Sample records for extended drude model

  1. An Alternative Approach to the Extended Drude Model

    NASA Astrophysics Data System (ADS)

    Gantzler, N. J.; Dordevic, S. V.

    2018-05-01

    The original Drude model, proposed over a hundred years ago, is still used today for the analysis of optical properties of solids. Within this model, both the plasma frequency and quasiparticle scattering rate are constant, which makes the model rather inflexible. In order to circumvent this problem, the so-called extended Drude model was proposed, which allowed for the frequency dependence of both the quasiparticle scattering rate and the effective mass. In this work we will explore an alternative approach to the extended Drude model. Here, one also assumes that the quasiparticle scattering rate is frequency dependent; however, instead of the effective mass, the plasma frequency becomes frequency-dependent. This alternative model is applied to the high Tc superconductor Bi2Sr2CaCu2O8+δ (Bi2212) with Tc = 92 K, and the results are compared and contrasted with the ones obtained from the conventional extended Drude model. The results point to several advantages of this alternative approach to the extended Drude model.

  2. Plasma versus Drude Modeling of the Casimir Force: Beyond the Proximity Force Approximation

    NASA Astrophysics Data System (ADS)

    Hartmann, Michael; Ingold, Gert-Ludwig; Neto, Paulo A. Maia

    2017-07-01

    We calculate the Casimir force and its gradient between a spherical and a planar gold surface. Significant numerical improvements allow us to extend the range of accessible parameters into the experimental regime. We compare our numerically exact results with those obtained within the proximity force approximation (PFA) employed in the analysis of all Casimir force experiments reported in the literature so far. Special attention is paid to the difference between the Drude model and the dissipationless plasma model at zero frequency. It is found that the correction to PFA is too small to explain the discrepancy between the experimental data and the PFA result based on the Drude model. However, it turns out that for the plasma model, the corrections to PFA lie well outside the experimental bound obtained by probing the variation of the force gradient with the sphere radius [D. E. Krause et al., Phys. Rev. Lett. 98, 050403 (2007), 10.1103/PhysRevLett.98.050403]. The corresponding corrections based on the Drude model are significantly smaller but still in violation of the experimental bound for small distances between plane and sphere.

  3. Implementation of extended Lagrangian dynamics in GROMACS for polarizable simulations using the classical Drude oscillator model.

    PubMed

    Lemkul, Justin A; Roux, Benoît; van der Spoel, David; MacKerell, Alexander D

    2015-07-15

    Explicit treatment of electronic polarization in empirical force fields used for molecular dynamics simulations represents an important advancement in simulation methodology. A straightforward means of treating electronic polarization in these simulations is the inclusion of Drude oscillators, which are auxiliary, charge-carrying particles bonded to the cores of atoms in the system. The additional degrees of freedom make these simulations more computationally expensive relative to simulations using traditional fixed-charge (additive) force fields. Thus, efficient tools are needed for conducting these simulations. Here, we present the implementation of highly scalable algorithms in the GROMACS simulation package that allow for the simulation of polarizable systems using extended Lagrangian dynamics with a dual Nosé-Hoover thermostat as well as simulations using a full self-consistent field treatment of polarization. The performance of systems of varying size is evaluated, showing that the present code parallelizes efficiently and is the fastest implementation of the extended Lagrangian methods currently available for simulations using the Drude polarizable force field. © 2015 Wiley Periodicals, Inc.

  4. Electronic transport coefficients in plasmas using an effective energy-dependent electron-ion collision-frequency

    NASA Astrophysics Data System (ADS)

    Faussurier, G.; Blancard, C.; Combis, P.; Decoster, A.; Videau, L.

    2017-10-01

    We present a model to calculate the electrical and thermal electronic conductivities in plasmas using the Chester-Thellung-Kubo-Greenwood approach coupled with the Kramers approximation. The divergence in photon energy at low values is eliminated using a regularization scheme with an effective energy-dependent electron-ion collision-frequency. Doing so, we interpolate smoothly between the Drude-like and the Spitzer-like regularizations. The model still satisfies the well-known sum rule over the electrical conductivity. Such kind of approximation is also naturally extended to the average-atom model. A particular attention is paid to the Lorenz number. Its nondegenerate and degenerate limits are given and the transition towards the Drude-like limit is proved in the Kramers approximation.

  5. Terahertz spectroscopic evidence of non-Fermi-liquid-like behavior in structurally modulated PrNi O3 thin films

    NASA Astrophysics Data System (ADS)

    Phanindra, V. Eswara; Agarwal, Piyush; Rana, D. S.

    2018-01-01

    The intertwined and competing energy scales of various interactions in rare-earth nickelates R Ni O3 (R =La to Lu) hold potential for a wide range of exotic ground states realized upon structural modulation. Using terahertz (THz) spectroscopy, the low-energy dynamics of a novel non-Fermi liquid (NFL) metallic phase induced in compressive PrNi O3 thin film was studied by evaluating the quasiparticle scattering rate in the light of two distinct models over a wide temperature range. First, evaluating THz conductivity in the framework of extended Drude model, the frequency-dependent scattering rate is found to deviate from the Landau Fermi liquid (LFL) behavior, thus, suggesting NFL-like phase at THz frequencies. Second, fitting THz conductivity to the multiband Drude-Lorentz model reveals the band-dependent scattering rates and provides microscopic interpretation of the carriers contributing to the Drude modes. This is first evidence of NFL-like behavior in nickelates at THz frequencies consistent with dc conductivity, which also suggests that THz technology is indispensable in understanding emerging electronic phases and associated phenomena. We further demonstrate that the metal-insulator transition in nickelates has the potential to design efficient THz modulators.

  6. Mapping the Drude polarizable force field onto a multipole and induced dipole model

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Simmonett, Andrew C.; Pickard, Frank C.; MacKerell, Alexander D.; Brooks, Bernard R.

    2017-10-01

    The induced dipole and the classical Drude oscillator represent two major approaches for the explicit inclusion of electronic polarizability into force field-based molecular modeling and simulations. In this work, we explore the equivalency of these two models by comparing condensed phase properties computed using the Drude force field and a multipole and induced dipole (MPID) model. Presented is an approach to map the electrostatic model optimized in the context of the Drude force field onto the MPID model. Condensed phase simulations on water and 15 small model compounds show that without any reparametrization, the MPID model yields properties similar to the Drude force field with both models yielding satisfactory reproduction of a range of experimental values and quantum mechanical data. Our results illustrate that the Drude oscillator model and the point induced dipole model are different representations of essentially the same physical model. However, results indicate the presence of small differences between the use of atomic multipoles and off-center charge sites. Additionally, results on the use of dispersion particle mesh Ewald further support its utility for treating long-range Lennard Jones dispersion contributions in the context of polarizable force fields. The main motivation in demonstrating the transferability of parameters between the Drude and MPID models is that the more than 15 years of development of the Drude polarizable force field can now be used with MPID formalism without the need for dual-thermostat integrators nor self-consistent iterations. This opens up a wide range of new methodological opportunities for polarizable models.

  7. Competition among Li+, Na+, K+ and Rb+ Monovalent Ions for DNA in Molecular Dynamics Simulations using the Additive CHARMM36 and Drude Polarizable Force Fields

    PubMed Central

    Savelyev, Alexey; MacKerell, Alexander D.

    2015-01-01

    In the present study we report on interactions of and competition between monovalent ions for two DNA sequences in MD simulations. Efforts included the development and validation of parameters for interactions among the first-group monovalent cations, Li+, Na+, K+ and Rb+, and DNA in the Drude polarizable and additive CHARMM36 force fields (FF). The optimization process targeted gas-phase QM interaction energies of various model compounds with ions and osmotic pressures of bulk electrolyte solutions of chemically relevant ions. The optimized ionic parameters are validated against counterion condensation theory and buffer exchange-atomic emission spectroscopy measurements providing quantitative data on the competitive association of different monovalent ions with DNA. Comparison between experimental and MD simulation results demonstrates that, compared to the additive CHARMM36 model, the Drude FF provides an improved description of the general features of the ionic atmosphere around DNA and leads to closer agreement with experiment on the ionic competition within the ion atmosphere. Results indicate the importance of extended simulation systems on the order of 25 Å beyond the DNA surface to obtain proper convergence of ion distributions. PMID:25751286

  8. Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates

    NASA Astrophysics Data System (ADS)

    Small, Meagan C.; Aytenfisu, Asaminew H.; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D.

    2017-04-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars ( d-allose and d-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars d-allose and d-psicose, thereby extending the available biomolecules in the Drude polarizable FF.

  9. Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates.

    PubMed

    Small, Meagan C; Aytenfisu, Asaminew H; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D

    2017-04-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars (D-allose and D-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars D-allose and D-psicose, thereby extending the available biomolecules in the Drude polarizable FF.

  10. Drude Polarizable Force Field for Aliphatic Ketones and Aldehydes, and their Associated Acyclic Carbohydrates

    PubMed Central

    Small, Meagan C.; Aytenfisu, Asaminew H.; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D.

    2017-01-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars (D-allose and D-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars D-allose and D-psicose, thereby extending the available biomolecules in the Drude polarizable FF. PMID:28190218

  11. Investigation into the absorptivity change in metals with increased laser power

    NASA Astrophysics Data System (ADS)

    Blidegn, M. Sc. K.; Olsen, Flemming O.

    1997-04-01

    At first glance the low absorptivity of metals in the infrared (IR) makes the use of YAG or carbon-dioxide lasers in metal processing very inefficient. However, it has been demonstrated that the absorptivity can reach significantly higher levels during the high power laser interaction. An increase which cannot be explained by the increase in temperature only. The interaction between laser light and metals is a major physical phenomena in laser material processing and when modeling processes the Drude free electron model or simplifications, such as the Hagen-Rubens relation, have often been used. This paper discusses the need to extend the Drude model taking into account interband transitions and anormal skin effect at low light intensities and a multiphoton absorption model in order to describe the increase in the absorptivity at high intensities. The model is compared with experimental results carried out at low power, and tested on experimental absorptivity measurements at high power YAG laser pulses, found in literature.

  12. Influences of the coordinate dependent noncommutative space on charged and spin currents

    NASA Astrophysics Data System (ADS)

    Ren, Ya-Jie; Ma, Kai

    2018-06-01

    We study the charged and spin currents on a coordinate dependent noncommutative space. Starting from the noncommutative extended relativistic equation of motion, the nonrelativistic approximation is obtained by using the Foldy-Wouthuysen transformation, and then the charged and spin currents are derived by using the extended Drude model. We find that the charged current is twisted by modifying the off-diagonal elements of the Hall conductivity, however, the spin current is not affected up to leading order of the noncommutative parameter.

  13. An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications

    PubMed Central

    2016-01-01

    Molecular mechanics force fields that explicitly account for induced polarization represent the next generation of physical models for molecular dynamics simulations. Several methods exist for modeling induced polarization, and here we review the classical Drude oscillator model, in which electronic degrees of freedom are modeled by charged particles attached to the nuclei of their core atoms by harmonic springs. We describe the latest developments in Drude force field parametrization and application, primarily in the last 15 years. Emphasis is placed on the Drude-2013 polarizable force field for proteins, DNA, lipids, and carbohydrates. We discuss its parametrization protocol, development history, and recent simulations of biologically interesting systems, highlighting specific studies in which induced polarization plays a critical role in reproducing experimental observables and understanding physical behavior. As the Drude oscillator model is computationally tractable and available in a wide range of simulation packages, it is anticipated that use of these more complex physical models will lead to new and important discoveries of the physical forces driving a range of chemical and biological phenomena. PMID:26815602

  14. Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field

    PubMed Central

    2015-01-01

    Recently we presented a first-generation all-atom Drude polarizable force field for DNA based on the classical Drude oscillator model, focusing on optimization of key dihedral angles followed by extensive validation of the force field parameters. Presently, we describe the procedure for balancing the electrostatic interactions between ions, water, and DNA as required for development of the Drude force field for DNA. The proper balance of these interactions is shown to impact DNA stability and subtler conformational properties, including the conformational equilibrium between the BI and BII states, and the A and B forms of DNA. The parametrization efforts were simultaneously guided by gas-phase quantum mechanics (QM) data on small model compounds and condensed-phase experimental data on the hydration and osmotic properties of biologically relevant ions and their solutions, as well as theoretical predictions for ionic distribution around DNA oligomer. In addition, fine-tuning of the internal base parameters was performed to obtain the final DNA model. Notably, the Drude model is shown to more accurately reproduce counterion condensation theory predictions of DNA charge neutralization by the condensed ions as compared to the CHARMM36 additive DNA force field, indicating an improved physical description of the forces dictating the ionic solvation of DNA due to the explicit treatment of electronic polarizability. In combination with the polarizable DNA force field, the availability of Drude polarizable parameters for proteins, lipids, and carbohydrates will allow for simulation studies of heterogeneous biological systems. PMID:24874104

  15. Analysis of Drude model using fractional derivatives without singular kernels

    NASA Astrophysics Data System (ADS)

    Jiménez, Leonardo Martínez; García, J. Juan Rosales; Contreras, Abraham Ortega; Baleanu, Dumitru

    2017-11-01

    We report study exploring the fractional Drude model in the time domain, using fractional derivatives without singular kernels, Caputo-Fabrizio (CF), and fractional derivatives with a stretched Mittag-Leffler function. It is shown that the velocity and current density of electrons moving through a metal depend on both the time and the fractional order 0 < γ ≤ 1. Due to non-singular fractional kernels, it is possible to consider complete memory effects in the model, which appear neither in the ordinary model, nor in the fractional Drude model with Caputo fractional derivative. A comparison is also made between these two representations of the fractional derivatives, resulting a considered difference when γ < 0.8.

  16. Drude conductivity exhibited by chemically synthesized reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Younas, Daniyal; Javed, Qurat-ul-Ain; Fatima, Sabeen; Kalsoom, Riffat; Abbas, Hussain; Khan, Yaqoob

    2017-09-01

    Electrical conductance in graphene layers having Drude like response due to massless Dirac fermions have been well explained theoretically as well as experimentally. In this paper Drude like electrical conductivity response of reduced graphene oxide synthesized by chemical route is presented. A method slightly different from conventional methods is used to synthesize graphene oxide which is then converted to reduced graphene oxide. Various analytic techniques were employed to verify the successful oxidation and reductions in the process and were also used to measure various parameters like thickness of layers and conductivity. Obtained reduced graphene oxide has very thin layers of thickness around 13 nm on average and reduced graphene oxide has average thickness below 20 nm. Conductivity of the reduced graphene was observed to have Drude like response which is explained on basis of Drude model for conductors.

  17. Comparison of direct DNA strand breaks induced by low energy electrons with different inelastic cross sections

    NASA Astrophysics Data System (ADS)

    Li, Jun-Li; Li, Chun-Yan; Qiu, Rui; Yan, Cong-Chong; Xie, Wen-Zhang; Zeng, Zhi; Tung, Chuan-Jong

    2013-09-01

    In order to study the influence of inelastic cross sections on the simulation of direct DNA strand breaks induced by low energy electrons, six different sets of inelastic cross section data were calculated and loaded into the Geant4-DNA code to calculate the DNA strand break yields under the same conditions. The six sets of the inelastic cross sections were calculated by applying the dielectric function method of Emfietzoglou's optical-data treatments, with two different optical datasets and three different dispersion models, using the same Born corrections. Results show that the inelastic cross sections have a notable influence on the direct DNA strand break yields. The yields simulated with the inelastic cross sections based on Hayashi's optical data are greater than those based on Heller's optical data. The discrepancies are about 30-45% for the single strand break yields and 45-80% for the double strand break yields. Among the yields simulated with cross sections of the three different dispersion models, generally the greatest are those of the extended-Drude dispersion model, the second are those of the extended-oscillator-Drude dispersion model, and the last are those of the Ashley's δ-oscillator dispersion model. For the single strand break yields, the differences between the first two are very little and the differences between the last two are about 6-57%. For the double strand break yields, the biggest difference between the first two can be about 90% and the differences between the last two are about 17-70%.

  18. Terahertz time-domain measurement of non-Drude conductivity in silver nanowire thin films for transparent electrode applications

    NASA Astrophysics Data System (ADS)

    Kim, Jaeseok; Maeng, Inhee; Jung, Jongwook; Song, Hyunjoon; Son, Joo-Hiuk; Kim, Kilsuk; Lee, Jaeik; Kim, Chul-Hong; Chae, Geesung; Jun, Myungchul; Hwang, YongKee; Jeong Lee, Su; Myoung, Jae-Min; Choi, Hyunyong

    2013-01-01

    We have investigated the complex conductivity of silver nanowire thin films using terahertz time-domain spectroscopy. Maxwell-Garnett effective medium theory, which accounts for the effective complex conductivity of silver nanowires, is presented in detail theoretically and experimentally. The conductivity of nanowires exhibits a characteristic non-Drude response in which the applied terahertz field is polarized in the longitudinal nanowire direction. The non-Drude responses of the silver nanowires are explained by the Gans approximation and the Drude-Smith model, and both agree well with the experimental data. Our results provide a basis for further explorations of charge carrier dynamics in nanowire-based transparent electrode applications.

  19. All-Atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model

    PubMed Central

    Savelyev, Alexey; MacKerell, Alexander D.

    2014-01-01

    Presented is a first generation atomistic force field for DNA in which electronic polarization is modeled based on the classical Drude oscillator formalism. The DNA model is based on parameters for small molecules representative of nucleic acids, including alkanes, ethers, dimethylphosphate, and the nucleic acid bases and empirical adjustment of key dihedral parameters associated with the phosphodiester backbone, glycosidic linkages and sugar moiety of DNA. Our optimization strategy is based on achieving a compromise between satisfying the properties of the underlying model compounds in the gas phase targeting QM data and reproducing a number of experimental properties of DNA duplexes in the condensed phase. The resulting Drude force field yields stable DNA duplexes on the 100 ns time scale and satisfactorily reproduces (1) the equilibrium between A and B forms of DNA and (2) transitions between the BI and BII sub-states of B form DNA. Consistency with the gas phase QM data for the model compounds is significantly better for the Drude model as compared to the CHARMM36 additive force field, which is suggested to be due to the improved response of the model to changes in the environment associated with the explicit inclusion of polarizability. Analysis of dipole moments associated with the nucleic acid bases shows the Drude model to have significantly larger values than those present in CHARMM36, with the dipoles of individual bases undergoing significant variations during the MD simulations. Additionally, the dipole moment of water was observed to be perturbed in the grooves of DNA. PMID:24752978

  20. Optical constants of electroplated gold from spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Synowicki, R. A.; Herzinger, Craig M.; Hall, James T.; Malingowski, Andrew

    2017-11-01

    The optical constants of an opaque electroplated gold film (Laser Gold from Epner Technology Inc.), were determined by spectroscopic ellipsometry at room temperature over the spectral range from 0.142 μm in the vacuum ultraviolet to 36 μm in the infrared (photon energy range 0.034-8.75 eV). Data from two separate ellipsometer instruments covering different spectral ranges were analyzed simultaneously. The optical constants n&k or ε1&ε2 were determined by fitting an oscillator dispersion model combining Drude, Gaussian, and Sellmeier dispersion functions to the experimental Ψ and Δ data. The data were analyzed using both an ideal bulk substrate model and a simple overlayer model to account for surface roughness. Including the optical surface roughness layer improved ellipsometric data fits in the UV, and using a separate Drude function for the surface layer improved fits in the infrared. The surface roughness was also characterized using an Atomic Force Microscope. Using an oscillator dispersion model for the optical constants determined in this work allows for more realistic extrapolation to longer infrared wavelengths. Extending optical constants out to 50 μm and beyond is important for calibrating far-infrared reflectance measurements. Applications include understanding the thermal performance of cryogenic space-based instruments, such as the James Webb Space Telescope (JWST).

  1. The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: an experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Minissale, Marco; Pardanaud, Cedric; Bisson, Régis; Gallais, Laurent

    2017-11-01

    The knowledge of optical properties of tungsten at high temperatures is of crucial importance in fields such as nuclear fusion and aerospace applications. The optical properties of tungsten are well known at room temperature, but little has been done at temperatures between 300 K and 1000 K in the visible and near-infrared domains. Here, we investigate the temperature dependence of tungsten reflectivity from the ambient to high temperatures (<1000 K) in the 500-1050 nm spectral range, a region where interband transitions make a strong contribution. Experimental measurements, performed via a spectroscopic system coupled with laser remote heating, show that tungsten’s reflectivity increases with temperature and wavelength. We have described these dependences through a Fresnel and two Lorentz-Drude models. The Fresnel model accurately reproduces the experimental curve at a given temperature, but it is able to simulate the temperature dependency of reflectivity only thanks to an ad hoc choice of temperature formulae for the refractive indexes. Thus, a less empirical approach, based on Lorentz-Drude models, is preferred to describe the interaction of light and charge carriers in the solid. The first Lorentz-Drude model, which includes a temperature dependency on intraband transitions, fits experimental results only qualitatively. The second Lorentz-Drude model includes in addition a temperature dependency on interband transitions. It is able to reproduce the experimental results quantitatively, highlighting a non-trivial dependence of interband transitions as a function of temperature. Eventually, we use these temperature dependent Lorentz-Drude models to evaluate the total emissivity of tungsten from 300 K to 3500 K, and we compare our experimental and theoretical findings with previous results.

  2. Analogy for Drude's Free Electron Model to Promote Students' Understanding of Electric Circuits in Lower Secondary School

    ERIC Educational Resources Information Center

    de Almeida, Maria José B. M.; Salvador, Andreia; Costa, Maria Margarida R. R.

    2014-01-01

    Aiming at a deep understanding of some basic concepts of electric circuits in lower secondary schools, this work introduces an analogy between the behavior of children playing in a school yard with a central lake, subject to different conditions, rules, and stimuli, and Drude's free electron model of metals. Using this analogy from the first…

  3. Deformations of the spin currents by topological screw dislocation and cosmic dispiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jianhua; Ma, Kai, E-mail: makainca@gmail.com; Li, Kang

    2015-11-15

    We study the spin currents induced by topological screw dislocation and cosmic dispiration. By using the extended Drude model, we find that the spin dependent forces are modified by the nontrivial geometry. For the topological screw dislocation, only the direction of spin current is bent by deforming the spin polarization vector. In contrast, the force induced by cosmic dispiration could affect both the direction and magnitude of the spin current. As a consequence, the spin-Hall conductivity does not receive corrections from screw dislocation.

  4. Current Thermal Emission from Photonic Nanostructures Composed of TA, W, GE, and HFO2 Thin Films

    DTIC Science & Technology

    2015-03-01

    absorptive wavelength bands in the SWIR to LWIR range. Ellipsometric measurements and models were used in order to extract the optical constants of thin...parts of the complex dielectric function of tungsten at 294 K (room temperature) , 1100 K, 1600 K as calculated from the Drude model , Eq (25...real part and k is the imaginary. Values were obtained using the Drude model , Eq (25), with the measured optical parameters in Table 1 from [67] at

  5. Paul Drude's Prediction of Nonreciprocal Mutual Inductance for Tesla Transformers

    PubMed Central

    McGuyer, Bart

    2014-01-01

    Inductors, transmission lines, and Tesla transformers have been modeled with lumped-element equivalent circuits for over a century. In a well-known paper from 1904, Paul Drude predicts that the mutual inductance for an unloaded Tesla transformer should be nonreciprocal. This historical curiosity is mostly forgotten today, perhaps because it appears incorrect. However, Drude's prediction is shown to be correct for the conditions treated, demonstrating the importance of constraints in deriving equivalent circuits for distributed systems. The predicted nonreciprocity is not fundamental, but instead is an artifact of the misrepresentation of energy by an equivalent circuit. The application to modern equivalent circuits is discussed. PMID:25542040

  6. Paul Drude's prediction of nonreciprocal mutual inductance for Tesla transformers.

    PubMed

    McGuyer, Bart

    2014-01-01

    Inductors, transmission lines, and Tesla transformers have been modeled with lumped-element equivalent circuits for over a century. In a well-known paper from 1904, Paul Drude predicts that the mutual inductance for an unloaded Tesla transformer should be nonreciprocal. This historical curiosity is mostly forgotten today, perhaps because it appears incorrect. However, Drude's prediction is shown to be correct for the conditions treated, demonstrating the importance of constraints in deriving equivalent circuits for distributed systems. The predicted nonreciprocity is not fundamental, but instead is an artifact of the misrepresentation of energy by an equivalent circuit. The application to modern equivalent circuits is discussed.

  7. Force Field for Peptides and Proteins based on the Classical Drude Oscillator

    PubMed Central

    Lopes, Pedro E.M.; Huang, Jing; Shim, Jihyun; Luo, Yun; Li, Hui; Roux, Benoît; MacKerell, Alexander D.

    2013-01-01

    Presented is a polarizable force field based on a classical Drude oscillator framework, currently implemented in the programs CHARMM and NAMD, for modeling and molecular dynamics (MD) simulation studies of peptides and proteins. Building upon parameters for model compounds representative of the functional groups in proteins, the development of the force field focused on the optimization of the parameters for the polypeptide backbone and the connectivity between the backbone and side chains. Optimization of the backbone electrostatic parameters targeted quantum mechanical conformational energies, interactions with water, molecular dipole moments and polarizabilities and experimental condensed phase data for short polypeptides such as (Ala)5. Additional optimization of the backbone φ, ψ conformational preferences included adjustments of the tabulated two-dimensional spline function through the CMAP term. Validation of the model included simulations of a collection of peptides and proteins. This 1st generation polarizable model is shown to maintain the folded state of the studied systems on the 100 ns timescale in explicit solvent MD simulations. The Drude model typically yields larger RMS differences as compared to the additive CHARMM36 force field (C36) and shows additional flexibility as compared to the additive model. Comparison with NMR chemical shift data shows a small degradation of the polarizable model with respect to the additive, though the level of agreement may be considered satisfactory, while for residues shown to have significantly underestimated S2 order parameters in the additive model, improvements are calculated with the polarizable model. Analysis of dipole moments associated with the peptide backbone and tryptophan side chains show the Drude model to have significantly larger values than those present in C36, with the dipole moments of the peptide backbone enhanced to a greater extent in sheets versus helices and the dipoles of individual moieties observed to undergo significant variations during the MD simulations. Although there are still some limitations, the presented model, termed Drude-2013, is anticipated to yield a molecular picture of peptide and protein structure and function that will be of increased physical validity and internal consistency in a computationally accessible fashion. PMID:24459460

  8. Size- and temperature-dependent Hamaker constants for heterogeneous systems of interacting nanoparticles

    NASA Astrophysics Data System (ADS)

    Pinchuk, P.; Pinchuk, A. O.

    2016-09-01

    Hamaker-Lifshitz constants are used to calculate van der Waals interaction forces between small particles in solution. Typically, these constants are size-independent and material specific. According to the Lifshitz theory, the Hamaker-Lifshitz constants can be calculated by taking integrals that include the dielectric permittivity, as a function of frequency, of the interacting particles and the medium around particles. The dielectric permittivity of interacting metal nanoparticles can be calculated using the free-electron Drude model for metals. For bulk metals, the Drude model does is size independent. However, the conducting electrons in small metal nanoparticles exhibit surface scattering, which changes the complex dielectric permittivity function. Additionally, the Drude model can be modified to include temperature dependence. That is, an increase in temperature leads to thermal volume expansion and increased phonon population, which affect the scattering rate of the electrons and the plasma frequency. Both of these terms contribute significantly to the Drude model for the dielectric permittivity of the particles. In this work, we show theoretically that scattering of the free conducting electrons inside noble metal nanoparticles with the size of 1 - 50 nm leads to size-dependent dielectric permittivity and Hamaker-Lifshitz constants. In addition, we calculate numerically the Hamaker-Lifshitz constants for a variety of temperatures. The results of the study might be of interest for understanding colloidal stability of metal nanoparticles.

  9. Drude analysis of transition metal nitride films for solar control and low-E multilayers

    NASA Astrophysics Data System (ADS)

    Veszelei, Monica; Ribbing, Carl-Gustaf; Roos, Arne

    1994-09-01

    The Drude-like behavior of the group IVB metal nitrides: TiN, ZrN and HfN furnishes the physical basis for the use of these hard, inert materials as replacement for noble metals in optically selective multilayers. A low value of the refractive index, n, in the visible region and rapidly increasing extinction coefficient, k, when the wavelength increases into the infrared, is characteristic for these nitrides, although to a lesser extent than for the noble metals. A screened Drude model can be fitted to the experimental dielectric function over the near infrared and at least part of the visible spectrum to determine the parameters: plasma resonance energy hvp and relaxation time (tau) . Systematic studies of TiN and ZrN films show that n increases with decreasing film thickness below 60 nm when the film transmits. This increase can be modelled with a increasing Drude parameter (tau) and has previously been explained as an extrinsic effect from defects etc. It is argued that most of this change can be understood as an effect of diffuse scattering against the back surface of the film and is therefore not cured by improvements in deposition technology.

  10. Terahertz conductivity of MnSi thin films

    NASA Astrophysics Data System (ADS)

    Dodge, J.; Mohtashemi, Laleh; Farahani, Amir; Karhu, Eric; Monchesky, Theodore

    2013-03-01

    We present measurements of the low-frequency optical conductivity of MnSi thin films, using time-domain terahertz spectroscopy. At low temperatures and low frequencies, we extract the DC resistivity, scattering life time and plasma frequency from a Drude fit. We obtain a value of ωp ~= 1 . 0 eV, which can be used to estimate the renormalization coefficient through comparison with band theory. At higher temperatures, deviations from Drude behavior are observed, suggesting a loss of quasi-particle coherence. In the region of low temperatures and high frequencies, we see evidence for a crossover to the anomalous power law dependence observed by Mena et al. As the temperature increases, the anomalous frequency dependence becomes more pronounced, and the plasma frequency inferred from a Drude fit decreases dramatically. Above T ~ 50 K, σ2 (ω) develops a negative slope that is inconsistent with both a Drude model and the anomalous power law observed earlier, indicating a sharp pseudogap in the conductivity spectrum.

  11. CHARMM Drude Polarizable Force Field for Aldopentofuranoses and Methyl-aldopentofuranosides

    PubMed Central

    Jana, Madhurima; MacKerell, Alexander D.

    2015-01-01

    An empirical all-atom CHARMM polarizable force filed for aldopentofuranoses and methyl-aldopentofuranosides based on the classical Drude oscillator is presented. A single electrostatic model is developed for eight different diastereoisomers of aldopentofuranoses by optimizing the existing electrostatic and bonded parameters as transferred from ethers, alcohols and hexopyranoses to reproduce quantum mechanical (QM) dipole moments, furanose-water interaction energies and conformational energies. Optimization of selected electrostatic and dihedral parameters was performed to generate a model for methyl-aldopentofuranosides. Accuracy of the model was tested by reproducing experimental data for crystal intramolecular geometries and lattice unit cell parameters, aqueous phase densities, and ring pucker and exocyclic rotamer populations as obtained from NMR experiments. In most cases the model is found to reproduce both QM data and experimental observables in an excellent manner, while for the remainder the level of agreement is in the satisfactory regimen. In aqueous phase simulations the monosaccharides have significantly enhanced dipoles as compared to the gas phase. The final model from this study is transferrable for future studies on carbohydrates and can be used with the existing CHARMM Drude polarizable force field for biomolecules. PMID:26018564

  12. Resolving dispersion and induction components for polarisable molecular simulations of ionic liquids

    NASA Astrophysics Data System (ADS)

    Pádua, Agílio A. H.

    2017-05-01

    One important development in interaction potential models, or atomistic force fields, for molecular simulation is the inclusion of explicit polarisation, which represents the induction effects of charged or polar molecules on polarisable electron clouds. Polarisation can be included through fluctuating charges, induced multipoles, or Drude dipoles. This work uses Drude dipoles and is focused on room-temperature ionic liquids, for which fixed-charge models predict too slow dynamics. The aim of this study is to devise a strategy to adapt existing non-polarisable force fields upon addition of polarisation, because induction was already contained to an extent, implicitly, due to parametrisation against empirical data. Therefore, a fraction of the van der Waals interaction energy should be subtracted so that the Lennard-Jones terms only account for dispersion and the Drude dipoles for induction. Symmetry-adapted perturbation theory is used to resolve the dispersion and induction terms in dimers and to calculate scaling factors to reduce the Lennard-Jones terms from the non-polarisable model. Simply adding Drude dipoles to an existing fixed-charge model already improves the prediction of transport properties, increasing diffusion coefficients, and lowering the viscosity. Scaling down the Lennard-Jones terms leads to still faster dynamics and densities that match experiment extremely well. The concept developed here improves the overall prediction of density and transport properties and can be adapted to other models and systems. In terms of microscopic structure of the ionic liquids, the inclusion of polarisation and the down-scaling of Lennard-Jones terms affect only slightly the ordering of the first shell of counterions, leading to small decreases in coordination numbers. Remarkably, the effect of polarisation is major beyond first neighbours, significantly weakening spatial correlations, a structural effect that is certainly related to the faster dynamics of polarisable models.

  13. Simple model dielectric functions for insulators

    NASA Astrophysics Data System (ADS)

    Vos, Maarten; Grande, Pedro L.

    2017-05-01

    The Drude dielectric function is a simple way of describing the dielectric function of free electron materials, which have an uniform electron density, in a classical way. The Mermin dielectric function describes a free electron gas, but is based on quantum physics. More complex metals have varying electron densities and are often described by a sum of Drude dielectric functions, the weight of each function being taken proportional to the volume with the corresponding density. Here we describe a slight variation on the Drude dielectric functions that describes insulators in a semi-classical way and a form of the Levine-Louie dielectric function including a relaxation time that does the same within the framework of quantum physics. In the optical limit the semi-classical description of an insulator and the quantum physics description coincide, in the same way as the Drude and Mermin dielectric function coincide in the optical limit for metals. There is a simple relation between the coefficients used in the classical and quantum approaches, a relation that ensures that the obtained dielectric function corresponds to the right static refractive index. For water we give a comparison of the model dielectric function at non-zero momentum with inelastic X-ray measurements, both at relative small momenta and in the Compton limit. The Levine-Louie dielectric function including a relaxation time describes the spectra at small momentum quite well, but in the Compton limit there are significant deviations.

  14. Anomalous frequency and temperature-dependent scattering and Hund's coupling in the almost quantum critical heavy-fermion system CeFe2Ge2

    NASA Astrophysics Data System (ADS)

    Bossé, G.; Pan, LiDong; Li, Yize S.; Greene, L. H.; Eckstein, J.; Armitage, N. P.

    2016-02-01

    We present THz range optical conductivity data of a thin film of the near quantum critical heavy-fermion compound CeFe2Ge2 . Our complex conductivity measurements find a deviation from conventional Drude-like transport in a temperature range previously reported to exhibit unconventional behavior. We calculate the frequency-dependent effective mass and scattering rate using an extended Drude model analysis. We find the inelastic scattering rate can be described by a temperature-dependent power law ωn (T ), where n (T ) approaches ˜1.0 ±0.2 at 1.5 K. This is compared to the ρ ˜T1.5 behavior claimed in dc resistivity data and the ρ ˜T2 expected from Fermi-liquid theory. In addition to a low-temperature mass renormalization, we find an anomalous mass renormalization that persists to high temperature. We attribute this to a Hund's coupling in the Fe states in a manner similar to that recently proposed in the ferropnictides. CeFe2Ge2 appears to be a very interesting system where one may study the interplay between the usual 4 f lattice Kondo effect and this Hund's enhanced Kondo effect in the 3 d states.

  15. Canonical Drude Weight for Non-integrable Quantum Spin Chains

    NASA Astrophysics Data System (ADS)

    Mastropietro, Vieri; Porta, Marcello

    2018-03-01

    The Drude weight is a central quantity for the transport properties of quantum spin chains. The canonical definition of Drude weight is directly related to Kubo formula of conductivity. However, the difficulty in the evaluation of such expression has led to several alternative formulations, accessible to different methods. In particular, the Euclidean, or imaginary-time, Drude weight can be studied via rigorous renormalization group. As a result, in the past years several universality results have been proven for such quantity at zero temperature; remarkably, the proofs work for both integrable and non-integrable quantum spin chains. Here we establish the equivalence of Euclidean and canonical Drude weights at zero temperature. Our proof is based on rigorous renormalization group methods, Ward identities, and complex analytic ideas.

  16. Drude-jellium model for the microwave conductivity of electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Nhan, Tran Thi; Theu, Luong Thi; Tuan, Le; Viet, Nguyen Ai

    2018-05-01

    The microwave conductivity characteristics of electrolyte solutions have attracted much interest of researchers because a good understanding of their properties plays a key role to study fundamental processes in biology and chemistry. In this work, we consider the solution of sodium chloride as a plasma consisting of ions with water background. Its plasmon frequency is calculated by the jellium theory. The linear dependence of the microwave conductivity on the ion concentration of the electrolyte solutions is explained by a microscopic approach and described by a combination of this plasmon relationship and the simplified Drude formula for dielectric constant. Furthermore, the dependence of the microwave conductivity on the frequency of the salt solution is also examined. We suggest that it obeys the logistic distribution. We found a good agreement between theoretical calculations and experimental data. The values of the damping coefficient γ for the conductive solutions at low frequencies and the cutting frequency are estimated. The linear dependence of the diffusion coefficient on the temperature of the salt solution is also shown, in similarity with the result in the other model. The application of the Drude-jellium model could be done for the other electrolyte solutions in order to study theirs electro-dynamic properties.

  17. Solvent Boundary Potentials for Hybrid QM/MM Computations Using Classical Drude Oscillators: A Fully Polarizable Model.

    PubMed

    Boulanger, Eliot; Thiel, Walter

    2012-11-13

    Accurate quantum mechanical/molecular mechanical (QM/MM) treatments should account for MM polarization and properly include long-range electrostatic interactions. We report on a development that covers both these aspects. Our approach combines the classical Drude oscillator (DO) model for the electronic polarizability of the MM atoms with the generalized solvent boundary Potential (GSBP) and the solvated macromolecule boundary potential (SMBP). These boundary potentials (BP) are designed to capture the long-range effects of the outer region of a large system on its interior. They employ a finite difference approximation to the Poisson-Boltzmann equation for computing electrostatic interactions and take into account outer-region bulk solvent through a polarizable dielectric continuum (PDC). This approach thus leads to fully polarizable three-layer QM/MM-DO/BP methods. As the mutual responses of each of the subsystems have to be taken into account, we propose efficient schemes to converge the polarization of each layer simultaneously. For molecular dynamics (MD) simulations using GSBP, this is achieved by considering the MM polarizable model as a dynamical degree of freedom, and hence contributions from the boundary potential can be evaluated for a frozen state of polarization at every time step. For geometry optimizations using SMBP, we propose a dual self-consistent field approach for relaxing the Drude oscillators to their ideal positions and converging the QM wave function with the proper boundary potential. The chosen coupling schemes are evaluated with a test system consisting of a glycine molecule in a water ball. Both boundary potentials are capable of properly reproducing the gradients at the inner-region atoms and the Drude oscillators. We show that the effect of the Drude oscillators must be included in all terms of the boundary potentials to obtain accurate results and that the use of a high dielectric constant for the PDC does not lead to a polarization catastrophe of the DO models. Optimum values for some key parameters are discussed. We also address the efficiency of these approaches compared to standard QM/MM-DO calculations without BP. In the SMBP case, computation times can be reduced by around 40% for each step of a geometry optimization, with some variation depending on the chosen QM method. In the GSBP case, the computational advantages of using the boundary potential increase with system size and with the number of MD steps.

  18. Polaron formation in normal state optical conductivity of iron-based superconductor

    NASA Astrophysics Data System (ADS)

    Choudhary, K. K.; Lodhi, Pavitra Devi; Kaurav, Netram

    2018-05-01

    Normal state Optical conductivity σ(ω) of Iron-Based superconductor LaFeAsO have been investigated using polaron formation mechanism. The coherent Drude free carrier excitations as well as the incoherent motion of carriers leading to a polaron formation, originated from inter and intra layer transitions of charge carriers are incorporated in the present model. Coherent motion of Drude carriers obtained from an effective interaction potential leads to a peak at zero frequency regime which is an indication of metallic conduction in superconducting materials and also produces a long tail at higher frequencies infrared region. Whereas, the incoherent motion i.e. hopping of carriers from Fe to Fe in the FeAs layer and from FeAs layer to LaO layer produces two different peaks at around 100 cm-1 and 430 cm-1 respectively. Two contributions, Drude and hopping carriers successfully explain the anomalies observed in the optical conductivity of metallic state of the iron-based superconductors.

  19. Effect of uni-axial strain on THz/far-infrared response of graphene

    NASA Astrophysics Data System (ADS)

    Kim, JooYoun; Lee, Chul; Bae, Sukang; Jin Kim, Sang; Soo Kim, Keun; Hee Hong, Byung; Choi, E. J.

    2012-01-01

    We present polarized optical transmission study of uniaxially strained large scale graphene in THz/far-infrared (IR) frequency region. Graphene was supported on stretchable polyethylene substrate and they were elongated up to 20% (ΔL/Lo = 0.2) by applying tensile force. For the IR light polarized along the strain direction (EIR//strain), the optical conductivity σ1(ω) of graphene changes from Drude response into strongly non-Drude-like behavior with a peak formed at finite energy ˜10 meV. In contrast, the coherent Drude conductivity is preserved along the direction perpendicular to the strain (EIR⊥strain). Possible origin of the strain-induced non-Drude σ1(ω)-behavior is discussed.

  20. Optical properties of A Fe 2 As 2 ( A = Ca , Sr, and Ba) single crystals

    DOE PAGES

    Dai, Y. M.; Akrap, Ana; Bud'ko, S. L.; ...

    2016-11-23

    The detailed optical properties have been determined for the iron-based materials A Fe 2 As 2 , where A = Ca , Sr, and Ba, for light polarized in the iron-arsenic (a-b) planes over a wide frequency range, above and below the magnetic and structural transitions at T N = 138 , 195, and 172 K, respectively. The real and imaginary parts of the complex conductivity are fit simultaneously using two Drude terms in combination with a series of oscillators. Above T N, the free-carrier response consists of a weak, narrow Drude term, and a strong, broad Drude term, both of which show only a weak temperature dependence. Below T N there is a slight decrease of the plasma frequency but a dramatic drop in the scattering rate for the narrow Drude term, and for the broad Drude term there is a significant decrease in the plasma frequency, while the decrease in the scattering rate, albeit significant, is not as severe. The small values observed for the scattering rates for the narrow Drude term for Tmore » $$\\ll$$ T N may be related to the Dirac conelike dispersion of the electronic bands. Below T N new features emerge in the optical conductivity that are associated with the reconstruction Fermi surface and the gapping of bands at Δ 1 ≃ 45 – 80 meV, and Δ 2 ≃ 110 – 210 meV. In conclusion, the reduction in the spectral weight associated with the free carriers is captured by the gap structure; specifically, the spectral weight from the narrow Drude term appears to be transferred into the low-energy gap feature, while the missing weight from the broad term shifts to the high-energy gap.« less

  1. Current Status of Protein Force Fields for Molecular Dynamics

    PubMed Central

    Lopes, Pedro E.M.; Guvench, Olgun

    2015-01-01

    Summary The current status of classical force fields for proteins is reviewed. These include additive force fields as well as the latest developments in the Drude and AMOEBA polarizable force fields. Parametrization strategies developed specifically for the Drude force field are described and compared with the additive CHARMM36 force field. Results from molecular simulations of proteins and small peptides are summarized to illustrate the performance of the Drude and AMOEBA force fields. PMID:25330958

  2. Low energy excitations and Drude-Smith carrier dynamics in Sm0.5Sr0.5MnO3

    NASA Astrophysics Data System (ADS)

    Kumar, K. Santhosh; Das, Sarmistha; Prajapati, G. L.; Philip, Sharon S.; Rana, D. S.

    2017-05-01

    We have performed terahertz time-domain spectroscopic measurements on half-doped charge-ordered manganite Sm0.5Sr0.5MnO3 in the temperature range of 5-300 K to explore the possibilities of the charge density wave (CDW) ground state and understand the low energy charge carrier dynamics. While a resonance absorption peak at 0.275 meV suggests formation of a CDW condensate, the increase in background conductivity due to uncondensed carriers obey the Drude-Smith model of carrier dynamics. This study confirms that CDW is a generic feature of charge-ordered manganites.

  3. Temperature-driven band inversion in Pb 0.77 Sn 0.23 Se : Optical and Hall effect studies

    DOE PAGES

    Anand, Naween; Buvaev, Sanal; Hebard, A. F.; ...

    2014-12-23

    Optical and Hall-effect measurements have been performed on single crystals of Pb₀.₇₇Sn₀.₂₃Se, a IV-VI mixed chalcogenide. The temperature dependent (10–300 K) reflectance was measured over 40–7000 cm⁻¹ (5–870 meV) with an extension to 15,500 cm⁻¹ (1.92 eV) at room temperature. The reflectance was fit to the Drude-Lorentz model using a single Drude component and several Lorentz oscillators. The optical properties at the measured temperatures were estimated via Kramers-Kronig analysis as well as by the Drude-Lorentz fit. The carriers were p-type with the carrier density determined by Hall measurements. A signature of valence intraband transition is found in the low-energy opticalmore » spectra. It is found that the valence-conduction band transition energy as well as the free carrier effective mass reach minimum values at 100 K, suggesting temperature-driven band inversion in the material. Thus, density function theory calculation for the electronic band structure also make similar predictions.« less

  4. A generalization of the Drude-Smith formula for magneto-optical conductivities in Faraday geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, F. W.; University of Science and Technology of China, Hefei 230026; Xu, W., E-mail: wenxu-issp@aliyun.com

    2016-06-28

    In this study, we generalize the impulse response approach and Poisson statistics proposed by Smith [Phys. Rev. B 64, 155106 (2001)] to evaluate the longitudinal and transverse magneto-optical conductivities in an electron gas system in Faraday geometry. Comparing with the standard Drude model, the coefficients a{sub n} are introduced in the Drude-Smith formula to describe the backscattering or localization effect for the nth electronic scattering event. Such a formula can also be applied to study the elements of the dielectric function matrix in the presence of magnetic and radiation fields in electron gas systems. This theoretical work is primely motivatedmore » by recent experimental activities in measuring the real and imaginary parts of longitudinal and transverse magneto-optical conductivities in condensed matter materials and electronic devices using terahertz time-domain spectroscopy. We believe that the results obtained from this study can provide an appropriate theoretical tool in reproducing the experimental findings and in fitting with experimental data to determine the important sample and material parameters.« less

  5. Anisotropic dyonic black brane and its effects on holographic conductivity

    NASA Astrophysics Data System (ADS)

    Khimphun, Sunly; Lee, Bum-Hoon; Park, Chanyong; Zhang, Yun-Long

    2017-10-01

    We investigate a massive gravity theory involving the SL(2 , R) symmetry and anisotropy. Due to the SL(2 , R) invariance of the equations of motion, the complex con-ductivity of this model transforms covariantly under the SL(2 , R) transformation and the ratio of DC conductivities in different spatial directions is preserved even after the SL(2 , R) transformation. We further investigate AC and Hall conductivities by utilizing the Kubo formula. There exists a Drude-like peak in the region with a small anisotropy, while such a Drude peak disappears when anisotropy becomes large. We also show that the complex conductivity can have a cyclotron frequency pole even beyond the hydrodynamic limit.

  6. Drude weight of the spin-(1)/(2) XXZ chain: Density matrix renormalization group versus exact diagonalization

    NASA Astrophysics Data System (ADS)

    Karrasch, C.; Hauschild, J.; Langer, S.; Heidrich-Meisner, F.

    2013-06-01

    We revisit the problem of the spin Drude weight D of the integrable spin-1/2 XXZ chain using two complementary approaches, exact diagonalization (ED) and the time-dependent density-matrix renormalization group (tDMRG). We pursue two main goals. First, we present extensive results for the temperature dependence of D. By exploiting time translation invariance within tDMRG, one can extract D for significantly lower temperatures than in previous tDMRG studies. Second, we discuss the numerical quality of the tDMRG data and elaborate on details of the finite-size scaling of the ED results, comparing calculations carried out in the canonical and grand-canonical ensembles. Furthermore, we analyze the behavior of the Drude weight as the point with SU(2)-symmetric exchange is approached and discuss the relative contribution of the Drude weight to the sum rule as a function of temperature.

  7. Differential Impact of the Monovalent Ions Li+, Na+, K+, and Rb+ on DNA Conformational Properties

    PubMed Central

    2015-01-01

    The present report demonstrates that the conformational properties of DNA in solution are sensitive to the type of monovalent ion. Results are based on the ability of a polarizable force field using the classical Drude oscillator to reproduce experimental solution X-ray scattering data more accurately than two nonpolarizable DNA models, AMBER Parmbsc0 and CHARMM36. The polarizable model is then used to calculate scattering profiles of DNA in the presence of four different monovalent salts, LiCl, NaCl, KCl, and RbCl, showing the conformational properties of DNA to vary as a function of ion type, with that effect being sequence-dependent. The primary conformational mode associated with the variations is contraction of the DNA minor groove width with decreasing cation size. These results indicate that the Drude polarizable model provides a more realistic representation of ion–DNA interactions than additive models that may lead to a new level of understanding of the physical mechanisms driving salt-mediated biological processes involving nucleic acids. PMID:25580188

  8. Polarizable Force Field for DNA Based on the Classical Drude Oscillator: I. Refinement Using Quantum Mechanical Base Stacking and Conformational Energetics.

    PubMed

    Lemkul, Justin A; MacKerell, Alexander D

    2017-05-09

    Empirical force fields seek to relate the configuration of a set of atoms to its energy, thus yielding the forces governing its dynamics, using classical physics rather than more expensive quantum mechanical calculations that are computationally intractable for large systems. Most force fields used to simulate biomolecular systems use fixed atomic partial charges, neglecting the influence of electronic polarization, instead making use of a mean-field approximation that may not be transferable across environments. Recent hardware and software developments make polarizable simulations feasible, and to this end, polarizable force fields represent the next generation of molecular dynamics simulation technology. In this work, we describe the refinement of a polarizable force field for DNA based on the classical Drude oscillator model by targeting quantum mechanical interaction energies and conformational energy profiles of model compounds necessary to build a complete DNA force field. The parametrization strategy employed in the present work seeks to correct weak base stacking in A- and B-DNA and the unwinding of Z-DNA observed in the previous version of the force field, called Drude-2013. Refinement of base nonbonded terms and reparametrization of dihedral terms in the glycosidic linkage, deoxyribofuranose rings, and important backbone torsions resulted in improved agreement with quantum mechanical potential energy surfaces. Notably, we expand on previous efforts by explicitly including Z-DNA conformational energetics in the refinement.

  9. Extended-area nanostructuring of TiO2 with femtosecond laser pulses at 400 nm using a line focus.

    PubMed

    Das, Susanta Kumar; Dasari, Kiran; Rosenfeld, Arkadi; Grunwald, Ruediger

    2010-04-16

    An efficient way to generate nanoscale laser-induced periodic surface structures (LIPSS) in rutile-type TiO(2) with frequency-converted femtosecond laser pulses at wavelengths around 400 nm is reported. Extended-area structuring on fixed and moving substrates was obtained by exploiting the line focus of a cylindrical lens. Under defined conditions with respect to pulse number, pulse energy and scanning velocity, two types of ripple-like LIPSS with high and low spatial frequencies (HSFL, LSFL) with periods in the range of 90 nm and 340 nm, respectively, were formed. In particular, lower numbers of high energetic pulses favour the generation of LSFL whereas higher numbers of lower energetic pulses enable the preferential creation of HSFL. Theoretical calculations on the basis of the Drude model support the assumption that refractive index changes by photo-excited carriers are a major mechanism responsible for LSFL. Furthermore, the appearance of random substructures as small as 30 nm superimposing low spatial frequency ripples is demonstrated and their possible origin is discussed.

  10. Theory of interaction-induced renormalization of Drude weight and plasmon frequency in chiral multilayer graphene

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Tse, Wang-Kong

    2017-02-01

    We develop a theory for the optical conductivity of doped ABC-stacked multilayer graphene including the effects of electron-electron interactions. Applying the quantum kinetic formalism, we formulate a set of pseudospin Bloch equations that govern the dynamics of the nonequilibrium density matrix driven by an external ac electric field under the influence of Coulomb interactions. These equations reveal a dynamical mechanism that couples the Drude and interband responses arising from the chirality of pseudospin textures in multilayer graphene systems. We demonstrate that this results in an interaction-induced enhancement of the Drude weight and plasmon frequency strongly dependent on the pseudospin winding number. Using bilayer graphene as an example, we also study the influence of higher-energy bands and find that they contribute considerable renormalization effects not captured by a low-energy two-band description. We argue that this enhancement of Drude weight and plasmon frequency occurs generally in materials characterized by electronic chirality.

  11. Generation of laser-induced periodic surface structures on transparent material-fused silica

    NASA Astrophysics Data System (ADS)

    Schwarz, Simon; Rung, Stefan; Hellmann, Ralf

    2016-05-01

    We report on a comparison between simulated and experimental results for the generation of laser-induced periodic surface structures with low spatial frequency on dielectrics. Using the established efficacy factor theory extended by a Drude model, we determine the required carrier density for the generation of low spatial frequency LIPSS (LSFL) and forecast their periodicity and orientation. In a subsequent calculative step, we determine the fluence of ultrashort laser pulses necessary to excite this required carrier density in due consideration of the pulse number dependent ablation threshold. The later calculation is based on a rate equation including photo- and avalanche ionization and derives appropriate process parameters for a selective generation of LSFL. Exemplarily, we apply this approach to the generation of LSFL on fused silica using a 1030 nm femtosecond laser. The experimental results for the orientation and spatial periodicity of LSFL reveal excellent agreement with the simulation.

  12. Generation of laser-induced periodic surface structures on transparent material-fused silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, Simon; Rung, Stefan; Hellmann, Ralf

    2016-05-02

    We report on a comparison between simulated and experimental results for the generation of laser-induced periodic surface structures with low spatial frequency on dielectrics. Using the established efficacy factor theory extended by a Drude model, we determine the required carrier density for the generation of low spatial frequency LIPSS (LSFL) and forecast their periodicity and orientation. In a subsequent calculative step, we determine the fluence of ultrashort laser pulses necessary to excite this required carrier density in due consideration of the pulse number dependent ablation threshold. The later calculation is based on a rate equation including photo- and avalanche ionizationmore » and derives appropriate process parameters for a selective generation of LSFL. Exemplarily, we apply this approach to the generation of LSFL on fused silica using a 1030 nm femtosecond laser. The experimental results for the orientation and spatial periodicity of LSFL reveal excellent agreement with the simulation.« less

  13. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design

    PubMed Central

    Vanommeslaeghe, K.

    2014-01-01

    Background Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. Scope of Review As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular bimolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields’ parametrization philosophy and methodology. Major Conclusions Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1 microsecond on proteins, DNA, lipids and carbohydrates. General Significance Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers a model that is an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. PMID:25149274

  14. Drude weight fluctuations in many-body localized systems

    NASA Astrophysics Data System (ADS)

    Filippone, Michele; Brouwer, Piet W.; Eisert, Jens; von Oppen, Felix

    2016-11-01

    We numerically investigate the distribution of Drude weights D of many-body states in disordered one-dimensional interacting electron systems across the transition to a many-body localized phase. Drude weights are proportional to the spectral curvatures induced by magnetic fluxes in mesoscopic rings. They offer a method to relate the transition to the many-body localized phase to transport properties. In the delocalized regime, we find that the Drude weight distribution at a fixed disorder configuration agrees well with the random-matrix-theory prediction P (D ) ∝(γ2+D2) -3 /2 , although the distribution width γ strongly fluctuates between disorder realizations. A crossover is observed towards a distribution with different large-D asymptotics deep in the many-body localized phase, which however differs from the commonly expected Cauchy distribution. We show that the average distribution width <γ >, rescaled by L Δ ,Δ being the average level spacing in the middle of the spectrum and L the systems size, is an efficient probe of the many-body localization transition, as it increases (vanishes) exponentially in the delocalized (localized) phase.

  15. High-Resolution Faraday Rotation and Electron-Phonon Coupling in Surface States of the Bulk-Insulating Topological Insulator Cu_{0.02}Bi_{2}Se_{3}.

    PubMed

    Wu, Liang; Tse, Wang-Kong; Brahlek, M; Morris, C M; Aguilar, R Valdés; Koirala, N; Oh, S; Armitage, N P

    2015-11-20

    We have utilized time-domain magnetoterahertz spectroscopy to investigate the low-frequency optical response of the topological insulator Cu_{0.02}Bi_{2}Se_{3} and Bi_{2}Se_{3} films. With both field and frequency dependence, such experiments give sufficient information to measure the mobility and carrier density of multiple conduction channels simultaneously. We observe sharp cyclotron resonances (CRs) in both materials. The small amount of Cu incorporated into the Cu_{0.02}Bi_{2}Se_{3} induces a true bulk insulator with only a single type of conduction with a total sheet carrier density of ~4.9×10^{12}/cm^{2} and mobility as high as 4000 cm^{2}/V·s. This is consistent with conduction from two virtually identical topological surface states (TSSs) on the top and bottom of the film with a chemical potential ~145 meV above the Dirac point and in the bulk gap. The CR broadens at high fields, an effect that we attribute to an electron-phonon interaction. This assignment is supported by an extended Drude model analysis of the zero-field Drude conductance. In contrast, in normal Bi_{2}Se_{3} films, two conduction channels were observed, and we developed a self-consistent analysis method to distinguish the dominant TSSs and coexisting trivial bulk or two-dimensional electron gas states. Our high-resolution Faraday rotation spectroscopy on Cu_{0.02}Bi_{2}Se_{3} paves the way for the observation of quantized Faraday rotation under experimentally achievable conditions to push the chemical potential in the lowest Landau level.

  16. Electrodynamics of the nodal metal state in weakly doped high- Tc cuprates

    NASA Astrophysics Data System (ADS)

    Lee, Y. S.; Segawa, Kouji; Li, Z. Q.; Padilla, W. J.; Dumm, M.; Dordevic, S. V.; Homes, C. C.; Ando, Yoichi; Basov, D. N.

    2005-08-01

    We report on the detailed analysis of the infrared (IR) conductivity of two prototypical high- Tc systems YBa2Cu3Oy and La2-xSrxCuO4 throughout the complex phase diagram of these compounds. Our focus in this work is to thoroughly document the electromagnetic response of the nodal metal state which is initiated with only a few holes doped in parent antiferromagnetic systems and extends up to the pseudogap boundary in the phase diagram. The key signature of the nodal metal is the two-component conductivity: the Drude mode at low energies followed by a resonance in mid-IR. The Drude component can be attributed to the response of coherent quasiparticles residing on the Fermi arcs detected in photoemission experiments. The microscopic origin of the mid-IR band is yet to be understood. A combination of transport and IR data uncovers fingerprints of the Fermi liquid behavior in the response of the nodal metal. The comprehensive nature of the data sets presented in this work allows us to critically re-evaluate common approaches to the interpretation of the optical data. Specifically we re-examine the role of magnetic excitations in generating electronic self-energy effects through the analysis of the IR data in a high magnetic field.

  17. On the convergence and accuracy of the FDTD method for nanoplasmonics.

    PubMed

    Lesina, Antonino Calà; Vaccari, Alessandro; Berini, Pierre; Ramunno, Lora

    2015-04-20

    Use of the Finite-Difference Time-Domain (FDTD) method to model nanoplasmonic structures continues to rise - more than 2700 papers have been published in 2014 on FDTD simulations of surface plasmons. However, a comprehensive study on the convergence and accuracy of the method for nanoplasmonic structures has yet to be reported. Although the method may be well-established in other areas of electromagnetics, the peculiarities of nanoplasmonic problems are such that a targeted study on convergence and accuracy is required. The availability of a high-performance computing system (a massively parallel IBM Blue Gene/Q) allows us to do this for the first time. We consider gold and silver at optical wavelengths along with three "standard" nanoplasmonic structures: a metal sphere, a metal dipole antenna and a metal bowtie antenna - for the first structure comparisons with the analytical extinction, scattering, and absorption coefficients based on Mie theory are possible. We consider different ways to set-up the simulation domain, we vary the mesh size to very small dimensions, we compare the simple Drude model with the Drude model augmented with two critical points correction, we compare single-precision to double-precision arithmetic, and we compare two staircase meshing techniques, per-component and uniform. We find that the Drude model with two critical points correction (at least) must be used in general. Double-precision arithmetic is needed to avoid round-off errors if highly converged results are sought. Per-component meshing increases the accuracy when complex geometries are modeled, but the uniform mesh works better for structures completely fillable by the Yee cell (e.g., rectangular structures). Generally, a mesh size of 0.25 nm is required to achieve convergence of results to ∼ 1%. We determine how to optimally setup the simulation domain, and in so doing we find that performing scattering calculations within the near-field does not necessarily produces large errors but reduces the computational resources required.

  18. Expansion Potentials for Exact Far-from-Equilibrium Spreading of Particles and Energy

    DOE PAGES

    Vasseur, Romain; Karrasch, Christoph; Moore, Joel E.

    2015-12-01

    We report that the rates at which energy and particle densities move to equalize arbitrarily large temperature and chemical potential differences in an isolated quantum system have an emergent thermodynamical description whenever energy or particle current commutes with the Hamiltonian. Concrete examples include the energy current in the 1D spinless fermion model with nearest-neighbor interactions (XXZ spin chain), energy current in Lorentz-invariant theories or particle current in interacting Bose gases in arbitrary dimension. Even far from equilibrium, these rates are controlled by state functions, which we call "expansion potentials", expressed as integrals of equilibrium Drude weights. This relation between nonequilibriummore » quantities and linear response implies non-equilibrium Maxwell relations for the Drude weights. Lastly, we verify our results via DMRG calculations for the XXZ chain.« less

  19. Drude weight and optical conductivity of a two-dimensional heavy-hole gas with k-cubic spin-orbit interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mawrie, Alestin; Ghosh, Tarun Kanti

    We present a detailed theoretical study on zero-frequency Drude weight and optical conductivity of a two-dimensional heavy-hole gas (2DHG) with k-cubic Rashba and Dresselhaus spin-orbit interactions. The presence of k-cubic spin-orbit couplings strongly modifies the Drude weight in comparison to the electron gas with k-linear spin-orbit couplings. For large hole density and strong k-cubic spin-orbit couplings, the density dependence of Drude weight deviates from the linear behavior. We establish a relation between optical conductivity and the Berry connection. Unlike two-dimensional electron gas with k-linear spin-orbit couplings, we explicitly show that the optical conductivity does not vanish even for equal strengthmore » of the two spin-orbit couplings. We attribute this fact to the non-zero Berry phase for equal strength of k-cubic spin-orbit couplings. The least photon energy needed to set in the optical transition in hole gas is one order of magnitude smaller than that of electron gas. Types of two van Hove singularities appear in the optical spectrum are also discussed.« less

  20. Thermodynamics of Small Alkali Metal Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlcek, Lukas; Uhlik, Filip; Moucka, Filip

    We evaluate the ability of selected classical molecular models to describe the thermodynamic and structural aspects of gas-phase hydration of alkali halide ions and the formation of small water clusters. To understand the effect of many-body interactions (polarization) and charge penetration effects on the accuracy of a force field, we perform Monte Carlo simulations with three rigid water models using different functional forms to account for these effects: (i) point charge non-polarizable SPC/E, (ii) Drude point charge polarizable SWM4- DP, and (iii) Drude Gaussian charge polarizable BK3. Model predictions are compared with experimental Gibbs free energies and enthalpies of ionmore » hydration, and with microscopic structural properties obtained from quantum DFT calculations. We find that all three models provide comparable predictions for pure water clusters and cation hydration, but differ significantly in their description of anion hydration. None of the investigated classical force fields can consistently and quantitatively reproduce the experimental gas phase hydration thermodynamics. The outcome of this study highlights the relation between the functional form that describes the effective intermolecular interactions and the accuracy of the resulting ion hydration properties.« less

  1. Differential Deformability of the DNA Minor Groove and Altered BI/BII Backbone Conformational Equilibrium by the Monovalent Ions Li+, Na+, K+ and Rb+ via Water-Mediated Hydrogen Bonding

    PubMed Central

    Savelyev, Alexey; MacKerell, Alexander D.

    2015-01-01

    Recently, we reported the differential impact of the monovalent cations Li+, Na+, K+ and Rb+ on DNA conformational properties. These were identified from variations in the calculated solution-state X-ray DNA spectra as a function of the ion type in the solvation buffer in MD simulations using our recently developed polarizable force field based on the classical Drude oscillator. Changes in the DNA structure were found to mainly involve variations in the minor groove width. Because minor groove dimensions vary significantly in protein-DNA complexes and have been shown to play a critical role in both specific and nonspecific DNA readout, understanding the origins of the observed differential DNA modulation by the first-group monovalent ions is of great biological importance. In the present study we show that the primary microscopic mechanism for the phenomenon is the formation of the water-mediated hydrogen bonds between solvated cations located inside the minor groove and simultaneously to two DNA strands, a process whose intensity and impact on DNA structure depends on both the type of the ion and DNA sequence. Additionally, it is shown that formation of such ion-DNA hydrogen bond complexes appreciably modulates the conformation of the backbone by increasing the population of the BII substate. Notably, the differential impact of the ions on DNA conformational behavior is only predicted by the Drude polarizable model for DNA, with virtually no effect observed from MD simulations utilizing the additive CHARMM36 model. Analysis of dipole moments of the water shows the Drude SWM4 model to possess high sensitivity to changes in the local environment, which indicates the important role of electronic polarization in the salt-dependent conformational properties. This also suggests that inclusion of polarization effects is required to model even relatively simple biological systems such as DNA in various ionic solutions. PMID:26575937

  2. Low-Energy Electronic Properties of Clean CaRuO3: Elusive Landau Quasiparticles

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Geiger, D.; Esser, S.; Pracht, U. S.; Stingl, C.; Tokiwa, Y.; Moshnyaga, V.; Sheikin, I.; Mravlje, J.; Scheffler, M.; Gegenwart, P.

    2014-05-01

    We have prepared high-quality epitaxial thin films of CaRuO3 with residual resistivity ratios up to 55. Shubnikov-de Haas oscillations in the magnetoresistance and a T2 temperature dependence in the electrical resistivity only below 1.5 K, the coefficient of which is substantially suppressed in large magnetic fields, establish CaRuO3 as a Fermi liquid (FL) with an anomalously low coherence scale. At T >1.5 K non-Fermi-liquid (NFL) behavior is found in the electrical resistivity. The high sample quality allows access to the intrinsic electronic properties via THz spectroscopy. For frequencies below 0.6 THz, the conductivity is Drude-like and can be modeled by FL concepts; for higher frequencies, non-Drude behavior is found, which is inconsistent with FL predictions. This establishes CaRuO3 as a prime example of optical NFL behavior in the THz range.

  3. New Insights into the Diverse Electronic Phases of a Novel Vanadium Dioxide Polymorph: A Terahertz Spectroscopy Study

    PubMed Central

    Lourembam, James; Srivastava, Amar; La-o-vorakiat, Chan; Rotella, H.; Venkatesan, T.; Chia, Elbert E. M.

    2015-01-01

    A remarkable feature of vanadium dioxide is that it can be synthesized in a number of polymorphs. The conductivity mechanism in the metastable layered polymorph VO2(B) thin films has been investigated by terahertz time-domain spectroscopy (THz-TDS). In VO2(B), a critical temperature of 240 K marks the appearance of a non-zero Drude term in the observed complex conductivity, indicating the evolution from a pure insulating state towards a metallic state. In contrast, the THz conductivity of the well-known VO2(M1) is well fitted only by a modification of the Drude model to include backscattering. We also identified two different THz conductivity regimes separated by temperature in these two polymorphs. The electronic phase diagram is constructed, revealing that the width and onset of the metal-insulator transition in the B phase develop differently from the M1 phase. PMID:25777320

  4. Terahertz conductivity of twisted bilayer graphene

    NASA Astrophysics Data System (ADS)

    Chia, Elbert E. M.; Zou, Xingquan; Shang, Jingzhi; Leaw, Jianing; Luo, Zhiqiang; Luo, Liyan; Cheong, Siew Ann; Su, Haibin; Zhu, Jian-Xin; Castro Neto, A. H.; Yu, Ting

    2013-03-01

    Using terahertz time-domain spectroscopy, the real part of optical conductivity [σ1 (ω) ] of twisted bilayer graphene was obtained at different temperatures (10 - 300 K) in the frequency range 0.3 - 3 THz. On top of a Drude-like response, we see a strong and narrow peak in σ1 (ω) at ~2.7 THz. We analyze the overall Drude-like response using a disorder-dependent (unitary scattering) model, then attribute the peak at 2.7 THz to an enhanced density of states at that energy, that is caused by the presence of van Hove singularities arising from a commensurate twisting of the two graphene layers. Singapore MOE AcRF Tier 2 (ARC 23/08), NRF-CRP (NRF-CRP4-2008-04), NNSA of the U.S. DOE at LANL (DE-AC52-06NA25396), LANL LDRD Program, NRF-CRP (R-144-000-295-281), DOE DE-FG02-08ER46512, ONR MURI N00014-09-1-1063.

  5. Terahertz dielectric response of photoexcited carriers in Si revealed via single-shot optical-pump and terahertz-probe spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minami, Yasuo; Horiuchi, Kohei; Masuda, Kaisei

    We have demonstrated accurate observations of terahertz (THz) dielectric response due to photoexcited carriers in a Si plate via single-shot optical-pump and THz-probe spectroscopy. In contrast to conventional THz time-domain spectroscopy, this spectroscopic technique allows single-shot detection of the THz response of materials at a given delay time between the pump and THz pulses, thereby sufficiently extending the time interval between the pump pulses. As a result, we can accurately measure the dielectric properties of materials, while avoiding artifacts in the response caused by the accumulation of long-lived photoexcited carriers. Using our single-shot scheme, the transmittance of a Si platemore » was measured in the range of 0.5–2.5 THz with different pump fluences. Based on a Drude model analysis, the optically induced complex dielectric constant, plasma frequency, and damping rate in the THz region were quantitatively evaluated.« less

  6. Thermalized Drude Oscillators with the LAMMPS Molecular Dynamics Simulator.

    PubMed

    Dequidt, Alain; Devémy, Julien; Pádua, Agílio A H

    2016-01-25

    LAMMPS is a very customizable molecular dynamics simulation software, which can be used to simulate a large diversity of systems. We introduce a new package for simulation of polarizable systems with LAMMPS using thermalized Drude oscillators. The implemented functionalities are described and are illustrated by examples. The implementation was validated by comparing simulation results with published data and using a reference software. Computational performance is also analyzed.

  7. CDW fluctuations and the pseudogap in the single-particle conductivity of quasi-1D Peierls CDW systems: II.

    PubMed

    Kupčić, I; Rukelj, Z; Barišić, S

    2014-05-14

    The current-dipole Kubo formula for the dynamical conductivity of interacting multiband electronic systems derived in Kupčić et al (2013 J. Phys.: Condens. Matter 25 145602) is illustrated on the Peierls model for quasi-one-dimensional systems with the charge-density-wave (CDW) instability. Using the microscopic representation of the Peierls model, it is shown in which way the scattering of conduction electrons by CDW fluctuations affects the dynamical conductivity at temperatures above and well below the CDW transition temperature. The generalized Drude formula for the intraband conductivity is derived in the ordered CDW state well below the transition temperature. The natural extension of this formula to the case where the intraband memory function is dependent on frequency and wave vectors is also presented. It is shown that the main adventage of such a memory-function conductivity model is that it can be easily extended to study the dynamical conductivity and the electronic Raman scattering in more complicated multiband electronic systems in a way consistent with the law of conservation of energy. The incoherent interband conductivity in the CDW pseudogap state is briefly discussed as well.

  8. Analogy for Drude's free electron model to promote students' understanding of electric circuits in lower secondary school

    NASA Astrophysics Data System (ADS)

    de Almeida, Maria José BM; Salvador, Andreia; Costa, Maria Margarida RR

    2014-12-01

    Aiming at a deep understanding of some basic concepts of electric circuits in lower secondary schools, this work introduces an analogy between the behavior of children playing in a school yard with a central lake, subject to different conditions, rules, and stimuli, and Drude's free electron model of metals. Using this analogy from the first school contacts with electric phenomena, one can promote students' understanding of concepts such as electric current, the role of generators, potential difference effects, energy transfer, open and closed circuits, resistances, and their combinations in series and parallel. One believes that through this analogy well-known previous misconceptions of young students about electric circuit behaviors can be overcome. Furthermore, students' understanding will enable them to predict, and justify with self-constructed arguments, the behavior of different elementary circuits. The students' predictions can be verified—as a challenge of self-produced understanding schemes—using laboratory experiments. At a preliminary stage, our previsions were confirmed through a pilot study with three classrooms of 9th level Portuguese students.

  9. Raman and Conductivity Analysis of Graphene for Biomedical Applications

    PubMed Central

    Qiu, Chao; Bennet, Kevin E.; Khan, Tamanna; Ciubuc, John D.; Manciu, Felicia S.

    2016-01-01

    In this study, we present a comprehensive investigation of graphene’s optical and conductive properties using confocal Raman and a Drude model. A comparative analysis between experimental findings and theoretical predictions of the material’s changes and improvements as it transitioned from three-dimensional graphite is also presented and discussed. Besides spectral recording by Raman, which reveals whether there is a single, a few, or multi-layers of graphene, the confocal Raman mapping allows for distinction of such domains and a direct visualization of material inhomogeneity. Drude model employment in the analysis of the far-infrared transmittance measurements demonstrates a distinct increase of the material’s conductivity with dimensionality reduction. Other particularly important material characteristics, including carrier concentration and time constant, were also determined using this model and presented here. Furthermore, the detection of micromolar concentration of dopamine on graphene surfaces not only proves that the Raman technique facilitates ultrasensitive chemical detection of analytes, besides offering high information content about the biomaterial under study, but also that carbon-based materials are biocompatible and favorable micro-environments for such detection. Such information is valuable for the development of bio-medical sensors, which is the main application envisioned for this analysis. PMID:28774016

  10. Drude Weight, Meissner Weight, Rotational Inertia of Bosonic Superfluids: How Are They Distinguished?

    NASA Astrophysics Data System (ADS)

    Hetényi, Balázs

    2014-03-01

    The Drude weight, the quantity which distinguishes metals from insulators, is proportional to the second derivative of the ground state energy with respect to a flux at zero flux. The same expression also appears in the definition of the Meissner weight, the quantity which indicates superconductivity, as well as in the definition of non-classical rotational inertia of bosonic superfluids. It is shown that the difference between these quantities depends on the interpretation of the average momentum term, which can be understood as the expectation value of the total momentum (Drude weight), the sum of the expectation values of single momenta (rotational inertia of a superfluid), or the sum over expectation values of momentum pairs (Meissner weight). This distinction appears naturally when the current from which the particular transport quantity is derived is cast in terms of shift operators.

  11. Quantum Effects in Cation Interactions with First and Second Coordination Shell Ligands in Metalloproteins

    PubMed Central

    2015-01-01

    Despite decades of investigations, the principal mechanisms responsible for the high affinity and specificity of proteins for key physiological cations K+, Na+, and Ca2+ remain a hotly debated topic. At the core of the debate is an apparent need (or lack thereof) for an accurate description of the electrostatic response of the charge distribution in a protein to the binding of an ion. These effects range from partial electronic polarization of the directly ligating atoms to long-range effects related to partial charge transfer and electronic delocalization effects. While accurate modeling of cation recognition by metalloproteins warrants the use of quantum-mechanics (QM) calculations, the most popular approximations used in major biomolecular simulation packages rely on the implicit modeling of electronic polarization effects. That is, high-level QM computations for ion binding to proteins are desirable, but they are often unfeasible, because of the large size of the reactive-site models and the need to sample conformational space exhaustively at finite temperature. Several solutions to this challenge have been proposed in the field, ranging from the recently developed Drude polarizable force-field for simulations of metalloproteins to approximate tight-binding density functional theory (DFTB). To delineate the usefulness of different approximations, we examined the accuracy of three recent and commonly used theoretical models and numerical algorithms, namely, CHARMM C36, the latest developed Drude polarizable force fields, and DFTB3 with the latest 3OB parameters. We performed MD simulations for 30 cation-selective proteins with high-resolution X-ray structures to create ensembles of structures for analysis with different levels of theory, e.g., additive and polarizable force fields, DFTB3, and DFT. The results from DFT computations were used to benchmark CHARMM C36, Drude, and DFTB3 performance. The explicit modeling of quantum effects unveils the key electrostatic properties of the protein sites and the importance of specific ion-protein interactions. One of the most interesting findings is that secondary coordination shells of proteins are noticeably perturbed in a cation-dependent manner, showing significant delocalization and long-range effects of charge transfer and polarization upon binding Ca2+. PMID:26574284

  12. ADE-FDTD Scattered-Field Formulation for Dispersive Materials

    PubMed Central

    Kong, Soon-Cheol; Simpson, Jamesina J.; Backman, Vadim

    2009-01-01

    This Letter presents a scattered-field formulation for modeling dispersive media using the finite-difference time-domain (FDTD) method. Specifically, the auxiliary differential equation method is applied to Drude and Lorentz media for a scattered field FDTD model. The present technique can also be applied in a straightforward manner to Debye media. Excellent agreement is achieved between the FDTD-calculated and exact theoretical results for the reflection coefficient in half-space problems. PMID:19844602

  13. ADE-FDTD Scattered-Field Formulation for Dispersive Materials.

    PubMed

    Kong, Soon-Cheol; Simpson, Jamesina J; Backman, Vadim

    2008-01-01

    This Letter presents a scattered-field formulation for modeling dispersive media using the finite-difference time-domain (FDTD) method. Specifically, the auxiliary differential equation method is applied to Drude and Lorentz media for a scattered field FDTD model. The present technique can also be applied in a straightforward manner to Debye media. Excellent agreement is achieved between the FDTD-calculated and exact theoretical results for the reflection coefficient in half-space problems.

  14. Simulation of subwavelength metallic gratings using a new implementation of the recursive convolution finite-difference time-domain algorithm.

    PubMed

    Banerjee, Saswatee; Hoshino, Tetsuya; Cole, James B

    2008-08-01

    We introduce a new implementation of the finite-difference time-domain (FDTD) algorithm with recursive convolution (RC) for first-order Drude metals. We implemented RC for both Maxwell's equations for light polarized in the plane of incidence (TM mode) and the wave equation for light polarized normal to the plane of incidence (TE mode). We computed the Drude parameters at each wavelength using the measured value of the dielectric constant as a function of the spatial and temporal discretization to ensure both the accuracy of the material model and algorithm stability. For the TE mode, where Maxwell's equations reduce to the wave equation (even in a region of nonuniform permittivity) we introduced a wave equation formulation of RC-FDTD. This greatly reduces the computational cost. We used our methods to compute the diffraction characteristics of metallic gratings in the visible wavelength band and compared our results with frequency-domain calculations.

  15. Transient carrier dynamics in a Mott insulator with antiferromagnetic order

    NASA Astrophysics Data System (ADS)

    Iyoda, Eiki; Ishihara, Sumio

    2014-03-01

    We study transient dynamics of hole carriers injected into a Mott insulator with antiferromagnetic long-range order. This "dynamical hole doping" contrasts with chemical hole doping. The theoretical framework for the transient carrier dynamics is presented based on the two-dimensional t-J model. The time dependencies of the optical conductivity spectra, as well as the one-particle excitation spectra, are calculated based on the Keldysh Green's function formalism at zero temperature combined with the self-consistent Born approximation. In the early stage after dynamical hole doping, the Drude component appears, and then incoherent components originating from hole-magnon scattering start to grow. Fast oscillatory behavior owing to coherent magnon and slow relaxation dynamics are confirmed in the spectra. The time profiles are interpreted as doped bare holes being dressed by magnon clouds and relaxed into spin polaron quasiparticle states. The characteristic relaxation times for Drude and incoherent peaks strongly depend on the momentum of the dynamically doped hole and the exchange constant. Implications for recent pump-probe experiments are discussed.

  16. A general intermolecular force field based on tight-binding quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Grimme, Stefan; Bannwarth, Christoph; Caldeweyher, Eike; Pisarek, Jana; Hansen, Andreas

    2017-10-01

    A black-box type procedure is presented for the generation of a molecule-specific, intermolecular potential energy function. The method uses quantum chemical (QC) information from our recently published extended tight-binding semi-empirical scheme (GFN-xTB) and can treat non-covalently bound complexes and aggregates with almost arbitrary chemical structure. The necessary QC information consists of the equilibrium structure, Mulliken atomic charges, charge centers of localized molecular orbitals, and also of frontier orbitals and orbital energies. The molecular pair potential includes model density dependent Pauli repulsion, penetration, as well as point charge electrostatics, the newly developed D4 dispersion energy model, Drude oscillators for polarization, and a charge-transfer term. Only one element-specific and about 20 global empirical parameters are needed to cover systems with nuclear charges up to radon (Z = 86). The method is tested for standard small molecule interaction energy benchmark sets where it provides accurate intermolecular energies and equilibrium distances. Examples for structures with a few hundred atoms including charged systems demonstrate the versatility of the approach. The method is implemented in a stand-alone computer code which enables rigid-body, global minimum energy searches for molecular aggregation or alignment.

  17. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design.

    PubMed

    Vanommeslaeghe, K; MacKerell, A D

    2015-05-01

    Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular biomolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields' parametrization philosophy and methodology. Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1μs on proteins, DNA, lipids and carbohydrates. Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. This article is part of a Special Issue entitled "Recent developments of molecular dynamics". Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Material Characterization using Passive Multispectral Polarimetric Imagery

    DTIC Science & Technology

    2013-03-01

    least intuitive RS technique is undoubtedly polarimetry . Polarization is a property of all TEM waves, so its applications are not limited to any...Shaw. “Review of passive imaging polarimetry for remote sensing applications”. Applied Optics, 45(22):5453–5469, 2006. [48] Vanderbilt, V.C. and...refractive index; polarimetry ; multispectral; polarization; polarisation; polarimetric imagery; dispersion; Drude model; Cauchy equation; remote

  19. Plasmonic modes in nanowire dimers: A study based on the hydrodynamic Drude model including nonlocal and nonlinear effects

    NASA Astrophysics Data System (ADS)

    Moeferdt, Matthias; Kiel, Thomas; Sproll, Tobias; Intravaia, Francesco; Busch, Kurt

    2018-02-01

    A combined analytical and numerical study of the modes in two distinct plasmonic nanowire systems is presented. The computations are based on a discontinuous Galerkin time-domain approach, and a fully nonlinear and nonlocal hydrodynamic Drude model for the metal is utilized. In the linear regime, these computations demonstrate the strong influence of nonlocality on the field distributions as well as on the scattering and absorption spectra. Based on these results, second-harmonic-generation efficiencies are computed over a frequency range that covers all relevant modes of the linear spectra. In order to interpret the physical mechanisms that lead to corresponding field distributions, the associated linear quasielectrostatic problem is solved analytically via conformal transformation techniques. This provides an intuitive classification of the linear excitations of the systems that is then applied to the full Maxwell case. Based on this classification, group theory facilitates the determination of the selection rules for the efficient excitation of modes in both the linear and nonlinear regimes. This leads to significantly enhanced second-harmonic generation via judiciously exploiting the system symmetries. These results regarding the mode structure and second-harmonic generation are of direct relevance to other nanoantenna systems.

  20. Size-dependent Hamaker constants for silver and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Pinchuk, Pavlo; Jiang, Ke

    2015-08-01

    Hamaker-Lifshitz constants are material specific constants that are used to calculate van der Waals interaction forces between small particles in solution. Typically, these constants are size-independent and material specific. According to the Lifshitz theory, the Hamaker-Lifshitz constants can be calculated by taking integrals that include the dielectric permittivity, as a function of frequency, of the interacting particles and the medium around particles. The dielectric permittivity of interacting metal nanoparticles can be calculated using the Drude model, which is based on the assumption of motion of free conducting electrons. For bulk metals, the Drude model does not predict any sizedependence of the dielectric permittivity. However, the conducting electrons in small noble metal nanoparticles (R ~ 10nm) exhibit surface scattering, which changes the complex permittivity function. In this work, we show theoretically that scattering of the free conducting electrons inside silver and gold nanoparticles with the size of 1 - 50 nm leads to size-dependent dielectric permittivity and Hamaker-Lifshitz constants. We calculate numerically the Hamaker-Lifshitz constants for silver and gold nanoparticles with different diameters. The results of the study might be of interests for understanding colloidal stability of metal nanoparticles.

  1. Bounds on quantum confinement effects in metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Blackman, G. Neal; Genov, Dentcho A.

    2018-03-01

    Quantum size effects on the permittivity of metal nanoparticles are investigated using the quantum box model. Explicit upper and lower bounds are derived for the permittivity and relaxation rates due to quantum confinement effects. These bounds are verified numerically, and the size dependence and frequency dependence of the empirical Drude size parameter is extracted from the model. Results suggest that the common practice of empirically modifying the dielectric function can lead to inaccurate predictions for highly uniform distributions of finite-sized particles.

  2. Derivation of an applied nonlinear Schroedinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitts, Todd Alan; Laine, Mark Richard; Schwarz, Jens

    We derive from first principles a mathematical physics model useful for understanding nonlinear optical propagation (including filamentation). All assumptions necessary for the development are clearly explained. We include the Kerr effect, Raman scattering, and ionization (as well as linear and nonlinear shock, diffraction and dispersion). We explain the phenomenological sub-models and each assumption required to arrive at a complete and consistent theoretical description. The development includes the relationship between shock and ionization and demonstrates why inclusion of Drude model impedance effects alters the nature of the shock operator. Unclassified Unlimited Release

  3. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    NASA Astrophysics Data System (ADS)

    Kinefuchi, K.; Funaki, I.; Shimada, T.; Abe, T.

    2012-10-01

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  4. Temperature dependence of the superconducting energy gaps in Ca9.35La0.65(Pt3As8)(Fe2As2)5 single crystal.

    PubMed

    Seo, Yu-Il; Choi, Woo-Jae; Ahmad, D; Kimura, Shin-Ichi; Kwon, Yong Seung

    2018-06-05

    We measured the optical reflectivity R(ω) for an underdoped (Ca 0.935 La 0.065 ) 10 (Pt 3 As 8 )(Fe 2 As 2 ) 5 single crystal and obtained the optical conductivity [Formula: see text] using the K-K transformation. The normal state [Formula: see text] at 30 K is well fitted by a Drude-Lorentz model with two Drude components (ω p1  = 1446 cm -1 and ω p2  = 6322 cm -1 ) and seven Lorentz components. Relative reflectometry was used to accurately determine the temperature dependence of the superconducting gap at various temperatures below T c . The results clearly show the opening of a superconducting gap with a weaker second gap structure; the magnitudes for the gaps are estimated from the generalized Mattis-Bardeen model to be Δ 1  = 30 and Δ 2  = 50 cm -1 , respectively, at T = 8 K, which both decrease with increasing temperature. The temperature dependence of the gaps was not consistent with one-band BCS theory but was well described by a two-band (hence, two gap) BCS model with interband interactions. The temperature dependence of the superfluid density is flat at low temperatures, indicating an s-wave full-gap superconducting state.

  5. Efficient Wideband Numerical Simulations for Nanostructures Employing a Drude-Critical Points (DCP) Dispersive Model.

    PubMed

    Ren, Qiang; Nagar, Jogender; Kang, Lei; Bian, Yusheng; Werner, Ping; Werner, Douglas H

    2017-05-18

    A highly efficient numerical approach for simulating the wideband optical response of nano-architectures comprised of Drude-Critical Points (DCP) media (e.g., gold and silver) is proposed and validated through comparing with commercial computational software. The kernel of this algorithm is the subdomain level discontinuous Galerkin time domain (DGTD) method, which can be viewed as a hybrid of the spectral-element time-domain method (SETD) and the finite-element time-domain (FETD) method. An hp-refinement technique is applied to decrease the Degrees-of-Freedom (DoFs) and computational requirements. The collocated E-J scheme facilitates solving the auxiliary equations by converting the inversions of matrices to simpler vector manipulations. A new hybrid time stepping approach, which couples the Runge-Kutta and Newmark methods, is proposed to solve the temporal auxiliary differential equations (ADEs) with a high degree of efficiency. The advantages of this new approach, in terms of computational resource overhead and accuracy, are validated through comparison with well-known commercial software for three diverse cases, which cover both near-field and far-field properties with plane wave and lumped port sources. The presented work provides the missing link between DCP dispersive models and FETD and/or SETD based algorithms. It is a competitive candidate for numerically studying the wideband plasmonic properties of DCP media.

  6. Terahertz emission and spectroscopy on InN epilayer and nanostructure

    NASA Astrophysics Data System (ADS)

    Ahn, H.; Pan, C.-L.; Gwo, S.

    2009-02-01

    We report a comprehensive study on THz emission and spectroscopy of indium nitride (InN) films and its nanorod arrays grown by plasma-assisted molecular beam epitaxy technique. For the enhancement of THz emission from InN, we demonstrated two method; firstly using nanorod arrays, which have large surface area for optical absorption and THz emission, and secondly using nonpolar InN film, of which the electric field is along the sample surface. We propose that a "screened" photo-Dember effect due to narrow surface electron accumulation layer of InN is responsible for the nanorod-size-dependent enhancement from InN nanorods. The primary THz radiation mechanism of nonpolar InN is found to be due to the acceleration of photoexcited carriers under the polarization-induced in-plane electric field. THz time-domain spectroscopy has been used to investigate THz conductivity and dielectric response of InN nanorod arrays and epitaxial film. The complex THz conductivity of InN film is well fitted by the Drude model, while the negative imaginary conductivity of the InN nanorods can be described by using a non-Drude model, which includes a preferential backward scattering due to defects in InN nanorods, or a Coulombic restoring force from charged defects.

  7. An Analytical Quantum Model to Calculate Fluorescence Enhancement of a Molecule in Vicinity of a Sub-10 nm Metal Nanoparticle.

    PubMed

    Bagheri, Zahra; Massudi, Reza

    2017-05-01

    An analytical quantum model is used to calculate electrical permittivity of a metal nanoparticle located in an adjacent molecule. Different parameters, such as radiative and non-radiative decay rates, quantum yield, electrical field enhancement factor, and fluorescence enhancement are calculated by such a model and they are compared with those obtained by using the classical Drude model. It is observed that using an analytical quantum model presents a higher enhancement factor, up to 30%, as compared to classical model for nanoparticles smaller than 10 nm. Furthermore, the results are in better agreement with those experimentally realized.

  8. Quantum Drude oscillator model of atoms and molecules: Many-body polarization and dispersion interactions for atomistic simulation

    NASA Astrophysics Data System (ADS)

    Jones, Andrew P.; Crain, Jason; Sokhan, Vlad P.; Whitfield, Troy W.; Martyna, Glenn J.

    2013-04-01

    Treating both many-body polarization and dispersion interactions is now recognized as a key element in achieving the level of atomistic modeling required to reveal novel physics in complex systems. The quantum Drude oscillator (QDO), a Gaussian-based, coarse grained electronic structure model, captures both many-body polarization and dispersion and has linear scale computational complexity with system size, hence it is a leading candidate next-generation simulation method. Here, we investigate the extent to which the QDO treatment reproduces the desired long-range atomic and molecular properties. We present closed form expressions for leading order polarizabilities and dispersion coefficients and derive invariant (parameter-free) scaling relationships among multipole polarizability and many-body dispersion coefficients that arise due to the Gaussian nature of the model. We show that these “combining rules” hold to within a few percent for noble gas atoms, alkali metals, and simple (first-row hydride) molecules such as water; this is consistent with the surprising success that models with underlying Gaussian statistics often exhibit in physics. We present a diagrammatic Jastrow-type perturbation theory tailored to the QDO model that serves to illustrate the rich types of responses that the QDO approach engenders. QDO models for neon, argon, krypton, and xenon, designed to reproduce gas phase properties, are constructed and their condensed phase properties explored via linear scale diffusion Monte Carlo (DMC) and path integral molecular dynamics (PIMD) simulations. Good agreement with experimental data for structure, cohesive energy, and bulk modulus is found, demonstrating a degree of transferability that cannot be achieved using current empirical models or fully ab initio descriptions.

  9. A TBA approach to thermal transport in the XXZ Heisenberg model

    NASA Astrophysics Data System (ADS)

    Zotos, X.

    2017-10-01

    We show that the thermal Drude weight and magnetothermal coefficient of the 1D easy-plane Heisenberg model can be evaluated by an extension of the Bethe ansatz thermodynamics formulation by Takahashi and Suzuki (1972 Prog. Theor. Phys. 48 2187). They have earlier been obtained by the quantum transfer matrix method (Klümper 1999 Z. Phys. B 91 507). Furthermore, this approach can be applied to the study of the far-out of equilibrium energy current generated at the interface between two semi-infinite chains held at different temperatures.

  10. Warm Dense Matter Demonstrating Non-Drude Conductivity from Observations of Nonlinear Plasmon Damping

    NASA Astrophysics Data System (ADS)

    Witte, B. B. L.; Fletcher, L. B.; Galtier, E.; Gamboa, E.; Lee, H. J.; Zastrau, U.; Redmer, R.; Glenzer, S. H.; Sperling, P.

    2017-06-01

    We present simulations using finite-temperature density-functional-theory molecular dynamics to calculate the dynamic electrical conductivity in warm dense aluminum. The comparison between exchange-correlation functionals in the Perdew-Burke-Enzerhof and Heyd-Scuseria-Enzerhof (HSE) approximation indicates evident differences in the density of states and the dc conductivity. The HSE calculations show excellent agreement with experimental Linac Coherent Light Source x-ray plasmon scattering spectra revealing plasmon damping below the widely used random phase approximation. These findings demonstrate non-Drude-like behavior of the dynamic conductivity that needs to be taken into account to determine the optical properties of warm dense matter.

  11. Effect of electron-hole asymmetry on optical conductivity in 8 -P m m n borophene

    NASA Astrophysics Data System (ADS)

    Verma, Sonu; Mawrie, Alestin; Ghosh, Tarun Kanti

    2017-10-01

    We present a detailed theoretical study of the Drude weight and optical conductivity of 8-P m m n borophene having tilted anisotropic Dirac cones. We provide exact analytical expressions of x x and y y components of the Drude weight as well as maximum optical conductivity. We also obtain exact analytical expressions of the minimum energy (ɛ1) required to trigger the optical transitions and energy (ɛ2) needed to attain maximum optical conductivity. We find that the Drude weight and optical conductivity are highly anisotropic as a consequence of the anisotropic Dirac cone. The optical conductivities have a nonmonotonic behavior with photon energy in the regime between ɛ1 and ɛ2, as a result of the tilted parameter vt. The tilted parameter can be extracted by knowing ɛ1 and ɛ2 from optical measurements. The maximum values of the components of the optical conductivity do not depend on the carrier density and the tilted parameter. The product of the maximum values of the anisotropic conductivities has the universal value (e2/4ℏ ) 2. The tilted anisotropic Dirac cones in 8-P m m n borophene can be realized by the optical conductivity measurement.

  12. CHARMM-GUI 10 Years for Biomolecular Modeling and Simulation

    PubMed Central

    Jo, Sunhwan; Cheng, Xi; Lee, Jumin; Kim, Seonghoon; Park, Sang-Jun; Patel, Dhilon S.; Beaven, Andrew H.; Lee, Kyu Il; Rui, Huan; Roux, Benoît; MacKerell, Alexander D.; Klauda, Jeffrey B.; Qi, Yifei

    2017-01-01

    CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface that prepares complex biomolecular systems for molecular simulations. CHARMM-GUI creates input files for a number of programs including CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Since its original development in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to set up a broad range of simulations: (1) PDB Reader & Manipulator, Glycan Reader, and Ligand Reader & Modeler for reading and modifying molecules; (2) Quick MD Simulator, Membrane Builder, Nanodisc Builder, HMMM Builder, Monolayer Builder, Micelle Builder, and Hex Phase Builder for building all-atom simulation systems in various environments; (3) PACE CG Builder and Martini Maker for building coarse-grained simulation systems; (4) DEER Facilitator and MDFF/xMDFF Utilizer for experimentally guided simulations; (5) Implicit Solvent Modeler, PBEQ-Solver, and GCMC/BD Ion Simulator for implicit solvent related calculations; (6) Ligand Binder for ligand solvation and binding free energy simulations; and (7) Drude Prepper for preparation of simulations with the CHARMM Drude polarizable force field. Recently, new modules have been integrated into CHARMM-GUI, such as Glycolipid Modeler for generation of various glycolipid structures, and LPS Modeler for generation of lipopolysaccharide structures from various Gram-negative bacteria. These new features together with existing modules are expected to facilitate advanced molecular modeling and simulation thereby leading to an improved understanding of the molecular details of the structure and dynamics of complex biomolecular systems. Here, we briefly review these capabilities and discuss potential future directions in the CHARMM-GUI development project. PMID:27862047

  13. CHARMM-GUI 10 years for biomolecular modeling and simulation.

    PubMed

    Jo, Sunhwan; Cheng, Xi; Lee, Jumin; Kim, Seonghoon; Park, Sang-Jun; Patel, Dhilon S; Beaven, Andrew H; Lee, Kyu Il; Rui, Huan; Park, Soohyung; Lee, Hui Sun; Roux, Benoît; MacKerell, Alexander D; Klauda, Jeffrey B; Qi, Yifei; Im, Wonpil

    2017-06-05

    CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface that prepares complex biomolecular systems for molecular simulations. CHARMM-GUI creates input files for a number of programs including CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Since its original development in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to set up a broad range of simulations: (1) PDB Reader & Manipulator, Glycan Reader, and Ligand Reader & Modeler for reading and modifying molecules; (2) Quick MD Simulator, Membrane Builder, Nanodisc Builder, HMMM Builder, Monolayer Builder, Micelle Builder, and Hex Phase Builder for building all-atom simulation systems in various environments; (3) PACE CG Builder and Martini Maker for building coarse-grained simulation systems; (4) DEER Facilitator and MDFF/xMDFF Utilizer for experimentally guided simulations; (5) Implicit Solvent Modeler, PBEQ-Solver, and GCMC/BD Ion Simulator for implicit solvent related calculations; (6) Ligand Binder for ligand solvation and binding free energy simulations; and (7) Drude Prepper for preparation of simulations with the CHARMM Drude polarizable force field. Recently, new modules have been integrated into CHARMM-GUI, such as Glycolipid Modeler for generation of various glycolipid structures, and LPS Modeler for generation of lipopolysaccharide structures from various Gram-negative bacteria. These new features together with existing modules are expected to facilitate advanced molecular modeling and simulation thereby leading to an improved understanding of the structure and dynamics of complex biomolecular systems. Here, we briefly review these capabilities and discuss potential future directions in the CHARMM-GUI development project. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinefuchi, K.; Funaki, I.; Shimada, T.

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model.more » The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.« less

  15. Casimir-Foucault interaction: Free energy and entropy at low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intravaia, Francesco; Ellingsen, Simen A.; Henkel, Carsten

    2010-09-15

    It was recently found that thermodynamic anomalies which arise in the Casimir effect between metals described by the Drude model can be attributed to the interaction of fluctuating Foucault (or eddy) currents [F. Intravaia and C. Henkel, Phys. Rev. Lett. 103, 130405 (2009).] We focus on the transverse electric (TE) polarization, where the anomalies occur, and show explicitly that the two leading terms of the low-temperature correction to the Casimir free energy of interaction between two plates are identical to those pertaining to the Foucault current interaction alone, up to a correction which is very small for good metals. Moreover,more » a mode density along real frequencies is introduced, showing that the TE contribution to the Casimir free energy, as given by the Lifshitz theory, separates in a natural manner into contributions from eddy currents and propagating cavity modes, respectively. The latter have long been known to be of little importance to the low-temperature Casimir anomalies. This convincingly demonstrates that eddy current modes are responsible for the large temperature correction to the Casimir effect between Drude metals, predicted by the Lifshitz theory, but not observed in experiments.« less

  16. Drude-type conductivity of charged sphere colloidal crystals: Density and temperature dependence

    NASA Astrophysics Data System (ADS)

    Medebach, Martin; Jordán, Raquel Chuliá; Reiber, Holger; Schöpe, Hans-Joachim; Biehl, Ralf; Evers, Martin; Hessinger, Dirk; Olah, Julianna; Palberg, Thomas; Schönberger, Ernest; Wette, Patrick

    2005-09-01

    We report on extensive measurements in the low-frequency limit of the ac conductivity of colloidal fluids and crystals formed from charged colloidal spheres suspended in de-ionized water. Temperature was varied in a range of 5°C<Θ<35°C and the particle number density n between 0.2 and 25μm-3 for the larger, respectively, 2.75 and 210μm-3 for the smaller of two investigated species. At fixed Θ the conductivity increased linearly with increasing n without any significant change at the fluid-solid phase boundary. At fixed n it increased with increasing Θ and the increase was more pronounced for larger n. Lacking a rigorous electrohydrodynamic treatment for counterion-dominated systems we describe our data with a simple model relating to Drude's theory of metal conductivity. The key parameter is an effectively transported particle charge or valence Z*. All temperature dependencies other than that of Z* were taken from literature. Within experimental resolution Z* was found to be independent of n irrespective of the suspension structure. Interestingly, Z* decreases with temperature in near quantitative agreement with numerical calculations.

  17. Correlation between electrical direct current resistivity and plasmonic properties of CMOS compatible titanium nitride thin films.

    PubMed

    Viarbitskaya, S; Arocas, J; Heintz, O; Colas-Des-Francs, G; Rusakov, D; Koch, U; Leuthold, J; Markey, L; Dereux, A; Weeber, J-C

    2018-04-16

    Damping distances of surface plasmon polariton modes sustained by different thin titanium nitride (TiN) films are measured at the telecom wavelength of 1.55 μm. The damping distances are correlated to the electrical direct current resistivity of the films sustaining the surface plasmon modes. It is found that TiN/Air surface plasmon mode damping distances drop non-linearly from 40 to 16μm as the resistivity of the layers increases from 28 to 130μΩ.cm, respectively. The relevance of the direct current (dc) electrical resistivity for the characterization of TiN plasmonic properties is investigated in the framework of the Drude model, on the basis of parameters extracted from spectroscopic ellipsometry experiments. By probing a parametric space of realistic values for parameters of the Drude model, we obtain a nearly univocal dependence of the surface plasmon damping distance on the dc resistivity demonstrating the relevance of dc resistivity for the evaluation of the plasmonic performances of TiN at telecom frequencies. Finally, we show that better plasmonic performances are obtained for TiN films featuring a low content of oxygen. For low oxygen content and corresponding low resistivity, we attribute the increase of the surface plasmon damping distances to a lower confinement of the plasmon field into the metal and not to a decrease of the absorption of TiN.

  18. Reflectance modeling of electrochemically P-type porosified silicon by Drude-Lorentz model

    NASA Astrophysics Data System (ADS)

    Kadi, M.; Media, E. M.; Gueddaoui, H.; Outemzabet, R.

    2014-09-01

    Porous silicon remains a promising material for optoelectronic application; in this field monitoring of the refractive index profile of the porous layer is required. We present in this work a procedure based on Drude-Lorentz model for calculating the optical parameters such as the high- and low-frequency dielectric constants, the plasma frequency by fitting the reflectance spectra. The experimental data of different porous silicon layer created above the bulk silicon material by electrochemical etching are extracted from reflectance measurements. The reflectance spectra are recorded in the spectral range 350-2500 nm. First, our computational procedure has been validated by its application on mono-crystalline silicon for the determination of its optical parameters. A good agreement between our results and those found in other works has been achieved in the visible-NIR range. In the second step, the model was applied to porous silicon (PS) layers. Useful optical parameters like the refractive index and the extinction coefficient, respectively, n (λ) and κ(λ), the band gap Eg, of different fabricated porous silicon layer are determined from simulated reflectance spectra. The correlation between the optical properties and the conditions of the electrochemical treatment was observed and analyzed. The main conclusion is that the reflected light from the porous silicon surface, although non-homogeneous and thus possessing the light scattering, is essentially smaller than the reflected light from the bulk crystalline silicon. These results show that the porous surface layer can act as an antireflection coating for silicon and could be used, in particular, in solar cells.

  19. Bethe-Boltzmann hydrodynamics and spin transport in the XXZ chain

    NASA Astrophysics Data System (ADS)

    Bulchandani, Vir B.; Vasseur, Romain; Karrasch, Christoph; Moore, Joel E.

    2018-01-01

    Quantum integrable systems, such as the interacting Bose gas in one dimension and the XXZ quantum spin chain, have an extensive number of local conserved quantities that endow them with exotic thermalization and transport properties. We discuss recently introduced hydrodynamic approaches for such integrable systems from the viewpoint of kinetic theory and extend the previous works by proposing a numerical scheme to solve the hydrodynamic equations for finite times and arbitrary locally equilibrated initial conditions. We then discuss how such methods can be applied to describe nonequilibrium steady states involving ballistic heat and spin currents. In particular, we show that the spin Drude weight in the XXZ chain, previously accessible only by rigorous techniques of limited scope or controversial thermodynamic Bethe ansatz arguments, may be evaluated from hydrodynamics in very good agreement with density-matrix renormalization group calculations.

  20. Representation of Ion–Protein Interactions Using the Drude Polarizable Force-Field

    PubMed Central

    2016-01-01

    Small metal ions play critical roles in numerous biological processes. Of particular interest is how metalloenzymes are allosterically regulated by the binding of specific ions. Understanding how ion binding affects these biological processes requires atomic models that accurately treat the microscopic interactions with the protein ligands. Theoretical approaches at different levels of sophistication can contribute to a deeper understanding of these systems, although computational models must strike a balance between accuracy and efficiency in order to enable long molecular dynamics simulations. In this study, we present a systematic effort to optimize the parameters of a polarizable force field based on classical Drude oscillators to accurately represent the interactions between ions (K+, Na+, Ca2+, and Cl–) and coordinating amino-acid residues for a set of 30 biologically important proteins. By combining ab initio calculations and experimental thermodynamic data, we derive a polarizable force field that is consistent with a wide range of properties, including the geometries and interaction energies of gas-phase ion/protein-like model compound clusters, and the experimental solvation free-energies of the cations in liquids. The resulting models display significant improvements relative to the fixed-atomic-charge additive CHARMM C36 force field, particularly in their ability to reproduce the many-body electrostatic nonadditivity effects estimated from ab initio calculations. The analysis clarifies the fundamental limitations of the pairwise additivity assumption inherent in classical fixed-charge force fields, and shows its dramatic failures in the case of Ca2+ binding sites. These optimized polarizable models, amenable to computationally efficient large-scale MD simulations, set a firm foundation and offer a powerful avenue to study the roles of the ions in soluble and membrane transport proteins. PMID:25578354

  1. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators.

    PubMed

    Bernardi, Michael P; Dupré, Olivier; Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-06-26

    The impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10 nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap. A design guideline is also proposed where a high energy cutoff above which radiation has a net negative effect on nano-TPV power output due to thermal losses is determined. It is shown that the power output of a tungsten-based device increases by 6.5% while the cell temperature decreases by 30 K when applying a high energy cutoff at 1.45 eV. This work demonstrates that design and optimization of nano-TPV devices must account for radiative, electrical and thermal losses.

  2. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators

    PubMed Central

    Bernardi, Michael P.; Dupré, Olivier; Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-01-01

    The impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10 nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap. A design guideline is also proposed where a high energy cutoff above which radiation has a net negative effect on nano-TPV power output due to thermal losses is determined. It is shown that the power output of a tungsten-based device increases by 6.5% while the cell temperature decreases by 30 K when applying a high energy cutoff at 1.45 eV. This work demonstrates that design and optimization of nano-TPV devices must account for radiative, electrical and thermal losses. PMID:26112658

  3. Improved dielectric functions in metallic films obtained via template stripping

    NASA Astrophysics Data System (ADS)

    Hyuk Park, Jong; Nagpal, Prashant; Oh, Sang-Hyun; Norris, David J.

    2012-02-01

    We compare the dielectric functions of silver interfaces obtained via thermal evaporation with those obtained with template stripping. Ellipsometry measurements show that the smoother template-stripped surfaces exhibit effective dielectric functions with a more negative real component and a smaller imaginary component, implying higher conductivity and less energy loss, respectively. These results agree with the relation between dielectric function and surface roughness derived from combining the effective-medium model and the Drude-Lorentz model. The improvement in the effective dielectric properties shows that metallic films prepared via template stripping can be favorable for applications in electronics, nanophotonics, and plasmonics.

  4. Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse.

    PubMed

    Yang, Ming; Wu, Qiang; Chen, Zhandong; Zhang, Bin; Tang, Baiquan; Yao, Jianghong; Drevensek-Olenik, Irena; Xu, Jingjun

    2014-01-15

    We experimentally show that the generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon inducted by irradiation with a single laser pulse (800 nm, 120 fs, linear polarization) depend on the pulse fluence. We propose that this is due to competition between periodic surface structuring originating from the interference of incident light with surface plasmon polaritons and surface smoothing associated with surface melting. Experimental results are supported by theoretical analysis of transient surface modifications based on combining the two-temperature model and the Drude model.

  5. The High Temperature Resistivity of Ba2YCu3O7-x

    NASA Astrophysics Data System (ADS)

    Xingkui, Zhang; Shining, Zhu; Hao, Wang; Shiyuan, Zhang; Su, Ye; Ningshen, Zhou; Ziran, Xu

    The high temperature resistivity (ρ), thermogravimetry (TG) and derivative thermogravimetry (DTG) have been used to characterize superconductor Ba2YCu3O7-x (BYCO) in O2, air and N2. The resistivity is linear from room temperature to 350°C and then deviate from linearity with oxygen evolution, the derivative of resistivity dρ/dT increases abruptly near orthorhombic to tetragonal phase transition. These phenomena can give good explanations for a two-band Drude model.

  6. Spectroscopic ellipsometry characterization of ZnO:Sn thin films with various Sn composition deposited by remote-plasma reactive sputtering

    NASA Astrophysics Data System (ADS)

    Janicek, Petr; Niang, Kham M.; Mistrik, Jan; Palka, Karel; Flewitt, Andrew J.

    2017-11-01

    ZnO:Sn thin films were deposited onto thermally oxidized silicon substrates using a remote plasma reactive sputtering. Their optical constants (refractive index n and extinction coefficient k) were determined from ellipsometric data recorded over a wide spectral range (0.05-6 eV). Parametrization of ZnO:Sn complex dielectric permittivity consists of a parameterized semiconductor oscillator function describing the short wavelength absorption edge, a Drude oscillator describing free carrier absorption in near-infrared part of spectra and a Lorentz oscillator describing the long wavelength absorption edge and intra-band absorption in the ultra-violet part of the spectra. Using a Mott-Davis model, the increase in local disorder with increasing Sn doping is quantified from the short wavelength absorption edge onset. Using the Wemple-DiDomenico single oscillator model for the transparent part of the optical constants spectra, an increase in the centroid distance of the valence and conduction bands with increasing Sn doping is shown and only slight increase in intensity of the inter-band optical transition due to Sn doping occurs. The Drude model applied in the near-infrared part of the spectra revealed the free carrier concentration and mobility of ZnO:Sn. Results show that the range of transparency of prepared ZnO:Sn layers is not dramatically affected by Sn doping whereas electrical conductivity could be controlled by Sn doping. Refractive index in the transparent part is comparable with amorphous Indium Gallium Zinc Oxide allowing utilization of prepared ZnO:Sn layers as an indium-free alternative.

  7. Direct observation of double exchange in ferromagnetic La0.7Sr0.3CoO3 by broadband ellipsometry

    NASA Astrophysics Data System (ADS)

    Friš, P.; Munzar, D.; Caha, O.; Dubroka, A.

    2018-01-01

    We present results of our broadband ellipsometry measurements of the optical response of ferromagnetic La0.7Sr0.3CoO3 . Our data show that the ferromagnetic transition is accompanied by a transfer of optical spectral weight from an absorption band centered at 1.5 eV to a narrow component of the Drude-like peak. The associated reduction of the intraband kinetic energy is significantly larger than kBTc , confirming that the double exchange plays a major role in the ferromagnetism of doped cobaltites. In conjunction with results of recent theoretical studies, the temperature dependence of the Drude-like peak suggests that the double exchange is mediated by t2 g orbitals.

  8. Unveiling the control of quenched disorder in rare earth nickelates

    NASA Astrophysics Data System (ADS)

    Das, Sarmistha; Phanindra, V. Eswara; Philip, Sharon S.; Rana, D. S.

    2017-10-01

    The role of quenched disorder, a key control to obtain novel phases and functionalities, has not yet been determined in the complex phase diagram of RNi O3 (R = rare-earth ion) perovskites. Here we present such a study by investigating (L a0.5E u0.5 ) Ni O3 (LENO) having large R-site cation disorder. We show that in the presence of quenched disorder, (i) the resistivity drops by a few orders of magnitude across the metal-insulator transition (MIT) but the MIT shows only a subtle decrease, (ii) compressive films are completely metallic while largely tensile films are completely insulating sans a MIT, (iii) orthorhombic distortion promotes sharp MIT, and (iv) a Fermi liquid behavior even as high temperature resistivity exceeds the Mott-Ioffe-Regel limit with a bad metallic state. The low-energy terahertz conductivity dynamics obey Drude and Drude-Smith models for compressive and tensile films, respectively. All these features of disordered LENO, which are not typical of prototype ordered NdNi O3 , reveal an extraordinary sensitivity to slight structural perturbations. This study depicts the ease with which a variety of electronic phases can be tuned in disordered nickelates and emphasize the need to incorporate quenched disorder as a key control in the phase diagram of nickelates.

  9. Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature

    PubMed Central

    Alabastri, Alessandro; Tuccio, Salvatore; Giugni, Andrea; Toma, Andrea; Liberale, Carlo; Das, Gobind; De Angelis, Francesco; Di Fabrizio, Enzo; Zaccaria, Remo Proietti

    2013-01-01

    In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients. Electronic scattering processes are described and included in the dielectric function, showing their role in determining plasmon lifetime at resonance. Relationships among permittivity, electric conductivity and refractive index are examined. Finally, a temperature dependent permittivity model is presented and is employed to predict temperature and non-linear field intensity dependence on commonly used plasmonic geometries, such as nanospheres. PMID:28788366

  10. Evaluating Force-Field London Dispersion Coefficients Using the Exchange-Hole Dipole Moment Model.

    PubMed

    Mohebifar, Mohamad; Johnson, Erin R; Rowley, Christopher N

    2017-12-12

    London dispersion interactions play an integral role in materials science and biophysics. Force fields for atomistic molecular simulations typically represent dispersion interactions by the 12-6 Lennard-Jones potential using empirically determined parameters. These parameters are generally underdetermined, and there is no straightforward way to test if they are physically realistic. Alternatively, the exchange-hole dipole moment (XDM) model from density-functional theory predicts atomic and molecular London dispersion coefficients from first principles, providing an innovative strategy to validate the dispersion terms of molecular-mechanical force fields. In this work, the XDM model was used to obtain the London dispersion coefficients of 88 organic molecules relevant to biochemistry and pharmaceutical chemistry and the values compared with those derived from the Lennard-Jones parameters of the CGenFF, GAFF, OPLS, and Drude polarizable force fields. The molecular dispersion coefficients for the CGenFF, GAFF, and OPLS models are systematically higher than the XDM-calculated values by a factor of roughly 1.5, likely due to neglect of higher order dispersion terms and premature truncation of the dispersion-energy summation. The XDM dispersion coefficients span a large range for some molecular-mechanical atom types, suggesting an unrecognized source of error in force-field models, which assume that atoms of the same type have the same dispersion interactions. Agreement with the XDM dispersion coefficients is even poorer for the Drude polarizable force field. Popular water models were also examined, and TIP3P was found to have dispersion coefficients similar to the experimental and XDM references, although other models employ anomalously high values. Finally, XDM-derived dispersion coefficients were used to parametrize molecular-mechanical force fields for five liquids-benzene, toluene, cyclohexane, n-pentane, and n-hexane-which resulted in improved accuracy in the computed enthalpies of vaporization despite only having to evaluate a much smaller section of the parameter space.

  11. Optical spectroscopy of the Weyl semimetal TaAs

    DOE PAGES

    Xu, B.; Dai, Y. M.; Zhao, L. X.; ...

    2016-03-24

    Here, we present a systematic study of both the temperature and frequency dependence of the optical response in TaAs, a material that has recently been realized to host the Weyl semimetal state. Our study reveals that the optical conductivity of TaAs features a narrow Drude response alongside a conspicuous linear dependence on frequency. The weight of the Drude peak decreases upon cooling, following a T 2 temperature dependence, in good agreement with theoretical predictions. Two linear components with distinct slopes dominate the low-temperature optical conductivity. A comparison between our experimental results and theoretical calculations suggests that the linear conductivity belowmore » ~230 cm –1 arises purely from interband transitions near the Weyl points, providing rich information about the Weyl semimetal state in TaAs.« less

  12. Absorption and emission properties of photonic crystals and metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Lili

    We study the emission and absorption properties of photonic crystals and metamaterials using Comsol Multiphysics and Ansoft HFSS as simulation tools. We calculate the emission properties of metallic designs using drude model and the results illustrate that an appropriate termination of the surface of the metallic structure can significantly increase the absorption and therefore the thermal emissivity. We investigate the spontaneous emission rate modifications that occur for emitters inside two-dimensional photonic crystals and find the isotropic and directional emissions with respect to different frequencies as we have expected.

  13. Generalization of the van der Pauw Method: Analyzing Longitudinal Magnetoresistance Asymmetry to Quantify Doping Gradients

    NASA Astrophysics Data System (ADS)

    Grayson, M.; Zhou, Wang; Yoo, Heun-Mo; Prabhu-Gaunkar, S.; Tiemann, L.; Reichl, C.; Wegscheider, W.

    A longitudinal magnetoresistance asymmetry (LMA) between a positive and negative magnetic field is known to occur in both the extreme quantum limit and the classical Drude limit in samples with a nonuniform doping density. By analyzing the current stream function in van der Pauw measurement geometry, it is shown that the electron density gradient can be quantitatively deduced from this LMA in the Drude regime. Results agree with gradients interpolated from local densities calibrated across an entire wafer, establishing a generalization of the van der Pauw method to quantify density gradients. Results will be shown of various semoconductor systems where this method is applied, from bulk doped semiconductors, to exfoliated 2D materials. McCormick Catalyst Award from Northwestern University, EECS Bridge Funding, and AFOSR FA9550-15-1-0247.

  14. Entanglement of a quantum field with a dispersive medium.

    PubMed

    Klich, Israel

    2012-08-10

    In this Letter we study the entanglement of a quantum radiation field interacting with a dielectric medium. In particular, we describe the quantum mixed state of a field interacting with a dielectric through plasma and Drude models and show that these generate very different entanglement behavior, as manifested in the entanglement entropy of the field. We also present a formula for a "Casimir" entanglement entropy, i.e., the distance dependence of the field entropy. Finally, we study a toy model of the interaction between two plates. In this model, the field entanglement entropy is divergent; however, as in the Casimir effect, its distance-dependent part is finite, and the field matter entanglement is reduced when the objects are far.

  15. Computational and Experimental Characterization of Ribosomal DNA and RNA G-Quadruplexes

    NASA Astrophysics Data System (ADS)

    Cho, Samuel

    DNA G-quadruplexes in human telomeres and gene promoters are being extensively studied for their role in controlling the growth of cancer cells. Recent studies strongly suggest that guanine (G)-rich genes encoding pre-ribosomal RNA (pre-rRNA) are a potential anticancer target through the inhibition of RNA polymerase I (Pol I) in ribosome biogenesis. However, the structures of ribosomal G-quadruplexes at atomic resolution are unknown, and very little biophysical characterization has been performed on them to date. Here, we have modeled two putative rDNA G-quadruplex structures, NUC 19P and NUC 23P, which we observe via circular dichroism (CD) spectroscopy to adopt a predominantly parallel topology, and their counterpart rRNA. To validate and refine the putative ribosomal G-quadruplex structures, we performed all-atom molecular dynamics (MD) simulations using the CHARMM36 force field in the presence and absence of stabilizing K + or Na + ions. We optimized the CHARMM36 force field K + parameters to be more consistent with quantum mechanical calculations (and the polarizable Drude model force field) so that the K + ion is predominantly in the G-quadruplex channel. Our MD simulations show that the rDNA G-quadruplex have more well-defined, predominantly parallel-topology structures than rRNA and NUC 19P is more structured than NUC 23P, which features extended loops. Our study demonstrates that they are both potential targets for the design of novel chemotherapeutics.

  16. A coarse-grained polarizable force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate

    NASA Astrophysics Data System (ADS)

    Zeman, Johannes; Uhlig, Frank; Smiatek, Jens; Holm, Christian

    2017-12-01

    We present a coarse-grained polarizable molecular dynamics force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]). For the treatment of electronic polarizability, we employ the Drude model. Our results show that the new explicitly polarizable force field reproduces important static and dynamic properties such as mass density, enthalpy of vaporization, diffusion coefficients, or electrical conductivity in the relevant temperature range. In situations where an explicit treatment of electronic polarizability might be crucial, we expect the force field to be an improvement over non-polarizable models, while still profiting from the reduction of computational cost due to the coarse-grained representation.

  17. Dielectric properties of vertically aligned multi-walled carbon nanotubes in the terahertz and mid-infrared range

    NASA Astrophysics Data System (ADS)

    Thomson, Mark D.; Zouaghi, Wissem; Meng, Fanqi; Wiecha, Matthias M.; Rabia, Kaneez; Heinlein, Thorsten; Hussein, Laith; Babu, Deepu; Yadav, Sandeep; Engstler, Jörg; Schneider, Jörg J.; Nicoloso, Norbert; Rychetský, Ivan; Kužel, Petr; Roskos, Hartmut G.

    2018-01-01

    We investigate the broadband dielectric properties of vertically aligned, multi-wall carbon nanotubes (VACNT), over both the terahertz (THz) and mid-infrared spectral ranges. The nominally undoped, metallic VACNT samples are probed at normal incidence, i.e. the response is predominantly due to polarisation perpendicular to the CNT axis. A detailed comparison of various conductivity models and previously reported results is presented for the non-Drude behaviour we observe in the conventional THz range (up to 2.5 THz). Extension to the mid-infrared range reveals an absorption peak at \

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinivasan, Arvind; Czapla, Braden; Narayanaswamy, Arvind, E-mail: arvind.narayanaswamy@columbia.edu

    The complex refractive index of polydimethylsiloxane (PDMS) is determined in the wavelength range between 2.5 μm and 16.7 μm. The parameters of a Drude-Lorentz oscillator model (with 15 oscillators) are extracted from Fourier transform infrared spectroscopy reflectance measurements made on both bulk PDMS and thin films of PDMS deposited on the gold coated silicon substrates. It is shown that thin films of PDMS atop gold exhibit selective emission in the 8 μm to 13 μm atmospheric transmittance window, which demonstrates that PDMS, especially due to its ease of deposition, may be a viable material for passive radiative cooling applications.

  19. Correlation of an infrared absorption with carriers in rare-earth monoantimonides

    NASA Astrophysics Data System (ADS)

    Kwon, Y. S.; Jung, M. H.; Lee, K. R.; Kimura, S.; Suzuki, T.

    1997-09-01

    Dielectric constants spectra were obtained in the single crystals LaSb, PrSb, GdSb and DySb at several temperatures. The spectra for these crystals except for LaSb show Drude's behavior with a hump due to an anomalous absorption lying at about 0.25 eV. The inverse of effective electron number ( NIA) of the absorption is linear in temperature, and the NIA at each temperature is dependent on the square of the effective Bohr magneton of each rare-earth ion. The sum of the number of effective electrons due to Drude adsorption and that due to infrared absorption agree well with the number of carriers obtained from their band calculations or their dHvAs. Therefore, this absorption seems to be due to the intraband transition induced by the scattering between the spin of carriers and the localized magnetic moments at each site of rare-earth ion.

  20. Characteristics of nanocomposites and semiconductor heterostructure wafers using THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Altan, Hakan

    All optical, THz-Time Domain Spectroscopic (THz-TDS) methods were employed towards determining the electrical characteristics of Single Walled Carbon Nanotubes, Ion Implanted Si nanoclusters and Si1-xGe x, HFO2, SiO2 on p-type Si wafers. For the nanoscale composite materials, Visible Pump/THz Probe spectroscopy measurements were performed after observing that the samples were not sensitive to the THz radiation alone. The results suggest that the photoexcited nanotubes exhibit localized transport due to Lorentz-type photo-induced localized states from 0.2 to 0.7THz. The THz transmission is modeled through the photoexcited layer with an effective dielectric constant described by a Drude + Lorentz model and given by Maxwell-Garnett theory. Comparisons are made with other prevalent theories that describe electronic transport. Similar experiments were repeated for ion-implanted, 3-4nm Si nanoclusters in fused silica for which a similar behavior was observed. In addition, a change in reflection from Si1-xGex on Si, 200mm diameter semiconductor heterostructure wafers with 10% or 15% Ge content, was measured using THz-TDS methods. Drude model is utilized for the transmission/reflection measurements and from the reflection data the mobility of each wafer is estimated. Furthermore, the effect of high-kappa dielectric material (HfO2) on the electrical properties of p-type silicon wafers was characterized by utilizing non-contact, differential (pump-pump off) spectroscopic methods to differ between HfO2 and SiO 2 on Si wafers. The measurements are analyzed in two distinct transmission models, where one is an exact representation of the layered structure for each wafer and the other assumed that the response observed from the differential THz transmission was solely due to effects from interfacial traps between the dielectric layer and the substrate. The latter gave a more accurate picture of the carrier dynamics. From these measurements the effect of interfacial defects on transmission and mobility are quantitatively discussed.

  1. Radiative transfer modelling inside thermal protection system using hybrid homogenization method for a backward Monte Carlo method coupled with Mie theory

    NASA Astrophysics Data System (ADS)

    Le Foll, S.; André, F.; Delmas, A.; Bouilly, J. M.; Aspa, Y.

    2012-06-01

    A backward Monte Carlo method for modelling the spectral directional emittance of fibrous media has been developed. It uses Mie theory to calculate the radiative properties of single fibres, modelled as infinite cylinders, and the complex refractive index is computed by a Drude-Lorenz model for the dielectric function. The absorption and scattering coefficient are homogenised over several fibres, but the scattering phase function of a single one is used to determine the scattering direction of energy inside the medium. Sensitivity analysis based on several Monte Carlo results has been performed to estimate coefficients for a Multi-Linear Model (MLM) specifically developed for inverse analysis of experimental data. This model concurs with the Monte Carlo method and is highly computationally efficient. In contrast, the surface emissivity model, which assumes an opaque medium, shows poor agreement with the reference Monte Carlo calculations.

  2. Effects of 200 keV Ar-ions irradiation on the structural and optical properties of reactively sputtered CrN films

    NASA Astrophysics Data System (ADS)

    Novaković, M.; Popović, M.; Zhang, K.; Rakočević, Z.; Bibić, N.

    2016-12-01

    Modification in structural and optical properties of chromium-nitride (CrN) films induced by argon ion irradiation and thermal annealings were investigated using various experimental techniques. CrN films deposited by d. c. reactive sputtering on Si substrate were implanted with 200 keV argon ions, at fluences of 5-20 × 1015 ions/cm2. As-implanted samples were then annealed in vacuum, for 2 h at 700 °C. Rutherford backscattering spectrometry, X-ray diffraction, cross-sectional (high-resolution) transmission electron microscopy and spectroscopic ellipsometry (SE) measurements were carried out in order to study structural and optical properties of the layers. After irradiation with 200 keV Ar ions a damaged surface layer of nanocrystalline structure was generated, which extended beyond the implantation profile, but left an undamaged bottom zone. Partial loss of columnar structure observed in implanted samples was recovered after annealing at 700 °C and CrN started to decompose to Cr2N. This layer geometry determined from transmission electron microscopy was inferred in the analysis of SE data using the combined Drude and Tauc-Lorentz model, and the variation of the optical bandgap was deduced. The results are discussed on the basis of the changes induced in the microstructure. It was found that the optical properties of the layers are strongly dependent on the defects' concentration of CrN.

  3. Modeling of coherent ultrafast magneto-optical experiments: Light-induced molecular mean-field model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinschberger, Y.; Hervieux, P.-A.

    2015-12-28

    We present calculations which aim to describe coherent ultrafast magneto-optical effects observed in time-resolved pump-probe experiments. Our approach is based on a nonlinear semi-classical Drude-Voigt model and is used to interpret experiments performed on nickel ferromagnetic thin film. Within this framework, a phenomenological light-induced coherent molecular mean-field depending on the polarizations of the pump and probe pulses is proposed whose microscopic origin is related to a spin-orbit coupling involving the electron spins of the material sample and the electric field of the laser pulses. Theoretical predictions are compared to available experimental data. The model successfully reproduces the observed experimental trendsmore » and gives meaningful insight into the understanding of magneto-optical rotation behavior in the ultrafast regime. Theoretical predictions for further experimental studies are also proposed.« less

  4. Line-source excited impulsive EM field response of thin plasmonic metal films

    NASA Astrophysics Data System (ADS)

    Štumpf, Martin; Vandenbosch, Guy A. E.

    2013-08-01

    In this paper, reflection against and transmission through thin plasmonic metal films, basic building blocks of many plasmonic devices, are analytically investigated directly in the time domain for an impulsive electric and magnetic line-source excitation. The electromagnetic properties of thin metallic films are modeled via the Drude model. The problem is formulated with the help of approximate thin-sheet boundary conditions and the analysis is carried out using the Cagniard-DeHoop technique. Closed-form space-time expressions are found and discussed. The obtained time-domain analytical expressions reveal the existence of the phenomenon of transient oscillatory surface effects along a plasmonic metal thin sheet. Illustrative numerical examples of transmitted/reflected pulsed fields are provided.

  5. Directed electromagnetic wave propagation in 1D metamaterial: Projecting operators method

    NASA Astrophysics Data System (ADS)

    Ampilogov, Dmitrii; Leble, Sergey

    2016-07-01

    We consider a boundary problem for 1D electrodynamics modeling of a pulse propagation in a metamaterial medium. We build and apply projecting operators to a Maxwell system in time domain that allows to split the linear propagation problem to directed waves for a material relations with general dispersion. Matrix elements of the projectors act as convolution integral operators. For a weak nonlinearity we generalize the linear results still for arbitrary dispersion and derive the system of interacting right/left waves with combined (hybrid) amplitudes. The result is specified for the popular metamaterial model with Drude formula for both permittivity and permeability coefficients. We also discuss and investigate stationary solutions of the system related to some boundary regimes.

  6. Interacting Electrons in Graphene: Fermi Velocity Renormalization and Optical Response

    NASA Astrophysics Data System (ADS)

    Stauber, T.; Parida, P.; Trushin, M.; Ulybyshev, M. V.; Boyda, D. L.; Schliemann, J.

    2017-06-01

    We have developed a Hartree-Fock theory for electrons on a honeycomb lattice aiming to solve a long-standing problem of the Fermi velocity renormalization in graphene. Our model employs no fitting parameters (like an unknown band cutoff) but relies on a topological invariant (crystal structure function) that makes the Hartree-Fock sublattice spinor independent of the electron-electron interaction. Agreement with the experimental data is obtained assuming static self-screening including local field effects. As an application of the model, we derive an explicit expression for the optical conductivity and discuss the renormalization of the Drude weight. The optical conductivity is also obtained via precise quantum Monte Carlo calculations which compares well to our mean-field approach.

  7. Time and voltage dependences of nanoscale dielectric constant modulation on indium tin oxide films

    NASA Astrophysics Data System (ADS)

    Li, Liang; Hao, Haoyue; Zhao, Hua

    2017-01-01

    The modulation of indium tin oxide (ITO) films through surface charge accumulation plays an important role in many different applications. In order to elaborately study the modulation, we measured the dielectric constant of the modulated layer through examining the excitation of surface plasmon polaritons. Charges were pumped on the surfaces of ITO films through applying high voltage in appropriate directions. Experiments unveiled that the dielectric constant of the modulated layer had large variation along with the nanoscale charge accumulation. Corresponding numerical results were worked out through combining Drude model and Mayadas-Shatzkes model. Based on the above results, we deduced the time and voltage dependences of accumulated charge density, which revealed a long-time charge accumulation process.

  8. Estimation of dc transport dynamics in strongly correlated (La,Pr,Ca)MnO{sub 3} film using an insulator-metal composite model for terahertz conductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, T. V. A.; Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531; Hattori, A. N.

    2014-07-14

    Temperature-dependent conductivities at dc and terahertz (THz) frequency region (σ{sub THz}(ω,T)) were obtained for a strongly correlated (La{sub 0.275}Pr{sub 0.35}Ca{sub 0.375})MnO{sub 3} (LPCMO) film using THz time domain spectroscopy. A composite model that describes σ{sub THz}(ω,T) for LPCMO through the insulator-metal transition (IMT) was established by incorporating Austin-Mott model characterizing the hopping of localized electrons and Drude model explaining the behavior of free electrons. This model enables us to reliably investigate the dc transport dynamics from THz conductivity measurement, i.e., simultaneously evaluate the dc conductivity and the competing composition of metal and insulator phases through the IMT, reflecting the changesmore » in microscopic conductivity of these phases.« less

  9. Metal Ion Modeling Using Classical Mechanics

    PubMed Central

    2017-01-01

    Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems. PMID:28045509

  10. Charge carrier dynamics of GaAs/AlGaAs asymmetric double quantum wells at room temperature studied by optical pump terahertz probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Afalla, Jessica; Ohta, Kaoru; Tokonami, Shunrou; Prieto, Elizabeth Ann; Catindig, Gerald Angelo; Cedric Gonzales, Karl; Jaculbia, Rafael; Vasquez, John Daniel; Somintac, Armando; Salvador, Arnel; Estacio, Elmer; Tani, Masahiko; Tominaga, Keisuke

    2017-11-01

    Two asymmetric double quantum wells of different coupling strengths (barrier widths) were grown via molecular beam epitaxy, both samples allowing tunneling. Photoluminescence was measured at 10 and 300 K to provide evidence of tunneling, barrier dependence, and structural uniformity. Carrier dynamics at room temperature was investigated by optical pump terahertz probe (OPTP) spectroscopy. Carrier population decay rates were obtained and photoconductivity spectra were analyzed using the Drude model. This work demonstrates that carrier, and possibly tunneling dynamics in asymmetric double quantum well structures may be studied at room temperature through OPTP spectroscopy.

  11. Optical near-field analysis of spherical metals: Application of the FDTD method combined with the ADE method.

    PubMed

    Yamaguchi, Takashi; Hinata, Takashi

    2007-09-03

    The time-average energy density of the optical near-field generated around a metallic sphere is computed using the finite-difference time-domain method. To check the accuracy, the numerical results are compared with the rigorous solutions by Mie theory. The Lorentz-Drude model, which is coupled with Maxwell's equation via motion equations of an electron, is applied to simulate the dispersion relation of metallic materials. The distributions of the optical near-filed generated around a metallic hemisphere and a metallic spheroid are also computed, and strong optical near-fields are obtained at the rim of them.

  12. Admittance–voltage profiling of Al{sub x}Ga{sub 1−x}N/GaN heterostructures: Frequency dependence of capacitance and conductance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köhler, K.; Pletschen, W.; Godejohann, B.

    2015-11-28

    Admittance–voltage profiling of Al{sub x}Ga{sub 1−x}N/GaN heterostructures was used to determine the frequency dependent capacitance and conductance of FET devices in the frequency range from 50 Hz to 1 MHz. The nominally undoped low pressure metal-organic vapor-phase epitaxy structures were grown with an Al-content of 30%. An additional 1 nm thick AlN interlayer was placed in one structure before the Al{sub 0.3}Ga{sub 0.7}N layer growth. For frequencies below 10{sup 8} Hz it is convenient to use equivalent circuits to represent electric or dielectric properties of a material, a method widely used, for example, in impedance spectroscopy. We want to emphasize the relation betweenmore » frequency dependent admittance–voltage profiling and the corresponding equivalent circuits to the complex dielectric function. Debye and Drude models are used for the description of the frequency dependent admittance profiles in a range of depletion onset of the two-dimensional electron gas. Capacitance- and conductance-frequency profiles are fitted in the entire measured range by combining both models. Based on our results, we see contributions to the two-dimensional electron gas for our samples from surface states (80%) as well as from background doping in the Al{sub 0.3}Ga{sub 0.7}N barriers (20%). The specific resistance of the layers below the gate is above 10{sup 5} Ω cm for both samples and increases with increasing negative bias, i.e., the layers below the gate are essentially depleted. We propose that the resistance due to free charge carriers, determined by the Drude model, is located between gate and drain and, because of the AlN interlayer, the resistance is lowered by a factor of about 30 if compared to the sample without an AlN layer.« less

  13. Anomalous transport phenomena in Weyl metal beyond the Drude model for Landau's Fermi liquids.

    PubMed

    Kim, Ki-Seok; Kim, Heon-Jung; Sasaki, M; Wang, J-F; Li, L

    2014-12-01

    Landau's Fermi-liquid theory is the standard model for metals, characterized by the existence of electron quasiparticles near a Fermi surface as long as Landau's interaction parameters lie below critical values for instabilities. Recently this fundamental paradigm has been challenged by the physics of strong spin-orbit coupling, although the concept of electron quasiparticles remains valid near the Fermi surface, where Landau's Fermi-liquid theory fails to describe the electromagnetic properties of this novel metallic state, referred to as Weyl metal. A novel ingredient is that such a Fermi surface encloses a Weyl point with definite chirality, referred to as a chiral Fermi surface, which can arise from breaking of either time reversal or inversion symmetry in systems with strong spin-orbit coupling, responsible for both the Berry curvature and the chiral anomaly. As a result, electromagnetic properties of the Weyl metallic state are described not by conventional Maxwell equations but by axion electrodynamics, where Maxwell equations are modified with a topological-in-origin spatially modulated [Formula: see text] term. This novel metallic state was realized recently in Bi[Formula: see text]Sb x around [Formula: see text] under magnetic fields, where the Dirac spectrum appears around the critical point between the normal semiconducting ([Formula: see text]) and topological semiconducting phases ([Formula: see text]) and the time reversal symmetry breaking perturbation causes the Dirac point to split into a pair of Weyl points along the direction of the applied magnetic field for a very strong spin-orbit coupled system. In this review article, we discuss how the topological structure of both the Berry curvature and the chiral anomaly (axion electrodynamics) gives rise to anomalous transport phenomena in [Formula: see text]Sb x around [Formula: see text] under magnetic fields, thus modifying the Drude model of Landau's Fermi liquids.

  14. Mesoscopic chaos mediated by Drude electron-hole plasma in silicon optomechanical oscillators

    PubMed Central

    Wu, Jiagui; Huang, Shu-Wei; Huang, Yongjun; Zhou, Hao; Yang, Jinghui; Liu, Jia-Ming; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Duan, Shukai; Wei Wong, Chee

    2017-01-01

    Chaos has revolutionized the field of nonlinear science and stimulated foundational studies from neural networks, extreme event statistics, to physics of electron transport. Recent studies in cavity optomechanics provide a new platform to uncover quintessential architectures of chaos generation and the underlying physics. Here, we report the generation of dynamical chaos in silicon-based monolithic optomechanical oscillators, enabled by the strong and coupled nonlinearities of two-photon absorption induced Drude electron–hole plasma. Deterministic chaotic oscillation is achieved, and statistical and entropic characterization quantifies the chaos complexity at 60 fJ intracavity energies. The correlation dimension D2 is determined at 1.67 for the chaotic attractor, along with a maximal Lyapunov exponent rate of about 2.94 times the fundamental optomechanical oscillation for fast adjacent trajectory divergence. Nonlinear dynamical maps demonstrate the subharmonics, bifurcations and stable regimes, along with distinct transitional routes into chaos. This provides a CMOS-compatible and scalable architecture for understanding complex dynamics on the mesoscopic scale. PMID:28598426

  15. Nonuniform carrier density in Cd 3 As 2 evidenced by optical spectroscopy

    DOE PAGES

    Crassee, I.; Martino, E.; Homes, C. C.; ...

    2018-03-22

    In this paper, we report the detailed optical properties of Cd 3As 2 crystals in a wide parameter space: temperature, magnetic field, carrier concentration, and crystal orientation. We investigate high-quality crystals synthesized by three different techniques. In all the studied samples, independently of how they were prepared and how they were treated before the optical experiments, our data indicate conspicuous fluctuations in the carrier density (up to 30%). These charge puddles have a characteristic scale of 100 μm, they become more pronounced at low temperatures, and possibly, they become enhanced by the presence of crystal twinning. The Drude response ismore » characterized by very small scattering rates (~1 meV) for as-grown samples. Mechanical treatment, such as cutting or polishing, influences the optical properties of single crystals, by increasing the Drude scattering rate and also modifying the high-frequency optical response. Finally, magnetoreflectivity and Kerr rotation are consistent with electronlike charge carriers and a spatially nonuniform carrier density.« less

  16. Nonuniform carrier density in Cd3As2 evidenced by optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Crassee, I.; Martino, E.; Homes, C. C.; Caha, O.; Novák, J.; Tückmantel, P.; Hakl, M.; Nateprov, A.; Arushanov, E.; Gibson, Q. D.; Cava, R. J.; Koohpayeh, S. M.; Arpino, K. E.; McQueen, T. M.; Orlita, M.; Akrap, Ana

    2018-03-01

    We report the detailed optical properties of Cd3As2 crystals in a wide parameter space: temperature, magnetic field, carrier concentration, and crystal orientation. We investigate high-quality crystals synthesized by three different techniques. In all the studied samples, independently of how they were prepared and how they were treated before the optical experiments, our data indicate conspicuous fluctuations in the carrier density (up to 30%). These charge puddles have a characteristic scale of 100 μ m , they become more pronounced at low temperatures, and possibly, they become enhanced by the presence of crystal twinning. The Drude response is characterized by very small scattering rates (˜1 meV) for as-grown samples. Mechanical treatment, such as cutting or polishing, influences the optical properties of single crystals, by increasing the Drude scattering rate and also modifying the high-frequency optical response. Magnetoreflectivity and Kerr rotation are consistent with electronlike charge carriers and a spatially nonuniform carrier density.

  17. Nonuniform carrier density in Cd 3 As 2 evidenced by optical spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crassee, I.; Martino, E.; Homes, C. C.

    In this paper, we report the detailed optical properties of Cd 3As 2 crystals in a wide parameter space: temperature, magnetic field, carrier concentration, and crystal orientation. We investigate high-quality crystals synthesized by three different techniques. In all the studied samples, independently of how they were prepared and how they were treated before the optical experiments, our data indicate conspicuous fluctuations in the carrier density (up to 30%). These charge puddles have a characteristic scale of 100 μm, they become more pronounced at low temperatures, and possibly, they become enhanced by the presence of crystal twinning. The Drude response ismore » characterized by very small scattering rates (~1 meV) for as-grown samples. Mechanical treatment, such as cutting or polishing, influences the optical properties of single crystals, by increasing the Drude scattering rate and also modifying the high-frequency optical response. Finally, magnetoreflectivity and Kerr rotation are consistent with electronlike charge carriers and a spatially nonuniform carrier density.« less

  18. Electronic coarse graining enhances the predictive power of molecular simulation allowing challenges in water physics to be addressed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipcigan, Flaviu S., E-mail: flaviu.cipcigan@ed.ac.uk; National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW; Sokhan, Vlad P.

    One key factor that limits the predictive power of molecular dynamics simulations is the accuracy and transferability of the input force field. Force fields are challenged by heterogeneous environments, where electronic responses give rise to biologically important forces such as many-body polarisation and dispersion. The importance of polarisation in the condensed phase was recognised early on, as described by Cochran in 1959 [Philosophical Magazine 4 (1959) 1082–1086] [32]. Currently in molecular simulation, dispersion forces are treated at the two-body level and in the dipole limit, although the importance of three-body terms in the condensed phase was demonstrated by Barker inmore » the 1980s [Phys. Rev. Lett. 57 (1986) 230–233] [72]. One approach for treating both polarisation and dispersion on an equal basis is to coarse grain the electrons surrounding a molecular moiety to a single quantum harmonic oscillator (cf. Hirschfelder, Curtiss and Bird 1954 [The Molecular Theory of Gases and Liquids (1954)] [37]). The approach, when solved in strong coupling beyond the dipole limit, gives a description of long-range forces that includes two- and many-body terms to all orders. In the last decade, the tools necessary to implement the strong coupling limit have been developed, culminating in a transferable model of water with excellent predictive power across the phase diagram. Transferability arises since the environment automatically identifies the important long range interactions, rather than the modeler through a limited set of expressions. Here, we discuss the role of electronic coarse-graining in predictive multiscale materials modelling and describe the first implementation of the method in a general purpose molecular dynamics software: QDO-MD. - Highlights: • Electronic coarse graining unites many-body dispersion and polarisation beyond the dipole limit. • It consists of replacing the electrons of a molecule using a quantum harmonic oscillator, called a Quantum Drude Oscillator. • We present the first general implementation of Quantum Drude Oscillators in the molecular dynamics package QDO-MD. • We highlight the successful construction of a new, transferable molecular model of water: QDO-water. - Graphical abstract:.« less

  19. On the emission of radiation by an isolated vibrating metallic mirror

    NASA Astrophysics Data System (ADS)

    Arkhipov, M. V.; Babushkin, I.; Pul'kin, N. S.; Arkhipov, R. M.; Rosanov, N. N.

    2017-04-01

    Quantum electrodynamics predicts the appearance of radiation in an empty cavity in which one of the mirrors is vibrating. It also predicts the appearance of radiation from an isolated vibrating mirror. Such effects can be described within the framework of classical electrodynamics. We present the qualitative explanation of the effect, along with the results of numerical simulation of the emission of radiation by an isolated vibrating metallic mirror, which can be induced by mirror illumination by an ultrashort pulse of light. The dynamics of conduction electrons in the metallic mirror is described by the classical Drude model. Simulation was performed for the cases of mirror illumination by either a bipolar or a unipolar pulse.

  20. Terahertz pulse induced intervalley scattering in photoexcited GaAs.

    PubMed

    Su, F H; Blanchard, F; Sharma, G; Razzari, L; Ayesheshim, A; Cocker, T L; Titova, L V; Ozaki, T; Kieffer, J-C; Morandotti, R; Reid, M; Hegmann, F A

    2009-06-08

    Nonlinear transient absorption bleaching of intense few-cycle terahertz (THz) pulses is observed in photoexcited GaAs using opticalpump--THz-probe techniques. A simple model of the electron transport dynamics shows that the observed nonlinear response is due to THz-electric- field-induced intervalley scattering over sub-picosecond time scales as well as an increase in the intravalley scattering rate attributed to carrier heating. Furthermore, the nonlinear nature of the THz pulse transmission at high peak fields leads to a measured terahertz conductivity in the photoexcited GaAs that deviates significantly from the Drude behavior observed at low THz fields, emphasizing the need to explore nonlinear THz pulse interactions with materials in the time domain.

  1. Modulation instability induced by cross-phase modulation with higher-order dispersions and cubic-quintic nonlinearities in metamaterials

    NASA Astrophysics Data System (ADS)

    Yu, Chuanxi; Xue, Yan Ling; Liu, Ying

    2014-07-01

    Based on the dispersive Drude model in metamaterials (MMs), coupled nonlinear Schodinger equations are derived for two co-propagating optical waves with higher-order dispersions and cubic-quintic nonlinearities. And modulation instabilities induced by the cross -phase modulation (XMI) are studied. The impact of 3rd-, 4th-order of dispersion and quintic nonlinearity on the gain spectra of XMI is analyzed. It is shown that the 3rd-order dispersion has no effect on XMI and its gain spectra. With the increment of 4th-order dispersion, the gain spectra appear in higher frequency region (2nd spectrum region) and gain peaks become smaller.

  2. Plasmon Ruler with Ångstrom Length Resolution

    PubMed Central

    Hill, Ryan T.; Mock, Jack J.; Hucknall, Angus; Wolter, Scott D.; Jokerst, Nan M.; Smith, David R.; Chilkoti, Ashutosh

    2012-01-01

    We demonstrate a plasmon nanoruler using a coupled film-nanoparticle (film-NP) format that is well suited for investigating the sensitivity extremes of plasmonic coupling. Because it is relatively straightforward to functionalize bulk, surface plasmon supporting films such as gold, we are able to precisely control plasmonic gap dimensions by creating ultra-thin molecular spacer layers on the gold films, on top of which we immobilize plasmon resonant nanoparticles (NPs). Each immobilized NP becomes coupled to the underlying film and functions as a plasmon nanoruler, exhibiting a distance-dependent resonance red-shift in its peak plasmon wavelength as it approaches the film. Due to the uniformity of response from the film-NPs to separation distance, we are able to use extinction and scattering measurements from ensembles of film-NPs to characterize the coupling effect over a series of very short separation distances – ranging from 5 – 20 Å – and combine these measurements with similar data from larger separation distances extending out to 27 nm. We find that the film-NP plasmon nanoruler is extremely sensitive at very short film-NP separation distances, yielding spectral shifts as large as 5 nm for every 1 Å change in separation distance. The film-NP coupling at extremely small spacings is so uniform and reliable that we are able to usefully probe gap dimensions where the classical Drude model of the conducting electrons in the metals is no longer descriptive; for gap sizes smaller than a few nanometers, either quantum or semi-classical models of the carrier response must be employed to predict the observed wavelength shifts. We find that, despite the limitations, large field enhancements and extreme sensitivity persist down to even the smallest gap sizes. PMID:22966857

  3. Plasmon ruler with angstrom length resolution.

    PubMed

    Hill, Ryan T; Mock, Jack J; Hucknall, Angus; Wolter, Scott D; Jokerst, Nan M; Smith, David R; Chilkoti, Ashutosh

    2012-10-23

    We demonstrate a plasmon nanoruler using a coupled film nanoparticle (film-NP) format that is well-suited for investigating the sensitivity extremes of plasmonic coupling. Because it is relatively straightforward to functionalize bulk surface plasmon supporting films, such as gold, we are able to precisely control plasmonic gap dimensions by creating ultrathin molecular spacer layers on the gold films, on top of which we immobilize plasmon resonant nanoparticles (NPs). Each immobilized NP becomes coupled to the underlying film and functions as a plasmon nanoruler, exhibiting a distance-dependent resonance red shift in its peak plasmon wavelength as it approaches the film. Due to the uniformity of response from the film-NPs to separation distance, we are able to use extinction and scattering measurements from ensembles of film-NPs to characterize the coupling effect over a series of very short separation distances-ranging from 5 to 20 Å-and combine these measurements with similar data from larger separation distances extending out to 27 nm. We find that the film-NP plasmon nanoruler is extremely sensitive at very short film-NP separation distances, yielding spectral shifts as large as 5 nm for every 1 Å change in separation distance. The film-NP coupling at extremely small spacings is so uniform and reliable that we are able to usefully probe gap dimensions where the classical Drude model of the conducting electrons in the metals is no longer descriptive; for gap sizes smaller than a few nanometers, either quantum or semiclassical models of the carrier response must be employed to predict the observed wavelength shifts. We find that, despite the limitations, large field enhancements and extreme sensitivity persist down to even the smallest gap sizes.

  4. Nondestructive characterization of textured a-Si:H/c-Si heterojunction solar cell structures with nanometer-scale a-Si:H and In2O3:Sn layers by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Matsuki, Nobuyuki; Fujiwara, Hiroyuki

    2013-07-01

    Nanometer-scale hydrogenated amorphous silicon (a-Si:H) layers formed on crystalline silicon (c-Si) with pyramid-shaped textures have been characterized by spectroscopic ellipsometry (SE) using a tilt angle measurement configuration, in an attempt to establish a nondestructive method for the structural characterization of the a-Si:H/c-Si heterojunction solar cells. By applying an a-Si:H dielectric function model developed recently, the thickness and SiH2 content of the a-Si:H layer have been determined even on the textured substrates. Furthermore, from the SE analysis incorporating the Drude model, the carrier properties of the In2O3:Sn layers in the textured solar-cell structure have been characterized.

  5. Dynamical electrical conductivity of graphene.

    PubMed

    Rani, Luxmi; Singh, Navinder

    2017-06-28

    For graphene (a Dirac material) it has been theoretically predicted and experimentally observed that DC resistivity is proportional to T 4 when the temperature is much less than Bloch-Grüneisen temperature ([Formula: see text]) and T-linear in the opposite case ([Formula: see text]). Going beyond this case, we investigate the dynamical electrical conductivity in graphene using the powerful method of the memory function formalism. In the zero frequency regime, we obtain the above mentioned behavior which was previously obtained using the Bloch-Boltzmann kinetic equation. In the finite frequency regime, we obtain several new results: (1) the generalized Drude scattering rate, in the zero temperature limit, shows [Formula: see text] behavior at low frequencies ([Formula: see text]) and saturates at higher frequencies. We also observed the Holstein mechanism, however, with different power laws from that in the case of metals; (2) at higher frequencies, [Formula: see text], and higher temperatures [Formula: see text], we observed that the generalized Drude scattering rate is linear in temperature. In addition, several other results are also obtained. With the experimental advancement of this field, these results should be experimentally tested.

  6. Percolation Thresholds in Angular Grain media: Drude Directed Infiltration

    NASA Astrophysics Data System (ADS)

    Priour, Donald

    Pores in many realistic systems are not well delineated channels, but are void spaces among grains impermeable to charge or fluid flow which comprise the medium. Sparse grain concentrations lead to permeable systems, while concentrations in excess of a critical density block bulk fluid flow. We calculate percolation thresholds in porous materials made up of randomly placed (and oriented) disks, tetrahedrons, and cubes. To determine if randomly generated finite system samples are permeable, we deploy virtual tracer particles which are scattered (e.g. specularly) by collisions with impenetrable angular grains. We hasten the rate of exploration (which would otherwise scale as ncoll1 / 2 where ncoll is the number of collisions with grains if the tracers followed linear trajectories) by considering the tracer particles to be charged in conjunction with a randomly directed uniform electric field. As in the Drude treatment, where a succession of many scattering events leads to a constant drift velocity, tracer displacements on average grow linearly in ncoll. By averaging over many disorder realizations for a variety of systems sizes, we calculate the percolation threshold and critical exponent which characterize the phase transition.

  7. Electromagnetic Wave Transmittance Control using Anisotropic Plasma Lattice

    NASA Astrophysics Data System (ADS)

    Matlis, Eric; Corke, Thomas; Hoffman, Anthony

    2017-11-01

    Experiments of transmission through a lattice array of plasma columns have shown an absorption band close to the plasma frequency at 14 GHz. The beam was oriented at a 35° incident angle to the planar plasma cell. These experiments were designed to determine if the observed absorption was the result of the isotropic plasma medium or that of an anisotropic metamaterial. Transmission of the microwave energy was not consistent with an isotropic material in which absorption would monotonically increase below the plasma frequency. The experimental results are supported by an anisotropic model which was developed for the plasma permittivity using an effective medium approximation. The plasma columns were modeled as uniform rods with permittivity described by a Drude model while the components of the permittivity tensor was calculated using the Maxwell-Garnett effective medium theory. Electron densities of n = 4 x1012 cm-3 were assumed which is consistent with prior experimental measurements. This model confirms the existence of non-zero imaginary wave vector k in a narrow region centered about 14 GHz.

  8. Improving the Force Field Description of Tyrosine-Choline Cation-π Interactions: QM Investigation of Phenol-N(Me)4+ Interactions.

    PubMed

    Khan, Hanif M; Grauffel, Cédric; Broer, Ria; MacKerell, Alexander D; Havenith, Remco W A; Reuter, Nathalie

    2016-11-08

    Cation-π interactions between tyrosine amino acids and compounds containing N,N,N-trimethylethanolammonium (N(CH 3 ) 3 ) are involved in the recognition of histone tails by chromodomains and in the recognition of phosphatidylcholine (PC) phospholipids by membrane-binding proteins. Yet, the lack of explicit polarization or charge transfer effects in molecular mechanics force fields raises questions about the reliability of the representation of these interactions in biomolecular simulations. Here, we investigate the nature of phenol-tetramethylammonium (TMA) interactions using quantum mechanical (QM) calculations, which we also use to evaluate the accuracy of the additive CHARMM36 and Drude polarizable force fields in modeling tyrosine-choline interactions. We show that the potential energy surface (PES) obtained using SAPT2+/aug-cc-pVDZ compares well with the large basis-set CCSD(T) PES when TMA approaches the phenol ring perpendicularly. Furthermore, the SAPT energy decomposition reveals comparable contributions from electrostatics and dispersion in phenol-TMA interactions. We then compared the SAPT2+/aug-cc-pVDZ PES obtained along various approach directions to the corresponding PES obtained with CHARMM, and we show that the force field accurately reproduces the minimum distances while the interaction energies are underestimated. The use of the Drude polarizable force field significantly improves the interaction energies but decreases the agreement on distances at energy minima. The best agreement between force field and QM PES is obtained by modifying the Lennard-Jones terms for atom pairs involved in the phenol-TMA cation-π interactions. This is further shown to improve the correlation between the occupancy of tyrosine-choline cation-π interactions obtained from molecular dynamics simulations of a bilayer-bound bacterial phospholipase and experimental affinity data of the wild-type protein and selected mutants.

  9. Fabrication and electrodynamic properties of all-carbon terahertz planar metamaterials by laser direct-write

    NASA Astrophysics Data System (ADS)

    Komlenok, M. S.; Lebedev, S. P.; Komandin, G. A.; Piqué, A.; Konov, V. I.

    2018-03-01

    A new approach to THz metamaterial structures is proposed and experimentally realized. It is based on metal-less conductive subwavelength structures on diamond surfaces generated by laser direct-write. 200 nm thick graphitized layers with DC conductivity of 730 Ω-1 cm-1 are formed on a chemical vapour deposited polycrystalline diamond surface after irradiation with an excimer KrF laser (τ l  =  20 ns, λ  =  248 nm). The optical properties of such layers are determined and simulated according to the Drude model. A polarizer with a graphitized subwavelength grating is fabricated and tested in the THz range (0.9-1.2 THz), and shows different transmission losses for orthogonal polarizations.

  10. Hierarchy of forward-backward stochastic Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Ke, Yaling; Zhao, Yi

    2016-07-01

    Driven by the impetus to simulate quantum dynamics in photosynthetic complexes or even larger molecular aggregates, we have established a hierarchy of forward-backward stochastic Schrödinger equation in the light of stochastic unravelling of the symmetric part of the influence functional in the path-integral formalism of reduced density operator. The method is numerically exact and is suited for Debye-Drude spectral density, Ohmic spectral density with an algebraic or exponential cutoff, as well as discrete vibrational modes. The power of this method is verified by performing the calculations of time-dependent population differences in the valuable spin-boson model from zero to high temperatures. By simulating excitation energy transfer dynamics of the realistic full FMO trimer, some important features are revealed.

  11. Surface wave and linear operating mode of a plasma antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogachev, N. N., E-mail: bgniknik@yandex.ru; Bogdankevich, I. L.; Gusein-zade, N. G.

    The relation between the propagation conditions of a surface electromagnetic wave along a finiteradius plasma cylinder and the linear operating mode of a plasma antenna is investigated. The solution to the dispersion relation for a surface wave propagating along a finite-radius plasma cylinder is analyzed for weakly and strongly collisional plasmas. Computer simulations of an asymmetrical plasma dipole antenna are performed using the KARAT code, wherein the dielectric properties of plasma are described in terms of the Drude model. The plasma parameters corresponding to the linear operating mode of a plasma antenna are determined. It is demonstrated that the characteristicsmore » of the plasma antenna in this mode are close to those of an analogous metal antenna.« less

  12. Au-Ag-Cu nano-alloys: tailoring of permittivity

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki

    2016-04-01

    Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective.

  13. Analyzing optical properties of thin vanadium oxide films through semiconductor-to-metal phase transition using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Sun, Jianing; Pribil, Greg K.

    2017-11-01

    We investigated the optical behaviors of vanadium dioxide (VO2) films through the semiconductor-to-metal (STM) phase transition using spectroscopic ellipsometry. Correlations between film thickness and refractive index were observed resulting from the absorbing nature of these films. Simultaneously analyzing data at multiple temperatures using Kramers-Kronig consistent oscillator models help identify film thickness. Nontrivial variations in resulting optical constants were observed through STM transition. As temperature increases, a clear increase is observed in near infrared absorption due to Drude losses that accompany the transition from semiconducting to metallic phases. Thin films grown on silicon and sapphire substrate present different optical properties and thermal hysteresis due to lattice stress and compositional differences.

  14. Numerical simulation of terahertz generation and detection based on ultrafast photoconductive antennas

    NASA Astrophysics Data System (ADS)

    Chen, Long-chao; Fan, Wen-hui

    2011-08-01

    The numerical simulation of terahertz generation and detection in the interaction between femtosecond laser pulse and photoconductive material has been reported in this paper. The simulation model based on the Drude-Lorentz theory is used, and takes into account the phenomena that photo-generated electrons and holes are separated by the external bias field, which is screened by the space-charge field simultaneously. According to the numerical calculation, the terahertz time-domain waveforms and their Fourier-transformed spectra are presented under different conditions. The simulation results indicate that terahertz generation and detection properties of photoconductive antennas are largely influenced by three major factors, including photo-carriers' lifetime, laser pulse width and pump laser power. Finally, a simple model has been applied to simulate the detected terahertz pulses by photoconductive antennas with various photo-carriers' lifetimes, and the results show that the detected terahertz spectra are very different from the spectra radiated from the emitter.

  15. Infrared reflectance spectroscopy of MgAl2O4 nanoparticles substituted by K+ ions

    NASA Astrophysics Data System (ADS)

    Ahmad, Javed; Qadeer Awan, M.; Yasmin, Roomana; Sabir, Maria; Anwar, Shafiq; Ehsan Mazhar, M.; Hamad Bukhari, Syed

    2018-03-01

    The infrared reflectivity spectra for potassium-doped polycrystalline magnesium aluminates Mg1-xKxAl2O4 (x=0, 0.25, 0.50, 0.75, 1) are measured in the frequency range between 10-15, 500 cm-1 using FTIR spectrometer at room-temperature. Four optical phonon modes are observed in measured spectra, which are fitted by Lorentz oscillator model for semiconducting behavior and Lorentz-Drude model for metallic behavior. Moreover, optical parameters are also determined for these modes which may attribute to spinel structure for samples Mg1-xKxAl2O4, their reflectivity spectra shows a typical semiconducting nature. To study ionicity and effect of polarization, Born and Szigeti effective charges are calculated from longitudinal optical and transverse optical (LO-TO) splitting of modes for all samples. Optical bandgap has been estimated through optical conductivity (σ(ω)) and found to be x dependent.

  16. Full extraction methods to retrieve effective refractive index and parameters of a bianisotropic metamaterial based on material dispersion models

    NASA Astrophysics Data System (ADS)

    Hsieh, Feng-Ju; Wang, Wei-Chih

    2012-09-01

    This paper discusses two improved methods in retrieving effective refractive indices, impedances, and material properties, such as permittivity (ɛ) and permeability (μ), of metamaterials. The first method modified from Kong's retrieval method allows effective constitutive parameters over all frequencies including the anti-resonant band, where imaginary parts of ɛ or μ are negative, to be solved. The second method is based on genetic algorithms and optimization of properly defined goal functions to retrieve parameters of the Drude and Lorentz dispersion models. Equations of effective refractive index and impedance at any reference planes are derived. Split ring resonator-rod based metamaterials operating in terahertz frequencies are designed and investigated with proposed methods. Retrieved material properties and parameters are used to regenerate S-parameters and compared with simulation results generated by cst microwave studio software.

  17. Fresnel coefficients and Fabry-Perot formula for spatially dispersive metallic layers

    NASA Astrophysics Data System (ADS)

    Pitelet, Armel; Mallet, Émilien; Centeno, Emmanuel; Moreau, Antoine

    2017-07-01

    The repulsion between free electrons inside a metal makes its optical response spatially dispersive, so that it is not described by Drude's model but by a hydrodynamic model. We give here fully analytic results for a metallic slab in this framework, thanks to a two-mode cavity formalism leading to a Fabry-Perot formula, and show that a simplification can be made that preserves the accuracy of the results while allowing much simpler analytic expressions. For metallic layers thicker than 2.7 nm modified Fresnel coefficients can actually be used to accurately predict the response of any multilayer with spatially dispersive metals (for reflection, transmission, or the guided modes). Finally, this explains why adding a small dielectric layer [Y. Luo et al., Phys. Rev. Lett. 111, 093901 (2013), 10.1103/PhysRevLett.111.093901] allows one to reproduce the effects of nonlocality in many cases, and especially for multilayers.

  18. Method of moving frames to solve time-dependent Maxwell's equations on anisotropic curved surfaces: Applications to invisible cloak and ELF propagation

    NASA Astrophysics Data System (ADS)

    Chun, Sehun

    2017-07-01

    Applying the method of moving frames to Maxwell's equations yields two important advancements for scientific computing. The first is the use of upwind flux for anisotropic materials in Maxwell's equations, especially in the context of discontinuous Galerkin (DG) methods. Upwind flux has been available only to isotropic material, because of the difficulty of satisfying the Rankine-Hugoniot conditions in anisotropic media. The second is to solve numerically Maxwell's equations on curved surfaces without the metric tensor and composite meshes. For numerical validation, spectral convergences are displayed for both two-dimensional anisotropic media and isotropic spheres. In the first application, invisible two-dimensional metamaterial cloaks are simulated with a relatively coarse mesh by both the lossless Drude model and the piecewisely-parametered layered model. In the second application, extremely low frequency propagation on various surfaces such as spheres, irregular surfaces, and non-convex surfaces is demonstrated.

  19. Hybrid metasurface for ultra-broadband terahertz modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyes, Jane E.; Withayachumnankul, Withawat; Grady, Nathaniel K.

    2014-11-05

    We demonstrate an ultra-broadband free-space terahertz modulator based on a semiconductor-integrated metasurface. The modulator is made of a planar array of metal cut-wires on a silicon-on-sapphire substrate, where the silicon layer functions as photoconductive switches. Without external excitation, the cut-wire array exhibits a Lorentzian resonant response with a transmission passband spanning dc up to the fundamental dipole resonance above 2 THz. Under photoexcitation with 1.55 eV near-infrared light, the silicon regions in the cut-wire gaps become highly conductive, causing a transition of the resonant metasurface to a wire grating with a Drude response. In effect, the low-frequency passband below 2more » THz evolves into a stopband for the incident terahertz waves. Experimental validations confirm a bandwidth of at least 100%, spanning 0.5 to 1.5 THz with -10 dB modulation depth. This modulation depth is far superior to -5 dB achievable from a plain silicon-on-sapphire substrate with effectively 25 times higher pumping energy. The proposed concept of ultra-broadband metasurface modulator can be readily extended to electrically controlled terahertz wave modulation.« less

  20. Thermalization threshold in models of 1D fermions

    NASA Astrophysics Data System (ADS)

    Mukerjee, Subroto; Modak, Ranjan; Ramswamy, Sriram

    2013-03-01

    The question of how isolated quantum systems thermalize is an interesting and open one. In this study we equate thermalization with non-integrability to try to answer this question. In particular, we study the effect of system size on the integrability of 1D systems of interacting fermions on a lattice. We find that for a finite-sized system, a non-zero value of an integrability breaking parameter is required to make an integrable system appear non-integrable. Using exact diagonalization and diagnostics such as energy level statistics and the Drude weight, we find that the threshold value of the integrability breaking parameter scales to zero as a power law with system size. We find the exponent to be the same for different models with its value depending on the random matrix ensemble describing the non-integrable system. We also study a simple analytical model of a non-integrable system with an integrable limit to better understand how a power law emerges.

  1. Drude Conductivity of Dirac Fermions in Graphene

    DTIC Science & Technology

    2010-01-01

    interband transitions, as required by the sum rule. Our surprising observation indicates that many-body effects and Dirac fermion-impurity interactions...reduction of free electron oscillator strength is corroborated by corresponding changes in graphene interband transitions, as required by the sum...dimensions. Researchers have demonstrated in graphene exotic Dirac fermion phenomena ranging from anomalous quantum Hall effects 1,2 to Klein tunneling 3 in

  2. Low-temperature thermal transport and thermopower of monolayer transition metal dichalcogenide semiconductors

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Tan, Yaohua; Klimeck, Gerhard; Shi, Junxia

    2017-10-01

    We study the low temperature thermal conductivity of single-layer transition metal dichalcogenides (TMDCs). In the low temperature regime where heat is carried primarily through transport of electrons, thermal conductivity is linked to electrical conductivity through the Wiedemann-Franz law (WFL). Using a k.p Hamiltonian that describes the K and K{\\prime} valley edges, we compute the zero-frequency electric (Drude) conductivity using the Kubo formula to obtain a numerical estimate for the thermal conductivity. The impurity scattering determined transit time of electrons which enters the Drude expression is evaluated within the self-consistent Born approximation. The analytic expressions derived show that low temperature thermal conductivity (1) is determined by the band gap at the valley edges in monolayer TMDCs and (2) in presence of disorder which can give rise to the variable range hopping regime, there is a distinct reduction. Additionally, we compute the Mott thermopower and demonstrate that under a high frequency light beam, a valley-resolved thermopower can be obtained. A closing summary reviews the implications of results followed by a brief discussion on applicability of the WFL and its breakdown in context of the presented calculations.

  3. Optical conductivity of three and two dimensional topological nodal-line semimetals

    NASA Astrophysics Data System (ADS)

    Barati, Shahin; Abedinpour, Saeed H.

    2017-10-01

    The peculiar shape of the Fermi surface of topological nodal-line semimetals at low carrier concentrations results in their unusual optical and transport properties. We analytically investigate the linear optical responses of three- and two-dimensional nodal-line semimetals using the Kubo formula. The optical conductivity of a three-dimensional nodal-line semimetal is anisotropic. Along the axial direction (i.e., the direction perpendicular to the nodal-ring plane), the Drude weight has a linear dependence on the chemical potential at both low and high carrier dopings. For the radial direction (i.e., the direction parallel to the nodal-ring plane), this dependence changes from linear into quadratic in the transition from low into high carrier concentration. The interband contribution into optical conductivity is also anisotropic. In particular, at large frequencies, it saturates to a constant value for the axial direction and linearly increases with frequency along the radial direction. In two-dimensional nodal-line semimetals, no interband optical transition could be induced and the only contribution to the optical conductivity arises from the intraband excitations. The corresponding Drude weight is independent of the carrier density at low carrier concentrations and linearly increases with chemical potential at high carrier doping.

  4. Probing excitons in transition metal dichalcogenides by Drude-like exciton intraband absorption.

    PubMed

    Zhao, Siqi; He, Dawei; He, Jiaqi; Zhang, Xinwu; Yi, Lixin; Wang, Yongsheng; Zhao, Hui

    2018-05-24

    Understanding excitonic dynamics in two-dimensional semiconducting transition metal dichalcogenides is important for developing their optoelectronic applications. Recently, transient absorption techniques based on resonant excitonic absorption have been used to study various aspects of excitonic dynamics in these materials. The transient absorption in such measurements originates from phase-space state filling, bandgap renormalization, or screening effects. Here we report a new method to probe excitonic dynamics based on exciton intraband absorption. In this Drude-like process, probe photons are absorbed by excitons in their intraband excitation to higher energy states, causing a transient absorption signal. Although the magnitude of the transient absorption is lower than that of the resonant techniques, the new method is less restrictive on the selection of probe wavelength, has a larger linear range, and can provide complementary information on photocarrier dynamics. Using the WS2 monolayer and bulk samples as examples, we show that the new method can probe exciton-exciton annihilation at high densities and reveal exciton formation processes. We also found that the exciton intraband absorption cross section of the WS2 monolayer is on the order of 10-18 cm2.

  5. Pressure dependence of the optical properties of the charge-density-wave compound LaTe2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavagnini, M.; Sacchetti, A.; Degiorgi, L.

    2009-12-14

    We report the pressure dependence of the optical response of LaTe{sub 2}, which is deep in the charge-density-wave (CDW) ground state even at 300 K. The reflectivity spectrum is collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 7 GPa. We extract the energy scale due to the single particle excitation across the CDW gap and the Drude weight. We establish that the gap decreases upon compressing the lattice, while the Drude weight increases. This signals a reduction in the quality of nesting upon applying pressure, therefore inducing a lesser impact of the CDWmore » condensate on the electronic properties of LaTe{sub 2}. The consequent suppression of the CDW gap leads to a release of additional charge carriers, manifested by the shift of weight from the gap feature into the metallic component of the optical response. On the contrary, the power-law behavior, seen in the optical conductivity at energies above the gap excitation and indicating a weakly interacting limit within the Tomonaga-Luttinger liquid scenario, seems to be only moderately dependent on pressure.« less

  6. Dynamical electrical conductivity of graphene

    NASA Astrophysics Data System (ADS)

    Rani, Luxmi; Singh, Navinder

    2017-06-01

    For graphene (a Dirac material) it has been theoretically predicted and experimentally observed that DC resistivity is proportional to T 4 when the temperature is much less than Bloch-Grüneisen temperature ({{ \\Theta }\\text{BG}} ) and T-linear in the opposite case (T\\gg {{ \\Theta }\\text{BG}} ). Going beyond this case, we investigate the dynamical electrical conductivity in graphene using the powerful method of the memory function formalism. In the zero frequency regime, we obtain the above mentioned behavior which was previously obtained using the Bloch-Boltzmann kinetic equation. In the finite frequency regime, we obtain several new results: (1) the generalized Drude scattering rate, in the zero temperature limit, shows {ω4} behavior at low frequencies (ω \\ll {{k}\\text{B}}{{ \\Theta }\\text{BG}}/\\hbar ) and saturates at higher frequencies. We also observed the Holstein mechanism, however, with different power laws from that in the case of metals; (2) at higher frequencies, ω \\gg {{k}\\text{B}}{{ \\Theta }\\text{BG}}/\\hbar , and higher temperatures T\\gg {{ \\Theta }\\text{BG}} , we observed that the generalized Drude scattering rate is linear in temperature. In addition, several other results are also obtained. With the experimental advancement of this field, these results should be experimentally tested.

  7. Macroscopic kinematics of the Hall electric field under influence of carrier magnetic moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Masamichi, E-mail: sakai@fms.saitama-u.ac.jp

    2016-06-15

    The relativistic effect on electromagnetic forces yields two types of forces which depend on the velocity of the relevant particles: (i) the usual Lorentz force exerted on a moving charged particle and (ii) the apparent Lorentz force exerted on a moving magnetic moment. In sharp contrast with type (i), the type (ii) force originates due to the transverse field induced by the Hall effect (HE). This study incorporates both forces into a Drude-type equation with a fully spin-polarized condition to investigate the effects of self-consistency of the source and the resultant fields on the HE. We also examine the self-consistencymore » of the carrier kinematics and electromagnetic dynamics by simultaneously considering the Drude type equation and Maxwell equations at low frequencies. Thus, our approach can predict both the dc and ac characteristics of the HE, demonstrating that the dc current condition solely yields the ordinary HE, while the ac current condition yields generation of both fundamental and second harmonic modes of the HE field. When the magnetostatic field is absent, the simultaneous presence of dc and ac longitudinal currents generates the ac HE that has both fundamental frequency and second harmonic.« less

  8. Au-Ag-Cu nano-alloys: tailoring of permittivity

    PubMed Central

    Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki

    2016-01-01

    Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective. PMID:27118459

  9. Tunable electron heating induced giant magnetoresistance in the high mobility GaAs/AlGaAs 2D electron system

    DOE PAGES

    Wang, Zhuo; Samaraweera, R. L.; Reichl, C.; ...

    2016-12-07

    Electron-heating induced by a tunable, supplementary dc-current (I dc) helps to vary the observed magnetoresistance in the high mobility GaAs/AlGaAs 2D electron system. The magnetoresistance at B = 0.3 T is shown to progressively change from positive to negative with increasing Idc, yielding negative giant-magnetoresistance at the lowest temperature and highest I dc. A two-term Drude model successfully fits the data at all Idc and T. The results indicate that carrier heating modifies a conductivity correction σ 1, which undergoes sign reversal from positive to negative with increasing I dc, and this is responsible for the observed crossover from positive-more » to negative- magnetoresistance, respectively, at the highest B.« less

  10. Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing

    NASA Astrophysics Data System (ADS)

    Frigerio, J.; Ballabio, A.; Gallacher, K.; Giliberti, V.; Baldassarre, L.; Millar, R.; Milazzo, R.; Maiolo, L.; Minotti, A.; Bottegoni, F.; Biagioni, P.; Paul, D.; Ortolani, M.; Pecora, A.; Napolitani, E.; Isella, G.

    2017-11-01

    High n-type doping in germanium is essential for many electronic and optoelectronic applications especially for high performance Ohmic contacts, lasing and mid-infrared plasmonics. We report on the combination of in situ doping and excimer laser annealing to improve the activation of phosphorous in germanium. An activated n-doping concentration of 8.8  ×  1019 cm-3 has been achieved starting from an incorporated phosphorous concentration of 1.1  ×  1020 cm-3. Infrared reflectivity data fitted with a multi-layer Drude model indicate good uniformity over a 350 nm thick layer. Photoluminescence demonstrates clear bandgap narrowing and an increased ratio of direct to indirect bandgap emission confirming the high doping densities achieved.

  11. Band Transport and Trapping in Didodecyl[1]benzothieno[3,2-b][1]benzothiophene Probed by Terahertz Spectroscopy.

    PubMed

    Arend, Thomas R; Wimmer, Andreas; Schweicher, Guillaume; Chattopadhyay, Basab; Geerts, Yves H; Kersting, Roland

    2017-11-02

    Terahertz electromodulation spectroscopy provides insight into the material-inherent transport properties of charge carriers in organic semiconductors. Experiments on didodecyl[1]benzothieno[3,2-b][1]benzothiophene (C 12 -BTBT-C 12 ) devices yield for holes an intraband mobility of 9 cm 2 V -1 s -1 . The short duration of the THz pulses advances the understanding of the hole transport on the molecular scale. The efficient screening of Coulomb potentials leads to a collective response of the hole gas to external fields, which can be well described by the Drude model. Bias stress of the devices generates deep traps that capture mobile holes. Although the resulting polarization across the device hinders the injection of mobile holes, the hole mobilities are not affected.

  12. Surface plasmon resonances of arbitrarily shaped nanometallic structures in the small-screening-length limit

    PubMed Central

    Giannini, Vincenzo; Maier, Stefan A.; Craster, Richard V.

    2016-01-01

    According to the hydrodynamic Drude model, surface plasmon resonances of metallic nanostructures blueshift owing to the non-local response of the metal’s electron gas. The screening length characterizing the non-local effect is often small relative to the overall dimensions of the metallic structure, which enables us to derive a coarse-grained non-local description using matched asymptotic expansions; a perturbation theory for the blueshifts of arbitrary-shaped nanometallic structures is then developed. The effect of non-locality is not always a perturbation and we present a detailed analysis of the ‘bonding’ modes of a dimer of nearly touching nanowires where the leading-order eigenfrequencies and eigenmode distributions are shown to be a renormalization of those predicted assuming a local metal permittivity. PMID:27493575

  13. Hemispherical emissivity of V, Nb, Ta, Mo, and W from 300 to 1000 K

    NASA Technical Reports Server (NTRS)

    Cheng, S. X.; Hanssen, L. M.; Riffe, D. M.; Sievers, A. J.; Cebe, P.

    1987-01-01

    The hemispherical emissivities of five transition elements, V, Nb, Ta, Mo, and W, have been measured from 300 to 1000 K, complementing earlier higher-temperature results. These low-temperature data, which are similar, are fitted to a Drude model in which the room-temperature parameters have been obtained from optical measurements and the temperature dependence of the dc resistivity is used as input to calculate the temperature dependence of the emissivity. A frequency-dependent free-carrier relaxation rate is found to have a similar magnitude for all these elements. For temperatures larger than 1200 K the calculated emissivity is always greater than the measured value, indicating that the high-temperature interband features of transition elements are much weaker than those determined from room-temperature measurements.

  14. Characterization of conductive Al-doped ZnO thin films for plasmonic applications

    NASA Astrophysics Data System (ADS)

    Masouleh, F. F.; Sinno, I.; Buckley, R. G.; Gouws, G.; Moore, C. P.

    2018-02-01

    Highly conductive and transparent Al-doped zinc oxide films were produced by RF magnetron sputtering for plasmonic applications in the infrared region of the spectrum. These films were characterized using Fourier transform infrared spectroscopy, the Hall effect, Rutherford backscattering spectroscopy and spectral data analysis. Analysis of the results shows a carrier concentration of up to 2.6 × 1020 cm-3, as well as transmission over 80% near the plasma frequency where plasmonic properties are expected. The plasma frequency was calculated from the spectroscopy measurements and subsequent data analysis, and was in agreement with the results from the Hall effect measurements and the free electron gas (Drude) model. Based on these results, the Al-doped zinc oxide thin films are well-suited for plasmonic applications in the infrared region.

  15. Absorption Spectra of Gold Nanoparticle Suspensions

    NASA Astrophysics Data System (ADS)

    Anan'eva, M. V.; Nurmukhametov, D. R.; Zverev, A. S.; Nelyubina, N. V.; Zvekov, A. A.; Russakov, D. M.; Kalenskii, A. V.; Eremenko, A. N.

    2018-02-01

    Three gold nanoparticle suspensions are obtained, and mean radii in distributions - (6.1 ± 0.2), (11.9 ± 0.3), and (17.3 ± 0.7) nm - are determined by the transmission electron microscopy method. The optical absorption spectra of suspensions are obtained and studied. Calculation of spectral dependences of the absorption index of suspensions at values of the gold complex refractive index taken from the literature showed a significant deviation of experimental and calculated data in the region of 450-800 nm. Spectral dependences of the absorption of suspensions are simulated within the framework of the Mie-Drude theory taking into account the interband absorption in the form of an additional term in the imaginary part of the dielectric permittivity of the Gaussian type. It is shown that to quantify the spectral dependences in the region of the plasmon absorption band of nanoparticles, correction of the parameters of the interband absorption is necessary in addition to the increase of the relaxation parameter of the Drude theory. Spectral dependences of the dielectric permittivity of gold in nanodimensional state are refined from the solution of the inverse problem. The results of the present work are important for predicting the special features of operation of photonic devices and optical detonators based on gold nanoparticles.

  16. Observation of cyclotron resonance and electron-phonon coupling in surface states of the bulk-insulating topological insulator Cu 0.02Bi 2Se 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Liang; Tse, Wang-Kong; Morris, C. M.

    2015-02-05

    We have utilized magneto-optical time-domain spectroscopy to investigate the low frequency optical response of topological insulator Cu 0.02Bi 2Se 3 and Bi 2Se 3 films. With both field and frequency depedence, such experiments give sufficient information to measure the mobility and carrier density of multiple conduction channels simultaneously. We observe sharp cyclotron resonances (CRs) in both samples. The small amount of Cu substitution into the Cu 0.02Bi 2Se 3 induces a true bulk insulator with only a single conduction channel with total sheet carrier density 4.9 x 10 12/cm 2 and mobility as large as 4000 cm 2/V s. Thismore » is consistent with pure topological surface state (TSSs) conduction with a chemical potential 150 meV above the Dirac point. Hence, a true topological insulator with an insulating bulk is realized. The CR broadens at high fields, an e ect that we attribute to an electron-phonon interaction. This assignment is supported by an extended Drude model analysis on the zero field data. In contrast to Cu 0.02Bi 2Se 3, two charge channels were observed in normal Bi 2Se 3 films. We demonstrate a method to distinguish between the dominant TSSs and trivial bulk/2DEG states. The dominant channel exhibits a CR with a carrier density of ~2.0 x 10 13/cm 2 and mobility ~3200 cm 2/V s, consistent with TSSs with a chemical potential ~350meV above the Dirac point.« less

  17. Role of nanoparticles generation in the formation of femtosecond laser-induced periodic surface structures on silicon.

    PubMed

    Xue, Hongyan; Deng, Guoliang; Feng, Guoying; Chen, Lin; Li, Jiaqi; Yang, Chao; Zhou, Shouhuan

    2017-09-01

    An initial roughness is assumed in the most accepted Sipe-Drude model to analyze laser-induced periodic surface structures (LIPSS). However, the direct experimental observation for the crucial parameters is still lacking. The generation of nanoparticles and low-spatial frequency LIPSS (LSFL) (LIPSS with a periodicity close to laser wavelength) on a silicon surface upon a single pulse and subsequent pulses irradiation, respectively, is observed experimentally. Finite-difference time-domain (FDTD) simulation indicates that the nanoparticles generated with the first pulse enhance the local electric field greatly. Based on the experimental extrapolated parameters, FDTD-η maps have been calculated. The results show that the inhomogeneous energy deposition, which leads to the formation of LSFL, is mainly from the modulation of the nanoparticles with a radius of around 100 nm.

  18. Universal Faraday Rotation in HgTe Wells with Critical Thickness.

    PubMed

    Shuvaev, A; Dziom, V; Kvon, Z D; Mikhailov, N N; Pimenov, A

    2016-09-09

    The universal value of the Faraday rotation angle close to the fine structure constant (α≈1/137) is experimentally observed in thin HgTe quantum wells with a thickness on the border between trivial insulating and the topologically nontrivial Dirac phases. The quantized value of the Faraday angle remains robust in the broad range of magnetic fields and gate voltages. Dynamic Hall conductivity of the holelike carriers extracted from the analysis of the transmission data shows a theoretically predicted universal value of σ_{xy}=e^{2}/h, which is consistent with the doubly degenerate Dirac state. On shifting the Fermi level by the gate voltage, the effective sign of the charge carriers changes from positive (holes) to negative (electrons). The electronlike part of the dynamic response does not show quantum plateaus and is well described within the classical Drude model.

  19. Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity

    NASA Astrophysics Data System (ADS)

    Losurdo, M.; Giangregorio, M.; Capezzuto, P.; Bruno, G.; de Rosa, R.; Roca, F.; Summonte, C.; Plá, J.; Rizzoli, R.

    2002-01-01

    Indium-tin-oxide (ITO) films deposited by sputtering and e-gun evaporation on both transparent (Corning glass) and opaque (c-Si, c-Si/SiO2) substrates and in c-Si/a-Si:H/ITO heterostructures have been analyzed by spectroscopic ellipsometry (SE) in the range 1.5-5.0 eV. Taking the SE advantage of being applicable to absorbent substrate, ellipsometry is used to determine the spectra of the refractive index and extinction coefficient of the ITO films. The effect of the substrate surface on the ITO optical properties is focused and discussed. To this aim, a parametrized equation combining the Drude model, which considers the free-carrier response at the infrared end, and a double Lorentzian oscillator, which takes into account the interband transition contribution at the UV end, is used to model the ITO optical properties in the useful UV-visible range, whatever the substrate and deposition technique. Ellipsometric analysis is corroborated by sheet resistance measurements.

  20. Implementation of the FDTD method in cylindrical coordinates for dispersive materials: Modal study of C-shaped nano-waveguides

    NASA Astrophysics Data System (ADS)

    kebci, Zahia; Belkhir, Abderrahmane; Mezeghrane, Abdelaziz; Lamrous, Omar; Baida, Fadi Issam

    2018-03-01

    The objective of this work is to develop a code based on the finite difference time domain method in cylindrical coordinates (CC-FDTD) that integrates the Drude Critical Points model (DCP) and to apply it in the study of a metallic C-shaped waveguide (CSWG). The integrated dispersion model allows an accurate description of noble metals in the optical range and working in cylindrical coordinates is necessary to bypass the staircase effect induced by a Cartesian mesh especially in the case of curved geometrical forms. The CC-FDTD code developed as a part of this work is more general than the Body-Of-Revolution-FDTD algorithm that can only handle structures exhibiting a complete cylindrical symmetry. A N-order CC-FDTD code is then derived and used to perform a parametric study of an infinitly-long CSWG for nano-optic applications. Propagation losses and dispersion diagrams are given for different geometrical parameters.

  1. THz conductivities of indium-tin-oxide nanowhiskers as a graded-refractive-index structure.

    PubMed

    Yang, Chan-Shan; Chang, Chia-Hua; Lin, Mao-Hsiang; Yu, Peichen; Wada, Osamu; Pan, Ci-Ling

    2012-07-02

    Indium-tin-oxide (ITO) nanowhiskers with attractive electrical and anti-reflection properties were prepared by the glancing-angle electron-beam evaporation technique. Structural and crystalline properties of such nanostructures were examined by scanning transmission electron microscopy and X-ray diffraction. Their frequency-dependent complex conductivities, refractive indices and absorption coefficients have been characterized with terahertz time-domain spectroscopy (THz-TDS), in which the nanowhiskers were considered as a graded-refractive-index (GRIN) structure instead of the usual thin film model. The electrical properties of ITO GRIN structures are analyzed and fitted well with Drude-Smith model in the 0.2~2.0 THz band. Our results indicate that the ITO nanowhiskers and its bottom layer atop the substrate exhibit longer carrier scattering times than ITO thin films. This signifies that ITO nanowhiskers have an excellent crystallinity with large grain size, consistent with X-ray data. Besides, we show a strong backscattering effect and fully carrier localization in the ITO nanowhiskers.

  2. Effect of Ta concentration on the refractive index of TiO{sub 2}:Ta studied by spectroscopic ellipsometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurfani, Eka, E-mail: ekanurfani@gmail.com; Kurniawan, Robi; Muhammady, Shibghatullah

    2016-04-19

    We have investigated optical properties of Ta-doped TiO{sub 2} thin film on LaAlO{sub 3} (LAO) substrate using Spectroscopic Ellipsometry (SE) at room temperature. Amplitude ratio Ψ and phase difference L1 between p- and s- polarized light waves are obtained by multiple incident angles measurement (60°, 70°, and 80°) at energy range of 0.5 – 6.5 eV. In order to obtain optical properties for every Ta concentrations (0.01, 0.4, and 5 at. %), multilayer modelling was performed simultaneously by using Drude-Lorentz model. Refractive index and optical dispersion parameters were determined by Wemple-DiDomenico relation. In general, refractive index at zero photon energymore » n(0) increases by increasing Ta concentration. Furthermore, optical band gap shows a significant increasing due to presence of Ta dopant. In addition, other optical constants are discussed as well.« less

  3. Dielectric constant extraction of graphene nanostructured on SiC substrates from spectroscopy ellipsometry measurement using Gauss–Newton inversion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maulina, Hervin; Santoso, Iman, E-mail: iman.santoso@ugm.ac.id; Subama, Emmistasega

    2016-04-19

    The extraction of the dielectric constant of nanostructured graphene on SiC substrates from spectroscopy ellipsometry measurement using the Gauss-Newton inversion (GNI) method has been done. This study aims to calculate the dielectric constant and refractive index of graphene by extracting the value of ψ and Δ from the spectroscopy ellipsometry measurement using GNI method and comparing them with previous result which was extracted using Drude-Lorentz (DL) model. The results show that GNI method can be used to calculate the dielectric constant and refractive index of nanostructured graphene on SiC substratesmore faster as compared to DL model. Moreover, the imaginary partmore » of the dielectric constant values and coefficient of extinction drastically increases at 4.5 eV similar to that of extracted using known DL fitting. The increase is known due to the process of interband transition and the interaction between the electrons and electron-hole at M-points in the Brillouin zone of graphene.« less

  4. Warm Dense Matter Demonstrating Non-Drude Conductivity from Observations of Nonlinear Plasmon Damping

    NASA Astrophysics Data System (ADS)

    Witte, Bastian B. L.

    2017-10-01

    The thermal and electrical conductivity, equation of state and the spectral opacity in warm dense matter (WDM) are essential properties for modeling, e.g., fusion experiments or the magnetic field generation in planets. In the last decade it has been shown that x-ray Thomson scattering (XRTS) is an effective tool to determine plasma parameters like temperature and density in the WDM regime. Recently, the electrical conductivity was extracted from XRTS experiments for the first time. The spectrally resolved scattering data of aluminum, isochorically heated by the Linac Coherent Light Source (LCLS), show strong dependence on electron correlations. Therefore, the damping of plasmons, the collective electron oscillations, has to be treated beyond perturbation theory. We present results for the dynamic transport properties in warm dense aluminum using density-functional-theory molecular dynamics (DFT-MD) simulations. The choice of the exchange-correlation (XC) functional, describing the interactions in the electronic subsystem, has significant impact on the ionization energy of bound electrons and the dynamic dielectric function. Our newly developed method for the calculation of XRTS signals including plasmon and bound-free transitions is based on transition matrix elements together with ionic contributions using uniquely DFT-MD simulations. The results show excellent agreement with the LCLS data if hybrid functionals are applied. The experimental finding of nonlinear plasmon damping is caused by the non-Drude conductivity in warm dense aluminum. Here, we show further validation by comparing with x-ray absorption data. These findings enable new insights into the impact of XC functionals on calculated properties of WDM and allow detailed predictions for future experiments at the unprecedented densities on the NIF. This work was performed in collaboration with P. Sperling, S.H. Glenzer, R. Redmer and was supported by the DFG via the Collaborative Research Center SFB 652 and the DOE Office of Science, Fusion Energy Science under Grant No. FWP 100182.

  5. Relativistic effects in the energy loss of a fast charged particle moving parallel to a two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Mišković, Zoran L.; Akbari, Kamran; Segui, Silvina; Gervasoni, Juana L.; Arista, Néstor R.

    2018-05-01

    We present a fully relativistic formulation for the energy loss rate of a charged particle moving parallel to a sheet containing two-dimensional electron gas, allowing that its in-plane polarization may be described by different longitudinal and transverse conductivities. We apply our formulation to the case of a doped graphene layer in the terahertz range of frequencies, where excitation of the Dirac plasmon polariton (DPP) in graphene plays a major role. By using the Drude model with zero damping we evaluate the energy loss rate due to excitation of the DPP, and show that the retardation effects are important when the incident particle speed and its distance from graphene both increase. Interestingly, the retarded energy loss rate obtained in this manner may be both larger and smaller than its non-retarded counterpart for different combinations of the particle speed and distance.

  6. Transport conductivity of graphene at RF and microwave frequencies

    NASA Astrophysics Data System (ADS)

    Awan, S. A.; Lombardo, A.; Colli, A.; Privitera, G.; Kulmala, T. S.; Kivioja, J. M.; Koshino, M.; Ferrari, A. C.

    2016-03-01

    We measure graphene coplanar waveguides from direct current (DC) to a frequency f = 13.5 GHz and show that the apparent resistance (in the presence of parasitic impedances) has an {ω }2 dependence (where ω =2π f), but the intrinsic conductivity (without the influence of parasitic impedances) is frequency-independent. Consequently, in our devices the real part of the complex alternating current (AC) conductivity is the same as the DC value and the imaginary part is ˜0. The graphene channel is modeled as a parallel resistive-capacitive network with a frequency dependence identical to that of the Drude conductivity with momentum relaxation time ˜2.1 ps, highlighting the influence of AC electron transport on the electromagnetic properties of graphene. This can lead to optimized design of high-speed analog field-effect transistors, mixers, frequency doublers, low-noise amplifiers and radiation detectors.

  7. Design of Miniaturized Double-Negative Material for Specific Absorption Rate Reduction in Human Head

    PubMed Central

    Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2014-01-01

    In this study, a double-negative triangular metamaterial (TMM) structure, which exhibits a resounding electric response at microwave frequency, was developed by etching two concentric triangular rings of conducting materials. A finite-difference time-domain method in conjunction with the lossy-Drude model was used in this study. Simulations were performed using the CST Microwave Studio. The specific absorption rate (SAR) reduction technique is discussed, and the effects of the position of attachment, the distance, and the size of the metamaterials on the SAR reduction are explored. The performance of the double-negative TMMs in cellular phones was also measured in the cheek and the tilted positions using the COMOSAR system. The TMMs achieved a 52.28% reduction for the 10 g SAR. These results provide a guideline to determine the triangular design of metamaterials with the maximum SAR reducing effect for a mobile phone. PMID:25350398

  8. Design of miniaturized double-negative material for specific absorption rate reduction in human head.

    PubMed

    Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2014-01-01

    In this study, a double-negative triangular metamaterial (TMM) structure, which exhibits a resounding electric response at microwave frequency, was developed by etching two concentric triangular rings of conducting materials. A finite-difference time-domain method in conjunction with the lossy-Drude model was used in this study. Simulations were performed using the CST Microwave Studio. The specific absorption rate (SAR) reduction technique is discussed, and the effects of the position of attachment, the distance, and the size of the metamaterials on the SAR reduction are explored. The performance of the double-negative TMMs in cellular phones was also measured in the cheek and the tilted positions using the COMOSAR system. The TMMs achieved a 52.28% reduction for the 10 g SAR. These results provide a guideline to determine the triangular design of metamaterials with the maximum SAR reducing effect for a mobile phone.

  9. On the definition of dielectric permittivity for media with temporal dispersion in the presence of free charge carriers

    NASA Astrophysics Data System (ADS)

    Bordag, M.; Geyer, B.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2010-01-01

    We show that in the presence of free charge carriers the definition of the frequency-dependent dielectric permittivity requires additional regularization. As an example, the dielectric permittivity of the Drude model is considered and its time-dependent counterpart is derived and analyzed. The respective electric displacement cannot be represented in terms of the standard Fourier integral. The regularization procedure allowing the circumvention of these difficulties is suggested. For the purpose of comparison it is shown that the frequency-dependent dielectric permittivity of insulators satisfies all rigorous mathematical criteria. This permits us to conclude that in the presence of free charge carriers the concept of dielectric permittivity is not as well defined as for insulators and we make a link to widely discussed puzzles in the theory of thermal Casimir force which might be caused by the use of this kind of permittivities.

  10. Universal Faraday Rotation in HgTe Wells with Critical Thickness

    NASA Astrophysics Data System (ADS)

    Shuvaev, A.; Dziom, V.; Kvon, Z. D.; Mikhailov, N. N.; Pimenov, A.

    2016-09-01

    The universal value of the Faraday rotation angle close to the fine structure constant (α ≈1 /137 ) is experimentally observed in thin HgTe quantum wells with a thickness on the border between trivial insulating and the topologically nontrivial Dirac phases. The quantized value of the Faraday angle remains robust in the broad range of magnetic fields and gate voltages. Dynamic Hall conductivity of the holelike carriers extracted from the analysis of the transmission data shows a theoretically predicted universal value of σx y=e2/h , which is consistent with the doubly degenerate Dirac state. On shifting the Fermi level by the gate voltage, the effective sign of the charge carriers changes from positive (holes) to negative (electrons). The electronlike part of the dynamic response does not show quantum plateaus and is well described within the classical Drude model.

  11. Extension of photonic band gap in one-dimensional ternary metal-dielectric photonic crystal

    NASA Astrophysics Data System (ADS)

    Pandey, G. N.; Thapa, Khem B.

    2018-05-01

    In this paper, the photonic band gap structure in the visible and near infrared for a ternary metal dielectric photonic crystal has been theoretically investigated. At the normal incidence, the high reflectance range can be significantly enlarged at a thicker metal film. The transmission of the structure containing Cu has large compared to the other metals like Al and Ag metals. The transmission properties of the metal are dependent upon the value of the plasma frequency. In this paper we consider the effect of the variation of the thickness of the metal on the reflection bands of ternary metallic-dielectric photonic crystal (MDPC). Finally we find that the enlargement of band gap in MDPC is due to the addition of increase of the thickness of metallic film at normal incidence. All the theoretical calculations are made based on the transfer matrix method together with the Drude model of metal.

  12. Intragrain charge transport in kesterite thin films—Limits arising from carrier localization

    DOE PAGES

    Hempel, Hannes; Redinger, Alex; Repins, Ingrid; ...

    2016-11-03

    Intragrain charge carrier mobilities measured by time-resolved terahertz spectroscopy in state of the art Cu 2ZnSn(S,Se) 4 kesterite thin films are found to increase from 32 to 140 cm 2V -1s -1 with increasing Se content. The mobilities are limited by carrier localization on the nanometer-scale, which takes place within the first 2 ps after carrier excitation. The localization strength obtained from the Drude-Smith model is found to be independent of the excited photocarrier density. This is in accordance with bandgap fluctuations as a cause of the localized transport. Lastly, charge carrier localization is a general issue in the probedmore » kesterite thin films, which were deposited by coevaporation, colloidal inks, and sputtering followed by annealing with varying Se/S contents and yield 4.9%-10.0% efficiency in the completed device.« less

  13. Hyperbolic metamaterial lens with hydrodynamic nonlocal response.

    PubMed

    Yan, Wei; Mortensen, N Asger; Wubs, Martijn

    2013-06-17

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.

  14. Unusual terahertz spectral weight and conductivity dynamics of the insulator-metal transition in Pr0.5Nd0.5NiO3 thin films

    NASA Astrophysics Data System (ADS)

    Santhosh Kumar, K.; Das, Sarmistha; Eswara Phanindra, V.; Rana, D. S.

    2017-12-01

    The metal-insulator transition (MIT) in correlated systems is a central phenomenon that possesses potential for several emerging technologies. We investigate the kinetics of such MIT in perovskite nickelates by studying the terahertz (THz) low-energy charge dynamics in orthorhombic and tetragonal symmetries of Pr0.5Nd0.5NiO3 thin films. The THz conductivity of the orthorhombic thin film is dominated by Drude behavior in the entire temperature range, albeit a dominant anomaly at and around the MIT region. The tetragonal thin film exhibits different overall THz conductivity dynamics though, i.e. of a Drude-Smith (DS) type in the entire temperature range, the DS coefficient signifying dominant backscattering peaks in the MIT region. While the overall THz dynamics profile is different for the two films, a unique yet similar sensitivity of the I-M transition regions of both films to THz frequencies underlines the fundamental origin of the bi-critical phase around MIT of the nickelates. The peculiar behavior around the I-M transition, as evaluated in the framework of a percolative path approximation based Dyre expression, emphasizes the importance of critical metallic volume fraction (f c) for the percolation conduction, as an f c of ~0.645 obtained for the present case, along with evidence for the absence of super-heating.

  15. Origin of in-plane anisotropic resistivity in the antiferromagnetic phase of Fe1 +xTe

    NASA Astrophysics Data System (ADS)

    Kaneshita, Eiji; Tohyama, Takami

    2016-07-01

    Motivated by a recent experimental report on in-plane anisotropic resistivity in the double-striped antiferromagnetic phase of FeTe, we theoretically calculate in-plane resistivity by applying a memory function approach to the ordered phase. We find that the resistivity is larger along an antiferromagnetically ordered direction than along a ferromagnetically ordered one, consistent with experimental observation. The anisotropic results are mainly contributed from Drude weight, whose behavior is attributed to Fermi surface topology of the ordered phase.

  16. Robustness of the far-field response of nonlocal plasmonic ensembles.

    PubMed

    Tserkezis, Christos; Maack, Johan R; Liu, Zhaowei; Wubs, Martijn; Mortensen, N Asger

    2016-06-22

    Contrary to classical predictions, the optical response of few-nm plasmonic particles depends on particle size due to effects such as nonlocality and electron spill-out. Ensembles of such nanoparticles are therefore expected to exhibit a nonclassical inhomogeneous spectral broadening due to size distribution. For a normal distribution of free-electron nanoparticles, and within the simple nonlocal hydrodynamic Drude model, both the nonlocal blueshift and the plasmon linewidth are shown to be considerably affected by ensemble averaging. Size-variance effects tend however to conceal nonlocality to a lesser extent when the homogeneous size-dependent broadening of individual nanoparticles is taken into account, either through a local size-dependent damping model or through the Generalized Nonlocal Optical Response theory. The role of ensemble averaging is further explored in realistic distributions of isolated or weakly-interacting noble-metal nanoparticles, as encountered in experiments, while an analytical expression to evaluate the importance of inhomogeneous broadening through measurable quantities is developed. Our findings are independent of the specific nonclassical theory used, thus providing important insight into a large range of experiments on nanoscale and quantum plasmonics.

  17. Maximal near-field radiative heat transfer between two plates

    NASA Astrophysics Data System (ADS)

    Nefzaoui, Elyes; Ezzahri, Younès; Drévillon, Jérémie; Joulain, Karl

    2013-09-01

    Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the radiative heat flux are reported and compared to real materials usually considered in similar studies, silicon carbide and heavily doped silicon in this case. Results are obtained by exact and approximate (in the extreme near-field regime and the electrostatic limit hypothesis) calculations. The two methods are compared in terms of accuracy and CPU resources consumption. Their differences are explained according to a mesoscopic description of nearfield radiative heat transfer. Finally, the frequently assumed hypothesis which states a maximal radiative heat transfer when the two semi-infinite planes are of identical materials is numerically confirmed. Its subsequent practical constraints are then discussed. Presented results enlighten relevant paths to follow in order to choose or design materials maximizing nano-TPV devices performances.

  18. 355 nm and 1064 nm-pulse mixing to identify the laser-induced damage mechanisms in KDP

    NASA Astrophysics Data System (ADS)

    Reyné, Stéphane; Duchateau, Guillaume; Natoli, Jean-Yves; Lamaignère, Laurent

    2011-02-01

    Nanosecond laser-induced damage (LID) in potassium dihydrogen phosphate (KH2PO4 or KDP) remains an issue for light-frequency converters in large-aperture lasers such as NIF (National Ignition Facility, in USA) LMJ (Laser MegaJoule, in France). In the final optic assembly, converters are simultaneously illuminated by multiple wavelengths during the frequency conversion. In this configuration, the damage resistance of the KDP crystals becomes a crucial problem and has to be improved. In this study, we propose a refined investigation about the LID mechanisms involved in the case of a multiple wavelengths combination. Experiments based on an original pump-pump set-up have been carried out in the nanosecond regime on a KDP crystal. In particular, the impact of a simultaneous mixing of 355 nm and 1064 nm pulses has been experimentally studied and compared to a model based on heat transfer, the Mie theory and a Drude model. This study sheds light on the physical processes implied in the KDP laser damage. In particular, a three-photon ionization mechanism is shown to be responsible for laser damage in KDP.

  19. Laser induced periodic surface structure formation in germanium by strong field mid IR laser solid interaction at oblique incidence.

    PubMed

    Austin, Drake R; Kafka, Kyle R P; Trendafilov, Simeon; Shvets, Gennady; Li, Hui; Yi, Allen Y; Szafruga, Urszula B; Wang, Zhou; Lai, Yu Hang; Blaga, Cosmin I; DiMauro, Louis F; Chowdhury, Enam A

    2015-07-27

    Laser induced periodic surface structures (LIPSS or ripples) were generated on single crystal germanium after irradiation with multiple 3 µm femtosecond laser pulses at a 45° angle of incidence. High and low spatial frequency LIPSS (HSFL and LSFL, respectively) were observed for both s- and p-polarized light. The measured LSFL period for p-polarized light was consistent with the currently established LIPSS origination model of coupling between surface plasmon polaritons (SPP) and the incident laser pulses. A vector model of SPP coupling is introduced to explain the formation of s-polarized LSFL away from the center of the damage spot. Additionally, a new method is proposed to determine the SPP propagation length from the decay in ripple depth. This is used along with the measured LSFL period to estimate the average electron density and Drude collision time of the laser-excited surface. Finally, full-wave electromagnetic simulations are used to corroborate these results while simultaneously offering insight into the nature of LSFL formation.

  20. Effects of interband transitions on Faraday rotation in metallic nanoparticles.

    PubMed

    Wysin, G M; Chikan, Viktor; Young, Nathan; Dani, Raj Kumar

    2013-08-14

    The Faraday rotation in metallic nanoparticles is considered based on a quantum model for the dielectric function ϵ(ω) in the presence of a DC magnetic field B. We focus on effects in ϵ(ω) due to interband transitions (IBTs), which are important in the blue and ultraviolet for noble metals used in plasmonics. The dielectric function is found using the perturbation of the electron density matrix due to the optical field of the incident electromagnetic radiation. The calculation is applied to transitions between two bands (d and p, for example) separated by a gap, as one finds in gold at the L-point of the Fermi surface. The result of the DC magnetic field is a shift in the effective optical frequency causing IBTs by ±μBB/ħ, where opposite signs are associated with left/right circular polarizations. The Faraday rotation for a dilute solution of 17 nm diameter gold nanoparticles is measured and compared with both the IBT theory and a simpler Drude model for the bound electron response. Effects of the plasmon resonance mode on Faraday rotation in nanoparticles are also discussed.

  1. Reverse process of usual optical analysis of boson-exchange superconductors: impurity effects on s- and d-wave superconductors.

    PubMed

    Hwang, Jungseek

    2015-03-04

    We performed a reverse process of the usual optical data analysis of boson-exchange superconductors. We calculated the optical self-energy from two (MMP and MMP+peak) input model electron-boson spectral density functions using Allen's formula for one normal and two (s- and d-wave) superconducting cases. We obtained the optical constants including the optical conductivity and the dynamic dielectric function from the optical self-energy using an extended Drude model, and finally calculated the reflectance spectrum. Furthermore, to investigate impurity effects on optical quantities we added various levels of impurities (from the clean to the dirty limit) in the optical self-energy and performed the same reverse process to obtain the optical conductivity, the dielectric function, and reflectance. From these optical constants obtained from the reverse process we extracted the impurity-dependent superfluid densities for two superconducting cases using two independent methods (the Ferrel-Glover-Tinkham sum rule and the extrapolation to zero frequency of -ϵ1(ω)ω(2)); we found that a certain level of impurities is necessary to get a good agreement on results obtained by the two methods. We observed that impurities give similar effects on various optical constants of s- and d-wave superconductors; the greater the impurities the more distinct the gap feature and the lower the superfluid density. However, the s-wave superconductor gives the superconducting gap feature more clearly than the d-wave superconductor because in the d-wave superconductors the optical quantities are averaged over the anisotropic Fermi surface. Our results supply helpful information to see how characteristic features of the electron-boson spectral function and the s- and d-wave superconducting gaps appear in various optical constants including raw reflectance spectrum. Our study may help with a thorough understanding of the usual optical analysis process. Further systematic study of experimental data collected at various conditions using the optical analysis process will help to reveal the origin of the mediated boson in the boson-exchange superconductors.

  2. Dissipative dynamics at conical intersections: simulations with the hierarchy equations of motion method.

    PubMed

    Chen, Lipeng; Gelin, Maxim F; Chernyak, Vladimir Y; Domcke, Wolfgang; Zhao, Yang

    2016-12-16

    The effect of a dissipative environment on the ultrafast nonadiabatic dynamics at conical intersections is analyzed for a two-state two-mode model chosen to represent the S 2 (ππ*)-S 1 (nπ*) conical intersection in pyrazine (the system) which is bilinearly coupled to infinitely many harmonic oscillators in thermal equilibrium (the bath). The system-bath coupling is modeled by the Drude spectral function. The equation of motion for the reduced density matrix of the system is solved numerically exactly with the hierarchy equation of motion method using graphics-processor-unit (GPU) technology. The simulations are valid for arbitrary strength of the system-bath coupling and arbitrary bath memory relaxation time. The present computational studies overcome the limitations of weak system-bath coupling and short memory relaxation time inherent in previous simulations based on multi-level Redfield theory [A. Kühl and W. Domcke, J. Chem. Phys. 2002, 116, 263]. Time evolutions of electronic state populations and time-dependent reduced probability densities of the coupling and tuning modes of the conical intersection have been obtained. It is found that even weak coupling to the bath effectively suppresses the irregular fluctuations of the electronic populations of the isolated two-mode conical intersection. While the population of the upper adiabatic electronic state (S 2 ) is very efficiently quenched by the system-bath coupling, the population of the diabatic ππ* electronic state exhibits long-lived oscillations driven by coherent motion of the tuning mode. Counterintuitively, the coupling to the bath can lead to an enhanced lifetime of the coherence of the tuning mode as a result of effective damping of the highly excited coupling mode, which reduces the strong mode-mode coupling inherent to the conical intersection. The present results extend previous studies of the dissipative dynamics at conical intersections to the nonperturbative regime of system-bath coupling. They pave the way for future first-principles simulations of femtosecond time-resolved four-wave-mixing spectra of chromophores in condensed phases which are nonperturbative in the system dynamics, the system-bath coupling as well as the field-matter coupling.

  3. Diffusion in Deterministic Interacting Lattice Systems

    NASA Astrophysics Data System (ADS)

    Medenjak, Marko; Klobas, Katja; Prosen, Tomaž

    2017-09-01

    We study reversible deterministic dynamics of classical charged particles on a lattice with hard-core interaction. It is rigorously shown that the system exhibits three types of transport phenomena, ranging from ballistic, through diffusive to insulating. By obtaining an exact expressions for the current time-autocorrelation function we are able to calculate the linear response transport coefficients, such as the diffusion constant and the Drude weight. Additionally, we calculate the long-time charge profile after an inhomogeneous quench and obtain diffusive profilewith the Green-Kubo diffusion constant. Exact analytical results are corroborated by Monte Carlo simulations.

  4. Dispersion relation of a surface wave at a rough metal-air interface

    DOE PAGES

    Kotelnikov, Igor; Stupakov, Gennady

    2016-11-28

    Here, we derived a dispersion relation of a surface wave at a rough metal-air interface. In contrast to previous publications, we assumed that an intrinsic surface impedance due to a finite electric conductivity of the metal can be of the same order as the roughness-induced impedance. We then applied our results to the analysis of a long-standing problem of the discrepancy between the experimental data on the propagation of surface waves in the terahertz range of frequencies and the classical Drude theory.

  5. Physical and photoelectrochemical properties of Sb-doped SnO2 thin films deposited by chemical vapor deposition: application to chromate reduction under solar light

    NASA Astrophysics Data System (ADS)

    Outemzabet, R.; Doulache, M.; Trari, M.

    2015-05-01

    Sb-doped SnO2 thin films (Sb-SnO2) are prepared by chemical vapor deposition. The X-ray diffraction indicates a rutile phase, and the SEM analysis shows pyramidal grains whose size extends up to 200 nm. The variation of the film thickness shows that the elaboration technique needs to be optimized to give reproducible layers. The films are transparent over the visible region. The dispersion of the optical indices is evaluated by fitting the diffuse reflectance data with the Drude-Lorentz model. The refractive index ( n) and absorption coefficient ( k) depend on both the conditions of preparation and of the doping concentration and vary between 1.4 and 2.0 and 0.2 and 0.01, respectively. Tin oxide is nominally non-stoichiometric, and the conduction is dominated by thermally electrons jump with an electron mobility of 12 cm2 V-1 s-1 for Sb-SnO2 (1 %). The ( C 2- V) characteristic in aqueous electrolyte exhibits a linear behavior from which an electrons density of 4.15 × 1018 cm-3 and a flat-band potential of -0.83 V SCE are determined. The electrochemical impedance spectroscopy shows a semicircle attributed to a capacitive behavior with a low density of surface states. The center lies below the real axis with a depletion angle (12°), due to a constant phase element, i.e., a deviation from a pure capacitive behavior, presumably attributed to the roughness and porosity of the film. The straight line at low frequencies is attributed to the Warburg diffusion. The energy diagram reveals the photocatalytic feasibility of Sb-SnO2. As application, 90 % of the chromate concentration (20 mg L-1, pH ~3) disappears after 6 h of exposure to solar light.

  6. Casimir and Casimir-Polder forces with dissipation from first principles

    NASA Astrophysics Data System (ADS)

    Bordag, M.

    2017-12-01

    We consider Casimir-Polder and Casimir forces with finite dissipation by coupling heat baths to the dipoles introducing, this way, dissipation from first principles. We derive a representation of the free energy as an integral over real frequencies, which can be viewed as an generalization of the remarkable formula introduced by Ford et al. [Phys. Rev. Lett. 55, 2273 (1985), 10.1103/PhysRevLett.55.2273]. For instance, we obtain a nonperturbative representation for the atom-atom and atom-wall interactions. We investigate several limiting cases. From the limit T →0 we show that the third law of thermodynamics cannot be violated within the given approach, where the dissipation parameter cannot depend on temperature by construction. We conclude that the given approach is insufficient to resolve the thermodynamic puzzle connected with the Drude model when inserted into the Lifshitz formula. Further, we consider the transition to the Matsubara representation and discuss modifications of the contribution from the zeroth Matsubara frequency.

  7. Carrier dynamics in silicon nanowires studied using optical-pump terahertz-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Beaudoin, Alexandre; Salem, Bassem; Baron, Thierry; Gentile, Pascal; Morris, Denis

    2014-03-01

    The advance of non-contact measurements involving pulsed terahertz radiation presents great interests for characterizing electrical properties of a large ensemble of nanowires. In this work, N-doped and undoped silicon nanowires (SiNWs) grown by chemical vapour deposition (CVD) on quartz substrate were characterized using optical-pump terahertz probe (OPTP) transmission experiments. Our results show that defects and ionized impurities introduced by N-doping the CVD-grown SiNWs tend to reduce the photoexcited carrier lifetime and degrade their conductivity properties. Capture mechanisms by the surface trap states play a key role on the photocarrier dynamics in theses small diameters' (~100 nm) SiNWs and the doping level is found to alter this dynamics. We propose convincing capture and recombination scenarios that explain our OPTP measurements. Fits of our photoconductivity data curves, from 0.5 to 2 THz, using a Drude-plasmon conductivity model allow determining photocarrier mobility values of 190 and 70 cm2/V .s, for the undoped and N-doped NWs samples, respectively.

  8. Characteristic of Nano-Cu Film Prepared by Energy Filtrating Magnetron Sputtering Technique and Its Optical Property

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoyong; Hu, Xing; Yao, Ning

    2015-03-01

    At the optimized deposition parameters, Cu film was deposited by the direct current magnetron sputtering (DMS) technique and the energy filtrating magnetron sputtering (EFMS) technique. The nano-structure was charactered by x-ray diffraction. The surface morphology of the film was observed by atomic force microscopy. The optical properties of the film were measured by spectroscopic ellipsometry. The refractive index, extinction coefficient and the thickness of the film were obtained by the fitted spectroscopic ellipsometry data using the Drude-Lorentz oscillator optical model. Results suggested that a Cu film with different properties was fabricated by the EFMS technique. The film containing smaller particles is denser and the surface is smoother. The average transmission coefficient, the refractive index and the extinction coefficients are higher than those of the Cu film deposited by the DMS technique. The average transmission coefficient (400-800 nm) is more than three times higher. The refractive index and extinction coefficient (at 550 nm) are more than 36% and 14% higher, respectively.

  9. Superfluidity and Chaos in low dimensional circuits

    PubMed Central

    Arwas, Geva; Vardi, Amichay; Cohen, Doron

    2015-01-01

    The hallmark of superfluidity is the appearance of “vortex states” carrying a quantized metastable circulating current. Considering a unidirectional flow of particles in a ring, at first it appears that any amount of scattering will randomize the velocity, as in the Drude model, and eventually the ergodic steady state will be characterized by a vanishingly small fluctuating current. However, Landau and followers have shown that this is not always the case. If elementary excitations (e.g. phonons) have higher velocity than that of the flow, simple kinematic considerations imply metastability of the vortex state: the energy of the motion cannot dissipate into phonons. On the other hand if this Landau criterion is violated the circulating current can decay. Below we show that the standard Landau and Bogoliubov superfluidity criteria fail in low-dimensional circuits. Proper determination of the superfluidity regime-diagram must account for the crucial role of chaos, an ingredient missing from the conventional stability analysis. Accordingly, we find novel types of superfluidity, associated with irregular or chaotic or breathing vortex states. PMID:26315272

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yiyi; Wang, Junli; Qi, Shengli

    In this report, a series of composite films consisting of polyimide as the matrix and multi-wall carbon nanotubes as the filler (PI/MWCNTs) were prepared in a water-based method with the use of triethylamine. Their dielectric properties were tested under frequency of between 100 Hz and 10 MHz, and it was revealed that the permittivity value behaved interestingly around the percolation threshold (8.01% in volume). The water-based method ensured that fillers had high dispersibility in the matrix before percolation, which led to a relatively high dielectric constant (284.28). However, the overlapping caused by excess MWCNTs created pathways for electrons inside the matrix, turningmore » the permittivity to negative. The former phenomenon was highly congruent with the percolation power law, while the latter could be explained by the Drude Model. AC conductivity was measured for more supportive information. Additionally, scanning electron microscopy and transmission electron microscopy were employed to record MWCNTs' microscopic distribution and morphology at the percolation threshold.« less

  11. Effects of surface nanostructuring and impurity doping on ultrafast carrier dynamics of silicon photovoltaic cells: a pump-probe study

    NASA Astrophysics Data System (ADS)

    Chen, Tianyu; Nam, Yoon-Ho; Wang, Xinke; Han, Peng; Sun, Wenfeng; Feng, Shengfei; Ye, Jiasheng; Song, Jae-Won; Lee, Jung-Ho; Zhang, Chao; Zhang, Yan

    2018-01-01

    We present femtosecond optical pump-terahertz probe studies on the ultrafast dynamical processes of photo-generated charge carriers in silicon photovoltaic cells with various nanostructured surfaces and doping densities. The pump-probe measurements provide direct insight on the lifetime of photo-generated carriers, frequency-dependent complex dielectric response along with photoconductivity of silicon photovoltaic cells excited by optical pump pulses. A lifetime of photo-generated carriers of tens of nanosecond is identified from the time-dependent pump-induced attenuation of the terahertz transmission. In addition, we find a large value of the imaginary part of the dielectric function and of the real part of the photoconductivity in silicon photovoltaic cells with micron length nanowires. We attribute these findings to the result of defect-enhanced electron-photon interactions. Moreover, doping densities of phosphorous impurities in silicon photovoltaic cells are also quantified using the Drude-Smith model with our measured frequency-dependent complex photoconductivities.

  12. Optical and electrical properties of heavily indium-doped CdS around the semiconductor-metal phase transition

    NASA Astrophysics Data System (ADS)

    Broser, I.; Broser, R.; Birkicht, E.

    1990-04-01

    Heavily indium-doped CdS crystals are studied by comparing their optical and electrical properties. It is shown that in the near infrared spectral region for highly conducting crystals the correlation of electrical conductivity and optical effects can still be understood in the frame of the classical Drude-Lorentz model. Even for high doping the relaxation time τ and the effective mass m ∗ of the electrons are not markedly different from the room temperature values of "pure" crystals. At photon energies near the band gap, however, optical spectra in transmission, reflectivity, and emission show clearly the existence of band-tails and screening effects. A different situation holds for a highly compensated specimen: They are in a wide temperature region highly isolating, show activated photoconductivity and special structures in the optical spectra near the band gap. Their properties can be explained by assuming a meandering bandbending due to the combined action of donors and acceptors and the assumption of spatially isolated electron and hole droplets [6].

  13. Microwave conductance properties of aligned multiwall carbon nanotube textile sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Brian L.; Martinez, Patricia; Zakhidov, Anvar A.

    2015-07-06

    Understanding the conductance properties of multi-walled carbon nanotube (MWNT) textile sheets in the microwave regime is essential for their potential use in high-speed and high-frequency applications. To expand current knowledge, complex high-frequency conductance measurements from 0.01 to 50 GHz and across temperatures from 4.2 K to 300 K and magnetic fields up to 2 T were made on textile sheets of highly aligned MWNTs with strand alignment oriented both parallel and perpendicular to the microwave electric field polarization. Sheets were drawn from 329 and 520 μm high MWNT forests that resulted in different DC resistance anisotropy. For all samples, themore » microwave conductance can be modeled approximately by a shunt capacitance in parallel with a frequency-independent conductance, but with no inductive contribution. Finally, this is consistent with diffusive Drude conduction as the primary transport mechanism up to 50 GHz. Further, it is found that the microwave conductance is essentially independent of both temperature and magnetic field.« less

  14. On the Small Mass Limit of Quantum Brownian Motion with Inhomogeneous Damping and Diffusion

    NASA Astrophysics Data System (ADS)

    Lim, Soon Hoe; Wehr, Jan; Lampo, Aniello; García-March, Miguel Ángel; Lewenstein, Maciej

    2018-01-01

    We study the small mass limit (or: the Smoluchowski-Kramers limit) of a class of quantum Brownian motions with inhomogeneous damping and diffusion. For Ohmic bath spectral density with a Lorentz-Drude cutoff, we derive the Heisenberg-Langevin equations for the particle's observables using a quantum stochastic calculus approach. We set the mass of the particle to equal m = m0 ɛ , the reduced Planck constant to equal \\hbar = ɛ and the cutoff frequency to equal Λ = E_{Λ}/ɛ , where m_0 and E_{Λ} are positive constants, so that the particle's de Broglie wavelength and the largest energy scale of the bath are fixed as ɛ → 0. We study the limit as ɛ → 0 of the rescaled model and derive a limiting equation for the (slow) particle's position variable. We find that the limiting equation contains several drift correction terms, the quantum noise-induced drifts, including terms of purely quantum nature, with no classical counterparts.

  15. Strain effects on the optical conductivity of gapped graphene in the presence of Holstein phonons beyond the Dirac cone approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarmohammadi, Mohsen, E-mail: m.yarmohammadi69@gmail.com

    2016-08-15

    In this paper we study the optical conductivity and density of states (DOS) of doped gapped graphene beyond the Dirac cone approximation in the presence of electron-phonon (e-ph) interaction under strain, i.e., within the framework of a full π-band Holstein model, by using the Kubo linear response formalism that is established upon the retarded self-energy. A new peak in the optical conductivity for a large enough e-ph interaction strength is found which is associated to transitions between the midgap states and the Van Hove singularities of the main π-band. Optical conductivity decreases with strain and at large strains, the systemmore » has a zero optical conductivity at low energies due to optically inter-band excitations through the limit of zero doping. As a result, the Drude weight changes with e-ph interaction, temperature and strain. Consequently, DOS and optical conductivity remains stable with temperature at low e-ph coupling strengths.« less

  16. Flux quench in a system of interacting spinless fermions in one dimension

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yuya O.; Misguich, Grégoire; Oshikawa, Masaki

    2016-05-01

    We study a quantum quench in a one-dimensional spinless fermion model (equivalent to the XXZ spin chain), where a magnetic flux is suddenly switched off. This quench is equivalent to imposing a pulse of electric field and therefore generates an initial particle current. This current is not a conserved quantity in the presence of a lattice and interactions, and we investigate numerically its time evolution after the quench, using the infinite time-evolving block decimation method. For repulsive interactions or large initial flux, we find oscillations that are governed by excitations deep inside the Fermi sea. At long times we observe that the current remains nonvanishing in the gapless cases, whereas it decays to zero in the gapped cases. Although the linear response theory (valid for a weak flux) predicts the same long-time limit of the current for repulsive and attractive interactions (relation with the zero-temperature Drude weight), larger nonlinearities are observed in the case of repulsive interactions compared with that of the attractive case.

  17. Laser induced periodic surface structuring on Si by temporal shaped femtosecond pulses.

    PubMed

    Almeida, G F B; Martins, R J; Otuka, A J G; Siqueira, J P; Mendonca, C R

    2015-10-19

    We investigated the effect of temporal shaped femtosecond pulses on silicon laser micromachining. By using sinusoidal spectral phases, pulse trains composed of sub-pulses with distinct temporal separations were generated and applied to the silicon surface to produce Laser Induced Periodic Surface Structures (LIPSS). The LIPSS obtained with different sub-pulse separation were analyzed by comparing the intensity of the two-dimensional fast Fourier Transform (2D-FFT) of the AFM images of the ripples (LIPSS). It was observed that LIPSS amplitude is more emphasized for the pulse train with sub-pulses separation of 128 fs, even when compared with the Fourier transform limited pulse. By estimating the carrier density achieved at the end of each pulse train, we have been able to interpret our results with the Sipe-Drude model, that predicts that LIPSS efficacy is higher for a specific induced carrier density. Hence, our results indicate that temporal shaping of the excitation pulse, performed by spectral phase modulation, can be explored in fs-laser microstructuring.

  18. Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, G. N., E-mail: gnpandey2009@gmail.com; Kumar, Narendra; Thapa, Khem B.

    2016-05-06

    Metallic photonic crystal has a very important application in absorption enhancement in solar cells. It has been found that an ultra-thin metallic layer becomes transparent due to internal scattering of light through the each interface of the dielectric and metal surfaces. The metal has absorption due to their surface plasmon and the plasmon has important parameters for changing optical properties of the metal. We consider ternary metallic-dielectric photonic crystal (MDPC) for having large probabilities to change the optical properties of the MDPC and the photonic crystals may be changed by changing dimensionality, symmetry, lattice parameters, Filling fraction and effective refractivemore » index refractive index contrast. In this present communication, we try to show that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged when air dielectric constant is considered. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metal.« less

  19. Effect of oxygen vacancy distribution on the thermoelectric properties of La-doped SrTiO3 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Sarath Kumar, S. R.; Abutaha, A. I.; Hedhili, M. N.; Alshareef, H. N.

    2012-12-01

    A detailed study of the role of oxygen vacancies in determining the effective mass and high temperature (300-1000 K) thermoelectric properties of La-doped epitaxial SrTiO3 thin films is presented. It is observed that at intermediate temperatures, a transition from degenerate to non-degenerate behavior is observed in the Seebeck coefficient, but not electrical conductivity, which is attributed to heterogeneous oxygen non-stoichiometry. Heikes formula is found to be invalid for the films with oxygen vacancies. By fitting the spectroscopic ellipsometry (SE) data, obtained in the range 300-2100 nm, using a Drude-Lorentz dispersion relation with two Lorentz oscillators, the electrical and optical properties of the films are extracted. Using the excellent agreement between the transport properties extracted from SE modeling and direct electrical measurements, we demonstrate that an increase in concentration of oxygen vacancies results in a simultaneous increase of both carrier concentration and electron effective mass, resulting in a higher power factor.

  20. Spectral Weight Redistribution in ( LaNiO 3 ) n / ( LaMnO 3 ) 2 Superlattices from Optical Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Pietro, P.; Hoffman, J.; Bhattacharya, A.

    2015-04-01

    We have studied the optical properties of four (LaNiO3)(n)/(LaMnO3)(2) superlattices (SL) (n = 2, 3, 4, 5) on SrTiO3 substrates. We have measured the reflectivity at temperatures from 20 to 400 K, and extracted the optical conductivity through a fitting procedure based on a Kramers-Kronig consistent Lorentz-Drude model. With increasing LaNiO3 thickness, the SLs undergo an insulator-to-metal transition (IMT) that is accompanied by the transfer of spectral weight from high to low frequency. The presence of a broad midinfrared band, however, shows that the optical conductivity of the (LaNiO3)(n)/(LaMnO3)(2) SLs is not a linear combination of the LaMnO3 and LaNiO3more » conductivities. Our observations suggest that interfacial charge transfer leads to an IMT due to a change in valence at the Mn and Ni sites.« less

  1. Intrinsic evolutions of dielectric function and electronic transition in tungsten doping Ge{sub 2}Sb{sub 2}Te{sub 5} phase change films discovered by ellipsometry at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, S.; Ding, X. J.; Zhang, J. Z.

    2015-02-02

    Tungsten (W) doping effects on Ge{sub 2}Sb{sub 2}Te{sub 5} (GSTW) phase change films with different concentrations (3.2, 7.1, and 10.8%) have been investigated by variable-temperature spectroscopic ellipsometry. The dielectric functions from 210 K to 660 K have been evaluated with the aid of Tauc-Lorentz and Drude dispersion models. The analysis of Tauc gap energy (E{sub g}) and partial spectral weight integral reveal the correlation between optical properties and local structural change. The order degree increment and chemical bond change from covalent to resonant should be responsible for band gap narrowing and electronic transition enhancement during the phase change process. It is foundmore » that the elevated crystalline temperature for GSTW can be related to improved disorder degree. Furthermore, the shrinkage of E{sub g} for GSTW should be attributed to the enhanced metallicity compared with undoped GST.« less

  2. Thermoelectric properties of bismuth telluride nanoplate thin films determined using combined infrared spectroscopy and first-principles calculation

    NASA Astrophysics Data System (ADS)

    Wada, Kodai; Tomita, Koji; Takashiri, Masayuki

    2018-06-01

    The thermoelectric properties of bismuth telluride (Bi2Te3) nanoplate thin films were estimated using combined infrared spectroscopy and first-principles calculation, followed by comparing the estimated properties with those obtained using the standard electrical probing method. Hexagonal single-crystalline Bi2Te3 nanoplates were first prepared using solvothermal synthesis, followed by preparing Bi2Te3 nanoplate thin films using the drop-casting technique. The nanoplates were joined by thermally annealing them at 250 °C in Ar (95%)–H2 (5%) gas (atmospheric pressure). The electronic transport properties were estimated by infrared spectroscopy using the Drude model, with the effective mass being determined from the band structure using first-principles calculations based on the density functional theory. The electrical conductivity and Seebeck coefficient obtained using the combined analysis were higher than those obtained using the standard electrical probing method, probably because the contact resistance between the nanoplates was excluded from the estimation procedure of the combined analysis method.

  3. Self-propagated combustion synthesis of few-layered graphene: an optical properties perspective.

    PubMed

    Mohandoss, Manonmani; Sen Gupta, Soujit; Kumar, Ramesh; Islam, Md Rabiul; Som, Anirban; Mohd, Azhardin Ganayee; Pradeep, T; Maliyekkal, Shihabudheen M

    2018-04-26

    This paper describes a labour efficient and cost-effective strategy to prepare few-layered of reduced graphene oxide like (RGOL) sheets from graphite. The self-propagated combustion route enables the bulk production of RGOL sheets. Microscopic and spectroscopic analyses confirmed the formation of few-layer graphene sheets of an average thickness of ∼3 nm and the presence of some oxygen functional groups with a C/O ratio of 8.74. A possible mechanistic pathway for the formation of RGOL sheets is proposed. The optical properties of the RGOL sample were studied in detail by means of Spectroscopic Ellipsometry (SE). The experimental abilities of SE in relating the optical properties with the number of oxygen functionalities present in the samples are explored. The data were analysed by a double-layered optical model along with the Drude-Lorentz oscillatory dispersion relation. The refractive index (n = 2.24), extinction coefficient (k = 2.03), and dielectric functions are obtained using point-by-point analysis and are also checked for Kramers-Kronig (KK) consistency.

  4. Wave propagation in media having negative permittivity and permeability.

    PubMed

    Ziolkowski, R W; Heyman, E

    2001-11-01

    Wave propagation in a double negative (DNG) medium, i.e., a medium having negative permittivity and negative permeability, is studied both analytically and numerically. The choices of the square root that leads to the index of refraction and the wave impedance in a DNG medium are determined by imposing analyticity in the complex frequency domain, and the corresponding wave properties associated with each choice are presented. These monochromatic concepts are then tested critically via a one-dimensional finite difference time domain (FDTD) simulation of the propagation of a causal, pulsed plane wave in a matched, lossy Drude model DNG medium. The causal responses of different spectral regimes of the medium with positive or negative refractive indices are studied by varying the carrier frequency of narrowband pulse excitations. The smooth transition of the phenomena associated with a DNG medium from its early-time nondispersive behavior to its late-time monochromatic response is explored with wideband pulse excitations. These FDTD results show conclusively that the square root choice leading to a negative index of refraction and positive wave impedance is the correct one, and that this choice is consistent with the overall causality of the response. An analytical, exact frequency domain solution to the scattering of a wave from a DNG slab is also given and is used to characterize several physical effects. This solution is independent of the choice of the square roots for the index of refraction and the wave impedance, and thus avoids any controversy that may arise in connection with the signs of these constituents. The DNG slab solution is used to critically examine the perfect lens concept suggested recently by Pendry. It is shown that the perfect lens effect exists only under the special case of a DNG medium with epsilon(omega)=mu(omega)=-1 that is both lossless and nondispersive. Otherwise, the closed form solutions for the field structure reveal that the DNG slab converts an incident spherical wave into a localized beam field whose parameters depend on the values of epsilon and mu. This beam field is characterized with a paraxial approximation of the exact DNG slab solution. These monochromatic concepts are again explored numerically via a causal two-dimensional FDTD simulation of the scattering of a pulsed cylindrical wave by a matched, lossy Drude model DNG slab. These FDTD results demonstrate conclusively that the monochromatic electromagnetic power flow through the DNG slab is channeled into beams rather then being focused and, hence, the Pendry perfect lens effect is not realizable with any realistic metamaterial.

  5. PAHFIT: Properties of PAH Emission

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Draine, Bruce

    2012-10-01

    PAHFIT is an IDL tool for decomposing Spitzer IRS spectra of PAH emission sources, with a special emphasis on the careful recovery of ambiguous silicate absorption, and weak, blended dust emission features. PAHFIT is primarily designed for use with full 5-35 micron Spitzer low-resolution IRS spectra. PAHFIT is a flexible tool for fitting spectra, and you can add or disable features, compute combined flux bands, change fitting limits, etc., without changing the code. PAHFIT uses a simple, physically-motivated model, consisting of starlight, thermal dust continuum in a small number of fixed temperature bins, resolved dust features and feature blends, prominent emission lines (which themselves can be blended with dust features), as well as simple fully-mixed or screen dust extinction, dominated by the silicate absorption bands at 9.7 and 18 microns. Most model components are held fixed or are tightly constrained. PAHFIT uses Drude profiles to recover the full strength of dust emission features and blends, including the significant power in the wings of the broad emission profiles. This means the resulting feature strengths are larger (by factors of 2-4) than are recovered by methods which estimate the underlying continuum using line segments or spline curves fit through fiducial wavelength anchors.

  6. Structural, morphological and optical properties of ZnSe quantum dot thin films.

    PubMed

    Zedan, I T; Azab, A A; El-Menyawy, E M

    2016-02-05

    ZnSe powder was prepared via hydrothermal technique using zinc acetate and sodium selenite as source materials. The prepared ZnSe powder was used for preparing film with different thickness values (95, 135 and 230 nm) via thermal evaporation technique. X-ray diffraction showed that the prepared powder has cubic zinc-blende structure with a space group, F43m. The high resolution transmittance electron microscope results show that the films are composed of spherical-shaped nanoparticles with a diameter in the range of 2-8 nm. The optical properties of ZnSe films with differing thicknesses are investigated by means of spectrophotometric measurements of the photoluminescence, transmittance and reflectance. The absorption coefficient of the films is calculated and the optical band gap is estimated. The refractive index of the films is determined and its normal dispersion behavior is analyzed on the basis of a single oscillator model, in which oscillator energy, dispersion energy and dielectric constant at high frequency are evaluated. Drude model is also applied to determine the lattice dielectric constant and the ratio of the carriers' concentration to their effective mass. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Solution processable and optically switchable 1D photonic structures.

    PubMed

    Paternò, Giuseppe M; Iseppon, Chiara; D'Altri, Alessia; Fasanotti, Carlo; Merati, Giulia; Randi, Mattia; Desii, Andrea; Pogna, Eva A A; Viola, Daniele; Cerullo, Giulio; Scotognella, Francesco; Kriegel, Ilka

    2018-02-23

    We report the first demonstration of a solution processable, optically switchable 1D photonic crystal which incorporates phototunable doped metal oxide nanocrystals. The resulting device structure shows a dual optical response with the photonic bandgap covering the visible spectral range and the plasmon resonance of the doped metal oxide the near infrared. By means of a facile photodoping process, we tuned the plasmonic response and switched effectively the optical properties of the photonic crystal, translating the effect from the near infrared to the visible. The ultrafast bandgap pumping induces a signal change in the region of the photonic stopband, with recovery times of several picoseconds, providing a step toward the ultrafast optical switching. Optical modeling uncovers the importance of a complete modeling of the variations of the dielectric function of the photodoped material, including the high frequency region of the Drude response which is responsible for the strong switching in the visible after photodoping. Our device configuration offers unprecedented tunability due to flexibility in device design, covering a wavelength range from the visible to the near infrared. Our findings indicate a new protocol to modify the optical response of photonic devices by optical triggers only.

  8. Electrical and optical properties of warm dense beryllium along the principal Hugoniot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chuan-Ying; Wu, Ze-Qing; Li, Zi

    2015-09-15

    The electrical and optical properties of warm dense beryllium along the principal Hugoniot for temperatures from 0.95 eV to 10.65 eV and densities from 3.8 to 6.0 g/cm{sup 3} are investigated by using quantum molecular dynamics (QMD) simulations combined with the Kubo-Greenwood formulation. The dc conductivity σ{sub dc} and the ionization fraction are yielded by fitting the optical conductivity with the Drude-Smith model. The first-principles transport coefficients are compared with results of the Lee-More model and the Brysk model [Plasma Phys. 17, 473 (1975)]. Compared with the QMD result, the Lee-More model underestimates σ{sub dc} by 87% at low temperatures, approaches the QMDmore » result gradually with the temperature rising, yet still underestimates σ{sub dc} by 49% corresponding to the temperature 10.65 eV. In the whole temperature range under investigation, the Brysk model overestimates the electronic thermal conductivity κ while the Lee-More model underestimates κ. The differences are reduced with the temperature increasing. At the temperature 10.65 eV, the Brysk κ is still around twice as large as the QMD result, and the Lee-More κ is smaller than the QMD data by about 40%. In addition, QMD Rosseland mean opacities are shown to be three orders of magnitude larger than results of the average-atom model.« less

  9. A photoemission moments model using density functional and transfer matrix methods applied to coating layers on surfaces: Theory

    NASA Astrophysics Data System (ADS)

    Jensen, Kevin L.; Finkenstadt, Daniel; Shabaev, Andrew; Lambrakos, Samuel G.; Moody, Nathan A.; Petillo, John J.; Yamaguchi, Hisato; Liu, Fangze

    2018-01-01

    Recent experimental measurements of a bulk material covered with a small number of graphene layers reported by Yamaguchi et al. [NPJ 2D Mater. Appl. 1, 12 (2017)] (on bialkali) and Liu et al. [Appl. Phys. Lett. 110, 041607 (2017)] (on copper) and the needs of emission models in beam optics codes have lead to substantial changes in a Moments model of photoemission. The changes account for (i) a barrier profile and density of states factor based on density functional theory (DFT) evaluations, (ii) a Drude-Lorentz model of the optical constants and laser penetration depth, and (iii) a transmission probability evaluated by an Airy Transfer Matrix Approach. Importantly, the DFT results lead to a surface barrier profile of a shape similar to both resonant barriers and reflectionless wells: the associated quantum mechanical transmission probabilities are shown to be comparable to those recently required to enable the Moments (and Three Step) model to match experimental data but for reasons very different than the assumption by conventional wisdom that a barrier is responsible. The substantial modifications of the Moments model components, motivated by computational materials methods, are developed. The results prepare the Moments model for use in treating heterostructures and discrete energy level systems (e.g., quantum dots) proposed for decoupling the opposing metrics of performance that undermine the performance of advanced light sources like the x-ray Free Electron Laser. The consequences of the modified components on quantum yield, emittance, and emission models needed by beam optics codes are discussed.

  10. Statistical field theory description of inhomogeneous polarizable soft matter

    NASA Astrophysics Data System (ADS)

    Martin, Jonathan M.; Li, Wei; Delaney, Kris T.; Fredrickson, Glenn H.

    2016-10-01

    We present a new molecularly informed statistical field theory model of inhomogeneous polarizable soft matter. The model is based on fluid elements, referred to as beads, that can carry a net monopole of charge at their center of mass and a fixed or induced dipole through a Drude-type distributed charge approach. The beads are thus polarizable and naturally manifest attractive van der Waals interactions. Beyond electrostatic interactions, beads can be given soft repulsions to sustain fluid phases at arbitrary densities. Beads of different types can be mixed or linked into polymers with arbitrary chain models and sequences of charged and uncharged beads. By such an approach, it is possible to construct models suitable for describing a vast range of soft-matter systems including electrolyte and polyelectrolyte solutions, ionic liquids, polymerized ionic liquids, polymer blends, ionomers, and block copolymers, among others. These bead models can be constructed in virtually any ensemble and converted to complex-valued statistical field theories by Hubbard-Stratonovich transforms. One of the fields entering the resulting theories is a fluctuating electrostatic potential; other fields are necessary to decouple non-electrostatic interactions. We elucidate the structure of these field theories, their consistency with macroscopic electrostatic theory in the absence and presence of external electric fields, and the way in which they embed van der Waals interactions and non-uniform dielectric properties. Their suitability as a framework for computational studies of heterogeneous soft matter systems using field-theoretic simulation techniques is discussed.

  11. Statistical field theory description of inhomogeneous polarizable soft matter.

    PubMed

    Martin, Jonathan M; Li, Wei; Delaney, Kris T; Fredrickson, Glenn H

    2016-10-21

    We present a new molecularly informed statistical field theory model of inhomogeneous polarizable soft matter. The model is based on fluid elements, referred to as beads, that can carry a net monopole of charge at their center of mass and a fixed or induced dipole through a Drude-type distributed charge approach. The beads are thus polarizable and naturally manifest attractive van der Waals interactions. Beyond electrostatic interactions, beads can be given soft repulsions to sustain fluid phases at arbitrary densities. Beads of different types can be mixed or linked into polymers with arbitrary chain models and sequences of charged and uncharged beads. By such an approach, it is possible to construct models suitable for describing a vast range of soft-matter systems including electrolyte and polyelectrolyte solutions, ionic liquids, polymerized ionic liquids, polymer blends, ionomers, and block copolymers, among others. These bead models can be constructed in virtually any ensemble and converted to complex-valued statistical field theories by Hubbard-Stratonovich transforms. One of the fields entering the resulting theories is a fluctuating electrostatic potential; other fields are necessary to decouple non-electrostatic interactions. We elucidate the structure of these field theories, their consistency with macroscopic electrostatic theory in the absence and presence of external electric fields, and the way in which they embed van der Waals interactions and non-uniform dielectric properties. Their suitability as a framework for computational studies of heterogeneous soft matter systems using field-theoretic simulation techniques is discussed.

  12. Nonlinear THz Plamonic Disk Resonators

    NASA Astrophysics Data System (ADS)

    Seren, Huseyin; Zhang, Jingdi; Keiser, George; Maddox, Scott; Fan, Kebin; Cao, Lingyue; Bank, Seth; Zhang, Xin; Averitt, Richard

    2013-03-01

    Particle surface plasmons (PPSs) at visible wavelengths continue to be actively investigated with the goal of nanoscale control of light. In contrast, terahertz (THz) surface plasmon experiments are at a nascent stage of investigation. Doped semiconductors with proper carrier density and mobility support THz PSPs. One approach is to utilize thick doped films etched into subwavelength disks. Given the ease of tuning the semiconductor carrier density, THz PSPs are tunable and exhibit interesting nonlinear THz plasmonic effects. We created THz PSP structures using MBE grown 2um thick InAs films with a doping concentration of 1e17cm-3 on 500um thick semi-insulating GaAs substrate. We patterned 40um diameter disks with a 60um period by reactive ion etching. Our THz time-domain measurements reveal a resonance at 1.1THz which agrees well with simulation results using a Drude model. A nonlinear response occurs at high THz electric field strengths (>50kV/cm). In particular, we observed a redshift and quenching of the resonance due to impact ionization which resulted in changes in the carrier density and effective mass due to inter-valley scattering.

  13. Pressure tuning the lattice and optical response of silver sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhao, E-mail: zhaozhao@stanford.edu; Wei, Hua; Mao, Wendy L.

    2016-06-27

    Binary transition metal chalcogenides have attracted increasing attention for their unique structural and electronic properties. High pressure is a powerful tool for tuning the lattice and electronic structure of transition metal chalcogenides away from their pristine states. In this work, we systematically studied the in situ structural and optical behavior of silver sulfide (Ag{sub 2}S) under pressure by synchrotron X-ray diffraction and infrared spectroscopy measurements in a diamond anvil cell. Upon compression, Ag{sub 2}S undergoes structural symmetrization accompanied by a series of structural transitions while the crystallographic inequivalence of the two Ag sites is maintained. Electronically, pressure effectively tunes themore » ambient semiconducting Ag{sub 2}S into a metal at ∼22 GPa. Drude model analysis shows that the optical conductivity evolves significantly, reaching the highest value of 100 Ω{sup −1} cm{sup −1} at ∼40 GPa. Our results highlight the structural and electronic tunability of silver chalcogenides as a function of pressure and suggest the potential of Ag{sub 2}S as a platform for developing optical and opto-electronic applications.« less

  14. Disorder-driven metal-insulator-transition assisted by interband Coulomb repulsion in a surface transfer doped electron system

    NASA Astrophysics Data System (ADS)

    Francisco Sánchez-Royo, Juan

    2012-12-01

    The two-dimensional conducting properties of the Si(111) \\sqrt {3} \\times \\sqrt {3} surface doped by the charge surface transfer mechanism have been calculated in the frame of a semiclassical Drude-Boltzmann model considering donor scattering mechanisms. To perform these calculations, the required values of the carrier effective mass were extracted from reported angle-resolved photoemission results. The calculated doping dependence of the surface conductance reproduces experimental results reported and reveals an intricate metallization process driven by disorder and assisted by interband interactions. The system should behave as an insulator even at relatively low doping due to disorder. However, when doping increases, the system achieves to attenuate the inherent localization effects introduced by disorder and to conduct by percolation. The mechanism found by the system to conduct appears to be connected with the increasing of the carrier effective mass observed with doping, which seems to be caused by interband interactions involving the conducting band and deeper ones. This mass enhancement reduces the donor Bohr radius and, consequently, promotes the screening ability of the donor potential by the electron gas.

  15. Ultrafast terahertz spectroscopy study of a Kondo insulating thin-film Sm B6 : Evidence for an emergent surface state

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdi; Yong, Jie; Takeuchi, Ichiro; Greene, Richard L.; Averitt, Richard D.

    2018-04-01

    We utilize terahertz time domain spectroscopy to investigate thin films of the heavy fermion compound Sm B6 , a prototype Kondo insulator. Temperature-dependent terahertz (THz) conductivity measurements reveal a rapid decrease in the Drude weight and carrier scattering rate at ˜T*=20 K , well below the hybridization gap onset temperature (100 K). Moreover, a low-temperature conductivity plateau (below 20 K) suggests the emergence of a surface state with an effective electron mass of 0.1 me . The conductivity dynamics following optical excitation is also measured and interpreted using Rothwarf-Taylor (R-T) phenomenology, yielding a hybridization gap energy of 17 meV. However, R-T modeling of the conductivity dynamics reveals a deviation from the expected thermally excited quasiparticle density at temperatures below 20 K, indicative of another channel opening up in the low-energy electrodynamics. Taken together, these results are consistent with the onset of a surface state well below the crossover temperature (100 K) after long-range coherence of the f -electron Kondo lattice is established.

  16. Complex permeability and permittivity spectra of percolated Fe50Co50/Cu granular composites

    NASA Astrophysics Data System (ADS)

    Massango, Herieta; Tsutaoka, Takanori; Kasagi, Teruhiro; Yamamoto, Shinichiro; Hatakeyama, Kenichi

    2017-11-01

    Complex permeability and permittivity spectra of Fe50Co50/Cu hybrid granular composite materials have been studied in the RF to microwave frequency range. At low Cu particle content, the Fe50Co50/Cu hybrid sample shows a metallic percolative property with the electrical conductivity value about 0.1 S/cm. However, the low frequency plasmonic (LFP) state with negative permittivity (ENG) spectrum was not observed. An abrupt increase of electrical conductivity takes place at 14 to 16 vol% Cu content where the conductivity becomes above 1.0 S/cm; the Fe50Co50/Cu composite possesses the LFP state with negative permittivity spectrum below a characteristic frequency. The complex permittivity spectra in the LFP state can be described by the Drude model. Magnetic permeability spectrum in the LFP state showed a broad frequency dispersion above 10 MHz; a small negative permeability (MNG) dispersion was observed from 2 to 10 GHz. Consequently, the double negative (DNG) electromagnetic property with MNG and ENG was realized in the microwave range for the Cu content of 26 and 30 vol%.

  17. Electrical tuning of a quantum plasmonic resonance

    DOE PAGES

    Liu, Xiaoge; Kang, Ju -Hyung; Yuan, Hongtao; ...

    2017-06-12

    Surface plasmon (SP) excitations in metals facilitate confinement of light into deep-subwavelength volumes and can induce strong light–matter interaction. Generally, the SP resonances supported by noble metal nanostructures are explained well by classical models, at least until the nanostructure size is decreased to a few nanometres, approaching the Fermi wavelength λ F of the electrons. Although there is a long history of reports on quantum size effects in the plasmonic response of nanometre-sized metal particles systematic experimental studies have been hindered by inhomogeneous broadening in ensemble measurements, as well as imperfect control over size, shape, faceting, surface reconstructions, contamination, chargingmore » effects and surface roughness in single-particle measurements. In particular, observation of the quantum size effect in metallic films and its tuning with thickness has been challenging as they only confine carriers in one direction. Here, we show active tuning of quantum size effects in SP resonances supported by a 20-nm-thick metallic film of indium tin oxide (ITO), a plasmonic material serving as a low-carrier-density Drude metal. An ionic liquid (IL) is used to electrically gate and partially deplete the ITO layer. The experiment shows a controllable and reversible blue-shift in the SP resonance above a critical voltage. As a result, a quantum-mechanical model including the quantum size effect reproduces the experimental results, whereas a classical model only predicts a red shift.« less

  18. Electrical tuning of a quantum plasmonic resonance

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoge; Kang, Ju-Hyung; Yuan, Hongtao; Park, Junghyun; Kim, Soo Jin; Cui, Yi; Hwang, Harold Y.; Brongersma, Mark L.

    2017-09-01

    Surface plasmon (SP) excitations in metals facilitate confinement of light into deep-subwavelength volumes and can induce strong light-matter interaction. Generally, the SP resonances supported by noble metal nanostructures are explained well by classical models, at least until the nanostructure size is decreased to a few nanometres, approaching the Fermi wavelength λF of the electrons. Although there is a long history of reports on quantum size effects in the plasmonic response of nanometre-sized metal particles, systematic experimental studies have been hindered by inhomogeneous broadening in ensemble measurements, as well as imperfect control over size, shape, faceting, surface reconstructions, contamination, charging effects and surface roughness in single-particle measurements. In particular, observation of the quantum size effect in metallic films and its tuning with thickness has been challenging as they only confine carriers in one direction. Here, we show active tuning of quantum size effects in SP resonances supported by a 20-nm-thick metallic film of indium tin oxide (ITO), a plasmonic material serving as a low-carrier-density Drude metal. An ionic liquid (IL) is used to electrically gate and partially deplete the ITO layer. The experiment shows a controllable and reversible blue-shift in the SP resonance above a critical voltage. A quantum-mechanical model including the quantum size effect reproduces the experimental results, whereas a classical model only predicts a red shift.

  19. Absence of Cyclotron Resonance in the Anomalous Metallic Phase in InOx

    NASA Astrophysics Data System (ADS)

    Wang, Youcheng; Tamir, I.; Shahar, D.; Armitage, N. P.

    2018-04-01

    It is observed that many thin superconducting films with not too high disorder level (generally RN/□<2000 Ω ) placed in magnetic field show an anomalous metallic phase where the resistance is low but still finite as temperature goes to zero. Here we report in weakly disordered amorphous InOx thin films that this anomalous metal phase possesses no cyclotron resonance and hence non-Drude electrodynamics. The absence of a finite frequency resonant mode can be associated with a vanishing downstream component of the vortex current parallel to the supercurrent and an emergent particle-hole symmetry of this metal, which establishes its non-Fermi-liquid character.

  20. Magnetoquantum Oscillations at THz Frequencies in InSb

    NASA Astrophysics Data System (ADS)

    Gogoi, P.; Kamenskyi, D.; Arslanov, D. D.; Jongma, R. T.; van der Zande, W. J.; Redlich, B.; van der Meer, A. F. G.; Engelkamp, H.; Christianen, P. C. M.; Maan, J. C.

    2017-10-01

    The ac magnetoconductance of bulk InSb at THz frequencies in high magnetic fields, as measured by the transmission of THz radiation, shows a field-induced transmission, which at high temperatures (≈100 K ) is well explained with classical magnetoplasma effects (helicon waves). However, at low temperatures (4 K), the transmitted radiation intensity shows magnetoquantum oscillations that represent the Shubnikov-de Haas effect at THz frequencies. At frequencies above 0.9 THz, when the radiation period is shorter than the Drude scattering time, an anomalously high transmission is observed in the magnetic quantum limit that can be interpreted as carrier localization at high frequencies.

  1. Direct Evidence for Delocalization of Charge Carriers at the Fermi Level in a Doped Conducting Polymer

    NASA Astrophysics Data System (ADS)

    Zhuo, Jing-Mei; Zhao, Li-Hong; Chia, Perq-Jon; Sim, Wee-Sun; Friend, Richard H.; Ho, Peter K. H.

    2008-05-01

    The infrared absorption spectrum of the polaron charges at the Fermi level EF in a heavily p-doped conducting poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) film has been measured using interferogram-modulated Fourier-transform charge-modulation spectroscopy. The spectrum indicates softer phonons and weaker electron-phonon coupling riding on a strongly redshifted Drude-like electronic transition, different from the population-averaged “bulk” spectrum. This provides direct evidence that the EF holes are sufficiently delocalized even in such disordered materials to reside in an energy continuum (band states) while the rest of the hole population resides in self-localized gap states.

  2. Optical conductivity of alpha-Mn

    NASA Technical Reports Server (NTRS)

    Scoles, K. J.; Christy, R. W.

    1982-01-01

    The optical constants were measured at room temperature in the photon-energy range 0.6 to 6.5 eV on evaporated thin films. Evaporation conditions were chosen that gave the alpha-Mn crystal structure with reasonably large grains. The optical conductivity was separated into intraband and interband contributions by fitting to the Drude formula at low energies. The results are anomalous in comparison to other 3d transition metals. The free-electron lifetime is exceptionally sort (in agreement with the large dc resistivity of Mn), and the interband transitions seem unusually weak at the lower energies. Possible explanations related to the complicated crystal structure of alpha-Mn are discussed.

  3. Magnetoquantum Oscillations at THz Frequencies in InSb.

    PubMed

    Gogoi, P; Kamenskyi, D; Arslanov, D D; Jongma, R T; van der Zande, W J; Redlich, B; van der Meer, A F G; Engelkamp, H; Christianen, P C M; Maan, J C

    2017-10-06

    The ac magnetoconductance of bulk InSb at THz frequencies in high magnetic fields, as measured by the transmission of THz radiation, shows a field-induced transmission, which at high temperatures (≈100  K) is well explained with classical magnetoplasma effects (helicon waves). However, at low temperatures (4 K), the transmitted radiation intensity shows magnetoquantum oscillations that represent the Shubnikov-de Haas effect at THz frequencies. At frequencies above 0.9 THz, when the radiation period is shorter than the Drude scattering time, an anomalously high transmission is observed in the magnetic quantum limit that can be interpreted as carrier localization at high frequencies.

  4. Resonance coupling in plasmonic nanomatryoshka homo- and heterodimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmadivand, Arash, E-mail: aahma011@fiu.edu; Sinha, Raju; Pala, Nezih

    Here, we examine the electromagnetic (EM) energy coupling and hybridization of plasmon resonances between closely spaced concentric nanoshells known as “nanomatryoshka” (NM) units in symmetric and antisymmetric compositions using the Finite Difference Time Domain (FDTD) analysis. Utilizing plasmon hybridization model, we calculated the energy level diagrams and verified that, in the symmetric dimer (in-phase mode in a homodimer), plasmonic bonding modes are dominant and tunable within the considered bandwidth. In contrast, in the antisymmetric dimer (out-of-phase mode in a heterodimer), due to the lack of the geometrical symmetry, new antibonding modes appear in the extinction profile, and this condition givesmore » rise to repeal of dipolar field coupling. We also studied the extinction spectra and positions of the antibonding and bonding modes excited due to the energy coupling between silver and gold NM units in a heterodimer structure. Our analysis suggest abnormal shifts in the higher energy modes. We propose a method to analyze the behavior of multilayer concentric nanoshell particles in an antisymmetric orientation employing full dielectric function calculations and the Drude model based on interband transitions in metallic components. This study provides a method to predict the behavior of the higher energy plasmon resonant modes in entirely antisymmetric structures such as compositional heterodimers.« less

  5. Role of electron-phonon coupling in finite-temperature dielectric functions of Au, Ag, and Cu

    NASA Astrophysics Data System (ADS)

    Xu, Meng; Yang, Jia-Yue; Zhang, Shangyu; Liu, Linhua

    2017-09-01

    Realistic representation of finite temperature dielectric functions of noble metals is crucial in describing the optical properties of advancing applications in plasmonics and optical metamaterials. However, the atomistic origins of the temperature dependence of noble metals' dielectric functions still lack full explanation. In this paper, we implement electronic structure calculations as well as ellipsometry experiments to study the finite temperature dielectric functions of noble metals Au, Ag, and Cu. Theoretically, the intraband dielectric function is described by the Drude model, of which the important quantity electron lifetime is obtained by considering the electron-phonon, electron-electron, and electron-surface scattering mechanism. The electron-phonon coupling is key to determining the temperature dependence of electron lifetime and intraband dielectric function. For the interband dielectric function, it arises from the electronic interband transition. Due to the limitation of incorporating electron-phonon coupling into the interband transition scheme, the temperature dependence of the interband dielectric function is mainly determined by the thermal expansion effect. Experimentally, variable angle spectroscopic ellipsometry measures the dielectric functions of Au and Ag over the temperature range of 300-700 K and spectral range of 2-20 µm. Those experimental measurements are consistent with theoretical results and thus verify the theoretical models for the finite temperature dielectric function.

  6. Analytical modeling of localized surface plasmon resonance in heterostructure copper sulfide nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, Andrew H.; Ha, Don-Hyung; Ding, Xiaoyue

    2014-10-28

    Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals is a relatively new field of investigation that promises greater tunability of plasmonic properties compared to metal nanoparticles. A novel process by which the LSPR in semiconductor nanocrystals can be altered is through heterostructure formation arising from solution-based cation exchange. Herein, we describe the development of an analytical model of LSPR in heterostructure copper sulfide-zinc sulfide nanocrystals synthesized via a cation exchange reaction between copper sulfide (Cu 1.81S) nanocrystals and Zn ions. The cation exchange reaction produces dual-interface, heterostructure nanocrystals in which the geometry of the copper sulfide phase can be tunedmore » from a sphere to a thin disk separating symmetrically-grown sulfide (ZnS) grains. Drude model electronic conduction and Mie-Gans theory are applied to describe how the LSPR wavelength changes during cation exchange, taking into account the morphology evolution and changes to the local permittivity. The results of the modeling indicate that the presence of the ZnS grains has a significant effect on the out-of-plane LSPR mode. By comparing the results of the model to previous studies on solid-solid phase transformations of copper sulfide in these nanocrystals during cation exchange, we show that the carrier concentration is independent of the copper vacancy concentration dictated by its atomic phase. The evolution of the effective carrier concentration calculated from the model suggests that the out-of-plane resonance mode is dominant. The classical model was compared to a simplified quantum mechanical model which suggested that quantum mechanical effects become significant when the characteristic size is less than ~8 nm. Overall, we find that the analytical models are not accurate for these heterostructured semiconductor nanocrystals, indicating the need for new model development for this emerging field.« less

  7. Analytical modeling of localized surface plasmon resonance in heterostructure copper sulfide nanocrystals

    NASA Astrophysics Data System (ADS)

    Caldwell, Andrew H.; Ha, Don-Hyung; Ding, Xiaoyue; Robinson, Richard D.

    2014-10-01

    Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals is a relatively new field of investigation that promises greater tunability of plasmonic properties compared to metal nanoparticles. A novel process by which the LSPR in semiconductor nanocrystals can be altered is through heterostructure formation arising from solution-based cation exchange. Herein, we describe the development of an analytical model of LSPR in heterostructure copper sulfide-zinc sulfide nanocrystals synthesized via a cation exchange reaction between copper sulfide (Cu1.81S) nanocrystals and Zn ions. The cation exchange reaction produces dual-interface, heterostructure nanocrystals in which the geometry of the copper sulfide phase can be tuned from a sphere to a thin disk separating symmetrically-grown sulfide (ZnS) grains. Drude model electronic conduction and Mie-Gans theory are applied to describe how the LSPR wavelength changes during cation exchange, taking into account the morphology evolution and changes to the local permittivity. The results of the modeling indicate that the presence of the ZnS grains has a significant effect on the out-of-plane LSPR mode. By comparing the results of the model to previous studies on solid-solid phase transformations of copper sulfide in these nanocrystals during cation exchange, we show that the carrier concentration is independent of the copper vacancy concentration dictated by its atomic phase. The evolution of the effective carrier concentration calculated from the model suggests that the out-of-plane resonance mode is dominant. The classical model was compared to a simplified quantum mechanical model which suggested that quantum mechanical effects become significant when the characteristic size is less than ˜8 nm. Overall, we find that the analytical models are not accurate for these heterostructured semiconductor nanocrystals, indicating the need for new model development for this emerging field.

  8. A photoemission moments model using density functional and transfer matrix methods applied to coating layers on surfaces: Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Kevin L.; Finkenstadt, Daniel; Shabaev, Andrew

    Recent experimental measurements of a bulk material covered with a small number of graphene layers reported by Yamaguchi et al. [NPJ 2D Mater. Appl. 1, 12 (2017)] (on bialkali) and Liu et al.[Appl. Phys. Lett. 110, 041607 (2017)] (on copper) and the needs of emission models in beam optics codes have lead to substantial changes in a Moments model of photoemission. The changes account for (i) a barrier profile and density of states factor based on density functional theory (DFT) evaluations, (ii) a Drude-Lorentz model of the optical constants and laser penetration depth, and (iii) a transmission probability evaluated bymore » an Airy Transfer Matrix Approach. Importantly, the DFT results lead to a surface barrier profile of a shape similar to both resonant barriers and reflectionless wells: the associated quantum mechanical transmission probabilities are shown to be comparable to those recently required to enable the Moments (and Three Step) model to match experimental data but for reasons very different than the assumption by conventional wisdom that a barrier is responsible. The substantial modifications of the Moments model components, motivated by computational materials methods, are developed. The results prepare the Moments model for use in treating heterostructures and discrete energy level systems (e.g., quantum dots) proposed for decoupling the opposing metrics of performance that undermine the performance of advanced light sources like the x-ray Free Electron Laser. The consequences of the modified components on quan-tum yield, emittance, and emission models needed by beam optics codes are discussed. Published by AIP Publishing. https://doi.org/10.1063/1.5008600« less

  9. A photoemission moments model using density functional and transfer matrix methods applied to coating layers on surfaces: Theory

    DOE PAGES

    Jensen, Kevin L.; Finkenstadt, Daniel; Shabaev, Andrew; ...

    2018-01-28

    Recent experimental measurements of a bulk material covered with a small number of graphene layers reported by Yamaguchi et al. [NPJ 2D Mater. Appl. 1, 12 (2017)] (on bialkali) and Liu et al.[Appl. Phys. Lett. 110, 041607 (2017)] (on copper) and the needs of emission models in beam optics codes have lead to substantial changes in a Moments model of photoemission. The changes account for (i) a barrier profile and density of states factor based on density functional theory (DFT) evaluations, (ii) a Drude-Lorentz model of the optical constants and laser penetration depth, and (iii) a transmission probability evaluated bymore » an Airy Transfer Matrix Approach. Importantly, the DFT results lead to a surface barrier profile of a shape similar to both resonant barriers and reflectionless wells: the associated quantum mechanical transmission probabilities are shown to be comparable to those recently required to enable the Moments (and Three Step) model to match experimental data but for reasons very different than the assumption by conventional wisdom that a barrier is responsible. The substantial modifications of the Moments model components, motivated by computational materials methods, are developed. The results prepare the Moments model for use in treating heterostructures and discrete energy level systems (e.g., quantum dots) proposed for decoupling the opposing metrics of performance that undermine the performance of advanced light sources like the x-ray Free Electron Laser. The consequences of the modified components on quan-tum yield, emittance, and emission models needed by beam optics codes are discussed. Published by AIP Publishing. https://doi.org/10.1063/1.5008600« less

  10. Anomalous metallic state with strong charge fluctuations in BaxTi8O16 +δ revealed by hard x-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Dash, S.; Kajita, T.; Okawa, M.; Saitoh, T.; Ikenaga, E.; Saini, N. L.; Katsufuji, T.; Mizokawa, T.

    2018-04-01

    We have studied a charge-orbital driven metal-insulator transition (MIT) in hollandite-type BaxTi8O16 +δ by means of hard x-ray photoemission spectroscopy (HAXPES). The Ti 2 p HAXPES indicates strong Ti3 +/Ti4 + charge fluctuation in the metallic phase above the MIT temperature. The metallic phase is characterized by a power-law spectral function near the Fermi level which would be a signature of bad metal with non-Drude polaronic behavior. The power-law spectral shape is associated with the large Seebeck coefficient of the metallic phase in BaxTi8O16 +δ .

  11. Observations of non-linear plasmon damping in dense plasmas

    NASA Astrophysics Data System (ADS)

    Witte, B. B. L.; Sperling, P.; French, M.; Recoules, V.; Glenzer, S. H.; Redmer, R.

    2018-05-01

    We present simulations using finite-temperature density-functional-theory molecular-dynamics to calculate dynamic dielectric properties in warm dense aluminum. The comparison between exchange-correlation functionals in the Perdew, Burke, Ernzerhof approximation, Strongly Constrained and Appropriately Normed Semilocal Density Functional, and Heyd, Scuseria, Ernzerhof (HSE) approximation indicates evident differences in the electron transition energies, dc conductivity, and Lorenz number. The HSE calculations show excellent agreement with x-ray scattering data [Witte et al., Phys. Rev. Lett. 118, 225001 (2017)] as well as dc conductivity and absorption measurements. These findings demonstrate non-Drude behavior of the dynamic conductivity above the Cooper minimum that needs to be taken into account to determine optical properties in the warm dense matter regime.

  12. Emissivity of freestanding membranes with thin metal coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zwol, P. J. van, E-mail: Pieter-jan.van.zwol@asml.com; Vles, D. F.; Voorthuijzen, W. P.

    Freestanding silicon nitride membranes with thicknesses down to a few tens of nanometers find use as TEM windows or soft X-ray spectral purity filters. As the thickness of a membrane decreases, emissivity vanishes, which limits radiative heat emission and resistance to heat loads. We show that thin metal layers with thicknesses in the order of 1 nm enhance the emissivity of thin membranes by two to three orders of magnitude close to the theoretical limit of 0.5. This considerably increases thermal load capacity of membranes in vacuum environments. Our experimental results are in line with classical theory in which we adaptmore » thickness dependent scattering terms in the Drude and Lorentz oscillators.« less

  13. How the laser-induced ionization of transparent solids can be suppressed

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2013-12-01

    A capability to suppress laser-induced ionization of dielectric crystals in controlled and predictable way can potentially result in substantial improvement of laser damage threshold of optical materials. The traditional models that employ the Keldysh formula do not predict any suppression of the ionization because of the oversimplified description of electronic energy bands underlying the Keldysh formula. To fix this gap, we performed numerical simulations of time evolution of conduction-band electron density for a realistic cosine model of electronic bands characteristic of wide-band-gap cubic crystals. The simulations include contributions from the photo-ionization (evaluated by the Keldysh formula and by the formula for the cosine band of volume-centered cubic crystals) and from the avalanche ionization (evaluated by the Drude model). Maximum conduction-band electron density is evaluated from a single rate equation as a function of peak intensity of femtosecond laser pulses for alkali halide crystals. Results obtained for high-intensity femtosecond laser pulses demonstrate that the ionization can be suppressed by proper choice of laser parameters. In case of the Keldysh formula, the peak electron density exhibits saturation followed by gradual increase. For the cosine band, the electron density increases with irradiance within the low-intensity multiphoton regime and switches to decrease with intensity approaching threshold of the strong singularity of the ionization rate characteristic of the cosine band. Those trends are explained with specific modifications of band structure by electric field of laser pulses.

  14. Finite-size anomalies of the Drude weight: Role of symmetries and ensembles

    NASA Astrophysics Data System (ADS)

    Sánchez, R. J.; Varma, V. K.

    2017-12-01

    We revisit the numerical problem of computing the high temperature spin stiffness, or Drude weight, D of the spin-1 /2 X X Z chain using exact diagonalization to systematically analyze its dependence on system symmetries and ensemble. Within the canonical ensemble and for states with zero total magnetization, we find D vanishes exactly due to spin-inversion symmetry for all but the anisotropies Δ˜M N=cos(π M /N ) with N ,M ∈Z+ coprimes and N >M , provided system sizes L ≥2 N , for which states with different spin-inversion signature become degenerate due to the underlying s l2 loop algebra symmetry. All these loop-algebra degenerate states carry finite currents which we conjecture [based on data from the system sizes and anisotropies Δ˜M N (with N

  15. Lithium intercalation in sputter deposited antimony-doped tin oxide thin films: Evidence from electrochemical and optical measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montero, J., E-mail: jose.montero@angstrom.uu.se; Granqvist, C. G.; Niklasson, G. A.

    2014-04-21

    Transparent conducting oxides are used as transparent electrical contacts in a variety of applications, including in electrochromic smart windows. In the present work, we performed a study of transparent conducting antimony-doped tin oxide (ATO) thin films by chronopotentiometry in a Li{sup +}-containing electrolyte. The open circuit potential vs. Li was used to investigate ATO band lineups, such as those of the Fermi level and the ionization potential, as well as the dependence of these lineups on the preparation conditions for ATO. Evidence was found for Li{sup +} intercalation when a current pulse was set in a way so as tomore » drive ions from the electrolyte into the ATO lattice. Galvanostatic intermittent titration was then applied to determine the lithium diffusion coefficient within the ATO lattice. The electrochemical density of states of the conducting oxide was studied by means of the transient voltage recorded during the chronopotentiometry experiments. These measurements were possible because, as Li{sup +} intercalation took place, charge compensating electrons filled the lowest part of the conduction band in ATO. Furthermore, the charge insertion modified the optical properties of ATO according to the Drude model.« less

  16. Anomalous phonon behavior in superconducting CaKFe 4 As 4 : An optical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Run; Dai, Yaomin; Xu, Bing

    Here, the temperature dependence of ab-plane optical conductivity of CaKFe 4As 4 has been measured below and above its superconducting transition temperature T c≃35.5 K. In the normal state, analysis with the two-Drude model reveals a T-linear scattering rate for the coherent response, which suggests strong spin-fluctuation scattering. Below the superconducting transition, the optical conductivity below 120 cm –1 vanishes, indicating nodeless gap(s). The Mattis-Bardeen fitting in the superconducting state gives two gaps of Δ 1 ≃ 9 meV and Δ 2 ≃ 14 meV, in good agreement with recent angle-resolved photoemission spectroscopy (ARPES) results. In addition, around 255 cmmore » –1, we observe two different infrared-active Fe-As modes with obvious asymmetric lineshape, originating from strong coupling between lattice vibrations and spin or charge excitations. Considering a moderate Hund's rule coupling determined from spectral weight analysis, we propose that the strong fluctuations induced by the coupling between itinerant carriers and local moments may affect the phonon mode, and the electron-phonon coupling through the spin channel is likely to play an important role in the unconventional pairing in iron-based superconductors.« less

  17. Low-loss and tunable near-zero-epsilon titanium nitride

    NASA Astrophysics Data System (ADS)

    Popović, M.; Novaković, M.; Schmidt, E.; Schöppe, P.; Bibić, N.; Ronning, C.; Rakočević, Z.

    2017-10-01

    Titanium nitride (TiN) has emerged as alternative plasmonic material in the visible and near-infrared spectral range due to its metallic properties. We studied the influence of silver ion implantation (fluence range from 0.5 × 1016-6 × 1016 ions/cm2) on the structural and optical properties of reactively sputtered 260 nm thick TiN films. The columnar structure was partially destroyed by the irradiation and up to 5 at.% of Ag was incorporated into the films within the projected ion range. The formation of cubic Ag nanoparticles with size of 1-2 nm was observed by high resolution transmission electron microscopy and subsequent fast Fourier transform analysis. This presence of Ag within the TiN matrix drastically changes both the real and imaginary component of the dielectric function and provides low optical losses. A Drude Lorentz dielectric analysis based on free electron and oscillator model are carried out to describe the silver influence on the optical behavior of TiN. With increasing ion fluence, the unscreened plasma frequency decreased and broadening increased. The energy, strength and broadening of the interband transitions were studied with respect to the silver ion fluence and correlated with the microstructural changes induced in TiN films.

  18. Determination of a refractive index and an extinction coefficient of standard production of CVD-graphene.

    PubMed

    Ochoa-Martínez, Efraín; Gabás, Mercedes; Barrutia, Laura; Pesquera, Amaia; Centeno, Alba; Palanco, Santiago; Zurutuza, Amaia; Algora, Carlos

    2015-01-28

    The refractive index and extinction coefficient of chemical vapour deposition grown graphene are determined by ellipsometry analysis. Graphene films were grown on copper substrates and transferred as both monolayers and bilayers onto SiO2/Si substrates by using standard manufacturing procedures. The chemical nature and thickness of residual debris formed after the transfer process were elucidated using photoelectron spectroscopy. The real layered structure so deduced has been used instead of the nominal one as the input in the ellipsometry analysis of monolayer and bilayer graphene, transferred onto both native and thermal silicon oxide. The effect of these contamination layers on the optical properties of the stacked structure is noticeable both in the visible and the ultraviolet spectral regions, thus masking the graphene optical response. Finally, the use of heat treatment under a nitrogen atmosphere of the graphene-based stacked structures, as a method to reduce the water content of the sample, and its effect on the optical response of both graphene and the residual debris layer are presented. The Lorentz-Drude model proposed for the optical response of graphene fits fairly well the experimental ellipsometric data for all the analysed graphene-based stacked structures.

  19. Electron dynamics and prompt ablation of aluminum surface excited by intense femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Seleznev, L. V.; Sinitsyn, D. V.

    2014-12-01

    Thin aluminum film homogeneously heated by intense IR femtosecond laser pulses exhibits on the excitation timescale consequent fluence-dependent rise and drop of the IR-pump self-reflectivity, followed by its final saturation at higher fluences F > 0.3 J/cm2. This prompt optical dynamics correlates with the initial monotonic increase in the accompanying laser-induced electron emission, which is succeeded by its non-linear (three-photon) increase for F > 0.3 J/cm2. The underlying electronic dynamics is related to the initial saturation of IR resonant interband transitions in this material, followed by its strong instantaneous electronic heating via intraband transitions during the pump pulse resulting in thermionic emission. Above the threshold fluence of 0.3 J/cm2, the surface electronic heating is balanced during the pump pulse by simultaneous cooling via intense plasma removal (prompt ablation). The relationship between the deposited volume energy density in the film and its prompt electronic temperature derived from the self-reflection measurements using a Drude model, demonstrates a kind of electron "liquid-vapor" phase transition, driven by strong cubic optical non-linearity of the photo-excited aluminum.

  20. Anomalous phonon behavior in superconducting CaKFe 4 As 4 : An optical study

    DOE PAGES

    Yang, Run; Dai, Yaomin; Xu, Bing; ...

    2017-02-08

    Here, the temperature dependence of ab-plane optical conductivity of CaKFe 4As 4 has been measured below and above its superconducting transition temperature T c≃35.5 K. In the normal state, analysis with the two-Drude model reveals a T-linear scattering rate for the coherent response, which suggests strong spin-fluctuation scattering. Below the superconducting transition, the optical conductivity below 120 cm –1 vanishes, indicating nodeless gap(s). The Mattis-Bardeen fitting in the superconducting state gives two gaps of Δ 1 ≃ 9 meV and Δ 2 ≃ 14 meV, in good agreement with recent angle-resolved photoemission spectroscopy (ARPES) results. In addition, around 255 cmmore » –1, we observe two different infrared-active Fe-As modes with obvious asymmetric lineshape, originating from strong coupling between lattice vibrations and spin or charge excitations. Considering a moderate Hund's rule coupling determined from spectral weight analysis, we propose that the strong fluctuations induced by the coupling between itinerant carriers and local moments may affect the phonon mode, and the electron-phonon coupling through the spin channel is likely to play an important role in the unconventional pairing in iron-based superconductors.« less

  1. Liquid gallium and the eutectic gallium indium (EGaIn) alloy: Dielectric functions from 1.24 to 3.1 eV by electrochemical reduction of surface oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales, Daniel; Yu, Zhiyuan; Dickey, Michael D., E-mail: mddickey@ncsu.edu, E-mail: aspnes@ncsu.edu

    Liquid metals based on gallium are promising materials for soft, stretchable, and shape reconfigurable electromagnetic devices. The behavior of these metals relates directly to the thicknesses of their surface oxide layers, which can be determined nondestructively by ellipsometry if their dielectric functions ε are known. This paper reports on the dielectric functions of liquid gallium and the eutectic gallium indium (EGaIn) alloy from 1.24 to 3.1 eV at room temperature, measured by spectroscopic ellipsometry. Overlayer-induced artifacts, a continuing problem in optical measurements of these highly reactive metals, are eliminated by applying an electrochemically reductive potential to the surface of the metalmore » immersed in an electrolyte. This technique enables measurements at ambient conditions while avoiding the complications associated with removing overlayers in a vacuum environment. The dielectric responses of both metals are closely represented by the Drude model. The EGaIn data suggest that in the absence of an oxide the surface is In-enriched, consistent with the previous vacuum-based studies. Possible reasons for discrepancies with previous measurements are discussed.« less

  2. Quasiparticle properties at microwave frequencies in the underdoped YBa2Cu3O7-δ thin films

    NASA Astrophysics Data System (ADS)

    Hsing, Lai

    2004-03-01

    Microstrip ring resonators with quality factor (Q) over 10^4 at temperature 5 K were fabricated using the double-side YBa_2Cu_3O_7-δ (YBCO) films deposited on LaAlO3 (LAO) substrates. By placing a narrow gap in the ring resonator, the original fundamental resonating mode (3.61 GHz) splits into two modes (1.80 GHz and 5.33 GHz) with distinct resonating frequencies. The samples allow us to determine the temperature and the frequency dependences of penetration depth and microwave conductivity for various underdoped-cuprates by using Drude formula and the modified two-fluid model. The natures of the order parameter of high-Tc superconductivity in the underdoped cases are shown to be of d-wave type in an exact manner. In particular, the Fermi-liquid correction factor α ^2 and the vertex correction factor β from the model, proposed by Wen and Lee, can be estimated that α ^2 is doping independent in the underdoped regime and β decreases as oxygen content is decreasing in our experiment data. All these results are independent of frequencies as well. The results reveal that the interaction between quasiparticles is insensitive dependence of the impurity concentrations due to oxygen deficiency on the CuO chain and the impurity potential for forward scattering approaches the same as back scattering with more oxygen deficiency.

  3. Generalized quantum Fokker-Planck equation for photoinduced nonequilibrium processes with positive definiteness condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Seogjoo, E-mail: sjang@qc.cuny.edu

    2016-06-07

    This work provides a detailed derivation of a generalized quantum Fokker-Planck equation (GQFPE) appropriate for photo-induced quantum dynamical processes. The path integral method pioneered by Caldeira and Leggett (CL) [Physica A 121, 587 (1983)] is extended by utilizing a nonequilibrium influence functional applicable to different baths for the ground and the excited electronic states. Both nonequilibrium and non-Markovian effects are accounted for consistently by expanding the paths in the exponents of the influence functional up to the second order with respect to time. This procedure results in approximations involving only single time integrations for the exponents of the influence functionalmore » but with additional time dependent boundary terms that have been ignored in previous works. The boundary terms complicate the derivation of a time evolution equation but do not affect position dependent physical observables or the dynamics in the steady state limit. For an effective density operator with the boundary terms factored out, a time evolution equation is derived, through short time expansion of the effective action and Gaussian integration in analytically continued complex domain of space. This leads to a compact form of the GQFPE with time dependent kernels and additional terms, which renders the resulting equation to be in the Dekker form [Phys. Rep. 80, 1 (1981)]. Major terms of the equation are analyzed for the case of Ohmic spectral density with Drude cutoff, which shows that the new GQFPE satisfies the positive definiteness condition in medium to high temperature limit. Steady state limit of the GQFPE is shown to approach the well-known expression derived by CL in the high temperature and Markovian bath limit and also provides additional corrections due to quantum and non-Markovian effects of the bath.« less

  4. Generalized quantum Fokker-Planck equation for photoinduced nonequilibrium processes with positive definiteness condition

    NASA Astrophysics Data System (ADS)

    Jang, Seogjoo

    2016-06-01

    This work provides a detailed derivation of a generalized quantum Fokker-Planck equation (GQFPE) appropriate for photo-induced quantum dynamical processes. The path integral method pioneered by Caldeira and Leggett (CL) [Physica A 121, 587 (1983)] is extended by utilizing a nonequilibrium influence functional applicable to different baths for the ground and the excited electronic states. Both nonequilibrium and non-Markovian effects are accounted for consistently by expanding the paths in the exponents of the influence functional up to the second order with respect to time. This procedure results in approximations involving only single time integrations for the exponents of the influence functional but with additional time dependent boundary terms that have been ignored in previous works. The boundary terms complicate the derivation of a time evolution equation but do not affect position dependent physical observables or the dynamics in the steady state limit. For an effective density operator with the boundary terms factored out, a time evolution equation is derived, through short time expansion of the effective action and Gaussian integration in analytically continued complex domain of space. This leads to a compact form of the GQFPE with time dependent kernels and additional terms, which renders the resulting equation to be in the Dekker form [Phys. Rep. 80, 1 (1981)]. Major terms of the equation are analyzed for the case of Ohmic spectral density with Drude cutoff, which shows that the new GQFPE satisfies the positive definiteness condition in medium to high temperature limit. Steady state limit of the GQFPE is shown to approach the well-known expression derived by CL in the high temperature and Markovian bath limit and also provides additional corrections due to quantum and non-Markovian effects of the bath.

  5. Optical properties from time-dependent current-density-functional theory: the case of the alkali metals Na, K, Rb, and Cs

    NASA Astrophysics Data System (ADS)

    Ferradás, R.; Berger, J. A.; Romaniello, Pina

    2018-06-01

    We present the optical conductivity as well as the electron-energy loss spectra of the alkali metals Na, K, Rb, and Cs calculated within time-dependent current-density functional theory. Our ab initio formulation describes from first principles both the Drude-tail and the interband absorption of these metals as well as the most dominant relativistic effects. We show that by using a recently derived current functional [Berger, Phys. Rev. Lett. 115, 137402 (2015)] we obtain an overall good agreement with experiment at a computational cost that is equivalent to the random-phase approximation. We also highlight the importance of the choice of the exchange-correlation potential of the ground state.

  6. Analysis of polariton dispersion in metal nanocomposite based novel superlattice system

    NASA Astrophysics Data System (ADS)

    DoniPon, V.; Joseph Wilson, K. S.; Malarkodi, A.

    2018-06-01

    The influence of metal nanoparticles in tuning the polaritonic gap in a novel piezoelectric superlattice is studied. Dielectric function of the metal nanoparticles is analyzed using Kawabata-Kubo effect and Drude's theory. The effective dielectric function of the nanocomposite system is studied using Maxwell Garnett approximation. Nanocomposite based LiTaO3 novel superlattice is formed by arranging the nanocomposite systems in such a way that their orientations are in the opposite direction. Hence there are two additional modes of propagation. The top most modes reflect the metal behavior of the nanoparticles. It is found that these modes of propagation vary with the filling factor. These additional modes of propagations can be exploited in the field of communication.

  7. Saturation and negative temperature coefficient of electrical resistivity in liquid iron-sulfur alloys at high densities from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Wagle, Fabian; Steinle-Neumann, Gerd; de Koker, Nico

    2018-03-01

    We report results on electronic transport properties of liquid Fe-S alloys at conditions of planetary cores, computed using first-principle techniques in the Kubo-Greenwood formalism. We describe a combined effect of resistivity saturation due to temperature, compression, and chemistry by comparing the electron mean free path from the Drude response of optical conductivity to the mean interatomic distance. At high compression and high sulfur concentration the Ioffe-Regel condition is satisfied, and the temperature coefficient of resistivity changes sign from positive to negative. We show that this happens due to a decrease in the d density of states at the Fermi level in response to thermal broadening.

  8. [Speculations regarding electric conductivity, the development of an electron theory of metals and the beginning of solid body physics].

    PubMed

    Wiederkehr, Karl Heinrich

    2010-01-01

    The development of an electron-theory of metals is closely connected with early speculation in the period before Maxwell (W Weber and others) regarding electrical conductivity in metals. These Speculations were in contrast with Faraday's view of an all-embracing molecular dielectric polarisation, and a subsequent passage of charges in metallic conductors. In terms of the empirical law of Wiedemann-Franz-Lorenz, the conductivity of electricity and heat had to be treated commonly. The classical electron-theory of metals (Riecke, Drude, H.A. Lorentz) reached a dead end on account of problems concerned with specific heat capacity. Sommerfeld, by means of the Quantum theory and the Fermi-Statistic, could find the solution.

  9. Unified semiclassical approach to electronic transport from diffusive to ballistic regimes

    NASA Astrophysics Data System (ADS)

    Geng, Hao; Deng, Wei-Yin; Ren, Yue-Jiao; Sheng, Li; Xing, Ding-Yu

    2016-09-01

    We show that by integrating out the electric field and incorporating proper boundary conditions, a Boltzmann equation can describe electron transport properties, continuously from the diffusive to ballistic regimes. General analytical formulas of the conductance in D = 1,2,3 dimensions are obtained, which recover the Boltzmann-Drude formula and Landauer-Büttiker formula in the diffusive and ballistic limits, respectively. This intuitive and efficient approach can be applied to investigate the interplay of system size and impurity scattering in various charge and spin transport phenomena, when the quantum interference effect is not important. Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921202 and 2014CB921103) and the National Natural Science Foundation of China (Grant No. 11225420).

  10. Metal-Insulator Transition of strained SmNiO3 Thin Films: Structural, Electrical and Optical Properties

    PubMed Central

    Torriss, B.; Margot, J.; Chaker, M.

    2017-01-01

    Samarium nickelate (SmNiO3) thin films were successfully synthesized on LaAlO3 and SrTiO3 substrates using pulsed-laser deposition. The Mott metal-insulator (MI) transition of the thin films is sensitive to epitaxial strain and strain relaxation. Once the strain changes from compressive to tensile, the transition temperature of the SmNiO3 samples shifts to slightly higher values. The optical conductivity reveals the strong dependence of the Drude spectral weight on the strain relaxation. Actually, compressive strain broadens the bandwidth. In contrast, tensile strain causes the effective number of free carriers to reduce which is consistent with the d-band narrowing. PMID:28098240

  11. Analytical modeling of localized surface plasmon resonance in heterostructure copper sulfide nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, Andrew H.; Ha, Don-Hyung; Robinson, Richard D., E-mail: rdr82@cornell.edu

    2014-10-28

    Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals is a relatively new field of investigation that promises greater tunability of plasmonic properties compared to metal nanoparticles. A novel process by which the LSPR in semiconductor nanocrystals can be altered is through heterostructure formation arising from solution-based cation exchange. Herein, we describe the development of an analytical model of LSPR in heterostructure copper sulfide-zinc sulfide nanocrystals synthesized via a cation exchange reaction between copper sulfide (Cu{sub 1.81}S) nanocrystals and Zn ions. The cation exchange reaction produces dual-interface, heterostructure nanocrystals in which the geometry of the copper sulfide phase can be tunedmore » from a sphere to a thin disk separating symmetrically-grown sulfide (ZnS) grains. Drude model electronic conduction and Mie-Gans theory are applied to describe how the LSPR wavelength changes during cation exchange, taking into account the morphology evolution and changes to the local permittivity. The results of the modeling indicate that the presence of the ZnS grains has a significant effect on the out-of-plane LSPR mode. By comparing the results of the model to previous studies on solid-solid phase transformations of copper sulfide in these nanocrystals during cation exchange, we show that the carrier concentration is independent of the copper vacancy concentration dictated by its atomic phase. The evolution of the effective carrier concentration calculated from the model suggests that the out-of-plane resonance mode is dominant. The classical model was compared to a simplified quantum mechanical model which suggested that quantum mechanical effects become significant when the characteristic size is less than ∼8 nm. Overall, we find that the analytical models are not accurate for these heterostructured semiconductor nanocrystals, indicating the need for new model development for this emerging field.« less

  12. Investigation on plasmonic responses in multilayered nanospheres including asymmetry and spatial nonlocal effects

    NASA Astrophysics Data System (ADS)

    Dong, Tianyu; Shi, Yi; Liu, Hui; Chen, Feng; Ma, Xikui; Mittra, Raj

    2017-12-01

    In this work, we present a rigorous approach for analyzing the optical response of multilayered spherical nano-particles comprised of either plasmonic metal or dielectric, when there is no longer radial symmetry and when nonlocality is included. The Lorenz-Mie theory is applied, and a linearized hydrodynamic Drude model as well as the general nonlocal optical response model for the metals are employed. Additional boundary conditions, viz., the continuity of normal components of polarization current density and the continuity of first-order pressure of free electron density, respectively, are incorporated when handling interfaces involving metals. The application of spherical addition theorems, enables us to express a spherical harmonic about one origin to spherical harmonics about a different origin, and leads to a linear system of equations for the inward- and outward-field modal coefficients for all the layers in the nanoparticle. Scattering matrices at interfaces are obtained and cascaded to obtain the expansion coefficients, to yield the final solution. Through extensive modelling of stratified concentric and eccentric metal-involved spherical nanoshells illuminating by a plane wave, we show that, within a nonlocal description, significant modifications of plasmonic response appear, e.g. a blue-shift in the extinction / scattering spectrum and a broadening spectrum of the resonance. In addition, it has been demonstrated that core-shell nanostructures provide an option for tunable Fano-resonance generators. The proposed method shows its capability and flexibility to analyze the nonlocal response of eccentric hybrid metal-dielectric multilayer structures as well as adjoined metal-involved nanoparticles, even when the number of layers is large.

  13. Dynamic conductivity from audio to optical frequencies of semiconducting manganites approaching the metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Lunkenheimer, P.; Mayr, F.; Loidl, A.

    2006-07-01

    We report the frequency-dependent conductivity of the manganite system La1-xSrxMnO3 (x0.2) when approaching the metal-insulator transition from the insulating side. Results from low-frequency dielectric measurements are combined with spectra in the infrared region. For low doping levels the behavior is dominated by hopping transport of localized charge carriers at low frequencies and by phononic and electronic excitations in the infrared region. For the higher Sr contents the approach of the metallic state is accompanied by the successive suppression of the hopping contribution at low frequencies and by the development of polaronic excitations in the infrared region, which finally become superimposed by a strong Drude contribution in the fully metallic state.

  14. Optical study of the free-carrier response of LaTiO3/SrTiO3 superlattices.

    PubMed

    Seo, S S A; Choi, W S; Lee, H N; Yu, L; Kim, K W; Bernhard, C; Noh, T W

    2007-12-31

    We used infrared spectroscopic ellipsometry to investigate the electronic properties of LaTiO_{3}/SrTiO_{3} superlattices (SLs). Our results indicated that, independent of the SL periodicity and individual layer thickness, the SLs exhibited a Drude metallic response with sheet carrier density per interface approximately 3x10;{14} cm;{-2}. This is probably due to the leakage of d electrons at interfaces from the Mott insulator LaTiO3 to the band insulator SrTiO3. We observed a carrier relaxation time approximately 35 fs and mobility approximately 35 cm;{2} V-1 s;{-1} at 10 K, and an unusual temperature dependence of carrier density that was attributed to the dielectric screening of quantum paraelectric SrTiO3.

  15. Electron-electron interactions in doped graphene sheets

    NASA Astrophysics Data System (ADS)

    Polini, Marco

    2012-02-01

    In this talk I will review some of the most important electronic properties of graphene. I will first discuss the appearance of plasmaron satellite bands in both angle-resolved photoemission [1] and STM spectra [2,3], emphasizing the important role of the sublattice pseudospin degree of freedom. I will then illustrate some unusual features, which appear only beyond the widely used Random Phase Approximation, characterizing plasmons and Drude weight of the electron gas in this material [4].[4pt] [1] A. Bostwick et al., Science 328, 999 (2010).[0pt] [2] V.W. Brar et al., Phys. Rev. Lett. 104, 036805 (2010).[0pt] [3] A. Principi, M. Polini, and A.H. MacDonald, to be submitted[0pt] [4] S.H. Abedinpour et al., Phys. Rev. B 84, 045429 (2011).

  16. Helicons, magnetoplasma edge, and faraday rotation in solid state plasmas at microwave frequencies.

    PubMed

    Furdyna, J K

    1967-04-01

    The effect of magnetic field on propagation of electromagnetic waves through free carrier plasmas in semiconductors is discussed. The Faraday configuration and the parameter ranges omega(c),omega(p) > omega and omega(c) > tau(-1) are specifically considered. Dispersion of helicon waves, propagation near the magnetoplasma edge (omega(p)(2) = omegaomega(c)), and the Faraday rotation are developed in terms of the one-electron Drude theory. Microwave transmission measurements at 35 Gc/s on n-type InSb are presented. Experiments near the magnetoplasma edge yield the value of the static dielectric constant of the InSb lattice K(l) = 19.3 +/- 0.8. Faraday rotation, observed beyond the edge, is found to be extremely large. Some practical possibilities for this effect are considered.

  17. Large optical conductivity of Dirac semimetal Fermi arc surface states

    NASA Astrophysics Data System (ADS)

    Shi, Li-kun; Song, Justin C. W.

    2017-08-01

    Fermi arc surface states, a hallmark of topological Dirac semimetals, can host carriers that exhibit unusual dynamics distinct from that of their parent bulk. Here we find that Fermi arc carriers in intrinsic Dirac semimetals possess a strong and anisotropic light-matter interaction. This is characterized by a large Fermi arc optical conductivity when light is polarized transverse to the Fermi arc; when light is polarized along the Fermi arc, Fermi arc optical conductivity is significantly muted. The large surface spectral weight is locked to the wide separation between Dirac nodes and persists as a large Drude weight of Fermi arc carriers when the system is doped. As a result, large and anisotropic Fermi arc conductivity provides a novel means of optically interrogating the topological surfaces states of Dirac semimetals.

  18. Octonacci photonic crystals with negative refraction index materials

    NASA Astrophysics Data System (ADS)

    Brandão, E. R.; Vasconcelos, M. S.; Anselmo, D. H. A. L.

    2016-12-01

    We investigate the optical transmission spectra for s-polarized (TE) and p-polarized (TM) waves in one-dimensional photonic quasicrystals on a quasiperiodic multilayer structure made up by alternate layers of SiO2 and metamaterials, organized by following the Octonacci sequence. Maxwell's equations and the transfer-matrix technique are used to derive the transmission spectra for the propagation of normally and obliquely incident optical fields. We assume Drude-Lorentz-type dispersive response for the dielectric permittivity and magnetic permeability of the metamaterials. For normally incident waves, we observe that the spectra does not have self-similar behavior or mirror symmetry and it also features the absence of optical band gap. Also for normally incident waves, we show regions of full transmittance when the incident angle θC = 0° in a particular frequency range.

  19. Laser-induced periodic surface structures formation: investigation of the effect of nonlinear absorption of laser energy in different materials

    NASA Astrophysics Data System (ADS)

    Levy, Yoann; Bulgakova, Nadezhda M.; Mocek, Tomáš

    2017-05-01

    To get insight into laser-induced periodic surface structures (LIPSS) formation, the relaxation of a modulation in the temperature profile is investigated numerically on surfaces of two different kinds of materials (metals and dielectrics; gold and fused silica as examples) upon irradiation by ultrashort laser pulses. The temperature modulation is assumed to originate from the interference between the incoming laser pulse and the surface electromagnetic wave, which is considered as the main mechanism of LIPSS formation. For comparative studies of laser energy dissipation, a simplified 2D approach is used. It is based on the two-temperature model (TTM) and considers the mechanisms of nonlinear absorption of laser light (multiphoton ionization in fused silica; temperature-dependent thermophysical and optical properties in gold) and relaxation (electron trapping to excitonic states in fused silica). The TTM is coupled with the Drude model, considering the evolution of optical properties as a function of free-carrier density and/or temperature. The development and decay of the lattice temperature modulation, which can govern the LIPSS formation, is followed during electron-lattice thermalization time and beyond. It is shown that strong temperature gradients can form along the surfaces of both kinds of materials under study within the fluence range typical for LIPSS formation. Considerable changes in optical properties of these materials are found as a function of time, including metals, for which a constant reflectivity is usually assumed. Effects of nonlinear absorption on the surface temperature dynamics are reported.

  20. Twisted nematic liquid crystal cells with rubbed poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films for active polarization control of terahertz waves

    NASA Astrophysics Data System (ADS)

    Sasaki, Tomoyuki; Okuyama, Hiroki; Sakamoto, Moritsugu; Noda, Kohei; Okamoto, Hiroyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2017-04-01

    We fabricated a terahertz (THz) polarization converter using a twisted nematic (TN) liquid crystal (LC) cell. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) films coated on quartz glass substrates were used as electrode layers in the TN LC cell. The PEDOT/PSS films were rubbed unidirectionally using a rayon cloth to align the nematic LC, thereby also serving as an alignment layer. The azimuthal surface anchoring strength of the PEDOT/PSS films was measured to be 5 × 10-4 J/m2 using the Néel wall method, which is similar to that of typical polymeric alignment layers. The optical constants of the PEDOT/PSS film in the THz range were also characterized using the Drude-Smith model, and the results indicated that the PEDOT/PSS films could be used both as transparent electrodes in the THz range and as alignment layers for the LC. The electro-optical properties of the fabricated TN LC cell were also investigated using a polarized visible laser and THz time-domain spectroscopic system. In particular, the transmission spectra and polarization conversion property of the TN LC cell in the THz range were theoretically analyzed based on a stratified model that considers optical anisotropy, absorption, and multiple interference. This work substantiates the advantages of TN LC cells with rubbed PEDOT/PSS films useful for THz polarization converters with electrical tunability.

  1. A Novel Design of Circular Edge Bow-Tie Nano Antenna for Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Haque, Ahasanul; Reza, Ahmed Wasif; Kumar, Narendra

    2015-11-01

    In this study, a novel nano antenna is designed in order to convert the high frequency solar energy, thermal energy or earth re-emitted sun's energy into electricity. The proposed antenna is gold printed on a SiO2 layer, designed as a circular edge bow-tie with a ground plane at the bottom of the substrate. The Lorentz-Drude model is used to analyze the behavior of gold at the infrared band of frequencies. The proposed antenna is designed by 3D-electromagnetic solver, and analyzed for optimization of metal thickness, gap size, and antenna's geometrical length. Simulations are conducted in order to investigate the behavior of the antenna illuminated by the circularly polarized plane wave. The numerical simulations are studied for improving the harvesting E-field of the antenna within 5 THz-40 THz frequency range. The proposed antenna offers multiple resonance frequency and better return loss within the frequency bands of 23.2 THz to 27 THz (bandwidth 3.8 THz) and 31 THz to 35.9 THz (bandwidth 4.9 THz). An output electric field of 0.656 V/µm is simulated at 25.3 THz. The best fitted gap size at the feed point is achieved as 50 nm with the substrate thickness of 1.2 µm.

  2. Simulation of solution phase electron transfer in a compact donor-acceptor dyad.

    PubMed

    Kowalczyk, Tim; Wang, Lee-Ping; Van Voorhis, Troy

    2011-10-27

    Charge separation (CS) and charge recombination (CR) rates in photosynthetic architectures are difficult to control, yet their ratio can make or break photon-to-current conversion efficiencies. A rational design approach to the enhancement of CS over CR requires a mechanistic understanding of the underlying electron-transfer (ET) process, including the role of the environment. Toward this goal, we introduce a QM/MM protocol for ET simulations and use it to characterize CR in the formanilide-anthraquinone dyad (FAAQ). Our simulations predict fast recombination of the charge-transfer excited state, in agreement with recent experiments. The computed electronic couplings show an electronic state dependence and are weaker in solution than in the gas phase. We explore the role of cis-trans isomerization on the CR kinetics, and we find strong correlation between the vertical energy gaps of the full simulations and a collective solvent polarization coordinate. Our approach relies on constrained density functional theory to obtain accurate diabatic electronic states on the fly for molecular dynamics simulations, while orientational and electronic polarization of the solvent is captured by a polarizable force field based on a Drude oscillator model. The method offers a unified approach to the characterization of driving forces, reorganization energies, electronic couplings, and nonlinear solvent effects in light-harvesting systems.

  3. Effect of core-shell structure on optical properties of Au-Cu2O nanoparticles

    NASA Astrophysics Data System (ADS)

    Sai, Cong Doanh; Ngac, An Bang

    2018-03-01

    Solid Au-Cu2O core-shell nanoparticles were synthesized using gold nanoparticles of 16.6 nm in size as the core. The core-shell structure of the synthesized particles was confirmed and characterized by TEM and HRTEM images. Due to their similar crystal structure, the (111) planes of Cu2O are nucleated and grown epitaxially on the {111} facets of Au nanoparticles with the lattice mismatch of about 4.3% resulting in a polycrystallized Cu2O shell covering the Au nanocore. Due to the quantum confinement effect, the band gap energy Eg of the synthesized Cu2O shells is blue-shifted from 2.35 to 2.70 eV as the shell thickness decreases from of 24.6±3.6 to 9.0±1.7 nm. The localized SPR (Surface Plasmon Resonance) peak of the Au nanocore undergoes a large red shift of the order of a hundred of nm due to both the high refractive index and the increase of the thickness of Cu2O shell. Theoretical models within the Drude framework significantly underestimate the experimental data and predict a wrong rate of change of the SPR peak position with respect to the shell thickness.

  4. Optical and electronic properties of conductive ternary nitrides with rare- or alkaline-earth elements

    NASA Astrophysics Data System (ADS)

    Kassavetis, S.; Hodroj, A.; Metaxa, C.; Logothetidis, S.; Pierson, J. F.; Patsalas, P.

    2016-12-01

    Conductive nitrides, such as TiN, are key engineering materials for electronics, photonics, and plasmonics; one of the essential issues for such applications is the ability of tuning the conduction electron density, the resistivity, and the electron scattering. While enhancing the conduction electron density and blueshifting the intraband absorption towards the UV were easily achieved previously, reducing the conduction electron density and redshifting the intraband absorption into the infrared are still an open issue. The latter is achieved in this work by alloying TiN by rare earth (RE = Sc, Y, La) or alkaline earth (AE = Mg, Ca) atoms in Ti substitutional positions. The produced TixRE1-xN and TixAE1-xN thin film samples were grown by a hybrid arc evaporation/sputtering process, and most of them are stable in the B1 cubic structure. Their optical properties were studied in an extensive spectral range by spectroscopic ellipsometry. The ellipsometric spectra were analyzed and quantified by the Drude-Lorentz model, which provided the conduction electron density, the electron mean free path, and the resistivity. The observed interband transitions are firmly assigned, and the optical and electrical properties of TixRE1-xN and TixAE1-xN are quantitatively correlated with their composition and crystal structure.

  5. Electrical and optical properties of sub-10 nm nickel silicide films for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Brahmi, Hatem; Ravipati, Srikanth; Yarali, Milad; Shervin, Shahab; Wang, Weijie; Ryou, Jae-Hyun; Mavrokefalos, Anastassios

    2017-01-01

    Highly conductive and transparent films of ultra-thin p-type nickel silicide films have been prepared by RF magnetron sputtering of nickel on silicon substrates followed by rapid thermal annealing in an inert environment in the temperature range 400-600 °C. The films are uniform throughout the wafer with thicknesses in the range of 3-6 nm. The electrical and optical properties are presented for nickel silicide films with varying thickness. The Drude-Lorentz model and Fresnel equations were used to calculate the dielectric properties, sheet resistance, absorption and transmission of the films. These ultrathin nickel silicide films have excellent optoelectronic properties for p-type contacts with optical transparencies up to 80% and sheet resistance as low as ~0.15 µΩ cm. Furthermore, it was shown that the use of a simple anti-reflection (AR) coating can recover most of the reflected light approaching the values of a standard Si solar cell with the same AR coating. Overall, the combination of ultra-low thickness, high transmittance, low sheet resistance and ability to recover the reflected light by utilizing standard AR coating makes them ideal for utilization in silicon based photovoltaic technologies as a p-type transparent conductor.

  6. Probing Cosmic Dust of the Early Universe through High-Redshift Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Liang, S. L.; Li, Aigen

    2009-01-01

    We explore the extinction properties of the dust in the distant universe through the afterglows of high-redshifted gamma-ray bursts (GRBs) based on the "Drude" model which, unlike previous studies, does not require a prior assumption of template extinction laws. We select GRB 070802 at z ≈ 2.45 (which shows clear evidence for the 2175 Å extinction bump) and GRB 050904 at z ≈ 6.29, the second most distant GRB observed to date. We fit their afterglow spectra to determine the extinction of their host galaxies. We find that (1) their extinction curves differ substantially from that of the Milky Way and the Small and Large Magellanic Clouds (which were widely adopted as template extinction laws in the literature); (2) the 2175 Å extinction feature appears to be also present in GRB 050904 at z ≈ 6.29; and (3) there does not appear to be strong evidence for the dependence of dust extinction on redshifts. The inferred extinction curves are closely reproduced in terms of a mixture of amorphous silicate and graphite, both of which are expected supernova condensates and have been identified in primitive meteorites as presolar grains originating from supernovae (which are considered as the main source of dust at high-z).

  7. Surface plasmon enhanced SWIR absorption at the ultra n-doped substrate/PbSe nanostructure layer interface

    NASA Astrophysics Data System (ADS)

    Wittenberg, Vladimir; Rosenblit, Michael; Sarusi, Gabby

    2017-08-01

    This work presents simulation results of the plasmon enhanced absorption that can be achieved in the short wavelength infrared (SWIR - 1200 nm to 1800 nm) spectral range at the interface between ultra-heavily doped substrates and a PbSe nanostructure non-epitaxial growth absorbing layer. The absorption enhancement simulated in this study is due to surface plasmon polariton (SPP) excitation at the interface between these ultra-heavily n-doped GaAs or GaN substrates, which are nearly semimetals to SWIR light, and an absorption layer made of PbSe nano-spheres or nano-columns. The ultra-heavily doped GaAs or GaN substrates are simulated as examples, based on the Drude-Lorentz permittivity model. In the simulation, the substrates and the absorption layer were patterned jointly to forma blazed lattice, and then were back-illuminated using SWIR with a central wavelength of 1500 nm. The maximal field enhancement achieved was 17.4 with a penetration depth of 40 nm. Thus, such architecture of an ultra-heavily doped semiconductor and infrared absorbing layer can further increase the absorption due to the plasmonic enhanced absorption effect in the SWIR spectral band without the need to use a metallic layer as in the case of visible light.

  8. CCR+: Metadata Based Extended Personal Health Record Data Model Interoperable with the ASTM CCR Standard.

    PubMed

    Park, Yu Rang; Yoon, Young Jo; Jang, Tae Hun; Seo, Hwa Jeong; Kim, Ju Han

    2014-01-01

    Extension of the standard model while retaining compliance with it is a challenging issue because there is currently no method for semantically or syntactically verifying an extended data model. A metadata-based extended model, named CCR+, was designed and implemented to achieve interoperability between standard and extended models. Furthermore, a multilayered validation method was devised to validate the standard and extended models. The American Society for Testing and Materials (ASTM) Community Care Record (CCR) standard was selected to evaluate the CCR+ model; two CCR and one CCR+ XML files were evaluated. In total, 188 metadata were extracted from the ASTM CCR standard; these metadata are semantically interconnected and registered in the metadata registry. An extended-data-model-specific validation file was generated from these metadata. This file can be used in a smartphone application (Health Avatar CCR+) as a part of a multilayered validation. The new CCR+ model was successfully evaluated via a patient-centric exchange scenario involving multiple hospitals, with the results supporting both syntactic and semantic interoperability between the standard CCR and extended, CCR+, model. A feasible method for delivering an extended model that complies with the standard model is presented herein. There is a great need to extend static standard models such as the ASTM CCR in various domains: the methods presented here represent an important reference for achieving interoperability between standard and extended models.

  9. CCR+: Metadata Based Extended Personal Health Record Data Model Interoperable with the ASTM CCR Standard

    PubMed Central

    Park, Yu Rang; Yoon, Young Jo; Jang, Tae Hun; Seo, Hwa Jeong

    2014-01-01

    Objectives Extension of the standard model while retaining compliance with it is a challenging issue because there is currently no method for semantically or syntactically verifying an extended data model. A metadata-based extended model, named CCR+, was designed and implemented to achieve interoperability between standard and extended models. Methods Furthermore, a multilayered validation method was devised to validate the standard and extended models. The American Society for Testing and Materials (ASTM) Community Care Record (CCR) standard was selected to evaluate the CCR+ model; two CCR and one CCR+ XML files were evaluated. Results In total, 188 metadata were extracted from the ASTM CCR standard; these metadata are semantically interconnected and registered in the metadata registry. An extended-data-model-specific validation file was generated from these metadata. This file can be used in a smartphone application (Health Avatar CCR+) as a part of a multilayered validation. The new CCR+ model was successfully evaluated via a patient-centric exchange scenario involving multiple hospitals, with the results supporting both syntactic and semantic interoperability between the standard CCR and extended, CCR+, model. Conclusions A feasible method for delivering an extended model that complies with the standard model is presented herein. There is a great need to extend static standard models such as the ASTM CCR in various domains: the methods presented here represent an important reference for achieving interoperability between standard and extended models. PMID:24627817

  10. Transition of a small-bipolaron gas to a Fröhlich polaron in a deformable lattice

    NASA Astrophysics Data System (ADS)

    Hettiarachchi, Gayan Prasad; Muhid, Mohd Nazlan Mohd; Hamdan, Halimaton

    2018-04-01

    The electronic properties of guest Cs atoms in a deformable lattice are investigated at various densities n . Low values of n show optical absorptions of small bipolarons. At intermediate n values, new bands appear in the midinfrared (MIR) and high-frequency regions, which coexist with the small bipolaron bands. With a further increase in n , the small bipolaron bands become less discernible and subsequently disappear, resulting in the appearance of a Drude component superimposed on a MIR sideband suggesting a phase transition to a polaronic metal. In this itinerant phase, an approximately twofold mass enhancement is observed. This continuous transition of a gas of small bipolarons to a polaronic metal characterized by a Fröhlich polaron reveals an important part of the complex phase diagram of the metal-insulator transition in a deformable lattice.

  11. Terahertz conductivity of the highly mismatched amorphous alloy, GaNBi

    NASA Astrophysics Data System (ADS)

    Vaisakh, C. P.; Foxon, C. T.; Novikov, S. V.; Kini, R. N.

    2017-12-01

    We report terahertz optical conductivity measurements of the highly mismatched alloy, GaNBi. We find that in these amorphous GaNBi epilayers grown using plasma assisted molecular beam epitaxy, the optical conductivity is enhanced in the samples grown at higher gallium beam equivalent pressure (BEP). The optical conductivity spectra in these pseudo-amorphous epilayers follow a Drude-Smith behaviour due to charge confinement effects. The direct current conductivity in the epilayers grown at the highest Ga BEP (3.1 × 10-7 Torr) show an increase of three orders of magnitude compared to the one grown at the lowest Ga BEP (2.0 × 10-7 Torr). Our measurements suggests a percolative transition from an insulating nature in the GaNBi epilayers grown at low Ga BEP to a highly conducting phase in the epilayers grown at high Ga BEP.

  12. Thermoelectric transport in two-dimensional giant Rashba systems

    NASA Astrophysics Data System (ADS)

    Xiao, Cong; Li, Dingping; Ma, Zhongshui; Niu, Qian

    Thermoelectric transport in strongly spin-orbit coupled two-dimensional Rashba systems is studied using the analytical solution of the linearized Boltzmann equation. To highlight the effects of inter-band scattering, we assume point-like potential impurities, and obtain the band-and energy-dependent transport relaxation times. Unconventional transport behaviors arise when the Fermi level lies near or below the band crossing point (BCP), such as the non-Drude electrical conducivity below the BCP, the failure of the standard Mott relation linking the Peltier coefficient to the electrical conductivity near the BCP, the enhancement of diffusion thermopower and figure of merit below the BCP, the zero-field Hall coefficient which is not inversely proportional to and not a monotonic function of the carrier density, the enhanced Nernst coefficient below the BCP, and the enhanced current-induced spin-polarization efficiency.

  13. Quantum corrections to conductivity in graphene with vacancies

    NASA Astrophysics Data System (ADS)

    Araujo, E. N. D.; Brant, J. C.; Archanjo, B. S.; Medeiros-Ribeiro, G.; Alves, E. S.

    2018-06-01

    In this work, different regions of a graphene device were exposed to a 30 keV helium ion beam creating a series of alternating strips of vacancy-type defects and pristine graphene. From magnetoconductance measurements as function of temperature, density of carriers and density of strips we show that the electron-electron interaction is important to explain the logarithmic quantum corrections to the Drude conductivity in graphene with vacancies. It is known that vacancies in graphene behave as local magnetic moments that interact with the conduction electrons and leads to a logarithmic correction to the conductance through the Kondo effect. However, our work shows that it is necessary to account for the non-homogeneity of the sample to avoid misinterpretations about the Kondo physics due the difficulties in separating the electron-electron interaction from the Kondo effect.

  14. Optical spectra of La2-xSrxCuO4: Effect of carrier doping on the electronic structure of the CuO2 plane

    NASA Astrophysics Data System (ADS)

    Uchida, S.; Ido, T.; Takagi, H.; Arima, T.; Tokura, Y.; Tajima, S.

    1991-04-01

    Optical reflectivity spectra are studied for single crystals of the prototypical high-Tc system La2-xSrxCuO4 over a wide compositional range 0<=x<=0.34, which covers insulating, superconducting, and normal metallic phases. The measurements are made at room temperature over an energy range from 0.004 to 35 eV for the polarization parallel to the CuO2 planes. They are also extended to the perpendicular polarization to study anisotropy and to discriminate the contribution from the CuO2 plane. The present study focuses on the x dependence of the optical spectrum, which makes it possible to sort out the features of the excitations in the CuO2 plane and thus to characterize the electronic structure of the CuO2 plane in the respective phase. Upon doping into the parent insulator La2CuO4 with a charge-transfer energy gap of about 2 eV the spectral weight is rapidly transferred from the charge-transfer excitation to low-energy excitations below 1.5 eV. The low-energy spectrum is apparently composed of two contributions; a Drude-type one peaked at ω=0 and a broad continuum centered in the midinfrared range. The high-Tc superconductivity is realized as doping proceeds and when the transfer of the spectrum weight is saturated. The resulting spectrum in the high-Tc regime is suggestive of a strongly itinerant character of the state in the moderately doped CuO2 plane while appreciable weight remains in the charge-transfer energy region. The spectrum exhibits a second drastic change for heavy doping (x~0.25) corresponding to the superconductor-to-normal-metal transition and becomes close to that of a Fermi liquid. The results are universal for all the known cuprate superconductors including the electron-doped compounds, and they reconcile the dc transport properties with the high-energy spectroscopic results.

  15. Plasmons in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Bozovic, Ivan

    1990-08-01

    The customary way of determining the complex dielectric constant from the measured reflectance spectra suffers from large uncertainties because of the extrapolations required for the Kramers-Kronig transformation. To avoid these, a method is introduced in which reflectance and ellipsometric data on single crystals and epitaxial films are combined. Utilizing this approach, the spectral functions of YBa2Cu3O7 (Y-Ba-Cu-O) and Bi2Sr2CaCu2O8 (Bi-Sr-Ca-Cu-O) are determined with substantially improved accuracy. This enables the unambiguous identification of optic plasmons at 1.4 eV in Y-Ba-Cu-O and at 1.1 eV in Bi-Sr-Ca-Cu-O. No other low-lying optic plasmons are detected, which likely rules out most plasmon-mediated superconductivity models. Next, the bare plasma frequency is found to be ħωp=3.2+/-0.3 eV in Y-Ba-Cu-O and ħωp=2.4+/-0.3 eV in Bi-Sr-Ca-Cu-O. These values support ascribing the strong infrared absorption to charge carriers which, however, are not free-electron-like, but rather show characteristic polaronic behavior. Finally, in both Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O, it is found that Im(-1/ɛ)=βω2 for small ω, and this law is conjectured to be universal for all layered cuprate superconductors. It is again not Drude-like; it may be compatible with the layered electron-gas model. The latter implies existence of a broad band of acoustic plasmon branches.

  16. A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, Nikolai; Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder; Scheid, Claire

    2016-07-01

    The interaction of light with metallic nanostructures is increasingly attracting interest because of numerous potential applications. Sub-wavelength metallic structures, when illuminated with a frequency close to the plasma frequency of the metal, present resonances that cause extreme local field enhancements. Exploiting the latter in applications of interest requires a detailed knowledge about the occurring fields which can actually not be obtained analytically. For the latter mentioned reason, numerical tools are thus an absolute necessity. The insight they provide is very often the only way to get a deep enough understanding of the very rich physics at play. For the numericalmore » modeling of light-structure interaction on the nanoscale, the choice of an appropriate material model is a crucial point. Approaches that are adopted in a first instance are based on local (i.e. with no interaction between electrons) dispersive models, e.g. Drude or Drude–Lorentz models. From the mathematical point of view, when a time-domain modeling is considered, these models lead to an additional system of ordinary differential equations coupled to Maxwell's equations. However, recent experiments have shown that the repulsive interaction between electrons inside the metal makes the response of metals intrinsically non-local and that this effect cannot generally be overlooked. Technological achievements have enabled the consideration of metallic structures in a regime where such non-localities have a significant influence on the structures' optical response. This leads to an additional, in general non-linear, system of partial differential equations which is, when coupled to Maxwell's equations, significantly more difficult to treat. Nevertheless, dealing with a linearized non-local dispersion model already opens the route to numerous practical applications of plasmonics. In this work, we present a Discontinuous Galerkin Time-Domain (DGTD) method able to solve the system of Maxwell's equations coupled to a linearized non-local dispersion model relevant to plasmonics. While the method is presented in the general 3D case, numerical results are given for 2D simulation settings.« less

  17. Measurements and Modeling of Soot Formation and Radiation in Microgravity Jet Diffusion Flames. Volume 4

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Tong, Li; Greenberg, Paul S.

    1996-01-01

    This is a computational and experimental study for soot formation and radiative heat transfer in jet diffusion flames under normal gravity (1-g) and microgravity (0-g) conditions. Instantaneous soot volume fraction maps are measured using a full-field imaging absorption technique developed by the authors. A compact, self-contained drop rig is used for microgravity experiments in the 2.2-second drop tower facility at NASA Lewis Research Center. On modeling, we have coupled flame structure and soot formation models with detailed radiation transfer calculations. Favre-averaged boundary layer equations with a k-e-g turbulence model are used to predict the flow field, and a conserved scalar approach with an assumed Beta-pdf are used to predict gaseous species mole fraction. Scalar transport equations are used to describe soot volume fraction and number density distributions, with formation and oxidation terms modeled by one-step rate equations and thermophoretic effects included. An energy equation is included to couple flame structure and radiation analyses through iterations, neglecting turbulence-radiation interactions. The YIX solution for a finite cylindrical enclosure is used for radiative heat transfer calculations. The spectral absorption coefficient for soot aggregates is calculated from the Rayleigh solution using complex refractive index data from a Drude- Lorentz model. The exponential-wide-band model is used to calculate the spectral absorption coefficient for H20 and C02. It is shown that when compared to results from true spectral integration, the Rosseland mean absorption coefficient can provide reasonably accurate predictions for the type of flames studied. The soot formation model proposed by Moss, Syed, and Stewart seems to produce better fits to experimental data and more physically sound than the simpler model by Khan et al. Predicted soot volume fraction and temperature results agree well with published data for a normal gravity co-flow laminar flames and turbulent jet flames. Predicted soot volume fraction results also agree with our data for 1-g and 0-g laminar jet names as well as 1-g turbulent jet flames.

  18. Retrospective Correction of Physiological Noise in DTI Using an Extended Tensor Model and Peripheral Measurements

    PubMed Central

    Mohammadi, Siawoosh; Hutton, Chloe; Nagy, Zoltan; Josephs, Oliver; Weiskopf, Nikolaus

    2013-01-01

    Diffusion tensor imaging is widely used in research and clinical applications, but this modality is highly sensitive to artefacts. We developed an easy-to-implement extension of the original diffusion tensor model to account for physiological noise in diffusion tensor imaging using measures of peripheral physiology (pulse and respiration), the so-called extended tensor model. Within the framework of the extended tensor model two types of regressors, which respectively modeled small (linear) and strong (nonlinear) variations in the diffusion signal, were derived from peripheral measures. We tested the performance of four extended tensor models with different physiological noise regressors on nongated and gated diffusion tensor imaging data, and compared it to an established data-driven robust fitting method. In the brainstem and cerebellum the extended tensor models reduced the noise in the tensor-fit by up to 23% in accordance with previous studies on physiological noise. The extended tensor model addresses both large-amplitude outliers and small-amplitude signal-changes. The framework of the extended tensor model also facilitates further investigation into physiological noise in diffusion tensor imaging. The proposed extended tensor model can be readily combined with other artefact correction methods such as robust fitting and eddy current correction. PMID:22936599

  19. Intersubband surface plasmon polaritons in all-semiconductor planar plasmonic resonators

    NASA Astrophysics Data System (ADS)

    ZałuŻny, M.

    2018-01-01

    We theoretically discuss properties of intersubband surface plasmon polaritons (ISPPs) supported by the system consisting of a multiple quantum well (MQW) slab embedded into planar resonator with highly doped semiconducting claddings playing the role of cavity mirrors. Symmetric structures, where the MQW slab occupies the whole space between the claddings and asymmetric structures, where the MQW occupy only half of the space between mirrors, are considered. We focus mainly on the nearly degenerate structures where intersubband frequency is close to frequency of the surface plasmon of the mirrors. The ISPP characteristics are calculated numerically using a semiclassical approach based on the transfer matrix formalism and the effective-medium approximation. The claddings are described by the lossless Drude model. The possibility of engineering the dispersion of the ISPP branches is demonstrated. In particular, for certain parameters of the asymmetric structures we observe the formation of the multimode ISPP branches with two zero group velocity points. We show that the properties of the ISPP branches are reasonably well interpreted employing quasiparticle picture provided that the concept of the mode overlap factor is generalized, taking into account the dispersive character of the mirrors. In addition to this, we demonstrate that the lossless dispersion characteristics of the ISPP branches obtained in the paper are consistent with the angle-resolved reflection-absorption spectra of the GaAlAs-based realistic plasmonic resonators.

  20. Nanoscale electron manipulation in metals with intense THz electric fields

    NASA Astrophysics Data System (ADS)

    Takeda, Jun; Yoshioka, Katsumasa; Minami, Yasuo; Katayama, Ikufumi

    2018-03-01

    Improved control over the electromagnetic properties of metals on a nanoscale is crucial for the development of next-generation nanoelectronics and plasmonic devices. Harnessing the terahertz (THz)-electric-field-induced nonlinearity for the motion of electrons is a promising method of manipulating the local electromagnetic properties of metals, while avoiding undesirable thermal effects and electronic transitions. In this review, we demonstrate the manipulation of electron delocalization in ultrathin gold (Au) films with nanostructures, by intense THz electric-field transients. On increasing the electric-field strength of the THz pulses, the transmittance in the THz-frequency region abruptly decreases around the percolation threshold. The observed THz-electric-field-induced nonlinearity is analysed, based on the Drude-Smith model. The results suggest that ultrafast electron delocalization occurs by electron tunnelling across the narrow insulating bridge between the Au nanostructures, without material breakdown. In order to quantitatively discuss the tunnelling process, we perform scanning tunnelling microscopy with carrier-envelope phase (CEP)-controlled single-cycle THz electric fields. By applying CEP-controlled THz electric fields to the 1 nm nanogap between a metal nanotip and graphite sample, many electrons could be coherently driven through the quantum tunnelling process, either from the nanotip to the sample or vice versa. The presented concept, namely, electron tunnelling mediated by CEP-controlled single-cycle THz electric fields, can facilitate the development of nanoscale electron manipulation, applicable to next-generation ultrafast nanoelectronics and plasmonic devices.

  1. On the transmission of terahertz radiation through silicon-based structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persano, Anna, E-mail: anna.persano@le.imm.cnr.it; Francioso, Luca; Cola, Adriano

    2014-07-28

    We report on the transmission of a terahertz (THz) radiation through prototype structures based on a p-type silicon substrate. In particular, the bare substrate and progressively more complicated multilayer structures were investigated, allowing to address the effect on the transmission of different factors, such as the orientation of interdigitated contacts with respect to the polarized beam, the temperature, and the current flowing through a conductive SnO{sub 2} nanorods layer. A suitable experimental set-up was developed for the direct spectral measurement of transmission in the range of 0.75–1.1 THz at room and low temperatures. A simple Drude-Lorentz model was formulated, findingmore » a quantitative agreement with the experimental transmission spectrum of the bare substrate at room temperature. For the multilayer structures, the spectra variations observed with temperature are well accounted by the corresponding change of the mobility of holes in the silicon p-type substrate. The influence of the contact orientation is consistent with that of a polarizing metallic grating. Finally, Joule heating effects are observed in the spectra performed as a function of the current flowing through the SnO{sub 2} nanorods layer. The experimental results shown here, together with their theoretical interpretation, provide insights for the development of devices fabricated on conductive substrates aimed to absorb/modulate radiation in the THz range.« less

  2. Roles of epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials in optical metatronic circuit networks.

    PubMed

    Abbasi, Fereshteh; Engheta, Nader

    2014-10-20

    The concept of metamaterial-inspired nanocircuits, dubbed metatronics, was introduced in [Science 317, 1698 (2007); Phys. Rev. Lett. 95, 095504 (2005)]. It was suggested how optical lumped elements (nanoelements) can be made using subwavelength plasmonic or non-plasmonic particles. As a result, the optical metatronic equivalents of a number of electronic circuits, such as frequency mixers and filters, were suggested. In this work we further expand the concept of electronic lumped element networks into optical metatronic circuits and suggest a conceptual model applicable to various metatronic passive networks. In particular, we differentiate between the series and parallel networks using epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials. We employ layered structures with subwavelength thicknesses for the nanoelements as the building blocks of collections of metatronic networks. Furthermore, we explore how by choosing the non-zero constitutive parameters of the materials with specific dispersions, either Drude or Lorentzian dispersion with suitable parameters, capacitive and inductive responses can be achieved in both series and parallel networks. Next, we proceed with the one-to-one analogy between electronic circuits and optical metatronic filter layered networks and justify our analogies by comparing the frequency response of the two paradigms. Finally, we examine the material dispersion of near-zero relative permittivity as well as other physically important material considerations such as losses.

  3. Characterization by spectroscopic Ellipsometry, the physical properties of silver nanoparticles.

    NASA Astrophysics Data System (ADS)

    Coanga, Jean-Maurice

    2013-04-01

    Physicists are able to change their minds through their experiments. I think it is time to go kick the curse and go further in research if we want a human future. I work in the Nano-Optics and Plasmonics research. I defined with ellipsomètrie the structure of new type of Nano particles of silver. It's same be act quickly to replace the old dirty leaded electronic-connexion chip and by the other hand to find a new way for the heath care of cancer disease by nanoparticles the next killers of bad cells. Silver nanoparticle layers are obtained by Spark Plasma Sintering are investigated as an alternative to lead alloy based material for solder joint in power mechatronics modules. These layers are characterized by mean of conventional techniques that is the dilatometry technique, the resistivity measurement through the van der Pauw method, and the flash laser technique. Furthermore, the nanoparticles of silver layer are deeply studied by UV-Visible spectroscopic ellipsometry. Spectroscopic angles parameters are determined in function of temperature and dielectric constants are deduced and analyzed through an optical model which takes into account a Drude and a Lorentz component within the Bruggeman effective medium approximation (EMA). The relaxation times and the electrical conductivity are plot in function of temperature. The obtained electrical conductivity give significant result in good agreement to those reported by four points electrical measurement method.

  4. Model for thickness dependence of mobility and concentration in highly conductive zinc oxide

    NASA Astrophysics Data System (ADS)

    Look, David C.; Leedy, Kevin D.; Kiefer, Arnold; Claflin, Bruce; Itagaki, Naho; Matsushima, Koichi; Surhariadi, Iping

    2013-03-01

    The dependences of the 294 and 10 K mobility μ and volume carrier concentration n on thickness (d=25 to 147 nm) are examined in aluminum-doped zinc oxide (AZO). Two AZO layers are grown at each thickness, one with and one without a 20-nm-thick ZnON buffer layer. Plots of the 10 K sheet concentration ns versus d for buffered (B) and unbuffered (UB) samples give straight lines of similar slope, n=8.36×1020 and 8.32×1020 cm-3, but different x-axis intercepts, δd=-4 and +13 nm, respectively. Plots of ns versus d at 294 K produce substantially the same results. Plots of μ versus d can be well fitted with the equation μ(d)=μ(∞)/[1+d*/(d-δd)], where d* is the thickness for which μ(∞) is reduced by a factor 2. For the B and UB samples, d*=7 and 23 nm, respectively, showing the efficacy of the ZnON buffer. Finally, from n and μ(∞) we can use degenerate electron scattering theory to calculate bulk donor and acceptor concentrations of 1.23×1021 cm-3 and 1.95×1020 cm-3, respectively, and Drude theory to predict a plasmonic resonance at 1.34 μm. The latter is confirmed by reflectance measurements.

  5. Infrared spectroscopy of large scale single layer graphene on self assembled organic monolayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo Kim, Nak; Youn Kim, Joo; Lee, Chul

    2014-01-27

    We study the effect of self-assembled monolayer (SAM) organic molecule substrate on large scale single layer graphene using infrared transmission measurement on Graphene/SAM/SiO{sub 2}/Si composite samples. From the Drude weight of the chemically inert CH{sub 3}-SAM, the electron-donating NH{sub 2}-SAM, and the SAM-less graphene, we determine the carrier density doped into graphene by the three sources—the SiO{sub 2} substrate, the gas-adsorption, and the functional group of the SAM's—separately. The SAM-treatment leads to the low carrier density N ∼ 4 × 10{sup 11} cm{sup −2} by blocking the dominant SiO{sub 2}- driven doping. The carrier scattering increases by the SAM-treatment rather than decreases. However, the transportmore » mobility is nevertheless improved due to the reduced carrier doping.« less

  6. Infrared spectroscopy of wafer-scale graphene.

    PubMed

    Yan, Hugen; Xia, Fengnian; Zhu, Wenjuan; Freitag, Marcus; Dimitrakopoulos, Christos; Bol, Ageeth A; Tulevski, George; Avouris, Phaedon

    2011-12-27

    We report spectroscopy results from the mid- to far-infrared on wafer-scale graphene, grown either epitaxially on silicon carbide or by chemical vapor deposition. The free carrier absorption (Drude peak) is simultaneously obtained with the universal optical conductivity (due to interband transitions) and the wavelength at which Pauli blocking occurs due to band filling. From these, the graphene layer number, doping level, sheet resistivity, carrier mobility, and scattering rate can be inferred. The mid-IR absorption of epitaxial two-layer graphene shows a less pronounced peak at 0.37 ± 0.02 eV compared to that in exfoliated bilayer graphene. In heavily chemically doped single-layer graphene, a record high transmission reduction due to free carriers approaching 40% at 250 μm (40 cm(-1)) is measured in this atomically thin material, supporting the great potential of graphene in far-infrared and terahertz optoelectronics.

  7. Optical and transport properties of dense liquid silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Tingting; Millot, Marius; Kraus, Richard G.

    2015-06-15

    Using density-functional-theory based molecular dynamics and the Kubo-Greenwood linear response theory, we evaluated the high-pressure equation of state and the optical and transport properties of quartz and fused silica shock-compressed to 2000 GPa. The computed Hugoniots and corresponding optical reflectivity values are in very good agreement with published data for quartz, and new data that we obtained on fused silica using magnetically launched flyer plate experiments. The rise of optical reflectivity upon shock compression appears to be primarily a temperature-driven mechanism, which is relatively insensitive to small density variation. We observed that the electrical conductivity does not display Drude-like frequencymore » dependence, especially at lower temperatures. In addition, the Wiedemann-Franz relation between electrical and thermal conductivities was found to be invalid. It suggests that even at three-fold compression, warm dense liquid silica on the Hugoniot curve is still far away from the degenerate limit.« less

  8. Graphene plasmons embedded in a gain medium: layer and ribbon plasmons

    NASA Astrophysics Data System (ADS)

    Altares Menendez, Galaad; Rosolen, Gilles; Maes, Bjorn

    2016-12-01

    Graphene plasmonics has attracted much attention due to its remarkable properties such as tunable conductivity and extreme confinement. However, losses remain one of the major drawbacks to developing more efficient devices based on graphene plasmons. Here we show that when a gain medium is introduced around a 1D graphene sheet, lossless propagation can be achieved for a critical gain value. Both numerics and analytics are employed; and with the Drude approximation the analytical expression for this critical gain becomes remarkably simple. Furthermore, we examine a single 2D graphene nanoribbon within a gain environment. We report that the plasmonic resonant modes exhibit a spasing effect for a specific value of the surrounding gain. This feature is indicated by an absorption cross section that strongly increases and narrows. Finally, we manage to connect the ribbon results to the 1D sheet critical gain, by taking external coupling into account.

  9. Encapsulated Annealing: Enhancing the Plasmon Quality Factor in Lithographically–Defined Nanostructures

    PubMed Central

    Bosman, Michel; Zhang, Lei; Duan, Huigao; Tan, Shu Fen; Nijhuis, Christian A.; Qiu, Cheng–Wei; Yang, Joel K. W.

    2014-01-01

    Lithography provides the precision to pattern large arrays of metallic nanostructures with varying geometries, enabling systematic studies and discoveries of new phenomena in plasmonics. However, surface plasmon resonances experience more damping in lithographically–defined structures than in chemically–synthesized nanoparticles of comparable geometries. Grain boundaries, surface roughness, substrate effects, and adhesion layers have been reported as causes of plasmon damping, but it is difficult to isolate these effects. Using monochromated electron energy–loss spectroscopy (EELS) and numerical analysis, we demonstrate an experimental technique that allows the study of these effects individually, to significantly reduce the plasmon damping in lithographically–defined structures. We introduce a method of encapsulated annealing that preserves the shape of polycrystalline gold nanostructures, while their grain-boundary density is reduced. We demonstrate enhanced Q–factors in lithographically–defined nanostructures, with intrinsic damping that matches the theoretical Drude damping limit. PMID:24986023

  10. Terahertz-infrared electrodynamics of single-wall carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Zhukova, E. S.; Grebenko, A. K.; Bubis, A. V.; Prokhorov, A. S.; Belyanchikov, M. A.; Tsapenko, A. P.; Gilshteyn, E. P.; Kopylova, D. S.; Gladush, Yu G.; Anisimov, A. S.; Anzin, V. B.; Nasibulin, A. G.; Gorshunov, B. P.

    2017-11-01

    Broad-band (4-20 000 cm-1) spectra of real and imaginary conductance of a set of high-quality pristine and AuCl3-doped single-walled carbon nanotube (SWCNT) films with different transparency are systematically measured. It is shown that while the high-energy (≥1 eV) response is determined by well-known interband transitions, the lower-energy electrodynamic properties of the films are fully dominated by unbound charge carriers. Their main spectral effect is seen as the free-carrier Drude-type contribution. Partial localization of these carriers leads to a weak plasmon resonance around 100 cm-1. At the lowest frequencies, below 10 cm-1, a gap-like feature is detected whose origin is associated with the energy barrier experienced by the carriers at the intersections between SWCNTs. It is assumed that these three mechanisms are universal and determine the low-frequency terahertz-infrared electrodynamics of SWCNT wafer-scale films.

  11. Charge dynamics in the colossal magnetoresistance pyrochlore Tl2Mn2O7

    NASA Astrophysics Data System (ADS)

    Okamura, H.; Koretsune, T.; Matsunami, M.; Kimura, S.; Nanba, T.; Imai, H.; Shimakawa, Y.; Kubo, Y.

    2001-11-01

    Optical conductivity data [σ(ω)] of the colossal magnetoresistance (CMR) pyrochlore Tl2Mn2O7 are presented as functions of temperature (T) and external magnetic field (B). Upon cooling and upon applying B near the Curie temperature, where the CMR manifests itself, σ(ω) shows a clear transition from an insulatorlike to a metallic electronic structure as evidenced by the emergence of a pronounced Drude-like component below ~0.2 eV. Analyses on the σ(ω) spectra show that both T- and B-induced evolutions of the electronic structure are very similar to each other, and that they are universally related to the development of macroscopic magnetization (M). In particular, the effective carrier density obtained from σ(ω) scales with M2 over wide ranges of T and B. The contributions to the CMR from the carrier effective mass and scattering time are also evaluated from the data.

  12. Absolute Negative Resistance Induced by Directional Electron-Electron Scattering in a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Kaya, Ismet I.

    2007-03-01

    A ballistic conductor is restricted to have positive three terminal resistance just as a Drude conductor. Intercarrier scattering does not influence the conductivity of the latter transport regime and does not exist in the former. However, as the electron energies increased, in the intermediate regime, single or few intercarrier scattering events starts to dominate the transport properties of a conductor with sufficiently small dimensions. A three-terminal device formed by two electrostatic barriers crossing an asymmetrically patterned two dimensional electron gas displays an unusual potential depression at the middle contact, yielding absolute negative resistance. The device displays momentum and current transfer ratios that far exceed unity. The observed reversal of the current or potential in the middle terminal is interpreted as the analog of Bernoulli's effect in a Fermi liquid. The results are explained by directional scattering of electrons in two dimensions.

  13. Polaron physics and crossover transition in magnetite probed by pressure-dependent infrared spectroscopy.

    PubMed

    Ebad-Allah, J; Baldassarre, L; Sing, M; Claessen, R; Brabers, V A M; Kuntscher, C A

    2013-01-23

    The optical properties of magnetite at room temperature were studied by infrared reflectivity measurements as a function of pressure up to 8 GPa. The optical conductivity spectrum consists of a Drude term, two sharp phonon modes, a far-infrared band at around 600 cm(-1) and a pronounced mid-infrared absorption band. With increasing pressure both absorption bands shift to lower frequencies and the phonon modes harden in a linear fashion. Based on the shape of the MIR band, the temperature dependence of the dc transport data, and the occurrence of the far-infrared band in the optical conductivity spectrum, the polaronic coupling strength in magnetite at room temperature should be classified as intermediate. For the lower energy phonon mode an abrupt increase of the linear pressure coefficient occurs at around 6 GPa, which could be attributed to minor alterations of the charge distribution among the different Fe sites.

  14. Optical properties of group-3 metal hexaboride nanoparticles by first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshio, Satoshi; Maki, Koichiro; Adachi, Kenji, E-mail: kenji-adachi@ni.smm.co.jp

    2016-06-21

    LaB{sub 6} nanoparticles are widely used as solar control materials for strong near-infrared absorption and high visible transparency. In order to elucidate the origin of this unique optical property, first-principles calculations have been made for the energy-band structure and dielectric functions of R{sup III}B{sub 6} (R{sup III} = Sc, Y, La, Ac). On account of the precise assessment of the energy eigenvalues of vacant states in conduction band by employing the screened exchange method, as well as to the incorporation of the Drude term, dielectric functions and various physical properties of LaB{sub 6} have been reproduced in excellent agreement withmore » experimental values. Systematic examinations of dielectric functions and electronic structures of the trivalent metal hexaborides have clarified the origin of the visible transparency and the near-infrared plasmon absorption of R{sup III}B{sub 6} nanoparticles.« less

  15. A view of metals through the terahertz window

    NASA Astrophysics Data System (ADS)

    Dodge, Steve

    2006-05-01

    As electrons move through a metal, interaction with their environment tends to slow them down, causing the Drude peak in the optical conductivity to become narrower. The resulting peak width is typically in the terahertz frequency range that sits between microwaves the far infrared, too fast for conventional electronics and too slow for conventional infrared spectroscopy. With femtosecond laser techniques, however, coherent, broadband terahertz radiation can now be generated and detected with exquisite sensitivity, providing a new window onto electronic interactions in metals. I will discuss the application of this technique to a variety of metallic systems, including elemental lead, the nearly magnetic oxide metal CaRuO3, and CrV alloys that span the quantum phase transition from spin-density wave to paramagnetic metal. M. A. Gilmore, S. Kamal, D. M. Broun, and J. S. Dodge, Appl. Phys. Lett. 88, 141910 (2006).

  16. A Model for E-Education: Extended Teaching Spaces and Extended Learning Spaces

    ERIC Educational Resources Information Center

    Jung, Insung; Latchem, Colin

    2011-01-01

    The paper proposes a model for e-education in instruction, training, initiation and induction based upon the concept of extended teaching spaces involving execution, facilitation and liberation, and extended learning spaces used for acquisition, application and construction cemented by dialogue and reflection. The proposed model is based upon…

  17. 40 CFR 86.1705-99 - General provisions; opt-in.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... National LEV extends only until model year 2004, except as provided in 40 CFR 86.1707. For the duration of... above. STATE's participation in National LEV extends until model year 2006, except as provided in 40 CFR... vehicles in model year 2004, 2005 or 2006, STATE's participation in National LEV extends only until model...

  18. Tunability of the dielectric function of heavily doped germanium thin films for mid-infrared plasmonics

    NASA Astrophysics Data System (ADS)

    Frigerio, Jacopo; Ballabio, Andrea; Isella, Giovanni; Sakat, Emilie; Pellegrini, Giovanni; Biagioni, Paolo; Bollani, Monica; Napolitani, Enrico; Manganelli, Costanza; Virgilio, Michele; Grupp, Alexander; Fischer, Marco P.; Brida, Daniele; Gallacher, Kevin; Paul, Douglas J.; Baldassarre, Leonetta; Calvani, Paolo; Giliberti, Valeria; Nucara, Alessandro; Ortolani, Michele

    2016-08-01

    Heavily doped semiconductor thin films are very promising for application in mid-infrared plasmonic devices because the real part of their dielectric function is negative and broadly tunable in the 5 to 50 μ m wavelength range at least. In this work, we investigate the electrodynamics of heavily n -type-doped germanium epilayers at infrared frequencies beyond the assumptions of the Drude model. The films are grown on silicon and germanium substrates, are in situ doped with phosphorous in the 1017 to 1019 cm-3 range, then screened plasma frequencies in the 100 to 1200 cm-1 range were observed. We employ infrared spectroscopy, pump-probe spectroscopy, and dc transport measurements to determine the tunability of the plasma frequency. Although no plasmonic structures have been realized in this work, we derive estimates of the decay time of mid-infrared plasmons and of their figures of merit for field confinement and for surface plasmon propagation. The average electron scattering rate increases almost linearly with excitation frequency, in agreement with quantum calculations based on a model of the ellipsoidal Fermi surface at the conduction band minimum of germanium accounting for electron scattering with optical phonons and charged impurities. Instead, we found weak dependence of plasmon losses on neutral impurity density. In films where a transient plasma was generated by optical pumping, we found significant dependence of the energy relaxation times in the few-picosecond range on the static doping level of the film, confirming the key but indirect role played by charged impurities in energy relaxation. Our results indicate that underdamped mid-infrared plasma oscillations are attained in n -type-doped germanium at room temperature.

  19. Extended Schooling and Community Education: Mapping the Policy Terrain

    ERIC Educational Resources Information Center

    Simon, Catherine A.

    2013-01-01

    New Labour's extended schools initiative added to existing models of community schooling. The paper identifies the key principles behind extended schooling, making comparisons with historical models and contemporary trends in community education. Part one examines New Labour's use of extended schools to deliver their social policy agenda. Part two…

  20. Extending the Community Multiscale Air Quality (CMAQ) Modeling System to Hemispheric Scales: Overview of Process Considerations and Initial Applications

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) modeling system is extended to simulate ozone, particulate matter, and related precursor distributions throughout the Northern Hemisphere. Modeled processes were examined and enhanced to suitably represent the extended space and timesca...

  1. Probabilistic image modeling with an extended chain graph for human activity recognition and image segmentation.

    PubMed

    Zhang, Lei; Zeng, Zhi; Ji, Qiang

    2011-09-01

    Chain graph (CG) is a hybrid probabilistic graphical model (PGM) capable of modeling heterogeneous relationships among random variables. So far, however, its application in image and video analysis is very limited due to lack of principled learning and inference methods for a CG of general topology. To overcome this limitation, we introduce methods to extend the conventional chain-like CG model to CG model with more general topology and the associated methods for learning and inference in such a general CG model. Specifically, we propose techniques to systematically construct a generally structured CG, to parameterize this model, to derive its joint probability distribution, to perform joint parameter learning, and to perform probabilistic inference in this model. To demonstrate the utility of such an extended CG, we apply it to two challenging image and video analysis problems: human activity recognition and image segmentation. The experimental results show improved performance of the extended CG model over the conventional directed or undirected PGMs. This study demonstrates the promise of the extended CG for effective modeling and inference of complex real-world problems.

  2. Carrier dynamics and surface vibration-assisted Auger recombination in porous silicon

    NASA Astrophysics Data System (ADS)

    Zakar, Ammar; Wu, Rihan; Chekulaev, Dimitri; Zerova, Vera; He, Wei; Canham, Leigh; Kaplan, Andrey

    2018-04-01

    Excitation and recombination dynamics of the photoexcited charge carriers in porous silicon membranes were studied using a femtosecond pump-probe technique. Near-infrared pulses (800 nm, 60 fs) were used for the pump while, for the probe, we employed different wavelengths in the range between 3.4 and 5 μ m covering the medium wavelength infrared range. The data acquired in these experiments consist of simultaneous measurements of the transmittance and reflectance as a function of the delay time between the pump and probe for different pump fluences and probe wavelengths. To evaluate the results, we developed an optical model based on the two-dimensional Maxwell-Garnett formula, incorporating the free-carrier Drude contribution and nonuniformity of the excitation by the Wentzel-Kramers-Brillouin model. This model allowed the retrieval of information about the carrier density as a function of the pump fluence, time, and wavelength. The carrier density data were analyzed to reveal that the recombination dynamics is governed by Shockley-Read-Hall and Auger processes, whereas the diffusion has an insignificant contribution. We show that, in porous silicon samples, the Auger recombination process is greatly enhanced at the wavelength corresponding to the infrared-active vibrational modes of the molecular impurities on the surface of the pores. This observation of surface-vibration-assisted Auger recombination is not only for porous silicon in particular, but for low-dimension and bulk semiconductors in general. We estimate the time constants of Shockley-Read-Hall and Auger processes, and demonstrate their wavelength dependence for the excited carrier density in the range of 1018-10191 /cm3 . We demonstrate that both processes are enhanced by up to three orders of magnitude with respect to the bulk counterpart. In addition, we provide a plethora of the physical parameters evaluated from the experimental data, such as the dielectric function and its dependence on the injection level of the free carriers, charge-carrier scattering time related high-frequency conductivity, and the free-carrier absorption at the midwave infrared range.

  3. Use of TCO as splitter in the optical splitting system for solar cells combination: a simulation study

    NASA Astrophysics Data System (ADS)

    Ayala-Mató, F.; Seuret-Jiménez, D.; Vigil-Galán, O.; Escobedo Alatorre, J. J.

    2017-10-01

    Transparent conducting oxides (TCOs) are evaluated as optical splitters in combined single thin film solar cells by using theoretical considerations. The optical properties of TCOs (transmittance and reflectance) are calculated using the Drude theory for free carriers. To improve the overall efficiency of the combined solar cells, the optical properties of the TCOs are studied as a function of the electron concentration and thickness, to obtain the best fit with the external quantum efficiency (EQE) of the solar cells in each case. The optimum values of the above parameters are obtained by applying a modified version of the Hooke-Jeeves method. To validate the proposal of the use of a TCO as the splitter, the short circuit current is calculated for several combined solar cell systems and the results are compared with those obtained using more sophisticated and expensive splitters, reported in the literature. The experimental results using a commercial TCO are presented, to verify the validity and feasibility of the novel concept.

  4. Metal-to-insulator crossover in alkali doped zeolite

    PubMed Central

    Igarashi, Mutsuo; Jeglič, Peter; Krajnc, Andraž; Žitko, Rok; Nakano, Takehito; Nozue, Yasuo; Arčon, Denis

    2016-01-01

    We report a systematic nuclear magnetic resonance investigation of the 23Na spin-lattice relaxation rate, 1/T1, in sodium loaded low-silica X (LSX) zeolite, Nan/Na12-LSX, for various loading levels of sodium atoms n across the metal-to-insulator crossover. For high loading levels of n ≥ 14.2, 1/T1T shows nearly temperature-independent behaviour between 10 K and 25 K consistent with the Korringa relaxation mechanism and the metallic ground state. As the loading levels decrease below n ≤ 11.6, the extracted density of states (DOS) at the Fermi level sharply decreases, although a residual DOS at Fermi level is still observed even in the samples that lack the metallic Drude-peak in the optical reflectance. The observed crossover is a result of a complex loading-level dependence of electric potential felt by the electrons confined to zeolite cages, where the electronic correlations and disorder both play an important role. PMID:26725368

  5. Directional Emission from Dielectric Leaky-Wave Nanoantennas

    NASA Astrophysics Data System (ADS)

    Peter, Manuel; Hildebrandt, Andre; Schlickriede, Christian; Gharib, Kimia; Zentgraf, Thomas; Förstner, Jens; Linden, Stefan

    2017-07-01

    An important source of innovation in nanophotonics is the idea to scale down known radio wave technologies to the optical regime. One thoroughly investigated example of this approach are metallic nanoantennas which employ plasmonic resonances to couple localized emitters to selected far-field modes. While metals can be treated as perfect conductors in the microwave regime, their response becomes Drude-like at optical frequencies. Thus, plasmonic nanoantennas are inherently lossy. Moreover, their resonant nature requires precise control of the antenna geometry. A promising way to circumvent these problems is the use of broadband nanoantennas made from low-loss dielectric materials. Here, we report on highly directional emission from active dielectric leaky-wave nanoantennas made of Hafnium dioxide. Colloidal semiconductor quantum dots deposited in the nanoantenna feed gap serve as a local light source. The emission patterns of active nanoantennas with different sizes are measured by Fourier imaging. We find for all antenna sizes a highly directional emission, underlining the broadband operation of our design.

  6. Tunable optical response at the plasmon-polariton frequency in dielectric-graphene-metamaterial systems

    NASA Astrophysics Data System (ADS)

    Calvo-Velasco, D. M.; Porras-Montenegro, N.

    2018-04-01

    By using the scattering matrix formalism, it is studied the optical properties of one dimensional photonic crystals made of multiple layers of dielectric and uniaxial anisotropic single negative electric metamaterial with Drude type responses, with inclusions of graphene in between the dielectric-dielectric interfaces (DGMPC). The transmission spectra for transverse electric (TE) and magnetic (TM) polarization are presented as a function of the incidence angle, the graphene chemical potential, and the metamaterial plasma frequencies. It is found for the TM polarization the tunability of the DGMPC optical response with the graphene chemical potential, which can be observed by means of transmission or reflexion bands around the metamaterial plasmon-polariton frequency, with bandwidths depending on both the incidence angle and the metamaterial plasma frequency. Also, the transmission band is observed when losses in the metamaterial slabs are considered for finite systems. The conditions for the appearance of these bands are shown analytically. We consider this work contributes to open new possibilities to the design of photonic devices with DGMPCs.

  7. Calculation and Study of Graphene Conductivity Based on Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Xiaodong; Hu, Min; Zhou, Jun; Liu, Shenggang

    2017-07-01

    Based on terahertz time-domain spectroscopy system and two-dimensional scanning control system, terahertz transmission and reflection intensity mapping images on a graphene film are obtained, respectively. Then, graphene conductivity mapping images in the frequency range 0.5 to 2.5 THz are acquired according to the calculation formula. The conductivity of graphene at some typical regions is fitted by Drude-Smith formula to quantitatively compare the transmission and reflection measurements. The results show that terahertz reflection spectroscopy has a higher signal-to-noise ratio with less interference of impurities on the back of substrates. The effect of a red laser excitation on the graphene conductivity by terahertz time-domain transmission spectroscopy is also studied. The results show that the graphene conductivity in the excitation region is enhanced while that in the adjacent area is weakened which indicates carriers transport in graphene under laser excitation. This paper can make great contribution to the study on graphene electrical and optical properties in the terahertz regime and help design graphene terahertz devices.

  8. Decoupling the Effects of Mass Density and Hydrogen-, Oxygen-, and Aluminum-Based Defects on Optoelectronic Properties of Realistic Amorphous Alumina.

    PubMed

    Riffet, Vanessa; Vidal, Julien

    2017-06-01

    The search for functional materials is currently hindered by the difficulty to find significant correlation between constitutive properties of a material and its functional properties. In the case of amorphous materials, the diversity of local structures, chemical composition, impurities and mass densities makes such a connection difficult to be addressed. In this Letter, the relation between refractive index and composition has been investigated for amorphous AlO x materials, including nonstoichiometric AlO x , emphasizing the role of structural defects and the absence of effect of the band gap variation. It is found that the Newton-Drude (ND) relation predicts the refractive index from mass density with a rather high level of precision apart from some structures displaying structural defects. Our results show especially that O- and Al-based defects act as additive local disturbance in the vicinity of band gap, allowing us to decouple the mass density effects from defect effects (n = n[ND] + Δn defect ).

  9. Optical signature of Weyl electronic structures in tantalum pnictides Ta P n (P n = P, As)

    NASA Astrophysics Data System (ADS)

    Kimura, Shin-ichi; Yokoyama, Hiroko; Watanabe, Hiroshi; Sichelschmidt, Jörg; Süß, Vicky; Schmidt, Marcus; Felser, Claudia

    2017-08-01

    To investigate the electronic structure of Weyl semimetals Ta P n (P n = P, As), optical conductivity [σ (ω )] spectra are measured over a wide range of photon energies and temperatures, and these measured values are compared with band calculations. Two significant structures can be observed: a bending structure at ℏ ω ˜85 meV in TaAs, and peaks at ℏ ω ˜ 50 meV (TaP) and ˜30 meV (TaAs). The bending structure can be explained by the interband transition between saddle points connecting a set of W2 Weyl points. The temperature dependence of the peak intensity can be fitted by assuming the interband transition between saddle points connecting a set of W1 Weyl points. Owing to the different temperature dependence of the Drude weight in both materials, it is found that the Weyl points of TaAs are located near the Fermi level, whereas those of TaP are further away.

  10. Generalized hydrodynamics and non-equilibrium steady states in integrable many-body quantum systems

    NASA Astrophysics Data System (ADS)

    Vasseur, Romain; Bulchandani, Vir; Karrasch, Christoph; Moore, Joel

    The long-time dynamics of thermalizing many-body quantum systems can typically be described in terms of a conventional hydrodynamics picture that results from the decay of all but a few slow modes associated with standard conservation laws (such as particle number, energy, or momentum). However, hydrodynamics is expected to fail for integrable systems that are characterized by an infinite number of conservation laws, leading to unconventional transport properties and to complex non-equilibrium states beyond the traditional dogma of statistical mechanics. In this talk, I will describe recent attempts to understand such stationary states far from equilibrium using a generalized hydrodynamics picture. I will discuss the consistency of ``Bethe-Boltzmann'' kinetic equations with linear response Drude weights and with density-matrix renormalization group calculations. This work was supported by the Department of Energy through the Quantum Materials program (R. V.), NSF DMR-1206515, AFOSR MURI and a Simons Investigatorship (J. E. M.), DFG through the Emmy Noether program KA 3360/2-1 (C. K.).

  11. Students Working Online for Group Projects: A Test of an Extended Theory of Planned Behaviour Model

    ERIC Educational Resources Information Center

    Cheng, Eddie W. L.

    2017-01-01

    This study examined an extended theory of planned behaviour (TPB) model that specified factors affecting students' intentions to collaborate online for group work. Past behaviour, past experience and actual behavioural control were incorporated in the extended TPB model. The mediating roles of attitudes, subjective norms and perceived behavioural…

  12. 3D printing and intraoperative neuronavigation tailoring for skull base reconstruction after extended endoscopic endonasal surgery: proof of concept.

    PubMed

    Essayed, Walid I; Unadkat, Prashin; Hosny, Ahmed; Frisken, Sarah; Rassi, Marcio S; Mukundan, Srinivasan; Weaver, James C; Al-Mefty, Ossama; Golby, Alexandra J; Dunn, Ian F

    2018-03-02

    OBJECTIVE Endoscopic endonasal approaches are increasingly performed for the surgical treatment of multiple skull base pathologies. Preventing postoperative CSF leaks remains a major challenge, particularly in extended approaches. In this study, the authors assessed the potential use of modern multimaterial 3D printing and neuronavigation to help model these extended defects and develop specifically tailored prostheses for reconstructive purposes. METHODS Extended endoscopic endonasal skull base approaches were performed on 3 human cadaveric heads. Preprocedure and intraprocedure CT scans were completed and were used to segment and design extended and tailored skull base models. Multimaterial models with different core/edge interfaces were 3D printed for implantation trials. A novel application of the intraoperative landmark acquisition method was used to transfer the navigation, helping to tailor the extended models. RESULTS Prostheses were created based on preoperative and intraoperative CT scans. The navigation transfer offered sufficiently accurate data to tailor the preprinted extended skull base defect prostheses. Successful implantation of the skull base prostheses was achieved in all specimens. The progressive flexibility gradient of the models' edges offered the best compromise for easy intranasal maneuverability, anchoring, and structural stability. Prostheses printed based on intraprocedure CT scans were accurate in shape but slightly undersized. CONCLUSIONS Preoperative 3D printing of patient-specific skull base models is achievable for extended endoscopic endonasal surgery. The careful spatial modeling and the use of a flexibility gradient in the design helped achieve the most stable reconstruction. Neuronavigation can help tailor preprinted prostheses.

  13. Effectiveness and Safety of an Extended ICU Visitation Model for Delirium Prevention: A Before and After Study.

    PubMed

    Rosa, Regis Goulart; Tonietto, Tulio Frederico; da Silva, Daiana Barbosa; Gutierres, Franciele Aparecida; Ascoli, Aline Maria; Madeira, Laura Cordeiro; Rutzen, William; Falavigna, Maicon; Robinson, Caroline Cabral; Salluh, Jorge Ibrain; Cavalcanti, Alexandre Biasi; Azevedo, Luciano Cesar; Cremonese, Rafael Viegas; Haack, Tarissa Ribeiro; Eugênio, Cláudia Severgnini; Dornelles, Aline; Bessel, Marina; Teles, José Mario Meira; Skrobik, Yoanna; Teixeira, Cassiano

    2017-10-01

    To evaluate the effect of an extended visitation model compared with a restricted visitation model on the occurrence of delirium among ICU patients. Prospective single-center before and after study. Thirty-one-bed medical-surgical ICU. All patients greater than or equal to 18 years old with expected length of stay greater than or equal to 24 hours consecutively admitted to the ICU from May 2015 to November 2015. Change of visitation policy from a restricted visitation model (4.5 hr/d) to an extended visitation model (12 hr/d). Two hundred eighty-six patients were enrolled (141 restricted visitation model, 145 extended visitation model). The primary outcome was the cumulative incidence of delirium, assessed bid using the confusion assessment method for the ICU. Predefined secondary outcomes included duration of delirium/coma; any ICU-acquired infection; ICU-acquired bloodstream infection, pneumonia, and urinary tract infection; all-cause ICU mortality; and length of ICU stay. The median duration of visits increased from 133 minutes (interquartile range, 97.7-162.0) in restricted visitation model to 245 minutes (interquartile range, 175.0-272.0) in extended visitation model (p < 0.001). Fourteen patients (9.6%) developed delirium in extended visitation model compared with 29 (20.5%) in restricted visitation model (adjusted relative risk, 0.50; 95% CI, 0.26-0.95). In comparison with restricted visitation model patients, extended visitation model patients had shorter length of delirium/coma (1.5 d [interquartile range, 1.0-3.0] vs 3.0 d [interquartile range, 2.5-5.0]; p = 0.03) and ICU stay (3.0 d [interquartile range, 2.0-4.0] vs 4.0 d [interquartile range, 2.0-6.0]; p = 0.04). The rate of ICU-acquired infections and all-cause ICU mortality did not differ significantly between the two study groups. In this medical-surgical ICU, an extended visitation model was associated with reduced occurrence of delirium and shorter length of delirium/coma and ICU stay.

  14. Ultrametric distribution of culture vectors in an extended Axelrod model of cultural dissemination.

    PubMed

    Stivala, Alex; Robins, Garry; Kashima, Yoshihisa; Kirley, Michael

    2014-05-02

    The Axelrod model of cultural diffusion is an apparently simple model that is capable of complex behaviour. A recent work used a real-world dataset of opinions as initial conditions, demonstrating the effects of the ultrametric distribution of empirical opinion vectors in promoting cultural diversity in the model. Here we quantify the degree of ultrametricity of the initial culture vectors and investigate the effect of varying degrees of ultrametricity on the absorbing state of both a simple and extended model. Unlike the simple model, ultrametricity alone is not sufficient to sustain long-term diversity in the extended Axelrod model; rather, the initial conditions must also have sufficiently large variance in intervector distances. Further, we find that a scheme for evolving synthetic opinion vectors from cultural "prototypes" shows the same behaviour as real opinion data in maintaining cultural diversity in the extended model; whereas neutral evolution of cultural vectors does not.

  15. Ultrametric distribution of culture vectors in an extended Axelrod model of cultural dissemination

    NASA Astrophysics Data System (ADS)

    Stivala, Alex; Robins, Garry; Kashima, Yoshihisa; Kirley, Michael

    2014-05-01

    The Axelrod model of cultural diffusion is an apparently simple model that is capable of complex behaviour. A recent work used a real-world dataset of opinions as initial conditions, demonstrating the effects of the ultrametric distribution of empirical opinion vectors in promoting cultural diversity in the model. Here we quantify the degree of ultrametricity of the initial culture vectors and investigate the effect of varying degrees of ultrametricity on the absorbing state of both a simple and extended model. Unlike the simple model, ultrametricity alone is not sufficient to sustain long-term diversity in the extended Axelrod model; rather, the initial conditions must also have sufficiently large variance in intervector distances. Further, we find that a scheme for evolving synthetic opinion vectors from cultural ``prototypes'' shows the same behaviour as real opinion data in maintaining cultural diversity in the extended model; whereas neutral evolution of cultural vectors does not.

  16. Using concept maps to describe undergraduate students’ mental model in microbiology course

    NASA Astrophysics Data System (ADS)

    Hamdiyati, Y.; Sudargo, F.; Redjeki, S.; Fitriani, A.

    2018-05-01

    The purpose of this research was to describe students’ mental model in a mental model based-microbiology course using concept map as assessment tool. Respondents were 5th semester of undergraduate students of Biology Education of Universitas Pendidikan Indonesia. The mental modelling instrument used was concept maps. Data were taken on Bacteria sub subject. A concept map rubric was subsequently developed with a maximum score of 4. Quantitative data was converted into a qualitative one to determine mental model level, namely: emergent = score 1, transitional = score 2, close to extended = score 3, and extended = score 4. The results showed that mental model level on bacteria sub subject before the implementation of mental model based-microbiology course was at the transitional level. After implementation of mental model based-microbiology course, mental model was at transitional level, close to extended, and extended. This indicated an increase in the level of students’ mental model after the implementation of mental model based-microbiology course using concept map as assessment tool.

  17. Understanding and Predicting Urban Propagation Losses

    DTIC Science & Technology

    2009-09-01

    6. Extended Hata Model ..........................22 7. Modified Hata Model ..........................22 8. Walfisch – Ikegami Model...39 4. COST (Extended) Hata Model ...................40 5. Modified Hata Model ..........................41 6. Walfisch- Ikegami Model...47 1. Scenario One – Walfisch- Ikegami Model ........51 2. Scenario Two – Modified Hata Model ...........52 3. Scenario Three – Urban Hata

  18. Target modelling for SAR image simulation

    NASA Astrophysics Data System (ADS)

    Willis, Chris J.

    2014-10-01

    This paper examines target models that might be used in simulations of Synthetic Aperture Radar imagery. We examine the basis for scattering phenomena in SAR, and briefly review the Swerling target model set, before considering extensions to this set discussed in the literature. Methods for simulating and extracting parameters for the extended Swerling models are presented. It is shown that in many cases the more elaborate extended Swerling models can be represented, to a high degree of fidelity, by simpler members of the model set. Further, it is shown that it is quite unlikely that these extended models would be selected when fitting models to typical data samples.

  19. Building and testing models with extended Higgs sectors

    NASA Astrophysics Data System (ADS)

    Ivanov, Igor P.

    2017-07-01

    Models with non-minimal Higgs sectors represent a mainstream direction in theoretical exploration of physics opportunities beyond the Standard Model. Extended scalar sectors help alleviate difficulties of the Standard Model and lead to a rich spectrum of characteristic collider signatures and astroparticle consequences. In this review, we introduce the reader to the world of extended Higgs sectors. Not pretending to exhaustively cover the entire body of literature, we walk through a selection of the most popular examples: the two- and multi-Higgs-doublet models, as well as singlet and triplet extensions. We will show how one typically builds models with extended Higgs sectors, describe the main goals and the challenges which arise on the way, and mention some methods to overcome them. We will also describe how such models can be tested, what are the key observables one focuses on, and illustrate the general strategy with a subjective selection of results.

  20. Start-Stop Moment Optimization of Range Extender and Control Strategy Design for Extended -Range Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Zhao, Jing-bo; Han, Bing-yuan; Bei, Shao-yi

    2017-10-01

    Range extender is the core component of E-REV, its start-stop control determines the operation modes of vehicle. This paper based on a certain type of E-REV, researched constant power control strategy of range extender in extended-range model, to target range as constraint condition, combined with different driving cycle conditions, by correcting battery SOC for range extender start-stop moment, optimized the control strategy of range extender, and established the vehicle and range extender start-stop control simulation model. Selected NEDC and UDDS conditions simulation results show that: under certain target mileage, the range extender running time reduced by 37.2% and 28.2% in the NEDC condition, and running time UDDS conditions were reduced by 40.6% and 33.5% in the UDDS condition, reached the purpose of meeting the vehicle mileage and reducing consumption and emission.

  1. Biological phosphorus removal in an extended ASM2 model: Roles of extracellular polymeric substances and kinetic modeling.

    PubMed

    Yang, Shan-Shan; Pang, Ji-Wei; Guo, Wan-Qian; Yang, Xiao-Yin; Wu, Zhong-Yang; Ren, Nan-Qi; Zhao, Zhi-Qing

    2017-05-01

    This paper presents the results of an extended ASM2 model for the modeling and calibration of the role of extracellular polymeric substances (EPS) in phosphorus (P) removal in an anaerobic-aerobic process. In this extended ASM2 model, two new components, the bound EPS (X EPS ) and the soluble EPS (S EPS ), are introduced. Compared with the ASM2, 7.71, 8.53, and 9.28% decreases in polyphosphate (polyP) were observed in the extended ASM2 in three sequencing batch reactors feeding with different COD/P ratios, indicating that 7.71-9.28% of P in the liquid was adsorbed by EPS. Sensitive analysis indicated that, five parameters were the significant influential parameters and had been chosen for further model calibration by using the least square method to simulate by MATLAB. This extended ASM2 has been successfully established to simulate the output variables and provides a useful reference for the mathematic simulations of the role of EPS in biological phosphorus removal process. Copyright © 2017. Published by Elsevier Ltd.

  2. Operation of the computer model for microenvironment atomic oxygen exposure

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gillis, J. R.; Gruenbaum, P. E.

    1995-01-01

    A computer model for microenvironment atomic oxygen exposure has been developed to extend atomic oxygen modeling capability to include shadowing and reflections. The model uses average exposure conditions established by the direct exposure model and extends the application of these conditions to treat surfaces of arbitrary shape and orientation.

  3. Changing Children's Intergroup Attitudes toward Refugees: Testing Different Models of Extended Contact

    ERIC Educational Resources Information Center

    Cameron, Lindsey; Rutland, Adam; Brown, Rupert; Douch, Rebecca

    2006-01-01

    The present research evaluated an intervention, derived from the "extended contact hypothesis," which aimed to change children's intergroup attitudes toward refugees. The study (n=253) tested 3 models of extended contact among 5- to 11-year-old children: dual identity, common ingroup identity, and decategorization. Children read friendship stories…

  4. Extended inflation from higher dimensional theories

    NASA Technical Reports Server (NTRS)

    Holman, Richard; Kolb, Edward W.; Vadas, Sharon L.; Wang, Yun

    1990-01-01

    The possibility is considered that higher dimensional theories may, upon reduction to four dimensions, allow extended inflation to occur. Two separate models are analayzed. One is a very simple toy model consisting of higher dimensional gravity coupled to a scalar field whose potential allows for a first-order phase transition. The other is a more sophisticated model incorporating the effects of non-trivial field configurations (monopole, Casimir, and fermion bilinear condensate effects) that yield a non-trivial potential for the radius of the internal space. It was found that extended inflation does not occur in these models. It was also found that the bubble nucleation rate in these theories is time dependent unlike the case in the original version of extended inflation.

  5. A Roadmap for Aircraft Engine Life Extending Control

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    2001-01-01

    The concept of Aircraft Engine Life Extending Control is introduced. A brief description of the tradeoffs between performance and engine life are first explained. The overall goal of the life extending controller is to reduce the engine operating cost by extending the on-wing engine life while improving operational safety. The research results for NASA's Rocket Engine life extending control program are also briefly described. Major building blocks of the Engine Life Extending Control architecture are examined. These blocks include: life prediction models, engine operation models, stress and thermal analysis tools, control schemes, and intelligent control systems. The technology areas that would likely impact the successful implementation of an aircraft engine life extending control are also briefly described. Near, intermediate, and long term goals of NASA's activities are also presented.

  6. Model for thickness dependence of mobility and concentration in highly conductive ZnO

    NASA Astrophysics Data System (ADS)

    Look, D. C.; Leedy, K. D.; Kiefer, A.; Claflin, B.; Itagaki, N.; Matsushima, K.; Suhariadi, I.

    2013-03-01

    The dependences of the 294-K and 10-K mobility μ and volume carrier concentration n on thickness (d = 25 - 147 nm) were examined in Al-doped ZnO (AZO) layers grown in Ar ambient at 200 °C on quartz-glass substrates. Two AZO layers were grown at each thickness, one with and one without a 20-nm-thick ZnON buffer layer grown at 300 °C in Ar/N2 ambient. Plots of the 10-K sheet concentration ns vs d for buffered (B) and unbuffered (UB) samples give straight lines of similar slope, n = 8.36 x 1020 and 8.32 x 1020 cm-3, but different x-axis intercepts, δd = -4 and +13 nm, respectively. Thus, the electrical thicknesses are d - δd = d + 4 and d - 13 nm, respectively. Plots of ns vs d at 294 K produced substantially the same results. Plots of μ vs d can be well fitted with the equation μ(d) = μ(infinity symbol)/[1 + d*/(d-δd)], where d* is the thickness for which μ(infinity symbol) is reduced by a factor 2. For the B and UB samples, d* = 7 and 23 nm, respectively, showing the efficacy of the ZnON buffer. Finally, from n and μ(infinity symbol) we can use degenerate electron scattering theory to calculate bulk donor and acceptor concentrations of 1.23 x 1021 cm-3 and 1.95 x 1020 cm-3, respectively, and Drude theory to predict a plasmonic resonance at1.34 μm. The latter is confirmed by reflectance measurements.

  7. Extended Mixed-Efects Item Response Models with the MH-RM Algorithm

    ERIC Educational Resources Information Center

    Chalmers, R. Philip

    2015-01-01

    A mixed-effects item response theory (IRT) model is presented as a logical extension of the generalized linear mixed-effects modeling approach to formulating explanatory IRT models. Fixed and random coefficients in the extended model are estimated using a Metropolis-Hastings Robbins-Monro (MH-RM) stochastic imputation algorithm to accommodate for…

  8. Statistically Modeling Individual Students' Learning over Successive Collaborative Practice Opportunities

    ERIC Educational Resources Information Center

    Olsen, Jennifer; Aleven, Vincent; Rummel, Nikol

    2017-01-01

    Within educational data mining, many statistical models capture the learning of students working individually. However, not much work has been done to extend these statistical models of individual learning to a collaborative setting, despite the effectiveness of collaborative learning activities. We extend a widely used model (the additive factors…

  9. Extending radiative transfer models by use of Bayes rule. [in atmospheric science

    NASA Technical Reports Server (NTRS)

    Whitney, C.

    1977-01-01

    This paper presents a procedure that extends some existing radiative transfer modeling techniques to problems in atmospheric science where curvature and layering of the medium and dynamic range and angular resolution of the signal are important. Example problems include twilight and limb scan simulations. Techniques that are extended include successive orders of scattering, matrix operator, doubling, Gauss-Seidel iteration, discrete ordinates and spherical harmonics. The procedure for extending them is based on Bayes' rule from probability theory.

  10. Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Held, Eric D.

    2015-09-01

    Neoclassical tearing modes are macroscopic (L ∼ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves (λ ∼ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale (Jenkins and Kruger, 2012 [21]); the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD (Sovinec et al., 2004 [22]) and GENRAY RF (Smirnov et al., 1994 [23]) codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids.

  11. Technology, Demographic Characteristics and E-Learning Acceptance: A Conceptual Model Based on Extended Technology Acceptance Model

    ERIC Educational Resources Information Center

    Tarhini, Ali; Elyas, Tariq; Akour, Mohammad Ali; Al-Salti, Zahran

    2016-01-01

    The main aim of this paper is to develop an amalgamated conceptual model of technology acceptance that explains how individual, social, cultural and organizational factors affect the students' acceptance and usage behaviour of the Web-based learning systems. More specifically, the proposed model extends the Technology Acceptance Model (TAM) to…

  12. A Comparison of General Diagnostic Models (GDM) and Bayesian Networks Using a Middle School Mathematics Test

    ERIC Educational Resources Information Center

    Wu, Haiyan

    2013-01-01

    General diagnostic models (GDMs) and Bayesian networks are mathematical frameworks that cover a wide variety of psychometric models. Both extend latent class models, and while GDMs also extend item response theory (IRT) models, Bayesian networks can be parameterized using discretized IRT. The purpose of this study is to examine similarities and…

  13. Extended Maptree: a Representation of Fine-Grained Topology and Spatial Hierarchy of Bim

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Shang, J.; Hu, X.; Zhou, Z.

    2017-09-01

    Spatial queries play significant roles in exchanging Building Information Modeling (BIM) data and integrating BIM with indoor spatial information. However, topological operators implemented for BIM spatial queries are limited to qualitative relations (e.g. touching, intersecting). To overcome this limitation, we propose an extended maptree model to represent the fine-grained topology and spatial hierarchy of indoor spaces. The model is based on a maptree which consists of combinatorial maps and an adjacency tree. Topological relations (e.g., adjacency, incidence, and covering) derived from BIM are represented explicitly and formally by extended maptrees, which can facilitate the spatial queries of BIM. To construct an extended maptree, we first use a solid model represented by vertical extrusion and boundary representation to generate the isolated 3-cells of combinatorial maps. Then, the spatial relationships defined in IFC are used to sew them together. Furthermore, the incremental edges of extended maptrees are labeled as removed 2-cells. Based on this, we can merge adjacent 3-cells according to the spatial hierarchy of IFC.

  14. The self-trapping transition in the non-half-filled strongly correlated extended Holstein-Hubbard model in two-dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankar, I. V., E-mail: ivshankar27@gmail.com; Chatterjee, Ashok, E-mail: ivshankar27@gmail.com

    2014-04-24

    The two-dimensional extended Holstein-Hubbard model (EHH) has been considered at strong correlation regime in the non-half-filled band case to understand the self-trapping transition of electrons in strongly correlated electron system. We have used the method of optimized canonical transformations to transform an EHH model into an effective extended Hubbard (EEH) model. In the strong on-site correlation limit an EH model can be transformed into a t-J model which is finally solved using Hartree-Fock approximation (HFA). We found that, for non-half-filled band case, the transition is abrupt in the adiabatic region whereas it is continuous in the anti-adiabatic region.

  15. User Acceptance of Social Learning Systems in Higher Education: An Application of the Extended Technology Acceptance Model

    ERIC Educational Resources Information Center

    Akman, Ibrahim; Turhan, Cigdem

    2017-01-01

    This study aims to explore the users' behaviour and acceptance of social media for learning in higher educational institutions with the help of the extended Technology Acceptance Model (TAM). TAM has been extended to investigate how ethical and security awareness of users affect the actual usage of social learning applications. For this purpose, a…

  16. Perceived Convenience in an Extended Technology Acceptance Model: Mobile Technology and English Learning for College Students

    ERIC Educational Resources Information Center

    Chang, Chi-Cheng; Yan, Chi-Fang; Tseng, Ju-Shih

    2012-01-01

    Since convenience is one of the features for mobile learning, does it affect attitude and intention of using mobile technology? The technology acceptance model (TAM), proposed by David (1989), was extended with perceived convenience in the present study. With regard to English language mobile learning, the variables in the extended TAM and its…

  17. Clustering of longitudinal data by using an extended baseline: A new method for treatment efficacy clustering in longitudinal data.

    PubMed

    Schramm, Catherine; Vial, Céline; Bachoud-Lévi, Anne-Catherine; Katsahian, Sandrine

    2018-01-01

    Heterogeneity in treatment efficacy is a major concern in clinical trials. Clustering may help to identify the treatment responders and the non-responders. In the context of longitudinal cluster analyses, sample size and variability of the times of measurements are the main issues with the current methods. Here, we propose a new two-step method for the Clustering of Longitudinal data by using an Extended Baseline. The first step relies on a piecewise linear mixed model for repeated measurements with a treatment-time interaction. The second step clusters the random predictions and considers several parametric (model-based) and non-parametric (partitioning, ascendant hierarchical clustering) algorithms. A simulation study compares all options of the clustering of longitudinal data by using an extended baseline method with the latent-class mixed model. The clustering of longitudinal data by using an extended baseline method with the two model-based algorithms was the more robust model. The clustering of longitudinal data by using an extended baseline method with all the non-parametric algorithms failed when there were unequal variances of treatment effect between clusters or when the subgroups had unbalanced sample sizes. The latent-class mixed model failed when the between-patients slope variability is high. Two real data sets on neurodegenerative disease and on obesity illustrate the clustering of longitudinal data by using an extended baseline method and show how clustering may help to identify the marker(s) of the treatment response. The application of the clustering of longitudinal data by using an extended baseline method in exploratory analysis as the first stage before setting up stratified designs can provide a better estimation of treatment effect in future clinical trials.

  18. Electrically switchable metadevices via graphene

    PubMed Central

    Balci, Osman; Kakenov, Nurbek; Karademir, Ertugrul; Balci, Sinan; Cakmakyapan, Semih; Polat, Emre O.; Caglayan, Humeyra; Özbay, Ekmel; Kocabas, Coskun

    2018-01-01

    Metamaterials bring subwavelength resonating structures together to overcome the limitations of conventional materials. The realization of active metadevices has been an outstanding challenge that requires electrically reconfigurable components operating over a broad spectrum with a wide dynamic range. However, the existing capability of metamaterials is not sufficient to realize this goal. By integrating passive metamaterials with active graphene devices, we demonstrate a new class of electrically controlled active metadevices working in microwave frequencies. The fabricated active metadevices enable efficient control of both amplitude (>50 dB) and phase (>90°) of electromagnetic waves. In this hybrid system, graphene operates as a tunable Drude metal that controls the radiation of the passive metamaterials. Furthermore, by integrating individually addressable arrays of metadevices, we demonstrate a new class of spatially varying digital metasurfaces where the local dielectric constant can be reconfigured with applied bias voltages. In addition, we reconfigure resonance frequency of split-ring resonators without changing its amplitude by damping one of the two coupled metasurfaces via graphene. Our approach is general enough to implement various metamaterial systems that could yield new applications ranging from electrically switchable cloaking devices to adaptive camouflage systems. PMID:29322094

  19. Effect of scanning velocity on femtosecond laser-induced periodic surface structures on HgCdTe crystal

    NASA Astrophysics Data System (ADS)

    Gu, Hongan; Dai, Ye; Wang, Haodong; Yan, Xiaona; Ma, Guohong

    2017-12-01

    In this paper, a femtosecond laser line-scanning irradiation was used to induce the periodic surface microstructure on HgCdTe crystal. Low spatial frequency laser induced periodic surface structures of 650-770 nm and high spatial frequency laser induced periodic surface structures of 152-246 nm were respectively found with different scanning speeds. The evolution process from low spatial frequency laser induced periodic surface structures to high spatial frequency laser induced periodic surface structures is characterized by scanning electron microscope. Their spatial periods deduced by using a two-dimensional Fourier transformation partly agree with the predictions of the Sipe-Drude theory. Confocal micro-Raman spectral show that the atomic arrangement of induced low spatial frequency laser-induced structures are basically consistent with the crystal in the central area of laser-scanning line, however a new peak at 164 cm-1 for the CdTe-like mode becomes evident due to the Hg vaporization when strong laser ablation happens. The obtained surface periodic ripples may have applications in fabricating advanced infrared detector.

  20. Transparent thin films of indium tin oxide: Morphology-optical investigations, inter dependence analyzes

    NASA Astrophysics Data System (ADS)

    Prepelita, P.; Filipescu, M.; Stavarache, I.; Garoi, F.; Craciun, D.

    2017-12-01

    Using a fast and eco-friendly deposition method, ITO thin films with different thicknesses (0.5 μm-0.7 μm) were deposited on glass substrates by radio frequency magnetron sputtering technique. A comparative analysis of these oxide films was then carried out. AFM investigations showed that the deposited films were smooth, uniform and having a surface roughness smaller than 10 nm. X-ray diffraction investigations showed that all samples were polycrystalline and the grain sizes of the films, corresponding to (222) cubic reflection, were found to increase with the increasing film thickness. The optical properties, evaluated by UV-VIS-NIR (190-3000 nm) spectrophotometer, evidenced that the obtained thin films were highly transparent, with a transmission coefficient between 90 and 96%, depending on the film thickness. Various methods (Swanepoel and Drude) were employed to appreciate the optimal behaviour of transparent oxide films, in determining the dielectric optical parameters and refractive index dispersion for ITO films exhibiting interference patterns in the optical transmission spectra. The electrical conductivity also increased as the film thickness increased.

  1. Electrical and thermoelectric transport properties of two-dimensional fermionic systems with k-cubic spin-orbit coupling.

    PubMed

    Mawrie, Alestin; Verma, Sonu; Ghosh, Tarun Kanti

    2017-10-25

    We investigate the effect of k-cubic spin-orbit interaction on the electrical and thermoelectric transport properties of two-dimensional fermionic systems. We obtain exact analytical expressions of the inverse relaxation time (IRT) and the Drude conductivity for long-range Coulomb and short-range delta scattering potentials. The IRT reveals that the scattering is completely suppressed along the three directions [Formula: see text] with [Formula: see text]. We also obtain analytical results of the thermopower and thermal conductivity at low temperature. The thermoelectric transport coefficients obey the Wiedemann-Franz law, even in the presence of k-cubic Rashba spin-orbit interaction (RSOI) at low temperature. In the presence of a quantizing magnetic field, the signature of the RSOI is revealed through the appearance of the beating pattern in the Shubnikov-de Haas (SdH) oscillations of thermopower and thermal conductivity in the low magnetic field regime. The empirical formulae for the SdH oscillation frequencies accurately describe the locations of the beating nodes. The beating pattern in magnetothermoelectric measurement can be used to extract the spin-orbit coupling constant.

  2. Terahertz magneto-optical properties of bi- and tri-layer graphene

    NASA Astrophysics Data System (ADS)

    Mei, Hongying; Xu, Wen; Wang, Chao; Yuan, Haifeng; Zhang, Chao; Ding, Lan; Zhang, Jin; Deng, Chao; Wang, Yifan; Peeters, Francois M.

    2018-05-01

    Magneto-optical (MO) properties of bi- and tri-layer graphene are investigated utilizing terahertz time-domain spectroscopy (THz TDS) in the presence of a strong magnetic field at room-temperature. In the Faraday configuration and applying optical polarization measurements, we measure the real and imaginary parts of the longitudinal and transverse MO conductivities of different graphene samples. The obtained experimental data fits very well with the classical MO Drude formula. Thus, we are able to obtain the key sample and material parameters of bi- and tri-layer graphene, such as the electron effective mass, the electronic relaxation time and the electron density. It is found that in high magnetic fields the electronic relaxation time τ for bi- and tri-layer graphene increases with magnetic field B roughly in a form τ∼ B2 . Most importantly, we obtain the electron effective mass for bi- and tri-layer graphene at room-temperature under non-resonant conditions. This work shows how the advanced THz MO techniques can be applied for the investigation into fundamental physics properties of atomically thin 2D electronic systems.

  3. Extending the granularity of representation and control for the MIL-STD CAIS 1.0 node model

    NASA Technical Reports Server (NTRS)

    Rogers, Kathy L.

    1986-01-01

    The Common APSE (Ada 1 Program Support Environment) Interface Set (CAIS) (DoD85) node model provides an excellent baseline for interfaces in a single-host development environment. To encompass the entire spectrum of computing, however, the CAIS model should be extended in four areas. It should provide the interface between the engineering workstation and the host system throughout the entire lifecycle of the system. It should provide a basis for communication and integration functions needed by distributed host environments. It should provide common interfaces for communications mechanisms to and among target processors. It should provide facilities for integration, validation, and verification of test beds extending to distributed systems on geographically separate processors with heterogeneous instruction set architectures (ISAS). Additions to the PROCESS NODE model to extend the CAIS into these four areas are proposed.

  4. Identifying Ghanaian Pre-Service Teachers' Readiness for Computer Use: A Technology Acceptance Model Approach

    ERIC Educational Resources Information Center

    Gyamfi, Stephen Adu

    2016-01-01

    This study extends the technology acceptance model to identify factors that influence technology acceptance among pre-service teachers in Ghana. Data from 380 usable questionnaires were tested against the research model. Utilising the extended technology acceptance model (TAM) as a research framework, the study found that: pre-service teachers'…

  5. Analysis of electric vehicle extended range misalignment based on rigid-flexible dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Xiaowei; Lv, Mingliang; Chen, Zibo; Ji, Wei; Gao, Ruiceng

    2017-04-01

    The safety of the extended range electric vehicle is seriously affected by the misalignment fault. Therefore, this paper analyzed the electric vehicle extended range misalignment based on rigid-flexible dynamics. Through comprehensively applied the hybrid modeling of rigid-flexible and the method of fault diagnosis of machinery and equipment comprehensively, it established a extender hybrid rigid flexible mechanical model by means of the software ADAMS and ANSYS. By setting the relevant parameters to simulate the misalignment of shafting, the failure phenomenon, the spectrum analysis and the evolution rules were analyzed. It concluded that 0.5th and 1 harmonics are considered as the characteristic parameters of misalignment diagnostics for electric vehicle extended range.

  6. Outer satellite atmospheres: Their nature and planetary interactions

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.

    1981-01-01

    Modeling capabilities and initial model calculations are reported for the peculiar directional features of the Io sodium cloud discovered by Pilcher and the extended atomic oxygen atmosphere of Io discovered by Brown. Model results explaining the directional feature by a localized emission from the satellite are encouraging, but as yet, inconclusive; whereas for the oxygen cloud, an escape rate of 1 to 2 x 10 to the 27th power atoms/sec or higher from Io is suggested. Preliminary modeling efforts were also initiated for the extended hydrogen ring-atmosphere of Saturn detected by the Voyager spacecraft and for possible extended atmospheres of some of the smaller satellites located in the E-ring. Continuing research efforts reported for the Io sodium cloud include further refinement in the modeling of the east-west asymmetry data, the asymmetric line profile shape, and the intersection of the cloud with the Io plasma torus. In addition, the completed pre-Voyager modeling of Titan's hydrogen torus is included and the near completed model development for the extended atmosphere of comets is discussed.

  7. Effects of air-sea interaction on extended-range prediction of geopotential height at 500 hPa over the northern extratropical region

    NASA Astrophysics Data System (ADS)

    Wang, Xujia; Zheng, Zhihai; Feng, Guolin

    2018-04-01

    The contribution of air-sea interaction on the extended-range prediction of geopotential height at 500 hPa in the northern extratropical region has been analyzed with a coupled model form Beijing Climate Center and its atmospheric components. Under the assumption of the perfect model, the extended-range prediction skill was evaluated by anomaly correlation coefficient (ACC), root mean square error (RMSE), and signal-to-noise ratio (SNR). The coupled model has a better prediction skill than its atmospheric model, especially, the air-sea interaction in July made a greater contribution for the improvement of prediction skill than other months. The prediction skill of the extratropical region in the coupled model reaches 16-18 days in all months, while the atmospheric model reaches 10-11 days in January, April, and July and only 7-8 days in October, indicating that the air-sea interaction can extend the prediction skill of the atmospheric model by about 1 week. The errors of both the coupled model and the atmospheric model reach saturation in about 20 days, suggesting that the predictable range is less than 3 weeks.

  8. Characterization of anomalous relaxation using the time-fractional Bloch equation and multiple echo T2 *-weighted magnetic resonance imaging at 7 T.

    PubMed

    Qin, Shanlin; Liu, Fawang; Turner, Ian W; Yu, Qiang; Yang, Qianqian; Vegh, Viktor

    2017-04-01

    To study the utility of fractional calculus in modeling gradient-recalled echo MRI signal decay in the normal human brain. We solved analytically the extended time-fractional Bloch equations resulting in five model parameters, namely, the amplitude, relaxation rate, order of the time-fractional derivative, frequency shift, and constant offset. Voxel-level temporal fitting of the MRI signal was performed using the classical monoexponential model, a previously developed anomalous relaxation model, and using our extended time-fractional relaxation model. Nine brain regions segmented from multiple echo gradient-recalled echo 7 Tesla MRI data acquired from five participants were then used to investigate the characteristics of the extended time-fractional model parameters. We found that the extended time-fractional model is able to fit the experimental data with smaller mean squared error than the classical monoexponential relaxation model and the anomalous relaxation model, which do not account for frequency shift. We were able to fit multiple echo time MRI data with high accuracy using the developed model. Parameters of the model likely capture information on microstructural and susceptibility-induced changes in the human brain. Magn Reson Med 77:1485-1494, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Extension of the Gladstone-Dale equation for flame flow field diagnosis by optical computerized tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yunyun; Li Zhenhua; Song Yang

    2009-05-01

    An extended model of the original Gladstone-Dale (G-D) equation is proposed for optical computerized tomography (OCT) diagnosis of flame flow fields. For the purpose of verifying the newly established model, propane combustion is used as a practical example for experiment, and moire deflection tomography is introduced with the probe wavelength 808 nm. The results indicate that the temperature based on the extended model is more accurate than that based on the original G-D equation. In a word, the extended model can be suitable for all kinds of flame flow fields whatever the components, temperature, and ionization are.

  10. Efficient Authorization of Rich Presence Using Secure and Composed Web Services

    NASA Astrophysics Data System (ADS)

    Li, Li; Chou, Wu

    This paper presents an extended Role-Based Access Control (RBAC) model for efficient authorization of rich presence using secure web services composed with an abstract presence data model. Following the information symmetry principle, the standard RBAC model is extended to support context sensitive social relations and cascaded authority. In conjunction with the extended RBAC model, we introduce an extensible presence architecture prototype using WS-Security and WS-Eventing to secure rich presence information exchanges based on PKI certificates. Applications and performance measurements of our presence system are presented to show that the proposed RBAC framework for presence and collaboration is well suited for real-time communication and collaboration.

  11. Modeling of a Variable Focal Length Flat Lens Using Left Handed Metamaterials

    NASA Technical Reports Server (NTRS)

    Reinert, Jason

    2004-01-01

    Left Handed Metamaterials (LHM) were originally purposed by Victor Veselago in1968. These substances would allow a flat structure to focus electromagnetic (EM) waves because they have a negative index of refraction. A similar structure made from conventional materials, those with a positive index of refraction, would disperse the waves. But until recently, these structures have been purely theoretical because substances with both a negative permittivity and negative permeability, material properties necessary for a negative index of refraction, do not naturally exist, Recent developments have produced a structure composed of an array of thin wires and split ring resonators that shows a negative index of refraction. area smaller than a square wavelength. How small the area is can be determined by how perfectly the lens is polished and how pure the substance is that composes the lens. These lenses must also be curved for focusing to occur. The focal length is determined by the curvature of the lens and the material. On the other hand, a flat structure made from LHM would focus light because of the effect of a negative index of refraction in Snell s law. The focal length could also be varied by simply adjusting the distance of the lens from the source of radiation. This could create many devices that are adjustable to different situations in fields such as biomedical imaging and communication. the software package XFDTD which solves Maxwell s equations in the frequency domain as well as the time domain. The program used Drude models of materials to simulate the effect of negative permittivity and negative permeability. Because of this, a LHM can be simulated as a solid block of material instead of an array of wires and split ring resonators. After a flat lens is formed, I am to examine the focusing effect of the lens and determine if a higher resolution flat lens can be developed. Traditional lenses made from conventional materials cannot focus an EM wave onto an My goal was to model LHMs and create a flat lens from them. This was to be done using

  12. Incorporating drug delivery into an imaging-driven, mechanics-coupled reaction diffusion model for predicting the response of breast cancer to neoadjuvant chemotherapy: theory and preliminary clinical results

    NASA Astrophysics Data System (ADS)

    Jarrett, Angela M.; Hormuth, David A.; Barnes, Stephanie L.; Feng, Xinzeng; Huang, Wei; Yankeelov, Thomas E.

    2018-05-01

    Clinical methods for assessing tumor response to therapy are largely rudimentary, monitoring only temporal changes in tumor size. Our goal is to predict the response of breast tumors to therapy using a mathematical model that utilizes magnetic resonance imaging (MRI) data obtained non-invasively from individual patients. We extended a previously established, mechanically coupled, reaction-diffusion model for predicting tumor response initialized with patient-specific diffusion weighted MRI (DW-MRI) data by including the effects of chemotherapy drug delivery, which is estimated using dynamic contrast-enhanced (DCE-) MRI data. The extended, drug incorporated, model is initialized using patient-specific DW-MRI and DCE-MRI data. Data sets from five breast cancer patients were used—obtained before, after one cycle, and at mid-point of neoadjuvant chemotherapy. The DCE-MRI data was used to estimate spatiotemporal variations in tumor perfusion with the extended Kety–Tofts model. The physiological parameters derived from DCE-MRI were used to model changes in delivery of therapy drugs within the tumor for incorporation in the extended model. We simulated the original model and the extended model in both 2D and 3D and compare the results for this five-patient cohort. Preliminary results show reductions in the error of model predicted tumor cellularity and size compared to the experimentally-measured results for the third MRI scan when therapy was incorporated. Comparing the two models for agreement between the predicted total cellularity and the calculated total cellularity (from the DW-MRI data) reveals an increased concordance correlation coefficient from 0.81 to 0.98 for the 2D analysis and 0.85 to 0.99 for the 3D analysis (p  <  0.01 for each) when the extended model was used in place of the original model. This study demonstrates the plausibility of using DCE-MRI data as a means to estimate drug delivery on a patient-specific basis in predictive models and represents a step toward the goal of achieving individualized prediction of tumor response to therapy.

  13. Performance and driveline analyses of engine capacity in range extender engine hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Praptijanto, Achmad; Santoso, Widodo Budi; Nur, Arifin; Wahono, Bambang; Putrasari, Yanuandri

    2017-01-01

    In this study, range extender engine designed should be able to meet the power needs of a power generator of hybrid electrical vehicle that has a minimum of 18 kW. Using this baseline model, the following range extenders will be compared between conventional SI piston engine (Baseline, BsL), engine capacity 1998 cm3, and efficiency-oriented SI piston with engine capacity 999 cm3 and 499 cm3 with 86 mm bore and stroke square gasoline engine in the performance, emission prediction of range extender engine, standard of charge by using engine and vehicle simulation software tools. In AVL Boost simulation software, range extender engine simulated from 1000 to 6000 rpm engine loads. The highest peak engine power brake reached up to 38 kW at 4500 rpm. On the other hand the highest torque achieved in 100 Nm at 3500 rpm. After that using AVL cruise simulation software, the model of range extended electric vehicle in series configuration with main components such as internal combustion engine, generator, electric motor, battery and the arthemis model rural road cycle was used to simulate the vehicle model. The simulation results show that engine with engine capacity 999 cm3 reported the economical performances of the engine and the emission and the control of engine cycle parameters.

  14. Disordered Supersolids in the Extended Bose-Hubbard Model

    DOE PAGES

    Lin, Fei; Maier, T. A.; Scarola, V. W.

    2017-10-06

    The extended Bose-Hubbard model captures the essential properties of a wide variety of physical systems including ultracold atoms and molecules in optical lattices, Josephson junction arrays, and certain narrow band superconductors. It exhibits a rich phase diagram including a supersolid phase where a lattice solid coexists with a superfluid. We use quantum Monte Carlo to study the supersolid part of the phase diagram of the extended Bose-Hubbard model on the simple cubic lattice. We add disorder to the extended Bose-Hubbard model and find that the maximum critical temperature for the supersolid phase tends to be suppressed by disorder. But wemore » also find a narrow parameter window in which the supersolid critical temperature is enhanced by disorder. Our results show that supersolids survive a moderate amount of spatial disorder and thermal fluctuations in the simple cubic lattice.« less

  15. Model-Based Engine Control Architecture with an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The non-linear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.

  16. Model-Based Engine Control Architecture with an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The nonlinear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.

  17. Comparing Models of Intelligence in Project TALENT: The VPR Model Fits Better than the CHC and Extended Gf-Gc Models

    ERIC Educational Resources Information Center

    Major, Jason T.; Johnson, Wendy; Deary, Ian J.

    2012-01-01

    Three prominent theories of intelligence, the Cattell-Horn-Carroll (CHC), extended fluid-crystallized (Gf-Gc) and verbal-perceptual-image rotation (VPR) theories, provide differing descriptions of the structure of intelligence (McGrew, 2009; Horn & Blankson, 2005; Johnson & Bouchard, 2005b). To compare these theories, models representing them were…

  18. Childhood Epilepsy and Asthma: A Test of an Extension of the Double ABCX Model.

    ERIC Educational Resources Information Center

    Austin, Joan Kessner

    The Double ABCX Model of Family Adjustment and Adaptation, a model that predicts adaptation to chronic stressors on the family, was extended by dividing it into attitudes, coping, and adaptation of parents and child separately, and by including variables relevant to child adaptation to epilepsy or asthma. The extended model was tested on 246…

  19. 76 FR 26957 - Special Conditions: Boeing, Model 747-8 Series Airplanes; Door 1 Extendable Length Escape Slide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ...; Notice No. 25-11-12-SC] Special Conditions: Boeing, Model 747-8 Series Airplanes; Door 1 Extendable... special conditions. SUMMARY: This action proposes special conditions for the Boeing Model 747-8 airplane... Boeing Company applied for an amendment to Type Certificate Number A20WE to include the Model 747-8...

  20. Extended Empirical Roadside Shadowing model from ACTS mobile measurements

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard

    1995-01-01

    Employing multiple data bases derived from land-mobile satellite measurements using the Advanced Communications Technology Satellite (ACTS) at 20 GHz, MARECS B-2 at 1.5 GHz, and helicopter measurements at 870 MHz and 1.5 GHz, the Empirical Road Side Shadowing Model (ERS) has been extended. The new model (Extended Empirical Roadside Shadowing Model, EERS) may now be employed at frequencies from UHF to 20 GHz, at elevation angles from 7 to 60 deg and at percentages from 1 to 80 percent (0 dB fade). The EERS distributions are validated against measured ones and fade deviations associated with the model are assessed. A model is also presented for estimating the effects of foliage (or non-foliage) on 20 GHz distributions, given distributions from deciduous trees devoid of leaves (or in full foliage).

  1. An extended car-following model considering the acceleration derivative in some typical traffic environments

    NASA Astrophysics Data System (ADS)

    Zhou, Tong; Chen, Dong; Liu, Weining

    2018-03-01

    Based on the full velocity difference and acceleration car-following model, an extended car-following model is proposed by considering the vehicle’s acceleration derivative. The stability condition is given by applying the control theory. Considering some typical traffic environments, the results of theoretical analysis and numerical simulation show the extended model has a more actual acceleration of string vehicles than that of the previous models in starting process, stopping process and sudden brake. Meanwhile, the traffic jams more easily occur when the coefficient of vehicle’s acceleration derivative increases, which is presented by space-time evolution. The results confirm that the vehicle’s acceleration derivative plays an important role in the traffic jamming transition and the evolution of traffic congestion.

  2. A Formal Theory for Modular ERDF Ontologies

    NASA Astrophysics Data System (ADS)

    Analyti, Anastasia; Antoniou, Grigoris; Damásio, Carlos Viegas

    The success of the Semantic Web is impossible without any form of modularity, encapsulation, and access control. In an earlier paper, we extended RDF graphs with weak and strong negation, as well as derivation rules. The ERDF #n-stable model semantics of the extended RDF framework (ERDF) is defined, extending RDF(S) semantics. In this paper, we propose a framework for modular ERDF ontologies, called modular ERDF framework, which enables collaborative reasoning over a set of ERDF ontologies, while support for hidden knowledge is also provided. In particular, the modular ERDF stable model semantics of modular ERDF ontologies is defined, extending the ERDF #n-stable model semantics. Our proposed framework supports local semantics and different points of view, local closed-world and open-world assumptions, and scoped negation-as-failure. Several complexity results are provided.

  3. Agent based reasoning for the non-linear stochastic models of long-range memory

    NASA Astrophysics Data System (ADS)

    Kononovicius, A.; Gontis, V.

    2012-02-01

    We extend Kirman's model by introducing variable event time scale. The proposed flexible time scale is equivalent to the variable trading activity observed in financial markets. Stochastic version of the extended Kirman's agent based model is compared to the non-linear stochastic models of long-range memory in financial markets. The agent based model providing matching macroscopic description serves as a microscopic reasoning of the earlier proposed stochastic model exhibiting power law statistics.

  4. Effects of Antiepileptic Drugs on Spontaneous Recurrent Seizures in a Novel Model of Extended Hippocampal Kindling in Mice.

    PubMed

    Song, Hongmei; Tufa, Uilki; Chow, Jonathan; Sivanenthiran, Nila; Cheng, Chloe; Lim, Stellar; Wu, Chiping; Feng, Jiachun; Eubanks, James H; Zhang, Liang

    2018-01-01

    Epilepsy is a common neurological disorder characterized by naturally-occurring spontaneous recurrent seizures and comorbidities. Kindling has long been used to model epileptogenic mechanisms and to assess antiepileptic drugs. In particular, extended kindling can induce spontaneous recurrent seizures without gross brain lesions, as seen clinically. To date, the development of spontaneous recurrent seizures following extended kindling, and the effect of the antiepileptic drugs on these seizures are not well understood. In the present study we aim to develop a mouse model of extended hippocampal kindling for the first time. Once established, we plan to evaluate the effect of three different antiepileptic drugs on the development of the extended-hippocampal-kindled-induced spontaneous recurrent seizures. Male C57 black mice were used for chronic hippocampal stimulations or handling manipulations (twice daily for up to 70 days). Subsequently, animals underwent continuous video/EEG monitoring for seizure detection. Spontaneous recurrent seizures were consistently observed in extended kindled mice but no seizures were detected in the control animals. The aforementioned seizures were generalized events characterized by hippocampal ictal discharges and concurrent motor seizures. Incidence and severity of the seizures was relatively stable while monitored over a few months after termination of the hippocampal stimulation. Three antiepileptic drugs with distinct action mechanisms were tested: phenytoin, lorazepam and levetiracetam. They were applied via intra-peritoneal injections at anticonvulsive doses and their effects on the spontaneous recurrent seizures were analyzed 10-12 h post-injection. Phenytoin (25 mg/kg) and levetiracetam (400 mg/kg) abolished the spontaneous recurrent seizures. Lorazepam (1.5 mg/kg) decreased motor seizure severity but did not reduce the incidence and duration of corresponding hippocampal discharges, implicating its inhibitory effects on seizure spread. No gross brain lesions were observed in a set of extended hippocampal kindled mice submitted to histological evaluation. All these data suggests that our model could be considered as a novel mouse model of extended hippocampal kindling. Some limitations remain to be considered.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamanini, Nicola; Wright, Matthew, E-mail: nicola.tamanini@cea.fr, E-mail: matthew.wright.13@ucl.ac.uk

    We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from ΛCDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energymore » models.« less

  6. Life extending control for rocket engines

    NASA Technical Reports Server (NTRS)

    Lorenzo, C. F.; Saus, J. R.; Ray, A.; Carpino, M.; Wu, M.-K.

    1992-01-01

    The concept of life extending control is defined. A brief discussion of current fatigue life prediction methods is given and the need for an alternative life prediction model based on a continuous functional relationship is established. Two approaches to life extending control are considered: (1) the implicit approach which uses cyclic fatigue life prediction as a basis for control design; and (2) the continuous life prediction approach which requires a continuous damage law. Progress on an initial formulation of a continuous (in time) fatigue model is presented. Finally, nonlinear programming is used to develop initial results for life extension for a simplified rocket engine (model).

  7. Extended atmospheres of outer planet satellites and comets

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.; Combi, M. R.

    1985-01-01

    Model analysis of the extended atmospheres of outer planet satellites and comets are discussed. Understanding the neutral hydrogen distribution in the Saturn system concentrated on assessing the spatial dependence of the lifetime of hydrogen atoms and on obtaining appropriately sorted Lyman ALPHA data from the Voyager 1 UVS instrument. Progress in the area of the extended cometary atmospheres included analysis of Pioneer Venus Layman alpha observations of Comet P/Encke with the fully refined hydrogen cloud model, development of the basic carbon and oxygen models, and planning for the Pioneer Venus UVS observations of Comets P/Giacobini-Zinner and P/Halley.

  8. Improved GGIW-PHD filter for maneuvering non-ellipsoidal extended targets or group targets tracking based on sub-random matrices.

    PubMed

    Liang, Zhibing; Liu, Fuxian; Gao, Jiale

    2018-01-01

    For non-ellipsoidal extended targets and group targets tracking (NETT and NGTT), using an ellipsoid to approximate the target extension may not be accurate enough because of the lack of shape and orientation information. In consideration of this, we model a non-ellipsoidal extended target or target group as a combination of multiple ellipsoidal sub-objects, each represented by a random matrix. Based on these models, an improved gamma Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) filter is proposed to estimate the measurement rates, kinematic states, and extension states of the sub-objects for each extended target or target group. For maneuvering NETT and NGTT, a multi-model (MM) approach based GGIW-PHD (MM-GGIW-PHD) filter is proposed. The common and the individual dynamics of the sub-objects belonging to the same extended target or target group are described by means of the combination between the overall maneuver model and the sub-object models. For the merging of updating components, an improved merging criterion and a new merging method are derived. A specific implementation of prediction partition with pseudo-likelihood method is presented. Two scenarios for non-maneuvering and maneuvering NETT and NGTT are simulated. The results demonstrate the effectiveness of the proposed algorithms.

  9. Improved GGIW-PHD filter for maneuvering non-ellipsoidal extended targets or group targets tracking based on sub-random matrices

    PubMed Central

    Liu, Fuxian; Gao, Jiale

    2018-01-01

    For non-ellipsoidal extended targets and group targets tracking (NETT and NGTT), using an ellipsoid to approximate the target extension may not be accurate enough because of the lack of shape and orientation information. In consideration of this, we model a non-ellipsoidal extended target or target group as a combination of multiple ellipsoidal sub-objects, each represented by a random matrix. Based on these models, an improved gamma Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) filter is proposed to estimate the measurement rates, kinematic states, and extension states of the sub-objects for each extended target or target group. For maneuvering NETT and NGTT, a multi-model (MM) approach based GGIW-PHD (MM-GGIW-PHD) filter is proposed. The common and the individual dynamics of the sub-objects belonging to the same extended target or target group are described by means of the combination between the overall maneuver model and the sub-object models. For the merging of updating components, an improved merging criterion and a new merging method are derived. A specific implementation of prediction partition with pseudo-likelihood method is presented. Two scenarios for non-maneuvering and maneuvering NETT and NGTT are simulated. The results demonstrate the effectiveness of the proposed algorithms. PMID:29444144

  10. Stopping power and dose calculations with analytical and Monte Carlo methods for protons and prompt gamma range verification

    NASA Astrophysics Data System (ADS)

    Usta, Metin; Tufan, Mustafa Çağatay; Aydın, Güral; Bozkurt, Ahmet

    2018-07-01

    In this study, we have performed the calculations stopping power, depth dose, and range verification for proton beams using dielectric and Bethe-Bloch theories and FLUKA, Geant4 and MCNPX Monte Carlo codes. In the framework, as analytical studies, Drude model was applied for dielectric theory and effective charge approach with Roothaan-Hartree-Fock charge densities was used in Bethe theory. In the simulations different setup parameters were selected to evaluate the performance of three distinct Monte Carlo codes. The lung and breast tissues were investigated are considered to be related to the most common types of cancer throughout the world. The results were compared with each other and the available data in literature. In addition, the obtained results were verified with prompt gamma range data. In both stopping power values and depth-dose distributions, it was found that the Monte Carlo values give better results compared with the analytical ones while the results that agree best with ICRU data in terms of stopping power are those of the effective charge approach between the analytical methods and of the FLUKA code among the MC packages. In the depth dose distributions of the examined tissues, although the Bragg curves for Monte Carlo almost overlap, the analytical ones show significant deviations that become more pronounce with increasing energy. Verifications with the results of prompt gamma photons were attempted for 100-200 MeV protons which are regarded important for proton therapy. The analytical results are within 2%-5% and the Monte Carlo values are within 0%-2% as compared with those of the prompt gammas.

  11. Heisenberg-Langevin versus quantum master equation

    NASA Astrophysics Data System (ADS)

    Boyanovsky, Daniel; Jasnow, David

    2017-12-01

    The quantum master equation is an important tool in the study of quantum open systems. It is often derived under a set of approximations, chief among them the Born (factorization) and Markov (neglect of memory effects) approximations. In this article we study the paradigmatic model of quantum Brownian motion of a harmonic oscillator coupled to a bath of oscillators with a Drude-Ohmic spectral density. We obtain analytically the exact solution of the Heisenberg-Langevin equations, with which we study correlation functions in the asymptotic stationary state. We compare the exact correlation functions to those obtained in the asymptotic long time limit with the quantum master equation in the Born approximation with and without the Markov approximation. In the latter case we implement a systematic derivative expansion that yields the exact asymptotic limit under the factorization approximation only. We find discrepancies that could be significant when the bandwidth of the bath Λ is much larger than the typical scales of the system. We study the exact interaction energy as a proxy for the correlations missed by the Born approximation and find that its dependence on Λ is similar to the discrepancy between the exact solution and that of the quantum master equation in the Born approximation. We quantify the regime of validity of the quantum master equation in the Born approximation with or without the Markov approximation in terms of the system's relaxation rate γ , its unrenormalized natural frequency Ω and Λ : γ /Ω ≪1 and also γ Λ /Ω2≪1 . The reliability of the Born approximation is discussed within the context of recent experimental settings and more general environments.

  12. Superconducting Technology Assessment

    DTIC Science & Technology

    2005-08-01

    designing a single compressor pulse tube between the high pump frequency which produces good efficiency at the higher...noise models must be extended to sub-micron JJs. Transmission line models must be extended to the high frequency regime. VHDL models and methods ...temperatures and the low frequencies needed at low temperatures. Hybrid Sterling- pulse tube coolers allow the higher efficiency of a Sterling high

  13. Efficient distance calculation using the spherically-extended polytope (s-tope) model

    NASA Technical Reports Server (NTRS)

    Hamlin, Gregory J.; Kelley, Robert B.; Tornero, Josep

    1991-01-01

    An object representation scheme which allows for Euclidean distance calculation is presented. The object model extends the polytope model by representing objects as the convex hull of a finite set of spheres. An algorithm for calculating distances between objects is developed which is linear in the total number of spheres specifying the two objects.

  14. An Extension of Least Squares Estimation of IRT Linking Coefficients for the Graded Response Model

    ERIC Educational Resources Information Center

    Kim, Seonghoon

    2010-01-01

    The three types (generalized, unweighted, and weighted) of least squares methods, proposed by Ogasawara, for estimating item response theory (IRT) linking coefficients under dichotomous models are extended to the graded response model. A simulation study was conducted to confirm the accuracy of the extended formulas, and a real data study was…

  15. Modelling extended chromospheres

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1986-01-01

    Attention is given to the concept that the warm, partially ionized plasma (presently called chromosphere) associated with such stars as Alpha Boo and Rho Per extends outwards at least several photospheric radii. Calculations are presented for the Mg II K line in light of two input model atmospheres. Specific predictions are deduced from the results obtained by each of the two models.

  16. Dendritic growth shapes in kinetic Monte Carlo models

    NASA Astrophysics Data System (ADS)

    Krumwiede, Tim R.; Schulze, Tim P.

    2017-02-01

    For the most part, the study of dendritic crystal growth has focused on continuum models featuring surface energies that yield six pointed dendrites. In such models, the growth shape is a function of the surface energy anisotropy, and recent work has shown that considering a broader class of anisotropies yields a correspondingly richer set of growth morphologies. Motivated by this work, we generalize nanoscale models of dendritic growth based on kinetic Monte Carlo simulation. In particular, we examine the effects of extending the truncation radius for atomic interactions in a bond-counting model. This is done by calculating the model’s corresponding surface energy and equilibrium shape, as well as by running KMC simulations to obtain nanodendritic growth shapes. Additionally, we compare the effects of extending the interaction radius in bond-counting models to that of extending the number of terms retained in the cubic harmonic expansion of surface energy anisotropy in the context of continuum models.

  17. Modeling of copper sorption onto GFH and design of full-scale GFH adsorbers.

    PubMed

    Steiner, Michele; Pronk, Wouter; Boller, Markus A

    2006-03-01

    During rain events, copper wash-off occurring from copper roofs results in environmental hazards. In this study, columns filled with granulated ferric hydroxide (GFH) were used to treat copper-containing roof runoff. It was shown that copper could be removed to a high extent. A model was developed to describe this removal process. The model was based on the Two Region Model (TRM), extended with an additional diffusion zone. The extended model was able to describe the copper removal in long-term experiments (up to 125 days) with variable flow rates reflecting realistic runoff events. The four parameters of the model were estimated based on data gained with specific column experiments according to maximum sensitivity for each parameter. After model validation, the parameter set was used for the design of full-scale adsorbers. These full-scale adsorbers show high removal rates during extended periods of time.

  18. Examining the Influence of Subjective Norm and Facilitating Conditions on the Intention to Use Technology among Pre-Service Teachers: A Structural Equation Modeling of an Extended Technology Acceptance Model

    ERIC Educational Resources Information Center

    Teo, Timothy

    2010-01-01

    This study examined pre-service teachers' self-reported behavioral intentions to use technology. Three hundred and fourteen participants completed a survey questionnaire measuring their responses to six constructs from a research model that extends the technology acceptance model (TAM) by including facilitating conditions and subjective norm.…

  19. An extended plasma model for Saturn

    NASA Technical Reports Server (NTRS)

    Richardson, John D.

    1995-01-01

    The Saturn magnetosphere model of Richardson and Sittler (1990) is extended to include the outer magnetosphere. The inner magnetospheric portion of this model is updated based on a recent reanalysis of the plasma data near the Voyager 2 ring plane crossing. The result is an axially symmetric model of the plasma parameters which is designed to provide accurate input for models needing either in situ or line-of-sight data and to be a useful tool for Cassini planning.

  20. Virtual world reconstruction using the modeling and simulation extended vector product prototype

    DOT National Transportation Integrated Search

    1997-05-30

    The MS Extended Vector Product (MSEVP) prototype being developed is an extended vector product format-based product containing a continuous surface representation and a consistent view of elevation across the thematic coverages contained within a dat...

  1. Transport and optics at the node in a nodal loop semimetal

    NASA Astrophysics Data System (ADS)

    Mukherjee, S. P.; Carbotte, J. P.

    2017-06-01

    We use a Kubo formalism to calculate both AC conductivity and DC transport properties of a dirty nodal loop semimetal. The optical conductivity as a function of photon energy Ω exhibits an extended flat background σBG as in graphene provided the scattering rate Γ is small as compared to the radius of the nodal ring b (in energy units). Modifications to the constant background arise for Ω ≤Γ and the minimum DC conductivity σDC, which is approached as Ω2/Γ2 as Ω →0 , is found to be proportional to √{Γ/2+b2 }vF with vF the Fermi velocity. For b =0 we recover the known three-dimensional point node Dirac result σDC˜Γ/vF while for b >Γ , σDC becomes independent of Γ (universal) and the ratio σ/DCσBG=8/π2 where all reference to material parameters has dropped out. As b is reduced and becomes of the order Γ , the flat background is lost as the optical response evolves towards that of a three-dimensional point node Dirac semimetal which is linear in Ω for the clean limit. For finite Γ there are modifications from linearity in the photon region Ω ≤Γ . When the chemical potential μ (temperature T ) is nonzero the DC conductivity increases as μ2/Γ2 (T2/Γ2 ) for μ/Γ (T/Γ )≤1 . Such laws apply as well for thermal conductivity and thermopower with coefficients of the quadratic law only slightly modified from their value in the three-dimensional point node Dirac case. However in the μ =T =0 limit both have the same proportionality factor of √{Γ2+b2 } as does σDC. Consequently the Lorentz number is largely unmodified. For larger values of μ >Γ away from the nodal region the conductivity shows a Drude-like contribution about Ω ≊0 which is followed by a dip in the Pauli blocked region Ω ≤2 μ after which it increases to merge with the flat background (two-dimensional graphene like) for μ b .

  2. 3D Printed Molecules and Extended Solid Models for Teaching Symmetry and Point Groups

    ERIC Educational Resources Information Center

    Scalfani, Vincent F.; Vaid, Thomas P.

    2014-01-01

    Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching…

  3. Applying the Extended Technology Acceptance Model to the Use of Clickers in Student Learning: Some Evidence from Macroeconomics Classes

    ERIC Educational Resources Information Center

    Wu, Xiaoyu; Gao, Yuan

    2011-01-01

    This paper applies the extended technology acceptance model (exTAM) in information systems research to the use of clickers in student learning. The technology acceptance model (TAM) posits that perceived ease of use and perceived usefulness of technology influence users' attitudes toward using and intention to use technology. Research subsequent…

  4. Exotic superconducting states in the extended attractive Hubbard model.

    PubMed

    Nayak, Swagatam; Kumar, Sanjeev

    2018-04-04

    We show that the extended attractive Hubbard model on a square lattice allows for a variety of superconducting phases, including exotic mixed-symmetry phases with [Formula: see text] and [Formula: see text] symmetries, and a novel [Formula: see text] state. The calculations are performed within the Hartree-Fock Bardeen-Cooper-Schrieffer framework. The ground states of the mean-field Hamiltonian are obtained via a minimization scheme that relaxes the symmetry constraints on the superconducting solutions, hence allowing for a mixing of s-, p- and d-wave order parameters. The results are obtained within the assumption of uniform-density states. Our results show that extended attractive Hubbard model can serve as an effective model for investigating properties of exotic superconductors.

  5. Exotic superconducting states in the extended attractive Hubbard model

    NASA Astrophysics Data System (ADS)

    Nayak, Swagatam; Kumar, Sanjeev

    2018-04-01

    We show that the extended attractive Hubbard model on a square lattice allows for a variety of superconducting phases, including exotic mixed-symmetry phases with dx^2-y^2 + i [s + s^*] and dx^2-y^2 + px symmetries, and a novel px + i py state. The calculations are performed within the Hartree-Fock Bardeen-Cooper-Schrieffer framework. The ground states of the mean-field Hamiltonian are obtained via a minimization scheme that relaxes the symmetry constraints on the superconducting solutions, hence allowing for a mixing of s-, p- and d-wave order parameters. The results are obtained within the assumption of uniform-density states. Our results show that extended attractive Hubbard model can serve as an effective model for investigating properties of exotic superconductors.

  6. Extended Kinship in the United States: Competing Models and the Case of La Familia Chicana.

    ERIC Educational Resources Information Center

    Sena-Rivera, Jaime

    1979-01-01

    Extended kinship among Chicanos is explored through intensive open-ended interviews with four cases of three generations of Mexican-descent families. "La familia chicana" is posited as a modified extended or kin-integrated family extending over time and space from Mexico at the turn of the century to present day industrial America. (Author)

  7. Blow-up in nonlinear models of extended particles with confined constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, A.; Ranada, A.F.

    1988-11-15

    It is shown that the indefinite character of the charge in classical models of extended particles with confined constituents is a serious handicap since infinite amounts of positive and negative charge can be emitted in some solutions, causing a blow-up in finite time.

  8. Extended charge banking model of dual path shocks for implantable cardioverter defibrillators

    PubMed Central

    Dosdall, Derek J; Sweeney, James D

    2008-01-01

    Background Single path defibrillation shock methods have been improved through the use of the Charge Banking Model of defibrillation, which predicts the response of the heart to shocks as a simple resistor-capacitor (RC) circuit. While dual path defibrillation configurations have significantly reduced defibrillation thresholds, improvements to dual path defibrillation techniques have been limited to experimental observations without a practical model to aid in improving dual path defibrillation techniques. Methods The Charge Banking Model has been extended into a new Extended Charge Banking Model of defibrillation that represents small sections of the heart as separate RC circuits, uses a weighting factor based on published defibrillation shock field gradient measures, and implements a critical mass criteria to predict the relative efficacy of single and dual path defibrillation shocks. Results The new model reproduced the results from several published experimental protocols that demonstrated the relative efficacy of dual path defibrillation shocks. The model predicts that time between phases or pulses of dual path defibrillation shock configurations should be minimized to maximize shock efficacy. Discussion Through this approach the Extended Charge Banking Model predictions may be used to improve dual path and multi-pulse defibrillation techniques, which have been shown experimentally to lower defibrillation thresholds substantially. The new model may be a useful tool to help in further improving dual path and multiple pulse defibrillation techniques by predicting optimal pulse durations and shock timing parameters. PMID:18673561

  9. Optical Modeling Activities for the James Webb Space Telescope (JWST) Project. II; Determining Image Motion and Wavefront Error Over an Extended Field of View with a Segmented Optical System

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.; Ha, Kong Q.

    2004-01-01

    This is part two of a series on the optical modeling activities for JWST. Starting with the linear optical model discussed in part one, we develop centroid and wavefront error sensitivities for the special case of a segmented optical system such as JWST, where the primary mirror consists of 18 individual segments. Our approach extends standard sensitivity matrix methods used for systems consisting of monolithic optics, where the image motion is approximated by averaging ray coordinates at the image and residual wavefront error is determined with global tip/tilt removed. We develop an exact formulation using the linear optical model, and extend it to cover multiple field points for performance prediction at each instrument aboard JWST. This optical model is then driven by thermal and dynamic structural perturbations in an integrated modeling environment. Results are presented.

  10. Learning general phonological rules from distributional information: a computational model.

    PubMed

    Calamaro, Shira; Jarosz, Gaja

    2015-04-01

    Phonological rules create alternations in the phonetic realizations of related words. These rules must be learned by infants in order to identify the phonological inventory, the morphological structure, and the lexicon of a language. Recent work proposes a computational model for the learning of one kind of phonological alternation, allophony (Peperkamp, Le Calvez, Nadal, & Dupoux, 2006). This paper extends the model to account for learning of a broader set of phonological alternations and the formalization of these alternations as general rules. In Experiment 1, we apply the original model to new data in Dutch and demonstrate its limitations in learning nonallophonic rules. In Experiment 2, we extend the model to allow it to learn general rules for alternations that apply to a class of segments. In Experiment 3, the model is further extended to allow for generalization by context; we argue that this generalization must be constrained by linguistic principles. Copyright © 2014 Cognitive Science Society, Inc.

  11. A Design for Composing and Extending Vehicle Models

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.; Neuhaus, Jason R.

    2003-01-01

    The Systems Development Branch (SDB) at NASA Langley Research Center (LaRC) creates simulation software products for research. Each product consists of an aircraft model with experiment extensions. SDB treats its aircraft models as reusable components, upon which experiments can be built. SDB has evolved aircraft model design with the following goals: 1. Avoid polluting the aircraft model with experiment code. 2. Discourage the copy and tailor method of reuse. The current evolution of that architecture accomplishes these goals by reducing experiment creation to extend and compose. The architecture mechanizes the operational concerns of the model's subsystems and encapsulates them in an interface inherited by all subsystems. Generic operational code exercises the subsystems through the shared interface. An experiment is thus defined by the collection of subsystems that it creates ("compose"). Teams can modify the aircraft subsystems for the experiment using inheritance and polymorphism to create variants ("extend").

  12. Integrated Science: Florida Manatees and Everglades Hydrology

    USGS Publications Warehouse

    Langtimm, Catherine A.; Swain, Eric D.; Stith, Bradley M.; Reid, James P.; Slone, Daniel H.; Decker, Jeremy; Butler, Susan M.; Doyle, Terry; Snow, R.W.

    2009-01-01

    Predicting and monitoring restoration effects on Florida manatees, which are known to make extended movements, will be incomplete if modeling and monitoring are limited to the smaller areas defined by the various res-toration components. U.S. Geological Survey (USGS) efforts, thus far, have focused on (1) collecting manatee movement data throughout the Ten Thousand Islands (TTI) region, and (2) developing an individual-based model for manatees to illustrate manatee responses to changes in hydrology related to the Picayune Strand Restoration Project (PSRP). In 2006, new regional research was begun to extend an Everglades hydrology model into the TTI region; extend the manatee movement model into the southern estuaries of Everglades National Park (ENP); and integrate hydrology and manatee data, models, and monitoring across the TTI region and ENP. Currently (2008), three research tasks are underway to develop the necessary modeling components to assess restoration efforts across the Greater Everglades Ecosystem.

  13. Extended causal modeling to assess Partial Directed Coherence in multiple time series with significant instantaneous interactions.

    PubMed

    Faes, Luca; Nollo, Giandomenico

    2010-11-01

    The Partial Directed Coherence (PDC) and its generalized formulation (gPDC) are popular tools for investigating, in the frequency domain, the concept of Granger causality among multivariate (MV) time series. PDC and gPDC are formalized in terms of the coefficients of an MV autoregressive (MVAR) model which describes only the lagged effects among the time series and forsakes instantaneous effects. However, instantaneous effects are known to affect linear parametric modeling, and are likely to occur in experimental time series. In this study, we investigate the impact on the assessment of frequency domain causality of excluding instantaneous effects from the model underlying PDC evaluation. Moreover, we propose the utilization of an extended MVAR model including both instantaneous and lagged effects. This model is used to assess PDC either in accordance with the definition of Granger causality when considering only lagged effects (iPDC), or with an extended form of causality, when we consider both instantaneous and lagged effects (ePDC). The approach is first evaluated on three theoretical examples of MVAR processes, which show that the presence of instantaneous correlations may produce misleading profiles of PDC and gPDC, while ePDC and iPDC derived from the extended model provide here a correct interpretation of extended and lagged causality. It is then applied to representative examples of cardiorespiratory and EEG MV time series. They suggest that ePDC and iPDC are better interpretable than PDC and gPDC in terms of the known cardiovascular and neural physiologies.

  14. Extended Fitts' model of pointing time in eye-gaze input system - Incorporating effects of target shape and movement direction into modeling.

    PubMed

    Murata, Atsuo; Fukunaga, Daichi

    2018-04-01

    This study attempted to investigate the effects of the target shape and the movement direction on the pointing time using an eye-gaze input system and extend Fitts' model so that these factors are incorporated into the model and the predictive power of Fitts' model is enhanced. The target shape, the target size, the movement distance, and the direction of target presentation were set as within-subject experimental variables. The target shape included: a circle, and rectangles with an aspect ratio of 1:1, 1:2, 1:3, and 1:4. The movement direction included eight directions: upper, lower, left, right, upper left, upper right, lower left, and lower right. On the basis of the data for identifying the effects of the target shape and the movement direction on the pointing time, an attempt was made to develop a generalized and extended Fitts' model that took into account the movement direction and the target shape. As a result, the generalized and extended model was found to fit better to the experimental data, and be more effective for predicting the pointing time for a variety of human-computer interaction (HCI) task using an eye-gaze input system. Copyright © 2017. Published by Elsevier Ltd.

  15. Modeling magnetization transfer effects of Q2TIPS bolus saturation in multi-TI pulsed arterial spin labeling.

    PubMed

    Petr, Jan; Schramm, Georg; Hofheinz, Frank; Langner, Jens; van den Hoff, Jörg

    2014-10-01

    To estimate the relaxation time changes during Q2TIPS bolus saturation caused by magnetization transfer effects and to propose and evaluate an extended model for perfusion quantification which takes this into account. Three multi inversion-time pulsed arterial spin labeling sequences with different bolus saturation duration were acquired for five healthy volunteers. Magnetization transfer exchange rates in tissue and blood were obtained from control image saturation recovery. Cerebral blood flow (CBF) obtained using the extended model and the standard model was compared. A decrease of obtained CBF of 6% (10%) was observed in grey matter when the duration of bolus saturation increased from 600 to 900 ms (1200 ms). This decrease was reduced to 1.6% (2.8%) when the extended quantification model was used. Compared with the extended model, the standard model underestimated CBF in grey matter by 9.7, 15.0, and 18.7% for saturation durations 600, 900, and 1200 ms, respectively. Results for simulated single inversion-time data showed 5-16% CBF underestimation depending on blood arrival time and bolus saturation duration. Magnetization transfer effects caused by bolus saturation pulses should not be ignored when performing quantification as they can cause appreciable underestimation of the CBF. Copyright © 2013 Wiley Periodicals, Inc.

  16. Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches

    DOE PAGES

    Seyler, C. E.; Martin, M. R.

    2011-01-14

    In this study, it is shown that the two-fluid model under a generalized Ohm’s law formulation and the resistive magnetohydrodynamics (MHD) can both be described as relaxation systems. In the relaxation model, the under-resolved stiff source terms constrain the dynamics of a set of hyperbolic equations to give the correct asymptotic solution. When applied to the collisional two-fluid model, the relaxation of fast time scales associated with displacement current and finite electron mass allows for a natural transition from a system where Ohm’s law determines the current density to a system where Ohm’s law determines the electric field. This resultmore » is used to derive novel algorithms, which allow for multiscale simulation of low and high frequency extended-MHD physics. This relaxation formulation offers an efficient way to implicitly advance the Hall term and naturally simulate a plasma-vacuum interface without invoking phenomenological models. The relaxation model is implemented as an extended-MHD code, which is used to analyze pulsed power loads such as wire arrays and ablating foils. Two-dimensional simulations of pulsed power loads are compared for extended-MHD and MHD. For these simulations, it is also shown that the relaxation model properly recovers the resistive-MHD limit.« less

  17. Total variation-based method for radar coincidence imaging with model mismatch for extended target

    NASA Astrophysics Data System (ADS)

    Cao, Kaicheng; Zhou, Xiaoli; Cheng, Yongqiang; Fan, Bo; Qin, Yuliang

    2017-11-01

    Originating from traditional optical coincidence imaging, radar coincidence imaging (RCI) is a staring/forward-looking imaging technique. In RCI, the reference matrix must be computed precisely to reconstruct the image as preferred; unfortunately, such precision is almost impossible due to the existence of model mismatch in practical applications. Although some conventional sparse recovery algorithms are proposed to solve the model-mismatch problem, they are inapplicable to nonsparse targets. We therefore sought to derive the signal model of RCI with model mismatch by replacing the sparsity constraint item with total variation (TV) regularization in the sparse total least squares optimization problem; in this manner, we obtain the objective function of RCI with model mismatch for an extended target. A more robust and efficient algorithm called TV-TLS is proposed, in which the objective function is divided into two parts and the perturbation matrix and scattering coefficients are updated alternately. Moreover, due to the ability of TV regularization to recover sparse signal or image with sparse gradient, TV-TLS method is also applicable to sparse recovering. Results of numerical experiments demonstrate that, for uniform extended targets, sparse targets, and real extended targets, the algorithm can achieve preferred imaging performance both in suppressing noise and in adapting to model mismatch.

  18. Interfacial mixing in high energy-density matter with a multiphysics kinetic model

    NASA Astrophysics Data System (ADS)

    Haack, Jeff; Hauck, Cory; Murillo, Michael

    2017-10-01

    We have extended a recently-developed multispecies, multitemperature BGK model to include multiphysics capability that allows modeling of a wider range of plasma conditions. In particular, we have extended the model to describe one spatial dimension, and included a multispecies atomic ionization model, accurate collision physics across coupling regimes, self-consistent electric fields, and degeneracy in the electronic screening. We apply the new model to a warm dense matter scenario in which the ablator-fuel interface of an inertial confinement fusion target is heated, similar to a recent molecular dynamics study, but for larger length and time scales and for much higher temperatures. From our numerical results we are able to explore a variety of phenomena, including hydrogen jetting, kinetic effects (non-Maxwellian and anisotropic distributions), plasma physics (size, persistence and role of electric fields) and transport (relative sizes of Fickean diffision, electrodiffusion and barodiffusion). As compared with the recent molecular dynamics work the kinetic model greatly extends the accessible physical domains we are able to model.

  19. Outer satellite atmospheres: Their extended nature and planetary interactions. [sodium cloud of Io, hydrogen torus of Titan, and comet atmospheres

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.

    1980-01-01

    Highly developed numerical models are applied to interpret extended-atmosphere data for the sodium cloud of Io and the hydrogen torus of Titan. Solar radiation pressure was identified and verified by model calculations as the mechanism to explain two different east-west asymmetries observed in the sodium cloud. Analysis of sodium line profile data, suggesting that a Jupiter magnetospheric wind may be responsible for high speed sodium atoms emitted from Io, and preliminary modeling of the interaction of the Io plasma torus and Io's sodium cloud are also reported. Models presented for Titan's hydrogen torus are consistent both with the recent Pioneer 11 measurements and earlier Earth-orbiting observations by the Copernicus satellite. Progress is reported on developing models for extended gas and dust atmospheres of comets.

  20. A comparison of the pharmacokinetic profile of an ascending-dose, extended-regimen combined oral contraceptive to those of other extended regimens.

    PubMed

    Darwish, Mona; Bond, Mary; Ricciotti, Nancy; Hsieh, Jennifer; Fiedler-Kelly, Jill; Grasela, Thaddeus

    2014-11-01

    Quartette (levonorgestrel [LNG]/ethinyl estradiol [EE] and EE) is an ascending-dose, extended-regimen combined oral contraceptive (COC) that consists of a constant dose of LNG 150 µg on days 1 to 84 with EE 20 µg on days 1 to 42, 25 µg on days 43 to 63, 30 µg on days 64 to 84, and 10 µg of EE monotherapy on days 85 to 91. A population pharmacokinetic (PK) model for EE was developed using nonlinear mixed-effects modeling to characterize the PK profile of EE administered in Quartette and other extended-regimen LNG/EE COCs. Model-predicted plasma concentration-time profiles demonstrated a stepwise increase in systemic exposure to EE during the first 84 days of the cycle following each EE dose change. Lower concentrations of EE were noted during the final 7-day period of EE 10 µg. Gradual increases in EE seen with Quartette may decrease the incidence of unscheduled bleeding frequently observed during early cycles of extended-regimen COCs. © The Author(s) 2014.

  1. Towards Extended Vantage Theory

    ERIC Educational Resources Information Center

    Glaz, Adam

    2010-01-01

    The applicability of Vantage Theory (VT), a model of (colour) categorization, to linguistic data largely depends on the modifications and adaptations of the model for the purpose. An attempt to do so proposed here, called Extended Vantage Theory (EVT), slightly reformulates the VT conception of vantage by capitalizing on some of the entailments of…

  2. Agricultural Policy Environmental eXtender simulation of three adjacent row-crop watersheds in the claypan region

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Policy Environmental Extender (APEX) model can simulate crop yields, and pollutant loadings in whole farms or small watersheds with variety of management practices. The study objectives were to identify sensitive parameters and parameterize, calibrate and validate the APEX model fo...

  3. Dual-input two-compartment pharmacokinetic model of dynamic contrast-enhanced magnetic resonance imaging in hepatocellular carcinoma.

    PubMed

    Yang, Jian-Feng; Zhao, Zhen-Hua; Zhang, Yu; Zhao, Li; Yang, Li-Ming; Zhang, Min-Ming; Wang, Bo-Yin; Wang, Ting; Lu, Bao-Chun

    2016-04-07

    To investigate the feasibility of a dual-input two-compartment tracer kinetic model for evaluating tumorous microvascular properties in advanced hepatocellular carcinoma (HCC). From January 2014 to April 2015, we prospectively measured and analyzed pharmacokinetic parameters [transfer constant (Ktrans), plasma flow (Fp), permeability surface area product (PS), efflux rate constant (kep), extravascular extracellular space volume ratio (ve), blood plasma volume ratio (vp), and hepatic perfusion index (HPI)] using dual-input two-compartment tracer kinetic models [a dual-input extended Tofts model and a dual-input 2-compartment exchange model (2CXM)] in 28 consecutive HCC patients. A well-known consensus that HCC is a hypervascular tumor supplied by the hepatic artery and the portal vein was used as a reference standard. A paired Student's t-test and a nonparametric paired Wilcoxon rank sum test were used to compare the equivalent pharmacokinetic parameters derived from the two models, and Pearson correlation analysis was also applied to observe the correlations among all equivalent parameters. The tumor size and pharmacokinetic parameters were tested by Pearson correlation analysis, while correlations among stage, tumor size and all pharmacokinetic parameters were assessed by Spearman correlation analysis. The Fp value was greater than the PS value (FP = 1.07 mL/mL per minute, PS = 0.19 mL/mL per minute) in the dual-input 2CXM; HPI was 0.66 and 0.63 in the dual-input extended Tofts model and the dual-input 2CXM, respectively. There were no significant differences in the kep, vp, or HPI between the dual-input extended Tofts model and the dual-input 2CXM (P = 0.524, 0.569, and 0.622, respectively). All equivalent pharmacokinetic parameters, except for ve, were correlated in the two dual-input two-compartment pharmacokinetic models; both Fp and PS in the dual-input 2CXM were correlated with Ktrans derived from the dual-input extended Tofts model (P = 0.002, r = 0.566; P = 0.002, r = 0.570); kep, vp, and HPI between the two kinetic models were positively correlated (P = 0.001, r = 0.594; P = 0.0001, r = 0.686; P = 0.04, r = 0.391, respectively). In the dual input extended Tofts model, ve was significantly less than that in the dual input 2CXM (P = 0.004), and no significant correlation was seen between the two tracer kinetic models (P = 0.156, r = 0.276). Neither tumor size nor tumor stage was significantly correlated with any of the pharmacokinetic parameters obtained from the two models (P > 0.05). A dual-input two-compartment pharmacokinetic model (a dual-input extended Tofts model and a dual-input 2CXM) can be used in assessing the microvascular physiopathological properties before the treatment of advanced HCC. The dual-input extended Tofts model may be more stable in measuring the ve; however, the dual-input 2CXM may be more detailed and accurate in measuring microvascular permeability.

  4. Modelling Facebook Usage among University Students in Thailand: The Role of Emotional Attachment in an Extended Technology Acceptance Model

    ERIC Educational Resources Information Center

    Teo, Timothy

    2016-01-01

    The aim of this study is to examine the factors that influenced the use of Facebook among university students. Using an extended technology acceptance model (TAM) with emotional attachment (EA) as an external variable, a sample of 498 students from a public-funded Thailand university were surveyed on their responses to five variables hypothesized…

  5. Exploring extended scope of practice in dietetics: A systems approach.

    PubMed

    Ryan, Dominique; Pelly, Fiona; Purcell, Elizabeth

    2017-09-01

    The aim of this study was to explore health professionals' perceptions of an extended scope of a practice clinic, and develop a framework using a systems approach to facilitate extended scope models across various health settings. A qualitative investigation using semi-structured interviews with four health professionals involved in an extended scope dietitian-led gastroenterology clinic in a hospital in regional Queensland was conducted. A case study design was utilised to investigate interviewees' perceptions of the clinic. Participants were conveniently, purposively sampled. Transcript analysis involved a descriptive analytical approach. Interviewee responses were coded and categorised into themes, and investigator triangulation was used to ensure consistency between individual analyses. A secondary interpretative analysis was conducted where relationships between key themes were mapped to the Systems Engineering Initiative for Patient Safety work system model. Interviewees identified various factors as vital inputs to the work system. These were categorised into the four key elements: stakeholder support, resources, planning and the dietitian. Clinic outcomes were categorised into the impact on four key groups: patients, the dietitian, the multidisciplinary team and the health system. Mapping of the relationships between inputs and outcomes resulted in an implementation framework for extended scope of practice. Extended scope of practice in dietetics may provide positive outcomes for various stakeholders. However, further development of extended scope roles for dietitians requires increased advocacy and support from governments, professional bodies, training institutions and dietitians. We have developed an implementation framework which can be utilised by health professionals interested in embracing an extended scope model of care. © 2016 Dietitians Association of Australia.

  6. Representation of ocean-atmosphere processes associated with extended monsoon episodes over South Asia in CFSv2

    NASA Astrophysics Data System (ADS)

    Mohan, T. S.; Annamalai, H.; Marx, Larry; Huang, Bohua; Kinter, James

    2018-02-01

    In the present study, we analyze 30-years output from free run solutions of CFSv2 coupled model to assess the model’s representation of extended (>7 days) active and break monsoon episodes over south Asia. Process based diagnostics is applied to the individual and composite events to identify precursor signals in both ocean and atmospheric variables. Our examination suggests that CFSv2, like most coupled models, depict systematic biases in variables important for ocean-atmosphere interactions. Nevertheless, model solutions capture many aspects of monsoon extended break and active episodes realistically, encouraging us to apply process-based diagnostics. Diagnostics reveal that sea surface temperature (SST) variations over the northern Bay of Bengal where the climatological mixed-layer is thin, lead the in-situ precipitation anomalies by about 8 (10) days during extended active (break) episodes, and the precipitation anomalies over central India by 10-14 days. Mixed-layer heat budget analysis indicates for a close correspondence between SST tendency and net surface heat flux (Q_net). MSE budgets indicate that horizontal moisture advection to be a coherent precursor signal ( 10 days) during both extended break (dry advection) and active (moist advection) events. The lead timings in these precursor signals in CFSv2 solutions will be of potential use to monitor and predict extended monsoon episodes. Diagnostics, however, also indicate that for about 1/3 of the identified extended break and active episodes, inconsistencies in budget terms suggest precursor signals could lead to false alarms. Apart from false alarms, compared to observations, CFSv2 systematically simulates a greater number of extended monsoon active episodes.

  7. Effects of Antiepileptic Drugs on Spontaneous Recurrent Seizures in a Novel Model of Extended Hippocampal Kindling in Mice

    PubMed Central

    Song, Hongmei; Tufa, Uilki; Chow, Jonathan; Sivanenthiran, Nila; Cheng, Chloe; Lim, Stellar; Wu, Chiping; Feng, Jiachun; Eubanks, James H.; Zhang, Liang

    2018-01-01

    Epilepsy is a common neurological disorder characterized by naturally-occurring spontaneous recurrent seizures and comorbidities. Kindling has long been used to model epileptogenic mechanisms and to assess antiepileptic drugs. In particular, extended kindling can induce spontaneous recurrent seizures without gross brain lesions, as seen clinically. To date, the development of spontaneous recurrent seizures following extended kindling, and the effect of the antiepileptic drugs on these seizures are not well understood. In the present study we aim to develop a mouse model of extended hippocampal kindling for the first time. Once established, we plan to evaluate the effect of three different antiepileptic drugs on the development of the extended-hippocampal-kindled-induced spontaneous recurrent seizures. Male C57 black mice were used for chronic hippocampal stimulations or handling manipulations (twice daily for up to 70 days). Subsequently, animals underwent continuous video/EEG monitoring for seizure detection. Spontaneous recurrent seizures were consistently observed in extended kindled mice but no seizures were detected in the control animals. The aforementioned seizures were generalized events characterized by hippocampal ictal discharges and concurrent motor seizures. Incidence and severity of the seizures was relatively stable while monitored over a few months after termination of the hippocampal stimulation. Three antiepileptic drugs with distinct action mechanisms were tested: phenytoin, lorazepam and levetiracetam. They were applied via intra-peritoneal injections at anticonvulsive doses and their effects on the spontaneous recurrent seizures were analyzed 10–12 h post-injection. Phenytoin (25 mg/kg) and levetiracetam (400 mg/kg) abolished the spontaneous recurrent seizures. Lorazepam (1.5 mg/kg) decreased motor seizure severity but did not reduce the incidence and duration of corresponding hippocampal discharges, implicating its inhibitory effects on seizure spread. No gross brain lesions were observed in a set of extended hippocampal kindled mice submitted to histological evaluation. All these data suggests that our model could be considered as a novel mouse model of extended hippocampal kindling. Some limitations remain to be considered. PMID:29867462

  8. Extend MANPADS M&S Capabilities to Include Energetic Materials, Fragmentation Effects, and Wing Flutter Response

    DTIC Science & Technology

    2005-12-31

    MANPADS missile is modeled using LSDYNA . It has 187600 nodes, 52802 shell elements with 13 shell materials, 112200 solid elements with 1804 solid...model capability that includes impact, detonation, penetration, and wing flutter response. This work extends an existing body on body missile model...the missile as well as the expansion of the surrounding fluids was modeled in the Eulerian domain. The Jones-Wilkins-Lee (JWL) equation of state was

  9. Atomically informed nonlocal semi-discrete variational Peierls-Nabarro model for planar core dislocations

    PubMed Central

    Liu, Guisen; Cheng, Xi; Wang, Jian; Chen, Kaiguo; Shen, Yao

    2017-01-01

    Prediction of Peierls stress associated with dislocation glide is of fundamental concern in understanding and designing the plasticity and mechanical properties of crystalline materials. Here, we develop a nonlocal semi-discrete variational Peierls-Nabarro (SVPN) model by incorporating the nonlocal atomic interactions into the semi-discrete variational Peierls framework. The nonlocal kernel is simplified by limiting the nonlocal atomic interaction in the nearest neighbor region, and the nonlocal coefficient is directly computed from the dislocation core structure. Our model is capable of accurately predicting the displacement profile, and the Peierls stress, of planar-extended core dislocations in face-centered cubic structures. Our model could be extended to study more complicated planar-extended core dislocations, such as <110> {111} dislocations in Al-based and Ti-based intermetallic compounds. PMID:28252102

  10. Split Octonion Reformulation for Electromagnetic Chiral Media of Massive Dyons

    NASA Astrophysics Data System (ADS)

    Chanyal, B. C.

    2017-12-01

    In an explicit, unified, and covariant formulation of an octonion algebra, we study and generalize the electromagnetic chiral fields equations of massive dyons with the split octonionic representation. Starting with 2×2 Zorn’s vector matrix realization of split-octonion and its dual Euclidean spaces, we represent the unified structure of split octonionic electric and magnetic induction vectors for chiral media. As such, in present paper, we describe the chiral parameter and pairing constants in terms of split octonionic matrix representation of Drude-Born-Fedorov constitutive relations. We have expressed a split octonionic electromagnetic field vector for chiral media, which exhibits the unified field structure of electric and magnetic chiral fields of dyons. The beauty of split octonionic representation of Zorn vector matrix realization is that, the every scalar and vector components have its own meaning in the generalized chiral electromagnetism of dyons. Correspondingly, we obtained the alternative form of generalized Proca-Maxwell’s equations of massive dyons in chiral media. Furthermore, the continuity equations, Poynting theorem and wave propagation for generalized electromagnetic fields of chiral media of massive dyons are established by split octonionic form of Zorn vector matrix algebra.

  11. Solution-processed phase-change VO(2) metamaterials from colloidal vanadium oxide (VO(x)) nanocrystals.

    PubMed

    Paik, Taejong; Hong, Sung-Hoon; Gaulding, E Ashley; Caglayan, Humeyra; Gordon, Thomas R; Engheta, Nader; Kagan, Cherie R; Murray, Christopher B

    2014-01-28

    We demonstrate thermally switchable VO2 metamaterials fabricated using solution-processable colloidal nanocrystals (NCs). Vanadium oxide (VOx) NCs are synthesized through a nonhydrolytic reaction and deposited from stable colloidal dispersions to form NC thin films. Rapid thermal annealing transforms the VOx NC thin films into monoclinic, nanocrystalline VO2 thin films that show a sharp, reversible metal-insulator phase transition. Introduction of precise concentrations of tungsten dopings into the colloidal VOx NCs enables the still sharp phase transition of the VO2 thin films to be tuned to lower temperatures as the doping level increases. We fabricate "smart", differentially doped, multilayered VO2 films to program the phase and therefore the metal-insulator behavior of constituent vertically structured layers with temperature. With increasing temperature, we tailored the optical response of multilayered films in the near-IR and IR regions from that of a strong light absorber, in a metal-insulator structure, to that of a Drude-like reflector, characteristic of a pure metallic structure. We demonstrate that nanocrystal-based nanoimprinting can be employed to pattern multilayered subwavelength nanostructures, such as three-dimensional VO2 nanopillar arrays, that exhibit plasmonic dipolar responses tunable with a temperature change.

  12. Electrical and thermoelectric transport properties of two-dimensional fermionic systems with k-cubic spin-orbit coupling.

    PubMed

    Mawrie, Alestin; Verma, Sonu; Ghosh, Tarun Kanti

    2017-09-01

    We investigate effect of <i>k</i>-cubic spin-orbit interaction on electrical and thermoelectric transport properties of two-dimensional fermionic systems. We obtain exact analytical expressions of the inverse relaxation time (IRT) and the Drude conductivity for long-range Coulomb and short-range delta scattering potentials. The IRT reveals that the scattering is completely suppressed along the three directions θ = (2n+1)π/3 with n=1,2,3. We also obtain analytical results of the thermopower and thermal conductivity at low temperature. The thermoelectric transport coefficients obey the Wiedemann-Franz law, even in the presence of <i>k</i>-cubic Rashba spin-orbit interaction (RSOI) at low temperature. In the presence of quantizing magnetic field, the signature of the RSOI is revealed through the appearance of the beating pattern in the Shubnikov-de Haas (SdH) oscillations of thermopower and thermal conductivity in low magnetic field regime. The empirical formulae for the SdH oscillation frequencies accurately describe the locations of the beating nodes. The beating pattern in magnetothermoelectric measurement can be used to extract the spin-orbit coupling constant. © 2017 IOP Publishing Ltd.

  13. Electrical and thermoelectric transport properties of two-dimensional fermionic systems with k-cubic spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Mawrie, Alestin; Verma, Sonu; Kanti Ghosh, Tarun

    2017-11-01

    We investigate the effect of k-cubic spin-orbit interaction on the electrical and thermoelectric transport properties of two-dimensional fermionic systems. We obtain exact analytical expressions of the inverse relaxation time (IRT) and the Drude conductivity for long-range Coulomb and short-range delta scattering potentials. The IRT reveals that the scattering is completely suppressed along the three directions θ^\\prime = (2n+1)π/3 with n=1, 2, 3 . We also obtain analytical results of the thermopower and thermal conductivity at low temperature. The thermoelectric transport coefficients obey the Wiedemann-Franz law, even in the presence of k-cubic Rashba spin-orbit interaction (RSOI) at low temperature. In the presence of a quantizing magnetic field, the signature of the RSOI is revealed through the appearance of the beating pattern in the Shubnikov-de Haas (SdH) oscillations of thermopower and thermal conductivity in the low magnetic field regime. The empirical formulae for the SdH oscillation frequencies accurately describe the locations of the beating nodes. The beating pattern in magnetothermoelectric measurement can be used to extract the spin-orbit coupling constant.

  14. Dynamic conductivity modified by impurity resonant states in doping three-dimensional Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Wang, Chen; Zheng, Shi-Han; Wang, Rui-Qiang; Li, Jun; Yang, Mou

    2018-04-01

    The impurity effect is studied in three-dimensional Dirac semimetals in the framework of a T-matrix method to consider the multiple scattering events of Dirac electrons off impurities. It has been found that a strong impurity potential can significantly restructure the energy dispersion and the density of states of Dirac electrons. An impurity-induced resonant state emerges and significantly modifies the pristine optical response. It is shown that the impurity state disturbs the common longitudinal optical conductivity by creating either an optical conductivity peak or double absorption jumps, depending on the relative position of the impurity band and the Fermi level. More importantly, these conductivity features appear in the forbidden region between the Drude and interband transition, completely or partially filling the Pauli block region of optical response. The underlying physics is that the appearance of resonance states as well as the broadening of the bands leads to a more complicated selection rule for the optical transitions, making it possible to excite new electron-hole pairs in the forbidden region. These features in optical conductivity provide valuable information to understand the impurity behaviors in 3D Dirac materials.

  15. Pulsating flow and boundary layers in viscous electronic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Moessner, Roderich; Surówka, Piotr; Witkowski, Piotr

    2018-04-01

    Motivated by experiments on a hydrodynamic regime in electron transport, we study the effect of an oscillating electric field in such a setting. We consider a long two-dimensional channel of width L , whose geometrical simplicity allows an analytical study as well as hopefully permitting an experimental realization. The response depends on viscosity ν , driving frequency ω , and ohmic heating coefficient γ via the dimensionless complex variable L/2ν (i ω +γ ) =i Ω +Σ . While at small Ω , we recover the static solution, a different regime appears at large Ω with the emergence of a boundary layer. This includes a splitting of the location of maximal flow velocity from the center towards the edges of the boundary layer, an increasingly reactive nature of the response, with the phase shift of the response varying across the channel. The scaling of the total optical conductance with L differs between the two regimes, while its frequency dependence resembles a Drude form throughout, even in the complete absence of ohmic heating, against which, at the same time, our results are stable. Current estimates for transport coefficients in graphene and delafossites suggest that the boundary-layer regime should be experimentally accessible.

  16. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    NASA Astrophysics Data System (ADS)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  17. Investigation of the Stability and Control Characteristics of a 1/10-Scale Model of the Chance Vought XF7U-1 Airplane in the Langley Free-Flight Tunnel, TED No. NACA DE306

    NASA Technical Reports Server (NTRS)

    Draper, John W.; Hewes, Donald E.

    1948-01-01

    At the request of the Bureau of Aeronautics, Navy Department, a stability and control investigation of a 1/10-scale model of the Chance Vought XF7U-1 airplane has been conducted in the Langley free-flight tunnel. Results of force end flight tests to determine the power-off stability and control characteristics of the model with slats retracted and extended are presented herein. The longitudinal and lateral stability characteristics were satisfactory for both the slats retracted and extended conditions over the lift range up to the stall. With the slats retracted, the stall was fairly gentle but the model rolled off out of control. With the slats extended, control could be maintained at the stall so that the wings could be kept level even as the model dropped.

  18. Extending the Community Multiscale Air Quality (CMAQ) Modeling System to Hemispheric Scales: Overview of Process Considerations and Initial Applications

    PubMed Central

    Mathur, Rohit; Xing, Jia; Gilliam, Robert; Sarwar, Golam; Hogrefe, Christian; Pleim, Jonathan; Pouliot, George; Roselle, Shawn; Spero, Tanya L.; Wong, David C.; Young, Jeffrey

    2018-01-01

    The Community Multiscale Air Quality (CMAQ) modeling system is extended to simulate ozone, particulate matter, and related precursor distributions throughout the Northern Hemisphere. Modelled processes were examined and enhanced to suitably represent the extended space and time scales for such applications. Hemispheric scale simulations with CMAQ and the Weather Research and Forecasting (WRF) model are performed for multiple years. Model capabilities for a range of applications including episodic long-range pollutant transport, long-term trends in air pollution across the Northern Hemisphere, and air pollution-climate interactions are evaluated through detailed comparison with available surface, aloft, and remotely sensed observations. The expansion of CMAQ to simulate the hemispheric scales provides a framework to examine interactions between atmospheric processes occurring at various spatial and temporal scales with physical, chemical, and dynamical consistency. PMID:29681922

  19. Online Cancer Information Seeking: Applying and Extending the Comprehensive Model of Information Seeking.

    PubMed

    Van Stee, Stephanie K; Yang, Qinghua

    2017-10-30

    This study applied the comprehensive model of information seeking (CMIS) to online cancer information and extended the model by incorporating an exogenous variable: interest in online health information exchange with health providers. A nationally representative sample from the Health Information National Trends Survey 4 Cycle 4 was analyzed to examine the extended CMIS in predicting online cancer information seeking. Findings from a structural equation model supported most of the hypotheses derived from the CMIS, as well as the extension of the model related to interest in online health information exchange. In particular, socioeconomic status, beliefs, and interest in online health information exchange predicted utility. Utility, in turn, predicted online cancer information seeking, as did information-carrier characteristics. An unexpected but important finding from the study was the significant, direct relationship between cancer worry and online cancer information seeking. Theoretical and practical implications are discussed.

  20. Sakurai Prize: Extended Higgs Sectors--phenomenology and future prospects

    NASA Astrophysics Data System (ADS)

    Gunion, John

    2017-01-01

    The discovery of a spin-0 state at 125 GeV with properties close to those predicted for the single Higgs boson of the Standard Model does not preclude the existence of additional Higgs bosons. In this talk, models with extended Higgs sectors are reviewed, including two-Higgs-doublet models with and without an extra singlet Higgs field and supersymmetric models. Special emphasis is given to the limit in which the couplings and properties of one of the Higgs bosons of the extended Higgs sector are very close to those predicted for the single Standard Model Higgs boson while the other Higgs bosons are relatively light, perhaps even having masses close to or below the SM-like 125 GeV state. Constraints on this type of scenario given existing data are summarized and prospects for observing these non-SM-like Higgs bosons are discussed. Supported by the Department of Energy.

  1. Numerical simulation and experimental verification of extended source interferometer

    NASA Astrophysics Data System (ADS)

    Hou, Yinlong; Li, Lin; Wang, Shanshan; Wang, Xiao; Zang, Haijun; Zhu, Qiudong

    2013-12-01

    Extended source interferometer, compared with the classical point source interferometer, can suppress coherent noise of environment and system, decrease dust scattering effects and reduce high-frequency error of reference surface. Numerical simulation and experimental verification of extended source interferometer are discussed in this paper. In order to provide guidance for the experiment, the modeling of the extended source interferometer is realized by using optical design software Zemax. Matlab codes are programmed to rectify the field parameters of the optical system automatically and get a series of interferometric data conveniently. The communication technique of DDE (Dynamic Data Exchange) was used to connect Zemax and Matlab. Then the visibility of interference fringes can be calculated through adding the collected interferometric data. Combined with the simulation, the experimental platform of the extended source interferometer was established, which consists of an extended source, interference cavity and image collection system. The decrease of high-frequency error of reference surface and coherent noise of the environment is verified. The relation between the spatial coherence and the size, shape, intensity distribution of the extended source is also verified through the analysis of the visibility of interference fringes. The simulation result is in line with the result given by real extended source interferometer. Simulation result shows that the model can simulate the actual optical interference of the extended source interferometer quite well. Therefore, the simulation platform can be used to guide the experiment of interferometer which is based on various extended sources.

  2. Gravitational couplings of the inflaton in extended inflation

    NASA Technical Reports Server (NTRS)

    Holman, Richard; Wang, Yun; Kolb, Edward W.

    1990-01-01

    A new extended inflationary scenario evading the difficulties of the original model is discussed. The model can thermalize the energy in the bubble walls by the necessary epoch, and establish a Robertson-Walker frame in the bubble clusters. The essential new ingredient in the model is the observation that the coupling of the inflaton to the Jordan-Brans-Dicke field is expected to be different from that of visible matter.

  3. An extended model of the Barkhausen effect based on the ABBM model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clatterbuck, D. M.; Garcia, V. J.; Johnson, M. J.

    2000-05-01

    The Barkhausen model of Alessandro et al. [J. Appl. Phys. 68, 2901 (1990)] has been extended to nonstationary domain wall dynamics. The assumptions of the original model limit, its use to situations where the differential permeability, and time derivative of applied field are constant. The later model of Jiles et al. assumes that the Barkhausen activity in a given time interval is proportional to the rate of change of irreversible magnetization which can be calculated from hysteresis models. The extended model presented here incorporates ideas from both of these. It assumes that the pinning field and domain wall velocity behavemore » according to the Alessandro model, but allows the rate of change of the magnetic flux to vary around a moving average which is determined by the shape of the hysteresis curve and the applied magnetic field wave form. As a result, the new model allows for changes in permeability with applied field and can also reproduce the frequency response of experimental Barkhausen signals. (c) 2000 American Institute of Physics.« less

  4. Development and evaluation of the bacterial fate and transport module for the agricultural policy/environmental extender (APEX) model

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Policy/Environmental eXtender (APEX) is a watershed-scale water quality model that includes detailed representation of agricultural management but currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop a process-based ...

  5. Higher Education as an Extended Duration Service: An Investigation of the Determinants of Vietnamese Overseas Student Loyalty

    ERIC Educational Resources Information Center

    Pham, Hiep-Hung; Lai, Sue Ling

    2016-01-01

    Regarding higher education as a type of extended duration service, this article proposes a framework considering adjusted expectation, disconfirmation, satisfaction, and commitment in a conceptual model to explain international student loyalty. Employing a structure equation model to the sample data collected from 252 Vietnam overseas students…

  6. Invariance of an Extended Technology Acceptance Model Across Gender and Age Group

    ERIC Educational Resources Information Center

    Ahmad, Tunku Badariah Tunku; Madarsha, Kamal Basha; Zainuddin, Ahmad Marzuki; Ismail, Nik Ahmad Hisham; Khairani, Ahmad Zamri; Nordin, Mohamad Sahari

    2011-01-01

    In this study, we examined the likelihood of a TAME (extended technology acceptance model), in which the interrelationships among computer self-efficacy, perceived usefulness, intention to use and self-reported use of computer-mediated technology were tested. In addition, the gender- and age-invariant of its causal structure were evaluated. The…

  7. The Extended Parallel Process Model: Illuminating the Gaps in Research

    ERIC Educational Resources Information Center

    Popova, Lucy

    2012-01-01

    This article examines constructs, propositions, and assumptions of the extended parallel process model (EPPM). Review of the EPPM literature reveals that its theoretical concepts are thoroughly developed, but the theory lacks consistency in operational definitions of some of its constructs. Out of the 12 propositions of the EPPM, a few have not…

  8. Fear Control an Danger Control: A Test of the Extended Parallel Process Model (EPPM).

    ERIC Educational Resources Information Center

    Witte, Kim

    1994-01-01

    Explores cognitive and emotional mechanisms underlying success and failure of fear appeals in context of AIDS prevention. Offers general support for Extended Parallel Process Model. Suggests that cognitions lead to fear appeal success (attitude, intention, or behavior changes) via danger control processes, whereas the emotion fear leads to fear…

  9. Building Context with Tumor Growth Modeling Projects in Differential Equations

    ERIC Educational Resources Information Center

    Beier, Julie C.; Gevertz, Jana L.; Howard, Keith E.

    2015-01-01

    The use of modeling projects serves to integrate, reinforce, and extend student knowledge. Here we present two projects related to tumor growth appropriate for a first course in differential equations. They illustrate the use of problem-based learning to reinforce and extend course content via a writing or research experience. Here we discuss…

  10. Development and evaluation of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    USDA-ARS?s Scientific Manuscript database

    Microbial contamination of waters in agricultural watershed is the critical public health issue. The watershed-scale model has been proven to be one of the candidate tools for predicting microbial water quality and evaluating management practices. The Agricultural Policy/Environmental eXtender (APEX...

  11. Observed light yield of scintillation pixels: Extending the two-ray model

    NASA Astrophysics Data System (ADS)

    Kantorski, Igor; Jurkowski, Jacek; Drozdowski, Winicjusz

    2016-09-01

    In this paper we propose an extended, two dimensional model describing the propagation of scintillation photons inside a cuboid crystal until they reach a PMT window. In the simplest approach the model considers two main reasons for light losses: standard absorption obeying the classical Lambert-Beer law and non-ideal reflectivity of the "mummy" covering formed by several layers of Teflon tape wrapping the sample. Results of the model calculations are juxtaposed with experimental data as well as with predictions of an earlier, one dimensional model.

  12. Small-kernel, constrained least-squares restoration of sampled image data

    NASA Technical Reports Server (NTRS)

    Hazra, Rajeeb; Park, Stephen K.

    1992-01-01

    Following the work of Park (1989), who extended a derivation of the Wiener filter based on the incomplete discrete/discrete model to a more comprehensive end-to-end continuous/discrete/continuous model, it is shown that a derivation of the constrained least-squares (CLS) filter based on the discrete/discrete model can also be extended to this more comprehensive continuous/discrete/continuous model. This results in an improved CLS restoration filter, which can be efficiently implemented as a small-kernel convolution in the spatial domain.

  13. Continuum Fatigue Damage Modeling for Use in Life Extending Control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1994-01-01

    This paper develops a simplified continuum (continuous wrp to time, stress, etc.) fatigue damage model for use in Life Extending Controls (LEC) studies. The work is based on zero mean stress local strain cyclic damage modeling. New nonlinear explicit equation forms of cyclic damage in terms of stress amplitude are derived to facilitate the continuum modeling. Stress based continuum models are derived. Extension to plastic strain-strain rate models are also presented. Application of these models to LEC applications is considered. Progress toward a nonzero mean stress based continuum model is presented. Also, new nonlinear explicit equation forms in terms of stress amplitude are also derived for this case.

  14. Asymmetric dark matter in extended exo-Higgs scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davoudiasl, Hooman; Giardino, Pier Paolo; Zhang, Cen

    Here, the exo-Higgs model can accommodate a successful baryogenesis mechanism that closely mirrors electroweak baryogenesis in the Standard Model, but avoids its shortcomings. We extend the exo- Higgs model by the addition of a singlet complex scalar. In our model, Χ can be a viable asymmetric dark matter (ADM) candidate. We predict the mass of the ADM particle to be m x ≈ 1.3 GeV. The leptophilic couplings of can provide for efficient annihilation of the ADM pairs. We also discuss the LHC signals of our scenario, and in particular the production and decays of exo-leptons which would lead tomore » "lepton pair plus missing energy" final states. Our model typically predicts potentially detectable gravitational waves originating from the assumed strong first order phase transition at a temperature of ~TeV. If the model is further extended to include new heavy vector-like fermions, e.g. from an ultraviolet extension, Χ couplings could explain the ~3.5 muon g – 2 anomaly.« less

  15. Development and application of an exchange model for anisotropic water diffusion in the microporous MOF aluminum fumarate

    NASA Astrophysics Data System (ADS)

    Splith, Tobias; Fröhlich, Dominik; Henninger, Stefan K.; Stallmach, Frank

    2018-06-01

    Diffusion of water in aluminum fumarate was studied by means of pulsed field gradient (PFG) nuclear magnetic resonance (NMR). Due to water molecules exchanging between the intracrystalline anisotropic pore space and the isotropic intercrystalline void space the model of intracrystalline anisotropic diffusion fails to describe the experimental PFG NMR data at high observation times. Therefore, the two-site exchange model developed by Kärger is extended to the case of exchange between an anisotropic and an isotropic site. This extended exchange model is solved by numerical integration. It describes the experimental data very well and yields values for the intracrystalline diffusion coefficient and the mean residence times of the respective sites. Further PFG NMR studies were performed with coatings consisting of small aluminum fumarate crystals, which are used in adsorptive heat transformation applications. The diffusion coefficients of water in the small crystal coating are compared to the values expected from the extended two-site exchange model and from the model of long-range diffusion.

  16. Asymmetric dark matter in extended exo-Higgs scenarios

    DOE PAGES

    Davoudiasl, Hooman; Giardino, Pier Paolo; Zhang, Cen

    2017-07-17

    Here, the exo-Higgs model can accommodate a successful baryogenesis mechanism that closely mirrors electroweak baryogenesis in the Standard Model, but avoids its shortcomings. We extend the exo- Higgs model by the addition of a singlet complex scalar. In our model, Χ can be a viable asymmetric dark matter (ADM) candidate. We predict the mass of the ADM particle to be m x ≈ 1.3 GeV. The leptophilic couplings of can provide for efficient annihilation of the ADM pairs. We also discuss the LHC signals of our scenario, and in particular the production and decays of exo-leptons which would lead tomore » "lepton pair plus missing energy" final states. Our model typically predicts potentially detectable gravitational waves originating from the assumed strong first order phase transition at a temperature of ~TeV. If the model is further extended to include new heavy vector-like fermions, e.g. from an ultraviolet extension, Χ couplings could explain the ~3.5 muon g – 2 anomaly.« less

  17. Dynamical quantum phase transitions in extended transverse Ising models

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sourav; Dutta, Amit

    2018-04-01

    We study the dynamical quantum phase transitions (DQPTs) manifested in the subsequent unitary dynamics of an extended Ising model with an additional three spin interactions following a sudden quench. Revisiting the equilibrium phase diagram of the model, where different quantum phases are characterized by different winding numbers, we show that in some situations the winding number may not change across a gap closing point in the energy spectrum. Although, usually there exists a one-to-one correspondence between the change in winding number and the number of critical time scales associated with DQPTs, we show that the extended nature of interactions may lead to unusual situations. Importantly, we show that in the limit of the cluster Ising model, three critical modes associated with DQPTs become degenerate, thereby leading to a single critical time scale for a given sector of Fisher zeros.

  18. Enhancing the Dependability of Complex Missions Through Automated Analysis

    DTIC Science & Technology

    2013-09-01

    triangular or self - referential relationships. The Semantic Web Rule Language (SWRL)—a W3C-approved OWL extension—addresses some of these limitations by...SWRL extends OWL with Horn-like rules that can model complex relational structures and self - referential relationships; Prolog extends OWL+SWRL with the...8]. Additionally, multi-agent model checking has been used to verify OWL-S process models [9]. OWL is a powerful knowledge representation formalism

  19. Examining the Moderating Effect of Individual-Level Cultural Values on Users' Acceptance of E-Learning in Developing Countries: A Structural Equation Modeling of an Extended Technology Acceptance Model

    ERIC Educational Resources Information Center

    Tarhini, Ali; Hone, Kate; Liu, Xiaohui; Tarhini, Takwa

    2017-01-01

    In this study, we examine the effects of individual-level culture on the adoption and acceptance of e-learning tools by students in Lebanon using a theoretical framework based on the Technology Acceptance Model (TAM). To overcome possible limitations of using TAM in developing countries, we extend TAM to include "subjective norms" (SN)…

  20. Teachers and Technology: Development of an Extended Theory of Planned Behavior

    ERIC Educational Resources Information Center

    Teo, Timothy; Zhou, Mingming; Noyes, Jan

    2016-01-01

    This study tests the validity of an extended theory of planned behaviour (TPB) to explain teachers' intention to use technology for teaching and learning. Five hundred and ninety two participants completed a survey questionnaire measuring their responses to eight constructs which form an extended TPB. Using structural equation modelling, the…

  1. Feasibility study for using an extended three-wave model to simulate plasma-based backward Raman amplification in one spatial dimension

    NASA Astrophysics Data System (ADS)

    Wang, T.-L.; Michta, D.; Lindberg, R. R.; Charman, A. E.; Martins, S. F.; Wurtele, J. S.

    2009-12-01

    Results are reported of a one-dimensional simulation study comparing the modeling capability of a recently formulated extended three-wave model [R. R. Lindberg, A. E. Charman, and J. S. Wurtele, Phys. Plasmas 14, 122103 (2007); Phys. Plasmas 15, 055911 (2008)] to that of a particle-in-cell (PIC) code, as well as to a more conventional three-wave model, in the context of the plasma-based backward Raman amplification (PBRA) [G. Shvets, N. J. Fisch, A. Pukhov et al., Phys. Rev. Lett. 81, 4879 (1998); V. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Rev. Lett. 82, 4448 (1999); Phys. Rev. Lett. 84, 1208 (2000)]. The extended three-wave model performs essentially as well as or better than a conventional three-wave description in all temperature regimes tested, and significantly better at the higher temperatures studied, while the computational savings afforded by the extended three-wave model make it a potentially attractive tool that can be used prior to or in conjunction with PIC simulations to model the kinetic effects of PBRA for nonrelativistic laser pulses interacting with underdense thermal plasmas. Very fast but reasonably accurate at moderate plasma temperatures, this model may be used to perform wide-ranging parameter scans or other exploratory analyses quickly and efficiently, in order to guide subsequent simulation via more accurate if intensive PIC techniques or other algorithms approximating the full Vlasov-Maxwell equations.

  2. Interpolation of the Extended Boolean Retrieval Model.

    ERIC Educational Resources Information Center

    Zanger, Daniel Z.

    2002-01-01

    Presents an interpolation theorem for an extended Boolean information retrieval model. Results show that whenever two or more documents are similarly ranked at any two points for a query containing exactly two terms, then they are similarly ranked at all points in between; and that results can fail for queries with more than two terms. (Author/LRW)

  3. Extended Day Treatment: A Comprehensive Model of after School Behavioral Health Services for Youth

    ERIC Educational Resources Information Center

    Vanderploeg, Jeffrey J.; Franks, Robert P.; Plant, Robert; Cloud, Marilyn; Tebes, Jacob Kraemer

    2009-01-01

    Extended day treatment (EDT) is an innovative intermediate-level service for children and adolescents with serious emotional and behavioral disorders delivered during the after school hours. This paper describes the core components of the EDT model of care within the context of statewide systems of care, including its core service components,…

  4. An Inconvenient Truth: An Application of the Extended Parallel Process Model

    ERIC Educational Resources Information Center

    Goodall, Catherine E.; Roberto, Anthony J.

    2008-01-01

    "An Inconvenient Truth" is an Academy Award-winning documentary about global warming presented by Al Gore. This documentary is appropriate for a lesson on fear appeals and the extended parallel process model (EPPM). The EPPM is concerned with the effects of perceived threat and efficacy on behavior change. Perceived threat is composed of an…

  5. Using the Extended Parallel Process Model to Examine Teachers' Likelihood of Intervening in Bullying

    ERIC Educational Resources Information Center

    Duong, Jeffrey; Bradshaw, Catherine P.

    2013-01-01

    Background: Teachers play a critical role in protecting students from harm in schools, but little is known about their attitudes toward addressing problems like bullying. Previous studies have rarely used theoretical frameworks, making it difficult to advance this area of research. Using the Extended Parallel Process Model (EPPM), we examined the…

  6. Empirical Examination of the Adoption of WebCT Using TAM

    ERIC Educational Resources Information Center

    Ngai, E. W. T.; Poon, J. K. L.; Chan, Y. H. C.

    2007-01-01

    Web Course Tools (WebCT) have enhanced the ability and motivation of institutes of higher education to support e-learning. In this study, we extended the Technology Acceptance Model to include technical support as a precursor and then investigated the role of the extended model in user acceptance of WebCT. Responses from 836 university students…

  7. A parametric study of the drift-tearing mode using an extended-magnetohydrodynamic model

    DOE PAGES

    King, Jacob R.; Kruger, S. E.

    2014-10-24

    The linear, collisional, constant-ψ drift-tearing mode is analyzed for different regimes of the plasma-β, ion-skin-depth parameter space with an unreduced, extended-magnetohydrodynamic model. Here, new dispersion relations are found at moderate plasma β and previous drift-tearing results are classified as applicable at small plasma β.

  8. Symbolic discrete event system specification

    NASA Technical Reports Server (NTRS)

    Zeigler, Bernard P.; Chi, Sungdo

    1992-01-01

    Extending discrete event modeling formalisms to facilitate greater symbol manipulation capabilities is important to further their use in intelligent control and design of high autonomy systems. An extension to the DEVS formalism that facilitates symbolic expression of event times by extending the time base from the real numbers to the field of linear polynomials over the reals is defined. A simulation algorithm is developed to generate the branching trajectories resulting from the underlying nondeterminism. To efficiently manage symbolic constraints, a consistency checking algorithm for linear polynomial constraints based on feasibility checking algorithms borrowed from linear programming has been developed. The extended formalism offers a convenient means to conduct multiple, simultaneous explorations of model behaviors. Examples of application are given with concentration on fault model analysis.

  9. Effect of strong disorder on three-dimensional chiral topological insulators: Phase diagrams, maps of the bulk invariant, and existence of topological extended bulk states

    NASA Astrophysics Data System (ADS)

    Song, Juntao; Fine, Carolyn; Prodan, Emil

    2014-11-01

    The effect of strong disorder on chiral-symmetric three-dimensional lattice models is investigated via analytical and numerical methods. The phase diagrams of the models are computed using the noncommutative winding number, as functions of disorder strength and model's parameters. The localized/delocalized characteristic of the quantum states is probed with level statistics analysis. Our study reconfirms the accurate quantization of the noncommutative winding number in the presence of strong disorder, and its effectiveness as a numerical tool. Extended bulk states are detected above and below the Fermi level, which are observed to undergo the so-called "levitation and pair annihilation" process when the system is driven through a topological transition. This suggests that the bulk invariant is carried by these extended states, in stark contrast with the one-dimensional case where the extended states are completely absent and the bulk invariant is carried by the localized states.

  10. Phase diagram of an extended Agassi model

    NASA Astrophysics Data System (ADS)

    García-Ramos, J. E.; Dukelsky, J.; Pérez-Fernández, P.; Arias, J. M.

    2018-05-01

    Background: The Agassi model [D. Agassi, Nucl. Phys. A 116, 49 (1968), 10.1016/0375-9474(68)90482-X] is an extension of the Lipkin-Meshkov-Glick (LMG) model [H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62, 188 (1965), 10.1016/0029-5582(65)90862-X] that incorporates the pairing interaction. It is a schematic model that describes the interplay between particle-hole and pair correlations. It was proposed in the 1960s by D. Agassi as a model to simulate the properties of the quadrupole plus pairing model. Purpose: The aim of this work is to extend a previous study by Davis and Heiss [J. Phys. G: Nucl. Phys. 12, 805 (1986), 10.1088/0305-4616/12/9/006] generalizing the Agassi model and analyze in detail the phase diagram of the model as well as the different regions with coexistence of several phases. Method: We solve the model Hamiltonian through the Hartree-Fock-Bogoliubov (HFB) approximation, introducing two variational parameters that play the role of order parameters. We also compare the HFB calculations with the exact ones. Results: We obtain the phase diagram of the model and classify the order of the different quantum phase transitions appearing in the diagram. The phase diagram presents broad regions where several phases, up to three, coexist. Moreover, there is also a line and a point where four and five phases are degenerated, respectively. Conclusions: The phase diagram of the extended Agassi model presents a rich variety of phases. Phase coexistence is present in extended areas of the parameter space. The model could be an important tool for benchmarking novel many-body approximations.

  11. Maltreatment and Delinquency in China: Examining and Extending the Intervening Process of General Strain Theory.

    PubMed

    Gao, Yunjiao; Wong, Dennis S W; Yu, Yanping

    2016-01-01

    Using a sample of 1,163 adolescents from four middle schools in China, this study explores the intervening process of how adolescent maltreatment is related to delinquency within the framework of general strain theory (GST) by comparing two models. The first model is Agnew's integrated model of GST, which examines the mediating effects of social control, delinquent peer affiliation, state anger, and depression on the relationship between maltreatment and delinquency. Based on this model, with the intent to further explore the mediating effects of state anger and depression and to investigate whether their effects on delinquency can be demonstrated more through delinquent peer affiliation and social control, an extended model (Model 2) is proposed by the authors. The second model relates state anger to delinquent peer affiliation and state depression to social control. By comparing the fit indices and the significance of the hypothesized paths of the two models, the study found that the extended model can better reflect the mechanism of how maltreatment contributes to delinquency, whereas the original integrated GST model only receives partial support because of its failure to find the mediating effects of state negative emotions. © The Author(s) 2014.

  12. State Event Models for the Formal Analysis of Human-Machine Interactions

    NASA Technical Reports Server (NTRS)

    Combefis, Sebastien; Giannakopoulou, Dimitra; Pecheur, Charles

    2014-01-01

    The work described in this paper was motivated by our experience with applying a framework for formal analysis of human-machine interactions (HMI) to a realistic model of an autopilot. The framework is built around a formally defined conformance relation called "fullcontrol" between an actual system and the mental model according to which the system is operated. Systems are well-designed if they can be described by relatively simple, full-control, mental models for their human operators. For this reason, our framework supports automated generation of minimal full-control mental models for HMI systems, where both the system and the mental models are described as labelled transition systems (LTS). The autopilot that we analysed has been developed in the NASA Ames HMI prototyping tool ADEPT. In this paper, we describe how we extended the models that our HMI analysis framework handles to allow adequate representation of ADEPT models. We then provide a property-preserving reduction from these extended models to LTSs, to enable application of our LTS-based formal analysis algorithms. Finally, we briefly discuss the analyses we were able to perform on the autopilot model with our extended framework.

  13. Extended-hours hemodialysis is associated with lower mortality risk in patients with end-stage renal disease

    PubMed Central

    Rivara, Matthew B.; Adams, Scott V.; Kuttykrishnan, Sooraj; Kalantar-Zadeh, Kamyar; Arah, Onyebuchi A.; Cheung, Alfred K.; Katz, Ronit; Molnar, Miklos Z.; Ravel, Vanessa; Soohoo, Melissa; Streja, Elani; Himmelfarb, Jonathan; Mehrotra, Rajnish

    2016-01-01

    Extended-hours hemodialysis offers substantially longer treatment time compared to conventional hemodialysis schedules and is associated with improved fluid and electrolyte control and favorable cardiac remodeling. However, whether extended-hours hemodialysis improves survival remains unclear. Therefore, we determined the association between extended-hours compared to conventional hemodialysis and the risk of all-cause mortality in a nationally representative cohort of patients initiating maintenance dialysis in the United States from 2007 to 2011. Survival analyses using causal inference modeling with marginal structural models were performed to compare mortality risk among 1,206 individuals undergoing thrice weekly extended-hours hemodialysis or 111,707 patients receiving conventional hemodialysis treatments. The average treatment time per session for extended-hours hemodialysis was 399 minutes compared to 211 minutes for conventional therapy. The crude mortality rate with extended-hours hemodialysis was 6.4 deaths per 100 patient-years compared with 14.7 deaths per 100 patient-years for conventional hemodialysis. In the primary analysis, patients treated with extended-hours hemodialysis had a 33% lower adjusted risk of death compared to those who were treated with a conventional regimen (95% confidence interval: 7% to 51%). Additional analyses accounting for analytical assumptions regarding exposure and outcome, facility-level confounders, and prior modality history were similar. Thus, in this large nationally representative cohort, treatment with extended-hours hemodialysis was associated with a lower risk for mortality compared to treatment with conventional in-center therapy. Adequately powered randomized clinical trials comparing extended-hours to conventional hemodialysis are required to confirm these findings. PMID:27555118

  14. Sensitivity analysis of dynamic biological systems with time-delays.

    PubMed

    Wu, Wu Hsiung; Wang, Feng Sheng; Chang, Maw Shang

    2010-10-15

    Mathematical modeling has been applied to the study and analysis of complex biological systems for a long time. Some processes in biological systems, such as the gene expression and feedback control in signal transduction networks, involve a time delay. These systems are represented as delay differential equation (DDE) models. Numerical sensitivity analysis of a DDE model by the direct method requires the solutions of model and sensitivity equations with time-delays. The major effort is the computation of Jacobian matrix when computing the solution of sensitivity equations. The computation of partial derivatives of complex equations either by the analytic method or by symbolic manipulation is time consuming, inconvenient, and prone to introduce human errors. To address this problem, an automatic approach to obtain the derivatives of complex functions efficiently and accurately is necessary. We have proposed an efficient algorithm with an adaptive step size control to compute the solution and dynamic sensitivities of biological systems described by ordinal differential equations (ODEs). The adaptive direct-decoupled algorithm is extended to solve the solution and dynamic sensitivities of time-delay systems describing by DDEs. To save the human effort and avoid the human errors in the computation of partial derivatives, an automatic differentiation technique is embedded in the extended algorithm to evaluate the Jacobian matrix. The extended algorithm is implemented and applied to two realistic models with time-delays: the cardiovascular control system and the TNF-α signal transduction network. The results show that the extended algorithm is a good tool for dynamic sensitivity analysis on DDE models with less user intervention. By comparing with direct-coupled methods in theory, the extended algorithm is efficient, accurate, and easy to use for end users without programming background to do dynamic sensitivity analysis on complex biological systems with time-delays.

  15. Conceptual and logical level of database modeling

    NASA Astrophysics Data System (ADS)

    Hunka, Frantisek; Matula, Jiri

    2016-06-01

    Conceptual and logical levels form the top most levels of database modeling. Usually, ORM (Object Role Modeling) and ER diagrams are utilized to capture the corresponding schema. The final aim of business process modeling is to store its results in the form of database solution. For this reason, value oriented business process modeling which utilizes ER diagram to express the modeling entities and relationships between them are used. However, ER diagrams form the logical level of database schema. To extend possibilities of different business process modeling methodologies, the conceptual level of database modeling is needed. The paper deals with the REA value modeling approach to business process modeling using ER-diagrams, and derives conceptual model utilizing ORM modeling approach. Conceptual model extends possibilities for value modeling to other business modeling approaches.

  16. Estimating V̄s(30) (or NEHRP site classes) from shallow velocity models (depths < 30 m)

    USGS Publications Warehouse

    Boore, David M.

    2004-01-01

    The average velocity to 30 m [V??s(30)] is a widely used parameter for classifying sites to predict their potential to amplify seismic shaking. In many cases, however, models of shallow shear-wave velocities, from which V??s(30) can be computed, do not extend to 30 m. If the data for these cases are to be used, some method of extrapolating the velocities must be devised. Four methods for doing this are described here and are illustrated using data from 135 boreholes in California for which the velocity model extends to at least 30 m. Methods using correlations between shallow velocity and V??s(30) result in significantly less bias for shallow models than the simplest method of assuming that the lowermost velocity extends to 30 m. In addition, for all methods the percent of sites misclassified is generally less than 10% and falls to negligible values for velocity models extending to at least 25 m. Although the methods using correlations do a better job on average of estimating V??s(30), the simplest method will generally result in a lower value of V??s(30) and thus yield a more conservative estimate of ground motion [which generally increases as V??s(30) decreases].

  17. Mechanistic modelling of the inhibitory effect of pH on microbial growth.

    PubMed

    Akkermans, Simen; Van Impe, Jan F

    2018-06-01

    Modelling and simulation of microbial dynamics as a function of processing, transportation and storage conditions is a useful tool to improve microbial food safety and quality. The goal of this research is to improve an existing methodology for building mechanistic predictive models based on the environmental conditions. The effect of environmental conditions on microbial dynamics is often described by combining the separate effects in a multiplicative way (gamma concept). This idea was extended further in this work by including the effects of the lag and stationary growth phases on microbial growth rate as independent gamma factors. A mechanistic description of the stationary phase as a function of pH was included, based on a novel class of models that consider product inhibition. Experimental results on Escherichia coli growth dynamics indicated that also the parameters of the product inhibition equations can be modelled with the gamma approach. This work has extended a modelling methodology, resulting in predictive models that are (i) mechanistically inspired, (ii) easily identifiable with a limited work load and (iii) easily extended to additional environmental conditions. Copyright © 2017. Published by Elsevier Ltd.

  18. Finite Element Model Development For Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results.

  19. Logic Model Checking of Time-Periodic Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Florian, Mihai; Gamble, Ed; Holzmann, Gerard

    2012-01-01

    In this paper we report on the work we performed to extend the logic model checker SPIN with built-in support for the verification of periodic, real-time embedded software systems, as commonly used in aircraft, automobiles, and spacecraft. We first extended the SPIN verification algorithms to model priority based scheduling policies. Next, we added a library to support the modeling of periodic tasks. This library was used in a recent application of the SPIN model checker to verify the engine control software of an automobile, to study the feasibility of software triggers for unintended acceleration events.

  20. Self-consistency in the phonon space of the particle-phonon coupling model

    NASA Astrophysics Data System (ADS)

    Tselyaev, V.; Lyutorovich, N.; Speth, J.; Reinhard, P.-G.

    2018-04-01

    In the paper the nonlinear generalization of the time blocking approximation (TBA) is presented. The TBA is one of the versions of the extended random-phase approximation (RPA) developed within the Green-function method and the particle-phonon coupling model. In the generalized version of the TBA the self-consistency principle is extended onto the phonon space of the model. The numerical examples show that this nonlinear version of the TBA leads to the convergence of results with respect to enlarging the phonon space of the model.

  1. Allegations of Sexual Abuse of a Child: What to Do when a Single Forensic Interview Isn't Enough

    ERIC Educational Resources Information Center

    Faller, Kathleen Coulborn; Cordisco-Steele, Linda; Nelson-Gardell, Debra

    2010-01-01

    This article describes the state of knowledge about extended assessments/forensic evaluations in situations of possible sexual abuse. It provides a critical review of the modest body of relevant research, describes two models for extended assessments, and presents descriptive survey findings of 62 professionals conducting extended assessments,…

  2. Learning from Experts: Fostering Extended Thinking in the Early Phases of the Design Process

    ERIC Educational Resources Information Center

    Haupt, Grietjie

    2015-01-01

    Empirical evidence on the way in which expert designers from different domains cognitively connect their internal processes with external resources is presented in the context of an extended cognition model. The article focuses briefly on the main trends in the extended design cognition theory and in particular on recent trends in information…

  3. Physiologically Based Absorption Modeling to Design Extended-Release Clinical Products for an Ester Prodrug.

    PubMed

    Ding, Xuan; Day, Jeffrey S; Sperry, David C

    2016-11-01

    Absorption modeling has demonstrated its great value in modern drug product development due to its utility in understanding and predicting in vivo performance. In this case, we integrated physiologically based modeling in the development processes to effectively design extended-release (ER) clinical products for an ester prodrug LY545694. By simulating the trial results of immediate-release products, we delineated complex pharmacokinetics due to prodrug conversion and established an absorption model to describe the clinical observations. This model suggested the prodrug has optimal biopharmaceutical properties to warrant developing an ER product. Subsequently, we incorporated release profiles of prototype ER tablets into the absorption model to simulate the in vivo performance of these products observed in an exploratory trial. The models suggested that the absorption of these ER tablets was lower than the IR products because the extended release from the formulations prevented the drug from taking advantage of the optimal absorption window. Using these models, we formed a strategy to optimize the ER product to minimize the impact of the absorption window limitation. Accurate prediction of the performance of these optimized products by modeling was confirmed in a third clinical trial.

  4. ELASTIC NET FOR COX'S PROPORTIONAL HAZARDS MODEL WITH A SOLUTION PATH ALGORITHM.

    PubMed

    Wu, Yichao

    2012-01-01

    For least squares regression, Efron et al. (2004) proposed an efficient solution path algorithm, the least angle regression (LAR). They showed that a slight modification of the LAR leads to the whole LASSO solution path. Both the LAR and LASSO solution paths are piecewise linear. Recently Wu (2011) extended the LAR to generalized linear models and the quasi-likelihood method. In this work we extend the LAR further to handle Cox's proportional hazards model. The goal is to develop a solution path algorithm for the elastic net penalty (Zou and Hastie (2005)) in Cox's proportional hazards model. This goal is achieved in two steps. First we extend the LAR to optimizing the log partial likelihood plus a fixed small ridge term. Then we define a path modification, which leads to the solution path of the elastic net regularized log partial likelihood. Our solution path is exact and piecewise determined by ordinary differential equation systems.

  5. Center for Extended Magnetohydrodynamics Modeling - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Scott

    This project funding supported approximately 74 percent of a Ph.D. graduate student, not including costs of travel and supplies. We had a highly successful research project including the development of a second-order implicit electromagnetic kinetic ion hybrid model [Cheng 2013, Sturdevant 2016], direct comparisons with the extended MHD NIMROD code and kinetic simulation [Schnack 2013], modeling of slab tearing modes using the fully kinetic ion hybrid model and finally, modeling global tearing modes in cylindrical geometry using gyrokinetic simulation [Chen 2015, Chen 2016]. We developed an electromagnetic second-order implicit kinetic ion fluid electron hybrid model [Cheng 2013]. As a firstmore » step, we assumed isothermal electrons, but have included drift-kinetic electrons in similar models [Chen 2011]. We used this simulation to study the nonlinear evolution of the tearing mode in slab geometry, including nonlinear evolution and saturation [Cheng 2013]. Later, we compared this model directly to extended MHD calculations using the NIMROD code [Schnack 2013]. In this study, we investigated the ion-temperature-gradient instability with an extended MHD code for the first time and got reasonable agreement with the kinetic calculation in terms of linear frequency, growth rate and mode structure. We then extended this model to include orbit averaging and sub-cycling of the ions and compared directly to gyrokinetic theory [Sturdevant 2016]. This work was highlighted in an Invited Talk at the International Conference on the Numerical Simulation of Plasmas in 2015. The orbit averaging sub-cycling multi-scale algorithm is amenable to hybrid architectures with GPUS or math co-processors. Additionally, our participation in the Center for Extend Magnetohydrodynamics motivated our research on developing the capability for gyrokinetic simulation to model a global tearing mode. We did this in cylindrical geometry where the results could be benchmarked with existing eigenmode calculations. First, we developed a gyrokinetic code capable of simulating long wavelengths using a fluid electron model [Chen 2015]. We benchmarked this code with an eigenmode calculation. Besides having to rewrite the field solver due to the breakdown in the gyrokinetic ordering for long wavelengths, very high radial resolution was required. We developed a technique where we used the solution from the eigenmode solver to specify radial boundary conditions allowing for a very high radial resolution of the inner solution. Using this technique enabled us to use our direct algorithm with gyrokinetic ions and drift kinetic electrons [Chen 2016]. This work was highlighted in an Invited Talk at the American Physical Society - Division of Plasma Physics in 2015.« less

  6. Modeling Navigation System Performance of a Satellite-Observing Star Tracker Tightly Integrated with an Inertial Measurement Unit

    DTIC Science & Technology

    2015-03-26

    tracker, an Inertial Measurement Unit (IMU), and a barometric altimeter using an Extended Kalman Filter (EKF). Models of each of these components are...Positioning 15 2.5 Detector Device Improvement . . . . . . . . . . . . . . . 15 2.6 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . 17 2.6.1...Extended Kalman Filter . . . . . . . . . . . . . 17 2.7 System Properties . . . . . . . . . . . . . . . . . . . . . 21 2.8 Sun Exitance

  7. A Path Analysis of Pre-Service Teachers' Attitudes to Computer Use: Applying and Extending the Technology Acceptance Model in an Educational Context

    ERIC Educational Resources Information Center

    Teo, Timothy

    2010-01-01

    The purpose of this study is to examine pre-service teachers' attitudes to computers. This study extends the technology acceptance model (TAM) framework by adding subjective norm, facilitating conditions, and technological complexity as external variables. Results show that the TAM and subjective norm, facilitating conditions, and technological…

  8. Sustainability Attitudes and Behavioral Motivations of College Students: Testing the Extended Parallel Process Model

    ERIC Educational Resources Information Center

    Perrault, Evan K.; Clark, Scott K.

    2018-01-01

    Purpose: A planet that can no longer sustain life is a frightening thought--and one that is often present in mass media messages. Therefore, this study aims to test the components of a classic fear appeal theory, the extended parallel process model (EPPM) and to determine how well its constructs predict sustainability behavioral intentions. This…

  9. Constraints on a Proton Synchrotron Origin of VHE Gamma Rays from the Extended Jet of AP Librae

    NASA Astrophysics Data System (ADS)

    Pratim Basumallick, Partha; Gupta, Nayantara

    2017-07-01

    The multiwavelength photon spectrum from the BL Lac object AP Librae extends from radio to TeV gamma rays. The X-ray to very high-energy gamma-ray emission from the extended jet of this source has been modeled with inverse Compton (IC) scattering of relativistic electrons off the cosmic microwave background (CMB) photons. The IC/CMB model requires the kpc-scale extended jet to be highly collimated with a bulk Lorentz factor close to 10. Here we discuss the possibility of a proton synchrotron origin of X-rays and gamma rays from the extended jet with a bulk Lorentz factor of 3. This scenario requires an extreme proton energy of 3.98 × 1021 eV and a high magnetic field of 1 mG of the extended jet with jet power ˜5 × 1048 erg s-1 in particles and the magnetic field (which is more than 100 times the Eddington luminosity of AP Librae) to explain the very high-energy gamma-ray emission. Moreover, we have shown that X-ray emission from the extended jets of 3C 273 and PKS 0637-752 could be possible by proton synchrotron emission with jet power comparable to the Eddington luminosities.

  10. Towards an Effective Health Interventions Design: An Extension of the Health Belief Model

    PubMed Central

    Orji, Rita; Vassileva, Julita; Mandryk, Regan

    2012-01-01

    Introduction The recent years have witnessed a continuous increase in lifestyle related health challenges around the world. As a result, researchers and health practitioners have focused on promoting healthy behavior using various behavior change interventions. The designs of most of these interventions are informed by health behavior models and theories adapted from various disciplines. Several health behavior theories have been used to inform health intervention designs, such as the Theory of Planned Behavior, the Transtheoretical Model, and the Health Belief Model (HBM). However, the Health Belief Model (HBM), developed in the 1950s to investigate why people fail to undertake preventive health measures, remains one of the most widely employed theories of health behavior. However, the effectiveness of this model is limited. The first limitation is the low predictive capacity (R2 < 0.21 on average) of existing HBM’s variables coupled with the small effect size of individual variables. The second is lack of clear rules of combination and relationship between the individual variables. In this paper, we propose a solution that aims at addressing these limitations as follows: (1) we extended the Health Belief Model by introducing four new variables: Self-identity, Perceived Importance, Consideration of Future Consequences, and Concern for Appearance as possible determinants of healthy behavior. (2) We exhaustively explored the relationships/interactions between the HBM variables and their effect size. (3) We tested the validity of both our proposed extended model and the original HBM on healthy eating behavior. Finally, we compared the predictive capacity of the original HBM model and our extended model. Methods: To achieve the objective of this paper, we conducted a quantitative study of 576 participants’ eating behavior. Data for this study were collected over a period of one year (from August 2011 to August 2012). The questionnaire consisted of validated scales assessing the HBM determinants – perceived benefit, barrier, susceptibility, severity, cue to action, and self-efficacy – using 7-point Likert scale. We also assessed other health determinants such as consideration of future consequences, self-identity, concern for appearance and perceived importance. To analyses our data, we employed factor analysis and Partial Least Square Structural Equation Model (PLS-SEM) to exhaustively explore the interaction/relationship between the determinants and healthy eating behavior. We tested for the validity of both our proposed extended model and the original HBM on healthy eating behavior. Finally, we compared the predictive capacity of the original HBM model and our extended model and investigated possible mediating effects. Results: The results show that the three newly added determinants are better predictors of healthy behavior. Our extended HBM model lead to approximately 78% increase (from 40 to 71%) in predictive capacity compared to the old model. This shows the suitability of our extended HBM for use in predicting healthy behavior and in informing health intervention design. The results from examining possible relationships between the determinants in our model lead to an interesting discovery of some mediating relationships between the HBM’s determinants, therefore, shedding light on some possible combinations of determinants that could be employed by intervention designers to increase the effectiveness of their design. Conclusion: Consideration of future consequences, self-identity, concern for appearance, perceived importance, self-efficacy, perceived susceptibility are significant determinants of healthy eating behavior that can be manipulated by healthy eating intervention design. Most importantly, the result from our model established the existence of some mediating relationships among the determinants. The knowledge of both the direct and indirect relationships sheds some light on the possible combination rules. PMID:23569653

  11. Etude hyperfrequence et ultrasonore des supraconducteurs organiques kappa-(ET)(2)X (X = copper(thiocyanogen), copper[N(CN)(2)]bromine)

    NASA Astrophysics Data System (ADS)

    Frikach, Kamal

    2001-09-01

    Dans ce travail je presente une etude de l'impedance de surface, ainsi que de l'attenuation et la variation de la vitesse ultrasonores dans les etats normal et supraconducteur sur les composes organiques k-(ET)2X (X = Cu(SCN) 2, Cu[N(CN)2]Br). A partir des mesures d'impedance de surface, les deux composantes sigma 1 et sigma2 de la conductivite complexe sont extraites en utilisant le modele de Drude. Ces mesures montrent que la symetrie du parametre d'ordre dans ces composes est differente de celle du cas BCS. Afin de comprendre le profil de sigma1 (T) nous avons etudie les fluctuations supraconductrices a partir de la paraconductivite sigma'( T). Cette etude est rendue possible grace a la structure quasi-2D des composes k-(ET)2X dans lesquelles les fluctuations supraconductrices sont fortes. Ces dernieres sont observees sur deux decades de temperatures dans le Cu(SCN)2. L'application du modele de Aslamazov-Larkin 2D et 3D montre la possibilite du passage du regime 2D a haute temperature au regime 3D au voisinage de Tc. En se basant sur ce resultat, nous avons calcule la paraconductivite en utilisant une approche a l'ordre d'une boucle a partir du modele de Lawrence-Doniach. En tenant compte de la correction par la self energie dans la limite dynamique (17 GHz), l'ajustement de la paraconductivite calculee est en bon accord avec les donnees experimentales. Le couplage interplan obtenu est compatible avec le caractere quasi-2D des composes organiques. Le temps de relaxation des quasi-particules dans l'etat supraconducteur est ensuite extrait pour la premiere fois dans ces composes dont le comportement en fonction de la temperature est compatible avec la presence des noeuds dans le gap. Dans l'etat normal, la variation de la vitesse ultrasonore presente un comportement anormal caracterise par un fort ramollissement a T = 38 K et 50 K dans k-(ET) 2Cu(SCN)2 et k-(ET)2Cu[N(CN) 2]Br respectivement dont l'amplitude est independante du champ magnetique jusqu'a H = Hc 2. Cette anomalie semble exister seulement dans les modes qui sondent le couplage interplan. Ce comportement est attribue au couplage entre les fluctuations antiferromagnetiques et les phonons acoustiques.

  12. Model parameter extraction of lateral propagating surface acoustic waves with coupling on SiO2/grating/LiNbO3 structure

    NASA Astrophysics Data System (ADS)

    Zhang, Benfeng; Han, Tao; Li, Xinyi; Huang, Yulin; Omori, Tatsuya; Hashimoto, Ken-ya

    2018-07-01

    This paper investigates how lateral propagation of Rayleigh and shear horizontal (SH) surface acoustic waves (SAWs) changes with rotation angle θ and SiO2 and electrode thicknesses, h SiO2 and h Cu, respectively. The extended thin plate model is used for purpose. First, the extraction method is presented for determining parameters appearing in the extended thin plate model. Then, the model parameters are expressed in polynomials in terms of h SiO2, h Cu, and θ. Finally, a piston mode structure without phase shifters is designed using the extracted parameters. The possible piston mode structures can be searched automatically by use of the polynomial expression. The resonance characteristics are analyzed by both the extended thin plate model and three-dimensional (3D) finite element method (FEM). Agreement between the results of both methods confirms validity and effectiveness of the parameter extraction process and the design technique.

  13. On the thermodynamics of the photoacoustic effect of condensed matter in gas cells

    NASA Astrophysics Data System (ADS)

    Korpiun, P.; Büchner, B.

    1983-03-01

    The photoacoustic (PA) effect of condensed matter measured in a gas-microphone cell can be interpreted by the Rosencwaig-Gersho-model. This model developed originally for thermally thick gas columns is extended to arbitrary gas lengths. The periodic variation of temperature varies the internal energy of the total volume of the gas leading to a pressure oscillation by an isochoric process. Further, taking into account a residual volume as introduced by Tam and Wong, the description leads finally to an extended Rosencwaig-Gersho model (ERG). Measurements with argon (γ=1.67) and Freon 13 (CClF3, γ=1.17) for thermally thin and thick gas colomns confirm the isochoric character of the PA effect at frequencies far below the acoustic cell resonance. Experimental results of other groups can be interpreted very well with our model. Furthermore, the extended Rosencwaig-Gershomodel leads just in the low frequency region to the same results as the model of McDonald and Wetsel.

  14. Computer simulation: A modern day crystal ball?

    NASA Technical Reports Server (NTRS)

    Sham, Michael; Siprelle, Andrew

    1994-01-01

    It has long been the desire of managers to be able to look into the future and predict the outcome of decisions. With the advent of computer simulation and the tremendous capability provided by personal computers, that desire can now be realized. This paper presents an overview of computer simulation and modeling, and discusses the capabilities of Extend. Extend is an iconic-driven Macintosh-based software tool that brings the power of simulation to the average computer user. An example of an Extend based model is presented in the form of the Space Transportation System (STS) Processing Model. The STS Processing Model produces eight shuttle launches per year, yet it takes only about ten minutes to run. In addition, statistical data such as facility utilization, wait times, and processing bottlenecks are produced. The addition or deletion of resources, such as orbiters or facilities, can be easily modeled and their impact analyzed. Through the use of computer simulation, it is possible to look into the future to see the impact of today's decisions.

  15. Multipartite quantum correlations in the extended J1-J2 Heisenberg model

    NASA Astrophysics Data System (ADS)

    Batle, J.; Tarawneh, O.; Nagata, Koji; Nakamura, Tadao; Abdalla, S.; Farouk, Ahmed

    2017-11-01

    Multipartite entanglement and the maximum violation of Bell inequalities are studied in finite clusters of spins in an extended J1-J2 Heisenberg model at zero temperature. The ensuing highly frustrated states will unveil a rich structure for different values of the corresponding spin-spin interaction strengths. The interplay between nearest-neighbors, next-nearest neighbors and further couplings will be explored using multipartite correlations. The model is relevant to certain quantum annealing computation architectures where an all-to-all connectivity is considered.

  16. A Formal Modelling Language Extending SysML for Simulation of Continuous and Discrete System

    DTIC Science & Technology

    2012-11-01

    UNCLASSIFIED DSTO-GD-0734 16. A Formal Modelling Language Extending SysML for Simulation of Continuous and Discrete System – Mark Hodson1 and...be conceptual at some level because a one to one mapping with the real system will never exist. SysML is an extension and modification of UML that...simulation, which can provide great insights into the behaviour of complex systems. Although UML and SysML primarily support conceptual modelling they

  17. Space and power: young mothers' management of smoking in extended families in China.

    PubMed

    Mao, Aimei

    2013-05-01

    Multigenerational co-residence is a widespread phenomenon in China but there is little knowledge about the impact of power dynamics on smoking behaviors among extended family residents. Using a gender lens, this ethnographic study explored how young mothers in extended families in mainland China managed the smoking of their husbands and other family members. Analysis of data resulted in a model of 'two units-three domains' to reflect gendered relationships between young mothers and other family members, and young mothers' participation in family management. Exploration of the mothers' efforts to deal with household smoking using the model provided an explanation for why the young mothers had limited control over household space and could only impose partial restrictions on home smoking in the extended family. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Human Birth Weight and Reproductive Immunology: Testing for Interactions between Maternal and Offspring KIR and HLA-C Genes.

    PubMed

    Clark, Michelle M; Chazara, Olympe; Sobel, Eric M; Gjessing, Håkon K; Magnus, Per; Moffett, Ashley; Sinsheimer, Janet S

    2016-01-01

    Maternal and offspring cell contact at the site of placentation presents a plausible setting for maternal-fetal genotype (MFG) interactions affecting fetal growth. We test hypotheses regarding killer cell immunoglobulin-like receptor (KIR) and HLA-C MFG effects on human birth weight by extending the quantitative MFG (QMFG) test. Until recently, association testing for MFG interactions had limited applications. To improve the ability to test for these interactions, we developed the extended QMFG test, a linear mixed-effect model that can use multi-locus genotype data from families. We demonstrate the extended QMFG test's statistical properties. We also show that if an offspring-only model is fit when MFG effects exist, associations can be missed or misattributed. Furthermore, imprecisely modeling the effects of both KIR and HLA-C could result in a failure to replicate if these loci's allele frequencies differ among populations. To further illustrate the extended QMFG test's advantages, we apply the extended QMFG test to a UK cohort study and the Norwegian Mother and Child Cohort (MoBa) study. We find a significant KIR-HLA-C interaction effect on birth weight. More generally, the QMFG test can detect genetic associations that may be missed by standard genome-wide association studies for quantitative traits. © 2017 S. Karger AG, Basel.

  19. A Comparison of Analytical and Experimental Data for a Magnetic Actuator

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.; Bloodgood, V. Dale, Jr.

    2000-01-01

    Theoretical and experimental force-displacement and force-current data are compared for two configurations of a simple horseshoe, or bipolar, magnetic actuator. One configuration utilizes permanent magnet wafers to provide a bias flux and the other configuration has no source of bias flux. The theoretical data are obtained from two analytical models of each configuration. One is an ideal analytical model which is developed under the following assumptions: (1) zero fringing and leakage flux, (2) zero actuator coil mmf loss, and (3) infinite permeability of the actuator core and suspended element flux return path. The other analytical model, called the extended model, is developed by adding loss and leakage factors to the ideal model. The values of the loss and leakage factors are calculated from experimental data. The experimental data are obtained from a magnetic actuator test fixture, which is described in detail. Results indicate that the ideal models for both configurations do not match the experimental data very well. However, except for the range around zero force, the extended models produce a good match. The best match is produced by the extended model of the configuration with permanent magnet flux bias.

  20. Invariant visual object recognition: a model, with lighting invariance.

    PubMed

    Rolls, Edmund T; Stringer, Simon M

    2006-01-01

    How are invariant representations of objects formed in the visual cortex? We describe a neurophysiological and computational approach which focusses on a feature hierarchy model in which invariant representations can be built by self-organizing learning based on the statistics of the visual input. The model can use temporal continuity in an associative synaptic learning rule with a short term memory trace, and/or it can use spatial continuity in Continuous Transformation learning. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and in this paper we show also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in for example spatial and object search tasks. The model has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene.

Top