NASA Astrophysics Data System (ADS)
Choi, Chu Hwan
2002-09-01
Ab initio chemistry has shown great promise in reproducing experimental results and in its predictive power. The many complicated computational models and methods seem impenetrable to an inexperienced scientist, and the reliability of the results is not easily interpreted. The application of midbond orbitals is used to determine a general method for use in calculating weak intermolecular interactions, especially those involving electron-deficient systems. Using the criteria of consistency, flexibility, accuracy and efficiency we propose a supermolecular method of calculation using the full counterpoise (CP) method of Boys and Bernardi, coupled with Moller-Plesset (MP) perturbation theory as an efficient electron-correlative method. We also advocate the use of the highly efficient and reliable correlation-consistent polarized valence basis sets of Dunning. To these basis sets, we add a general set of midbond orbitals and demonstrate greatly enhanced efficiency in the calculation. The H2-H2 dimer is taken as a benchmark test case for our method, and details of the computation are elaborated. Our method reproduces with great accuracy the dissociation energies of other previous theoretical studies. The added efficiency of extending the basis sets with conventional means is compared with the performance of our midbond-extended basis sets. The improvement found with midbond functions is notably superior in every case tested. Finally, a novel application of midbond functions to the BH5 complex is presented. The system is an unusual van der Waals complex. The interaction potential curves are presented for several standard basis sets and midbond-enhanced basis sets, as well as for two popular, alternative correlation methods. We report that MP theory appears to be superior to coupled-cluster (CC) in speed, while it is more stable than B3LYP, a widely-used density functional theory (DFT). Application of our general method yields excellent results for the midbond basis sets. Again they prove superior to conventional extended basis sets. Based on these results, we recommend our general approach as a highly efficient, accurate method for calculating weakly interacting systems.
Usvyat, Denis; Civalleri, Bartolomeo; Maschio, Lorenzo; Dovesi, Roberto; Pisani, Cesare; Schütz, Martin
2011-06-07
The atomic orbital basis set limit is approached in periodic correlated calculations for solid LiH. The valence correlation energy is evaluated at the level of the local periodic second order Møller-Plesset perturbation theory (MP2), using basis sets of progressively increasing size, and also employing "bond"-centered basis functions in addition to the standard atom-centered ones. Extended basis sets, which contain linear dependencies, are processed only at the MP2 stage via a dual basis set scheme. The local approximation (domain) error has been consistently eliminated by expanding the orbital excitation domains. As a final result, it is demonstrated that the complete basis set limit can be reached for both HF and local MP2 periodic calculations, and a general scheme is outlined for the definition of high-quality atomic-orbital basis sets for solids. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Hübener, H.; Pérez-Osorio, M. A.; Ordejón, P.; Giustino, F.
2012-09-01
We present a systematic study of the performance of numerical pseudo-atomic orbital basis sets in the calculation of dielectric matrices of extended systems using the self-consistent Sternheimer approach of [F. Giustino et al., Phys. Rev. B 81, 115105 (2010)]. In order to cover a range of systems, from more insulating to more metallic character, we discuss results for the three semiconductors diamond, silicon, and germanium. Dielectric matrices of silicon and diamond calculated using our method fall within 1% of reference planewaves calculations, demonstrating that this method is promising. We find that polarization orbitals are critical for achieving good agreement with planewaves calculations, and that only a few additional ζ's are required for obtaining converged results, provided the split norm is properly optimized. Our present work establishes the validity of local orbital basis sets and the self-consistent Sternheimer approach for the calculation of dielectric matrices in extended systems, and prepares the ground for future studies of electronic excitations using these methods.
NASA Astrophysics Data System (ADS)
Zwanziger, Ch.; Zwanziger, H.; Szargan, R.; Reinhold, J.
1981-08-01
It is shown that the S1s and S2p binding energies and their chemical shifts in the molecules H 2S, SO 2, SF 6 and COS obtained with hole-state calculations using an extended Fenske-Hall method are in good agreement with experimental values if mixed ( Z + 1)-basis sets are applied.
Target modelling for SAR image simulation
NASA Astrophysics Data System (ADS)
Willis, Chris J.
2014-10-01
This paper examines target models that might be used in simulations of Synthetic Aperture Radar imagery. We examine the basis for scattering phenomena in SAR, and briefly review the Swerling target model set, before considering extensions to this set discussed in the literature. Methods for simulating and extracting parameters for the extended Swerling models are presented. It is shown that in many cases the more elaborate extended Swerling models can be represented, to a high degree of fidelity, by simpler members of the model set. Further, it is shown that it is quite unlikely that these extended models would be selected when fitting models to typical data samples.
A new basis set for molecular bending degrees of freedom.
Jutier, Laurent
2010-07-21
We present a new basis set as an alternative to Legendre polynomials for the variational treatment of bending vibrational degrees of freedom in order to highly reduce the number of basis functions. This basis set is inspired from the harmonic oscillator eigenfunctions but is defined for a bending angle in the range theta in [0:pi]. The aim is to bring the basis functions closer to the final (ro)vibronic wave functions nature. Our methodology is extended to complicated potential energy surfaces, such as quasilinearity or multiequilibrium geometries, by using several free parameters in the basis functions. These parameters allow several density maxima, linear or not, around which the basis functions will be mainly located. Divergences at linearity in integral computations are resolved as generalized Legendre polynomials. All integral computations required for the evaluation of molecular Hamiltonian matrix elements are given for both discrete variable representation and finite basis representation. Convergence tests for the low energy vibronic states of HCCH(++), HCCH(+), and HCCS are presented.
Polarized atomic orbitals for self-consistent field electronic structure calculations
NASA Astrophysics Data System (ADS)
Lee, Michael S.; Head-Gordon, Martin
1997-12-01
We present a new self-consistent field approach which, given a large "secondary" basis set of atomic orbitals, variationally optimizes molecular orbitals in terms of a small "primary" basis set of distorted atomic orbitals, which are simultaneously optimized. If the primary basis is taken as a minimal basis, the resulting functions are termed polarized atomic orbitals (PAO's) because they are valence (or core) atomic orbitals which have distorted or polarized in an optimal way for their molecular environment. The PAO's derive their flexibility from the fact that they are formed from atom-centered linear-combinations of the larger set of secondary atomic orbitals. The variational conditions satisfied by PAO's are defined, and an iterative method for performing a PAO-SCF calculation is introduced. We compare the PAO-SCF approach against full SCF calculations for the energies, dipoles, and molecular geometries of various molecules. The PAO's are potentially useful for studying large systems that are currently intractable with larger than minimal basis sets, as well as offering potential interpretative benefits relative to calculations in extended basis sets.
Benchmark of Ab Initio Bethe-Salpeter Equation Approach with Numeric Atom-Centered Orbitals
NASA Astrophysics Data System (ADS)
Liu, Chi; Kloppenburg, Jan; Kanai, Yosuke; Blum, Volker
The Bethe-Salpeter equation (BSE) approach based on the GW approximation has been shown to be successful for optical spectra prediction of solids and recently also for small molecules. We here present an all-electron implementation of the BSE using numeric atom-centered orbital (NAO) basis sets. In this work, we present benchmark of BSE implemented in FHI-aims for low-lying excitation energies for a set of small organic molecules, the well-known Thiel's set. The difference between our implementation (using an analytic continuation of the GW self-energy on the real axis) and the results generated by a fully frequency dependent GW treatment on the real axis is on the order of 0.07 eV for the benchmark molecular set. We study the convergence behavior to the complete basis set limit for excitation spectra, using a group of valence correlation consistent NAO basis sets (NAO-VCC-nZ), as well as for standard NAO basis sets for ground state DFT with extended augmentation functions (NAO+aug). The BSE results and convergence behavior are compared to linear-response time-dependent DFT, where excellent numerical convergence is shown for NAO+aug basis sets.
NASA Astrophysics Data System (ADS)
Martin, Jan M. L.; Sundermann, Andreas
2001-02-01
We propose large-core correlation-consistent (cc) pseudopotential basis sets for the heavy p-block elements Ga-Kr and In-Xe. The basis sets are of cc-pVTZ and cc-pVQZ quality, and have been optimized for use with the large-core (valence-electrons only) Stuttgart-Dresden-Bonn (SDB) relativistic pseudopotentials. Validation calculations on a variety of third-row and fourth-row diatomics suggest them to be comparable in quality to the all-electron cc-pVTZ and cc-pVQZ basis sets for lighter elements. Especially the SDB-cc-pVQZ basis set in conjunction with a core polarization potential (CPP) yields excellent agreement with experiment for compounds of the later heavy p-block elements. For accurate calculations on Ga (and, to a lesser extent, Ge) compounds, explicit treatment of 13 valence electrons appears to be desirable, while it seems inevitable for In compounds. For Ga and Ge, we propose correlation consistent basis sets extended for (3d) correlation. For accurate calculations on organometallic complexes of interest to homogenous catalysis, we recommend a combination of the standard cc-pVTZ basis set for first- and second-row elements, the presently derived SDB-cc-pVTZ basis set for heavier p-block elements, and for transition metals, the small-core [6s5p3d] Stuttgart-Dresden basis set-relativistic effective core potential combination supplemented by (2f1g) functions with exponents given in the Appendix to the present paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Zhoufei; Ouyang, Xiaolong; Gong, Zhihao
An extended hierarchy equation of motion (HEOM) is proposed and applied to study the dynamics of the spin-boson model. In this approach, a complete set of orthonormal functions are used to expand an arbitrary bath correlation function. As a result, a complete dynamic basis set is constructed by including the system reduced density matrix and auxiliary fields composed of these expansion functions, where the extended HEOM is derived for the time derivative of each element. The reliability of the extended HEOM is demonstrated by comparison with the stochastic Hamiltonian approach under room-temperature classical ohmic and sub-ohmic noises and the multilayermore » multiconfiguration time-dependent Hartree theory under zero-temperature quantum ohmic noise. Upon increasing the order in the hierarchical expansion, the result obtained from the extended HOEM systematically converges to the numerically exact answer.« less
Optimization of selected molecular orbitals in group basis sets.
Ferenczy, György G; Adams, William H
2009-04-07
We derive a local basis equation which may be used to determine the orbitals of a group of electrons in a system when the orbitals of that group are represented by a group basis set, i.e., not the basis set one would normally use but a subset suited to a specific electronic group. The group orbitals determined by the local basis equation minimize the energy of a system when a group basis set is used and the orbitals of other groups are frozen. In contrast, under the constraint of a group basis set, the group orbitals satisfying the Huzinaga equation do not minimize the energy. In a test of the local basis equation on HCl, the group basis set included only 12 of the 21 functions in a basis set one might ordinarily use, but the calculated active orbital energies were within 0.001 hartree of the values obtained by solving the Hartree-Fock-Roothaan (HFR) equation using all 21 basis functions. The total energy found was just 0.003 hartree higher than the HFR value. The errors with the group basis set approximation to the Huzinaga equation were larger by over two orders of magnitude. Similar results were obtained for PCl(3) with the group basis approximation. Retaining more basis functions allows an even higher accuracy as shown by the perfect reproduction of the HFR energy of HCl with 16 out of 21 basis functions in the valence basis set. When the core basis set was also truncated then no additional error was introduced in the calculations performed for HCl with various basis sets. The same calculations with fixed core orbitals taken from isolated heavy atoms added a small error of about 10(-4) hartree. This offers a practical way to calculate wave functions with predetermined fixed core and reduced base valence orbitals at reduced computational costs. The local basis equation can also be used to combine the above approximations with the assignment of local basis sets to groups of localized valence molecular orbitals and to derive a priori localized orbitals. An appropriately chosen localization and basis set assignment allowed a reproduction of the energy of n-hexane with an error of 10(-5) hartree, while the energy difference between its two conformers was reproduced with a similar accuracy for several combinations of localizations and basis set assignments. These calculations include localized orbitals extending to 4-5 heavy atoms and thus they require to solve reduced dimension secular equations. The dimensions are not expected to increase with increasing system size and thus the local basis equation may find use in linear scaling electronic structure calculations.
Theoretical dissociation energies for ionic molecules
NASA Technical Reports Server (NTRS)
Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.
1986-01-01
Ab initio calculations at the self-consistent-field and singles plus doubles configuration-interaction level are used to determine accurate spectroscopic parameters for most of the alkali and alkaline-earth fluorides, chlorides, oxides, sulfides, hydroxides, and isocyanides. Numerical Hartree-Fock (NHF) calculations are performed on selected systems to ensure that the extended Slater basis sets employed for the diatomic systems are near the Hartree-Fock limit. Extended Gaussian basis sets of at least triple-zeta plus double polarization equality are employed for the triatomic system. With this model, correlation effects are relatively small, but invariably increase the theoretical dissociation energies. The importance of correlating the electrons on both the anion and the metal is discussed. The theoretical dissociation energies are critically compared with the literature to rule out disparate experimental values. Theoretical (sup 2)Pi - (sup 2)Sigma (sup +) energy separations are presented for the alkali oxides and sulfides.
NASA Technical Reports Server (NTRS)
Almlof, Jan; Taylor, Peter R.
1990-01-01
A recently proposed scheme for using natural orbitals from atomic configuration interaction wave functions as a basis set for linear combination of atomic orbitals (LCAO) calculations is extended for the calculation of molecular properties. For one-electron properties like multipole moments, which are determined largely by the outermost regions of the molecular wave function, it is necessary to increase the flexibility of the basis in these regions. This is most easily done by uncontracting the outermost Gaussian primitives, and/or by adding diffuse primitives. A similar approach can be employed for the calculation of polarizabilities. Properties which are not dominated by the long-range part of the wave function, such as spectroscopic constants or electric field gradients at the nucleus, can generally be treated satisfactorily with the original atomic natural orbital sets.
Extending the granularity of representation and control for the MIL-STD CAIS 1.0 node model
NASA Technical Reports Server (NTRS)
Rogers, Kathy L.
1986-01-01
The Common APSE (Ada 1 Program Support Environment) Interface Set (CAIS) (DoD85) node model provides an excellent baseline for interfaces in a single-host development environment. To encompass the entire spectrum of computing, however, the CAIS model should be extended in four areas. It should provide the interface between the engineering workstation and the host system throughout the entire lifecycle of the system. It should provide a basis for communication and integration functions needed by distributed host environments. It should provide common interfaces for communications mechanisms to and among target processors. It should provide facilities for integration, validation, and verification of test beds extending to distributed systems on geographically separate processors with heterogeneous instruction set architectures (ISAS). Additions to the PROCESS NODE model to extend the CAIS into these four areas are proposed.
NASA Astrophysics Data System (ADS)
Champagne, Benoı̂t; Botek, Edith; Nakano, Masayoshi; Nitta, Tomoshige; Yamaguchi, Kizashi
2005-03-01
The basis set and electron correlation effects on the static polarizability (α) and second hyperpolarizability (γ) are investigated ab initio for two model open-shell π-conjugated systems, the C5H7 radical and the C6H8 radical cation in their doublet state. Basis set investigations evidence that the linear and nonlinear responses of the radical cation necessitate the use of a less extended basis set than its neutral analog. Indeed, double-zeta-type basis sets supplemented by a set of d polarization functions but no diffuse functions already provide accurate (hyper)polarizabilities for C6H8 whereas diffuse functions are compulsory for C5H7, in particular, p diffuse functions. In addition to the 6-31G*+pd basis set, basis sets resulting from removing not necessary diffuse functions from the augmented correlation consistent polarized valence double zeta basis set have been shown to provide (hyper)polarizability values of similar quality as more extended basis sets such as augmented correlation consistent polarized valence triple zeta and doubly augmented correlation consistent polarized valence double zeta. Using the selected atomic basis sets, the (hyper)polarizabilities of these two model compounds are calculated at different levels of approximation in order to assess the impact of including electron correlation. As a function of the method of calculation antiparallel and parallel variations have been demonstrated for α and γ of the two model compounds, respectively. For the polarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset methods bracket the reference value obtained at the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples level whereas the projected unrestricted second-order Møller-Plesset results are in much closer agreement with the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples values than the projected unrestricted Hartree-Fock results. Moreover, the differences between the restricted open-shell Hartree-Fock and restricted open-shell second-order Møller-Plesset methods are small. In what concerns the second hyperpolarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset values remain of similar quality while using spin-projected schemes fails for the charged system but performs nicely for the neutral one. The restricted open-shell schemes, and especially the restricted open-shell second-order Møller-Plesset method, provide for both compounds γ values close to the results obtained at the unrestricted coupled cluster level including singles and doubles with a perturbative inclusion of the triples. Thus, to obtain well-converged α and γ values at low-order electron correlation levels, the removal of spin contamination is a necessary but not a sufficient condition. Density-functional theory calculations of α and γ have also been carried out using several exchange-correlation functionals. Those employing hybrid exchange-correlation functionals have been shown to reproduce fairly well the reference coupled cluster polarizability and second hyperpolarizability values. In addition, inclusion of Hartree-Fock exchange is of major importance for determining accurate polarizability whereas for the second hyperpolarizability the gradient corrections are large.
Basis set study of classical rotor lattice dynamics.
Witkoskie, James B; Wu, Jianlan; Cao, Jianshu
2004-03-22
The reorientational relaxation of molecular systems is important in many phenomenon and applications. In this paper, we explore the reorientational relaxation of a model Brownian rotor lattice system with short range interactions in both the high and low temperature regimes. In this study, we use a basis set expansion to capture collective motions of the system. The single particle basis set is used in the high temperature regime, while the spin wave basis is used in the low temperature regime. The equations of motion derived in this approach are analogous to the generalized Langevin equation, but the equations render flexibility by allowing nonequilibrium initial conditions. This calculation shows that the choice of projection operators in the generalized Langevin equation (GLE) approach corresponds to defining a specific inner-product space, and this inner-product space should be chosen to reveal the important physics of the problem. The basis set approach corresponds to an inner-product and projection operator that maintain the orthogonality of the spherical harmonics and provide a convenient platform for analyzing GLE expansions. The results compare favorably with numerical simulations, and the formalism is easily extended to more complex systems. (c) 2004 American Institute of Physics
NASA Astrophysics Data System (ADS)
Beloy, Kyle; Derevianko, Andrei
2008-09-01
The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V.M. Shabaev et al., Phys. Rev. Lett. 93 (2004) 130405] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely-employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37 (1988) 307-315]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s-7s transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach. In addition, we present a strategy for optimizing the size of the basis sets by choosing progressively smaller number of basis functions for increasingly higher partial waves. This strategy exploits suppression of contributions of high partial waves to typical many-body correlation corrections.
A numerical fragment basis approach to SCF calculations.
NASA Astrophysics Data System (ADS)
Hinde, Robert J.
1997-11-01
The counterpoise method is often used to correct for basis set superposition error in calculations of the electronic structure of bimolecular systems. One drawback of this approach is the need to specify a ``reference state'' for the system; for reactive systems, the choice of an unambiguous reference state may be difficult. An example is the reaction F^- + HCl arrow HF + Cl^-. Two obvious reference states for this reaction are F^- + HCl and HF + Cl^-; however, different counterpoise-corrected interaction energies are obtained using these two reference states. We outline a method for performing SCF calculations which employs numerical basis functions; this method attempts to eliminate basis set superposition errors in an a priori fashion. We test the proposed method on two one-dimensional, three-center systems and discuss the possibility of extending our approach to include electron correlation effects.
NASA Technical Reports Server (NTRS)
Almloef, Jan; Taylor, Peter R.
1989-01-01
A recently proposed scheme for using natural orbitals from atomic configuration interaction (CI) wave functions as a basis set for linear combination of atomic orbitals (LCAO) calculations is extended for the calculation of molecular properties. For one-electron properties like multipole moments, which are determined largely by the outermost regions of the molecular wave function, it is necessary to increase the flexibility of the basis in these regions. This is most easily done by uncontracting the outmost Gaussian primitives, and/or by adding diffuse primitives. A similar approach can be employed for the calculation of polarizabilities. Properties which are not dominated by the long-range part of the wave function, such as spectroscopic constants or electric field gradients at the nucleus, can generally be treated satisfactorily with the original atomic natural orbital (ANO) sets.
Polyatomic molecular Dirac-Hartree-Fock calculations with Gaussian basis sets
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.; Faegri, Knut, Jr.; Taylor, Peter R.
1990-01-01
Numerical methods have been used successfully in atomic Dirac-Hartree-Fock (DHF) calculations for many years. Some DHF calculations using numerical methods have been done on diatomic molecules, but while these serve a useful purpose for calibration, the computational effort in extending this approach to polyatomic molecules is prohibitive. An alternative more in line with traditional quantum chemistry is to use an analytical basis set expansion of the wave function. This approach fell into disrepute in the early 1980's due to problems with variational collapse and intruder states, but has recently been put on firm theoretical foundations. In particular, the problems of variational collapse are well understood, and prescriptions for avoiding the most serious failures have been developed. Consequently, it is now possible to develop reliable molecular programs using basis set methods. This paper describes such a program and reports results of test calculations to demonstrate the convergence and stability of the method.
NBO analysis and vibrational frequencies of tautomers of citrinin by density functional theory
USDA-ARS?s Scientific Manuscript database
Citrinin is a toxic polyketide contaminant of a number of agricultural commodities, notably Monascus-fermented red rice. Detailed structures and electronic properties of three tautomeric forms of citrinin were investigated using density functional theory calculations at various extended basis sets ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCEmore » allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.« less
Large-Scale Computation of Nuclear Magnetic Resonance Shifts for Paramagnetic Solids Using CP2K.
Mondal, Arobendo; Gaultois, Michael W; Pell, Andrew J; Iannuzzi, Marcella; Grey, Clare P; Hutter, Jürg; Kaupp, Martin
2018-01-09
Large-scale computations of nuclear magnetic resonance (NMR) shifts for extended paramagnetic solids (pNMR) are reported using the highly efficient Gaussian-augmented plane-wave implementation of the CP2K code. Combining hyperfine couplings obtained with hybrid functionals with g-tensors and orbital shieldings computed using gradient-corrected functionals, contact, pseudocontact, and orbital-shift contributions to pNMR shifts are accessible. Due to the efficient and highly parallel performance of CP2K, a wide variety of materials with large unit cells can be studied with extended Gaussian basis sets. Validation of various approaches for the different contributions to pNMR shifts is done first for molecules in a large supercell in comparison with typical quantum-chemical codes. This is then extended to a detailed study of g-tensors for extended solid transition-metal fluorides and for a series of complex lithium vanadium phosphates. Finally, lithium pNMR shifts are computed for Li 3 V 2 (PO 4 ) 3 , for which detailed experimental data are available. This has allowed an in-depth study of different approaches (e.g., full periodic versus incremental cluster computations of g-tensors and different functionals and basis sets for hyperfine computations) as well as a thorough analysis of the different contributions to the pNMR shifts. This study paves the way for a more-widespread computational treatment of NMR shifts for paramagnetic materials.
NASA Astrophysics Data System (ADS)
Beloy, Kyle; Derevianko, Andrei
2008-05-01
The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V. M. Shabaev et al., Phys. Rev. Lett. 93, 130405 (2004)] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely- employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37, 307-15 (1988)]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s1/2-7s1/2 transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach.
A correlated ab initio study of linear carbon-chain radicals CnH (n = 2-7)
NASA Technical Reports Server (NTRS)
Woon, D. E.; Loew, G. H. (Principal Investigator)
1995-01-01
Linear carbon-chain radicals CnH for n = 2-7 have been studied with correlation consistent valence and core-valence basis sets and the coupled cluster method RCCSD(T). Equilibrium structures, rotational constants, and dipole moments are reported and compared with available experimental data. The ground state of the even-n series changes from 2 sigma+ to 2 pi as the chain is extended. For C4H, the 2 sigma+ state was found to lie only 72 cm-1 below the 2 pi state in the estimated complete basis set limit for valence correlation. The C2H- and C3H- anions have also been characterized.
NASA Astrophysics Data System (ADS)
Yockel, Scott; Mintz, Benjamin; Wilson, Angela K.
2004-07-01
Advanced ab initio [coupled cluster theory through quasiperturbative triple excitations (CCSD(T))] and density functional (B3LYP) computational chemistry approaches were used in combination with the standard and augmented correlation consistent polarized valence basis sets [cc-pVnZ and aug-cc-pVnZ, where n=D(2), T(3), Q(4), and 5] to investigate the energetic and structural properties of small molecules containing third-row (Ga-Kr) atoms. These molecules were taken from the Gaussian-2 (G2) extended test set for third-row atoms. Several different schemes were used to extrapolate the calculated energies to the complete basis set (CBS) limit for CCSD(T) and the Kohn-Sham (KS) limit for B3LYP. Zero point energy and spin orbital corrections were included in the results. Overall, CCSD(T) atomization energies, ionization energies, proton affinities, and electron affinities are in good agreement with experiment, within 1.1 kcal/mol when the CBS limit has been determined using a series of two basis sets of at least triple zeta quality. For B3LYP, the overall mean absolute deviation from experiment for the three properties and the series of molecules is more significant at the KS limit, within 2.3 and 2.6 kcal/mol for the cc-pVnZ and aug-cc-pVnZ basis set series, respectively.
Benchmarking Hydrogen and Carbon NMR Chemical Shifts at HF, DFT, and MP2 Levels.
Flaig, Denis; Maurer, Marina; Hanni, Matti; Braunger, Katharina; Kick, Leonhard; Thubauville, Matthias; Ochsenfeld, Christian
2014-02-11
An extensive study of error distributions for calculating hydrogen and carbon NMR chemical shifts at Hartree-Fock (HF), density functional theory (DFT), and Møller-Plesset second-order perturbation theory (MP2) levels is presented. Our investigation employs accurate CCSD(T)/cc-pVQZ calculations for providing reference data for 48 hydrogen and 40 carbon nuclei within an extended set of chemical compounds covering a broad range of the NMR scale with high relevance to chemical applications, especially in organic chemistry. Besides the approximations of HF, a variety of DFT functionals, and conventional MP2, we also present results with respect to a spin component-scaled MP2 (GIAO-SCS-MP2) approach. For each method, the accuracy is analyzed in detail for various basis sets, allowing identification of efficient combinations of method and basis set approximations.
ERIC Educational Resources Information Center
Carmona, Joseph E.; Holland, Alissa K.; Harrison, David W.
2009-01-01
Throughout history, vestibular and emotional dysregulation have often manifested together in clinical settings, with little consideration that they may have a common basis. Regarding vestibular mechanisms, the role of brainstem and cerebellar structures has been emphasized in the neurological literature, whereas emotion processing in the cerebral…
On the ab initio evaluation of Hubbard parameters. II. The κ-(BEDT-TTF)2Cu[N(CN)2]Br crystal
NASA Astrophysics Data System (ADS)
Fortunelli, Alessandro; Painelli, Anna
1997-05-01
A previously proposed approach for the ab initio evaluation of Hubbard parameters is applied to BEDT-TTF dimers. The dimers are positioned according to four geometries taken as the first neighbors from the experimental data on the κ-(BEDT-TTF)2Cu[N(CN)2]Br crystal. RHF-SCF, CAS-SCF and frozen-orbital calculations using the 6-31G** basis set are performed with different values of the total charge, allowing us to derive all the relevant parameters. It is found that the electronic structure of the BEDT-TTF planes is adequately described by the standard Extended Hubbard Model, with the off-diagonal electron-electron interaction terms (X and W) of negligible size. The derived parameters are in good agreement with available experimental data. Comparison with previous theoretical estimates shows that the t values compare well with those obtained from Extended Hückel Theory (whereas the minimal basis set estimates are completely unreliable). On the other hand, the Uaeff values exhibit an appreciable dependence on the chemical environment.
A Correlated Ab Initio Study of Linear Carbon-Chain Radicals C(sub n)H (n=2-7)
NASA Technical Reports Server (NTRS)
Woon, David E.
1995-01-01
Linear carbon-chain radicals C(sub n) H for n = 2-7 have been studied with correlation consistent valence and core-valence basis sets and the coupled cluster method RCCSD(T). Equilibrium structures, rotational constants, and dipole moments are reported and compared with available experimental data. The ground state of the even-n series changes from 2Sigma(+) to 2Pi as the chain is extended. For C4H, the 2Sigma(+) state was found to lie only 72 cm(exp -1) below the 2Pi state in the estimated complete basis set limit for valence correlation. The C2H(-) and C3H(-) anions have also been characterized.
Extension of the Rejection Sensitivity Construct to the Interpersonal Functioning of Gay Men
ERIC Educational Resources Information Center
Pachankis, John E.; Goldfried, Marvin R.; Ramrattan, Melissa E.
2008-01-01
On the basis of recent evidence suggesting that gay men are particularly likely to fear interpersonal rejection, the authors set out to extend the "rejection sensitivity" construct to the mental health concerns of gay men. After establishing a reliable and valid measure of the gay-related rejection sensitivity construct, the authors use this to…
Extended polarization in 3rd order SCC-DFTB from chemical potential equilization
Kaminski, Steve; Giese, Timothy J.; Gaus, Michael; York, Darrin M.; Elstner, Marcus
2012-01-01
In this work we augment the approximate density functional method SCC-DFTB (DFTB3) with the chemical potential equilization (CPE) approach in order to improve the performance for molecular electronic polarizabilities. The CPE method, originally implemented for NDDO type methods by Giese and York, has been shown to emend minimal basis methods wrt response properties significantly, and has been applied to SCC-DFTB recently. CPE allows to overcome this inherent limitation of minimal basis methods by supplying an additional response density. The systematic underestimation is thereby corrected quantitatively without the need to extend the atomic orbital basis, i.e. without increasing the overall computational cost significantly. Especially the dependency of polarizability as a function of molecular charge state was significantly improved from the CPE extension of DFTB3. The empirical parameters introduced by the CPE approach were optimized for 172 organic molecules in order to match the results from density functional methods (DFT) methods using large basis sets. However, the first order derivatives of molecular polarizabilities, as e.g. required to compute Raman activities, are not improved by the current CPE implementation, i.e. Raman spectra are not improved. PMID:22894819
Cotton-Mouton effect and shielding polarizabilities of ethylene: An MCSCF study
NASA Astrophysics Data System (ADS)
Coriani, Sonia; Rizzo, Antonio; Ruud, Kenneth; Helgaker, Trygve
1997-03-01
The static hypermagnetizabilities and nuclear shielding polarizabilities of the carbon and hydrogen atoms of ethylene have been computed using multiconfigurational linear-response theory and a finite-field method, in a mixed analytical-numerical approach. Extended sets of magnetic-field-dependent basis functions have been employed in large MCSCF calculations, involving active spaces giving rise to a few million configurations in the finite-field perturbed symmetry. The convergence of the observables with respect to the extension of the basis set as well as the effect of electron correlation have been investigated. Whereas for the shielding polarizabilities we can compare with other published SCF results, the ab initio estimates for the static hypermagnetizabilities and the observable to which they are related - the Cotton-Mouton constant, - are presented for the first time.
Extended Basis Set Calculations of Atomization Energies: Comparison of Isogyric and Direct Results.
1989-09-01
CF . Adams and .J. Page, "Structures an Energies for Small Boron Co pounds . One and Two Boron Compounds," BRI, Technical Repor in press. 8. R. Kirsh...5000 L. Harris Dover, NJ 07801 2 Cnmnander Naval Surface Weapons Center 2 Commander ATTN: R. Bernecker, R-13 US Army Missile Command G.B. Wilmot , R
Inter-Vehicular Ad Hoc Networks: From the Ground Truth to Algorithm Design and Testbed Architecture
ERIC Educational Resources Information Center
Giordano, Eugenio
2011-01-01
Many of the devices we interact with on a daily basis are currently equipped with wireless connectivity. Soon this will be extended to the vehicles we drive/ride every day. Wirelessly connected vehicles will form a new kind of network that will enable a wide set of innovative applications ranging from enhanced safety to entertainment. To…
NASA Astrophysics Data System (ADS)
Matias, J.; Mescia, F.; Ramon, M.; Virto, J.
2012-04-01
We present a complete and optimal set of observables for the exclusive 4-body overline B meson decay {overline B_d} to {overline {text{K}}^{{*0}}} (→ Kπ) ℓ + ℓ -in the low dilepton mass region, that contains a maximal number of clean observables. This basis of observables is built in a systematic way. We show that all the previously defined observables and any observable that one can construct, can be expressed as a function of this basis. This set of observables contains all the information that can be extracted from the angular distribution in the cleanest possible way. We provide explicit expressions for the full and the uniangular distributions in terms of this basis. The conclusions presented here can be easily extended to the large- q 2 region. We study the sensitivity of the observables to right-handed currents and scalars. Finally, we present for the first time all the symmetries of the full distribution including massive terms and scalar contributions.
Bouallègue, Fayçal Ben; Crouzet, Jean-François; Comtat, Claude; Fourcade, Marjolaine; Mohammadi, Bijan; Mariano-Goulart, Denis
2007-07-01
This paper presents an extended 3-D exact rebinning formula in the Fourier space that leads to an iterative reprojection algorithm (iterative FOREPROJ), which enables the estimation of unmeasured oblique projection data on the basis of the whole set of measured data. In first approximation, this analytical formula also leads to an extended Fourier rebinning equation that is the basis for an approximate reprojection algorithm (extended FORE). These algorithms were evaluated on numerically simulated 3-D positron emission tomography (PET) data for the solution of the truncation problem, i.e., the estimation of the missing portions in the oblique projection data, before the application of algorithms that require complete projection data such as some rebinning methods (FOREX) or 3-D reconstruction algorithms (3DRP or direct Fourier methods). By taking advantage of all the 3-D data statistics, the iterative FOREPROJ reprojection provides a reliable alternative to the classical FOREPROJ method, which only exploits the low-statistics nonoblique data. It significantly improves the quality of the external reconstructed slices without loss of spatial resolution. As for the approximate extended FORE algorithm, it clearly exhibits limitations due to axial interpolations, but will require clinical studies with more realistic measured data in order to decide on its pertinence.
Characterization of impulse noise and analysis of its effect upon correlation receivers
NASA Technical Reports Server (NTRS)
Houts, R. C.; Moore, J. D.
1971-01-01
A noise model is formulated to describe the impulse noise in many digital systems. A simplified model, which assumes that each noise burst contains a randomly weighted version of the same basic waveform, is used to derive the performance equations for a correlation receiver. The expected number of bit errors per noise burst is expressed as a function of the average signal energy, signal-set correlation coefficient, bit time, noise-weighting-factor variance and probability density function, and a time range function which depends on the crosscorrelation of the signal-set basis functions and the noise waveform. A procedure is established for extending the results for the simplified noise model to the general model. Unlike the performance results for Gaussian noise, it is shown that for impulse noise the error performance is affected by the choice of signal-set basis functions and that Orthogonal signaling is not equivalent to On-Off signaling with the same average energy.
Non-expanded dispersion energies and damping functions for Ar 2 and Li 2
NASA Astrophysics Data System (ADS)
Knowles, Peter J.; Meath, William J.
1986-02-01
The non-expanded second-order dispersion energies and damping functions associated with the long-range dispersion energies varying as R-6, R-8and R-10 have been calculated for Ar 2 and Li 2 with the time-dependent Hartree-Fock method, using extended Gaussian basis sets. These results are used to discuss the difficulties associated with ab initio computations of these quantities.
Köhn, Andreas
2010-11-07
The coupled-cluster singles and doubles method augmented with single Slater-type correlation factors (CCSD-F12) determined by the cusp conditions (also denoted as SP ansatz) yields results close to the basis set limit with only small overhead compared to conventional CCSD. Quantitative calculations on many-electron systems, however, require to include the effect of connected triple excitations at least. In this contribution, the recently proposed [A. Köhn, J. Chem. Phys. 130, 131101 (2009)] extended SP ansatz and its application to the noniterative triples correction CCSD(T) is reviewed. The approach allows to include explicit correlation into connected triple excitations without introducing additional unknown parameters. The explicit expressions are presented and analyzed, and possible simplifications to arrive at a computationally efficient scheme are suggested. Numerical tests based on an implementation obtained by an automated approach are presented. Using a partial wave expansion for the neon atom, we can show that the proposed ansatz indeed leads to the expected (L(max)+1)(-7) convergence of the noniterative triples correction, where L(max) is the maximum angular momentum in the orbital expansion. Further results are reported for a test set of 29 molecules, employing Peterson's F12-optimized basis sets. We find that the customary approach of using the conventional noniterative triples correction on top of a CCSD-F12 calculation leads to significant basis set errors. This, however, is not always directly visible for total CCSD(T) energies due to fortuitous error compensation. The new approach offers a thoroughly explicitly correlated CCSD(T)-F12 method with improved basis set convergence of the triples contributions to both total and relative energies.
A proposal to extend our understanding of the global economy
NASA Technical Reports Server (NTRS)
Hough, Robbin R.; Ehlers, Manfred
1991-01-01
Satellites acquire information on a global and repetitive basis. They are thus ideal tools for use when global scale and analysis over time is required. Data from satellites comes in digital form which means that it is ideally suited for incorporation in digital data bases and that it can be evaluated using automated techniques. The development of a global multi-source data set which integrates digital information is proposed regarding some 15,000 major industrial sites worldwide with remotely sensed images of the sites. The resulting data set would provide the basis for a wide variety of studies of the global economy. The preliminary results give promise of a new class of global policy model which is far more detailed and helpful to local policy makers than its predecessors. The central thesis of this proposal is that major industrial sites can be identified and their utilization can be tracked with the aid of satellite images.
Renormalization, conformal ward identities and the origin of a conformal anomaly pole
NASA Astrophysics Data System (ADS)
Corianò, Claudio; Maglio, Matteo Maria
2018-06-01
We investigate the emergence of a conformal anomaly pole in conformal field theories in the case of the TJJ correlator. We show how it comes to be generated in dimensional renormalization, using a basis of 13 form factors (the F-basis), where only one of them requires renormalization (F13), extending previous studies. We then combine recent results on the structure of the non-perturbative solutions of the conformal Ward identities (CWI's) for the TJJ in momentum space, expressed in terms of a minimal set of 4 form factors (A-basis), with the properties of the F-basis, and show how the singular behaviour of the corresponding form factors in both basis can be related. The result proves the centrality of such massless effective interactions induced by the anomaly, which have recently found realization in solid state, in the theory of topological insulators and of Weyl semimetals. This pattern is confirmed in massless abelian and nonabelian theories (QED and QCD) investigated at one-loop.
Peng, Lihong; Wang, Yejun; Chang, Chang-Tang
2014-11-01
Mercury is a physiological toxin released by spent fluorescent lamps (SFLs) and is considered a serious pollutant. As the world's largest producer of fluorescent lamps, China suffers from SFL pollution because of inefficient recycling and management of SFLs. Drawing upon the most successful practices worldwide, this paper suggests the recycling of SFLs on the basis of the extended producer responsibility (EPR) system in China. Manufacturers and importers are the main parties responsible for the take-back, recycling, and disposal ofSFLs in the EPR system. In view of the situation in China and to address the objectives of the EPR system, this paper recommends the implementation of a third-party take-back mode for small- and medium-scale enterprises and of a takeback mode for large enterprises to be carried out by original equipment manufacturers. This paper suggests an extended responsibility fund to finance and support the SFL recycling system and discusses in detail the different recycling network systems and fund flows of the two take-back modes. By conducting a case study, the authors determine that the subsidy rate for SFLs that a recycling company can obtain from the extended responsibility fund for recycling and disposing of lamps can be set at $1.35/kg. The authors also predict the levy level that fluorescent lamp manufacturers must submit.
Bryantsev, Vyacheslav S; Diallo, Mamadou S; van Duin, Adri C T; Goddard, William A
2009-04-14
In this paper we assess the accuracy of the B3LYP, X3LYP, and newly developed M06-L, M06-2X, and M06 functionals to predict the binding energies of neutral and charged water clusters including (H2O)n, n = 2-8, 20), H3O(+)(H2O)n, n = 1-6, and OH(-)(H2O)n, n = 1-6. We also compare the predicted energies of two ion hydration and neutralization reactions on the basis of the calculated binding energies. In all cases, we use as benchmarks calculated binding energies of water clusters extrapolated to the complete basis set limit of the second-order Møller-Plesset perturbation theory with the effects of higher order correlation estimated at the coupled-cluster theory with single, double, and perturbative triple excitations in the aug-cc-pVDZ basis set. We rank the accuracy of the functionals on the basis of the mean unsigned error (MUE) between calculated benchmark and density functional theory energies. The corresponding MUE (kcal/mol) for each functional is listed in parentheses. We find that M06-L (0.73) and M06 (0.84) give the most accurate binding energies using very extended basis sets such as aug-cc-pV5Z. For more affordable basis sets, the best methods for predicting the binding energies of water clusters are M06-L/aug-cc-pVTZ (1.24), B3LYP/6-311++G(2d,2p) (1.29), and M06/aug-cc-PVTZ (1.33). M06-L/aug-cc-pVTZ also gives more accurate energies for the neutralization reactions (1.38), whereas B3LYP/6-311++G(2d,2p) gives more accurate energies for the ion hydration reactions (1.69).
Galas, David J; Sakhanenko, Nikita A; Skupin, Alexander; Ignac, Tomasz
2014-02-01
Context dependence is central to the description of complexity. Keying on the pairwise definition of "set complexity," we use an information theory approach to formulate general measures of systems complexity. We examine the properties of multivariable dependency starting with the concept of interaction information. We then present a new measure for unbiased detection of multivariable dependency, "differential interaction information." This quantity for two variables reduces to the pairwise "set complexity" previously proposed as a context-dependent measure of information in biological systems. We generalize it here to an arbitrary number of variables. Critical limiting properties of the "differential interaction information" are key to the generalization. This measure extends previous ideas about biological information and provides a more sophisticated basis for the study of complexity. The properties of "differential interaction information" also suggest new approaches to data analysis. Given a data set of system measurements, differential interaction information can provide a measure of collective dependence, which can be represented in hypergraphs describing complex system interaction patterns. We investigate this kind of analysis using simulated data sets. The conjoining of a generalized set complexity measure, multivariable dependency analysis, and hypergraphs is our central result. While our focus is on complex biological systems, our results are applicable to any complex system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, Simon A.; Clin, Lucien; Ochsenfeld, Christian, E-mail: christian.ochsenfeld@uni-muenchen.de
2014-06-14
Our recently developed QQR-type integral screening is introduced in our Cholesky-decomposed pseudo-densities Møller-Plesset perturbation theory of second order (CDD-MP2) method. We use the resolution-of-the-identity (RI) approximation in combination with efficient integral transformations employing sparse matrix multiplications. The RI-CDD-MP2 method shows an asymptotic cubic scaling behavior with system size and a small prefactor that results in an early crossover to conventional methods for both small and large basis sets. We also explore the use of local fitting approximations which allow to further reduce the scaling behavior for very large systems. The reliability of our method is demonstrated on test sets formore » interaction and reaction energies of medium sized systems and on a diverse selection from our own benchmark set for total energies of larger systems. Timings on DNA systems show that fast calculations for systems with more than 500 atoms are feasible using a single processor core. Parallelization extends the range of accessible system sizes on one computing node with multiple cores to more than 1000 atoms in a double-zeta basis and more than 500 atoms in a triple-zeta basis.« less
Solvation effects on chemical shifts by embedded cluster integral equation theory.
Frach, Roland; Kast, Stefan M
2014-12-11
The accurate computational prediction of nuclear magnetic resonance (NMR) parameters like chemical shifts represents a challenge if the species studied is immersed in strongly polarizing environments such as water. Common approaches to treating a solvent in the form of, e.g., the polarizable continuum model (PCM) ignore strong directional interactions such as H-bonds to the solvent which can have substantial impact on magnetic shieldings. We here present a computational methodology that accounts for atomic-level solvent effects on NMR parameters by extending the embedded cluster reference interaction site model (EC-RISM) integral equation theory to the prediction of chemical shifts of N-methylacetamide (NMA) in aqueous solution. We examine the influence of various so-called closure approximations of the underlying three-dimensional RISM theory as well as the impact of basis set size and different treatment of electrostatic solute-solvent interactions. We find considerable and systematic improvement over reference PCM and gas phase calculations. A smaller basis set in combination with a simple point charge model already yields good performance which can be further improved by employing exact electrostatic quantum-mechanical solute-solvent interaction energies. A larger basis set benefits more significantly from exact over point charge electrostatics, which can be related to differences of the solvent's charge distribution.
Long-range analysis of density fitting in extended systems
NASA Astrophysics Data System (ADS)
Varga, Scarontefan
Density fitting scheme is analyzed for the Coulomb problem in extended systems from the correctness of long-range behavior point of view. We show that for the correct cancellation of divergent long-range Coulomb terms it is crucial for the density fitting scheme to reproduce the overlap matrix exactly. It is demonstrated that from all possible fitting metric choices the Coulomb metric is the only one which inherently preserves the overlap matrix for infinite systems with translational periodicity. Moreover, we show that by a small additional effort any non-Coulomb metric fit can be made overlap-preserving as well. The problem is analyzed for both ordinary and Poisson basis set choices.
NASA Astrophysics Data System (ADS)
Maranzana, Andrea; Giordana, Anna; Indarto, Antonius; Tonachini, Glauco; Barone, Vincenzo; Causà, Mauro; Pavone, Michele
2013-12-01
Our purpose is to identify a computational level sufficiently dependable and affordable to assess trends in the interaction of a variety of radical or closed shell unsaturated hydro-carbons A adsorbed on soot platelet models B. These systems, of environmental interest, would unavoidably have rather large sizes, thus prompting to explore in this paper the performances of relatively low-level computational methods and compare them with higher-level reference results. To this end, the interaction of three complexes between non-polar species, vinyl radical, ethyne, or ethene (A) with benzene (B) is studied, since these species, involved themselves in growth processes of polycyclic aromatic hydrocarbons (PAHs) and soot particles, are small enough to allow high-level reference calculations of the interaction energy ΔEAB. Counterpoise-corrected interaction energies ΔEAB are used at all stages. (1) Density Functional Theory (DFT) unconstrained optimizations of the A-B complexes are carried out, using the B3LYP-D, ωB97X-D, and M06-2X functionals, with six basis sets: 6-31G(d), 6-311 (2d,p), and 6-311++G(3df,3pd); aug-cc-pVDZ and aug-cc-pVTZ; N07T. (2) Then, unconstrained optimizations by Møller-Plesset second order Perturbation Theory (MP2), with each basis set, allow subsequent single point Coupled Cluster Singles Doubles and perturbative estimate of the Triples energy computations with the same basis sets [CCSD(T)//MP2]. (3) Based on an additivity assumption of (i) the estimated MP2 energy at the complete basis set limit [EMP2/CBS] and (ii) the higher-order correlation energy effects in passing from MP2 to CCSD(T) at the aug-cc-pVTZ basis set, ΔECC-MP, a CCSD(T)/CBS estimate is obtained and taken as a computational energy reference. At DFT, variations in ΔEAB with basis set are not large for the title molecules, and the three functionals perform rather satisfactorily even with rather small basis sets [6-31G(d) and N07T], exhibiting deviation from the computational reference of less than 1 kcal mol-1. The zero-point vibrational energy corrected estimates Δ(EAB+ZPE), obtained with the three functionals and the 6-31G(d) and N07T basis sets, are compared with experimental D0 measures, when available. In particular, this comparison is finally extended to the naphthalene and coronene dimers and to three π-π associations of different PAHs (R, made by 10, 16, or 24 C atoms) and P (80 C atoms).
Maranzana, Andrea; Giordana, Anna; Indarto, Antonius; Tonachini, Glauco; Barone, Vincenzo; Causà, Mauro; Pavone, Michele
2013-12-28
Our purpose is to identify a computational level sufficiently dependable and affordable to assess trends in the interaction of a variety of radical or closed shell unsaturated hydro-carbons A adsorbed on soot platelet models B. These systems, of environmental interest, would unavoidably have rather large sizes, thus prompting to explore in this paper the performances of relatively low-level computational methods and compare them with higher-level reference results. To this end, the interaction of three complexes between non-polar species, vinyl radical, ethyne, or ethene (A) with benzene (B) is studied, since these species, involved themselves in growth processes of polycyclic aromatic hydrocarbons (PAHs) and soot particles, are small enough to allow high-level reference calculations of the interaction energy ΔEAB. Counterpoise-corrected interaction energies ΔEAB are used at all stages. (1) Density Functional Theory (DFT) unconstrained optimizations of the A-B complexes are carried out, using the B3LYP-D, ωB97X-D, and M06-2X functionals, with six basis sets: 6-31G(d), 6-311 (2d,p), and 6-311++G(3df,3pd); aug-cc-pVDZ and aug-cc-pVTZ; N07T. (2) Then, unconstrained optimizations by Møller-Plesset second order Perturbation Theory (MP2), with each basis set, allow subsequent single point Coupled Cluster Singles Doubles and perturbative estimate of the Triples energy computations with the same basis sets [CCSD(T)//MP2]. (3) Based on an additivity assumption of (i) the estimated MP2 energy at the complete basis set limit [EMP2/CBS] and (ii) the higher-order correlation energy effects in passing from MP2 to CCSD(T) at the aug-cc-pVTZ basis set, ΔECC-MP, a CCSD(T)/CBS estimate is obtained and taken as a computational energy reference. At DFT, variations in ΔEAB with basis set are not large for the title molecules, and the three functionals perform rather satisfactorily even with rather small basis sets [6-31G(d) and N07T], exhibiting deviation from the computational reference of less than 1 kcal mol(-1). The zero-point vibrational energy corrected estimates Δ(EAB+ZPE), obtained with the three functionals and the 6-31G(d) and N07T basis sets, are compared with experimental D0 measures, when available. In particular, this comparison is finally extended to the naphthalene and coronene dimers and to three π-π associations of different PAHs (R, made by 10, 16, or 24 C atoms) and P (80 C atoms).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaghlane, Saida Ben; Cotton, C. Eric; Francisco, Joseph S., E-mail: francisc@purdue.edu, E-mail: hochlaf@univ-mlv.fr
2013-11-07
Accurate ab initio computations of structural and spectroscopic parameters for the HPS/HSP molecules and corresponding cations and anions have been performed. For the electronic structure computations, standard and explicitly correlated coupled cluster techniques in conjunction with large basis sets have been adopted. In particular, we present equilibrium geometries, rotational constants, harmonic vibrational frequencies, adiabatic ionization energies, electron affinities, and, for the neutral species, singlet-triplet relative energies. Besides, the full-dimensional potential energy surfaces (PESs) for HPS{sup x} and HSP{sup x} (x = −1,0,1) systems have been generated at the standard coupled cluster level with a basis set of augmented quintuple-zeta quality.more » By applying perturbation theory to the calculated PESs, an extended set of spectroscopic constants, including τ, first-order centrifugal distortion and anharmonic vibrational constants has been obtained. In addition, the potentials have been used in a variational approach to deduce the whole pattern of vibrational levels up to 4000 cm{sup −1} above the minima of the corresponding PESs.« less
Burkatzki, M; Filippi, Claudia; Dolg, M
2008-10-28
We extend our recently published set of energy-consistent scalar-relativistic Hartree-Fock pseudopotentials by the 3d-transition metal elements, scandium through zinc. The pseudopotentials do not exhibit a singularity at the nucleus and are therefore suitable for quantum Monte Carlo (QMC) calculations. The pseudopotentials and the accompanying basis sets (VnZ with n=T,Q) are given in standard Gaussian representation and their parameter sets are presented. Coupled cluster, configuration interaction, and QMC studies are carried out for the scandium and titanium atoms and their oxides, demonstrating the good performance of the pseudopotentials. Even though the choice of pseudopotential form is motivated by QMC, these pseudopotentials can also be employed in other quantum chemical approaches.
NASA Astrophysics Data System (ADS)
Seligman, Thomas H.; Prosen, Tomaž
2010-12-01
The basic ideas of second quantization and Fock space are extended to density operator states, used in treatments of open many-body systems. This can be done for fermions and bosons. While the former only requires the use of a non-orthogonal basis, the latter requires the introduction of a dual set of spaces. In both cases an operator algebra closely resembling the canonical one is developed and used to define the dual sets of bases. We here concentrated on the bosonic case where the unboundedness of the operators requires the definitions of dual spaces to support the pair of bases. Some applications, mainly to non-equilibrium steady states, will be mentioned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seligman, Thomas H.; Centro Internacional de Ciencias, Cuernavaca, Morelos; Prosen, Tomaz
2010-12-23
The basic ideas of second quantization and Fock space are extended to density operator states, used in treatments of open many-body systems. This can be done for fermions and bosons. While the former only requires the use of a non-orthogonal basis, the latter requires the introduction of a dual set of spaces. In both cases an operator algebra closely resembling the canonical one is developed and used to define the dual sets of bases. We here concentrated on the bosonic case where the unboundedness of the operators requires the definitions of dual spaces to support the pair of bases. Somemore » applications, mainly to non-equilibrium steady states, will be mentioned.« less
Geometry of generalized depolarizing channels
NASA Astrophysics Data System (ADS)
Burrell, Christian K.
2009-10-01
A generalized depolarizing channel acts on an N -dimensional quantum system to compress the “Bloch ball” in N2-1 directions; it has a corresponding compression vector. We investigate the geometry of these compression vectors and prove a conjecture of Dixit and Sudarshan [Phys. Rev. A 78, 032308 (2008)], namely, that when N=2d (i.e., the system consists of d qubits), and we work in the Pauli basis then the set of all compression vectors forms a simplex. We extend this result by investigating the geometry in other bases; in particular we find precisely when the set of all compression vectors forms a simplex.
Geometry of generalized depolarizing channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrell, Christian K.
2009-10-15
A generalized depolarizing channel acts on an N-dimensional quantum system to compress the 'Bloch ball' in N{sup 2}-1 directions; it has a corresponding compression vector. We investigate the geometry of these compression vectors and prove a conjecture of Dixit and Sudarshan [Phys. Rev. A 78, 032308 (2008)], namely, that when N=2{sup d} (i.e., the system consists of d qubits), and we work in the Pauli basis then the set of all compression vectors forms a simplex. We extend this result by investigating the geometry in other bases; in particular we find precisely when the set of all compression vectors formsmore » a simplex.« less
Approximate techniques of structural reanalysis
NASA Technical Reports Server (NTRS)
Noor, A. K.; Lowder, H. E.
1974-01-01
A study is made of two approximate techniques for structural reanalysis. These include Taylor series expansions for response variables in terms of design variables and the reduced-basis method. In addition, modifications to these techniques are proposed to overcome some of their major drawbacks. The modifications include a rational approach to the selection of the reduced-basis vectors and the use of Taylor series approximation in an iterative process. For the reduced basis a normalized set of vectors is chosen which consists of the original analyzed design and the first-order sensitivity analysis vectors. The use of the Taylor series approximation as a first (initial) estimate in an iterative process, can lead to significant improvements in accuracy, even with one iteration cycle. Therefore, the range of applicability of the reanalysis technique can be extended. Numerical examples are presented which demonstrate the gain in accuracy obtained by using the proposed modification techniques, for a wide range of variations in the design variables.
Chen, Jiafa; Zhang, Luyan; Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang
2016-01-01
Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed.
Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang
2016-01-01
Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed. PMID:27070143
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Yi-Geng; Data Center for High Energy Density Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088; Wu, Yong, E-mail: wu-yong@iapcm.ac.cn
2016-02-07
K-vacancy Auger states of N{sup q+} (q = 2-5) ions are studied by using the complex multireference single- and double-excitation configuration interaction (CMRD-CI) method. The calculated resonance parameters are in good agreement with the available experimental and theoretical data. It shows that the resonance positions and widths converge quickly with the increase of the atomic basis sets in the CMRD-CI calculations; the standard atomic basis set can be employed to describe the atomic K-vacancy Auger states well. The strong correlations between the valence and core electrons play important roles in accurately determining those resonance parameters, Rydberg electrons contribute negligibly inmore » the calculations. Note that it is the first time that the complex scaling method has been successfully applied for the B-like nitrogen. CMRD-CI is readily extended to treat the resonance states of molecules in the near future.« less
A cross-cultural study of eating attitudes in adolescent South African females
Szabo, Christopher Paul; Allwood, Clifford W
2004-01-01
Eating disorders were first described in black females in South Africa in 1995. A subsequent community based study of eating attitudes amongst adolescent females in an urban setting suggested that there would be increasing numbers of sufferers from within the black community. The current study sought to extend these findings using a larger, more representative urban sample. The results support those of the preliminary study. The underlying basis for the emerging phenomenon is discussed PMID:16633453
The evolving role of paramedics - a NICE problem to have?
Eaton, Georgette; Mahtani, Kamal; Catterall, Matt
2018-07-01
This short essay supports the growing role of paramedics in the clinical and academic workforce. We present a commentary of recent draft consultations by the National Institute for Health and Care Excellence in England that set out how the role of paramedics may be evolving to assist with the changing demands on the clinical workforce. Using these consultations as a basis, we extend their recommendations and suggest that the profession should also lead the academically driven evaluation of these new roles.
On the relevance of Gibson's affordance concept for geographical information science (GISc).
Jonietz, David; Timpf, Sabine
2015-09-01
J. J. Gibson's concept of affordances has provided a theoretical basis for various studies in geographical information science (GISc). This paper sets out to explain its popularity from a GISc perspective. Based on a short review of previous work, it will be argued that its main contributions to GISc are twofold, including an action-centered view of spatial entities and the notion of agent-environment mutuality. Using the practical example of pedestrian behavior simulation, new potentials for using and extending affordances are discussed.
Low-energy Scattering of Positronium by Atoms
NASA Technical Reports Server (NTRS)
Ray, Hasi
2007-01-01
The survey reports theoretical studies involving positronium (Ps) - atom scattering. Investigations carried out in last few decades have been briefly reviewed in this article. A brief description of close-coupling approximation (CCA), the first-Born approximation (FBA) and the Born-Oppenheimer approximation (BOA) for Ps-Atom systems are made. The CCA codes of Ray et a1 [1-6] are reinvestigated using very fine mesh-points to search for resonances. The article advocates the need for an extended basis set & a systematic study using CCAs.
Studies of dispersion energy in hydrogen-bonded systems. H2O-HOH, H2O-HF, H3N-HF, HF-HF
NASA Astrophysics Data System (ADS)
Szcześniak, M. M.; Scheiner, Steve
1984-02-01
Dispersion energy is calculated in the systems H2O-HOH, H2O-HF, H3N-HF, and HF-HF as a function of the intermolecular separation using a variety of methods. M≂ller-Plesset perturbation theory to second and third orders is applied in conjunction with polarized basis sets of 6-311G** type and with an extended basis set including a second set of polarization functions (DZ+2P). These results are compared to a multipole expansion of the dispersion energy, based on the Unsöld approximation, carried out to the inverse tenth power of the intermolecular distance. Pairwise evaluation is also carried out using both atom-atom and bond-bond formulations. The MP3/6-311G** results are in generally excellent accord with the leading R-6 term of the multipole expansion. This expansion, if carried out to the R-10 term, reproduces extremely well previously reported dispersion energies calculated via variation-perturbation theory. Little damping of the expansion is required for intermolecular distances equal to or greater than the equilibrium separation. Although the asymptotic behavior of the MP2 dispersion energy is somewhat different than that of the other methods, augmentation of the basis set by a second diffuse set of d functions leads to quite good agreement in the vicinity of the minima. Both the atom-atom and bond-bond parametrization schemes are in good qualitative agreement with the other methods tested. All approaches produce similar dependence of the dispersion energy upon the angular orientation between the two molecules involved in the H bond.
NASA Astrophysics Data System (ADS)
Ma, Zhi-Sai; Liu, Li; Zhou, Si-Da; Yu, Lei; Naets, Frank; Heylen, Ward; Desmet, Wim
2018-01-01
The problem of parametric output-only identification of time-varying structures in a recursive manner is considered. A kernelized time-dependent autoregressive moving average (TARMA) model is proposed by expanding the time-varying model parameters onto the basis set of kernel functions in a reproducing kernel Hilbert space. An exponentially weighted kernel recursive extended least squares TARMA identification scheme is proposed, and a sliding-window technique is subsequently applied to fix the computational complexity for each consecutive update, allowing the method to operate online in time-varying environments. The proposed sliding-window exponentially weighted kernel recursive extended least squares TARMA method is employed for the identification of a laboratory time-varying structure consisting of a simply supported beam and a moving mass sliding on it. The proposed method is comparatively assessed against an existing recursive pseudo-linear regression TARMA method via Monte Carlo experiments and shown to be capable of accurately tracking the time-varying dynamics. Furthermore, the comparisons demonstrate the superior achievable accuracy, lower computational complexity and enhanced online identification capability of the proposed kernel recursive extended least squares TARMA approach.
Basis sets for the calculation of core-electron binding energies
NASA Astrophysics Data System (ADS)
Hanson-Heine, Magnus W. D.; George, Michael W.; Besley, Nicholas A.
2018-05-01
Core-electron binding energies (CEBEs) computed within a Δ self-consistent field approach require large basis sets to achieve convergence with respect to the basis set limit. It is shown that supplementing a basis set with basis functions from the corresponding basis set for the element with the next highest nuclear charge (Z + 1) provides basis sets that give CEBEs close to the basis set limit. This simple procedure provides relatively small basis sets that are well suited for calculations where the description of a core-ionised state is important, such as time-dependent density functional theory calculations of X-ray emission spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papajak, Ewa; Truhlar, Donald G.
We present sets of convergent, partially augmented basis set levels corresponding to subsets of the augmented “aug-cc-pV(n+d)Z” basis sets of Dunning and co-workers. We show that for many molecular properties a basis set fully augmented with diffuse functions is computationally expensive and almost always unnecessary. On the other hand, unaugmented cc-pV(n+d)Z basis sets are insufficient for many properties that require diffuse functions. Therefore, we propose using intermediate basis sets. We developed an efficient strategy for partial augmentation, and in this article, we test it and validate it. Sequentially deleting diffuse basis functions from the “aug” basis sets yields the “jul”,more » “jun”, “may”, “apr”, etc. basis sets. Tests of these basis sets for Møller-Plesset second-order perturbation theory (MP2) show the advantages of using these partially augmented basis sets and allow us to recommend which basis sets offer the best accuracy for a given number of basis functions for calculations on large systems. Similar truncations in the diffuse space can be performed for the aug-cc-pVxZ, aug-cc-pCVxZ, etc. basis sets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spackman, Peter R.; Karton, Amir, E-mail: amir.karton@uwa.edu.au
Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/L{sup α} two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/ormore » second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol{sup –1}. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol{sup –1}.« less
NASA Astrophysics Data System (ADS)
Spackman, Peter R.; Karton, Amir
2015-05-01
Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/Lα two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol-1. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol-1.
Vertical Electron Detachment Energies for Octahedral Closed-Shell Multiply Charged Anions
1994-04-22
however, at low theoretical levels, motivating us to extend the investigations to: a) higher levels of theory, b) analogous closed-shell singly- and...hundredths of an eV. This further supports our choice of SBKJ+diff as the basis set for the production runs. The SCF relaxation energies for F- and Cl...intensities for the product molecules ML 5(’)" (D3h) and ML 4 (n-2 )" 15 (Td) were determined at the SCF/SBKJ level and are reported in Table V
Multiconfigurational quantum propagation with trajectory-guided generalized coherent states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigolo, Adriano, E-mail: agrigolo@ifi.unicamp.br; Aguiar, Marcus A. M. de, E-mail: aguiar@ifi.unicamp.br; Viscondi, Thiago F., E-mail: viscondi@if.usp.br
2016-03-07
A generalized version of the coupled coherent states method for coherent states of arbitrary Lie groups is developed. In contrast to the original formulation, which is restricted to frozen-Gaussian basis sets, the extended method is suitable for propagating quantum states of systems featuring diversified physical properties, such as spin degrees of freedom or particle indistinguishability. The approach is illustrated with simple models for interacting bosons trapped in double- and triple-well potentials, most adequately described in terms of SU(2) and SU(3) bosonic coherent states, respectively.
Application of Consider Covariance to the Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Lundberg, John B.
1996-01-01
The extended Kalman filter (EKF) is the basis for many applications of filtering theory to real-time problems where estimates of the state of a dynamical system are to be computed based upon some set of observations. The form of the EKF may vary somewhat from one application to another, but the fundamental principles are typically unchanged among these various applications. As is the case in many filtering applications, models of the dynamical system (differential equations describing the state variables) and models of the relationship between the observations and the state variables are created. These models typically employ a set of constants whose values are established my means of theory or experimental procedure. Since the estimates of the state are formed assuming that the models are perfect, any modeling errors will affect the accuracy of the computed estimates. Note that the modeling errors may be errors of commission (errors in terms included in the model) or omission (errors in terms excluded from the model). Consequently, it becomes imperative when evaluating the performance of real-time filters to evaluate the effect of modeling errors on the estimates of the state.
NASA Astrophysics Data System (ADS)
Song, Li; Shan-Jun, Chen; Yan, Chen; Peng, Chen
2016-03-01
The SF radical and its singly charged cation and anion, SF+ and SF-, have been investigated on the MRCI/aug-cc-pVXZ (X = Q, 5, 6) levels of theory with Davidson correction. Both the core-valence correlation and the relativistic effect are considered. The extrapolating to the complete basis set (CBS) limit is adopted to remove the basis set truncation error. Geometrical parameters, potential energy curves (PECs), vibrational energy levels, spectroscopic constants, ionization potentials, and electron affinities of the ground electronic state for all these species are obtained. The information with respect to molecular characteristics of the SFn (n = -1, 0, +1) systems derived in this work will help to extend our knowledge and to guide further experimental or theoretical researches. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304023 and 11447172), the Young and Middle-Aged Talent of Education Burea of Hubei Province, China (Grant No. Q20151307), and the Yangtze Youth Talents Fund of Yangtze University, China (Grant No. 2015cqr21).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holden, Zachary C.; Richard, Ryan M.; Herbert, John M., E-mail: herbert@chemistry.ohio-state.edu
2013-12-28
An implementation of Ewald summation for use in mixed quantum mechanics/molecular mechanics (QM/MM) calculations is presented, which builds upon previous work by others that was limited to semi-empirical electronic structure for the QM region. Unlike previous work, our implementation describes the wave function's periodic images using “ChElPG” atomic charges, which are determined by fitting to the QM electrostatic potential evaluated on a real-space grid. This implementation is stable even for large Gaussian basis sets with diffuse exponents, and is thus appropriate when the QM region is described by a correlated wave function. Derivatives of the ChElPG charges with respect tomore » the QM density matrix are a potentially serious bottleneck in this approach, so we introduce a ChElPG algorithm based on atom-centered Lebedev grids. The ChElPG charges thus obtained exhibit good rotational invariance even for sparse grids, enabling significant cost savings. Detailed analysis of the optimal choice of user-selected Ewald parameters, as well as timing breakdowns, is presented.« less
Stinchcomb, A L
2013-01-01
Annette Bunge and her research group have had the central theme of mathematically modeling the dermal absorption process. Most of the research focus has been on estimating dermal absorption for the purpose of risk assessment, for exposure scenarios in the environment and in the occupational setting. Her work is the basis for the United States Environmental Protection Agency's estimations for dermal absorption from contaminated water. It is also the basis of the dermal absorption estimates used in determining if chemicals should be assigned a 'skin notation' for potential systemic toxicity following occupational skin exposure. The work is truly translational in that it started with mathematical theory, is validated with preclinical and human experiments, and then is used in guidelines to protect human health. Her valued research has also extended into the topical drug bioavailability and bioequivalence assessment field.
Extending Clause Learning of SAT Solvers with Boolean Gröbner Bases
NASA Astrophysics Data System (ADS)
Zengler, Christoph; Küchlin, Wolfgang
We extend clause learning as performed by most modern SAT Solvers by integrating the computation of Boolean Gröbner bases into the conflict learning process. Instead of learning only one clause per conflict, we compute and learn additional binary clauses from a Gröbner basis of the current conflict. We used the Gröbner basis engine of the logic package Redlog contained in the computer algebra system Reduce to extend the SAT solver MiniSAT with Gröbner basis learning. Our approach shows a significant reduction of conflicts and a reduction of restarts and computation time on many hard problems from the SAT 2009 competition.
2013-01-01
Bystander cardiopulmonary resuscitation (CPR) improves out-of-hospital cardiac arrest (OHCA) survival. In settings with prolonged ambulance response times, skilled bystanders may be even more crucial. In 2010, American Heart Association (AHA) and European Resuscitation Council (ERC) introduced compression-only CPR as an alternative to conventional bystander CPR under some circumstances. The purpose of this citation review and document analysis is to determine whether the evidentiary basis for 2010 AHA and ERC guidelines attends to settings with prolonged ambulance response times or no formal ambulance dispatch services. Primary and secondary citations referring to epidemiological research comparing adult OHCA survival based on the type of bystander CPR were included in the analysis. Details extracted from the citations included a study description and primary outcome measure, the geographic location in which the study occurred, EMS response times, the role of dispatchers, and main findings and summary statistics regarding rates of survival among patients receiving no CPR, conventional CPR or compression-only CPR. The inclusion criteria were met by 10 studies. 9 studies took place exclusively in urban settings. Ambulance dispatchers played an integral role in 7 studies. The cited studies suggest either no survival benefit or harm arising from compression-only CPR in settings with extended ambulance response times. The evidentiary basis for 2010 AHA and ERC bystander CPR guidelines does not attend to settings without rapid ambulance response times or dispatch services. Standardized bystander CPR guidelines may require adaptation or reconsideration in these settings. PMID:23601200
Correlation consistent basis sets for the atoms In–Xe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahler, Andrew; Wilson, Angela K., E-mail: akwilson@unt.edu
In this work, the correlation consistent family of Gaussian basis sets has been expanded to include all-electron basis sets for In–Xe. The methodology for developing these basis sets is described, and several examples of the performance and utility of the new sets have been provided. Dissociation energies and bond lengths for both homonuclear and heteronuclear diatomics demonstrate the systematic convergence behavior with respect to increasing basis set quality expected by the family of correlation consistent basis sets in describing molecular properties. Comparison with recently developed correlation consistent sets designed for use with the Douglas-Kroll Hamiltonian is provided.
NASA Astrophysics Data System (ADS)
Witte, Jonathon; Neaton, Jeffrey B.; Head-Gordon, Martin
2016-05-01
With the aim of systematically characterizing the convergence of common families of basis sets such that general recommendations for basis sets can be made, we have tested a wide variety of basis sets against complete-basis binding energies across the S22 set of intermolecular interactions—noncovalent interactions of small and medium-sized molecules consisting of first- and second-row atoms—with three distinct density functional approximations: SPW92, a form of local-density approximation; B3LYP, a global hybrid generalized gradient approximation; and B97M-V, a meta-generalized gradient approximation with nonlocal correlation. We have found that it is remarkably difficult to reach the basis set limit; for the methods and systems examined, the most complete basis is Jensen's pc-4. The Dunning correlation-consistent sequence of basis sets converges slowly relative to the Jensen sequence. The Karlsruhe basis sets are quite cost effective, particularly when a correction for basis set superposition error is applied: counterpoise-corrected def2-SVPD binding energies are better than corresponding energies computed in comparably sized Dunning and Jensen bases, and on par with uncorrected results in basis sets 3-4 times larger. These trends are exhibited regardless of the level of density functional approximation employed. A sense of the magnitude of the intrinsic incompleteness error of each basis set not only provides a foundation for guiding basis set choice in future studies but also facilitates quantitative comparison of existing studies on similar types of systems.
Enhancement of chest radiographs using eigenimage processing
NASA Astrophysics Data System (ADS)
Bones, Philip J.; Butler, Anthony P. H.; Hurrell, Michael
2006-08-01
Frontal chest radiographs ("chest X-rays") are routinely used by medical personnel to assess patients for a wide range of suspected disorders. Often large numbers of images need to be analyzed. Furthermore, at times the images need to analyzed ("reported") when no radiological expert is available. A system which enhances the images in such a way that abnormalities are more obvious is likely to reduce the chance that an abnormality goes unnoticed. The authors previously reported the use of principal components analysis to derive a basis set of eigenimages from a training set made up of images from normal subjects. The work is here extended to investigate how best to emphasize the abnormalities in chest radiographs. Results are also reported for various forms of image normalizing transformations used in performing the eigenimage processing.
Multiple crack detection in 3D using a stable XFEM and global optimization
NASA Astrophysics Data System (ADS)
Agathos, Konstantinos; Chatzi, Eleni; Bordas, Stéphane P. A.
2018-02-01
A numerical scheme is proposed for the detection of multiple cracks in three dimensional (3D) structures. The scheme is based on a variant of the extended finite element method (XFEM) and a hybrid optimizer solution. The proposed XFEM variant is particularly well-suited for the simulation of 3D fracture problems, and as such serves as an efficient solution to the so-called forward problem. A set of heuristic optimization algorithms are recombined into a multiscale optimization scheme. The introduced approach proves effective in tackling the complex inverse problem involved, where identification of multiple flaws is sought on the basis of sparse measurements collected near the structural boundary. The potential of the scheme is demonstrated through a set of numerical case studies of varying complexity.
Two dimensional J-matrix approach to quantum scattering
NASA Astrophysics Data System (ADS)
Olumegbon, Ismail Adewale
We present an extension of the J-matrix method of scattering to two dimensions in cylindrical coordinates. In the J-matrix approach we select a zeroth order Hamiltonian, H0, which is exactly solvable in the sense that we select a square integrable basis set that enable us to have an infinite tridiagonal representation for H0. Expanding the wavefunction in this basis makes the wave equation equivalent to a three-term recursion relation for the expansion coefficients. Consequently, finding solutions of the recursion relation is equivalent to solving the original H0 problem (i.e., determining the expansion coefficients of the system's wavefunction). The part of the original potential interaction which cannot be brought to an exact tridiagonal form is cut in an NxN basis space and its matrix elements are computed numerically using Gauss quadrature approach. Hence, this approach embodies powerful tools in the analysis of solutions of the wave equation by exploiting the intimate connection and interplay between tridiagonal matrices and the theory of orthogonal polynomials. In such analysis, one is at liberty to employ a wide range of well established methods and numerical techniques associated with these settings such as quadrature approximation and continued fractions. To demonstrate the utility, usefulness, and accuracy of the extended method we use it to obtain the bound states for an illustrative short range potential problem.
Two dimensional J-matrix approach to quantum scattering
NASA Astrophysics Data System (ADS)
Olumegbon, Ismail Adewale
2013-01-01
We present an extension of the J-matrix method of scattering to two dimensions in cylindrical coordinates. In the J-matrix approach we select a zeroth order Hamiltonian, H0, which is exactly solvable in the sense that we select a square integrable basis set that enable us to have an infinite tridiagonal representation for H0. Expanding the wavefunction in this basis makes the wave equation equivalent to a three-term recursion relation for the expansion coefficients. Consequently, finding solutions of the recursion relation is equivalent to solving the original H0 problem (i.e., determining the expansion coefficients of the system's wavefunction). The part of the original potential interaction which cannot be brought to an exact tridiagonal form is cut in an NxN basis space and its matrix elements are computed numerically using Gauss quadrature approach. Hence, this approach embodies powerful tools in the analysis of solutions of the wave equation by exploiting the intimate connection and interplay between tridiagonal matrices and the theory of orthogonal polynomials. In such analysis, one is at liberty to employ a wide range of well established methods and numerical techniques associated with these settings such as quadrature approximation and continued fractions. To demonstrate the utility, usefulness, and accuracy of the extended method we use it to obtain the bound states for an illustrative short range potential problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, Jonathon; Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Neaton, Jeffrey B.
With the aim of systematically characterizing the convergence of common families of basis sets such that general recommendations for basis sets can be made, we have tested a wide variety of basis sets against complete-basis binding energies across the S22 set of intermolecular interactions—noncovalent interactions of small and medium-sized molecules consisting of first- and second-row atoms—with three distinct density functional approximations: SPW92, a form of local-density approximation; B3LYP, a global hybrid generalized gradient approximation; and B97M-V, a meta-generalized gradient approximation with nonlocal correlation. We have found that it is remarkably difficult to reach the basis set limit; for the methodsmore » and systems examined, the most complete basis is Jensen’s pc-4. The Dunning correlation-consistent sequence of basis sets converges slowly relative to the Jensen sequence. The Karlsruhe basis sets are quite cost effective, particularly when a correction for basis set superposition error is applied: counterpoise-corrected def2-SVPD binding energies are better than corresponding energies computed in comparably sized Dunning and Jensen bases, and on par with uncorrected results in basis sets 3-4 times larger. These trends are exhibited regardless of the level of density functional approximation employed. A sense of the magnitude of the intrinsic incompleteness error of each basis set not only provides a foundation for guiding basis set choice in future studies but also facilitates quantitative comparison of existing studies on similar types of systems.« less
The acceleration of charged particles in interplanetary shock waves
NASA Technical Reports Server (NTRS)
Pesses, M. E.; Decker, R. B.; Armstrong, T. P.
1982-01-01
Consideration of the theoretical and observational literature on energetic ion acceleration in interplanetary shock waves is the basis for the present discussion of the shock acceleration of the solar wind plasma and particle transport effects. It is suggested that ISEE data be used to construct data sets for shock events that extend continuously from solar wind to galactic cosmic ray energies, including data for electrons, protons, alphas and ions with Z values greater than 2.0, and that the temporal and spatial evolution of two- and three-dimensional particle distribution functions be studied by means of two or more spacecraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayami, Masao; Seino, Junji; Nakai, Hiromi, E-mail: nakai@waseda.jp
An efficient algorithm for the rapid evaluation of electron repulsion integrals is proposed. The present method, denoted by accompanying coordinate expansion and transferred recurrence relation (ACE-TRR), is constructed using a transfer relation scheme based on the accompanying coordinate expansion and recurrence relation method. Furthermore, the ACE-TRR algorithm is extended for the general-contraction basis sets. Numerical assessments clarify the efficiency of the ACE-TRR method for the systems including heavy elements, whose orbitals have long contractions and high angular momenta, such as f- and g-orbitals.
Theoretical dissociation energies for the alkali and alkaline-earth monofluorides and monochlorides
NASA Technical Reports Server (NTRS)
Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.
1986-01-01
Spectroscopic parameters are accurately determined for the alkali and alkaline-earth monofluorides and monochlorides by means of ab initio self-consistent field and correlated wave function calculations. Numerical Hartree-Fock calculations are performed on selected systems to ensure that the extended Slater basis sets employed are near the Hartree-Fock limit. Since the bonding is predominantly electrostatic in origin, a strong correlation exists between the dissociation energy (to ions) and the spectroscopic parameter r(e). By dissociating to the ionic limits, most of the differential correlation effects can be embedded in the accurate experimental electron affinities and ionization potentials.
The C4H7+ cation. A theoretical investigation
NASA Technical Reports Server (NTRS)
Koch, W.; Liu, B.; DeFrees, D. J.
1988-01-01
The potential energy surface of the C4H7+ cation has been investigated with ab initio quantum chemical theory. Extended basis set calculations, including electronic correlation, show that cyclobutyl and cyclopropylcarbinyl cation are equally stable isomers. The saddle point connecting these isomers lies 0.6 kcal/mol above the minima. The global C4H7+ minimum corresponds to the 1-methylallyl cation, which is 9.0 kcal/mol more stable than the cyclobutyl and the cyclopropylcarbinyl cation and 9.5 kcal/mol below the 2-methylallyl cation. These results are in excellent agreement with experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Sunghwan; Hong, Kwangwoo; Kim, Jaewook
2015-03-07
We developed a self-consistent field program based on Kohn-Sham density functional theory using Lagrange-sinc functions as a basis set and examined its numerical accuracy for atoms and molecules through comparison with the results of Gaussian basis sets. The result of the Kohn-Sham inversion formula from the Lagrange-sinc basis set manifests that the pseudopotential method is essential for cost-effective calculations. The Lagrange-sinc basis set shows faster convergence of the kinetic and correlation energies of benzene as its size increases than the finite difference method does, though both share the same uniform grid. Using a scaling factor smaller than or equal tomore » 0.226 bohr and pseudopotentials with nonlinear core correction, its accuracy for the atomization energies of the G2-1 set is comparable to all-electron complete basis set limits (mean absolute deviation ≤1 kcal/mol). The same basis set also shows small mean absolute deviations in the ionization energies, electron affinities, and static polarizabilities of atoms in the G2-1 set. In particular, the Lagrange-sinc basis set shows high accuracy with rapid convergence in describing density or orbital changes by an external electric field. Moreover, the Lagrange-sinc basis set can readily improve its accuracy toward a complete basis set limit by simply decreasing the scaling factor regardless of systems.« less
Sensor-based activity recognition using extended belief rule-based inference methodology.
Calzada, A; Liu, J; Nugent, C D; Wang, H; Martinez, L
2014-01-01
The recently developed extended belief rule-based inference methodology (RIMER+) recognizes the need of modeling different types of information and uncertainty that usually coexist in real environments. A home setting with sensors located in different rooms and on different appliances can be considered as a particularly relevant example of such an environment, which brings a range of challenges for sensor-based activity recognition. Although RIMER+ has been designed as a generic decision model that could be applied in a wide range of situations, this paper discusses how this methodology can be adapted to recognize human activities using binary sensors within smart environments. The evaluation of RIMER+ against other state-of-the-art classifiers in terms of accuracy, efficiency and applicability was found to be significantly relevant, specially in situations of input data incompleteness, and it demonstrates the potential of this methodology and underpins the basis to develop further research on the topic.
Time utilization, productivity and costs of solo and extended duty auxiliary dental practice.
Tan, H H; van Gemert, H G
1977-07-01
A study was conducted to compare the time utilization of the dentist, and productivity and costs for solo (one dentist, one chairside assistant and one treatment room) and extended duty settings (one dentist, two extended duty dental hygienists, one chairside assistant and two treatment rooms). Only amalgam and composite restorations done in a general group practice were included. In the extended duty setting the dentist spent more time in managerial activities and less time in treatment than in the solo setting. Nevertheless, the dentist in the extended duty setting produced 53% more restorations as compared with solo practice. The cost ratio of solo to extended duty practice was computed to 1:1.52. From the point of view of microeconomics, the extended duty setting was found no worse than the solo setting.
29 CFR 1471.885 - May the debarring official extend a debarment?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 4 2012-07-01 2012-07-01 false May the debarring official extend a debarment? 1471.885... official extend a debarment? (a) Yes, the debarring official may extend a debarment for an additional...) However, the debarring official may not extend a debarment solely on the basis of the facts and...
41 CFR 105-68.885 - May the debarring official extend a debarment?
Code of Federal Regulations, 2013 CFR
2013-07-01
... official extend a debarment? 105-68.885 Section 105-68.885 Public Contracts and Property Management Federal... May the debarring official extend a debarment? (a) Yes, the debarring official may extend a debarment... public interest. (b) However, the debarring official may not extend a debarment solely on the basis of...
41 CFR 105-68.885 - May the debarring official extend a debarment?
Code of Federal Regulations, 2010 CFR
2010-07-01
... official extend a debarment? 105-68.885 Section 105-68.885 Public Contracts and Property Management Federal... May the debarring official extend a debarment? (a) Yes, the debarring official may extend a debarment... public interest. (b) However, the debarring official may not extend a debarment solely on the basis of...
29 CFR 1471.885 - May the debarring official extend a debarment?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 4 2011-07-01 2011-07-01 false May the debarring official extend a debarment? 1471.885... official extend a debarment? (a) Yes, the debarring official may extend a debarment for an additional...) However, the debarring official may not extend a debarment solely on the basis of the facts and...
29 CFR 1471.885 - May the debarring official extend a debarment?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 4 2014-07-01 2014-07-01 false May the debarring official extend a debarment? 1471.885... official extend a debarment? (a) Yes, the debarring official may extend a debarment for an additional...) However, the debarring official may not extend a debarment solely on the basis of the facts and...
29 CFR 1471.885 - May the debarring official extend a debarment?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 4 2013-07-01 2013-07-01 false May the debarring official extend a debarment? 1471.885... official extend a debarment? (a) Yes, the debarring official may extend a debarment for an additional...) However, the debarring official may not extend a debarment solely on the basis of the facts and...
29 CFR 1471.885 - May the debarring official extend a debarment?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 4 2010-07-01 2010-07-01 false May the debarring official extend a debarment? 1471.885... official extend a debarment? (a) Yes, the debarring official may extend a debarment for an additional...) However, the debarring official may not extend a debarment solely on the basis of the facts and...
41 CFR 105-68.885 - May the debarring official extend a debarment?
Code of Federal Regulations, 2012 CFR
2012-01-01
... official extend a debarment? 105-68.885 Section 105-68.885 Public Contracts and Property Management Federal... May the debarring official extend a debarment? (a) Yes, the debarring official may extend a debarment... public interest. (b) However, the debarring official may not extend a debarment solely on the basis of...
41 CFR 105-68.885 - May the debarring official extend a debarment?
Code of Federal Regulations, 2011 CFR
2011-01-01
... official extend a debarment? 105-68.885 Section 105-68.885 Public Contracts and Property Management Federal... May the debarring official extend a debarment? (a) Yes, the debarring official may extend a debarment... public interest. (b) However, the debarring official may not extend a debarment solely on the basis of...
41 CFR 105-68.885 - May the debarring official extend a debarment?
Code of Federal Regulations, 2014 CFR
2014-01-01
... official extend a debarment? 105-68.885 Section 105-68.885 Public Contracts and Property Management Federal... May the debarring official extend a debarment? (a) Yes, the debarring official may extend a debarment... public interest. (b) However, the debarring official may not extend a debarment solely on the basis of...
Accurate Methods for Large Molecular Systems (Preprint)
2009-01-06
tensor, EFP calculations are basis set dependent. The smallest recommended basis set is 6- 31++G( d , p )52 The dependence of the computational cost of...and second order perturbation theory (MP2) levels with the 6-31G( d , p ) basis set. Additional SFM tests are presented for a small set of alpha...helices using the 6-31++G( d , p ) basis set. The larger 6-311++G(3df,2p) basis set is employed for creating all EFPs used for non- bonded interactions, since
Feller, David; Peterson, Kirk A
2013-08-28
The effectiveness of the recently developed, explicitly correlated coupled cluster method CCSD(T)-F12b is examined in terms of its ability to reproduce atomization energies derived from complete basis set extrapolations of standard CCSD(T). Most of the standard method findings were obtained with aug-cc-pV7Z or aug-cc-pV8Z basis sets. For a few homonuclear diatomic molecules it was possible to push the basis set to the aug-cc-pV9Z level. F12b calculations were performed with the cc-pVnZ-F12 (n = D, T, Q) basis set sequence and were also extrapolated to the basis set limit using a Schwenke-style, parameterized formula. A systematic bias was observed in the F12b method with the (VTZ-F12/VQZ-F12) basis set combination. This bias resulted in the underestimation of reference values associated with small molecules (valence correlation energies <0.5 E(h)) and an even larger overestimation of atomization energies for bigger systems. Consequently, caution should be exercised in the use of F12b for high accuracy studies. Root mean square and mean absolute deviation error metrics for this basis set combination were comparable to complete basis set values obtained with standard CCSD(T) and the aug-cc-pVDZ through aug-cc-pVQZ basis set sequence. However, the mean signed deviation was an order of magnitude larger. Problems partially due to basis set superposition error were identified with second row compounds which resulted in a weak performance for the smaller VDZ-F12/VTZ-F12 combination of basis sets.
A coherent discrete variable representation method on a sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hua -Gen
Here, the coherent discrete variable representation (ZDVR) has been extended for construct- ing a multidimensional potential-optimized DVR basis on a sphere. In order to deal with the non-constant Jacobian in spherical angles, two direct product primitive basis methods are proposed so that the original ZDVR technique can be properly implemented. The method has been demonstrated by computing the lowest states of a two dimensional (2D) vibrational model. Results show that the extended ZDVR method gives accurate eigenval- ues and exponential convergence with increasing ZDVR basis size.
A coherent discrete variable representation method on a sphere
Yu, Hua -Gen
2017-09-05
Here, the coherent discrete variable representation (ZDVR) has been extended for construct- ing a multidimensional potential-optimized DVR basis on a sphere. In order to deal with the non-constant Jacobian in spherical angles, two direct product primitive basis methods are proposed so that the original ZDVR technique can be properly implemented. The method has been demonstrated by computing the lowest states of a two dimensional (2D) vibrational model. Results show that the extended ZDVR method gives accurate eigenval- ues and exponential convergence with increasing ZDVR basis size.
NASA Astrophysics Data System (ADS)
Chmela, Jiří; Harding, Michael E.
2018-06-01
Optimised auxiliary basis sets for lanthanide atoms (Ce to Lu) for four basis sets of the Karlsruhe error-balanced segmented contracted def2 - series (SVP, TZVP, TZVPP and QZVPP) are reported. These auxiliary basis sets enable the use of the resolution-of-the-identity (RI) approximation in post Hartree-Fock methods - as for example, second-order perturbation theory (MP2) and coupled cluster (CC) theory. The auxiliary basis sets are tested on an enlarged set of about a hundred molecules where the test criterion is the size of the RI error in MP2 calculations. Our tests also show that the same auxiliary basis sets can be used together with different effective core potentials. With these auxiliary basis set calculations of MP2 and CC quality can now be performed efficiently on medium-sized molecules containing lanthanides.
The leap-frog effect of ring currents in benzene.
Ligabue, Andrea; Soncini, Alessandro; Lazzeretti, Paolo
2002-03-06
Symmetry arguments show that the ring-current model proposed by Pauling, Lonsdale, and London to explain the enhanced diamagnetism of benzene is flawed by an intrinsic drawback. The minimal basis set of six atomic 2p orbitals taken into account to develop such a model is inherently insufficient to predict a paramagnetic contribution to the perpendicular component of magnetic susceptibility in planar ring systems such as benzene. Analogous considerations can be made for the hypothetical H(6) cyclic molecule. A model allowing for extended basis sets is necessary to rationalize the magnetism of aromatics. According to high-quality coupled Hartree-Fock calculations, the trajectories of the current density vector field induced by a magnetic field perpendicular to the skeletal plane of benzene in the pi electrons are noticeably different from those typical of a Larmor diamagnetic circulation, in that (i) significant deformation of the orbits from circular to hexagonal symmetry occurs, which is responsible for a paramagnetic contribution of pi electrons to the out-of-plane component of susceptibility, and (ii) a sizable component of the pi current density vector parallel to the inducing field is predicted. This causes a waving motion of pi electrons; streamlines are characterized by a "leap-frog effect".
Computer model of Raritan River Basin water-supply system in central New Jersey
Dunne, Paul; Tasker, Gary D.
1996-01-01
This report describes a computer model of the Raritan River Basin water-supply system in central New Jersey. The computer model provides a technical basis for evaluating the effects of alternative patterns of operation of the Raritan River Basin water-supply system during extended periods of below-average precipitation. The computer model is a continuity-accounting model consisting of a series of interconnected nodes. At each node, the inflow volume, outflow volume, and change in storage are determined and recorded for each month. The model runs with a given set of operating rules and water-use requirements including releases, pumpages, and diversions. The model can be used to assess the hypothetical performance of the Raritan River Basin water- supply system in past years under alternative sets of operating rules. It also can be used to forecast the likelihood of specified outcomes, such as the depletion of reservoir contents below a specified threshold or of streamflows below statutory minimum passing flows, for a period of up to 12 months. The model was constructed on the basis of current reservoir capacities and the natural, unregulated monthly runoff values recorded at U.S. Geological Survey streamflow- gaging stations in the basin.
Ab Initio Density Fitting: Accuracy Assessment of Auxiliary Basis Sets from Cholesky Decompositions.
Boström, Jonas; Aquilante, Francesco; Pedersen, Thomas Bondo; Lindh, Roland
2009-06-09
The accuracy of auxiliary basis sets derived by Cholesky decompositions of the electron repulsion integrals is assessed in a series of benchmarks on total ground state energies and dipole moments of a large test set of molecules. The test set includes molecules composed of atoms from the first three rows of the periodic table as well as transition metals. The accuracy of the auxiliary basis sets are tested for the 6-31G**, correlation consistent, and atomic natural orbital basis sets at the Hartree-Fock, density functional theory, and second-order Møller-Plesset levels of theory. By decreasing the decomposition threshold, a hierarchy of auxiliary basis sets is obtained with accuracies ranging from that of standard auxiliary basis sets to that of conventional integral treatments.
NASA Technical Reports Server (NTRS)
Lindh, Roland; Lee, Timothy J.; Bernhardsson, Anders; Persson, B. Joakim; Karlstroem, Gunnar; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The autoaromatization of (Z)-hex-3-ene-1,5-diyne to the singlet biradical para-benzyne has been reinvestigated by state of the art ab initio methods. Previous CCSD(T)/6-31G(d,p) and CASPT2[0]/ANO[C(5s4p2d1f)/H(3s2p)] calculations estimated the the reaction heat at 298 K to be 8-10 and 4.9 plus or minus 3.2 kcal/mol, respectively. Recent NO- and oxygen-dependent trapping experiments and collision-induced dissociation threshold energy experiments estimate the heat of reaction to be 8.5 plus or minus 1.0 at 470 K (recomputed to 9.5 plus or minus 1.0 at 298 K) and 8.4 plus or minus 3.0 kcal/mol at 298 K, respectively. New theoretical estimates at 298 K predict the values at the basis set limit for the CCSD(T) and CASPT2(g1) methods to be 12.7 plus or minus 2.0 and 5.4 plus or minus 2.0 kcal/mol, respectively. The experimentally predicted electronic contribution to the heat of activation is 28.6 kcal/mol. This can be compared with 25.5 and 29.8 kcal/mol from the CASPT2[g1] and the CCSD(T) methods, respectively. The new study has in particular improved on the one-particle basis set for the CCSD(T) method as compared to earlier studies. For the CASPT2 investigation the better suited CASPT2[g1] approximation is utilized. The original CASPT2 method, CASPT2[0], systematically favors open shell systems relative to closed shell systems. This was previously corrected empirically. The study shows that the energy difference between CCSD(T) and CASPT2[g1] at the basis set limit is estimated to be 7 plus or minus 2 kcal/mol. The study also demonstrates that the estimated heat of reaction is very sensitive to the quality of the basis set.
2014-01-01
Background Necrotizing fasciitis (NF) is a rapid progressive infection of the subcutaneous tissue or fascia and may result in large open wounds. The surgical options to cover these wounds are often limited by the patient condition and result in suboptimal functional and cosmetic wound coverage. Dermatotraction can restore the function and appearance of the fasciotomy wound and is less invasive in patients with comorbidities. However, dermatotraction for scarred, stiff NF fasciotomy wounds is often ineffective, resulting in skin necrosis. The authors use extended negative pressure wound therapy (NPWT) as an assist in dermatotraction to close open NF fasciotomy wounds. The authors present the clinical results, followed by a discussion of the clinical basis of extended NPWT-assisted dermatotraction. Methods A retrospective case series of eight patients with NF who underwent open fasciotomy was approved for the study. After serial wound preparation, dermatotraction was applied in a shoelace manner using elastic vessel loops. Next, the extended NPWT was applied over the wound. The sponge was three times wider than the wound width, and the transparent covering drape almost encircled the anatomical wound area. The negative pressure of the NPWT was set at a continuous 100 mmHg by suction barometer. The clinical outcome was assessed based on wound area reduction after treatment and by the achievement of direct wound closure. Results After the first set of extended NPWT-assisted dermatotraction procedures, the mean wound area was significantly decreased (658.12 cm2 to 29.37 cm2; p = 0.002), as five out of eight patients achieved direct wound closure. One patient with a chest wall defect underwent latissimus dorsi musculocutaneous flap coverage, with primary closure of the donor site. Two Fournier’s gangrene patients underwent multiple sets of treatment and finally achieved secondary wound closure with skin grafts. The patients were followed up for 18.3 months on average and showed satisfactory results without wound recurrence. Conclusions Extended NPWT-assisted dermatotraction advances scarred, stiff fasciotomy wound margins synergistically in NF and allows direct closure of the wound without complications. This method can be another good treatment option for the NF patient with large open wounds whose general condition is unsuitable for extensive reconstructive surgery. PMID:24731449
Conscientious refusal and health professionals: does religion make a difference?
Weinstock, Daniel
2014-01-01
Freedom of Conscience and Freedom of Religion should be taken to protect two distinct sets of moral considerations. The former protects the ability of the agent to reflect critically upon the moral and political issues that arise in her society generally, and in her professional life more specifically. The latter protects the individual's ability to achieve secure membership in a set of practices and rituals that have as a moral function to inscribe her life in a temporally extended narrative. Once these grounds are distinguished, it becomes more difficult to grant healthcare professionals' claims to religious exemptions on the basis of the latter than it is on the basis of the former. While both sets of considerations generate 'internal reasons' for rights to accommodation, the relevant 'external' reasons present in the case of claims of moral conscience do not possess analogues in the case of claims of religious conscience. However, the argument applies only to 'irreducibly religious' claims, that is to claims that cannot be translated into moral vocabulary. What's more, there may be reasons to grant the claims of religious persons to exemptions that have to do not with the nature of the claims, but with the beneficial effects that the presence of religious persons may have in the context of the healthcare institutions of multi-faith societies. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Oberhofer, Harald; Blumberger, Jochen
2010-12-01
We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q-) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, ( {< {| {H_ab } |^2 } > } )^{1/2} = 6.7 {mH}, is significantly higher than the value obtained for the minimum energy structure, | {H_ab } | = 3.8 {mH}. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q- in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.
Christensen, Anders S.; Elstner, Marcus; Cui, Qiang
2015-01-01
Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets. PMID:26328834
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, Anders S., E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu; Cui, Qiang, E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu; Elstner, Marcus
Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculatedmore » at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, Tuomas P., E-mail: tuomas.rossi@alumni.aalto.fi; Sakko, Arto; Puska, Martti J.
We present an approach for generating local numerical basis sets of improving accuracy for first-principles nanoplasmonics simulations within time-dependent density functional theory. The method is demonstrated for copper, silver, and gold nanoparticles that are of experimental interest but computationally demanding due to the semi-core d-electrons that affect their plasmonic response. The basis sets are constructed by augmenting numerical atomic orbital basis sets by truncated Gaussian-type orbitals generated by the completeness-optimization scheme, which is applied to the photoabsorption spectra of homoatomic metal atom dimers. We obtain basis sets of improving accuracy up to the complete basis set limit and demonstrate thatmore » the performance of the basis sets transfers to simulations of larger nanoparticles and nanoalloys as well as to calculations with various exchange-correlation functionals. This work promotes the use of the local basis set approach of controllable accuracy in first-principles nanoplasmonics simulations and beyond.« less
Murata, Atsuo; Fukunaga, Daichi
2018-04-01
This study attempted to investigate the effects of the target shape and the movement direction on the pointing time using an eye-gaze input system and extend Fitts' model so that these factors are incorporated into the model and the predictive power of Fitts' model is enhanced. The target shape, the target size, the movement distance, and the direction of target presentation were set as within-subject experimental variables. The target shape included: a circle, and rectangles with an aspect ratio of 1:1, 1:2, 1:3, and 1:4. The movement direction included eight directions: upper, lower, left, right, upper left, upper right, lower left, and lower right. On the basis of the data for identifying the effects of the target shape and the movement direction on the pointing time, an attempt was made to develop a generalized and extended Fitts' model that took into account the movement direction and the target shape. As a result, the generalized and extended model was found to fit better to the experimental data, and be more effective for predicting the pointing time for a variety of human-computer interaction (HCI) task using an eye-gaze input system. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Witte, Jonathon; Neaton, Jeffrey B.; Head-Gordon, Martin
2017-06-01
With the aim of mitigating the basis set error in density functional theory (DFT) calculations employing local basis sets, we herein develop two empirical corrections for basis set superposition error (BSSE) in the def2-SVPD basis, a basis which—when stripped of BSSE—is capable of providing near-complete-basis DFT results for non-covalent interactions. Specifically, we adapt the existing pairwise geometrical counterpoise (gCP) approach to the def2-SVPD basis, and we develop a beyond-pairwise approach, DFT-C, which we parameterize across a small set of intermolecular interactions. Both gCP and DFT-C are evaluated against the traditional Boys-Bernardi counterpoise correction across a set of 3402 non-covalent binding energies and isomerization energies. We find that the DFT-C method represents a significant improvement over gCP, particularly for non-covalently-interacting molecular clusters. Moreover, DFT-C is transferable among density functionals and can be combined with existing functionals—such as B97M-V—to recover large-basis results at a fraction of the cost.
Pond, Kathy; Kim, Rokho; Carroquino, Maria-Jose; Pirard, Philippe; Gore, Fiona; Cucu, Alexandra; Nemer, Leda; MacKay, Morag; Smedje, Greta; Georgellis, Antonis; Dalbokova, Dafina; Krzyzanowski, Michal
2007-09-01
A working group coordinated by the World Health Organization developed a set of indicators to protect children's health from environmental risks and to support current and future European policy needs. On the basis of identified policy needs, the group developed a core set of 29 indicators for implementation plus an extended set of eight additional indicators for future development, focusing on exposure, health effects, and action. As far as possible, the indicators were designed to use existing information and are flexible enough to be developed further to meet the needs of policy makers and changing health priorities. These indicators cover most of the priority topic areas specified in the Children's Environment and Health Action Plan for Europe (CEHAPE) as adopted in the Fourth Ministerial Conference on Health and Environment in 2004, and will be used to monitor the implementation of CEHAPE. This effort can be viewed as an integral part of the Global Initiative on Children's Environmental Health Indicators, launched at the World Summit on Sustainable Development in 2002.
Generalization of some hidden subgroup algorithms for input sets of arbitrary size
NASA Astrophysics Data System (ADS)
Poslu, Damla; Say, A. C. Cem
2006-05-01
We consider the problem of generalizing some quantum algorithms so that they will work on input domains whose cardinalities are not necessarily powers of two. When analyzing the algorithms we assume that generating superpositions of arbitrary subsets of basis states whose cardinalities are not necessarily powers of two perfectly is possible. We have taken Ballhysa's model as a template and have extended it to Chi, Kim and Lee's generalizations of the Deutsch-Jozsa algorithm and to Simon's algorithm. With perfectly equal superpositions of input sets of arbitrary size, Chi, Kim and Lee's generalized Deutsch-Jozsa algorithms, both for evenly-distributed and evenly-balanced functions, worked with one-sided error property. For Simon's algorithm the success probability of the generalized algorithm is the same as that of the original for input sets of arbitrary cardinalities with equiprobable superpositions, since the property that the measured strings are all those which have dot product zero with the string we search, for the case where the function is 2-to-1, is not lost.
Merriman, Tony R; Choi, Hyon K; Dalbeth, Nicola
2014-05-01
Gout results from deposition of monosodium urate (MSU) crystals. Elevated serum urate concentrations (hyperuricemia) are not sufficient for the development of disease. Genome-wide association studies (GWAS) have identified 28 loci controlling serum urate levels. The largest genetic effects are seen in genes involved in the renal excretion of uric acid, with others being involved in glycolysis. Whereas much is understood about the genetic control of serum urate levels, little is known about the genetic control of inflammatory responses to MSU crystals. Extending knowledge in this area depends on recruitment of large, clinically ascertained gout sample sets suitable for GWAS. Copyright © 2014 Elsevier Inc. All rights reserved.
Figueroa, Michelle; Guo, Yong; Tselis, Alexandros; Pittock, Sean J.; Lennon, Vanda A.; Lucchinetti, Claudia F.; Lisak, Robert P.
2014-01-01
IMPORTANCE Reports of neuromyelitis optica spectrum disorder (NMOSD) occurring in the setting of neoplasia suggest that aquaporin-4 autoimmunitymay in some cases have a paraneoplastic basis. OBSERVATIONS In this case report, we describe a patient with NMOSD whose test results were seropositive for aquaporin-4 IgG and who had a hepatic metastasis from a small-bowel neuroendocrine tumor. The tumor cells expressed aquaporin-4 immunoreactivity. She presented to the Neurology Department at Wayne State University with bilateral leg weakness, ascending paresthesias, and decreased sensation. CONCLUSIONS AND RELEVANCE This case extends the context of NMOSD as a paraneoplastic disorder. PMID:24733266
Design and implementation of an experiment scheduling system for the ACTS satellite
NASA Technical Reports Server (NTRS)
Ringer, Mark J.
1994-01-01
The Advanced Communication Technology Satellite (ACTS) was launched on the 12th of September 1993 aboard STS-51. All events since that time have proceeded as planned with user operations commencing on December 6th, 1993. ACTS is a geosynchronous satellite designed to extend the state of the art in communication satellite design and is available to experimenters on a 'time/bandwidth available' basis. The ACTS satellite requires the advance scheduling of experimental activities based upon a complex set of resource, state, and activity constraints in order to ensure smooth operations. This paper describes the software system developed to schedule experiments for ACTS.
Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets.
Saller, Maximilian A C; Habershon, Scott
2017-07-11
Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.
Polarization functions for the modified m6-31G basis sets for atoms Ga through Kr.
Mitin, Alexander V
2013-09-05
The 2df polarization functions for the modified m6-31G basis sets of the third-row atoms Ga through Kr (Int J Quantum Chem, 2007, 107, 3028; Int J. Quantum Chem, 2009, 109, 1158) are proposed. The performances of the m6-31G, m6-31G(d,p), and m6-31G(2df,p) basis sets were examined in molecular calculations carried out by the density functional theory (DFT) method with B3LYP hybrid functional, Møller-Plesset perturbation theory of the second order (MP2), quadratic configuration interaction method with single and double substitutions and were compared with those for the known 6-31G basis sets as well as with the other similar 641 and 6-311G basis sets with and without polarization functions. Obtained results have shown that the performances of the m6-31G, m6-31G(d,p), and m6-31G(2df,p) basis sets are better in comparison with the performances of the known 6-31G, 6-31G(d,p) and 6-31G(2df,p) basis sets. These improvements are mainly reached due to better approximations of different electrons belonging to the different atomic shells in the modified basis sets. Applicability of the modified basis sets in thermochemical calculations is also discussed. © 2013 Wiley Periodicals, Inc.
FIRE I - Extended Time Observations Data Sets
Atmospheric Science Data Center
2017-12-21
FIRE I - Extended Time Observations Data Sets First ISCCP Regional Experiment (FIRE) I - Extended Time Observations were conducted in Utah. Relevant ... FIRE Project Guide FIRE I - Extended Time Observations Home Page (tar file) SCAR-B Block: ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Yuezhi; Horn, Paul R.; Mardirossian, Narbe
2016-07-28
Recently developed density functionals have good accuracy for both thermochemistry (TC) and non-covalent interactions (NC) if very large atomic orbital basis sets are used. To approach the basis set limit with potentially lower computational cost, a new self-consistent field (SCF) scheme is presented that employs minimal adaptive basis (MAB) functions. The MAB functions are optimized on each atomic site by minimizing a surrogate function. High accuracy is obtained by applying a perturbative correction (PC) to the MAB calculation, similar to dual basis approaches. Compared to exact SCF results, using this MAB-SCF (PC) approach with the same large target basis set producesmore » <0.15 kcal/mol root-mean-square deviations for most of the tested TC datasets, and <0.1 kcal/mol for most of the NC datasets. The performance of density functionals near the basis set limit can be even better reproduced. With further improvement to its implementation, MAB-SCF (PC) is a promising lower-cost substitute for conventional large-basis calculations as a method to approach the basis set limit of modern density functionals.« less
Simple and efficient LCAO basis sets for the diffuse states in carbon nanostructures.
Papior, Nick R; Calogero, Gaetano; Brandbyge, Mads
2018-06-27
We present a simple way to describe the lowest unoccupied diffuse states in carbon nanostructures in density functional theory calculations using a minimal LCAO (linear combination of atomic orbitals) basis set. By comparing plane wave basis calculations, we show how these states can be captured by adding long-range orbitals to the standard LCAO basis sets for the extreme cases of planar sp 2 (graphene) and curved carbon (C 60 ). In particular, using Bessel functions with a long range as additional basis functions retain a minimal basis size. This provides a smaller and simpler atom-centered basis set compared to the standard pseudo-atomic orbitals (PAOs) with multiple polarization orbitals or by adding non-atom-centered states to the basis.
Simple and efficient LCAO basis sets for the diffuse states in carbon nanostructures
NASA Astrophysics Data System (ADS)
Papior, Nick R.; Calogero, Gaetano; Brandbyge, Mads
2018-06-01
We present a simple way to describe the lowest unoccupied diffuse states in carbon nanostructures in density functional theory calculations using a minimal LCAO (linear combination of atomic orbitals) basis set. By comparing plane wave basis calculations, we show how these states can be captured by adding long-range orbitals to the standard LCAO basis sets for the extreme cases of planar sp 2 (graphene) and curved carbon (C60). In particular, using Bessel functions with a long range as additional basis functions retain a minimal basis size. This provides a smaller and simpler atom-centered basis set compared to the standard pseudo-atomic orbitals (PAOs) with multiple polarization orbitals or by adding non-atom-centered states to the basis.
Functional Extended Redundancy Analysis
ERIC Educational Resources Information Center
Hwang, Heungsun; Suk, Hye Won; Lee, Jang-Han; Moskowitz, D. S.; Lim, Jooseop
2012-01-01
We propose a functional version of extended redundancy analysis that examines directional relationships among several sets of multivariate variables. As in extended redundancy analysis, the proposed method posits that a weighed composite of each set of exogenous variables influences a set of endogenous variables. It further considers endogenous…
Derivation of a formula for the resonance integral for a nonorthogonal basis set
Yim, Yung-Chang; Eyring, Henry
1981-01-01
In a self-consistent field calculation, a formula for the off-diagonal matrix elements of the core Hamiltonian is derived for a nonorthogonal basis set by a polyatomic approach. A set of parameters is then introduced for the repulsion integral formula of Mataga-Nishimoto to fit the experimental data. The matrix elements computed for the nonorthogonal basis set in the π-electron approximation are transformed to those for an orthogonal basis set by the Löwdin symmetrical orthogonalization. PMID:16593009
NASA Astrophysics Data System (ADS)
Chauhan, A.; Bergner, F.; Etienne, A.; Aktaa, J.; de Carlan, Y.; Heintze, C.; Litvinov, D.; Hernandez-Mayoral, M.; Oñorbe, E.; Radiguet, B.; Ulbricht, A.
2017-11-01
The collaborative study is focused on the relationship between microstructure and yield stress for an ODS Fe-9%Cr-based transformable alloy and an ODS Fe-14%Cr-based ferritic alloy. The contributions to the total room temperature yield stress arising from various strengthening mechanisms are addressed on the basis of a comprehensive description of the microstructures uncovered by means of transmission electron microscopy (TEM), electron backscatter diffraction (EBSD), small-angle neutron scattering (SANS) and atom probe tomography (APT). While these methods provide a high degree of complementarity, a reasonable agreement was found in cases of overlap of information. The derived set of microstructure parameters along with reported strengthening equations was used to calculate the room temperature yield stress. The estimates were critically compared with the measured yield stress for an extended set of alloys including data reported for Fe-Cr model alloys and steels thus covering one order of magnitude or more in grain size, dislocation density, particle density and yield stress. The comparison shows that particle strengthening, dislocation forest strengthening, and Hall-Petch strengthening are the major contributions and that a mixed superposition rule reproduces the measured yield stress within experimental scatter for the whole extended set of alloys. The wide variation of microstructures additionally underpins the conclusions and goes beyond previous work, in which one or few ODS steels and narrow microstructure variations were typically covered.
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Collins, Timothy J.; Moe, Rud V.; Doggett,. William R.
2006-01-01
A comprehensive modular assembly system model has been proposed that extends the art from modular hardware, to include in-space assembly, servicing and repair and it s critical components of infrastructure, agents and assembly operations. Benefits of modular assembly have been identified and a set of metrics defined that extends the art beyond the traditional measures of performance, with emphasis on criteria that allow life-cycle mission costs to be used as a figure of merit (and include all substantive terms that have an impact on the evaluation). The modular assembly approach was used as a basis for developing a Solar Electric Transfer Vehicle (SETV) concept and three modular assembly scenarios were developed. The modular assembly approach also allows the SETV to be entered into service much earlier than competing conventional configurations and results in a great deal of versatility in accommodating different launch vehicle payload capabilities, allowing for modules to be pre-assembled before launch or assembled on orbit, without changing the space vehicle design.
Zhou, Mingming; Kam, Chester Chun Seng
2018-05-17
In this study, we sought to extend the research on self-determination, future orientation, and personal identity construction by integrating the theories on self-determination and future orientation to provide a conceptual framework for understanding the relations between personal identity and the following individual characteristics: Hope, optimism, awareness of self, and perceived choice. 191 university students in China responded surveys in hardcopies on an individual basis. Our SEM results revealed that proximal future orientation influenced the mechanisms through which distal psychological traits affected identity construction. Specifically, hope mediated the effects of self-awareness on the participants' personal identity ratings (b = .45, p < .05). Although optimism was related to both awareness of self and perceived choice, it was not significantly related to personal identity. This study suggested an extended framework through which we could understand how the interaction between future orientation and self-determination can predict personal identity. The findings have significant implications for interventions in educational settings.
NASA Astrophysics Data System (ADS)
Bytev, Vladimir V.; Kniehl, Bernd A.
2016-09-01
We present a further extension of the HYPERDIRE project, which is devoted to the creation of a set of Mathematica-based program packages for manipulations with Horn-type hypergeometric functions on the basis of differential equations. Specifically, we present the implementation of the differential reduction for the Lauricella function FC of three variables. Catalogue identifier: AEPP_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPP_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 243461 No. of bytes in distributed program, including test data, etc.: 61610782 Distribution format: tar.gz Programming language: Mathematica. Computer: All computers running Mathematica. Operating system: Operating systems running Mathematica. Classification: 4.4. Does the new version supersede the previous version?: No, it significantly extends the previous version. Nature of problem: Reduction of hypergeometric function FC of three variables to a set of basis functions. Solution method: Differential reduction. Reasons for new version: The extension package allows the user to handle the Lauricella function FC of three variables. Summary of revisions: The previous version goes unchanged. Running time: Depends on the complexity of the problem.
Structure elucidation and absolute stereochemistry of isomeric monoterpene chromane esters.
Batista, João M; Batista, Andrea N L; Mota, Jonas S; Cass, Quezia B; Kato, Massuo J; Bolzani, Vanderlan S; Freedman, Teresa B; López, Silvia N; Furlan, Maysa; Nafie, Laurence A
2011-04-15
Six novel monoterpene chromane esters were isolated from the aerial parts of Peperomia obtusifolia (Piperaceae) using chiral chromatography. This is the first time that chiral chromane esters of this kind, ones with a tethered chiral terpene, have been isolated in nature. Due to their structural features, it is not currently possible to assess directly their absolute stereochemistry using any of the standard classical approaches, such as X-ray crystallography, NMR, optical rotation, or electronic circular dichroism (ECD). Herein we report the absolute configuration of these molecules, involving four chiral centers, using vibrational circular dichroism (VCD) and density functional theory (DFT) (B3LYP/6-31G*) calculations. This work further reinforces the capability of VCD to determine unambiguously the absolute configuration of structurally complex molecules in solution, without crystallization or derivatization, and demonstrates the sensitivity of VCD to specify the absolute configuration for just one among a number of chiral centers. We also demonstrate the sufficiency of using the so-called inexpensive basis set 6-31G* compared to the triple-ζ basis set TZVP for absolute configuration analysis of larger molecules using VCD. Overall, this work extends our knowledge of secondary metabolites in plants and provides a straightforward way to determine the absolute configuration of complex natural products involving a chiral parent moiety combined with a chiral terpene adduct.
A structured policy review of the principles of professional self-regulation.
Benton, D C; González-Jurado, M A; Beneit-Montesinos, J V
2013-03-01
The International Council of Nurses (ICN) has, for many years, based its work on professional self-regulation on a set of 12 principles. These principles are research based and were identified nearly three decades ago. ICN has conducted a number of reviews of the principles; however, changes have been minimal. In the past 5-10 years, a number of authors and governments, often as part of the review of regulatory systems, have started to propose principles to guide the way regulatory frameworks are designed and implemented. These principles vary in number and content. This study examines the current policy literature on principle-based regulation and compares this with the set of principles advocated by the ICN. A systematic search of the literature on principle-based regulation is used as the basis for a qualitative thematic analysis to compare and contrast the 12 principles of self-regulation with more recently published work. A mapping of terms based on a detailed description of the principles used in the various research and policy documents was generated. This mapping forms the basis of a critique of the current ICN principles. A professional self-regulation advocated by the ICN were identified. A revised and extended set of 13 principles is needed if contemporary developments in the field of regulatory frameworks are to be accommodated. These revised principles should be considered for adoption by the ICN to underpin their advocacy work on professional self-regulation. © 2013 The Authors. International Nursing Review © 2013 International Council of Nurses.
Cysewski, Piotr; Jeliński, Tomasz
2013-10-01
The electronic spectrum of four different anthraquinones (1,2-dihydroxyanthraquinone, 1-aminoanthraquinone, 2-aminoanthraquinone and 1-amino-2-methylanthraquinone) in methanol solution was measured and used as reference data for theoretical color prediction. The visible part of the spectrum was modeled according to TD-DFT framework with a broad range of DFT functionals. The convoluted theoretical spectra were validated against experimental data by a direct color comparison in terms of CIE XYZ and CIE Lab tristimulus model color. It was found, that the 6-31G** basis set provides the most accurate color prediction and there is no need to extend the basis set since it does not improve the prediction of color. Although different functionals were found to give the most accurate color prediction for different anthraquinones, it is possible to apply the same DFT approach for the whole set of analyzed dyes. Especially three functionals seem to be valuable, namely mPW1LYP, B1LYP and PBE0 due to very similar spectra predictions. The major source of discrepancies between theoretical and experimental spectra comes from L values, representing the lightness, and the a parameter, depicting the position on green→magenta axis. Fortunately, the agreement between computed and observed blue→yellow axis (parameter b) is very precise in the case of studied anthraquinone dyes in methanol solution. Despite discussed shortcomings, color prediction from first principle quantum chemistry computations can lead to quite satisfactory results, expressed in terms of color space parameters.
Mackie, Iain D; DiLabio, Gino A
2011-10-07
The first-principles calculation of non-covalent (particularly dispersion) interactions between molecules is a considerable challenge. In this work we studied the binding energies for ten small non-covalently bonded dimers with several combinations of correlation methods (MP2, coupled-cluster single double, coupled-cluster single double (triple) (CCSD(T))), correlation-consistent basis sets (aug-cc-pVXZ, X = D, T, Q), two-point complete basis set energy extrapolations, and counterpoise corrections. For this work, complete basis set results were estimated from averaged counterpoise and non-counterpoise-corrected CCSD(T) binding energies obtained from extrapolations with aug-cc-pVQZ and aug-cc-pVTZ basis sets. It is demonstrated that, in almost all cases, binding energies converge more rapidly to the basis set limit by averaging the counterpoise and non-counterpoise corrected values than by using either counterpoise or non-counterpoise methods alone. Examination of the effect of basis set size and electron correlation shows that the triples contribution to the CCSD(T) binding energies is fairly constant with the basis set size, with a slight underestimation with CCSD(T)∕aug-cc-pVDZ compared to the value at the (estimated) complete basis set limit, and that contributions to the binding energies obtained by MP2 generally overestimate the analogous CCSD(T) contributions. Taking these factors together, we conclude that the binding energies for non-covalently bonded systems can be accurately determined using a composite method that combines CCSD(T)∕aug-cc-pVDZ with energy corrections obtained using basis set extrapolated MP2 (utilizing aug-cc-pVQZ and aug-cc-pVTZ basis sets), if all of the components are obtained by averaging the counterpoise and non-counterpoise energies. With such an approach, binding energies for the set of ten dimers are predicted with a mean absolute deviation of 0.02 kcal/mol, a maximum absolute deviation of 0.05 kcal/mol, and a mean percent absolute deviation of only 1.7%, relative to the (estimated) complete basis set CCSD(T) results. Use of this composite approach to an additional set of eight dimers gave binding energies to within 1% of previously published high-level data. It is also shown that binding within parallel and parallel-crossed conformations of naphthalene dimer is predicted by the composite approach to be 9% greater than that previously reported in the literature. The ability of some recently developed dispersion-corrected density-functional theory methods to predict the binding energies of the set of ten small dimers was also examined. © 2011 American Institute of Physics
Dixit, Anant; Claudot, Julien; Lebègue, Sébastien; Rocca, Dario
2017-06-07
By using a formulation based on the dynamical polarizability, we propose a novel implementation of second-order Møller-Plesset perturbation (MP2) theory within a plane wave (PW) basis set. Because of the intrinsic properties of PWs, this method is not affected by basis set superposition errors. Additionally, results are converged without relying on complete basis set extrapolation techniques; this is achieved by using the eigenvectors of the static polarizability as an auxiliary basis set to compactly and accurately represent the response functions involved in the MP2 equations. Summations over the large number of virtual states are avoided by using a formalism inspired by density functional perturbation theory, and the Lanczos algorithm is used to include dynamical effects. To demonstrate this method, applications to three weakly interacting dimers are presented.
Extended International Normalized Ratio testing intervals for warfarin-treated patients.
Barnes, G D; Kong, X; Cole, D; Haymart, B; Kline-Rogers, E; Almany, S; Dahu, M; Ekola, M; Kaatz, S; Kozlowski, J; Froehlich, J B
2018-05-15
Essentials Warfarin typically requires International Normalized Ratio (INR) testing at least every 4 weeks. We implemented extended INR testing for stable warfarin patients in six anticoagulation clinics. Use of extended INR testing increased from 41.8% to 69.3% over the 3 year study. Use of extended INR testing appeared safe and effective. Background A previous single-center randomized trial suggested that patients with stable International Normalized Ratio (INR) values could safely receive INR testing as infrequently as every 12 weeks. Objective To test the success of implementation of an extended INR testing interval for stable warfarin patients in a practice-based, multicenter collaborative of anticoagulation clinics. Methods At six anticoagulation clinics, patients were identified as being eligible for extended INR testing on the basis of prior INR value stability and minimal warfarin dose changes between 2014 and 2016. We assessed the frequency with which anticoagulation clinic providers recommended an extended INR testing interval (> 5 weeks) to eligible patients. We also explored safety outcomes for eligible patients, including next INR values, bleeding events, and emergency department visits. Results At least one eligible period for extended INR testing was identified in 890 of 3362 (26.5%) warfarin-treated patients. Overall, the use of extended INR testing in eligible patients increased from 41.8% in the first quarter of 2014 to 69.3% in the fourth quarter of 2016. The number of subsequent out-of-range next INR values were similar between eligible patients who did and did not have an extended INR testing interval (27.3% versus 28.4%, respectively). The numbers of major bleeding events were not different between the two groups, but rates of clinically relevant non-major bleeding (0.02 per 100 patient-years versus 0.09 per 100 patient-years) and emergency department visits (0.07 per 100 patient-years versus 0.19 per 100 patient-years) were lower for eligible patients with extended INR testing intervals than for those with non-extended INR testing intervals. Conclusions Extended INR testing for stable warfarin patients can be successfully and safely implemented in diverse, practice-based anticoagulation clinic settings. © 2018 International Society on Thrombosis and Haemostasis.
NASA Astrophysics Data System (ADS)
Neese, Frank; Wennmohs, Frank; Hansen, Andreas
2009-03-01
Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Møller-Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50-100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcal mol-1. Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500 times faster. The method performs best in conjunction with large and flexible basis sets. These results open the way for large-scale chemical applications.
Neese, Frank; Wennmohs, Frank; Hansen, Andreas
2009-03-21
Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Moller-Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50-100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcal mol(-1). Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500 times faster. The method performs best in conjunction with large and flexible basis sets. These results open the way for large-scale chemical applications.
Hybrid Grid and Basis Set Approach to Quantum Chemistry DMRG
NASA Astrophysics Data System (ADS)
Stoudenmire, Edwin Miles; White, Steven
We present a new approach for using DMRG for quantum chemistry that combines the advantages of a basis set with that of a grid approximation. Because DMRG scales linearly for quasi-one-dimensional systems, it is feasible to approximate the continuum with a fine grid in one direction while using a standard basis set approach for the transverse directions. Compared to standard basis set methods, we reach larger systems and achieve better scaling when approaching the basis set limit. The flexibility and reduced costs of our approach even make it feasible to incoporate advanced DMRG techniques such as simulating real-time dynamics. Supported by the Simons Collaboration on the Many-Electron Problem.
Khvostichenko, Daria; Choi, Andrew; Boulatov, Roman
2008-04-24
We investigated the effect of several computational variables, including the choice of the basis set, application of symmetry constraints, and zero-point energy (ZPE) corrections, on the structural parameters and predicted ground electronic state of model 5-coordinate hemes (iron(II) porphines axially coordinated by a single imidazole or 2-methylimidazole). We studied the performance of B3LYP and B3PW91 with eight Pople-style basis sets (up to 6-311+G*) and B97-1, OLYP, and TPSS functionals with 6-31G and 6-31G* basis sets. Only hybrid functionals B3LYP, B3PW91, and B97-1 reproduced the quintet ground state of the model hemes. With a given functional, the choice of the basis set caused up to 2.7 kcal/mol variation of the quintet-triplet electronic energy gap (DeltaEel), in several cases, resulting in the inversion of the sign of DeltaEel. Single-point energy calculations with triple-zeta basis sets of the Pople (up to 6-311G++(2d,2p)), Ahlrichs (TZVP and TZVPP), and Dunning (cc-pVTZ) families showed the same trend. The zero-point energy of the quintet state was approximately 1 kcal/mol lower than that of the triplet, and accounting for ZPE corrections was crucial for establishing the ground state if the electronic energy of the triplet state was approximately 1 kcal/mol less than that of the quintet. Within a given model chemistry, effects of symmetry constraints and of a "tense" structure of the iron porphine fragment coordinated to 2-methylimidazole on DeltaEel were limited to 0.3 kcal/mol. For both model hemes the best agreement with crystallographic structural data was achieved with small 6-31G and 6-31G* basis sets. Deviation of the computed frequency of the Fe-Im stretching mode from the experimental value with the basis set decreased in the order: nonaugmented basis sets, basis sets with polarization functions, and basis sets with polarization and diffuse functions. Contraction of Pople-style basis sets (double-zeta or triple-zeta) affected the results insignificantly for iron(II) porphyrin coordinated with imidazole. Poor performance of a "locally dense" basis set with a large number of basis functions on the Fe center was observed in calculation of quintet-triplet gaps. Our results lead to a series of suggestions for density functional theory calculations of quintet-triplet energy gaps in ferrohemes with a single axial imidazole; these suggestions are potentially applicable for other transition-metal complexes.
Morris, Andrew P; Voight, Benjamin F; Teslovich, Tanya M; Ferreira, Teresa; Segrè, Ayellet V; Steinthorsdottir, Valgerdur; Strawbridge, Rona J; Khan, Hassan; Grallert, Harald; Mahajan, Anubha; Prokopenko, Inga; Kang, Hyun Min; Dina, Christian; Esko, Tonu; Fraser, Ross M; Kanoni, Stavroula; Kumar, Ashish; Lagou, Vasiliki; Langenberg, Claudia; Luan, Jian'an; Lindgren, Cecilia M; Müller-Nurasyid, Martina; Pechlivanis, Sonali; Rayner, N William; Scott, Laura J; Wiltshire, Steven; Yengo, Loic; Kinnunen, Leena; Rossin, Elizabeth J; Raychaudhuri, Soumya; Johnson, Andrew D; Dimas, Antigone S; Loos, Ruth J F; Vedantam, Sailaja; Chen, Han; Florez, Jose C; Fox, Caroline; Liu, Ching-Ti; Rybin, Denis; Couper, David J; Kao, Wen Hong L; Li, Man; Cornelis, Marilyn C; Kraft, Peter; Sun, Qi; van Dam, Rob M; Stringham, Heather M; Chines, Peter S; Fischer, Krista; Fontanillas, Pierre; Holmen, Oddgeir L; Hunt, Sarah E; Jackson, Anne U; Kong, Augustine; Lawrence, Robert; Meyer, Julia; Perry, John RB; Platou, Carl GP; Potter, Simon; Rehnberg, Emil; Robertson, Neil; Sivapalaratnam, Suthesh; Stančáková, Alena; Stirrups, Kathleen; Thorleifsson, Gudmar; Tikkanen, Emmi; Wood, Andrew R; Almgren, Peter; Atalay, Mustafa; Benediktsson, Rafn; Bonnycastle, Lori L; Burtt, Noël; Carey, Jason; Charpentier, Guillaume; Crenshaw, Andrew T; Doney, Alex S F; Dorkhan, Mozhgan; Edkins, Sarah; Emilsson, Valur; Eury, Elodie; Forsen, Tom; Gertow, Karl; Gigante, Bruna; Grant, George B; Groves, Christopher J; Guiducci, Candace; Herder, Christian; Hreidarsson, Astradur B; Hui, Jennie; James, Alan; Jonsson, Anna; Rathmann, Wolfgang; Klopp, Norman; Kravic, Jasmina; Krjutškov, Kaarel; Langford, Cordelia; Leander, Karin; Lindholm, Eero; Lobbens, Stéphane; Männistö, Satu; Mirza, Ghazala; Mühleisen, Thomas W; Musk, Bill; Parkin, Melissa; Rallidis, Loukianos; Saramies, Jouko; Sennblad, Bengt; Shah, Sonia; Sigurðsson, Gunnar; Silveira, Angela; Steinbach, Gerald; Thorand, Barbara; Trakalo, Joseph; Veglia, Fabrizio; Wennauer, Roman; Winckler, Wendy; Zabaneh, Delilah; Campbell, Harry; van Duijn, Cornelia; Uitterlinden89-, Andre G; Hofman, Albert; Sijbrands, Eric; Abecasis, Goncalo R; Owen, Katharine R; Zeggini, Eleftheria; Trip, Mieke D; Forouhi, Nita G; Syvänen, Ann-Christine; Eriksson, Johan G; Peltonen, Leena; Nöthen, Markus M; Balkau, Beverley; Palmer, Colin N A; Lyssenko, Valeriya; Tuomi, Tiinamaija; Isomaa, Bo; Hunter, David J; Qi, Lu; Shuldiner, Alan R; Roden, Michael; Barroso, Ines; Wilsgaard, Tom; Beilby, John; Hovingh, Kees; Price, Jackie F; Wilson, James F; Rauramaa, Rainer; Lakka, Timo A; Lind, Lars; Dedoussis, George; Njølstad, Inger; Pedersen, Nancy L; Khaw, Kay-Tee; Wareham, Nicholas J; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Korpi-Hyövälti, Eeva; Saltevo, Juha; Laakso, Markku; Kuusisto, Johanna; Metspalu, Andres; Collins, Francis S; Mohlke, Karen L; Bergman, Richard N; Tuomilehto, Jaakko; Boehm, Bernhard O; Gieger, Christian; Hveem, Kristian; Cauchi, Stephane; Froguel, Philippe; Baldassarre, Damiano; Tremoli, Elena; Humphries, Steve E; Saleheen, Danish; Danesh, John; Ingelsson, Erik; Ripatti, Samuli; Salomaa, Veikko; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; Peters, Annette; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Morris, Andrew D; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; Boerwinkle, Eric; Melander, Olle; Kathiresan, Sekar; Nilsson, Peter M; Deloukas, Panos; Thorsteinsdottir, Unnur; Groop, Leif C; Stefansson, Kari; Hu, Frank; Pankow, James S; Dupuis, Josée; Meigs, James B; Altshuler, David; Boehnke, Michael; McCarthy, Mark I
2012-01-01
To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip involving 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two demonstrating sex-differentiated association. Genome-wide analyses of these data are consistent with a long tail of further common variant loci explaining much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related transcription, adipocytokine signalling and cell cycle regulation, in diabetes pathogenesis. PMID:22885922
A hybrid linear/nonlinear training algorithm for feedforward neural networks.
McLoone, S; Brown, M D; Irwin, G; Lightbody, A
1998-01-01
This paper presents a new hybrid optimization strategy for training feedforward neural networks. The algorithm combines gradient-based optimization of nonlinear weights with singular value decomposition (SVD) computation of linear weights in one integrated routine. It is described for the multilayer perceptron (MLP) and radial basis function (RBF) networks and then extended to the local model network (LMN), a new feedforward structure in which a global nonlinear model is constructed from a set of locally valid submodels. Simulation results are presented demonstrating the superiority of the new hybrid training scheme compared to second-order gradient methods. It is particularly effective for the LMN architecture where the linear to nonlinear parameter ratio is large.
Localized basis sets for unbound electrons in nanoelectronics.
Soriano, D; Jacob, D; Palacios, J J
2008-02-21
It is shown how unbound electron wave functions can be expanded in a suitably chosen localized basis sets for any desired range of energies. In particular, we focus on the use of Gaussian basis sets, commonly used in first-principles codes. The possible usefulness of these basis sets in a first-principles description of field emission or scanning tunneling microscopy at large bias is illustrated by studying a simpler related phenomenon: The lifetime of an electron in a H atom subjected to a strong electric field.
NASA Astrophysics Data System (ADS)
Rewieński, M.; Lamecki, A.; Mrozowski, M.
2013-09-01
This paper proposes a technique, based on the Inexact Shift-Invert Lanczos (ISIL) method with Inexact Jacobi Orthogonal Component Correction (IJOCC) refinement, and a preconditioned conjugate-gradient (PCG) linear solver with multilevel preconditioner, for finding several eigenvalues for generalized symmetric eigenproblems. Several eigenvalues are found by constructing (with the ISIL process) an extended projection basis. Presented results of numerical experiments confirm the technique can be effectively applied to challenging, large-scale problems characterized by very dense spectra, such as resonant cavities with spatial dimensions which are large with respect to wavelengths of the resonating electromagnetic fields. It is also shown that the proposed scheme based on inexact linear solves delivers superior performance, as compared to methods which rely on exact linear solves, indicating tremendous potential of the 'inexact solve' concept. Finally, the scheme which generates an extended projection basis is found to provide a cost-efficient alternative to classical deflation schemes when several eigenvalues are computed.
Near Hartree-Fock quality GTO basis sets for the second-row atoms
NASA Technical Reports Server (NTRS)
Partridge, Harry
1987-01-01
Energy optimized, near Hartree-Fock quality Gaussian basis sets ranging in size from (17s12p) to (20s15p) are presented for the ground states of the second-row atoms for Na(2P), Na(+), Na(-), Mg(3P), P(-), S(-), and Cl(-). In addition, optimized supplementary functions are given for the ground state basis sets to describe the negative ions, and the excited Na(2P) and Mg(3P) atomic states. The ratios of successive orbital exponents describing the inner part of the 1s and 2p orbitals are found to be nearly independent of both nuclear charge and basis set size. This provides a method of obtaining good starting estimates for other basis set optimizations.
Teodoro, Tiago Quevedo; Visscher, Lucas; da Silva, Albérico Borges Ferreira; Haiduke, Roberto Luiz Andrade
2017-03-14
The f-block elements are addressed in this third part of a series of prolapse-free basis sets of quadruple-ζ quality (RPF-4Z). Relativistic adapted Gaussian basis sets (RAGBSs) are used as primitive sets of functions while correlating/polarization (C/P) functions are chosen by analyzing energy lowerings upon basis set increments in Dirac-Coulomb multireference configuration interaction calculations with single and double excitations of the valence spinors. These function exponents are obtained by applying the RAGBS parameters in a polynomial expression. Moreover, through the choice of C/P characteristic exponents from functions of lower angular momentum spaces, a reduction in the computational demand is attained in relativistic calculations based on the kinetic balance condition. The present study thus complements the RPF-4Z sets for the whole periodic table (Z ≤ 118). The sets are available as Supporting Information and can also be found at http://basis-sets.iqsc.usp.br .
Combination of large and small basis sets in electronic structure calculations on large systems
NASA Astrophysics Data System (ADS)
Røeggen, Inge; Gao, Bin
2018-04-01
Two basis sets—a large and a small one—are associated with each nucleus of the system. Each atom has its own separate one-electron basis comprising the large basis set of the atom in question and the small basis sets for the partner atoms in the complex. The perturbed atoms in molecules and solids model is at core of the approach since it allows for the definition of perturbed atoms in a system. It is argued that this basis set approach should be particularly useful for periodic systems. Test calculations are performed on one-dimensional arrays of H and Li atoms. The ground-state energy per atom in the linear H array is determined versus bond length.
Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy
NASA Technical Reports Server (NTRS)
Cantrell, John H.; Cantrell, Sean A.
2010-01-01
The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.
Pond, Kathy; Kim, Rokho; Carroquino, Maria-Jose; Pirard, Philippe; Gore, Fiona; Cucu, Alexandra; Nemer, Leda; MacKay, Morag; Smedje, Greta; Georgellis, Antonis; Dalbokova, Dafina; Krzyzanowski, Michal
2007-01-01
A working group coordinated by the World Health Organization developed a set of indicators to protect children’s health from environmental risks and to support current and future European policy needs. On the basis of identified policy needs, the group developed a core set of 29 indicators for implementation plus an extended set of eight additional indicators for future development, focusing on exposure, health effects, and action. As far as possible, the indicators were designed to use existing information and are flexible enough to be developed further to meet the needs of policy makers and changing health priorities. These indicators cover most of the priority topic areas specified in the Children’s Environment and Health Action Plan for Europe (CEHAPE) as adopted in the Fourth Ministerial Conference on Health and Environment in 2004, and will be used to monitor the implementation of CEHAPE. This effort can be viewed as an integral part of the Global Initiative on Children’s Environmental Health Indicators, launched at the World Summit on Sustainable Development in 2002. PMID:17805431
Glässel, A; Coenen, M; Kollerits, B; Cieza, A
2014-06-01
The extended ICF Core Set for stroke is an application of the International Classification of Functioning, Disability and Health (ICF) of the World Health Organisation (WHO) with the purpose to represent the typical spectrum of functioning of persons with stroke. The objective of the study is to add evidence to the content validity of the extended ICF Core Set for stroke from persons after stroke taking into account gender perspective. A qualitative study design was conducted by using individual interviews with women and men after stroke in an in- and outpatient rehabilitation setting. The sampling followed the maximum variation strategy. Sample size was determined by saturation. Concepts from qualitative data analysis were linked to ICF categories and compared to the extended ICF Core Set for stroke. Twelve women and 12 men participated in 24 individual interviews. In total, 143 out of 166 ICF categories included in the extended ICF Core Set for stroke were confirmed (women: N.=13; men: N.=17; both genders: N.=113). Thirty-eight additional categories that are not yet included in the extended ICF Core Set for stroke were raised by women and men. This study confirms that the experience of functioning and disability after stroke shows communalities and differences for women and men. The validity of the extended ICF Core Set for stroke could be mostly confirmed, since it does not only include those areas of functioning and disability relevant to both genders but also those exclusively relevant to either women or men. Further research is needed on ICF categories not yet included in the extended ICF Core Set for stroke.
Dynamical basis sets for algebraic variational calculations in quantum-mechanical scattering theory
NASA Technical Reports Server (NTRS)
Sun, Yan; Kouri, Donald J.; Truhlar, Donald G.; Schwenke, David W.
1990-01-01
New basis sets are proposed for linear algebraic variational calculations of transition amplitudes in quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the Kohn variational principle (KVP) and those that yield the generalized Newton variational principle (GNVP) when substituted in Schlessinger's stationary expression for the T operator. Trial calculations show that efficiencies almost as great as that of the GNVP and much greater than the KVP can be obtained, even for basis sets with the majority of the members independent of energy.
On basis set superposition error corrected stabilization energies for large n-body clusters.
Walczak, Katarzyna; Friedrich, Joachim; Dolg, Michael
2011-10-07
In this contribution, we propose an approximate basis set superposition error (BSSE) correction scheme for the site-site function counterpoise and for the Valiron-Mayer function counterpoise correction of second order to account for the basis set superposition error in clusters with a large number of subunits. The accuracy of the proposed scheme has been investigated for a water cluster series at the CCSD(T), CCSD, MP2, and self-consistent field levels of theory using Dunning's correlation consistent basis sets. The BSSE corrected stabilization energies for a series of water clusters are presented. A study regarding the possible savings with respect to computational resources has been carried out as well as a monitoring of the basis set dependence of the approximate BSSE corrections. © 2011 American Institute of Physics
High quality Gaussian basis sets for fourth-row atoms
NASA Technical Reports Server (NTRS)
Partridge, Harry; Faegri, Knut, Jr.
1992-01-01
Energy optimized Gaussian basis sets of triple-zeta quality for the atoms Rb-Xe have been derived. Two series of basis sets are developed: (24s 16p 10d) and (26s 16p 10d) sets which were expanded to 13d and 19p functions as the 4d and 5p shells become occupied. For the atoms lighter than Cd, the (24s 16p 10d) sets with triple-zeta valence distributions are higher in energy than the corresponding double-zeta distribution. To ensure a triple-zeta distribution and a global energy minimum, the (26s 16p 10d) sets were derived. Total atomic energies from the largest basis sets are between 198 and 284 (mu)E(sub H) above the numerical Hartree-Fock energies.
Extended Duration Orbiter Medical Project
NASA Technical Reports Server (NTRS)
Sawin, Charles F. (Editor); Taylor, Gerald R. (Editor); Smith, Wanda L. (Editor); Brown, J. Travis (Technical Monitor)
1999-01-01
Biomedical issues have presented a challenge to flight physicians, scientists, and engineers ever since the advent of high-speed, high-altitude airplane flight in the 1940s. In 1958, preparations began for the first manned space flights of Project Mercury. The medical data and flight experience gained through Mercury's six flights and the Gemini, Apollo, and Skylab projects, as well as subsequent space flights, comprised the knowledge base that was used to develop and implement the Extended Duration Orbiter Medical Project (EDOMP). The EDOMP yielded substantial amounts of data in six areas of space biomedical research. In addition, a significant amount of hardware was developed and tested under the EDOMP. This hardware was designed to improve data gathering capabilities and maintain crew physical fitness, while minimizing the overall impact to the microgravity environment. The biomedical findings as well as the hardware development results realized from the EDOMP have been important to the continuing success of extended Space Shuttle flights and have formed the basis for medical studies of crew members living for three to five months aboard the Russian space station, Mir. EDOMP data and hardware are also being used in preparation for the construction and habitation of International Space Station. All data sets were grouped to be non-attributable to individuals, and submitted to NASA s Life Sciences Data Archive.
Relativistic well-tempered Gaussian basis sets for helium through mercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, S.; Matsuoka, O.
1989-10-01
Exponent parameters of the nonrelativistically optimized well-tempered Gaussian basis sets of Huzinaga and Klobukowski have been employed for Dirac--Fock--Roothaan calculations without their reoptimization. For light atoms He (atomic number {ital Z}=2)--Rh ({ital Z}=45), the number of exponent parameters used has been the same as the nonrelativistic basis sets and for heavier atoms Pd ({ital Z}=46)--Hg({ital Z}=80), two 2{ital p} (and three 3{ital d}) Gaussian basis functions have been augmented. The scheme of kinetic energy balance and the uniformly charged sphere model of atomic nuclei have been adopted. The qualities of the calculated basis sets are close to the Dirac--Fock limit.
NASA Astrophysics Data System (ADS)
Wang, Feng; Pang, Wenning; Duffy, Patrick
2012-12-01
Performance of a number of commonly used density functional methods in chemistry (B3LYP, Bhandh, BP86, PW91, VWN, LB94, PBe0, SAOP and X3LYP and the Hartree-Fock (HF) method) has been assessed using orbital momentum distributions of the 7σ orbital of nitrous oxide (NNO), which models electron behaviour in a chemically significant region. The density functional methods are combined with a number of Gaussian basis sets (Pople's 6-31G*, 6-311G**, DGauss TZVP and Dunning's aug-cc-pVTZ as well as even-tempered Slater basis sets, namely, et-DZPp, et-QZ3P, et-QZ+5P and et-pVQZ). Orbital momentum distributions of the 7σ orbital in the ground electronic state of NNO, which are obtained from a Fourier transform into momentum space from single point electronic calculations employing the above models, are compared with experimental measurement of the same orbital from electron momentum spectroscopy (EMS). The present study reveals information on performance of (a) the density functional methods, (b) Gaussian and Slater basis sets, (c) combinations of the density functional methods and basis sets, that is, the models, (d) orbital momentum distributions, rather than a group of specific molecular properties and (e) the entire region of chemical significance of the orbital. It is found that discrepancies of this orbital between the measured and the calculated occur in the small momentum region (i.e. large r region). In general, Slater basis sets achieve better overall performance than the Gaussian basis sets. Performance of the Gaussian basis sets varies noticeably when combining with different Vxc functionals, but Dunning's augcc-pVTZ basis set achieves the best performance for the momentum distributions of this orbital. The overall performance of the B3LYP and BP86 models is similar to newer models such as X3LYP and SAOP. The present study also demonstrates that the combinations of the density functional methods and the basis sets indeed make a difference in the quality of the calculated orbitals.
Plumley, Joshua A.; Dannenberg, J. J.
2011-01-01
We evaluate the performance of nine functionals (B3LYP, M05, M05-2X, M06, M06-2X, B2PLYP, B2PLYPD, X3LYP, B97D and MPWB1K) in combination with 16 basis sets ranging in complexity from 6-31G(d) to aug-cc-pV5Z for the calculation of the H-bonded water dimer with the goal of defining which combinations of functionals and basis sets provide a combination of economy and accuracy for H-bonded systems. We have compared the results to the best non-DFT molecular orbital calculations and to experimental results. Several of the smaller basis sets lead to qualitatively incorrect geometries when optimized on a normal potential energy surface (PES). This problem disappears when the optimization is performed on a counterpoise corrected PES. The calculated ΔE's with the largest basis sets vary from -4.42 (B97D) to -5.19 (B2PLYPD) kcal/mol for the different functionals. Small basis sets generally predict stronger interactions than the large ones. We found that, due to error compensation, the smaller basis sets gave the best results (in comparison to experimental and high level non-DFT MO calculations) when combined with a functional that predicts a weak interaction with the largest basis set. Since many applications are complex systems and require economical calculations, we suggest the following functional/basis set combinations in order of increasing complexity and cost: 1) D95(d,p) with B3LYP, B97D, M06 or MPWB1k; 2) 6-311G(d,p) with B3LYP; 3) D95++(d,p) with B3LYP, B97D or MPWB1K; 4)6-311++G(d,p) with B3LYP or B97D; and 5) aug-cc-pVDZ with M05-2X, M06-2X or X3LYP. PMID:21328398
Plumley, Joshua A; Dannenberg, J J
2011-06-01
We evaluate the performance of ten functionals (B3LYP, M05, M05-2X, M06, M06-2X, B2PLYP, B2PLYPD, X3LYP, B97D, and MPWB1K) in combination with 16 basis sets ranging in complexity from 6-31G(d) to aug-cc-pV5Z for the calculation of the H-bonded water dimer with the goal of defining which combinations of functionals and basis sets provide a combination of economy and accuracy for H-bonded systems. We have compared the results to the best non-density functional theory (non-DFT) molecular orbital (MO) calculations and to experimental results. Several of the smaller basis sets lead to qualitatively incorrect geometries when optimized on a normal potential energy surface (PES). This problem disappears when the optimization is performed on a counterpoise (CP) corrected PES. The calculated interaction energies (ΔEs) with the largest basis sets vary from -4.42 (B97D) to -5.19 (B2PLYPD) kcal/mol for the different functionals. Small basis sets generally predict stronger interactions than the large ones. We found that, because of error compensation, the smaller basis sets gave the best results (in comparison to experimental and high-level non-DFT MO calculations) when combined with a functional that predicts a weak interaction with the largest basis set. As many applications are complex systems and require economical calculations, we suggest the following functional/basis set combinations in order of increasing complexity and cost: (1) D95(d,p) with B3LYP, B97D, M06, or MPWB1k; (2) 6-311G(d,p) with B3LYP; (3) D95++(d,p) with B3LYP, B97D, or MPWB1K; (4) 6-311++G(d,p) with B3LYP or B97D; and (5) aug-cc-pVDZ with M05-2X, M06-2X, or X3LYP. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Miliordos, Evangelos; Xantheas, Sotiris S.
2015-03-01
We report the variation of the binding energy of the Formic Acid Dimer with the size of the basis set at the Coupled Cluster with iterative Singles, Doubles and perturbatively connected Triple replacements [CCSD(T)] level of theory, estimate the Complete Basis Set (CBS) limit, and examine the validity of the Basis Set Superposition Error (BSSE)-correction for this quantity that was previously challenged by Kalescky, Kraka, and Cremer (KKC) [J. Chem. Phys. 140, 084315 (2014)]. Our results indicate that the BSSE correction, including terms that account for the substantial geometry change of the monomers due to the formation of two strong hydrogen bonds in the dimer, is indeed valid for obtaining accurate estimates for the binding energy of this system as it exhibits the expected decrease with increasing basis set size. We attribute the discrepancy between our current results and those of KKC to their use of a valence basis set in conjunction with the correlation of all electrons (i.e., including the 1s of C and O). We further show that the use of a core-valence set in conjunction with all electron correlation converges faster to the CBS limit as the BSSE correction is less than half than the valence electron/valence basis set case. The uncorrected and BSSE-corrected binding energies were found to produce the same (within 0.1 kcal/mol) CBS limits. We obtain CCSD(T)/CBS best estimates for De = - 16.1 ± 0.1 kcal/mol and for D0 = - 14.3 ± 0.1 kcal/mol, the later in excellent agreement with the experimental value of -14.22 ± 0.12 kcal/mol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mardirossian, Narbe; Head-Gordon, Martin
2013-08-22
For a set of eight equilibrium intermolecular complexes, it is discovered in this paper that the basis set limit (BSL) cannot be reached by aug-cc-pV5Z for three of the Minnesota density functionals: M06-L, M06-HF, and M11-L. In addition, the M06 and M11 functionals exhibit substantial, but less severe, difficulties in reaching the BSL. By using successively finer grids, it is demonstrated that this issue is not related to the numerical integration of the exchange-correlation functional. In addition, it is shown that the difficulty in reaching the BSL is not a direct consequence of the structure of the augmented functions inmore » Dunning’s basis sets, since modified augmentation yields similar results. By using a very large custom basis set, the BSL appears to be reached for the HF dimer for all of the functionals. As a result, it is concluded that the difficulties faced by several of the Minnesota density functionals are related to an interplay between the form of these functionals and the structure of standard basis sets. It is speculated that the difficulty in reaching the basis set limit is related to the magnitude of the inhomogeneity correction factor (ICF) of the exchange functional. A simple modification of the M06-L exchange functional that systematically reduces the basis set superposition error (BSSE) for the HF dimer in the aug-cc-pVQZ basis set is presented, further supporting the speculation that the difficulty in reaching the BSL is caused by the magnitude of the exchange functional ICF. In conclusion, the BSSE is plotted with respect to the internuclear distance of the neon dimer for two of the examined functionals.« less
Dager, Turid Nygaard; Kjeken, Ingvild; Berdal, Gunnhild; Sand-Svartrud, Anne-Lene; Bø, Ingvild; Dingsør, Anne; Eppeland, Siv Grødal; Hagfors, Jon; Hamnes, Bente; Nielsen, Merete; Slungaard, Bente; Wigers, Sigrid Hørven; Hauge, Mona-Iren
2017-01-01
Objective: To explore the significance of the content of rehabilitation in terms of achieving a personal outcome, and to understand the significance of tailored follow-up interventions for individual efforts to prolong health behaviour change after rehabilitation. Design: Semi-structured interviews with patients who had received an extended rehabilitation programme. All interviews were transcribed verbatim. A thematic analysis was applied. Subjects: A purposeful sample of 18 patients with rheumatic diseases who had attended specialized multidisciplinary rehabilitation with an extended programme consisting of a self-help booklet, structured goal-setting talks and tailored follow-up calls based on motivational interviewing. Results: Four overarching and interrelated themes were identified. Experienced Person-centred interventions represented a basis for the patients’ motivation and personal outcomes. Confident self-management describes a new confident approach to exercise and illness management after rehabilitation with person-centred interventions. For many, this included reaching a different mindset, a change of illness perception. Continuity of the personal outcomes describes the importance of follow-up telephone calls to maintain the focus on goals and continued efforts. Building on established relationships and practising person-centred communication were essential. Conclusion: Tailoring of communication and rehabilitation interventions may be a premise for enhancing health behaviour, including a beneficial illness perception. Structured goal setting and follow-up telephone calls using motivational interviewing enhance motivation and may contribute to prolonged goal attainment. PMID:29163943
NASA Astrophysics Data System (ADS)
Salmon, B. P.; Kleynhans, W.; Olivier, J. C.; van den Bergh, F.; Wessels, K. J.
2018-05-01
Humans are transforming land cover at an ever-increasing rate. Accurate geographical maps on land cover, especially rural and urban settlements are essential to planning sustainable development. Time series extracted from MODerate resolution Imaging Spectroradiometer (MODIS) land surface reflectance products have been used to differentiate land cover classes by analyzing the seasonal patterns in reflectance values. The proper fitting of a parametric model to these time series usually requires several adjustments to the regression method. To reduce the workload, a global setting of parameters is done to the regression method for a geographical area. In this work we have modified a meta-optimization approach to setting a regression method to extract the parameters on a per time series basis. The standard deviation of the model parameters and magnitude of residuals are used as scoring function. We successfully fitted a triply modulated model to the seasonal patterns of our study area using a non-linear extended Kalman filter (EKF). The approach uses temporal information which significantly reduces the processing time and storage requirements to process each time series. It also derives reliability metrics for each time series individually. The features extracted using the proposed method are classified with a support vector machine and the performance of the method is compared to the original approach on our ground truth data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miliordos, Evangelos; Aprà, Edoardo; Xantheas, Sotiris S.
We establish a new estimate for the binding energy between two benzene molecules in the parallel-displaced (PD) conformation by systematically converging (i) the intra- and intermolecular geometry at the minimum, (ii) the expansion of the orbital basis set, and (iii) the level of electron correlation. The calculations were performed at the second-order Møller–Plesset perturbation (MP2) and the coupled cluster including singles, doubles, and a perturbative estimate of triples replacement [CCSD(T)] levels of electronic structure theory. At both levels of theory, by including results corrected for basis set superposition error (BSSE), we have estimated the complete basis set (CBS) limit bymore » employing the family of Dunning’s correlation-consistent polarized valence basis sets. The largest MP2 calculation was performed with the cc-pV6Z basis set (2772 basis functions), whereas the largest CCSD(T) calculation was with the cc-pV5Z basis set (1752 basis functions). The cluster geometries were optimized with basis sets up to quadruple-ζ quality, observing that both its intra- and intermolecular parts have practically converged with the triple-ζ quality sets. The use of converged geometries was found to play an important role for obtaining accurate estimates for the CBS limits. Our results demonstrate that the binding energies with the families of the plain (cc-pVnZ) and augmented (aug-cc-pVnZ) sets converge [within <0.01 kcal/mol for MP2 and <0.15 kcal/mol for CCSD(T)] to the same CBS limit. In addition, the average of the uncorrected and BSSE-corrected binding energies was found to converge to the same CBS limit much faster than either of the two constituents (uncorrected or BSSE-corrected binding energies). Due to the fact that the family of augmented basis sets (especially for the larger sets) causes serious linear dependency problems, the plain basis sets (for which no linear dependencies were found) are deemed as a more efficient and straightforward path for obtaining an accurate CBS limit. We considered extrapolations of the uncorrected (ΔE) and BSSE-corrected (ΔE cp) binding energies, their average value (ΔE ave), as well as the average of the latter over the plain and augmented sets (Δ~E ave) with the cardinal number of the basis set n. Our best estimate of the CCSD(T)/CBS limit for the π–π binding energy in the PD benzene dimer is D e = -2.65 ± 0.02 kcal/mol. The best CCSD(T)/cc-pV5Z calculated value is -2.62 kcal/mol, just 0.03 kcal/mol away from the CBS limit. For comparison, the MP2/CBS limit estimate is -5.00 ± 0.01 kcal/mol, demonstrating a 90% overbinding with respect to CCSD(T). Finally, the spin-component-scaled (SCS) MP2 variant was found to closely reproduce the CCSD(T) results for each basis set, while scaled opposite spin (SOS) MP2 yielded results that are too low when compared to CCSD(T).« less
Atomization Energies of SO and SO2; Basis Set Extrapolation Revisted
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Ricca, Alessandra; Arnold, James (Technical Monitor)
1998-01-01
The addition of tight functions to sulphur and extrapolation to the complete basis set limit are required to obtain accurate atomization energies. Six different extrapolation procedures are tried. The best atomization energies come from the series of basis sets that yield the most consistent results for all extrapolation techniques. In the variable alpha approach, alpha values larger than 4.5 or smaller than 3, appear to suggest that the extrapolation may not be reliable. It does not appear possible to determine a reliable basis set series using only the triple and quadruple zeta based sets. The scalar relativistic effects reduce the atomization of SO and SO2 by 0.34 and 0.81 kcal/mol, respectively, and clearly must be accounted for if a highly accurate atomization energy is to be computed. The magnitude of the core-valence (CV) contribution to the atomization is affected by missing diffuse valence functions. The CV contribution is much more stable if basis set superposition errors are accounted for. A similar study of SF, SF(+), and SF6 shows that the best family of basis sets varies with the nature of the S bonding.
ERIC Educational Resources Information Center
Bowen, J. Philip; Sorensen, Jennifer B.; Kirschner, Karl N.
2007-01-01
The analysis explains the basis set superposition error (BSSE) and fragment relaxation involved in calculating the interaction energies using various first principle theories. Interacting the correlated fragment and increasing the size of the basis set can help in decreasing the BSSE to a great extent.
The Role of Spatially Controlled Cell Proliferation in Limb Bud Morphogenesis
Boehm, Bernd; Westerberg, Henrik; Lesnicar-Pucko, Gaja; Raja, Sahdia; Rautschka, Michael; Cotterell, James; Swoger, Jim; Sharpe, James
2010-01-01
Although the vertebrate limb bud has been studied for decades as a model system for spatial pattern formation and cell specification, the cellular basis of its distally oriented elongation has been a relatively neglected topic by comparison. The conventional view is that a gradient of isotropic proliferation exists along the limb, with high proliferation rates at the distal tip and lower rates towards the body, and that this gradient is the driving force behind outgrowth. Here we test this hypothesis by combining quantitative empirical data sets with computer modelling to assess the potential role of spatially controlled proliferation rates in the process of directional limb bud outgrowth. In particular, we generate two new empirical data sets for the mouse hind limb—a numerical description of shape change and a quantitative 3D map of cell cycle times—and combine these with a new 3D finite element model of tissue growth. By developing a parameter optimization approach (which explores spatial patterns of tissue growth) our computer simulations reveal that the observed distribution of proliferation rates plays no significant role in controlling the distally extending limb shape, and suggests that directional cell activities are likely to be the driving force behind limb bud outgrowth. This theoretical prediction prompted us to search for evidence of directional cell orientations in the limb bud mesenchyme, and we thus discovered a striking highly branched and extended cell shape composed of dynamically extending and retracting filopodia, a distally oriented bias in Golgi position, and also a bias in the orientation of cell division. We therefore provide both theoretical and empirical evidence that limb bud elongation is achieved by directional cell activities, rather than a PD gradient of proliferation rates. PMID:20644711
The effect of diffuse basis functions on valence bond structural weights
NASA Astrophysics Data System (ADS)
Galbraith, John Morrison; James, Andrew M.; Nemes, Coleen T.
2014-03-01
Structural weights and bond dissociation energies have been determined for H-F, H-X, and F-X molecules (-X = -OH, -NH2, and -CH3) at the valence bond self-consistent field (VBSCF) and breathing orbital valence bond (BOVB) levels of theory with the aug-cc-pVDZ and 6-31++G(d,p) basis sets. At the BOVB level, the aug-cc-pVDZ basis set yields a counterintuitive ordering of ionic structural weights when the initial heavy atom s-type basis functions are included. For H-F, H-OH, and F-X, the ordering follows chemical intuition when these basis functions are not included. These counterintuitive weights are shown to be a result of the diffuse polarisation function on one VB fragment being spatially located, in part, on the other VB fragment. Except in the case of F-CH3, this problem is corrected with the 6-31++G(d,p) basis set. The initial heavy atom s-type functions are shown to make an important contribution to the VB orbitals and bond dissociation energies and, therefore, should not be excluded. It is recommended to not use diffuse basis sets in valence bond calculations unless absolutely necessary. If diffuse basis sets are needed, the 6-31++G(d,p) basis set should be used with caution and the structural weights checked against VBSCF values which have been shown to follow the expected ordering in all cases.
Use patterns among early adopters of adaptive cruise control.
Xiong, Huimin; Boyle, Linda Ng; Moeckli, Jane; Dow, Benjamin R; Brown, Timothy L
2012-10-01
The objective of this study was to investigate use patterns among early adopters of adaptive cruise control (ACC). Extended use ofACC may influence a driver's behavior in the long-term, which can have unintended safety consequences. The authors examined the use of a motion-based simulator by 24 participants (15 males and 9 females). Cluster analysis was performed on drivers' use of ACC and was based on their gap settings, speed settings, number of warnings issued, and ACC disengaged. The data were then examined on the basis of driving performance measures and drivers' subjective responses to trust in ACC, understanding of system operations, and driving styles. Driving performance measures included minimum time headway, adjusted minimum time to collision, and drivers' reaction time to critical events. Three groups of drivers were observed on the basis of risky behavior, moderately risky behavior, and conservative behavior. Drivers in the conservative group stayed farther behind the lead vehicle than did drivers in the other two groups. Risky drivers responded later to critical events and had more ACC warnings issued. Safety consequences with ACC may be more prevalent in some driver groups than others. The findings suggest that these safety implications are related to trust in automation, driving styles, understanding of system operations, and personalities. Potential applications of this research include enhanced design for next-generation ACC systems and countermeasures to improve safe driving with ACC.
HM{sup +}–RG complexes (M = group 2 metal; RG = rare gas): Physical vs. chemical interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Joe P.; Dodson, Hannah; Wright, Timothy G., E-mail: Tim.Wright@nottingham.ac.uk
2015-04-21
Previous work on the HM{sup +}–He complexes (M = Be–Ra) has been extended to the cases of the heavier rare gas atoms, HM{sup +}–RG (RG = Ne–Rn). Optimized geometries and harmonic vibrational frequencies have been calculated using MP2 theory and quadruple-ζ quality basis sets. Dissociation energies for the loss of the rare gas atom have been calculated at these optimized geometries using coupled cluster with single and double excitations and perturbative triples, CCSD(T)theory, extrapolating interaction energies to the basis set limit. Comparisons are made between the present data and the previously obtained helium results, as well as to those ofmore » the bare HM{sup +} molecules; furthermore, comparisons are made to the related M{sup +}–RG and M{sup 2+}–RG complexes. Partial atomic charge analyses have also been undertaken, and these used to test a simple charge-induced dipole model. Molecular orbital diagrams are presented together with contour plots of the natural orbitals from the quadratic configuration with single and double excitations (QCISD) density. The conclusion is that the majority of these complexes are physically bound, with very little sharing of electron density; however, for M = Be, and to a lesser extent M = Mg, some evidence for chemical effects is seen in HM{sup +}–RG complexes involving RG atoms with the higher atomic numbers.« less
Dobes, Petr; Otyepka, Michal; Strnad, Miroslav; Hobza, Pavel
2006-05-24
The interaction between roscovitine and cyclin-dependent kinase 2 (cdk2) was investigated by performing correlated ab initio quantum-chemical calculations. The whole protein was fragmented into smaller systems consisting of one or a few amino acids, and the interaction energies of these fragments with roscovitine were determined by using the MP2 method with the extended aug-cc-pVDZ basis set. For selected complexes, the complete basis set limit MP2 interaction energies, as well as the coupled-cluster corrections with inclusion of single, double and noninteractive triples contributions [CCSD(T)], were also evaluated. The energies of interaction between roscovitine and small fragments and between roscovitine and substantial sections of protein (722 atoms) were also computed by using density-functional tight-binding methods covering dispersion energy (DFTB-D) and the Cornell empirical potential. Total stabilisation energy originates predominantly from dispersion energy and methods that do not account for the dispersion energy cannot, therefore, be recommended for the study of protein-inhibitor interactions. The Cornell empirical potential describes reasonably well the interaction between roscovitine and protein; therefore, this method can be applied in future thermodynamic calculations. A limited number of amino acid residues contribute significantly to the binding of roscovitine and cdk2, whereas a rather large number of amino acids make a negligible contribution.
Evans, Melissa; Hocking, Clare; Kersten, Paula
2017-12-01
This study aim was to evaluate whether the Extended International Classification of Functioning, Disability and Health Core Set for Stroke captured the interventions of a community stroke rehabilitation team situated in a large city in New Zealand. It was proposed that the results would identify the contribution of each discipline, and the gaps and differences in service provision to Māori and non-Māori. Applying the Extended International Classification of Functioning, Disability and Health Core Set for Stroke in this way would also inform whether this core set should be adopted in New Zealand. Interventions were retrospectively extracted from 18 medical records and linked to the International Classification of Functioning, Disability and Health and the Extended International Classification of Functioning, Disability and Health Core Set for Stroke. The frequencies of linked interventions and the health discipline providing the intervention were calculated. Analysis revealed that 98.8% of interventions provided by the rehabilitation team could be linked to the Extended International Classification of Functioning, Disability and Health Core Set for Stroke, with more interventions for body function and structure than for activities and participation; no interventions for emotional concerns; and limited interventions for community, social and civic life. Results support previous recommendations for additions to the EICSS. The results support the use of the Extended International Classification of Functioning, Disability and Health Core Set for Stroke in New Zealand and demonstrates its use as a quality assurance tool that can evaluate the scope and practice of a rehabilitation service. Implications for Rehabilitation The Extended International Classification of Functioning Disability and Health Core Set for Stroke appears to represent the stroke interventions of a community stroke rehabilitation team in New Zealand. As a result, researchers and clinicians may have increased confidence to use this core set in research and clinical practice. The Extended International Classification of Functioning Disability and Health Core Set for Stroke can be used as a quality assurance tool to establish whether a community stroke rehabilitation team is meeting the functional needs of its stroke population.
NASA Technical Reports Server (NTRS)
Duke, M. B. (Editor)
1997-01-01
A workshop was held at the Lunar and Planetary Institute on September 4-5, 1997, to address the surface elements of the Mars Reference Mission now being reviewed by NASA. The workshop considered the current reference mission and addressed the types of activities that would be expected for science and resource exploration and facilities operations. A set of activities was defined that can be used to construct "vignettes" of the surface mission. These vignettes can form the basis for describing the importance of the surface mission, for illustrating aspects of the surface mission, and for allowing others to extend and revise these initial ideas. The topic is rich with opportunities for additional conceptualization. It is recommended that NASA consider supporting university design teams to conduct further analysis of the possibilities.
Finite-time stability of neutral-type neural networks with random time-varying delays
NASA Astrophysics Data System (ADS)
Ali, M. Syed; Saravanan, S.; Zhu, Quanxin
2017-11-01
This paper is devoted to the finite-time stability analysis of neutral-type neural networks with random time-varying delays. The randomly time-varying delays are characterised by Bernoulli stochastic variable. This result can be extended to analysis and design for neutral-type neural networks with random time-varying delays. On the basis of this paper, we constructed suitable Lyapunov-Krasovskii functional together and established a set of sufficient linear matrix inequalities approach to guarantee the finite-time stability of the system concerned. By employing the Jensen's inequality, free-weighting matrix method and Wirtinger's double integral inequality, the proposed conditions are derived and two numerical examples are addressed for the effectiveness of the developed techniques.
On the effects of basis set truncation and electron correlation in conformers of 2-hydroxy-acetamide
NASA Astrophysics Data System (ADS)
Szarecka, A.; Day, G.; Grout, P. J.; Wilson, S.
Ab initio quantum chemical calculations have been used to study the differences in energy between two gas phase conformers of the 2-hydroxy-acetamide molecule that possess intramolecular hydrogen bonding. In particular, rotation around the central C-C bond has been considered as a factor determining the structure of the hydrogen bond and stabilization of the conformer. Energy calculations include full geometiy optimization using both the restricted matrix Hartree-Fock model and second-order many-body perturbation theory with a number of commonly used basis sets. The basis sets employed ranged from the minimal STO-3G set to [`]split-valence' sets up to 6-31 G. The effects of polarization functions were also studied. The results display a strong basis set dependence.
Cvitaš, Marko T; Althorpe, Stuart C
2011-01-14
We extend to full dimensionality a recently developed wave packet method [M. T. Cvitaš and S. C. Althorpe, J. Phys. Chem. A 113, 4557 (2009)] for computing the state-to-state quantum dynamics of AB + CD → ABC + D reactions and also increase the computational efficiency of the method. This is done by introducing a new set of product coordinates, by applying the Crank-Nicholson approximation to the angular kinetic energy part of the split-operator propagator and by using a symmetry-adapted basis-to-grid transformation to evaluate integrals over the potential energy surface. The newly extended method is tested on the benchmark OH + H(2) → H(2)O + H reaction, where it allows us to obtain accurately converged state-to-state reaction probabilities (on the Wu-Schatz-Fang-Lendvay-Harding potential energy surface) with modest computational effort. These methodological advances will make possible efficient calculations of state-to-state differential cross sections on this system in the near future.
Accurate ab initio calculations which demonstrate a 3 Pi u ground state for Al2
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.; Taylor, Peter R.; Walch, Stephen P.
1986-01-01
The spectroscopic parameters and separations between the three low-lying X 3 Pi u, A 3 Sigma g -, and a 1 Sigma g + states of Al2 are studied as a function of both the one-particle and n-particle basis set. Approximate correlation treatments are calibrated against full Cl calculations correlating the six valence electrons in a double-zeta plus two d-function basis set. Since the CASSCF/MRCI 3 Pi u to 3 Sigma g - separation is in excellent agreement wtih the FCI value, the MRCI calculations were carried out in an extended (20s13p6d4f)/(6s5p3d2f) gaussian basis. Including a small correction for relativistic effects, the best estimate is that 3 Sigma g - state lies 174/cm above the 3 Pi u ground state. The 1 Sigma g + state lies at least 2000/cm higher in energy. At the CPF level, inclusion of 2s and 2p correlation has little effect on D sub e, reduces T sub e by only 26/cm, and shortens the bond lengths by about 0.02 a sub o. Further strong support for a 3 Pi u ground state comes from the experimental absorption spectra, since both observed transitions can be convincingly assigned as 3 Pi u yields 3 Pi g. The (2) 3 Pi g state is observed to be sensitive to the level of correlation treatment, and to have its minimum shifted to shorter rho values, such that the strongest experimental absorption peak probably corresponds to the 0 yields 2 transition.
NASA Technical Reports Server (NTRS)
Garrick, I. E.; Kaplan, Carl
1944-01-01
The differential equation of Chaplygin's jet problem is utilized to give a systematic development of particular solutions of the hodograph flow equations, which extends the treatment of Chaplygin into the supersonic range and completes the set of particular solutions. The particular solutions serve to place on a reasonable basis the use of velocity correction formulas for the comparison of incompressible and compressible flows. It is shown that the geometric-mean type of velocity correction formula introduced in part I has significance as an over-all type of approximation in the subsonic range. A brief review of general conditions limiting the potential flow of an adiabatic compressible fluid is given and application is made to the particular solutions, yielding conditions for the existence of singular loci in the supersonic range. The combining of particular solutions in accordance with prescribed boundary flow conditions is not treated in the present paper.
Fang, Joyce; Savransky, Dmitry
2016-08-01
Automation of alignment tasks can provide improved efficiency and greatly increase the flexibility of an optical system. Current optical systems with automated alignment capabilities are typically designed to include a dedicated wavefront sensor. Here, we demonstrate a self-aligning method for a reconfigurable system using only focal plane images. We define a two lens optical system with 8 degrees of freedom. Images are simulated given misalignment parameters using ZEMAX software. We perform a principal component analysis on the simulated data set to obtain Karhunen-Loève modes, which form the basis set whose weights are the system measurements. A model function, which maps the state to the measurement, is learned using nonlinear least-squares fitting and serves as the measurement function for the nonlinear estimator (extended and unscented Kalman filters) used to calculate control inputs to align the system. We present and discuss simulated and experimental results of the full system in operation.
Towards a Quantum Theory of Humour
NASA Astrophysics Data System (ADS)
Gabora, Liane; Kitto, Kirsty
2016-12-01
This paper proposes that cognitive humour can be modelled using the mathematical framework of quantum theory, suggesting that a Quantum Theory of Humour (QTH) is a viable approach. We begin with brief overviews of both research on humour, and the generalized quantum framework. We show how the bisociation of incongruous frames or word meanings in jokes can be modelled as a linear superposition of a set of basis states, or possible interpretations, in a complex Hilbert space. The choice of possible interpretations depends on the context provided by the set-up versus the punchline of a joke. We apply QTH first to a verbal pun, and then consider how this might be extended to frame blending in cartoons. An initial study of 85 participant responses to 35 jokes (and a number of variants) suggests that there is reason to believe that a quantum approach to the modelling of cognitive humour is a viable new avenue of research for the field of quantum cognition.
Huo, Zhiguang; Ding, Ying; Liu, Silvia; Oesterreich, Steffi; Tseng, George
2016-01-01
Disease phenotyping by omics data has become a popular approach that potentially can lead to better personalized treatment. Identifying disease subtypes via unsupervised machine learning is the first step towards this goal. In this paper, we extend a sparse K-means method towards a meta-analytic framework to identify novel disease subtypes when expression profiles of multiple cohorts are available. The lasso regularization and meta-analysis identify a unique set of gene features for subtype characterization. An additional pattern matching reward function guarantees consistent subtype signatures across studies. The method was evaluated by simulations and leukemia and breast cancer data sets. The identified disease subtypes from meta-analysis were characterized with improved accuracy and stability compared to single study analysis. The breast cancer model was applied to an independent METABRIC dataset and generated improved survival difference between subtypes. These results provide a basis for diagnosis and development of targeted treatments for disease subgroups. PMID:27330233
A terracing operator for physical property mapping with potential field data
Cordell, L.; McCafferty, A.E.
1989-01-01
The terracing operator works iteratively on gravity or magnetic data, using the sense of the measured field's local curvature, to produce a field comprised of uniform domains separated by abrupt domain boundaries. The result is crudely proportional to a physical-property function defined in one (profile case) or two (map case) horizontal dimensions. This result can be extended to a physical-property model if its behavior in the third (vertical) dimension is defined, either arbitrarily or on the basis of the local geologic situation. The terracing algorithm is computationally fast and appropriate to use with very large digital data sets. The terracing operator was applied separately to aeromagnetic and gravity data from a 136km x 123km area in eastern Kansas. Results provide a reasonable good physical representation of both the gravity and the aeromagnetic data. Superposition of the results from the two data sets shows many areas of agreement that can be referenced to geologic features within the buried Precambrian crystalline basement. -from Authors
The 'ripple effect': Towards researching improvisational music therapy in dementia care homes.
Pavlicevic, Mercédès; Tsiris, Giorgos; Wood, Stuart; Powell, Harriet; Graham, Janet; Sanderson, Richard; Millman, Rachel; Gibson, Jane
2015-09-01
Increased interest in, and demand for, music therapy provision for persons with dementia prompted this study's exploration of music therapists' strategies for creating musical communities in dementia care settings, considering the needs and resources of people affected by dementia. Focus group discussions and detailed iterative study of improvisational music therapy work by six experienced practitioners clarify the contextual immediacy and socio-musical complexities of music therapy in dementia care homes. Music therapy's 'ripple effect', with resonances from micro (person-to-person musicking), to meso (musicking beyond 'session time') and macro level (within the care home and beyond), implies that all who are part of the dementia care ecology need opportunities for flourishing, shared participation, and for expanded self-identities; beyond 'staff', 'residents', or 'being in distress'. On such basis, managers and funders might consider an extended brief for music therapists' roles, to include generating and maintaining musical wellbeing throughout residential care settings. © The Author(s) 2013.
Development of an electronic seepage chamber for extended use in a river.
Fritz, Brad G; Mendoza, Donaldo P; Gilmore, Tyler J
2009-01-01
Seepage chambers have been used to characterize the flux of water across the water-sediment interface in a variety of settings. In this work, an electronic seepage chamber was developed specifically for long-term use in a large river where hydraulic gradient reversals occur frequently with river-stage variations. A bidirectional electronic flowmeter coupled with a seepage chamber was used to measure temporal changes in the magnitude and direction of water flux across the water-sediment interface over an 8-week period. The specific discharge measured from the seepage chamber compared favorably with measurements of vertical hydraulic gradient and previous specific discharge calculations. This, as well as other supporting data, demonstrates the effectiveness of the electronic seepage chamber to accurately quantify water flux in two directions over a multimonth period in this setting. The ability to conduct multimonth measurements of water flux at a subhourly frequency in a river system is a critical capability for a seepage chamber in a system where hydraulic gradients change on a daily and seasonal basis.
Huo, Zhiguang; Ding, Ying; Liu, Silvia; Oesterreich, Steffi; Tseng, George
Disease phenotyping by omics data has become a popular approach that potentially can lead to better personalized treatment. Identifying disease subtypes via unsupervised machine learning is the first step towards this goal. In this paper, we extend a sparse K -means method towards a meta-analytic framework to identify novel disease subtypes when expression profiles of multiple cohorts are available. The lasso regularization and meta-analysis identify a unique set of gene features for subtype characterization. An additional pattern matching reward function guarantees consistent subtype signatures across studies. The method was evaluated by simulations and leukemia and breast cancer data sets. The identified disease subtypes from meta-analysis were characterized with improved accuracy and stability compared to single study analysis. The breast cancer model was applied to an independent METABRIC dataset and generated improved survival difference between subtypes. These results provide a basis for diagnosis and development of targeted treatments for disease subgroups.
BAC-MP4 predictions of thermochemistry for the gas-phase tin compounds in the Sn-H-C-Cl system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allendorf, Mark D.; Melius, Carl F.
2004-09-01
In this work, the BAC-MP4 method is extended for the first time to compounds in the fourth row of the periodic table, resulting in a self-consistent set of thermochemical data for 56 tin-containing molecules in the Sn-H-C-Cl system. The BAC-MP4 method combines ab initio electronic structure calculations with empirical corrections to obtain accurate heats of formation. To obtain electronic energies for tin-containing species, the standard 6-31G(d,p) basis set used in BAC-MP4 calculations is augmented with a relativistic effective core potential to describe the electronic structure of the tin atom. Both stable compounds and radical species are included in this study.more » Trends within homologous series and calculated bond dissociation energies are consistent with previous BAC-MP4 predictions for group 14 compounds and the limited data available from the literature, indicating that the method is performing well for these compounds.« less
On the optimization of Gaussian basis sets
NASA Astrophysics Data System (ADS)
Petersson, George A.; Zhong, Shijun; Montgomery, John A.; Frisch, Michael J.
2003-01-01
A new procedure for the optimization of the exponents, αj, of Gaussian basis functions, Ylm(ϑ,φ)rle-αjr2, is proposed and evaluated. The direct optimization of the exponents is hindered by the very strong coupling between these nonlinear variational parameters. However, expansion of the logarithms of the exponents in the orthonormal Legendre polynomials, Pk, of the index, j: ln αj=∑k=0kmaxAkPk((2j-2)/(Nprim-1)-1), yields a new set of well-conditioned parameters, Ak, and a complete sequence of well-conditioned exponent optimizations proceeding from the even-tempered basis set (kmax=1) to a fully optimized basis set (kmax=Nprim-1). The error relative to the exact numerical self-consistent field limit for a six-term expansion is consistently no more than 25% larger than the error for the completely optimized basis set. Thus, there is no need to optimize more than six well-conditioned variational parameters, even for the largest sets of Gaussian primitives.
Zhu, Wuming; Trickey, S B
2017-12-28
In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li + , Be + , and B + , in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.
NASA Astrophysics Data System (ADS)
Zhu, Wuming; Trickey, S. B.
2017-12-01
In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li+, Be+, and B+, in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.
Basis set limit and systematic errors in local-orbital based all-electron DFT
NASA Astrophysics Data System (ADS)
Blum, Volker; Behler, Jörg; Gehrke, Ralf; Reuter, Karsten; Scheffler, Matthias
2006-03-01
With the advent of efficient integration schemes,^1,2 numeric atom-centered orbitals (NAO's) are an attractive basis choice in practical density functional theory (DFT) calculations of nanostructured systems (surfaces, clusters, molecules). Though all-electron, the efficiency of practical implementations promises to be on par with the best plane-wave pseudopotential codes, while having a noticeably higher accuracy if required: Minimal-sized effective tight-binding like calculations and chemically accurate all-electron calculations are both possible within the same framework; non-periodic and periodic systems can be treated on equal footing; and the localized nature of the basis allows in principle for O(N)-like scaling. However, converging an observable with respect to the basis set is less straightforward than with competing systematic basis choices (e.g., plane waves). We here investigate the basis set limit of optimized NAO basis sets in all-electron calculations, using as examples small molecules and clusters (N2, Cu2, Cu4, Cu10). meV-level total energy convergence is possible using <=50 basis functions per atom in all cases. We also find a clear correlation between the errors which arise from underconverged basis sets, and the system geometry (interatomic distance). ^1 B. Delley, J. Chem. Phys. 92, 508 (1990), ^2 J.M. Soler et al., J. Phys.: Condens. Matter 14, 2745 (2002).
Petruzielo, F R; Toulouse, Julien; Umrigar, C J
2011-02-14
A simple yet general method for constructing basis sets for molecular electronic structure calculations is presented. These basis sets consist of atomic natural orbitals from a multiconfigurational self-consistent field calculation supplemented with primitive functions, chosen such that the asymptotics are appropriate for the potential of the system. Primitives are optimized for the homonuclear diatomic molecule to produce a balanced basis set. Two general features that facilitate this basis construction are demonstrated. First, weak coupling exists between the optimal exponents of primitives with different angular momenta. Second, the optimal primitive exponents for a chosen system depend weakly on the particular level of theory employed for optimization. The explicit case considered here is a basis set appropriate for the Burkatzki-Filippi-Dolg pseudopotentials. Since these pseudopotentials are finite at nuclei and have a Coulomb tail, the recently proposed Gauss-Slater functions are the appropriate primitives. Double- and triple-zeta bases are developed for elements hydrogen through argon. These new bases offer significant gains over the corresponding Burkatzki-Filippi-Dolg bases at various levels of theory. Using a Gaussian expansion of the basis functions, these bases can be employed in any electronic structure method. Quantum Monte Carlo provides an added benefit: expansions are unnecessary since the integrals are evaluated numerically.
A four stage approach for ontology-based health information system design.
Kuziemsky, Craig E; Lau, Francis
2010-11-01
To describe and illustrate a four stage methodological approach to capture user knowledge in a biomedical domain area, use that knowledge to design an ontology, and then implement and evaluate the ontology as a health information system (HIS). A hybrid participatory design-grounded theory (GT-PD) method was used to obtain data and code them for ontology development. Prototyping was used to implement the ontology as a computer-based tool. Usability testing evaluated the computer-based tool. An empirically derived domain ontology and set of three problem-solving approaches were developed as a formalized model of the concepts and categories from the GT coding. The ontology and problem-solving approaches were used to design and implement a HIS that tested favorably in usability testing. The four stage approach illustrated in this paper is useful for designing and implementing an ontology as the basis for a HIS. The approach extends existing ontology development methodologies by providing an empirical basis for theory incorporated into ontology design. Copyright © 2010 Elsevier B.V. All rights reserved.
Convoluted Quasi Sturmian basis for the two-electron continuum
NASA Astrophysics Data System (ADS)
Ancarani, Lorenzo Ugo; Zaytsev, A. S.; Zaytsev, S. A.
2016-09-01
In the construction of solutions for the Coulomb three-body scattering problem one encounters a series of mathematical and numerical difficulties, one of which are the cumbersome boundary conditions the wave function should obey. We propose to describe a Coulomb three-body system continuum with a set of two-particle functions, named Convoluted Quasi Sturmian (CQS) in. They are built using recently introduced Quasi Sturmian (QS) functions which have the merit of possessing a closed form. Unlike a simple product of two one-particle functions, by construction, the CQS functions look asymptotically like a six-dimensional outgoing spherical wave. The proposed CQS basis is tested through the study of the double ionization of helium by high-energy electron impact in the framework of the Temkin-Poet model. An adequate logarithmic-like phase factor is further included in order to take into account the Coulomb interelectronic interaction and formally build the correct asymptotic behavior when all interparticle distances are large. With such a phase-factor (that can be easily extended to take into account higher partial waves) rapid convergence of the expansion can be obtained.
Geometric Mechanics for Continuous Swimmers on Granular Material
NASA Astrophysics Data System (ADS)
Dai, Jin; Faraji, Hossein; Schiebel, Perrin; Gong, Chaohui; Travers, Matthew; Hatton, Ross; Goldman, Daniel; Choset, Howie; Biorobotics Lab Collaboration; LaboratoryRobotics; Applied Mechanics (LRAM) Collaboration; Complex Rheology; Biomechanics Lab Collaboration
Animal experiments have shown that Chionactis occipitalis(N =10) effectively undulating on granular substrates exhibits a particular set of waveforms which can be approximated by a sinusoidal variation in curvature, i.e., a serpenoid wave. Furthermore, all snakes tested used a narrow subset of all available waveform parameters, measured as the relative curvature equal to 5.0+/-0.3, and number of waves on the body equal to1.8+/-0.1. We hypothesize that the serpenoid wave of a particular choice of parameters offers distinct benefit for locomotion on granular material. To test this hypothesis, we used a physical model (snake robot) to empirically explore the space of serpenoid motions, which is linearly spanned with two independent continuous serpenoid basis functions. The empirically derived height function map, which is a geometric mechanics tool for analyzing movements of cyclic gaits, showed that displacement per gait cycle increases with amplitude at small amplitudes, but reaches a peak value of 0.55 body-lengths at relative curvature equal to 6.0. This work signifies that with shape basis functions, geometric mechanics tools can be extended for continuous swimmers.
Hill, J Grant
2013-09-30
Auxiliary basis sets (ABS) specifically matched to the cc-pwCVnZ-PP and aug-cc-pwCVnZ-PP orbital basis sets (OBS) have been developed and optimized for the 4d elements Y-Pd at the second-order Møller-Plesset perturbation theory level. Calculation of the core-valence electron correlation energies for small to medium sized transition metal complexes demonstrates that the error due to the use of these new sets in density fitting is three to four orders of magnitude smaller than that due to the OBS incompleteness, and hence is considered negligible. Utilizing the ABSs in the resolution-of-the-identity component of explicitly correlated calculations is also investigated, where it is shown that i-type functions are important to produce well-controlled errors in both integrals and correlation energy. Benchmarking at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations level indicates impressive convergence with respect to basis set size for the spectroscopic constants of 4d monofluorides; explicitly correlated double-ζ calculations produce results close to conventional quadruple-ζ, and triple-ζ is within chemical accuracy of the complete basis set limit. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Gaigong; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H{sub 2} and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
Zhang, Gaigong; Lin, Lin; Hu, Wei; ...
2017-01-27
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Gaigong; Lin, Lin; Hu, Wei
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
NASA Astrophysics Data System (ADS)
Zhang, Gaigong; Lin, Lin; Hu, Wei; Yang, Chao; Pask, John E.
2017-04-01
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann-Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al-Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.; Faegri, Knut, Jr.
1990-01-01
The paper investigates bounds failure in calculations using Gaussian basis sets for the solution of the one-electron Dirac equation for the 2p1/2 state of Hg(79+). It is shown that bounds failure indicates inadequacies in the basis set, both in terms of the exponent range and the number of functions. It is also shown that overrepresentation of the small component space may lead to unphysical results. It is concluded that it is important to use matched large and small component basis sets with an adequate size and exponent range.
Ab Initio and Analytic Intermolecular Potentials for Ar-CF₄
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vayner, Grigoriy; Alexeev, Yuri; Wang, Jiangping
2006-03-09
Ab initio calculations at the CCSD(T) level of theory are performed to characterize the Ar + CF ₄ intermolecular potential. Extensive calculations, with and without a correction for basis set superposition error (BSSE), are performed with the cc-pVTZ basis set. Additional calculations are performed with other correlation consistent (cc) basis sets to extrapolate the Ar---CF₄potential energy minimum to the complete basis set (CBS) limit. Both the size of the basis set and BSSE have substantial effects on the Ar + CF₄ potential. Calculations with the cc-pVTZ basis set and without a BSSE correction, appear to give a good representation ofmore » the potential at the CBS limit and with a BSSE correction. In addition, MP2 theory is found to give potential energies in very good agreement with those determined by the much higher level CCSD(T) theory. Two analytic potential energy functions were determined for Ar + CF₄by fitting the cc-pVTZ calculations both with and without a BSSE correction. These analytic functions were written as a sum of two body potentials and excellent fits to the ab initio potentials were obtained by representing each two body interaction as a Buckingham potential.« less
On the performance of large Gaussian basis sets for the computation of total atomization energies
NASA Technical Reports Server (NTRS)
Martin, J. M. L.
1992-01-01
The total atomization energies of a number of molecules have been computed using an augmented coupled-cluster method and (5s4p3d2f1g) and 4s3p2d1f) atomic natural orbital (ANO) basis sets, as well as the correlation consistent valence triple zeta plus polarization (cc-pVTZ) correlation consistent valence quadrupole zeta plus polarization (cc-pVQZ) basis sets. The performance of ANO and correlation consistent basis sets is comparable throughout, although the latter can result in significant CPU time savings. Whereas the inclusion of g functions has significant effects on the computed Sigma D(e) values, chemical accuracy is still not reached for molecules involving multiple bonds. A Gaussian-1 (G) type correction lowers the error, but not much beyond the accuracy of the G1 model itself. Using separate corrections for sigma bonds, pi bonds, and valence pairs brings down the mean absolute error to less than 1 kcal/mol for the spdf basis sets, and about 0.5 kcal/mol for the spdfg basis sets. Some conclusions on the success of the Gaussian-1 and Gaussian-2 models are drawn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirkov, Leonid; Makarewicz, Jan, E-mail: jama@amu.edu.pl
An ab initio intermolecular potential energy surface (PES) has been constructed for the benzene-krypton (BKr) van der Waals (vdW) complex. The interaction energy has been calculated at the coupled cluster level of theory with single, double, and perturbatively included triple excitations using different basis sets. As a result, a few analytical PESs of the complex have been determined. They allowed a prediction of the complex structure and its vibrational vdW states. The vibrational energy level pattern exhibits a distinct polyad structure. Comparison of the equilibrium structure, the dipole moment, and vibrational levels of BKr with their experimental counterparts has allowedmore » us to design an optimal basis set composed of a small Dunning’s basis set for the benzene monomer, a larger effective core potential adapted basis set for Kr and additional midbond functions. Such a basis set yields vibrational energy levels that agree very well with the experimental ones as well as with those calculated from the available empirical PES derived from the microwave spectra of the BKr complex. The basis proposed can be applied to larger complexes including Kr because of a reasonable computational cost and accurate results.« less
Petrenko, Taras; Kossmann, Simone; Neese, Frank
2011-02-07
In this paper, we present the implementation of efficient approximations to time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation (TDA) for hybrid density functionals. For the calculation of the TDDFT/TDA excitation energies and analytical gradients, we combine the resolution of identity (RI-J) algorithm for the computation of the Coulomb terms and the recently introduced "chain of spheres exchange" (COSX) algorithm for the calculation of the exchange terms. It is shown that for extended basis sets, the RIJCOSX approximation leads to speedups of up to 2 orders of magnitude compared to traditional methods, as demonstrated for hydrocarbon chains. The accuracy of the adiabatic transition energies, excited state structures, and vibrational frequencies is assessed on a set of 27 excited states for 25 molecules with the configuration interaction singles and hybrid TDDFT/TDA methods using various basis sets. Compared to the canonical values, the typical error in transition energies is of the order of 0.01 eV. Similar to the ground-state results, excited state equilibrium geometries differ by less than 0.3 pm in the bond distances and 0.5° in the bond angles from the canonical values. The typical error in the calculated excited state normal coordinate displacements is of the order of 0.01, and relative error in the calculated excited state vibrational frequencies is less than 1%. The errors introduced by the RIJCOSX approximation are, thus, insignificant compared to the errors related to the approximate nature of the TDDFT methods and basis set truncation. For TDDFT/TDA energy and gradient calculations on Ag-TB2-helicate (156 atoms, 2732 basis functions), it is demonstrated that the COSX algorithm parallelizes almost perfectly (speedup ~26-29 for 30 processors). The exchange-correlation terms also parallelize well (speedup ~27-29 for 30 processors). The solution of the Z-vector equations shows a speedup of ~24 on 30 processors. The parallelization efficiency for the Coulomb terms can be somewhat smaller (speedup ~15-25 for 30 processors), but their contribution to the total calculation time is small. Thus, the parallel program completes a Becke3-Lee-Yang-Parr energy and gradient calculation on the Ag-TB2-helicate in less than 4 h on 30 processors. We also present the necessary extension of the Lagrangian formalism, which enables the calculation of the TDDFT excited state properties in the frozen-core approximation. The algorithms described in this work are implemented into the ORCA electronic structure system.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-16
... DEPARTMENT OF COMMERCE International Trade Administration Beauty and Cosmetics Trade Mission to India; Application Deadline Extended and Acceptance To Participate Changed to First-Come First- Serve Basis AGENCY: International Trade Administration, Department of Commerce. ACTION: Notice. Timeframe for...
49 CFR 232.213 - Extended haul trains.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF TRANSPORTATION BRAKE SYSTEM SAFETY STANDARDS FOR FREIGHT AND OTHER NON-PASSENGER TRAINS AND... extended haul trains will originate and a description of the trains that will be operated as extended haul.... (5) The train shall have no more than one pick-up and one set-out en route, except for the set-out of...
NASA Astrophysics Data System (ADS)
Schlueter-Kuck, Kristy; Dabiri, John
2017-11-01
In recent years, there has been a proliferation of techniques that aim to characterize fluid flow kinematics on the basis of Lagrangian trajectories of collections of tracer particles. Most of these techniques depend on presence of tracer particles that are initially closely-spaced, in order to compute local gradients of their trajectories. In many applications, the requirement of close tracer spacing cannot be satisfied, especially when the tracers are naturally occurring and their distribution is dictated by the underlying flow. Moreover, current methods often focus on determination of the boundaries of coherent sets, whereas in practice it is often valuable to identify the complete set of trajectories that are coherent with an individual trajectory of interest. We extend the concept of Coherent Structure Coloring to achieve identification of the coherent set associated with individual Lagrangian trajectories. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Importantly, although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems. This work was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Code of Federal Regulations, 2010 CFR
2010-10-01
... physician services in a teaching setting. 415.170 Section 415.170 Public Health CENTERS FOR MEDICARE... BY PHYSICIANS IN PROVIDERS, SUPERVISING PHYSICIANS IN TEACHING SETTINGS, AND RESIDENTS IN CERTAIN SETTINGS Physician Services in Teaching Settings § 415.170 Conditions for payment on a fee schedule basis...
10 CFR 905.33 - Extension formula.
Code of Federal Regulations, 2011 CFR
2011-01-01
... used on a seasonal basis to determine the extended power resource. A similar pro rata approach shall be... formula. (a) The amount of power to be extended to an existing customer shall be determined according to... × project-specific percentage × marketable resource determined to be available at the time future resource...
Projected Hybrid Orbitals: A General QM/MM Method
2015-01-01
A projected hybrid orbital (PHO) method was described to model the covalent boundary in a hybrid quantum mechanical and molecular mechanical (QM/MM) system. The PHO approach can be used in ab initio wave function theory and in density functional theory with any basis set without introducing system-dependent parameters. In this method, a secondary basis set on the boundary atom is introduced to formulate a set of hybrid atomic orbtials. The primary basis set on the boundary atom used for the QM subsystem is projected onto the secondary basis to yield a representation that provides a good approximation to the electron-withdrawing power of the primary basis set to balance electronic interactions between QM and MM subsystems. The PHO method has been tested on a range of molecules and properties. Comparison with results obtained from QM calculations on the entire system shows that the present PHO method is a robust and balanced QM/MM scheme that preserves the structural and electronic properties of the QM region. PMID:25317748
Skills development in the informal sector in India: The case of street food vendors
NASA Astrophysics Data System (ADS)
Pilz, Matthias; Uma, Gengaiah; Venkatram, Rengan
2015-04-01
The informal sector dominates India's economic life, so issues of skills development are particularly important. On the basis of a survey of 49 street food vendors in the Indian cities of New Delhi and Coimbatore, the authors of this article demonstrate that informal learning is a particularly significant form of vocational education and training. Vendors do not acquire skills in formal vocational education and training (VET) settings; for them, opportunities for learning on the job in family businesses or in informal employment are especially important. Unlike other studies, the authors' findings show that street food vendors have a wide range of specialist knowledge, skills and expertise required to conduct their business which they deploy profitably. These skills are not confined to preparing and selling food but also extend to areas such as price setting and marketing. All the street food vendors interviewed identified strongly with their occupation and expressed pride in it. Around half voiced a wish for further training. In this context, the authors suggest promoting non-formal learning settings geared explicitly to street food vendors' difficult working conditions. In line with a few other international innovative schemes, they term this a "non-formal apprenticeship" approach.
Oliveira, Augusto F; Philipsen, Pier; Heine, Thomas
2015-11-10
In the first part of this series, we presented a parametrization strategy to obtain high-quality electronic band structures on the basis of density-functional-based tight-binding (DFTB) calculations and published a parameter set called QUASINANO2013.1. Here, we extend our parametrization effort to include the remaining terms that are needed to compute the total energy and its gradient, commonly referred to as repulsive potential. Instead of parametrizing these terms as a two-body potential, we calculate them explicitly from the DFTB analogues of the Kohn-Sham total energy expression. This strategy requires only two further numerical parameters per element. Thus, the atomic configuration and four real numbers per element are sufficient to define the DFTB model at this level of parametrization. The QUASINANO2015 parameter set allows the calculation of energy, structure, and electronic structure of all systems composed of elements ranging from H to Ca. Extensive benchmarks show that the overall accuracy of QUASINANO2015 is comparable to that of well-established methods, including PM7 and hand-tuned DFTB parameter sets, while coverage of a much larger range of chemical systems is available.
A novel Gaussian-Sinc mixed basis set for electronic structure calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jerke, Jonathan L.; Lee, Young; Tymczak, C. J.
2015-08-14
A Gaussian-Sinc basis set methodology is presented for the calculation of the electronic structure of atoms and molecules at the Hartree–Fock level of theory. This methodology has several advantages over previous methods. The all-electron electronic structure in a Gaussian-Sinc mixed basis spans both the “localized” and “delocalized” regions. A basis set for each region is combined to make a new basis methodology—a lattice of orthonormal sinc functions is used to represent the “delocalized” regions and the atom-centered Gaussian functions are used to represent the “localized” regions to any desired accuracy. For this mixed basis, all the Coulomb integrals are definablemore » and can be computed in a dimensional separated methodology. Additionally, the Sinc basis is translationally invariant, which allows for the Coulomb singularity to be placed anywhere including on lattice sites. Finally, boundary conditions are always satisfied with this basis. To demonstrate the utility of this method, we calculated the ground state Hartree–Fock energies for atoms up to neon, the diatomic systems H{sub 2}, O{sub 2}, and N{sub 2}, and the multi-atom system benzene. Together, it is shown that the Gaussian-Sinc mixed basis set is a flexible and accurate method for solving the electronic structure of atomic and molecular species.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, J. Grant, E-mail: grant.hill@sheffield.ac.uk, E-mail: kipeters@wsu.edu; Peterson, Kirk A., E-mail: grant.hill@sheffield.ac.uk, E-mail: kipeters@wsu.edu
New correlation consistent basis sets, cc-pVnZ-PP-F12 (n = D, T, Q), for all the post-d main group elements Ga–Rn have been optimized for use in explicitly correlated F12 calculations. The new sets, which include not only orbital basis sets but also the matching auxiliary sets required for density fitting both conventional and F12 integrals, are designed for correlation of valence sp, as well as the outer-core d electrons. The basis sets are constructed for use with the previously published small-core relativistic pseudopotentials of the Stuttgart-Cologne variety. Benchmark explicitly correlated coupled-cluster singles and doubles with perturbative triples [CCSD(T)-F12b] calculations of themore » spectroscopic properties of numerous diatomic molecules involving 4p, 5p, and 6p elements have been carried out and compared to the analogous conventional CCSD(T) results. In general the F12 results obtained with a n-zeta F12 basis set were comparable to conventional aug-cc-pVxZ-PP or aug-cc-pwCVxZ-PP basis set calculations obtained with x = n + 1 or even x = n + 2. The new sets used in CCSD(T)-F12b calculations are particularly efficient at accurately recovering the large correlation effects of the outer-core d electrons.« less
Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies
Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung
2017-01-01
A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods’ performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. PMID:27993672
Feißel, Annemarie; Peter, Richard; Swart, Enno
2018-01-01
Due to demographic changes, the employee structure in companies is changing dramatically. It will be necessary to offer employees suitable, age-adequate jobs. As one of its foremost goals, optimized business management strategies must create conditions for guaranteeing a person’s health, work ability, and work motivation. In the context of corporate age management concepts, the literature recommends to retain and integrate older employees in the organization. This paper aims at developing an extended model of the relation between work motivation and health as affected by work ability and at deriving a host of measures that enterprises can apply as part of a corporate age management policy to counteract the impact of demographic changes. The model also takes into consideration factors influencing the relation between work motivation and health as affected by work ability (socio-demographic parameters, occupation, work-related stress). Additionally, the extended model translates the literature-based results into a corporate setting by way of a corporate age management program. The model comprises a process focusing on retaining and promoting work ability in order to maintain or boost work motivation and health. The host of measures presented serves as a basis to preventively counter demographic change on an individual, interpersonal, and structural level. PMID:29673218
Feißel, Annemarie; Peter, Richard; Swart, Enno; March, Stefanie
2018-04-17
Due to demographic changes, the employee structure in companies is changing dramatically. It will be necessary to offer employees suitable, age-adequate jobs. As one of its foremost goals, optimized business management strategies must create conditions for guaranteeing a person’s health, work ability, and work motivation. In the context of corporate age management concepts, the literature recommends to retain and integrate older employees in the organization. This paper aims at developing an extended model of the relation between work motivation and health as affected by work ability and at deriving a host of measures that enterprises can apply as part of a corporate age management policy to counteract the impact of demographic changes. The model also takes into consideration factors influencing the relation between work motivation and health as affected by work ability (socio-demographic parameters, occupation, work-related stress). Additionally, the extended model translates the literature-based results into a corporate setting by way of a corporate age management program. The model comprises a process focusing on retaining and promoting work ability in order to maintain or boost work motivation and health. The host of measures presented serves as a basis to preventively counter demographic change on an individual, interpersonal, and structural level.
Large-scale diversity of slope fishes: pattern inconsistency between multiple diversity indices.
Gaertner, Jean-Claude; Maiorano, Porzia; Mérigot, Bastien; Colloca, Francesco; Politou, Chrissi-Yianna; Gil De Sola, Luis; Bertrand, Jacques A; Murenu, Matteo; Durbec, Jean-Pierre; Kallianiotis, Argyris; Mannini, Alessandro
2013-01-01
Large-scale studies focused on the diversity of continental slope ecosystems are still rare, usually restricted to a limited number of diversity indices and mainly based on the empirical comparison of heterogeneous local data sets. In contrast, we investigate large-scale fish diversity on the basis of multiple diversity indices and using 1454 standardized trawl hauls collected throughout the upper and middle slope of the whole northern Mediterranean Sea (36°3'- 45°7' N; 5°3'W - 28°E). We have analyzed (1) the empirical relationships between a set of 11 diversity indices in order to assess their degree of complementarity/redundancy and (2) the consistency of spatial patterns exhibited by each of the complementary groups of indices. Regarding species richness, our results contrasted both the traditional view based on the hump-shaped theory for bathymetric pattern and the commonly-admitted hypothesis of a large-scale decreasing trend correlated with a similar gradient of primary production in the Mediterranean Sea. More generally, we found that the components of slope fish diversity we analyzed did not always show a consistent pattern of distribution according either to depth or to spatial areas, suggesting that they are not driven by the same factors. These results, which stress the need to extend the number of indices traditionally considered in diversity monitoring networks, could provide a basis for rethinking not only the methodological approach used in monitoring systems, but also the definition of priority zones for protection. Finally, our results call into question the feasibility of properly investigating large-scale diversity patterns using a widespread approach in ecology, which is based on the compilation of pre-existing heterogeneous and disparate data sets, in particular when focusing on indices that are very sensitive to sampling design standardization, such as species richness.
Manna, Debashree; Kesharwani, Manoj K; Sylvetsky, Nitai; Martin, Jan M L
2017-07-11
Benchmark ab initio energies for BEGDB and WATER27 data sets have been re-examined at the MP2 and CCSD(T) levels with both conventional and explicitly correlated (F12) approaches. The basis set convergence of both conventional and explicitly correlated methods has been investigated in detail, both with and without counterpoise corrections. For the MP2 and CCSD-MP2 contributions, rapid basis set convergence observed with explicitly correlated methods is compared to conventional methods. However, conventional, orbital-based calculations are preferred for the calculation of the (T) term, since it does not benefit from F12. CCSD(F12*) converges somewhat faster with the basis set than CCSD-F12b for the CCSD-MP2 term. The performance of various DFT methods is also evaluated for the BEGDB data set, and results show that Head-Gordon's ωB97X-V and ωB97M-V functionals outperform all other DFT functionals. Counterpoise-corrected DSD-PBEP86 and raw DSD-PBEPBE-NL also perform well and are close to MP2 results. In the WATER27 data set, the anionic (deprotonated) water clusters exhibit unacceptably slow basis set convergence with the regular cc-pVnZ-F12 basis sets, which have only diffuse s and p functions. To overcome this, we have constructed modified basis sets, denoted aug-cc-pVnZ-F12 or aVnZ-F12, which have been augmented with diffuse functions on the higher angular momenta. The calculated final dissociation energies of BEGDB and WATER27 data sets are available in the Supporting Information. Our best calculated dissociation energies can be reproduced through n-body expansion, provided one pushes to the basis set and electron correlation limit for the two-body term; for the three-body term, post-MP2 contributions (particularly CCSD-MP2) are important for capturing the three-body dispersion effects. Terms beyond four-body can be adequately captured at the MP2-F12 level.
Gaussian polarizable-ion tight binding.
Boleininger, Max; Guilbert, Anne Ay; Horsfield, Andrew P
2016-10-14
To interpret ultrafast dynamics experiments on large molecules, computer simulation is required due to the complex response to the laser field. We present a method capable of efficiently computing the static electronic response of large systems to external electric fields. This is achieved by extending the density-functional tight binding method to include larger basis sets and by multipole expansion of the charge density into electrostatically interacting Gaussian distributions. Polarizabilities for a range of hydrocarbon molecules are computed for a multipole expansion up to quadrupole order, giving excellent agreement with experimental values, with average errors similar to those from density functional theory, but at a small fraction of the cost. We apply the model in conjunction with the polarizable-point-dipoles model to estimate the internal fields in amorphous poly(3-hexylthiophene-2,5-diyl).
Gaussian polarizable-ion tight binding
NASA Astrophysics Data System (ADS)
Boleininger, Max; Guilbert, Anne AY; Horsfield, Andrew P.
2016-10-01
To interpret ultrafast dynamics experiments on large molecules, computer simulation is required due to the complex response to the laser field. We present a method capable of efficiently computing the static electronic response of large systems to external electric fields. This is achieved by extending the density-functional tight binding method to include larger basis sets and by multipole expansion of the charge density into electrostatically interacting Gaussian distributions. Polarizabilities for a range of hydrocarbon molecules are computed for a multipole expansion up to quadrupole order, giving excellent agreement with experimental values, with average errors similar to those from density functional theory, but at a small fraction of the cost. We apply the model in conjunction with the polarizable-point-dipoles model to estimate the internal fields in amorphous poly(3-hexylthiophene-2,5-diyl).
Extraction of Extended Small-Scale Objects in Digital Images
NASA Astrophysics Data System (ADS)
Volkov, V. Y.
2015-05-01
Detection and localization problem of extended small-scale objects with different shapes appears in radio observation systems which use SAR, infra-red, lidar and television camera. Intensive non-stationary background is the main difficulty for processing. Other challenge is low quality of images, blobs, blurred boundaries; in addition SAR images suffer from a serious intrinsic speckle noise. Statistics of background is not normal, it has evident skewness and heavy tails in probability density, so it is hard to identify it. The problem of extraction small-scale objects is solved here on the basis of directional filtering, adaptive thresholding and morthological analysis. New kind of masks is used which are open-ended at one side so it is possible to extract ends of line segments with unknown length. An advanced method of dynamical adaptive threshold setting is investigated which is based on isolated fragments extraction after thresholding. Hierarchy of isolated fragments on binary image is proposed for the analysis of segmentation results. It includes small-scale objects with different shape, size and orientation. The method uses extraction of isolated fragments in binary image and counting points in these fragments. Number of points in extracted fragments is normalized to the total number of points for given threshold and is used as effectiveness of extraction for these fragments. New method for adaptive threshold setting and control maximises effectiveness of extraction. It has optimality properties for objects extraction in normal noise field and shows effective results for real SAR images.
Bunn, Frances; Goodman, Claire
2018-01-01
Background Shared decision-making is recognised as an important element of person-centred dementia care. Objectives The aim of this review was to explore how people living with dementia and cognitive impairment can be included in day-to-day decisions about their health and care in extended care settings. Design A systematic review including primary research relating to shared decision-making, with cognitively impaired adults in (or transferrable to) extended care settings. Databases searched were: CINAHL, PubMed, the Cochrane Library, NICE Evidence, OpenGrey, Autism Data, Google Scholar, Scopus and Medicines Complete (June to October 2016 and updated 2018) for studies published in the last 20 years. Results Of the 19 included studies 15 involved people with living dementia, seven in extended care settings. People living with cognitive impairment often have the desire and ability to participate in decision-making about their everyday care, although this is regularly underestimated by their staff and family care partners. Shared decision-making has the potential to improve quality of life for both the person living with dementia and those who support them. How resources to support shared decision-making are implemented in extended care settings is less well understood. Conclusions Evidence suggests that people living with cognitive impairment value opportunities to be involved in everyday decision-making about their care. How these opportunities are created, understood, supported and sustained in extended care settings remains to be determined. Trial registration number CRD42016035919 PMID:29886439
On the Use of a Mixed Gaussian/Finite-Element Basis Set for the Calculation of Rydberg States
NASA Technical Reports Server (NTRS)
Thuemmel, Helmar T.; Langhoff, Stephen (Technical Monitor)
1996-01-01
Configuration-interaction studies are reported for the Rydberg states of the helium atom using mixed Gaussian/finite-element (GTO/FE) one particle basis sets. Standard Gaussian valence basis sets are employed, like those, used extensively in quantum chemistry calculations. It is shown that the term values for high-lying Rydberg states of the helium atom can be obtained accurately (within 1 cm -1), even for a small GTO set, by augmenting the n-particle space with configurations, where orthonormalized interpolation polynomials are singly occupied.
Govindaraghavan, Meera; Anglin, Sarah Lea; Osmani, Aysha H; Osmani, Stephen A
2014-08-01
Mitosis is promoted and regulated by reversible protein phosphorylation catalyzed by the essential NIMA and CDK1 kinases in the model filamentous fungus Aspergillus nidulans. Protein methylation mediated by the Set1/COMPASS methyltransferase complex has also been shown to regulate mitosis in budding yeast with the Aurora mitotic kinase. We uncover a genetic interaction between An-swd1, which encodes a subunit of the Set1 protein methyltransferase complex, with NIMA as partial inactivation of nimA is poorly tolerated in the absence of swd1. This genetic interaction is additionally seen without the Set1 methyltransferase catalytic subunit. Importantly partial inactivation of NIMT, a mitotic activator of the CDK1 kinase, also causes lethality in the absence of Set1 function, revealing a functional relationship between the Set1 complex and two pivotal mitotic kinases. The main target for Set1-mediated methylation is histone H3K4. Mutational analysis of histone H3 revealed that modifying the H3K4 target residue of Set1 methyltransferase activity phenocopied the lethality seen when either NIMA or CDK1 are partially functional. We probed the mechanistic basis of these genetic interactions and find that the Set1 complex performs functions with CDK1 for initiating mitosis and with NIMA during progression through mitosis. The studies uncover a joint requirement for the Set1 methyltransferase complex with the CDK1 and NIMA kinases for successful mitosis. The findings extend the roles of the Set1 complex to include the initiation of mitosis with CDK1 and mitotic progression with NIMA in addition to its previously identified interactions with Aurora and type 1 phosphatase in budding yeast. Copyright © 2014 by the Genetics Society of America.
Perturbation corrections to Koopmans' theorem. V - A study with large basis sets
NASA Technical Reports Server (NTRS)
Chong, D. P.; Langhoff, S. R.
1982-01-01
The vertical ionization potentials of N2, F2 and H2O were calculated by perturbation corrections to Koopmans' theorem using six different basis sets. The largest set used includes several sets of polarization functions. Comparison is made with measured values and with results of computations using Green's functions.
The HSE management system in practice-implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Primrose, M.J.; Bentley, P.D.; Sykes, R.M.
1996-11-01
This paper sets out the necessary strategic issues that must be dealt with when setting up a management system for HSE. It touches on the setting of objectives using a form of risk matrix and the establishment of corporate risk tolerability levels. Such issue management is vital but can be seen as yet another corporate HQ initiative. It must therefore be linked, and made relevant to those in middle management tasked with implementing the system and also to those at risk {open_quote}at the sharp end{close_quote} of the business. Setting acceptance criteria is aimed at demonstrating a necessary and sufficient levelmore » of control or coverage for those hazards considered as being within the objective setting of the Safety or HSE Case. Critical risk areas addressed via the Safety Case, within Shell companies at least, must show how this coverage is extended to critical health and environmental issues. Methods of achieving this are various ranging from specific Case deliverables (like the Hazard Register and Accountability Matrices) through to the incorporation of topics from the hazard analysis in toolbox talks and meetings. Risk analysis techniques are increasingly seen as complementary rather than separate with environmental assessments, health risk assessment sand safety risk analyses taking place together and results being considered jointly. The paper ends with some views on the way ahead regarding the linking of risk decisions to target setting at the workplace and views on how Case information may be retrieved and used on a daily basis.« less
Block-localized wavefunction (BLW) method at the density functional theory (DFT) level.
Mo, Yirong; Song, Lingchun; Lin, Yuchun
2007-08-30
The block-localized wavefunction (BLW) approach is an ab initio valence bond (VB) method incorporating the efficiency of molecular orbital (MO) theory. It can generate the wavefunction for a resonance structure or diabatic state self-consistently by partitioning the overall electrons and primitive orbitals into several subgroups and expanding each block-localized molecular orbital in only one subspace. Although block-localized molecular orbitals in the same subspace are constrained to be orthogonal (a feature of MO theory), orbitals between different subspaces are generally nonorthogonal (a feature of VB theory). The BLW method is particularly useful in the quantification of the electron delocalization (resonance) effect within a molecule and the charge-transfer effect between molecules. In this paper, we extend the BLW method to the density functional theory (DFT) level and implement the BLW-DFT method to the quantum mechanical software GAMESS. Test applications to the pi conjugation in the planar allyl radical and ions with the basis sets of 6-31G(d), 6-31+G(d), 6-311+G(d,p), and cc-pVTZ show that the basis set dependency is insignificant. In addition, the BLW-DFT method can also be used to elucidate the nature of intermolecular interactions. Examples of pi-cation interactions and solute-solvent interactions will be presented and discussed. By expressing each diabatic state with one BLW, the BLW method can be further used to study chemical reactions and electron-transfer processes whose potential energy surfaces are typically described by two or more diabatic states.
Theoretical characterization of the F(2)O(3) molecule by coupled-cluster methods.
Huang, Ming-Ju; Watts, John D
2010-09-23
Coupled-cluster calculations with extended basis sets that include noniterative connected triple excitations (CCSD(T)) have been used to study the FOOOF isomer of F(2)O(3). Second-order Moller-Plessett perturbation theory (MP2) and density-functional theory (B3LYP functional) calculations have also been performed for comparison. Two local minima of similar energy, namely, conformers of C(2) and C(s) symmetry have been located. Structures, harmonic vibrational frequencies, and standard enthalpies and free energies of formation have been calculated. The calculated bond lengths of F(2)O(3) are more characteristic of those in F(2)O and a "normal" peroxide than the unusual bond lengths in F(2)O(2). Both conformers have equal F-O and O-O bond lengths, contrary to a recent suggestion of an unsymmetrical structure. The harmonic vibrational frequencies can aid possible identification of gaseous F(2)O(3). The calculated Δ(f)H° and Δ(f)G° are 110 and 173 kJ mol(-1), respectively. These values are based on extrapolation of CCSD(T) results with augmented triple- and quadruple-ζ basis sets and are expected to be within chemical accuracy (i.e., 1 kcal mol(-1) or 4 kJ mol(-1)). F(2)O(3) is calculated to be stable to decomposition to either FO + FOO or F(2) + O(3), but unstable to decomposition to its elements, to F(2)O(2) + (1)/(2)O(2), and to F(2)O + O(2).
NASA Astrophysics Data System (ADS)
Hill, J. Grant; Peterson, Kirk A.; Knizia, Gerald; Werner, Hans-Joachim
2009-11-01
Accurate extrapolation to the complete basis set (CBS) limit of valence correlation energies calculated with explicitly correlated MP2-F12 and CCSD(T)-F12b methods have been investigated using a Schwenke-style approach for molecules containing both first and second row atoms. Extrapolation coefficients that are optimal for molecular systems containing first row elements differ from those optimized for second row analogs, hence values optimized for a combined set of first and second row systems are also presented. The new coefficients are shown to produce excellent results in both Schwenke-style and equivalent power-law-based two-point CBS extrapolations, with the MP2-F12/cc-pV(D,T)Z-F12 extrapolations producing an average error of just 0.17 mEh with a maximum error of 0.49 for a collection of 23 small molecules. The use of larger basis sets, i.e., cc-pV(T,Q)Z-F12 and aug-cc-pV(Q,5)Z, in extrapolations of the MP2-F12 correlation energy leads to average errors that are smaller than the degree of confidence in the reference data (˜0.1 mEh). The latter were obtained through use of very large basis sets in MP2-F12 calculations on small molecules containing both first and second row elements. CBS limits obtained from optimized coefficients for conventional MP2 are only comparable to the accuracy of the MP2-F12/cc-pV(D,T)Z-F12 extrapolation when the aug-cc-pV(5+d)Z and aug-cc-pV(6+d)Z basis sets are used. The CCSD(T)-F12b correlation energy is extrapolated as two distinct parts: CCSD-F12b and (T). While the CCSD-F12b extrapolations with smaller basis sets are statistically less accurate than those of the MP2-F12 correlation energies, this is presumably due to the slower basis set convergence of the CCSD-F12b method compared to MP2-F12. The use of larger basis sets in the CCSD-F12b extrapolations produces correlation energies with accuracies exceeding the confidence in the reference data (also obtained in large basis set F12 calculations). It is demonstrated that the use of the 3C(D) Ansatz is preferred for MP2-F12 CBS extrapolations. Optimal values of the geminal Slater exponent are presented for the diagonal, fixed amplitude Ansatz in MP2-F12 calculations, and these are also recommended for CCSD-F12b calculations.
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.
2008-01-01
In this work, we present an alternate set of basis functions, each defined over a pair of planar triangular patches, for the method of moments solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped, closed, conducting surfaces. The present basis functions are point-wise orthogonal to the pulse basis functions previously defined. The prime motivation to develop the present set of basis functions is to utilize them for the electromagnetic solution of dielectric bodies using a surface integral equation formulation which involves both electric and magnetic cur- rents. However, in the present work, only the conducting body solution is presented and compared with other data.
NASA Astrophysics Data System (ADS)
Goh, K. L.; Liew, S. C.; Hasegawa, B. H.
1997-12-01
Computer simulation results from our previous studies showed that energy dependent systematic errors exist in the values of attenuation coefficient synthesized using the basis material decomposition technique with acrylic and aluminum as the basis materials, especially when a high atomic number element (e.g., iodine from radiographic contrast media) was present in the body. The errors were reduced when a basis set was chosen from materials mimicking those found in the phantom. In the present study, we employed a basis material coefficients transformation method to correct for the energy-dependent systematic errors. In this method, the basis material coefficients were first reconstructed using the conventional basis materials (acrylic and aluminum) as the calibration basis set. The coefficients were then numerically transformed to those for a more desirable set materials. The transformation was done at the energies of the low and high energy windows of the X-ray spectrum. With this correction method using acrylic and an iodine-water mixture as our desired basis set, computer simulation results showed that accuracy of better than 2% could be achieved even when iodine was present in the body at a concentration as high as 10% by mass. Simulation work had also been carried out on a more inhomogeneous 2D thorax phantom of the 3D MCAT phantom. The results of the accuracy of quantitation were presented here.
Brandenburg, Jan Gerit; Grimme, Stefan
2014-01-01
We present and evaluate dispersion corrected Hartree-Fock (HF) and Density Functional Theory (DFT) based quantum chemical methods for organic crystal structure prediction. The necessity of correcting for missing long-range electron correlation, also known as van der Waals (vdW) interaction, is pointed out and some methodological issues such as inclusion of three-body dispersion terms are discussed. One of the most efficient and widely used methods is the semi-classical dispersion correction D3. Its applicability for the calculation of sublimation energies is investigated for the benchmark set X23 consisting of 23 small organic crystals. For PBE-D3 the mean absolute deviation (MAD) is below the estimated experimental uncertainty of 1.3 kcal/mol. For two larger π-systems, the equilibrium crystal geometry is investigated and very good agreement with experimental data is found. Since these calculations are carried out with huge plane-wave basis sets they are rather time consuming and routinely applicable only to systems with less than about 200 atoms in the unit cell. Aiming at crystal structure prediction, which involves screening of many structures, a pre-sorting with faster methods is mandatory. Small, atom-centered basis sets can speed up the computation significantly but they suffer greatly from basis set errors. We present the recently developed geometrical counterpoise correction gCP. It is a fast semi-empirical method which corrects for most of the inter- and intramolecular basis set superposition error. For HF calculations with nearly minimal basis sets, we additionally correct for short-range basis incompleteness. We combine all three terms in the HF-3c denoted scheme which performs very well for the X23 sublimation energies with an MAD of only 1.5 kcal/mol, which is close to the huge basis set DFT-D3 result.
Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies.
Liu, Jia; Duffy, Ben A; Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung
2017-02-15
A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods' performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.
Point Set Denoising Using Bootstrap-Based Radial Basis Function.
Liew, Khang Jie; Ramli, Ahmad; Abd Majid, Ahmad
2016-01-01
This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.
78 FR 50454 - Entergy Operations, Inc., River Bend Station, Unit 1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
... containment internal pressure related to the design basis accident specified either in the technical... RBS to continue to use the pre-extended power uprate value of 7.6 psig rather than use the newly... period following a design basis accident. The Need for the Proposed Action The proposed exemption is...
47 CFR 101.103 - Frequency coordination procedures.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Assignment of frequencies will be made only in such a manner as to facilitate the rendition of communication...-point basis may not be extended or otherwise modified through the addition of point-to-point links. Such... modified through the addition of point-to-point links. Such operations licensed on a point-to-radius basis...
47 CFR 101.103 - Frequency coordination procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Assignment of frequencies will be made only in such a manner as to facilitate the rendition of communication...-point basis may not be extended or otherwise modified through the addition of point-to-point links. Such... modified through the addition of point-to-point links. Such operations licensed on a point-to-radius basis...
47 CFR 101.103 - Frequency coordination procedures.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Assignment of frequencies will be made only in such a manner as to facilitate the rendition of communication...-point basis may not be extended or otherwise modified through the addition of point-to-point links. Such... modified through the addition of point-to-point links. Such operations licensed on a point-to-radius basis...
NASA Astrophysics Data System (ADS)
van Hoeve, Miriam D.; Klobukowski, Mariusz
2018-03-01
Simulation of the electronic spectra of HRgF (Rg = Ar, Kr, Xe, Rn) was carried out using the time-dependent density functional method, with the CAMB3LYP functional and several basis sets augmented with even-tempered diffuse functions. A full spectral assignment for the HRgF systems was done. The effect of the rare gas matrix on the HRgF (Rg = Ar and Kr) spectra was investigated and it was found that the matrix blue-shifted the spectra. Scalar relativistic effects on the spectra were also studied and it was found that while the excitation energies of HArF and HKrF were insignificantly affected by relativistic effects, most of the excitation energies of HXeF and HRnF were red-shifted. Spin-orbit coupling was found to significantly affect excitation energies in HRnF. Analysis of performance of the model core potential basis set relative to all-electron (AE) basis sets showed that the former basis set increased computational efficiency and gave results similar to those obtained with the AE basis set.
Midbond basis functions for weakly bound complexes
NASA Astrophysics Data System (ADS)
Shaw, Robert A.; Hill, J. Grant
2018-06-01
Weakly bound systems present a difficult problem for conventional atom-centred basis sets due to large separations, necessitating the use of large, computationally expensive bases. This can be remedied by placing a small number of functions in the region between molecules in the complex. We present compact sets of optimised midbond functions for a range of complexes involving noble gases, alkali metals and small molecules for use in high accuracy coupled -cluster calculations, along with a more robust procedure for their optimisation. It is shown that excellent results are possible with double-zeta quality orbital basis sets when a few midbond functions are added, improving both the interaction energy and the equilibrium bond lengths of a series of noble gas dimers by 47% and 8%, respectively. When used in conjunction with explicitly correlated methods, near complete basis set limit accuracy is readily achievable at a fraction of the cost that using a large basis would entail. General purpose auxiliary sets are developed to allow explicitly correlated midbond function studies to be carried out, making it feasible to perform very high accuracy calculations on weakly bound complexes.
Varandas, A J C
2009-02-01
The potential energy surface for the C(20)-He interaction is extrapolated for three representative cuts to the complete basis set limit using second-order Møller-Plesset perturbation calculations with correlation consistent basis sets up to the doubly augmented variety. The results both with and without counterpoise correction show consistency with each other, supporting that extrapolation without such a correction provides a reliable scheme to elude the basis-set-superposition error. Converged attributes are obtained for the C(20)-He interaction, which are used to predict the fullerene dimer ones. Time requirements show that the method can be drastically more economical than the counterpoise procedure and even competitive with Kohn-Sham density functional theory for the title system.
Exact exchange-correlation potentials of singlet two-electron systems
NASA Astrophysics Data System (ADS)
Ryabinkin, Ilya G.; Ospadov, Egor; Staroverov, Viktor N.
2017-10-01
We suggest a non-iterative analytic method for constructing the exchange-correlation potential, v XC ( r ) , of any singlet ground-state two-electron system. The method is based on a convenient formula for v XC ( r ) in terms of quantities determined only by the system's electronic wave function, exact or approximate, and is essentially different from the Kohn-Sham inversion technique. When applied to Gaussian-basis-set wave functions, the method yields finite-basis-set approximations to the corresponding basis-set-limit v XC ( r ) , whereas the Kohn-Sham inversion produces physically inappropriate (oscillatory and divergent) potentials. The effectiveness of the procedure is demonstrated by computing accurate exchange-correlation potentials of several two-electron systems (helium isoelectronic series, H2, H3 + ) using common ab initio methods and Gaussian basis sets.
Daly, Rachel Louise; Bunn, Frances; Goodman, Claire
2018-06-09
Shared decision-making is recognised as an important element of person-centred dementia care. The aim of this review was to explore how people living with dementia and cognitive impairment can be included in day-to-day decisions about their health and care in extended care settings. A systematic review including primary research relating to shared decision-making, with cognitively impaired adults in (or transferrable to) extended care settings. Databases searched were: CINAHL, PubMed, the Cochrane Library, NICE Evidence, OpenGrey, Autism Data, Google Scholar, Scopus and Medicines Complete (June to October 2016 and updated 2018) for studies published in the last 20 years. Of the 19 included studies 15 involved people with living dementia, seven in extended care settings. People living with cognitive impairment often have the desire and ability to participate in decision-making about their everyday care, although this is regularly underestimated by their staff and family care partners. Shared decision-making has the potential to improve quality of life for both the person living with dementia and those who support them. How resources to support shared decision-making are implemented in extended care settings is less well understood. Evidence suggests that people living with cognitive impairment value opportunities to be involved in everyday decision-making about their care. How these opportunities are created, understood, supported and sustained in extended care settings remains to be determined. CRD42016035919. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Inelastic transport theory from first principles: Methodology and application to nanoscale devices
NASA Astrophysics Data System (ADS)
Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads; Jauho, Antti-Pekka
2007-05-01
We describe a first-principles method for calculating electronic structure, vibrational modes and frequencies, electron-phonon couplings, and inelastic electron transport properties of an atomic-scale device bridging two metallic contacts under nonequilibrium conditions. The method extends the density-functional codes SIESTA and TRANSIESTA that use atomic basis sets. The inelastic conductance characteristics are calculated using the nonequilibrium Green’s function formalism, and the electron-phonon interaction is addressed with perturbation theory up to the level of the self-consistent Born approximation. While these calculations often are computationally demanding, we show how they can be approximated by a simple and efficient lowest order expansion. Our method also addresses effects of energy dissipation and local heating of the junction via detailed calculations of the power flow. We demonstrate the developed procedures by considering inelastic transport through atomic gold wires of various lengths, thereby extending the results presented in Frederiksen [Phys. Rev. Lett. 93, 256601 (2004)]. To illustrate that the method applies more generally to molecular devices, we also calculate the inelastic current through different hydrocarbon molecules between gold electrodes. Both for the wires and the molecules our theory is in quantitative agreement with experiments, and characterizes the system-specific mode selectivity and local heating.
Correlation consistent basis sets for actinides. I. The Th and U atoms.
Peterson, Kirk A
2015-02-21
New correlation consistent basis sets based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DKH) Hamiltonians have been developed from double- to quadruple-zeta quality for the actinide atoms thorium and uranium. Sets for valence electron correlation (5f6s6p6d), cc - pV nZ - PP and cc - pV nZ - DK3, as well as outer-core correlation (valence + 5s5p5d), cc - pwCV nZ - PP and cc - pwCV nZ - DK3, are reported (n = D, T, Q). The -PP sets are constructed in conjunction with small-core, 60-electron PPs, while the -DK3 sets utilized the 3rd-order Douglas-Kroll-Hess scalar relativistic Hamiltonian. Both series of basis sets show systematic convergence towards the complete basis set limit, both at the Hartree-Fock and correlated levels of theory, making them amenable to standard basis set extrapolation techniques. To assess the utility of the new basis sets, extensive coupled cluster composite thermochemistry calculations of ThFn (n = 2 - 4), ThO2, and UFn (n = 4 - 6) have been carried out. After accurately accounting for valence and outer-core correlation, spin-orbit coupling, and even Lamb shift effects, the final 298 K atomization enthalpies of ThF4, ThF3, ThF2, and ThO2 are all within their experimental uncertainties. Bond dissociation energies of ThF4 and ThF3, as well as UF6 and UF5, were similarly accurate. The derived enthalpies of formation for these species also showed a very satisfactory agreement with experiment, demonstrating that the new basis sets allow for the use of accurate composite schemes just as in molecular systems composed only of lighter atoms. The differences between the PP and DK3 approaches were found to increase with the change in formal oxidation state on the actinide atom, approaching 5-6 kcal/mol for the atomization enthalpies of ThF4 and ThO2. The DKH3 atomization energy of ThO2 was calculated to be smaller than the DKH2 value by ∼1 kcal/mol.
On the basis set convergence of electron–electron entanglement measures: helium-like systems
Hofer, Thomas S.
2013-01-01
A systematic investigation of three different electron–electron entanglement measures, namely the von Neumann, the linear and the occupation number entropy at full configuration interaction level has been performed for the four helium-like systems hydride, helium, Li+ and Be2+ using a large number of different basis sets. The convergence behavior of the resulting energies and entropies revealed that the latter do in general not show the expected strictly monotonic increase upon increase of the one–electron basis. Overall, the three different entanglement measures show good agreement among each other, the largest deviations being observed for small basis sets. The data clearly demonstrates that it is important to consider the nature of the chemical system when investigating entanglement phenomena in the framework of Gaussian type basis sets: while in case of hydride the use of augmentation functions is crucial, the application of core functions greatly improves the accuracy in case of cationic systems such as Li+ and Be2+. In addition, numerical derivatives of the entanglement measures with respect to the nucleic charge have been determined, which proved to be a very sensitive probe of the convergence leading to qualitatively wrong results (i.e., the wrong sign) if too small basis sets are used. PMID:24790952
On the basis set convergence of electron-electron entanglement measures: helium-like systems.
Hofer, Thomas S
2013-01-01
A systematic investigation of three different electron-electron entanglement measures, namely the von Neumann, the linear and the occupation number entropy at full configuration interaction level has been performed for the four helium-like systems hydride, helium, Li(+) and Be(2+) using a large number of different basis sets. The convergence behavior of the resulting energies and entropies revealed that the latter do in general not show the expected strictly monotonic increase upon increase of the one-electron basis. Overall, the three different entanglement measures show good agreement among each other, the largest deviations being observed for small basis sets. The data clearly demonstrates that it is important to consider the nature of the chemical system when investigating entanglement phenomena in the framework of Gaussian type basis sets: while in case of hydride the use of augmentation functions is crucial, the application of core functions greatly improves the accuracy in case of cationic systems such as Li(+) and Be(2+). In addition, numerical derivatives of the entanglement measures with respect to the nucleic charge have been determined, which proved to be a very sensitive probe of the convergence leading to qualitatively wrong results (i.e., the wrong sign) if too small basis sets are used.
Orbital-Dependent Density Functionals for Chemical Catalysis
2014-10-17
noncollinear density functional theory to show that the low-spin state of Mn3 in a model of the oxygen -evolving complex of photosystem II avoids...DK, which denotes the cc-pV5Z-DK basis set for 3d metals and hydrogen and the ma-cc- pV5Z-DK basis set for oxygen ) and to nonrelativistic all...cc-pV5Z basis set for oxygen ). As compared to NCBS-DK results, all ECP calculations perform worse than def2-TZVP all-electron relativistic
Electric dipole moment of diatomic molecules by configuration interaction. IV.
NASA Technical Reports Server (NTRS)
Green, S.
1972-01-01
The theory of basis set dependence in configuration interaction calculations is discussed, taking into account a perturbation model which is valid for small changes in the self-consistent field orbitals. It is found that basis set corrections are essentially additive through first order. It is shown that an error found in a previously published dipole moment calculation by Green (1972) for the metastable first excited state of CO was indeed due to an inadequate basis set as claimed.
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.
2007-01-01
In this work, we present a new set of basis functions, de ned over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also de ned over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.
2008-01-01
In this work, we present a new set of basis functions, defined over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also defined over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.
Dai, James Y.; Hughes, James P.
2012-01-01
The meta-analytic approach to evaluating surrogate end points assesses the predictiveness of treatment effect on the surrogate toward treatment effect on the clinical end point based on multiple clinical trials. Definition and estimation of the correlation of treatment effects were developed in linear mixed models and later extended to binary or failure time outcomes on a case-by-case basis. In a general regression setting that covers nonnormal outcomes, we discuss in this paper several metrics that are useful in the meta-analytic evaluation of surrogacy. We propose a unified 3-step procedure to assess these metrics in settings with binary end points, time-to-event outcomes, or repeated measures. First, the joint distribution of estimated treatment effects is ascertained by an estimating equation approach; second, the restricted maximum likelihood method is used to estimate the means and the variance components of the random treatment effects; finally, confidence intervals are constructed by a parametric bootstrap procedure. The proposed method is evaluated by simulations and applications to 2 clinical trials. PMID:22394448
Fontecha, John E; Akhavan-Tabatabaei, Raha; Duque, Daniel; Medaglia, Andrés L; Torres, María N; Rodríguez, Juan Pablo
In this work we tackle the problem of planning and scheduling preventive maintenance (PM) of sediment-related sewer blockages in a set of geographically distributed sites that are subject to non-deterministic failures. To solve the problem, we extend a combined maintenance and routing (CMR) optimization approach which is a procedure based on two components: (a) first a maintenance model is used to determine the optimal time to perform PM operations for each site and second (b) a mixed integer program-based split procedure is proposed to route a set of crews (e.g., sewer cleaners, vehicles equipped with winches or rods and dump trucks) in order to perform PM operations at a near-optimal minimum expected cost. We applied the proposed CMR optimization approach to two (out of five) operative zones in the city of Bogotá (Colombia), where more than 100 maintenance operations per zone must be scheduled on a weekly basis. Comparing the CMR against the current maintenance plan, we obtained more than 50% of cost savings in 90% of the sites.
A possible loophole in the theorem of Bell.
Hess, K; Philipp, W
2001-12-04
The celebrated inequalities of Bell are based on the assumption that local hidden parameters exist. When combined with conflicting experimental results, these inequalities appear to prove that local hidden parameters cannot exist. This contradiction suggests to many that only instantaneous action at a distance can explain the Einstein, Podolsky, and Rosen type of experiments. We show that, in addition to the assumption that hidden parameters exist, Bell tacitly makes a variety of other assumptions that contribute to his being able to obtain the desired contradiction. For instance, Bell assumes that the hidden parameters do not depend on time and are governed by a single probability measure independent of the analyzer settings. We argue that the exclusion of time has neither a physical nor a mathematical basis but is based on Bell's translation of the concept of Einstein locality into the language of probability theory. Our additional set of local hidden variables includes time-like correlated parameters and a generalized probability density. We prove that our extended space of local hidden variables does not permit Bell-type proofs to go forward.
Tensor calculus in polar coordinates using Jacobi polynomials
NASA Astrophysics Data System (ADS)
Vasil, Geoffrey M.; Burns, Keaton J.; Lecoanet, Daniel; Olver, Sheehan; Brown, Benjamin P.; Oishi, Jeffrey S.
2016-11-01
Spectral methods are an efficient way to solve partial differential equations on domains possessing certain symmetries. The utility of a method depends strongly on the choice of spectral basis. In this paper we describe a set of bases built out of Jacobi polynomials, and associated operators for solving scalar, vector, and tensor partial differential equations in polar coordinates on a unit disk. By construction, the bases satisfy regularity conditions at r = 0 for any tensorial field. The coordinate singularity in a disk is a prototypical case for many coordinate singularities. The work presented here extends to other geometries. The operators represent covariant derivatives, multiplication by azimuthally symmetric functions, and the tensorial relationship between fields. These arise naturally from relations between classical orthogonal polynomials, and form a Heisenberg algebra. Other past work uses more specific polynomial bases for solving equations in polar coordinates. The main innovation in this paper is to use a larger set of possible bases to achieve maximum bandedness of linear operations. We provide a series of applications of the methods, illustrating their ease-of-use and accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shlivinski, A., E-mail: amirshli@ee.bgu.ac.il; Lomakin, V., E-mail: vlomakin@eng.ucsd.edu
2016-03-01
Scattering or coupling of electromagnetic beam-field at a surface discontinuity separating two homogeneous or inhomogeneous media with different propagation characteristics is formulated using surface integral equation, which are solved by the Method of Moments with the aid of the Gabor-based Gaussian window frame set of basis and testing functions. The application of the Gaussian window frame provides (i) a mathematically exact and robust tool for spatial-spectral phase-space formulation and analysis of the problem; (ii) a system of linear equations in a transmission-line like form relating mode-like wave objects of one medium with mode-like wave objects of the second medium; (iii)more » furthermore, an appropriate setting of the frame parameters yields mode-like wave objects that blend plane wave properties (as if solving in the spectral domain) with Green's function properties (as if solving in the spatial domain); and (iv) a representation of the scattered field with Gaussian-beam propagators that may be used in many large (in terms of wavelengths) systems.« less
Wescott, Robert F; Fitzpatrick, Brendan M; Phillips, Elizabeth
2012-10-01
We developed a data collection and monitoring system to independently evaluate the self-regulatory effort to reduce the number of beverage calories available to children during the regular and extended school day. We have described the data collection procedures used to verify data supplied by the beverage industry and quantified changes in school beverage shipments. Using a proprietary industry data set collected in 2005 and semiannually in 2007 through 2010, we measured the total volume of beverage shipments to elementary, middle, and high schools to monitor intertemporal changes in beverage volumes, the composition of products delivered to schools, and portion sizes. We compared data with findings from existing research of the school beverage landscape and a separate data set based on contracts between schools and beverage bottling companies. Between 2004 and the 2009-2010 school year, the beverage industry reduced calories shipped to schools by 90%. On a total ounces basis, shipments of full-calorie soft drinks to schools decreased by 97%. Industry self-regulation, with the assistance of a transparent and independent monitoring process, can be a valuable tool in improving public health outcomes.
Extended School Year. AZ-TAS Themes & Issues: A Series of Topical Papers on Special Education.
ERIC Educational Resources Information Center
Arizona State Dept. of Education, Phoenix. Div. of Special Education.
Some children with disabilities suffer losses of social, behavioral, communication, or academic skills during breaks in instruction and may need an extended school year (ESY) program in order to ensure that they receive the "appropriate public education" that is federally mandated. This guide addresses the legal basis for ESY programs, court…
Aquilante, Francesco; Gagliardi, Laura; Pedersen, Thomas Bondo; Lindh, Roland
2009-04-21
Cholesky decomposition of the atomic two-electron integral matrix has recently been proposed as a procedure for automated generation of auxiliary basis sets for the density fitting approximation [F. Aquilante et al., J. Chem. Phys. 127, 114107 (2007)]. In order to increase computational performance while maintaining accuracy, we propose here to reduce the number of primitive Gaussian functions of the contracted auxiliary basis functions by means of a second Cholesky decomposition. Test calculations show that this procedure is most beneficial in conjunction with highly contracted atomic orbital basis sets such as atomic natural orbitals, and that the error resulting from the second decomposition is negligible. We also demonstrate theoretically as well as computationally that the locality of the fitting coefficients can be controlled by means of the decomposition threshold even with the long-ranged Coulomb metric. Cholesky decomposition-based auxiliary basis sets are thus ideally suited for local density fitting approximations.
NASA Astrophysics Data System (ADS)
Aquilante, Francesco; Gagliardi, Laura; Pedersen, Thomas Bondo; Lindh, Roland
2009-04-01
Cholesky decomposition of the atomic two-electron integral matrix has recently been proposed as a procedure for automated generation of auxiliary basis sets for the density fitting approximation [F. Aquilante et al., J. Chem. Phys. 127, 114107 (2007)]. In order to increase computational performance while maintaining accuracy, we propose here to reduce the number of primitive Gaussian functions of the contracted auxiliary basis functions by means of a second Cholesky decomposition. Test calculations show that this procedure is most beneficial in conjunction with highly contracted atomic orbital basis sets such as atomic natural orbitals, and that the error resulting from the second decomposition is negligible. We also demonstrate theoretically as well as computationally that the locality of the fitting coefficients can be controlled by means of the decomposition threshold even with the long-ranged Coulomb metric. Cholesky decomposition-based auxiliary basis sets are thus ideally suited for local density fitting approximations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falcón, R. M.; Núñez, J.
Based on the traditional concept of isotopism, extended isotopisms were introduced by the authors in 2006 in order to provide a fundamental basis to the isotheory of Santilli. Since that first attempt, distinct studies on extended isotopisms have focused on the construction of partial Latin squares having a Santilli autotopism in their autotopism group. In order to deal with new structures, we introduce in this paper the concept of extended pseudoisotopism. This is based on the use of onto linear transformations that are not necessarily injective. Some examples are exposed throughout the paper.
NASA Astrophysics Data System (ADS)
Balabanov, Nikolai B.; Peterson, Kirk A.
2005-08-01
Sequences of basis sets that systematically converge towards the complete basis set (CBS) limit have been developed for the first-row transition metal elements Sc-Zn. Two families of basis sets, nonrelativistic and Douglas-Kroll-Hess (-DK) relativistic, are presented that range in quality from triple-ζ to quintuple-ζ. Separate sets are developed for the description of valence (3d4s) electron correlation (cc-pVnZ and cc-pVnZ-DK; n =T,Q, 5) and valence plus outer-core (3s3p3d4s) correlation (cc-pwCVnZ and cc-pwCVnZ-DK; n =T,Q, 5), as well as these sets augmented by additional diffuse functions for the description of negative ions and weak interactions (aug-cc-pVnZ and aug-cc-pVnZ-DK). Extensive benchmark calculations at the coupled cluster level of theory are presented for atomic excitation energies, ionization potentials, and electron affinities, as well as molecular calculations on selected hydrides (TiH, MnH, CuH) and other diatomics (TiF, Cu2). In addition to observing systematic convergence towards the CBS limits, both 3s3p electron correlation and scalar relativity are calculated to strongly impact many of the atomic and molecular properties investigated for these first-row transition metal species.
Training set extension for SVM ensemble in P300-speller with familiar face paradigm.
Li, Qi; Shi, Kaiyang; Gao, Ning; Li, Jian; Bai, Ou
2018-03-27
P300-spellers are brain-computer interface (BCI)-based character input systems. Support vector machine (SVM) ensembles are trained with large-scale training sets and used as classifiers in these systems. However, the required large-scale training data necessitate a prolonged collection time for each subject, which results in data collected toward the end of the period being contaminated by the subject's fatigue. This study aimed to develop a method for acquiring more training data based on a collected small training set. A new method was developed in which two corresponding training datasets in two sequences are superposed and averaged to extend the training set. The proposed method was tested offline on a P300-speller with the familiar face paradigm. The SVM ensemble with extended training set achieved 85% classification accuracy for the averaged results of four sequences, and 100% for 11 sequences in the P300-speller. In contrast, the conventional SVM ensemble with non-extended training set achieved only 65% accuracy for four sequences, and 92% for 11 sequences. The SVM ensemble with extended training set achieves higher classification accuracies than the conventional SVM ensemble, which verifies that the proposed method effectively improves the classification performance of BCI P300-spellers, thus enhancing their practicality.
NASA Astrophysics Data System (ADS)
Hill, J. Grant; Peterson, Kirk A.
2017-12-01
New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K-Fr) and alkaline earth (Ca-Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m-1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The -PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements.
NASA Astrophysics Data System (ADS)
Frisch, Michael J.; Binkley, J. Stephen; Schaefer, Henry F., III
1984-08-01
The relative energies of the stationary points on the FH2 and H2CO nuclear potential energy surfaces relevant to the hydrogen atom abstraction, H2 elimination and 1,2-hydrogen shift reactions have been examined using fourth-order Møller-Plesset perturbation theory and a variety of basis sets. The theoretical absolute zero activation energy for the F+H2→FH+H reaction is in better agreement with experiment than previous theoretical studies, and part of the disagreement between earlier theoretical calculations and experiment is found to result from the use of assumed rather than calculated zero-point vibrational energies. The fourth-order reaction energy for the elimination of hydrogen from formaldehyde is within 2 kcal mol-1 of the experimental value using the largest basis set considered. The qualitative features of the H2CO surface are unchanged by expansion of the basis set beyond the polarized triple-zeta level, but diffuse functions and several sets of polarization functions are found to be necessary for quantitative accuracy in predicted reaction and activation energies. Basis sets and levels of perturbation theory which represent good compromises between computational efficiency and accuracy are recommended.
NASA Astrophysics Data System (ADS)
Romero, Angel H.
2017-10-01
The influence of ring puckering angle on the multipole moments of sixteen four-membered heterocycles (1-16) was theoretically estimated using MP2 and different DFTs in combination with the 6-31+G(d,p) basis set. To obtain an accurate evaluation, CCSD/cc-pVDZ level and, the MP2 and PBE1PBE methods in combination with the aug-cc-pVDZ and aug-cc-pVTZ basis sets were performed on the planar geometries of 1-16. In general, the DFT and MP2 approaches provided an identical dependence of the electrical properties with the puckering angle for 1-16. Quantitatively, the quality of the level of theory and basis sets affects significant the predictions of the multipole moments, in particular for the heterocycles containing C=O and C=S bonds. Convergence basis sets within the MP2 and PBE1PBE approximations are reached in the dipole moment calculations when the aug-cc-pVTZ basis set is used, while the quadrupole and octupole moment computations require a larger basis set than aug-cc-pVTZ. On the other hand, the multipole moments showed a strong dependence with the molecular geometry and the nature of the carbon-heteroatom bonds. Specifically, the C-X bond determines the behavior of the μ(ϕ), θ(ϕ) and Ώ(ϕ) functions, while the C=Y bond plays an important role in the magnitude of the studied properties.
Weycker, Derek; Barron, Richard; Kartashov, Alex; Legg, Jason; Lyman, Gary H
2014-06-01
To examine the incidence, treatment, and consequences of febrile neutropenia across inpatient and outpatient care settings. Data were obtained from Humedica's National Electronic Health Record-Derived Longitudinal Patient-Level Database (2007-2010). The study population included adult patients who received myelosuppressive chemotherapy for a solid tumor or non-Hodgkin's lymphoma. For each patient, each chemotherapy regimen course and each cycle within each regimen course was characterized. Febrile neutropenia episodes were identified on a cycle-specific basis based on any of the following: (1) absolute neutrophil count <1.0 × 10(9)/L and evidence of infection or fever; (2) inpatient diagnosis of neutropenia, fever, or infection; (3) outpatient diagnosis of neutropenia and non-prophylactic antimicrobial use; or (4) mention of febrile neutropenia in physician notes. Febrile neutropenia episodes were categorized as inpatient or outpatient based on the initial setting of care (i.e. acute-care inpatient facility vs. ambulatory care facility). Febrile neutropenia consequences included hospital length of stay and mortality (inpatient cases only), as well as number of febrile neutropenia-related outpatient encounters. Among the 2131 patients in this study, 401 experienced a total of 458 febrile neutropenia episodes. Risk of febrile neutropenia during the chemotherapy regimen course was 16.8% (95% CI: 15.3, 18.4). In cycle 1 alone, risk of febrile neutropenia was 8.1% (7.1, 9.3). Most febrile neutropenia episodes (83.2%) were initially treated in the inpatient setting; the hospital mortality rate was 8.1% (5.8, 11.1), and mean hospital length of stay was 8.4 days (7.7, 9.1). Among febrile neutropenia episodes initially treated in the outpatient setting (16.8%), the mean number of outpatient management encounters was 2.6 (2.1, 3.1), most of which were in the physician's office (69.2%) or emergency department (26.9%). Febrile neutropenia remains a common occurrence among patients receiving myelosuppressive chemotherapy and typically results in extended hospitalization and, for many patients, death. A minority of patients are, however, treated exclusively on an outpatient basis.
NASA Astrophysics Data System (ADS)
Bakshi, A. K.; Jha, S. N.; Olivi, L.; Phase, D. M.; Kher, R. K.; Bhattacharyya, D.
2007-11-01
Extended X-ray absorption fine structure (EXAFS) measurements have been carried out on CaSO4:Dy phosphor samples at the Dy L3 edge with synchrotron radiation. Measurements were carried out on a set of samples which were subjected to post-preparation annealing at different temperatures and for different cycles. The EXAFS data have been analysed to find the Dy-S and Dy-O bond lengths in the neighbourhood of the Dy atoms in a CaSO4 matrix. The observations from EXAFS measurements were verified with XANES and XPS techniques. On the basis of these measurements, efforts were made to explain the loss of thermoluminescence sensitivity of CaSO4:Dy phosphors after repeated cycles of annealing at 400 °C in air for 1 h.
Range-Separated Brueckner Coupled Cluster Doubles Theory
NASA Astrophysics Data System (ADS)
Shepherd, James J.; Henderson, Thomas M.; Scuseria, Gustavo E.
2014-04-01
We introduce a range-separation approximation to coupled cluster doubles (CCD) theory that successfully overcomes limitations of regular CCD when applied to the uniform electron gas. We combine the short-range ladder channel with the long-range ring channel in the presence of a Bruckner renormalized one-body interaction and obtain ground-state energies with an accuracy of 0.001 a.u./electron across a wide range of density regimes. Our scheme is particularly useful in the low-density and strongly correlated regimes, where regular CCD has serious drawbacks. Moreover, we cure the infamous overcorrelation of approaches based on ring diagrams (i.e., the particle-hole random phase approximation). Our energies are further shown to have appropriate basis set and thermodynamic limit convergence, and overall this scheme promises energetic properties for realistic periodic and extended systems which existing methods do not possess.
NASA Astrophysics Data System (ADS)
M, S. CHU; Yemin, HU; Wenfeng, GUO
2018-03-01
Solovev’s approach of finding equilibrium solutions was found to be extremely useful for generating a library of linear-superposable equilibria for the purpose of shaping studies. This set of solutions was subsequently expanded to include the vacuum solutions of Zheng, Wootton and Solano, resulting in a set of functions {SOLOVEV_ZWS} that were usually used for all toroidally symmetric plasmas, commonly recognized as being able to accommodate any desired plasma shapes (complete-shaping capability). The possibility of extending the Solovev approach to toroidal equilibria with a general plasma flow is examined theoretically. We found that the only meaningful extension is to plasmas with a pure toroidal rotation and with a constant Mach number. We also show that the simplification ansatz made to the current profiles, which was the basis of the Solovev approach, should be applied more systematically to include an internal boundary condition at the magnetic axis; resulting in a modified and more useful set {SOLOVEV_ZWSm}. Explicit expressions of functions in this set are given for equilibria with a quasi-constant current density profile, with a toroidal flow at a constant Mach number and with specific heat capacity 1. The properties of {SOLOVEV_ZWSm} are studied analytically. Numerical examples of achievable equilibria are demonstrated. Although the shaping capability of the set {SOLOVE_ZWSm} is quite extensive, it nevertheless still does not have complete shaping capability, particularly for plasmas with negative curvature points on the plasma boundary such as the doublets or indented bean shaped tokamaks.
NASA Astrophysics Data System (ADS)
Varandas, António J. C.
2018-04-01
Because the one-electron basis set limit is difficult to reach in correlated post-Hartree-Fock ab initio calculations, the low-cost route of using methods that extrapolate to the estimated basis set limit attracts immediate interest. The situation is somewhat more satisfactory at the Hartree-Fock level because numerical calculation of the energy is often affordable at nearly converged basis set levels. Still, extrapolation schemes for the Hartree-Fock energy are addressed here, although the focus is on the more slowly convergent and computationally demanding correlation energy. Because they are frequently based on the gold-standard coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)], correlated calculations are often affordable only with the smallest basis sets, and hence single-level extrapolations from one raw energy could attain maximum usefulness. This possibility is examined. Whenever possible, this review uses raw data from second-order Møller-Plesset perturbation theory, as well as CCSD, CCSD(T), and multireference configuration interaction methods. Inescapably, the emphasis is on work done by the author's research group. Certain issues in need of further research or review are pinpointed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKemmish, Laura K., E-mail: laura.mckemmish@gmail.com; Research School of Chemistry, Australian National University, Canberra
Algorithms for the efficient calculation of two-electron integrals in the newly developed mixed ramp-Gaussian basis sets are presented, alongside a Fortran90 implementation of these algorithms, RAMPITUP. These new basis sets have significant potential to (1) give some speed-up (estimated at up to 20% for large molecules in fully optimised code) to general-purpose Hartree-Fock (HF) and density functional theory quantum chemistry calculations, replacing all-Gaussian basis sets, and (2) give very large speed-ups for calculations of core-dependent properties, such as electron density at the nucleus, NMR parameters, relativistic corrections, and total energies, replacing the current use of Slater basis functions or verymore » large specialised all-Gaussian basis sets for these purposes. This initial implementation already demonstrates roughly 10% speed-ups in HF/R-31G calculations compared to HF/6-31G calculations for large linear molecules, demonstrating the promise of this methodology, particularly for the second application. As well as the reduction in the total primitive number in R-31G compared to 6-31G, this timing advantage can be attributed to the significant reduction in the number of mathematically complex intermediate integrals after modelling each ramp-Gaussian basis-function-pair as a sum of ramps on a single atomic centre.« less
Jiang, Wei; Roux, Benoît
2010-07-01
Free Energy Perturbation with Replica Exchange Molecular Dynamics (FEP/REMD) offers a powerful strategy to improve the convergence of free energy computations. In particular, it has been shown previously that a FEP/REMD scheme allowing random moves within an extended replica ensemble of thermodynamic coupling parameters "lambda" can improve the statistical convergence in calculations of absolute binding free energy of ligands to proteins [J. Chem. Theory Comput. 2009, 5, 2583]. In the present study, FEP/REMD is extended and combined with an accelerated MD simulations method based on Hamiltonian replica-exchange MD (H-REMD) to overcome the additional problems arising from the existence of kinetically trapped conformations within the protein receptor. In the combined strategy, each system with a given thermodynamic coupling factor lambda in the extended ensemble is further coupled with a set of replicas evolving on a biased energy surface with boosting potentials used to accelerate the inter-conversion among different rotameric states of the side chains in the neighborhood of the binding site. Exchanges are allowed to occur alternatively along the axes corresponding to the thermodynamic coupling parameter lambda and the boosting potential, in an extended dual array of coupled lambda- and H-REMD simulations. The method is implemented on the basis of new extensions to the REPDSTR module of the biomolecular simulation program CHARMM. As an illustrative example, the absolute binding free energy of p-xylene to the nonpolar cavity of the L99A mutant of T4 lysozyme was calculated. The tests demonstrate that the dual lambda-REMD and H-REMD simulation scheme greatly accelerates the configurational sampling of the rotameric states of the side chains around the binding pocket, thereby improving the convergence of the FEP computations.
Quantum Mechanical Calculations of Monoxides of Silicon Carbide Molecules
2003-03-01
Data for CO Final Energy Charge Mult Basis Set (hart) EA (eV) ZPE (hart) EA (eV) w/ ZPE 0 1 DVZ -112.6850703739 2.02121 -1 2 DVZ...Energy Charge Mult Basis Set (hart) EA (eV) ZPE (hart) EA (eV) w/ ZPE 0 1 DVZ -363.7341927429 0.617643 -1 2 DVZ -363.7114852831 0 3 DVZ...Input Geometry Output Geometry Basis Set Final Energy (hart) EA (eV) ZPE (hart) EA (eV) w/ ZPE -1 2 O-C-Si Linear O-C-Si Linear DZV -401.5363
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, S.; Shinada, M.; Matsuoka, O.
1990-10-01
A systematic calculation of new relativistic Gaussian basis sets is reported. The new basis sets are similar to the previously reported ones (J. Chem. Phys. {bold 91}, 4193 (1989)), but, in the calculation, the Breit interaction has been explicitly included besides the Dirac--Coulomb Hamiltonian. They have been adopted for the calculation of the self-consistent field effect on the Breit interaction energies and are expected to be useful for the studies on higher-order effects such as the electron correlations and other quantum electrodynamical effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Jong, Wibe A.; Harrison, Robert J.; Dixon, David A.
A parallel implementation of the spin-free one-electron Douglas-Kroll(-Hess) Hamiltonian (DKH) in NWChem is discussed. An efficient and accurate method to calculate DKH gradients is introduced. It is shown that the use of standard (non-relativistic) contracted basis set can produce erroneous results for elements beyond the first row elements. The generation of DKH contracted cc-pVXZ (X = D, T, Q, 5) basis sets for H, He, B - Ne, Al - Ar, and Ga - Br will be discussed.
NASA Astrophysics Data System (ADS)
Sanchez, Marina; Provasi, Patricio F.; Aucar, Gustavo A.; Sauer, Stephan P. A.
Locally dense basis sets (
Smith, J K; Parry, J D; Day, J G; Smith, R J
1998-10-01
The use of primers based on the Hip1 sequence as a typing technique for cyanobacteria has been investigated. The discovery of short repetitive sequence structures in bacterial DNA during the last decade has led to the development of PCR-based methods for typing, i.e., distinguishing and identifying, bacterial species and strains. An octameric palindromic sequence known as Hip1 has been shown to be present in the chromosomal DNA of many species of cyanobacteria as a highly repetitious interspersed sequence. PCR primers were constructed that extended the Hip1 sequence at the 3' end by two bases. Five of the 16 possible extended primers were tested. Each of the five primers produced a different set of products when used to prime PCR from cyanobacterial genomic DNA. Each primer produced a distinct set of products for each of the 15 cyanobacterial species tested. The ability of Hip1-based PCR to resolve taxonomic differences was assessed by analysis of independent isolates of Anabaena flos-aquae and Nostoc ellipsosporum obtained from the CCAP (Culture Collection of Algae and Protozoa, IFE, Cumbria, UK). A PCR-based RFLP analysis of products amplified from the 23S-16S rDNA intergenic region was used to characterize the isolates and to compare with the Hip1 typing data. The RFLP and Hip1 typing yielded similar results and both techniques were able to distinguish different strains. On the basis of these results it is suggested that the Hip1 PCR technique may assist in distinguishing cyanobacterial species and strains.
Near Hartree-Fock quality GTO basis sets for the first- and third-row atoms
NASA Technical Reports Server (NTRS)
Partridge, Harry
1989-01-01
Energy-optimized Gaussian-type-orbital (GTO) basis sets of accuracy approaching that of numerical Hartree-Fock computations are compiled for the elements of the first and third rows of the periodic table. The methods employed in calculating the sets are explained; the applicability of the sets to electronic-structure calculations is discussed; and the results are presented in tables and briefly characterized.
Hahn, David K; RaghuVeer, Krishans; Ortiz, J V
2014-05-15
Time-dependent density functional theory (TD-DFT) and electron propagator theory (EPT) are used to calculate the electronic transition energies and ionization energies, respectively, of species containing phosphorus or sulfur. The accuracy of TD-DFT and EPT, in conjunction with various basis sets, is assessed with data from gas-phase spectroscopy. TD-DFT is tested using 11 prominent exchange-correlation functionals on a set of 37 vertical and 19 adiabatic transitions. For vertical transitions, TD-CAM-B3LYP calculations performed with the MG3S basis set are lowest in overall error, having a mean absolute deviation from experiment of 0.22 eV, or 0.23 eV over valence transitions and 0.21 eV over Rydberg transitions. Using a larger basis set, aug-pc3, improves accuracy over the valence transitions via hybrid functionals, but improved accuracy over the Rydberg transitions is only obtained via the BMK functional. For adiabatic transitions, all hybrid functionals paired with the MG3S basis set perform well, and B98 is best, with a mean absolute deviation from experiment of 0.09 eV. The testing of EPT used the Outer Valence Green's Function (OVGF) approximation and the Partial Third Order (P3) approximation on 37 vertical first ionization energies. It is found that OVGF outperforms P3 when basis sets of at least triple-ζ quality in the polarization functions are used. The largest basis set used in this study, aug-pc3, obtained the best mean absolute error from both methods -0.08 eV for OVGF and 0.18 eV for P3. The OVGF/6-31+G(2df,p) level of theory is particularly cost-effective, yielding a mean absolute error of 0.11 eV.
NASA Astrophysics Data System (ADS)
Regis, Rommel G.
2014-02-01
This article develops two new algorithms for constrained expensive black-box optimization that use radial basis function surrogates for the objective and constraint functions. These algorithms are called COBRA and Extended ConstrLMSRBF and, unlike previous surrogate-based approaches, they can be used for high-dimensional problems where all initial points are infeasible. They both follow a two-phase approach where the first phase finds a feasible point while the second phase improves this feasible point. COBRA and Extended ConstrLMSRBF are compared with alternative methods on 20 test problems and on the MOPTA08 benchmark automotive problem (D.R. Jones, Presented at MOPTA 2008), which has 124 decision variables and 68 black-box inequality constraints. The alternatives include a sequential penalty derivative-free algorithm, a direct search method with kriging surrogates, and two multistart methods. Numerical results show that COBRA algorithms are competitive with Extended ConstrLMSRBF and they generally outperform the alternatives on the MOPTA08 problem and most of the test problems.
No need for external orthogonality in subsystem density-functional theory.
Unsleber, Jan P; Neugebauer, Johannes; Jacob, Christoph R
2016-08-03
Recent reports on the necessity of using externally orthogonal orbitals in subsystem density-functional theory (SDFT) [Annu. Rep. Comput. Chem., 8, 2012, 53; J. Phys. Chem. A, 118, 2014, 9182] are re-investigated. We show that in the basis-set limit, supermolecular Kohn-Sham-DFT (KS-DFT) densities can exactly be represented as a sum of subsystem densities, even if the subsystem orbitals are not externally orthogonal. This is illustrated using both an analytical example and in basis-set free numerical calculations for an atomic test case. We further show that even with finite basis sets, SDFT calculations using accurate reconstructed potentials can closely approach the supermolecular KS-DFT density, and that the deviations between SDFT and KS-DFT decrease as the basis-set limit is approached. Our results demonstrate that formally, there is no need to enforce external orthogonality in SDFT, even though this might be a useful strategy when developing projection-based DFT embedding schemes.
Friese, Daniel H; Ringholm, Magnus; Gao, Bin; Ruud, Kenneth
2015-10-13
We present theory, implementation, and applications of a recursive scheme for the calculation of single residues of response functions that can treat perturbations that affect the basis set. This scheme enables the calculation of nonlinear light absorption properties to arbitrary order for other perturbations than an electric field. We apply this scheme for the first treatment of two-photon circular dichroism (TPCD) using London orbitals at the Hartree-Fock level of theory. In general, TPCD calculations suffer from the problem of origin dependence, which has so far been solved by using the velocity gauge for the electric dipole operator. This work now enables comparison of results from London orbital and velocity gauge based TPCD calculations. We find that the results from the two approaches both exhibit strong basis set dependence but that they are very similar with respect to their basis set convergence.
Core-core and core-valence correlation
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1988-01-01
The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.
Numerical judgments by chimpanzees (Pan troglodytes) in a token economy.
Beran, Michael J; Evans, Theodore A; Hoyle, Daniel
2011-04-01
We presented four chimpanzees with a series of tasks that involved comparing two token sets or comparing a token set to a quantity of food. Selected tokens could be exchanged for food items on a one-to-one basis. Chimpanzees successfully selected the larger numerical set for comparisons of 1 to 5 items when both sets were visible and when sets were presented through one-by-one addition of tokens into two opaque containers. Two of four chimpanzees used the number of tokens and food items to guide responding in all conditions, rather than relying on token color, size, total amount, or duration of set presentation. These results demonstrate that judgments of simultaneous and sequential sets of stimuli are made by some chimpanzees on the basis of the numerousness of sets rather than other non-numerical dimensions. The tokens were treated as equivalent to food items on the basis of their numerousness, and the chimpanzees maximized reward by choosing the larger number of items in all situations.
Correlation consistent basis sets for actinides. I. The Th and U atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Kirk A., E-mail: kipeters@wsu.edu
New correlation consistent basis sets based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DKH) Hamiltonians have been developed from double- to quadruple-zeta quality for the actinide atoms thorium and uranium. Sets for valence electron correlation (5f6s6p6d), cc − pV nZ − PP and cc − pV nZ − DK3, as well as outer-core correlation (valence + 5s5p5d), cc − pwCV nZ − PP and cc − pwCV nZ − DK3, are reported (n = D, T, Q). The -PP sets are constructed in conjunction with small-core, 60-electron PPs, while the -DK3 sets utilized the 3rd-order Douglas-Kroll-Hess scalar relativistic Hamiltonian. Bothmore » series of basis sets show systematic convergence towards the complete basis set limit, both at the Hartree-Fock and correlated levels of theory, making them amenable to standard basis set extrapolation techniques. To assess the utility of the new basis sets, extensive coupled cluster composite thermochemistry calculations of ThF{sub n} (n = 2 − 4), ThO{sub 2}, and UF{sub n} (n = 4 − 6) have been carried out. After accurately accounting for valence and outer-core correlation, spin-orbit coupling, and even Lamb shift effects, the final 298 K atomization enthalpies of ThF{sub 4}, ThF{sub 3}, ThF{sub 2}, and ThO{sub 2} are all within their experimental uncertainties. Bond dissociation energies of ThF{sub 4} and ThF{sub 3}, as well as UF{sub 6} and UF{sub 5}, were similarly accurate. The derived enthalpies of formation for these species also showed a very satisfactory agreement with experiment, demonstrating that the new basis sets allow for the use of accurate composite schemes just as in molecular systems composed only of lighter atoms. The differences between the PP and DK3 approaches were found to increase with the change in formal oxidation state on the actinide atom, approaching 5-6 kcal/mol for the atomization enthalpies of ThF{sub 4} and ThO{sub 2}. The DKH3 atomization energy of ThO{sub 2} was calculated to be smaller than the DKH2 value by ∼1 kcal/mol.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Po Jen; Lai, S. K., E-mail: sklai@coll.phy.ncu.edu.tw; Rapallo, Arnaldo
Improved basis sets for the study of polymer dynamics by means of the diffusion theory, and tests on a melt of cis-1,4-polyisoprene decamers, and a toluene solution of a 71-mer syndiotactic trans-1,2-polypentadiene were presented recently [R. Gaspari and A. Rapallo, J. Chem. Phys. 128, 244109 (2008)]. The proposed hybrid basis approach (HBA) combined two techniques, the long time sorting procedure and the maximum correlation approximation. The HBA takes advantage of the strength of these two techniques, and its basis sets proved to be very effective and computationally convenient in describing both local and global dynamics in cases of flexible syntheticmore » polymers where the repeating unit is a unique type of monomer. The question then arises if the same efficacy continues when the HBA is applied to polymers of different monomers, variable local stiffness along the chain and with longer persistence length, which have different local and global dynamical properties against the above-mentioned systems. Important examples of this kind of molecular chains are the proteins, so that a fragment of the protein transthyretin is chosen as the system of the present study. This peptide corresponds to a sequence that is structured in β-sheets of the protein and is located on the surface of the channel with thyroxin. The protein transthyretin forms amyloid fibrils in vivo, whereas the peptide fragment has been shown [C. P. Jaroniec, C. E. MacPhee, N. S. Astrof, C. M. Dobson, and R. G. Griffin, Proc. Natl. Acad. Sci. U.S.A. 99, 16748 (2002)] to form amyloid fibrils in vitro in extended β-sheet conformations. For these reasons the latter is given considerable attention in the literature and studied also as an isolated fragment in water solution where both experimental and theoretical efforts have indicated the propensity of the system to form β turns or α helices, but is otherwise predominantly unstructured. Differing from previous computational studies that employed implicit solvent, we performed in this work the classical molecular dynamics simulation on a realistic model solution with the peptide embedded in an explicit water environment, and calculated its dynamic properties both as an outcome of the simulations, and by the diffusion theory in reduced statistical-mechanical approach within HBA on the premise that the mode-coupling approach to the diffusion theory can give both the long-range and local dynamics starting from equilibrium averages which were obtained from detailed atomistic simulations.« less
Segmented all-electron Gaussian basis sets of double and triple zeta qualities for Fr, Ra, and Ac
NASA Astrophysics Data System (ADS)
Campos, C. T.; de Oliveira, A. Z.; Ferreira, I. B.; Jorge, F. E.; Martins, L. S. C.
2017-05-01
Segmented all-electron basis sets of valence double and triple zeta qualities plus polarization functions for the elements Fr, Ra, and Ac are generated using non-relativistic and Douglas-Kroll-Hess (DKH) Hamiltonians. The sets are augmented with diffuse functions with the purpose to describe appropriately the electrons far from the nuclei. At the DKH-B3LYP level, first atomic ionization energies and bond lengths, dissociation energies, and polarizabilities of a sample of diatomics are calculated. Comparison with theoretical and experimental data available in the literature is carried out. It is verified that despite the small sizes of the basis sets, they are yet reliable.
Ferenczy, György G
2013-04-05
Mixed quantum mechanics/quantum mechanics (QM/QM) and quantum mechanics/molecular mechanics (QM/MM) methods make computations feasible for extended chemical systems by separating them into subsystems that are treated at different level of sophistication. In many applications, the subsystems are covalently bound and the use of frozen localized orbitals at the boundary is a possible way to separate the subsystems and to ensure a sensible description of the electronic structure near to the boundary. A complication in these methods is that orthogonality between optimized and frozen orbitals has to be warranted and this is usually achieved by an explicit orthogonalization of the basis set to the frozen orbitals. An alternative to this approach is proposed by calculating the wave-function from the Huzinaga equation that guaranties orthogonality to the frozen orbitals without basis set orthogonalization. The theoretical background and the practical aspects of the application of the Huzinaga equation in mixed methods are discussed. Forces have been derived to perform geometry optimization with wave-functions from the Huzinaga equation. Various properties have been calculated by applying the Huzinaga equation for the central QM subsystem, representing the environment by point charges and using frozen strictly localized orbitals to connect the subsystems. It is shown that a two to three bond separation of the chemical or physical event from the frozen bonds allows a very good reproduction (typically around 1 kcal/mol) of standard Hartree-Fock-Roothaan results. The proposed scheme provides an appropriate framework for mixed QM/QM and QM/MM methods. Copyright © 2012 Wiley Periodicals, Inc.
Gupta, Tulika; Rajeshkumar, Thayalan; Rajaraman, Gopalan
2014-07-28
Density functional studies have been performed on ten different {Gd(III)-radical} complexes exhibiting both ferro and antiferromagnetic exchange interaction with an aim to assess a suitable exchange-correlation functional within DFT formalism. This study has also been extended to probe the mechanism of magnetic coupling and to develop suitable magneto-structural correlations for this pair. Our method assessments reveal the following order of increasing accuracy for the evaluation of J values compared to experimental coupling constants: B(40HF)LYP < BHandHLYP < TPSSH < PW91 < PBE < BP86 < OLYP < BLYP < PBE0 < X3LYP < B3LYP < B2PLYP. Grimme's double-hybrid functional is found to be superior compared to other functionals tested and this is followed very closely by the conventional hybrid B3LYP functional. At the basis set front, our calculations reveal that the incorporation of relativistic effect is important in these calculations and the relativistically corrected effective core potential (ECP) basis set is found to yield better Js compared to other methods. The supposedly empty 5d/6s/6p orbitals of Gd(III) are found to play an important role in the mechanism of magnetic coupling and different contributions to the exchange terms are probed using Molecular Orbital (MO) and Natural Bond Orbital (NBO) analysis. Magneto-structural correlations for Gd-O distances, Gd-O-N angles and Gd-O-N-C dihedral angles are developed where the bond angles as well as dihedral angle parameters are found to dictate the sign and strength of the magnetic coupling in this series.
Rational Density Functional Selection Using Game Theory.
McAnanama-Brereton, Suzanne; Waller, Mark P
2018-01-22
Theoretical chemistry has a paradox of choice due to the availability of a myriad of density functionals and basis sets. Traditionally, a particular density functional is chosen on the basis of the level of user expertise (i.e., subjective experiences). Herein we circumvent the user-centric selection procedure by describing a novel approach for objectively selecting a particular functional for a given application. We achieve this by employing game theory to identify optimal functional/basis set combinations. A three-player (accuracy, complexity, and similarity) game is devised, through which Nash equilibrium solutions can be obtained. This approach has the advantage that results can be systematically improved by enlarging the underlying knowledge base, and the deterministic selection procedure mathematically justifies the density functional and basis set selections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kersten, J. A. F., E-mail: jennifer.kersten@cantab.net; Alavi, Ali, E-mail: a.alavi@fkf.mpg.de; Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart
2016-08-07
The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method has proved able to provide near-exact solutions to the electronic Schrödinger equation within a finite orbital basis set, without relying on an expansion about a reference state. However, a drawback to the approach is that being based on an expansion of Slater determinants, the FCIQMC method suffers from a basis set incompleteness error that decays very slowly with the size of the employed single particle basis. The FCIQMC results obtained in a small basis set can be improved significantly with explicitly correlated techniques. Here, we present a study that assesses andmore » compares two contrasting “universal” explicitly correlated approaches that fit into the FCIQMC framework: the [2]{sub R12} method of Kong and Valeev [J. Chem. Phys. 135, 214105 (2011)] and the explicitly correlated canonical transcorrelation approach of Yanai and Shiozaki [J. Chem. Phys. 136, 084107 (2012)]. The former is an a posteriori internally contracted perturbative approach, while the latter transforms the Hamiltonian prior to the FCIQMC simulation. These comparisons are made across the 55 molecules of the G1 standard set. We found that both methods consistently reduce the basis set incompleteness, for accurate atomization energies in small basis sets, reducing the error from 28 mE{sub h} to 3-4 mE{sub h}. While many of the conclusions hold in general for any combination of multireference approaches with these methodologies, we also consider FCIQMC-specific advantages of each approach.« less
Plasser, Felix; Mewes, Stefanie A; Dreuw, Andreas; González, Leticia
2017-11-14
High-level multireference computations on electronically excited and charged states of tetracene are performed, and the results are analyzed using an extensive wave function analysis toolbox that has been newly implemented in the Molcas program package. Aside from verifying the strong effect of dynamic correlation, this study reveals an unexpected critical influence of the atomic orbital basis set. It is shown that different polarized double-ζ basis sets produce significantly different results for energies, densities, and overall wave functions, with the best performance obtained for the atomic natural orbital (ANO) basis set by Pierloot et al. Strikingly, the ANO basis set not only reproduces the energies but also performs exceptionally well in terms of describing the diffuseness of the different states and of their attachment/detachment densities. This study, thus, not only underlines the fact that diffuse basis functions are needed for an accurate description of the electronic wave functions but also shows that, at least for the present example, it is enough to include them implicitly in the contraction scheme.
Visual navigation of the UAVs on the basis of 3D natural landmarks
NASA Astrophysics Data System (ADS)
Karpenko, Simon; Konovalenko, Ivan; Miller, Alexander; Miller, Boris; Nikolaev, Dmitry
2015-12-01
This work considers the tracking of the UAV (unmanned aviation vehicle) on the basis of onboard observations of natural landmarks including azimuth and elevation angles. It is assumed that UAV's cameras are able to capture the angular position of reference points and to measure the angles of the sight line. Such measurements involve the real position of UAV in implicit form, and therefore some of nonlinear filters such as Extended Kalman filter (EKF) or others must be used in order to implement these measurements for UAV control. Recently it was shown that modified pseudomeasurement method may be used to control UAV on the basis of the observation of reference points assigned along the UAV path in advance. However, the use of such set of points needs the cumbersome recognition procedure with the huge volume of on-board memory. The natural landmarks serving as such reference points which may be determined on-line can significantly reduce the on-board memory and the computational difficulties. The principal difference of this work is the usage of the 3D reference points coordinates which permits to determine the position of the UAV more precisely and thereby to guide along the path with higher accuracy which is extremely important for successful performance of the autonomous missions. The article suggests the new RANSAC for ISOMETRY algorithm and the use of recently developed estimation and control algorithms for tracking of given reference path under external perturbation and noised angular measurements.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Bardachenko, Vitaliy F.; Nikolsky, Alexander I.; Lazarev, Alexander A.
2007-04-01
In the paper we show that the biologically motivated conception of the use of time-pulse encoding gives the row of advantages (single methodological basis, universality, simplicity of tuning, training and programming et al) at creation and designing of sensor systems with parallel input-output and processing, 2D-structures of hybrid and neuro-fuzzy neurocomputers of next generations. We show principles of construction of programmable relational optoelectronic time-pulse coded processors, continuous logic, order logic and temporal waves processes, that lie in basis of the creation. We consider structure that executes extraction of analog signal of the set grade (order), sorting of analog and time-pulse coded variables. We offer optoelectronic realization of such base relational elements of order logic, which consists of time-pulse coded phototransformers (pulse-width and pulse-phase modulators) with direct and complementary outputs, sorting network on logical elements and programmable commutations blocks. We make estimations of basic technical parameters of such base devices and processors on their basis by simulation and experimental research: power of optical input signals - 0.200-20 μW, processing time - microseconds, supply voltage - 1.5-10 V, consumption power - hundreds of microwatts per element, extended functional possibilities, training possibilities. We discuss some aspects of possible rules and principles of training and programmable tuning on the required function, relational operation and realization of hardware blocks for modifications of such processors. We show as on the basis of such quasiuniversal hardware simple block and flexible programmable tuning it is possible to create sorting machines, neural networks and hybrid data-processing systems with the untraditional numerical systems and pictures operands.
Summary of Michigan multispectral investigations program
NASA Technical Reports Server (NTRS)
Legault, R. R.
1970-01-01
The development of techniques to extend spectral signatures in space and time is reported. Signatures that were valid for 30 miles have been extended for 129 miles using transformation and sun sensor data so that a complicated multispectral recognition problem that required 219 learning sets can now be done with 13 learning sets.
Frost, John S.; Brandt, Randolph J.; Hebert, Peter; Al Taher, Omar
2015-10-06
An interconnect includes a first set of connector pads, a second set of connector pads, and a continuous central portion. A first plurality of legs extends at a first angle from the continuous central portion. Each leg of the first plurality of legs is connected to a connector pad of a first set of connector pads. A second plurality of legs extends at a second angle from the continuous central portion. Each leg of the second plurality of legs is connected to a connector pad of the second set of connector pads. Gaps are defined between legs. The gaps enable movement of the first set of connector pads relative to the second set of connector pads.
Convergence of third order correlation energy in atoms and molecules.
Kahn, Kalju; Granovsky, Alex A; Noga, Jozef
2007-01-30
We have investigated the convergence of third order correlation energy within the hierarchies of correlation consistent basis sets for helium, neon, and water, and for three stationary points of hydrogen peroxide. This analysis confirms that singlet pair energies converge much slower than triplet pair energies. In addition, singlet pair energies with (aug)-cc-pVDZ and (aug)-cc-pVTZ basis sets do not follow a converging trend and energies with three basis sets larger than aug-cc-pVTZ are generally required for reliable extrapolations of third order correlation energies, making so the explicitly correlated R12 calculations preferable.
Sensitivity of the Properties of Ruthenium “Blue Dimer” to Method, Basis Set, and Continuum Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozkanlar, Abdullah; Clark, Aurora E.
2012-05-23
The ruthenium “blue dimer” [(bpy)2RuIIIOH2]2O4+ is best known as the first well-defined molecular catalyst for water oxidation. It has been subject to numerous computational studies primarily employing density functional theory. However, those studies have been limited in the functionals, basis sets, and continuum models employed. The controversy in the calculated electronic structure and the reaction energetics of this catalyst highlights the necessity of benchmark calculations that explore the role of density functionals, basis sets, and continuum models upon the essential features of blue-dimer reactivity. In this paper, we report Kohn-Sham complete basis set (KS-CBS) limit extrapolations of the electronic structuremore » of “blue dimer” using GGA (BPW91 and BP86), hybrid-GGA (B3LYP), and meta-GGA (M06-L) density functionals. The dependence of solvation free energy corrections on the different cavity types (UFF, UA0, UAHF, UAKS, Bondi, and Pauling) within polarizable and conductor-like polarizable continuum model has also been investigated. The most common basis sets of double-zeta quality are shown to yield results close to the KS-CBS limit; however, large variations are observed in the reaction energetics as a function of density functional and continuum cavity model employed.« less
Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A
2016-02-05
Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Huang, Xinchuan; Valeev, Edward F.; Lee, Timothy J.
2010-12-01
One-particle basis set extrapolation is compared with one of the new R12 methods for computing highly accurate quartic force fields (QFFs) and spectroscopic data, including molecular structures, rotational constants, and vibrational frequencies for the H2O, N2H+, NO2+, and C2H2 molecules. In general, agreement between the spectroscopic data computed from the best R12 and basis set extrapolation methods is very good with the exception of a few parameters for N2H+ where it is concluded that basis set extrapolation is still preferred. The differences for H2O and NO2+ are small and it is concluded that the QFFs from both approaches are more or less equivalent in accuracy. For C2H2, however, a known one-particle basis set deficiency for C-C multiple bonds significantly degrades the quality of results obtained from basis set extrapolation and in this case the R12 approach is clearly preferred over one-particle basis set extrapolation. The R12 approach used in the present study was modified in order to obtain high precision electronic energies, which are needed when computing a QFF. We also investigated including core-correlation explicitly in the R12 calculations, but conclude that current approaches are lacking. Hence core-correlation is computed as a correction using conventional methods. Considering the results for all four molecules, it is concluded that R12 methods will soon replace basis set extrapolation approaches for high accuracy electronic structure applications such as computing QFFs and spectroscopic data for comparison to high-resolution laboratory or astronomical observations, provided one uses a robust R12 method as we have done here. The specific R12 method used in the present study, CCSD(T)R12, incorporated a reformulation of one intermediate matrix in order to attain machine precision in the electronic energies. Final QFFs for N2H+ and NO2+ were computed, including basis set extrapolation, core-correlation, scalar relativity, and higher-order correlation and then used to compute highly accurate spectroscopic data for all isotopologues. Agreement with high-resolution experiment for 14N2H+ and 14N2D+ was excellent, but for 14N16O2+ agreement for the two stretching fundamentals is outside the expected residual uncertainty in the theoretical values, and it is concluded that there is an error in the experimental quantities. It is hoped that the highly accurate spectroscopic data presented for the minor isotopologues of N2H+ and NO2+ will be useful in the interpretation of future laboratory or astronomical observations.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-19
..., as Modified by Amendment No. 1, To Adopt Rules Extending the Maximum Term of FLEX Index and FLEX...-2010-40 in order to revise the Statutory Basis section and to adopt rules extending the maximum term of... maximum term of FLEX Index and FLEX Equity options to the same term permissible on NYSE Arca Inc. (``Arca...
Three-dimensional Stress Analysis Using the Boundary Element Method
NASA Technical Reports Server (NTRS)
Wilson, R. B.; Banerjee, P. K.
1984-01-01
The boundary element method is to be extended (as part of the NASA Inelastic Analysis Methods program) to the three-dimensional stress analysis of gas turbine engine hot section components. The analytical basis of the method (as developed in elasticity) is outlined, its numerical implementation is summarized, and the approaches to be followed in extending the method to include inelastic material response indicated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylvetsky, Nitai, E-mail: gershom@weizmann.ac.il; Martin, Jan M. L., E-mail: gershom@weizmann.ac.il; Peterson, Kirk A., E-mail: kipeters@wsu.edu
2016-06-07
In the context of high-accuracy computational thermochemistry, the valence coupled cluster with all singles and doubles (CCSD) correlation component of molecular atomization energies presents the most severe basis set convergence problem, followed by the (T) component. In the present paper, we make a detailed comparison, for an expanded version of the W4-11 thermochemistry benchmark, between, on the one hand, orbital-based CCSD/AV{5,6}Z + d and CCSD/ACV{5,6}Z extrapolation, and on the other hand CCSD-F12b calculations with cc-pVQZ-F12 and cc-pV5Z-F12 basis sets. This latter basis set, now available for H–He, B–Ne, and Al–Ar, is shown to be very close to the basis setmore » limit. Apparent differences (which can reach 0.35 kcal/mol for systems like CCl{sub 4}) between orbital-based and CCSD-F12b basis set limits disappear if basis sets with additional radial flexibility, such as ACV{5,6}Z, are used for the orbital calculation. Counterpoise calculations reveal that, while total atomization energies with V5Z-F12 basis sets are nearly free of BSSE, orbital calculations have significant BSSE even with AV(6 + d)Z basis sets, leading to non-negligible differences between raw and counterpoise-corrected extrapolated limits. This latter problem is greatly reduced by switching to ACV{5,6}Z core-valence basis sets, or simply adding an additional zeta to just the valence orbitals. Previous reports that all-electron approaches like HEAT (high-accuracy extrapolated ab-initio thermochemistry) lead to different CCSD(T) limits than “valence limit + CV correction” approaches like Feller-Peterson-Dixon and Weizmann-4 (W4) theory can be rationalized in terms of the greater radial flexibility of core-valence basis sets. For (T) corrections, conventional CCSD(T)/AV{Q,5}Z + d calculations are found to be superior to scaled or extrapolated CCSD(T)-F12b calculations of similar cost. For a W4-F12 protocol, we recommend obtaining the Hartree-Fock and valence CCSD components from CCSD-F12b/cc-pV{Q,5}Z-F12 calculations, but the (T) component from conventional CCSD(T)/aug’-cc-pV{Q,5}Z + d calculations using Schwenke’s extrapolation; post-CCSD(T), core-valence, and relativistic corrections are to be obtained as in the original W4 theory. W4-F12 is found to agree slightly better than W4 with ATcT (active thermochemical tables) data, at a substantial saving in computation time and especially I/O overhead. A W4-F12 calculation on benzene is presented as a proof of concept.« less
NASA Astrophysics Data System (ADS)
Resende, Stella M.; De Almeida, Wagner B.; van Duijneveldt-van de Rijdt, Jeanne G. C. M.; van Duijneveldt, Frans B.
2001-08-01
Geometrical parameters for the equilibrium (MIN) and lowest saddle-point (TS) geometries of the C2H4⋯SO2 dimer, and the corresponding binding energies, were calculated using the Hartree-Fock and correlated levels of ab initio theory, in basis sets ranging from the D95(d,p) double-zeta basis set to the aug-cc-pVQZ correlation consistent basis set. An assessment of the effect of the basis set superposition error (BSSE) on these results was made. The dissociation energy from the lowest vibrational state was estimated to be 705±100 cm-1 at the basis set limit, which is well within the range expected from experiment. The barrier to internal rotation was found to be 53±5 cm-1, slightly higher than the (revised) experimental result of 43 cm-1, probably due to zero-point vibrational effects. Our results clearly show that, in direct contrast with recent ideas, the BSSE correction affects differentially the MIN and TS binding energies and so has to be included in the calculation of small energy barriers such as that in the C2H4⋯SO2 dimer. Previous reports of positive MP2 frozen-core binding energies for this complex in basis D95(d,p) are confirmed. The anomalies are shown to be an artifact arising from an incorrect removal of virtual orbitals by the default frozen-core option in the GAUSSIAN program.
38 CFR 17.111 - Copayments for extended care services.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Copayments for extended... AFFAIRS MEDICAL Copayments § 17.111 Copayments for extended care services. (a) General. This section sets forth requirements regarding copayments for extended care services provided to veterans by VA (either...
38 CFR 17.111 - Copayments for extended care services.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Copayments for extended... AFFAIRS MEDICAL Copayments § 17.111 Copayments for extended care services. (a) General. This section sets forth requirements regarding copayments for extended care services provided to veterans by VA (either...
38 CFR 17.111 - Copayments for extended care services.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Copayments for extended... AFFAIRS MEDICAL Copayments § 17.111 Copayments for extended care services. (a) General. This section sets forth requirements regarding copayments for extended care services provided to veterans by VA (either...
Algorithmic transformation of multi-loop master integrals to a canonical basis with CANONICA
NASA Astrophysics Data System (ADS)
Meyer, Christoph
2018-01-01
The integration of differential equations of Feynman integrals can be greatly facilitated by using a canonical basis. This paper presents the Mathematica package CANONICA, which implements a recently developed algorithm to automatize the transformation to a canonical basis. This represents the first publicly available implementation suitable for differential equations depending on multiple scales. In addition to the presentation of the package, this paper extends the description of some aspects of the algorithm, including a proof of the uniqueness of canonical forms up to constant transformations.
Application of Comparative Functional Genomics to Identify Regeneration-Specific Genes
2014-08-25
The first objective will extend an ongoing study of the transcriptional basis of limb regeneration in the Mexican axolotl (Ambystoma mexicanum) to...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Limb Regeneration, Transcriptome, Salamander, Axolotl REPORT...transcriptional basis of limb regeneration in the Mexican axolotl (Ambystoma mexicanum) to three additional salamander species (A. tigrinum, A. maculatum, and
Rollins, Derrick K; Teh, Ailing
2010-12-17
Microarray data sets provide relative expression levels for thousands of genes for a small number, in comparison, of different experimental conditions called assays. Data mining techniques are used to extract specific information of genes as they relate to the assays. The multivariate statistical technique of principal component analysis (PCA) has proven useful in providing effective data mining methods. This article extends the PCA approach of Rollins et al. to the development of ranking genes of microarray data sets that express most differently between two biologically different grouping of assays. This method is evaluated on real and simulated data and compared to a current approach on the basis of false discovery rate (FDR) and statistical power (SP) which is the ability to correctly identify important genes. This work developed and evaluated two new test statistics based on PCA and compared them to a popular method that is not PCA based. Both test statistics were found to be effective as evaluated in three case studies: (i) exposing E. coli cells to two different ethanol levels; (ii) application of myostatin to two groups of mice; and (iii) a simulated data study derived from the properties of (ii). The proposed method (PM) effectively identified critical genes in these studies based on comparison with the current method (CM). The simulation study supports higher identification accuracy for PM over CM for both proposed test statistics when the gene variance is constant and for one of the test statistics when the gene variance is non-constant. PM compares quite favorably to CM in terms of lower FDR and much higher SP. Thus, PM can be quite effective in producing accurate signatures from large microarray data sets for differential expression between assays groups identified in a preliminary step of the PCA procedure and is, therefore, recommended for use in these applications.
NASA Astrophysics Data System (ADS)
Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.
2017-12-01
We propose efficient single-step formulations for reinitialization and extending algorithms, which are critical components of level-set based interface-tracking methods. The level-set field is reinitialized with a single-step (non iterative) "forward tracing" algorithm. A minimum set of cells is defined that describes the interface, and reinitialization employs only data from these cells. Fluid states are extrapolated or extended across the interface by a single-step "backward tracing" algorithm. Both algorithms, which are motivated by analogy to ray-tracing, avoid multiple block-boundary data exchanges that are inevitable for iterative reinitialization and extending approaches within a parallel-computing environment. The single-step algorithms are combined with a multi-resolution conservative sharp-interface method and validated by a wide range of benchmark test cases. We demonstrate that the proposed reinitialization method achieves second-order accuracy in conserving the volume of each phase. The interface location is invariant to reapplication of the single-step reinitialization. Generally, we observe smaller absolute errors than for standard iterative reinitialization on the same grid. The computational efficiency is higher than for the standard and typical high-order iterative reinitialization methods. We observe a 2- to 6-times efficiency improvement over the standard method for serial execution. The proposed single-step extending algorithm, which is commonly employed for assigning data to ghost cells with ghost-fluid or conservative interface interaction methods, shows about 10-times efficiency improvement over the standard method while maintaining same accuracy. Despite their simplicity, the proposed algorithms offer an efficient and robust alternative to iterative reinitialization and extending methods for level-set based multi-phase simulations.
NASA Astrophysics Data System (ADS)
El-Mansy, M. A. M.
2017-08-01
Structural and vibrational spectroscopic studies were performed on indigo carmine (IC) isomers using FT-IR spectral analysis along with DFT/B3LYP method utilizing Gaussian 09 software. GaussView 5 program has been employed to perform a detailed interpretation of vibrational spectra. Simulation of infrared spectra has led to an excellent overall agreement with the observed spectral patterns. Mulliken population analyses on atomic charges, MEP, HOMO-LUMO, NLO, first order hyperpolarizability and thermodynamic properties have been examined by (DFT/B3LYP) method with the SDD basis set level. Density of state spectra (DOS) were calculated using GaussSum 3 at the same level of theory. Molecular modeling approved that DOS Spectra are the most significant tools for differentiating between two IC isomers so far. Moreover, The IC isomers (cis-isomer) have shown an extended applicability for manufacturing both NLO and photovoltaic devices such as solar cells.
NASA Technical Reports Server (NTRS)
Bauschlicher, C. W., Jr.; Jaffe, R. L.; Langhoff, S. R.; Partridge, H.; Mascarello, F. G.
1985-01-01
Theoretical calculations of selected excitation energies and oscillator strengths for Ba are presented that overcome the difficulties of previous theoretical treatments. A relativistic effective-core potential treatment is used to account for the relativistic core contraction, but the outermost ten electrons are treated explicitly. Core-valence correlation can be included in this procedure in a rigorous and systematic way through a configuration-interaction calculation. Insight is gained into the importance of relativistic effects by repeating many of the calculations using an all-electron nonrelativistic treatment employing an extended Slater basis set. It is found that the intensity of the intercombination line 3P1-1S0 is accurately determined by accounting for the deviation from LS coupling through spin-orbit mixing with the 1P1 state, and that deviations from the Lande interval rule provide an accurate measure of the degree of mixing.
Reconstitution reveals motor activation for intraflagellar transport.
Mohamed, Mohamed A A; Stepp, Willi L; Ökten, Zeynep
2018-05-01
The human body represents a notable example of ciliary diversification. Extending from the surface of most cells, cilia accomplish a diverse set of tasks. Predictably, mutations in ciliary genes cause a wide range of human diseases such as male infertility and blindness. In Caenorhabditis elegans sensory cilia, this functional diversity appears to be traceable to the differential regulation of the kinesin-2-powered intraflagellar-transport (IFT) machinery. Here we reconstituted the first, to our knowledge, functional multi-component IFT complex that is deployed in the sensory cilia of C. elegans. Our bottom-up approach revealed the molecular basis of specific motor recruitment to the IFT trains. We identified the key component that incorporates homodimeric kinesin-2 into its physiologically relevant context, which in turn allosterically activates the motor for efficient transport. These results will enable the molecular delineation of IFT regulation, which has eluded understanding since its discovery more than two decades ago.
Manifold Learning by Preserving Distance Orders.
Ataer-Cansizoglu, Esra; Akcakaya, Murat; Orhan, Umut; Erdogmus, Deniz
2014-03-01
Nonlinear dimensionality reduction is essential for the analysis and the interpretation of high dimensional data sets. In this manuscript, we propose a distance order preserving manifold learning algorithm that extends the basic mean-squared error cost function used mainly in multidimensional scaling (MDS)-based methods. We develop a constrained optimization problem by assuming explicit constraints on the order of distances in the low-dimensional space. In this optimization problem, as a generalization of MDS, instead of forcing a linear relationship between the distances in the high-dimensional original and low-dimensional projection space, we learn a non-decreasing relation approximated by radial basis functions. We compare the proposed method with existing manifold learning algorithms using synthetic datasets based on the commonly used residual variance and proposed percentage of violated distance orders metrics. We also perform experiments on a retinal image dataset used in Retinopathy of Prematurity (ROP) diagnosis.
Stoica, Grigoreta M.; Stoica, Alexandru Dan; An, Ke; ...
2014-11-28
The problem of calculating the inverse pole figure (IPF) is analyzed from the perspective of the application of time-of flight neutron diffraction toin situmonitoring of the thermomechanical behavior of engineering materials. On the basis of a quasi-Monte Carlo (QMC) method, a consistent set of grain orientations is generated and used to compute the weighting factors for IPF normalization. The weighting factors are instrument dependent and were calculated for the engineering materials diffractometer VULCAN (Spallation Neutron Source, Oak Ridge National Laboratory). The QMC method is applied to face-centered cubic structures and can be easily extended to other crystallographic symmetries. Examples includemore » 316LN stainless steelin situloaded in tension at room temperature and an Al–2%Mg alloy, substantially deformed by cold rolling and in situannealed up to 653 K.« less
Michael, J Robert; Koritsanszky, Tibor
2017-05-28
The convergence of nucleus-centered multipolar expansion of the quantum-chemical electron density (QC-ED), gradient, and Laplacian is investigated in terms of numerical radial functions derived by projecting stockholder atoms onto real spherical harmonics at each center. The partial sums of this exact one-center expansion are compared with the corresponding Hansen-Coppens pseudoatom (HC-PA) formalism [Hansen, N. K. and Coppens, P., "Testing aspherical atom refinements on small-molecule data sets," Acta Crystallogr., Sect. A 34, 909-921 (1978)] commonly utilized in experimental electron density studies. It is found that the latter model, due to its inadequate radial part, lacks pointwise convergence and fails to reproduce the local topology of the target QC-ED even at a high-order expansion. The significance of the quantitative agreement often found between HC-PA-based (quadrupolar-level) experimental and extended-basis QC-EDs can thus be challenged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tahvanainen, E.; Karila, E.; Kolehmainen, J.
We recently assigned a gene for autosomal recessive cornea plana congenita (CNA2; MIM No. 217300) by linkage analysis to the approximately 3-cM interval between markers D12S82 and D12S327. Here, we extended these studies by exploiting the haplotype and linkage disequilibrium information that can be derived from the genetically isolated Finnish population and its subpopulations. By testing 32 independent families with 10 polymorphic markers in the CNA2 interval, strong allelic association between CNA2 and a set of markers with a peak at marker D12S351 was detected. Based on linkage disequilibrium analysis, the critical region for CNA2 could be narrowed to onlymore » 0.04-0.3 cM from marker D12S351, thus defining a critical interval 0.08-0.60 cM in length. These results provide a basis for highly focused positional cloning of CNA2. 18 refs., 5 figs., 1 tab.« less
The genetic code as a periodic table: algebraic aspects.
Bashford, J D; Jarvis, P D
2000-01-01
The systematics of indices of physico-chemical properties of codons and amino acids across the genetic code are examined. Using a simple numerical labelling scheme for nucleic acid bases, A=(-1,0), C=(0,-1), G=(0,1), U=(1,0), data can be fitted as low order polynomials of the six coordinates in the 64-dimensional codon weight space. The work confirms and extends the recent studies by Siemion et al. (1995. BioSystems 36, 231-238) of the conformational parameters. Fundamental patterns in the data such as codon periodicities, and related harmonics and reflection symmetries, are here associated with the structure of the set of basis monomials chosen for fitting. Results are plotted using the Siemion one-step mutation ring scheme, and variants thereof. The connections between the present work, and recent studies of the genetic code structure using dynamical symmetry algebras, are pointed out.
NASA Astrophysics Data System (ADS)
Senent, M. L.
2018-01-01
CCSD(T)-F12 theory in connection with extended basis sets is employed to determine the electronic ground state spectroscopic parameters of methylamine at low temperatures. The geometry, the rotational constants, all the fundamental frequencies, the dipole moment and its components, and the centrifugal distortion constants, are provided. The ground vibrational state rotational constants were found to be A0 = 103067.15 MHz, B0 = 22588.29 MHz, and C0 = 21710.50 MHz and the dipole moment to be 1.4071D. Fermi displacements of the vibrational bands are predicted. The low vibrational energy levels corresponding to the large amplitude motions are determine variationally using a flexible three-dimensional model depending on three variables: the HNH bending, the NH2 wagging and the CH3 torsional coordinates. The computed levels are compared with previous experimental and calculated energies. Methylamine parameters are very sensitive to the level of ab initio calculations.
Vibrational studies of Thyroxine hormone: Comparative study with quantum chemical calculations
NASA Astrophysics Data System (ADS)
Borah, Mukunda Madhab; Devi, Th. Gomti
2017-11-01
The FTIR and Raman techniques have been used to record spectra of Thyroxine. The stable geometrical parameters and vibrational wave numbers were calculated based on potential energy distribution (PED) using vibrational energy distribution analysis (VEDA) program. The vibrational energies are assigned to monomer, chain dimer and cyclic dimers of this molecule using the basis set B3LYP/LANL2DZ. The computational scaled frequencies are in good agreements with the experimental results. The study is extended to calculate the HOMO-LUMO energy gap, Molecular Electrostatic Potential (MEP) surface, hardness (η), chemical potential (μ), Global electrophilicity index (ω) and different thermo dynamical properties of Thyroxine in different states. The calculated HOMO-LUMO energies show the charge transfer occurs within the molecule. The calculated Natural bond orbital (NBO) analysis confirms the presence of intra-molecular charge transfer as well as the hydrogen bonding interaction.
Cybulski, Hubert; Henriksen, Christian; Dawes, Richard; Wang, Xiao-Gang; Bora, Neha; Avila, Gustavo; Carrington, Tucker; Fernández, Berta
2018-05-09
A new, highly accurate ab initio ground-state intermolecular potential-energy surface (IPES) for the CO-N2 complex is presented. Thousands of interaction energies calculated with the CCSD(T) method and Dunning's aug-cc-pVQZ basis set extended with midbond functions were fitted to an analytical function. The global minimum of the potential is characterized by an almost T-shaped structure and has an energy of -118.2 cm-1. The symmetry-adapted Lanczos algorithm was used to compute rovibrational energies (up to J = 20) on the new IPES. The RMSE with respect to experiment was found to be on the order of 0.038 cm-1 which confirms the very high accuracy of the potential. This level of agreement is among the best reported in the literature for weakly bound systems and considerably improves on those of previously published potentials.
A relativistic coupled-cluster interaction potential and rovibrational constants for the xenon dimer
NASA Astrophysics Data System (ADS)
Jerabek, Paul; Smits, Odile; Pahl, Elke; Schwerdtfeger, Peter
2018-01-01
An accurate potential energy curve has been derived for the xenon dimer using state-of-the-art relativistic coupled-cluster theory up to quadruple excitations accounting for both basis set superposition and incompleteness errors. The data obtained is fitted to a computationally efficient extended Lennard-Jones potential form and to a modified Tang-Toennies potential function treating the short- and long-range part separately. The vibrational spectrum of Xe2 obtained from a numerical solution of the rovibrational Schrödinger equation and subsequently derived spectroscopic constants are in excellent agreement with experimental values. We further present solid-state calculations for xenon using a static many-body expansion up to fourth-order in the xenon interaction potential including dynamic effects within the Einstein approximation. Again we find very good agreement with the experimental (face-centred cubic) lattice constant and cohesive energy.
Excitonic structure of the optical conductivity in MoS2 monolayers
NASA Astrophysics Data System (ADS)
Ridolfi, Emilia; Lewenkopf, Caio H.; Pereira, Vitor M.
2018-05-01
We investigate the excitonic spectrum of MoS2 monolayers and calculate its optical absorption properties over a wide range of energies. Our approach takes into account the anomalous screening in two dimensions and the presence of a substrate, both cast by a suitable effective Keldysh potential. We solve the Bethe-Salpeter equation using as a basis a Slater-Koster tight-binding model parameterized to fit the ab initio MoS2 band structure calculations. The resulting optical conductivity is in good quantitative agreement with existing measurements up to ultraviolet energies. We establish that the electronic contributions to the C excitons arise not from states at the Γ point, but from a set of k points over extended portions of the Brillouin zone. Our results reinforce the advantages of approaches based on effective models to expeditiously explore the properties and tunability of excitons in TMD systems.
Extension of non-linear beam models with deformable cross sections
NASA Astrophysics Data System (ADS)
Sokolov, I.; Krylov, S.; Harari, I.
2015-12-01
Geometrically exact beam theory is extended to allow distortion of the cross section. We present an appropriate set of cross-section basis functions and provide physical insight to the cross-sectional distortion from linear elastostatics. The beam formulation in terms of material (back-rotated) beam internal force resultants and work-conjugate kinematic quantities emerges naturally from the material description of virtual work of constrained finite elasticity. The inclusion of cross-sectional deformation allows straightforward application of three-dimensional constitutive laws in the beam formulation. Beam counterparts of applied loads are expressed in terms of the original three-dimensional data. Special attention is paid to the treatment of the applied stress, keeping in mind applications such as hydrogel actuators under environmental stimuli or devices made of electroactive polymers. Numerical comparisons show the ability of the beam model to reproduce finite elasticity results with good efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klesmith, Justin R.; Bacik, John -Paul; Michalczyk, Ryszard
Synthetic metabolic pathways often suffer from low specific productivity, and new methods that quickly assess pathway functionality for many thousands of variants are urgently needed. Here we present an approach that enables the rapid and parallel determination of sequence effects on flux for complete gene-encoding sequences. We show that this method can be used to determine the effects of over 8000 single point mutants of a pyrolysis oil catabolic pathway implanted in Escherichia coli. Experimental sequence-function data sets predicted whether fitness-enhancing mutations to the enzyme levoglucosan kinase resulted from enhanced catalytic efficiency or enzyme stability. A structure of one designmore » incorporating 38 mutations elucidated the structural basis of high fitness mutations. One design incorporating 15 beneficial mutations supported a 15-fold improvement in growth rate and greater than 24-fold improvement in enzyme activity relative to the starting pathway. Lastly, this technique can be extended to improve a wide variety of designed pathways.« less
NASA Astrophysics Data System (ADS)
González, Manuel Á.; González, Miguel Á.; Vegas, Jesús; Llamas, César
2017-09-01
A simple experiment on the determination of the coefficient of restitution of different materials is taken as the basis of an extendable work that can be done by students in an autonomous way. On the whole, the work described in this paper would involve concepts of kinematics, materials science, air drag and buoyancy, and would help students to think of physics as a whole subject instead of a set of, more or less, isolated parts. The experiment can be done either in teaching laboratories or as an autonomous work by students at home. Students’ smartphones and cheap balls of different materials are the only experimental materials required to do the experiment. The proposed work also permits the students to analyse the limitations of a physical model used in the experiment by analysing the approximations considered in it, and then enhancing their critical thinking.
NASA Astrophysics Data System (ADS)
Michael, J. Robert; Koritsanszky, Tibor
2017-05-01
The convergence of nucleus-centered multipolar expansion of the quantum-chemical electron density (QC-ED), gradient, and Laplacian is investigated in terms of numerical radial functions derived by projecting stockholder atoms onto real spherical harmonics at each center. The partial sums of this exact one-center expansion are compared with the corresponding Hansen-Coppens pseudoatom (HC-PA) formalism [Hansen, N. K. and Coppens, P., "Testing aspherical atom refinements on small-molecule data sets," Acta Crystallogr., Sect. A 34, 909-921 (1978)] commonly utilized in experimental electron density studies. It is found that the latter model, due to its inadequate radial part, lacks pointwise convergence and fails to reproduce the local topology of the target QC-ED even at a high-order expansion. The significance of the quantitative agreement often found between HC-PA-based (quadrupolar-level) experimental and extended-basis QC-EDs can thus be challenged.
Assimilating data into open ocean tidal models
NASA Astrophysics Data System (ADS)
Kivman, Gennady A.
The problem of deriving tidal fields from observations by reason of incompleteness and imperfectness of every data set practically available has an infinitely large number of allowable solutions fitting the data within measurement errors and hence can be treated as ill-posed. Therefore, interpolating the data always relies on some a priori assumptions concerning the tides, which provide a rule of sampling or, in other words, a regularization of the ill-posed problem. Data assimilation procedures used in large scale tide modeling are viewed in a common mathematical framework as such regularizations. It is shown that they all (basis functions expansion, parameter estimation, nudging, objective analysis, general inversion, and extended general inversion), including those (objective analysis and general inversion) originally formulated in stochastic terms, may be considered as utilizations of one of the three general methods suggested by the theory of ill-posed problems. The problem of grid refinement critical for inverse methods and nudging is discussed.
NASA Astrophysics Data System (ADS)
Jarrett, Angela M.; Hormuth, David A.; Barnes, Stephanie L.; Feng, Xinzeng; Huang, Wei; Yankeelov, Thomas E.
2018-05-01
Clinical methods for assessing tumor response to therapy are largely rudimentary, monitoring only temporal changes in tumor size. Our goal is to predict the response of breast tumors to therapy using a mathematical model that utilizes magnetic resonance imaging (MRI) data obtained non-invasively from individual patients. We extended a previously established, mechanically coupled, reaction-diffusion model for predicting tumor response initialized with patient-specific diffusion weighted MRI (DW-MRI) data by including the effects of chemotherapy drug delivery, which is estimated using dynamic contrast-enhanced (DCE-) MRI data. The extended, drug incorporated, model is initialized using patient-specific DW-MRI and DCE-MRI data. Data sets from five breast cancer patients were used—obtained before, after one cycle, and at mid-point of neoadjuvant chemotherapy. The DCE-MRI data was used to estimate spatiotemporal variations in tumor perfusion with the extended Kety–Tofts model. The physiological parameters derived from DCE-MRI were used to model changes in delivery of therapy drugs within the tumor for incorporation in the extended model. We simulated the original model and the extended model in both 2D and 3D and compare the results for this five-patient cohort. Preliminary results show reductions in the error of model predicted tumor cellularity and size compared to the experimentally-measured results for the third MRI scan when therapy was incorporated. Comparing the two models for agreement between the predicted total cellularity and the calculated total cellularity (from the DW-MRI data) reveals an increased concordance correlation coefficient from 0.81 to 0.98 for the 2D analysis and 0.85 to 0.99 for the 3D analysis (p < 0.01 for each) when the extended model was used in place of the original model. This study demonstrates the plausibility of using DCE-MRI data as a means to estimate drug delivery on a patient-specific basis in predictive models and represents a step toward the goal of achieving individualized prediction of tumor response to therapy.
Stereochemical analysis of (+)-limonene using theoretical and experimental NMR and chiroptical data
NASA Astrophysics Data System (ADS)
Reinscheid, F.; Reinscheid, U. M.
2016-02-01
Using limonene as test molecule, the success and the limitations of three chiroptical methods (optical rotatory dispersion (ORD), electronic and vibrational circular dichroism, ECD and VCD) could be demonstrated. At quite low levels of theory (mpw1pw91/cc-pvdz, IEFPCM (integral equation formalism polarizable continuum model)) the experimental ORD values differ by less than 10 units from the calculated values. The modelling in the condensed phase still represents a challenge so that experimental NMR data were used to test for aggregation and solvent-solute interactions. After establishing a reasonable structural model, only the ECD spectra prediction showed a decisive dependence on the basis set: only augmented (in the case of Dunning's basis sets) or diffuse (in the case of Pople's basis sets) basis sets predicted the position and shape of the ECD bands correctly. Based on these result we propose a procedure to assign the absolute configuration (AC) of an unknown compound using the comparison between experimental and calculated chiroptical data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noguchi, Yoshifumi, E-mail: y.noguchi@issp.u-tokyo.ac.jp; Hiyama, Miyabi; Akiyama, Hidefumi
2014-07-28
The optical properties of an isolated firefly luciferin anion are investigated by using first-principles calculations, employing the many-body perturbation theory to take into account the excitonic effect. The calculated photoabsorption spectra are compared with the results obtained using the time-dependent density functional theory (TDDFT) employing the localized atomic orbital (AO) basis sets and a recent experiment in vacuum. The present method well reproduces the line shape at the photon energy corresponding to the Rydberg and resonance excitations but overestimates the peak positions by about 0.5 eV. However, the TDDFT-calculated positions of some peaks are closer to those of the experiment.more » We also investigate the basis set dependency in describing the free electron states above vacuum level and the excitons involving the transitions to the free electron states and conclude that AO-only basis sets are inaccurate for free electron states and the use of a plane wave basis set is required.« less
Site testing in Colombia : Identification of the least-worst places for optical telescopes
NASA Astrophysics Data System (ADS)
Pinzón, G.
2017-07-01
With the aim of identifying a set of least-worst sites for astronomical observations in Colombia we used a novel algorithm for the computation of the number of clear nights over an extended region covering Colombia and the western part of Venezuela. This algorithm compares the brightness temperatures of five years of GOES images with reference temperature values obtained from long-term records of monthly temperatures at ground and at heights of 8, 9 and 10 kilometers. Our predictions were validated with cloud cover information from the log-books of the Observatorio Nacional de Llano del Hato in Venezuela. Short and sporadic expeditions to four of those sites were also done from 2013 to 2015 in order to conduct measurements in-situ of temperature and humidity along the night, seeing, sky brightness and atmospheric extinction using basic instrumentation. The final conclusions have been derived solely on the basis of the actually visited sites. It was found that at Cañón del río Nevado the Seeing during the nights was more stable with rms=0.59'' and then a suitable and extended region (of almost 30 km) for the location of optical telescopes aimed to enhance astronomy research and outreach in the country.
Open cycle ocean thermal energy conversion steam control and bypass system
Wittig, J. Michael; Jennings, Stephen J.
1980-01-01
Two sets of hinged control doors for regulating motive steam flow from an evaporator to a condenser alternatively through a set of turbine blades in a steam bypass around the turbine blades. The evaporator has a toroidal shaped casing situated about the turbine's vertical axis of rotation and an outlet opening therein for discharging motive steam into an annular steam flow path defined between the turbine's radially inner and outer casing structures. The turbine blades extend across the steam flow path intermediate the evaporator and condenser. The first set of control doors is arranged to prevent steam access to the upstream side of the turbine blades and the second set of control doors acts as a bypass around the blades so as to maintain equilibrium between the evaporator and condenser during non-rotation of the turbine. The first set of control doors preferably extend, when closed, between the evaporator casing and the turbine's outer casing and, when open, extend away from the axis of rotation. The second set of control doors preferably constitute a portion of the turbine's outer casing downstream from the blades when closed and extend, when open, toward the axis of rotation. The first and second sets of control doors are normally held in the open and closed positions respectively by locking pins which may be retracted upon detecting an abnormal operating condition respectively to permit their closing and opening and provide steam flow from the evaporator to the condenser.
Large-Scale Diversity of Slope Fishes: Pattern Inconsistency between Multiple Diversity Indices
Gaertner, Jean-Claude; Colloca, Francesco; Politou, Chrissi-Yianna; Gil De Sola, Luis; Bertrand, Jacques A.; Murenu, Matteo; Durbec, Jean-Pierre; Kallianiotis, Argyris; Mannini, Alessandro
2013-01-01
Large-scale studies focused on the diversity of continental slope ecosystems are still rare, usually restricted to a limited number of diversity indices and mainly based on the empirical comparison of heterogeneous local data sets. In contrast, we investigate large-scale fish diversity on the basis of multiple diversity indices and using 1454 standardized trawl hauls collected throughout the upper and middle slope of the whole northern Mediterranean Sea (36°3′- 45°7′ N; 5°3′W - 28°E). We have analyzed (1) the empirical relationships between a set of 11 diversity indices in order to assess their degree of complementarity/redundancy and (2) the consistency of spatial patterns exhibited by each of the complementary groups of indices. Regarding species richness, our results contrasted both the traditional view based on the hump-shaped theory for bathymetric pattern and the commonly-admitted hypothesis of a large-scale decreasing trend correlated with a similar gradient of primary production in the Mediterranean Sea. More generally, we found that the components of slope fish diversity we analyzed did not always show a consistent pattern of distribution according either to depth or to spatial areas, suggesting that they are not driven by the same factors. These results, which stress the need to extend the number of indices traditionally considered in diversity monitoring networks, could provide a basis for rethinking not only the methodological approach used in monitoring systems, but also the definition of priority zones for protection. Finally, our results call into question the feasibility of properly investigating large-scale diversity patterns using a widespread approach in ecology, which is based on the compilation of pre-existing heterogeneous and disparate data sets, in particular when focusing on indices that are very sensitive to sampling design standardization, such as species richness. PMID:23843962
Alsalem, Gheed; Bowie, Paul; Morrison, Jillian
2018-05-10
The perceived importance of safety culture in improving patient safety and its impact on patient outcomes has led to a growing interest in the assessment of safety climate in healthcare organizations; however, the rigour with which safety climate tools were developed and psychometrically tested was shown to be variable. This paper aims to identify and review questionnaire studies designed to measure safety climate in acute hospital settings, in order to assess the adequacy of reported psychometric properties of identified tools. A systematic review of published empirical literature was undertaken to examine sample characteristics and instrument details including safety climate dimensions, origin and theoretical basis, and extent of psychometric evaluation (content validity, criterion validity, construct validity and internal reliability). Five questionnaire tools, designed for general evaluation of safety climate in acute hospital settings, were included. Detailed inspection revealed ambiguity around concepts of safety culture and climate, safety climate dimensions and the methodological rigour associated with the design of these measures. Standard reporting of the psychometric properties of developed questionnaires was variable, although evidence of an improving trend in the quality of the reported psychometric properties of studies was noted. Evidence of the theoretical underpinnings of climate tools was limited, while a lack of clarity in the relationship between safety culture and patient outcome measures still exists. Evidence of the adequacy of the psychometric development of safety climate questionnaire tools is still limited. Research is necessary to resolve the controversies in the definitions and dimensions of safety culture and climate in healthcare and identify related inconsistencies. More importance should be given to the appropriate validation of safety climate questionnaires before extending their usage in healthcare contexts different from those in which they were originally developed. Mixed methods research to understand why psychometric assessment and measurement reporting practices can be inadequate and lacking in a theoretical basis is also necessary.
Theoretical study of the XP3 (X = Al, B, Ga) clusters
NASA Astrophysics Data System (ADS)
Ueno, Leonardo T.; Lopes, Cinara; Malaspina, Thaciana; Roberto-Neto, Orlando; Canuto, Sylvio; Machado, Francisco B. C.
2012-05-01
The lowest singlet and triplet states of AlP3, GaP3 and BP3 molecules with Cs, C2v and C3v symmetries were characterized using the B3LYP functional and the aug-cc-pVTZ and aug-cc-pVQZ correlated consistent basis sets. Geometrical parameters and vibrational frequencies were calculated and compared to existent experimental and theoretical data. Relative energies were obtained with single point CCSD(T) calculations using the aug-cc-pVTZ, aug-cc-pVQZ and aug-cc-pV5Z basis sets, and then extrapolating to the complete basis set (CBS) limit.
How to compute isomerization energies of organic molecules with quantum chemical methods.
Grimme, Stefan; Steinmetz, Marc; Korth, Martin
2007-03-16
The reaction energies for 34 typical organic isomerizations including oxygen and nitrogen heteroatoms are investigated with modern quantum chemical methods that have the perspective of also being applicable to large systems. The experimental reaction enthalpies are corrected for vibrational and thermal effects, and the thus derived "experimental" reaction energies are compared to corresponding theoretical data. A series of standard AO basis sets in combination with second-order perturbation theory (MP2, SCS-MP2), conventional density functionals (e.g., PBE, TPSS, B3-LYP, MPW1K, BMK), and new perturbative functionals (B2-PLYP, mPW2-PLYP) are tested. In three cases, obvious errors of the experimental values could be detected, and accurate coupled-cluster [CCSD(T)] reference values have been used instead. It is found that only triple-zeta quality AO basis sets provide results close enough to the basis set limit and that sets like the popular 6-31G(d) should be avoided in accurate work. Augmentation of small basis sets with diffuse functions has a notable effect in B3-LYP calculations that is attributed to intramolecular basis set superposition error and covers basic deficiencies of the functional. The new methods based on perturbation theory (SCS-MP2, X2-PLYP) are found to be clearly superior to many other approaches; that is, they provide mean absolute deviations of less than 1.2 kcal mol-1 and only a few (<10%) outliers. The best performance in the group of conventional functionals is found for the highly parametrized BMK hybrid meta-GGA. Contrary to accepted opinion, hybrid density functionals offer no real advantage over simple GGAs. For reasonably large AO basis sets, results of poor quality are obtained with the popular B3-LYP functional that cannot be recommended for thermochemical applications in organic chemistry. The results of this study are complementary to often used benchmarks based on atomization energies and should guide chemists in their search for accurate and efficient computational thermochemistry methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandbyge, Mads, E-mail: mads.brandbyge@nanotech.dtu.dk
2014-05-07
In a recent paper Reuter and Harrison [J. Chem. Phys. 139, 114104 (2013)] question the widely used mean-field electron transport theories, which employ nonorthogonal localized basis sets. They claim these can violate an “implicit decoupling assumption,” leading to wrong results for the current, different from what would be obtained by using an orthogonal basis, and dividing surfaces defined in real-space. We argue that this assumption is not required to be fulfilled to get exact results. We show how the current/transmission calculated by the standard Greens function method is independent of whether or not the chosen basis set is nonorthogonal, andmore » that the current for a given basis set is consistent with divisions in real space. The ambiguity known from charge population analysis for nonorthogonal bases does not carry over to calculations of charge flux.« less
Antony, Jens; Grimme, Stefan; Liakos, Dimitrios G; Neese, Frank
2011-10-20
With dispersion-corrected density functional theory (DFT-D3) intermolecular interaction energies for a diverse set of noncovalently bound protein-ligand complexes from the Protein Data Bank are calculated. The focus is on major contacts occurring between the drug molecule and the binding site. Generalized gradient approximation (GGA), meta-GGA, and hybrid functionals are used. DFT-D3 interaction energies are benchmarked against the best available wave function based results that are provided by the estimated complete basis set (CBS) limit of the local pair natural orbital coupled-electron pair approximation (LPNO-CEPA/1) and compared to MP2 and semiempirical data. The size of the complexes and their interaction energies (ΔE(PL)) varies between 50 and 300 atoms and from -1 to -65 kcal/mol, respectively. Basis set effects are considered by applying extended sets of triple- to quadruple-ζ quality. Computed total ΔE(PL) values show a good correlation with the dispersion contribution despite the fact that the protein-ligand complexes contain many hydrogen bonds. It is concluded that an adequate, for example, asymptotically correct, treatment of dispersion interactions is necessary for the realistic modeling of protein-ligand binding. Inclusion of the dispersion correction drastically reduces the dependence of the computed interaction energies on the density functional compared to uncorrected DFT results. DFT-D3 methods provide results that are consistent with LPNO-CEPA/1 and MP2, the differences of about 1-2 kcal/mol on average (<5% of ΔE(PL)) being on the order of their accuracy, while dispersion-corrected semiempirical AM1 and PM3 approaches show a deviating behavior. The DFT-D3 results are found to depend insignificantly on the choice of the short-range damping model. We propose to use DFT-D3 as an essential ingredient in a QM/MM approach for advanced virtual screening approaches of protein-ligand interactions to be combined with similarly "first-principle" accounts for the estimation of solvation and entropic effects.
Explaining the freemartin: Tandler and Keller vs. Lillie and the question of priority.
Freeman, Gary
2007-03-15
The correct explanation for the freemartin phenotype in the female twin of a female-male pair in cattle was first reported by Tandler and Keller (1911. Deutsche Tierärzt Wochenschr 19:148-149). This same explanation for the freemartin was independently discovered by Lillie (1916. Science 43:611-613). Today both set of scientists are given credit for this discovery; it is the basis for much of the subsequent work on the developmental basis for sex differentiation in vertebrates. Even though Lillie published after Keller and Tandler, he gets credit for this discovery because: (1) Keller and Tandler published in a veterinary journal and as a consequence their work was not disseminated as broadly throughout the larger scientific community; this problem was compounded by the fact that their definitive 1916 paper was published under wartime conditions during World War I, and (2) Lillie was an influential scientist with a group of graduate students who could elaborate on and extend his work; they published a number of papers on the freemartin. At some point while Lillie was doing his initial work on the freemartin he may have become aware that Keller and Tandler were also working on the freemartin problem; this information may have shaped his decision on when to publish. (c) 2007 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilson, James R.; McQueen, Tyrel M.
With the increased availability of high-intensity time-of-flight neutron and synchrotron X-ray scattering sources that can access wide ranges of momentum transfer, the pair distribution function method has become a standard analysis technique for studying disorder of local coordination spheres and at intermediate atomic separations. In some cases, rational modeling of the total scattering data (Bragg and diffuse) becomes intractable with least-squares approaches, necessitating reverse Monte Carlo simulations using large atomistic ensembles. However, the extraction of meaningful information from the resulting atomistic ensembles is challenging, especially at intermediate length scales. Representational analysis is used here to describe the displacements of atomsmore » in reverse Monte Carlo ensembles from an ideal crystallographic structure in an approach analogous to tight-binding methods. Rewriting the displacements in terms of a local basis that is descriptive of the ideal crystallographic symmetry provides a robust approach to characterizing medium-range order (and disorder) and symmetry breaking in complex and disordered crystalline materials. Lastly, this method enables the extraction of statistically relevant displacement modes (orientation, amplitude and distribution) of the crystalline disorder and provides directly meaningful information in a locally symmetry-adapted basis set that is most descriptive of the crystal chemistry and physics.« less
Neilson, James R.; McQueen, Tyrel M.
2015-09-20
With the increased availability of high-intensity time-of-flight neutron and synchrotron X-ray scattering sources that can access wide ranges of momentum transfer, the pair distribution function method has become a standard analysis technique for studying disorder of local coordination spheres and at intermediate atomic separations. In some cases, rational modeling of the total scattering data (Bragg and diffuse) becomes intractable with least-squares approaches, necessitating reverse Monte Carlo simulations using large atomistic ensembles. However, the extraction of meaningful information from the resulting atomistic ensembles is challenging, especially at intermediate length scales. Representational analysis is used here to describe the displacements of atomsmore » in reverse Monte Carlo ensembles from an ideal crystallographic structure in an approach analogous to tight-binding methods. Rewriting the displacements in terms of a local basis that is descriptive of the ideal crystallographic symmetry provides a robust approach to characterizing medium-range order (and disorder) and symmetry breaking in complex and disordered crystalline materials. Lastly, this method enables the extraction of statistically relevant displacement modes (orientation, amplitude and distribution) of the crystalline disorder and provides directly meaningful information in a locally symmetry-adapted basis set that is most descriptive of the crystal chemistry and physics.« less
NASA Astrophysics Data System (ADS)
Alikhani, Radin; Razzaghi-Asl, Nima; Ramazani, Ali; Hosseinzadeh, Zahra
2018-07-01
A few novel previously synthesized 2,5-disubstituted 1,3,4-oxadiazoles with cytotoxic activity (1-17) were subjected to combined docking/quantum mechanical studies against chemotherapeutic targets. Selected macromolecular targets were those that were previously known to be inhibited by 1,3,4-oxadiazoles. Within this work, favorable binding modes/affinities of the oxadiazoles toward validated cancer targets were elucidated. Some oxadiazole structures exhibited ΔGbs comparable to or stronger than crystallographic ligands that were previously demonstrated to inhibit such targets. On the basis of obtained results, a general structure activity/binding relationship (SAR/SBR) was developed and a few 2,5-disubstituted 1,3,4-oxadiazole structures were proposed and virtually validated as potential cytotoxic candidates. To get more insight into structure binding relationship of candidate molecules within best correlated targets, docked conformation of the best in silico in vitro correlated oxadiazole structure was analyzed in terms of intermolecular binding energy components by functional B3LYP in association with split valence basis set using polarization functions (Def2-SVP). We believe that such modeling studies may be complementary to our previous results on the synthesis and cytotoxicity assessment of novel 1,3,4-oxadiazole derivatives through extending the scope of privileged structures toward designing new potential anti-tumor compounds.
Some considerations about Gaussian basis sets for electric property calculations
NASA Astrophysics Data System (ADS)
Arruda, Priscilla M.; Canal Neto, A.; Jorge, F. E.
Recently, segmented contracted basis sets of double, triple, and quadruple zeta valence quality plus polarization functions (XZP, X = D, T, and Q, respectively) for the atoms from H to Ar were reported. In this work, with the objective of having a better description of polarizabilities, the QZP set was augmented with diffuse (s and p symmetries) and polarization (p, d, f, and g symmetries) functions that were chosen to maximize the mean dipole polarizability at the UHF and UMP2 levels, respectively. At the HF and B3LYP levels of theory, electric dipole moment and static polarizability for a sample of molecules were evaluated. Comparison with experimental data and results obtained with a similar size basis set, whose diffuse functions were optimized for the ground state energy of the anion, was done.
Life extending control for rocket engines
NASA Technical Reports Server (NTRS)
Lorenzo, C. F.; Saus, J. R.; Ray, A.; Carpino, M.; Wu, M.-K.
1992-01-01
The concept of life extending control is defined. A brief discussion of current fatigue life prediction methods is given and the need for an alternative life prediction model based on a continuous functional relationship is established. Two approaches to life extending control are considered: (1) the implicit approach which uses cyclic fatigue life prediction as a basis for control design; and (2) the continuous life prediction approach which requires a continuous damage law. Progress on an initial formulation of a continuous (in time) fatigue model is presented. Finally, nonlinear programming is used to develop initial results for life extension for a simplified rocket engine (model).
Fitzpatrick, Brendan M.; Phillips, Elizabeth
2012-01-01
Objectives. We developed a data collection and monitoring system to independently evaluate the self-regulatory effort to reduce the number of beverage calories available to children during the regular and extended school day. We have described the data collection procedures used to verify data supplied by the beverage industry and quantified changes in school beverage shipments. Methods. Using a proprietary industry data set collected in 2005 and semiannually in 2007 through 2010, we measured the total volume of beverage shipments to elementary, middle, and high schools to monitor intertemporal changes in beverage volumes, the composition of products delivered to schools, and portion sizes. We compared data with findings from existing research of the school beverage landscape and a separate data set based on contracts between schools and beverage bottling companies. Results. Between 2004 and the 2009–2010 school year, the beverage industry reduced calories shipped to schools by 90%. On a total ounces basis, shipments of full-calorie soft drinks to schools decreased by 97%. Conclusions. Industry self-regulation, with the assistance of a transparent and independent monitoring process, can be a valuable tool in improving public health outcomes. PMID:22897528
DOE Office of Scientific and Technical Information (OSTI.GOV)
Twitty, A.F.; Handler, B.H.; Duncan, L.D.
Data Systems Engineering Organization (DSEO) personnel are developing a prototype computer aided instruction (CAI) system for the Naval Aviation Logistics Data Analysis (NALDA) system. The objective of this project is to provide a prototype for implementing CAI as an enhancement to existing NALDA training. The CAI prototype project is being performed in phases. The task undertaken in Phase I was to analyze the problem and the alternative solutions and to develop a set of recommendations on how best to proceed. In Phase II a structured design and specification document was completed that will provide the basis for development and implementationmore » of the desired CAI system. Phase III will consist of designing, developing, and testing a user interface which will extend the features of the Phase II prototype. The design of the CAI prototype has followed a rigorous structured analysis based on Yourdon/DeMarco methodology and Information Engineering tools. This document includes data flow diagrams, a data dictionary, process specifications, an entity-relationship diagram, a curriculum description, special function key definitions, and a set of standards developed for the NALDA CAI Prototype.« less
Fokkema, Ivo F A C; den Dunnen, Johan T; Taschner, Peter E M
2005-08-01
The completion of the human genome project has initiated, as well as provided the basis for, the collection and study of all sequence variation between individuals. Direct access to up-to-date information on sequence variation is currently provided most efficiently through web-based, gene-centered, locus-specific databases (LSDBs). We have developed the Leiden Open (source) Variation Database (LOVD) software approaching the "LSDB-in-a-Box" idea for the easy creation and maintenance of a fully web-based gene sequence variation database. LOVD is platform-independent and uses PHP and MySQL open source software only. The basic gene-centered and modular design of the database follows the recommendations of the Human Genome Variation Society (HGVS) and focuses on the collection and display of DNA sequence variations. With minimal effort, the LOVD platform is extendable with clinical data. The open set-up should both facilitate and promote functional extension with scripts written by the community. The LOVD software is freely available from the Leiden Muscular Dystrophy pages (www.DMD.nl/LOVD/). To promote the use of LOVD, we currently offer curators the possibility to set up an LSDB on our Leiden server. (c) 2005 Wiley-Liss, Inc.
ERIC Educational Resources Information Center
Lee, Liangshiu
2010-01-01
The basis sets for symmetry operations of d[superscript 1] to d[superscript 9] complexes in an octahedral field and the resulting terms are derived for the ground states and spin-allowed excited states. The basis sets are of fundamental importance in group theory. This work addresses such a fundamental issue, and the results are pedagogically…
Lorenz, Gödel and Penrose: new perspectives on determinism and causality in fundamental physics
NASA Astrophysics Data System (ADS)
Palmer, T. N.
2014-07-01
Despite being known for his pioneering work on chaotic unpredictability, the key discovery at the core of meteorologist Ed Lorenz's work is the link between space-time calculus and state-space fractal geometry. Indeed, properties of Lorenz's fractal invariant set relate space-time calculus to deep areas of mathematics such as Gödel's Incompleteness Theorem. Could such properties also provide new perspectives on deep unsolved issues in fundamental physics? Recent developments in cosmology motivate what is referred to as the 'cosmological invariant set postulate': that the universe ? can be considered a deterministic dynamical system evolving on a causal measure-zero fractal invariant set ? in its state space. Symbolic representations of ? are constructed explicitly based on permutation representations of quaternions. The resulting 'invariant set theory' provides some new perspectives on determinism and causality in fundamental physics. For example, while the cosmological invariant set appears to have a rich enough structure to allow a description of (quantum) probability, its measure-zero character ensures it is sparse enough to prevent invariant set theory being constrained by the Bell inequality (consistent with a partial violation of the so-called measurement independence postulate). The primacy of geometry as embodied in the proposed theory extends the principles underpinning general relativity. As a result, the physical basis for contemporary programmes which apply standard field quantisation to some putative gravitational lagrangian is questioned. Consistent with Penrose's suggestion of a deterministic but non-computable theory of fundamental physics, an alternative 'gravitational theory of the quantum' is proposed based on the geometry of ?, with new perspectives on the problem of black-hole information loss and potential observational consequences for the dark universe.
NASA Technical Reports Server (NTRS)
Harper, David William (Inventor)
2017-01-01
A structural support having fractal-stiffening and method of fabricating the support is presented where an optimized location of at least three nodes is predetermined prior to fabricating the structural support where a first set of webs is formed on one side of the support and joined to the nodes to form a first pocket region. A second set of webs is formed within the first pocket region forming a second pocket region where the height of the first set of webs extending orthogonally from the side of the support is greater than the second set of webs extending orthogonally from the support.
A Bayesian antedependence model for whole genome prediction.
Yang, Wenzhao; Tempelman, Robert J
2012-04-01
Hierarchical mixed effects models have been demonstrated to be powerful for predicting genomic merit of livestock and plants, on the basis of high-density single-nucleotide polymorphism (SNP) marker panels, and their use is being increasingly advocated for genomic predictions in human health. Two particularly popular approaches, labeled BayesA and BayesB, are based on specifying all SNP-associated effects to be independent of each other. BayesB extends BayesA by allowing a large proportion of SNP markers to be associated with null effects. We further extend these two models to specify SNP effects as being spatially correlated due to the chromosomally proximal effects of causal variants. These two models, that we respectively dub as ante-BayesA and ante-BayesB, are based on a first-order nonstationary antedependence specification between SNP effects. In a simulation study involving 20 replicate data sets, each analyzed at six different SNP marker densities with average LD levels ranging from r(2) = 0.15 to 0.31, the antedependence methods had significantly (P < 0.01) higher accuracies than their corresponding classical counterparts at higher LD levels (r(2) > 0. 24) with differences exceeding 3%. A cross-validation study was also conducted on the heterogeneous stock mice data resource (http://mus.well.ox.ac.uk/mouse/HS/) using 6-week body weights as the phenotype. The antedependence methods increased cross-validation prediction accuracies by up to 3.6% compared to their classical counterparts (P < 0.001). Finally, we applied our method to other benchmark data sets and demonstrated that the antedependence methods were more accurate than their classical counterparts for genomic predictions, even for individuals several generations beyond the training data.
2007-02-01
technological basis that will guarantee a solid base for the future. The content of this publication has been reproduced directly from material supplied by...maintenance services, re- supply or other logistic in orbit operation. The benefit to have an extended satellite lifetime and a longer autonomous...to: • recover the satellites in the proper orbit • refuel, re- supply satellites to extend their operative life • reconfigure and repair
Extending the Peak Bandwidth of Parameters for Softmax Selection in Reinforcement Learning.
Iwata, Kazunori
2016-05-11
Softmax selection is one of the most popular methods for action selection in reinforcement learning. Although various recently proposed methods may be more effective with full parameter tuning, implementing a complicated method that requires the tuning of many parameters can be difficult. Thus, softmax selection is still worth revisiting, considering the cost savings of its implementation and tuning. In fact, this method works adequately in practice with only one parameter appropriately set for the environment. The aim of this paper is to improve the variable setting of this method to extend the bandwidth of good parameters, thereby reducing the cost of implementation and parameter tuning. To achieve this, we take advantage of the asymptotic equipartition property in a Markov decision process to extend the peak bandwidth of softmax selection. Using a variety of episodic tasks, we show that our setting is effective in extending the bandwidth and that it yields a better policy in terms of stability. The bandwidth is quantitatively assessed in a series of statistical tests.
3D GIS spatial operation based on extended Euler operators
NASA Astrophysics Data System (ADS)
Xu, Hongbo; Lu, Guonian; Sheng, Yehua; Zhou, Liangchen; Guo, Fei; Shang, Zuoyan; Wang, Jing
2008-10-01
The implementation of 3 dimensions spatial operations, based on certain data structure, has a lack of universality and is not able to treat with non-manifold cases, at present. ISO/DIS 19107 standard just presents the definition of Boolean operators and set operators for topological relationship query, and OGC GeoXACML gives formal definitions for several set functions without implementation detail. Aiming at these problems, based mathematical foundation on cell complex theory, supported by non-manifold data structure and using relevant research in the field of non-manifold geometry modeling for reference, firstly, this paper according to non-manifold Euler-Poincaré formula constructs 6 extended Euler operators and inverse operators to carry out creating, updating and deleting 3D spatial elements, as well as several pairs of supplementary Euler operators to convenient for implementing advanced functions. Secondly, we change topological element operation sequence of Boolean operation and set operation as well as set functions defined in GeoXACML into combination of extended Euler operators, which separates the upper functions and lower data structure. Lastly, we develop underground 3D GIS prototype system, in which practicability and credibility of extended Euler operators faced to 3D GIS presented by this paper are validated.
NASA Astrophysics Data System (ADS)
Boffi, Nicholas M.; Jain, Manish; Natan, Amir
2016-02-01
A real-space high order finite difference method is used to analyze the effect of spherical domain size on the Hartree-Fock (and density functional theory) virtual eigenstates. We show the domain size dependence of both positive and negative virtual eigenvalues of the Hartree-Fock equations for small molecules. We demonstrate that positive states behave like a particle in spherical well and show how they approach zero. For the negative eigenstates, we show that large domains are needed to get the correct eigenvalues. We compare our results to those of Gaussian basis sets and draw some conclusions for real-space, basis-sets, and plane-waves calculations.
NASA Astrophysics Data System (ADS)
Martínez-Sánchez, Michael-Adán; Aquino, Norberto; Vargas, Rubicelia; Garza, Jorge
2017-12-01
The Schrödinger equation associated to the hydrogen atom confined by a dielectric continuum is solved exactly and suggests the appropriate basis set to be used when an atom is immersed in a dielectric continuum. Exact results show that this kind of confinement spread the electron density, which is confirmed through the Shannon entropy. The basis set suggested by the exact results is similar to Slater type orbitals and it was applied on two-electron atoms, where the H- ion ejects one electron for moderate confinements for distances much larger than those commonly used to generate cavities in solvent models.
Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, William BJ J
2016-01-01
A technical basis for peak reactivity boiling water reactor (BWR) burnup credit (BUC) methods was recently generated, and the technical basis for extended BWR BUC is now being developed. In this paper, a number of effects related to extended BWR BUC are analyzed, including three major operational effects in BWRs: the coolant density axial distribution, the use of control blades during operation, and the axial burnup profile. Specifically, uniform axial moderator density profiles are analyzed and compared to previous results and an additional temporal fidelity study combing moderator density profiles for three different fuel assemblies is presented. Realistic control blademore » histories and cask criticality results are compared to previously generated constructed control blade histories. Finally, a preliminary study of the axial burnup profile is provided.« less
Buryak, Ilya; Lokshtanov, Sergei; Vigasin, Andrey
2012-09-21
The present work aims at ab initio characterization of the integrated intensity temperature variation of collision-induced absorption (CIA) in N(2)-H(2)(D(2)). Global fits of potential energy surface (PES) and induced dipole moment surface (IDS) were made on the basis of CCSD(T) (coupled cluster with single and double and perturbative triple excitations) calculations with aug-cc-pV(T,Q)Z basis sets. Basis set superposition error correction and extrapolation to complete basis set (CBS) limit techniques were applied to both energy and dipole moment. Classical second cross virial coefficient calculations accounting for the first quantum correction were employed to prove the quality of the obtained PES. The CIA temperature dependence was found in satisfactory agreement with available experimental data.
The End-Stage Renal Disease Program: Basis for the Army Organ Transplant Program
1985-07-19
gradually lost, the condition is known as chronic renal failure . End-stage renal disease (ESRD) is the late and terminal phase of chronic renal ...extended Medicare coverage to persons suffering from kidney ( renal ) failure who either were currently or fully insured under the Social Security Act or...NO.NO. 11. TITLE (Include Security Classification) THE END-STAGE RENAL DISEASE PROGRAM: BASIS FOR THE ARMY ORGAN TRANSPLANT PROGRAM 12. PERSONAL
Fragment approach to constrained density functional theory calculations using Daubechies wavelets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratcliff, Laura E.; Genovese, Luigi; Mohr, Stephan
2015-06-21
In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix ofmore » the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varandas, A. J. C., E-mail: varandas@uc.pt; Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória; Pansini, F. N. N.
2014-12-14
A method previously suggested to calculate the correlation energy at the complete one-electron basis set limit by reassignment of the basis hierarchical numbers and use of the unified singlet- and triplet-pair extrapolation scheme is applied to a test set of 106 systems, some with up to 48 electrons. The approach is utilized to obtain extrapolated correlation energies from raw values calculated with second-order Møller-Plesset perturbation theory and the coupled-cluster singles and doubles excitations method, some of the latter also with the perturbative triples corrections. The calculated correlation energies have also been used to predict atomization energies within an additive scheme.more » Good agreement is obtained with the best available estimates even when the (d, t) pair of hierarchical numbers is utilized to perform the extrapolations. This conceivably justifies that there is no strong reason to exclude double-zeta energies in extrapolations, especially if the basis is calibrated to comply with the theoretical model.« less
NASA Astrophysics Data System (ADS)
Petersson, George A.; Malick, David K.; Frisch, Michael J.; Braunstein, Matthew
2006-07-01
Examination of the convergence of full valence complete active space self-consistent-field configuration interaction including all single and double excitation (CASSCF-CISD) energies with expansion of the one-electron basis set reveals a pattern very similar to the convergence of single determinant energies. Calculations on the lowest four singlet states and the lowest four triplet states of N2 with the sequence of n-tuple-ζ augmented polarized (nZaP) basis sets (n =2, 3, 4, 5, and 6) are used to establish the complete basis set limits. Full configuration-interaction (CI) and core electron contributions must be included for very accurate potential energy surfaces. However, a simple extrapolation scheme that has no adjustable parameters and requires nothing more demanding than CAS(10e -,8orb)-CISD/3ZaP calculations gives the Re, ωe, ωeXe, Te, and De for these eight states with rms errors of 0.0006Å, 4.43cm-1, 0.35cm-1, 0.063eV, and 0.018eV, respectively.
48 CFR 25.504-4 - Group award basis.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American Act applies and the acquisition cannot be set aside for small...
48 CFR 25.504-4 - Group award basis.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American Act applies and the acquisition cannot be set aside for small...
48 CFR 25.504-4 - Group award basis.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American statute applies and the acquisition cannot be set aside for...
48 CFR 25.504-4 - Group award basis.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American Act applies and the acquisition cannot be set aside for small...
48 CFR 25.504-4 - Group award basis.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American Act applies and the acquisition cannot be set aside for small...
NASA Astrophysics Data System (ADS)
Kruse, Holger; Grimme, Stefan
2012-04-01
A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model chemistry yields MAD=0.68 kcal/mol, which represents a huge improvement over plain B3LYP/6-31G* (MAD=2.3 kcal/mol). Application of gCP-corrected B97-D3 and HF-D3 on a set of large protein-ligand complexes prove the robustness of the method. Analytical gCP gradients make optimizations of large systems feasible with small basis sets, as demonstrated for the inter-ring distances of 9-helicene and most of the complexes in Hobza's S22 test set. The method is implemented in a freely available FORTRAN program obtainable from the author's website.
2014-07-18
We are extending for one year our pilot program that authorizes the agency to set the time and place for a hearing before an administrative law judge (ALJ). Extending the pilot program continues our commitment to improve the efficiency of our hearing process and provide accurate, high-quality decisions for claimants. The current pilot program will expire on August 9, 2014. In this final rule, we are extending the expiration date to August 10, 2015. We are making no other substantive changes.
Celeste, Ricardo; Maringolo, Milena P; Comar, Moacyr; Viana, Rommel B; Guimarães, Amanda R; Haiduke, Roberto L A; da Silva, Albérico B F
2015-10-01
Accurate Gaussian basis sets for atoms from H to Ba were obtained by means of the generator coordinate Hartree-Fock (GCHF) method based on a polynomial expansion to discretize the Griffin-Wheeler-Hartree-Fock equations (GWHF). The discretization of the GWHF equations in this procedure is based on a mesh of points not equally distributed in contrast with the original GCHF method. The results of atomic Hartree-Fock energies demonstrate the capability of these polynomial expansions in designing compact and accurate basis sets to be used in molecular calculations and the maximum error found when compared to numerical values is only 0.788 mHartree for indium. Some test calculations with the B3LYP exchange-correlation functional for N2, F2, CO, NO, HF, and HCN show that total energies within 1.0 to 2.4 mHartree compared to the cc-pV5Z basis sets are attained with our contracted bases with a much smaller number of polarization functions (2p1d and 2d1f for hydrogen and heavier atoms, respectively). Other molecular calculations performed here are also in very good accordance with experimental and cc-pV5Z results. The most important point to be mentioned here is that our generator coordinate basis sets required only a tiny fraction of the computational time when compared to B3LYP/cc-pV5Z calculations.
Flat bases of invariant polynomials and P-matrices of E{sub 7} and E{sub 8}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talamini, Vittorino
2010-02-15
Let G be a compact group of linear transformations of a Euclidean space V. The G-invariant C{sup {infinity}} functions can be expressed as C{sup {infinity}} functions of a finite basic set of G-invariant homogeneous polynomials, sometimes called an integrity basis. The mathematical description of the orbit space V/G depends on the integrity basis too: it is realized through polynomial equations and inequalities expressing rank and positive semidefiniteness conditions of the P-matrix, a real symmetric matrix determined by the integrity basis. The choice of the basic set of G-invariant homogeneous polynomials forming an integrity basis is not unique, so it ismore » not unique the mathematical description of the orbit space too. If G is an irreducible finite reflection group, Saito et al. [Commun. Algebra 8, 373 (1980)] characterized some special basic sets of G-invariant homogeneous polynomials that they called flat. They also found explicitly the flat basic sets of invariant homogeneous polynomials of all the irreducible finite reflection groups except of the two largest groups E{sub 7} and E{sub 8}. In this paper the flat basic sets of invariant homogeneous polynomials of E{sub 7} and E{sub 8} and the corresponding P-matrices are determined explicitly. Using the results here reported one is able to determine easily the P-matrices corresponding to any other integrity basis of E{sub 7} or E{sub 8}. From the P-matrices one may then write down the equations and inequalities defining the orbit spaces of E{sub 7} and E{sub 8} relatively to a flat basis or to any other integrity basis. The results here obtained may be employed concretely to study analytically the symmetry breaking in all theories where the symmetry group is one of the finite reflection groups E{sub 7} and E{sub 8} or one of the Lie groups E{sub 7} and E{sub 8} in their adjoint representations.« less
Spectroscopic properties of Arx-Zn and Arx-Ag+ (x = 1,2) van der Waals complexes
NASA Astrophysics Data System (ADS)
Oyedepo, Gbenga A.; Peterson, Charles; Schoendorff, George; Wilson, Angela K.
2013-03-01
Potential energy curves have been constructed using coupled cluster with singles, doubles, and perturbative triple excitations (CCSD(T)) in combination with all-electron and pseudopotential-based multiply augmented correlation consistent basis sets [m-aug-cc-pV(n + d)Z; m = singly, doubly, triply, n = D,T,Q,5]. The effect of basis set superposition error on the spectroscopic properties of Ar-Zn, Ar2-Zn, Ar-Ag+, and Ar2-Ag+ van der Waals complexes was examined. The diffuse functions of the doubly and triply augmented basis sets have been constructed using the even-tempered expansion. The a posteriori counterpoise scheme of Boys and Bernardi and its generalized variant by Valiron and Mayer has been utilized to correct for basis set superposition error (BSSE) in the calculated spectroscopic properties for diatomic and triatomic species. It is found that even at the extrapolated complete basis set limit for the energetic properties, the pseudopotential-based calculations still suffer from significant BSSE effects unlike the all-electron basis sets. This indicates that the quality of the approximations used in the design of pseudopotentials could have major impact on a seemingly valence-exclusive effect like BSSE. We confirm the experimentally determined equilibrium internuclear distance (re), binding energy (De), harmonic vibrational frequency (ωe), and C1Π ← X1Σ transition energy for ArZn and also predict the spectroscopic properties for the low-lying excited states of linear Ar2-Zn (X1Σg, 3Πg, 1Πg), Ar-Ag+ (X1Σ, 3Σ, 3Π, 3Δ, 1Σ, 1Π, 1Δ), and Ar2-Ag+ (X1Σg, 3Σg, 3Πg, 3Δg, 1Σg, 1Πg, 1Δg) complexes, using the CCSD(T) and MR-CISD + Q methods, to aid in their experimental characterizations.
A projection-free method for representing plane-wave DFT results in an atom-centered basis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunnington, Benjamin D.; Schmidt, J. R., E-mail: schmidt@chem.wisc.edu
2015-09-14
Plane wave density functional theory (DFT) is a powerful tool for gaining accurate, atomic level insight into bulk and surface structures. Yet, the delocalized nature of the plane wave basis set hinders the application of many powerful post-computation analysis approaches, many of which rely on localized atom-centered basis sets. Traditionally, this gap has been bridged via projection-based techniques from a plane wave to atom-centered basis. We instead propose an alternative projection-free approach utilizing direct calculation of matrix elements of the converged plane wave DFT Hamiltonian in an atom-centered basis. This projection-free approach yields a number of compelling advantages, including strictmore » orthonormality of the resulting bands without artificial band mixing and access to the Hamiltonian matrix elements, while faithfully preserving the underlying DFT band structure. The resulting atomic orbital representation of the Kohn-Sham wavefunction and Hamiltonian provides a gateway to a wide variety of analysis approaches. We demonstrate the utility of the approach for a diverse set of chemical systems and example analysis approaches.« less
7 CFR 51.3210 - Serious damage.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Onions with adhering dirt or other foreign matter shall be judged on the same basis as stained onions; (e) Mechanical when any cut extends deeper than two fleshy scales, or when cuts seriously damage the appearance...
Quantization of set theory and generalization of the fermion algebra
NASA Astrophysics Data System (ADS)
Arik, M.; Tekin, S. C.
2002-05-01
The quantum states of a d-dimensional fermion algebra are in one to one correspondence with the subsets of a d-element universal set. In this paper we use this set theoretical motivation to construct a one-parameter deformation of the fermion algebra and extend it to a d-dimensional generalization which is invariant under the group U(d). This discrete fermionic oscillator system is extended to the continuous case. We also show that the q-deformation of these systems is related to supercovariant q-oscillators.
Zhao, Chunyu; Burge, James H
2007-12-24
Zernike polynomials provide a well known, orthogonal set of scalar functions over a circular domain, and are commonly used to represent wavefront phase or surface irregularity. A related set of orthogonal functions is given here which represent vector quantities, such as mapping distortion or wavefront gradient. These functions are generated from gradients of Zernike polynomials, made orthonormal using the Gram- Schmidt technique. This set provides a complete basis for representing vector fields that can be defined as a gradient of some scalar function. It is then efficient to transform from the coefficients of the vector functions to the scalar Zernike polynomials that represent the function whose gradient was fit. These new vector functions have immediate application for fitting data from a Shack-Hartmann wavefront sensor or for fitting mapping distortion for optical testing. A subsequent paper gives an additional set of vector functions consisting only of rotational terms with zero divergence. The two sets together provide a complete basis that can represent all vector distributions in a circular domain.
NASA Astrophysics Data System (ADS)
Klinting, Emil Lund; Thomsen, Bo; Godtliebsen, Ian Heide; Christiansen, Ove
2018-02-01
We present an approach to treat sets of general fit-basis functions in a single uniform framework, where the functional form is supplied on input, i.e., the use of different functions does not require new code to be written. The fit-basis functions can be used to carry out linear fits to the grid of single points, which are generated with an adaptive density-guided approach (ADGA). A non-linear conjugate gradient method is used to optimize non-linear parameters if such are present in the fit-basis functions. This means that a set of fit-basis functions with the same inherent shape as the potential cuts can be requested and no other choices with regards to the fit-basis functions need to be taken. The general fit-basis framework is explored in relation to anharmonic potentials for model systems, diatomic molecules, water, and imidazole. The behaviour and performance of Morse and double-well fit-basis functions are compared to that of polynomial fit-basis functions for unsymmetrical single-minimum and symmetrical double-well potentials. Furthermore, calculations for water and imidazole were carried out using both normal coordinates and hybrid optimized and localized coordinates (HOLCs). Our results suggest that choosing a suitable set of fit-basis functions can improve the stability of the fitting routine and the overall efficiency of potential construction by lowering the number of single point calculations required for the ADGA. It is possible to reduce the number of terms in the potential by choosing the Morse and double-well fit-basis functions. These effects are substantial for normal coordinates but become even more pronounced if HOLCs are used.
Double Time? Examining Extended Testing Time Accommodations (ETTA) in Postsecondary Settings
ERIC Educational Resources Information Center
Sokal, Laura; Vermette, Laurie Anne
2017-01-01
Over eight thousand test administrations across two universities were examined to determine whether students with disabilities were being given the necessary extended testing time accommodations and whether their use of extended time decreased over the course of their programs. Findings revealed that commonly accepted recommendations about…
Extended Techniques in Trumpet Performance and Pedagogy
ERIC Educational Resources Information Center
Cherry, Amy K.
2009-01-01
The impetus for this study was the question of whether extended techniques are actually being taught in college trumpet studio settings as standard skills necessary on the instrument. The specific purposes of this document included: (1) catalogue the extended techniques available to today's trumpet performer, (2) reflect on their current use and…
NASA Astrophysics Data System (ADS)
Győrffy, Werner; Knizia, Gerald; Werner, Hans-Joachim
2017-12-01
We present the theory and algorithms for computing analytical energy gradients for explicitly correlated second-order Møller-Plesset perturbation theory (MP2-F12). The main difficulty in F12 gradient theory arises from the large number of two-electron integrals for which effective two-body density matrices and integral derivatives need to be calculated. For efficiency, the density fitting approximation is used for evaluating all two-electron integrals and their derivatives. The accuracies of various previously proposed MP2-F12 approximations [3C, 3C(HY1), 3*C(HY1), and 3*A] are demonstrated by computing equilibrium geometries for a set of molecules containing first- and second-row elements, using double-ζ to quintuple-ζ basis sets. Generally, the convergence of the bond lengths and angles with respect to the basis set size is strongly improved by the F12 treatment, and augmented triple-ζ basis sets are sufficient to closely approach the basis set limit. The results obtained with the different approximations differ only very slightly. This paper is the first step towards analytical gradients for coupled-cluster singles and doubles with perturbative treatment of triple excitations, which will be presented in the second part of this series.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuo, Ye
2011-01-01
In this thesis, we theoretically study the electromagnetic wave propagation in several passive and active optical components and devices including 2-D photonic crystals, straight and curved waveguides, organic light emitting diodes (OLEDs), and etc. Several optical designs are also presented like organic photovoltaic (OPV) cells and solar concentrators. The first part of the thesis focuses on theoretical investigation. First, the plane-wave-based transfer (scattering) matrix method (TMM) is briefly described with a short review of photonic crystals and other numerical methods to study them (Chapter 1 and 2). Next TMM, the numerical method itself is investigated in details and developed inmore » advance to deal with more complex optical systems. In chapter 3, TMM is extended in curvilinear coordinates to study curved nanoribbon waveguides. The problem of a curved structure is transformed into an equivalent one of a straight structure with spatially dependent tensors of dielectric constant and magnetic permeability. In chapter 4, a new set of localized basis orbitals are introduced to locally represent electromagnetic field in photonic crystals as alternative to planewave basis. The second part of the thesis focuses on the design of optical devices. First, two examples of TMM applications are given. The first example is the design of metal grating structures as replacements of ITO to enhance the optical absorption in OPV cells (chapter 6). The second one is the design of the same structure as above to enhance the light extraction of OLEDs (chapter 7). Next, two design examples by ray tracing method are given, including applying a microlens array to enhance the light extraction of OLEDs (chapter 5) and an all-angle wide-wavelength design of solar concentrator (chapter 8). In summary, this dissertation has extended TMM which makes it capable of treating complex optical systems. Several optical designs by TMM and ray tracing method are also given as a full complement of this work.« less
R classes and methods for SNP array data.
Scharpf, Robert B; Ruczinski, Ingo
2010-01-01
The Bioconductor project is an "open source and open development software project for the analysis and comprehension of genomic data" (1), primarily based on the R programming language. Infrastructure packages, such as Biobase, are maintained by Bioconductor core developers and serve several key roles to the broader community of Bioconductor software developers and users. In particular, Biobase introduces an S4 class, the eSet, for high-dimensional assay data. Encapsulating the assay data as well as meta-data on the samples, features, and experiment in the eSet class definition ensures propagation of the relevant sample and feature meta-data throughout an analysis. Extending the eSet class promotes code reuse through inheritance as well as interoperability with other R packages and is less error-prone. Recently proposed class definitions for high-throughput SNP arrays extend the eSet class. This chapter highlights the advantages of adopting and extending Biobase class definitions through a working example of one implementation of classes for the analysis of high-throughput SNP arrays.
Simplified DFT methods for consistent structures and energies of large systems
NASA Astrophysics Data System (ADS)
Caldeweyher, Eike; Gerit Brandenburg, Jan
2018-05-01
Kohn–Sham density functional theory (DFT) is routinely used for the fast electronic structure computation of large systems and will most likely continue to be the method of choice for the generation of reliable geometries in the foreseeable future. Here, we present a hierarchy of simplified DFT methods designed for consistent structures and non-covalent interactions of large systems with particular focus on molecular crystals. The covered methods are a minimal basis set Hartree–Fock (HF-3c), a small basis set screened exchange hybrid functional (HSE-3c), and a generalized gradient approximated functional evaluated in a medium-sized basis set (B97-3c), all augmented with semi-classical correction potentials. We give an overview on the methods design, a comprehensive evaluation on established benchmark sets for geometries and lattice energies of molecular crystals, and highlight some realistic applications on large organic crystals with several hundreds of atoms in the primitive unit cell.
A practical radial basis function equalizer.
Lee, J; Beach, C; Tepedelenlioglu, N
1999-01-01
A radial basis function (RBF) equalizer design process has been developed in which the number of basis function centers used is substantially fewer than conventionally required. The reduction of centers is accomplished in two-steps. First an algorithm is used to select a reduced set of centers that lie close to the decision boundary. Then the centers in this reduced set are grouped, and an average position is chosen to represent each group. Channel order and delay, which are determining factors in setting the initial number of centers, are estimated from regression analysis. In simulation studies, an RBF equalizer with more than 2000-to-1 reduction in centers performed as well as the RBF equalizer without reduction in centers, and better than a conventional linear equalizer.
NASA Astrophysics Data System (ADS)
Yang, Qi; Cao, Yue; Chen, Shiyin; Teng, Yue; Meng, Yanli; Wang, Gangcheng; Sun, Chunfang; Xue, Kang
2018-03-01
In this paper, we construct a new set of orthonormal topological basis states for six qubits with the topological single loop d = 2. By acting on the subspace, we get a new five-dimensional (5D) reduced matrix. In addition, it is shown that the Heisenberg XXX spin-1/2 chain of six qubits can be constructed from the Temperley-Lieb algebra (TLA) generator, both the energy ground state and the spin singlet states of the system can be described by the set of topological basis states.
Use of an auxiliary basis set to describe the polarization in the fragment molecular orbital method
NASA Astrophysics Data System (ADS)
Fedorov, Dmitri G.; Kitaura, Kazuo
2014-03-01
We developed a dual basis approach within the fragment molecular orbital formalism enabling efficient and accurate use of large basis sets. The method was tested on water clusters and polypeptides and applied to perform geometry optimization of chignolin (PDB: 1UAO) in solution at the level of DFT/6-31++G∗∗, obtaining a structure in agreement with experiment (RMSD of 0.4526 Å). The polarization in polypeptides is discussed with a comparison of the α-helix and β-strand.
NASA Astrophysics Data System (ADS)
Yang, Qi; Cao, Yue; Chen, Shiyin; Teng, Yue; Meng, Yanli; Wang, Gangcheng; Sun, Chunfang; Xue, Kang
2018-06-01
In this paper, we construct a new set of orthonormal topological basis states for six qubits with the topological single loop d = 2. By acting on the subspace, we get a new five-dimensional (5 D) reduced matrix. In addition, it is shown that the Heisenberg XXX spin-1/2 chain of six qubits can be constructed from the Temperley-Lieb algebra (TLA) generator, both the energy ground state and the spin singlet states of the system can be described by the set of topological basis states.
Ivanov, R; Marín, E; Villa, J; Aguilar, C Hernández; Pacheco, A Domínguez; Garrido, S Hernández
2016-02-01
In a recent paper published in this journal [R. Ivanov et al., Rev. Sci. Instrum. 86, 064902 (2015)], a methodology free of fitting procedures for determining the thermal effusivity of liquids using the electropyroelectric technique was reported. Here the same measurement principle is extended to the well-known photopyroelectric technique. The theoretical basis and experimental basis of the method are presented and its usefulness is demonstrated with measurements on test samples.
Fast-Solving Quasi-Optimal LS-S3VM Based on an Extended Candidate Set.
Ma, Yuefeng; Liang, Xun; Kwok, James T; Li, Jianping; Zhou, Xiaoping; Zhang, Haiyan
2018-04-01
The semisupervised least squares support vector machine (LS-S 3 VM) is an important enhancement of least squares support vector machines in semisupervised learning. Given that most data collected from the real world are without labels, semisupervised approaches are more applicable than standard supervised approaches. Although a few training methods for LS-S 3 VM exist, the problem of deriving the optimal decision hyperplane efficiently and effectually has not been solved. In this paper, a fully weighted model of LS-S 3 VM is proposed, and a simple integer programming (IP) model is introduced through an equivalent transformation to solve the model. Based on the distances between the unlabeled data and the decision hyperplane, a new indicator is designed to represent the possibility that the label of an unlabeled datum should be reversed in each iteration during training. Using the indicator, we construct an extended candidate set consisting of the indices of unlabeled data with high possibilities, which integrates more information from unlabeled data. Our algorithm is degenerated into a special scenario of the previous algorithm when the extended candidate set is reduced into a set with only one element. Two strategies are utilized to determine the descent directions based on the extended candidate set. Furthermore, we developed a novel method for locating a good starting point based on the properties of the equivalent IP model. Combined with the extended candidate set and the carefully computed starting point, a fast algorithm to solve LS-S 3 VM quasi-optimally is proposed. The choice of quasi-optimal solutions results in low computational cost and avoidance of overfitting. Experiments show that our algorithm equipped with the two designed strategies is more effective than other algorithms in at least one of the following three aspects: 1) computational complexity; 2) generalization ability; and 3) flexibility. However, our algorithm and other algorithms have similar levels of performance in the remaining aspects.
Structural basis for molecular recognition at serotonin receptors.
Wang, Chong; Jiang, Yi; Ma, Jinming; Wu, Huixian; Wacker, Daniel; Katritch, Vsevolod; Han, Gye Won; Liu, Wei; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D; Gao, Xiang; Zhou, X Edward; Melcher, Karsten; Zhang, Chenghai; Bai, Fang; Yang, Huaiyu; Yang, Linlin; Jiang, Hualiang; Roth, Bryan L; Cherezov, Vadim; Stevens, Raymond C; Xu, H Eric
2013-05-03
Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist antimigraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared with the structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs.
NASA Astrophysics Data System (ADS)
ul Amin, Rooh; Aijun, Li; Khan, Muhammad Umer; Shamshirband, Shahaboddin; Kamsin, Amirrudin
2017-01-01
In this paper, an adaptive trajectory tracking controller based on extended normalized radial basis function network (ENRBFN) is proposed for 3-degree-of-freedom four rotor hover vehicle subjected to external disturbance i.e. wind turbulence. Mathematical model of four rotor hover system is developed using equations of motions and a new computational intelligence based technique ENRBFN is introduced to approximate the unmodeled dynamics of the hover vehicle. The adaptive controller based on the Lyapunov stability approach is designed to achieve tracking of the desired attitude angles of four rotor hover vehicle in the presence of wind turbulence. The adaptive weight update based on the Levenberg-Marquardt algorithm is used to avoid weight drift in case the system is exposed to external disturbances. The closed-loop system stability is also analyzed using Lyapunov stability theory. Simulations and experimental results are included to validate the effectiveness of the proposed control scheme.
Physics Mining of Multi-Source Data Sets
NASA Technical Reports Server (NTRS)
Helly, John; Karimabadi, Homa; Sipes, Tamara
2012-01-01
Powerful new parallel data mining algorithms can produce diagnostic and prognostic numerical models and analyses from observational data. These techniques yield higher-resolution measures than ever before of environmental parameters by fusing synoptic imagery and time-series measurements. These techniques are general and relevant to observational data, including raster, vector, and scalar, and can be applied in all Earth- and environmental science domains. Because they can be highly automated and are parallel, they scale to large spatial domains and are well suited to change and gap detection. This makes it possible to analyze spatial and temporal gaps in information, and facilitates within-mission replanning to optimize the allocation of observational resources. The basis of the innovation is the extension of a recently developed set of algorithms packaged into MineTool to multi-variate time-series data. MineTool is unique in that it automates the various steps of the data mining process, thus making it amenable to autonomous analysis of large data sets. Unlike techniques such as Artificial Neural Nets, which yield a blackbox solution, MineTool's outcome is always an analytical model in parametric form that expresses the output in terms of the input variables. This has the advantage that the derived equation can then be used to gain insight into the physical relevance and relative importance of the parameters and coefficients in the model. This is referred to as physics-mining of data. The capabilities of MineTool are extended to include both supervised and unsupervised algorithms, handle multi-type data sets, and parallelize it.
NASA Astrophysics Data System (ADS)
Remmele, Steffen; Ritzerfeld, Julia; Nickel, Walter; Hesser, Jürgen
2011-03-01
RNAi-based high-throughput microscopy screens have become an important tool in biological sciences in order to decrypt mostly unknown biological functions of human genes. However, manual analysis is impossible for such screens since the amount of image data sets can often be in the hundred thousands. Reliable automated tools are thus required to analyse the fluorescence microscopy image data sets usually containing two or more reaction channels. The herein presented image analysis tool is designed to analyse an RNAi screen investigating the intracellular trafficking and targeting of acylated Src kinases. In this specific screen, a data set consists of three reaction channels and the investigated cells can appear in different phenotypes. The main issue of the image processing task is an automatic cell segmentation which has to be robust and accurate for all different phenotypes and a successive phenotype classification. The cell segmentation is done in two steps by segmenting the cell nuclei first and then using a classifier-enhanced region growing on basis of the cell nuclei to segment the cells. The classification of the cells is realized by a support vector machine which has to be trained manually using supervised learning. Furthermore, the tool is brightness invariant allowing different staining quality and it provides a quality control that copes with typical defects during preparation and acquisition. A first version of the tool has already been successfully applied for an RNAi-screen containing three hundred thousand image data sets and the SVM extended version is designed for additional screens.
Townes, T M; Fitzgerald, M C; Lingrel, J B
1984-01-01
Distinct hemoglobins are synthesized in goats at different stages of development, similar to humans. Embryonic hemoglobins (zeta 2 epsilon 2 and alpha 2 epsilon 2) are synthesized initially and are followed sequentially by fetal (alpha 2 beta F2), preadult (alpha 2 beta C2), and adult (alpha 2 beta A2) hemoglobins. To help understand the basis of these switches, the genes of the beta-globin locus have been cloned and their linkage arrangement has been determined by the isolation of lambda phage carrying overlapping inserts of genomic goat DNA. The locus extends over 120 kilobase pairs and consists of 12 genes arranged in the following order: epsilon I-epsilon II-psi beta X-beta C-epsilon III-epsilon IV-psi beta Z-beta A-epsilon V-epsilon VI-psi beta Y-beta F. Comparison of the nucleotide sequence of the 12 genes shows that the locus is organized into three homologous four-gene sets that presumably evolved by the triplication of an ancestral set of four genes (epsilon-epsilon-psi beta-beta). Interestingly, the three genes (beta C, beta A, and beta F) located at the ends of the four-gene sets are expressed at different stages of development. Therefore, the goat beta F-, beta C-, and beta A-globin genes appear to have evolved by a mechanism that includes the triplication of 40-50 kilobase pairs of DNA and the recruitment of newly formed genes for expression in fetal, preadult, and adult life. PMID:6593719
Electrical Resistivity Imaging and the Saline Water Interface in High-Quality Coastal Aquifers
NASA Astrophysics Data System (ADS)
Costall, A.; Harris, B.; Pigois, J. P.
2018-05-01
Population growth and changing climate continue to impact on the availability of natural resources. Urbanization of vulnerable coastal margins can place serious demands on shallow groundwater. Here, groundwater management requires definition of coastal hydrogeology, particularly the seawater interface. Electrical resistivity imaging (ERI) appears to be ideally suited for this purpose. We investigate challenges and drivers for successful electrical resistivity imaging with field and synthetic experiments. Two decades of seawater intrusion monitoring provide a basis for creating a geo-electrical model suitable for demonstrating the significance of acquisition and inversion parameters on resistivity imaging outcomes. A key observation is that resistivity imaging with combinations of electrode arrays that include dipole-dipole quadrupoles can be configured to illuminate consequential elements of coastal hydrogeology. We extend our analysis of ERI to include a diverse set of hydrogeological settings along more than 100 km of the coastal margin passing the city of Perth, Western Australia. Of particular importance are settings with: (1) a classic seawater wedge in an unconfined aquifer, (2) a shallow unconfined aquifer over an impermeable substrate, and (3) a shallow multi-tiered aquifer system over a conductive impermeable substrate. We also demonstrate a systematic increase in the landward extent of the seawater wedge at sites located progressively closer to the highly urbanized center of Perth. Based on field and synthetic ERI experiments from a broad range of hydrogeological settings, we tabulate current challenges and future directions for this technology. Our research contributes to resolving the globally significant challenge of managing seawater intrusion at vulnerable coastal margins.
Electrical Resistivity Imaging and the Saline Water Interface in High-Quality Coastal Aquifers
NASA Astrophysics Data System (ADS)
Costall, A.; Harris, B.; Pigois, J. P.
2018-07-01
Population growth and changing climate continue to impact on the availability of natural resources. Urbanization of vulnerable coastal margins can place serious demands on shallow groundwater. Here, groundwater management requires definition of coastal hydrogeology, particularly the seawater interface. Electrical resistivity imaging (ERI) appears to be ideally suited for this purpose. We investigate challenges and drivers for successful electrical resistivity imaging with field and synthetic experiments. Two decades of seawater intrusion monitoring provide a basis for creating a geo-electrical model suitable for demonstrating the significance of acquisition and inversion parameters on resistivity imaging outcomes. A key observation is that resistivity imaging with combinations of electrode arrays that include dipole-dipole quadrupoles can be configured to illuminate consequential elements of coastal hydrogeology. We extend our analysis of ERI to include a diverse set of hydrogeological settings along more than 100 km of the coastal margin passing the city of Perth, Western Australia. Of particular importance are settings with: (1) a classic seawater wedge in an unconfined aquifer, (2) a shallow unconfined aquifer over an impermeable substrate, and (3) a shallow multi-tiered aquifer system over a conductive impermeable substrate. We also demonstrate a systematic increase in the landward extent of the seawater wedge at sites located progressively closer to the highly urbanized center of Perth. Based on field and synthetic ERI experiments from a broad range of hydrogeological settings, we tabulate current challenges and future directions for this technology. Our research contributes to resolving the globally significant challenge of managing seawater intrusion at vulnerable coastal margins.
2015-07-02
We are extending for one year our pilot program that authorizes the agency to set the time and place for a hearing before an administrative law judge (ALJ). Extending of the pilot program continues our commitment to improve the efficiency of our hearing process and to maintain a hearing process that results in accurate, high-quality decisions for claimants. The current pilot program will expire on August 10, 2015. In this final rule, we are extending the effective date to August 12, 2016. We are making no other substantive changes.
Main Chamber Injectors for Advanced Hydrocarbon Booster Engines
NASA Technical Reports Server (NTRS)
Long, Matthew R.; Bazarov, Vladimir G.; Anderson, William E.
2003-01-01
Achieving the highest possible specific impulse has long been a key driver for space launch systems. Recently, more importance has been placed on the need for increased reliability and streamlined launch operations. These general factors along with more specific mission requirements have provided a new focus that is centered on the oxidizer rich staged combustion (ORSC) cycle. Despite a history of use in Russia that extends back to the 1960's, a proven design methodology for ORSC cycle engines does not exist in the West. This lack of design expertise extends to the main chamber injector, a critical subcomponent that largely determines the engine performance and main chamber life. The goals of the effort described here are to establish an empirical knowledge base to provide a fundamental understanding of main chamber injectors and for verification of an injector design methodology for the ORSC cycle. The design of a baseline injector element, derived from information on Russian engines in the open literature, is presented. The baseline injector comprises a gaseous oxidizer core flow and an annular swirling fuel flow. Sets of equations describing the steady-state and the dynamic characteristics of the injector are presented; these equations, which form the basis of the design analysis methodology, will be verified in tests later this year. On-going cold flow studies, using nitrogen and water as simulants, are described which indicate highly atomized and symmetric sprays.
NASA Technical Reports Server (NTRS)
Redemann, J.; Livingston, J.; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; LeBlanc, S.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.;
2014-01-01
We have developed a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. We compare the spatio-temporal distribution of our multi-sensor aerosol retrievals and calculations of seasonal clear-sky aerosol radiative forcing based on the aerosol retrievals to values derived from four models that participated in the latest AeroCom model intercomparison initiative. We find significant inter-model differences, in particular for the aerosol single scattering albedo, which can be evaluated using the multi-sensor A-Train retrievals. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.
NASA Astrophysics Data System (ADS)
Huzak, M.; Deleuze, M. S.; Hajgató, B.
2011-09-01
An analysis using the formalism of crystalline orbitals for extended systems with periodicity in one dimension demonstrates that any antiferromagnetic and half-metallic spin-polarization of the edge states in n-acenes, and more generally in zigzag graphene nanoislands and nanoribbons of finite width, would imply a spin contamination ⟨S2⟩ that increases proportionally to system size, in sharp and clear contradiction with the implications of Lieb's theorem for compensated bipartite lattices and the expected value for a singlet (S = 0) electronic ground state. Verifications on naphthalene, larger n-acenes (n = 3-10) and rectangular nanographene islands of increasing size, as well as a comparison using unrestricted Hartree-Fock theory along with basis sets of improving quality against various many-body treatments demonstrate altogether that antiferromagnetism and half-metallicity in extended graphene nanoribbons will be quenched by an exact treatment of electron correlation, at the confines of non-relativistic many-body quantum mechanics. Indeed, for singlet states, symmetry-breakings in spin-densities are necessarily the outcome of a too approximate treatment of static and dynamic electron correlation in single-determinantal approaches, such as unrestricted Hartree-Fock or Density Functional Theory. In this context, such as the size-extensive spin-contamination to which it relates, half-metallicity is thus nothing else than a methodological artefact.
Huzak, M; Deleuze, M S; Hajgató, B
2011-09-14
An analysis using the formalism of crystalline orbitals for extended systems with periodicity in one dimension demonstrates that any antiferromagnetic and half-metallic spin-polarization of the edge states in n-acenes, and more generally in zigzag graphene nanoislands and nanoribbons of finite width, would imply a spin contamination
Satellite Power System (SPS) magnetron tube assessment study
NASA Technical Reports Server (NTRS)
Brown, W. C.
1981-01-01
The data base was extended with respect to the magnetron directional amplifier and its operating parameters that are pertinent to its application in the solar power satellite. On the basis of the resulting extended data base the design of a magnetron was outlined that would meet the requirements of the SPS application and a technology program was designed that would result in its development. The proposed magnetron design for the SPS is a close scale of the microwave oven magnetron, and resembles it closely physically and electrically.
Dimensional analysis using toric ideals: primitive invariants.
Atherton, Mark A; Bates, Ronald A; Wynn, Henry P
2014-01-01
Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units [Formula: see text] etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer [Formula: see text] matrix from the initial integer [Formula: see text] matrix holding the exponents for the derived quantities. The [Formula: see text] matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by [Formula: see text]. One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of [Formula: see text], is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found.
ERIC Educational Resources Information Center
Coyne, Michael D.; McCoach, D. Betsy; Kapp, Sharon
2007-01-01
The purpose of the two studies reported in this article was to evaluate the effectiveness of extended vocabulary instruction during storybook reading with kindergarten students within a small-group intervention setting. Extended vocabulary instruction is characterized by explicit teaching that includes both contextual and definitional information,…
42 CFR 457.700 - Basis, scope, and applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Strategic Planning, Reporting, and Evaluation § 457.700 Basis, scope, and applicability. (a) Statutory basis... strategic planning, reports, and program budgets; and (2) Section 2108 of the Act, which sets forth... strategic planning, monitoring, reporting and evaluation under title XXI. (c) Applicability. The...
42 CFR 457.700 - Basis, scope, and applicability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Strategic Planning, Reporting, and Evaluation § 457.700 Basis, scope, and applicability. (a) Statutory basis... strategic planning, reports, and program budgets; and (2) Section 2108 of the Act, which sets forth... strategic planning, monitoring, reporting and evaluation under title XXI. (c) Applicability. The...
Zheng, Wenjun
2017-01-10
Dynactin, a large multiprotein complex, binds with the cytoplasmic dynein-1 motor and various adaptor proteins to allow recruitment and transportation of cellular cargoes toward the minus end of microtubules. The structure of the dynactin complex is built around an actin-like minifilament with a defined length, which has been visualized in a high-resolution structure of the dynactin filament determined by cryo-electron microscopy (cryo-EM). To understand the energetic basis of dynactin filament assembly, we used molecular dynamics simulation to probe the intersubunit interactions among the actin-like proteins, various capping proteins, and four extended regions of the dynactin shoulder. Our simulations revealed stronger intersubunit interactions at the barbed and pointed ends of the filament and involving the extended regions (compared with the interactions within the filament), which may energetically drive filament termination by the capping proteins and recruitment of the actin-like proteins by the extended regions, two key features of the dynactin filament assembly process. Next, we modeled the unknown binding configuration among dynactin, dynein tails, and a number of coiled-coil adaptor proteins (including several Bicaudal-D and related proteins and three HOOK proteins), and predicted a key set of charged residues involved in their electrostatic interactions. Our modeling is consistent with previous findings of conserved regions, functional sites, and disease mutations in the adaptor proteins and will provide a structural framework for future functional and mutational studies of these adaptor proteins. In sum, this study yielded rich structural and energetic information about dynactin and associated adaptor proteins that cannot be directly obtained from the cryo-EM structures with limited resolutions.
50 CFR 403.04 - Determinations and hearings under section 109(c) of the MMPA.
Code of Federal Regulations, 2010 CFR
2010-10-01
... management program the state must provide for a process, consistent with section 109(c) of the Act, to... must include the elements set forth below. (b) Basis, purpose, and scope. The process set forth in this... made solely on the basis of the record developed at the hearing. The state agency in making its final...
Time Domain Propagation of Quantum and Classical Systems using a Wavelet Basis Set Method
NASA Astrophysics Data System (ADS)
Lombardini, Richard; Nowara, Ewa; Johnson, Bruce
2015-03-01
The use of an orthogonal wavelet basis set (Optimized Maximum-N Generalized Coiflets) to effectively model physical systems in the time domain, in particular the electromagnetic (EM) pulse and quantum mechanical (QM) wavefunction, is examined in this work. Although past research has demonstrated the benefits of wavelet basis sets to handle computationally expensive problems due to their multiresolution properties, the overlapping supports of neighboring wavelet basis functions poses problems when dealing with boundary conditions, especially with material interfaces in the EM case. Specifically, this talk addresses this issue using the idea of derivative matching creating fictitious grid points (T.A. Driscoll and B. Fornberg), but replaces the latter element with fictitious wavelet projections in conjunction with wavelet reconstruction filters. Two-dimensional (2D) systems are analyzed, EM pulse incident on silver cylinders and the QM electron wave packet circling the proton in a hydrogen atom system (reduced to 2D), and the new wavelet method is compared to the popular finite-difference time-domain technique.
Burbey, T.J.
1997-01-01
Seventeen hydrographic areas in southern Nevada were assessed for the ground-water development potential of the underlying carbonate-rock aquifers on the basis of geologic and hydrologic information developed as part of the Nevada Carbonate Aquifers Study and information compiled from previous investigations. All selected areas lie within a miogeoclinal belt where thick accumulations of carbonate rock followed by major episodes of compression and extension have greatly modified the region. Most of the selected hydrographic areas lie within the less extended terranes; however, several areas, or parts of areas, lie within severely extended terranes where carbonate rocks have been greatly thinned, or where deformed blocks of carbonate rock are discontinuous and isolated from surrounding carbonate rock aquifers. Three principal criteria were used to assess the development potential of each selected hydrographic area. These quantitative criteria are: (1) depth to water, (2) depth to and thickness of carbonate rocks, and (3) water quality. Other site-specific factors, such as accessibility and potential effects of ground-water development, are also discussed. Results suggest that sites with high potential for development may be scarce in southern Nevada. Many areas described as favorable on the basis of the three quantitative criteria were deemed unfavorable on the basis of possible short- and long-term effects associated with development and on the amount of available data used to make the assessment. The most favorable sites may be in more severely extended terranes, where development of isolated blocks (of carbonate-rock aquifer material) would be less likely to affect neighboring areas.
Fuzzy Logic for Incidence Geometry
2016-01-01
The paper presents a mathematical framework for approximate geometric reasoning with extended objects in the context of Geography, in which all entities and their relationships are described by human language. These entities could be labelled by commonly used names of landmarks, water areas, and so forth. Unlike single points that are given in Cartesian coordinates, these geographic entities are extended in space and often loosely defined, but people easily perform spatial reasoning with extended geographic objects “as if they were points.” Unfortunately, up to date, geographic information systems (GIS) miss the capability of geometric reasoning with extended objects. The aim of the paper is to present a mathematical apparatus for approximate geometric reasoning with extended objects that is usable in GIS. In the paper we discuss the fuzzy logic (Aliev and Tserkovny, 2011) as a reasoning system for geometry of extended objects, as well as a basis for fuzzification of the axioms of incidence geometry. The same fuzzy logic was used for fuzzification of Euclid's first postulate. Fuzzy equivalence relation “extended lines sameness” is introduced. For its approximation we also utilize a fuzzy conditional inference, which is based on proposed fuzzy “degree of indiscernibility” and “discernibility measure” of extended points. PMID:27689133
NASA Astrophysics Data System (ADS)
Zhang, Xing; Carter, Emily A.
2018-01-01
We revisit the static response function-based Kohn-Sham (KS) inversion procedure for determining the KS effective potential that corresponds to a given target electron density within finite atomic orbital basis sets. Instead of expanding the potential in an auxiliary basis set, we directly update the potential in its matrix representation. Through numerical examples, we show that the reconstructed density rapidly converges to the target density. Preliminary results are presented to illustrate the possibility of obtaining a local potential in real space from the optimized potential in its matrix representation. We have further applied this matrix-based KS inversion approach to density functional embedding theory. A proof-of-concept study of a solvated proton transfer reaction demonstrates the method's promise.
Further Development of Rotating Rake Mode Measurement Data Analysis
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Hixon, Ray; Sutliff, Daniel L.
2013-01-01
The Rotating Rake mode measurement system was designed to measure acoustic duct modes generated by a fan stage. After analysis of the measured data, the mode amplitudes and phases were quantified. For low-speed fans within axisymmetric ducts, mode power levels computed from rotating rake measured data would agree with the far-field power levels on a tone by tone basis. However, this agreement required that the sound from the noise sources within the duct propagated outward from the duct exit without reflection at the exit and previous studies suggested conditions could exist where significant reflections could occur. To directly measure the modes propagating in both directions within a duct, a second rake was mounted to the rotating system with an offset in both the axial and the azimuthal directions. The rotating rake data analysis technique was extended to include the data measured by the second rake. The analysis resulted in a set of circumferential mode levels at each of the two rake microphone locations. Radial basis functions were then least-squares fit to this data to obtain the radial mode amplitudes for the modes propagating in both directions within the duct. The fit equations were also modified to allow evanescent mode amplitudes to be computed. This extension of the rotating rake data analysis technique was tested using simulated data, numerical code produced data, and preliminary in-duct measured data.
Automated reference-free detection of motion artifacts in magnetic resonance images.
Küstner, Thomas; Liebgott, Annika; Mauch, Lukas; Martirosian, Petros; Bamberg, Fabian; Nikolaou, Konstantin; Yang, Bin; Schick, Fritz; Gatidis, Sergios
2018-04-01
Our objectives were to provide an automated method for spatially resolved detection and quantification of motion artifacts in MR images of the head and abdomen as well as a quality control of the trained architecture. T1-weighted MR images of the head and the upper abdomen were acquired in 16 healthy volunteers under rest and under motion. Images were divided into overlapping patches of different sizes achieving spatial separation. Using these patches as input data, a convolutional neural network (CNN) was trained to derive probability maps for the presence of motion artifacts. A deep visualization offers a human-interpretable quality control of the trained CNN. Results were visually assessed on probability maps and as classification accuracy on a per-patch, per-slice and per-volunteer basis. On visual assessment, a clear difference of probability maps was observed between data sets with and without motion. The overall accuracy of motion detection on a per-patch/per-volunteer basis reached 97%/100% in the head and 75%/100% in the abdomen, respectively. Automated detection of motion artifacts in MRI is feasible with good accuracy in the head and abdomen. The proposed method provides quantification and localization of artifacts as well as a visualization of the learned content. It may be extended to other anatomic areas and used for quality assurance of MR images.
Herrnstadt, Corinna; Elson, Joanna L; Fahy, Eoin; Preston, Gwen; Turnbull, Douglass M; Anderson, Christen; Ghosh, Soumitra S; Olefsky, Jerrold M; Beal, M Flint; Davis, Robert E; Howell, Neil
2002-05-01
The evolution of the human mitochondrial genome is characterized by the emergence of ethnically distinct lineages or haplogroups. Nine European, seven Asian (including Native American), and three African mitochondrial DNA (mtDNA) haplogroups have been identified previously on the basis of the presence or absence of a relatively small number of restriction-enzyme recognition sites or on the basis of nucleotide sequences of the D-loop region. We have used reduced-median-network approaches to analyze 560 complete European, Asian, and African mtDNA coding-region sequences from unrelated individuals to develop a more complete understanding of sequence diversity both within and between haplogroups. A total of 497 haplogroup-associated polymorphisms were identified, 323 (65%) of which were associated with one haplogroup and 174 (35%) of which were associated with two or more haplogroups. Approximately one-half of these polymorphisms are reported for the first time here. Our results confirm and substantially extend the phylogenetic relationships among mitochondrial genomes described elsewhere from the major human ethnic groups. Another important result is that there were numerous instances both of parallel mutations at the same site and of reversion (i.e., homoplasy). It is likely that homoplasy in the coding region will confound evolutionary analysis of small sequence sets. By a linkage-disequilibrium approach, additional evidence for the absence of human mtDNA recombination is presented here.
Budde, Katharina B; Heuertz, Myriam; Hernández-Serrano, Ana; Pausas, Juli G; Vendramin, Giovanni G; Verdú, Miguel; González-Martínez, Santiago C
2014-01-01
Wildfire is a major ecological driver of plant evolution. Understanding the genetic basis of plant adaptation to wildfire is crucial, because impending climate change will involve fire regime changes worldwide. We studied the molecular genetic basis of serotiny, a fire-related trait, in Mediterranean maritime pine using association genetics. A single nucleotide polymorphism (SNP) set was used to identify genotype : phenotype associations in situ in an unstructured natural population of maritime pine (eastern Iberian Peninsula) under a mixed-effects model framework. RR-BLUP was used to build predictive models for serotiny in this region. Model prediction power outside the focal region was tested using independent range-wide serotiny data. Seventeen SNPs were potentially associated with serotiny, explaining approximately 29% of the trait phenotypic variation in the eastern Iberian Peninsula. Similar prediction power was found for nearby geographical regions from the same maternal lineage, but not for other genetic lineages. Association genetics for ecologically relevant traits evaluated in situ is an attractive approach for forest trees provided that traits are under strong genetic control and populations are unstructured, with large phenotypic variability. This will help to extend the research focus to ecological keystone non-model species in their natural environments, where polymorphisms acquired their adaptive value. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Small, Ward; Pearson, Mark A.; Jensen, Wayne A.
2015-09-13
Compression set of solid (non-porous) Dow Corning SE 1700, Sylgard 184, and “new” M9787 siloxane elastomers was measured according to ASTM D395 Method B. Specimens of SE 1700 were made using (1) the manufacturer’s suggested cure of 150°C for 30 min and (2) an extended cure of 60°C for 6 h and 150°C for 1 h followed by a post-cure under nitrogen purge at 125°C for 12 h. Four specimens of each material were aged at 25-27% compressive strain at 70°C under nitrogen purge for 70 h. Final thickness of each specimen was measured after a 30-min cooling/relaxation period, andmore » compression set relative to deflection was calculated. The average compression set relative to deflection was 6.0% for SE 1700 made using the extended cure and post-cure, 11.3% for SE 1700 made using the manufacturer’s suggested cure, 12.1% for Sylgard 184, and 1.9% for M9787. The extended cure and post-cure reduced the amount of compression set in SE 1700.« less
The effect of sampling techniques used in the multiconfigurational Ehrenfest method
NASA Astrophysics Data System (ADS)
Symonds, C.; Kattirtzi, J. A.; Shalashilin, D. V.
2018-05-01
In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.
The effect of sampling techniques used in the multiconfigurational Ehrenfest method.
Symonds, C; Kattirtzi, J A; Shalashilin, D V
2018-05-14
In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.
NASA Astrophysics Data System (ADS)
Lazariev, A.; Allouche, A.-R.; Aubert-Frécon, M.; Fauvelle, F.; Piotto, M.; Elbayed, K.; Namer, I.-J.; van Ormondt, D.; Graveron-Demilly, D.
2011-11-01
High-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) is playing an increasingly important role for diagnosis. This technique enables setting up metabolite profiles of ex vivo pathological and healthy tissue. The need to monitor diseases and pharmaceutical follow-up requires an automatic quantitation of HRMAS 1H signals. However, for several metabolites, the values of chemical shifts of proton groups may slightly differ according to the micro-environment in the tissue or cells, in particular to its pH. This hampers the accurate estimation of the metabolite concentrations mainly when using quantitation algorithms based on a metabolite basis set: the metabolite fingerprints are not correct anymore. In this work, we propose an accurate method coupling quantum mechanical simulations and quantitation algorithms to handle basis-set changes. The proposed algorithm automatically corrects mismatches between the signals of the simulated basis set and the signal under analysis by maximizing the normalized cross-correlation between the mentioned signals. Optimized chemical shift values of the metabolites are obtained. This method, QM-QUEST, provides more robust fitting while limiting user involvement and respects the correct fingerprints of metabolites. Its efficiency is demonstrated by accurately quantitating 33 signals from tissue samples of human brains with oligodendroglioma, obtained at 11.7 tesla. The corresponding chemical shift changes of several metabolites within the series are also analyzed.
Mackey, Aaron J; Pearson, William R
2004-10-01
Relational databases are designed to integrate diverse types of information and manage large sets of search results, greatly simplifying genome-scale analyses. Relational databases are essential for management and analysis of large-scale sequence analyses, and can also be used to improve the statistical significance of similarity searches by focusing on subsets of sequence libraries most likely to contain homologs. This unit describes using relational databases to improve the efficiency of sequence similarity searching and to demonstrate various large-scale genomic analyses of homology-related data. This unit describes the installation and use of a simple protein sequence database, seqdb_demo, which is used as a basis for the other protocols. These include basic use of the database to generate a novel sequence library subset, how to extend and use seqdb_demo for the storage of sequence similarity search results and making use of various kinds of stored search results to address aspects of comparative genomic analysis.
Building China's municipal healthcare performance evaluation system: a Tuscan perspective.
Li, Hao; Barsanti, Sara; Bonini, Anna
2012-08-01
Regional healthcare performance evaluation systems can help optimize healthcare resources on regional basis and improve the performance of healthcare services provided. The Tuscany region in Italy is a good example of an institution which meets these requirements. China has yet to build such a system based on international experience. In this paper, based on comparative studies between Tuscany and China, we propose that the managing institutions in China's experimental cities can select and commission a third-party agency to, respectively, evaluate the performance of their affiliated hospitals and community health service centers. Following some features of the Tuscan experience, the Chinese municipal healthcare performance evaluation system can be built by focusing on the selection of an appropriate performance evaluation agency, the design of an adequate performance evaluation mechanism and the formulation of a complete set of laws, rules and regulations. When a performance evaluation system at city level is formed, the provincial government can extend the successful experience to other cities.
Comprehensive sequence-flux mapping of a levoglucosan utilization pathway in E. coli
Klesmith, Justin R.; Bacik, John -Paul; Michalczyk, Ryszard; ...
2015-09-14
Synthetic metabolic pathways often suffer from low specific productivity, and new methods that quickly assess pathway functionality for many thousands of variants are urgently needed. Here we present an approach that enables the rapid and parallel determination of sequence effects on flux for complete gene-encoding sequences. We show that this method can be used to determine the effects of over 8000 single point mutants of a pyrolysis oil catabolic pathway implanted in Escherichia coli. Experimental sequence-function data sets predicted whether fitness-enhancing mutations to the enzyme levoglucosan kinase resulted from enhanced catalytic efficiency or enzyme stability. A structure of one designmore » incorporating 38 mutations elucidated the structural basis of high fitness mutations. One design incorporating 15 beneficial mutations supported a 15-fold improvement in growth rate and greater than 24-fold improvement in enzyme activity relative to the starting pathway. Lastly, this technique can be extended to improve a wide variety of designed pathways.« less
a Theoretical Search for AN Electronic Spectrum of the He-BeO Complex
NASA Astrophysics Data System (ADS)
Gardner, Adrian; Heaven, Michael
2014-06-01
The surprisingly high dissociation energy of the He-Be bond in the He-BeO complex was first reported 25 years ago. Following which, a number of theoretical studies have investigated similar closed shell helium containing complexes. However, despite these investigations, a complex containing a strong He-X bond has thus far eluded experimental detection. In this work, potential energy surfaces of electronically excited states of the He-BeO complex have been calculated employing high level CASSCF+MRCI+Q methodologies and utilizing extended basis sets. Several excited states show strong interactions between helium and BeO lying in Franck-Condon accessible windows of electronic transitions arising from the vibrationless electronic ground state. It is hoped that the conclusions of this study will result in the observation an electronic spectrum of this long hypothesized strongly bound complex in the near future. W. Koch, J. R. Collins and G. Frenking, Chem. Phys. Lett. 1986, 132 330-333.
An approximate Riemann solver for thermal and chemical nonequilibrium flows
NASA Technical Reports Server (NTRS)
Prabhu, Ramadas K.
1994-01-01
Among the many methods available for the determination of inviscid fluxes across a surface of discontinuity, the flux-difference-splitting technique that employs Roe-averaged variables has been used extensively by the CFD community because of its simplicity and its ability to capture shocks exactly. This method, originally developed for perfect gas flows, has since been extended to equilibrium as well as nonequilibrium flows. Determination of the Roe-averaged variables for the case of a perfect gas flow is a simple task; however, for thermal and chemical nonequilibrium flows, some of the variables are not uniquely defined. Methods available in the literature to determine these variables seem to lack sound bases. The present paper describes a simple, yet accurate, method to determine all the variables for nonequilibrium flows in the Roe-average state. The basis for this method is the requirement that the Roe-averaged variables form a consistent set of thermodynamic variables. The present method satisfies the requirement that the square of the speed of sound be positive.
Patent Analysis for Supporting Merger and Acquisition (M&A) Prediction: A Data Mining Approach
NASA Astrophysics Data System (ADS)
Wei, Chih-Ping; Jiang, Yu-Syun; Yang, Chin-Sheng
M&A plays an increasingly important role in the contemporary business environment. Companies usually conduct M&A to pursue complementarity from other companies for preserving and/or extending their competitive advantages. For the given bidder company, a critical first step to the success of M&A activities is the appropriate selection of target companies. However, existing studies on M&A prediction incur several limitations, such as the exclusion of technological variables in M&A prediction models and the omission of the profile of the respective bidder company and its compatibility with candidate target companies. In response to these limitations, we propose an M&A prediction technique which not only encompasses technological variables derived from patent analysis as prediction indictors but also takes into account the profiles of both bidder and candidate target companies when building an M&A prediction model. We collect a set of real-world M&A cases to evaluate the proposed technique. The evaluation results are encouraging and will serve as a basis for future studies.
Bairden, K; Armour, J; Duncan, J L
1995-11-01
In many farming enterprises, animal management systems which could provide a practical and effective alternative to chemotherapy for the control of bovine helminthosis would be readily accepted. One system which has been proposed and shown to be effective in the short or medium term involves grazing different host species on a rotational basis. The study described here examined the effect of alternating cattle and sheep annually over an extended period of 4 years. Up to the second grazing season the system appeared to be successful, with a marked reduction in the cattle worm burdens. However, by the end of the study period the parasite burdens in calves grazed on the alternated pasture were equal to, or greater than, those of set-stocked control animals. It was thus clear that the alternate grazing strategy had failed. Data obtained from other parameters measured, i.e. faecal egg counts, pasture larval numbers and plasma pepsinogen levels, confirmed this observation.
Langenheim, V.E.; Graymer, R.W.; Jachens, R.C.
2006-01-01
The epicenter of the 2000 ML 5.2 Yountville earthquake was located 5 km west of the surface trace of the West Napa fault, as defined by Helley and Herd (1977). On the basis of the re-examination of geologic data and the analysis of potential field data, the earthquake occurred on a strand of the West Napa fault, the main basin-bounding fault along the west side of Napa Valley. Linear aeromagnetic anomalies and a prominent gravity gradient extend the length of the fault to the latitude of Calistoga, suggesting that this fault may be capable of larger-magnitude earthquakes. Gravity data indicate an ???2-km-deep basin centered on the town of Napa, where damage was concentrated during the Yountville earthquake. It most likely played a minor role in enhancing shaking during this event but may lead to enhanced shaking caused by wave trapping during a larger-magnitude earthquake.
Robust Joint Graph Sparse Coding for Unsupervised Spectral Feature Selection.
Zhu, Xiaofeng; Li, Xuelong; Zhang, Shichao; Ju, Chunhua; Wu, Xindong
2017-06-01
In this paper, we propose a new unsupervised spectral feature selection model by embedding a graph regularizer into the framework of joint sparse regression for preserving the local structures of data. To do this, we first extract the bases of training data by previous dictionary learning methods and, then, map original data into the basis space to generate their new representations, by proposing a novel joint graph sparse coding (JGSC) model. In JGSC, we first formulate its objective function by simultaneously taking subspace learning and joint sparse regression into account, then, design a new optimization solution to solve the resulting objective function, and further prove the convergence of the proposed solution. Furthermore, we extend JGSC to a robust JGSC (RJGSC) via replacing the least square loss function with a robust loss function, for achieving the same goals and also avoiding the impact of outliers. Finally, experimental results on real data sets showed that both JGSC and RJGSC outperformed the state-of-the-art algorithms in terms of k -nearest neighbor classification performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinlein, O.; Weiland, S.; Stoodt, J.
1996-03-01
The human neuronal nicotinic acetylcholine receptor {alpha}4 subunit gene (CHRNA4) is located in the candidate region for three different phenotypes: benign familial neonatal convulsions, autosomal dominant nocturnal frontal lobe epilepsy, and low-voltage EEG. Recently, a missense mutation in transmembrane domain 2 of CHRNA4 was found to be associated with autosomal dominant nocturnal frontal lobe epilepsy in one extended pedigree. We have determined the genomic organization of CHRNA4, which consists of six exons distributed over approximately 17 kb of genomic DNA. The nucleotide sequence obtained from the genomic regions adjacent to the exon boundaries enabled us to develop a set ofmore » primer pairs for PCR amplification of the complete coding region. The sequence analysis provides the basis for a comprehensive mutation screening of CHRNA4 in the above-mentioned phenotypes and possibly in other types of idopathic epilepsies. 29 refs., 3 figs., 1 tab.« less
NASA Technical Reports Server (NTRS)
1992-01-01
During the next several decades, our nation will embark on human exploration in space. In the microgravity environment we will learn how human physiology responds to the absence of gravity and what procedures and systems are required to maintain health and performance. As the human experience is extended for longer periods in low Earth orbit, we will also be exploring space robotically. Robotic precursor missions, to learn more about the lunar and Martian environments will be conducted so that we can send crews to these planetary surfaces to further explore and conduct scientific investigations that include examining the very processes of life itself. Human exploration in space requires the ability to maintain crew health and performance in spacecraft, during extravehicular activities, on planetary surfaces, and upon return to Earth. This goal can only be achieved through focused research and technological developments. This report provides the basis for setting research priorities and making decisions to enable human exploration missions.
Subtyping depression by clinical features: the Australasian database.
Parker, G; Roy, K; Hadzi-Pavlovic, D; Mitchell, P; Wilhelm, K; Menkes, D B; Snowdon, J; Loo, C; Schweitzer, I
2000-01-01
To distinguish psychotic, melancholic and a residual non-melancholic class on the basis of clinical features alone. Previous studies at our Mood Disorders Unit (MDU) favour a hierarchical model, with the classes able to be distinguished by two specific clinical features, but any such intramural study risks rater bias and requires external replication. This replication study involved 27 Australasian psychiatrist raters, thus extending the sample and raters beyond the MDU facility. They collected clinical feature data using a standardized assessment with precoded rating options. A psychotic depression (PD) class was derived by respecting DSM-IV decision rules while a cluster analysis distinguished melancholic (MEL) and non-melancholic classes. The MELs were distinguished virtually entirely by the presence of significant psychomotor disturbance (PMD), as rated by the observationally based CORE measure, with over-representation on only three of an extensive set of 'endogeneity symptoms'. In comparison to PMD, endogeneity symptoms appear to be poor indicators of 'melancholic' type, confounding typology with severity. Results again support the hierarchical model.
NASA Astrophysics Data System (ADS)
Chiotha, Sosten S.
2010-06-01
In 2004, Mainstreaming Environment and Sustainability in African Universities (MESA) was formally launched by UNEP, UNESCO and the Association of African Universities. This paper sets the stage for a critical analysis of ESD by reviewing historical perspectives of conservation in Africa as a means of appreciating the need for African universities to mainstream both environmental concerns and those relating to sustainability. Two case studies from Chancellor College, University of Malawi are discussed to illustrate that good practice in mainstreaming environment and sustainability requires challenges to be refined and knowledge to be extended on an ongoing basis. To analyse the reorientation of the curriculum for Education for Sustainable Development (ESD), the paper examines the introduction of an Environmental Science Master's programme at the college and notes how environmental issues are covered. The article also looks at the college's tree-planting programme in terms of the training, research and outreach involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, D.; Fertitta, E.; Paulus, B.
Due to the importance of both static and dynamical correlation in the bond formation, low-dimensional beryllium systems constitute interesting case studies to test correlation methods. Aiming to describe the whole dissociation curve of extended Be systems we chose to apply the method of increments (MoI) in its multireference (MR) formalism. To gain insight into the main characteristics of the wave function, we started by focusing on the description of small Be chains using standard quantum chemical methods. In a next step we applied the MoI to larger beryllium systems, starting from the Be{sub 6} ring. The complete active space formalismmore » was employed and the results were used as reference for local MR calculations of the whole dissociation curve. Although this is a well-established approach for systems with limited multireference character, its application regarding the description of whole dissociation curves requires further testing. Subsequent to the discussion of the role of the basis set, the method was finally applied to larger rings and extrapolated to an infinite chain.« less
Resilience Metrics for the Electric Power System: A Performance-Based Approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vugrin, Eric D.; Castillo, Andrea R; Silva-Monroy, Cesar Augusto
Grid resilience is a concept related to a power system's ability to continue operating and delivering power even in the event that low probability, high-consequence disruptions such as hurricanes, earthquakes, and cyber-attacks occur. Grid resilience objectives focus on managing and, ideally, minimizing potential consequences that occur as a result of these disruptions. Currently, no formal grid resilience definitions, metrics, or analysis methods have been universally accepted. This document describes an effort to develop and describe grid resilience metrics and analysis methods. The metrics and methods described herein extend upon the Resilience Analysis Process (RAP) developed by Watson et al. formore » the 2015 Quadrennial Energy Review. The extension allows for both outputs from system models and for historical data to serve as the basis for creating grid resilience metrics and informing grid resilience planning and response decision-making. This document describes the grid resilience metrics and analysis methods. Demonstration of the metrics and methods is shown through a set of illustrative use cases.« less
The impact of extended longitudinal observation on the assessment of personality disorders.
Pedersen, G; Karterud, S; Hummelen, B; Wilberg, T
2013-11-01
Multiple sources of information are necessary for a valid assessment of personality disorders (PDs). This study investigates the impact of longitudinal observation. The sample comprised 1217 patients from 15 different treatment units. PDs were assessed at admission to treatment using the Structured Clinical Interview for DSM-IV Axis II Personality Disorders (SCID-II) and additional clinical information (best estimate diagnosis). After approximately 18 weeks of treatment, the SCID-II protocols were re-examined at clinical conferences and the diagnostic status reassessed on the basis of longitudinal observations in multiple group situations (longitudinal, expert, all data principle). Using this procedure, 78% of the patients' diagnostic criteria sets were changed, and 32% of patients' diagnostic statuses were changed. Many (32%) patients who were evaluated initially as not having a PD received a PD diagnosis after re-examination. The information provided by customary clinical assessment has important limitations, and longitudinal observation provides additional information that may change the diagnostic status in approximately one-third of PD cases. Copyright © 2013 John Wiley & Sons, Ltd.
Variable Scheduling to Mitigate Channel Losses in Energy-Efficient Body Area Networks
Tselishchev, Yuriy; Boulis, Athanassios; Libman, Lavy
2012-01-01
We consider a typical body area network (BAN) setting in which sensor nodes send data to a common hub regularly on a TDMA basis, as defined by the emerging IEEE 802.15.6 BAN standard. To reduce transmission losses caused by the highly dynamic nature of the wireless channel around the human body, we explore variable TDMA scheduling techniques that allow the order of transmissions within each TDMA round to be decided on the fly, rather than being fixed in advance. Using a simple Markov model of the wireless links, we devise a number of scheduling algorithms that can be performed by the hub, which aim to maximize the expected number of successful transmissions in a TDMA round, and thereby significantly reduce transmission losses as compared with a static TDMA schedule. Importantly, these algorithms do not require a priori knowledge of the statistical properties of the wireless channels, and the reliability improvement is achieved entirely via shuffling the order of transmissions among devices, and does not involve any additional energy consumption (e.g., retransmissions). We evaluate these algorithms directly on an experimental set of traces obtained from devices strapped to human subjects performing regular daily activities, and confirm that the benefits of the proposed variable scheduling algorithms extend to this practical setup as well. PMID:23202183
Harrison, C H; Laussen, P C
2008-05-01
Donation after cardiac death (DCD) remains controversial in some pediatric institutions. An evidence-based, consensus-building approach to setting institutional policy about DCD can address the controversy openly and identify common ground. To resolve an extended internal debate regarding DCD policy at Children's Hospital Boston, a multidisciplinary task force was commissioned to engage in fact finding and deliberations about clinical and ethical issues in pediatric DCD, and attempt to reach consensus regarding the development of a protocol for pediatric DCD. Issues examined included values and attitudes of staff, families, and the public; number of possible candidates for DCD at the hospital; risks and benefits for child donors and their families; and research needs. Consensus was reached on a set of foundational ethical principles for pediatric DCD. With assistance from the local organ procurement organization (OPO), the task force developed a protocol for pediatric kidney DCD which most members believed could meet all the requirements of the foundational ethical principles. Complete consensus on the use of the protocol was not reached; however, almost all members supported initiation of kidney DCD for older pediatric patients who had wished to be organ donors. The hospital has implemented the protocol on this limited basis and established a process for considering proposals to expand the eligible donor population and include other organs.
Analysis of user cost and service trade-offs in transit and paratransit services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louviere, J.; Kocur, G.
1979-08-01
The Xenia Model Transit Service served as a test of several alternative transit services operated in a small city setting. Research was designed to test a new method for assessing user tradeoffs in costs and service based on attitudinal methods. Termed direct response assessment, the methods were developed in psychology and have been extended to application in utility assessment. A tradeoff survey was administered as part of a home interview survey. Data from the tradeoff survey were used to develop separate equations for each sample respondent to explain and describe their tradeoffs over transit fare, travel time, walk distance, typemore » of service, and headway. An aggregate equation was also developed, assuming that all respondents shared common tradeoffs. These equations were employed to retrospectively predict changes in transit system patronage since system inception in 1974. Both sets of models performed well, producing forecasts that were in the same direction and range of experience, although magnitudes were somewhat different. Coefficients of the individual tradeoff equations were then analyzed to see if they could be predicted on the basis of interpersonal characteristics of the respondents. Results indicated that differences in coefficients could be attributed to some differences in individuals such as income and auto ownership. Overall results were promising for policy evaluation and forecasting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lienert, Matthias, E-mail: lienert@math.lmu.de
2015-04-15
The question how to Lorentz transform an N-particle wave function naturally leads to the concept of a so-called multi-time wave function, i.e., a map from (space-time){sup N} to a spin space. This concept was originally proposed by Dirac as the basis of relativistic quantum mechanics. In such a view, interaction potentials are mathematically inconsistent. This fact motivates the search for new mechanisms for relativistic interactions. In this paper, we explore the idea that relativistic interaction can be described by boundary conditions on the set of coincidence points of two particles in space-time. This extends ideas from zero-range physics to amore » relativistic setting. We illustrate the idea at the simplest model which still possesses essential physical properties like Lorentz invariance and a positive definite density: two-time equations for massless Dirac particles in 1 + 1 dimensions. In order to deal with a spatio-temporally non-trivial domain, a necessity in the multi-time picture, we develop a new method to prove existence and uniqueness of classical solutions: a generalized version of the method of characteristics. Both mathematical and physical considerations are combined to precisely formulate and answer the questions of probability conservation, Lorentz invariance, interaction, and antisymmetry.« less
eFAST for the diagnosis of a perioperative complication during percutaneous nephrolithotomy.
Sharma, Achyut; Bhattarai, Prajjwal; Sharma, Apurb
2018-04-03
A 29-year-old patient with normal preanesthetic evaluation was planned for percutaneous nephrolithotomy (PCNL) for right nephrolithiasis with right pyelolithiasis. Surgery was performed under general anesthesia with endotracheal intubation with muscle relaxation. At the conclusion of surgery, when the patient was turned over to supine position, tense abdomen was noted. Immediately extended focused assessment with sonography in trauma (eFAST) was done in which both right and left quadrants of abdomen including pericardial and suprapubic region, right and left thoracic, and both lung basis were examined. Fluid collection was seen in Morison's pouch which was drained by the urologist under real-time ultrasonography guidance by anesthesiologist. Distension of abdomen subsequently subsided and patient had normal vitals. Trachea was extubated and patient shifted to post-operative ward. eFAST and FAST scans are routine procedures in the rapid assessment of trauma victims in emergency settings. The fluid extravasation during a routine PCNL procedure may lead to abdominal compartment syndrome. This case demonstrated that use of eFAST rapidly detected abdominal collection and ruled out life-threatening conditions such as hemothorax and pneumothorax and prevented abdominal compartment syndrome. Our case is only an example that potentially lethal conditions like these may be encountered in the perioperative setting and the knowledge of eFAST scan may be of great help.
A theory for protein dynamics: Global anisotropy and a normal mode approach to local complexity
NASA Astrophysics Data System (ADS)
Copperman, Jeremy; Romano, Pablo; Guenza, Marina
2014-03-01
We propose a novel Langevin equation description for the dynamics of biological macromolecules by projecting the solvent and all atomic degrees of freedom onto a set of coarse-grained sites at the single residue level. We utilize a multi-scale approach where molecular dynamic simulations are performed to obtain equilibrium structural correlations input to a modified Rouse-Zimm description which can be solved analytically. The normal mode solution provides a minimal basis set to account for important properties of biological polymers such as the anisotropic global structure, and internal motion on a complex free-energy surface. This multi-scale modeling method predicts the dynamics of both global rotational diffusion and constrained internal motion from the picosecond to the nanosecond regime, and is quantitative when compared to both simulation trajectory and NMR relaxation times. Utilizing non-equilibrium sampling techniques and an explicit treatment of the free-energy barriers in the mode coordinates, the model is extended to include biologically important fluctuations in the microsecond regime, such as bubble and fork formation in nucleic acids, and protein domain motion. This work supported by the NSF under the Graduate STEM Fellows in K-12 Education (GK-12) program, grant DGE-0742540 and NSF grant DMR-0804145, computational support from XSEDE and ACISS.
A new parallel algorithm of MP2 energy calculations.
Ishimura, Kazuya; Pulay, Peter; Nagase, Shigeru
2006-03-01
A new parallel algorithm has been developed for second-order Møller-Plesset perturbation theory (MP2) energy calculations. Its main projected applications are for large molecules, for instance, for the calculation of dispersion interaction. Tests on a moderate number of processors (2-16) show that the program has high CPU and parallel efficiency. Timings are presented for two relatively large molecules, taxol (C(47)H(51)NO(14)) and luciferin (C(11)H(8)N(2)O(3)S(2)), the former with the 6-31G* and 6-311G** basis sets (1,032 and 1,484 basis functions, 164 correlated orbitals), and the latter with the aug-cc-pVDZ and aug-cc-pVTZ basis sets (530 and 1,198 basis functions, 46 correlated orbitals). An MP2 energy calculation on C(130)H(10) (1,970 basis functions, 265 correlated orbitals) completed in less than 2 h on 128 processors.
Smolin, John A; Gambetta, Jay M; Smith, Graeme
2012-02-17
We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a complete orthonormal operator basis subject to Gaussian noise. Our method works by first changing basis yielding a candidate density matrix μ which may have nonphysical (negative) eigenvalues, and then finding the nearest physical state under the 2-norm. Our algorithm takes at worst O(d(4)) for the basis change plus O(d(3)) for finding ρ where d is the dimension of the quantum state. In the special case where the measurement basis is strings of Pauli operators, the basis change takes only O(d(3)) as well. The workhorse of the algorithm is a new linear-time method for finding the closest probability distribution (in Euclidean distance) to a set of real numbers summing to one.
A machine learning approach for efficient uncertainty quantification using multiscale methods
NASA Astrophysics Data System (ADS)
Chan, Shing; Elsheikh, Ahmed H.
2018-02-01
Several multiscale methods account for sub-grid scale features using coarse scale basis functions. For example, in the Multiscale Finite Volume method the coarse scale basis functions are obtained by solving a set of local problems over dual-grid cells. We introduce a data-driven approach for the estimation of these coarse scale basis functions. Specifically, we employ a neural network predictor fitted using a set of solution samples from which it learns to generate subsequent basis functions at a lower computational cost than solving the local problems. The computational advantage of this approach is realized for uncertainty quantification tasks where a large number of realizations has to be evaluated. We attribute the ability to learn these basis functions to the modularity of the local problems and the redundancy of the permeability patches between samples. The proposed method is evaluated on elliptic problems yielding very promising results.
The Interpolation Theory of Radial Basis Functions
NASA Astrophysics Data System (ADS)
Baxter, Brad
2010-06-01
In this dissertation, it is first shown that, when the radial basis function is a p-norm and 1 < p < 2, interpolation is always possible when the points are all different and there are at least two of them. We then show that interpolation is not always possible when p > 2. Specifically, for every p > 2, we construct a set of different points in some Rd for which the interpolation matrix is singular. The greater part of this work investigates the sensitivity of radial basis function interpolants to changes in the function values at the interpolation points. Our early results show that it is possible to recast the work of Ball, Narcowich and Ward in the language of distributional Fourier transforms in an elegant way. We then use this language to study the interpolation matrices generated by subsets of regular grids. In particular, we are able to extend the classical theory of Toeplitz operators to calculate sharp bounds on the spectra of such matrices. Applying our understanding of these spectra, we construct preconditioners for the conjugate gradient solution of the interpolation equations. Our main result is that the number of steps required to achieve solution of the linear system to within a required tolerance can be independent of the number of interpolation points. The Toeplitz structure allows us to use fast Fourier transform techniques, which imp lies that the total number of operations is a multiple of n log n, where n is the number of interpolation points. Finally, we use some of our methods to study the behaviour of the multiquadric when its shape parameter increases to infinity. We find a surprising link with the sinus cardinalis or sinc function of Whittaker. Consequently, it can be highly useful to use a large shape parameter when approximating band-limited functions.
Reconstructing the magnetosphere from data using radial basis functions
NASA Astrophysics Data System (ADS)
Andreeva, Varvara A.; Tsyganenko, Nikolai A.
2016-03-01
A new method is proposed to derive from data magnetospheric magnetic field configurations without any a priori assumptions on the geometry of electric currents. The approach utilizes large sets of archived satellite data and uses an advanced technique to represent the field as a sum of toroidal and poloidal parts, whose generating potentials Ψ1 and Ψ2 are expanded into series of radial basis functions (RBFs) with their nodes regularly distributed over the 3-D modeling domain. The method was tested by reconstructing the inner and high-latitude field within geocentric distances up to 12RE on the basis of magnetometer data of Geotail, Polar, Cluster, Time History of Events and Macroscale Interactions during Substorms, and Van Allen space probes, taken during 1995-2015. Four characteristic states of the magnetosphere before and during a disturbance have been modeled: a quiet prestorm period, storm deepening phase with progressively decreasing SYM-H index, the storm maximum around the negative peak of SYM-H, and the recovery phase. Fitting the RBF model to data faithfully resolved contributions to the total magnetic field from all principal sources, including the westward and eastward ring current, the tail current, diamagnetic currents associated with the polar cusps, and the large-scale effect of the field-aligned currents. For two main phase conditions, the model field exhibited a strong dawn-dusk asymmetry of the low-latitude magnetic depression, extending to low altitudes and partly spreading sunward from the terminator plane in the dusk sector. The RBF model was found to resolve even finer details, such as the bifurcation of the innermost tail current. The method can be further developed into a powerful tool for data-based studies of the magnetospheric currents.
Giménez-Mascarell, Paula; Oyenarte, Iker; Hardy, Serge; Breiderhoff, Tilman; Stuiver, Marchel; Kostantin, Elie; Diercks, Tammo; Pey, Angel L.; Ereño-Orbea, June; Martínez-Chantar, María Luz; Khalaf-Nazzal, Reham; Claverie-Martin, Felix; Müller, Dominik; Tremblay, Michel L.
2017-01-01
Phosphatases of regenerating liver (PRLs), the most oncogenic of all protein-tyrosine phosphatases (PTPs), play a critical role in metastatic progression of cancers. Recent findings established a new paradigm by uncovering that their association with magnesium transporters of the cyclin M (CNNM) family causes a rise in intracellular magnesium levels that promote oncogenic transformation. Recently, however, essential roles for regulation of the circadian rhythm and reproduction of the CNNM family have been highlighted. Here, we describe the crystal structure of PRL-1 in complex with the Bateman module of CNNM2 (CNNM2BAT), which consists of two cystathionine β-synthase (CBS) domains (IPR000664) and represents an intracellular regulatory module of the transporter. The structure reveals a heterotetrameric association, consisting of a disc-like homodimer of CNNM2BAT bound to two independent PRL-1 molecules, each one located at opposite tips of the disc. The structure highlights the key role played by Asp-558 at the extended loop of the CBS2 motif of CNNM2 in maintaining the association between the two proteins and proves that the interaction between CNNM2 and PRL-1 occurs via the catalytic domain of the phosphatase. Our data shed new light on the structural basis underlying the interaction between PRL phosphatases and CNNM transporters and provides a hypothesis about the molecular mechanism by which PRL-1, upon binding to CNNM2, might increase the intracellular concentration of Mg2+ thereby contributing to tumor progression and metastasis. The availability of this structure sets the basis for the rational design of compounds modulating PRL-1 and CNNM2 activities. PMID:27899452
Sustained Attention in Real Classroom Settings: An EEG Study.
Ko, Li-Wei; Komarov, Oleksii; Hairston, W David; Jung, Tzyy-Ping; Lin, Chin-Teng
2017-01-01
Sustained attention is a process that enables the maintenance of response persistence and continuous effort over extended periods of time. Performing attention-related tasks in real life involves the need to ignore a variety of distractions and inhibit attention shifts to irrelevant activities. This study investigates electroencephalography (EEG) spectral changes during a sustained attention task within a real classroom environment. Eighteen healthy students were instructed to recognize as fast as possible special visual targets that were displayed during regular university lectures. Sorting their EEG spectra with respect to response times, which indicated the level of visual alertness to randomly introduced visual stimuli, revealed significant changes in the brain oscillation patterns. The results of power-frequency analysis demonstrated a relationship between variations in the EEG spectral dynamics and impaired performance in the sustained attention task. Across subjects and sessions, prolongation of the response time was preceded by an increase in the delta and theta EEG powers over the occipital region, and decrease in the beta power over the occipital and temporal regions. Meanwhile, implementation of the complex attention task paradigm into a real-world classroom setting makes it possible to investigate specific mutual links between brain activities and factors that cause impaired behavioral performance, such as development and manifestation of classroom mental fatigue. The findings of the study set a basis for developing a system capable of estimating the level of visual attention during real classroom activities by monitoring changes in the EEG spectra.
Sustained Attention in Real Classroom Settings: An EEG Study
Ko, Li-Wei; Komarov, Oleksii; Hairston, W. David; Jung, Tzyy-Ping; Lin, Chin-Teng
2017-01-01
Sustained attention is a process that enables the maintenance of response persistence and continuous effort over extended periods of time. Performing attention-related tasks in real life involves the need to ignore a variety of distractions and inhibit attention shifts to irrelevant activities. This study investigates electroencephalography (EEG) spectral changes during a sustained attention task within a real classroom environment. Eighteen healthy students were instructed to recognize as fast as possible special visual targets that were displayed during regular university lectures. Sorting their EEG spectra with respect to response times, which indicated the level of visual alertness to randomly introduced visual stimuli, revealed significant changes in the brain oscillation patterns. The results of power-frequency analysis demonstrated a relationship between variations in the EEG spectral dynamics and impaired performance in the sustained attention task. Across subjects and sessions, prolongation of the response time was preceded by an increase in the delta and theta EEG powers over the occipital region, and decrease in the beta power over the occipital and temporal regions. Meanwhile, implementation of the complex attention task paradigm into a real-world classroom setting makes it possible to investigate specific mutual links between brain activities and factors that cause impaired behavioral performance, such as development and manifestation of classroom mental fatigue. The findings of the study set a basis for developing a system capable of estimating the level of visual attention during real classroom activities by monitoring changes in the EEG spectra. PMID:28824396
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slattery, Stuart R.
In this study we analyze and extend mesh-free algorithms for three-dimensional data transfer problems in partitioned multiphysics simulations. We first provide a direct comparison between a mesh-based weighted residual method using the common-refinement scheme and two mesh-free algorithms leveraging compactly supported radial basis functions: one using a spline interpolation and one using a moving least square reconstruction. Through the comparison we assess both the conservation and accuracy of the data transfer obtained from each of the methods. We do so for a varying set of geometries with and without curvature and sharp features and for functions with and without smoothnessmore » and with varying gradients. Our results show that the mesh-based and mesh-free algorithms are complementary with cases where each was demonstrated to perform better than the other. We then focus on the mesh-free methods by developing a set of algorithms to parallelize them based on sparse linear algebra techniques. This includes a discussion of fast parallel radius searching in point clouds and restructuring the interpolation algorithms to leverage data structures and linear algebra services designed for large distributed computing environments. The scalability of our new algorithms is demonstrated on a leadership class computing facility using a set of basic scaling studies. Finally, these scaling studies show that for problems with reasonable load balance, our new algorithms for both spline interpolation and moving least square reconstruction demonstrate both strong and weak scalability using more than 100,000 MPI processes with billions of degrees of freedom in the data transfer operation.« less
Coherent Waves in Seismic Researches
NASA Astrophysics Data System (ADS)
Emanov, A.; Seleznev, V. S.
2013-05-01
Development of digital processing algorithms of seismic wave fields for the purpose of useful event picking to study environment and other objects is the basis for the establishment of new seismic techniques. In the submitted paper a fundamental property of seismic wave field coherence is used. The authors extended conception of coherence types of observed wave fields and devised a technique of coherent component selection from observed wave field. Time coherence and space coherence are widely known. In this paper conception "parameter coherence" has been added. The parameter by which wave field is coherent can be the most manifold. The reason is that the wave field is a multivariate process described by a set of parameters. Coherence in the first place means independence of linear connection in wave field of parameter. In seismic wave fields, recorded in confined space, in building-blocks and stratified mediums time coherent standing waves are formed. In prospecting seismology at observation systems with multiple overlapping head waves are coherent by parallel correlation course or, in other words, by one measurement on generalized plane of observation system. For detail prospecting seismology at observation systems with multiple overlapping on basis of coherence property by one measurement of area algorithms have been developed, permitting seismic records to be converted to head wave time sections which have neither reflected nor other types of waves. Conversion in time section is executed on any specified observation base. Energy storage of head waves relative to noise on basis of multiplicity of observation system is realized within area of head wave recording. Conversion on base below the area of wave tracking is performed with lack of signal/noise ratio relative to maximum of this ratio, fit to observation system. Construction of head wave time section and dynamic plots a basis of automatic processing have been developed, similar to CDP procedure in method of reflected waves. With use of developed algorithms of head wave conversion in time sections a work of studying of refracting boundaries in Siberia have been executed. Except for the research by method of refracting waves, the conversion of head waves in time sections, applied to seismograms of reflected wave method, allows to obtain information about refracting horizons in upper part of section in addition to reflecting horizons data. Recovery method of wave field coherent components is the basis of the engineering seismology on the level of accuracy and detail. In seismic microzoning resonance frequency of the upper part of section are determined on the basis of this method. Maps of oscillation amplification and result accuracy are constructed for each of the frequencies. The same method makes it possible to study standing wave field in buildings and constructions with high accuracy and detail, realizing diagnostics of their physical state on set of natural frequencies and form of self-oscillations, examined with high detail. The method of standing waves permits to estimate a seismic stability of structure on new accuracy level.
Höfener, Sebastian; Bischoff, Florian A; Glöss, Andreas; Klopper, Wim
2008-06-21
In the recent years, Slater-type geminals (STGs) have been used with great success to expand the first-order wave function in an explicitly-correlated perturbation theory. The present work reports on this theory's implementation in the framework of the Turbomole suite of programs. A formalism is presented for evaluating all of the necessary molecular two-electron integrals by means of the Obara-Saika recurrence relations, which can be applied when the STG is expressed as a linear combination of a small number (n) of Gaussians (STG-nG geminal basis). In the Turbomole implementation of the theory, density fitting is employed and a complementary auxiliary basis set (CABS) is used for the resolution-of-the-identity (RI) approximation of explicitly-correlated theory. By virtue of this RI approximation, the calculation of molecular three- and four-electron integrals is avoided. An approximation is invoked to avoid the two-electron integrals over the commutator between the operators of kinetic energy and the STG. This approximation consists of computing commutators between matrices in place of operators. Integrals over commutators between operators would have occurred if the theory had been formulated and implemented as proposed originally. The new implementation in Turbomole was tested by performing a series of calculations on rotational conformers of the alkanols n-propanol through n-pentanol. Basis-set requirements concerning the orbital basis, the auxiliary basis set for density fitting and the CABS were investigated. Furthermore, various (constrained) optimizations of the amplitudes of the explicitly-correlated double excitations were studied. These amplitudes can be optimized in orbital-variant and orbital-invariant manners, or they can be kept fixed at the values governed by the rational generator approach, that is, by the electron cusp conditions. Electron-correlation effects beyond the level of second-order perturbation theory were accounted for by conventional coupled-cluster calculations with single, double and perturbative triple excitations [CCSD(T)]. The explicitly-correlated perturbation theory results were combined with CCSD(T) results and compared with literature data obtained by basis-set extrapolation.
The structure and energetics of Cr(CO)6 and Cr(CO)5
NASA Technical Reports Server (NTRS)
Barnes, Leslie A.; Liu, Bowen; Lindh, Roland
1992-01-01
The geometric structure of Cr(CO)6 is optimized at the modified coupled pair functional (MCPF), single and double excitation coupled-cluster (CCSD) and CCSD(T) levels of theory (including a perturbational estimate for connected triple excitations), and the force constants for the totally symmetric representation are determined. The geometry of Cr(CO)5 is partially optimized at the MCPF, CCSD, and CCSD(T) levels of theory. Comparison with experimental data shows that the CCSD(T) method gives the best results for the structures and force constants, and that remaining errors are probably due to deficiencies in the one-particle basis sets used for CO. The total binding energies of Cr(CO)6 and Cr(CO)5 are also determined at the MCPF, CCSD, and CCSD(T) levels of theory. The CCSD(T) method gives a much larger total binding energy than either the MCPF or CCSD methods. An analysis of the basis set superposition error (BSSE) at the MCPF level of treatment points out limitations in the one-particle basis used. Calculations using larger basis sets reduce the BSSE, but the total binding energy of Cr(CO)6 is still significantly smaller than the experimental value, although the first CO bond dissociation energy of Cr(CO)6 is well described. An investigation of 3s3p correlation reveals only a small effect. In the largest basis set, the total CO binding energy of Cr(CO)6 is estimated to be 140 kcal/mol at the CCSD(T) level of theory, or about 86 percent of the experimental value. The remaining discrepancy between the experimental and theoretical value is probably due to limitations in the one-particle basis, rather than limitations in the correlation treatment. In particular an additional d function and an f function on each C and O are needed to obtain quantitative results. This is underscored by the fact that even using a very large primitive set (1042 primitive functions contracted to 300 basis functions), the superposition error for the total binding energy of Cr(CO)6 is 22 kcal/mol at the MCPF level of treatment.
Independence of the uniformity principle from Church's thesis in intuitionistic set theory
NASA Astrophysics Data System (ADS)
Khakhanyan, V. Kh
2013-12-01
We prove the independence of the strong uniformity principle from Church's thesis with choice in intuitionistic set theory with the axiom of extensionality extended by Markov's principle and the double complement for sets.
Flener-Lovitt, Charity; Woon, David E; Dunning, Thom H; Girolami, Gregory S
2010-02-04
Density functional theory and ab initio methods have been used to calculate the structures and energies of minima and transition states for the reactions of methane coordinated to a transition metal. The reactions studied are reversible C-H bond activation of the coordinated methane ligand to form a transition metal methyl hydride complex and dissociation of the coordinated methane ligand. The reaction sequence can be summarized as L(x)M(CH(3))H <==> L(x)M(CH(4)) <==> L(x)M + CH(4), where L(x)M is the osmium-containing fragment (C(5)H(5))Os(R(2)PCH(2)PR(2))(+) and R is H or CH(3). Three-center metal-carbon-hydrogen interactions play an important role in this system. Both basis sets and functionals have been benchmarked in this work, including new correlation consistent basis sets for a third transition series element, osmium. Double zeta quality correlation consistent basis sets yield energies close to those from calculations with quadruple-zeta basis sets, with variations that are smaller than the differences between functionals. The energies of important species on the potential energy surface, calculated by using 10 DFT functionals, are compared both to experimental values and to CCSD(T) single point calculations. Kohn-Sham natural bond orbital descriptions are used to understand the differences between functionals. Older functionals favor electrostatic interactions over weak donor-acceptor interactions and, therefore, are not particularly well suited for describing systems--such as sigma-complexes--in which the latter are dominant. Newer kinetic and dispersion-corrected functionals such as MPW1K and M05-2X provide significantly better descriptions of the bonding interactions, as judged by their ability to predict energies closer to CCSD(T) values. Kohn-Sham and natural bond orbitals are used to differentiate between bonding descriptions. Our evaluations of these basis sets and DFT functionals lead us to recommend the use of dispersion corrected functionals in conjunction with double-zeta or larger basis sets with polarization functions for calculations involving weak interactions, such as those found in sigma-complexes with transition metals.
Liu, Yuan; Zhao, Jijun; Li, Fengyu; Chen, Zhongfang
2013-01-15
Accurate description of hydrogen-bonding energies between water molecules and van der Waals interactions between guest molecules and host water cages is crucial for study of methane hydrates (MHs). Using high-level ab initio MP2 and CCSD(T) results as the reference, we carefully assessed the performance of a variety of exchange-correlation functionals and various basis sets in describing the noncovalent interactions in MH. The functionals under investigation include the conventional GGA, meta-GGA, and hybrid functionals (PBE, PW91, TPSS, TPSSh, B3LYP, and X3LYP), long-range corrected functionals (ωB97X, ωB97, LC-ωPBE, CAM-B3LYP, and LC-TPSS), the newly developed Minnesota class functionals (M06-L, M06-HF, M06, and M06-2X), and the dispersion-corrected density functional theory (DFT) (DFT-D) methods (B97-D, ωB97X-D, PBE-TS, PBE-Grimme, and PW91-OBS). We found that the conventional functionals are not suitable for MH, notably, the widely used B3LYP functional even predicts repulsive interaction between CH(4) and (H(2)O)(6) cluster. M06-2X is the best among the M06-Class functionals. The ωB97X-D outperforms the other DFT-D methods and is recommended for accurate first-principles calculations of MH. B97-D is also acceptable as a compromise of computational cost and precision. Considering both accuracy and efficiency, B97-D, ωB97X-D, and M06-2X functional with 6-311++G(2d,2p) basis set without basis set superposition error (BSSE) correction are recommended. Though a fairly large basis set (e.g., aug-cc-pVTZ) and BSSE correction are necessary for a reliable MP2 calculation, DFT methods are less sensitive to the basis set and BSSE correction if the basis set is sufficient (e.g., 6-311++G(2d,2p)). These assessments provide useful guidance for choosing appropriate methodology of first-principles simulation of MH and related systems. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.
Impact of Extended Daylight Saving Time on National Energy Consumption Report to Congress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belzer, D. B.; Hadley, S. W.; Chin, S-M.
2008-10-01
The Energy Policy Act of 2005 (Pub. L. No. 109-58; EPAct 2005) amended the Uniform Time Act of 1966 (Pub. L. No. 89-387) to increase the portion of the year that is subject to Daylight Saving Time. (15 U.S.C. 260a note) EPAct 2005 extended the duration of Daylight Saving Time in the spring by changing its start date from the first Sunday in April to the second Sunday in March, and in the fall by changing its end date from the last Sunday in October to the first Sunday in November. (15 U.S.C. 260a note) EPAct 2005 also called formore » the Department of Energy to evaluate the impact of Extended Daylight Saving Time on energy consumption in the United States and to submit a report to Congress. (15 U.S.C. 260a note) This report presents the results of impacts of Extended Daylight Saving Time on the national energy consumption in the United States. The key findings are: (1) The total electricity savings of Extended Daylight Saving Time were about 1.3 Tera Watt-hour (TWh). This corresponds to 0.5 percent per each day of Extended Daylight Saving Time, or 0.03 percent of electricity consumption over the year. In reference, the total 2007 electricity consumption in the United States was 3,900 TWh. (2) In terms of national primary energy consumption, the electricity savings translate to a reduction of 17 Trillion Btu (TBtu) over the spring and fall Extended Daylight Saving Time periods, or roughly 0.02 percent of total U.S. energy consumption during 2007 of 101,000 TBtu. (3) During Extended Daylight Saving Time, electricity savings generally occurred over a three- to five-hour period in the evening with small increases in usage during the early-morning hours. On a daily percentage basis, electricity savings were slightly greater during the March (spring) extension of Extended Daylight Saving Time than the November (fall) extension. On a regional basis, some southern portions of the United States exhibited slightly smaller impacts of Extended Daylight Saving Time on energy savings compared to the northern regions, a result possibly due to a small, offsetting increase in household air conditioning usage. (4) Changes in national traffic volume and motor gasoline consumption for passenger vehicles in 2007 were determined to be statistically insignificant and therefore, could not be attributed to Extended Daylight Saving Time.« less
47 CFR 4.1 - Scope, basis and purpose.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Scope, basis and purpose. 4.1 Section 4.1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL DISRUPTIONS TO COMMUNICATIONS General § 4.1 Scope, basis and purpose. In this part, the Federal Communications Commission is setting forth requirements...
47 CFR 4.1 - Scope, basis and purpose.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Scope, basis and purpose. 4.1 Section 4.1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL DISRUPTIONS TO COMMUNICATIONS General § 4.1 Scope, basis and purpose. In this part, the Federal Communications Commission is setting forth requirements...
18 CFR 1317.105 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... education, or an institution of vocational education, as defined in this section. Federal financial..., institution, or organization, or other entity, or any person, to whom Federal financial assistance is extended... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE...
Learning From Physics Instruction
ERIC Educational Resources Information Center
Shavelson, Richard J.
1973-01-01
Extends P. E. Jonson's studies of physics learning by analyzing, on the basis of a 12-student control group, 24 high-school students' word associations, aptitude scores, and achievement results during instruction. Indicated a positive relationship between problem-solving ability and meaningful concept formation. (CC)
Computational studies of metal-metal and metal-ligand interactions
NASA Technical Reports Server (NTRS)
Barnes, Leslie A.
1992-01-01
The geometric structure of Cr(CO)6 is optimized at the modified coupled-pair functional (MCPF), single and double excitation coupled-cluster (CCSD) and CCSD(T) levels of theory (including a perturbational estimate for connected triple excitations), and the force constants for the totally symmetric representation are determined. The geometry of Cr(CO)5 is partially optimized at the MCPF, CCSD and CCSD(T) levels of theory. Comparison with experimental data shows that the CCSD(T) method gives the best results for the structures and force constants, and that remaining errors are probably due to deficiencies in the one-particle basis sets used for CO. A detailed comparison of the properties of free CO is therefore given, at both the MCPF and CCSD/CCSD(T) levels of treatment, using a variety of basis sets. With very large one-particle basis sets, the SSCD(T) method gives excellent results for the bond distance, dipole moment and harmonic frequency of free CO. The total binding energies of Cr(CO)6 and Cr(CO)5 are also determined at the MCPF, CCSD and CCSD(T) levels of theory. The CCSD(T) method gives a much larger total binding energy than either the MCPF or CCSD methods. An analysis of the basis set superposition error (BSSE) at the MCPF level of treatment points out limitations in the one-particle basis used here and in a previous study. Calculations using larger basis sets reduced the BSSE, but the total binding energy of Cr(CO)6 is still significantly smaller than the experimental value, although the first CO bond dissociation energy of Cr(CO)6 is well described. An investigation of 3s3p correlation reveals only a small effect. The remaining discrepancy between the experimental and theoretical total binding energy of Cr(CO)6 is probably due to limitations in the one-particle basis, rather than limitations in the correlation treatment. In particular an additional d function and an f function on each C and O are needed to obtain quantitative results. This is underscored by the fact that even using a very large primitive se (1042 primitive functions contracted to 300 basis functions), the superposition error for the total binding energy of Cr(CO)6 is 22 kcal/mol at the MCPF level of treatment.
Di Riso, Daniela; Salcuni, Silvia; Lis, Adriana; Delvecchio, Elisa
2017-01-01
Affect in Play Scale-Preschool (APS-P) is one of the few standardized tools to measure pretend play. APS-P is an effective measure of symbolic play, able to detect both cognitive and affective dimensions which classically designated play in children, but often are evaluated separately and are scarcely integrated. The scale uses 5 min standardized play task with a set of toys. Recently the scale was extended from 6 to 10 years old and validated in Italy preschool and school-aged children. Some of the main limitations of this measure are that it requires videotaping, verbatim transcripts, and an extensive scoring training, which could compromise its clinical utility. For these reasons, a Brief version of the measure was developed by the original authors. This paper will focus on an APS-P Brief Version and its Extended Version through ages (6–10 years), which consists “in vivo” coding. This study aimed to evaluate construct and external validity of this APS-P Brief Version and its Extended Version in a sample of 538 Italian children aged 4-to-10 years. Confirmatory factor analysis yielded a two correlated factor structure including an affective and a cognitive factor. APS-P-BR and its Extended Version factor scores strongly related to APS-P Extended Version factor scores. Significant relationships were found with a divergent thinking task. Results suggest that the APS-P-BR and its Extended Version is an encouraging brief measure assessing pretend play using toys. It would easily substitute the APS-P and its Extended Version in clinical and research settings, reducing time and difficulties in scoring procedures and maintaining the same strengths. PMID:28553243
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zapata, Francisco; Kreinovich, Vladik; Joslyn, Cliff A.
2013-08-01
To make a decision, we need to compare the values of quantities. In many practical situations, we know the values with interval uncertainty. In such situations, we need to compare intervals. Allen’s algebra describes all possible relations between intervals on the real line, and ordering relations between such intervals are well studied. In this paper, we extend this description to intervals in an arbitrary partially ordered set (poset). In particular, we explicitly describe ordering relations between intervals that generalize relation between points. As auxiliary results, we provide a logical interpretation of the relation between intervals, and extend the results aboutmore » interval graphs to intervals over posets.« less
2013-07-29
: We are extending our pilot program that authorizes the agency to set the time and place for a hearing before an administrative law judge (ALJ). This final rule will extend the pilot program for 1 year. The extension of the pilot program continues our commitment to improve the efficiency of our hearing process and maintain a hearing process that results in accurate, high-quality decisions for claimants. The current pilot program will expire on August 9, 2013. In this final rule, we are extending the effective date to August 9, 2014. We are making no other substantive changes.
The Contribution of TOMS and UARS Data to Our Understanding of Ozone Change
NASA Technical Reports Server (NTRS)
Bhartia, Pawan K.; Einaudi, Franco (Technical Monitor)
2001-01-01
Both TOMS (Total Ozone Mapping Spectrometer) and UARS (Upper Atmosphere Research Satellite) have operated over an extended period, and generated data sets of sufficient accuracy to be of use in determining ozone change (TOMS) and some of the underlying causes (UARS). The basic scientific products have been used for model validation and assimilation to extend our understanding of stratospheric processes. TOMS on Nimbus-7, Earth-Probe, and QuikTOMS, and UARS have led to the next generation of instruments onboard the EOS platforms. Algorithms used for TOMS and UARS are being applied to the new data sets and extended to analysis of European satellite data (e.g., GOME)
Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes.
Braekman, Pascal; Foque, Dieter; Messens, Winy; Van Labeke, Marie-Christine; Pieters, Jan G; Nuyttens, David
2010-02-01
Increasingly, Flemish greenhouse growers are using spray booms instead of spray guns to apply plant protection products. Although the advantages of spray booms are well known, growers still have many questions concerning nozzle choice and settings. Spray deposition using a vertical spray boom in tomatoes and strawberries was compared with reference spray equipment. Five different settings of nozzle type, size and pressure were tested with the spray boom. In general, the standard vertical spray boom performed better than the reference spray equipment in strawberries (spray gun) and in tomatoes (air-assisted sprayer). Nozzle type and settings significantly affected spray deposition and crop penetration. Highest overall deposits in strawberries were achieved using air-inclusion or extended-range nozzles. In tomatoes, the extended-range nozzles and the twin air-inclusion nozzles performed best. Using smaller-size extended-range nozzles above the recommended pressure range resulted in lower deposits, especially inside the crop canopy. The use of a vertical spray boom is a promising technique for applying plant protection products in a safe and efficient way in tomatoes and strawberries, and nozzle choice and setting should be carefully considered.
A T Matrix Method Based upon Scalar Basis Functions
NASA Technical Reports Server (NTRS)
Mackowski, D.W.; Kahnert, F. M.; Mishchenko, Michael I.
2013-01-01
A surface integral formulation is developed for the T matrix of a homogenous and isotropic particle of arbitrary shape, which employs scalar basis functions represented by the translation matrix elements of the vector spherical wave functions. The formulation begins with the volume integral equation for scattering by the particle, which is transformed so that the vector and dyadic components in the equation are replaced with associated dipole and multipole level scalar harmonic wave functions. The approach leads to a volume integral formulation for the T matrix, which can be extended, by use of Green's identities, to the surface integral formulation. The result is shown to be equivalent to the traditional surface integral formulas based on the VSWF basis.
Electronic and spectroscopic characterizations of SNP isomers
NASA Astrophysics Data System (ADS)
Trabelsi, Tarek; Al Mogren, Muneerah Mogren; Hochlaf, Majdi; Francisco, Joseph S.
2018-02-01
High-level ab initio electronic structure calculations were performed to characterize SNP isomers. In addition to the known linear SNP, cyc-PSN, and linear SPN isomers, we identified a fourth isomer, linear PSN, which is located ˜2.4 eV above the linear SNP isomer. The low-lying singlet and triplet electronic states of the linear SNP and SPN isomers were investigated using a multi-reference configuration interaction method and large basis set. Several bound electronic states were identified. However, their upper rovibrational levels were predicted to pre-dissociate, leading to S + PN, P + NS products, and multi-step pathways were discovered. For the ground states, a set of spectroscopic parameters were derived using standard and explicitly correlated coupled-cluster methods in conjunction with augmented correlation-consistent basis sets extrapolated to the complete basis set limit. We also considered scalar and core-valence effects. For linear isomers, the rovibrational spectra were deduced after generation of their 3D-potential energy surfaces along the stretching and bending coordinates and variational treatments of the nuclear motions.
NASA Astrophysics Data System (ADS)
Wu, Yun-jie; Li, Guo-fei
2018-01-01
Based on sliding mode extended state observer (SMESO) technique, an adaptive disturbance compensation finite control set optimal control (FCS-OC) strategy is proposed for permanent magnet synchronous motor (PMSM) system driven by voltage source inverter (VSI). So as to improve robustness of finite control set optimal control strategy, a SMESO is proposed to estimate the output-effect disturbance. The estimated value is fed back to finite control set optimal controller for implementing disturbance compensation. It is indicated through theoretical analysis that the designed SMESO could converge in finite time. The simulation results illustrate that the proposed adaptive disturbance compensation FCS-OC possesses better dynamical response behavior in the presence of disturbance.
First-principle modelling of forsterite surface properties: Accuracy of methods and basis sets.
Demichelis, Raffaella; Bruno, Marco; Massaro, Francesco R; Prencipe, Mauro; De La Pierre, Marco; Nestola, Fabrizio
2015-07-15
The seven main crystal surfaces of forsterite (Mg2 SiO4 ) were modeled using various Gaussian-type basis sets, and several formulations for the exchange-correlation functional within the density functional theory (DFT). The recently developed pob-TZVP basis set provides the best results for all properties that are strongly dependent on the accuracy of the wavefunction. Convergence on the structure and on the basis set superposition error-corrected surface energy can be reached also with poorer basis sets. The effect of adopting different DFT functionals was assessed. All functionals give the same stability order for the various surfaces. Surfaces do not exhibit any major structural differences when optimized with different functionals, except for higher energy orientations where major rearrangements occur around the Mg sites at the surface or subsurface. When dispersions are not accounted for, all functionals provide similar surface energies. The inclusion of empirical dispersions raises the energy of all surfaces by a nearly systematic value proportional to the scaling factor s of the dispersion formulation. An estimation for the surface energy is provided through adopting C6 coefficients that are more suitable than the standard ones to describe O-O interactions in minerals. A 2 × 2 supercell of the most stable surface (010) was optimized. No surface reconstruction was observed. The resulting structure and surface energy show no difference with respect to those obtained when using the primitive cell. This result validates the (010) surface model here adopted, that will serve as a reference for future studies on adsorption and reactivity of water and carbon dioxide at this interface. © 2015 Wiley Periodicals, Inc.
Alternative formulation of explicitly correlated third-order Møller-Plesset perturbation theory
NASA Astrophysics Data System (ADS)
Ohnishi, Yu-ya; Ten-no, Seiichiro
2013-09-01
The second-order wave operator in the explicitly correlated wave function theory has been newly defined as an extension of the conventional s- and p-wave (SP) ansatz (also referred to as the FIXED amplitude ansatz) based on the linked-diagram theorem. The newly defined second-order wave operator has been applied to the calculation of the F12 correction to the third-order many-body perturbation (MP3) energy. In addition to this new wave operator, the F12 correction with the conventional first-order wave operator has been derived and calculated. Among three components of the MP3 correlation energy, the particle ladder contribution, which has shown the slowest convergence with respect to the basis set size, is fairly ameliorated by employing these F12 corrections. Both the newly defined and conventional formalisms of the F12 corrections exhibit a similar recovery of over 90% of the complete basis set limit of the particle ladder contribution of the MP3 correlation energy with a triple-zeta quality basis set for the neon atom, while the amount is about 75% without the F12 correction. The corrections to the ring term are small but the corrected energy has shown similar recovery as the particle ladder term. The hole ladder term has shown a rapid convergence even without the F12 corrections. Owing to these balanced recoveries, the deviation of the total MP3 correlation energy from the complete basis set limit has been calculated to be about 1 kcal/mol with the triple-zeta quality basis set, which is more than five times smaller than the error without the F12 correction.
NASA Astrophysics Data System (ADS)
Legler, C. R.; Brown, N. R.; Dunbar, R. A.; Harness, M. D.; Nguyen, K.; Oyewole, O.; Collier, W. B.
2015-06-01
The Scaled Quantum Mechanical (SQM) method of scaling calculated force constants to predict theoretically calculated vibrational frequencies is expanded to include a broad array of polarized and augmented basis sets based on the split valence 6-31G and 6-311G basis sets with the B3LYP density functional. Pulay's original choice of a single polarized 6-31G(d) basis coupled with a B3LYP functional remains the most computationally economical choice for scaled frequency calculations. But it can be improved upon with additional polarization functions and added diffuse functions for complex molecular systems. The new scale factors for the B3LYP density functional and the 6-31G, 6-31G(d), 6-31G(d,p), 6-31G+(d,p), 6-31G++(d,p), 6-311G, 6-311G(d), 6-311G(d,p), 6-311G+(d,p), 6-311G++(d,p), 6-311G(2d,p), 6-311G++(2d,p), 6-311G++(df,p) basis sets are shown. The double d polarized models did not perform as well and the source of the decreased accuracy was investigated. An alternate system of generating internal coordinates that uses the out-of plane wagging coordinate whenever it is possible; makes vibrational assignments via potential energy distributions more meaningful. Automated software to produce SQM scaled vibrational calculations from different molecular orbital packages is presented.
2011-01-01
Background Network inference methods reconstruct mathematical models of molecular or genetic networks directly from experimental data sets. We have previously reported a mathematical method which is exclusively data-driven, does not involve any heuristic decisions within the reconstruction process, and deliveres all possible alternative minimal networks in terms of simple place/transition Petri nets that are consistent with a given discrete time series data set. Results We fundamentally extended the previously published algorithm to consider catalysis and inhibition of the reactions that occur in the underlying network. The results of the reconstruction algorithm are encoded in the form of an extended Petri net involving control arcs. This allows the consideration of processes involving mass flow and/or regulatory interactions. As a non-trivial test case, the phosphate regulatory network of enterobacteria was reconstructed using in silico-generated time-series data sets on wild-type and in silico mutants. Conclusions The new exact algorithm reconstructs extended Petri nets from time series data sets by finding all alternative minimal networks that are consistent with the data. It suggested alternative molecular mechanisms for certain reactions in the network. The algorithm is useful to combine data from wild-type and mutant cells and may potentially integrate physiological, biochemical, pharmacological, and genetic data in the form of a single model. PMID:21762503
CCSDT calculations of molecular equilibrium geometries
NASA Astrophysics Data System (ADS)
Halkier, Asger; Jørgensen, Poul; Gauss, Jürgen; Helgaker, Trygve
1997-08-01
CCSDT equilibrium geometries of CO, CH 2, F 2, HF, H 2O and N 2 have been calculated using the correlation-consistent cc-pVXZ basis sets. Similar calculations have been performed for SCF, CCSD and CCSD(T). In general, bond lengths decrease when improving the basis set and increase when improving the N-electron treatment. CCSD(T) provides an excellent approximation to CCSDT for bond lengths as the largest difference between CCSDT and CCSD(T) is 0.06 pm. At the CCSDT/cc-pVQZ level, basis set deficiencies, neglect of higher-order excitations, and incomplete treatment of core-correlation all give rise to errors of a few tenths of a pm, but to a large extent, these errors cancel. The CCSDT/cc-pVQZ bond lengths deviate on average only by 0.11 pm from experiment.
Economic communication model set
NASA Astrophysics Data System (ADS)
Zvereva, Olga M.; Berg, Dmitry B.
2017-06-01
This paper details findings from the research work targeted at economic communications investigation with agent-based models usage. The agent-based model set was engineered to simulate economic communications. Money in the form of internal and external currencies was introduced into the models to support exchanges in communications. Every model, being based on the general concept, has its own peculiarities in algorithm and input data set since it was engineered to solve the specific problem. Several and different origin data sets were used in experiments: theoretic sets were estimated on the basis of static Leontief's equilibrium equation and the real set was constructed on the basis of statistical data. While simulation experiments, communication process was observed in dynamics, and system macroparameters were estimated. This research approved that combination of an agent-based and mathematical model can cause a synergetic effect.
ERIC Educational Resources Information Center
Egghe, L.; Michel, C.
2003-01-01
Ordered sets (OS) of documents are encountered more and more in information distribution systems, such as information retrieval systems. Classical similarity measures for ordinary sets of documents need to be extended to these ordered sets. This is done in this article using fuzzy set techniques. The practical usability of the OS-measures is…
Geminal embedding scheme for optimal atomic basis set construction in correlated calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorella, S., E-mail: sorella@sissa.it; Devaux, N.; Dagrada, M., E-mail: mario.dagrada@impmc.upmc.fr
2015-12-28
We introduce an efficient method to construct optimal and system adaptive basis sets for use in electronic structure and quantum Monte Carlo calculations. The method is based on an embedding scheme in which a reference atom is singled out from its environment, while the entire system (atom and environment) is described by a Slater determinant or its antisymmetrized geminal power (AGP) extension. The embedding procedure described here allows for the systematic and consistent contraction of the primitive basis set into geminal embedded orbitals (GEOs), with a dramatic reduction of the number of variational parameters necessary to represent the many-body wavemore » function, for a chosen target accuracy. Within the variational Monte Carlo method, the Slater or AGP part is determined by a variational minimization of the energy of the whole system in presence of a flexible and accurate Jastrow factor, representing most of the dynamical electronic correlation. The resulting GEO basis set opens the way for a fully controlled optimization of many-body wave functions in electronic structure calculation of bulk materials, namely, containing a large number of electrons and atoms. We present applications on the water molecule, the volume collapse transition in cerium, and the high-pressure liquid hydrogen.« less
NASA Astrophysics Data System (ADS)
Di Valentin, Cristiana
2007-10-01
In this work we present a simplified procedure to use hybrid functionals and localized atomic basis sets to simulate scanning tunneling microscopy (STM) images of stoichiometric, reduced and hydroxylated rutile (110) TiO2 surface. For the two defective systems it is necessary to introduce some exact Hartree-Fock exchange in the exchange functional in order to correctly describe the details of the electronic structure. Results are compared to the standard density functional theory and planewave basis set approach. Both methods have advantages and drawbacks that are analyzed in detail. In particular, for the localized basis set approach, it is necessary to introduce a number of Gaussian function in the vacuum region above the surface in order to correctly describe the exponential decay of the integrated local density of states from the surface. In the planewave periodic approach, a thick vacuum region is required to achieve correct results. Simulated STM images are obtained for both the reduced and hydroxylated surface which nicely compare with experimental findings. A direct comparison of the two defects as displayed in the simulated STM images indicates that the OH groups should appear brighter than oxygen vacancies in perfect agreement with the experimental STM data.
Zhang, Jun; Dolg, Michael
2013-07-09
An efficient way to obtain accurate CCSD and CCSD(T) energies for large systems, i.e., the third-order incremental dual-basis set zero-buffer approach (inc3-db-B0), has been developed and tested. This approach combines the powerful incremental scheme with the dual-basis set method, and along with the new proposed K-means clustering (KM) method and zero-buffer (B0) approximation, can obtain very accurate absolute and relative energies efficiently. We tested the approach for 10 systems of different chemical nature, i.e., intermolecular interactions including hydrogen bonding, dispersion interaction, and halogen bonding; an intramolecular rearrangement reaction; aliphatic and conjugated hydrocarbon chains; three compact covalent molecules; and a water cluster. The results show that the errors for relative energies are <1.94 kJ/mol (or 0.46 kcal/mol), for absolute energies of <0.0026 hartree. By parallelization, our approach can be applied to molecules of more than 30 atoms and more than 100 correlated electrons with high-quality basis set such as cc-pVDZ or cc-pVTZ, saving computational cost by a factor of more than 10-20, compared to traditional implementation. The physical reasons of the success of the inc3-db-B0 approach are also analyzed.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., institution, or organization, or other entity, or any person, to whom Federal financial assistance is extended... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... unit means a school, department, or college of an educational institution (other than a local...
Code of Federal Regulations, 2010 CFR
2010-04-01
..., institution, or organization, or other entity, or any person, to whom Federal financial assistance is extended... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE... unit means a school, department, or college of an educational institution (other than a local...
Code of Federal Regulations, 2010 CFR
2010-07-01
... education, or an institution of vocational education, as defined in this section. Federal financial..., institution, or organization, or other entity, or any person, to whom Federal financial assistance is extended...) NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE...
Building on the Cornerstone Mission: Focused LRO Workshops to Support Science Team Synergies
NASA Astrophysics Data System (ADS)
Keller, J. W.; Petro, N. E.
2017-10-01
During the Cornerstone Mission, the LRO instrument teams have identified a number of key science themes that drive their observations during the extended mission. These themes serve as a basis for the identification of the thematic workshops.
Optimization of auxiliary basis sets for the LEDO expansion and a projection technique for LEDO-DFT.
Götz, Andreas W; Kollmar, Christian; Hess, Bernd A
2005-09-01
We present a systematic procedure for the optimization of the expansion basis for the limited expansion of diatomic overlap density functional theory (LEDO-DFT) and report on optimized auxiliary orbitals for the Ahlrichs split valence plus polarization basis set (SVP) for the elements H, Li--F, and Na--Cl. A new method to deal with near-linear dependences in the LEDO expansion basis is introduced, which greatly reduces the computational effort of LEDO-DFT calculations. Numerical results for a test set of small molecules demonstrate the accuracy of electronic energies, structural parameters, dipole moments, and harmonic frequencies. For larger molecular systems the numerical errors introduced by the LEDO approximation can lead to an uncontrollable behavior of the self-consistent field (SCF) process. A projection technique suggested by Löwdin is presented in the framework of LEDO-DFT, which guarantees for SCF convergence. Numerical results on some critical test molecules suggest the general applicability of the auxiliary orbitals presented in combination with this projection technique. Timing results indicate that LEDO-DFT is competitive with conventional density fitting methods. (c) 2005 Wiley Periodicals, Inc.
Corneal erosions, bacterial contamination of contact lenses, and microbial keratitis.
Willcox, Mark D P; Naduvilath, Thomas J; Vaddavalli, Pravin K; Holden, Brien A; Ozkan, Jerome; Zhu, Hua
2010-11-01
To estimate the rate of corneal erosion coupled with gram-negative bacterial contamination of contact lenses and compare this with the rate of microbial keratitis (MK) with contact lenses. The rate of corneal erosion and contact lens contamination by gram-negative bacteria were calculated from several prospective trials. These rates were used to calculate the theoretical rate of corneal erosion happening at the same time as wearing a contact lens contaminated with gram-negative bacteria. This theoretical rate was then compared with the rates of MK reported in various epidemiological and clinical trials. Corneal erosions were more frequent during extended wear (0.6-2.6% of visits) compared with daily wear (0.01-0.05% of visits). No corneal erosions were observed for lenses worn on a daily disposable basis. Contamination rates for lenses worn on a daily disposable basis were the lowest (2.4%), whereas they were the highest for low Dk lenses worn on an extended wear basis (7.1%). The estimated rate of corneal erosions occurring at the same time as wearing lenses contaminated with gram-negative bacteria was the lowest during daily wear of low Dk lenses (1.56/10,000 [95% CI: 0.23-10.57]) and the highest during extended wear of high Dk lenses (38.55/10,000 [95% CI: 24.77-60.04]). These rates were similar in magnitude to the rates reported for MK of different hydrogel lenses worn on differing wear schedules. The coincidence of corneal erosions during lens wear with gram-negative bacterial contamination of lenses may account for the relative incidence of MK during lens wear with different lens materials and modes of use.
Observations of extended and counterrotating disks of ionized gas in S0 galaxies
NASA Technical Reports Server (NTRS)
Dettmar, Ralf-Juergen; Jullien-Dettmar, Marlies; Barteldrees, Andreas
1990-01-01
While many E/S0 galaxies have been found to show emission line spectra in their nuclear regions, the question of the presence and nature of extended disks of ionized gas in these galaxies has been addressed only in recent years. Typically the ionized gas is detected in the inner region on a scale of approx. 1 kpc (e.g., Phillips et al. 1986, Caldwell 1984). Here researchers present evidence that the disks of ionized gas of at least some S0 galaxies are much more extended than previously believed. In addition, with the detection of the counterrotation of gas and stars in NGC 7007 they strengthen the basis for arguments that the source of gas in S0 galaxies is external
Detection of a new extended soft X-ray source H1538-32 - A possible old supernova remnant
NASA Technical Reports Server (NTRS)
Riegler, G. R.; Agrawal, P. C.; Gull, S. F.
1980-01-01
The discovery in the Lupus region of a new, extended soft X-ray source, H1538-32, is reported, having a distance of approximately 340 pc, and a luminosity of 1 to 2 x 10 to the 34th ergs/sec. The observed energy spectrum of the source is well fitted either by a thermal bremsstrahlung spectrum with Gaunt factor but without line emission, or by a coronal plasma model which includes the X-ray emission lines of various elements and the continuum as outlined by Raymond and Smith (1977). On the basis of the extended nature of the source and its thermal spectrum, it is suggested that H1538-32 may be an old supernova remnant.
Quantum-Chemical Study of the Adsorption of DMMP and Sarin on gamma-Al2O3
2007-02-01
In this and in the following section, ∆Eads is not corrected for zero-point vibrational energy ( ZPE ); however, a counterpoise correction for basis set...Ångstroms and the bond angle is in degrees. Values in parentheses are BSSE-corrected (∆Eads C ) results. ∆Eads has not been corrected for ZPE . b 6-31G...sets. The ∆ Eads C values are given in parentheses. No ZPE corrections have been applied. e The basis sets used were 6-311G(df) for Sarin and for the Al
A bispectral q-hypergeometric basis for a class of quantum integrable models
NASA Astrophysics Data System (ADS)
Baseilhac, Pascal; Martin, Xavier
2018-01-01
For the class of quantum integrable models generated from the q-Onsager algebra, a basis of bispectral multivariable q-orthogonal polynomials is exhibited. In the first part, it is shown that the multivariable Askey-Wilson polynomials with N variables and N + 3 parameters introduced by Gasper and Rahman [Dev. Math. 13, 209 (2005)] generate a family of infinite dimensional modules for the q-Onsager algebra, whose fundamental generators are realized in terms of the multivariable q-difference and difference operators proposed by Iliev [Trans. Am. Math. Soc. 363, 1577 (2011)]. Raising and lowering operators extending those of Sahi [SIGMA 3, 002 (2007)] are also constructed. In the second part, finite dimensional modules are constructed and studied for a certain class of parameters and if the N variables belong to a discrete support. In this case, the bispectral property finds a natural interpretation within the framework of tridiagonal pairs. In the third part, eigenfunctions of the q-Dolan-Grady hierarchy are considered in the polynomial basis. In particular, invariant subspaces are identified for certain conditions generalizing Nepomechie's relations. In the fourth part, the analysis is extended to the special case q = 1. This framework provides a q-hypergeometric formulation of quantum integrable models such as the open XXZ spin chain with generic integrable boundary conditions (q ≠ 1).