data were collected during summer surveys conducted from June to September, between 1990 and 2014 in an area of approximately 29,000 km2, within the Pelagos Sanctuary for over 115,000 km surveyed under favorable conditions. A total of 4,683 sightings of the five most common cetacean species were collected: 3,305 (70.5%) striped dolphins, 814 (17.3%) fin whales, 169 (3.6%) Risso's dolphins, 347 (7.4%) sperm whales and 48 (1.02%) Cuvier's beaked whales. The species time series of both encounter and stranding rates have been investigated in the light of potential drivers of changes. The results suggest that the area may be suffering from some ecosystem change which is causing the observed changes in the distribution pattern of the five species. Potential disturbance from human activities, namely fishery and maritime traffic, could not be excluded.
Nollens, Hendrik H.; Ruiz, Carolina; Walsh, Michael T.; Gulland, Frances M. D.; Bossart, Gregory; Jensen, Eric D.; McBain, James F.; Wellehan, James F. X.
2008-01-01
Growing morphological and molecular evidence indicates that the porpoises, dolphins, and whales evolved within the even-toed ungulates, formerly known as Artiodactyla. These animals are now grouped in the Cetartiodactyla. We evaluated the antigenic similarity of the immunoglobulin G (IgG) molecules of 15 cetacean species and the domestic cow. The similarity was scored using three distinct antibodies raised against bottlenose dolphin (Tursiops truncatus) IgG in a Western blot, an indirect enzyme-linked immunosorbent assay (ELISA), and a competitive ELISA format. A score was generated for the genetic distance between each species and T. truncatus using the cytochrome b sequence. Each antibody displayed a distinct pattern of reactivity with the IgG antibodies of the various species. The monoclonal antibody (MAb) specific for the γ heavy chain of T. truncatus was reactive with all monodontids, delphinids, and phocoenids. The light-chain-specific MAb reacted with IgG of delphinoid and phocoenid species and one of the two mysticete species tested. The polyclonal antibody was broadly cross-reactive across all cetaceans and the domestic cow. Using the MAb specific for the γ heavy chain, the degree of IgG cross-reactivity ranged from less than 17% for the mysticetes to 106% for killer whale Orcinus orca. The IgG in beaked whale and baleen whale sera was significantly less cross-reactive with bottlenose dolphin IgG than sera from other toothed whales. A strong negative correlation was demonstrated between antigenic cross-reactivity of IgG molecules and the genetic distance of their hosts. The data generated will be useful for the development of clinical serodiagnostics in diverse cetacean species. PMID:18768672
Zeng, Lixi; Lam, James C W; Wang, Yawei; Jiang, Guibin; Lam, Paul K S
2015-10-06
Temporal trends of short- (SCCPs) and medium-chain chlorinated paraffins (MCCPs) were examined in blubber samples of 50 finless porpoises (Neophocaena phocaenoides) and 25 Indo-Pacific humpback dolphins (Sousa chinensis) collected from the South China Sea between 2004 and 2014. Elevated levels of SCCPs and MCCPs were detected in all blubber samples of both cetacean species. Concentrations of SCCPs ranged from 280 to 3900 ng·g(-1) dry weight (dw) in porpoises and from 430 to 9100 ng·g(-1) dw in dolphins, while concentrations of MCCPs ranged from 320 to 8600 ng·g(-1) dw in porpoises and from 530 to 23 000 ng·g(-1) dw in dolphins. Significantly higher concentrations were present in dolphins than porpoises due to their exposure levels in their living habitats. Strongly linear correlations existed between SCCPs and MCCPs, but there were no significant concentration differences between the genders of the two cetacean species in the same sampling year. Significantly temporal increasing trends of ∑SCCPs and ∑MCCPs have been observed in both porpoise and dolphin samples over the past decade, which reflect the influence of histories of production and usage on the bioaccumulation of CPs in marine mammals in China. An apparent temporal shift trend from SCCPs to MCCPs was also observed in CP accumulation profiles. Complex environmental fractionation from localized sources in the study region via atmospheric transport, oceanic/offshore water transport, and trophic transfer have resulted in different CP accumulation levels and homologue patterns in the two cetacean species. This is the first report of systematic temporal trends of SCCPs and MCCPs in marine mammals.
NASA Astrophysics Data System (ADS)
Praca, Emilie; Gannier, Alexandre; Das, Krishna; Laran, Sophie
2009-04-01
Cetaceans are mobile and spend long periods underwater. Because of this, modelling their habitat could be subject to a serious problem of false absence. Furthermore, extensive surveys at sea are time and money consuming, and presence-absence data are difficult to apply. This study compares the ability of two presence-absence and two presence-only habitat modelling methods and uses the example of the sperm whale ( Physeter macrocephalus) in the northwestern Mediterranean Sea. The data consist of summer visual and acoustical detections of sperm whales, compiled between 1998 and 2005. Habitat maps were computed using topographical and hydrological eco-geographical variables. Four methods were compared: principal component analysis (PCA), ecological niche factor analysis (ENFA), generalized linear model (GLM) and multivariate adaptive regression splines (MARS). The evaluation of the models was achieved by calculating the receiver operating characteristic (ROC) of the models and their respective area under the curve (AUC). Presence-absence methods (GLM, AUC=0.70, and MARS, AUC=0.79) presented better AUC than presence-only methods (PCA, AUC=0.58, and ENFA, AUC=0.66), but this difference was not statistically significant, except between the MARS and the PCA models. The four models showed an influence of both topographical and hydrological factors, but the resulting habitat suitability maps differed. The core habitat on the continental slope was well highlighted by the four models, while GLM and MARS maps also showed a suitable habitat in the offshore waters. Presence-absence methods are therefore recommended for modelling the habitat suitability of cetaceans, as they seem more accurate to highlight complex habitat. However, the use of presence-only techniques, in particular ENFA, could be very useful for a first model of the habitat range or when important surveys at sea are not possible.
Wright, Alexandra; Scadeng, Miriam; Stec, Dominik; Dubowitz, Rebecca; Ridgway, Sam; Leger, Judy St
2017-01-01
The evolutionary process of adaptation to an obligatory aquatic existence dramatically modified cetacean brain structure and function. The brain of the killer whale (Orcinus orca) may be the largest of all taxa supporting a panoply of cognitive, sensory, and sensorimotor abilities. Despite this, examination of the O. orca brain has been limited in scope resulting in significant deficits in knowledge concerning its structure and function. The present study aims to describe the neural organization and potential function of the O. orca brain while linking these traits to potential evolutionary drivers. Magnetic resonance imaging was used for volumetric analysis and three-dimensional reconstruction of an in situ postmortem O. orca brain. Measurements were determined for cortical gray and cerebral white matter, subcortical nuclei, cerebellar gray and white matter, corpus callosum, hippocampi, superior and inferior colliculi, and neuroendocrine structures. With cerebral volume comprising 81.51 % of the total brain volume, this O. orca brain is one of the most corticalized mammalian brains studied to date. O. orca and other delphinoid cetaceans exhibit isometric scaling of cerebral white matter with increasing brain size, a trait that violates an otherwise evolutionarily conserved cerebral scaling law. Using comparative neurobiology, it is argued that the divergent cerebral morphology of delphinoid cetaceans compared to other mammalian taxa may have evolved in response to the sensorimotor demands of the aquatic environment. Furthermore, selective pressures associated with the evolution of echolocation and unihemispheric sleep are implicated in substructure morphology and function. This neuroanatomical dataset, heretofore absent from the literature, provides important quantitative data to test hypotheses regarding brain structure, function, and evolution within Cetacea and across Mammalia.
Predator Foraging in Response to the Mcmurdo Sound Preyscape
NASA Astrophysics Data System (ADS)
Daly, K. L.; Ainley, D. G.; Saenz, B.; Ballard, G.; Kim, S.; Jongsomjit, D.
2016-02-01
Growing recent evidence indicates that the Ross Sea, Antarctica, food web is structured as a `wasp-waist' system, in which krill and fish constitute the restriction. The abundance/availability of these prey appears to be affected by top-down predation, and to have only minimal coupling with phytoplankton/primary productivity processes. We investigated this issue further by quantifying prey abundance, depth and distribution along the McMurdo Sound fast-ice edge, using an ROV equipped with acoustic sensors and fluorescence sensors and a CTD equipped with a fluorometer, at the same time that we bio-logged the foraging behavior of Adélie Penguins from an adjacent colony and logged the abundance of trophically competing cetaceans and seals. Early in the study period, concentrations of seals and emperor penguins coincided with a location at which high abundance of an under-ice dwelling fish occurred; these predators disappeared with reduction in that prey's abundance and/or the arrival of seal/penguin-eating killer whales at the fast ice edge. The diet of Adélie penguins changed from 100% krill to 50% krill-fish upon the arrival of minke and fish-eating killer whales. Penguin diving depth did not change, nor did they lengthen foraging range as has been observed in the past upon cetacean arrival. However, the prevalence of the mid-water dwelling forage fish (silverfish) decreased within the penguins' foraging range. Apparently, given the chance penguins and cetaceans appear to have targeted the high-energy dense fish instead of krill, and as a result changed prey availability. Penguin diving depth was just beneath an intense phytoplankton bloom of markedly reduced visibility. Our study brings added support for a food web in which top-down forcing is as important as primary production, having implications for managing fisheries in the region.
Dell, Leigh-Anne; Karlsson, Karl Ae; Patzke, Nina; Spocter, Muhammad A; Siegel, Jerome M; Manger, Paul R
2016-07-01
The current study analyzed the nuclear organization of the neural systems related to the control and regulation of sleep and wake in the basal forebrain, diencephalon, midbrain, and pons of the minke whale, a mysticete cetacean. While odontocete cetaceans sleep in an unusual manner, with unihemispheric slow wave sleep (USWS) and suppressed REM sleep, it is unclear whether the mysticete whales show a similar sleep pattern. Previously, we detailed a range of features in the odontocete brain that appear to be related to odontocete-type sleep, and here present our analysis of these features in the minke whale brain. All neural elements involved in sleep regulation and control found in bihemispheric sleeping mammals and the harbor porpoise were present in the minke whale, with no specific nuclei being absent, and no novel nuclei being present. This qualitative similarity relates to the cholinergic, noradrenergic, serotonergic and orexinergic systems, and the GABAergic elements of these nuclei. Quantitative analysis revealed that the numbers of pontine cholinergic (274,242) and noradrenergic (203,686) neurons, and hypothalamic orexinergic neurons (277,604), are markedly higher than other large-brained bihemispheric sleeping mammals. Small telencephalic commissures (anterior, corpus callosum, and hippocampal), an enlarged posterior commissure, supernumerary pontine cholinergic and noradrenergic cells, and an enlarged peripheral division of the dorsal raphe nuclear complex of the minke whale, all indicate that the suite of neural characteristics thought to be involved in the control of USWS and the suppression of REM in the odontocete cetaceans are present in the minke whale. J. Comp. Neurol. 524:2018-2035, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Nomiyama, Kei; Murata, Satoko; Kunisue, Tatsuya; Yamada, Tadasu K; Mizukawa, Hazuki; Takahashi, Shin; Tanabe, Shinsuke
2010-05-15
In this study, we determined the residue levels and patterns of polychlorinated biphenyls (PCBs) and hydroxylated PCBs (OH-PCBs) in the blood from eight species of toothed whales and three species of baleen whales stranded along the Japanese coast during 1999-2007. Penta- through hepta-chlorinated PCB congeners were the dominant homologue groups in all cetaceans. In contrast, specific differences in the distribution of dominant OH-PCB isomers and homologues were found among the cetacean species. In five species of toothed whales (melon-headed whale, Stejneger's beaked whale, Pacific white-sided dolphin, Blainville's beaked whale, and killer whale), the predominant homologues were OH-penta-PCBs followed by OH-tetra-PCBs and OH-tri-PCBs. The predominant homologues of finless porpoise and beluga whale were OH-penta-PCBs followed by OH-hexa-PCBs and OH-tri-PCBs. The predominant OH-PCB isomers were para-OH-PCBs such as 4OH-CB26, 4'OH-CB25/4'OH-CB26/4OH-CB31, 4OH-CB70, 4'OH-CB72, 4'OH-CB97, 4'OH-CB101/4'OH-CB120, and 4OH-CB107/4'OH-CB108 in toothed whales. In three baleen whales (common minke whale, Bryde's whale, and humpback whale) and in sperm whale (which is a toothed whale), OH-octa-PCB (4OH-CB202) was the predominant homologue group accounting for 40-80% of the total OH-PCB concentrations. The differences in concentrations and profiles of OH-PCBs may suggest species-specific diets, metabolic capability, and the transthyretin (TTR) binding specificity. These results reveal that the accumulation profiles of OH-PCBs in cetacean blood are entirely different from the profiles found in pinnipeds, polar bear, and humans.
Nollens, Hendrik H; Ruiz, Carolina; Walsh, Michael T; Gulland, Frances M D; Bossart, Gregory; Jensen, Eric D; McBain, James F; Wellehan, James F X
2008-10-01
Growing morphological and molecular evidence indicates that the porpoises, dolphins, and whales evolved within the even-toed ungulates, formerly known as Artiodactyla. These animals are now grouped in the Cetartiodactyla. We evaluated the antigenic similarity of the immunoglobulin G (IgG) molecules of 15 cetacean species and the domestic cow. The similarity was scored using three distinct antibodies raised against bottlenose dolphin (Tursiops truncatus) IgG in a Western blot, an indirect enzyme-linked immunosorbent assay (ELISA), and a competitive ELISA format. A score was generated for the genetic distance between each species and T. truncatus using the cytochrome b sequence. Each antibody displayed a distinct pattern of reactivity with the IgG antibodies of the various species. The monoclonal antibody (MAb) specific for the gamma heavy chain of T. truncatus was reactive with all monodontids, delphinids, and phocoenids. The light-chain-specific MAb reacted with IgG of delphinoid and phocoenid species and one of the two mysticete species tested. The polyclonal antibody was broadly cross-reactive across all cetaceans and the domestic cow. Using the MAb specific for the gamma heavy chain, the degree of IgG cross-reactivity ranged from less than 17% for the mysticetes to 106% for killer whale Orcinus orca. The IgG in beaked whale and baleen whale sera was significantly less cross-reactive with bottlenose dolphin IgG than sera from other toothed whales. A strong negative correlation was demonstrated between antigenic cross-reactivity of IgG molecules and the genetic distance of their hosts. The data generated will be useful for the development of clinical serodiagnostics in diverse cetacean species.
Transition of Eocene whales from land to sea: evidence from bone microstructure.
Houssaye, Alexandra; Tafforeau, Paul; de Muizon, Christian; Gingerich, Philip D
2015-01-01
Cetacea are secondarily aquatic amniotes that underwent their land-to-sea transition during the Eocene. Primitive forms, called archaeocetes, include five families with distinct degrees of adaptation to an aquatic life, swimming mode and abilities that remain difficult to estimate. The lifestyle of early cetaceans is investigated by analysis of microanatomical features in postcranial elements of archaeocetes. We document the internal structure of long bones, ribs and vertebrae in fifteen specimens belonging to the three more derived archaeocete families--Remingtonocetidae, Protocetidae, and Basilosauridae--using microtomography and virtual thin-sectioning. This enables us to discuss the osseous specializations observed in these taxa and to comment on their possible swimming behavior. All these taxa display bone mass increase (BMI) in their ribs, which lack an open medullary cavity, and in their femora, whereas their vertebrae are essentially spongious. Humeri and femora show opposite trends in microanatomical specialization in the progressive independence of cetaceans from a terrestrial environment. Humeri change from very compact to spongious, which is in accordance with the progressive loss of propulsive role for the forelimbs, which were used instead for steering and stabilizing. Conversely, hind-limbs in basilosaurids became strongly reduced with no involvement in locomotion but display strong osteosclerosis in the femora. Our study confirms that Remingtonocetidae and Protocetidae were almost exclusively aquatic in locomotion for the taxa sampled, which probably were shallow water suspended swimmers. Basilosaurids display osseous specializations similar to those of modern cetaceans and are considered more active open-sea swimmers. This study highlights the strong need for homologous sections in comparative microanatomical studies, and the importance of combining information from several bones of the same taxon for improved functional interpretation.
Transition of Eocene Whales from Land to Sea: Evidence from Bone Microstructure
Houssaye, Alexandra; Tafforeau, Paul; de Muizon, Christian; Gingerich, Philip D.
2015-01-01
Cetacea are secondarily aquatic amniotes that underwent their land-to-sea transition during the Eocene. Primitive forms, called archaeocetes, include five families with distinct degrees of adaptation to an aquatic life, swimming mode and abilities that remain difficult to estimate. The lifestyle of early cetaceans is investigated by analysis of microanatomical features in postcranial elements of archaeocetes. We document the internal structure of long bones, ribs and vertebrae in fifteen specimens belonging to the three more derived archaeocete families — Remingtonocetidae, Protocetidae, and Basilosauridae — using microtomography and virtual thin-sectioning. This enables us to discuss the osseous specializations observed in these taxa and to comment on their possible swimming behavior. All these taxa display bone mass increase (BMI) in their ribs, which lack an open medullary cavity, and in their femora, whereas their vertebrae are essentially spongious. Humeri and femora show opposite trends in microanatomical specialization in the progressive independence of cetaceans from a terrestrial environment. Humeri change from very compact to spongious, which is in accordance with the progressive loss of propulsive role for the forelimbs, which were used instead for steering and stabilizing. Conversely, hind-limbs in basilosaurids became strongly reduced with no involvement in locomotion but display strong osteosclerosis in the femora. Our study confirms that Remingtonocetidae and Protocetidae were almost exclusively aquatic in locomotion for the taxa sampled, which probably were shallow water suspended swimmers. Basilosaurids display osseous specializations similar to those of modern cetaceans and are considered more active open-sea swimmers. This study highlights the strong need for homologous sections in comparative microanatomical studies, and the importance of combining information from several bones of the same taxon for improved functional interpretation. PMID:25714394
NASA Astrophysics Data System (ADS)
Lambert, C.; Pettex, E.; Dorémus, G.; Laran, S.; Stéphan, E.; Canneyt, O. Van; Ridoux, V.
2017-07-01
Marine ecosystems are characterised by strong heterogeneity and variability, both spatially and temporally. In particular, seasonal variations may lead to severe constraints for predators which have to cope with these variations, for example through migration to avoid unfavourable seasons, or adaptation to local modification of the ecosystem. In the Bay of Biscay and English Channel, ecosystem seasonality is well marked, especially over the shelf. Cetacean and seabird communities within the Bay of Biscay, Celtic Sea and English Channel were studied during aerial surveys conducted in winter 2011-2012 and summer 2012, following a strip-transect methodology deployed from the coast to oceanic waters. We explored seasonal variations of habitat preferences of four cetacean and six seabird groups through Generalised Additive Models, using physiographic variables and weekly- and monthly-averaged oceanographic predictors for both seasons. Our results provided the first overview at such a large scale of the variation of habitat preferences in response to the seasonality of the ocean by seabirds in that region, at such a large scale. Habitat models resulted in explained deviances from 13 to 55%. Predators answered the seasonality of their environment in different ways. Long-finned pilot whales and Risso's dolphins were the only studied group exhibiting no habitat variations between seasons, targeting the shelf break throughout the year. The other groups modulated their habitat preferences between seasons to optimise the compromise between the ocean seasonal variations and their own constraints: common and striped dolphins, bottlenose dolphins and harbour porpoises for cetaceans; northern gannets, auks, northern fulmars and kittiwakes for seabirds. For shearwaters, the seasonality had an extreme impact, inducing a complete absence from the region during the unfavourable season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Mafumi; Kannan, Kurunthachalam; Takahashi, Atsushi
2000-06-01
Concentrations of polychlorinated biphenyl congeners (PCBs) and organochlorine pesticides were determined in the livers of bottlenose dolphins, Atlantic spotted dolphins, and pygmy sperm whales found stranded along the coastal waters of Florida, USA, during 1989 to 1994. The PCBs were the most predominant contaminants followed in order by DDTs, chlordanes, tris(4-chlorophenyl)methane (TCPMe), tris(4-chlorophenyl)methanol (TCPMOH), hexachlorobenzene, and hexachlorocyclohexane isomers. Among the cetaceans analyzed, organochlorine concentrations were greatest in bottlenose dolphins followed by Atlantic spotted dolphins and pygmy sperm whales. Hexa- and heptachlorobiphenyls were the predominant PCB congeners found in the livers of dolphins. Patterns of relative concentrations of PCB congeners variedmore » among individual bottlenose dolphins. A few individuals contained predominant concentrations of octa- (CB-199, 196/201) and nonachlorobiphenyl (CB-206, 208) congeners, which suggested exposure to the highly chlorinated PCB formulation, Aroclor{reg_sign} 1268, a contaminant at a coastal site in Georgia bordering northern Florida. The estimated 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalents (TEQs) of coplanar PCBs in bottlenose dolphins were 170 to 18,000 pg/g, lipid weight (mean:5,400 pg/g) with mono-ortho congeners 118, 105, and 156 contributing more than 80% of the TEQs. The ratios of CB-169 to CB-126 in cetacean livers were linearly related to total PCB concentrations, which suggested a strong induction of microsomal monooxygenase enzymes in the liver. The hepatic concentrations of TCPMe and TCPMOH in bottlenose dolphins and Atlantic spotted dolphins were greater than those in the blubber of marine mammals of various regions, which suggested the presence of sources for these chemicals along the Atlantic coast of Florida.« less
Sound transmission in archaic and modern whales: anatomical adaptations for underwater hearing.
Nummela, Sirpa; Thewissen, J G M; Bajpai, Sunil; Hussain, Taseer; Kumar, Kishor
2007-06-01
The whale ear, initially designed for hearing in air, became adapted for hearing underwater in less than ten million years of evolution. This study describes the evolution of underwater hearing in cetaceans, focusing on changes in sound transmission mechanisms. Measurements were made on 60 fossils of whole or partial skulls, isolated tympanics, middle ear ossicles, and mandibles from all six archaeocete families. Fossil data were compared with data on two families of modern mysticete whales and nine families of modern odontocete cetaceans, as well as five families of noncetacean mammals. Results show that the outer ear pinna and external auditory meatus were functionally replaced by the mandible and the mandibular fat pad, which posteriorly contacts the tympanic plate, the lateral wall of the bulla. Changes in the ear include thickening of the tympanic bulla medially, isolation of the tympanoperiotic complex by means of air sinuses, functional replacement of the tympanic membrane by a bony plate, and changes in ossicle shapes and orientation. Pakicetids, the earliest archaeocetes, had a land mammal ear for hearing in air, and used bone conduction underwater, aided by the heavy tympanic bulla. Remingtonocetids and protocetids were the first to display a genuine underwater ear where sound reached the inner ear through the mandibular fat pad, the tympanic plate, and the middle ear ossicles. Basilosaurids and dorudontids showed further aquatic adaptations of the ossicular chain and the acoustic isolation of the ear complex from the skull. The land mammal ear and the generalized modern whale ear are evolutionarily stable configurations, two ends of a process where the cetacean mandible might have been a keystone character. 2007 Wiley-Liss, Inc.
Linking Deep-Waer Prey Fields with Odontocete Population Structure and Behavior
2015-09-30
potentially mitigate beaked whale responses to disturbance, providing direct input data to PCOD models for beaked whales • Leverage previous...principles of cetacean foraging ecology and responses to disturbance • Identify key prey metrics for future analyses and incorporation into PCOD
75 FR 29991 - Marine Mammals; receipt of application for permit amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-28
... research on cetacean behavior, sound production, and responses to sound. The research methods include... amendment to Permit No. 14241 to conduct research on marine mammals. ADDRESSES: The application and related... animal hears and measures vocalization, behavior, and physiological parameters. Research also involves...
2015-09-30
Institution Species Martin Haulena Vancouver Aquarium Beluga False killer whale Harbour porpoise White sided dolphin Harbour seals Cory Champagne ...Regulation in a Captive Dolphin Population” (PI: Cory Champagne , Old Dominion University). REFERENCES Barsano CP, Baumann G (1989) Simple algebraic and
ERIC Educational Resources Information Center
Lande, Rivian
1973-01-01
Describes a program initiated by the Cabrillo Beach Museum (San Pedro, California) and the American Cetacean Society to take students of the fourth grade through high school on half-day cruises to observe gray whales. College students assist in the program with related field projects and presentations in the schools. (JR)
50 CFR 14.131 - Primary enclosures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... same primary enclosure with an adult marine mammal other than its mother. Socially dependent animals (e... Wild Mammals and Birds to the United States Specifications for Marine Mammals (cetaceans, Sirenians..., harnesses, or other such devices used for body support or restraint when transporting marine mammals such as...
Controlled Sonar Exposure Experiments on Cetaceans in Norwegian Waters: Overview of the 3S-Project.
Lam, Frans-Peter A; Kvadsheim, Petter H; Miller, Patrick J O; Tyack, Peter L; Ainslie, Michael A; Curé, Charlotte; Kleivane, Lars; Sivle, Lise Doksæter; van Ijsselmuide, Sander P; Visser, Fleur; von Benda-Beckmann, Alexander M; Wensveen, Paul J; Dekeling, René P A
2016-01-01
In mitigating the risk of sonar operations, the behavioral response of cetaceans is one of the major knowledge gaps that needs to be addressed. The 3S-Project has conducted a number of controlled exposure experiments with a realistic sonar source in Norwegian waters from 2006 to 2013. In total, the following six target species have been studied: killer, long-finned pilot, sperm, humpback, minke, and northern bottlenose whales. A total of 38 controlled sonar exposures have been conducted on these species. Responses from controlled and repeated exposure runs have been recorded using acoustic and visual observations as well as with electronic tags on the target animal. So far, the first dose-response curves as well as an overview of the scored severity of responses have been revealed. In this paper, an overview is presented of the approach for the study, including the results so far as well as the current status of the ongoing analysis.
Comparison of pinniped and cetacean prey tissue lipids with lipids of their elasmobranch predator.
Davidson, Bruce; Cliff, Geremy
2014-01-01
The great white shark is known to include pinnipeds and cetaceans in its diet. Both groups of marine mammals deposit thick blubber layers around their bodies. Elasmobranchs do not produce adipose tissue, but rather store lipid in their livers, thus a great white predating on a marine mammal will deposit the lipids in its liver until required. Samples from great white liver and muscle, Cape fur seal, Indian Ocean bottlenose dolphin and common dolphin liver, muscle and blubber were analyzed for their lipid and fatty acid profiles. The great white liver and marine mammal blubber samples showed a considerable degree of homogeneity, but there were significant differences when comparing between the muscle samples. Blubber from all three marine mammal species was calculated to provide greater than 95% of lipid intake for the great white shark from the tissues analyzed. Sampling of prey blubber may give a good indication of the lipids provided to the shark predator.
Intestinal volvulus in cetaceans.
Begeman, L; St Leger, J A; Blyde, D J; Jauniaux, T P; Lair, S; Lovewell, G; Raverty, S; Seibel, H; Siebert, U; Staggs, S L; Martelli, P; Keesler, R I
2013-07-01
Intestinal volvulus was recognized as the cause of death in 18 cetaceans, including 8 species of toothed whales (suborder Odontoceti). Cases originated from 11 institutions from around the world and included both captive (n = 9) and free-ranging (n = 9) animals. When the clinical history was available (n = 9), animals consistently demonstrated acute dullness 1 to 5 days prior to death. In 3 of these animals (33%), there was a history of chronic gastrointestinal illness. The pathological findings were similar to those described in other animal species and humans, and consisted of intestinal volvulus and a well-demarcated segment of distended, congested, and edematous intestine with gas and bloody fluid contents. Associated lesions included congested and edematous mesentery and mesenteric lymph nodes, and often serofibrinous or hemorrhagic abdominal effusion. The volvulus involved the cranial part of the intestines in 85% (11 of 13). Potential predisposing causes were recognized in most cases (13 of 18, 72%) but were variable. Further studies investigating predisposing factors are necessary to help prevent occurrence and enhance early clinical diagnosis and management of the condition.
Giardia and Cryptosporidium in cetaceans on the European Atlantic coast.
Reboredo-Fernández, Aurora; Ares-Mazás, Elvira; Martínez-Cedeira, José A; Romero-Suances, Rafael; Cacciò, Simone M; Gómez-Couso, Hipólito
2015-02-01
The occurrence of Giardia and Cryptosporidium was investigated in cetacean specimens stranded on the northwestern coast of Spain (European Atlantic coast) by analysis of 65 samples of large intestine from eight species. The parasites were identified by direct immunofluorescence antibody test (IFAT) and by PCR amplification of the β-giardin gene, the ITS1-5.8S-ITS2 region and the SSU-rDNA gene of Giardia and the SSU-rDNA gene of Cryptosporidium. Giardia and Cryptosporidium were detected in 7 (10.8 %) and 9 samples (13.8 %), respectively. In two samples, co-infection with both parasites was observed. Giardia duodenalis assemblages A, C, D and F, and Cryptosporidium parvum were identified. This is the first report of G. duodenalis in Balaenoptera acutorostrata, Kogia breviceps and Stenella coeruleoalba and also the first report of Cryptosporidium sp. in B. acutorostrata and of C. parvum in S. coeruleoalba and Tursiops truncatus. These results extend the known host range of these waterborne enteroparasites.
Morphology of the eyeball from the Humpback whale (Megaptera novaeangliae).
Rodrigues, Fernanda M; Silva, Fernanda M O; Trompieri-Silveira, Ana Carolina; Vergara-Parente, Jociery E; Miglino, Maria Angélica; Guimarães, Juliana P
2014-05-01
Aquatic mammals underwent morphological and physiological adaptations due to the transition from terrestrial to aquatic environment. One of the morphological changes regards their vision since cetaceans' eyes are able to withstand mechanical, chemical, osmotic, and optical water conditions. Due to insufficient information about these animals, especially regarding their sense organs, this study aimed to describe the morphology of the Humpback whale (Megaptera novaeangliae) eyeball. Three newborn females, stranded dead on the coast of Sergipe and Bahia, Brazil, were used. Samples were fixed in a 10% formalin solution, dissected, photographed, collected, and evaluated through light and electron microscopy techniques. The Humpback whale sclera was thick and had an irregular surface with mechanoreceptors in its lamina propria. Lens was dense, transparent, and ellipsoidal, consisting of three layers, and the vascularized choroid contains melanocytes, mechanoreceptors, and a fibrous tapetum lucidum. The Humpback whale eyeball is similar to other cetaceans and suggests an adaptation to diving and migration, contributing to the perception of differences in temperature, pressure, and lighting. Copyright © 2014 Wiley Periodicals, Inc.
Lusher, Amy L; Hernandez-Milian, Gema; O'Brien, Joanne; Berrow, Simon; O'Connor, Ian; Officer, Rick
2015-04-01
When mammals strand, they present a unique opportunity to obtain insights into their ecology. In May 2013, three True's beaked whales (two adult females and a female calf) stranded on the north and west coasts of Ireland and the contents of their stomachs and intestines were analysed for anthropogenic debris. A method for identifying microplastics ingested by larger marine organisms was developed. Microplastics were identified throughout the digestive tract of the single whale that was examined for the presence of microplastics. The two adult females had macroplastic items in their stomachs. Food remains recovered from the adult whales consisted of mesopelagic fish (Benthosema glaciale, Nansenia spp., Chauliodius sloani) and cephalopods, although trophic transfer has been discussed, it was not possible to ascertain whether prey were the source of microplastics. This is the first study to directly identify microplastics <5 mm in a cetacean species. Copyright © 2015 Elsevier Ltd. All rights reserved.
Conservation genetics of whales and dolphins.
Hoelzel, A R
1992-08-01
Whales and dolphins (cetaceans) are found in all the world's oceans and in some of the major rivers, yet little is known about the distribution and behaviour of many species. At the same time, cetaceans are under threat from a variety of pressures including direct and indirect takes, pollution, and competition for habitat and prey. To ensure their long-term survival it will be necessary to preserve genetic diversity through the identification and protection of differentiated populations, the assessment of variation within local populations, and through a better understanding of reproductive and dispersal behaviour. The application of molecular genetic techniques is helping to provide answers to some of these previously intractable questions. Early results suggest few consistent patterns. Obvious geographic boundaries correlate to genetic distance in some species, and not in others. Furthermore, morphological variation within species can be fairly extensive without correlating to genetic distance, or relatively minor between morphotypes that are as genetically distinct as some species. These examples emphasize the need for further study.
Brucellosis in mammals of Costa Rica: An epidemiological survey.
Hernández-Mora, Gabriela; Bonilla-Montoya, Roberto; Barrantes-Granados, Osvaldo; Esquivel-Suárez, Andrea; Montero-Caballero, Danilo; González-Barrientos, Rocío; Fallas-Monge, Zeanne; Palacios-Alfaro, José David; Baldi, Mario; Campos, Elena; Chanto, Grettel; Barquero-Calvo, Elías; Chacón-Díaz, Carlos; Chaves-Olarte, Esteban; Guzmán Verri, Caterina; Romero-Zúñiga, Juan-José; Moreno, Edgardo
2017-01-01
Brucellosis has been an endemic disease of cattle and humans in Costa Rica since the beginning of XX century. However, brucellosis in sheep, goats, pigs, water buffaloes, horses and cetaceans, has not been reported in the country. We have performed a brucellosis survey in these host mammal species, from 1999-2016. In addition, we have documented the number of human brucellosis reported cases, from 2003-2016. The brucellosis seroprevalence in goat and sheep herds was 0.98% and 0.7% respectively, with no Brucella isolation. Antibodies against Brucella were not detected in feral or domestic pigs. Likewise, brucellosis seroprevalence in horse and water buffalo farms was estimated in 6.5% and 21.7%, respectively, with no Brucella isolation. Six cetacean species showed positive reactions against Brucella antigens, and B. ceti was isolated in 70% (n = 29) of striped dolphins (Stenella coeruleoalba). A steady increase in the diagnosis of human brucellosis cases was observed. Taking into account the prevalence of brucellosis in the various host mammals of Costa Rica, different measures are recommended.
Stranded dolphin stomach contents represent the free-ranging population's diet
Dunshea, Glenn; Barros, Nélio B.; Berens McCabe, Elizabeth J.; Gales, Nicholas J.; Hindell, Mark A.; Jarman, Simon N.; Wells, Randall S.
2013-01-01
Diet is a fundamental aspect of animal ecology. Cetacean prey species are generally identified by examining stomach contents of stranded individuals. Critical uncertainty in these studies is whether samples from stranded animals are representative of the diet of free-ranging animals. Over two summers, we collected faecal and gastric samples from healthy free-ranging individuals of an extensively studied bottlenose dolphin population. These samples were analysed by molecular prey detection and these data compared with stomach contents data derived from stranded dolphins from the same population collected over 22 years. There was a remarkable consistency in the prey species composition and relative amounts between the two datasets. The conclusions of past stomach contents studies regarding dolphin habitat associations, prey selection and proposed foraging mechanisms are supported by molecular data from live animals and the combined dataset. This is the first explicit test of the validity of stomach contents analysis for accurate population-scale diet determination of an inshore cetacean. PMID:23637389
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sacher, G.A.
1978-01-01
The maximum lifespans in captivity for terrestrial mammalian species can be estimated by means of a multiple linear regression of logarithm of lifespan (L) on the logarithm of adult brain weight (E) and body weight (S). This paper describes the application of regression formulas based on data from terrestrial mammals to the estimation of odontocete and mysticete lifespans. The regression formulas predict cetacean lifespans that are in accord with the data on maximum cetacean lifespans obtained in recent years by objective age determination procedures. More remarkable is the correct prediction by the regression formulas that the odontocete species have nearlymore » constant lifespans, almost independent of body weight over a 300:1 body weight range. This prediction is a consequence of the fact, remarkable in itself, that over this body weight range the Odontoceti have a brain:body allometric slope of 1/3, as compared to a slope of 2/3 for the Mammalia as a whole.« less
Cetaceans evolution: insights from the genome sequences of common minke whales.
Park, Jung Youn; An, Yong-Rock; Kanda, Naohisa; An, Chul-Min; An, Hye Suck; Kang, Jung-Ha; Kim, Eun Mi; An, Du-Hae; Jung, Hojin; Joung, Myunghee; Park, Myung Hum; Yoon, Sook Hee; Lee, Bo-Young; Lee, Taeheon; Kim, Kyu-Won; Park, Won Cheoul; Shin, Dong Hyun; Lee, Young Sub; Kim, Jaemin; Kwak, Woori; Kim, Hyeon Jeong; Kwon, Young-Jun; Moon, Sunjin; Kim, Yuseob; Burt, David W; Cho, Seoae; Kim, Heebal
2015-01-22
Whales have captivated the human imagination for millennia. These incredible cetaceans are the only mammals that have adapted to life in the open oceans and have been a source of human food, fuel and tools around the globe. The transition from land to water has led to various aquatic specializations related to hairless skin and ability to regulate their body temperature in cold water. We present four common minke whale (Balaenoptera acutorostrata) genomes with depth of ×13 ~ ×17 coverage and perform resequencing technology without a reference sequence. Our results indicated the time to the most recent common ancestors of common minke whales to be about 2.3574 (95% HPD, 1.1521 - 3.9212) million years ago. Further, we found that genes associated with epilation and tooth-development showed signatures of positive selection, supporting the morphological uniqueness of whales. This whole-genome sequencing offers a chance to better understand the evolutionary journey of one of the largest mammals on earth.
Christiansen, Per
2012-01-01
Derived sabercats had craniomandibular morphologies that in many respects were highly different from those of extant felids, and this has often been interpreted functionally as adaptations for predation at extreme gape angles with hypertrophied upper canines. It is unknown how much of this was a result of intraspecific postnatal ontogeny, since juveniles of sabercats are rare and no quantitative study has been made of craniomandibular ontogeny. Postnatal ontogenetic craniomandibular shape changes in two morphologically derived sabercats, Smilodon fatalis and S. populator, were analysed using geometric morphometrics and compared to three species of extant pantherines, the jaguar, tiger, and Sunda clouded leopard. Ontogenetic shape changes in Smilodon usually involved the same areas of the cranium and mandible as in extant pantherines, and large-scale modularization was similar, suggesting that such may have been the case for all felids, since it followed the same trends previously observed in other mammals. However, in other respects Smilodon differed from extant pantherines. Their crania underwent much greater and more localised ontogenetic shape changes than did the mandibles, whereas crania and mandibles of extant pantherines underwent smaller, fewer and less localised shape changes. Ontogenetic shape changes in the two species of Smilodon are largely similar, but differences are also present, notably those which may be tied to the presence of larger upper canines in S. populator. Several of the specialized cranial characters differentiating adult Smilodon from extant felids in a functional context, which are usually regarded as evolutionary adaptations for achieving high gape angles, are ontogenetic, and in several instances ontogeny appears to recapitulate phylogeny to some extent. No such ontogenetic evolutionary adaptive changes were found in the extant pantherines. Evolution in morphologically derived sabercats involved greater cranial ontogenetic changes than among extant felids, resulting in greatly modified adult craniomandibular morphologies.
A Two-Factor Model of Relapse/Recurrence Vulnerability in Unipolar Depression
Farb, Norman A. S.; Irving, Julie A.; Anderson, Adam K.; Segal, Zindel V.
2015-01-01
The substantial health burden associated with Major Depressive Disorder is a product of both its high prevalence and the significant risk of relapse, recurrence and chronicity. Establishing recurrence vulnerability factors (VFs) could improve the long-term management of MDD by identifying the need for further intervention in seemingly recovered patients. We present a model of sensitization in depression vulnerability, with an emphasis on the integration of behavioral and neural systems accounts. Evidence suggests that VFs fall into two categories: dysphoric attention and dysphoric elaboration. Dysphoric attention is driven by fixation on negative life events, and is characterized behaviorally by reduced executive control, and neurally by elevated activity in the brain’s salience network. Dysphoric elaboration is driven by rumination that promotes over-general self and contextual appraisals, and is characterized behaviorally by dysfunctional attitudes, and neurally by elevated connectivity within normally-distinct prefrontal brain networks. While, at present, few prospective VF studies exist from which to catalogue a definitive neurobehavioral account, extant data support the value of the proposed two-factor model. Measuring the continued presence of these two VFs during recovery may more accurately identify remitted patients who would benefit from targeted prophylactic intervention. PMID:25688431
The role of endogenous and exogenous mechanisms in the formation of R&D networks
NASA Astrophysics Data System (ADS)
Tomasello, Mario V.; Perra, Nicola; Tessone, Claudio J.; Karsai, Márton; Schweitzer, Frank
2014-07-01
We develop an agent-based model of strategic link formation in Research and Development (R&D) networks. Empirical evidence has shown that the growth of these networks is driven by mechanisms which are both endogenous to the system (that is, depending on existing alliances patterns) and exogenous (that is, driven by an exploratory search for newcomer firms). Extant research to date has not investigated both mechanisms simultaneously in a comparative manner. To overcome this limitation, we develop a general modeling framework to shed light on the relative importance of these two mechanisms. We test our model against a comprehensive dataset, listing cross-country and cross-sectoral R&D alliances from 1984 to 2009. Our results show that by fitting only three macroscopic properties of the network topology, this framework is able to reproduce a number of micro-level measures, including the distributions of degree, local clustering, path length and component size, and the emergence of network clusters. Furthermore, by estimating the link probabilities towards newcomers and established firms from the data, we find that endogenous mechanisms are predominant over the exogenous ones in the network formation, thus quantifying the importance of existing structures in selecting partner firms.
Energetic tradeoffs control the size distribution of aquatic mammals
NASA Astrophysics Data System (ADS)
Gearty, William; McClain, Craig R.; Payne, Jonathan L.
2018-04-01
Four extant lineages of mammals have invaded and diversified in the water: Sirenia, Cetacea, Pinnipedia, and Lutrinae. Most of these aquatic clades are larger bodied, on average, than their closest land-dwelling relatives, but the extent to which potential ecological, biomechanical, and physiological controls contributed to this pattern remains untested quantitatively. Here, we use previously published data on the body masses of 3,859 living and 2,999 fossil mammal species to examine the evolutionary trajectories of body size in aquatic mammals through both comparative phylogenetic analysis and examination of the fossil record. Both methods indicate that the evolution of an aquatic lifestyle is driving three of the four extant aquatic mammal clades toward a size attractor at ˜500 kg. The existence of this body size attractor and the relatively rapid selection toward, and limited deviation from, this attractor rule out most hypothesized drivers of size increase. These three independent body size increases and a shared aquatic optimum size are consistent with control by differences in the scaling of energetic intake and cost functions with body size between the terrestrial and aquatic realms. Under this energetic model, thermoregulatory costs constrain minimum size, whereas limitations on feeding efficiency constrain maximum size. The optimum size occurs at an intermediate value where thermoregulatory costs are low but feeding efficiency remains high. Rather than being released from size pressures, water-dwelling mammals are driven and confined to larger body sizes by the strict energetic demands of the aquatic medium.
Deep Diving Cetacean Behavioral Response Study MED 09
2009-09-30
distribution may be affected by anthropogenic noise. The role of the SPAWAR Systems Center (SSC) Pacific team was to intergrate the interdisiplinary...over 100 hours of data was collected on production sonobuoys for post test ambient noise data. CTD casts were taken at 56 sites, collecting
78 FR 2956 - Marine Mammals; File No. 17005
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-15
... Peter Rogers, Ph.D., Georgia Institute of Technology, Woodruff School of Mechanical Engineering, Atlanta...-invasively determining the low frequency elastic properties of cetacean head tissues. The ultrasound system... researchers to: (1) Determine any short term changes in soft tissue elasticity if an animal dies during the...
Improving Attachments of Non-Invasive (Type III) Electronic Data Loggers to Cetaceans
2011-09-30
Micro texturing of the suction cup to reduced leakage: Objective: Use microtexturing to create a superhydrophobic barrier between the lip and the...surface area of a solid, thereby amplifying the natural hydrophobicity of a surface. Superhydrophobicity is created by interfacial tension forces that
76 FR 78242 - Marine Mammals; File No. 14241
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-16
... permit holder to conduct research on cetacean behavior, sound production, and responses to sound. The research methods include tagging marine mammals with an advanced digital sound recording tag that records... an amendment to Permit No. 14241-02 to conduct research on marine mammals. DATES: Written, telefaxed...
77 FR 59594 - Marine Mammals; File No. 16163
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-28
... that issuance of the permit amendment would not significantly impact the quality of the human... conduct research on cetacean species in U.S. and international waters in the Pacific Ocean, including... of the permitted activities on the human environment was prepared in compliance with the National...
Evaluation of Tag Attachments on Small Cetaceans
2013-09-30
silicon-based antifouling coating, “Propspeed,” as a means to further reduce drag and improve tag performance. Examples of the experimental tags are...the TDR tags, prepared by Wildlife Computers (Figure 1). Half of these were treated with Propspeed antifouling coating, and the other half were left
"There She Blows!" Off Long Island...Few, If Any, Were Aware.
ERIC Educational Resources Information Center
Lankshear, Gillian
1980-01-01
Describes public whale-watching expeditions initiated to cover expenses of the Okeanos Ocean Research Foundation, a group investigating whales and their migratory patterns off the shores of Long Island, New York. Discusses history of whales in the region and recent cetacean conservation efforts. (NEC)
77 FR 20793 - Marine Mammals; File No. 16599
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-06
...-2200; fax (808) 973-2941; Northeast Region, NMFS, 55 Great Republic Drive, Gloucester, MA 01930; phone... Drive, 200, San Diego, CA 92106, to conduct scientific research on cetaceans stranded or in... of Protected Resources, NMFS, 1315 East-West Highway, Room 13705, Silver Spring, MD 20910; phone (301...
Gimmel, Matthew L; Bocakova, Milada
2015-03-05
A new extant species of Electribius Crowson, E. llamae sp.n., is described from Cusuco National Park, Cortés Province, Honduras. This new species lacks one of the supposed autapomorphies of the genus; therefore the definition of the genus requires modification. A revised key to the known extant species is presented, and their known distributions are mapped.
Opazo, Juan C; Zavala, Kattina; Krall, Paola; Arias, Rodrigo A
2017-01-01
Understanding the processes that give rise to genomic variability in extant species is an active area of research within evolutionary biology. With the availability of whole genome sequences, it is possible to quantify different forms of variability such as variation in gene copy number, which has been described as an important source of genetic variability and in consequence of phenotypic variability. Most of the research on this topic has been focused on understanding the biological significance of gene duplication, and less attention has been given to the evolutionary role of gene loss. Gremlin 2 is a member of the DAN gene family and plays a significant role in tooth development by blocking the ligand-signaling pathway of BMP2 and BMP4. The goal of this study was to investigate the evolutionary history of gremlin 2 in cetartiodactyl mammals, a group that possesses highly divergent teeth morphology. Results from our analyses indicate that gremlin 2 has experienced a mixture of gene loss, gene duplication, and rate acceleration. Although the last common ancestor of cetartiodactyls possessed a single gene copy, pigs and camels are the only cetartiodactyl groups that have retained gremlin 2. According to the phyletic distribution of this gene and synteny analyses, we propose that gremlin 2 was lost in the common ancestor of ruminants and cetaceans between 56.3 and 63.5 million years ago as a product of a chromosomal rearrangement. Our analyses also indicate that the rate of evolution of gremlin 2 has been accelerated in the two groups that have retained this gene. Additionally, the lack of this gene could explain the high diversity of teeth among cetartiodactyl mammals; specifically, the presence of this gene could act as a biological constraint. Thus, our results support the notions that gene loss is a way to increase phenotypic diversity and that gremlin 2 is a dispensable gene, at least in cetartiodactyl mammals.
Coiro, Mario; Pott, Christian
2017-04-07
Even if they are considered the quintessential "living fossils", the fossil record of the extant genera of the Cycadales is quite poor, and only extends as far back as the Cenozoic. This lack of data represents a huge hindrance for the reconstruction of the recent history of this important group. Among extant genera, Bowenia (or cuticles resembling those of extant Bowenia) has been recorded in sediments from the Late Cretaceous and the Eocene of Australia, but its phylogenetic placement and the inference from molecular dating still imply a long ghost lineage for this genus. We re-examine the fossil foliage Almargemia incrassata from the Lower Cretaceous Anfiteatro de Ticó Formation in Patagonia, Argentina, in the light of a comparative cuticular analysis of extant Zamiaceae. We identify important differences with the other member of the genus, viz. A. dentata, and bring to light some interesting characters shared exclusively between A. incrassata and extant Bowenia. We interpret our results to necessitate the erection of the new genus Eobowenia to accommodate the fossil leaf earlier assigned as Almargemia incrassata. We then perfom phylogenetic analyses, including the first combined morphological and molecular analysis of the Cycadales, that indicate that the newly erected genus could be related to extant Bowenia. Eobowenia incrassata could represent an important clue for the understanding of evolution and biogeography of the extant genus Bowenia, as the presence of Eobowenia in Patagonia is yet another piece of the biogeographic puzzle that links southern South America with Australasia.
NASA Astrophysics Data System (ADS)
Wang, Y.; Wei, S.; Tapponnier, P.; WANG, X.; Lindsey, E.; Sieh, K.
2016-12-01
A gravity-driven "Mega-Landslide" model has been evoked to explain the shortening seen offshore Sabah and Brunei in oil-company seismic data. Although this model is considered to account simultaneously for recent folding at the edge of the submarine NW Sabah trough and normal faulting on the Sabah shelf, such a gravity-driven model is not consistent with geodetic data or critical examination of extant structural restorations. The rupture that produced the 2015 Mw6.0 Mt. Kinabalu earthquake is also inconsistent with the gravity-driven model. Our teleseismic analysis shows that the centroid depth of that earthquake's mainshock was 13 to 14 km, and its favored fault-plane solution is a 60° NW-dipping normal fault. Our finite-rupture model exhibits major fault slip between 5 and 15 km depth, in keeping with our InSAR analysis, which shows no appreciable surface deformation. Both the hypocentral depth and the depth of principal slip are far too deep to be explained by gravity-driven failure, as such a model would predict a listric normal fault connecting at a much shallower depth with a very gentle detachment. Our regional mapping of tectonic landforms also suggests the recent rupture is part of a 200-km long system of narrowly distributed active extension in northern Sabah. Taken together, the nature of the 2015 rupture, the belt of active normal faults, and structural consideration indicate that active tectonic shortening plays the leading role in controlling the overall deformation of northern Sabah and that deep-seated, onland normal faulting likely results from an abrupt change in the dip-angle of the collision interface beneath the Sabah accretionary prism.
NASA Astrophysics Data System (ADS)
Reidenberg, Joy S.; Laitman, Jeffrey T.
2004-05-01
Cetaceans produce sounds at opposite ends of the frequency spectrum. The laryngeal role in odontocete sound production (echolocation, communication) remains unclear. Mysticete infrasonics are presumed to be laryngeal in origin, but production mechanisms are unknown. To address this, we examined postmortem larynges in 6 mysticete species (3 genera) and compared them to our odontocete collection (20 species/15 genera). Results indicate that the rostral portion of the odontocete larynx is elongated, narrow, rigid, and normally positioned intranarially. This portion of the mysticete larynx is comparatively shortened, open, pliable, and in Megaptera may be retracted from its intranarial position. Internally, mysticete vocal folds are thick, paired, and oriented horizontally, compared with the thin, usually unpaired, and vertically oriented odontocete fold. Mysticetes may generate low frequency sounds via pneumatically driven fold vibrations, which then pass to attached laryngeal sac walls, through overlying throat pleats, to water. Rorqual mysticetes may also vibrate paired corniculate flaps while regulating airflow into the nasal region. Infrasonic pulses may pass through adjacent soft palate, skull, or nasal cartilages to water. Laryngeal anatomy in mysticetes and odontocetes appears highly divergent. These morphological differences may correlate to adaptations for producing infrasonic (mysticete) or ultrasonic (odontocete) communication. [Work supported by ONR:N00014-96-1-0764, ONR:N00014-99-1-0815, and AMNHSOF.
9 CFR 3.103 - Facilities, outdoor.
Code of Federal Regulations, 2011 CFR
2011-01-01
... requirements shall be applicable to all outdoor pools. (1) The water surface of pools in outdoor primary... free of solid ice to allow for entry and exit of the animals. (2) The water surface of pools in outdoor... water dwelling species of pinnipeds or cetaceans shall be housed in outdoor pools where water...
9 CFR 3.103 - Facilities, outdoor.
Code of Federal Regulations, 2010 CFR
2010-01-01
... requirements shall be applicable to all outdoor pools. (1) The water surface of pools in outdoor primary... free of solid ice to allow for entry and exit of the animals. (2) The water surface of pools in outdoor... water dwelling species of pinnipeds or cetaceans shall be housed in outdoor pools where water...
77 FR 58357 - Marine Mammals; File No. 17355
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... National Marine Fisheries Service's Northeast Science Center (NEFSC), 166 Water Street, Woods Hole... due form for a permit to conduct research on marine mammals and sea turtles. DATES: Written, telefaxed... scientific research on 38 species of cetaceans, four species of pinnipeds, and five species of sea turtles in...
76 FR 67151 - Marine Mammals; File No. 13927
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-31
... research methods); and (5) research associated with Project III.b (feeding behavior of baleen whales). An..., MA 02543 to conduct research on North Atlantic right whales (Eubalaena glacialis) and humpback whales... FR 75084) that a request for a permit to conduct research on 23 cetacean species had been submitted...
Improving Attachments of Non-Invasive (Type III) Electronic Data Loggers to Cetaceans
2014-09-30
the assessment tag impact on animal health and well-being. Specifically, we are working to develop methods that will enable the accurate estimates...currently not available for any marine mammal, about animal health and activity has the potential to revolutionize how animals are cared for in these
Comparative and Cumulative Energetic Costs of Odontocete Responses to Anthropogenic Disturbance
2014-09-30
total body size will be determined in a variety of odontocete cetaceans of different body sizes (e.g. harbor porpoise, bottlenose dolphin, killer whale ...beaked whale , as available) through a collaborative effort among 3 researchers at NOAA, UC Santa Cruz, Dr. Ted Cranford at Quantitative Morphology
The Metabolic Costs of Sound Production in Odontocete Cetaceans
2013-09-30
Veirs, V., Emmons, C., Veirs, S. 2009. Speaking up: Killer whales (Orcinus orca) increase their call amplitude in response to vessel noise. Journal...Acoustical Society of America 129: 2397. Parks, S.E, Johnson, M., Nowacek, D., Tyack P.L. 2010. Individual right whales call louder in increased
75 FR 7567 - Marine Mammals; File No. 13545
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-22
... to determine contaminant levels; culture cells; and collect data on abundance, movement and..., stranded cetaceans in U.S. waters and on the high seas. Researchers may conduct: biopsy sampling.... Research may occur in U.S. waters and the high seas of the Pacific and Atlantic Oceans, including the Gulf...
2000-08-01
beluga whale ( Delphinapterus leucas ), pilot whale (Globicephala melaena), striped dolphin (Lagenorhynchus obliquidens), false killer whale (Pseudorca...length among species varied 2.8-fold from 1.83 m (Stenella) to 5.16 m (Orcinus). FR varied from 4.66 ( Delphinapterus ) to 6.72 (Pseudorca). Flipper
50 CFR 217.142 - Permissible methods of taking.
Code of Federal Regulations, 2014 CFR
2014-10-01
... method and amount of take: (1) Level B Harassment: (i) Cetaceans: (A) Bowhead whale (Balaena mysticetus)—75 (an average of 15 annually) (B) Gray whale (Eschrichtius robustus)—10 (an average of 2 annually) (C) Beluga whale (Delphinapterus leucas)—100 (an average of 20 annually) (ii) Pinnipeds: (A) Ringed...
50 CFR 14.133 - Care in transit.
Code of Federal Regulations, 2014 CFR
2014-10-01
... knowledgeable in marine mammal care to provide for the animal's health and well-being. The shipper or... Wild Mammals and Birds to the United States Specifications for Marine Mammals (cetaceans, Sirenians, Sea Otters, Pinnipeds, and Polar Bears) § 14.133 Care in transit. (a) Any marine mammal shall be...
ERIC Educational Resources Information Center
Rusli, Yazmin Ahmad; Montgomery, James W.
2017-01-01
Purpose: The aim of this study was to determine whether extant language (lexical) knowledge or domain-general working memory is the better predictor of comprehension of object relative sentences for children with typical development. We hypothesized that extant language knowledge, not domain-general working memory, is the better predictor. Method:…
The ISACA Business Model for Information Security: An Integrative and Innovative Approach
NASA Astrophysics Data System (ADS)
von Roessing, Rolf
In recent years, information security management has matured into a professional discipline that covers both technical and managerial aspects in an organisational environment. Information security is increasingly dependent on business-driven parameters and interfaces to a variety of organisational units and departments. In contrast, common security models and frameworks have remained largely technical. A review of extant models ranging from [LaBe73] to more recent models shows that technical aspects are covered in great detail, while the managerial aspects of security are often neglected.Likewise, the business view on organisational security is frequently at odds with the demands of information security personnel or information technology management. In practice, senior and executive level management remain comparatively distant from technical requirements. As a result, information security is generally regarded as a cost factor rather than a benefit to the organisation.
The inner ear of Megatherium and the evolution of the vestibular system in sloths
Billet, G; Germain, D; Ruf, I; de Muizon, C; Hautier, L
2013-01-01
Extant tree sloths are uniquely slow mammals with a very specialized suspensory behavior. To improve our understanding of their peculiar evolution, we investigated the inner ear morphology of one of the largest and most popular fossil ground sloths, Megatherium americanum. We first address the predicted agility of this animal from the scaling of its semicircular canals (SC) relative to body mass, based on recent work that provided evidence that the size of the SC in mammals correlates with body mass and levels of agility. Our analyses predict intermediate levels of agility for Megatherium, contrasting with the extreme slowness of extant sloths. Secondly, we focus on the morphology of the SC at the inner ear scale and investigate the shape and proportions of these structures in Megatherium and in a large diversity of extant xenarthrans represented in our database. Our morphometric analyses demonstrate that the giant ground sloth clearly departs from the SC morphology of both extant sloth genera (Choloepus, Bradypus) and is in some aspects closer to that of armadillos and anteaters. Given the close phylogenetic relationships of Megatherium with the extant genus Choloepus, these results are evidence of substantial homoplasy of the SC anatomy in sloths. This homoplasy most likely corresponds to an outstanding convergent evolution between extant suspensory sloth genera. PMID:24111879
Christiansen, Per
2012-01-01
Derived sabercats had craniomandibular morphologies that in many respects were highly different from those of extant felids, and this has often been interpreted functionally as adaptations for predation at extreme gape angles with hypertrophied upper canines. It is unknown how much of this was a result of intraspecific postnatal ontogeny, since juveniles of sabercats are rare and no quantitative study has been made of craniomandibular ontogeny. Postnatal ontogenetic craniomandibular shape changes in two morphologically derived sabercats, Smilodon fatalis and S. populator, were analysed using geometric morphometrics and compared to three species of extant pantherines, the jaguar, tiger, and Sunda clouded leopard. Ontogenetic shape changes in Smilodon usually involved the same areas of the cranium and mandible as in extant pantherines, and large-scale modularization was similar, suggesting that such may have been the case for all felids, since it followed the same trends previously observed in other mammals. However, in other respects Smilodon differed from extant pantherines. Their crania underwent much greater and more localised ontogenetic shape changes than did the mandibles, whereas crania and mandibles of extant pantherines underwent smaller, fewer and less localised shape changes. Ontogenetic shape changes in the two species of Smilodon are largely similar, but differences are also present, notably those which may be tied to the presence of larger upper canines in S. populator. Several of the specialized cranial characters differentiating adult Smilodon from extant felids in a functional context, which are usually regarded as evolutionary adaptations for achieving high gape angles, are ontogenetic, and in several instances ontogeny appears to recapitulate phylogeny to some extent. No such ontogenetic evolutionary adaptive changes were found in the extant pantherines. Evolution in morphologically derived sabercats involved greater cranial ontogenetic changes than among extant felids, resulting in greatly modified adult craniomandibular morphologies. PMID:22235326
Cupello, Camila; Meunier, François J; Herbin, Marc; Clément, Gaël; Brito, Paulo M
2017-03-01
Lungs are specialized organs originated from the posterior pharyngeal cavity and considered as plesiomorphic for osteichthyans, as they are found in extant basal actinopterygians (i.e. Polypterus ) and in all major groups of extant sarcopterygians. The presence of a vestigial lung in adult stages of the extant coelacanth Latimeria chalumnae is the result of allometric growth during ontogeny, in relation with long-time adaptation to deep water. Here, we present the first detailed histological and anatomical description of the lung of Latimeria chalumnae , providing new insights into its arrested differentiation in an air-breathing complex, mainly represented by the absence of pneumocytes and of compartmentalization in the latest ontogenetic stages.
Meunier, François J.; Herbin, Marc; Clément, Gaël; Brito, Paulo M.
2017-01-01
Lungs are specialized organs originated from the posterior pharyngeal cavity and considered as plesiomorphic for osteichthyans, as they are found in extant basal actinopterygians (i.e. Polypterus) and in all major groups of extant sarcopterygians. The presence of a vestigial lung in adult stages of the extant coelacanth Latimeria chalumnae is the result of allometric growth during ontogeny, in relation with long-time adaptation to deep water. Here, we present the first detailed histological and anatomical description of the lung of Latimeria chalumnae, providing new insights into its arrested differentiation in an air-breathing complex, mainly represented by the absence of pneumocytes and of compartmentalization in the latest ontogenetic stages. PMID:28405393
The sero-prevalence of Toxoplasma gondii in British marine mammals.
Forman, Dan; West, Nathan; Francis, Janet; Guy, Edward
2009-03-01
Serum samples from 101 stranded or bycatch cetaceans from British waters were screened for Toxoplasma gondii-specific antibodies using the Sabin Feldman Dye Test. Relatively high seropositivity was recorded in short-beaked Delphinus delphis and this study presents the first documented case of Toxoplasma in a humpback whale Megaptera novaeangliae.
West Nile virus infection in killer whale, Texas, USA, 2007.
St Leger, Judy; Wu, Guang; Anderson, Mark; Dalton, Les; Nilson, Erika; Wang, David
2011-08-01
In 2007, nonsuppurative encephalitis was identified in a killer whale at a Texas, USA, marine park. Panviral DNA microarray of brain tissue suggested West Nile virus (WNV); WNV was confirmed by reverse transcription PCR and sequencing. Immunohistochemistry demonstrated WNV antigen within neurons. WNV should be considered in cases of encephalitis in cetaceans.
USDA-ARS?s Scientific Manuscript database
The slow progress in understanding immunotoxic effects of environmental contaminants and their influence on disease susceptibility and immunopathogenesis of the bottlenose dolphin (Tursiops truncates) and other species of cetaceans, is largely due to lack of monoclonal antibody (mAb) reagents. As re...
Desoubeaux, Guillaume; Peschke, Roman; Le-Bert, Carolina; Fravel, Vanessa; Soto, Jeny; Jensen, Eric D; Flower, Jennifer E; Wells, Randall; Joachim, Anja; Cray, Carolyn
2018-05-09
Little is known about microsporidiosis pathogenicity in cetaceans. Here we report seroprevalence of 76% for microsporidia in blood samples from common bottlenose dolphins ( Tursiops truncatus), from animals managed under human care ( n=108) or captured for health assessments ( n=13) and released.
Low diversity in the mitogenome of sperm whales revealed by next-generation sequencing
Alana Alexander; Debbie Steel; Beth Slikas; Kendra Hoekzema; Colm Carraher; Matthew Parks; Richard Cronn; C. Scott Baker
2012-01-01
Large population sizes and global distributions generally associate with high mitochondrial DNA control region (CR) diversity. The sperm whale (Physeter macrocephalus) is an exception, showing low CR diversity relative to other cetaceans; however, diversity levels throughout the remainder of the sperm whale mitogenome are unknown. We sequenced 20...
Improving Attachments of Non-Invasive (Type III) Electronic Data Loggers to Cetaceans
2013-09-30
logged using a netbook and USB analog to digital converter. Initial testing of the SSSCup was conducted on a common dolphin (Delphinus delphis) cadaver...cell and five pressure sensors (four to measure internal cup pressure and one for atmospheric pressure). Sensor data are logged using a netbook and
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-21
... al., 2003; 2004)). A detailed review of marine mammal reactions to ships and boats is available in... the following assessment regarding cetacean reactions to vessel traffic: Toothed whales: ``In summary, toothed whales sometimes show no avoidance reaction to vessels, or even approach them. However, avoidance...
50 CFR 229.31 - Pacific Offshore Cetacean Take Reduction Plan.
Code of Federal Regulations, 2010 CFR
2010-10-01
... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS AUTHORIZATION FOR COMMERCIAL....9 m) in length during all sets. Accordingly, all floatlines must be fished at a minimum of 36 feet (10.9 m) below the surface of the water. (c) Pingers. (1) For the purposes of this paragraph (c), a...
1983-06-01
Carcasses . . . . . . . . 51 Other Species ... . . . . . . . . . ... . . .. 52 Belukha Whales ( Delphinapterus leucas ) . . . . . .... 52 Minke Whale...103 Belukha Whales ( Delphinapterus leucas ) . . . . . . .. 103 Unidentified Cetaceans ................. 105 I Pinnipeds... Delphinapterus leucas ) In the spring, belukha whales were seen well ahead of, accompanying (as close as 15 m) and well behind the main group of
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-28
...), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice; proposed incidental take..., 2008). Other Marine Mammals in the Proposed Action Area There are several cetaceans that have the... and are unlikely or rare in the proposed action area and the Delta Mariner's operations would not...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-11
.... Nonetheless, NMFS uses the data on cetacean distribution within Massachusetts Bay, such as those published by... proposed Northeast Gateway Port and Pipeline Lateral. A notice of availability was published by MARAD on... Northeast Gateway Liquefied Natural Gas Port Facility in Massachusetts Bay AGENCY: National Marine Fisheries...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-01
... published in December 2006. For a detailed description and calculation of the cetacean abundance data and... the proposed Northeast Gateway Port and Pipeline Lateral. A notice of availability was published by... Harassment Authorization (IHA) to the Northeast Gateway Energy Bridge TM LP (Northeast Gateway or NEG) and...
Evidence of recombination and positive selection in cetacean papillomaviruses.
Robles-Sikisaka, Refugio; Rivera, Rebecca; Nollens, Hendrik H; St Leger, Judy; Durden, Wendy N; Stolen, Megan; Burchell, Jennifer; Wellehan, James F X
2012-06-05
Papillomaviruses (PVs) are small DNA viruses that have been associated with increased epithelial proliferation. Over one hundred PV types have been identified in humans; however, only three have been identified in bottlenose dolphins (Tursiops truncatus) to date. Using rolling circle amplification and degenerate PCR, we identified four novel PV genomes of bottlenose dolphins. TtPV4, TtPV5 and TtPV6 were identified in genital lesions while TtPV7 was identified in normal genital mucosa. Bayesian analysis of the full-length L1 genes found that TtPV4 and TtPV7 group within the Upsilonpapillomavirus genus while TtPV5 and TtPV6 group with Omikronpapillomavirus. However, analysis of the E1 gene did not distinguish these genera, implying that these genes may not share a common history, consistent with recombination. Recombination analyses identified several probable events. Signals of positive selection were found mostly in the E1 and E2 genes. Recombination and diversifying selection pressures constitute important driving forces of cetacean PV evolution. Copyright © 2012 Elsevier Inc. All rights reserved.
Fish, Frank E; Hurley, Jenifer; Costa, Daniel P
2003-02-01
Maneuverability is critical to the performance of fast-swimming marine mammals that use rapid turns to catch prey. Overhead video recordings were analyzed for two sea lions (Zalophus californianus) turning in the horizontal plane. Unpowered turns were executed by body flexion in conjunction with use of the pectoral and pelvic flippers, which were used as control surfaces. A 90 degree bank angle was used in the turns to vertically orient the control surfaces. Turning radius was dependent on body mass and swimming velocity. Relative minimum radii were 9-17% of body length and were equivalent for pinnipeds and cetaceans. However, Zalophus had smaller turning radii at higher speeds than cetaceans. Rate of turn was inversely related to turn radius. The highest turn rate observed in Zalophus was 690 degrees s(-1). Centripetal acceleration measured up to 5.1 g for Zalophus. Comparison with other marine mammals indicates that Zalophus has a morphology that enhances instability, thus providing enhanced turning performance. Enhanced turning performance is necessary for sea lions to forage after highly elusive prey in structurally complex environments.
Liu, J-Y; Chou, L-S; Chen, M-H
2015-04-15
A total of 24 stranded or bycatch cetaceans, including Balaenoptera omurai, Lagenodelphis hosei, Kogia sima, Stenella attenuata, Grampus griseus, Neophocaena phocaenoides, and Sousa chinensis, were collected from 2001 to 2011 in Taiwan. Using the muscular δ(13)C and δ(15)N data, three ecological groups were identified as the oceanic baleen whale, the neritic, and the coastal toothed whale groups, coinciding with their taxonomy, feeding habits and geographical distribution. A horizontal inshore to offshore distribution was found for the sympatric neritic toothed dolphins, G. griseus, K. sima, S. attenuata, and L. hosei in the outermost offshore waters, accompanying their growth. For the first time we identify Taiwan's Chinese white dolphin, S. chinensis, as an exclusive fish eater. Cd and As bioaccumulated in the G. griseus, L. hosei and S. attenuata increase as they grow. Prey-derived As- and Cd-induced health threats were found in L. hosei, and G. griseus. Copyright © 2015 Elsevier Ltd. All rights reserved.
Using Gaussian mixture models to detect and classify dolphin whistles and pulses.
Peso Parada, Pablo; Cardenal-López, Antonio
2014-06-01
In recent years, a number of automatic detection systems for free-ranging cetaceans have been proposed that aim to detect not just surfaced, but also submerged, individuals. These systems are typically based on pattern-recognition techniques applied to underwater acoustic recordings. Using a Gaussian mixture model, a classification system was developed that detects sounds in recordings and classifies them as one of four types: background noise, whistles, pulses, and combined whistles and pulses. The classifier was tested using a database of underwater recordings made off the Spanish coast during 2011. Using cepstral-coefficient-based parameterization, a sound detection rate of 87.5% was achieved for a 23.6% classification error rate. To improve these results, two parameters computed using the multiple signal classification algorithm and an unpredictability measure were included in the classifier. These parameters, which helped to classify the segments containing whistles, increased the detection rate to 90.3% and reduced the classification error rate to 18.1%. Finally, the potential of the multiple signal classification algorithm and unpredictability measure for estimating whistle contours and classifying cetacean species was also explored, with promising results.
Brucellosis in mammals of Costa Rica: An epidemiological survey
Hernández-Mora, Gabriela; Bonilla-Montoya, Roberto; Barrantes-Granados, Osvaldo; Esquivel-Suárez, Andrea; Montero-Caballero, Danilo; González-Barrientos, Rocío; Fallas-Monge, Zeanne; Palacios-Alfaro, José David; Baldi, Mario; Campos, Elena; Chanto, Grettel; Barquero-Calvo, Elías; Chacón-Díaz, Carlos; Chaves-Olarte, Esteban; Guzmán Verri, Caterina; Romero-Zúñiga, Juan-José
2017-01-01
Brucellosis has been an endemic disease of cattle and humans in Costa Rica since the beginning of XX century. However, brucellosis in sheep, goats, pigs, water buffaloes, horses and cetaceans, has not been reported in the country. We have performed a brucellosis survey in these host mammal species, from 1999–2016. In addition, we have documented the number of human brucellosis reported cases, from 2003–2016. The brucellosis seroprevalence in goat and sheep herds was 0.98% and 0.7% respectively, with no Brucella isolation. Antibodies against Brucella were not detected in feral or domestic pigs. Likewise, brucellosis seroprevalence in horse and water buffalo farms was estimated in 6.5% and 21.7%, respectively, with no Brucella isolation. Six cetacean species showed positive reactions against Brucella antigens, and B. ceti was isolated in 70% (n = 29) of striped dolphins (Stenella coeruleoalba). A steady increase in the diagnosis of human brucellosis cases was observed. Taking into account the prevalence of brucellosis in the various host mammals of Costa Rica, different measures are recommended. PMID:28793352
Aquatic adaptation and the evolution of smell and taste in whales.
Kishida, Takushi; Thewissen, Jgm; Hayakawa, Takashi; Imai, Hiroo; Agata, Kiyokazu
2015-01-01
While olfaction is one of the most important senses in most terrestrial mammals, it is absent in modern toothed whales (Odontoceti, Cetacea). Furthermore, behavioral evidence suggests that gustation is very limited. In contrast, their aquatic sistergroup, baleen whales (Mysticeti) retain small but functional olfactory organs, and nothing is known about their gustation. It is difficult to investigate mysticete chemosensory abilities because experiments in a controlled setting are impossible. Here, we use the functional regionalization of the olfactory bulb (OB) to identify the loss of specific olfactory functions in mysticetes. We provide the whole-genome sequence of a mysticete and show that mysticetes lack the dorsal domain of the OB, an area known to induce innate avoidance behavior against odors of predators and spoiled foods. Genomic and fossil data suggest that mysticetes lost the dorsal domain of the OB before the Odontoceti-Mysticeti split. Furthermore, we found that all modern cetaceans are revealed to have lost the functional taste receptors. These results strongly indicate that profound changes in the chemosensory capabilities had occurred in the cetacean lineage during the period when ancestral whales migrated from land to water.
Prion search and cellular prion protein expression in stranded dolphins.
Di Guardo, G; Cocumelli, C; Meoli, R; Barbaro, K; Terracciano, G; Di Francesco, C E; Mazzariol, S; Eleni, C
2012-01-01
The recent description of a prion disease (PD) case in a free-ranging bottlenose dolphin (Tursiops truncatus) prompted us to carry out an extensive search for the disease-associated isoform (PrPSc) of the cellular prion protein (PrPC) in the brain and in a range of lymphoid tissues from 23 striped dolphins (Stenella coeruleoalba), 5 bottlenose dolphins and 2 Risso s dolphins (Grampus griseus) found stranded between 2007 and 2012 along the Italian coastline. Three striped dolphins and one bottlenose dolphin showed microscopic lesions of encephalitis, with no evidence of spongiform brain lesions being detected in any of the 30 free-ranging cetaceans investigated herein. Nevertheless, we could still observe a prominent PrPC immunoreactivity in the brain as well as in lymphoid tissues from these dolphins. Although immunohistochemical and Western blot investigations yielded negative results for PrPSc deposition in all tissues from the dolphins under study, the reported occurrence of a spontaneous PD case in a wild dolphin is an intriguing issue and a matter of concern for both prion biology and intra/inter-species transmissibility, as well as for cetacean conservation medicine.
Kishida, Takushi; Kubota, Shin; Shirayama, Yoshihisa; Fukami, Hironobu
2007-08-22
An olfactory receptor (OR) multigene family is responsible for the well-developed sense of smell possessed by terrestrial tetrapods. Mammalian OR genes had diverged greatly in the terrestrial environment after the fish-tetrapod split, indicating their importance to land habitation. In this study, we analysed OR genes of marine tetrapods (minke whale Balaenoptera acutorostrata, dwarf sperm whale Kogia sima, Dall's porpoise Phocoenoides dalli, Steller's sea lion Eumetopias jubatus and loggerhead sea turtle Caretta caretta) and revealed that the pseudogene proportions of OR gene repertoires in whales were significantly higher than those in their terrestrial relative cattle and also in sea lion and sea turtle. On the other hand, the pseudogene proportion of OR sequences in sea lion was not significantly higher compared with that in their terrestrial relative (dog). It indicates that secondary perfectly adapted marine vertebrates (cetaceans) have lost large amount of their OR genes, whereas secondary-semi-adapted marine vertebrates (sea lions and sea turtles) still have maintained their OR genes, reflecting the importance of terrestrial environment for these animals.
Evidence of recombination and positive selection in cetacean papillomaviruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robles-Sikisaka, Refugio, E-mail: refugio.robles1@gmail.com; Rivera, Rebecca, E-mail: RRivera@hswri.org; Nollens, Hendrik H., E-mail: Hendrik.Nollens@SeaWorld.com
2012-06-05
Papillomaviruses (PVs) are small DNA viruses that have been associated with increased epithelial proliferation. Over one hundred PV types have been identified in humans; however, only three have been identified in bottlenose dolphins (Tursiops truncatus) to date. Using rolling circle amplification and degenerate PCR, we identified four novel PV genomes of bottlenose dolphins. TtPV4, TtPV5 and TtPV6 were identified in genital lesions while TtPV7 was identified in normal genital mucosa. Bayesian analysis of the full-length L1 genes found that TtPV4 and TtPV7 group within the Upsilonpapillomavirus genus while TtPV5 and TtPV6 group with Omikronpapillomavirus. However, analysis of the E1 genemore » did not distinguish these genera, implying that these genes may not share a common history, consistent with recombination. Recombination analyses identified several probable events. Signals of positive selection were found mostly in the E1 and E2 genes. Recombination and diversifying selection pressures constitute important driving forces of cetacean PV evolution.« less
Noren, S R; Williams, T M; Pabst, D A; McLellan, W A; Dearolf, J L
2001-03-01
Myoglobin is an important oxygen store for supporting aerobic diving in endotherms, yet little is known about its role during postnatal development. Therefore, we compared the postnatal development of myoglobin in marine endotherms that develop at sea (cetaceans) to those that develop on land (penguins and pinnipeds). We measured myoglobin concentrations in the major locomotor muscles of mature and immature bottlenose dolphins (Tursiops truncatus) and king penguins (Aptenodytes patagonicus) and compared the data to previously reported values for northern elephant seals (Mirounga angustirostris). Neonatal dolphins, penguins, and seals lack the myoglobin concentrations required for prolonged dive durations, having 10%, 9%, and 31% of adult values, respectively. Myoglobin contents increased significantly during subsequent development. The increases in myoglobin content with age may correspond to increases in activity levels, thermal demands, and time spent in apnea during swimming and diving. Across these phylogenetically diverse taxa (cetaceans, penguins, and pinnipeds), the final stage of postnatal development of myoglobin occurs during the initiation of independent foraging, regardless of whether development takes place at sea or on land.
1857 PatentExtant Construction Comparison Powerscourt Bridge, Spanning Chateauguay River, ...
1857 Patent-Extant Construction Comparison - Powerscourt Bridge, Spanning Chateauguay River, First Concession Road, Elgin/Hichinbrooke, Huntingdon County, Quebec, Canada, Chateaugay, Franklin County, NY
Schönenberger, Jürg; von Balthazar, Maria; Takahashi, Masamichi; Xiao, Xianghui; Crane, Peter R.; Herendeen, Patrick S.
2012-01-01
Background and Aims Ericales are a major group of extant asterid angiosperms that are well represented in the Late Cretaceous fossil record, mainly by flowers, fruits and seeds. Exceptionally well preserved fossil flowers, here described as Glandulocalyx upatoiensis gen. & sp. nov., from the Santonian of Georgia, USA, yield new detailed evidence of floral structure in one of these early members of Ericales and provide a secure basis for comparison with extant taxa. Methods The floral structure of several fossil specimens was studied by scanning electron microscopy (SEM), light microscopy of microtome thin sections and synchrotron-radiation X-ray tomographic microscopy (SRXTM). For direct comparisons with flowers of extant Ericales, selected floral features of Actinidiaceae and Clethraceae were studied with SEM. Key Results Flowers of G. upatoiensis have five sepals with quincuncial aestivation, five free petals with quincuncial aestivation, 20–28 stamens arranged in a single series, extrorse anther orientation in the bud, ventral anther attachment and a tricarpellate, syncarpous ovary with three free styles and numerous small ovules on axile, protruding-diffuse and pendant placentae. The calyx is characterized by a conspicuous indumentum of large, densely arranged, multicellular and possibly glandular trichomes. Conclusions Comparison with extant taxa provides clear evidence for a relationship with core Ericales comprised of the extant families Actinidiaceae, Roridulaceae, Sarraceniaceae, Clethraceae, Cyrillaceae and Ericaceae. Within this group, the most marked similarities are with extant Actinidiaceae and, to a lesser degree, with Clethraceae. More detailed analyses of the relationships of Glandulocalyx and other Ericales from the Late Cretaceous will require an improved understanding of the morphological features that diagnose particular extant groups defined on the basis of molecular data. PMID:22442339
Extant-only comparative methods fail to recover the disparity preserved in the bird fossil record.
Mitchell, Jonathan S
2015-09-01
Most extant species are in clades with poor fossil records, and recent studies of comparative methods show they have low power to infer even highly simplified models of trait evolution without fossil data. Birds are a well-studied radiation, yet their early evolutionary patterns are still contentious. The fossil record suggests that birds underwent a rapid ecological radiation after the end-Cretaceous mass extinction, and several smaller, subsequent radiations. This hypothesized series of repeated radiations from fossil data is difficult to test using extant data alone. By uniting morphological and phylogenetic data on 604 extant genera of birds with morphological data on 58 species of extinct birds from 50 million years ago, the "halfway point" of avian evolution, I have been able to test how well extant-only methods predict the diversity of fossil forms. All extant-only methods underestimate the disparity, although the ratio of within- to between-clade disparity does suggest high early rates. The failure of standard models to predict high early disparity suggests that recent radiations are obscuring deep time patterns in the evolution of birds. Metrics from different models can be used in conjunction to provide more valuable insights than simply finding the model with the highest relative fit. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Rusli, Yazmin Ahmad; Montgomery, James W
2017-10-17
The aim of this study was to determine whether extant language (lexical) knowledge or domain-general working memory is the better predictor of comprehension of object relative sentences for children with typical development. We hypothesized that extant language knowledge, not domain-general working memory, is the better predictor. Fifty-three children (ages 9-11 years) completed a word-level verbal working-memory task, indexing extant language (lexical) knowledge; an analog nonverbal working-memory task, representing domain-general working memory; and a hybrid sentence comprehension task incorporating elements of both agent selection and cross-modal picture-priming paradigms. Images of the agent and patient were displayed at the syntactic gap in the object relative sentences, and the children were asked to select the agent of the sentence. Results of general linear modeling revealed that extant language knowledge accounted for a unique 21.3% of variance in the children's object relative sentence comprehension over and above age (8.3%). Domain-general working memory accounted for a nonsignificant 1.6% of variance. We interpret the results to suggest that extant language knowledge and not domain-general working memory is a critically important contributor to children's object relative sentence comprehension. Results support a connectionist view of the association between working memory and object relative sentence comprehension. https://doi.org/10.23641/asha.5404573.
Abramson, José Z; Hernández-Lloreda, Mª Victoria; Esteban, José-Antonio; Colmenares, Fernando; Aboitiz, Francisco; Call, Josep
2017-01-01
Cetaceans are remarkable for exhibiting group-specific behavioral traditions or cultures in several behavioral domains (e.g., calls, behavioral tactics), and the question of whether they can be acquired socially, for example through imitative processes, remains open. Here we used a "Do as other does" paradigm to experimentally study the ability of a beluga to imitate familiar intransitive (body-oriented) actions demonstrated by a conspecific. The participant was first trained to copy three familiar behaviors on command (training phase) and then was tested for her ability to generalize the learned "Do as the other does" command to a different set of three familiar behaviors (testing phase). We found that the beluga (1) was capable of learning the copy command signal "Do what-the-other-does"; (2) exhibited high matching accuracy for trained behaviors (mean = 84% of correct performance) after making the first successful copy on command; (3) copied successfully the new set of three familiar generalization behaviors that were untrained to the copy command (range of first copy = 12 to 35 trials); and (4) deployed a high level of matching accuracy (mean = 83%) after making the first copy of an untrained behavior on command. This is the first evidence of contextual imitation of intransitive (body-oriented) movements in the beluga and adds to the reported findings on production imitation of sounds in this species and production imitation of sounds and motor actions in several cetaceans, especially dolphins and killer whales. Collectively these findings highlight the notion that cetaceans have a natural propensity at skillfully and proficiently matching the sounds and body movements demonstrated by conspecifics, a fitness-enhancing propensity in the context of cooperative hunting and anti-predatory defense tactics, and of alliance formation strategies that have been documented in these species' natural habitats. Future work should determine if the beluga can also imitate novel motor actions.
Hernández-Lloreda, Mª Victoria; Esteban, José-Antonio; Colmenares, Fernando; Aboitiz, Francisco; Call, Josep
2017-01-01
Cetaceans are remarkable for exhibiting group-specific behavioral traditions or cultures in several behavioral domains (e.g., calls, behavioral tactics), and the question of whether they can be acquired socially, for example through imitative processes, remains open. Here we used a “Do as other does” paradigm to experimentally study the ability of a beluga to imitate familiar intransitive (body-oriented) actions demonstrated by a conspecific. The participant was first trained to copy three familiar behaviors on command (training phase) and then was tested for her ability to generalize the learned “Do as the other does” command to a different set of three familiar behaviors (testing phase). We found that the beluga (1) was capable of learning the copy command signal “Do what-the-other-does”; (2) exhibited high matching accuracy for trained behaviors (mean = 84% of correct performance) after making the first successful copy on command; (3) copied successfully the new set of three familiar generalization behaviors that were untrained to the copy command (range of first copy = 12 to 35 trials); and (4) deployed a high level of matching accuracy (mean = 83%) after making the first copy of an untrained behavior on command. This is the first evidence of contextual imitation of intransitive (body-oriented) movements in the beluga and adds to the reported findings on production imitation of sounds in this species and production imitation of sounds and motor actions in several cetaceans, especially dolphins and killer whales. Collectively these findings highlight the notion that cetaceans have a natural propensity at skillfully and proficiently matching the sounds and body movements demonstrated by conspecifics, a fitness-enhancing propensity in the context of cooperative hunting and anti-predatory defense tactics, and of alliance formation strategies that have been documented in these species’ natural habitats. Future work should determine if the beluga can also imitate novel motor actions. PMID:28636677
Calling behavior of blue and fin whales off California
NASA Astrophysics Data System (ADS)
Oleson, Erin Marie
Passive acoustic monitoring is an effective means for evaluating cetacean presence in remote regions and over long time periods, and may become an important component of cetacean abundance surveys. To use passive acoustic recordings for abundance estimation, an understanding of the behavioral ecology of cetacean calling is crucial. In this dissertation, I develop a better understanding of how blue (Balaenoptera musculus) and fin (B. physalus ) whales use sound with the goal of evaluating passive acoustic techniques for studying their populations. Both blue and fin whales produce several different call types, though the behavioral and environmental context of these calls have not been widely investigated. To better understand how calling is used by these whales off California I have employed both new technologies and traditional techniques, including acoustic recording tags, continuous long-term autonomous acoustic recordings, and simultaneous shipboard acoustic and visual surveys. The outcome of these investigations has led to several conclusions. The production of blue whale calls varies with sex, behavior, season, location, and time of day. Each blue whale call type has a distinct behavioral context, including a male-only bias in the production of song, a call type thought to function in reproduction, and the production of some calls by both sexes. Long-term acoustic records, when interpreted using all call types, provide a more accurate measure of the local seasonal presence of whales, and how they use the region annually, seasonally and daily. The relative occurrence of different call types may indicate prime foraging habitat and the presence of different segments of the population. The proportion of animals heard calling changes seasonally and geographically relative to the number seen, indicating the calibration of acoustic and visual surveys is complex and requires further study on the motivations behind call production and the behavior of calling whales. These findings will play a role in the future development of acoustic census methods and habitat studies for these species, and will provide baseline information for the determination of anthropogenic impacts on these populations.
Bilgmann, Kerstin; Möller, Luciana M.; Harcourt, Robert G.; Kemper, Catherine M.; Beheregaray, Luciano B.
2011-01-01
Advances in molecular techniques have enabled the study of genetic diversity and population structure in many different contexts. Studies that assess the genetic structure of cetacean populations often use biopsy samples from free-ranging individuals and tissue samples from stranded animals or individuals that became entangled in fishery or aquaculture equipment. This leads to the question of how representative the location of a stranded or entangled animal is with respect to its natural range, and whether similar results would be obtained when comparing carcass samples with samples from free-ranging individuals in studies of population structure. Here we use tissue samples from carcasses of dolphins that stranded or died as a result of bycatch in South Australia to investigate spatial population structure in two species: coastal bottlenose (Tursiops sp.) and short-beaked common dolphins (Delphinus delphis). We compare these results with those previously obtained from biopsy sampled free-ranging dolphins in the same area to test whether carcass samples yield similar patterns of genetic variability and population structure. Data from dolphin carcasses were gathered using seven microsatellite markers and a fragment of the mitochondrial DNA control region. Analyses based on carcass samples alone failed to detect genetic structure in Tursiops sp., a species previously shown to exhibit restricted dispersal and moderate genetic differentiation across a small spatial scale in this region. However, genetic structure was correctly inferred in D. delphis, a species previously shown to have reduced genetic structure over a similar geographic area. We propose that in the absence of corroborating data, and when population structure is assessed over relatively small spatial scales, the sole use of carcasses may lead to an underestimate of genetic differentiation. This can lead to a failure in identifying management units for conservation. Therefore, this risk should be carefully assessed when planning population genetic studies of cetaceans. PMID:21655285
Prevalence of External Injuries in Small Cetaceans in Aruban Waters, Southern Caribbean
Luksenburg, Jolanda A.
2014-01-01
Aruba, located close to the coasts of Colombia and Venezuela, is one of the most densely populated islands in the Caribbean and supports a wide range of marine-related socio-economic activities. However, little is known about the impacts of human activities on the marine environment. Injuries in marine mammals can be used to examine interactions with human activities and identify potential threats to the survival of populations. The prevalence of external injuries and tooth rake marks were examined in Atlantic spotted dolphin (Stenella frontalis) (n = 179), bottlenose dolphin (Tursiops truncatus) (n = 76) and false killer whale (Pseudorca crassidens) (n = 71) in Aruban waters using photo identification techniques. Eleven injury categories were defined and linked to either human-related activities or natural causes. All injury categories were observed. In total, 18.7% of all individuals had at least one injury. Almost half (41.7%) of the injuries could be attributed to human interactions, of which fishing gear was the most common cause (53.3%) followed by propeller hits (13.3%). Major disfigurements were observed in all three species and could be attributed to interactions with fishing gear. The results of this study indicate that fishing gear and propeller hits may pose threats to small and medium-sized cetaceans in Aruban waters. Thus, long-term monitoring of population trends is warranted. Shark-inflicted bite wounds were observed in Atlantic spotted dolphin and bottlenose dolphin. Bite wounds of cookie cutter sharks (Isistius sp.) were recorded in all three species, and include the first documented record of a cookie cutter shark bite in Atlantic spotted dolphin. This is one of the few studies which investigates the prevalence of injuries in cetaceans in the Caribbean. Further study is necessary to determine to which extent the injuries observed in Aruba affect the health and survival of local populations. PMID:24586473
Macé, Matthias; Crouau-Roy, Brigitte
2008-01-01
Background The early radiation of the Cetartiodactyla is complex, and unambiguous molecular characters are needed to clarify the positions of hippotamuses, camels and pigs relative to the remaining taxa (Cetacea and Ruminantia). There is also a need for informative genealogic markers for Y-chromosome population genetics as well as a sexing method applicable to all species from this group. We therefore studied the sequence variation of a partial sequence of the evolutionary conserved amelogenin gene to assess its potential use in each of these fields. Results and discussion We report a large interstitial insertion in the Y amelogenin locus in most of the Cetartiodactyla lineages (cetaceans and ruminants). This sex-linked size polymorphism is the result of a 460–465 bp inserted element in intron 4 of the amelogenin gene of Ruminants and Cetaceans. Therefore, this polymorphism can easily be used in a sexing assay for these species. When taking into account this shared character in addition to nucleotide sequence, gene genealogy follows sex-chromosome divergence in Cetartiodactyla whereas it is more congruent with zoological history when ignoring these characters. This could be related to a loss of homology between chromosomal copies given the old age of the insertion. The 1 kbp Amel-Y amplified fragment is also characterized by high nucleotide diversity (64 polymorphic sites spanning over 1 kbp in seven haplotypes) which is greater than for other Y-chromosome sequence markers studied so far but less than the mitochondrial control region. Conclusion The gender-dependent polymorphism we have identified is relevant not only for phylogenic inference within the Cetartiodactyla but also for Y-chromosome based population genetics and gender determination in cetaceans and ruminants. One single protocol can therefore be used for studies in population and evolutionary genetics, reproductive biotechnologies, and forensic science. PMID:18925953
ICG: a wiki-driven knowledgebase of internal control genes for RT-qPCR normalization.
Sang, Jian; Wang, Zhennan; Li, Man; Cao, Jiabao; Niu, Guangyi; Xia, Lin; Zou, Dong; Wang, Fan; Xu, Xingjian; Han, Xiaojiao; Fan, Jinqi; Yang, Ye; Zuo, Wanzhu; Zhang, Yang; Zhao, Wenming; Bao, Yiming; Xiao, Jingfa; Hu, Songnian; Hao, Lili; Zhang, Zhang
2018-01-04
Real-time quantitative PCR (RT-qPCR) has become a widely used method for accurate expression profiling of targeted mRNA and ncRNA. Selection of appropriate internal control genes for RT-qPCR normalization is an elementary prerequisite for reliable expression measurement. Here, we present ICG (http://icg.big.ac.cn), a wiki-driven knowledgebase for community curation of experimentally validated internal control genes as well as their associated experimental conditions. Unlike extant related databases that focus on qPCR primers in model organisms (mainly human and mouse), ICG features harnessing collective intelligence in community integration of internal control genes for a variety of species. Specifically, it integrates a comprehensive collection of more than 750 internal control genes for 73 animals, 115 plants, 12 fungi and 9 bacteria, and incorporates detailed information on recommended application scenarios corresponding to specific experimental conditions, which, collectively, are of great help for researchers to adopt appropriate internal control genes for their own experiments. Taken together, ICG serves as a publicly editable and open-content encyclopaedia of internal control genes and accordingly bears broad utility for reliable RT-qPCR normalization and gene expression characterization in both model and non-model organisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea.
Button, David J; Lloyd, Graeme T; Ezcurra, Martín D; Butler, Richard J
2017-10-10
Mass extinctions have profoundly impacted the evolution of life through not only reducing taxonomic diversity but also reshaping ecosystems and biogeographic patterns. In particular, they are considered to have driven increased biogeographic cosmopolitanism, but quantitative tests of this hypothesis are rare and have not explicitly incorporated information on evolutionary relationships. Here we quantify faunal cosmopolitanism using a phylogenetic network approach for 891 terrestrial vertebrate species spanning the late Permian through Early Jurassic. This key interval witnessed the Permian-Triassic and Triassic-Jurassic mass extinctions, the onset of fragmentation of the supercontinent Pangaea, and the origins of dinosaurs and many modern vertebrate groups. Our results recover significant increases in global faunal cosmopolitanism following both mass extinctions, driven mainly by new, widespread taxa, leading to homogenous 'disaster faunas'. Cosmopolitanism subsequently declines in post-recovery communities. These shared patterns in both biotic crises suggest that mass extinctions have predictable influences on animal distribution and may shed light on biodiversity loss in extant ecosystems.Mass extinctions are thought to produce 'disaster faunas', communities dominated by a small number of widespread species. Here, Button et al. develop a phylogenetic network approach to test this hypothesis and find that mass extinctions did increase faunal cosmopolitanism across Pangaea during the late Palaeozoic and early Mesozoic.
Mars extant-life campaign using an approach based on Earth-analog habitats
NASA Technical Reports Server (NTRS)
Palkovic, Lawrence A.; Wilson, Thomas J.
2005-01-01
The Mars Robotic Outpost group at JPL has identified sixteen potential momentous discoveries that if found on Mars would alter planning for the future Mars exploration program. This paper details one possible approach to the discovery of and response to the 'momentous discovery'' of extant life on Mars. The approach detailed in this paper, the Mars Extant-Life (MEL) campaign, is a comprehensive and flexible program to find living organisms on Mars by studying Earth-analog habitats of extremophile communities.
Child Passengers Injured in Motor Vehicle Crashes
Romano, Eduardo; Kelley-Baker, Tara
2015-01-01
Introduction—During 2010, 171,000 children aged 0-14 were injured in motor vehicle crashes. Despite the severity of the problem, research has been limited, and most of what we know about these children emanates from fatal crash databases. Method—Using information from the General Estimates System, this effort examines the occurrence of non-fatal crashes among children aged 0-14 over the last decade. Results—We found about 1% of the non-injured children in the file had been driven by a driver who was positive for alcohol. This percentage climbed to about 2% among children who had suffered injuries. Compared with the proportion of alcohol-positive drivers at the time of the crash, the proportion of drivers who sped or failed to obey a traffic signal were significantly higher. Practical Applications—The finding that drinking and driving with children did not decrease over time questions the adequacy of the extant child endangerment laws. PMID:25662876
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-16
...; high-pitched sounds contain high frequencies and low-pitched sounds contain low frequencies. Natural... estimated to occur between approximately 150 Hz and 160 kHz. High-frequency cetaceans (eight species of true... masking by high frequency sound. Human data indicate low-frequency sound can mask high-frequency sounds (i...
West Nile Virus Infection in Killer Whale, Texas, USA, 2007
Wu, Guang; Anderson, Mark; Dalton, Les; Nilson, Erika; Wang, David
2011-01-01
In 2007, nonsuppurative encephalitis was identified in a killer whale at a Texas, USA, marine park. Panviral DNA microarray of brain tissue suggested West Nile virus (WNV); WNV was confirmed by reverse transcription PCR and sequencing. Immunohistochemistry demonstrated WNV antigen within neurons. WNV should be considered in cases of encephalitis in cetaceans. PMID:21801643
2009-09-30
will take place off the island of El Hierro in the Canary Islands, a site with coastal resident populations of Blainville’s beaked whale, Mesoplodon...whales off El Hierro , Canary Islands” European Research on Cetaceans 22nd, Holland, April, 2008. [non-refereed] Beedholm K., Madsen P., Johnson M
2011-09-30
For beaked whales, field testing will take place off the island of El Hierro in the Canary Islands, a site with coastal resident populations of...beaked whales off El Hierro , Canary Islands,” European Research on Cetaceans 22nd. Holland, April, 2008. Baumgartner, M. F., and S. E. Mussoline
Ceteacean Social Behavioral Response to Sonar
2011-09-30
behavior data of humpback whales and minke whales was recorded during 5 and 1 CEEs respectively (including tagging, baseline, sonar exposure and...during fieldwork efforts in 2012 and 2013. Figure 1. Example of humpback whale group behavior sampling...cetacean behavioral responses to sonar signals and other stimuli (tagging effort, killer whale playbacks) as well as baseline behavior, are studied
Stress Hormones and Their Regulation in a Captive Dolphin Population
2014-09-30
environmental stressors, many of which are anthropogenic. The resulting stress response provides for immediate physiological needs and manages recovery...of two broad components: 1) assessing baseline variability in stress hormones and 2) evaluating physiological and metabolic alterations that occur...cortisol and aldosterone ) frequenctly observed in cetaceans; (2) determine the regulatory role of corticosteroid binding globulin (CBG) in
Determining Baseline Stress-Related Hormone Values in Large Cetaceans
2014-09-30
reconstructed chemical profiles provided a unique window into stress-related hormone (cortisol, aldosterone , T3 and T4) concentrations and...Stress-related hormone radioimmunoassay technique Cortisol, aldosterone , hormones thyroxine (T4) and triiodothyronine (T3) levels in each identified...contaminant concentrations will be calculated using Pearson correlation coefficients. These measurements will include all hormones ( aldosterone , T3
Third International Conference on Acoustic Communication by Animals
2011-09-30
communications Invited Speakers Peter Tyack cetacean communications Christopher Clark acoustic environment of whales Whitlow Au sound detection and...echolocation by dolphins Magnus Wahlberg sperm whale acoustics Robert Dooling bird hearing Ronald Hoy communication strategies in insects Peter Narins...frogs (6). Topics covered included cognition/language; song and call classification; rule learning; acoustic ecology; communication in noisy
USDA-ARS?s Scientific Manuscript database
Monitoring the immune status of cetaceans is important for a variety of health conditions. Assays to quantify cytokines, especially pro-inflammatory cytokines, could be employed, in addition to currently available diagnostic assays, to screen for alterations in the health status of an animal. Thou...
Acoustic and Visual Monitoring for Cetaceans Along the Outer Washington Coast
2009-03-01
killer whales , with the remaining sighting being Southern Residents in April 2006 near Grays Harbor. Sightings of...odontocetes, pinnipeds, Humpback whales , Gray whales , Minke whales , Fin whales , Killer whales , Cuvier’s beaked whales , Northern right whale dolphins...Harbor and Dall’s Porpoise Pacific White-Sided Dolphins Risso’s Dolphins Unidentified Odontocetes Killer Whales
Cetacean Frustration: The Representation of Whales and Dolphins in Picture Books for Young Children
ERIC Educational Resources Information Center
Beaumont, Ellen S.; Mudd, Phillipa; Turner, Ian J.; Barnes, Kate
2017-01-01
To enable children to develop towards becoming part of the solution to environmental problems, it is essential that they are given the opportunity to become familiar with the natural world from early childhood. Familiarity is required to develop understanding of, care for and, ultimately, action in terms of protecting the natural world. As…
Big bang in the evolution of extant malaria parasites.
Hayakawa, Toshiyuki; Culleton, Richard; Otani, Hiroto; Horii, Toshihiro; Tanabe, Kazuyuki
2008-10-01
Malaria parasites (genus Plasmodium) infect all classes of terrestrial vertebrates and display host specificity in their infections. It is therefore assumed that malaria parasites coevolved intimately with their hosts. Here, we propose a novel scenario of malaria parasite-host coevolution. A phylogenetic tree constructed using the malaria parasite mitochondrial genome reveals that the extant primate, rodent, bird, and reptile parasite lineages rapidly diverged from a common ancestor during an evolutionary short time period. This rapid diversification occurred long after the establishment of the primate, rodent, bird, and reptile host lineages, which implies that host-switch events contributed to the rapid diversification of extant malaria parasite lineages. Interestingly, the rapid diversification coincides with the radiation of the mammalian genera, suggesting that adaptive radiation to new mammalian hosts triggered the rapid diversification of extant malaria parasite lineages.
Smith, Geoff M.; Hutson, Jarod M.; Kindler, Lutz; Garcia-Moreno, Alejandro; Villaluenga, Aritza; Turner, Elaine
2017-01-01
Background Ancient protein sequences are increasingly used to elucidate the phylogenetic relationships between extinct and extant mammalian taxa. Here, we apply these recent developments to Middle Pleistocene bone specimens of the rhinoceros genus Stephanorhinus. No biomolecular sequence data is currently available for this genus, leaving phylogenetic hypotheses on its evolutionary relationships to extant and extinct rhinoceroses untested. Furthermore, recent phylogenies based on Rhinocerotidae (partial or complete) mitochondrial DNA sequences differ in the placement of the Sumatran rhinoceros (Dicerorhinus sumatrensis). Therefore, studies utilising ancient protein sequences from Middle Pleistocene contexts have the potential to provide further insights into the phylogenetic relationships between extant and extinct species, including Stephanorhinus and Dicerorhinus. Methods ZooMS screening (zooarchaeology by mass spectrometry) was performed on several Late and Middle Pleistocene specimens from the genus Stephanorhinus, subsequently followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to obtain ancient protein sequences from a Middle Pleistocene Stephanorhinus specimen. We performed parallel analysis on a Late Pleistocene woolly rhinoceros specimen and extant species of rhinoceroses, resulting in the availability of protein sequence data for five extant species and two extinct genera. Phylogenetic analysis additionally included all extant Perissodactyla genera (Equus, Tapirus), and was conducted using Bayesian (MrBayes) and maximum-likelihood (RAxML) methods. Results Various ancient proteins were identified in both the Middle and Late Pleistocene rhinoceros samples. Protein degradation and proteome complexity are consistent with an endogenous origin of the identified proteins. Phylogenetic analysis of informative proteins resolved the Perissodactyla phylogeny in agreement with previous studies in regards to the placement of the families Equidae, Tapiridae, and Rhinocerotidae. Stephanorhinus is shown to be most closely related to the genera Coelodonta and Dicerorhinus. The protein sequence data further places the Sumatran rhino in a clade together with the genus Rhinoceros, opposed to forming a clade with the black and white rhinoceros species. Discussion The first biomolecular dataset available for Stephanorhinus places this genus together with the extinct genus Coelodonta and the extant genus Dicerorhinus. This is in agreement with morphological studies, although we are unable to resolve the order of divergence between these genera based on the protein sequences available. Our data supports the placement of the genus Dicerorhinus in a clade together with extant Rhinoceros species. Finally, the availability of protein sequence data for both extinct European rhinoceros genera allows future investigations into their geographic distribution and extinction chronologies. PMID:28316883
Welker, Frido; Smith, Geoff M; Hutson, Jarod M; Kindler, Lutz; Garcia-Moreno, Alejandro; Villaluenga, Aritza; Turner, Elaine; Gaudzinski-Windheuser, Sabine
2017-01-01
Ancient protein sequences are increasingly used to elucidate the phylogenetic relationships between extinct and extant mammalian taxa. Here, we apply these recent developments to Middle Pleistocene bone specimens of the rhinoceros genus Stephanorhinus . No biomolecular sequence data is currently available for this genus, leaving phylogenetic hypotheses on its evolutionary relationships to extant and extinct rhinoceroses untested. Furthermore, recent phylogenies based on Rhinocerotidae (partial or complete) mitochondrial DNA sequences differ in the placement of the Sumatran rhinoceros ( Dicerorhinus sumatrensis ). Therefore, studies utilising ancient protein sequences from Middle Pleistocene contexts have the potential to provide further insights into the phylogenetic relationships between extant and extinct species, including Stephanorhinus and Dicerorhinus . ZooMS screening (zooarchaeology by mass spectrometry) was performed on several Late and Middle Pleistocene specimens from the genus Stephanorhinus , subsequently followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to obtain ancient protein sequences from a Middle Pleistocene Stephanorhinus specimen. We performed parallel analysis on a Late Pleistocene woolly rhinoceros specimen and extant species of rhinoceroses, resulting in the availability of protein sequence data for five extant species and two extinct genera. Phylogenetic analysis additionally included all extant Perissodactyla genera ( Equus , Tapirus ), and was conducted using Bayesian (MrBayes) and maximum-likelihood (RAxML) methods. Various ancient proteins were identified in both the Middle and Late Pleistocene rhinoceros samples. Protein degradation and proteome complexity are consistent with an endogenous origin of the identified proteins. Phylogenetic analysis of informative proteins resolved the Perissodactyla phylogeny in agreement with previous studies in regards to the placement of the families Equidae, Tapiridae, and Rhinocerotidae. Stephanorhinus is shown to be most closely related to the genera Coelodonta and Dicerorhinus . The protein sequence data further places the Sumatran rhino in a clade together with the genus Rhinoceros , opposed to forming a clade with the black and white rhinoceros species. The first biomolecular dataset available for Stephanorhinus places this genus together with the extinct genus Coelodonta and the extant genus Dicerorhinus . This is in agreement with morphological studies, although we are unable to resolve the order of divergence between these genera based on the protein sequences available. Our data supports the placement of the genus Dicerorhinus in a clade together with extant Rhinoceros species. Finally, the availability of protein sequence data for both extinct European rhinoceros genera allows future investigations into their geographic distribution and extinction chronologies.
On the search for extant life on Mars
NASA Technical Reports Server (NTRS)
Klein, H. P.
1996-01-01
Proposals for continuing the search for extant life on Mars are primarily predicated on the assumption that specialized environmental niches that could support a biota may exist on the planet. Before attempting any critical tests for extant organisms, either in situ or on returned samples, it is imperative to determine whether any such sites actually exist. If, through remote sensing and landed instrumentation, sites of potential biological interest are discovered and characterized, biological tests can then more effectively be planned to elicit the presence of organisms that are adapted to living in these particular environments.
On the search for extant life on Mars.
Klein, H P
1996-01-01
Proposals for continuing the search for extant life on Mars are primarily predicated on the assumption that specialized environmental niches that could support a biota may exist on the planet. Before attempting any critical tests for extant organisms, either in situ or on returned samples, it is imperative to determine whether any such sites actually exist. If, through remote sensing and landed instrumentation, sites of potential biological interest are discovered and characterized, biological tests can then more effectively be planned to elicit the presence of organisms that are adapted to living in these particular environments.
X-ray computed tomography library of shark anatomy and lower jaw surface models.
Kamminga, Pepijn; De Bruin, Paul W; Geleijns, Jacob; Brazeau, Martin D
2017-04-11
The cranial diversity of sharks reflects disparate biomechanical adaptations to feeding. In order to be able to investigate and better understand the ecomorphology of extant shark feeding systems, we created a x-ray computed tomography (CT) library of shark cranial anatomy with three-dimensional (3D) lower jaw reconstructions. This is used to examine and quantify lower jaw disparity in extant shark species in a separate study. The library is divided in a dataset comprised of medical CT scans of 122 sharks (Selachimorpha, Chondrichthyes) representing 73 extant species, including digitized morphology of entire shark specimens. This CT dataset and additional data provided by other researchers was used to reconstruct a second dataset containing 3D models of the left lower jaw for 153 individuals representing 94 extant shark species. These datasets form an extensive anatomical record of shark skeletal anatomy, necessary for comparative morphological, biomechanical, ecological and phylogenetic studies.
2010-09-30
after each trial. For beaked whales, field testing will take place off the island of El Hierro in the Canary Islands, a site with coastal resident...Johnson, M., “Coastal habitat use by Cuvier´s and Blainville´s beaked whales off El Hierro , Canary Islands” European Research on Cetaceans 22nd
Cetacean Social Behavioral Response to Sonar Exposure
2015-09-30
Lam FPA, Tyack PLT, Miller PJO (in review). Disturbance-specific social responses in long-finned pilot whales, Globicephala melas . Fieldwork...the social behavioral response of long-finned pilot whales (Globicephala melas ) revealed that a unifying characteristic of their behavioral response...Globicephala melas . 6 Visser F. et al. (in review). Vocal foragers and silent crowds: the socio-behavioural context of long- finned pilot whale
Stress Hormones and their Regulation in a Captive Dolphin Population
2015-09-30
dorian.houser@nmmf.org Award Number: N000141310770 http://www.nmmf.org/ physiology --ecology.html LONG-TERM GOALS The Navy requires an understanding...establish protocols for improved sensitivity of low-level corticosteroids (cortisol and aldosterone ) frequenctly observed in cetaceans; (2) determine the...assessing baseline variability in stress hormones and 2) evaluating physiological and metabolic alterations that occur during stress. This grant
Whales, Dolphins, and Porpoises of the Western North Atlantic: A Guide to Their Identification.
ERIC Educational Resources Information Center
Leatherwood, Stephen; And Others
This field guide is designed to permit observers to identify the cetaceans (whales, dolphins, and porpoises) they see in western North Atlantic, including the Caribbean Sea, the Gulf of Mexico, and the coastal waters of the United States and Canada. The animals described are not grouped by scientific relationships but by similarities in appearance…
USDA-ARS?s Scientific Manuscript database
In May of 2011 a live mass stranding of 26 short-finned pilot whales (Globicephala macrorhynchus) occurred in the lower Florida Keys. Five surviving whales were transferred from the original stranding site to a nearby marine mammal rehabilitation facility where they were constantly attended to by a ...
Comparative and Cumulative Energetic Costs of Odontocete Responses to Anthropogenic Disturbance
2015-09-30
Responses to Anthropogenic Disturbance Dawn P. Noren & Marla M. Holt NOAA NMFS Northwest Fisheries Science Center 2725 Montlake Blvd. East...divisions/cbd/marine_mammal/marinemammal.cfm LONG-TERM GOALS Cetacean responses to marine anthropogenic activities include changes in acoustic... marine mammals. OBJECTIVES This investigation comprises five major objectives, executed over three years. The objectives are: (1) compare the
Zaugg, Serge; van der Schaar, Mike; Houégnigan, Ludwig; André, Michel
2013-02-01
The analysis of acoustic data from the ocean is a valuable tool to study free ranging cetaceans and anthropogenic noise. Due to the typically large volume of acquired data, there is a demand for automated analysis techniques. Many cetaceans produce acoustic pulses (echolocation clicks) with a pulse repetition interval (PRI) remaining nearly constant over several pulses. Analyzing these pulse trains is challenging because they are often interleaved. This article presents an algorithm that estimates a pulse's PRI with respect to neighboring pulses. It includes a deinterleaving step that operates via a spectral dissimilarity metric. The sperm whale (SW) produces trains with PRIs between 0.5 and 2 s. As a validation, the algorithm was used for the PRI-based identification of SW click trains with data from the NEMO-ONDE observatory that contained other pulsed sounds, mainly from ship propellers. Separation of files containing SW clicks with a medium and high signal to noise ratio from files containing other pulsed sounds gave an area under the receiver operating characteristic curve value of 0.96. This study demonstrates that PRI can be used for the automated identification of SW clicks and that deinterleaving via spectral dissimilarity contributes to algorithm performance.
Modular evolution of the Cetacean vertebral column.
Buchholtz, Emily A
2007-01-01
Modular theory predicts that hierarchical developmental processes generate hierarchical phenotypic units that are capable of independent modification. The vertebral column is an overtly modular structure, and its rapid phenotypic transformation in cetacean evolution provides a case study for modularity. Terrestrial mammals have five morphologically discrete vertebral series that are now known to be coincident with Hox gene expression patterns. Here, I present the hypothesis that in living Carnivora and Artiodactyla, and by inference in the terrestrial ancestors of whales, the series are themselves components of larger precaudal and caudal modular units. Column morphology in a series of fossil and living whales is used to predict the type and sequence of developmental changes responsible for modification of that ancestral pattern. Developmental innovations inferred include independent meristic additions to the precaudal column in basal archaeocetes and basilosaurids, stepwise homeotic reduction of the sacral series in protocetids, and dissociation of the caudal series into anterior tail and fluke subunits in basilosaurids. The most dramatic change was the novel association of lumbar and anterior caudal vertebrae in a module that crosses the precaudal/caudal boundary. This large unit is defined by shared patterns of vertebral morphology, count, and size in all living whales (Neoceti).
Behavioral laterality in Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis).
Platto, Sara; Zhang, C; Pine, Matthew K; Feng, W K; Yang, L G; Irwin, A; Wang, D
2017-07-01
The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) is a critically endangered species with less than 1000 individuals expected to be left in the wild. While many studies have been conducted on laterality among several cetacean species, no studies investigating the Yangtze finless porpoise have been conducted. Using event sampling methods, several behaviors such as flipper-body touching, object touching, barrel-rolls, side swimming, and swimming direction were recorded from six captive porpoises (three males and three females). Analyses of 360 observations recorded over two months revealed that, at group level, porpoises showed laterality in swimming behaviors. Porpoises swam preferentially with their right pectoral fin upward and their left pectoral fin downward with a clockwise swimming direction and also displayed a consistent bias for a counterclockwise barrel-roll direction. No significant differences were reported for flipper use either during the interaction with conspecifics or with objects. The results from the current study provide novel insight into the cerebral asymmetry in a species previously ignored within the literature, thus improving our understanding on the extent of laterality in cetaceans and on the evolutionary history of hemispheric laterality for vertebrates in general. Copyright © 2017 Elsevier B.V. All rights reserved.
Kehrig, Helena A; Seixas, Tercia G; Malm, Olaf; Di Beneditto, Ana Paula M; Rezende, Carlos E
2013-10-15
Mercury (Hg), selenium (Se) and nitrogen (δ(15)N) stable isotope were assessed in a tropical food web of Rio de Janeiro's north coast. Isotopic data on muscle suggest a difference related to this parameter along the food web; where top-predators (cetacean and voracious fish) displayed heavier δ(15)N over the entire food web. Both top-predators presented similar δ(15)N values. Cetacean displayed higher Hg and lower Se than voracious fish. Five trophic positions (TP) were found in relation to primary consumer as baseline, ranging from 2.0 to 4.0. Positive relationships were found between trace-element and δ(15)N. The slope of regression equations (0.11 for Se and 0.21 for Hg) and food web magnification factors (2.4 for Se and 5.4 for Hg) showed that Hg presented higher rate of increase over the food web. Simultaneous measurements of trace-elements and ecological tracers emphasize the importance of TP into the trophic structure and distribution of Hg and Se throughout the food web. Copyright © 2013 Elsevier Ltd. All rights reserved.
2011-01-01
Brucella spp. were isolated from marine mammals for the first time in 1994. Two novel species were later included in the genus; Brucella ceti and Brucella pinnipedialis, with cetaceans and seals as their preferred hosts, respectively. Brucella spp. have since been isolated from a variety of marine mammals. Pathological changes, including lesions of the reproductive organs and associated abortions, have only been registered in cetaceans. The zoonotic potential differs among the marine mammal Brucella strains. Many techniques, both classical typing and molecular microbiology, have been utilised for characterisation of the marine mammal Brucella spp. and the change from the band-based approaches to the sequence-based approaches has greatly increased our knowledge about these strains. Several clusters have been identified within the B. ceti and B. pinnipedialis species, and multiple studies have shown that the hooded seal isolates differ from other pinniped isolates. We describe how different molecular methods have contributed to species identification and differentiation of B. ceti and B. pinnipedialis, with special emphasis on the hooded seal isolates. We further discuss the potential role of B. pinnipedialis for the declining Northwest Atlantic hooded seal population. PMID:21819589
The effect of recording and analysis bandwidth on acoustic identification of delphinid species.
Oswald, Julie N; Rankin, Shannon; Barlow, Jay
2004-11-01
Because many cetacean species produce characteristic calls that propagate well under water, acoustic techniques can be used to detect and identify them. The ability to identify cetaceans to species using acoustic methods varies and may be affected by recording and analysis bandwidth. To examine the effect of bandwidth on species identification, whistles were recorded from four delphinid species (Delphinus delphis, Stenella attenuata, S. coeruleoalba, and S. longirostris) in the eastern tropical Pacific ocean. Four spectrograms, each with a different upper frequency limit (20, 24, 30, and 40 kHz), were created for each whistle (n = 484). Eight variables (beginning, ending, minimum, and maximum frequency; duration; number of inflection points; number of steps; and presence/absence of harmonics) were measured from the fundamental frequency of each whistle. The whistle repertoires of all four species contained fundamental frequencies extending above 20 kHz. Overall correct classification using discriminant function analysis ranged from 30% for the 20-kHz upper frequency limit data to 37% for the 40-kHz upper frequency limit data. For the four species included in this study, an upper bandwidth limit of at least 24 kHz is required for an accurate representation of fundamental whistle contours.
Grattarola, Carla; Giorda, Federica; Iulini, Barbara; Pautasso, Alessandra; Ballardini, Marco; Zoppi, Simona; Marsili, Letizia; Peletto, Simone; Masoero, Loretta; Varello, Katia; Garibaldi, Fulvio; Scaglione, Frine E; Di Guardo, Giovanni; Dondo, Alessandro; Goria, Maria; Serracca, Laura; Mignone, Walter; Casalone, Cristina
2018-01-31
A juvenile female striped dolphin Stenella coeruleoalba live stranded on 4 March 2016 at Alassio, western Ligurian Sea coast, Italy. The dolphin died shortly after stranding, and a complete postmortem examination was performed. Necropsy revealed severe tracheal occlusion and unilateral bronchial stenosis with luminal accumulation of abundant green-yellow mucous-gelatinous material. Histological features suggestive of tracheobronchial aspergillosis were observed. Cultures of lung tissue and tracheo-bronchial exudate isolated Aspergillus fumigatus, identified by a Microseq D2 LSUrDNA fungal sequencing kit. A pan-Herpesvirus nested-PCR assay on frozen samples obtained from multiple organs was positive. Phylogenetic analysis on the partial DNA polymerase gene revealed that the striped dolphin isolate was closely related to known cetacean Alphaherpesvirus sequences from the same host species. Attempted virus isolation was unsuccessful. The tissue levels of different persistent organic pollutants and the toxicological stress, evaluated using a theoretical model, showed a severely impaired immune response. This study reports the first case of occlusive mycotic tracheobronchitis in a free-living cetacean and the first molecular identification of an Alphaherpesvirus in a free-ranging striped dolphin stranded on the coast of Italy.
Suzuki, Miwa; Tomoshige, Mika; Ito, Miki; Koga, Sotaro; Yanagisawa, Makio; Bungo, Takashi; Makiguchi, Yuya
2017-07-01
In cetaceans, diving behavior immediately induces a change in blood circulation to favor flow to the brain and heart; this is achieved by intense vasoconstriction of the blood vessels that serve other organs. This blood circulation response is allied to a decrease in heart rate in order to optimize oxygen usage during diving. Vasoconstrictors are present in all mammals and stimulate the contraction of the smooth muscle in the walls of blood vessels. The most important of these vasoconstrictors are the hormones adrenaline (A), noradrenaline (NA), and angiotensin II (ANG II). At present, the contribution of these hormones to vasoconstriction during diving in cetaceans is unclear. To elucidate their possible roles, changes in serum levels of A, NA and ANG II were monitored together with heart rate in the Indo-Pacific bottlenose dolphin Tursiops aduncus during 90 and 180s dives. Both brief diving periods induced an increase in serum NA concentration and a decrease in heart rate; however, no changes were detected in serum levels of A or ANG II. These data indicate that NA may play a role in diving-induced vasoconstriction. Copyright © 2017 Elsevier Inc. All rights reserved.
A window on perception: Response times of odontocete cetaceans in audiometric tests
NASA Astrophysics Data System (ADS)
Blackwood, Diane J.; Ridgway, Sam H.; Evans, William E.
2002-05-01
A standard psychometric measurement is response time, the interval elapsing between a stimulus and a response. While studies of response time have been published for humans and other terrestrial mammals, this study marks the first report of response times for odontocete cetaceans at threshold in an audiometric task. Two white whales (Delphinapterus leucas) and four Atlantic bottlenose dolphins (Tursiops truncatus) were given audiometric tests to determine masked hearing thresholds. Animals were tested at 26 frequencies over a range from 200 Hz to 100 kHz using pure tones. The test tone amplitudes covered a range of 20 dB re 1 microPascal including the hearing threshold of the animal at that frequency. Hearing thresholds varied from 87.5 dB to 125.5 dB depending on frequency, masking noise intensity and individual animal. Data was analyzed to determine characteristic relationships between response time and amplitude of test tone for each frequency and animal. The two whales responded significantly slower (640 ms, 0.001) than the four dolphins (430 ms). As in terrestrial animals, reaction time became shorter as stimulus strength increased. At threshold, median response time across frequencies within each animal varied about 150 ms.
Selection of reference genes for RT-qPCR studies in blood of beluga whales (Delphinapterus leucas)
Chen, I-Hua; Wang, Jiann-Hsiung; Chou, Shih-Jen; Wu, Yeong-Huey; Li, Tsung-Hsien; Leu, Ming-Yih; Chang, Wen-Been
2016-01-01
Reverse transcription quantitative PCR (RT-qPCR) is used for research in gene expression, and it is vital to choose appropriate housekeeping genes (HKGs) as reference genes to obtain correct results. The purpose of this study is to determine stably expressed HKGs in blood of beluga whales (Delphinapterus leucas) that can be the appropriate reference genes in relative quantification in gene expression research. Sixty blood samples were taken from four beluga whales. Thirteen candidate HKGs (ACTB, B2M, GAPDH, HPRT1, LDHB, PGK1, RPL4, RPL8, RPL18, RPS9, RPS18, TFRC, YWHAZ) were tested using RT-qPCR. The stability values of the HKGs were determined by four different algorithms. Comprehensive analysis of the results revealed that RPL4, PGK1 and ACTB are strongly recommended for use in future RT-qPCR studies in beluga blood samples. This research provides recommendation of reference gene selection, which may contribute to further mRNA relative quantification research in the peripheral blood leukocytes in captive cetaceans. The gene expression assessment of the immune components in blood have the potential to serve as an important approach to evaluating cetacean health influenced by environmental insults. PMID:26998411
Selection of reference genes for RT-qPCR studies in blood of beluga whales (Delphinapterus leucas).
Chen, I-Hua; Wang, Jiann-Hsiung; Chou, Shih-Jen; Wu, Yeong-Huey; Li, Tsung-Hsien; Leu, Ming-Yih; Chang, Wen-Been; Yang, Wei Cheng
2016-01-01
Reverse transcription quantitative PCR (RT-qPCR) is used for research in gene expression, and it is vital to choose appropriate housekeeping genes (HKGs) as reference genes to obtain correct results. The purpose of this study is to determine stably expressed HKGs in blood of beluga whales (Delphinapterus leucas) that can be the appropriate reference genes in relative quantification in gene expression research. Sixty blood samples were taken from four beluga whales. Thirteen candidate HKGs (ACTB, B2M, GAPDH, HPRT1, LDHB, PGK1, RPL4, RPL8, RPL18, RPS9, RPS18, TFRC, YWHAZ) were tested using RT-qPCR. The stability values of the HKGs were determined by four different algorithms. Comprehensive analysis of the results revealed that RPL4, PGK1 and ACTB are strongly recommended for use in future RT-qPCR studies in beluga blood samples. This research provides recommendation of reference gene selection, which may contribute to further mRNA relative quantification research in the peripheral blood leukocytes in captive cetaceans. The gene expression assessment of the immune components in blood have the potential to serve as an important approach to evaluating cetacean health influenced by environmental insults.
Comparing primate crania: The importance of fossils.
Fleagle, John G; Gilbert, Christopher C; Baden, Andrea L
2016-10-01
Extant primate crania represent a small subset of primate crania that have existed. The main objective here is to examine how the inclusion of fossil crania changes our understanding of primate cranial diversity relative to analyses of extant primates. We hypothesize that fossil taxa will change the major axes of cranial shape, occupy new areas of morphospace, change the relative diversity of major primate clades, and fill in notable gaps separating major primate taxa/clades. Eighteen 3D landmarks were collected on 157 extant and fossil crania representing 90 genera. Data were subjected to a Generalized Procrustes Analysis then principal components analysis. Relative diversity between clades was assessed using an F-statistic. Fossil taxa do not significantly alter major axes of cranial shape, but they do occupy unique areas of morphospace, change the relative diversity between clades, and fill in notable gaps in primate cranial evolution. Strepsirrhines remain significantly less diverse than anthropoids. Fossil hominins fill the gap in cranial morphospace between extant great apes and modern humans. The morphospace outlined by living primates largely includes that occupied by fossil taxa, suggesting that the cranial diversity of living primates generally encompasses the total diversity that has evolved in this Order. The evolution of the anthropoid cranium was a significant event allowing anthropoids to achieve significantly greater cranial diversity compared to strepsirrhines. Fossil taxa fill in notable gaps within and between clades, highlighting their transitional nature and eliminating the appearance of large morphological distances between extant taxa, particularly in the case of extant hominids. © 2016 Wiley Periodicals, Inc.
A comparative analysis of infraorbital foramen size in Paleogene euarchontans.
Muchlinski, Magdalena N; Kirk, E Christopher
2017-04-01
The size of the infraorbital foramen (IOF) is correlated with the size of the infraorbital nerve and number of mystacial vibrissae in mammals. Accordingly, IOF cross-sectional area has been used to infer both the rostral mechanoreceptive acuity and phylogenetic relationships of extinct crown primates and plesiadapiforms. Among living mammals, extant primates, scandentians, and dermopterans (Euarchonta) exhibit smaller IOF cross-sectional areas than most other mammals. Here we assess whether fossil adapoids, omomyoids, and plesiadapiforms show a reduction in relative IOF area similar to that characterizing extant euarchontans. The IOFs of 12 adapoid, 7 omomyoid, 15 plesiadapiform, and 3 fossil gliran species were measured and compared to a diverse extant mammalian sample. These data demonstrate that adapoids and omomyoids have IOFs that are similar in relative size to those of extant euarchontans. Conversely, IOFs of plesiadapiforms are on average about twice as large as those of extant euarchontans and are more comparable in size to those of extant non-euarchontan mammals. These results indicate that crown primates share a derived reduction in relative IOF size with treeshrews and colugos. Accordingly, a decreased reliance on the muzzle and an increased reliance on the hands for environmental exploration may have first evolved in the euarchontan stem lineage. However, the relatively large IOFs of plesiadapiforms imply a continued reliance on the muzzle for close exploration of objects. This finding may indicate that either parallel evolutionary decreases in IOF size occurred within Euarchonta or that plesiadapiforms lie outside the euarchontan crown group. Copyright © 2017 Elsevier Ltd. All rights reserved.
Archibald Menzies on Albemarle Island, Galápagos archipelago, 7 February 1795.
Nelson, E Charles; Porter, Duncan M
2011-01-01
Menzies made the earliest extant botanical collections in the Galápagos; five sheets, representing three endemic species, are known. Menzies's own account of the visit is also extant and is transcribed here from his manuscript journal.
NASA Astrophysics Data System (ADS)
Fernández-Remolar, David C.; Gómez, Felipe; Prieto-Ballesteros, Olga; Schelble, Rachel T.; Rodríguez, Nuria; Amiols, Ricardo
2008-02-01
Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Ro Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Ro Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.
Fernández-Remolar, David C; Gómez, Felipe; Prieto-Ballesteros, Olga; Schelble, Rachel T; Rodríguez, Nuria; Amils, Ricardo
2008-02-01
Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Río Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Río Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.
Human influence on distribution and extinctions of the late Pleistocene Eurasian megafauna.
Pushkina, Diana; Raia, Pasquale
2008-06-01
Late Pleistocene extinctions are of interest to paleontological and anthropological research. In North America and Australia, human occupation occurred during a short period of time and overexploitation may have led to the extinction of mammalian megafauna. In northern Eurasia megafaunal extinctions are believed to have occurred over a relatively longer period of time, perhaps as a result of changing environmental conditions, but the picture is much less clear. To consider megafaunal extinction in Eurasia, we compare differences in the geographical distribution and commonness of extinct and extant species between paleontological and archaeological localities from the late middle Pleistocene to Holocene. Purely paleontological localities, as well as most extinct species, were distributed north of archaeological sites and of the extant species, suggesting that apart from possible differences in adaptations between humans and other species, humans could also have a detrimental effect on large mammal distribution. However, evidence for human overexploitation applies only to the extinct steppe bison Bison priscus. Other human-preferred species survive into the Holocene, including Rangifer tarandus, Equus ferus, Capreolus capreolus, Cervus elaphus, Equus hemionus, Saiga tatarica, and Sus scrofa. Mammuthus primigenius and Megaloceros giganteus were rare in archaeological sites. Carnivores appear little influenced by human presence, although they become rarer in Holocene archaeological sites. Overall, the data are consistent with the conclusion that humans acted as efficient hunters selecting for the most abundant species. Our study supports the idea that the late Pleistocene extinctions were environmentally driven by climatic changes that triggered habitat fragmentation, species range reduction, and population decrease, after which human interference either by direct hunting or via indirect activities probably became critical.
Ito, Teruyo; Ma, Xiao Xue; Takeuchi, Fumihiko; Okuma, Keiko; Yuzawa, Harumi; Hiramatsu, Keiichi
2004-01-01
Staphylococcal cassette chromosome mec (SCCmec) is a mobile genetic element composed of the mec gene complex, which encodes methicillin resistance, and the ccr gene complex, which encodes the recombinases responsible for its mobility. The mec gene complex has been classified into four classes, and the ccr gene complex has been classified into three allotypes. Different combinations of mec gene complex classes and ccr gene complex types have so far defined four types of SCCmec elements. Now we introduce the fifth allotype of SCCmec, which was found on the chromosome of a community-acquired methicillin-resistant Staphylococcus aureus strain (strain WIS [WBG8318]) isolated in Australia. The element shared the same chromosomal integration site with the four extant types of SCCmec and the characteristic nucleotide sequences at the chromosome-SCCmec junction regions. The novel SCCmec carried mecA bracketed by IS431 (IS431-mecA-ΔmecR1-IS431), which is designated the class C2 mec gene complex; and instead of ccrA and ccrB genes, it carried a single copy of a gene homologue that encoded cassette chromosome recombinase. Since the open reading frame (ORF) was found to encode an enzyme which catalyzes the precise excision as well as site- and orientation-specific integration of the element, we designated the ORF cassette chromosome recombinase C (ccrC), and we designated the element type V SCCmec. Type V SCCmec is a small SCCmec element (28 kb) and does not carry any antibiotic resistance genes besides mecA. Unlike the extant SCCmec types, it carries a set of foreign genes encoding a restriction-modification system that might play a role in the stabilization of the element on the chromosome. PMID:15215121
Savard, L; Li, P; Strauss, S H; Chase, M W; Michaud, M; Bousquet, J
1994-01-01
We have estimated the time for the last common ancestor of extant seed plants by using molecular clocks constructed from the sequences of the chloroplastic gene coding for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) and the nuclear gene coding for the small subunit of rRNA (Rrn18). Phylogenetic analyses of nucleotide sequences indicated that the earliest divergence of extant seed plants is likely represented by a split between conifer-cycad and angiosperm lineages. Relative-rate tests were used to assess homogeneity of substitution rates among lineages, and annual angiosperms were found to evolve at a faster rate than other taxa for rbcL and, thus, these sequences were excluded from construction of molecular clocks. Five distinct molecular clocks were calibrated using substitution rates for the two genes and four divergence times based on fossil and published molecular clock estimates. The five estimated times for the last common ancestor of extant seed plants were in agreement with one another, with an average of 285 million years and a range of 275-290 million years. This implies a substantially more recent ancestor of all extant seed plants than suggested by some theories of plant evolution. PMID:8197201
6. Photograph of extant ink on linen drawings (original drawings ...
6. Photograph of extant ink on linen drawings (original drawings held in the vault of the Office of the State Architect in Sacramento) SECOND FLOOR FRAMING PLAN, AUGUST 1922 - California State Printing Office, 1020 O Street, Sacramento, Sacramento County, CA
5. Photograph of extant ink on linen drawings (original drawings ...
5. Photograph of extant ink on linen drawings (original drawings held in the vault of the Office of the State Architect in Sacramento) FIRST FLOOR FRAMING PLAN, AUGUST 1922 - California State Printing Office, 1020 O Street, Sacramento, Sacramento County, CA
7. Photograph of extant ink on linen drawings (original drawings ...
7. Photograph of extant ink on linen drawings (original drawings held in the vault of the Office of the State Architect in Sacramento) DETAILS OF FLAT SLAB CONSTRUCTION, AUGUST 1922 - California State Printing Office, 1020 O Street, Sacramento, Sacramento County, CA
TWO OF THE FORTYSIX EXTANT BEEHIVE COKE OVENS CONSTRUCTED BY ...
TWO OF THE FORTY-SIX EXTANT BEEHIVE COKE OVENS CONSTRUCTED BY JOHN NUTTALL DURING THE EARLY 1870S, LOOKING NORTHWEST - Nuttallburg Mine Complex, Coke Ovens, North side of New River, 2.7 miles upstream from Fayette Landing, Lookout, Fayette County, WV
Sahoo, Satya S.; Bodenreider, Olivier; Rutter, Joni L.; Skinner, Karen J.; Sheth, Amit P.
2008-01-01
Objectives This paper illustrates how Semantic Web technologies (especially RDF, OWL, and SPARQL) can support information integration and make it easy to create semantic mashups (semantically integrated resources). In the context of understanding the genetic basis of nicotine dependence, we integrate gene and pathway information and show how three complex biological queries can be answered by the integrated knowledge base. Methods We use an ontology-driven approach to integrate two gene resources (Entrez Gene and HomoloGene) and three pathway resources (KEGG, Reactome and BioCyc), for five organisms, including humans. We created the Entrez Knowledge Model (EKoM), an information model in OWL for the gene resources, and integrated it with the extant BioPAX ontology designed for pathway resources. The integrated schema is populated with data from the pathway resources, publicly available in BioPAX-compatible format, and gene resources for which a population procedure was created. The SPARQL query language is used to formulate queries over the integrated knowledge base to answer the three biological queries. Results Simple SPARQL queries could easily identify hub genes, i.e., those genes whose gene products participate in many pathways or interact with many other gene products. The identification of the genes expressed in the brain turned out to be more difficult, due to the lack of a common identification scheme for proteins. Conclusion Semantic Web technologies provide a valid framework for information integration in the life sciences. Ontology-driven integration represents a flexible, sustainable and extensible solution to the integration of large volumes of information. Additional resources, which enable the creation of mappings between information sources, are required to compensate for heterogeneity across namespaces. Resource page http://knoesis.wright.edu/research/lifesci/integration/structured_data/JBI-2008/ PMID:18395495
Sahoo, Satya S; Bodenreider, Olivier; Rutter, Joni L; Skinner, Karen J; Sheth, Amit P
2008-10-01
This paper illustrates how Semantic Web technologies (especially RDF, OWL, and SPARQL) can support information integration and make it easy to create semantic mashups (semantically integrated resources). In the context of understanding the genetic basis of nicotine dependence, we integrate gene and pathway information and show how three complex biological queries can be answered by the integrated knowledge base. We use an ontology-driven approach to integrate two gene resources (Entrez Gene and HomoloGene) and three pathway resources (KEGG, Reactome and BioCyc), for five organisms, including humans. We created the Entrez Knowledge Model (EKoM), an information model in OWL for the gene resources, and integrated it with the extant BioPAX ontology designed for pathway resources. The integrated schema is populated with data from the pathway resources, publicly available in BioPAX-compatible format, and gene resources for which a population procedure was created. The SPARQL query language is used to formulate queries over the integrated knowledge base to answer the three biological queries. Simple SPARQL queries could easily identify hub genes, i.e., those genes whose gene products participate in many pathways or interact with many other gene products. The identification of the genes expressed in the brain turned out to be more difficult, due to the lack of a common identification scheme for proteins. Semantic Web technologies provide a valid framework for information integration in the life sciences. Ontology-driven integration represents a flexible, sustainable and extensible solution to the integration of large volumes of information. Additional resources, which enable the creation of mappings between information sources, are required to compensate for heterogeneity across namespaces. RESOURCE PAGE: http://knoesis.wright.edu/research/lifesci/integration/structured_data/JBI-2008/
Cranial vault thickness in primates: Homo erectus does not have uniquely thick vault bones.
Copes, Lynn E; Kimbel, William H
2016-01-01
Extremely thick cranial vaults have been noted as a diagnostic characteristic of Homo erectus since the first fossil of the species was identified, but relatively little work has been done on elucidating its etiology or variation across fossils, living humans, or extant non-human primates. Cranial vault thickness (CVT) is not a monolithic trait, and the responsiveness of its layers to environmental stimuli is unknown. We obtained measurements of cranial vault thickness in fossil hominins from the literature and supplemented those data with additional measurements taken on African fossil specimens. Total CVT and the thickness of the cortical and diploë layers individually were compared to measures of CVT in extant species measured from more than 500 CT scans of human and non-human primates. Frontal and parietal CVT in fossil primates was compared to a regression of CVT on cranial capacity calculated for extant species. Even after controlling for cranial capacity, African and Asian H. erectus do not have uniquely high frontal or parietal thickness residuals, either among hominins or extant primates. Extant primates with residual CVT thickness similar to or exceeding H. erectus (depending on the sex and bone analyzed) include Nycticebus coucang, Perodicticus potto, Alouatta caraya, Lophocebus albigena, Galago alleni, Mandrillus sphinx, and Propithecus diadema. However, the especially thick vaults of extant non-human primates that overlap with H. erectus values are composed primarily of cortical bone, while H. erectus and other hominins have diploë-dominated vault bones. Thus, the combination of thick vaults comprised of a thickened diploë layer may be a reliable autapomorphy for members of the genus Homo. Copyright © 2015 Elsevier Ltd. All rights reserved.
2008-09-30
take place off the island of El Hierro in the Canary Islands, a site with coastal resident populations of Blainville’s beaked whale, Mesoplodon...M., “Coastal habitat use by Cuvier´s and Blainville´s beaked whales off El Hierro , Canary Islands” European Research on Cetaceans 22nd, Holland, April, 2008. [non-refereed] 5
Determining Baseline Stress-Related Hormone Values in Large Cetaceans
2015-09-30
individual whale. These reconstructed chemical profiles provided a unique window into stress-related hormone (cortisol, aldosterone , T3 and T4...stored under nitrogen at -30 °C. Stress-related hormone radioimmunoassay technique Cortisol, aldosterone , hormones thyroxine (T4) and...coefficients. These measurements will include all hormones ( aldosterone , T3, T4, and cortisol) as well as contaminants. The age trends for the 6 hormones will
Tagging and Playback Studies to Toothed Whales
2012-09-30
More playbacks of sonar have been conducted to pilot whales (Globicephala sp.), which are large pelagic delphinids, than to any other genus of cetacean...the group across different spatial scales. In particular, results showing how pilot whales use repeated, stereotyped calls (Sayigh et al. 2012) to re...establish contact with their social group following separations may prove valuable for testing whether monitoring for stereotyped calls might
In Vivo Determination of the Complex Elastic Moduli of Cetacean Head Tissue
2012-09-30
and with harvested tissue samples. In vivo testing will be conducted on Navy dolphins . Ultrasound parameters (peak negative pressure, time averaged...A synthetic material was developed which mimicks the ultrasonic properties of living bottlenose dolphin soft tissues. RESULTS 1. System...NIVMS) and with a laser doppler vibrometer (Polytec PDV-100). A variety of pulse drive levels, durations, and bandwidths for both ultrasound
ERIC Educational Resources Information Center
Leatherwood, Stephen; And Others
This field guide is designed to permit observers to identify the cetaceans (whales, dolphins, and porpoises) they see in the waters of the eastern North Pacific, including the Gulf of California, Hawaii, and the western Arctic of North America. The animals described are grouped not by scientific relationships but by similarities in appearance in…
Poynton, S L; Whitaker, B R; Heinrich, A B
2001-04-10
The successful 6 mo rehabilitation of a stranded juvenile pygmy sperm whale Kogia breviceps afforded the opportunity to study the poorly known protozoan fauna of the upper respiratory tract of cetaceans. Mucus samples were collected by holding either a petri dish or glass slides over the blowhole for 3 to 5 exhalations; preparations were examined as wet mounts, and then stained with Wrights-Giemsa or Gram stain. Blood smears were stained with Wrights-Giemsa. Unidentified spindle-shaped and unidentified broad ciliates, reported from the blowhole of the pygmy sperm whale for the first time, were seen only initially, while yeast-like organisms and bacteria were seen intermittently. Epithelial cells and white blood cells were often present in the blowhole mucus, but red blood cells were never seen. A novel trypanoplasm-like bodonid kinetoplastid biflagellate (Order Kinetoplastida) was commonly encountered in the blowhole mucus, but never in the blood. Both mature flagellates and those undergoing longitudinal binary fission were present. The elongate flagellate had a long whiplash anterior flagellum; the recurrent flagellum was attached along at least two-thirds of the body length, forming a prominent undulating membrane, and the trailing portion was short. The kinetoplast was irregularly fragmented. The flagellates were either free-swimming, or attached to host material via the free portion of the posterior flagellum. The prominent undulating membrane was characteristic of Trypanoplasma, while the fragmented kinetoplast was characteristic of some species of Cryptobia. For the novel bodonid kinetoplastid, with its unique combination of morphological features (prominent undulating membrane and fragmented kinetoplast), we propose the creation of a new genus Jarrellia. We believe this to be the first published description of a flagellate from a marine mammal, and among the first reports of a trypanoplasm-like flagellate from a warm-blooded host. We expect that a diversity of flagellates and ciliates are commonly present in the blowhole of cetaceans. Future studies on the identity of the protozoans and the health of their cetacean hosts, which are readily studied in captivity, are necessary to establish their status as commensals or parasites.
Van Dolah, Frances M.; Neely, Marion G.; McGeorge, Lauren E.; Balmer, Brian C.; Ylitalo, Gina M.; Zolman, Eric S.; Speakman, Todd; Sinclair, Carrie; Kellar, Nicholas M.; Rosel, Patricia E.; Mullin, Keith D.; Schwacke, Lori H.
2015-01-01
As long-lived predators that integrate exposures across multiple trophic levels, cetaceans are recognized as sentinels for the health of marine ecosystems. Their utility as sentinels requires the establishment of baseline health parameters. Because cetaceans are protected, measurements obtained with minimal disruption to free ranging animals are highly desirable. In this study we investigated the utility of skin gene expression profiling to monitor health and contaminant exposure in common bottlenose dolphins (Tursiops truncatus). Remote integument biopsies were collected in the northern Gulf of Mexico prior to the Deepwater Horizon oil spill (May 2010) and during summer and winter for two years following oil contamination (2010-2011). A bottlenose dolphin microarray was used to characterize the skin transcriptomes of 94 individuals from three populations: Barataria Bay, Louisiana, Chandeleur Sound, Louisiana, and Mississippi Sound, Mississippi/Alabama. Skin transcriptomes did not differ significantly between populations. In contrast, season had a profound effect on gene expression, with nearly one-third of all genes on the array differing in expression between winter and the warmer seasons (moderated T-test; p<0.01, fold-change≥1.5). Persistent organic pollutants (POPs) in blubber changed concurrently, reaching >two-fold higher concentrations in summer compared to winter, due to a seasonal decrease in blubber thickness and loss of stored lipid. However, global gene expression did not correlate strongly with seasonally changing contaminant concentrations, most likely because the refractory, lipid-stored metabolites are not substrates for phase I or II xenobiotic detoxification pathways. Rather, processes related to cell proliferation, motility, and differentiation dominated the differences in expression in winter and the warmer seasons. More subtle differences were seen between spring and summer (1.5% of genes differentially expressed). However, two presumed oil-exposed animals from spring presented gene expression profiles more similar to the summer animals (presumed exposed) than to other spring animals. Seasonal effects have not previously been considered in studies assessing gene expression in cetaceans, but clearly must be taken into account when applying transcriptomic analyses to investigate their contaminant exposure or health status. PMID:26110790
Van Dolah, Frances M; Neely, Marion G; McGeorge, Lauren E; Balmer, Brian C; Ylitalo, Gina M; Zolman, Eric S; Speakman, Todd; Sinclair, Carrie; Kellar, Nicholas M; Rosel, Patricia E; Mullin, Keith D; Schwacke, Lori H
2015-01-01
As long-lived predators that integrate exposures across multiple trophic levels, cetaceans are recognized as sentinels for the health of marine ecosystems. Their utility as sentinels requires the establishment of baseline health parameters. Because cetaceans are protected, measurements obtained with minimal disruption to free ranging animals are highly desirable. In this study we investigated the utility of skin gene expression profiling to monitor health and contaminant exposure in common bottlenose dolphins (Tursiops truncatus). Remote integument biopsies were collected in the northern Gulf of Mexico prior to the Deepwater Horizon oil spill (May 2010) and during summer and winter for two years following oil contamination (2010-2011). A bottlenose dolphin microarray was used to characterize the skin transcriptomes of 94 individuals from three populations: Barataria Bay, Louisiana, Chandeleur Sound, Louisiana, and Mississippi Sound, Mississippi/Alabama. Skin transcriptomes did not differ significantly between populations. In contrast, season had a profound effect on gene expression, with nearly one-third of all genes on the array differing in expression between winter and the warmer seasons (moderated T-test; p<0.01, fold-change≥1.5). Persistent organic pollutants (POPs) in blubber changed concurrently, reaching >two-fold higher concentrations in summer compared to winter, due to a seasonal decrease in blubber thickness and loss of stored lipid. However, global gene expression did not correlate strongly with seasonally changing contaminant concentrations, most likely because the refractory, lipid-stored metabolites are not substrates for phase I or II xenobiotic detoxification pathways. Rather, processes related to cell proliferation, motility, and differentiation dominated the differences in expression in winter and the warmer seasons. More subtle differences were seen between spring and summer (1.5% of genes differentially expressed). However, two presumed oil-exposed animals from spring presented gene expression profiles more similar to the summer animals (presumed exposed) than to other spring animals. Seasonal effects have not previously been considered in studies assessing gene expression in cetaceans, but clearly must be taken into account when applying transcriptomic analyses to investigate their contaminant exposure or health status.
Jensen, Brenda A.; Reddy, Christopher M.; Nelson, Robert K.; Hahn, Mark E.
2011-01-01
Persistent organic pollutants such as halogenated aromatic hydrocarbons (HAHs) biomagnify in food webs and accumulate to high concentrations in top predators like odontocete cetaceans (toothed whales). The most toxic HAHs are the 2,3,7,8-substituted halogenated dibenzo-p-dioxins and furans, and non-ortho-substituted polychlorinated biphenyls (PCBs), which exert their effects via the aryl hydrocarbon receptor (AHR). Understanding the impact of HAHs in wildlife is limited by the lack of taxon-specific information about the relative potencies of toxicologically important congeners. To assess whether Toxic Equivalency Factors (TEFs) determined in rodents are predictive of HAH relative potencies in a cetacean, we used beluga and mouse AHRs expressed in vitro from cloned cDNAs to measure the relative AHR-binding affinities of ten HAHs from five different structural classes. The rank order of mean IC50s for competitive binding to beluga AHR was: TCDD
Jensen, Brenda A; Reddy, Christopher M; Nelson, Robert K; Hahn, Mark E
2010-11-01
Persistent organic pollutants such as halogenated aromatic hydrocarbons (HAHs) biomagnify in food webs and accumulate to high concentrations in top predators like odontocete cetaceans (toothed whales). The most toxic HAHs are the 2,3,7,8-substituted halogenated dibenzo-p-dioxins and furans, and non-ortho-substituted polychlorinated biphenyls (PCBs), which exert their effects via the aryl hydrocarbon receptor (AHR). Understanding the impact of HAHs in wildlife is limited by the lack of taxon-specific information about the relative potencies of toxicologically important congeners. To assess whether Toxic Equivalency Factors (TEFs) determined in rodents are predictive of HAH relative potencies in a cetacean, we used beluga and mouse AHRs expressed in vitro from cloned cDNAs to measure the relative AHR-binding affinities of ten HAHs from five different structural classes. The rank order of mean IC(50)s for competitive binding to beluga AHR was: TCDD
Jungblut, Anne D; Hawes, Ian
2017-06-28
Evidence of climate-driven environmental change is increasing in Antarctica, and with it comes concern that this will propagate to impacts on biological communities. Recognition and prediction of change needs to incorporate the extent and timescales over which communities vary under extant conditions. However, few observations of Antarctic microbial communities, which dominate inland habitats, allow this. We therefore carried out the first molecular comparison of Cyanobacteria in historic herbarium microbial mats from freshwater ecosystems on Ross Island and the McMurdo Ice Shelf, collected by Captain R.F. Scott's 'Discovery' Expedition (1902-1903), with modern samples from those areas. Using 16S rRNA gene surveys, we found that modern and historic cyanobacteria assemblages showed some variation in community structure but were dominated by the same genotypes. Modern communities had a higher richness, including genotypes not found in historic samples, but they had the highest similarity to other cyanobacteria sequences from Antarctica. The results imply slow cyanobacterial 16S rRNA gene genotype turnover and considerable community stability within Antarctic microbial mats. We suggest that this relates to Antarctic freshwater 'organisms requiring a capacity to withstand diverse stresses, and that this could also provide a degree of resistance and resilience to future climatic-driven environmental change in Antarctica. © 2017 The Author(s).
VIEW OF FACILITY NO. S 20 SHOWING THE EXTANT NARROWGAUGE ...
VIEW OF FACILITY NO. S 20 SHOWING THE EXTANT NARROW-GAUGE TRACKS AND ASPHALT-FILLED TRACKWAY. VIEW FACING SOUTHWEST - U.S. Naval Base, Pearl Harbor, Floating Dry Dock Quay, Hurt Avenue at northwest side of Magazine Loch, Pearl City, Honolulu County, HI
Chemical and microscopic characterization of outer seed coats of fossil and extant water plants
NASA Astrophysics Data System (ADS)
van Bergen, P. F.; Goñi, M.; Collinson, M. E.; Barrie, P. J.; Damsté, J. S. Sinninghe; De Leeuw, J. W.
1994-09-01
Sclerotic outer seed coat layers (testae) of three fossil and two extant water plant species were analyzed using scanning electron and light microscopy in addition to Curie-point pyrolysis, solid state 13C NMR, and CuO oxidation. Comparison between the chemical results from the fossil and extant samples reveals that the original resistant constituents in the sclerotic testae are native lignin-celluloses which are transformed to polyphenol macromolecules recognized in the fossil samples. The combination of microscopic and chemical data provides new insights regarding the early diagenetic processes by which lignin-cellulose-containing plant remains may have been transformed. In particular, the unaltered morphology in combination with major chemical modifications is used as the basis to postulate the timing and nature of lignin transformations. The combination of pyrolysis, solid state 13C NMR, and CuO oxidation is shown to be a powerful tool to characterize the chemical structure of testae of fossil and extant water plants.
Pelvic and hindlimb musculature of Tyrannosaurus rex (Dinosauria: Theropoda).
Carrano, Matthew T; Hutchinson, John R
2002-09-01
In this article, we develop a new reconstruction of the pelvic and hindlimb muscles of the large theropod dinosaur Tyrannosaurus rex. Our new reconstruction relies primarily on direct examination of both extant and fossil turtles, lepidosaurs, and archosaurs. These observations are placed into a phylogenetic context and data from extant taxa are used to constrain inferences concerning the soft-tissue structures in T. rex. Using this extant phylogenetic bracket, we are able to offer well-supported inferences concerning most of the hindlimb musculature in this taxon. We also refrain from making any inferences for certain muscles where the resulting optimizations are ambiguous. This reconstruction differs from several previous attempts and we evaluate these discrepancies. In addition to providing a new and more detailed understanding of the hindlimb morphology of T. rex--the largest known terrestrial biped--this reconstruction also helps to clarify the sequence of character-state change along the line to extant birds. Copyright 2002 Wiley-Liss, Inc.
Cameron, D W
1997-01-01
This paper examines sexually dimorphic skeletal characters within the face and upper dentition of extant hominids (great ape), not including members of the Hominini. Specimens of Pan paniscus, Pan troglodytes, Gorilla gorilla, and Pongo pygmaeus are used to help identify likely sex specific characters for the Hominidae. The aim of this paper is to identify extant hominid faciodental sexual features which can be used to help sex fossil specimens. A morphometric and skeletal study of sexual variability demonstrates relatively diverse patterns of sexual variability within the extant hominids. In terms of morphometrics, P. paniscus is relatively non-dimorphic, while P. troglodytes, Gorilla and Pongo display a large degree of sexual dimorphism. In their respective skeletal anatomies, however, each has specific characters which tend to differentiate between the sexes. Some faciodental sex features are shown to be common amongst all four taxa and as such are likely to be important criteria for determining the sex of Miocene and Plio-Pleistocene fossil hominid specimens. The construction of extant great ape sexual ranges of variability are also important in helping to test the fossil ape single species hypotheses. The testing of sex and species ranges of variability should employ range based statistics not only because they are sample size independent, (relative to C.V.) but also because they are of low power.
Resolving the Evolution of Extant and Extinct Ruminants With High-Throughput Phylogenomics
USDA-ARS?s Scientific Manuscript database
The Pecorans (higher ruminants) are believed to have rapidly speciated in the Mid-Eocene, resulting in five distinct extant families; Antilocapridae, Giraffidae, Moschidae, Cervidae, and Bovidae. Due to the rapid radiation, the Pecoran phylogeny has proven difficult to resolve and eleven of the fift...
77 FR 17498 - Recovery Plan for the Endangered Spigelia gentianoides (Gentian Pinkroot)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-26
... status when: Extant populations and newly discovered sites are identified and mapped; Inventories have... management protocols on selected populations are established for 15 years to track threats to the species and its habitat; Extant populations located on public land are stable; The minimum viable population (MVP...
Understanding the Onset of Health Impacts Caused by Disturbances
2015-09-30
will define the PCoD Health stage in a way that we can start to integrate ecological and physiological PCoD research. OBJECTIVES In order to...for the first time assess the relevance of adipose transcriptomic and metabolomic biomarkers as measures relevant to PCoD in cetaceans. We aim to...individuals. APPROACH The Population Consequences of Disturbances ( PCoD ) paradigm provides a mean to link perturbations of individual phenotypic
Population Parameters of Blainvilles and Cuviers Beaked Whales
2015-09-30
cetacean populations. Long-term monitoring of beaked whale populations in El Hierro , a nearly pristine habitat far from areas of sonar testing or...marine industry, enables valuable studies of demographic trends and life history dictated mainly by natural parameters. El Hierro is in process of...functioning (expected in 2018-2019), it is essential to continue monitoring the populations in El Hierro to obtain an uninterrupted long-term dataset of
In Vivo Determination of the Complex Elastic Moduli of Cetacean Head Tissue
2009-03-01
digitization of the modulated carrier signaT. Pure-tone ultrasonic vibrometry has been implemented in both air - coupled and water- coupled systems for...and J. Sabatier, " Air - coupled ultrasonic sensing of grass-covered vibrating surfaces; qualitative comparisons with laser vibrometry ", J. Acoust. Soc...follow-on grant. 2.2 Range discrimination in continuous-wave ultrasonic vibrometry The following Is adapted from a manuscript in preparation for
2013-09-30
some incursions in the westernmost end of the Alboran Sea; a second one would coevr the central part of the Alboran Sea from Almeria to Granada ...than with the first one. This information comes, on one hand, from the photo-id catalogue (several recaptures between Almería- Granada and Gulf of
DECAF - Density Estimation for Cetaceans from Passive Acoustic Fixed Sensors
2007-01-01
including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing...penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2007 2. REPORT...as far as possible to leverage data that have already been collected, and classification and localization methods that have already been developed
3S2: Behavioral Response Studies of Cetaceans to Navy Sonar Signals in Norwegian Waters
2013-09-30
exposures of killer (Orcinus orca), long-finned pilot (Globicephala melas ), and sperm whales (Physeter macrocephalus) to naval sonar. Aquatic Mammals 38...pilot whales (Globicephala melas ). Marine Mammal Science. [in review, refereed] 8 Kvadsheim, PH, Miller, PJO, Tyack, P, Sivle, LD, Lam, FPA, and...killer (Orcinus orca), long-finned pilot (Globicephala melas ), and sperm whales (Physeter macrocephalus) to naval sonar. Aquatic Mammals 38: 362-401
Development of Novel Noninvasive Methods of Stress Assessment in Baleen Whales
2013-09-30
adrenal hormone ( aldosterone ) that has not been adequately studied in baleen whales. Respiratory sampling is a novel method of physiological ... physiological stress levels of free-swimming cetaceans (Amaral 2010, ONR 2010, Hunt et al. 2013a). We have previously demonstrated that respiratory vapor...hormones have not yet been tested in either feces or blow, particularly aldosterone . Our aim in this project is to further develop both techniques
Assessing Stress Responses in Beaked and Sperm Whales in the Bahamas
2016-05-23
cetacean (beaked whales) and a co-occurring species (sperm whales) for comparison. The physiologic data generated by this project will provide baseline...sex and reproductive status (i.e. other physiologic influences) when interpreting levels of GCs as indicators of stress responses. 2.2 2.2 0 Adult...better understand the sub-lethal, physiologic consequences of underwater noise disturbance on species of concern, like beaked whales, is crucial to