Sample records for extended estimating equations

  1. Estimating Soil Hydraulic Parameters using Gradient Based Approach

    NASA Astrophysics Data System (ADS)

    Rai, P. K.; Tripathi, S.

    2017-12-01

    The conventional way of estimating parameters of a differential equation is to minimize the error between the observations and their estimates. The estimates are produced from forward solution (numerical or analytical) of differential equation assuming a set of parameters. Parameter estimation using the conventional approach requires high computational cost, setting-up of initial and boundary conditions, and formation of difference equations in case the forward solution is obtained numerically. Gaussian process based approaches like Gaussian Process Ordinary Differential Equation (GPODE) and Adaptive Gradient Matching (AGM) have been developed to estimate the parameters of Ordinary Differential Equations without explicitly solving them. Claims have been made that these approaches can straightforwardly be extended to Partial Differential Equations; however, it has been never demonstrated. This study extends AGM approach to PDEs and applies it for estimating parameters of Richards equation. Unlike the conventional approach, the AGM approach does not require setting-up of initial and boundary conditions explicitly, which is often difficult in real world application of Richards equation. The developed methodology was applied to synthetic soil moisture data. It was seen that the proposed methodology can estimate the soil hydraulic parameters correctly and can be a potential alternative to the conventional method.

  2. Item Response Theory Equating Using Bayesian Informative Priors.

    ERIC Educational Resources Information Center

    de la Torre, Jimmy; Patz, Richard J.

    This paper seeks to extend the application of Markov chain Monte Carlo (MCMC) methods in item response theory (IRT) to include the estimation of equating relationships along with the estimation of test item parameters. A method is proposed that incorporates estimation of the equating relationship in the item calibration phase. Item parameters from…

  3. Body composition in Nepalese children using isotope dilution: the production of ethnic-specific calibration equations and an exploration of methodological issues.

    PubMed

    Devakumar, Delan; Grijalva-Eternod, Carlos S; Roberts, Sebastian; Chaube, Shiva Shankar; Saville, Naomi M; Manandhar, Dharma S; Costello, Anthony; Osrin, David; Wells, Jonathan C K

    2015-01-01

    Background. Body composition is important as a marker of both current and future health. Bioelectrical impedance (BIA) is a simple and accurate method for estimating body composition, but requires population-specific calibration equations. Objectives. (1) To generate population specific calibration equations to predict lean mass (LM) from BIA in Nepalese children aged 7-9 years. (2) To explore methodological changes that may extend the range and improve accuracy. Methods. BIA measurements were obtained from 102 Nepalese children (52 girls) using the Tanita BC-418. Isotope dilution with deuterium oxide was used to measure total body water and to estimate LM. Prediction equations for estimating LM from BIA data were developed using linear regression, and estimates were compared with those obtained from the Tanita system. We assessed the effects of flexing the arms of children to extend the range of coverage towards lower weights. We also estimated potential error if the number of children included in the study was reduced. Findings. Prediction equations were generated, incorporating height, impedance index, weight and sex as predictors (R (2) 93%). The Tanita system tended to under-estimate LM, with a mean error of 2.2%, but extending up to 25.8%. Flexing the arms to 90° increased the lower weight range, but produced a small error that was not significant when applied to children <16 kg (p 0.42). Reducing the number of children increased the error at the tails of the weight distribution. Conclusions. Population-specific isotope calibration of BIA for Nepalese children has high accuracy. Arm position is important and can be used to extend the range of low weight covered. Smaller samples reduce resource requirements, but leads to large errors at the tails of the weight distribution.

  4. Compatibility check of measured aircraft responses using kinematic equations and extended Kalman filter

    NASA Technical Reports Server (NTRS)

    Klein, V.; Schiess, J. R.

    1977-01-01

    An extended Kalman filter smoother and a fixed point smoother were used for estimation of the state variables in the six degree of freedom kinematic equations relating measured aircraft responses and for estimation of unknown constant bias and scale factor errors in measured data. The computing algorithm includes an analysis of residuals which can improve the filter performance and provide estimates of measurement noise characteristics for some aircraft output variables. The technique developed was demonstrated using simulated and real flight test data. Improved accuracy of measured data was obtained when the data were corrected for estimated bias errors.

  5. Accuracy of the Estimated Core Temperature (ECTemp) Algorithm in Estimating Circadian Rhythm Indicators

    DTIC Science & Technology

    2017-04-12

    measurement of CT outside of stringent laboratory environments. This study evaluated ECTempTM, a heart rate-based extended Kalman Filter CT...based CT-estimation algorithms [7, 13, 14]. One notable example is ECTempTM, which utilizes an extended Kalman Filter to estimate CT from...3. The extended Kalman filter mapping function variance coefficient (Ct) was computed using the following equation: = −9.1428 ×

  6. A Review of System Identification Methods Applied to Aircraft

    NASA Technical Reports Server (NTRS)

    Klein, V.

    1983-01-01

    Airplane identification, equation error method, maximum likelihood method, parameter estimation in frequency domain, extended Kalman filter, aircraft equations of motion, aerodynamic model equations, criteria for the selection of a parsimonious model, and online aircraft identification are addressed.

  7. Commentary: Are Three Waves of Data Sufficient for Assessing Mediation?

    ERIC Educational Resources Information Center

    Reichardt, Charles S.

    2011-01-01

    Maxwell, Cole, and Mitchell (2011) demonstrated that simple structural equation models, when used with cross-sectional data, generally produce biased estimates of meditated effects. I extend those results by showing how simple structural equation models can produce biased estimates of meditated effects when used even with longitudinal data. Even…

  8. A New Linearized Crank-Nicolson Mixed Element Scheme for the Extended Fisher-Kolmogorov Equation

    PubMed Central

    Wang, Jinfeng; Li, Hong; He, Siriguleng; Gao, Wei

    2013-01-01

    We present a new mixed finite element method for solving the extended Fisher-Kolmogorov (EFK) equation. We first decompose the EFK equation as the two second-order equations, then deal with a second-order equation employing finite element method, and handle the other second-order equation using a new mixed finite element method. In the new mixed finite element method, the gradient ∇u belongs to the weaker (L 2(Ω))2 space taking the place of the classical H(div; Ω) space. We prove some a priori bounds for the solution for semidiscrete scheme and derive a fully discrete mixed scheme based on a linearized Crank-Nicolson method. At the same time, we get the optimal a priori error estimates in L 2 and H 1-norm for both the scalar unknown u and the diffusion term w = −Δu and a priori error estimates in (L 2)2-norm for its gradient χ = ∇u for both semi-discrete and fully discrete schemes. PMID:23864831

  9. A new linearized Crank-Nicolson mixed element scheme for the extended Fisher-Kolmogorov equation.

    PubMed

    Wang, Jinfeng; Li, Hong; He, Siriguleng; Gao, Wei; Liu, Yang

    2013-01-01

    We present a new mixed finite element method for solving the extended Fisher-Kolmogorov (EFK) equation. We first decompose the EFK equation as the two second-order equations, then deal with a second-order equation employing finite element method, and handle the other second-order equation using a new mixed finite element method. In the new mixed finite element method, the gradient ∇u belongs to the weaker (L²(Ω))² space taking the place of the classical H(div; Ω) space. We prove some a priori bounds for the solution for semidiscrete scheme and derive a fully discrete mixed scheme based on a linearized Crank-Nicolson method. At the same time, we get the optimal a priori error estimates in L² and H¹-norm for both the scalar unknown u and the diffusion term w = -Δu and a priori error estimates in (L²)²-norm for its gradient χ = ∇u for both semi-discrete and fully discrete schemes.

  10. Discrete-time state estimation for stochastic polynomial systems over polynomial observations

    NASA Astrophysics Data System (ADS)

    Hernandez-Gonzalez, M.; Basin, M.; Stepanov, O.

    2018-07-01

    This paper presents a solution to the mean-square state estimation problem for stochastic nonlinear polynomial systems over polynomial observations confused with additive white Gaussian noises. The solution is given in two steps: (a) computing the time-update equations and (b) computing the measurement-update equations for the state estimate and error covariance matrix. A closed form of this filter is obtained by expressing conditional expectations of polynomial terms as functions of the state estimate and error covariance. As a particular case, the mean-square filtering equations are derived for a third-degree polynomial system with second-degree polynomial measurements. Numerical simulations show effectiveness of the proposed filter compared to the extended Kalman filter.

  11. Structural Equation Models in a Redundancy Analysis Framework With Covariates.

    PubMed

    Lovaglio, Pietro Giorgio; Vittadini, Giorgio

    2014-01-01

    A recent method to specify and fit structural equation modeling in the Redundancy Analysis framework based on so-called Extended Redundancy Analysis (ERA) has been proposed in the literature. In this approach, the relationships between the observed exogenous variables and the observed endogenous variables are moderated by the presence of unobservable composites, estimated as linear combinations of exogenous variables. However, in the presence of direct effects linking exogenous and endogenous variables, or concomitant indicators, the composite scores are estimated by ignoring the presence of the specified direct effects. To fit structural equation models, we propose a new specification and estimation method, called Generalized Redundancy Analysis (GRA), allowing us to specify and fit a variety of relationships among composites, endogenous variables, and external covariates. The proposed methodology extends the ERA method, using a more suitable specification and estimation algorithm, by allowing for covariates that affect endogenous indicators indirectly through the composites and/or directly. To illustrate the advantages of GRA over ERA we propose a simulation study of small samples. Moreover, we propose an application aimed at estimating the impact of formal human capital on the initial earnings of graduates of an Italian university, utilizing a structural model consistent with well-established economic theory.

  12. Net migration estimation in an extended, multiregional gravity model.

    PubMed

    Foot, D K; Milne, W J

    1984-02-01

    A multi-regional framework is developed in order to analyze net migration over time to all 10 Canadian provinces within an integrated system of equations. "An extended gravity model is the basis for the equation specification and the use of constrained econometric estimation techniques allows for the provincial interdependence of the migration decision while at the same time ensuring that an important system-wide requirement is respected." The model is estimated using official Canadian data for the 1960s and 1970s. "The results suggest the predominance of the push factor for interprovincial migration for most provinces, although net migration to the Atlantic provinces is also shown to be subject to pull forces from the rest of the country." The effects of wage rate variables, unemployment, and political disturbances in Quebec on inter-provincial migration are noted. excerpt

  13. A theory of fine structure image models with an application to detection and classification of dementia.

    PubMed

    O'Neill, William; Penn, Richard; Werner, Michael; Thomas, Justin

    2015-06-01

    Estimation of stochastic process models from data is a common application of time series analysis methods. Such system identification processes are often cast as hypothesis testing exercises whose intent is to estimate model parameters and test them for statistical significance. Ordinary least squares (OLS) regression and the Levenberg-Marquardt algorithm (LMA) have proven invaluable computational tools for models being described by non-homogeneous, linear, stationary, ordinary differential equations. In this paper we extend stochastic model identification to linear, stationary, partial differential equations in two independent variables (2D) and show that OLS and LMA apply equally well to these systems. The method employs an original nonparametric statistic as a test for the significance of estimated parameters. We show gray scale and color images are special cases of 2D systems satisfying a particular autoregressive partial difference equation which estimates an analogous partial differential equation. Several applications to medical image modeling and classification illustrate the method by correctly classifying demented and normal OLS models of axial magnetic resonance brain scans according to subject Mini Mental State Exam (MMSE) scores. Comparison with 13 image classifiers from the literature indicates our classifier is at least 14 times faster than any of them and has a classification accuracy better than all but one. Our modeling method applies to any linear, stationary, partial differential equation and the method is readily extended to 3D whole-organ systems. Further, in addition to being a robust image classifier, estimated image models offer insights into which parameters carry the most diagnostic image information and thereby suggest finer divisions could be made within a class. Image models can be estimated in milliseconds which translate to whole-organ models in seconds; such runtimes could make real-time medicine and surgery modeling possible.

  14. Estimating Power System Dynamic States Using Extended Kalman Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhenyu; Schneider, Kevin P.; Nieplocha, Jaroslaw

    2014-10-31

    Abstract—The state estimation tools which are currently deployed in power system control rooms are based on a steady state assumption. As a result, the suite of operational tools that rely on state estimation results as inputs do not have dynamic information available and their accuracy is compromised. This paper investigates the application of Extended Kalman Filtering techniques for estimating dynamic states in the state estimation process. The new formulated “dynamic state estimation” includes true system dynamics reflected in differential equations, not like previously proposed “dynamic state estimation” which only considers the time-variant snapshots based on steady state modeling. This newmore » dynamic state estimation using Extended Kalman Filter has been successfully tested on a multi-machine system. Sensitivity studies with respect to noise levels, sampling rates, model errors, and parameter errors are presented as well to illustrate the robust performance of the developed dynamic state estimation process.« less

  15. DEKFIS user's guide: Discrete Extended Kalman Filter/Smoother program for aircraft and rotorcraft data consistency

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The computer program DEKFIS (discrete extended Kalman filter/smoother), formulated for aircraft and helicopter state estimation and data consistency, is described. DEKFIS is set up to pre-process raw test data by removing biases, correcting scale factor errors and providing consistency with the aircraft inertial kinematic equations. The program implements an extended Kalman filter/smoother using the Friedland-Duffy formulation.

  16. Population stochastic modelling (PSM)--an R package for mixed-effects models based on stochastic differential equations.

    PubMed

    Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode; Overgaard, Rune Viig; Madsen, Henrik

    2009-06-01

    The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model development, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 109-141; C.W. Tornøe, R.V. Overgaard, H. Agersø, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8)) (2005) 1247-1258; R.V. Overgaard, N. Jonsson, C.W. Tornøe, H. Madsen, Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 85-107; U. Picchini, S. Ditlevsen, A. De Gaetano, Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics, Math. Med. Biol. 25 (June(2)) (2008) 141-155]. PK/PD models are traditionally based ordinary differential equations (ODEs) with an observation link that incorporates noise. This state-space formulation only allows for observation noise and not for system noise. Extending to SDEs allows for a Wiener noise component in the system equations. This additional noise component enables handling of autocorrelated residuals originating from natural variation or systematic model error. Autocorrelated residuals are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE(1) approximation to the population likelihood which is generated from the individual likelihoods that are approximated using the Extended Kalman Filter's one-step predictions.

  17. Generalized Ordinary Differential Equation Models 1

    PubMed Central

    Miao, Hongyu; Wu, Hulin; Xue, Hongqi

    2014-01-01

    Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method. PMID:25544787

  18. Generalized Ordinary Differential Equation Models.

    PubMed

    Miao, Hongyu; Wu, Hulin; Xue, Hongqi

    2014-10-01

    Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method.

  19. Optimal estimation of parameters and states in stochastic time-varying systems with time delay

    NASA Astrophysics Data System (ADS)

    Torkamani, Shahab; Butcher, Eric A.

    2013-08-01

    In this study estimation of parameters and states in stochastic linear and nonlinear delay differential systems with time-varying coefficients and constant delay is explored. The approach consists of first employing a continuous time approximation to approximate the stochastic delay differential equation with a set of stochastic ordinary differential equations. Then the problem of parameter estimation in the resulting stochastic differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the resulting system, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states.

  20. Blow-up of solutions to a quasilinear wave equation for high initial energy

    NASA Astrophysics Data System (ADS)

    Li, Fang; Liu, Fang

    2018-05-01

    This paper deals with blow-up solutions to a nonlinear hyperbolic equation with variable exponent of nonlinearities. By constructing a new control function and using energy inequalities, the authors obtain the lower bound estimate of the L2 norm of the solution. Furthermore, the concavity arguments are used to prove the nonexistence of solutions; at the same time, an estimate of the upper bound of blow-up time is also obtained. This result extends and improves those of [1,2].

  1. Maximum profile likelihood estimation of differential equation parameters through model based smoothing state estimates.

    PubMed

    Campbell, D A; Chkrebtii, O

    2013-12-01

    Statistical inference for biochemical models often faces a variety of characteristic challenges. In this paper we examine state and parameter estimation for the JAK-STAT intracellular signalling mechanism, which exemplifies the implementation intricacies common in many biochemical inference problems. We introduce an extension to the Generalized Smoothing approach for estimating delay differential equation models, addressing selection of complexity parameters, choice of the basis system, and appropriate optimization strategies. Motivated by the JAK-STAT system, we further extend the generalized smoothing approach to consider a nonlinear observation process with additional unknown parameters, and highlight how the approach handles unobserved states and unevenly spaced observations. The methodology developed is generally applicable to problems of estimation for differential equation models with delays, unobserved states, nonlinear observation processes, and partially observed histories. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  2. Extended Kalman Filter for Estimation of Parameters in Nonlinear State-Space Models of Biochemical Networks

    PubMed Central

    Sun, Xiaodian; Jin, Li; Xiong, Momiao

    2008-01-01

    It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks. PMID:19018286

  3. Modeling Latent Interactions at Level 2 in Multilevel Structural Equation Models: An Evaluation of Mean-Centered and Residual-Centered Unconstrained Approaches

    ERIC Educational Resources Information Center

    Leite, Walter L.; Zuo, Youzhen

    2011-01-01

    Among the many methods currently available for estimating latent variable interactions, the unconstrained approach is attractive to applied researchers because of its relatively easy implementation with any structural equation modeling (SEM) software. Using a Monte Carlo simulation study, we extended and evaluated the unconstrained approach to…

  4. A theory of fine structure image models with an application to detection and classification of dementia

    PubMed Central

    Penn, Richard; Werner, Michael; Thomas, Justin

    2015-01-01

    Background Estimation of stochastic process models from data is a common application of time series analysis methods. Such system identification processes are often cast as hypothesis testing exercises whose intent is to estimate model parameters and test them for statistical significance. Ordinary least squares (OLS) regression and the Levenberg-Marquardt algorithm (LMA) have proven invaluable computational tools for models being described by non-homogeneous, linear, stationary, ordinary differential equations. Methods In this paper we extend stochastic model identification to linear, stationary, partial differential equations in two independent variables (2D) and show that OLS and LMA apply equally well to these systems. The method employs an original nonparametric statistic as a test for the significance of estimated parameters. Results We show gray scale and color images are special cases of 2D systems satisfying a particular autoregressive partial difference equation which estimates an analogous partial differential equation. Several applications to medical image modeling and classification illustrate the method by correctly classifying demented and normal OLS models of axial magnetic resonance brain scans according to subject Mini Mental State Exam (MMSE) scores. Comparison with 13 image classifiers from the literature indicates our classifier is at least 14 times faster than any of them and has a classification accuracy better than all but one. Conclusions Our modeling method applies to any linear, stationary, partial differential equation and the method is readily extended to 3D whole-organ systems. Further, in addition to being a robust image classifier, estimated image models offer insights into which parameters carry the most diagnostic image information and thereby suggest finer divisions could be made within a class. Image models can be estimated in milliseconds which translate to whole-organ models in seconds; such runtimes could make real-time medicine and surgery modeling possible. PMID:26029638

  5. Bayesian parameter estimation for nonlinear modelling of biological pathways.

    PubMed

    Ghasemi, Omid; Lindsey, Merry L; Yang, Tianyi; Nguyen, Nguyen; Huang, Yufei; Jin, Yu-Fang

    2011-01-01

    The availability of temporal measurements on biological experiments has significantly promoted research areas in systems biology. To gain insight into the interaction and regulation of biological systems, mathematical frameworks such as ordinary differential equations have been widely applied to model biological pathways and interpret the temporal data. Hill equations are the preferred formats to represent the reaction rate in differential equation frameworks, due to their simple structures and their capabilities for easy fitting to saturated experimental measurements. However, Hill equations are highly nonlinearly parameterized functions, and parameters in these functions cannot be measured easily. Additionally, because of its high nonlinearity, adaptive parameter estimation algorithms developed for linear parameterized differential equations cannot be applied. Therefore, parameter estimation in nonlinearly parameterized differential equation models for biological pathways is both challenging and rewarding. In this study, we propose a Bayesian parameter estimation algorithm to estimate parameters in nonlinear mathematical models for biological pathways using time series data. We used the Runge-Kutta method to transform differential equations to difference equations assuming a known structure of the differential equations. This transformation allowed us to generate predictions dependent on previous states and to apply a Bayesian approach, namely, the Markov chain Monte Carlo (MCMC) method. We applied this approach to the biological pathways involved in the left ventricle (LV) response to myocardial infarction (MI) and verified our algorithm by estimating two parameters in a Hill equation embedded in the nonlinear model. We further evaluated our estimation performance with different parameter settings and signal to noise ratios. Our results demonstrated the effectiveness of the algorithm for both linearly and nonlinearly parameterized dynamic systems. Our proposed Bayesian algorithm successfully estimated parameters in nonlinear mathematical models for biological pathways. This method can be further extended to high order systems and thus provides a useful tool to analyze biological dynamics and extract information using temporal data.

  6. Mixed Effects Modeling Using Stochastic Differential Equations: Illustrated by Pharmacokinetic Data of Nicotinic Acid in Obese Zucker Rats.

    PubMed

    Leander, Jacob; Almquist, Joachim; Ahlström, Christine; Gabrielsson, Johan; Jirstrand, Mats

    2015-05-01

    Inclusion of stochastic differential equations in mixed effects models provides means to quantify and distinguish three sources of variability in data. In addition to the two commonly encountered sources, measurement error and interindividual variability, we also consider uncertainty in the dynamical model itself. To this end, we extend the ordinary differential equation setting used in nonlinear mixed effects models to include stochastic differential equations. The approximate population likelihood is derived using the first-order conditional estimation with interaction method and extended Kalman filtering. To illustrate the application of the stochastic differential mixed effects model, two pharmacokinetic models are considered. First, we use a stochastic one-compartmental model with first-order input and nonlinear elimination to generate synthetic data in a simulated study. We show that by using the proposed method, the three sources of variability can be successfully separated. If the stochastic part is neglected, the parameter estimates become biased, and the measurement error variance is significantly overestimated. Second, we consider an extension to a stochastic pharmacokinetic model in a preclinical study of nicotinic acid kinetics in obese Zucker rats. The parameter estimates are compared between a deterministic and a stochastic NiAc disposition model, respectively. Discrepancies between model predictions and observations, previously described as measurement noise only, are now separated into a comparatively lower level of measurement noise and a significant uncertainty in model dynamics. These examples demonstrate that stochastic differential mixed effects models are useful tools for identifying incomplete or inaccurate model dynamics and for reducing potential bias in parameter estimates due to such model deficiencies.

  7. A quantum extended Kalman filter

    NASA Astrophysics Data System (ADS)

    Emzir, Muhammad F.; Woolley, Matthew J.; Petersen, Ian R.

    2017-06-01

    In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with ‘state-dependent’ covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements.

  8. A Sandwich-Type Standard Error Estimator of SEM Models with Multivariate Time Series

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Chow, Sy-Miin; Ong, Anthony D.

    2011-01-01

    Structural equation models are increasingly used as a modeling tool for multivariate time series data in the social and behavioral sciences. Standard error estimators of SEM models, originally developed for independent data, require modifications to accommodate the fact that time series data are inherently dependent. In this article, we extend a…

  9. Statistical Field Estimation for Complex Coastal Regions and Archipelagos (PREPRINT)

    DTIC Science & Technology

    2011-04-09

    and study the computational properties of these schemes. Specifically, we extend a multiscale Objective Analysis (OA) approach to complex coastal...computational properties of these schemes. Specifically, we extend a multiscale Objective Analysis (OA) approach to complex coastal regions and... multiscale free-surface code builds on the primitive-equation model of the Harvard Ocean Predic- tion System (HOPS, Haley et al. (2009)). Additionally

  10. Estimating the surface area of birds: using the homing pigeon (Columba livia) as a model.

    PubMed

    Perez, Cristina R; Moye, John K; Pritsos, Chris A

    2014-05-08

    Estimation of the surface area of the avian body is valuable for thermoregulation and metabolism studies as well as for assessing exposure to oil and other surface-active organic pollutants from a spill. The use of frozen carcasses for surface area estimations prevents the ability to modify the posture of the bird. The surface area of six live homing pigeons in the fully extended flight position was estimated using a noninvasive method. An equation was derived to estimate the total surface area of a pigeon based on its body weight. A pigeon's surface area in the fully extended flight position is approximately 4 times larger than the surface area of a pigeon in the perching position. The surface area of a bird is dependent on its physical position, and, therefore, the fully extended flight position exhibits the maximum area of a bird and should be considered the true surface area of a bird. © 2014. Published by The Company of Biologists Ltd | Biology Open.

  11. Estimating locations and total magnetization vectors of compact magnetic sources from scalar, vector, or tensor magnetic measurements through combined Helbig and Euler analysis

    USGS Publications Warehouse

    Phillips, J.D.; Nabighian, M.N.; Smith, D.V.; Li, Y.

    2007-01-01

    The Helbig method for estimating total magnetization directions of compact sources from magnetic vector components is extended so that tensor magnetic gradient components can be used instead. Depths of the compact sources can be estimated using the Euler equation, and their dipole moment magnitudes can be estimated using a least squares fit to the vector component or tensor gradient component data. ?? 2007 Society of Exploration Geophysicists.

  12. A diagnostic model to estimate winds and small-scale drag from Mars Observer PMIRR data

    NASA Technical Reports Server (NTRS)

    Barnes, J. R.

    1993-01-01

    Theoretical and modeling studies indicate that small-scale drag due to breaking gravity waves is likely to be of considerable importance for the circulation in the middle atmospheric region (approximately 40-100 km altitude) on Mars. Recent earth-based spectroscopic observations have provided evidence for the existence of circulation features, in particular, a warm winter polar region, associated with gravity wave drag. Since the Mars Observer PMIRR experiment will obtain temperature profiles extending from the surface up to about 80 km altitude, it will be extensively sampling middle atmospheric regions in which gravity wave drag may play a dominant role. Estimating the drag then becomes crucial to the estimation of the atmospheric winds from the PMIRR-observed temperatures. An interative diagnostic model based upon one previously developed and tested with earth satellite temperature data will be applied to the PMIRR measurements to produce estimates of the small-scale zonal drag and three-dimensional wind fields in the Mars middle atmosphere. This model is based on the primitive equations, and can allow for time dependence (the time tendencies used may be based upon those computed in a Fast Fourier Mapping procedure). The small-scale zonal drag is estimated as the residual in the zonal momentum equation; the horizontal winds having first been estimated from the meridional momentum equation and the continuity equation. The scheme estimates the vertical motions from the thermodynamic equation, and thus needs estimates of the diabatic heating based upon the observed temperatures. The latter will be generated using a radiative model. It is hoped that the diagnostic scheme will be able to produce good estimates of the zonal gravity wave drag in the Mars middle atmosphere, estimates that can then be used in other diagnostic or assimilation efforts, as well as more theoretical studies.

  13. Energy and maximum norm estimates for nonlinear conservation laws

    NASA Technical Reports Server (NTRS)

    Olsson, Pelle; Oliger, Joseph

    1994-01-01

    We have devised a technique that makes it possible to obtain energy estimates for initial-boundary value problems for nonlinear conservation laws. The two major tools to achieve the energy estimates are a certain splitting of the flux vector derivative f(u)(sub x), and a structural hypothesis, referred to as a cone condition, on the flux vector f(u). These hypotheses are fulfilled for many equations that occur in practice, such as the Euler equations of gas dynamics. It should be noted that the energy estimates are obtained without any assumptions on the gradient of the solution u. The results extend to weak solutions that are obtained as point wise limits of vanishing viscosity solutions. As a byproduct we obtain explicit expressions for the entropy function and the entropy flux of symmetrizable systems of conservation laws. Under certain circumstances the proposed technique can be applied repeatedly so as to yield estimates in the maximum norm.

  14. Molecular extended thermodynamics of rarefied polyatomic gases and wave velocities for increasing number of moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arima, Takashi, E-mail: tks@stat.nitech.ac.jp; Mentrelli, Andrea, E-mail: andrea.mentrelli@unibo.it; Ruggeri, Tommaso, E-mail: tommaso.ruggeri@unibo.it

    Molecular extended thermodynamics of rarefied polyatomic gases is characterized by two hierarchies of equations for moments of a suitable distribution function in which the internal degrees of freedom of a molecule is taken into account. On the basis of physical relevance the truncation orders of the two hierarchies are proven to be not independent on each other, and the closure procedures based on the maximum entropy principle (MEP) and on the entropy principle (EP) are proven to be equivalent. The characteristic velocities of the emerging hyperbolic system of differential equations are compared to those obtained for monatomic gases and themore » lower bound estimate for the maximum equilibrium characteristic velocity established for monatomic gases (characterized by only one hierarchy for moments with truncation order of moments N) by Boillat and Ruggeri (1997) (λ{sub (N)}{sup E,max})/(c{sub 0}) ⩾√(6/5 (N−1/2 )),(c{sub 0}=√(5/3 k/m T)) is proven to hold also for rarefied polyatomic gases independently from the degrees of freedom of a molecule. -- Highlights: •Molecular extended thermodynamics of rarefied polyatomic gases is studied. •The relation between two hierarchies of equations for moments is derived. •The equivalence of maximum entropy principle and entropy principle is proven. •The characteristic velocities are compared to those of monatomic gases. •The lower bound of the maximum characteristic velocity is estimated.« less

  15. Monocular Visual Odometry Based on Trifocal Tensor Constraint

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.; Yang, G. L.; Jiang, Y. X.; Liu, X. Y.

    2018-02-01

    For the problem of real-time precise localization in the urban street, a monocular visual odometry based on Extend Kalman fusion of optical-flow tracking and trifocal tensor constraint is proposed. To diminish the influence of moving object, such as pedestrian, we estimate the motion of the camera by extracting the features on the ground, which improves the robustness of the system. The observation equation based on trifocal tensor constraint is derived, which can form the Kalman filter alone with the state transition equation. An Extend Kalman filter is employed to cope with the nonlinear system. Experimental results demonstrate that, compares with Yu’s 2-step EKF method, the algorithm is more accurate which meets the needs of real-time accurate localization in cities.

  16. Solutions for the diurnally forced advection-diffusion equation to estimate bulk fluid velocity and diffusivity in streambeds from temperature time series

    NASA Astrophysics Data System (ADS)

    Luce, C.; Tonina, D.; Gariglio, F. P.; Applebee, R.

    2012-12-01

    Differences in the diurnal variations of temperature at different depths in streambed sediments are commonly used for estimating vertical fluxes of water in the streambed. We applied spatial and temporal rescaling of the advection-diffusion equation to derive two new relationships that greatly extend the kinds of information that can be derived from streambed temperature measurements. The first equation provides a direct estimate of the Peclet number from the amplitude decay and phase delay information. The analytical equation is explicit (e.g. no numerical root-finding is necessary), and invertable. The thermal front velocity can be estimated from the Peclet number when the thermal diffusivity is known. The second equation allows for an independent estimate of the thermal diffusivity directly from the amplitude decay and phase delay information. Several improvements are available with the new information. The first equation uses a ratio of the amplitude decay and phase delay information; thus Peclet number calculations are independent of depth. The explicit form also makes it somewhat faster and easier to calculate estimates from a large number of sensors or multiple positions along one sensor. Where current practice requires a priori estimation of streambed thermal diffusivity, the new approach allows an independent calculation, improving precision of estimates. Furthermore, when many measurements are made over space and time, expectations of the spatial correlation and temporal invariance of thermal diffusivity are valuable for validation of measurements. Finally, the closed-form explicit solution allows for direct calculation of propagation of uncertainties in error measurements and parameter estimates, providing insight about error expectations for sensors placed at different depths in different environments as a function of surface temperature variation amplitudes. The improvements are expected to increase the utility of temperature measurement methods for studying groundwater-surface water interactions across space and time scales. We discuss the theoretical implications of the new solutions supported by examples with data for illustration and validation.

  17. Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete time measurements.

    PubMed

    Leander, Jacob; Lundh, Torbjörn; Jirstrand, Mats

    2014-05-01

    In this paper we consider the problem of estimating parameters in ordinary differential equations given discrete time experimental data. The impact of going from an ordinary to a stochastic differential equation setting is investigated as a tool to overcome the problem of local minima in the objective function. Using two different models, it is demonstrated that by allowing noise in the underlying model itself, the objective functions to be minimized in the parameter estimation procedures are regularized in the sense that the number of local minima is reduced and better convergence is achieved. The advantage of using stochastic differential equations is that the actual states in the model are predicted from data and this will allow the prediction to stay close to data even when the parameters in the model is incorrect. The extended Kalman filter is used as a state estimator and sensitivity equations are provided to give an accurate calculation of the gradient of the objective function. The method is illustrated using in silico data from the FitzHugh-Nagumo model for excitable media and the Lotka-Volterra predator-prey system. The proposed method performs well on the models considered, and is able to regularize the objective function in both models. This leads to parameter estimation problems with fewer local minima which can be solved by efficient gradient-based methods. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Incorporation of Differential Global Positioning System Measurements Using an Extended Kalman Filter for Improved Reference System Performance

    DTIC Science & Technology

    1991-12-01

    Kalman filtering. As GPS usage expands throughout the military and civilian communities, I hope this thesis provides a small contribution in this area...of the measurement’equation. In this thesis, some of the INS states not part of a measurement equation need a small amount of added noise to...estimating the state, but the variance often goes negative. A small amount of added noise in the filter keeps the variance of the state positive and does not

  19. Modeling individualized coefficient alpha to measure quality of test score data.

    PubMed

    Liu, Molei; Hu, Ming; Zhou, Xiao-Hua

    2018-05-23

    Individualized coefficient alpha is defined. It is item and subject specific and is used to measure the quality of test score data with heterogenicity among the subjects and items. A regression model is developed based on 3 sets of generalized estimating equations. The first set of generalized estimating equation models the expectation of the responses, the second set models the response's variance, and the third set is proposed to estimate the individualized coefficient alpha, defined and used to measure individualized internal consistency of the responses. We also use different techniques to extend our method to handle missing data. Asymptotic property of the estimators is discussed, based on which inference on the coefficient alpha is derived. Performance of our method is evaluated through simulation study and real data analysis. The real data application is from a health literacy study in Hunan province of China. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Search algorithm complexity modeling with application to image alignment and matching

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen

    2014-05-01

    Search algorithm complexity modeling, in the form of penetration rate estimation, provides a useful way to estimate search efficiency in application domains which involve searching over a hypothesis space of reference templates or models, as in model-based object recognition, automatic target recognition, and biometric recognition. The penetration rate quantifies the expected portion of the database that must be searched, and is useful for estimating search algorithm computational requirements. In this paper we perform mathematical modeling to derive general equations for penetration rate estimates that are applicable to a wide range of recognition problems. We extend previous penetration rate analyses to use more general probabilistic modeling assumptions. In particular we provide penetration rate equations within the framework of a model-based image alignment application domain in which a prioritized hierarchical grid search is used to rank subspace bins based on matching probability. We derive general equations, and provide special cases based on simplifying assumptions. We show how previously-derived penetration rate equations are special cases of the general formulation. We apply the analysis to model-based logo image alignment in which a hierarchical grid search is used over a geometric misalignment transform hypothesis space. We present numerical results validating the modeling assumptions and derived formulation.

  1. Dispersive estimates for rational symbols and local well-posedness of the nonzero energy NV equation. II

    NASA Astrophysics Data System (ADS)

    Kazeykina, Anna; Muñoz, Claudio

    2018-04-01

    We continue our study on the Cauchy problem for the two-dimensional Novikov-Veselov (NV) equation, integrable via the inverse scattering transform for the two dimensional Schrödinger operator at a fixed energy parameter. This work is concerned with the more involved case of a positive energy parameter. For the solution of the linearized equation we derive smoothing and Strichartz estimates by combining new estimates for two different frequency regimes, extending our previous results for the negative energy case [18]. The low frequency regime, which our previous result was not able to treat, is studied in detail. At non-low frequencies we also derive improved smoothing estimates with gain of almost one derivative. Then we combine the linear estimates with a Fourier decomposition method and Xs,b spaces to obtain local well-posedness of NV at positive energy in Hs, s > 1/2. Our result implies, in particular, that at least for s > 1/2, NV does not change its behavior from semilinear to quasilinear as energy changes sign, in contrast to the closely related Kadomtsev-Petviashvili equations. As a complement to our LWP results, we also provide some new explicit solutions of NV at zero energy, generalizations of the lumps solutions, which exhibit new and nonstandard long time behavior. In particular, these solutions blow up in infinite time in L2.

  2. Space Shuttle propulsion parameter estimation using optimal estimation techniques, volume 1

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The mathematical developments and their computer program implementation for the Space Shuttle propulsion parameter estimation project are summarized. The estimation approach chosen is the extended Kalman filtering with a modified Bryson-Frazier smoother. Its use here is motivated by the objective of obtaining better estimates than those available from filtering and to eliminate the lag associated with filtering. The estimation technique uses as the dynamical process the six degree equations-of-motion resulting in twelve state vector elements. In addition to these are mass and solid propellant burn depth as the ""system'' state elements. The ""parameter'' state elements can include aerodynamic coefficient, inertia, center-of-gravity, atmospheric wind, etc. deviations from referenced values. Propulsion parameter state elements have been included not as options just discussed but as the main parameter states to be estimated. The mathematical developments were completed for all these parameters. Since the systems dynamics and measurement processes are non-linear functions of the states, the mathematical developments are taken up almost entirely by the linearization of these equations as required by the estimation algorithms.

  3. The Fundamental Solution of the Linearized Navier Stokes Equations for Spinning Bodies in Three Spatial Dimensions Time Dependent Case

    NASA Astrophysics Data System (ADS)

    Thomann, Enrique A.; Guenther, Ronald B.

    2006-02-01

    Explicit formulae for the fundamental solution of the linearized time dependent Navier Stokes equations in three spatial dimensions are obtained. The linear equations considered in this paper include those used to model rigid bodies that are translating and rotating at a constant velocity. Estimates extending those obtained by Solonnikov in [23] for the fundamental solution of the time dependent Stokes equations, corresponding to zero translational and angular velocity, are established. Existence and uniqueness of solutions of these linearized problems is obtained for a class of functions that includes the classical Lebesgue spaces L p (R 3), 1 < p < ∞. Finally, the asymptotic behavior and semigroup properties of the fundamental solution are established.

  4. Adaptive Elastic Net for Generalized Methods of Moments.

    PubMed

    Caner, Mehmet; Zhang, Hao Helen

    2014-01-30

    Model selection and estimation are crucial parts of econometrics. This paper introduces a new technique that can simultaneously estimate and select the model in generalized method of moments (GMM) context. The GMM is particularly powerful for analyzing complex data sets such as longitudinal and panel data, and it has wide applications in econometrics. This paper extends the least squares based adaptive elastic net estimator of Zou and Zhang (2009) to nonlinear equation systems with endogenous variables. The extension is not trivial and involves a new proof technique due to estimators lack of closed form solutions. Compared to Bridge-GMM of Caner (2009), we allow for the number of parameters to diverge to infinity as well as collinearity among a large number of variables, also the redundant parameters set to zero via a data dependent technique. This method has the oracle property, meaning that we can estimate nonzero parameters with their standard limit and the redundant parameters are dropped from the equations simultaneously. Numerical examples are used to illustrate the performance of the new method.

  5. A comparison of abundance estimates from extended batch-marking and Jolly–Seber-type experiments

    PubMed Central

    Cowen, Laura L E; Besbeas, Panagiotis; Morgan, Byron J T; Schwarz, Carl J

    2014-01-01

    Little attention has been paid to the use of multi-sample batch-marking studies, as it is generally assumed that an individual's capture history is necessary for fully efficient estimates. However, recently, Huggins et al. (2010) present a pseudo-likelihood for a multi-sample batch-marking study where they used estimating equations to solve for survival and capture probabilities and then derived abundance estimates using a Horvitz–Thompson-type estimator. We have developed and maximized the likelihood for batch-marking studies. We use data simulated from a Jolly–Seber-type study and convert this to what would have been obtained from an extended batch-marking study. We compare our abundance estimates obtained from the Crosbie–Manly–Arnason–Schwarz (CMAS) model with those of the extended batch-marking model to determine the efficiency of collecting and analyzing batch-marking data. We found that estimates of abundance were similar for all three estimators: CMAS, Huggins, and our likelihood. Gains are made when using unique identifiers and employing the CMAS model in terms of precision; however, the likelihood typically had lower mean square error than the pseudo-likelihood method of Huggins et al. (2010). When faced with designing a batch-marking study, researchers can be confident in obtaining unbiased abundance estimators. Furthermore, they can design studies in order to reduce mean square error by manipulating capture probabilities and sample size. PMID:24558576

  6. Models and Forecasts of Federal Spending for Elementary and Secondary Education.

    ERIC Educational Resources Information Center

    Rossi, Robert J.; Gilmartin, Kevin J.

    Structural equation models of annual federal expenditures for elementary and secondary education and for higher education were estimated using time-series data extending from 1947 to the later 1970s. The pattern of expenditures for elementary and secondary education proved to follow closely that for higher education. Factors affecting federal…

  7. Distributed and decentralized state estimation in gas networks as distributed parameter systems.

    PubMed

    Ahmadian Behrooz, Hesam; Boozarjomehry, R Bozorgmehry

    2015-09-01

    In this paper, a framework for distributed and decentralized state estimation in high-pressure and long-distance gas transmission networks (GTNs) is proposed. The non-isothermal model of the plant including mass, momentum and energy balance equations are used to simulate the dynamic behavior. Due to several disadvantages of implementing a centralized Kalman filter for large-scale systems, the continuous/discrete form of extended Kalman filter for distributed and decentralized estimation (DDE) has been extended for these systems. Accordingly, the global model is decomposed into several subsystems, called local models. Some heuristic rules are suggested for system decomposition in gas pipeline networks. In the construction of local models, due to the existence of common states and interconnections among the subsystems, the assimilation and prediction steps of the Kalman filter are modified to take the overlapping and external states into account. However, dynamic Riccati equation for each subsystem is constructed based on the local model, which introduces a maximum error of 5% in the estimated standard deviation of the states in the benchmarks studied in this paper. The performance of the proposed methodology has been shown based on the comparison of its accuracy and computational demands against their counterparts in centralized Kalman filter for two viable benchmarks. In a real life network, it is shown that while the accuracy is not significantly decreased, the real-time factor of the state estimation is increased by a factor of 10. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Electromagnetic Monitoring and Control of a Plurality of Nanosatellites

    NASA Technical Reports Server (NTRS)

    Soloway, Donald I. (Inventor)

    2017-01-01

    A method for monitoring position of and controlling a second nanosatellite (NS) relative to a position of a first NS. Each of the first and second NSs has a rectangular or cubical configuration of independently activatable, current-carrying solenoids, each solenoid having an independent magnetic dipole moment vector, .mu.1 and .mu.2. A vector force F and a vector torque are expressed as linear or bilinear combinations of the first set and second set of magnetic moments, and a distance vector extending between the first and second NSs is estimated. Control equations are applied to estimate vectors, .mu.1 and .mu.2, required to move the NSs toward a desired NS configuration. This extends to control of N nanosatellites.

  9. Parameter identification for nonlinear aerodynamic systems

    NASA Technical Reports Server (NTRS)

    Pearson, Allan E.

    1990-01-01

    Parameter identification for nonlinear aerodynamic systems is examined. It is presumed that the underlying model can be arranged into an input/output (I/O) differential operator equation of a generic form. The algorithm estimation is especially efficient since the equation error can be integrated exactly given any I/O pair to obtain an algebraic function of the parameters. The algorithm for parameter identification was extended to the order determination problem for linear differential system. The degeneracy in a least squares estimate caused by feedback was addressed. A method of frequency analysis for determining the transfer function G(j omega) from transient I/O data was formulated using complex valued Fourier based modulating functions in contrast with the trigonometric modulating functions for the parameter estimation problem. A simulation result of applying the algorithm is given under noise-free conditions for a system with a low pass transfer function.

  10. Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien

    2018-04-01

    We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.

  11. Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien

    2018-06-01

    We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.

  12. Exact and Approximate Statistical Inference for Nonlinear Regression and the Estimating Equation Approach.

    PubMed

    Demidenko, Eugene

    2017-09-01

    The exact density distribution of the nonlinear least squares estimator in the one-parameter regression model is derived in closed form and expressed through the cumulative distribution function of the standard normal variable. Several proposals to generalize this result are discussed. The exact density is extended to the estimating equation (EE) approach and the nonlinear regression with an arbitrary number of linear parameters and one intrinsically nonlinear parameter. For a very special nonlinear regression model, the derived density coincides with the distribution of the ratio of two normally distributed random variables previously obtained by Fieller (1932), unlike other approximations previously suggested by other authors. Approximations to the density of the EE estimators are discussed in the multivariate case. Numerical complications associated with the nonlinear least squares are illustrated, such as nonexistence and/or multiple solutions, as major factors contributing to poor density approximation. The nonlinear Markov-Gauss theorem is formulated based on the near exact EE density approximation.

  13. Determination of Ice Crust Thickness from Flanking Cracks Along Ridges on Europa

    NASA Technical Reports Server (NTRS)

    Billings, S. E.; Kattenhorn, S. A.

    2002-01-01

    We use equations describing the deflection of an elastic plate below a line load to estimate ice crust thickness below ridges on Europa. Using a range of elastic parameters, ice thickness is calculated to fall in the range 0.2 2.6 km. Additional information is contained in the original extended abstract.

  14. Kalman filter estimation of human pilot-model parameters

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Roland, V. R.

    1975-01-01

    The parameters of a human pilot-model transfer function are estimated by applying the extended Kalman filter to the corresponding retarded differential-difference equations in the time domain. Use of computer-generated data indicates that most of the parameters, including the implicit time delay, may be reasonably estimated in this way. When applied to two sets of experimental data obtained from a closed-loop tracking task performed by a human, the Kalman filter generated diverging residuals for one of the measurement types, apparently because of model assumption errors. Application of a modified adaptive technique was found to overcome the divergence and to produce reasonable estimates of most of the parameters.

  15. Techniques for estimating flood-peak discharges from urban basins in Missouri

    USGS Publications Warehouse

    Becker, L.D.

    1986-01-01

    Techniques are defined for estimating the magnitude and frequency of future flood peak discharges of rainfall-induced runoff from small urban basins in Missouri. These techniques were developed from an initial analysis of flood records of 96 gaged sites in Missouri and adjacent states. Final regression equations are based on a balanced, representative sampling of 37 gaged sites in Missouri. This sample included 9 statewide urban study sites, 18 urban sites in St. Louis County, and 10 predominantly rural sites statewide. Short-term records were extended on the basis of long-term climatic records and use of a rainfall-runoff model. Linear least-squares regression analyses were used with log-transformed variables to relate flood magnitudes of selected recurrence intervals (dependent variables) to selected drainage basin indexes (independent variables). For gaged urban study sites within the State, the flood peak estimates are from the frequency curves defined from the synthesized long-term discharge records. Flood frequency estimates are made for ungaged sites by using regression equations that require determination of the drainage basin size and either the percentage of impervious area or a basin development factor. Alternative sets of equations are given for the 2-, 5-, 10-, 25-, 50-, and 100-yr recurrence interval floods. The average standard errors of estimate range from about 33% for the 2-yr flood to 26% for the 100-yr flood. The techniques for estimation are applicable to flood flows that are not significantly affected by storage caused by manmade activities. Flood peak discharge estimating equations are considered applicable for sites on basins draining approximately 0.25 to 40 sq mi. (Author 's abstract)

  16. A matlab framework for estimation of NLME models using stochastic differential equations: applications for estimation of insulin secretion rates.

    PubMed

    Mortensen, Stig B; Klim, Søren; Dammann, Bernd; Kristensen, Niels R; Madsen, Henrik; Overgaard, Rune V

    2007-10-01

    The non-linear mixed-effects model based on stochastic differential equations (SDEs) provides an attractive residual error model, that is able to handle serially correlated residuals typically arising from structural mis-specification of the true underlying model. The use of SDEs also opens up for new tools for model development and easily allows for tracking of unknown inputs and parameters over time. An algorithm for maximum likelihood estimation of the model has earlier been proposed, and the present paper presents the first general implementation of this algorithm. The implementation is done in Matlab and also demonstrates the use of parallel computing for improved estimation times. The use of the implementation is illustrated by two examples of application which focus on the ability of the model to estimate unknown inputs facilitated by the extension to SDEs. The first application is a deconvolution-type estimation of the insulin secretion rate based on a linear two-compartment model for C-peptide measurements. In the second application the model is extended to also give an estimate of the time varying liver extraction based on both C-peptide and insulin measurements.

  17. Bilinear identities for an extended B-type Kadomtsev-Petviashvili hierarchy

    NASA Astrophysics Data System (ADS)

    Lin, Runliang; Cao, Tiancheng; Liu, Xiaojun; Zeng, Yunbo

    2016-03-01

    We construct bilinear identities for wave functions of an extended B-type Kadomtsev-Petviashvili (BKP) hierarchy containing two types of (2+1)-dimensional Sawada-Kotera equations with a self-consistent source. Introducing an auxiliary variable corresponding to the extended flow for the BKP hierarchy, we find the τ -function and bilinear identities for this extended BKP hierarchy. The bilinear identities generate all the Hirota bilinear equations for the zero-curvature forms of this extended BKP hierarchy. As examples, we obtain the Hirota bilinear equations for the two types of (2+1)-dimensional Sawada-Kotera equations in explicit form.

  18. Structural Equation Model Approach to the Use of Response Times for Improving Estimation in Item Response Models

    ERIC Educational Resources Information Center

    Sen, Rohini

    2012-01-01

    In the last five decades, research on the uses of response time has extended into the field of psychometrics (Schnikpe & Scrams, 1999; van der Linden, 2006; van der Linden, 2007), where interest has centered around the usefulness of response time information in item calibration and person measurement within an item response theory. framework.…

  19. A logistic regression equation for estimating the probability of a stream flowing perennially in Massachusetts

    USGS Publications Warehouse

    Bent, Gardner C.; Archfield, Stacey A.

    2002-01-01

    A logistic regression equation was developed for estimating the probability of a stream flowing perennially at a specific site in Massachusetts. The equation provides city and town conservation commissions and the Massachusetts Department of Environmental Protection with an additional method for assessing whether streams are perennial or intermittent at a specific site in Massachusetts. This information is needed to assist these environmental agencies, who administer the Commonwealth of Massachusetts Rivers Protection Act of 1996, which establishes a 200-foot-wide protected riverfront area extending along the length of each side of the stream from the mean annual high-water line along each side of perennial streams, with exceptions in some urban areas. The equation was developed by relating the verified perennial or intermittent status of a stream site to selected basin characteristics of naturally flowing streams (no regulation by dams, surface-water withdrawals, ground-water withdrawals, diversion, waste-water discharge, and so forth) in Massachusetts. Stream sites used in the analysis were identified as perennial or intermittent on the basis of review of measured streamflow at sites throughout Massachusetts and on visual observation at sites in the South Coastal Basin, southeastern Massachusetts. Measured or observed zero flow(s) during months of extended drought as defined by the 310 Code of Massachusetts Regulations (CMR) 10.58(2)(a) were not considered when designating the perennial or intermittent status of a stream site. The database used to develop the equation included a total of 305 stream sites (84 intermittent- and 89 perennial-stream sites in the State, and 50 intermittent- and 82 perennial-stream sites in the South Coastal Basin). Stream sites included in the database had drainage areas that ranged from 0.14 to 8.94 square miles in the State and from 0.02 to 7.00 square miles in the South Coastal Basin.Results of the logistic regression analysis indicate that the probability of a stream flowing perennially at a specific site in Massachusetts can be estimated as a function of (1) drainage area (cube root), (2) drainage density, (3) areal percentage of stratified-drift deposits (square root), (4) mean basin slope, and (5) location in the South Coastal Basin or the remainder of the State. Although the equation developed provides an objective means for estimating the probability of a stream flowing perennially at a specific site, the reliability of the equation is constrained by the data used to develop the equation. The equation may not be reliable for (1) drainage areas less than 0.14 square mile in the State or less than 0.02 square mile in the South Coastal Basin, (2) streams with losing reaches, or (3) streams draining the southern part of the South Coastal Basin and the eastern part of the Buzzards Bay Basin and the entire area of Cape Cod and the Islands Basins.

  20. Simulation methods to estimate design power: an overview for applied research.

    PubMed

    Arnold, Benjamin F; Hogan, Daniel R; Colford, John M; Hubbard, Alan E

    2011-06-20

    Estimating the required sample size and statistical power for a study is an integral part of study design. For standard designs, power equations provide an efficient solution to the problem, but they are unavailable for many complex study designs that arise in practice. For such complex study designs, computer simulation is a useful alternative for estimating study power. Although this approach is well known among statisticians, in our experience many epidemiologists and social scientists are unfamiliar with the technique. This article aims to address this knowledge gap. We review an approach to estimate study power for individual- or cluster-randomized designs using computer simulation. This flexible approach arises naturally from the model used to derive conventional power equations, but extends those methods to accommodate arbitrarily complex designs. The method is universally applicable to a broad range of designs and outcomes, and we present the material in a way that is approachable for quantitative, applied researchers. We illustrate the method using two examples (one simple, one complex) based on sanitation and nutritional interventions to improve child growth. We first show how simulation reproduces conventional power estimates for simple randomized designs over a broad range of sample scenarios to familiarize the reader with the approach. We then demonstrate how to extend the simulation approach to more complex designs. Finally, we discuss extensions to the examples in the article, and provide computer code to efficiently run the example simulations in both R and Stata. Simulation methods offer a flexible option to estimate statistical power for standard and non-traditional study designs and parameters of interest. The approach we have described is universally applicable for evaluating study designs used in epidemiologic and social science research.

  1. Simulation methods to estimate design power: an overview for applied research

    PubMed Central

    2011-01-01

    Background Estimating the required sample size and statistical power for a study is an integral part of study design. For standard designs, power equations provide an efficient solution to the problem, but they are unavailable for many complex study designs that arise in practice. For such complex study designs, computer simulation is a useful alternative for estimating study power. Although this approach is well known among statisticians, in our experience many epidemiologists and social scientists are unfamiliar with the technique. This article aims to address this knowledge gap. Methods We review an approach to estimate study power for individual- or cluster-randomized designs using computer simulation. This flexible approach arises naturally from the model used to derive conventional power equations, but extends those methods to accommodate arbitrarily complex designs. The method is universally applicable to a broad range of designs and outcomes, and we present the material in a way that is approachable for quantitative, applied researchers. We illustrate the method using two examples (one simple, one complex) based on sanitation and nutritional interventions to improve child growth. Results We first show how simulation reproduces conventional power estimates for simple randomized designs over a broad range of sample scenarios to familiarize the reader with the approach. We then demonstrate how to extend the simulation approach to more complex designs. Finally, we discuss extensions to the examples in the article, and provide computer code to efficiently run the example simulations in both R and Stata. Conclusions Simulation methods offer a flexible option to estimate statistical power for standard and non-traditional study designs and parameters of interest. The approach we have described is universally applicable for evaluating study designs used in epidemiologic and social science research. PMID:21689447

  2. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    USGS Publications Warehouse

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.301 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.

  3. Nonlinear Attitude Filtering Methods

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Crassidis, John L.; Cheng, Yang

    2005-01-01

    This paper provides a survey of modern nonlinear filtering methods for attitude estimation. Early applications relied mostly on the extended Kalman filter for attitude estimation. Since these applications, several new approaches have been developed that have proven to be superior to the extended Kalman filter. Several of these approaches maintain the basic structure of the extended Kalman filter, but employ various modifications in order to provide better convergence or improve other performance characteristics. Examples of such approaches include: filter QUEST, extended QUEST, the super-iterated extended Kalman filter, the interlaced extended Kalman filter, and the second-order Kalman filter. Filters that propagate and update a discrete set of sigma points rather than using linearized equations for the mean and covariance are also reviewed. A two-step approach is discussed with a first-step state that linearizes the measurement model and an iterative second step to recover the desired attitude states. These approaches are all based on the Gaussian assumption that the probability density function is adequately specified by its mean and covariance. Other approaches that do not require this assumption are reviewed, including particle filters and a Bayesian filter based on a non-Gaussian, finite-parameter probability density function on SO(3). Finally, the predictive filter, nonlinear observers and adaptive approaches are shown. The strengths and weaknesses of the various approaches are discussed.

  4. Sliding mode control for Mars entry based on extended state observer

    NASA Astrophysics Data System (ADS)

    Lu, Kunfeng; Xia, Yuanqing; Shen, Ganghui; Yu, Chunmei; Zhou, Liuyu; Zhang, Lijun

    2017-11-01

    This paper addresses high-precision Mars entry guidance and control approach via sliding mode control (SMC) and Extended State Observer (ESO). First, differential flatness (DF) approach is applied to the dynamic equations of the entry vehicle to represent the state variables more conveniently. Then, the presented SMC law can guarantee the property of finite-time convergence of tracking error, which requires no information on high uncertainties that are estimated by ESO, and the rigorous proof of tracking error convergence is given. Finally, Monte Carlo simulation results are presented to demonstrate the effectiveness of the suggested approach.

  5. Determining the Intensity of a Point-Like Source Observed on the Background of AN Extended Source

    NASA Astrophysics Data System (ADS)

    Kornienko, Y. V.; Skuratovskiy, S. I.

    2014-12-01

    The problem of determining the time dependence of intensity of a point-like source in case of atmospheric blur is formulated and solved by using the Bayesian statistical approach. A pointlike source is supposed to be observed on the background of an extended source with constant in time though unknown brightness. The equation system for optimal statistical estimation of the sequence of intensity values in observation moments is obtained. The problem is particularly relevant for studying gravitational mirages which appear while observing a quasar through the gravitational field of a far galaxy.

  6. Instantaneous and time-averaged dispersion and measurement models for estimation theory applications with elevated point source plumes

    NASA Technical Reports Server (NTRS)

    Diamante, J. M.; Englar, T. S., Jr.; Jazwinski, A. H.

    1977-01-01

    Estimation theory, which originated in guidance and control research, is applied to the analysis of air quality measurements and atmospheric dispersion models to provide reliable area-wide air quality estimates. A method for low dimensional modeling (in terms of the estimation state vector) of the instantaneous and time-average pollutant distributions is discussed. In particular, the fluctuating plume model of Gifford (1959) is extended to provide an expression for the instantaneous concentration due to an elevated point source. Individual models are also developed for all parameters in the instantaneous and the time-average plume equations, including the stochastic properties of the instantaneous fluctuating plume.

  7. Extended Thermodynamics: a Theory of Symmetric Hyperbolic Field Equations

    NASA Astrophysics Data System (ADS)

    Müller, Ingo

    2008-12-01

    Extended thermodynamics is based on a set of equations of balance which are supplemented by local and instantaneous constitutive equations so that the field equations are quasi-linear first order differential equations. If the constitutive functions are subject to the requirements of the entropy principle, one may write them in symmetric hyperbolic form by a suitable choice of fields. The kinetic theory of gases, or the moment theories based on the Boltzmann equation provide an explicit example for extended thermodynamics. The theory proves its usefulness and practicality in the successful treatment of light scattering in rarefied gases. This presentation is based upon the book [1] of which the author of this paper is a co-author. For more details about the motivation and exploitation of the basic principles the interested reader is referred to that reference. It would seem that extended thermodynamics is worthy of the attention of mathematicians. It may offer them a non-trivial field of study concerning hyperbolic equations, if ever they get tired of the Burgers equation. Physicists may prefer to appreciate the success of extended thermodynamics in light scattering and to work on the open problems concerning the modification of the Navier-Stokes-Fourier theory in rarefied gases as predicted by extended thermodynamics of 13, 14, and more moments.

  8. Standard Errors of Equating Differences: Prior Developments, Extensions, and Simulations

    ERIC Educational Resources Information Center

    Moses, Tim; Zhang, Wenmin

    2011-01-01

    The purpose of this article was to extend the use of standard errors for equated score differences (SEEDs) to traditional equating functions. The SEEDs are described in terms of their original proposal for kernel equating functions and extended so that SEEDs for traditional linear and traditional equipercentile equating functions can be computed.…

  9. Parameter estimation of a three-axis spacecraft simulator using recursive least-squares approach with tracking differentiator and Extended Kalman Filter

    NASA Astrophysics Data System (ADS)

    Xu, Zheyao; Qi, Naiming; Chen, Yukun

    2015-12-01

    Spacecraft simulators are widely used to study the dynamics, guidance, navigation, and control of a spacecraft on the ground. A spacecraft simulator can have three rotational degrees of freedom by using a spherical air-bearing to simulate a frictionless and micro-gravity space environment. The moment of inertia and center of mass are essential for control system design of ground-based three-axis spacecraft simulators. Unfortunately, they cannot be known precisely. This paper presents two approaches, i.e. a recursive least-squares (RLS) approach with tracking differentiator (TD) and Extended Kalman Filter (EKF) method, to estimate inertia parameters. The tracking differentiator (TD) filter the noise coupled with the measured signals and generate derivate of the measured signals. Combination of two TD filters in series obtains the angular accelerations that are required in RLS (TD-TD-RLS). Another method that does not need to estimate the angular accelerations is using the integrated form of dynamics equation. An extended TD (ETD) filter which can also generate the integration of the function of signals is presented for RLS (denoted as ETD-RLS). States and inertia parameters are estimated simultaneously using EKF. The observability is analyzed. All proposed methods are illustrated by simulations and experiments.

  10. Multirate state and parameter estimation in an antibiotic fermentation with delayed measurements.

    PubMed

    Gudi, R D; Shah, S L; Gray, M R

    1994-12-01

    This article discusses issues related to estimation and monitoring of fermentation processes that exhibit endogenous metabolism and time-varying maintenance activity. Such culture-related activities hamper the use of traditional, software sensor-based algorithms, such as the extended kalman filter (EKF). In the approach presented here, the individual effects of the endogenous decay and the true maintenance processes have been lumped to represent a modified maintenance coefficient, m(c). Model equations that relate measurable process outputs, such as the carbon dioxide evolution rate (CER) and biomass, to the observable process parameters (such as net specific growth rate and the modified maintenance coefficient) are proposed. These model equations are used in an estimator that can formally accommodate delayed, infrequent measurements of the culture states (such as the biomass) as well as frequent, culture-related secondary measurements (such as the CER). The resulting multirate software sensor-based estimation strategy is used to monitor biomass profiles as well as profiles of critical fermentation parameters, such as the specific growth for a fed-batch fermentation of Streptomyces clavuligerus.

  11. The effect of memory in the stochastic master equation analyzed using the stochastic Liouville equation of motion. Electronic energy migration transfer between reorienting donor-donor, donor-acceptor chromophores

    NASA Astrophysics Data System (ADS)

    Håkansson, Pär; Westlund, Per-Olof

    2005-01-01

    This paper discusses the process of energy migration transfer within reorientating chromophores using the stochastic master equation (SME) and the stochastic Liouville equation (SLE) of motion. We have found that the SME over-estimates the rate of the energy migration compared to the SLE solution for a case of weakly interacting chromophores. This discrepancy between SME and SLE is caused by a memory effect occurring when fluctuations in the dipole-dipole Hamiltonian ( H( t)) are on the same timescale as the intrinsic fast transverse relaxation rate characterized by (1/ T2). Thus the timescale critical for energy-transfer experiments is T2≈10 -13 s. An extended SME is constructed, accounting for the memory effect of the dipole-dipole Hamiltonian dynamics. The influence of memory on the interpretation of experiments is discussed.

  12. Patterns of Reinforcement and the Essential Values of Brands: I. Incorporation of Utilitarian and Informational Reinforcement into the Estimation of Demand

    ERIC Educational Resources Information Center

    Yan, Ji; Foxall, Gordon R.; Doyle, John R.

    2012-01-01

    Essential value is defined by Hursh and Silberberg (2008) as the value of reinforcers, presented in an exponential model (Equation 1). This study extends previous research concerned with animal behavior or human responding in therapeutic situations. We applied 9 available demand curves to consumer data that included 10,000+ data points collected…

  13. Latent transition models with latent class predictors: attention deficit hyperactivity disorder subtypes and high school marijuana use

    PubMed Central

    Reboussin, Beth A.; Ialongo, Nicholas S.

    2011-01-01

    Summary Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder which is most often diagnosed in childhood with symptoms often persisting into adulthood. Elevated rates of substance use disorders have been evidenced among those with ADHD, but recent research focusing on the relationship between subtypes of ADHD and specific drugs is inconsistent. We propose a latent transition model (LTM) to guide our understanding of how drug use progresses, in particular marijuana use, while accounting for the measurement error that is often found in self-reported substance use data. We extend the LTM to include a latent class predictor to represent empirically derived ADHD subtypes that do not rely on meeting specific diagnostic criteria. We begin by fitting two separate latent class analysis (LCA) models by using second-order estimating equations: a longitudinal LCA model to define stages of marijuana use, and a cross-sectional LCA model to define ADHD subtypes. The LTM model parameters describing the probability of transitioning between the LCA-defined stages of marijuana use and the influence of the LCA-defined ADHD subtypes on these transition rates are then estimated by using a set of first-order estimating equations given the LCA parameter estimates. A robust estimate of the LTM parameter variance that accounts for the variation due to the estimation of the two sets of LCA parameters is proposed. Solving three sets of estimating equations enables us to determine the underlying latent class structures independently of the model for the transition rates and simplifying assumptions about the correlation structure at each stage reduces the computational complexity. PMID:21461139

  14. Determination of the dispersion constant in a constrained vapor bubble thermosyphon

    NASA Technical Reports Server (NTRS)

    Dasgupta, Sunando; Plawsky, Joel L.; Wayner, Peter C., Jr.

    1995-01-01

    The isothermal profiles of the extended meniscus in a quartz cuvette were measured in a gravitational field using an image analyzing interferometer which is based on computer enhanced video microscopy of the naturally occurring interference fringes. The experimental results for heptane and pentane menisci were analyzed using the extended Young Laplace Equation. These isothermal results characterized the interfacial force field in-siru at the start of the heat transfer experiments by quantifying the dispersion constant, which is a function of the liquid-solid system and cleaning procedures. The experimentally obtained values of the disjoining pressure and the dispersion constants were compared to that predicted from the DLP theory and good agreements were obtained. The measurements are critical to the subsequent non-isothermal experiments because one of the major variables in the heat sink capability of the Constrained Vapor Bubble Thermosyphon, CVBT, is the dispersion constant. In all previous studies of micro heat pipes the value of the dispersion constant has been 'estimated'. One of the major advantages of the current glass cell is the ability to view the extended meniscus at all times. Experimentally, we find that the extended Young-Laplace Equation is an excellent model for the force field at the solid-liquid-vapor interfaces.

  15. Calculation of transonic flows using an extended integral equation method

    NASA Technical Reports Server (NTRS)

    Nixon, D.

    1976-01-01

    An extended integral equation method for transonic flows is developed. In the extended integral equation method velocities in the flow field are calculated in addition to values on the aerofoil surface, in contrast with the less accurate 'standard' integral equation method in which only surface velocities are calculated. The results obtained for aerofoils in subcritical flow and in supercritical flow when shock waves are present compare satisfactorily with the results of recent finite difference methods.

  16. Gibbs Sampler-Based λ-Dynamics and Rao-Blackwell Estimator for Alchemical Free Energy Calculation.

    PubMed

    Ding, Xinqiang; Vilseck, Jonah Z; Hayes, Ryan L; Brooks, Charles L

    2017-06-13

    λ-dynamics is a generalized ensemble method for alchemical free energy calculations. In traditional λ-dynamics, the alchemical switch variable λ is treated as a continuous variable ranging from 0 to 1 and an empirical estimator is utilized to approximate the free energy. In the present article, we describe an alternative formulation of λ-dynamics that utilizes the Gibbs sampler framework, which we call Gibbs sampler-based λ-dynamics (GSLD). GSLD, like traditional λ-dynamics, can be readily extended to calculate free energy differences between multiple ligands in one simulation. We also introduce a new free energy estimator, the Rao-Blackwell estimator (RBE), for use in conjunction with GSLD. Compared with the current empirical estimator, the advantage of RBE is that RBE is an unbiased estimator and its variance is usually smaller than the current empirical estimator. We also show that the multistate Bennett acceptance ratio equation or the unbinned weighted histogram analysis method equation can be derived using the RBE. We illustrate the use and performance of this new free energy computational framework by application to a simple harmonic system as well as relevant calculations of small molecule relative free energies of solvation and binding to a protein receptor. Our findings demonstrate consistent and improved performance compared with conventional alchemical free energy methods.

  17. Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer.

    PubMed

    Liu, Xiaokun; Yao, Yu; Ma, Kemao; Zhao, Hui; He, Fenghua

    2016-04-14

    A gyrowheel (GW) is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS) as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO) with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper.

  18. Application of Consider Covariance to the Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Lundberg, John B.

    1996-01-01

    The extended Kalman filter (EKF) is the basis for many applications of filtering theory to real-time problems where estimates of the state of a dynamical system are to be computed based upon some set of observations. The form of the EKF may vary somewhat from one application to another, but the fundamental principles are typically unchanged among these various applications. As is the case in many filtering applications, models of the dynamical system (differential equations describing the state variables) and models of the relationship between the observations and the state variables are created. These models typically employ a set of constants whose values are established my means of theory or experimental procedure. Since the estimates of the state are formed assuming that the models are perfect, any modeling errors will affect the accuracy of the computed estimates. Note that the modeling errors may be errors of commission (errors in terms included in the model) or omission (errors in terms excluded from the model). Consequently, it becomes imperative when evaluating the performance of real-time filters to evaluate the effect of modeling errors on the estimates of the state.

  19. Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer

    PubMed Central

    Liu, Xiaokun; Yao, Yu; Ma, Kemao; Zhao, Hui; He, Fenghua

    2016-01-01

    A gyrowheel (GW) is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS) as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO) with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper. PMID:27089347

  20. Estimating the Aqueous Solubility of Pharmaceutical Hydrates

    PubMed Central

    Franklin, Stephen J.; Younis, Usir S.; Myrdal, Paul B.

    2016-01-01

    Estimation of crystalline solute solubility is well documented throughout the literature. However, the anhydrous crystal form is typically considered with these models, which is not always the most stable crystal form in water. In this study an equation which predicts the aqueous solubility of a hydrate is presented. This research attempts to extend the utility of the ideal solubility equation by incorporating desolvation energetics of the hydrated crystal. Similar to the ideal solubility equation, which accounts for the energetics of melting, this model approximates the energy of dehydration to the entropy of vaporization for water. Aqueous solubilities, dehydration and melting temperatures, and log P values were collected experimentally and from the literature. The data set includes different hydrate types and a range of log P values. Three models are evaluated, the most accurate model approximates the entropy of dehydration (ΔSd) by the entropy of vaporization (ΔSvap) for water, and utilizes onset dehydration and melting temperatures in combination with log P. With this model, the average absolute error for the prediction of solubility of 14 compounds was 0.32 log units. PMID:27238488

  1. The Cauchy Problem in Local Spaces for the Complex Ginzburg-Landau EquationII. Contraction Methods

    NASA Astrophysics Data System (ADS)

    Ginibre, J.; Velo, G.

    We continue the study of the initial value problem for the complex Ginzburg-Landau equation (with a > 0, b > 0, g>= 0) in initiated in a previous paper [I]. We treat the case where the initial data and the solutions belong to local uniform spaces, more precisely to spaces of functions satisfying local regularity conditions and uniform bounds in local norms, but no decay conditions (or arbitrarily weak decay conditions) at infinity in . In [I] we used compactness methods and an extended version of recent local estimates [3] and proved in particular the existence of solutions globally defined in time with local regularity of the initial data corresponding to the spaces Lr for r>= 2 or H1. Here we treat the same problem by contraction methods. This allows us in particular to prove that the solutions obtained in [I] are unique under suitable subcriticality conditions, and to obtain for them additional regularity properties and uniform bounds. The method extends some of those previously applied to the nonlinear heat equation in global spaces to the framework of local uniform spaces.

  2. Open Group Transformations

    NASA Astrophysics Data System (ADS)

    Batalin, Igor; Marnelius, Robert

    Open groups whose generators are in arbitrary involutions may be quantized within a ghost extended framework in terms of a nilpotent BFV-BRST charge operator. Previously we have shown that generalized quantum Maurer-Cartan equations for arbitrary open groups may be extracted from the quantum connection operators and that they also follow from a simple quantum master equation involving an extended nilpotent BFV-BRST charge and a master charge. Here we give further details of these results. In addition we establish the general structure of the solutions of the quantum master equation. We also construct an extended formulation whose properties are determined by the extended BRST charge in the master equation.

  3. Equations for calculating hydrogeochemical reactions of minerals and gases such as CO2 at high pressures and temperatures

    USGS Publications Warehouse

    Appelo, C.A.J.; Parkhurst, David L.; Post, V.E.A.

    2014-01-01

    Calculating the solubility of gases and minerals at the high pressures of carbon capture and storage in geological reservoirs requires an accurate description of the molar volumes of aqueous species and the fugacity coefficients of gases. Existing methods for calculating the molar volumes of aqueous species are limited to a specific concentration matrix (often seawater), have been fit for a limited temperature (below 60 °C) or pressure range, apply only at infinite dilution, or are defined for salts instead of individual ions. A more general and reliable calculation of apparent molar volumes of single ions is presented, based on a modified Redlich–Rosenfeld equation. The modifications consist of (1) using the Born equation to calculate the temperature dependence of the intrinsic volumes, following Helgeson–Kirkham–Flowers (HKF), but with Bradley and Pitzer’s expression for the dielectric permittivity of water, (2) using the pressure dependence of the extended Debye–Hückel equation to constrain the limiting slope of the molar volume with ionic strength, and (3) adopting the convention that the proton has zero volume at all ionic strengths, temperatures and pressures. The modifications substantially reduce the number of fitting parameters, while maintaining or even extending the range of temperature and pressure over which molar volumes can be accurately estimated. The coefficients in the HKF-modified-Redlich–Rosenfeld equation were fitted by least-squares on measured solution densities.The limiting volume and attraction factor in the Van der Waals equation of state can be estimated with the Peng–Robinson approach from the critical temperature, pressure, and acentric factor of a gas. The Van der Waals equation can then be used to determine the fugacity coefficients for pure gases and gases in a mixture, and the solubility of the gas can be calculated from the fugacity, the molar volume in aqueous solution, and the equilibrium constant. The coefficients for the Peng–Robinson equations are readily available in the literature.The required equations have been implemented in PHREEQC, version 3, and the parameters for calculating the partial molar volumes and fugacity coefficients have been added to the databases that are distributed with PHREEQC. The ease of use and power of the formulation are illustrated by calculating the solubility of CO2 at high pressures and temperatures, and comparing with well-known examples from the geochemical literature. The equations and parameterizations are suitable for wide application in hydrogeochemical systems, especially in the field of carbon capture and storage.

  4. Equations for calculating hydrogeochemical reactions of minerals and gases such as CO2 at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Appelo, C. A. J.; Parkhurst, D. L.; Post, V. E. A.

    2014-01-01

    Calculating the solubility of gases and minerals at the high pressures of carbon capture and storage in geological reservoirs requires an accurate description of the molar volumes of aqueous species and the fugacity coefficients of gases. Existing methods for calculating the molar volumes of aqueous species are limited to a specific concentration matrix (often seawater), have been fit for a limited temperature (below 60 °C) or pressure range, apply only at infinite dilution, or are defined for salts instead of individual ions. A more general and reliable calculation of apparent molar volumes of single ions is presented, based on a modified Redlich-Rosenfeld equation. The modifications consist of (1) using the Born equation to calculate the temperature dependence of the intrinsic volumes, following Helgeson-Kirkham-Flowers (HKF), but with Bradley and Pitzer’s expression for the dielectric permittivity of water, (2) using the pressure dependence of the extended Debye-Hückel equation to constrain the limiting slope of the molar volume with ionic strength, and (3) adopting the convention that the proton has zero volume at all ionic strengths, temperatures and pressures. The modifications substantially reduce the number of fitting parameters, while maintaining or even extending the range of temperature and pressure over which molar volumes can be accurately estimated. The coefficients in the HKF-modified-Redlich-Rosenfeld equation were fitted by least-squares on measured solution densities. The limiting volume and attraction factor in the Van der Waals equation of state can be estimated with the Peng-Robinson approach from the critical temperature, pressure, and acentric factor of a gas. The Van der Waals equation can then be used to determine the fugacity coefficients for pure gases and gases in a mixture, and the solubility of the gas can be calculated from the fugacity, the molar volume in aqueous solution, and the equilibrium constant. The coefficients for the Peng-Robinson equations are readily available in the literature. The required equations have been implemented in PHREEQC, version 3, and the parameters for calculating the partial molar volumes and fugacity coefficients have been added to the databases that are distributed with PHREEQC. The ease of use and power of the formulation are illustrated by calculating the solubility of CO2 at high pressures and temperatures, and comparing with well-known examples from the geochemical literature. The equations and parameterizations are suitable for wide application in hydrogeochemical systems, especially in the field of carbon capture and storage.

  5. Approximate solutions of acoustic 3D integral equation and their application to seismic modeling and full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.

    2017-10-01

    Over the recent decades, a number of fast approximate solutions of Lippmann-Schwinger equation, which are more accurate than classic Born and Rytov approximations, were proposed in the field of electromagnetic modeling. Those developments could be naturally extended to acoustic and elastic fields; however, until recently, they were almost unknown in seismology. This paper presents several solutions of this kind applied to acoustic modeling for both lossy and lossless media. We evaluated the numerical merits of those methods and provide an estimation of their numerical complexity. In our numerical realization we use the matrix-free implementation of the corresponding integral operator. We study the accuracy of those approximate solutions and demonstrate, that the quasi-analytical approximation is more accurate, than the Born approximation. Further, we apply the quasi-analytical approximation to the solution of the inverse problem. It is demonstrated that, this approach improves the estimation of the data gradient, comparing to the Born approximation. The developed inversion algorithm is based on the conjugate-gradient type optimization. Numerical model study demonstrates that the quasi-analytical solution significantly reduces computation time of the seismic full-waveform inversion. We also show how the quasi-analytical approximation can be extended to the case of elastic wavefield.

  6. Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations.

    PubMed

    Tornøe, Christoffer W; Overgaard, Rune V; Agersø, Henrik; Nielsen, Henrik A; Madsen, Henrik; Jonsson, E Niclas

    2005-08-01

    The objective of the present analysis was to explore the use of stochastic differential equations (SDEs) in population pharmacokinetic/pharmacodynamic (PK/PD) modeling. The intra-individual variability in nonlinear mixed-effects models based on SDEs is decomposed into two types of noise: a measurement and a system noise term. The measurement noise represents uncorrelated error due to, for example, assay error while the system noise accounts for structural misspecifications, approximations of the dynamical model, and true random physiological fluctuations. Since the system noise accounts for model misspecifications, the SDEs provide a diagnostic tool for model appropriateness. The focus of the article is on the implementation of the Extended Kalman Filter (EKF) in NONMEM for parameter estimation in SDE models. Various applications of SDEs in population PK/PD modeling are illustrated through a systematic model development example using clinical PK data of the gonadotropin releasing hormone (GnRH) antagonist degarelix. The dynamic noise estimates were used to track variations in model parameters and systematically build an absorption model for subcutaneously administered degarelix. The EKF-based algorithm was successfully implemented in NONMEM for parameter estimation in population PK/PD models described by systems of SDEs. The example indicated that it was possible to pinpoint structural model deficiencies, and that valuable information may be obtained by tracking unexplained variations in parameters.

  7. GARCH modelling of covariance in dynamical estimation of inverse solutions

    NASA Astrophysics Data System (ADS)

    Galka, Andreas; Yamashita, Okito; Ozaki, Tohru

    2004-12-01

    The problem of estimating unobserved states of spatially extended dynamical systems poses an inverse problem, which can be solved approximately by a recently developed variant of Kalman filtering; in order to provide the model of the dynamics with more flexibility with respect to space and time, we suggest to combine the concept of GARCH modelling of covariance, well known in econometrics, with Kalman filtering. We formulate this algorithm for spatiotemporal systems governed by stochastic diffusion equations and demonstrate its feasibility by presenting a numerical simulation designed to imitate the situation of the generation of electroencephalographic recordings by the human cortex.

  8. Attitude Representations for Kalman Filtering

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The four-component quaternion has the lowest dimensionality possible for a globally nonsingular attitude representation, it represents the attitude matrix as a homogeneous quadratic function, and its dynamic propagation equation is bilinear in the quaternion and the angular velocity. The quaternion is required to obey a unit norm constraint, though, so Kalman filters often employ a quaternion for the global attitude estimate and a three-component representation for small errors about the estimate. We consider these mixed attitude representations for both a first-order Extended Kalman filter and a second-order filter, as well for quaternion-norm-preserving attitude propagation.

  9. Matter effects on binary neutron star waveforms

    NASA Astrophysics Data System (ADS)

    Read, Jocelyn S.; Baiotti, Luca; Creighton, Jolien D. E.; Friedman, John L.; Giacomazzo, Bruno; Kyutoku, Koutarou; Markakis, Charalampos; Rezzolla, Luciano; Shibata, Masaru; Taniguchi, Keisuke

    2013-08-01

    Using an extended set of equations of state and a multiple-group multiple-code collaborative effort to generate waveforms, we improve numerical-relativity-based data-analysis estimates of the measurability of matter effects in neutron-star binaries. We vary two parameters of a parametrized piecewise-polytropic equation of state (EOS) to analyze the measurability of EOS properties, via a parameter Λ that characterizes the quadrupole deformability of an isolated neutron star. We find that, to within the accuracy of the simulations, the departure of the waveform from point-particle (or spinless double black-hole binary) inspiral increases monotonically with Λ and changes in the EOS that did not change Λ are not measurable. We estimate with two methods the minimal and expected measurability of Λ in second- and third-generation gravitational-wave detectors. The first estimate using numerical waveforms alone shows that two EOSs which vary in radius by 1.3 km are distinguishable in mergers at 100 Mpc. The second estimate relies on the construction of hybrid waveforms by matching to post-Newtonian inspiral and estimates that the same EOSs are distinguishable in mergers at 300 Mpc. We calculate systematic errors arising from numerical uncertainties and hybrid construction, and we estimate the frequency at which such effects would interfere with template-based searches.

  10. A flexible model for correlated medical costs, with application to medical expenditure panel survey data.

    PubMed

    Chen, Jinsong; Liu, Lei; Shih, Ya-Chen T; Zhang, Daowen; Severini, Thomas A

    2016-03-15

    We propose a flexible model for correlated medical cost data with several appealing features. First, the mean function is partially linear. Second, the distributional form for the response is not specified. Third, the covariance structure of correlated medical costs has a semiparametric form. We use extended generalized estimating equations to simultaneously estimate all parameters of interest. B-splines are used to estimate unknown functions, and a modification to Akaike information criterion is proposed for selecting knots in spline bases. We apply the model to correlated medical costs in the Medical Expenditure Panel Survey dataset. Simulation studies are conducted to assess the performance of our method. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Uncertainty analysis of a three-parameter Budyko-type equation at annual and monthly time scales

    NASA Astrophysics Data System (ADS)

    Mianabadi, Ameneh; Alizadeh, Amin; Sanaeinejad, Hossein; Ghahraman, Bijan; Davary, Kamran; Shahedi, Mehri; Talebi, Fatemeh

    2017-04-01

    The Budyko curves can estimate mean annual evaporation in catchment scale as a function of precipitation and potential evaporation. They are used for the steady-state catchments with the negligible water storage change. In the non-steady-state catchments, especially the irrigated ones, and in the small spatial and temporal scales, the water storage change is not negligible and, therefore, the Budyko curves are limited. In these cases, in addition to precipitation, another water resources are available for evaporation including groundwater depletion and initial soil moisture. Therefore, evaporation exceeds precipitation and the data does not follow the original Budyko framework. In this study, the two-parameter Budyko equation of Greve et al. (2016) was considered. They proposed a Budyko-type equation in which they changed the boundary condition of water-limited line and added a new parameter to the Fu equation. Based on Chen et al. (2013)'s suggestion, in arid regions where aridity index is more than one, the Budyko curve can be shifted to the right direction of aridity index axis. Therefore, in this study, we combined Greve et al. (2016)'s equation and Chen et al. (2013)'s equation and proposed a new equation with three parameters (y0, k, c) to estimate the monthly and annual evaporation of five semi-arid watersheds in Kavir-e-Markazi basin. E- = F(φ,y ,k,c) = 1 + (φ - c)- (1+ (1- y )k-1(φ - c)k)1k P 0 0 In this equation E, P and Φ are evaporation, precipitation and aridity index, respectively. To calibrate the new Budyko curve, we used the evaporation estimated by water balance equation for 11 water years (2002-2012). Due to the variability of watersheds characteristics and climate conditions, we used the GLUE (Generalized Likelihood Uncertainty Estimation) to calibrate the proposed equation to increase the reliability of the model. Based on the GLUE, the parameter sets with the highest value of likelihood were estimated as y0=0.02, k=3.70 and c=3.61 at annual scale and y0=0.07, k=2.50 and c=0.97 at monthly scale. The results showed that the proposed equation can estimate the annual evaporation reasonably with R2=0.93 and RMSE=18.5 mm year-1. Also it can estimate evaporation at monthly scale with R2=0.88 and RMSE=7.9 mm month-1. The posterior distribution function of the parameters showed that parameters uncertainty would decrease by GLUE method, this uncertainty reduction (and therefore the sensitivity of the equation to the parameters) is different for each parameter. Chen, X., Alimohammadi, N., Wang, D. 2013. Modeling interannual variability of seasonal evaporation and storage change based on the extended Budyko framework. Water Resources Research, 49(9):6067-6078. Greve, P., Gudmundsson, L., Orlowsky, B., Seneviratne, S.I. 2016. A two-parameter Budyko function to represent conditions under which evapotranspiration exceeds precipitation. Hydrology and Earth System Sciences, 20(6): 2195-2205. DOI:10.5194/hess-20-2195-2016.

  12. Efecto de la difusión y la velocidad en la ionización del átomo de Carbono

    NASA Astrophysics Data System (ADS)

    Rovira, M. G.; Fontenla, J. M.

    The equations of statistical equilibrium for all ionization states of the atom are solved. The effects of diffusion and center of mass velocity are included. In order to estimate the modifications of the ionization curves, they were applied to the Carbon atom. To solve these equations, solar prominences' models obtained in a previous paper were adopted. They were extended to reach a temperature of 1.5 × 106 K and the complete model of the prominence was calculated. Ionization curves for different values of velocity, diffusion and medium models were obtained. The different models represent structures with different densities. Considerable modifications due to these effects are found.

  13. Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.; Kumar, Dipankar; Chakrabarty, Anuz Kumar

    2018-05-01

    The (2+1)-dimensional hyperbolic and cubic-quintic nonlinear Schrödinger equations describe the propagation of ultra-short pulses in optical fibers of nonlinear media. By using an extended sinh-Gordon equation expansion method, some new complex hyperbolic and trigonometric functions prototype solutions for two nonlinear Schrödinger equations were derived. The acquired new complex hyperbolic and trigonometric solutions are expressed by dark, bright, combined dark-bright, singular and combined singular solitons. The obtained results are more compatible than those of other applied methods. The extended sinh-Gordon equation expansion method is a more powerful and robust mathematical tool for generating new optical solitary wave solutions for many other nonlinear evolution equations arising in the propagation of optical pulses.

  14. Transformation of nonlinear discrete-time system into the extended observer form

    NASA Astrophysics Data System (ADS)

    Kaparin, V.; Kotta, Ü.

    2018-04-01

    The paper addresses the problem of transforming discrete-time single-input single-output nonlinear state equations into the extended observer form, which, besides the input and output, also depends on a finite number of their past values. Necessary and sufficient conditions for the existence of both the extended coordinate and output transformations, solving the problem, are formulated in terms of differential one-forms, associated with the input-output equation, corresponding to the state equations. An algorithm for transformation of state equations into the extended observer form is proposed and illustrated by an example. Moreover, the considered approach is compared with the method of dynamic observer error linearisation, which likewise is intended to enlarge the class of systems transformable into an observer form.

  15. Assessing assay agreement estimation for multiple left-censored data: a multiple imputation approach.

    PubMed

    Lapidus, Nathanael; Chevret, Sylvie; Resche-Rigon, Matthieu

    2014-12-30

    Agreement between two assays is usually based on the concordance correlation coefficient (CCC), estimated from the means, standard deviations, and correlation coefficient of these assays. However, such data will often suffer from left-censoring because of lower limits of detection of these assays. To handle such data, we propose to extend a multiple imputation approach by chained equations (MICE) developed in a close setting of one left-censored assay. The performance of this two-step approach is compared with that of a previously published maximum likelihood estimation through a simulation study. Results show close estimates of the CCC by both methods, although the coverage is improved by our MICE proposal. An application to cytomegalovirus quantification data is provided. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Simultaneous Localization and Mapping with Iterative Sparse Extended Information Filter for Autonomous Vehicles.

    PubMed

    He, Bo; Liu, Yang; Dong, Diya; Shen, Yue; Yan, Tianhong; Nian, Rui

    2015-08-13

    In this paper, a novel iterative sparse extended information filter (ISEIF) was proposed to solve the simultaneous localization and mapping problem (SLAM), which is very crucial for autonomous vehicles. The proposed algorithm solves the measurement update equations with iterative methods adaptively to reduce linearization errors. With the scalability advantage being kept, the consistency and accuracy of SEIF is improved. Simulations and practical experiments were carried out with both a land car benchmark and an autonomous underwater vehicle. Comparisons between iterative SEIF (ISEIF), standard EKF and SEIF are presented. All of the results convincingly show that ISEIF yields more consistent and accurate estimates compared to SEIF and preserves the scalability advantage over EKF, as well.

  17. Stochastic goal-oriented error estimation with memory

    NASA Astrophysics Data System (ADS)

    Ackmann, Jan; Marotzke, Jochem; Korn, Peter

    2017-11-01

    We propose a stochastic dual-weighted error estimator for the viscous shallow-water equation with boundaries. For this purpose, previous work on memory-less stochastic dual-weighted error estimation is extended by incorporating memory effects. The memory is introduced by describing the local truncation error as a sum of time-correlated random variables. The random variables itself represent the temporal fluctuations in local truncation errors and are estimated from high-resolution information at near-initial times. The resulting error estimator is evaluated experimentally in two classical ocean-type experiments, the Munk gyre and the flow around an island. In these experiments, the stochastic process is adapted locally to the respective dynamical flow regime. Our stochastic dual-weighted error estimator is shown to provide meaningful error bounds for a range of physically relevant goals. We prove, as well as show numerically, that our approach can be interpreted as a linearized stochastic-physics ensemble.

  18. Concurrent hyperthermia estimation schemes based on extended Kalman filtering and reduced-order modelling.

    PubMed

    Potocki, J K; Tharp, H S

    1993-01-01

    The success of treating cancerous tissue with heat depends on the temperature elevation, the amount of tissue elevated to that temperature, and the length of time that the tissue temperature is elevated. In clinical situations the temperature of most of the treated tissue volume is unknown, because only a small number of temperature sensors can be inserted into the tissue. A state space model based on a finite difference approximation of the bioheat transfer equation (BHTE) is developed for identification purposes. A full-order extended Kalman filter (EKF) is designed to estimate both the unknown blood perfusion parameters and the temperature at unmeasured locations. Two reduced-order estimators are designed as computationally less intensive alternatives to the full-order EKF. Simulation results show that the success of the estimation scheme depends strongly on the number and location of the temperature sensors. Superior results occur when a temperature sensor exists in each unknown blood perfusion zone, and the number of sensors is at least as large as the number of unknown perfusion zones. Unacceptable results occur when there are more unknown perfusion parameters than temperature sensors, or when the sensors are placed in locations that do not sample the unknown perfusion information.

  19. On the exact solutions of high order wave equations of KdV type (I)

    NASA Astrophysics Data System (ADS)

    Bulut, Hasan; Pandir, Yusuf; Baskonus, Haci Mehmet

    2014-12-01

    In this paper, by means of a proper transformation and symbolic computation, we study high order wave equations of KdV type (I). We obtained classification of exact solutions that contain soliton, rational, trigonometric and elliptic function solutions by using the extended trial equation method. As a result, the motivation of this paper is to utilize the extended trial equation method to explore new solutions of high order wave equation of KdV type (I). This method is confirmed by applying it to this kind of selected nonlinear equations.

  20. Online sequential Monte Carlo smoother for partially observed diffusion processes

    NASA Astrophysics Data System (ADS)

    Gloaguen, Pierre; Étienne, Marie-Pierre; Le Corff, Sylvain

    2018-12-01

    This paper introduces a new algorithm to approximate smoothed additive functionals of partially observed diffusion processes. This method relies on a new sequential Monte Carlo method which allows to compute such approximations online, i.e., as the observations are received, and with a computational complexity growing linearly with the number of Monte Carlo samples. The original algorithm cannot be used in the case of partially observed stochastic differential equations since the transition density of the latent data is usually unknown. We prove that it may be extended to partially observed continuous processes by replacing this unknown quantity by an unbiased estimator obtained for instance using general Poisson estimators. This estimator is proved to be consistent and its performance are illustrated using data from two models.

  1. A guidance and navigation system for continuous low thrust vehicles. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Tse, C. J. C.

    1973-01-01

    A midcourse guidance and navigation system for continuous low thrust vehicles is described. A set of orbit elements, known as the equinoctial elements, are selected as the state variables. The uncertainties are modelled statistically by random vector and stochastic processes. The motion of the vehicle and the measurements are described by nonlinear stochastic differential and difference equations respectively. A minimum time nominal trajectory is defined and the equation of motion and the measurement equation are linearized about this nominal trajectory. An exponential cost criterion is constructed and a linear feedback guidance law is derived to control the thrusting direction of the engine. Using this guidance law, the vehicle will fly in a trajectory neighboring the nominal trajectory. The extended Kalman filter is used for state estimation. Finally a short mission using this system is simulated. The results indicate that this system is very efficient for short missions.

  2. Estimating the Aqueous Solubility of Pharmaceutical Hydrates.

    PubMed

    Franklin, Stephen J; Younis, Usir S; Myrdal, Paul B

    2016-06-01

    Estimation of crystalline solute solubility is well documented throughout the literature. However, the anhydrous crystal form is typically considered with these models, which is not always the most stable crystal form in water. In this study, an equation which predicts the aqueous solubility of a hydrate is presented. This research attempts to extend the utility of the ideal solubility equation by incorporating desolvation energetics of the hydrated crystal. Similar to the ideal solubility equation, which accounts for the energetics of melting, this model approximates the energy of dehydration to the entropy of vaporization for water. Aqueous solubilities, dehydration and melting temperatures, and log P values were collected experimentally and from the literature. The data set includes different hydrate types and a range of log P values. Three models are evaluated, the most accurate model approximates the entropy of dehydration (ΔSd) by the entropy of vaporization (ΔSvap) for water, and utilizes onset dehydration and melting temperatures in combination with log P. With this model, the average absolute error for the prediction of solubility of 14 compounds was 0.32 log units. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Exact and approximate Fourier rebinning algorithms for the solution of the data truncation problem in 3-D PET.

    PubMed

    Bouallègue, Fayçal Ben; Crouzet, Jean-François; Comtat, Claude; Fourcade, Marjolaine; Mohammadi, Bijan; Mariano-Goulart, Denis

    2007-07-01

    This paper presents an extended 3-D exact rebinning formula in the Fourier space that leads to an iterative reprojection algorithm (iterative FOREPROJ), which enables the estimation of unmeasured oblique projection data on the basis of the whole set of measured data. In first approximation, this analytical formula also leads to an extended Fourier rebinning equation that is the basis for an approximate reprojection algorithm (extended FORE). These algorithms were evaluated on numerically simulated 3-D positron emission tomography (PET) data for the solution of the truncation problem, i.e., the estimation of the missing portions in the oblique projection data, before the application of algorithms that require complete projection data such as some rebinning methods (FOREX) or 3-D reconstruction algorithms (3DRP or direct Fourier methods). By taking advantage of all the 3-D data statistics, the iterative FOREPROJ reprojection provides a reliable alternative to the classical FOREPROJ method, which only exploits the low-statistics nonoblique data. It significantly improves the quality of the external reconstructed slices without loss of spatial resolution. As for the approximate extended FORE algorithm, it clearly exhibits limitations due to axial interpolations, but will require clinical studies with more realistic measured data in order to decide on its pertinence.

  4. Estimating Finite Rate of Population Increase for Sharks Based on Vital Parameters

    PubMed Central

    Liu, Kwang-Ming; Chin, Chien-Pang; Chen, Chun-Hui; Chang, Jui-Han

    2015-01-01

    The vital parameter data for 62 stocks, covering 38 species, collected from the literature, including parameters of age, growth, and reproduction, were log-transformed and analyzed using multivariate analyses. Three groups were identified and empirical equations were developed for each to describe the relationships between the predicted finite rates of population increase (λ’) and the vital parameters, maximum age (Tmax), age at maturity (Tm), annual fecundity (f/Rc)), size at birth (Lb), size at maturity (Lm), and asymptotic length (L∞). Group (1) included species with slow growth rates (0.034 yr-1 < k < 0.103 yr-1) and extended longevity (26 yr < Tmax < 81 yr), e.g., shortfin mako Isurus oxyrinchus, dusky shark Carcharhinus obscurus, etc.; Group (2) included species with fast growth rates (0.103 yr-1 < k < 0.358 yr-1) and short longevity (9 yr < Tmax < 26 yr), e.g., starspotted smoothhound Mustelus manazo, gray smoothhound M. californicus, etc.; Group (3) included late maturing species (Lm/L∞ ≧ 0.75) with moderate longevity (Tmax < 29 yr), e.g., pelagic thresher Alopias pelagicus, sevengill shark Notorynchus cepedianus. The empirical equation for all data pooled was also developed. The λ’ values estimated by these empirical equations showed good agreement with those calculated using conventional demographic analysis. The predictability was further validated by an independent data set of three species. The empirical equations developed in this study not only reduce the uncertainties in estimation but also account for the difference in life history among groups. This method therefore provides an efficient and effective approach to the implementation of precautionary shark management measures. PMID:26576058

  5. Analyzing a stochastic time series obeying a second-order differential equation.

    PubMed

    Lehle, B; Peinke, J

    2015-06-01

    The stochastic properties of a Langevin-type Markov process can be extracted from a given time series by a Markov analysis. Also processes that obey a stochastically forced second-order differential equation can be analyzed this way by employing a particular embedding approach: To obtain a Markovian process in 2N dimensions from a non-Markovian signal in N dimensions, the system is described in a phase space that is extended by the temporal derivative of the signal. For a discrete time series, however, this derivative can only be calculated by a differencing scheme, which introduces an error. If the effects of this error are not accounted for, this leads to systematic errors in the estimation of the drift and diffusion functions of the process. In this paper we will analyze these errors and we will propose an approach that correctly accounts for them. This approach allows an accurate parameter estimation and, additionally, is able to cope with weak measurement noise, which may be superimposed to a given time series.

  6. A prefiltering version of the Kalman filter with new numerical integration formulas for Riccati equations

    NASA Technical Reports Server (NTRS)

    Womble, M. E.; Potter, J. E.

    1975-01-01

    A prefiltering version of the Kalman filter is derived for both discrete and continuous measurements. The derivation consists of determining a single discrete measurement that is equivalent to either a time segment of continuous measurements or a set of discrete measurements. This prefiltering version of the Kalman filter easily handles numerical problems associated with rapid transients and ill-conditioned Riccati matrices. Therefore, the derived technique for extrapolating the Riccati matrix from one time to the next constitutes a new set of integration formulas which alleviate ill-conditioning problems associated with continuous Riccati equations. Furthermore, since a time segment of continuous measurements is converted into a single discrete measurement, Potter's square root formulas can be used to update the state estimate and its error covariance matrix. Therefore, if having the state estimate and its error covariance matrix at discrete times is acceptable, the prefilter extends square root filtering with all its advantages, to continuous measurement problems.

  7. A guidance and navigation system for continuous low-thrust vehicles. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Jack-Chingtse, C.

    1973-01-01

    A midcourse guidance and navigation system for continuous low thrust vehicles was developed. The equinoctial elements are the state variables. Uncertainties are modelled statistically by random vector and stochastic processes. The motion of the vehicle and the measurements are described by nonlinear stochastic differential and difference equations respectively. A minimum time trajectory is defined; equations of motion and measurements are linearized about this trajectory. An exponential cost criterion is constructed and a linear feedback quidance law is derived. An extended Kalman filter is used for state estimation. A short mission using this system is simulated. It is indicated that this system is efficient for short missions, but longer missions require accurate trajectory and ground based measurements.

  8. Shock Melting of Permafrost on Mars: Water Ice Multiphase Equation of State for Numerical Modeling and Its Testing

    NASA Technical Reports Server (NTRS)

    Ivanov, B. A.

    2005-01-01

    The presence of water/ice/brine in upper layers of Martian crust affects many processes of impact cratering. Modeling of these effects promises better understanding of Martian cratering records. We present here the new ANEOS-based multiphase equation of state for water/ice constructed for usage in hydrocodes and first numerical experiments on permafrost shock melting. Preliminary results show that due to multiple shock compression of ice inclusions in rocks the entropy jump in shocked ice is smaller than in pure ice for the same shock pressure. Hence previous estimates of ice melting during impact cratering on Mars should be re-evaluated. Additional information is included in the original extended abstract.

  9. Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions.

    PubMed

    Ankiewicz, Adrian; Wang, Yan; Wabnitz, Stefan; Akhmediev, Nail

    2014-01-01

    We consider an extended nonlinear Schrödinger equation with higher-order odd (third order) and even (fourth order) terms with variable coefficients. The resulting equation has soliton solutions and approximate rogue wave solutions. We present these solutions up to second order. Moreover, specific constraints on the parameters of higher-order terms provide integrability of the resulting equation, providing a corresponding Lax pair. Particular cases of this equation are the Hirota and the Lakshmanan-Porsezian-Daniel equations. The resulting integrable equation admits exact rogue wave solutions. In particular cases, mentioned above, these solutions are reduced to the rogue wave solutions of the corresponding equations.

  10. Satellite Angular Rate Estimation From Vector Measurements

    NASA Technical Reports Server (NTRS)

    Azor, Ruth; Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    1996-01-01

    This paper presents an algorithm for estimating the angular rate vector of a satellite which is based on the time derivatives of vector measurements expressed in a reference and body coordinate. The computed derivatives are fed into a spacial Kalman filter which yields an estimate of the spacecraft angular velocity. The filter, named Extended Interlaced Kalman Filter (EIKF), is an extension of the Kalman filter which, although being linear, estimates the state of a nonlinear dynamic system. It consists of two or three parallel Kalman filters whose individual estimates are fed to one another and are considered as known inputs by the other parallel filter(s). The nonlinear dynamics stem from the nonlinear differential equation that describes the rotation of a three dimensional body. Initial results, using simulated data, and real Rossi X ray Timing Explorer (RXTE) data indicate that the algorithm is efficient and robust.

  11. An extended micromechanics method for probing interphase properties in polymer nanocomposites [An extended micromechanics method for overlapping geometries with application to polymer nanocomposites

    DOE PAGES

    Liu, Zeliang; Moore, John A.; Liu, Wing Kam

    2016-05-03

    Inclusions comprised on filler particles and interphase regions commonly form complex morphologies in polymer nanocomposites. Addressing these morphologies as systems of overlapping simple shapes allows for the study of dilute particles, clustered particles, and interacting interphases all in one general modeling framework. To account for the material properties in these overlapping geometries, weighted-mean and additive overlapping conditions are introduced and the corresponding inclusion-wise integral equations are formulated. An extended micromechanics method based on these overlapping conditions for linear elastic and viscoelastic heterogeneous material is then developed. An important feature of the proposed approach is that the effect of both themore » geometric overlapping (clustered particles) and physical overlapping (interacting interphases) on the effective properties can be distinguished. Lastly, we apply the extended micromechanics method to a viscoelastic polymer nanocomposite with interphase regions, and estimate the properties and thickness of the interphase region based on experimental data for carbon-black filled styrene butadiene rubbers.« less

  12. An extended micromechanics method for probing interphase properties in polymer nanocomposites [An extended micromechanics method for overlapping geometries with application to polymer nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zeliang; Moore, John A.; Liu, Wing Kam

    Inclusions comprised on filler particles and interphase regions commonly form complex morphologies in polymer nanocomposites. Addressing these morphologies as systems of overlapping simple shapes allows for the study of dilute particles, clustered particles, and interacting interphases all in one general modeling framework. To account for the material properties in these overlapping geometries, weighted-mean and additive overlapping conditions are introduced and the corresponding inclusion-wise integral equations are formulated. An extended micromechanics method based on these overlapping conditions for linear elastic and viscoelastic heterogeneous material is then developed. An important feature of the proposed approach is that the effect of both themore » geometric overlapping (clustered particles) and physical overlapping (interacting interphases) on the effective properties can be distinguished. Lastly, we apply the extended micromechanics method to a viscoelastic polymer nanocomposite with interphase regions, and estimate the properties and thickness of the interphase region based on experimental data for carbon-black filled styrene butadiene rubbers.« less

  13. A note on the extended dispersionless Toda hierarchy

    NASA Astrophysics Data System (ADS)

    Lee, Niann-Chern; Tu, Ming-Hsien

    2013-04-01

    We derive dispersionless Hirota equations for the extended dispersionless Toda hierarchy. We show that the dispersionless Hirota equations are just a direct consequence of the genus-zero topological recurrence relation for the topological ℂP1 model. Using the dispersionless Hirota equations, we compute the twopoint functions and express the result in terms of Catalan numbers

  14. Extending Bell's beables to encompass dissipation, decoherence, and the quantum-to-classical transition through quantum trajectories

    NASA Astrophysics Data System (ADS)

    Lorenzen, F.; de Ponte, M. A.; Moussa, M. H. Y.

    2009-09-01

    In this paper, employing the Itô stochastic Schrödinger equation, we extend Bell’s beable interpretation of quantum mechanics to encompass dissipation, decoherence, and the quantum-to-classical transition through quantum trajectories. For a particular choice of the source of stochasticity, the one leading to a dissipative Lindblad-type correction to the Hamiltonian dynamics, we find that the diffusive terms in Nelsons stochastic trajectories are naturally incorporated into Bohm’s causal dynamics, yielding a unified Bohm-Nelson theory. In particular, by analyzing the interference between quantum trajectories, we clearly identify the decoherence time, as estimated from the quantum formalism. We also observe the quantum-to-classical transition in the convergence of the infinite ensemble of quantum trajectories to their classical counterparts. Finally, we show that our extended beables circumvent the problems in Bohm’s causal dynamics regarding stationary states in quantum mechanics.

  15. Extension of Nikiforov-Uvarov method for the solution of Heun equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karayer, H., E-mail: hale.karayer@gmail.com; Demirhan, D.; Büyükkılıç, F.

    2015-06-15

    We report an alternative method to solve second order differential equations which have at most four singular points. This method is developed by changing the degrees of the polynomials in the basic equation of Nikiforov-Uvarov (NU) method. This is called extended NU method for this paper. The eigenvalue solutions of Heun equation and confluent Heun equation are obtained via extended NU method. Some quantum mechanical problems such as Coulomb problem on a 3-sphere, two Coulombically repelling electrons on a sphere, and hyperbolic double-well potential are investigated by this method.

  16. Magnitude and frequency of floods in small drainage basins in Idaho

    USGS Publications Warehouse

    Thomas, C.A.; Harenberg, W.A.; Anderson, J.M.

    1973-01-01

    A method is presented in this report for determining magnitude and frequency of floods on streams with drainage areas between 0.5 and 200 square miles. The method relates basin characteristics, including drainage area, percentage of forest cover, percentage of water area, latitude, and longitude, with peak flow characteristics. Regression equations for each of eight regions are presented for determination of QIQ/ the peak discharge, which, on the average, will be exceeded once in 10 years. Peak flows, Q25 and Q 50 , can then be estimated from Q25/Q10 and Q-50/Q-10 ratios developed for each region. Nomographs are included which solve the equations for basins between 1 and 50 square miles. The regional regression equations were developed using multiple regression techniques. Annual peaks for 303 sites were analyzed in the study. These included all records on unregulated streams with drainage areas less than about 500 square miles with 10 years or more of record or which could readily be extended to 10 years on the basis of nearby streams. The log-Pearson Type III method as modified and a digital computer were employed to estimate magnitude and frequency of floods for each of the 303 gaged sites. A large number of physical and climatic basin characteristics were determined for each of the gaged sites. The multiple regression method was then applied to determine the equations relating the floodflows and the most significant basin characteristics. For convenience of the users, several equations were simplified and some complex characteristics were deleted at the sacrifice of some increase in the standard error. Standard errors of estimate and many other statistical data were computed in the analysis process and are available in the Boise district office files. The analysis showed that QIQ was the best defined and most practical index flood for determination of the Q25 and 0,50 flood estimates.Regression equations are not developed because of poor definition for areas which total about 20,000 square miles, most of which are in southern Idaho. These areas are described in the report to prevent use of regression equations where they do not apply. They include urbanized areas, streams affected by regulation or diversion by works of man, unforested areas, streams with gaining or losing reaches, streams draining alluvial valleys and the Snake Plain, intense thunderstorm areas, and scattered areas where records indicate recurring floods which depart from the regional equations. Maximum flows of record and basin locations are summarized in tables and maps. The analysis indicates deficiencies in data exist. To improve knowledge regarding flood characteristics in poorly defined areas, the following data-collection programs are recommended. Gages should be operated on a few selected small streams for an extended period to define floods at long recurrence intervals. Crest-stage gages should be operated in representative basins in urbanized areas, newly developed irrigated areas and grasslands, and in unforested areas. Unusual floods should continue to be measured at miscellaneous sites on regulated streams and in intense thunderstorm-prone areas. The relationship between channel geometry and floodflow characteristics should be investigated as an alternative or supplement to operation of gaging stations. Documentation of historic flood data from newspapers and other sources would improve the basic flood-data base.

  17. Simultaneous Localization and Mapping with Iterative Sparse Extended Information Filter for Autonomous Vehicles

    PubMed Central

    He, Bo; Liu, Yang; Dong, Diya; Shen, Yue; Yan, Tianhong; Nian, Rui

    2015-01-01

    In this paper, a novel iterative sparse extended information filter (ISEIF) was proposed to solve the simultaneous localization and mapping problem (SLAM), which is very crucial for autonomous vehicles. The proposed algorithm solves the measurement update equations with iterative methods adaptively to reduce linearization errors. With the scalability advantage being kept, the consistency and accuracy of SEIF is improved. Simulations and practical experiments were carried out with both a land car benchmark and an autonomous underwater vehicle. Comparisons between iterative SEIF (ISEIF), standard EKF and SEIF are presented. All of the results convincingly show that ISEIF yields more consistent and accurate estimates compared to SEIF and preserves the scalability advantage over EKF, as well. PMID:26287194

  18. Analytical approach for the fractional differential equations by using the extended tanh method

    NASA Astrophysics Data System (ADS)

    Pandir, Yusuf; Yildirim, Ayse

    2018-07-01

    In this study, we consider analytical solutions of space-time fractional derivative foam drainage equation, the nonlinear Korteweg-de Vries equation with time and space-fractional derivatives and time-fractional reaction-diffusion equation by using the extended tanh method. The fractional derivatives are defined in the modified Riemann-Liouville context. As a result, various exact analytical solutions consisting of trigonometric function solutions, kink-shaped soliton solutions and new exact solitary wave solutions are obtained.

  19. Mean-square state and parameter estimation for stochastic linear systems with Gaussian and Poisson noises

    NASA Astrophysics Data System (ADS)

    Basin, M.; Maldonado, J. J.; Zendejo, O.

    2016-07-01

    This paper proposes new mean-square filter and parameter estimator design for linear stochastic systems with unknown parameters over linear observations, where unknown parameters are considered as combinations of Gaussian and Poisson white noises. The problem is treated by reducing the original problem to a filtering problem for an extended state vector that includes parameters as additional states, modelled as combinations of independent Gaussian and Poisson processes. The solution to this filtering problem is based on the mean-square filtering equations for incompletely polynomial states confused with Gaussian and Poisson noises over linear observations. The resulting mean-square filter serves as an identifier for the unknown parameters. Finally, a simulation example shows effectiveness of the proposed mean-square filter and parameter estimator.

  20. Modeling, Real-Time Estimation, and Identification of UWB Indoor Wireless Channels

    DOE PAGES

    Olama, Mohammed M.; Djouadi, Seddik M.; Li, Yanyan; ...

    2013-01-01

    Stochastic differential equations (SDEs) are used to model ultrawideband (UWB) indoor wireless channels. We show that the impulse responses for time-varying indoor wireless channels can be approximated in a mean-square sense as close as desired by impulse responses that can be realized by SDEs. The state variables represent the inphase and quadrature components of the UWB channel. The expected maximization and extended Kalman filter are employed to recursively identify and estimate the channel parameters and states, respectively, from online received signal strength measured data. Both resolvable and nonresolvable multipath received signals are considered and represented as small-scaled Nakagami fading. Themore » proposed models together with the estimation algorithm are tested using UWB indoor measurement data demonstrating the method’s viability and the results are presented.« less

  1. New formulations for tsunami runup estimation

    NASA Astrophysics Data System (ADS)

    Kanoglu, U.; Aydin, B.; Ceylan, N.

    2017-12-01

    We evaluate shoreline motion and maximum runup in two folds: One, we use linear shallow water-wave equations over a sloping beach and solve as initial-boundary value problem similar to the nonlinear solution of Aydın and Kanoglu (2017, Pure Appl. Geophys., https://doi.org/10.1007/s00024-017-1508-z). Methodology we present here is simple; it involves eigenfunction expansion and, hence, avoids integral transform techniques. We then use several different types of initial wave profiles with and without initial velocity, estimate shoreline properties and confirm classical runup invariance between linear and nonlinear theories. Two, we use the nonlinear shallow water-wave solution of Kanoglu (2004, J. Fluid Mech. 513, 363-372) to estimate maximum runup. Kanoglu (2004) presented a simple integral solution for the nonlinear shallow water-wave equations using the classical Carrier and Greenspan transformation, and further extended shoreline position and velocity to a simpler integral formulation. In addition, Tinti and Tonini (2005, J. Fluid Mech. 535, 33-64) defined initial condition in a very convenient form for near-shore events. We use Tinti and Tonini (2005) type initial condition in Kanoglu's (2004) shoreline integral solution, which leads further simplified estimates for shoreline position and velocity, i.e. algebraic relation. We then use this algebraic runup estimate to investigate effect of earthquake source parameters on maximum runup and present results similar to Sepulveda and Liu (2016, Coast. Eng. 112, 57-68).

  2. New extended (G'/G)-expansion method to solve nonlinear evolution equation: the (3 + 1)-dimensional potential-YTSF equation.

    PubMed

    Roshid, Harun-Or-; Akbar, M Ali; Alam, Md Nur; Hoque, Md Fazlul; Rahman, Nizhum

    2014-01-01

    In this article, a new extended (G'/G) -expansion method has been proposed for constructing more general exact traveling wave solutions of nonlinear evolution equations with the aid of symbolic computation. In order to illustrate the validity and effectiveness of the method, we pick the (3 + 1)-dimensional potential-YTSF equation. As a result, abundant new and more general exact solutions have been achieved of this equation. It has been shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in applied mathematics, engineering and mathematical physics.

  3. A new equation of state for better liquid density prediction of natural gas systems

    NASA Astrophysics Data System (ADS)

    Nwankwo, Princess C.

    Equations of state formulations, modifications and applications have remained active research areas since the success of van der Waal's equation in 1873. The need for better reservoir fluid modeling and characterization is of great importance to petroleum engineers who deal with thermodynamic related properties of petroleum fluids at every stage of the petroleum "life span" from its drilling, to production through the wellbore, to transportation, metering and storage. Equations of state methods are far less expensive (in terms of material cost and time) than laboratory or experimental forages and the results are interestingly not too far removed from the limits of acceptable accuracy. In most cases, the degree of accuracy obtained, by using various EOS's, though not appreciable, have been acceptable when considering the gain in time. The possibility of obtaining an equation of state which though simple in form and in use, could have the potential of further narrowing the present existing bias between experimentally determined and popular EOS estimated results spurred the interest that resulted in this study. This research study had as its chief objective, to develop a new equation of state that would more efficiently capture the thermodynamic properties of gas condensate fluids, especially the liquid phase density, which is the major weakness of other established and popular cubic equations of state. The set objective was satisfied by a new semi analytical cubic three parameter equation of state, derived by the modification of the attraction term contribution to pressure of the van der Waal EOS without compromising either structural simplicity or accuracy of estimating other vapor liquid equilibria properties. The application of new EOS to single and multi-component light hydrocarbon fluids recorded far lower error values than does the popular two parameter, Peng-Robinson's (PR) and three parameter Patel-Teja's (PT) equations of state. Furthermore, this research was able to extend the application of the generalized cubic equation of Coats (1985) to three parameter cubic equations of state, a feat, not yet recorded by any author in literature.

  4. Mathematical and computational studies of equilibrium capillary free surfaces

    NASA Technical Reports Server (NTRS)

    Albright, N.; Chen, N. F.; Concus, P.; Finn, R.

    1977-01-01

    The results of several independent studies are presented. The general question is considered of whether a wetting liquid always rises higher in a small capillary tube than in a larger one, when both are dipped vertically into an infinite reservoir. An analytical investigation is initiated to determine the qualitative behavior of the family of solutions of the equilibrium capillary free-surface equation that correspond to rotationally symmetric pendent liquid drops and the relationship of these solutions to the singular solution, which corresponds to an infinite spike of liquid extending downward to infinity. The block successive overrelaxation-Newton method and the generalized conjugate gradient method are investigated for solving the capillary equation on a uniform square mesh in a square domain, including the case for which the solution is unbounded at the corners. Capillary surfaces are calculated on the ellipse, on a circle with reentrant notches, and on other irregularly shaped domains using JASON, a general purpose program for solving nonlinear elliptic equations on a nonuniform quadrilaterial mesh. Analytical estimates for the nonexistence of solutions of the equilibrium capillary free-surface equation on the ellipse in zero gravity are evaluated.

  5. Small Sample Sizes Yield Biased Allometric Equations in Temperate Forests

    PubMed Central

    Duncanson, L.; Rourke, O.; Dubayah, R.

    2015-01-01

    Accurate quantification of forest carbon stocks is required for constraining the global carbon cycle and its impacts on climate. The accuracies of forest biomass maps are inherently dependent on the accuracy of the field biomass estimates used to calibrate models, which are generated with allometric equations. Here, we provide a quantitative assessment of the sensitivity of allometric parameters to sample size in temperate forests, focusing on the allometric relationship between tree height and crown radius. We use LiDAR remote sensing to isolate between 10,000 to more than 1,000,000 tree height and crown radius measurements per site in six U.S. forests. We find that fitted allometric parameters are highly sensitive to sample size, producing systematic overestimates of height. We extend our analysis to biomass through the application of empirical relationships from the literature, and show that given the small sample sizes used in common allometric equations for biomass, the average site-level biomass bias is ~+70% with a standard deviation of 71%, ranging from −4% to +193%. These findings underscore the importance of increasing the sample sizes used for allometric equation generation. PMID:26598233

  6. Neglected transport equations: extended Rankine-Hugoniot conditions and J -integrals for fracture

    NASA Astrophysics Data System (ADS)

    Davey, K.; Darvizeh, R.

    2016-09-01

    Transport equations in integral form are well established for analysis in continuum fluid dynamics but less so for solid mechanics. Four classical continuum mechanics transport equations exist, which describe the transport of mass, momentum, energy and entropy and thus describe the behaviour of density, velocity, temperature and disorder, respectively. However, one transport equation absent from the list is particularly pertinent to solid mechanics and that is a transport equation for movement, from which displacement is described. This paper introduces the fifth transport equation along with a transport equation for mechanical energy and explores some of the corollaries resulting from the existence of these equations. The general applicability of transport equations to discontinuous physics is discussed with particular focus on fracture mechanics. It is well established that bulk properties can be determined from transport equations by application of a control volume methodology. A control volume can be selected to be moving, stationary, mass tracking, part of, or enclosing the whole system domain. The flexibility of transport equations arises from their ability to tolerate discontinuities. It is insightful thus to explore the benefits derived from the displacement and mechanical energy transport equations, which are shown to be beneficial for capturing the physics of fracture arising from a displacement discontinuity. Extended forms of the Rankine-Hugoniot conditions for fracture are established along with extended forms of J -integrals.

  7. On the maximum principle for complete second-order elliptic operators in general domains

    NASA Astrophysics Data System (ADS)

    Vitolo, Antonio

    This paper is concerned with the maximum principle for second-order linear elliptic equations in a wide generality. By means of a geometric condition previously stressed by Berestycki-Nirenberg-Varadhan, Cabré was very able to improve the classical ABP estimate obtaining the maximum principle also in unbounded domains, such as infinite strips and open connected cones with closure different from the whole space. Now we introduce a new geometric condition that extends the result to a more general class of domains including the complements of hypersurfaces, as for instance the cut plane. The methods developed here allow us to deal with complete second-order equations, where the admissible first-order term, forced to be zero in a preceding result with Cafagna, depends on the geometry of the domain.

  8. Stochastic parameter estimation in nonlinear time-delayed vibratory systems with distributed delay

    NASA Astrophysics Data System (ADS)

    Torkamani, Shahab; Butcher, Eric A.

    2013-07-01

    The stochastic estimation of parameters and states in linear and nonlinear time-delayed vibratory systems with distributed delay is explored. The approach consists of first employing a continuous time approximation to approximate the delayed integro-differential system with a large set of ordinary differential equations having stochastic excitations. Then the problem of state and parameter estimation in the resulting stochastic ordinary differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the augmented filtering problem, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states. Similarly, the upper bound of the distributed delay can also be estimated by the proposed technique. As an illustrative example to a practical problem in vibrations, the parameter, delay upper bound, and state estimation from noise-corrupted measurements in a distributed force model widely used for modeling machine tool vibrations in the turning operation is investigated.

  9. Stability analysis solutions and optical solitons in extended nonlinear Schrödinger equation with higher-order odd and even terms

    NASA Astrophysics Data System (ADS)

    Peng, Wei-Qi; Tian, Shou-Fu; Zou, Li; Zhang, Tian-Tian

    2018-01-01

    In this paper, the extended nonlinear Schrödinger equation with higher-order odd (third order) and even (fourth order) terms is investigated, whose particular cases are the Hirota equation, the Sasa-Satsuma equation and Lakshmanan-Porsezian-Daniel equation by selecting some specific values on the parameters of higher-order terms. We first study the stability analysis of the equation. Then, using the ansatz method, we derive its bright, dark solitons and some constraint conditions which can guarantee the existence of solitons. Moreover, the Ricatti equation extension method is employed to derive some exact singular solutions. The outstanding characteristics of these solitons are analyzed via several diverting graphics.

  10. New solitary wave solutions of (3 + 1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified KdV-Zakharov-Kuznetsov equations and their applications

    NASA Astrophysics Data System (ADS)

    Lu, Dianchen; Seadawy, A. R.; Arshad, M.; Wang, Jun

    In this paper, new exact solitary wave, soliton and elliptic function solutions are constructed in various forms of three dimensional nonlinear partial differential equations (PDEs) in mathematical physics by utilizing modified extended direct algebraic method. Soliton solutions in different forms such as bell and anti-bell periodic, dark soliton, bright soliton, bright and dark solitary wave in periodic form etc are obtained, which have large applications in different branches of physics and other areas of applied sciences. The obtained solutions are also presented graphically. Furthermore, many other nonlinear evolution equations arising in mathematical physics and engineering can also be solved by this powerful, reliable and capable method. The nonlinear three dimensional extended Zakharov-Kuznetsov dynamica equation and (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsov equation are selected to show the reliability and effectiveness of the current method.

  11. Comparing Consider-Covariance Analysis with Sigma-Point Consider Filter and Linear-Theory Consider Filter Formulations

    NASA Technical Reports Server (NTRS)

    Lisano, Michael E.

    2007-01-01

    Recent literature in applied estimation theory reflects growing interest in the sigma-point (also called unscented ) formulation for optimal sequential state estimation, often describing performance comparisons with extended Kalman filters as applied to specific dynamical problems [c.f. 1, 2, 3]. Favorable attributes of sigma-point filters are described as including a lower expected error for nonlinear even non-differentiable dynamical systems, and a straightforward formulation not requiring derivation or implementation of any partial derivative Jacobian matrices. These attributes are particularly attractive, e.g. in terms of enabling simplified code architecture and streamlined testing, in the formulation of estimators for nonlinear spaceflight mechanics systems, such as filter software onboard deep-space robotic spacecraft. As presented in [4], the Sigma-Point Consider Filter (SPCF) algorithm extends the sigma-point filter algorithm to the problem of consider covariance analysis. Considering parameters in a dynamical system, while estimating its state, provides an upper bound on the estimated state covariance, which is viewed as a conservative approach to designing estimators for problems of general guidance, navigation and control. This is because, whether a parameter in the system model is observable or not, error in the knowledge of the value of a non-estimated parameter will increase the actual uncertainty of the estimated state of the system beyond the level formally indicated by the covariance of an estimator that neglects errors or uncertainty in that parameter. The equations for SPCF covariance evolution are obtained in a fashion similar to the derivation approach taken with standard (i.e. linearized or extended) consider parameterized Kalman filters (c.f. [5]). While in [4] the SPCF and linear-theory consider filter (LTCF) were applied to an illustrative linear dynamics/linear measurement problem, in the present work examines the SPCF as applied to nonlinear sequential consider covariance analysis, i.e. in the presence of nonlinear dynamics and nonlinear measurements. A simple SPCF for orbit determination, exemplifying an algorithm hosted in the guidance, navigation and control (GN&C) computer processor of a hypothetical robotic spacecraft, was implemented, and compared with an identically-parameterized (standard) extended, consider-parameterized Kalman filter. The onboard filtering scenario examined is a hypothetical spacecraft orbit about a small natural body with imperfectly-known mass. The formulations, relative complexities, and performances of the filters are compared and discussed.

  12. Revised techniques for estimating peak discharges from channel width in Montana

    USGS Publications Warehouse

    Parrett, Charles; Hull, J.A.; Omang, R.J.

    1987-01-01

    This study was conducted to develop new estimating equations based on channel width and the updated flood frequency curves of previous investigations. Simple regression equations for estimating peak discharges with recurrence intervals of 2, 5, 10 , 25, 50, and 100 years were developed for seven regions in Montana. The standard errors of estimates for the equations that use active channel width as the independent variables ranged from 30% to 87%. The standard errors of estimate for the equations that use bankfull width as the independent variable ranged from 34% to 92%. The smallest standard errors generally occurred in the prediction equations for the 2-yr flood, 5-yr flood, and 10-yr flood, and the largest standard errors occurred in the prediction equations for the 100-yr flood. The equations that use active channel width and the equations that use bankfull width were determined to be about equally reliable in five regions. In the West Region, the equations that use bankfull width were slightly more reliable than those based on active channel width, whereas in the East-Central Region the equations that use active channel width were slightly more reliable than those based on bankfull width. Compared with similar equations previously developed, the standard errors of estimate for the new equations are substantially smaller in three regions and substantially larger in two regions. Limitations on the use of the estimating equations include: (1) The equations are based on stable conditions of channel geometry and prevailing water and sediment discharge; (2) The measurement of channel width requires a site visit, preferably by a person with experience in the method, and involves appreciable measurement errors; (3) Reliability of results from the equations for channel widths beyond the range of definition is unknown. In spite of the limitations, the estimating equations derived in this study are considered to be as reliable as estimating equations based on basin and climatic variables. Because the two types of estimating equations are independent, results from each can be weighted inversely proportional to their variances, and averaged. The weighted average estimate has a variance less than either individual estimate. (Author 's abstract)

  13. Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts

    USGS Publications Warehouse

    Bent, Gardner C.; Waite, Andrew M.

    2013-01-01

    Regression equations were developed for estimating bankfull geometry—width, mean depth, cross-sectional area—and discharge for streams in Massachusetts. The equations provide water-resource and conservation managers with methods for estimating bankfull characteristics at specific stream sites in Massachusetts. This information can be used for the adminstration of the Commonwealth of Massachusetts Rivers Protection Act of 1996, which establishes a protected riverfront area extending from the mean annual high-water line corresponding to the elevation of bankfull discharge along each side of a perennial stream. Additionally, information on bankfull channel geometry and discharge are important to Federal, State, and local government agencies and private organizations involved in stream assessment and restoration projects. Regression equations are based on data from stream surveys at 33 sites (32 streamgages and 1 crest-stage gage operated by the U.S. Geological Survey) in and near Massachusetts. Drainage areas of the 33 sites ranged from 0.60 to 329 square miles (mi2). At 27 of the 33 sites, field data were collected and analyses were done to determine bankfull channel geometry and discharge as part of the present study. For 6 of the 33 sites, data on bankfull channel geometry and discharge were compiled from other studies done by the U.S. Geological Survey, Natural Resources Conservation Service of the U.S. Department of Agriculture, and the Vermont Department of Environmental Conservation. Similar techniques were used for field data collection and analysis for bankfull channel geometry and discharge at all 33 sites. Recurrence intervals of the bankfull discharge, which represent the frequency with which a stream fills its channel, averaged 1.53 years (median value 1.34 years) at the 33 sites. Simple regression equations were developed for bankfull width, mean depth, cross-sectional area, and discharge using drainage area, which is the most significant explanatory variable in estimating these bankfull characteristics. The use of drainage area as an explanatory variable is also the most commonly published method for estimating these bankfull characteristics. Regional curves (graphic plots) of bankfull channel geometry and discharge by drainage area are presented. The regional curves are based on the simple regression equations and can be used to estimate bankfull characteristics from drainage area. Multiple regression analysis, which includes basin characteristics in addition to drainage area, also was used to develop equations. Variability in bankfull width, mean depth, cross-sectional area, and discharge was more fully explained by the multiple regression equations that include mean-basin slope and drainage area than was explained by equations based on drainage area alone. The Massachusetts regional curves and equations developed in this study are similar, in terms of values of slopes and intercepts, to those developed for other parts of the northeastern United States. Limitations associated with site selection and development of the equations resulted in some constraints for the application of equations and regional curves presented in this report. The curves and equations are applicable to stream sites that have (1) less than about 25 percent of their drainage basin area occupied by urban land use (commercial, industrial, transportation, and high-density residential), (2) little to no streamflow regulation, especially from flood-control structures, (3) drainage basin areas greater than 0.60 mi2 and less than 329 mi2, and (4) a mean basin slope greater than 2.2 percent and less than 23.9 percent. The equations may not be applicable where streams flow through extensive wetlands. The equations also may not apply in areas of Cape Cod and the Islands and the area of southeastern Massachusetts close to Cape Cod with extensive areas of coarse-grained glacial deposits where none of the study sites are located. Regardless of the setting, the regression equations are not intended for use as the sole method of estimating bankfull characteristics; however, they may supplement field identification of the bankfull channel when used in conjunction with field verified bankfull indicators, flood-frequency analysis, or other supporting evidence.

  14. GFR Estimation: From Physiology to Public Health

    PubMed Central

    Levey, Andrew S.; Inker, Lesley A.; Coresh, Josef

    2014-01-01

    Estimating glomerular filtration rate (GFR) is essential for clinical practice, research, and public health. Appropriate interpretation of estimated GFR (eGFR) requires understanding the principles of physiology, laboratory medicine, epidemiology and biostatistics used in the development and validation of GFR estimating equations. Equations developed in diverse populations are less biased at higher GFR than equations developed in CKD populations and are more appropriate for general use. Equations that include multiple endogenous filtration markers are more precise than equations including a single filtration marker. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations are the most accurate GFR estimating equations that have been evaluated in large, diverse populations and are applicable for general clinical use. The 2009 CKD-EPI creatinine equation is more accurate in estimating GFR and prognosis than the 2006 Modification of Diet in Renal Disease (MDRD) Study equation and provides lower estimates of prevalence of decreased eGFR. It is useful as a “first” test for decreased eGFR and should replace the MDRD Study equation for routine reporting of serum creatinine–based eGFR by clinical laboratories. The 2012 CKD-EPI cystatin C equation is as accurate as the 2009 CKD-EPI creatinine equation in estimating eGFR, does not require specification of race, and may be more accurate in patients with decreased muscle mass. The 2012 CKD-EPI creatinine–cystatin C equation is more accurate than the 2009 CKD-EPI creatinine and 2012 CKD-EPI cystatin C equations and is useful as a confirmatory test for decreased eGFR as determined by an equation based on serum creatinine. Further improvement in GFR estimating equations will require development in more broadly representative populations, including diverse racial and ethnic groups, use of multiple filtration markers, and evaluation using statistical techniques to compare eGFR to “true GFR”. PMID:24485147

  15. Extension of the Gladstone-Dale equation for flame flow field diagnosis by optical computerized tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yunyun; Li Zhenhua; Song Yang

    2009-05-01

    An extended model of the original Gladstone-Dale (G-D) equation is proposed for optical computerized tomography (OCT) diagnosis of flame flow fields. For the purpose of verifying the newly established model, propane combustion is used as a practical example for experiment, and moire deflection tomography is introduced with the probe wavelength 808 nm. The results indicate that the temperature based on the extended model is more accurate than that based on the original G-D equation. In a word, the extended model can be suitable for all kinds of flame flow fields whatever the components, temperature, and ionization are.

  16. Accuracy in parameter estimation for targeted effects in structural equation modeling: sample size planning for narrow confidence intervals.

    PubMed

    Lai, Keke; Kelley, Ken

    2011-06-01

    In addition to evaluating a structural equation model (SEM) as a whole, often the model parameters are of interest and confidence intervals for those parameters are formed. Given a model with a good overall fit, it is entirely possible for the targeted effects of interest to have very wide confidence intervals, thus giving little information about the magnitude of the population targeted effects. With the goal of obtaining sufficiently narrow confidence intervals for the model parameters of interest, sample size planning methods for SEM are developed from the accuracy in parameter estimation approach. One method plans for the sample size so that the expected confidence interval width is sufficiently narrow. An extended procedure ensures that the obtained confidence interval will be no wider than desired, with some specified degree of assurance. A Monte Carlo simulation study was conducted that verified the effectiveness of the procedures in realistic situations. The methods developed have been implemented in the MBESS package in R so that they can be easily applied by researchers. © 2011 American Psychological Association

  17. A New Continuous Rotation IMU Alignment Algorithm Based on Stochastic Modeling for Cost Effective North-Finding Applications

    PubMed Central

    Li, Yun; Wu, Wenqi; Jiang, Qingan; Wang, Jinling

    2016-01-01

    Based on stochastic modeling of Coriolis vibration gyros by the Allan variance technique, this paper discusses Angle Random Walk (ARW), Rate Random Walk (RRW) and Markov process gyroscope noises which have significant impacts on the North-finding accuracy. A new continuous rotation alignment algorithm for a Coriolis vibration gyroscope Inertial Measurement Unit (IMU) is proposed in this paper, in which the extended observation equations are used for the Kalman filter to enhance the estimation of gyro drift errors, thus improving the north-finding accuracy. Theoretical and numerical comparisons between the proposed algorithm and the traditional ones are presented. The experimental results show that the new continuous rotation alignment algorithm using the extended observation equations in the Kalman filter is more efficient than the traditional two-position alignment method. Using Coriolis vibration gyros with bias instability of 0.1°/h, a north-finding accuracy of 0.1° (1σ) is achieved by the new continuous rotation alignment algorithm, compared with 0.6° (1σ) north-finding accuracy for the two-position alignment and 1° (1σ) for the fixed-position alignment. PMID:27983585

  18. Superconductivity under uniaxial compression in β-(BDA-TTP) salts

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Onari, S.; Ito, H.; Tanaka, Y.

    2009-10-01

    In order to clarify the mechanism of organic superconductor β-(BDA-TTP) salts. We study the superconductivity under uniaxial compression with non-dimerized two-band Hubbard model. We have calculated the uniaxial compression dependence of T c by solving the Eliashberg’s equation using the fluctuation exchange (FLEX) approximation. The transfer integral under the uniaxial compression was estimated by the extended Huckel method. We have found that non-monotonic behaviors of T c in experimental results under uniaxial compression are understood taking the spin frustration and spin fluctuation into account.

  19. Frequency domain, waveform inversion of laboratory crosswell radar data

    USGS Publications Warehouse

    Ellefsen, Karl J.; Mazzella, Aldo T.; Horton, Robert J.; McKenna, Jason R.

    2010-01-01

    A new waveform inversion for crosswell radar is formulated in the frequency-domain for a 2.5D model. The inversion simulates radar waves using the vector Helmholtz equation for electromagnetic waves. The objective function is minimized using a backpropagation method suitable for a 2.5D model. The inversion is tested by processing crosswell radar data collected in a laboratory tank. The estimated model is consistent with the known electromagnetic properties of the tank. The formulation for the 2.5D model can be extended to inversions of acoustic and elastic data.

  20. Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts.

    PubMed

    Lin, Huiming; Fu, Bo; Qin, Guoyou; Zhu, Zhongyi

    2017-12-01

    We develop a doubly robust estimation of generalized partial linear models for longitudinal data with dropouts. Our method extends the highly efficient aggregate unbiased estimating function approach proposed in Qu et al. (2010) to a doubly robust one in the sense that under missing at random (MAR), our estimator is consistent when either the linear conditional mean condition is satisfied or a model for the dropout process is correctly specified. We begin with a generalized linear model for the marginal mean, and then move forward to a generalized partial linear model, allowing for nonparametric covariate effect by using the regression spline smoothing approximation. We establish the asymptotic theory for the proposed method and use simulation studies to compare its finite sample performance with that of Qu's method, the complete-case generalized estimating equation (GEE) and the inverse-probability weighted GEE. The proposed method is finally illustrated using data from a longitudinal cohort study. © 2017, The International Biometric Society.

  1. The Extended Parabolic Equation Method and Implication of Results for Atmospheric Millimeter-Wave and Optical Propagation

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2004-01-01

    The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the -correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.

  2. Metabolic control analysis using transient metabolite concentrations. Determination of metabolite concentration control coefficients.

    PubMed Central

    Delgado, J; Liao, J C

    1992-01-01

    The methodology previously developed for determining the Flux Control Coefficients [Delgado & Liao (1992) Biochem. J. 282, 919-927] is extended to the calculation of metabolite Concentration Control Coefficients. It is shown that the transient metabolite concentrations are related by a few algebraic equations, attributed to mass balance, stoichiometric constraints, quasi-equilibrium or quasi-steady states, and kinetic regulations. The coefficients in these relations can be estimated using linear regression, and can be used to calculate the Control Coefficients. The theoretical basis and two examples are discussed. Although the methodology is derived based on the linear approximation of enzyme kinetics, it yields reasonably good estimates of the Control Coefficients for systems with non-linear kinetics. PMID:1497632

  3. Mass and Momentum Transport in Microcavities for Diffusion-Dominant Cell Culture Applications

    NASA Technical Reports Server (NTRS)

    Yew, Alvin G.; Pinero, Daniel; Hsieh, Adam H.; Atencia, Javier

    2012-01-01

    For the informed design of microfluidic devices, it is important to understand transport phenomena at the microscale. This letter outlines an analytically-driven approach to the design of rectangular microcavities extending perpendicular to a perfusion microchannel for microfluidic cell culture devices. We present equations to estimate the spatial transition from advection- to diffusion-dominant transport inside cavities as a function of the geometry and flow conditions. We also estimate the time required for molecules, such as nutrients or drugs to travel from the microchannel to a given depth into the cavity. These analytical predictions can facilitate the rational design of microfluidic devices to optimize and maintain long-term, physiologically-based culture conditions with low fluid shear stress.

  4. On the Full-Discrete Extended Generalised q-Difference Toda System

    NASA Astrophysics Data System (ADS)

    Li, Chuanzhong; Meng, Anni

    2017-08-01

    In this paper, we construct a full-discrete integrable difference equation which is a full-discretisation of the generalised q-Toda equation. Meanwhile its soliton solutions are constructed to show its integrable property. Further the Lax pairs of an extended generalised full-discrete q-Toda hierarchy are also constructed. To show the integrability, the bi-Hamiltonian structure and tau symmetry of the extended full-discrete generalised q-Toda hierarchy are given.

  5. Estimates of monthly streamflow characteristics at selected sites in the upper Missouri River basin, Montana, base period water years 1937-86

    USGS Publications Warehouse

    Parrett, Charles; Johnson, D.R.; Hull, J.A.

    1989-01-01

    Estimates of streamflow characteristics (monthly mean flow that is exceeded 90, 80, 50, and 20 percent of the time for all years of record and mean monthly flow) were made and are presented in tabular form for 312 sites in the Missouri River basin in Montana. Short-term gaged records were extended to the base period of water years 1937-86, and were used to estimate monthly streamflow characteristics at 100 sites. Data from 47 gaged sites were used in regression analysis relating the streamflow characteristics to basin characteristics and to active-channel width. The basin-characteristics equations, with standard errors of 35% to 97%, were used to estimate streamflow characteristics at 179 ungaged sites. The channel-width equations, with standard errors of 36% to 103%, were used to estimate characteristics at 138 ungaged sites. Streamflow measurements were correlated with concurrent streamflows at nearby gaged sites to estimate streamflow characteristics at 139 ungaged sites. In a test using 20 pairs of gages, the standard errors ranged from 31% to 111%. At 139 ungaged sites, the estimates from two or more of the methods were weighted and combined in accordance with the variance of individual methods. When estimates from three methods were combined the standard errors ranged from 24% to 63 %. A drainage-area-ratio adjustment method was used to estimate monthly streamflow characteristics at seven ungaged sites. The reliability of the drainage-area-ratio adjustment method was estimated to be about equal to that of the basin-characteristics method. The estimate were checked for reliability. Estimates of monthly streamflow characteristics from gaged records were considered to be most reliable, and estimates at sites with actual flow record from 1937-86 were considered to be completely reliable (zero error). Weighted-average estimates were considered to be the most reliable estimates made at ungaged sites. (USGS)

  6. Extension of Gibbs-Duhem equation including influences of external fields

    NASA Astrophysics Data System (ADS)

    Guangze, Han; Jianjia, Meng

    2018-03-01

    Gibbs-Duhem equation is one of the fundamental equations in thermodynamics, which describes the relation among changes in temperature, pressure and chemical potential. Thermodynamic system can be affected by external field, and this effect should be revealed by thermodynamic equations. Based on energy postulate and the first law of thermodynamics, the differential equation of internal energy is extended to include the properties of external fields. Then, with homogeneous function theorem and a redefinition of Gibbs energy, a generalized Gibbs-Duhem equation with influences of external fields is derived. As a demonstration of the application of this generalized equation, the influences of temperature and external electric field on surface tension, surface adsorption controlled by external electric field, and the derivation of a generalized chemical potential expression are discussed, which show that the extended Gibbs-Duhem equation developed in this paper is capable to capture the influences of external fields on a thermodynamic system.

  7. Development of Regional Power Sector Coal Fuel Costs (Prices) for the Short-Term Energy Outlook (STEO) Model

    EIA Publications

    2017-01-01

    The U.S. Energy Information Administration's Short-Term Energy Outlook (STEO) produces monthly projections of energy supply, demand, trade, and prices over a 13-24 month period. Every January, the forecast horizon is extended through December of the following year. The STEO model is an integrated system of econometric regression equations and identities that link data on the various components of the U.S. energy industry together in order to develop consistent forecasts. The regression equations are estimated and the STEO model is solved using the EViews 9.5 econometric software package from IHS Global Inc. The model consists of various modules specific to each energy resource. All modules provide projections for the United States, and some modules provide more detailed forecasts for different regions of the country.

  8. Application of an Extended Parabolic Equation to the Calculation of the Mean Field and the Transverse and Longitudinal Mutual Coherence Functions Within Atmospheric Turbulence

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2005-01-01

    Solutions are derived for the generalized mutual coherence function (MCF), i.e., the second order moment, of a random wave field propagating through a random medium within the context of the extended parabolic equation. Here, "generalized" connotes the consideration of both the transverse as well as the longitudinal second order moments (with respect to the direction of propagation). Such solutions will afford a comparison between the results of the parabolic equation within the pararaxial approximation and those of the wide-angle extended theory. To this end, a statistical operator method is developed which gives a general equation for an arbitrary spatial statistical moment of the wave field. The generality of the operator method allows one to obtain an expression for the second order field moment in the direction longitudinal to the direction of propagation. Analytical solutions to these equations are derived for the Kolmogorov and Tatarskii spectra of atmospheric permittivity fluctuations within the Markov approximation.

  9. Development of the Korean Adult Reading Test (KART) to estimate premorbid intelligence in dementia patients

    PubMed Central

    Seo, Eun Hyun; Han, Ji Young; Sohn, Bo Kyung; Byun, Min Soo; Lee, Jun Ho; Choe, Young Min; Ahn, Suzy; Woo, Jong Inn; Jun, Jongho; Lee, Dong Young

    2017-01-01

    We aimed to develop a word-reading test for Korean-speaking adults using irregularly pronounced words that would be useful for estimation of premorbid intelligence. A linguist who specialized in Korean phonology selected 94 words that have irregular relationship between orthography and phonology. Sixty cognitively normal elderly (CN) and 31 patients with Alzheimer’s disease (AD) were asked to read out loud the words and were administered the Wechsler Adult Intelligence Scale, 4th edition, Korean version (K-WAIS-IV). Among the 94 words, 50 words that did not show a significant difference between the CN and the AD group were selected and constituted the KART. Using the 30 CN calculation group (CNc), a linear regression equation was obtained in which the observed full-scale IQ (FSIQ) was regressed on the reading errors of the KART, where education was included as an additional variable. When the regressed equation computed from the CNc was applied to 30 CN individuals of the validation group (CNv), the predicted FSIQ adequately fit the observed FSIQ (R2 = 0.63). In addition, independent sample t-test showed that the KART-predicted IQs were not significantly different between the CNv and AD groups, whereas the performance of the AD group was significantly worse in the observed IQs. In addition, an extended validation of the KART was performed with a separate sample consisted of 84 CN, 56 elderly with mild cognitive impairment (MCI), and 43 AD patients who were administered comprehensive neuropsychological assessments in addition to the KART. When the equation obtained from the CNc was applied to the extended validation sample, the KART-predicted IQs of the AD, MCI and the CN groups did not significantly differ, whereas their current global cognition scores significantly differed between the groups. In conclusion, the results support the validity of KART-predicted IQ as an index of premorbid IQ in individuals with AD. PMID:28723964

  10. Variational principle for the Navier-Stokes equations.

    PubMed

    Kerswell, R R

    1999-05-01

    A variational principle is presented for the Navier-Stokes equations in the case of a contained boundary-driven, homogeneous, incompressible, viscous fluid. Based upon making the fluid's total viscous dissipation over a given time interval stationary subject to the constraint of the Navier-Stokes equations, the variational problem looks overconstrained and intractable. However, introducing a nonunique velocity decomposition, u(x,t)=phi(x,t) + nu(x,t), "opens up" the variational problem so that what is presumed a single allowable point over the velocity domain u corresponding to the unique solution of the Navier-Stokes equations becomes a surface with a saddle point over the extended domain (phi,nu). Complementary or dual variational problems can then be constructed to estimate this saddle point value strictly from above as part of a minimization process or below via a maximization procedure. One of these reduced variational principles is the natural and ultimate generalization of the upper bounding problem developed by Doering and Constantin. The other corresponds to the ultimate Busse problem which now acts to lower bound the true dissipation. Crucially, these reduced variational problems require only the solution of a series of linear problems to produce bounds even though their unique intersection is conjectured to correspond to a solution of the nonlinear Navier-Stokes equations.

  11. Predictive performance for population models using stochastic differential equations applied on data from an oral glucose tolerance test.

    PubMed

    Møller, Jonas B; Overgaard, Rune V; Madsen, Henrik; Hansen, Torben; Pedersen, Oluf; Ingwersen, Steen H

    2010-02-01

    Several articles have investigated stochastic differential equations (SDEs) in PK/PD models, but few have quantitatively investigated the benefits to predictive performance of models based on real data. Estimation of first phase insulin secretion which reflects beta-cell function using models of the OGTT is a difficult problem in need of further investigation. The present work aimed at investigating the power of SDEs to predict the first phase insulin secretion (AIR (0-8)) in the IVGTT based on parameters obtained from the minimal model of the OGTT, published by Breda et al. (Diabetes 50(1):150-158, 2001). In total 174 subjects underwent both an OGTT and a tolbutamide modified IVGTT. Estimation of parameters in the oral minimal model (OMM) was performed using the FOCE-method in NONMEM VI on insulin and C-peptide measurements. The suggested SDE models were based on a continuous AR(1) process, i.e. the Ornstein-Uhlenbeck process, and the extended Kalman filter was implemented in order to estimate the parameters of the models. Inclusion of the Ornstein-Uhlenbeck (OU) process caused improved description of the variation in the data as measured by the autocorrelation function (ACF) of one-step prediction errors. A main result was that application of SDE models improved the correlation between the individual first phase indexes obtained from OGTT and AIR (0-8) (r = 0.36 to r = 0.49 and r = 0.32 to r = 0.47 with C-peptide and insulin measurements, respectively). In addition to the increased correlation also the properties of the indexes obtained using the SDE models more correctly assessed the properties of the first phase indexes obtained from the IVGTT. In general it is concluded that the presented SDE approach not only caused autocorrelation of errors to decrease but also improved estimation of clinical measures obtained from the glucose tolerance tests. Since, the estimation time of extended models was not heavily increased compared to basic models, the applied method is concluded to have high relevance not only in theory but also in practice.

  12. Time-reversal optical tomography: detecting and locating extended targets in a turbid medium

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Cai, W.; Xu, M.; Gayen, S. K.

    2012-03-01

    Time Reversal Optical Tomography (TROT) is developed to locate extended target(s) in a highly scattering turbid medium, and estimate their optical strength and size. The approach uses Diffusion Approximation of Radiative Transfer Equation for light propagation along with Time Reversal (TR) Multiple Signal Classification (MUSIC) scheme for signal and noise subspaces for assessment of target location. A MUSIC pseudo spectrum is calculated using the eigenvectors of the TR matrix T, whose poles provide target locations. Based on the pseudo spectrum contours, retrieval of target size is modeled as an optimization problem, using a "local contour" method. The eigenvalues of T are related to optical strengths of targets. The efficacy of TROT to obtain location, size, and optical strength of one absorptive target, one scattering target, and two absorptive targets, all for different noise levels was tested using simulated data. Target locations were always accurately determined. Error in optical strength estimates was small even at 20% noise level. Target size and shape were more sensitive to noise. Results from simulated data demonstrate high potential for application of TROT in practical biomedical imaging applications.

  13. A well-posed and stable stochastic Galerkin formulation of the incompressible Navier–Stokes equations with random data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettersson, Per, E-mail: per.pettersson@uib.no; Nordström, Jan, E-mail: jan.nordstrom@liu.se; Doostan, Alireza, E-mail: alireza.doostan@colorado.edu

    2016-02-01

    We present a well-posed stochastic Galerkin formulation of the incompressible Navier–Stokes equations with uncertainty in model parameters or the initial and boundary conditions. The stochastic Galerkin method involves representation of the solution through generalized polynomial chaos expansion and projection of the governing equations onto stochastic basis functions, resulting in an extended system of equations. A relatively low-order generalized polynomial chaos expansion is sufficient to capture the stochastic solution for the problem considered. We derive boundary conditions for the continuous form of the stochastic Galerkin formulation of the velocity and pressure equations. The resulting problem formulation leads to an energy estimatemore » for the divergence. With suitable boundary data on the pressure and velocity, the energy estimate implies zero divergence of the velocity field. Based on the analysis of the continuous equations, we present a semi-discretized system where the spatial derivatives are approximated using finite difference operators with a summation-by-parts property. With a suitable choice of dissipative boundary conditions imposed weakly through penalty terms, the semi-discrete scheme is shown to be stable. Numerical experiments in the laminar flow regime corroborate the theoretical results and we obtain high-order accurate results for the solution variables and the velocity divergence converges to zero as the mesh is refined.« less

  14. Extended theory of harmonic maps connects general relativity to chaos and quantum mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Gang; Duan, Yi-Shi

    General relativity and quantum mechanism are two separate rules of modern physics explaining how nature works. Both theories are accurate, but the direct connection between two theories was not yet clarified. Recently, researchers blur the line between classical and quantum physics by connecting chaos and entanglement equation. Here in this paper, we showed the Duan's extended HM theory, which has the solution of the general relativity, can also have the solutions of the classic chaos equations and even the solution of Schrödinger equation in quantum physics, suggesting the extended theory of harmonic maps may act as a universal theory ofmore » physics.« less

  15. Extended theory of harmonic maps connects general relativity to chaos and quantum mechanism

    DOE PAGES

    Ren, Gang; Duan, Yi-Shi

    2017-07-20

    General relativity and quantum mechanism are two separate rules of modern physics explaining how nature works. Both theories are accurate, but the direct connection between two theories was not yet clarified. Recently, researchers blur the line between classical and quantum physics by connecting chaos and entanglement equation. Here in this paper, we showed the Duan's extended HM theory, which has the solution of the general relativity, can also have the solutions of the classic chaos equations and even the solution of Schrödinger equation in quantum physics, suggesting the extended theory of harmonic maps may act as a universal theory ofmore » physics.« less

  16. Building Context with Tumor Growth Modeling Projects in Differential Equations

    ERIC Educational Resources Information Center

    Beier, Julie C.; Gevertz, Jana L.; Howard, Keith E.

    2015-01-01

    The use of modeling projects serves to integrate, reinforce, and extend student knowledge. Here we present two projects related to tumor growth appropriate for a first course in differential equations. They illustrate the use of problem-based learning to reinforce and extend course content via a writing or research experience. Here we discuss…

  17. Utility of Equations to Estimate Peak Oxygen Uptake and Work Rate From a 6-Minute Walk Test in Patients With COPD in a Clinical Setting.

    PubMed

    Kirkham, Amy A; Pauhl, Katherine E; Elliott, Robyn M; Scott, Jen A; Doria, Silvana C; Davidson, Hanan K; Neil-Sztramko, Sarah E; Campbell, Kristin L; Camp, Pat G

    2015-01-01

    To determine the utility of equations that use the 6-minute walk test (6MWT) results to estimate peak oxygen uptake ((Equation is included in full-text article.)o2) and peak work rate with chronic obstructive pulmonary disease (COPD) patients in a clinical setting. This study included a systematic review to identify published equations estimating peak (Equation is included in full-text article.)o2 and peak work rate in watts in COPD patients and a retrospective chart review of data from a hospital-based pulmonary rehabilitation program. The following variables were abstracted from the records of 42 consecutively enrolled COPD patients: measured peak (Equation is included in full-text article.)o2 and peak work rate achieved during a cycle ergometer cardiopulmonary exercise test, 6MWT distance, age, sex, weight, height, forced expiratory volume in 1 second, forced vital capacity, and lung diffusion capacity. Estimated peak (Equation is included in full-text article.)o2 and peak work rate were estimated from 6MWT distance using published equations. The error associated with using estimated peak (Equation is included in full-text article.)o2 or peak work to prescribe aerobic exercise intensities of 60% and 80% was calculated. Eleven equations from 6 studies were identified. Agreement between estimated and measured values was poor to moderate (intraclass correlation coefficients = 0.11-0.63). The error associated with using estimated peak (Equation is included in full-text article.)o2 or peak work rate to prescribe exercise intensities of 60% and 80% of measured values ranged from mean differences of 12 to 35 and 16 to 47 percentage points, respectively. There is poor to moderate agreement between measured peak (Equation is included in full-text article.)o2 and peak work rate and estimations from equations that use 6MWT distance, and the use of the estimated values for prescription of aerobic exercise intensity would result in large error. Equations estimating peak (Equation is included in full-text article.)o2 and peak work rate are of low utility for prescribing exercise intensity in pulmonary rehabilitation programs.

  18. On the Inclusion of Difference Equation Problems and Z Transform Methods in Sophomore Differential Equation Classes

    ERIC Educational Resources Information Center

    Savoye, Philippe

    2009-01-01

    In recent years, I started covering difference equations and z transform methods in my introductory differential equations course. This allowed my students to extend the "classical" methods for (ordinary differential equation) ODE's to discrete time problems arising in many applications.

  19. Solution of differential equations by application of transformation groups

    NASA Technical Reports Server (NTRS)

    Driskell, C. N., Jr.; Gallaher, L. J.; Martin, R. H., Jr.

    1968-01-01

    Report applies transformation groups to the solution of systems of ordinary differential equations and partial differential equations. Lies theorem finds an integrating factor for appropriate invariance group or groups can be found and can be extended to partial differential equations.

  20. Extended symmetry analysis of generalized Burgers equations

    NASA Astrophysics Data System (ADS)

    Pocheketa, Oleksandr A.; Popovych, Roman O.

    2017-10-01

    Using enhanced classification techniques, we carry out the extended symmetry analysis of the class of generalized Burgers equations of the form ut + uux + f(t, x)uxx = 0. This enhances all the previous results on symmetries of these equations and includes the description of admissible transformations, Lie symmetries, Lie and nonclassical reductions, hidden symmetries, conservation laws, potential admissible transformations, and potential symmetries. The study is based on the fact that the class is normalized, and its equivalence group is finite-dimensional.

  1. Skinfold Prediction Equations Fail to Provide an Accurate Estimate of Body Composition in Elite Rugby Union Athletes of Caucasian and Polynesian Ethnicity.

    PubMed

    Zemski, Adam J; Broad, Elizabeth M; Slater, Gary J

    2018-01-01

    Body composition in elite rugby union athletes is routinely assessed using surface anthropometry, which can be utilized to provide estimates of absolute body composition using regression equations. This study aims to assess the ability of available skinfold equations to estimate body composition in elite rugby union athletes who have unique physique traits and divergent ethnicity. The development of sport-specific and ethnicity-sensitive equations was also pursued. Forty-three male international Australian rugby union athletes of Caucasian and Polynesian descent underwent surface anthropometry and dual-energy X-ray absorptiometry (DXA) assessment. Body fat percent (BF%) was estimated using five previously developed equations and compared to DXA measures. Novel sport and ethnicity-sensitive prediction equations were developed using forward selection multiple regression analysis. Existing skinfold equations provided unsatisfactory estimates of BF% in elite rugby union athletes, with all equations demonstrating a 95% prediction interval in excess of 5%. The equations tended to underestimate BF% at low levels of adiposity, whilst overestimating BF% at higher levels of adiposity, regardless of ethnicity. The novel equations created explained a similar amount of variance to those previously developed (Caucasians 75%, Polynesians 90%). The use of skinfold equations, including the created equations, cannot be supported to estimate absolute body composition. Until a population-specific equation is established that can be validated to precisely estimate body composition, it is advocated to use a proven method, such as DXA, when absolute measures of lean and fat mass are desired, and raw anthropometry data routinely to derive an estimate of body composition change.

  2. Estimating long-term behavior of periodically driven flows without trajectory integration

    NASA Astrophysics Data System (ADS)

    Froyland, Gary; Koltai, Péter

    2017-05-01

    Periodically driven flows are fundamental models of chaotic behavior and the study of their transport properties is an active area of research. A well-known analytic construction is the augmentation of phase space with an additional time dimension; in this augmented space, the flow becomes autonomous or time-independent. We prove several results concerning the connections between the original time-periodic representation and the time-extended representation, focusing on transport properties. In the deterministic setting, these include single-period outflows and time-asymptotic escape rates from time-parameterized families of sets. We also consider stochastic differential equations with time-periodic advection term. In this stochastic setting one has a time-periodic generator (the differential operator given by the right-hand-side of the corresponding time-periodic Fokker-Planck equation). We define in a natural way an autonomous generator corresponding to the flow on time-extended phase space. We prove relationships between these two generator representations and use these to quantify decay rates of observables and to determine time-periodic families of sets with slow escape rate. Finally, we use the generator on the time-extended phase space to create efficient numerical schemes to implement the various theoretical constructions. These ideas build on the work of Froyland et al (2013 SIAM J. Numer. Anal. 51 223-47), and no expensive time integration is required. We introduce an efficient new hybrid approach, which treats the space and time dimensions separately.

  3. Hyper-X Post-Flight Trajectory Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Tartabini, Paul V.; Blanchard, RobertC.; Kirsch, Michael; Toniolo, Matthew D.

    2004-01-01

    This paper discusses the formulation and development of a trajectory reconstruction tool for the NASA X{43A/Hyper{X high speed research vehicle, and its implementation for the reconstruction and analysis of ight test data. Extended Kalman ltering techniques are employed to reconstruct the trajectory of the vehicle, based upon numerical integration of inertial measurement data along with redundant measurements of the vehicle state. The equations of motion are formulated in order to include the effects of several systematic error sources, whose values may also be estimated by the ltering routines. Additionally, smoothing algorithms have been implemented in which the nal value of the state (or an augmented state that includes other systematic error parameters to be estimated) and covariance are propagated back to the initial time to generate the best-estimated trajectory, based upon all available data. The methods are applied to the problem of reconstructing the trajectory of the Hyper-X vehicle from ight data.

  4. Temperature-dependent poroelastic and viscoelastic effects on microscale-modelling of seismic reflections in heavy oil reservoirs

    NASA Astrophysics Data System (ADS)

    Ciz, Radim; Saenger, Erik H.; Gurevich, Boris; Shapiro, Serge A.

    2009-03-01

    We develop a new model for elastic properties of rocks saturated with heavy oil. The heavy oil is represented by a viscoelastic material, which at low frequencies and/or high temperatures behaves as a Newtonian fluid, and at high frequencies and/or low temperatures as a nearly elastic solid. The bulk and shear moduli of a porous rock saturated with such viscoelastic material are then computed using approximate extended Gassmann equations of Ciz and Shapiro by replacing the elastic moduli of the pore filling material with complex and frequency-dependent moduli of the viscoelastic pore fill. We test the proposed model by comparing its predictions with numerical simulations based on a direct finite-difference solution of equations of dynamic viscoelasticity. The simulations are performed for the reflection coefficient from an interface between a homogeneous fluid and a porous medium. The numerical tests are performed both for an idealized porous medium consisting of alternating solid and viscoelastic layers, and for a more realistic 3-D geometry of the pore space. Both sets of numerical tests show a good agreement between the predictions of the proposed viscoelastic workflow and numerical simulations for relatively high viscosities where viscoelastic effects are important. The results confirm that application of extended Gassmann equations in conjunction with the complex and frequency-dependent moduli of viscoelastic pore filling material, such as heavy oil, provides a good approximation for the elastic moduli of rocks saturated with such material. By construction, this approximation is exactly consistent with the classical Gassmann's equation for sufficiently low frequencies or high temperature when heavy oil behaves like a fluid. For higher frequencies and/or lower temperatures, the predictions are in good agreement with the direct numerical solution of equations of dynamic viscoelasticity on the microscale. This demonstrates that the proposed methodology provides realistic estimates of elastic properties of heavy oil rocks.

  5. Standard Errors of Equating for the Percentile Rank-Based Equipercentile Equating with Log-Linear Presmoothing

    ERIC Educational Resources Information Center

    Wang, Tianyou

    2009-01-01

    Holland and colleagues derived a formula for analytical standard error of equating using the delta-method for the kernel equating method. Extending their derivation, this article derives an analytical standard error of equating procedure for the conventional percentile rank-based equipercentile equating with log-linear smoothing. This procedure is…

  6. State Estimation for Landing Maneuver on High Performance Aircraft

    NASA Astrophysics Data System (ADS)

    Suresh, P. S.; Sura, Niranjan K.; Shankar, K.

    2018-01-01

    State estimation methods are popular means for validating aerodynamic database on aircraft flight maneuver performance characteristics. In this work, the state estimation method during landing maneuver is explored for the first of its kind, using upper diagonal adaptive extended Kalman filter (UD-AEKF) with fuzzy based adaptive tunning of process noise matrix. The mathematical model for symmetrical landing maneuver consists of non-linear flight mechanics equation representing Aircraft longitudinal dynamics. The UD-AEKF algorithm is implemented in MATLAB environment and the states with bias is considered to be the initial conditions just prior to the flare. The measurement data is obtained from a non-linear 6 DOF pilot in loop simulation using FORTRAN. These simulated measurement data is additively mixed with process and measurement noises, which are used as an input for UD-AEKF. Then, the governing states that dictate the landing loads at the instant of touch down are compared. The method is verified using flight data wherein, the vertical acceleration at the aircraft center of gravity (CG) is compared. Two possible outcome of purely relying on the aircraft measured data is highlighted. It is observed that, with the implementation of adaptive fuzzy logic based extended Kalman filter tuned to adapt for aircraft landing dynamics, the methodology improves the data quality of the states that are sourced from noisy measurements.

  7. Estimation of Longitudinal Force and Sideslip Angle for Intelligent Four-Wheel Independent Drive Electric Vehicles by Observer Iteration and Information Fusion.

    PubMed

    Chen, Te; Chen, Long; Xu, Xing; Cai, Yingfeng; Jiang, Haobin; Sun, Xiaoqiang

    2018-04-20

    Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified.

  8. Estimation of Longitudinal Force and Sideslip Angle for Intelligent Four-Wheel Independent Drive Electric Vehicles by Observer Iteration and Information Fusion

    PubMed Central

    Chen, Long; Xu, Xing; Cai, Yingfeng; Jiang, Haobin; Sun, Xiaoqiang

    2018-01-01

    Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified. PMID:29677124

  9. Theoretical analysis for double-liquid variable focus lens

    NASA Astrophysics Data System (ADS)

    Peng, Runling; Chen, Jiabi; Zhuang, Songlin

    2007-09-01

    In this paper, various structures for double-liquid variable focus lens are introduced. And based on an energy minimization method, explicit calculations and detailed analyses upon an extended Young-type equation are given for double-liquid lenses with cylindrical electrode. Such an equation is especially applicable to liquid-liquid-solid tri-phase systems. It is a little different from the traditional Young equation that was derived according to vapor-liquid-solid triphase systems. The electrowetting effect caused by an external voltage changes the interface shape between two liquids as well as the focal length of the lens. Based on the extended Young-type equation, the relationship between the focal length and the external voltage can also be derived. Corresponding equations and simulation results are presented.

  10. Weather adjustment using seemingly unrelated regression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noll, T.A.

    1995-05-01

    Seemingly unrelated regression (SUR) is a system estimation technique that accounts for time-contemporaneous correlation between individual equations within a system of equations. SUR is suited to weather adjustment estimations when the estimation is: (1) composed of a system of equations and (2) the system of equations represents either different weather stations, different sales sectors or a combination of different weather stations and different sales sectors. SUR utilizes the cross-equation error values to develop more accurate estimates of the system coefficients than are obtained using ordinary least-squares (OLS) estimation. SUR estimates can be generated using a variety of statistical software packagesmore » including MicroTSP and SAS.« less

  11. Estimation of mating system parameters in plant populations using marker loci with null alleles.

    PubMed

    Ross, H A

    1986-06-01

    An Expectation-Maximization (EM)-algorithm procedure is presented that extends Cheliak et al. (1983) method of maximum-likelihood estimation of mating system parameters of mixed mating system models. The extension permits the estimation of the rate of self-fertilization (s) and allele frequencies (Pi) at loci in outcrossing pollen, at marker loci having recessive null alleles. The algorithm makes use of maternal and filial genotypic arrays obtained by the electrophoretic analysis of cohorts of progeny. The genotypes of maternal plants must be known. Explicit equations are given for cases when the genotype of the maternal gamete inherited by a seed can (gymnosperms) or cannot (angiosperms) be determined. The procedure can accommodate any number of codominant alleles, but only one recessive null allele at each locus. An example, using actual data from Pinus banksiana, is presented to illustrate the application of this EM algorithm to the estimation of mating system parameters using marker loci having both codominant and recessive alleles.

  12. Coupling of atom-by-atom calculations of extended defects with B kick-out equations: application to the simulation of boron ted

    NASA Astrophysics Data System (ADS)

    Lampin, E.; Cristiano, F.; Lamrani, Y.; Colombeau, B.

    2004-02-01

    We present simulations of B TED based on a complete calculation of the extended defect growth/shrinkage during annealing. The Si self-interstitial supersaturation calculated at the extended defect depth is coupled to the set of equations for the B kick-out diffusion through a generation/recombination term in the diffusion equation of the Si self-interstitials. The simulations are compared to the measurements performed on a Si wafer containing several B marker layers, where the amount of TED varies from one peak to the other. The good agreement obtained on this experiment is very promising for the application of these calculations to the case of ultra-shallow B + implants.

  13. Societal Statistics by virtue of the Statistical Drake Equation

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2012-09-01

    The Drake equation, first proposed by Frank D. Drake in 1961, is the foundational equation of SETI. It yields an estimate of the number N of extraterrestrial communicating civilizations in the Galaxy given by the product N=Ns×fp×ne×fl×fi×fc×fL, where: Ns is the number of stars in the Milky Way Galaxy; fp is the fraction of stars that have planetary systems; ne is the number of planets in a given system that are ecologically suitable for life; fl is the fraction of otherwise suitable planets on which life actually arises; fi is the fraction of inhabited planets on which an intelligent form of life evolves; fc is the fraction of planets inhabited by intelligent beings on which a communicative technical civilization develops; and fL is the fraction of planetary lifetime graced by a technical civilization. The first three terms may be called "the astrophysical terms" in the Drake equation since their numerical value is provided by astrophysical considerations. The fourth term, fl, may be called "the origin-of-life term" and entails biology. The last three terms may be called "the societal terms" inasmuch as their respective numerical values are provided by anthropology, telecommunication science and "futuristic science", respectively. In this paper, we seek to provide a statistical estimate of the three societal terms in the Drake equation basing our calculations on the Statistical Drake Equation first proposed by this author at the 2008 IAC. In that paper the author extended the simple 7-factor product so as to embody Statistics. He proved that, no matter which probability distribution may be assigned to each factor, if the number of factors tends to infinity, then the random variable N follows the lognormal distribution (central limit theorem of Statistics). This author also proved at the 2009 IAC that the Dole (1964) [7] equation, yielding the number of Habitable Planets for Man in the Galaxy, has the same mathematical structure as the Drake equation. So the number of Habitable Planets follows the lognormal distribution as well. But the Dole equation is described by the first FOUR factors of the Drake equation. Thus, we may "divide" the 7-factor Drake equation by the 4-factor Dole equation getting the probability distribution of the last-3-factor Drake equation, i.e. the probability distribution of the SOCIETAL TERMS ONLY. These we study in detail in this paper, achieving new statistical results about the SOCIETAL ASPECTS OF SETI.

  14. Evaporation rate and vapor pressure of selected polymeric lubricating oils.

    NASA Technical Reports Server (NTRS)

    Gardos, M. N.

    1973-01-01

    A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

  15. Numerical simulation of Bragg scattering of sound by surface roughness for different values of the Rayleigh parameter

    NASA Astrophysics Data System (ADS)

    Salin, M. B.; Dosaev, A. S.; Konkov, A. I.; Salin, B. M.

    2014-07-01

    Numerical simulation methods are described for the spectral characteristics of an acoustic signal scattered by multiscale surface waves. The methods include the algorithms for calculating the scattered field by the Kirchhoff method and with the use of an integral equation, as well as the algorithms of surface waves generation with allowance for nonlinear hydrodynamic effects. The paper focuses on studying the spectrum of Bragg scattering caused by surface waves whose frequency exceeds the fundamental low-frequency component of the surface waves by several octaves. The spectrum broadening of the backscattered signal is estimated. The possibility of extending the range of applicability of the computing method developed under small perturbation conditions to cases characterized by a Rayleigh parameter of ≥1 is estimated.

  16. Estimation of Ordinary Differential Equation Parameters Using Constrained Local Polynomial Regression.

    PubMed

    Ding, A Adam; Wu, Hulin

    2014-10-01

    We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method.

  17. Estimation of Ordinary Differential Equation Parameters Using Constrained Local Polynomial Regression

    PubMed Central

    Ding, A. Adam; Wu, Hulin

    2015-01-01

    We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method. PMID:26401093

  18. Spatiotemporal chaos and two-dimensional dissipative rogue waves in Lugiato-Lefever model

    NASA Astrophysics Data System (ADS)

    Panajotov, Krassimir; Clerc, Marcel G.; Tlidi, Mustapha

    2017-06-01

    Driven nonlinear optical cavities can exhibit complex spatiotemporal dynamics. We consider the paradigmatic Lugiato-Lefever model describing driven nonlinear optical resonator. This model is one of the most-studied nonlinear equations in optics. It describes a large spectrum of nonlinear phenomena from bistability, to periodic patterns, localized structures, self-pulsating localized structures and to a complex spatiotemporal behavior. The model is considered also as prototype model to describe several optical nonlinear devices such as Kerr media, liquid crystals, left handed materials, nonlinear fiber cavity, and frequency comb generation. We focus our analysis on a spatiotemporal chaotic dynamics in one-dimension. We identify a route to spatiotemporal chaos through an extended quasiperiodicity. We have estimated the Kaplan-Yorke dimension that provides a measure of the strange attractor complexity. Likewise, we show that the Lugiato-Leferver equation supports rogues waves in two-dimensional settings. We characterize rogue-wave formation by computing the probability distribution of the pulse height. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  19. The solids-flux theory--confirmation and extension by using partial differential equations.

    PubMed

    Diehl, Stefan

    2008-12-01

    The solids-flux theory has been used for half a century as a tool for estimating concentration and fluxes in the design and operation of secondary settling tanks during stationary conditions. The flux theory means that the conservation of mass is used in one dimension together with the batch-settling flux function according to the Kynch assumption. The flux theory results correspond to stationary solutions of a partial differential equation, a conservation law, with discontinuous coefficients modelling the continuous-sedimentation process in one dimension. The mathematical analysis of such an equation is intricate, partly since it cannot be interpreted in the classical sense. Recent results, however, make it possible to partly confirm and extend the previous flux theory statements, partly draw new conclusions also on the dynamic behaviour and the possibilities and limitations for control. We use here a single example of an ideal settling tank and a given batch-settling flux in a whole series of calculations. The mathematical results are adapted towards the application and many of them are conveniently presented in terms of operating charts.

  20. Sampling errors in the measurement of rain and hail parameters

    NASA Technical Reports Server (NTRS)

    Gertzman, H. S.; Atlas, D.

    1977-01-01

    Attention is given to a general derivation of the fractional standard deviation (FSD) of any integrated property X such that X(D) = cD to the n. This work extends that of Joss and Waldvogel (1969). The equation is applicable to measuring integrated properties of cloud, rain or hail populations (such as water content, precipitation rate, kinetic energy, or radar reflectivity) which are subject to statistical sampling errors due to the Poisson distributed fluctuations of particles sampled in each particle size interval and the weighted sum of the associated variances in proportion to their contribution to the integral parameter to be measured. Universal curves are presented which are applicable to the exponential size distribution permitting FSD estimation of any parameters from n = 0 to n = 6. The equations and curves also permit corrections for finite upper limits in the size spectrum and a realistic fall speed law.

  1. A method for estimating mean and low flows of streams in national forests of Montana

    USGS Publications Warehouse

    Parrett, Charles; Hull, J.A.

    1985-01-01

    Equations were developed for estimating mean annual discharge, 80-percent exceedance discharge, and 95-percent exceedance discharge for streams on national forest lands in Montana. The equations for mean annual discharge used active-channel width, drainage area and mean annual precipitation as independent variables, with active-channel width being most significant. The equations for 80-percent exceedance discharge and 95-percent exceedance discharge used only active-channel width as an independent variable. The standard error or estimate for the best equation for estimating mean annual discharge was 27 percent. The standard errors of estimate for the equations were 67 percent for estimating 80-percent exceedance discharge and 75 percent for estimating 95-percent exceedance discharge. (USGS)

  2. Improving North American forest biomass estimates from literature synthesis and meta-analysis of existing biomass equations

    Treesearch

    David C. Chojnacky; Jennifer C. Jenkins; Amanda K. Holland

    2009-01-01

    Thousands of published equations purport to estimate biomass of individual trees. These equations are often based on very small samples, however, and can provide widely different estimates for trees of the same species. We addressed this issue in a previous study by devising 10 new equations that estimated total aboveground biomass for all species in North America (...

  3. Stereovision-based pose and inertia estimation of unknown and uncooperative space objects

    NASA Astrophysics Data System (ADS)

    Pesce, Vincenzo; Lavagna, Michèle; Bevilacqua, Riccardo

    2017-01-01

    Autonomous close proximity operations are an arduous and attractive problem in space mission design. In particular, the estimation of pose, motion and inertia properties of an uncooperative object is a challenging task because of the lack of available a priori information. This paper develops a novel method to estimate the relative position, velocity, angular velocity, attitude and the ratios of the components of the inertia matrix of an uncooperative space object using only stereo-vision measurements. The classical Extended Kalman Filter (EKF) and an Iterated Extended Kalman Filter (IEKF) are used and compared for the estimation procedure. In addition, in order to compute the inertia properties, the ratios of the inertia components are added to the state and a pseudo-measurement equation is considered in the observation model. The relative simplicity of the proposed algorithm could be suitable for an online implementation for real applications. The developed algorithm is validated by numerical simulations in MATLAB using different initial conditions and uncertainty levels. The goal of the simulations is to verify the accuracy and robustness of the proposed estimation algorithm. The obtained results show satisfactory convergence of estimation errors for all the considered quantities. The obtained results, in several simulations, shows some improvements with respect to similar works, which deal with the same problem, present in literature. In addition, a video processing procedure is presented to reconstruct the geometrical properties of a body using cameras. This inertia reconstruction algorithm has been experimentally validated at the ADAMUS (ADvanced Autonomous MUltiple Spacecraft) Lab at the University of Florida. In the future, this different method could be integrated to the inertia ratios estimator to have a complete tool for mass properties recognition.

  4. GFSSP Training Course Lectures

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K.

    2008-01-01

    GFSSP has been extended to model conjugate heat transfer Fluid Solid Network Elements include: a) Fluid nodes and Flow Branches; b) Solid Nodes and Ambient Nodes; c) Conductors connecting Fluid-Solid, Solid-Solid and Solid-Ambient Nodes. Heat Conduction Equations are solved simultaneously with Fluid Conservation Equations for Mass, Momentum, Energy and Equation of State. The extended code was verified by comparing with analytical solution for simple conduction-convection problem The code was applied to model: a) Pressurization of Cryogenic Tank; b) Freezing and Thawing of Metal; c) Chilldown of Cryogenic Transfer Line; d) Boil-off from Cryogenic Tank.

  5. Theoretical study of the tunnel-boundary lift interference due to slotted walls in the presence of the trailing-vortex system of a lifting model

    NASA Technical Reports Server (NTRS)

    Matthews, Clarence W

    1955-01-01

    The equations presented in this report give the interference on the trailing-vortex system of a uniformly loaded finite-span wing in a circular tunnel containing partly open and partly closed walls, with special reference to symmetrical arrangements of the open and closed portions. Methods are given for extending the equations to include tunnel shapes other than circular. The rectangular tunnel is used to demonstrate these methods. The equations are also extended to nonuniformly loaded wings.

  6. Modified Method of Simplest Equation Applied to the Nonlinear Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Vitanov, Nikolay K.; Dimitrova, Zlatinka I.

    2018-03-01

    We consider an extension of the methodology of the modified method of simplest equation to the case of use of two simplest equations. The extended methodology is applied for obtaining exact solutions of model nonlinear partial differential equations for deep water waves: the nonlinear Schrödinger equation. It is shown that the methodology works also for other equations of the nonlinear Schrödinger kind.

  7. Quasi-Newton methods for parameter estimation in functional differential equations

    NASA Technical Reports Server (NTRS)

    Brewer, Dennis W.

    1988-01-01

    A state-space approach to parameter estimation in linear functional differential equations is developed using the theory of linear evolution equations. A locally convergent quasi-Newton type algorithm is applied to distributed systems with particular emphasis on parameters that induce unbounded perturbations of the state. The algorithm is computationally implemented on several functional differential equations, including coefficient and delay estimation in linear delay-differential equations.

  8. Molecular wave function and effective adiabatic potentials calculated by extended multi-configuration time-dependent Hartree-Fock method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru

    We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understandmore » dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.« less

  9. Effect of wear on the burst strength of l-80 steel casing

    NASA Astrophysics Data System (ADS)

    Irawan, S.; Bharadwaj, A. M.; Temesgen, B.; Karuppanan, S.; Abdullah, M. Z. B.

    2015-12-01

    Casing wear has recently become one of the areas of research interest in the oil and gas industry especially in extended reach well drilling. The burst strength of a worn out casing is one of the significantly affected mechanical properties and is yet an area where less research is done The most commonly used equations to calculate the resulting burst strength after wear are Barlow, the initial yield burst, the full yield burst and the rupture burst equations. The objective of this study was to estimate casing burst strength after wear through Finite Element Analysis (FEA). It included calculation and comparison of the different theoretical bursts pressures with the simulation results along with effect of different wear shapes on L-80 casing material. The von Misses stress was used in the estimation of the burst pressure. The result obtained shows that the casing burst strength decreases as the wear percentage increases. Moreover, the burst strength value of the casing obtained from the FEA has a higher value compared to the theoretical burst strength values. Casing with crescent shaped wear give the highest burst strength value when simulated under nonlinear analysis.

  10. Covariant approach of perturbations in Lovelock type brane gravity

    NASA Astrophysics Data System (ADS)

    Bagatella-Flores, Norma; Campuzano, Cuauhtemoc; Cruz, Miguel; Rojas, Efraín

    2016-12-01

    We develop a covariant scheme to describe the dynamics of small perturbations on Lovelock type extended objects propagating in a flat Minkowski spacetime. The higher-dimensional analogue of the Jacobi equation in this theory becomes a wave type equation for a scalar field Φ . Whithin this framework, we analyse the stability of membranes with a de Sitter geometry where we find that the Jacobi equation specializes to a Klein-Gordon (KG) equation for Φ possessing a tachyonic mass. This shows that, to some extent, these types of extended objects share the symmetries of the Dirac-Nambu-Goto (DNG) action which is by no means coincidental because the DNG model is the simplest included in this type of gravity.

  11. Stable Algorithm For Estimating Airdata From Flush Surface Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen, A. (Inventor); Cobleigh, Brent R. (Inventor); Haering, Edward A., Jr. (Inventor)

    2001-01-01

    An airdata estimation and evaluation system and method, including a stable algorithm for estimating airdata from nonintrusive surface pressure measurements. The airdata estimation and evaluation system is preferably implemented in a flush airdata sensing (FADS) system. The system and method of the present invention take a flow model equation and transform it into a triples formulation equation. The triples formulation equation eliminates the pressure related states from the flow model equation by strategically taking the differences of three surface pressures, known as triples. This triples formulation equation is then used to accurately estimate and compute vital airdata from nonintrusive surface pressure measurements.

  12. L{sup 2}-stability of the Vlasov-Maxwell-Boltzmann system near global Maxwellians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Seung-Yeal, E-mail: syha@snu.ac.kr; Xiao, Qinghua, E-mail: pdexqh@hotmail.com; Xiong, Linjie, E-mail: xlj@whu.edu.cn

    2013-12-15

    We present a L{sup 2}-stability theory of the Vlasov-Maxwell-Boltzmann system for the two-species collisional plasma. We show that in a perturbative regime of a global Maxwellian, the L{sup 2}-distance between two strong solutions can be controlled by that between initial data in a Lipschitz manner. Our stability result extends earlier results [Ha, S.-Y. and Xiao, Q.-H., “A revisiting to the L{sup 2}-stability theory of the Boltzmann equation near global Maxwellians,” (submitted) and Ha, S.-Y., Yang, X.-F., and Yun, S.-B., “L{sup 2} stability theory of the Boltzmann equation near a global Maxwellian,” Arch. Ration. Mech. Anal. 197, 657–688 (2010)] on themore » L{sup 2}-stability of the Boltzmann equation to the Boltzmann equation coupled with self-consistent external forces. As a direct application of our stability result, we show that classical solutions in Duan et al. [“Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space,” Commun. Pure Appl. Math. 24, 1497–1546 (2011)] and Guo [“The Vlasov-Maxwell-Boltzmann system near Maxwellians,” Invent. Math. 153(3), 593–630 (2003)] satisfy a uniform L{sup 2}-stability estimate. This is the first result on the L{sup 2}-stability of the Boltzmann equation coupled with self-consistent field equations in three dimensions.« less

  13. Two-dimensional interaction of a shear flow with a free surface in a stratified fluid and its solitary-wave solutions via mathematical methods

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.

    2017-12-01

    In this study, we presented the problem formulations of models for internal solitary waves in a stratified shear flow with a free surface. The nonlinear higher order of extended KdV equations for the free surface displacement is generated. We derived the coefficients of the nonlinear higher-order extended KdV equation in terms of integrals of the modal function for the linear long-wave theory. The wave amplitude potential and the fluid pressure of the extended KdV equation in the form of solitary-wave solutions are deduced. We discussed and analyzed the stability of the obtained solutions and the movement role of the waves by making graphs of the exact solutions.

  14. Analytical estimates of radial segregation in Bridgman growth from low-level steady and periodic accelerations

    NASA Astrophysics Data System (ADS)

    Naumann, Robert J.; Baugher, Charles

    1992-08-01

    Estimates of the convective flows driven by horizontal temperature gradients in the vertical Bridgman configuration are made for dilute systems subject to the low level accelerations typical of the residual accelerations experienced by a spacecraft in low Earth orbit. The estimates are made by solving the Navier-Stokes momentum equation in one dimension. The mass transport equation is then solved in two dimensions using a first-order perturbation method. This approach is valid provided the convective velocities are small compared to the growth velocity which generally requires a reduced gravity environment. If this condition is satisfied, there will be no circulating cells, and hence no convective transport along the vertical axis. However, the variations in the vertical velocity with radius will give rise to radial segregation. The approximate analytical model developed here can predict the degree of radial segregation for a variety of material and processing parameters to an accuracy well within a factor of two as compared against numerical computations of the full set of Navier-Stokes equations for steady accelerations. It has the advantage of providing more insight into the complex interplay of the processing parameters and how they affect the solute distribution in the grown crystal. This could be extremely valuable in the design of low-gravity experiments in which the intent is to control radial segregation. Also, the analysis can be extended to consider transient and periodic accelerations, which is difficult and costly to do numerically. Surprisingly, it was found that the relative radial segregation falls as the inverse cube of the frequency for periodic accelerations whose periods are short compared with the characteristic diffusion time.

  15. Predicting of biomass in Brazilian tropical dry forest: a statistical evaluation of generic equations.

    PubMed

    Lima, Robson B DE; Alves, Francisco T; Oliveira, Cinthia P DE; Silva, José A A DA; Ferreira, Rinaldo L C

    2017-01-01

    Dry tropical forests are a key component in the global carbon cycle and their biomass estimates depend almost exclusively of fitted equations for multi-species or individual species data. Therefore, a systematic evaluation of statistical models through validation of estimates of aboveground biomass stocks is justifiable. In this study was analyzed the capacity of generic and specific equations obtained from different locations in Mexico and Brazil, to estimate aboveground biomass at multi-species levels and for four different species. Generic equations developed in Mexico and Brazil performed better in estimating tree biomass for multi-species data. For Poincianella bracteosa and Mimosa ophthalmocentra, only the Sampaio and Silva (2005) generic equation was the most recommended. These equations indicate lower tendency and lower bias, and biomass estimates for these equations are similar. For the species Mimosa tenuiflora, Aspidosperma pyrifolium and for the genus Croton the specific regional equations are more recommended, although the generic equation of Sampaio and Silva (2005) is not discarded for biomass estimates. Models considering gender, families, successional groups, climatic variables and wood specific gravity should be adjusted, tested and the resulting equations should be validated at both local and regional levels as well as on the scales of tropics with dry forest dominance.

  16. Stochastic Modelling, Analysis, and Simulations of the Solar Cycle Dynamic Process

    NASA Astrophysics Data System (ADS)

    Turner, Douglas C.; Ladde, Gangaram S.

    2018-03-01

    Analytical solutions, discretization schemes and simulation results are presented for the time delay deterministic differential equation model of the solar dynamo presented by Wilmot-Smith et al. In addition, this model is extended under stochastic Gaussian white noise parametric fluctuations. The introduction of stochastic fluctuations incorporates variables affecting the dynamo process in the solar interior, estimation error of parameters, and uncertainty of the α-effect mechanism. Simulation results are presented and analyzed to exhibit the effects of stochastic parametric volatility-dependent perturbations. The results generalize and extend the work of Hazra et al. In fact, some of these results exhibit the oscillatory dynamic behavior generated by the stochastic parametric additative perturbations in the absence of time delay. In addition, the simulation results of the modified stochastic models influence the change in behavior of the very recently developed stochastic model of Hazra et al.

  17. Adaptive focusing of laser radiation onto a rough reflecting surface through the turbulent and nonlinear atmosphere

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeriy V.

    2004-12-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related with maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing outgoing wave propagation, and the equation describing evolution of the mutual coherence function (MCF) for the backscattered (returned) wave. The resulting evolution equation for the MCF is further simplified by the use of the smooth refractive index approximation. This approximation enables derivation of the transport equation for the returned wave brightness function, analyzed here using method characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wavefront sensors that perform sensing of speckle-averaged characteristics of the wavefront phase (TIL sensors). Analysis of the wavefront phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric turbulence-related phase aberrations. We also show that wavefront sensing results depend on the extended target shape, surface roughness, and the outgoing beam intensity distribution on the target surface.

  18. Analysis of wave propagation and wavefront sensing in target-in-the-loop beam control systems

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeri V.

    2004-10-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related with maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing outgoing wave propagation, and the equation describing evolution of the mutual intensity function (MIF) for the backscattered (returned) wave. The resulting evolution equation for the MIF is further simplified by the use of the smooth refractive index approximation. This approximation enables derivation of the transport equation for the returned wave brightness function, analyzed here using method characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wavefront sensors that perform sensing of speckle-averaged characteristics of the wavefront phase (TIL sensors). Analysis of the wavefront phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric turbulence-related phase aberrations. We also show that wavefront sensing results depend on the extended target shape, surface roughness, and the outgoing beam intensity distribution on the target surface.

  19. An Operator Method for Field Moments from the Extended Parabolic Wave Equation and Analytical Solutions of the First and Second Moments for Atmospheric Electromagnetic Wave Propagation

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2004-01-01

    The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the delta-correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The comprehensive operator solution also allows one to obtain expressions for the longitudinal (generalized) second order moment. This is also considered and the solution for the atmospheric case is obtained and discussed. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.

  20. Tangent Lines without Derivatives for Quadratic and Cubic Equations

    ERIC Educational Resources Information Center

    Carroll, William J.

    2009-01-01

    In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)

  1. Comparison of methods for estimating carbon dioxide storage by Sacramento's urban forest

    Treesearch

    Elena Aguaron; E. Gregory McPherson

    2012-01-01

    Limited open-grown urban tree species biomass equations have necessitated use of forest-derived equations with diverse conclusions on the accuracy of these equations to estimate urban biomass and carbon storage. Our goal was to determine and explain variability among estimates of CO2 storage from four sets of allometric equations for the same...

  2. On the transition from pulled to pushed monotonic fronts of the extended Fisher Kolmogorov equation

    NASA Astrophysics Data System (ADS)

    Benguria, R. D.; Depassier, M. C.

    2005-10-01

    The extended Fisher-Kolmogorov equation ut=uxx-γuxxxx+f(u) with arbitrary positive f(u), satisfying f(0)=f(1)=0, has monotonic traveling fronts for γ<{1}/{12}. We find a simple lower bound on the speed of the fronts which allows to determine, for a given reaction term, when will the front of minimal speed be pushed.

  3. Performance of Chronic Kidney Disease Epidemiology Collaboration Creatinine-Cystatin C Equation for Estimating Kidney Function in Cirrhosis

    PubMed Central

    Mindikoglu, Ayse L.; Dowling, Thomas C.; Weir, Matthew R.; Seliger, Stephen L.; Christenson, Robert H.; Magder, Laurence S.

    2013-01-01

    Conventional creatinine-based glomerular filtration rate (GFR) equations are insufficiently accurate for estimating GFR in cirrhosis. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) recently proposed an equation to estimate GFR in subjects without cirrhosis using both serum creatinine and cystatin C levels. Performance of the new CKD-EPI creatinine-cystatin C equation (2012) was superior to previous creatinine- or cystatin C-based GFR equations. To evaluate the performance of the CKD-EPI creatinine-cystatin C equation in subjects with cirrhosis, we compared it to GFR measured by non-radiolabeled iothalamate plasma clearance (mGFR) in 72 subjects with cirrhosis. We compared the “bias”, “precision” and “accuracy” of the new CKD-EPI creatinine-cystatin C equation to that of 24-hour urinary creatinine clearance (CrCl), Cockcroft-Gault (CG) and previously reported creatinine- and/or cystatin C-based GFR-estimating equations. Accuracy of CKD-EPI creatinine-cystatin C equation as quantified by root mean squared error of difference scores [differences between mGFR and estimated GFR (eGFR) or between mGFR and CrCl, or between mGFR and CG equation for each subject] (RMSE=23.56) was significantly better than that of CrCl (37.69, P=0.001), CG (RMSE=36.12, P=0.002) and GFR-estimating equations based on cystatin C only. Its accuracy as quantified by percentage of eGFRs that differed by greater than 30% with respect to mGFR was significantly better compared to CrCl (P=0.024), CG (P=0.0001), 4-variable MDRD (P=0.027) and CKD-EPI creatinine 2009 (P=0.012) equations. However, for 23.61% of the subjects, GFR estimated by CKD-EPI creatinine-cystatin C equation differed from the mGFR by more than 30%. CONCLUSIONS The diagnostic performance of CKD-EPI creatinine-cystatin C equation (2012) in patients with cirrhosis was superior to conventional equations in clinical practice for estimating GFR. However, its diagnostic performance was substantially worse than reported in subjects without cirrhosis. PMID:23744636

  4. Wave-equation migration velocity inversion using passive seismic sources

    NASA Astrophysics Data System (ADS)

    Witten, B.; Shragge, J. C.

    2015-12-01

    Seismic monitoring at injection sites (e.g., CO2 sequestration, waste water disposal, hydraulic fracturing) has become an increasingly important tool for hazard identification and avoidance. The information obtained from this data is often limited to seismic event properties (e.g., location, approximate time, moment tensor), the accuracy of which greatly depends on the estimated elastic velocity models. However, creating accurate velocity models from passive array data remains a challenging problem. Common techniques rely on picking arrivals or matching waveforms requiring high signal-to-noise data that is often not available for the magnitude earthquakes observed over injection sites. We present a new method for obtaining elastic velocity information from earthquakes though full-wavefield wave-equation imaging and adjoint-state tomography. The technique exploits the fact that the P- and S-wave arrivals originate at the same time and location in the subsurface. We generate image volumes by back-propagating P- and S-wave data through initial Earth models and then applying a correlation-based extended-imaging condition. Energy focusing away from zero lag in the extended image volume is used as a (penalized) residual in an adjoint-state tomography scheme to update the P- and S-wave velocity models. We use an acousto-elastic approximation to greatly reduce the computational cost. Because the method requires neither an initial source location or origin time estimate nor picking of arrivals, it is suitable for low signal-to-noise datasets, such as microseismic data. Synthetic results show that with a realistic distribution of microseismic sources, P- and S-velocity perturbations can be recovered. Although demonstrated at an oil and gas reservoir scale, the technique can be applied to problems of all scales from geologic core samples to global seismology.

  5. Translational control of a graphically simulated robot arm by kinematic rate equations that overcome elbow joint singularity

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Houck, J. A.; Carzoo, S. W.

    1984-01-01

    An operator commands a robot hand to move in a certain direction relative to its own axis system by specifying a velocity in that direction. This velocity command is then resolved into individual joint rotational velocities in the robot arm to effect the motion. However, the usual resolved-rate equations become singular when the robot arm is straightened. To overcome this elbow joint singularity, equations were developed which allow continued translational control of the robot hand even though the robot arm is (or is nearly) fully extended. A feature of the equations near full arm extension is that an operator simply extends and retracts the robot arm to reverse the direction of the elbow bend (difficult maneuver for the usual resolved-rate equations). Results show successful movement of a graphically simulated robot arm.

  6. P wave detection in ECG signals using an extended Kalman filter: an evaluation in different arrhythmia contexts.

    PubMed

    Rahimpour, M; Mohammadzadeh Asl, B

    2016-07-01

    Monitoring atrial activity via P waves, is an important feature of the arrhythmia detection procedure. The aim of this paper is to present an algorithm for P wave detection in normal and some abnormal records by improving existing methods in the field of signal processing. In contrast to the classical approaches, which are completely blind to signal dynamics, our proposed method uses the extended Kalman filter, EKF25, to estimate the state variables of the equations modeling the dynamic of an ECG signal. This method is a modified version of the nonlinear dynamical model previously introduced for a generation of synthetic ECG signals and fiducial point extraction in normal ones. It is capable of estimating the separate types of activity of the heart with reasonable accuracy and performs well in the presence of morphological variations in the waveforms and ectopic beats. The MIT-BIH Arrhythmia and QT databases have been used to evaluate the performance of the proposed method. The results show that this method has Se  =  98.38% and Pr  =  96.74% in the overall records (considering normal and abnormal rhythms).

  7. Equations for estimating selected streamflow statistics in Rhode Island

    USGS Publications Warehouse

    Bent, Gardner C.; Steeves, Peter A.; Waite, Andrew M.

    2014-01-01

    The equations, which are based on data from streams with little to no flow alterations, will provide an estimate of the natural flows for a selected site. They will not estimate flows for altered sites with dams, surface-water withdrawals, groundwater withdrawals (pumping wells), diversions, and wastewater discharges. If the equations are used to estimate streamflow statistics for altered sites, the user should adjust the flow estimates for the alterations. The regression equations should be used only for ungaged sites with drainage areas between 0.52 and 294 square miles and stream densities between 0.94 and 3.49 miles per square mile; these are the ranges of the explanatory variables in the equations.

  8. Research on Standard Errors of Equating Differences. Research Report. ETS RR-10-25

    ERIC Educational Resources Information Center

    Moses, Tim; Zhang, Wenmin

    2010-01-01

    In this paper, the "standard error of equating difference" (SEED) is described in terms of originally proposed kernel equating functions (von Davier, Holland, & Thayer, 2004) and extended to incorporate traditional linear and equipercentile functions. These derivations expand on prior developments of SEEDs and standard errors of equating and…

  9. Sparse-grid, reduced-basis Bayesian inversion: Nonaffine-parametric nonlinear equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Peng, E-mail: peng@ices.utexas.edu; Schwab, Christoph, E-mail: christoph.schwab@sam.math.ethz.ch

    2016-07-01

    We extend the reduced basis (RB) accelerated Bayesian inversion methods for affine-parametric, linear operator equations which are considered in [16,17] to non-affine, nonlinear parametric operator equations. We generalize the analysis of sparsity of parametric forward solution maps in [20] and of Bayesian inversion in [48,49] to the fully discrete setting, including Petrov–Galerkin high-fidelity (“HiFi”) discretization of the forward maps. We develop adaptive, stochastic collocation based reduction methods for the efficient computation of reduced bases on the parametric solution manifold. The nonaffinity and nonlinearity with respect to (w.r.t.) the distributed, uncertain parameters and the unknown solution is collocated; specifically, by themore » so-called Empirical Interpolation Method (EIM). For the corresponding Bayesian inversion problems, computational efficiency is enhanced in two ways: first, expectations w.r.t. the posterior are computed by adaptive quadratures with dimension-independent convergence rates proposed in [49]; the present work generalizes [49] to account for the impact of the PG discretization in the forward maps on the convergence rates of the Quantities of Interest (QoI for short). Second, we propose to perform the Bayesian estimation only w.r.t. a parsimonious, RB approximation of the posterior density. Based on the approximation results in [49], the infinite-dimensional parametric, deterministic forward map and operator admit N-term RB and EIM approximations which converge at rates which depend only on the sparsity of the parametric forward map. In several numerical experiments, the proposed algorithms exhibit dimension-independent convergence rates which equal, at least, the currently known rate estimates for N-term approximation. We propose to accelerate Bayesian estimation by first offline construction of reduced basis surrogates of the Bayesian posterior density. The parsimonious surrogates can then be employed for online data assimilation and for Bayesian estimation. They also open a perspective for optimal experimental design.« less

  10. Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation.

    PubMed

    Li, Shuai; Li, Yangming

    2013-10-28

    The Sylvester equation is often encountered in mathematics and control theory. For the general time-invariant Sylvester equation problem, which is defined in the domain of complex numbers, the Bartels-Stewart algorithm and its extensions are effective and widely used with an O(n³) time complexity. When applied to solving the time-varying Sylvester equation, the computation burden increases intensively with the decrease of sampling period and cannot satisfy continuous realtime calculation requirements. For the special case of the general Sylvester equation problem defined in the domain of real numbers, gradient-based recurrent neural networks are able to solve the time-varying Sylvester equation in real time, but there always exists an estimation error while a recently proposed recurrent neural network by Zhang et al [this type of neural network is called Zhang neural network (ZNN)] converges to the solution ideally. The advancements in complex-valued neural networks cast light to extend the existing real-valued ZNN for solving the time-varying real-valued Sylvester equation to its counterpart in the domain of complex numbers. In this paper, a complex-valued ZNN for solving the complex-valued Sylvester equation problem is investigated and the global convergence of the neural network is proven with the proposed nonlinear complex-valued activation functions. Moreover, a special type of activation function with a core function, called sign-bi-power function, is proven to enable the ZNN to converge in finite time, which further enhances its advantage in online processing. In this case, the upper bound of the convergence time is also derived analytically. Simulations are performed to evaluate and compare the performance of the neural network with different parameters and activation functions. Both theoretical analysis and numerical simulations validate the effectiveness of the proposed method.

  11. Error Estimates for Approximate Solutions of the Riccati Equation with Real or Complex Potentials

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Smoller, Joel

    2010-09-01

    A method is presented for obtaining rigorous error estimates for approximate solutions of the Riccati equation, with real or complex potentials. Our main tool is to derive invariant region estimates for complex solutions of the Riccati equation. We explain the general strategy for applying these estimates and illustrate the method in typical examples, where the approximate solutions are obtained by gluing together WKB and Airy solutions of corresponding one-dimensional Schrödinger equations. Our method is motivated by, and has applications to, the analysis of linear wave equations in the geometry of a rotating black hole.

  12. Development of an extended Kalman filter for the self-sensing application of a spring-biased shape memory alloy wire actuator

    NASA Astrophysics Data System (ADS)

    Gurung, H.; Banerjee, A.

    2016-02-01

    This report presents the development of an extended Kalman filter (EKF) to harness the self-sensing capability of a shape memory alloy (SMA) wire, actuating a linear spring. The stress and temperature of the SMA wire, constituting the state of the system, are estimated using the EKF, from the measured change in electrical resistance (ER) of the SMA. The estimated stress is used to compute the change in length of the spring, eliminating the need for a displacement sensor. The system model used in the EKF comprises the heat balance equation and the constitutive relation of the SMA wire coupled with the force-displacement behavior of a spring. Both explicit and implicit approaches are adopted to evaluate the system model at each time-update step of the EKF. Next, in the measurement-update step, estimated states are updated based on the measured electrical resistance. It has been observed that for the same time step, the implicit approach consumes less computational time than the explicit method. To verify the implementation, EKF estimated states of the system are compared with those of an established model for different inputs to the SMA wire. An experimental setup is developed to measure the actual spring displacement and ER of the SMA, for any time-varying voltage applied to it. The process noise covariance is decided using a heuristic approach, whereas the measurement noise covariance is obtained experimentally. Finally, the EKF is used to estimate the spring displacement for a given input and the corresponding experimentally obtained ER of the SMA. The qualitative agreement between the EKF estimated displacement with that obtained experimentally reveals the true potential of this approach to harness the self-sensing capability of the SMA.

  13. Sensitivity analysis of dynamic biological systems with time-delays.

    PubMed

    Wu, Wu Hsiung; Wang, Feng Sheng; Chang, Maw Shang

    2010-10-15

    Mathematical modeling has been applied to the study and analysis of complex biological systems for a long time. Some processes in biological systems, such as the gene expression and feedback control in signal transduction networks, involve a time delay. These systems are represented as delay differential equation (DDE) models. Numerical sensitivity analysis of a DDE model by the direct method requires the solutions of model and sensitivity equations with time-delays. The major effort is the computation of Jacobian matrix when computing the solution of sensitivity equations. The computation of partial derivatives of complex equations either by the analytic method or by symbolic manipulation is time consuming, inconvenient, and prone to introduce human errors. To address this problem, an automatic approach to obtain the derivatives of complex functions efficiently and accurately is necessary. We have proposed an efficient algorithm with an adaptive step size control to compute the solution and dynamic sensitivities of biological systems described by ordinal differential equations (ODEs). The adaptive direct-decoupled algorithm is extended to solve the solution and dynamic sensitivities of time-delay systems describing by DDEs. To save the human effort and avoid the human errors in the computation of partial derivatives, an automatic differentiation technique is embedded in the extended algorithm to evaluate the Jacobian matrix. The extended algorithm is implemented and applied to two realistic models with time-delays: the cardiovascular control system and the TNF-α signal transduction network. The results show that the extended algorithm is a good tool for dynamic sensitivity analysis on DDE models with less user intervention. By comparing with direct-coupled methods in theory, the extended algorithm is efficient, accurate, and easy to use for end users without programming background to do dynamic sensitivity analysis on complex biological systems with time-delays.

  14. A procedure to construct exact solutions of nonlinear fractional differential equations.

    PubMed

    Güner, Özkan; Cevikel, Adem C

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.

  15. Evaluation of equations that estimate glomerular filtration rate in renal transplant recipients.

    PubMed

    De Alencastro, M G; Veronese, F V; Vicari, A R; Gonçalves, L F; Manfro, R C

    2014-03-01

    The accuracy of equations that estimate the glomerular filtration rate (GFR) in renal transplant patients has not been established; thus their performance was assessed in stable renal transplant patients. Renal transplant patients (N.=213) with stable graft function were enrolled. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation was used as the reference method and compared with the Cockcroft-Gault (CG), Modification of Diet in Renal Disease (MDRD), Mayo Clinic (MC) and Nankivell equations. Bias, accuracy and concordance rates were determined for all equation relative to CKD-EPI. Mean estimated GFR values of the equations differed significantly from the CKD-EPI values, though the correlations with the reference method were significant. Values of MDRD differed from the CG, MC and Nankivell estimations. The best agreement to classify the chronic kidney disease (CKD) stages was for the MDRD (Kappa=0.649, P<0.001), and for the other equations the agreement was moderate. The MDRD had less bias and narrower agreement limits but underestimated the GFR at levels above 60 mL/min/1.73 m2. Conversely, the CG, MC and Nankivell equations overestimated the GFR, and the Nankivell equation had the worst performance. The MDRD equation P15 and P30 values were higher than those of the other equations (P<0.001). Despite their correlations, equations estimated the GFR and CKD stage differently. The MDRD equation was the most accurate, but the sub-optimal performance of all the equations precludes their accurate use in clinical practice.

  16. Rover Slip Validation and Prediction Algorithm

    NASA Technical Reports Server (NTRS)

    Yen, Jeng

    2009-01-01

    A physical-based simulation has been developed for the Mars Exploration Rover (MER) mission that applies a slope-induced wheel-slippage to the rover location estimator. Using the digital elevation map from the stereo images, the computational method resolves the quasi-dynamic equations of motion that incorporate the actual wheel-terrain speed to estimate the gross velocity of the vehicle. Based on the empirical slippage measured by the Visual Odometry software of the rover, this algorithm computes two factors for the slip model by minimizing the distance of the predicted and actual vehicle location, and then uses the model to predict the next drives. This technique, which has been deployed to operate the MER rovers in the extended mission periods, can accurately predict the rover position and attitude, mitigating the risk and uncertainties in the path planning on high-slope areas.

  17. True covariance simulation of the EUVE update filter

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, R. R.

    1989-01-01

    A covariance analysis of the performance and sensitivity of the attitude determination Extended Kalman Filter (EKF) used by the On Board Computer (OBC) of the Extreme Ultra Violet Explorer (EUVE) spacecraft is presented. The linearized dynamics and measurement equations of the error states are derived which constitute the truth model describing the real behavior of the systems involved. The design model used by the OBC EKF is then obtained by reducing the order of the truth model. The covariance matrix of the EKF which uses the reduced order model is not the correct covariance of the EKF estimation error. A true covariance analysis has to be carried out in order to evaluate the correct accuracy of the OBC generated estimates. The results of such analysis are presented which indicate both the performance and the sensitivity of the OBC EKF.

  18. Stable boundary conditions and difference schemes for Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Dutt, P.

    1985-01-01

    The Navier-Stokes equations can be viewed as an incompletely elliptic perturbation of the Euler equations. By using the entropy function for the Euler equations as a measure of energy for the Navier-Stokes equations, it was possible to obtain nonlinear energy estimates for the mixed initial boundary value problem. These estimates are used to derive boundary conditions which guarantee L2 boundedness even when the Reynolds number tends to infinity. Finally, a new difference scheme for modelling the Navier-Stokes equations in multidimensions for which it is possible to obtain discrete energy estimates exactly analogous to those we obtained for the differential equation was proposed.

  19. Generalized extended Lagrangian Born-Oppenheimer molecular dynamics

    DOE PAGES

    Niklasson, Anders M. N.; Cawkwell, Marc J.

    2014-10-29

    Extended Lagrangian Born-Oppenheimer molecular dynamics based on Kohn-Sham density functional theory is generalized in the limit of vanishing self-consistent field optimization prior to the force evaluations. The equations of motion are derived directly from the extended Lagrangian under the condition of an adiabatic separation between the nuclear and the electronic degrees of freedom. We show how this separation is automatically fulfilled and system independent. The generalized equations of motion require only one diagonalization per time step and are applicable to a broader range of materials with improved accuracy and stability compared to previous formulations.

  20. Online Kinematic and Dynamic-State Estimation for Constrained Multibody Systems Based on IMUs

    PubMed Central

    Torres-Moreno, José Luis; Blanco-Claraco, José Luis; Giménez-Fernández, Antonio; Sanjurjo, Emilio; Naya, Miguel Ángel

    2016-01-01

    This article addresses the problems of online estimations of kinematic and dynamic states of a mechanism from a sequence of noisy measurements. In particular, we focus on a planar four-bar linkage equipped with inertial measurement units (IMUs). Firstly, we describe how the position, velocity, and acceleration of all parts of the mechanism can be derived from IMU signals by means of multibody kinematics. Next, we propose the novel idea of integrating the generic multibody dynamic equations into two variants of Kalman filtering, i.e., the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), in a way that enables us to handle closed-loop, constrained mechanisms, whose state space variables are not independent and would normally prevent the direct use of such estimators. The proposal in this work is to apply those estimators over the manifolds of allowed positions and velocities, by means of estimating a subset of independent coordinates only. The proposed techniques are experimentally validated on a testbed equipped with encoders as a means of establishing the ground-truth. Estimators are run online in real-time, a feature not matched by any previous procedure of those reported in the literature on multibody dynamics. PMID:26959027

  1. Novel Equations for Estimating Lean Body Mass in Patients With Chronic Kidney Disease.

    PubMed

    Tian, Xue; Chen, Yuan; Yang, Zhi-Kai; Qu, Zhen; Dong, Jie

    2018-05-01

    Simplified methods to estimate lean body mass (LBM), an important nutritional measure representing muscle mass and somatic protein, are lacking in nondialyzed patients with chronic kidney disease (CKD). We developed and tested 2 reliable equations for estimation of LBM in daily clinical practice. The development and validation groups both included 150 nondialyzed patients with CKD Stages 3 to 5. Two equations for estimating LBM based on mid-arm muscle circumference (MAMC) or handgrip strength (HGS) were developed and validated in CKD patients with dual-energy x-ray absorptiometry as referenced gold method. We developed and validated 2 equations for estimating LBM based on HGS and MAMC. These equations, which also incorporated sex, height, and weight, were developed and validated in CKD patients. The new equations were found to exhibit only small biases when compared with dual-energy x-ray absorptiometry, with median differences of 0.94 and 0.46 kg observed in the HGS and MAMC equations, respectively. Good precision and accuracy were achieved for both equations, as reflected by small interquartile ranges in the differences and in the percentages of estimates that were 20% of measured LBM. The bias, precision, and accuracy of each equation were found to be similar when it was applied to groups of patients divided by the median measured LBM, the median ratio of extracellular to total body water, and the stages of CKD. LBM estimated from MAMC or HGS were found to provide accurate estimates of LBM in nondialyzed patients with CKD. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  2. Regularity estimates up to the boundary for elliptic systems of difference equations

    NASA Technical Reports Server (NTRS)

    Strikwerda, J. C.; Wade, B. A.; Bube, K. P.

    1986-01-01

    Regularity estimates up to the boundary for solutions of elliptic systems of finite difference equations were proved. The regularity estimates, obtained for boundary fitted coordinate systems on domains with smooth boundary, involve discrete Sobolev norms and are proved using pseudo-difference operators to treat systems with variable coefficients. The elliptic systems of difference equations and the boundary conditions which are considered are very general in form. The regularity of a regular elliptic system of difference equations was proved equivalent to the nonexistence of eigensolutions. The regularity estimates obtained are analogous to those in the theory of elliptic systems of partial differential equations, and to the results of Gustafsson, Kreiss, and Sundstrom (1972) and others for hyperbolic difference equations.

  3. The applicability of eGFR equations to different populations.

    PubMed

    Delanaye, Pierre; Mariat, Christophe

    2013-09-01

    The Cockcroft-Gault equation for estimating glomerular filtration rate has been learnt by every generation of medical students over the decades. Since the publication of the Modification of Diet in Renal Disease (MDRD) study equation in 1999, however, the supremacy of the Cockcroft-Gault equation has been relentlessly disputed. More recently, the Chronic Kidney Disease Epidemiology (CKD-EPI) consortium has proposed a group of novel equations for estimating glomerular filtration rate (GFR). The MDRD and CKD-EPI equations were developed following a rigorous process, are expressed in a way in which they can be used with standardized biomarkers of GFR (serum creatinine and/or serum cystatin C) and have been evaluated in different populations of patients. Today, the MDRD Study equation and the CKD-EPI equation based on serum creatinine level have supplanted the Cockcroft-Gault equation. In many regards, these equations are superior to the Cockcroft-Gault equation and are now specifically recommended by international guidelines. With their generalized use, however, it has become apparent that those equations are not infallible and that they fail to provide an accurate estimate of GFR in certain situations frequently encountered in clinical practice. After describing the processes that led to the development of the new GFR-estimating equations, this Review discusses the clinical situations in which the applicability of these equations is questioned.

  4. Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio

    USGS Publications Warehouse

    Koltun, G.F.

    2003-01-01

    Regional equations for estimating 2-, 5-, 10-, 25-, 50-, 100-, and 500-year flood-peak discharges at ungaged sites on rural, unregulated streams in Ohio were developed by means of ordinary and generalized least-squares (GLS) regression techniques. One-variable, simple equations and three-variable, full-model equations were developed on the basis of selected basin characteristics and flood-frequency estimates determined for 305 streamflow-gaging stations in Ohio and adjacent states. The average standard errors of prediction ranged from about 39 to 49 percent for the simple equations, and from about 34 to 41 percent for the full-model equations. Flood-frequency estimates determined by means of log-Pearson Type III analyses are reported along with weighted flood-frequency estimates, computed as a function of the log-Pearson Type III estimates and the regression estimates. Values of explanatory variables used in the regression models were determined from digital spatial data sets by means of a geographic information system (GIS), with the exception of drainage area, which was determined by digitizing the area within basin boundaries manually delineated on topographic maps. Use of GIS-based explanatory variables represents a major departure in methodology from that described in previous reports on estimating flood-frequency characteristics of Ohio streams. Examples are presented illustrating application of the regression equations to ungaged sites on ungaged and gaged streams. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site on the same stream. A region-of-influence method, which employs a computer program to estimate flood-frequency characteristics for ungaged sites based on data from gaged sites with similar characteristics, was also tested and compared to the GLS full-model equations. For all recurrence intervals, the GLS full-model equations had superior prediction accuracy relative to the simple equations and therefore are recommended for use.

  5. The Hartman-Grobman theorem for semilinear hyperbolic evolution equations

    NASA Astrophysics Data System (ADS)

    Hein, Marie-Luise; Prüss, Jan

    2016-10-01

    The famous Hartman-Grobman theorem for ordinary differential equations is extended to abstract semilinear hyperbolic evolution equations in Banach spaces by means of simple direct proof. It is also shown that the linearising map is Hölder continuous. Several applications to abstract and specific damped wave equations are given, to demonstrate the strength of our results.

  6. Poincaré-MacMillan Equations of Motion for a Nonlinear Nonholonomic Dynamical System

    NASA Astrophysics Data System (ADS)

    Amjad, Hussain; Syed Tauseef, Mohyud-Din; Ahmet, Yildirim

    2012-03-01

    MacMillan's equations are extended to Poincaré's formalism, and MacMillan's equations for nonlinear nonholonomic systems are obtained in terms of Poincaré parameters. The equivalence of the results obtained here with other forms of equations of motion is demonstrated. An illustrative example of the theory is provided as well.

  7. A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations

    PubMed Central

    Güner, Özkan; Cevikel, Adem C.

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions. PMID:24737972

  8. Laplace and Z Transform Solutions of Differential and Difference Equations With the HP-41C.

    ERIC Educational Resources Information Center

    Harden, Richard C.; Simons, Fred O., Jr.

    1983-01-01

    A previously developed program for the HP-41C programmable calculator is extended to handle models of differential and difference equations with multiple eigenvalues. How to obtain difference equation solutions via the Z transform is described. (MNS)

  9. Painlevé equations, elliptic integrals and elementary functions

    NASA Astrophysics Data System (ADS)

    Żołądek, Henryk; Filipuk, Galina

    2015-02-01

    The six Painlevé equations can be written in the Hamiltonian form, with time dependent Hamilton functions. We present a rather new approach to this result, leading to rational Hamilton functions. By a natural extension of the phase space one gets corresponding autonomous Hamiltonian systems with two degrees of freedom. We realize the Bäcklund transformations of the Painlevé equations as symplectic birational transformations in C4 and we interpret the cases with classical solutions as the cases of partial integrability of the extended Hamiltonian systems. We prove that the extended Hamiltonian systems do not have any additional algebraic first integral besides the known special cases of the third and fifth Painlevé equations. We also show that the original Painlevé equations admit the first integrals expressed in terms of the elementary functions only in the special cases mentioned above. In the proofs we use equations in variations with respect to a parameter and Liouville's theory of elementary functions.

  10. WE-D-BRF-05: Quantitative Dual-Energy CT Imaging for Proton Stopping Power Computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, D; Williamson, J; Siebers, J

    2014-06-15

    Purpose: To extend the two-parameter separable basis-vector model (BVM) to estimation of proton stopping power from dual-energy CT (DECT) imaging. Methods: BVM assumes that the photon cross sections of any unknown material can be represented as a linear combination of the corresponding quantities for two bracketing basis materials. We show that both the electron density (ρe) and mean excitation energy (Iex) can be modeled by BVM, enabling stopping power to be estimated from the Bethe-Bloch equation. We have implemented an idealized post-processing dual energy imaging (pDECT) simulation consisting of monogenetic 45 keV and 80 keV scanning beams with polystyrene-water andmore » water-CaCl2 solution basis pairs for soft tissues and bony tissues, respectively. The coefficients of 24 standard ICRU tissue compositions were estimated by pDECT. The corresponding ρe, Iex, and stopping power tables were evaluated via BVM and compared to tabulated ICRU 44 reference values. Results: BVM-based pDECT was found to estimate ρe and Iex with average and maximum errors of 0.5% and 2%, respectively, for the 24 tissues. Proton stopping power values at 175 MeV, show average/maximum errors of 0.8%/1.4%. For adipose, muscle and bone, these errors result range prediction accuracies less than 1%. Conclusion: A new two-parameter separable DECT model (BVM) for estimating proton stopping power was developed. Compared to competing parametric fit DECT models, BVM has the comparable prediction accuracy without necessitating iterative solution of nonlinear equations or a sample-dependent empirical relationship between effective atomic number and Iex. Based on the proton BVM, an efficient iterative statistical DECT reconstruction model is under development.« less

  11. ATTITUDE FILTERING ON SO(3)

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    2005-01-01

    A new method is presented for the simultaneous estimation of the attitude of a spacecraft and an N-vector of bias parameters. This method uses a probability distribution function defined on the Cartesian product of SO(3), the group of rotation matrices, and the Euclidean space W N .The Fokker-Planck equation propagates the probability distribution function between measurements, and Bayes s formula incorporates measurement update information. This approach avoids all the issues of singular attitude representations or singular covariance matrices encountered in extended Kalman filters. In addition, the filter has a consistent initialization for a completely unknown initial attitude, owing to the fact that SO(3) is a compact space.

  12. Hyper-X Mach 10 Trajectory Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Martin, John G.; Tartabini, Paul V.; Thornblom, Mark N.

    2005-01-01

    This paper discusses the formulation and development of a trajectory reconstruction tool for the NASA X-43A/Hyper-X high speed research vehicle, and its implementation for the reconstruction and analysis of flight test data. Extended Kalman filtering techniques are employed to reconstruct the trajectory of the vehicle, based upon numerical integration of inertial measurement data along with redundant measurements of the vehicle state. The equations of motion are formulated in order to include the effects of several systematic error sources, whose values may also be estimated by the filtering routines. Additionally, smoothing algorithms have been implemented in which the final value of the state (or an augmented state that includes other systematic error parameters to be estimated) and covariance are propagated back to the initial time to generate the best-estimated trajectory, based upon all available data. The methods are applied to the problem of reconstructing the trajectory of the Hyper-X vehicle from data obtained during the Mach 10 test flight, which occurred on November 16th 2004.

  13. Do group-specific equations provide the best estimates of stature?

    PubMed

    Albanese, John; Osley, Stephanie E; Tuck, Andrew

    2016-04-01

    An estimate of stature can be used by a forensic anthropologist with the preliminary identification of an unknown individual when human skeletal remains are recovered. Fordisc is a computer application that can be used to estimate stature; like many other methods it requires the user to assign an unknown individual to a specific group defined by sex, race/ancestry, and century of birth before an equation is applied. The assumption is that a group-specific equation controls for group differences and should provide the best results most often. In this paper we assess the utility and benefits of using group-specific equations to estimate stature using Fordisc. Using the maximum length of the humerus and the maximum length of the femur from individuals with documented stature, we address the question: Do sex-, race/ancestry- and century-specific stature equations provide the best results when estimating stature? The data for our sample of 19th Century White males (n=28) were entered into Fordisc and stature was estimated using 22 different equation options for a total of 616 trials: 19th and 20th Century Black males, 19th and 20th Century Black females, 19th and 20th Century White females, 19th and 20th Century White males, 19th and 20th Century any, and 20th Century Hispanic males. The equations were assessed for utility in any one case (how many times the estimated range bracketed the documented stature) and in aggregate using 1-way ANOVA and other approaches. This group-specific equation that should have provided the best results was outperformed by several other equations for both the femur and humerus. These results suggest that group-specific equations do not provide better results for estimating stature while at the same time are more difficult to apply because an unknown must be allocated to a given group before stature can be estimated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Machine-Learning Based Channel Quality and Stability Estimation for Stream-Based Multichannel Wireless Sensor Networks.

    PubMed

    Rehan, Waqas; Fischer, Stefan; Rehan, Maaz

    2016-09-12

    Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end, simulations are made using MATLAB, and the results show that the Extended version of NEAMCBTC algorithm (Ext-NEAMCBTC) outperforms the compared techniques in terms of channel quality and stability assessment. It also minimizes channel switching overheads (in terms of switching delays and energy consumption) for accommodating stream-based communication in multichannel WSNs.

  15. Machine-Learning Based Channel Quality and Stability Estimation for Stream-Based Multichannel Wireless Sensor Networks

    PubMed Central

    Rehan, Waqas; Fischer, Stefan; Rehan, Maaz

    2016-01-01

    Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end, simulations are made using MATLAB, and the results show that the Extended version of NEAMCBTC algorithm (Ext-NEAMCBTC) outperforms the compared techniques in terms of channel quality and stability assessment. It also minimizes channel switching overheads (in terms of switching delays and energy consumption) for accommodating stream-based communication in multichannel WSNs. PMID:27626429

  16. Stature estimation equations for South Asian skeletons based on DXA scans of contemporary adults.

    PubMed

    Pomeroy, Emma; Mushrif-Tripathy, Veena; Wells, Jonathan C K; Kulkarni, Bharati; Kinra, Sanjay; Stock, Jay T

    2018-05-03

    Stature estimation from the skeleton is a classic anthropological problem, and recent years have seen the proliferation of population-specific regression equations. Many rely on the anatomical reconstruction of stature from archaeological skeletons to derive regression equations based on long bone lengths, but this requires a collection with very good preservation. In some regions, for example, South Asia, typical environmental conditions preclude the sufficient preservation of skeletal remains. Large-scale epidemiological studies that include medical imaging of the skeleton by techniques such as dual-energy X-ray absorptiometry (DXA) offer new potential datasets for developing such equations. We derived estimation equations based on known height and bone lengths measured from DXA scans from the Andhra Pradesh Children and Parents Study (Hyderabad, India). Given debates on the most appropriate regression model to use, multiple methods were compared, and the performance of the equations was tested on a published skeletal dataset of individuals with known stature. The equations have standard errors of estimates and prediction errors similar to those derived using anatomical reconstruction or from cadaveric datasets. As measured by the number of significant differences between true and estimated stature, and the prediction errors, the new equations perform as well as, and generally better than, published equations commonly used on South Asian skeletons or based on Indian cadaveric datasets. This study demonstrates the utility of DXA scans as a data source for developing stature estimation equations and offer a new set of equations for use with South Asian datasets. © 2018 Wiley Periodicals, Inc.

  17. A Comparison of Kernel Equating and Traditional Equipercentile Equating Methods and the Parametric Bootstrap Methods for Estimating Standard Errors in Equipercentile Equating

    ERIC Educational Resources Information Center

    Choi, Sae Il

    2009-01-01

    This study used simulation (a) to compare the kernel equating method to traditional equipercentile equating methods under the equivalent-groups (EG) design and the nonequivalent-groups with anchor test (NEAT) design and (b) to apply the parametric bootstrap method for estimating standard errors of equating. A two-parameter logistic item response…

  18. From Nonradiating Sources to Directionally Invisible Objects

    NASA Astrophysics Data System (ADS)

    Hurwitz, Elisa

    The goal of this dissertation is to extend the understanding of invisible objects, in particular nonradiating sources and directional nonscattering scatterers. First, variations of null-field nonradiating sources are derived from Maxwell's equations. Next, it is shown how to design a nonscattering scatterer by applying the boundary conditions for nonradiating sources to the scalar wave equation, referred to here as the "field cloak method". This technique is used to demonstrate directionally invisible scatterers for an incident field with one direction of incidence, and the influence of symmetry on the directionality is explored. This technique, when applied to the scalar wave equation, is extended to show that a directionally invisible object may be invisible for multiple directions of incidence simultaneously. This opens the door to the creation of optically switchable, directionally invisible objects which could be implemented in couplers and other novel optical devices. Next, a version of the "field cloak method" is extended to the Maxwell's electro-magnetic vector equations, allowing more flexibility in the variety of directionally invisible objects that can be designed. This thesis concludes with examples of such objects and future applications.

  19. A unified procedure for meta-analytic evaluation of surrogate end points in randomized clinical trials

    PubMed Central

    Dai, James Y.; Hughes, James P.

    2012-01-01

    The meta-analytic approach to evaluating surrogate end points assesses the predictiveness of treatment effect on the surrogate toward treatment effect on the clinical end point based on multiple clinical trials. Definition and estimation of the correlation of treatment effects were developed in linear mixed models and later extended to binary or failure time outcomes on a case-by-case basis. In a general regression setting that covers nonnormal outcomes, we discuss in this paper several metrics that are useful in the meta-analytic evaluation of surrogacy. We propose a unified 3-step procedure to assess these metrics in settings with binary end points, time-to-event outcomes, or repeated measures. First, the joint distribution of estimated treatment effects is ascertained by an estimating equation approach; second, the restricted maximum likelihood method is used to estimate the means and the variance components of the random treatment effects; finally, confidence intervals are constructed by a parametric bootstrap procedure. The proposed method is evaluated by simulations and applications to 2 clinical trials. PMID:22394448

  20. Statistical properties of a filtered Poisson process with additive random noise: distributions, correlations and moment estimation

    NASA Astrophysics Data System (ADS)

    Theodorsen, A.; E Garcia, O.; Rypdal, M.

    2017-05-01

    Filtered Poisson processes are often used as reference models for intermittent fluctuations in physical systems. Such a process is here extended by adding a noise term, either as a purely additive term to the process or as a dynamical term in a stochastic differential equation. The lowest order moments, probability density function, auto-correlation function and power spectral density are derived and used to identify and compare the effects of the two different noise terms. Monte-Carlo studies of synthetic time series are used to investigate the accuracy of model parameter estimation and to identify methods for distinguishing the noise types. It is shown that the probability density function and the three lowest order moments provide accurate estimations of the model parameters, but are unable to separate the noise types. The auto-correlation function and the power spectral density also provide methods for estimating the model parameters, as well as being capable of identifying the noise type. The number of times the signal crosses a prescribed threshold level in the positive direction also promises to be able to differentiate the noise type.

  1. Bilinear modeling and nonlinear estimation

    NASA Technical Reports Server (NTRS)

    Dwyer, Thomas A. W., III; Karray, Fakhreddine; Bennett, William H.

    1989-01-01

    New methods are illustrated for online nonlinear estimation applied to the lateral deflection of an elastic beam on board measurements of angular rates and angular accelerations. The development of the filter equations, together with practical issues of their numerical solution as developed from global linearization by nonlinear output injection are contrasted with the usual method of the extended Kalman filter (EKF). It is shown how nonlinear estimation due to gyroscopic coupling can be implemented as an adaptive covariance filter using off-the-shelf Kalman filter algorithms. The effect of the global linearization by nonlinear output injection is to introduce a change of coordinates in which only the process noise covariance is to be updated in online implementation. This is in contrast to the computational approach which arises in EKF methods arising by local linearization with respect to the current conditional mean. Processing refinements for nonlinear estimation based on optimal, nonlinear interpolation between observations are also highlighted. In these methods the extrapolation of the process dynamics between measurement updates is obtained by replacing a transition matrix with an operator spline that is optimized off-line from responses to selected test inputs.

  2. Novel Equations for Estimating Lean Body Mass in Peritoneal Dialysis Patients

    PubMed Central

    Dong, Jie; Li, Yan-Jun; Xu, Rong; Yang, Zhi-Kai; Zheng, Ying-Dong

    2015-01-01

    ♦ Objectives: To develop and validate equations for estimating lean body mass (LBM) in peritoneal dialysis (PD) patients. ♦ Methods: Two equations for estimating LBM, one based on mid-arm muscle circumference (MAMC) and hand grip strength (HGS), i.e., LBM-M-H, and the other based on HGS, i.e., LBM-H, were developed and validated with LBM obtained by dual-energy X-ray absorptiometry (DEXA). The developed equations were compared to LBM estimated from creatinine kinetics (LBM-CK) and anthropometry (LBM-A) in terms of bias, precision, and accuracy. The prognostic values of LBM estimated from the equations in all-cause mortality risk were assessed. ♦ Results: The developed equations incorporated gender, height, weight, and dialysis duration. Compared to LBM-DEXA, the bias of the developed equations was lower than that of LBM-CK and LBM-A. Additionally, LBM-M-H and LBM-H had better accuracy and precision. The prognostic values of LBM in all-cause mortality risk based on LBM-M-H, LBM-H, LBM-CK, and LBM-A were similar. ♦ Conclusions: Lean body mass estimated by the new equations based on MAMC and HGS was correlated with LBM obtained by DEXA and may serve as practical surrogate markers of LBM in PD patients. PMID:26293839

  3. Novel Equations for Estimating Lean Body Mass in Peritoneal Dialysis Patients.

    PubMed

    Dong, Jie; Li, Yan-Jun; Xu, Rong; Yang, Zhi-Kai; Zheng, Ying-Dong

    2015-12-01

    ♦ To develop and validate equations for estimating lean body mass (LBM) in peritoneal dialysis (PD) patients. ♦ Two equations for estimating LBM, one based on mid-arm muscle circumference (MAMC) and hand grip strength (HGS), i.e., LBM-M-H, and the other based on HGS, i.e., LBM-H, were developed and validated with LBM obtained by dual-energy X-ray absorptiometry (DEXA). The developed equations were compared to LBM estimated from creatinine kinetics (LBM-CK) and anthropometry (LBM-A) in terms of bias, precision, and accuracy. The prognostic values of LBM estimated from the equations in all-cause mortality risk were assessed. ♦ The developed equations incorporated gender, height, weight, and dialysis duration. Compared to LBM-DEXA, the bias of the developed equations was lower than that of LBM-CK and LBM-A. Additionally, LBM-M-H and LBM-H had better accuracy and precision. The prognostic values of LBM in all-cause mortality risk based on LBM-M-H, LBM-H, LBM-CK, and LBM-A were similar. ♦ Lean body mass estimated by the new equations based on MAMC and HGS was correlated with LBM obtained by DEXA and may serve as practical surrogate markers of LBM in PD patients. Copyright © 2015 International Society for Peritoneal Dialysis.

  4. SABER (TIMED) and MLS (UARS) Temperature Observations of Mesospheric and Stratospheric QBO and Related Tidal Variations

    NASA Technical Reports Server (NTRS)

    Huang, Frank T.; Mayr, Hans G.; Reber, Carl A.; Russell, James; Mlynczak, Marty; Mengel, John

    2006-01-01

    More than three years of temperature observations from the SABER (TIMED) and MLS WARS) instruments are analyzed to study the annual and inter-annual variations extending from the stratosphere into the upper mesosphere. The SABER measurements provide data from a wide altitude range (15 to 95 km) for the years 2002 to 2004, while the MLS data were taken in the 16 to 55 km altitude range a decade earlier. Because of the sampling properties of SABER and MLS, the variations with local solar time must be accounted for when estimating the zonal mean variations. An algorithm is thus applied that delineates with Fourier analysis the year-long variations of the migrating tides and zonal mean component. The amplitude of the diurnal tide near the equator shows a strong semiannual periodicity with maxima near equinox, which vary from year to year to indicate the influence from the Quasi-biennial Oscillation (QBO) in the zonal circulation. The zonal mean QBO temperature variations are analyzed over a range of latitudes and altitudes, and the results are presented for latitudes from 48"s to 48"N. New results are obtained for the QBO, especially in the upper stratosphere and mesosphere, and at mid-latitudes. At Equatorial latitudes, the QBO amplitudes show local peaks, albeit small, that occur at different altitudes. From about 20 to 40 km, and within about 15" of the Equator, the amplitudes can approach 3S K for the stratospheric QBO or SQBO. For the mesospheric QBO or MQBO, we find peaks near 70 km, with temperature amplitudes reaching 3.5"K, and near 85 km, the amplitudes approach 2.5OK. Morphologically, the amplitude and phase variations derived from the SABER and MLS measurements are in qualitative agreement. The QBO amplitudes tend to peak at the Equator but then increase again pole-ward of about 15" to 20'. The phase progression with altitude varies more gradually at the Equator than at mid-latitudes. A comparison of the observations with results from the Numerical Spectral Model (NSM) reveals that there is qualitative agreement. The NSM generates the QBO extending from the stratosphere into the upper mesosphere, with temperature variations extending to mid latitudes, but the predicted amplitudes are smaller than those observed.

  5. Ring current-energy balance during intense magnetic storms

    NASA Astrophysics Data System (ADS)

    Clua de Gonzalez, A. L.; Gonzalez, W. D.

    2013-12-01

    The energy-rate balance that governs the storm-time ring current is analyzed in terms of the Burton-McPherron-Russell equation (Burton et al., 1975). This is a first order differential equation relating the time variation of the pressure corrected Dst index, with the energy input to the magnetosphere. Based on the Burton et al. equation, we have analyzed in detail the geomagnetic storm of February 11, 2004. The energy input is taken proportional to the interplanetary electric field, Q(t) = αBsV, where Bs is the southward component of the interplanetary magnetic field in GSM coordinates, V is the flow speed of the solar wind and α a constant. The equation is integrated using the OMNI-combined interplanetary data and, the value of the decay time is estimated from a best fit of the response to the observed curve. For this storm we also use a rectangular approximation for the energy input function, thus allowing an analytical solution of the Burton et al. equation. The results from this approximation are then compared to the numerical solution. The study is also extended to the geomagnetic storm of April 22, 2001. This analysis seems to indicate that the Burton et al. equation should contain also a corrective term proportional to the second time derivative of the Dst index. This corrective term might become important for intense storms, with an effect of counteracting the growth of |Dst| before the energy input from the interplanetary medium declines, such that the value of |Dst| starts to decrease instead of continuing to grow.

  6. A critical review and database of biomass and volume allometric equation for trees and shrubs of Bangladesh

    NASA Astrophysics Data System (ADS)

    Mahmood, H.; Siddique, M. R. H.; Akhter, M.

    2016-08-01

    Estimations of biomass, volume and carbon stock are important in the decision making process for the sustainable management of a forest. These estimations can be conducted by using available allometric equations of biomass and volume. Present study aims to: i. develop a compilation with verified allometric equations of biomass, volume, and carbon for trees and shrubs of Bangladesh, ii. find out the gaps and scope for further development of allometric equations for different trees and shrubs of Bangladesh. Key stakeholders (government departments, research organizations, academic institutions, and potential individual researchers) were identified considering their involvement in use and development of allometric equations. A list of documents containing allometric equations was prepared from secondary sources. The documents were collected, examined, and sorted to avoid repetition, yielding 50 documents. These equations were tested through a quality control scheme involving operational verification, conceptual verification, applicability, and statistical credibility. A total of 517 allometric equations for 80 species of trees, shrubs, palm, and bamboo were recorded. In addition, 222 allometric equations for 39 species were validated through the quality control scheme. Among the verified equations, 20%, 12% and 62% of equations were for green-biomass, oven-dried biomass, and volume respectively and 4 tree species contributed 37% of the total verified equations. Five gaps have been pinpointed for the existing allometric equations of Bangladesh: a. little work on allometric equation of common tree and shrub species, b. most of the works were concentrated on certain species, c. very little proportion of allometric equations for biomass estimation, d. no allometric equation for belowground biomass and carbon estimation, and d. lower proportion of valid allometric equations. It is recommended that site and species specific allometric equations should be developed and consistency in field sampling, sample processing, data recording and selection of allometric equations should be maintained to ensure accuracy in estimation of biomass, volume, and carbon stock in different forest types of Bangladesh.

  7. Open groups of constraints. Integrating arbitrary involutions

    NASA Astrophysics Data System (ADS)

    Batalin, Igor; Marnelius, Robert

    1998-11-01

    A new type of quantum master equation is presented which is expressed in terms of a recently introduced quantum antibracket. The equation involves only two operators: an extended nilpotent BFV-BRST charge and an extended ghost charge. It is proposed to determine the generalized quantum Maurer-Cartan equations for arbitrary open groups. These groups are the integration of constraints in arbitrary involutions. The only condition for this is that the constraint operators may be embedded in an odd nilpotent operator, the BFV-BRST charge. The proposal is verified at the quasigroup level. The integration formulas are also used to construct a generating operator for quantum antibrackets of operators in arbitrary involutions.

  8. Fractional Transport in Strongly Turbulent Plasmas.

    PubMed

    Isliker, Heinz; Vlahos, Loukas; Constantinescu, Dana

    2017-07-28

    We analyze statistically the energization of particles in a large scale environment of strong turbulence that is fragmented into a large number of distributed current filaments. The turbulent environment is generated through strongly perturbed, 3D, resistive magnetohydrodynamics simulations, and it emerges naturally from the nonlinear evolution, without a specific reconnection geometry being set up. Based on test-particle simulations, we estimate the transport coefficients in energy space for use in the classical Fokker-Planck (FP) equation, and we show that the latter fails to reproduce the simulation results. The reason is that transport in energy space is highly anomalous (strange), the particles perform Levy flights, and the energy distributions show extended power-law tails. Newly then, we motivate the use and derive the specific form of a fractional transport equation (FTE), we determine its parameters and the order of the fractional derivatives from the simulation data, and we show that the FTE is able to reproduce the high energy part of the simulation data very well. The procedure for determining the FTE parameters also makes clear that it is the analysis of the simulation data that allows us to make the decision whether a classical FP equation or a FTE is appropriate.

  9. A unified model for transfer alignment at random misalignment angles based on second-order EKF

    NASA Astrophysics Data System (ADS)

    Cui, Xiao; Mei, Chunbo; Qin, Yongyuan; Yan, Gongmin; Liu, Zhenbo

    2017-04-01

    In the transfer alignment process of inertial navigation systems (INSs), the conventional linear error model based on the small misalignment angle assumption cannot be applied to large misalignment situations. Furthermore, the nonlinear model based on the large misalignment angle suffers from redundant computation with nonlinear filters. This paper presents a unified model for transfer alignment suitable for arbitrary misalignment angles. The alignment problem is transformed into an estimation of the relative attitude between the master INS (MINS) and the slave INS (SINS), by decomposing the attitude matrix of the latter. Based on the Rodriguez parameters, a unified alignment model in the inertial frame with the linear state-space equation and a second order nonlinear measurement equation are established, without making any assumptions about the misalignment angles. Furthermore, we employ the Taylor series expansions on the second-order nonlinear measurement equation to implement the second-order extended Kalman filter (EKF2). Monte-Carlo simulations demonstrate that the initial alignment can be fulfilled within 10 s, with higher accuracy and much smaller computational cost compared with the traditional unscented Kalman filter (UKF) at large misalignment angles.

  10. A damage mechanics based approach to structural deterioration and reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattcharya, B.; Ellingwood, B.

    1998-02-01

    Structural deterioration often occurs without perceptible manifestation. Continuum damage mechanics defines structural damage in terms of the material microstructure, and relates the damage variable to the macroscopic strength or stiffness of the structure. This enables one to predict the state of damage prior to the initiation of a macroscopic flaw, and allows one to estimate residual strength/service life of an existing structure. The accumulation of damage is a dissipative process that is governed by the laws of thermodynamics. Partial differential equations for damage growth in terms of the Helmholtz free energy are derived from fundamental thermodynamical conditions. Closed-form solutions tomore » the equations are obtained under uniaxial loading for ductile deformation damage as a function of plastic strain, for creep damage as a function of time, and for fatigue damage as function of number of cycles. The proposed damage growth model is extended into the stochastic domain by considering fluctuations in the free energy, and closed-form solutions of the resulting stochastic differential equation are obtained in each of the three cases mentioned above. A reliability analysis of a ring-stiffened cylindrical steel shell subjected to corrosion, accidental pressure, and temperature is performed.« less

  11. Analysis of Wien filter spectra from Hall thruster plumes.

    PubMed

    Huang, Wensheng; Shastry, Rohit

    2015-07-01

    A method for analyzing the Wien filter spectra obtained from the plumes of Hall thrusters is derived and presented. The new method extends upon prior work by deriving the integration equations for the current and species fractions. Wien filter spectra from the plume of the NASA-300M Hall thruster are analyzed with the presented method and the results are used to examine key trends. The new integration method is found to produce results slightly different from the traditional area-under-the-curve method. The use of different velocity distribution forms when performing curve-fits to the peaks in the spectra is compared. Additional comparison is made with the scenario where the current fractions are assumed to be proportional to the heights of peaks. The comparison suggests that the calculated current fractions are not sensitive to the choice of form as long as both the height and width of the peaks are accounted for. Conversely, forms that only account for the height of the peaks produce inaccurate results. Also presented are the equations for estimating the uncertainty associated with applying curve fits and charge-exchange corrections. These uncertainty equations can be used to plan the geometry of the experimental setup.

  12. Fractional Transport in Strongly Turbulent Plasmas

    NASA Astrophysics Data System (ADS)

    Isliker, Heinz; Vlahos, Loukas; Constantinescu, Dana

    2017-07-01

    We analyze statistically the energization of particles in a large scale environment of strong turbulence that is fragmented into a large number of distributed current filaments. The turbulent environment is generated through strongly perturbed, 3D, resistive magnetohydrodynamics simulations, and it emerges naturally from the nonlinear evolution, without a specific reconnection geometry being set up. Based on test-particle simulations, we estimate the transport coefficients in energy space for use in the classical Fokker-Planck (FP) equation, and we show that the latter fails to reproduce the simulation results. The reason is that transport in energy space is highly anomalous (strange), the particles perform Levy flights, and the energy distributions show extended power-law tails. Newly then, we motivate the use and derive the specific form of a fractional transport equation (FTE), we determine its parameters and the order of the fractional derivatives from the simulation data, and we show that the FTE is able to reproduce the high energy part of the simulation data very well. The procedure for determining the FTE parameters also makes clear that it is the analysis of the simulation data that allows us to make the decision whether a classical FP equation or a FTE is appropriate.

  13. Technique for estimating depth of floods in Tennessee

    USGS Publications Warehouse

    Gamble, C.R.

    1983-01-01

    Estimates of flood depths are needed for design of roadways across flood plains and for other types of construction along streams. Equations for estimating flood depths in Tennessee were derived using data for 150 gaging stations. The equations are based on drainage basin size and can be used to estimate depths of the 10-year and 100-year floods for four hydrologic areas. A method also was developed for estimating depth of floods having recurrence intervals between 10 and 100 years. Standard errors range from 22 to 30 percent for the 10-year depth equations and from 23 to 30 percent for the 100-year depth equations. (USGS)

  14. p-Euler equations and p-Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Jian-Guo

    2018-04-01

    We propose in this work new systems of equations which we call p-Euler equations and p-Navier-Stokes equations. p-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-p distances, with incompressibility constraint. p-Euler equations have similar structures with the usual Euler equations but the 'momentum' is the signed (p - 1)-th power of the velocity. In the 2D case, the p-Euler equations have streamfunction-vorticity formulation, where the vorticity is given by the p-Laplacian of the streamfunction. By adding diffusion presented by γ-Laplacian of the velocity, we obtain what we call p-Navier-Stokes equations. If γ = p, the a priori energy estimates for the velocity and momentum have dual symmetries. Using these energy estimates and a time-shift estimate, we show the global existence of weak solutions for the p-Navier-Stokes equations in Rd for γ = p and p ≥ d ≥ 2 through a compactness criterion.

  15. Using regression equations built from summary data in the psychological assessment of the individual case: extension to multiple regression.

    PubMed

    Crawford, John R; Garthwaite, Paul H; Denham, Annie K; Chelune, Gordon J

    2012-12-01

    Regression equations have many useful roles in psychological assessment. Moreover, there is a large reservoir of published data that could be used to build regression equations; these equations could then be employed to test a wide variety of hypotheses concerning the functioning of individual cases. This resource is currently underused because (a) not all psychologists are aware that regression equations can be built not only from raw data but also using only basic summary data for a sample, and (b) the computations involved are tedious and prone to error. In an attempt to overcome these barriers, Crawford and Garthwaite (2007) provided methods to build and apply simple linear regression models using summary statistics as data. In the present study, we extend this work to set out the steps required to build multiple regression models from sample summary statistics and the further steps required to compute the associated statistics for drawing inferences concerning an individual case. We also develop, describe, and make available a computer program that implements these methods. Although there are caveats associated with the use of the methods, these need to be balanced against pragmatic considerations and against the alternative of either entirely ignoring a pertinent data set or using it informally to provide a clinical "guesstimate." Upgraded versions of earlier programs for regression in the single case are also provided; these add the point and interval estimates of effect size developed in the present article.

  16. Notes on a General Framework for Observed Score Equating. Research Report. ETS RR-08-59

    ERIC Educational Resources Information Center

    Moses, Tim; Holland, Paul

    2008-01-01

    The purpose of this paper is to extend von Davier, Holland, and Thayer's (2004b) framework of kernel equating so that it can incorporate raw data and traditional equipercentile equating methods. One result of this more general framework is that previous equating methodology research can be viewed more comprehensively. Another result is that the…

  17. Extension of the Schrodinger equation

    NASA Astrophysics Data System (ADS)

    Somsikov, Vyacheslav

    2017-03-01

    Extension of the Schrodinger equation is submitted by removing its limitations appearing due to the limitations of the formalism of Hamilton, based on which this equation was obtained. For this purpose the problems of quantum mechanics arising from the limitations of classical mechanics are discussed. These limitations, in particular, preclude the use of the Schrodinger equation to describe the time symmetry violation. The extension of the Schrodinger equation is realized based on the principle of duality symmetry. According to this principle the dynamics of the systems is determined by the symmetry of the system and by the symmetry of the space. The extension of the Schrodinger equation was obtained from the dual expression of energy, represented in operator form. For this purpose the independent micro - and macro-variables that determine respectively the dynamics of quantum particle system relative to its center of mass and the movement of the center of mass in space are used. The solution of the extended Schrodinger equation for the system near equilibrium is submitted. The main advantage of the extended Schrodinger equation is that it is applicable to describe the interaction and evolution of quantum systems in inhomogeneous field of external forces.

  18. Methods for estimating selected spring and fall low-flow frequency statistics for ungaged stream sites in Iowa, based on data through June 2014

    USGS Publications Warehouse

    Eash, David A.; Barnes, Kimberlee K.; O'Shea, Padraic S.

    2016-09-19

    A statewide study was led to develop regression equations for estimating three selected spring and three selected fall low-flow frequency statistics for ungaged stream sites in Iowa. The estimation equations developed for the six low-flow frequency statistics include spring (April through June) 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and fall (October through December) 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years. Estimates of the three selected spring statistics are provided for 241 U.S. Geological Survey continuous-record streamgages, and estimates of the three selected fall statistics are provided for 238 of these streamgages, using data through June 2014. Because only 9 years of fall streamflow record were available, three streamgages included in the development of the spring regression equations were not included in the development of the fall regression equations. Because of regulation, diversion, or urbanization, 30 of the 241 streamgages were not included in the development of the regression equations. The study area includes Iowa and adjacent areas within 50 miles of the Iowa border. Because trend analyses indicated statistically significant positive trends when considering the period of record for most of the streamgages, the longest, most recent period of record without a significant trend was determined for each streamgage for use in the study. Geographic information system software was used to measure 63 selected basin characteristics for each of the 211streamgages used to develop the regional regression equations. The study area was divided into three low-flow regions that were defined in a previous study for the development of regional regression equations.Because several streamgages included in the development of regional regression equations have estimates of zero flow calculated from observed streamflow for selected spring and fall low-flow frequency statistics, the final equations for the three low-flow regions were developed using two types of regression analyses—left-censored and generalized-least-squares regression analyses. A total of 211 streamgages were included in the development of nine spring regression equations—three equations for each of the three low-flow regions. A total of 208 streamgages were included in the development of nine fall regression equations—three equations for each of the three low-flow regions. A censoring threshold was used to develop 15 left-censored regression equations to estimate the three fall low-flow frequency statistics for each of the three low-flow regions and to estimate the three spring low-flow frequency statistics for the southern and northwest regions. For the northeast region, generalized-least-squares regression was used to develop three equations to estimate the three spring low-flow frequency statistics. For the northeast region, average standard errors of prediction range from 32.4 to 48.4 percent for the spring equations and average standard errors of estimate range from 56.4 to 73.8 percent for the fall equations. For the northwest region, average standard errors of estimate range from 58.9 to 62.1 percent for the spring equations and from 83.2 to 109.4 percent for the fall equations. For the southern region, average standard errors of estimate range from 43.2 to 64.0 percent for the spring equations and from 78.1 to 78.7 percent for the fall equations.The regression equations are applicable only to stream sites in Iowa with low flows not substantially affected by regulation, diversion, or urbanization and with basin characteristics within the range of those used to develop the equations. The regression equations will be implemented within the U.S. Geological Survey StreamStats Web-based geographic information system application. StreamStats allows users to click on any ungaged stream site and compute estimates of the six selected spring and fall low-flow statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged site are provided. StreamStats also allows users to click on any Iowa streamgage to obtain computed estimates for the six selected spring and fall low-flow statistics.

  19. Regional Regression Equations to Estimate Flow-Duration Statistics at Ungaged Stream Sites in Connecticut

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2010-01-01

    Multiple linear regression equations for determining flow-duration statistics were developed to estimate select flow exceedances ranging from 25- to 99-percent for six 'bioperiods'-Salmonid Spawning (November), Overwinter (December-February), Habitat Forming (March-April), Clupeid Spawning (May), Resident Spawning (June), and Rearing and Growth (July-October)-in Connecticut. Regression equations also were developed to estimate the 25- and 99-percent flow exceedances without reference to a bioperiod. In total, 32 equations were developed. The predictive equations were based on regression analyses relating flow statistics from streamgages to GIS-determined basin and climatic characteristics for the drainage areas of those streamgages. Thirty-nine streamgages (and an additional 6 short-term streamgages and 28 partial-record sites for the non-bioperiod 99-percent exceedance) in Connecticut and adjacent areas of neighboring States were used in the regression analysis. Weighted least squares regression analysis was used to determine the predictive equations; weights were assigned based on record length. The basin characteristics-drainage area, percentage of area with coarse-grained stratified deposits, percentage of area with wetlands, mean monthly precipitation (November), mean seasonal precipitation (December, January, and February), and mean basin elevation-are used as explanatory variables in the equations. Standard errors of estimate of the 32 equations ranged from 10.7 to 156 percent with medians of 19.2 and 55.4 percent to predict the 25- and 99-percent exceedances, respectively. Regression equations to estimate high and median flows (25- to 75-percent exceedances) are better predictors (smaller variability of the residual values around the regression line) than the equations to estimate low flows (less than 75-percent exceedance). The Habitat Forming (March-April) bioperiod had the smallest standard errors of estimate, ranging from 10.7 to 20.9 percent. In contrast, the Rearing and Growth (July-October) bioperiod had the largest standard errors, ranging from 30.9 to 156 percent. The adjusted coefficient of determination of the equations ranged from 77.5 to 99.4 percent with medians of 98.5 and 90.6 percent to predict the 25- and 99-percent exceedances, respectively. Descriptive information on the streamgages used in the regression, measured basin and climatic characteristics, and estimated flow-duration statistics are provided in this report. Flow-duration statistics and the 32 regression equations for estimating flow-duration statistics in Connecticut are stored on the U.S. Geological Survey World Wide Web application ?StreamStats? (http://water.usgs.gov/osw/streamstats/index.html). The regression equations developed in this report can be used to produce unbiased estimates of select flow exceedances statewide.

  20. Estimating population salt intake in India using spot urine samples.

    PubMed

    Petersen, Kristina S; Johnson, Claire; Mohan, Sailesh; Rogers, Kris; Shivashankar, Roopa; Thout, Sudhir Raj; Gupta, Priti; He, Feng J; MacGregor, Graham A; Webster, Jacqui; Santos, Joseph Alvin; Krishnan, Anand; Maulik, Pallab K; Reddy, K Srinath; Gupta, Ruby; Prabhakaran, Dorairaj; Neal, Bruce

    2017-11-01

    To compare estimates of mean population salt intake in North and South India derived from spot urine samples versus 24-h urine collections. In a cross-sectional survey, participants were sampled from slum, urban and rural communities in North and in South India. Participants provided 24-h urine collections, and random morning spot urine samples. Salt intake was estimated from the spot urine samples using a series of established estimating equations. Salt intake data from the 24-h urine collections and spot urine equations were weighted to provide estimates of salt intake for Delhi and Haryana, and Andhra Pradesh. A total of 957 individuals provided a complete 24-h urine collection and a spot urine sample. Weighted mean salt intake based on the 24-h urine collection, was 8.59 (95% confidence interval 7.73-9.45) and 9.46 g/day (8.95-9.96) in Delhi and Haryana, and Andhra Pradesh, respectively. Corresponding estimates based on the Tanaka equation [9.04 (8.63-9.45) and 9.79 g/day (9.62-9.96) for Delhi and Haryana, and Andhra Pradesh, respectively], the Mage equation [8.80 (7.67-9.94) and 10.19 g/day (95% CI 9.59-10.79)], the INTERSALT equation [7.99 (7.61-8.37) and 8.64 g/day (8.04-9.23)] and the INTERSALT equation with potassium [8.13 (7.74-8.52) and 8.81 g/day (8.16-9.46)] were all within 1 g/day of the estimate based upon 24-h collections. For the Toft equation, estimates were 1-2 g/day higher [9.94 (9.24-10.64) and 10.69 g/day (9.44-11.93)] and for the Kawasaki equation they were 3-4 g/day higher [12.14 (11.30-12.97) and 13.64 g/day (13.15-14.12)]. In urban and rural areas in North and South India, most spot urine-based equations provided reasonable estimates of mean population salt intake. Equations that did not provide good estimates may have failed because specimen collection was not aligned with the original method.

  1. Detecting, anticipating, and predicting critical transitions in spatially extended systems.

    PubMed

    Kwasniok, Frank

    2018-03-01

    A data-driven linear framework for detecting, anticipating, and predicting incipient bifurcations in spatially extended systems based on principal oscillation pattern (POP) analysis is discussed. The dynamics are assumed to be governed by a system of linear stochastic differential equations which is estimated from the data. The principal modes of the system together with corresponding decay or growth rates and oscillation frequencies are extracted as the eigenvectors and eigenvalues of the system matrix. The method can be applied to stationary datasets to identify the least stable modes and assess the proximity to instability; it can also be applied to nonstationary datasets using a sliding window approach to track the changing eigenvalues and eigenvectors of the system. As a further step, a genuinely nonstationary POP analysis is introduced. Here, the system matrix of the linear stochastic model is time-dependent, allowing for extrapolation and prediction of instabilities beyond the learning data window. The methods are demonstrated and explored using the one-dimensional Swift-Hohenberg equation as an example, focusing on the dynamics of stochastic fluctuations around the homogeneous stable state prior to the first bifurcation. The POP-based techniques are able to extract and track the least stable eigenvalues and eigenvectors of the system; the nonstationary POP analysis successfully predicts the timing of the first instability and the unstable mode well beyond the learning data window.

  2. Detecting, anticipating, and predicting critical transitions in spatially extended systems

    NASA Astrophysics Data System (ADS)

    Kwasniok, Frank

    2018-03-01

    A data-driven linear framework for detecting, anticipating, and predicting incipient bifurcations in spatially extended systems based on principal oscillation pattern (POP) analysis is discussed. The dynamics are assumed to be governed by a system of linear stochastic differential equations which is estimated from the data. The principal modes of the system together with corresponding decay or growth rates and oscillation frequencies are extracted as the eigenvectors and eigenvalues of the system matrix. The method can be applied to stationary datasets to identify the least stable modes and assess the proximity to instability; it can also be applied to nonstationary datasets using a sliding window approach to track the changing eigenvalues and eigenvectors of the system. As a further step, a genuinely nonstationary POP analysis is introduced. Here, the system matrix of the linear stochastic model is time-dependent, allowing for extrapolation and prediction of instabilities beyond the learning data window. The methods are demonstrated and explored using the one-dimensional Swift-Hohenberg equation as an example, focusing on the dynamics of stochastic fluctuations around the homogeneous stable state prior to the first bifurcation. The POP-based techniques are able to extract and track the least stable eigenvalues and eigenvectors of the system; the nonstationary POP analysis successfully predicts the timing of the first instability and the unstable mode well beyond the learning data window.

  3. A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations

    NASA Technical Reports Server (NTRS)

    Diethelm, Kai; Ford, Neville J.; Freed, Alan D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    We discuss an Adams-type predictor-corrector method for the numerical solution of fractional differential equations. The method may be used both for linear and for nonlinear problems, and it may be extended to multi-term equations (involving more than one differential operator) too.

  4. The use of bioelectrical impedance analysis to estimate total body water in young children with cerebral palsy.

    PubMed

    Bell, Kristie L; Boyd, Roslyn N; Walker, Jacqueline L; Stevenson, Richard D; Davies, Peter S W

    2013-08-01

    Body composition assessment is an essential component of nutritional evaluation in children with cerebral palsy. This study aimed to validate bioelectrical impedance to estimate total body water in young children with cerebral palsy and determine best electrode placement in unilateral impairment. 55 young children with cerebral palsy across all functional ability levels were included. Height/length was measured or estimated from knee height. Total body water was estimated using a Bodystat 1500MDD and three equations, and measured using the gold standard, deuterium dilution technique. Comparisons were made using Bland Altman analysis. For children with bilateral impairment, the Fjeld equation estimated total body water with the least bias (limits of agreement): 0.0 L (-1.4 L to 1.5 L); the Pencharz equation produced the greatest: 2.7 L (0.6 L-4.8 L). For children with unilateral impairment, differences between measured and estimated total body water were lowest on the unimpaired side using the Fjeld equation 0.1 L (-1.5 L to 1.6 L)) and greatest for the Pencharz equation. The ability of bioelectrical impedance to estimate total body water depends on the equation chosen. The Fjeld equation was the most accurate for the group, however, individual results varied by up to 18%. A population specific equation was developed and may enhance the accuracy of estimates. Australian New Zealand Clinical Trials Registry (ANZCTR) number: ACTRN12611000616976. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  5. Analytic solution for the space-time fractional Klein-Gordon and coupled conformable Boussinesq equations

    NASA Astrophysics Data System (ADS)

    Shallal, Muhannad A.; Jabbar, Hawraz N.; Ali, Khalid K.

    2018-03-01

    In this paper, we constructed a travelling wave solution for space-time fractional nonlinear partial differential equations by using the modified extended Tanh method with Riccati equation. The method is used to obtain analytic solutions for the space-time fractional Klein-Gordon and coupled conformable space-time fractional Boussinesq equations. The fractional complex transforms and the properties of modified Riemann-Liouville derivative have been used to convert these equations into nonlinear ordinary differential equations.

  6. Generalized cable equation model for myelinated nerve fiber.

    PubMed

    Einziger, Pinchas D; Livshitz, Leonid M; Mizrahi, Joseph

    2005-10-01

    Herein, the well-known cable equation for nonmyelinated axon model is extended analytically for myelinated axon formulation. The myelinated membrane conductivity is represented via the Fourier series expansion. The classical cable equation is thereby modified into a linear second order ordinary differential equation with periodic coefficients, known as Hill's equation. The general internal source response, expressed via repeated convolutions, uniformly converges provided that the entire periodic membrane is passive. The solution can be interpreted as an extended source response in an equivalent nonmyelinated axon (i.e., the response is governed by the classical cable equation). The extended source consists of the original source and a novel activation function, replacing the periodic membrane in the myelinated axon model. Hill's equation is explicitly integrated for the specific choice of piecewise constant membrane conductivity profile, thereby resulting in an explicit closed form expression for the transmembrane potential in terms of trigonometric functions. The Floquet's modes are recognized as the nerve fiber activation modes, which are conventionally associated with the nonlinear Hodgkin-Huxley formulation. They can also be incorporated in our linear model, provided that the periodic membrane point-wise passivity constraint is properly modified. Indeed, the modified condition, enforcing the periodic membrane passivity constraint on the average conductivity only leads, for the first time, to the inclusion of the nerve fiber activation modes in our novel model. The validity of the generalized transmission-line and cable equation models for a myelinated nerve fiber, is verified herein through a rigorous Green's function formulation and numerical simulations for transmembrane potential induced in three-dimensional myelinated cylindrical cell. It is shown that the dominant pole contribution of the exact modal expansion is the transmembrane potential solution of our generalized model.

  7. How the 2SLS/IV estimator can handle equality constraints in structural equation models: a system-of-equations approach.

    PubMed

    Nestler, Steffen

    2014-05-01

    Parameters in structural equation models are typically estimated using the maximum likelihood (ML) approach. Bollen (1996) proposed an alternative non-iterative, equation-by-equation estimator that uses instrumental variables. Although this two-stage least squares/instrumental variables (2SLS/IV) estimator has good statistical properties, one problem with its application is that parameter equality constraints cannot be imposed. This paper presents a mathematical solution to this problem that is based on an extension of the 2SLS/IV approach to a system of equations. We present an example in which our approach was used to examine strong longitudinal measurement invariance. We also investigated the new approach in a simulation study that compared it with ML in the examination of the equality of two latent regression coefficients and strong measurement invariance. Overall, the results show that the suggested approach is a useful extension of the original 2SLS/IV estimator and allows for the effective handling of equality constraints in structural equation models. © 2013 The British Psychological Society.

  8. SUPERPOSITION OF POLYTROPES IN THE INNER HELIOSHEATH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livadiotis, G., E-mail: glivadiotis@swri.edu

    2016-03-15

    This paper presents a possible generalization of the equation of state and Bernoulli's integral when a superposition of polytropic processes applies in space and astrophysical plasmas. The theory of polytropic thermodynamic processes for a fixed polytropic index is extended for a superposition of polytropic indices. In general, the superposition may be described by any distribution of polytropic indices, but emphasis is placed on a Gaussian distribution. The polytropic density–temperature relation has been used in numerous analyses of space plasma data. This linear relation on a log–log scale is now generalized to a concave-downward parabola that is able to describe themore » observations better. The model of the Gaussian superposition of polytropes is successfully applied in the proton plasma of the inner heliosheath. The estimated mean polytropic index is near zero, indicating the dominance of isobaric thermodynamic processes in the sheath, similar to other previously published analyses. By computing Bernoulli's integral and applying its conservation along the equator of the inner heliosheath, the magnetic field in the inner heliosheath is estimated, B ∼ 2.29 ± 0.16 μG. The constructed normalized histogram of the values of the magnetic field is similar to that derived from a different method that uses the concept of large-scale quantization, bringing incredible insights to this novel theory.« less

  9. Superposition of Polytropes in the Inner Heliosheath

    NASA Astrophysics Data System (ADS)

    Livadiotis, G.

    2016-03-01

    This paper presents a possible generalization of the equation of state and Bernoulli's integral when a superposition of polytropic processes applies in space and astrophysical plasmas. The theory of polytropic thermodynamic processes for a fixed polytropic index is extended for a superposition of polytropic indices. In general, the superposition may be described by any distribution of polytropic indices, but emphasis is placed on a Gaussian distribution. The polytropic density-temperature relation has been used in numerous analyses of space plasma data. This linear relation on a log-log scale is now generalized to a concave-downward parabola that is able to describe the observations better. The model of the Gaussian superposition of polytropes is successfully applied in the proton plasma of the inner heliosheath. The estimated mean polytropic index is near zero, indicating the dominance of isobaric thermodynamic processes in the sheath, similar to other previously published analyses. By computing Bernoulli's integral and applying its conservation along the equator of the inner heliosheath, the magnetic field in the inner heliosheath is estimated, B ˜ 2.29 ± 0.16 μG. The constructed normalized histogram of the values of the magnetic field is similar to that derived from a different method that uses the concept of large-scale quantization, bringing incredible insights to this novel theory.

  10. Mean annual runoff and peak flow estimates based on channel geometry of streams in northeastern and western Montana

    USGS Publications Warehouse

    Parrett, Charles; Omang, R.J.; Hull, J.A.

    1983-01-01

    Equations for estimating mean annual runoff and peak discharge from measurements of channel geometry were developed for western and northeastern Montana. The study area was divided into two regions for the mean annual runoff analysis, and separate multiple-regression equations were developed for each region. The active-channel width was determined to be the most important independent variable in each region. The standard error of estimate for the estimating equation using active-channel width was 61 percent in the Northeast Region and 38 percent in the West region. The study area was divided into six regions for the peak discharge analysis, and multiple regression equations relating channel geometry and basin characteristics to peak discharges having recurrence intervals of 2, 5, 10, 25, 50 and 100 years were developed for each region. The standard errors of estimate for the regression equations using only channel width as an independent variable ranged from 35 to 105 percent. The standard errors improved in four regions as basin characteristics were added to the estimating equations. (USGS)

  11. Methods for estimating the magnitude and frequency of peak streamflows for unregulated streams in Oklahoma

    USGS Publications Warehouse

    Lewis, Jason M.

    2010-01-01

    Peak-streamflow regression equations were determined for estimating flows with exceedance probabilities from 50 to 0.2 percent for the state of Oklahoma. These regression equations incorporate basin characteristics to estimate peak-streamflow magnitude and frequency throughout the state by use of a generalized least squares regression analysis. The most statistically significant independent variables required to estimate peak-streamflow magnitude and frequency for unregulated streams in Oklahoma are contributing drainage area, mean-annual precipitation, and main-channel slope. The regression equations are applicable for watershed basins with drainage areas less than 2,510 square miles that are not affected by regulation. The resulting regression equations had a standard model error ranging from 31 to 46 percent. Annual-maximum peak flows observed at 231 streamflow-gaging stations through water year 2008 were used for the regression analysis. Gage peak-streamflow estimates were used from previous work unless 2008 gaging-station data were available, in which new peak-streamflow estimates were calculated. The U.S. Geological Survey StreamStats web application was used to obtain the independent variables required for the peak-streamflow regression equations. Limitations on the use of the regression equations and the reliability of regression estimates for natural unregulated streams are described. Log-Pearson Type III analysis information, basin and climate characteristics, and the peak-streamflow frequency estimates for the 231 gaging stations in and near Oklahoma are listed. Methodologies are presented to estimate peak streamflows at ungaged sites by using estimates from gaging stations on unregulated streams. For ungaged sites on urban streams and streams regulated by small floodwater retarding structures, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow magnitude and frequency.

  12. The National Streamflow Statistics Program: A Computer Program for Estimating Streamflow Statistics for Ungaged Sites

    USGS Publications Warehouse

    Ries(compiler), Kernell G.; With sections by Atkins, J. B.; Hummel, P.R.; Gray, Matthew J.; Dusenbury, R.; Jennings, M.E.; Kirby, W.H.; Riggs, H.C.; Sauer, V.B.; Thomas, W.O.

    2007-01-01

    The National Streamflow Statistics (NSS) Program is a computer program that should be useful to engineers, hydrologists, and others for planning, management, and design applications. NSS compiles all current U.S. Geological Survey (USGS) regional regression equations for estimating streamflow statistics at ungaged sites in an easy-to-use interface that operates on computers with Microsoft Windows operating systems. NSS expands on the functionality of the USGS National Flood Frequency Program, and replaces it. The regression equations included in NSS are used to transfer streamflow statistics from gaged to ungaged sites through the use of watershed and climatic characteristics as explanatory or predictor variables. Generally, the equations were developed on a statewide or metropolitan-area basis as part of cooperative study programs. Equations are available for estimating rural and urban flood-frequency statistics, such as the 1 00-year flood, for every state, for Puerto Rico, and for the island of Tutuila, American Samoa. Equations are available for estimating other statistics, such as the mean annual flow, monthly mean flows, flow-duration percentiles, and low-flow frequencies (such as the 7-day, 0-year low flow) for less than half of the states. All equations available for estimating streamflow statistics other than flood-frequency statistics assume rural (non-regulated, non-urbanized) conditions. The NSS output provides indicators of the accuracy of the estimated streamflow statistics. The indicators may include any combination of the standard error of estimate, the standard error of prediction, the equivalent years of record, or 90 percent prediction intervals, depending on what was provided by the authors of the equations. The program includes several other features that can be used only for flood-frequency estimation. These include the ability to generate flood-frequency plots, and plots of typical flood hydrographs for selected recurrence intervals, estimates of the probable maximum flood, extrapolation of the 500-year flood when an equation for estimating it is not available, and weighting techniques to improve flood-frequency estimates for gaging stations and ungaged sites on gaged streams. This report describes the regionalization techniques used to develop the equations in NSS and provides guidance on the applicability and limitations of the techniques. The report also includes a users manual and a summary of equations available for estimating basin lagtime, which is needed by the program to generate flood hydrographs. The NSS software and accompanying database, and the documentation for the regression equations included in NSS, are available on the Web at http://water.usgs.gov/software/.

  13. Explicit methods in extended phase space for inseparable Hamiltonian problems

    NASA Astrophysics Data System (ADS)

    Pihajoki, Pauli

    2015-03-01

    We present a method for explicit leapfrog integration of inseparable Hamiltonian systems by means of an extended phase space. A suitably defined new Hamiltonian on the extended phase space leads to equations of motion that can be numerically integrated by standard symplectic leapfrog (splitting) methods. When the leapfrog is combined with coordinate mixing transformations, the resulting algorithm shows good long term stability and error behaviour. We extend the method to non-Hamiltonian problems as well, and investigate optimal methods of projecting the extended phase space back to original dimension. Finally, we apply the methods to a Hamiltonian problem of geodesics in a curved space, and a non-Hamiltonian problem of a forced non-linear oscillator. We compare the performance of the methods to a general purpose differential equation solver LSODE, and the implicit midpoint method, a symplectic one-step method. We find the extended phase space methods to compare favorably to both for the Hamiltonian problem, and to the implicit midpoint method in the case of the non-linear oscillator.

  14. Validity of Bioelectrical Impedance Analysis to Estimation Fat-Free Mass in the Army Cadets.

    PubMed

    Langer, Raquel D; Borges, Juliano H; Pascoa, Mauro A; Cirolini, Vagner X; Guerra-Júnior, Gil; Gonçalves, Ezequiel M

    2016-03-11

    Bioelectrical Impedance Analysis (BIA) is a fast, practical, non-invasive, and frequently used method for fat-free mass (FFM) estimation. The aims of this study were to validate predictive equations of BIA to FFM estimation in Army cadets and to develop and validate a specific BIA equation for this population. A total of 396 males, Brazilian Army cadets, aged 17-24 years were included. The study used eight published predictive BIA equations, a specific equation in FFM estimation, and dual-energy X-ray absorptiometry (DXA) as a reference method. Student's t-test (for paired sample), linear regression analysis, and Bland-Altman method were used to test the validity of the BIA equations. Predictive BIA equations showed significant differences in FFM compared to DXA (p < 0.05) and large limits of agreement by Bland-Altman. Predictive BIA equations explained 68% to 88% of FFM variance. Specific BIA equations showed no significant differences in FFM, compared to DXA values. Published BIA predictive equations showed poor accuracy in this sample. The specific BIA equations, developed in this study, demonstrated validity for this sample, although should be used with caution in samples with a large range of FFM.

  15. A deterministic and stochastic model for the system dynamics of tumor-immune responses to chemotherapy

    NASA Astrophysics Data System (ADS)

    Liu, Xiangdong; Li, Qingze; Pan, Jianxin

    2018-06-01

    Modern medical studies show that chemotherapy can help most cancer patients, especially for those diagnosed early, to stabilize their disease conditions from months to years, which means the population of tumor cells remained nearly unchanged in quite a long time after fighting against immune system and drugs. In order to better understand the dynamics of tumor-immune responses under chemotherapy, deterministic and stochastic differential equation models are constructed to characterize the dynamical change of tumor cells and immune cells in this paper. The basic dynamical properties, such as boundedness, existence and stability of equilibrium points, are investigated in the deterministic model. Extended stochastic models include stochastic differential equations (SDEs) model and continuous-time Markov chain (CTMC) model, which accounts for the variability in cellular reproduction, growth and death, interspecific competitions, and immune response to chemotherapy. The CTMC model is harnessed to estimate the extinction probability of tumor cells. Numerical simulations are performed, which confirms the obtained theoretical results.

  16. Nonlinearity analysis of measurement model for vision-based optical navigation system

    NASA Astrophysics Data System (ADS)

    Li, Jianguo; Cui, Hutao; Tian, Yang

    2015-02-01

    In the autonomous optical navigation system based on line-of-sight vector observation, nonlinearity of measurement model is highly correlated with the navigation performance. By quantitatively calculating the degree of nonlinearity of the focal plane model and the unit vector model, this paper focuses on determining which optical measurement model performs better. Firstly, measurement equations and measurement noise statistics of these two line-of-sight measurement models are established based on perspective projection co-linearity equation. Then the nonlinear effects of measurement model on the filter performance are analyzed within the framework of the Extended Kalman filter, also the degrees of nonlinearity of two measurement models are compared using the curvature measure theory from differential geometry. Finally, a simulation of star-tracker-based attitude determination is presented to confirm the superiority of the unit vector measurement model. Simulation results show that the magnitude of curvature nonlinearity measurement is consistent with the filter performance, and the unit vector measurement model yields higher estimation precision and faster convergence properties.

  17. Shelf Life Prediction for Canned Gudeg using Accelerated Shelf Life Testing (ASLT) Based on Arrhenius Method

    NASA Astrophysics Data System (ADS)

    Nurhayati, R.; Rahayu NH, E.; Susanto, A.; Khasanah, Y.

    2017-04-01

    Gudeg is traditional food from Yogyakarta. It is consist of jackfruit, chicken, egg and coconut milk. Gudeg generally have a short shelf life. Canning or commercial sterilization is one way to extend the shelf life of gudeg. This aims of this research is to predict the shelf life of Andrawinaloka canned gudeg with Accelerated Shelf Life Test methods, Arrhenius model. Canned gudeg stored at three different temperature, there are 37, 50 and 60°C for two months. Measuring the number of Thio Barbituric Acid (TBA), as a critical aspect, were tested every 7 days. Arrhenius model approach is done with the equation order 0 and order 1. The analysis showed that the equation of order 0 can be used as an approach to estimating the shelf life of canned gudeg. The storage of Andrawinaloka canned gudeg at 30°C is predicted untill 21 months and 24 months for 25°C.

  18. Gravitational tides in the outer planets. I - Implications of classical tidal theory. II - Interior calculations and estimation of the tidal dissipation factor

    NASA Technical Reports Server (NTRS)

    Ioannou, Petros J.; Lindzen, Richard S.

    1993-01-01

    Classical tidal theory is applied to the atmospheres of the outer planets. The tidal geopotential due to satellites of the outer planets is discussed, and the solution of Laplace's tidal equation for Hough modes appropriate to tides on the outer planets is examined. The vertical structure of tidal modes is described, noting that only relatively high-order meridional mode numbers can propagate vertically with growing amplitude. Expected magnitudes for tides in the visible atmosphere of Jupiter are discussed. The classical theory is extended to planetary interiors taking the effects of spherically and self-gravity into account. The thermodynamic structure of Jupiter is described and the WKB theory of the vertical structure equation is presented. The regions for which inertial, gravity, and acoustic oscillations are possible are delineated. The case of a planet with a neutral interior is treated, discussing the various atmospheric boundary conditions and showing that the tidal response is small.

  19. Rare events in finite and infinite dimensions

    NASA Astrophysics Data System (ADS)

    Reznikoff, Maria G.

    Thermal noise introduces stochasticity into deterministic equations and makes possible events which are never seen in the zero temperature setting. The driving force behind the thesis work is a desire to bring analysis and probability to bear on a class of relevant and intriguing physical problems, and in so doing, to allow applications to drive the development of new mathematical theory. The unifying theme is the study of rare events under the influence of small, random perturbations, and the manifold mathematical problems which ensue. In the first part, we apply large deviation theory and prefactor estimates to a coherent rotation micromagnetic model in order to analyze thermally activated magnetic switching. We consider recent physical experiments and the mathematical questions "asked" by them. A stochastic resonance type phenomenon is discovered, leading to the definition of finite temperature astroids. Non-Arrhenius behavior is discussed. The analysis is extended to ramped astroids. In addition, we discover that for low damping and ultrashort pulses, deterministic effects can override thermal effects, in accord with very recent ultrashort pulse experiments. Even more interesting, perhaps, is the study of large deviations in the infinite dimensional context, i.e. in spatially extended systems. Inspired by recent numerical investigations, we study the stochastically perturbed Allen Cahn and Cahn Hilliard equations. For the Allen Cahn equation, we study the action minimization problem (a deterministic variational problem) and prove the action scaling in four parameter regimes, via upper and lower bounds. The sharp interface limit is studied. We formally derive a reduced action functional which lends insight into the connection between action minimization and curvature flow. For the Cahn Hilliard equation, we prove upper and lower bounds for the scaling of the energy barrier in the nucleation and growth regime. Finally, we consider rare events in large or infinite domains, in one spatial dimension. We introduce a natural reference measure through which to analyze the invariant measure of stochastically perturbed, nonlinear partial differential equations. Also, for noisy reaction diffusion equations with an asymmetric potential, we discover how to rescale space and time in order to map the dynamics in the zero temperature limit to the Poisson Model, a simple version of the Johnson-Mehl-Avrami-Kolmogorov model for nucleation and growth.

  20. Identification and estimation of survivor average causal effects.

    PubMed

    Tchetgen Tchetgen, Eric J

    2014-09-20

    In longitudinal studies, outcomes ascertained at follow-up are typically undefined for individuals who die prior to the follow-up visit. In such settings, outcomes are said to be truncated by death and inference about the effects of a point treatment or exposure, restricted to individuals alive at the follow-up visit, could be biased even if as in experimental studies, treatment assignment were randomized. To account for truncation by death, the survivor average causal effect (SACE) defines the effect of treatment on the outcome for the subset of individuals who would have survived regardless of exposure status. In this paper, the author nonparametrically identifies SACE by leveraging post-exposure longitudinal correlates of survival and outcome that may also mediate the exposure effects on survival and outcome. Nonparametric identification is achieved by supposing that the longitudinal data arise from a certain nonparametric structural equations model and by making the monotonicity assumption that the effect of exposure on survival agrees in its direction across individuals. A novel weighted analysis involving a consistent estimate of the survival process is shown to produce consistent estimates of SACE. A data illustration is given, and the methods are extended to the context of time-varying exposures. We discuss a sensitivity analysis framework that relaxes assumptions about independent errors in the nonparametric structural equations model and may be used to assess the extent to which inference may be altered by a violation of key identifying assumptions. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.

  1. Identification and estimation of survivor average causal effects

    PubMed Central

    Tchetgen, Eric J Tchetgen

    2014-01-01

    In longitudinal studies, outcomes ascertained at follow-up are typically undefined for individuals who die prior to the follow-up visit. In such settings, outcomes are said to be truncated by death and inference about the effects of a point treatment or exposure, restricted to individuals alive at the follow-up visit, could be biased even if as in experimental studies, treatment assignment were randomized. To account for truncation by death, the survivor average causal effect (SACE) defines the effect of treatment on the outcome for the subset of individuals who would have survived regardless of exposure status. In this paper, the author nonparametrically identifies SACE by leveraging post-exposure longitudinal correlates of survival and outcome that may also mediate the exposure effects on survival and outcome. Nonparametric identification is achieved by supposing that the longitudinal data arise from a certain nonparametric structural equations model and by making the monotonicity assumption that the effect of exposure on survival agrees in its direction across individuals. A novel weighted analysis involving a consistent estimate of the survival process is shown to produce consistent estimates of SACE. A data illustration is given, and the methods are extended to the context of time-varying exposures. We discuss a sensitivity analysis framework that relaxes assumptions about independent errors in the nonparametric structural equations model and may be used to assess the extent to which inference may be altered by a violation of key identifying assumptions. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:24889022

  2. Local error estimates for adaptive simulation of the Reaction–Diffusion Master Equation via operator splitting

    PubMed Central

    Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda

    2015-01-01

    The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity. PMID:26865735

  3. Local error estimates for adaptive simulation of the Reaction-Diffusion Master Equation via operator splitting.

    PubMed

    Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda

    2014-06-01

    The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity.

  4. SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES

    PubMed Central

    Wan, Xiaohai; Li, Zhilin

    2012-01-01

    Solving a Helmholtz equation Δu + λu = f efficiently is a challenge for many applications. For example, the core part of many efficient solvers for the incompressible Navier-Stokes equations is to solve one or several Helmholtz equations. In this paper, two new finite difference methods are proposed for solving Helmholtz equations on irregular domains, or with interfaces. For Helmholtz equations on irregular domains, the accuracy of the numerical solution obtained using the existing augmented immersed interface method (AIIM) may deteriorate when the magnitude of λ is large. In our new method, we use a level set function to extend the source term and the PDE to a larger domain before we apply the AIIM. For Helmholtz equations with interfaces, a new maximum principle preserving finite difference method is developed. The new method still uses the standard five-point stencil with modifications of the finite difference scheme at irregular grid points. The resulting coefficient matrix of the linear system of finite difference equations satisfies the sign property of the discrete maximum principle and can be solved efficiently using a multigrid solver. The finite difference method is also extended to handle temporal discretized equations where the solution coefficient λ is inversely proportional to the mesh size. PMID:22701346

  5. SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES.

    PubMed

    Wan, Xiaohai; Li, Zhilin

    2012-06-01

    Solving a Helmholtz equation Δu + λu = f efficiently is a challenge for many applications. For example, the core part of many efficient solvers for the incompressible Navier-Stokes equations is to solve one or several Helmholtz equations. In this paper, two new finite difference methods are proposed for solving Helmholtz equations on irregular domains, or with interfaces. For Helmholtz equations on irregular domains, the accuracy of the numerical solution obtained using the existing augmented immersed interface method (AIIM) may deteriorate when the magnitude of λ is large. In our new method, we use a level set function to extend the source term and the PDE to a larger domain before we apply the AIIM. For Helmholtz equations with interfaces, a new maximum principle preserving finite difference method is developed. The new method still uses the standard five-point stencil with modifications of the finite difference scheme at irregular grid points. The resulting coefficient matrix of the linear system of finite difference equations satisfies the sign property of the discrete maximum principle and can be solved efficiently using a multigrid solver. The finite difference method is also extended to handle temporal discretized equations where the solution coefficient λ is inversely proportional to the mesh size.

  6. Extended resolvent and inverse scattering with an application to KPI

    NASA Astrophysics Data System (ADS)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Prinari, B.

    2003-08-01

    We present in detail an extended resolvent approach for investigating linear problems associated to 2+1 dimensional integrable equations. Our presentation is based as an example on the nonstationary Schrödinger equation with potential being a perturbation of the one-soliton potential by means of a decaying two-dimensional function. Modification of the inverse scattering theory as well as properties of the Jost solutions and spectral data as follows from the resolvent approach are given.

  7. Age Estimation of Infants Through Metric Analysis of Developing Anterior Deciduous Teeth.

    PubMed

    Viciano, Joan; De Luca, Stefano; Irurita, Javier; Alemán, Inmaculada

    2018-01-01

    This study provides regression equations for estimation of age of infants from the dimensions of their developing deciduous teeth. The sample comprises 97 individuals of known sex and age (62 boys, 35 girls), aged between 2 days and 1,081 days. The age-estimation equations were obtained for the sexes combined, as well as for each sex separately, thus including "sex" as an independent variable. The values of the correlations and determination coefficients obtained for each regression equation indicate good fits for most of the equations obtained. The "sex" factor was statistically significant when included as an independent variable in seven of the regression equations. However, the "sex" factor provided an advantage for age estimation in only three of the equations, compared to those that did not include "sex" as a factor. These data suggest that the ages of infants can be accurately estimated from measurements of their developing deciduous teeth. © 2017 American Academy of Forensic Sciences.

  8. System reliability of randomly vibrating structures: Computational modeling and laboratory testing

    NASA Astrophysics Data System (ADS)

    Sundar, V. S.; Ammanagi, S.; Manohar, C. S.

    2015-09-01

    The problem of determination of system reliability of randomly vibrating structures arises in many application areas of engineering. We discuss in this paper approaches based on Monte Carlo simulations and laboratory testing to tackle problems of time variant system reliability estimation. The strategy we adopt is based on the application of Girsanov's transformation to the governing stochastic differential equations which enables estimation of probability of failure with significantly reduced number of samples than what is needed in a direct simulation study. Notably, we show that the ideas from Girsanov's transformation based Monte Carlo simulations can be extended to conduct laboratory testing to assess system reliability of engineering structures with reduced number of samples and hence with reduced testing times. Illustrative examples include computational studies on a 10-degree of freedom nonlinear system model and laboratory/computational investigations on road load response of an automotive system tested on a four-post test rig.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deka, Deepjyoti; Backhaus, Scott N.; Chertkov, Michael

    Limited placement of real-time monitoring devices in the distribution grid, recent trends notwithstanding, has prevented the easy implementation of demand-response and other smart grid applications. Part I of this paper discusses the problem of learning the operational structure of the grid from nodal voltage measurements. In this work (Part II), the learning of the operational radial structure is coupled with the problem of estimating nodal consumption statistics and inferring the line parameters in the grid. Based on a Linear-Coupled(LC) approximation of AC power flows equations, polynomial time algorithms are designed to identify the structure and estimate nodal load characteristics and/ormore » line parameters in the grid using the available nodal voltage measurements. Then the structure learning algorithm is extended to cases with missing data, where available observations are limited to a fraction of the grid nodes. The efficacy of the presented algorithms are demonstrated through simulations on several distribution test cases.« less

  10. Thruster-Specific Force Estimation and Trending of Cassini Hydrazine Thrusters at Saturn

    NASA Technical Reports Server (NTRS)

    Stupik, Joan; Burk, Thomas A.

    2016-01-01

    The Cassini spacecraft has been in orbit around Saturn since 2004 and has since been approved for both a first and second extended mission. As hardware reaches and exceeds its documented life expectancy, it becomes vital to closely monitor hardware performance. The performance of the 1-N hydrazine attitude control thrusters is especially important to study, because the spacecraft is currently operating on the back-up thruster branch. Early identification of hardware degradation allows more time to develop mitigation strategies. There is no direct measure of an individual thruster's thrust magnitude, but these values can be estimated by post-processing spacecraft telemetry. This paper develops an algorithm to calculate the individual thrust magnitudes using Euler's equation. The algorithm correctly shows the known degradation in the first thruster branch, validating the approach. Results for the current thruster branch show nominal performance as of August, 2015.

  11. On convergence of the unscented Kalman-Bucy filter using contraction theory

    NASA Astrophysics Data System (ADS)

    Maree, J. P.; Imsland, L.; Jouffroy, J.

    2016-06-01

    Contraction theory entails a theoretical framework in which convergence of a nonlinear system can be analysed differentially in an appropriate contraction metric. This paper is concerned with utilising stochastic contraction theory to conclude on exponential convergence of the unscented Kalman-Bucy filter. The underlying process and measurement models of interest are Itô-type stochastic differential equations. In particular, statistical linearisation techniques are employed in a virtual-actual systems framework to establish deterministic contraction of the estimated expected mean of process values. Under mild conditions of bounded process noise, we extend the results on deterministic contraction to stochastic contraction of the estimated expected mean of the process state. It follows that for the regions of contraction, a result on convergence, and thereby incremental stability, is concluded for the unscented Kalman-Bucy filter. The theoretical concepts are illustrated in two case studies.

  12. An efficient algorithm for the generalized Foldy-Lax formulation

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Li, Peijun; Zhao, Hongkai

    2013-02-01

    Consider the scattering of a time-harmonic plane wave incident on a two-scale heterogeneous medium, which consists of scatterers that are much smaller than the wavelength and extended scatterers that are comparable to the wavelength. In this work we treat those small scatterers as isotropic point scatterers and use a generalized Foldy-Lax formulation to model wave propagation and capture multiple scattering among point scatterers and extended scatterers. Our formulation is given as a coupled system, which combines the original Foldy-Lax formulation for the point scatterers and the regular boundary integral equation for the extended obstacle scatterers. The existence and uniqueness of the solution for the formulation is established in terms of physical parameters such as the scattering coefficient and the separation distances. Computationally, an efficient physically motivated Gauss-Seidel iterative method is proposed to solve the coupled system, where only a linear system of algebraic equations for point scatterers or a boundary integral equation for a single extended obstacle scatterer is required to solve at each step of iteration. The convergence of the iterative method is also characterized in terms of physical parameters. Numerical tests for the far-field patterns of scattered fields arising from uniformly or randomly distributed point scatterers and single or multiple extended obstacle scatterers are presented.

  13. Unified method to integrate and blend several, potentially related, sources of information for genetic evaluation.

    PubMed

    Vandenplas, Jérémie; Colinet, Frederic G; Gengler, Nicolas

    2014-09-30

    A condition to predict unbiased estimated breeding values by best linear unbiased prediction is to use simultaneously all available data. However, this condition is not often fully met. For example, in dairy cattle, internal (i.e. local) populations lead to evaluations based only on internal records while widely used foreign sires have been selected using internally unavailable external records. In such cases, internal genetic evaluations may be less accurate and biased. Because external records are unavailable, methods were developed to combine external information that summarizes these records, i.e. external estimated breeding values and associated reliabilities, with internal records to improve accuracy of internal genetic evaluations. Two issues of these methods concern double-counting of contributions due to relationships and due to records. These issues could be worse if external information came from several evaluations, at least partially based on the same records, and combined into a single internal evaluation. Based on a Bayesian approach, the aim of this research was to develop a unified method to integrate and blend simultaneously several sources of information into an internal genetic evaluation by avoiding double-counting of contributions due to relationships and due to records. This research resulted in equations that integrate and blend simultaneously several sources of information and avoid double-counting of contributions due to relationships and due to records. The performance of the developed equations was evaluated using simulated and real datasets. The results showed that the developed equations integrated and blended several sources of information well into a genetic evaluation. The developed equations also avoided double-counting of contributions due to relationships and due to records. Furthermore, because all available external sources of information were correctly propagated, relatives of external animals benefited from the integrated information and, therefore, more reliable estimated breeding values were obtained. The proposed unified method integrated and blended several sources of information well into a genetic evaluation by avoiding double-counting of contributions due to relationships and due to records. The unified method can also be extended to other types of situations such as single-step genomic or multi-trait evaluations, combining information across different traits.

  14. Estimation of In Situ Stress and Permeability from an Extended Leak-off Test

    NASA Astrophysics Data System (ADS)

    Nghiep Quach, Quoc; Jo, Yeonguk; Chang, Chandong; Song, Insun

    2016-04-01

    Among many parameters needed to analyze a variety of geomechanical problems related to subsurface CO2 storage projects, two important ones are in situ stress states and permeability of the storage reservoirs and cap rocks. In situ stress is needed for investigating potential risk of fault slip in the reservoir systems and permeability is needed for assessing reservoir flow characteristics and sealing capability of cap rocks. We used an extended leak-off test (XLOT), which is often routinely conducted to assess borehole/casing integrity as well as fracture gradient, to estimate both in situ least principal stress magnitude and in situ permeability in a CO2 storage test site, offshore southeast Korea. The XLOT was conducted at a casing shoe depth (700 m below seafloor) within the cap rock consisting of mudstone, approximately 50 m above the interface between cap rock and storage reservoir. The test depth was cement-grouted and remained for 4 days for curing. Then the hole was further drilled below the casing shoe to create a 4 m open-hole interval at the bottom. Water was injected using hydraulic pump at an approximately constant flowrate into the bottom interval through the casing, during which pressure and flowrate were recorded continuously at the surface. The interval pressure (P) was increased linearly with time (t) as water was injected. At some point, the slope of P-t curve deviated from the linear trend, which indicates leak-off. Pressure reached its peak upon formation breakdown, followed by a gradual pressure decrease. Soon after the formation breakdown, the hole was shut-in by pump shut-off, from which we determined the instantaneous shut-in pressure (ISIP). The ISIP was taken to be the magnitude of the in situ least principal stress (S3), which was determined to be 12.1 MPa. This value is lower than the lithostatic vertical stress, indicating that the S3 is the least horizontal principal stress. The determined S3 magnitude will be used to characterize the stress regime with the information of the maximum principal stress that will be estimated based on borehole breakout geometry analysis. To estimate the in situ permeability from the XLOT data, we derived a theoretical equation that relates the slope of pressure versus injected water volume (P-V) curve to permeability based on the Darcy's law. The equation is expressed in terms of permeability as a function of some key parameters such as open-hole dimensions, flowrate, porosity, pressure change and injected water volume. We applied this equation to the early stage of the P-V curves prior to the leak-off point to prevent the effect of induced fractures on permeability. The estimated in situ permeability was (3.1±0.4)×10-17m2, which turns out to be quite similar to the laboratory measurements in recovered cores.

  15. Exp-function method for solving fractional partial differential equations.

    PubMed

    Zheng, Bin

    2013-01-01

    We extend the Exp-function method to fractional partial differential equations in the sense of modified Riemann-Liouville derivative based on nonlinear fractional complex transformation. For illustrating the validity of this method, we apply it to the space-time fractional Fokas equation and the nonlinear fractional Sharma-Tasso-Olver (STO) equation. As a result, some new exact solutions for them are successfully established.

  16. Alternative Regression Equations for Estimation of Annual Peak-Streamflow Frequency for Undeveloped Watersheds in Texas using PRESS Minimization

    USGS Publications Warehouse

    Asquith, William H.; Thompson, David B.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Texas Department of Transportation and in partnership with Texas Tech University, investigated a refinement of the regional regression method and developed alternative equations for estimation of peak-streamflow frequency for undeveloped watersheds in Texas. A common model for estimation of peak-streamflow frequency is based on the regional regression method. The current (2008) regional regression equations for 11 regions of Texas are based on log10 transformations of all regression variables (drainage area, main-channel slope, and watershed shape). Exclusive use of log10-transformation does not fully linearize the relations between the variables. As a result, some systematic bias remains in the current equations. The bias results in overestimation of peak streamflow for both the smallest and largest watersheds. The bias increases with increasing recurrence interval. The primary source of the bias is the discernible curvilinear relation in log10 space between peak streamflow and drainage area. Bias is demonstrated by selected residual plots with superimposed LOWESS trend lines. To address the bias, a statistical framework based on minimization of the PRESS statistic through power transformation of drainage area is described and implemented, and the resulting regression equations are reported. Compared to log10-exclusive equations, the equations derived from PRESS minimization have PRESS statistics and residual standard errors less than the log10 exclusive equations. Selected residual plots for the PRESS-minimized equations are presented to demonstrate that systematic bias in regional regression equations for peak-streamflow frequency estimation in Texas can be reduced. Because the overall error is similar to the error associated with previous equations and because the bias is reduced, the PRESS-minimized equations reported here provide alternative equations for peak-streamflow frequency estimation.

  17. Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review.

    PubMed

    Earley, Amy; Miskulin, Dana; Lamb, Edmund J; Levey, Andrew S; Uhlig, Katrin

    2012-06-05

    Clinical laboratories are increasingly reporting estimated glomerular filtration rate (GFR) by using serum creatinine assays traceable to a standard reference material. To review the performance of GFR estimating equations to inform the selection of a single equation by laboratories and the interpretation of estimated GFR by clinicians. A systematic search of MEDLINE, without language restriction, between 1999 and 21 October 2011. Cross-sectional studies in adults that compared the performance of 2 or more creatinine-based GFR estimating equations with a reference GFR measurement. Eligible equations were derived or reexpressed and validated by using creatinine measurements traceable to the standard reference material. Reviewers extracted data on study population characteristics, measured GFR, creatinine assay, and equation performance. Eligible studies compared the MDRD (Modification of Diet in Renal Disease) Study and CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) equations or modifications thereof. In 12 studies in North America, Europe, and Australia, the CKD-EPI equation performed better at higher GFRs (approximately >60 mL/min per 1.73 m(2)) and the MDRD Study equation performed better at lower GFRs. In 5 of 8 studies in Asia and Africa, the equations were modified to improve their performance by adding a coefficient derived in the local population or removing a coefficient. Methods of GFR measurement and study populations were heterogeneous. Neither the CKD-EPI nor the MDRD Study equation is optimal for all populations and GFR ranges. Using a single equation for reporting requires a tradeoff to optimize performance at either higher or lower GFR ranges. A general practice and public health perspective favors the CKD-EPI equation. Kidney Disease: Improving Global Outcomes.

  18. Estimating Slash Quantity from Standing Loblolly Pine

    Treesearch

    Dale D. Wade

    1969-01-01

    No significant difference were found between variances of two prediction equations for estimating loblolly pine crown weight from diameter breast height (d.b.h). One equation was developed from trees on the Georgia Piedmont and the other from tress on the South Carolina Coastal Plain. An equation and table are presented for estimating loblolly pine slash weights from...

  19. Parameter Estimates in Differential Equation Models for Chemical Kinetics

    ERIC Educational Resources Information Center

    Winkel, Brian

    2011-01-01

    We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…

  20. Estimating glomerular filtration rate in black South Africans by use of the modification of diet in renal disease and Cockcroft-Gault equations.

    PubMed

    van Deventer, Hendrick E; George, Jaya A; Paiker, Janice E; Becker, Piet J; Katz, Ivor J

    2008-07-01

    The 4-variable Modification of Diet in Renal Disease (4-v MDRD) and Cockcroft-Gault (CG) equations are commonly used for estimating glomerular filtration rate (GFR); however, neither of these equations has been validated in an indigenous African population. The aim of this study was to evaluate the performance of the 4-v MDRD and CG equations for estimating GFR in black South Africans against measured GFR and to assess the appropriateness for the local population of the ethnicity factor established for African Americans in the 4-v MDRD equation. We enrolled 100 patients in the study. The plasma clearance of chromium-51-EDTA ((51)Cr-EDTA) was used to measure GFR, and serum creatinine was measured using an isotope dilution mass spectrometry (IDMS) traceable assay. We estimated GFR using both the reexpressed 4-v MDRD and CG equations and compared it to measured GFR using 4 modalities: correlation coefficient, weighted Deming regression analysis, percentage bias, and proportion of estimated GFR within 30% of measured GFR (P(30)). The Spearman correlation coefficient between measured and estimated GFR for both equations was similar (4-v MDRD R(2) = 0.80 and CG R(2) = 0.79). Using the 4-v MDRD equation with the ethnicity factor of 1.212 as established for African Americans resulted in a median positive bias of 13.1 (95% CI 5.5 to 18.3) mL/min/1.73 m(2). Without the ethnicity factor, median bias was 1.9 (95% CI -0.8 to 4.5) mL/min/1.73 m(2). The 4-v MDRD equation, without the ethnicity factor of 1.212, can be used for estimating GFR in black South Africans.

  1. Comparison of anthropometric-based equations for estimation of body fat percentage in a normal-weight and overweight female cohort: validation via air-displacement plethysmography.

    PubMed

    Temple, Derry; Denis, Romain; Walsh, Marianne C; Dicker, Patrick; Byrne, Annette T

    2015-02-01

    To evaluate the accuracy of the most commonly used anthropometric-based equations in the estimation of percentage body fat (%BF) in both normal-weight and overweight women using air-displacement plethysmography (ADP) as the criterion measure. A comparative study in which the equations of Durnin and Womersley (1974; DW) and Jackson, Pollock and Ward (1980) at three, four and seven sites (JPW₃, JPW₄ and JPW₇) were validated against ADP in three groups. Group 1 included all participants, group 2 included participants with a BMI <25·0 kg/m² and group 3 included participants with a BMI ≥25·0 kg/m². Human Performance Laboratory, Institute for Sport and Health, University College Dublin, Republic of Ireland. Forty-three female participants aged between 18 and 55 years. In all three groups, the %BF values estimated from the DW equation were closer to the criterion measure (i.e. ADP) than those estimated from the other equations. Of the three JPW equations, JPW₃ provided the most accurate estimation of %BF when compared with ADP in all three groups. In comparison to ADP, these findings suggest that the DW equation is the most accurate anthropometric method for the estimation of %BF in both normal-weight and overweight females.

  2. Numerical Solution of the Extended Nernst-Planck Model.

    PubMed

    Samson; Marchand

    1999-07-01

    The main features of a numerical model aiming at predicting the drift of ions in an electrolytic solution upon a chemical potential gradient are presented. The mechanisms of ionic diffusion are described by solving the extended Nernst-Planck system of equations. The electrical coupling between the various ionic fluxes is accounted for by the Poisson equation. Furthermore, chemical activity effects are considered in the model. The whole system of nonlinear equations is solved using the finite-element method. Results yielded by the model for simple test cases are compared to those obtained using an analytical solution. Applications of the model to more complex problems are also presented and discussed. Copyright 1999 Academic Press.

  3. A General Linear Method for Equating with Small Samples

    ERIC Educational Resources Information Center

    Albano, Anthony D.

    2015-01-01

    Research on equating with small samples has shown that methods with stronger assumptions and fewer statistical estimates can lead to decreased error in the estimated equating function. This article introduces a new approach to linear observed-score equating, one which provides flexible control over how form difficulty is assumed versus estimated…

  4. Assessing the Reliability of Regional Depth-Duration-Frequency Equations for Gauged and Ungauged Sites

    NASA Astrophysics Data System (ADS)

    Castellarin, A.; Montanari, A.; Brath, A.

    2002-12-01

    The study derives Regional Depth-Duration-Frequency (RDDF) equations for a wide region of northern-central Italy (37,200 km 2) by following an adaptation of the approach originally proposed by Alila [WRR, 36(7), 2000]. The proposed RDDF equations have a rather simple structure and allow an estimation of the design storm, defined as the rainfall depth expected for a given storm duration and recurrence interval, in any location of the study area for storm durations from 1 to 24 hours and for recurrence intervals up to 100 years. The reliability of the proposed RDDF equations represents the main concern of the study and it is assessed at two different levels. The first level considers the gauged sites and compares estimates of the design storm obtained with the RDDF equations with at-site estimates based upon the observed annual maximum series of rainfall depth and with design storm estimates resulting from a regional estimator recently developed for the study area through a Hierarchical Regional Approach (HRA) [Gabriele and Arnell, WRR, 27(6), 1991]. The second level performs a reliability assessment of the RDDF equations for ungauged sites by means of a jack-knife procedure. Using the HRA estimator as a reference term, the jack-knife procedure assesses the reliability of design storm estimates provided by the RDDF equations for a given location when dealing with the complete absence of pluviometric information. The results of the analysis show that the proposed RDDF equations represent practical and effective computational means for producing a first guess of the design storm at the available raingauges and reliable design storm estimates for ungauged locations. The first author gratefully acknowledges D.H. Burn for sponsoring the submission of the present abstract.

  5. Estimating glomerular filtration rate (GFR) in children. The average between a cystatin C- and a creatinine-based equation improves estimation of GFR in both children and adults and enables diagnosing Shrunken Pore Syndrome.

    PubMed

    Leion, Felicia; Hegbrant, Josefine; den Bakker, Emil; Jonsson, Magnus; Abrahamson, Magnus; Nyman, Ulf; Björk, Jonas; Lindström, Veronica; Larsson, Anders; Bökenkamp, Arend; Grubb, Anders

    2017-09-01

    Estimating glomerular filtration rate (GFR) in adults by using the average of values obtained by a cystatin C- (eGFR cystatin C ) and a creatinine-based (eGFR creatinine ) equation shows at least the same diagnostic performance as GFR estimates obtained by equations using only one of these analytes or by complex equations using both analytes. Comparison of eGFR cystatin C and eGFR creatinine plays a pivotal role in the diagnosis of Shrunken Pore Syndrome, where low eGFR cystatin C compared to eGFR creatinine has been associated with higher mortality in adults. The present study was undertaken to elucidate if this concept can also be applied in children. Using iohexol and inulin clearance as gold standard in 702 children, we studied the diagnostic performance of 10 creatinine-based, 5 cystatin C-based and 3 combined cystatin C-creatinine eGFR equations and compared them to the result of the average of 9 pairs of a eGFR cystatin C and a eGFR creatinine estimate. While creatinine-based GFR estimations are unsuitable in children unless calibrated in a pediatric or mixed pediatric-adult population, cystatin C-based estimations in general performed well in children. The average of a suitable creatinine-based and a cystatin C-based equation generally displayed a better diagnostic performance than estimates obtained by equations using only one of these analytes or by complex equations using both analytes. Comparing eGFR cystatin and eGFR creatinine may help identify pediatric patients with Shrunken Pore Syndrome.

  6. Periodic wave, breather wave and travelling wave solutions of a (2 + 1)-dimensional B-type Kadomtsev-Petviashvili equation in fluids or plasmas

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Qiang; Gao, Yi-Tian; Jia, Shu-Liang; Huang, Qian-Min; Lan, Zhong-Zhou

    2016-11-01

    In this paper, a (2 + 1)-dimensional B-type Kadomtsev-Petviashvili equation is investigated, which has been presented as a model for the shallow water wave in fluids or the electrostatic wave potential in plasmas. By virtue of the binary Bell polynomials, the bilinear form of this equation is obtained. With the aid of the bilinear form, N -soliton solutions are obtained by the Hirota method, periodic wave solutions are constructed via the Riemann theta function, and breather wave solutions are obtained according to the extended homoclinic test approach. Travelling waves are constructed by the polynomial expansion method as well. Then, the relations between soliton solutions and periodic wave solutions are strictly established, which implies the asymptotic behaviors of the periodic waves under a limited procedure. Furthermore, we obtain some new solutions of this equation by the standard extended homoclinic test approach. Finally, we give a generalized form of this equation, and find that similar analytical solutions can be obtained from the generalized equation with arbitrary coefficients.

  7. Estimating value and volume of ponderosa pine trees by equations.

    Treesearch

    Martin E. Plank

    1981-01-01

    Equations for estimating the selling value and tally volume for ponderosa pine lumber from the standing trees are described. Only five characteristics are required for the equations. Development and application of the system are described.

  8. First-Order System Least Squares for the Stokes Equations, with Application to Linear Elasticity

    NASA Technical Reports Server (NTRS)

    Cai, Z.; Manteuffel, T. A.; McCormick, S. F.

    1996-01-01

    Following our earlier work on general second-order scalar equations, here we develop a least-squares functional for the two- and three-dimensional Stokes equations, generalized slightly by allowing a pressure term in the continuity equation. By introducing a velocity flux variable and associated curl and trace equations, we are able to establish ellipticity in an H(exp 1) product norm appropriately weighted by the Reynolds number. This immediately yields optimal discretization error estimates for finite element spaces in this norm and optimal algebraic convergence estimates for multiplicative and additive multigrid methods applied to the resulting discrete systems. Both estimates are uniform in the Reynolds number. Moreover, our pressure-perturbed form of the generalized Stokes equations allows us to develop an analogous result for the Dirichlet problem for linear elasticity with estimates that are uniform in the Lame constants.

  9. Variational estimation of process parameters in a simplified atmospheric general circulation model

    NASA Astrophysics Data System (ADS)

    Lv, Guokun; Koehl, Armin; Stammer, Detlef

    2016-04-01

    Parameterizations are used to simulate effects of unresolved sub-grid-scale processes in current state-of-the-art climate model. The values of the process parameters, which determine the model's climatology, are usually manually adjusted to reduce the difference of model mean state to the observed climatology. This process requires detailed knowledge of the model and its parameterizations. In this work, a variational method was used to estimate process parameters in the Planet Simulator (PlaSim). The adjoint code was generated using automatic differentiation of the source code. Some hydrological processes were switched off to remove the influence of zero-order discontinuities. In addition, the nonlinearity of the model limits the feasible assimilation window to about 1day, which is too short to tune the model's climatology. To extend the feasible assimilation window, nudging terms for all state variables were added to the model's equations, which essentially suppress all unstable directions. In identical twin experiments, we found that the feasible assimilation window could be extended to over 1-year and accurate parameters could be retrieved. Although the nudging terms transform to a damping of the adjoint variables and therefore tend to erases the information of the data over time, assimilating climatological information is shown to provide sufficient information on the parameters. Moreover, the mechanism of this regularization is discussed.

  10. The thermal-vortex equations

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1987-01-01

    The Boussinesq approximation is extended so as to explicitly account for the transfer of fluid energy through viscous action into thermal energy. Ideal and dissipative integral invariants are discussed, in addition to the general equations for thermal-fluid motion.

  11. Assessment and correction of skinfold thickness equations in estimating body fat in children with cerebral palsy.

    PubMed

    Gurka, Matthew J; Kuperminc, Michelle N; Busby, Marjorie G; Bennis, Jacey A; Grossberg, Richard I; Houlihan, Christine M; Stevenson, Richard D; Henderson, Richard C

    2010-02-01

    To assess the accuracy of skinfold equations in estimating percentage body fat in children with cerebral palsy (CP), compared with assessment of body fat from dual energy X-ray absorptiometry (DXA). Data were collected from 71 participants (30 females, 41 males) with CP (Gross Motor Function Classification System [GMFCS] levels I-V) between the ages of 8 and 18 years. Estimated percentage body fat was computed using established (Slaughter) equations based on the triceps and subscapular skinfolds. A linear model was fitted to assess the use of a simple correction to these equations for children with CP. Slaughter's equations consistently underestimated percentage body fat (mean difference compared with DXA percentage body fat -9.6/100 [SD 6.2]; 95% confidence interval [CI] -11.0 to -8.1). New equations were developed in which a correction factor was added to the existing equations based on sex, race, GMFCS level, size, and pubertal status. These corrected equations for children with CP agree better with DXA (mean difference 0.2/100 [SD=4.8]; 95% CI -1.0 to 1.3) than existing equations. A simple correction factor to commonly used equations substantially improves the ability to estimate percentage body fat from two skinfold measures in children with CP.

  12. Validation of Core Temperature Estimation Algorithm

    DTIC Science & Technology

    2016-01-29

    plot of observed versus estimated core temperature with the line of identity (dashed) and the least squares regression line (solid) and line equation...estimated PSI with the line of identity (dashed) and the least squares regression line (solid) and line equation in the top left corner. (b) Bland...for comparison. The root mean squared error (RMSE) was also computed, as given by Equation 2.

  13. Gradient estimates on the weighted p-Laplace heat equation

    NASA Astrophysics Data System (ADS)

    Wang, Lin Feng

    2018-01-01

    In this paper, by a regularization process we derive new gradient estimates for positive solutions to the weighted p-Laplace heat equation when the m-Bakry-Émery curvature is bounded from below by -K for some constant K ≥ 0. When the potential function is constant, which reduce to the gradient estimate established by Ni and Kotschwar for positive solutions to the p-Laplace heat equation on closed manifolds with nonnegative Ricci curvature if K ↘ 0, and reduce to the Davies, Hamilton and Li-Xu's gradient estimates for positive solutions to the heat equation on closed manifolds with Ricci curvature bounded from below if p = 2.

  14. Improvement of Method for Estimation of Site Amplification Factor Based on Average Shear-wave Velocity of Ground

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Makoto; Midorikawa, Saburoh

    The empirical equation for estimating the site amplification factor of ground motion by the average shear-wave velocity of ground (AVS) is examined. In the existing equations, the coefficient on dependence of the amplification factor on the AVS was treated as constant. The analysis showed that the coefficient varies with change of the AVS for short periods. A new estimation equation was proposed considering the dependence on the AVS. The new equation can represent soil characteristics that the softer soil has the longer predominant period, and can make better estimations for short periods than the existing method.

  15. Partner symmetries and non-invariant solutions of four-dimensional heavenly equations

    NASA Astrophysics Data System (ADS)

    Malykh, A. A.; Nutku, Y.; Sheftel, M. B.

    2004-07-01

    We extend our method of partner symmetries to the hyperbolic complex Monge-Ampère equation and the second heavenly equation of Plebañski. We show the existence of partner symmetries and derive the relations between them. For certain simple choices of partner symmetries the resulting differential constraints together with the original heavenly equations are transformed to systems of linear equations by an appropriate Legendre transformation. The solutions of these linear equations are generically non-invariant. As a consequence we obtain explicitly new classes of heavenly metrics without Killing vectors.

  16. Calculation of Transport Coefficients in Dense Plasma Mixtures

    NASA Astrophysics Data System (ADS)

    Haxhimali, T.; Cabot, W. H.; Caspersen, K. J.; Greenough, J.; Miller, P. L.; Rudd, R. E.; Schwegler, E. R.

    2011-10-01

    We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during the broadening of the interface between two regions each with a high concentration of either species. Here we present results for an asymmetric mixture between Ar and H. These can easily be extended to other plasma mixtures. A main motivation for this study is to develop accurate transport models that can be incorporated into the hydrodynamic codes to study hydrodynamic instabilities. We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during the broadening of the interface between two regions each with a high concentration of either species. Here we present results for an asymmetric mixture between Ar and H. These can easily be extended to other plasma mixtures. A main motivation for this study is to develop accurate transport models that can be incorporated into the hydrodynamic codes to study hydrodynamic instabilities. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  17. Multi-Mode Estimation for Small Fixed Wing Unmanned Aerial Vehicle Localization Based on a Linear Matrix Inequality Approach

    PubMed Central

    Elzoghby, Mostafa; Li, Fu; Arafa, Ibrahim. I.; Arif, Usman

    2017-01-01

    Information fusion from multiple sensors ensures the accuracy and robustness of a navigation system, especially in the absence of global positioning system (GPS) data which gets degraded in many cases. A way to deal with multi-mode estimation for a small fixed wing unmanned aerial vehicle (UAV) localization framework is proposed, which depends on utilizing a Luenberger observer-based linear matrix inequality (LMI) approach. The proposed estimation technique relies on the interaction between multiple measurement modes and a continuous observer. The state estimation is performed in a switching environment between multiple active sensors to exploit the available information as much as possible, especially in GPS-denied environments. Luenberger observer-based projection is implemented as a continuous observer to optimize the estimation performance. The observer gain might be chosen by solving a Lyapunov equation by means of a LMI algorithm. Convergence is achieved by utilizing the linear matrix inequality (LMI), based on Lyapunov stability which keeps the dynamic estimation error bounded by selecting the observer gain matrix (L). Simulation results are presented for a small UAV fixed wing localization problem. The results obtained using the proposed approach are compared with a single mode Extended Kalman Filter (EKF). Simulation results are presented to demonstrate the viability of the proposed strategy. PMID:28420214

  18. Evaluating the loudness of phantom auditory perception (tinnitus) in rats.

    PubMed

    Jastreboff, P J; Brennan, J F

    1994-01-01

    Using our behavioral paradigm for evaluating tinnitus, the loudness of salicylate-induced tinnitus was evaluated in 144 rats by comparing their behavioral responses induced by different doses of salicylate to those induced by different intensities of a continuous reference tone mimicking tinnitus. Group differences in resistance to extinction were linearly related to salicylate dose and, at moderate intensities, to the reference tone as well. Comparison of regression equations for salicylate versus tone effects permitted estimation of the loudness of salicylate-induced tinnitus. These results extend the animal model of tinnitus and provide evidence that the loudness of phantom auditory perception is expressed through observable behavior, can be evaluated, and its changes detected.

  19. Effect of individual parameter changes on the outcome of the estimated short-term dietary exposure to pesticides.

    PubMed

    van der Velde-Koerts, Trijntje; Breysse, Nicolas; Pattingre, Lauriane; Hamey, Paul Y; Lutze, Jason; Mahieu, Karin; Margerison, Sam; Ossendorp, Bernadette C; Reich, Hermine; Rietveld, Anton; Sarda, Xavier; Vial, Gaelle; Sieke, Christian

    2018-06-03

    In 2015 a scientific workshop was held in Geneva, where updating the International Estimate of Short-Term Intake (IESTI) equations was suggested. This paper studies the effects of the proposed changes in residue inputs, large portions, variability factors and unit weights on the overall short-term dietary exposure estimate. Depending on the IESTI case equation, a median increase in estimated overall exposure by a factor of 1.0-6.8 was observed when the current IESTI equations are replaced by the proposed IESTI equations. The highest increase in the estimated exposure arises from the replacement of the median residue (STMR) by the maximum residue limit (MRL) for bulked and blended commodities (case 3 equations). The change in large portion parameter does not have a significant impact on the estimated exposure. The use of large portions derived from the general population covering all age groups and bodyweights should be avoided when large portions are not expressed on an individual bodyweight basis. Replacement of the highest residue (HR) by the MRL and removal of the unit weight each increase the estimated exposure for small-, medium- and large-sized commodities (case 1, case 2a or case 2b equations). However, within the EU framework lowering of the variability factor from 7 or 5 to 3 counterbalances the effect of changes in other parameters, resulting in an estimated overall exposure change for the EU situation of a factor of 0.87-1.7 and 0.6-1.4 for IESTI case 2a and case 2b equations, respectively.

  20. Symmetry and singularity properties of second-order ordinary differential equations of Lie's type III

    NASA Astrophysics Data System (ADS)

    Andriopoulos, K.; Leach, P. G. L.

    2007-04-01

    We extend the work of Abraham-Shrauner [B. Abraham-Shrauner, Hidden symmetries and linearization of the modified Painleve-Ince equation, J. Math. Phys. 34 (1993) 4809-4816] on the linearization of the modified Painleve-Ince equation to a wider class of nonlinear second-order ordinary differential equations invariant under the symmetries of time translation and self-similarity. In the process we demonstrate a remarkable connection with the parameters obtained in the singularity analysis of this class of equations.

  1. On implicit abstract neutral nonlinear differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernández, Eduardo, E-mail: lalohm@ffclrp.usp.br; O’Regan, Donal, E-mail: donal.oregan@nuigalway.ie

    2016-04-15

    In this paper we continue our developments in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) on the existence of solutions for abstract neutral differential equations. In particular we extend the results in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) for the case of implicit nonlinear neutral equations and we focus on applications to partial “nonlinear” neutral differential equations. Some applications involving partial neutral differential equations are presented.

  2. Open Group Transformations Within the Sp(2)-Formalism

    NASA Astrophysics Data System (ADS)

    Batalin, Igor; Marnelius, Robert

    Previously we have shown that open groups whose generators are in arbitrary involutions may be quantized within a ghost extended framework in terms of the nilpotent BFV-BRST charge operator. Here we show that they may also be quantized within an Sp(2)-frame in which there are two odd anticommuting operators called Sp(2)-charges. Previous results for finite open group transformations are generalized to the Sp(2)-formalism. We show that in order to define open group transformations on the whole ghost extended space we need Sp(2)-charges in the nonminimal sector which contains dynamical Lagrange multipliers. We give an Sp(2)-version of the quantum master equation with extended Sp(2)-charges and a master charge of a more involved form, which is proposed to represent the integrability conditions of defining operators of connection operators and which therefore should encode the generalized quantum Maurer-Cartan equations for arbitrary open groups. General solutions of this master equation are given in explicit form. A further extended Sp(2)-formalism is proposed in which the group parameters are quadrupled to a supersymmetric set and from which all results may be derived.

  3. Peak flow regression equations For small, ungaged streams in Maine: Comparing map-based to field-based variables

    USGS Publications Warehouse

    Lombard, Pamela J.; Hodgkins, Glenn A.

    2015-01-01

    Regression equations to estimate peak streamflows with 1- to 500-year recurrence intervals (annual exceedance probabilities from 99 to 0.2 percent, respectively) were developed for small, ungaged streams in Maine. Equations presented here are the best available equations for estimating peak flows at ungaged basins in Maine with drainage areas from 0.3 to 12 square miles (mi2). Previously developed equations continue to be the best available equations for estimating peak flows for basin areas greater than 12 mi2. New equations presented here are based on streamflow records at 40 U.S. Geological Survey streamgages with a minimum of 10 years of recorded peak flows between 1963 and 2012. Ordinary least-squares regression techniques were used to determine the best explanatory variables for the regression equations. Traditional map-based explanatory variables were compared to variables requiring field measurements. Two field-based variables—culvert rust lines and bankfull channel widths—either were not commonly found or did not explain enough of the variability in the peak flows to warrant inclusion in the equations. The best explanatory variables were drainage area and percent basin wetlands; values for these variables were determined with a geographic information system. Generalized least-squares regression was used with these two variables to determine the equation coefficients and estimates of accuracy for the final equations.

  4. The Cumulative Lifting Index (CULI) for the Revised NIOSH Lifting Equation: Quantifying Risk for Workers With Job Rotation.

    PubMed

    Garg, Arun; Kapellusch, Jay M

    2016-08-01

    The objectives were to: (a) develop a continuous frequency multiplier (FM) for the Revised NIOSH Lifting Equation (RNLE) as a function of lifting frequency and duration of a lifting task, and (b) describe the Cumulative Lifting Index (CULI), a methodology for estimating physical exposure to workers with job rotation. The existing FM for the RNLE (FME) does not differentiate between task duration >2 hr and <8 hr, which makes quantifying physical exposure to workers with job rotation difficult and presents challenges to job designers. Using the existing FMs for 1, 2, and 8 hr of task durations, we developed a continuous FM (FMP) that extends to 12 hr per day. We simulated 157,500 jobs consisting of two tasks each and, using different combinations of Frequency Independent Lifting Index, lifting frequency and duration of lifting. Biomechanical stresses were estimated using the CULI, time-weighted average (TWA), and peak exposure. The median difference between FME and FMP was ±1% (range: 0%-15%). Compared to CULI, TWA underestimated risk of low-back pain (LBP) for 18% to 30% of jobs, and peak exposure for an assumed 8-hr work shift overestimated risk of LBP for 20% to 25% of jobs. Peak task exposure showed 90% agreement with CULI but ignored one of two tasks. The CULI partially addressed the underestimation of physical exposure using the TWA approach and overestimation of exposure using the peak-exposure approach. The proposed FM and CULI may provide more accurate physical exposure estimates, and therefore estimated risk of LBP, for workers with job rotation. © 2016, Human Factors and Ergonomics Society.

  5. Constrained low-rank matrix estimation: phase transitions, approximate message passing and applications

    NASA Astrophysics Data System (ADS)

    Lesieur, Thibault; Krzakala, Florent; Zdeborová, Lenka

    2017-07-01

    This article is an extended version of previous work of Lesieur et al (2015 IEEE Int. Symp. on Information Theory Proc. pp 1635-9 and 2015 53rd Annual Allerton Conf. on Communication, Control and Computing (IEEE) pp 680-7) on low-rank matrix estimation in the presence of constraints on the factors into which the matrix is factorized. Low-rank matrix factorization is one of the basic methods used in data analysis for unsupervised learning of relevant features and other types of dimensionality reduction. We present a framework to study the constrained low-rank matrix estimation for a general prior on the factors, and a general output channel through which the matrix is observed. We draw a parallel with the study of vector-spin glass models—presenting a unifying way to study a number of problems considered previously in separate statistical physics works. We present a number of applications for the problem in data analysis. We derive in detail a general form of the low-rank approximate message passing (Low-RAMP) algorithm, that is known in statistical physics as the TAP equations. We thus unify the derivation of the TAP equations for models as different as the Sherrington-Kirkpatrick model, the restricted Boltzmann machine, the Hopfield model or vector (xy, Heisenberg and other) spin glasses. The state evolution of the Low-RAMP algorithm is also derived, and is equivalent to the replica symmetric solution for the large class of vector-spin glass models. In the section devoted to result we study in detail phase diagrams and phase transitions for the Bayes-optimal inference in low-rank matrix estimation. We present a typology of phase transitions and their relation to performance of algorithms such as the Low-RAMP or commonly used spectral methods.

  6. The modulational instability in the extended Hasegawa-Mima equation with a finite Larmor radius

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, S.; Hnat, B.; Rowlands, G.

    2012-12-15

    The effects of the finite Larmor radius on the generation of zonal flows by the four-wave modulational instability are investigated using an extended form of the Hasegawa-Mima equation. Growth rates of the zonal mode are quantified using analytical predictions from a four-mode truncated model, as well as from direct numerical simulation of the nonlinear extended Hasegawa-Mima equation. We not only consider purely zonal flows but also examine the generic oblique case and show that, for small Larmor radii, off-axis modes may become dominant. We find a key parameter M{sub {rho}} which characterises the behaviour of the system due to changesmore » in the Larmor radius. We find that, similarly to previous results obtained by changing the driving wave amplitude, two separate dynamical regimes can be accessed. These correspond to oscillatory energy transfer between zonal flows and a driving wave and the fully saturated zonal flow.« less

  7. Partner symmetries of the complex Monge Ampère equation yield hyper-Kähler metrics without continuous symmetries

    NASA Astrophysics Data System (ADS)

    Malykh, A. A.; Nutku, Y.; Sheftel, M. B.

    2003-10-01

    We extend the Mason-Newman Lax pair for the elliptic complex Monge-Ampère equation so that this equation itself emerges as an algebraic consequence. We regard the function in the extended Lax equations as a complex potential. Their differential compatibility condition coincides with the determining equation for the symmetries of the complex Monge-Ampère equation. We shall identify the real and imaginary parts of the potential, which we call partner symmetries, with the translational and dilatational symmetry characteristics, respectively. Then we choose the dilatational symmetry characteristic as the new unknown replacing the Kähler potential. This directly leads to a Legendre transformation. Studying the integrability conditions of the Legendre-transformed system we arrive at a set of linear equations satisfied by a single real potential. This enables us to construct non-invariant solutions of the Legendre transform of the complex Monge-Ampère equation. Using these solutions we obtained explicit Legendre-transformed hyper-Kähler metrics with a anti-self-dual Riemann curvature 2-form that admit no Killing vectors. They satisfy the Einstein field equations with Euclidean signature. We give the detailed derivation of the solution announced earlier and present a new solution with an added parameter. We compare our method of partner symmetries for finding non-invariant solutions to that of Dunajski and Mason who use 'hidden' symmetries for the same purpose.

  8. Extending generalized Kubelka-Munk to three-dimensional radiative transfer.

    PubMed

    Sandoval, Christopher; Kim, Arnold D

    2015-08-10

    The generalized Kubelka-Munk (gKM) approximation is a linear transformation of the double spherical harmonics of order one (DP1) approximation of the radiative transfer equation. Here, we extend the gKM approximation to study problems in three-dimensional radiative transfer. In particular, we derive the gKM approximation for the problem of collimated beam propagation and scattering in a plane-parallel slab composed of a uniform absorbing and scattering medium. The result is an 8×8 system of partial differential equations that is much easier to solve than the radiative transfer equation. We compare the solutions of the gKM approximation with Monte Carlo simulations of the radiative transfer equation to identify the range of validity for this approximation. We find that the gKM approximation is accurate for isotropic scattering media that are sufficiently thick and much less accurate for anisotropic, forward-peaked scattering media.

  9. Methods for estimating flood frequency in Montana based on data through water year 1998

    USGS Publications Warehouse

    Parrett, Charles; Johnson, Dave R.

    2004-01-01

    Annual peak discharges having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (T-year floods) were determined for 660 gaged sites in Montana and in adjacent areas of Idaho, Wyoming, and Canada, based on data through water year 1998. The updated flood-frequency information was subsequently used in regression analyses, either ordinary or generalized least squares, to develop equations relating T-year floods to various basin and climatic characteristics, equations relating T-year floods to active-channel width, and equations relating T-year floods to bankfull width. The equations can be used to estimate flood frequency at ungaged sites. Montana was divided into eight regions, within which flood characteristics were considered to be reasonably homogeneous, and the three sets of regression equations were developed for each region. A measure of the overall reliability of the regression equations is the average standard error of prediction. The average standard errors of prediction for the equations based on basin and climatic characteristics ranged from 37.4 percent to 134.1 percent. Average standard errors of prediction for the equations based on active-channel width ranged from 57.2 percent to 141.3 percent. Average standard errors of prediction for the equations based on bankfull width ranged from 63.1 percent to 155.5 percent. In most regions, the equations based on basin and climatic characteristics generally had smaller average standard errors of prediction than equations based on active-channel or bankfull width. An exception was the Southeast Plains Region, where all equations based on active-channel width had smaller average standard errors of prediction than equations based on basin and climatic characteristics or bankfull width. Methods for weighting estimates derived from the basin- and climatic-characteristic equations and the channel-width equations also were developed. The weights were based on the cross correlation of residuals from the different methods and the average standard errors of prediction. When all three methods were combined, the average standard errors of prediction ranged from 37.4 percent to 120.2 percent. Weighting of estimates reduced the standard errors of prediction for all T-year flood estimates in four regions, reduced the standard errors of prediction for some T-year flood estimates in two regions, and provided no reduction in average standard error of prediction in two regions. A computer program for solving the regression equations, weighting estimates, and determining reliability of individual estimates was developed and placed on the USGS Montana District World Wide Web page. A new regression method, termed Region of Influence regression, also was tested. Test results indicated that the Region of Influence method was not as reliable as the regional equations based on generalized least squares regression. Two additional methods for estimating flood frequency at ungaged sites located on the same streams as gaged sites also are described. The first method, based on a drainage-area-ratio adjustment, is intended for use on streams where the ungaged site of interest is located near a gaged site. The second method, based on interpolation between gaged sites, is intended for use on streams that have two or more streamflow-gaging stations.

  10. Using Automated Essay Scores as an Anchor When Equating Constructed Response Writing Tests

    ERIC Educational Resources Information Center

    Almond, Russell G.

    2014-01-01

    Assessments consisting of only a few extended constructed response items (essays) are not typically equated using anchor test designs as there are typically too few essay prompts in each form to allow for meaningful equating. This article explores the idea that output from an automated scoring program designed to measure writing fluency (a common…

  11. More on a Functional Equation

    ERIC Educational Resources Information Center

    Deakin, Michael A. B.

    2006-01-01

    This classroom note presents a final solution for the functional equation: f(xy)=xf(y) + yf(x). The functional equation if formally similar to the familiar product rule of elementary calculus and this similarity prompted its study by Ren et al., who derived some results concerning it. The purpose of this present note is to extend these results and…

  12. Estimating Dynamical Systems: Derivative Estimation Hints From Sir Ronald A. Fisher.

    PubMed

    Deboeck, Pascal R

    2010-08-06

    The fitting of dynamical systems to psychological data offers the promise of addressing new and innovative questions about how people change over time. One method of fitting dynamical systems is to estimate the derivatives of a time series and then examine the relationships between derivatives using a differential equation model. One common approach for estimating derivatives, Local Linear Approximation (LLA), produces estimates with correlated errors. Depending on the specific differential equation model used, such correlated errors can lead to severely biased estimates of differential equation model parameters. This article shows that the fitting of dynamical systems can be improved by estimating derivatives in a manner similar to that used to fit orthogonal polynomials. Two applications using simulated data compare the proposed method and a generalized form of LLA when used to estimate derivatives and when used to estimate differential equation model parameters. A third application estimates the frequency of oscillation in observations of the monthly deaths from bronchitis, emphysema, and asthma in the United Kingdom. These data are publicly available in the statistical program R, and functions in R for the method presented are provided.

  13. Reaeration equations derived from U.S. geological survey database

    USGS Publications Warehouse

    Melching, C.S.; Flores, H.E.

    1999-01-01

    Accurate estimation of the reaeration-rate coefficient (K2) is extremely important for waste-load allocation. Currently, available K2 estimation equations generally yield poor estimates when applied to stream conditions different from those for which the equations were derived because they were derived from small databases composed of potentially highly inaccurate measurements. A large data set of K2 measurements made with tracer-gas methods was compiled from U.S. Geological Survey studies. This compilation included 493 reaches on 166 streams in 23 states. Careful screening to detect and eliminate erroneous measurements reduced the date set to 371 measurements. These measurements were divided into four subgroups on the basis of flow regime (channel control or pool and riffle) and stream scale (discharge greater than or less than 0.556 m3/s). Multiple linear regression in logarithms was applied to relate K2 to 12 stream hydraulic and water-quality characteristics. The resulting best-estimation equations had the form of semiempirical equations that included the rate of energy dissipation and discharge or depth and width as variables. For equation verification, a data set of K2 measurements made with tracer-gas procedures by other agencies was compiled from the literature. This compilation included 127 reaches on at least 24 streams in at least seven states. The standard error of estimate obtained when applying the developed equations to the U.S. Geological Survey data set ranged from 44 to 61%, whereas the standard error of estimate was 78% when applied to the verification data set.Accurate estimation of the reaeration-rate coefficient (K2) is extremely important for waste-load allocation. Currently, available K2 estimation equations generally yield poor estimates when applied to stream conditions different from those for which the equations were derived because they were derived from small databases composed of potentially highly inaccurate measurements. A large data set of K2 measurements made with tracer-gas methods was compiled from U.S. Geological Survey studies. This compilation included 493 reaches on 166 streams in 23 states. Careful screening to detect and eliminate erroneous measurements reduced the data set to 371 measurements. These measurements were divided into four subgroups on the basis of flow regime (channel control or pool and riffle) and stream scale (discharge greater than or less than 0.556 m3/s). Multiple linear regression in logarithms was applied to relate K2 to 12 stream hydraulic and water-quality characteristics. The resulting best-estimation equations had the form of semiempirical equations that included the rate of energy dissipation and discharge or depth and width as variables. For equation verification, a data set of K2 measurements made with tracer-gas procedures by other agencies was compiled from the literature. This compilation included 127 reaches on at least 24 streams in at least seven states. The standard error of estimate obtained when applying the developed equations to the U.S. Geological Survey data set ranged from 44 to 61%, whereas the standard error of estimate was 78% when applied to the verification data set.

  14. Bifurcations of solitary wave solutions for (two and three)-dimensional nonlinear partial differential equation in quantum and magnetized plasma by using two different methods

    NASA Astrophysics Data System (ADS)

    Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen

    2018-06-01

    In this research, we study new two techniques that called the extended simple equation method and the novel (G‧/G) -expansion method. The extended simple equation method depend on the auxiliary equation (dϕ/dξ = α + λϕ + μϕ2) which has three ways for solving depends on the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (α = 0) this auxiliary equation reduces to Bernoulli equation and when (α ≠ 0, λ ≠ 0, μ ≠ 0) we the general solutions of this auxiliary equation while the novel (G‧/G) -expansion method depends also on similar auxiliary equation (G‧/G)‧ = μ + λ(G‧/G) + (v - 1)(G‧/G) 2 which depend also on the value of (λ2 - 4 (v - 1) μ) and the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (μ = 0) this auxiliary equation reduces to Bernoulli equation and when (λ2 ≠ 4 (v - 1) μ) we the general solutions of this auxiliary equation. This show how both of these auxiliary equation are special cases of Riccati equation. We apply these methods on two dimensional nonlinear Kadomtsev-Petviashvili Burgers equation in quantum plasma and three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma. We obtain the exact traveling wave solutions of these important models and under special condition on the parameters, we get solitary traveling wave solutions. All calculations in this study have been established and verified back with the aid of the Maple package program. The executed method is powerful, effective and straightforward for solving nonlinear partial differential equations to obtain more and new solutions.

  15. Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests.

    PubMed

    Ishihara, Masae I; Utsugi, Hajime; Tanouchi, Hiroyuki; Aiba, Masahiro; Kurokawa, Hiroko; Onoda, Yusuke; Nagano, Masahiro; Umehara, Toru; Ando, Makoto; Miyata, Rie; Hiura, Tsutom

    2015-07-01

    Accurate estimation of tree and forest biomass is key to evaluating forest ecosystem functions and the global carbon cycle. Allometric equations that estimate tree biomass from a set of predictors, such as stem diameter and tree height, are commonly used. Most allometric equations are site specific, usually developed from a small number of trees harvested in a small area, and are either species specific or ignore interspecific differences in allometry. Due to lack of site-specific allometries, local equations are often applied to sites for which they were not originally developed (foreign sites), sometimes leading to large errors in biomass estimates. In this study, we developed generic allometric equations for aboveground biomass and component (stem, branch, leaf, and root) biomass using large, compiled data sets of 1203 harvested trees belonging to 102 species (60 deciduous angiosperm, 32 evergreen angiosperm, and 10 evergreen gymnosperm species) from 70 boreal, temperate, and subtropical natural forests in Japan. The best generic equations provided better biomass estimates than did local equations that were applied to foreign sites. The best generic equations included explanatory variables that represent interspecific differences in allometry in addition to stem diameter, reducing error by 4-12% compared to the generic equations that did not include the interspecific difference. Different explanatory variables were selected for different components. For aboveground and stem biomass, the best generic equations had species-specific wood specific gravity as an explanatory variable. For branch, leaf, and root biomass, the best equations had functional types (deciduous angiosperm, evergreen angiosperm, and evergreen gymnosperm) instead of functional traits (wood specific gravity or leaf mass per area), suggesting importance of other traits in addition to these traits, such as canopy and root architecture. Inclusion of tree height in addition to stem diameter improved the performance of the generic equation only for stem biomass and had no apparent effect on aboveground, branch, leaf, and root biomass at the site level. The development of a generic allometric equation taking account of interspecific differences is an effective approach for accurately estimating aboveground and component biomass in boreal, temperate, and subtropical natural forests.

  16. Estimating residual kidney function in dialysis patients without urine collection

    PubMed Central

    Shafi, Tariq; Michels, Wieneke M.; Levey, Andrew S.; Inker, Lesley A.; Dekker, Friedo W.; Krediet, Raymond T.; Hoekstra, Tiny; Schwartz, George J.; Eckfeldt, John H.; Coresh, Josef

    2016-01-01

    Residual kidney function contributes substantially to solute clearance in dialysis patients but cannot be assessed without urine collection. We used serum filtration markers to develop dialysis-specific equations to estimate urinary urea clearance without the need for urine collection. In our development cohort, we measured 24-hour urine clearances under close supervision in 44 patients and validated these equations in 826 patients from the Netherlands Cooperative Study on the Adequacy of Dialysis. For the development and validation cohorts, median urinary urea clearance was 2.6 and 2.4 mL/min, respectively. During the 24-hour visit in the development cohort, serum β-trace protein concentrations remained in steady state but concentrations of all other markers increased. In the validation cohort, bias (median measured minus estimated clearance) was low for all equations. Precision was significantly better for β-trace protein and β2-microglobulin equations and the accuracy was significantly greater for β-trace protein, β2-microglobulin and cystatin C equations, compared with the urea plus creatinine equation. Area under the receiver operator characteristic curve for detecting measured urinary urea clearance by equation-estimated urinary urea clearance (both 2 mL/min or more) were 0.821, 0.850 and 0.796 for β-trace protein, β2-microglobulin and cystatin C equations, respectively; significantly greater than the 0.663 for the urea plus creatinine equation. Thus, residual renal function can be estimated in dialysis patients without urine collections. PMID:26924062

  17. Estimating residual kidney function in dialysis patients without urine collection.

    PubMed

    Shafi, Tariq; Michels, Wieneke M; Levey, Andrew S; Inker, Lesley A; Dekker, Friedo W; Krediet, Raymond T; Hoekstra, Tiny; Schwartz, George J; Eckfeldt, John H; Coresh, Josef

    2016-05-01

    Residual kidney function contributes substantially to solute clearance in dialysis patients but cannot be assessed without urine collection. We used serum filtration markers to develop dialysis-specific equations to estimate urinary urea clearance without the need for urine collection. In our development cohort, we measured 24-hour urine clearances under close supervision in 44 patients and validated these equations in 826 patients from the Netherlands Cooperative Study on the Adequacy of Dialysis. For the development and validation cohorts, median urinary urea clearance was 2.6 and 2.4 ml/min, respectively. During the 24-hour visit in the development cohort, serum β-trace protein concentrations remained in steady state but concentrations of all other markers increased. In the validation cohort, bias (median measured minus estimated clearance) was low for all equations. Precision was significantly better for β-trace protein and β2-microglobulin equations and the accuracy was significantly greater for β-trace protein, β2-microglobulin, and cystatin C equations, compared with the urea plus creatinine equation. Area under the receiver operator characteristic curve for detecting measured urinary urea clearance by equation-estimated urinary urea clearance (both 2 ml/min or more) were 0.821, 0.850, and 0.796 for β-trace protein, β2-microglobulin, and cystatin C equations, respectively; significantly greater than the 0.663 for the urea plus creatinine equation. Thus, residual renal function can be estimated in dialysis patients without urine collections. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  18. [Comparison of three stand-level biomass estimation methods].

    PubMed

    Dong, Li Hu; Li, Feng Ri

    2016-12-01

    At present, the forest biomass methods of regional scale attract most of attention of the researchers, and developing the stand-level biomass model is popular. Based on the forestry inventory data of larch plantation (Larix olgensis) in Jilin Province, we used non-linear seemly unrelated regression (NSUR) to estimate the parameters in two additive system of stand-level biomass equations, i.e., stand-level biomass equations including the stand variables and stand biomass equations including the biomass expansion factor (i.e., Model system 1 and Model system 2), listed the constant biomass expansion factor for larch plantation and compared the prediction accuracy of three stand-level biomass estimation methods. The results indicated that for two additive system of biomass equations, the adjusted coefficient of determination (R a 2 ) of the total and stem equations was more than 0.95, the root mean squared error (RMSE), the mean prediction error (MPE) and the mean absolute error (MAE) were smaller. The branch and foliage biomass equations were worse than total and stem biomass equations, and the adjusted coefficient of determination (R a 2 ) was less than 0.95. The prediction accuracy of a constant biomass expansion factor was relatively lower than the prediction accuracy of Model system 1 and Model system 2. Overall, although stand-level biomass equation including the biomass expansion factor belonged to the volume-derived biomass estimation method, and was different from the stand biomass equations including stand variables in essence, but the obtained prediction accuracy of the two methods was similar. The constant biomass expansion factor had the lower prediction accuracy, and was inappropriate. In addition, in order to make the model parameter estimation more effective, the established stand-level biomass equations should consider the additivity in a system of all tree component biomass and total biomass equations.

  19. Methods for estimating selected low-flow frequency statistics and harmonic mean flows for streams in Iowa

    USGS Publications Warehouse

    Eash, David A.; Barnes, Kimberlee K.

    2017-01-01

    A statewide study was conducted to develop regression equations for estimating six selected low-flow frequency statistics and harmonic mean flows for ungaged stream sites in Iowa. The estimation equations developed for the six low-flow frequency statistics include: the annual 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years, the annual 30-day mean low flow for a recurrence interval of 5 years, and the seasonal (October 1 through December 31) 1- and 7-day mean low flows for a recurrence interval of 10 years. Estimation equations also were developed for the harmonic-mean-flow statistic. Estimates of these seven selected statistics are provided for 208 U.S. Geological Survey continuous-record streamgages using data through September 30, 2006. The study area comprises streamgages located within Iowa and 50 miles beyond the State's borders. Because trend analyses indicated statistically significant positive trends when considering the entire period of record for the majority of the streamgages, the longest, most recent period of record without a significant trend was determined for each streamgage for use in the study. The median number of years of record used to compute each of these seven selected statistics was 35. Geographic information system software was used to measure 54 selected basin characteristics for each streamgage. Following the removal of two streamgages from the initial data set, data collected for 206 streamgages were compiled to investigate three approaches for regionalization of the seven selected statistics. Regionalization, a process using statistical regression analysis, provides a relation for efficiently transferring information from a group of streamgages in a region to ungaged sites in the region. The three regionalization approaches tested included statewide, regional, and region-of-influence regressions. For the regional regression, the study area was divided into three low-flow regions on the basis of hydrologic characteristics, landform regions, and soil regions. A comparison of root mean square errors and average standard errors of prediction for the statewide, regional, and region-of-influence regressions determined that the regional regression provided the best estimates of the seven selected statistics at ungaged sites in Iowa. Because a significant number of streams in Iowa reach zero flow as their minimum flow during low-flow years, four different types of regression analyses were used: left-censored, logistic, generalized-least-squares, and weighted-least-squares regression. A total of 192 streamgages were included in the development of 27 regression equations for the three low-flow regions. For the northeast and northwest regions, a censoring threshold was used to develop 12 left-censored regression equations to estimate the 6 low-flow frequency statistics for each region. For the southern region a total of 12 regression equations were developed; 6 logistic regression equations were developed to estimate the probability of zero flow for the 6 low-flow frequency statistics and 6 generalized least-squares regression equations were developed to estimate the 6 low-flow frequency statistics, if nonzero flow is estimated first by use of the logistic equations. A weighted-least-squares regression equation was developed for each region to estimate the harmonic-mean-flow statistic. Average standard errors of estimate for the left-censored equations for the northeast region range from 64.7 to 88.1 percent and for the northwest region range from 85.8 to 111.8 percent. Misclassification percentages for the logistic equations for the southern region range from 5.6 to 14.0 percent. Average standard errors of prediction for generalized least-squares equations for the southern region range from 71.7 to 98.9 percent and pseudo coefficients of determination for the generalized-least-squares equations range from 87.7 to 91.8 percent. Average standard errors of prediction for weighted-least-squares equations developed for estimating the harmonic-mean-flow statistic for each of the three regions range from 66.4 to 80.4 percent. The regression equations are applicable only to stream sites in Iowa with low flows not significantly affected by regulation, diversion, or urbanization and with basin characteristics within the range of those used to develop the equations. If the equations are used at ungaged sites on regulated streams, or on streams affected by water-supply and agricultural withdrawals, then the estimates will need to be adjusted by the amount of regulation or withdrawal to estimate the actual flow conditions if that is of interest. Caution is advised when applying the equations for basins with characteristics near the applicable limits of the equations and for basins located in karst topography. A test of two drainage-area ratio methods using 31 pairs of streamgages, for the annual 7-day mean low-flow statistic for a recurrence interval of 10 years, indicates a weighted drainage-area ratio method provides better estimates than regional regression equations for an ungaged site on a gaged stream in Iowa when the drainage-area ratio is between 0.5 and 1.4. These regression equations will be implemented within the U.S. Geological Survey StreamStats web-based geographic-information-system tool. StreamStats allows users to click on any ungaged site on a river and compute estimates of the seven selected statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged sites also are provided. StreamStats also allows users to click on any streamgage in Iowa and estimates computed for these seven selected statistics are provided for the streamgage.

  20. A new modified CKD-EPI equation for Chinese patients with type 2 diabetes.

    PubMed

    Liu, Xun; Gan, Xiaoliang; Chen, Jinxia; Lv, Linsheng; Li, Ming; Lou, Tanqi

    2014-01-01

    To improve the performance of glomerular filtration rate (GFR) estimating equation in Chinese type 2 diabetic patients by modification of the CKD-EPI equation. A total of 1196 subjects were enrolled. Measured GFR was calibrated to the dual plasma sample 99mTc-DTPA-GFR. GFRs estimated by the re-expressed 4-variable MDRD equation, the CKD-EPI equation and the Asian modified CKD-EPI equation were compared in 351 diabetic/non-diabetic pairs. And a new modified CKD-EPI equation was reconstructed in a total of 589 type 2 diabetic patients. In terms of both precision and accuracy, GFR estimating equations all achieved better results in the non-diabetic cohort comparing with those in the type 2 diabetic cohort (30% accuracy, P≤0.01 for all comparisons). In the validation data set, the new modified equation showed less bias (median difference, 2.3 ml/min/1.73 m2 for the new modified equation vs. ranged from -3.8 to -7.9 ml/min/1.73 m2 for the other 3 equations [P<0.001 for all comparisons]), as was precision (IQR of the difference, 24.5 ml/min/1.73 m2 vs. ranged from 27.3 to 30.7 ml/min/1.73 m2), leading to a greater accuracy (30% accuracy, 71.4% vs. 55.2% for the re-expressed 4 variable MDRD equation and 61.0% for the Asian modified CKD-EPI equation [P = 0.001 and P = 0.02]). A new modified CKD-EPI equation for type 2 diabetic patients was developed and validated. The new modified equation improves the performance of GFR estimation.

  1. Performance of Creatinine and Cystatin C GFR Estimating Equations in an HIV-positive population on Antiretrovirals

    PubMed Central

    INKER, Lesley A; WYATT, Christina; CREAMER, Rebecca; HELLINGER, James; HOTTA, Matthew; LEPPO, Maia; LEVEY, Andrew S; OKPARAVERO, Aghogho; GRAHAM, Hiba; SAVAGE, Karen; SCHMID, Christopher H; TIGHIOUART, Hocine; WALLACH, Fran; KRISHNASAMI, Zipporah

    2013-01-01

    Objective To evaluate the performance of CKD-EPI creatinine, cystatin C and creatinine-cystatin C estimating equations in HIV-positive patients. Methods We evaluated the performance of the MDRD Study and CKD-EPI creatinine 2009, CKD-EPI cystatin C 2012 and CKD-EPI creatinine-cystatin C 2012 glomerular filtration rate (GFR) estimating equations compared to GFR measured using plasma clearance of iohexol in 200 HIV-positive patients on stable antiretroviral therapy. Creatinine and cystatin C assays were standardized to certified reference materials. Results Of the 200 participants, median (IQR) CD4 count was 536 (421) and 61% had an undetectable HIV-viral load. Mean (SD) measured GFR (mGFR) was 87 (26) ml/min/1.73m2. All CKD-EPI equations performed better than the MDRD Study equation. All three CKD-EPI equations had similar bias and precision. The cystatin C equation was not more accurate than the creatinine equation. The creatinine-cystatin C equation was significantly more accurate than the cystatin C equation and there was a trend toward greater accuracy than the creatinine equation. Accuracy was equal or better in most subgroups with the combined equation compared to either alone. Conclusions The CKD-EPI cystatin C equation does not appear to be more accurate than the CKD-EPI creatinine equation in patients who are HIV-positive, supporting the use of the CKD-EPI creatinine equation for routine clinical care for use in North American populations with HIV. The use of both filtration markers together as a confirmatory test for decreased estimated GFR based on creatinine in individuals who are HIV-positive requires further study. PMID:22842844

  2. Teachers and Technology: Development of an Extended Theory of Planned Behavior

    ERIC Educational Resources Information Center

    Teo, Timothy; Zhou, Mingming; Noyes, Jan

    2016-01-01

    This study tests the validity of an extended theory of planned behaviour (TPB) to explain teachers' intention to use technology for teaching and learning. Five hundred and ninety two participants completed a survey questionnaire measuring their responses to eight constructs which form an extended TPB. Using structural equation modelling, the…

  3. Biomass equations for major tree species of the Northeast

    Treesearch

    Louise M. Tritton; James W. Hornbeck

    1982-01-01

    Regression equations are used in both forestry and ecosystem studies to estimate tree biomass from field measurements of dbh (diameter at breast height) or a combination of dbh and height. Literature on biomass is reviewed, and 178 sets of publish equation for 25 species common to the Northeastern Unites States are listed. On the basis of these equations, estimates of...

  4. New body fat prediction equations for severely obese patients.

    PubMed

    Horie, Lilian Mika; Barbosa-Silva, Maria Cristina Gonzalez; Torrinhas, Raquel Susana; de Mello, Marco Túlio; Cecconello, Ivan; Waitzberg, Dan Linetzky

    2008-06-01

    Severe obesity imposes physical limitations to body composition assessment. Our aim was to compare body fat (BF) estimations of severely obese patients obtained by bioelectrical impedance (BIA) and air displacement plethysmography (ADP) for development of new equations for BF prediction. Severely obese subjects (83 female/36 male, mean age=41.6+/-11.6 years) had BF estimated by BIA and ADP. The agreement of the data was evaluated using Bland-Altman's graphic and concordance correlation coefficient (CCC). A multivariate regression analysis was performed to develop and validate new predictive equations. BF estimations from BIA (64.8+/-15 kg) and ADP (65.6+/-16.4 kg) did not differ (p>0.05, with good accuracy, precision, and CCC), but the Bland- Altman graphic showed a wide limit of agreement (-10.4; 8.8). The standard BIA equation overestimated BF in women (-1.3 kg) and underestimated BF in men (5.6 kg; p<0.05). Two BF new predictive equations were generated after BIA measurement, which predicted BF with higher accuracy, precision, CCC, and limits of agreement than the standard BIA equation. Standard BIA equations were inadequate for estimating BF in severely obese patients. Equations developed especially for this population provide more accurate BF assessment.

  5. An Assessment of Peridynamics for Pre and Post Failure Deformation

    DTIC Science & Technology

    2011-11-01

    begin with an overview of the peridynamics equations ; first the micro-elastic and micro-plastic models will be outlined, and then the newer state ...expressed as differential equations . The peridynamics framework was subsequently extended to a state -based approach (2, 7) to facilitate use of common...computing the sums. 2.2.3 Stress and Nodal Forces State -based peridynamics and FE both use the same momentum equation , equation 1, and similar

  6. Accuracy of Anthropometric Equations for Estimating Body Fat in Professional Male Soccer Players Compared with DXA

    PubMed Central

    López-Taylor, Juan R.; Jiménez-Alvarado, Juan Antonio; Villegas-Balcázar, Marisol; Jáuregui-Ulloa, Edtna E.; Torres-Naranjo, Francisco

    2018-01-01

    Background There are several published anthropometric equations to estimate body fat percentage (BF%), and this may prompt uncertainty about their application. Purpose To analyze the accuracy of several anthropometric equations (developed in athletic [AT] and nonathletic [NAT] populations) that estimate BF% comparing them with DXA. Methods We evaluated 131 professional male soccer players (body mass: 73.2 ± 8.0 kg; height: 177.5 ± 5.8 cm; DXA BF% [median, 25th–75th percentile]: 14.0, 11.9–16.4%) aged 18 to 37 years. All subjects were evaluated with anthropometric measurements and a whole body DXA scan. BF% was estimated through 14 AT and 17 NAT anthropometric equations and compared with the measured DXA BF%. Mean differences and 95% limits of agreement were calculated for those anthropometric equations without significant differences with DXA. Results Five AT and seven NAT anthropometric equations did not differ significantly with DXA. From these, Oliver's and Civar's (AT) and Ball's and Wilmore's (NAT) equations showed the highest agreement with DXA. Their 95% limits of agreement ranged from −3.9 to 2.3%, −4.8 to 1.8%, −3.4 to 3.1%, and −3.9 to 3.0%, respectively. Conclusion Oliver's, Ball's, Civar's, and Wilmore's equations were the best to estimate BF% accurately compared with DXA in professional male soccer players. PMID:29736402

  7. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeriy

    2005-01-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.

  8. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing.

    PubMed

    Vorontsov, Mikhail A; Kolosov, Valeriy

    2005-01-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.

  9. Assessment of the agreement between the Framingham and DAD risk equations for estimating cardiovascular risk in adult Africans living with HIV infection: a cross-sectional study.

    PubMed

    Noumegni, Steve Raoul; Ama, Vicky Jocelyne Moor; Assah, Felix K; Bigna, Jean Joel; Nansseu, Jobert Richie; Kameni, Jenny Arielle M; Katte, Jean-Claude; Dehayem, Mesmin Y; Kengne, Andre Pascal; Sobngwi, Eugene

    2017-01-01

    The Absolute cardiovascular disease (CVD) risk evaluation using multivariable CVD risk models is increasingly advocated in people with HIV, in whom existing models remain largely untested. We assessed the agreement between the general population derived Framingham CVD risk equation and the HIV-specific Data collection on Adverse effects of anti-HIV Drugs (DAD) CVD risk equation in HIV-infected adult Cameroonians. This cross-sectional study involved 452 HIV infected adults recruited at the HIV day-care unit of the Yaoundé Central Hospital, Cameroon. The 5-year projected CVD risk was estimated for each participant using the DAD and Framingham CVD risk equations. Agreement between estimates from these equations was assessed using the spearman correlation and Cohen's kappa coefficient. The mean age of participants (80% females) was 44.4 ± 9.8 years. Most participants (88.5%) were on antiretroviral treatment with 93.3% of them receiving first-line regimen. The most frequent cardiovascular risk factors were abdominal obesity (43.1%) and dyslipidemia (33.8%). The median estimated 5-year CVD risk was 0.6% (25th-75th percentiles: 0.3-1.3) using the DAD equation and 0.7% (0.2-2.0) with the Framingham equation. The Spearman correlation between the two estimates was 0.93 ( p  < 0.001). The kappa statistic was 0.61 (95% confident interval: 0.54-0.67) for the agreement between the two equations in classifying participants across risk categories defined as low, moderate, high and very high. Most participants had a low-to-moderate estimated CVD risk, with acceptable level of agreement between the general and HIV-specific equations in ranking CVD risk.

  10. Alternatives for the Bedside Schwartz Equation to Estimate Glomerular Filtration Rate in Children.

    PubMed

    Pottel, Hans; Dubourg, Laurence; Goffin, Karolien; Delanaye, Pierre

    2018-01-01

    The bedside Schwartz equation has long been and still is the recommended equation to estimate glomerular filtration rate (GFR) in children. However, this equation is probably best suited to estimate GFR in children with chronic kidney disease (reduced GFR) but is not optimal for children with GFR >75 mL/min/1.73 m 2 . Moreover, the Schwartz equation requires the height of the child, information that is usually not available in the clinical laboratory. This makes automatic reporting of estimated glomerular filtration rate (eGFR) along with serum creatinine impossible. As the majority of children (even children referred to nephrology clinics) have GFR >75 mL/min/1.73 m 2 , it might be interesting to evaluate possible alternatives to the bedside Schwartz equation. The pediatric form of the Full Age Spectrum (FAS) equation offers an alternative to Schwartz, allowing automatic reporting of eGFR since height is not necessary. However, when height is involved in the FAS equation, the equation is essentially equal to the Schwartz equation for children, but there are large differences for adolescents. Combining standardized biomarkers increases the prediction performance of eGFR equations for children, reaching P10 ≈ 45% and P30 ≈ 90%. There are currently good and simple alternatives to the bedside Schwartz equation, but the more complex equations combining serum creatinine, serum cystatin C, and height show the highest accuracy and precision. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  11. Discrete Kalman filtering equations of second-order form for control-structure interaction simulations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alvin, K. F.; Belvin, W. Keith

    1991-01-01

    A second-order form of discrete Kalman filtering equations is proposed as a candidate state estimator for efficient simulations of control-structure interactions in coupled physical coordinate configurations as opposed to decoupled modal coordinates. The resulting matrix equation of the present state estimator consists of the same symmetric, sparse N x N coupled matrices of the governing structural dynamics equations as opposed to unsymmetric 2N x 2N state space-based estimators. Thus, in addition to substantial computational efficiency improvement, the present estimator can be applied to control-structure design optimization for which the physical coordinates associated with the mass, damping and stiffness matrices of the structure are needed instead of modal coordinates.

  12. Estimating design-flood discharges for streams in Iowa using drainage-basin and channel-geometry characteristics

    USGS Publications Warehouse

    Eash, D.A.

    1993-01-01

    Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates. The drainage-basin regression equations are applicable to unregulated rural drainage areas less than 1,060 square miles, and the channel-geometry regression equations are applicable to unregulated rural streams in Iowa with stabilized channels.

  13. Estimating GFR using Serum Cystatin C Alone and in Combination with Serum Creatinine: A Pooled Analysis of 3418 Individuals with CKD

    PubMed Central

    Stevens, Lesley A; Coresh, Josef; Schmid, Christopher H; Feldman, Harold I.; Froissart, Marc; Kusek, John; Rossert, Jerome; Van Lente, Frederick; Bruce, Robert D.; Zhang, Yaping (Lucy); Greene, Tom; Levey, Andrew S

    2008-01-01

    Background Serum cystatin C (Scys) has been proposed as a potential replacement for serum creatinine (Scr) in glomerular filtration rate (GFR) estimation. We report development and evaluation of GFR estimating equations using Scys alone and Scys, Scr or both with demographic variables. Study Design Test of diagnostic accuracy. Setting and Participants Participants screened for three chronic kidney disease (CKD) studies in the US (n=2980) and a clinical population in Paris, France (n=438) Reference Test Measured GFR (mGFR). Index Test Estimated GFR using the four new equations based on Scys alone, Scys, Scr or both with age, sex and race. New equations were developed using regression with log GFR as the outcome in 2/3 data from US studies. Internal validation was performed in remaining 1/3 of data from US CKD studies; external validation was performed in the Paris study. Measurements GFR was measured using urinary clearance of 125I-iothalamate in the US studies and chromium-ethylenediaminetetraacetate (51Cr-EDTA) in the Paris study. Scys was measured by Dade Behring assay, standardized Scr. Results Mean mGFR, Scr and Scys were 48 (5th–95th percentile 15–95) ml/min/1.73m2 2.1 mg/dL and 1.8 mg/L respectively. For the new equations, the coefficients for age, sex and race were significant in the equation with Scys but 2 to 4 fold smaller than in the equation with Scr. Measures of performance among new equations were consistent across development, internal and external validation datasets. Percent of eGFR within 30% of mGFR for equations based on Scys alone, Scys, Scr or both with age, sex and race were 81, 83, 85, and 89%, respectively. The equation using Scys alone yields estimates with small biases in age, sex and race subgroups, which are improved in equations including these variables. Limitations Study population composed mainly of patients with CKD. Conclusions Scys alone provides GFR estimates that are nearly as accurate as Scr adjusted for age, sex and race thus providing an alternative GFR estimate that is not linked to muscle mass. An equation including Scys in combination with Scr, age, sex and race provide most accurate estimates. PMID:18295055

  14. Estimate of body composition by Hume's equation: validation with DXA.

    PubMed

    Carnevale, Vincenzo; Piscitelli, Pamela Angela; Minonne, Rita; Castriotta, Valeria; Cipriani, Cristiana; Guglielmi, Giuseppe; Scillitani, Alfredo; Romagnoli, Elisabetta

    2015-05-01

    We investigated how the Hume's equation, using the antipyrine space, could perform in estimating fat mass (FM) and lean body mass (LBM). In 100 (40 male ad 60 female) subjects, we estimated FM and LBM by the equation and compared these values with those measured by a last generation DXA device. The correlation coefficients between measured and estimated FM were r = 0.940 (p < 0.0001) and between measured and estimated LBM were r = 0.913 (p < 0.0001). The Bland-Altman plots demonstrated a fair agreement between estimated and measured FM and LBM, though the equation underestimated FM and overestimated LBM in respect to DXA. The mean difference for FM was 1.40 kg (limits of agreement of -6.54 and 8.37 kg). For LBM, the mean difference in respect to DXA was 1.36 kg (limits of agreement -8.26 and 6.52 kg). The root mean square error was 3.61 kg for FM and 3.56 kg for LBM. Our results show that in clinically stable subjects the Hume's equation could reliably assess body composition, and the estimated FM and LBM approached those measured by a modern DXA device.

  15. Assessment and correction of skinfold thickness equations in estimating body fat in children with cerebral palsy

    PubMed Central

    GURKA, MATTHEW J; KUPERMINC, MICHELLE N; BUSBY, MARJORIE G; BENNIS, JACEY A; GROSSBERG, RICHARD I; HOULIHAN, CHRISTINE M; STEVENSON, RICHARD D; HENDERSON, RICHARD C

    2010-01-01

    AIM To assess the accuracy of skinfold equations in estimating percentage body fat in children with cerebral palsy (CP), compared with assessment of body fat from dual energy X-ray absorptiometry (DXA). METHOD Data were collected from 71 participants (30 females, 41 males) with CP (Gross Motor Function Classification System [GMFCS] levels I–V) between the ages of 8 and 18 years. Estimated percentage body fat was computed using established (Slaughter) equations based on the triceps and subscapular skinfolds. A linear model was fitted to assess the use of a simple correction to these equations for children with CP. RESULTS Slaughter’s equations consistently underestimated percentage body fat (mean difference compared with DXA percentage body fat −9.6/100 [SD 6.2]; 95% confidence interval [CI] −11.0 to −8.1). New equations were developed in which a correction factor was added to the existing equations based on sex, race, GMFCS level, size, and pubertal status. These corrected equations for children with CP agree better with DXA (mean difference 0.2/100 [SD=4.8]; 95% CI −1.0 to 1.3) than existing equations. INTERPRETATION A simple correction factor to commonly used equations substantially improves the ability to estimate percentage body fat from two skinfold measures in children with CP. PMID:19811518

  16. Best Fitting Prediction Equations for Basal Metabolic Rate: Informing Obesity Interventions in Diverse Populations

    PubMed Central

    Sabounchi, Nasim S.; Rahmandad, Hazhir; Ammerman, Alice

    2014-01-01

    Basal Metabolic Rate (BMR) represents the largest component of total energy expenditure and is a major contributor to energy balance. Therefore, accurately estimating BMR is critical for developing rigorous obesity prevention and control strategies. Over the past several decades, numerous BMR formulas have been developed targeted to different population groups. A comprehensive literature search revealed 248 BMR estimation equations developed using diverse ranges of age, gender, race, fat free mass, fat mass, height, waist-to-hip ratio, body mass index, and weight. A subset of 47 studies included enough detail to allow for development of meta-regression equations. Utilizing these studies, meta-equations were developed targeted to twenty specific population groups. This review provides a comprehensive summary of available BMR equations and an estimate of their accuracy. An accompanying online BMR prediction tool (available at http://www.sdl.ise.vt.edu/tutorials.html) was developed to automatically estimate BMR based on the most appropriate equation after user-entry of individual age, race, gender, and weight. PMID:23318720

  17. Validation of equations for pleural effusion volume estimation by ultrasonography.

    PubMed

    Hassan, Maged; Rizk, Rana; Essam, Hatem; Abouelnour, Ahmed

    2017-12-01

    To validate the accuracy of previously published equations that estimate pleural effusion volume using ultrasonography. Only equations using simple measurements were tested. Three measurements were taken at the posterior axillary line for each case with effusion: lateral height of effusion ( H ), distance between collapsed lung and chest wall ( C ) and distance between lung and diaphragm ( D ). Cases whose effusion was aspirated to dryness were included and drained volume was recorded. Intra-class correlation coefficient (ICC) was used to determine the predictive accuracy of five equations against the actual volume of aspirated effusion. 46 cases with effusion were included. The most accurate equation in predicting effusion volume was ( H  +  D ) × 70 (ICC 0.83). The simplest and yet accurate equation was H  × 100 (ICC 0.79). Pleural effusion height measured by ultrasonography gives a reasonable estimate of effusion volume. Incorporating distance between lung base and diaphragm into estimation improves accuracy from 79% with the first method to 83% with the latter.

  18. Factors influencing oral hygiene behaviour and gingival outcomes 3 and 12 months after initial periodontal treatment: an exploratory test of an extended Theory of Reasoned Action.

    PubMed

    Jönsson, Birgitta; Baker, Sarah R; Lindberg, Per; Oscarson, Nils; Ohrn, Kerstin

    2012-02-01

    The aim was to empirically test the extended Theory of Reasoned Action (TRA) and the prospective direct and indirect role of attitudes, beliefs, subjective norms, self-efficacy, and a cognitive behavioural intervention in adult's oral hygiene behaviour and gingival outcomes at 3- and 12-month follow-up. Data were derived from an RCT evaluating the effectiveness of oral hygiene educational programs integrated in non-surgical periodontal treatment (n = 113). Before baseline examination, participants completed a self-report questionnaire. Structural equation modelling using maximum likelihood estimation with bootstrapping was used to test the direct and indirect (mediated) pathways within the extended TRA model. The extended TRA model explained a large amount of variance in gingival outcome scores at 12 months (56%). A higher level of self-efficacy at baseline was associated with higher frequencies of oral hygiene behaviour at 3 months. Being female was linked to more normative beliefs that, in turn, related to greater behavioural beliefs and self-efficacy. Gender was also related to behavioural beliefs, attitudes and subjective norms. Both frequency of oral hygiene behaviour at 3 months and the cognitive behavioural intervention predicted gingival outcome at 12 months. The model demonstrated that self-efficacy, gender and a cognitive behavioural intervention were important predictors of oral hygiene behavioural change. © 2011 John Wiley & Sons A/S.

  19. Creatinine Clearance Is Not Equal to Glomerular Filtration Rate and Cockcroft-Gault Equation Is Not Equal to CKD-EPI Collaboration Equation.

    PubMed

    Fernandez-Prado, Raul; Castillo-Rodriguez, Esmeralda; Velez-Arribas, Fernando Javier; Gracia-Iguacel, Carolina; Ortiz, Alberto

    2016-12-01

    Direct oral anticoagulants (DOACs) may require dose reduction or avoidance when glomerular filtration rate is low. However, glomerular filtration rate is not usually measured in routine clinical practice. Rather, equations that incorporate different variables use serum creatinine to estimate either creatinine clearance in mL/min or glomerular filtration rate in mL/min/1.73 m 2 . The Cockcroft-Gault equation estimates creatinine clearance and incorporates weight into the equation. By contrast, the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations estimate glomerular filtration rate and incorporate ethnicity but not weight. As a result, an individual patient may have very different renal function estimates, depending on the equation used. We now highlight these differences and discuss the impact on routine clinical care for anticoagulation to prevent embolization in atrial fibrillation. Pivotal DOAC clinical trials used creatinine clearance as a criterion for patient enrollment, and dose adjustment and Federal Drug Administration recommendations are based on creatinine clearance. However, clinical biochemistry laboratories provide CKD-EPI glomerular filtration rate estimations, resulting in discrepancies between clinical trial and routine use of the drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Comparison of total body water estimates from O-18 and bioelectrical response prediction equations

    NASA Technical Reports Server (NTRS)

    Barrows, Linda H.; Inners, L. Daniel; Stricklin, Marcella D.; Klein, Peter D.; Wong, William W.; Siconolfi, Steven F.

    1993-01-01

    Identification of an indirect, rapid means to measure total body water (TBW) during space flight may aid in quantifying hydration status and assist in countermeasure development. Bioelectrical response testing and hydrostatic weighing were performed on 27 subjects who ingested O-18, a naturally occurring isotope of oxygen, to measure true TBW. TBW estimates from three bioelectrical response prediction equations and fat-free mass (FFM) were compared to TBW measured from O-18. A repeated measures MANOVA with post-hoc Dunnett's Test indicated a significant (p less than 0.05) difference between TBW estimates from two of the three bioelectrical response prediction equations and O-18. TBW estimates from FFM and the Kushner & Schoeller (1986) equation yielded results that were similar to those given by O-18. Strong correlations existed between each prediction method and O-18; however, standard errors, identified through regression analyses, were higher for the bioelectrical response prediction equations compared to those derived from FFM. These findings suggest (1) the Kushner & Schoeller (1986) equation may provide a valid measure of TBW, (2) other TBW prediction equations need to be identified that have variability similar to that of FFM, and (3) bioelectrical estimates of TBW may prove valuable in quantifying hydration status during space flight.

  1. Approximation of optimal filter for Ornstein-Uhlenbeck process with quantised discrete-time observation

    NASA Astrophysics Data System (ADS)

    Bania, Piotr; Baranowski, Jerzy

    2018-02-01

    Quantisation of signals is a ubiquitous property of digital processing. In many cases, it introduces significant difficulties in state estimation and in consequence control. Popular approaches either do not address properly the problem of system disturbances or lead to biased estimates. Our intention was to find a method for state estimation for stochastic systems with quantised and discrete observation, that is free of the mentioned drawbacks. We have formulated a general form of the optimal filter derived by a solution of Fokker-Planck equation. We then propose the approximation method based on Galerkin projections. We illustrate the approach for the Ornstein-Uhlenbeck process, and derive analytic formulae for the approximated optimal filter, also extending the results for the variant with control. Operation is illustrated with numerical experiments and compared with classical discrete-continuous Kalman filter. Results of comparison are substantially in favour of our approach, with over 20 times lower mean squared error. The proposed filter is especially effective for signal amplitudes comparable to the quantisation thresholds. Additionally, it was observed that for high order of approximation, state estimate is very close to the true process value. The results open the possibilities of further analysis, especially for more complex processes.

  2. Entropy Splitting and Numerical Dissipation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Vinokur, M.; Djomehri, M. J.

    1999-01-01

    A rigorous stability estimate for arbitrary order of accuracy of spatial central difference schemes for initial-boundary value problems of nonlinear symmetrizable systems of hyperbolic conservation laws was established recently by Olsson and Oliger (1994) and Olsson (1995) and was applied to the two-dimensional compressible Euler equations for a perfect gas by Gerritsen and Olsson (1996) and Gerritsen (1996). The basic building block in developing the stability estimate is a generalized energy approach based on a special splitting of the flux derivative via a convex entropy function and certain homogeneous properties. Due to some of the unique properties of the compressible Euler equations for a perfect gas, the splitting resulted in the sum of a conservative portion and a non-conservative portion of the flux derivative. hereafter referred to as the "Entropy Splitting." There are several potential desirable attributes and side benefits of the entropy splitting for the compressible Euler equations that were not fully explored in Gerritsen and Olsson. The paper has several objectives. The first is to investigate the choice of the arbitrary parameter that determines the amount of splitting and its dependence on the type of physics of current interest to computational fluid dynamics. The second is to investigate in what manner the splitting affects the nonlinear stability of the central schemes for long time integrations of unsteady flows such as in nonlinear aeroacoustics and turbulence dynamics. If numerical dissipation indeed is needed to stabilize the central scheme, can the splitting help minimize the numerical dissipation compared to its un-split cousin? Extensive numerical study on the vortex preservation capability of the splitting in conjunction with central schemes for long time integrations will be presented. The third is to study the effect of the non-conservative proportion of splitting in obtaining the correct shock location for high speed complex shock-turbulence interactions. The fourth is to determine if this method can be extended to other physical equations of state and other evolutionary equation sets. If numerical dissipation is needed, the Yee, Sandham, and Djomehri (1999) numerical dissipation is employed. The Yee et al. schemes fit in the Olsson and Oliger framework.

  3. Accuracy of an equation for estimating age from mandibular third molar development in a Thai population

    PubMed Central

    Verochana, Karune; Prapayasatok, Sangsom; Mahasantipiya, Phattaranant May; Korwanich, Narumanas

    2016-01-01

    Purpose This study assessed the accuracy of age estimates produced by a regression equation derived from lower third molar development in a Thai population. Materials and Methods The first part of this study relied on measurements taken from panoramic radiographs of 614 Thai patients aged from 9 to 20. The stage of lower left and right third molar development was observed in each radiograph and a modified Gat score was assigned. Linear regression on this data produced the following equation: Y=9.309+1.673 mG+0.303S (Y=age; mG=modified Gat score; S=sex). In the second part of this study, the predictive accuracy of this equation was evaluated using data from a second set of panoramic radiographs (539 Thai subjects, 9 to 24 years old). Each subject's age was estimated using the above equation and compared against age calculated from a provided date of birth. Estimated and known age data were analyzed using the Pearson correlation coefficient and descriptive statistics. Results Ages estimated from lower left and lower right third molar development stage were significantly correlated with the known ages (r=0.818, 0.808, respectively, P≤0.01). 50% of age estimates in the second part of the study fell within a range of error of ±1 year, while 75% fell within a range of error of ±2 years. The study found that the equation tends to estimate age accurately when individuals are 9 to 20 years of age. Conclusion The equation can be used for age estimation for Thai populations when the individuals are 9 to 20 years of age. PMID:27051633

  4. Accuracy of an equation for estimating age from mandibular third molar development in a Thai population.

    PubMed

    Verochana, Karune; Prapayasatok, Sangsom; Janhom, Apirum; Mahasantipiya, Phattaranant May; Korwanich, Narumanas

    2016-03-01

    This study assessed the accuracy of age estimates produced by a regression equation derived from lower third molar development in a Thai population. The first part of this study relied on measurements taken from panoramic radiographs of 614 Thai patients aged from 9 to 20. The stage of lower left and right third molar development was observed in each radiograph and a modified Gat score was assigned. Linear regression on this data produced the following equation: Y=9.309+1.673 mG+0.303S (Y=age; mG=modified Gat score; S=sex). In the second part of this study, the predictive accuracy of this equation was evaluated using data from a second set of panoramic radiographs (539 Thai subjects, 9 to 24 years old). Each subject's age was estimated using the above equation and compared against age calculated from a provided date of birth. Estimated and known age data were analyzed using the Pearson correlation coefficient and descriptive statistics. Ages estimated from lower left and lower right third molar development stage were significantly correlated with the known ages (r=0.818, 0.808, respectively, P≤0.01). 50% of age estimates in the second part of the study fell within a range of error of ±1 year, while 75% fell within a range of error of ±2 years. The study found that the equation tends to estimate age accurately when individuals are 9 to 20 years of age. The equation can be used for age estimation for Thai populations when the individuals are 9 to 20 years of age.

  5. Chronic Kidney Disease Epidemiology Collaboration versus Modification of Diet in Renal Disease equations for renal function evaluation in patients undergoing partial nephrectomy.

    PubMed

    Shikanov, Sergey; Clark, Melanie A; Raman, Jay D; Smith, Benjamin; Kaag, Matthew; Russo, Paul; Wheat, Jeffrey C; Wolf, J Stuart; Huang, William C; Shalhav, Arieh L; Eggener, Scott E

    2010-11-01

    A novel equation, the Chronic Kidney Disease Epidemiology Collaboration, has been proposed to replace the Modification of Diet in Renal Disease for estimated glomerular filtration rate due to higher accuracy, particularly in the setting of normal renal function. We compared these equations in patients with 2 functioning kidneys undergoing partial nephrectomy. We assembled a cohort of 1,158 patients from 5 institutions who underwent partial nephrectomy between 1991 and 2009. Only subjects with 2 functioning kidneys were included in the study. The end points were baseline estimated glomerular filtration rate, last followup estimated glomerular filtration rate (3 to 18 months), absolute and percent change estimated glomerular filtration rate ([absolute change/baseline] × 100%), and proportion of newly developed chronic kidney disease stage III. The agreement between the equations was evaluated using Bland-Altman plots and the McNemar test for paired observations. Mean baseline estimated glomerular filtration rate derived from the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration equations were 73 and 77 ml/minute/1.73 m(2), respectively, and following surgery were 63 and 67 ml/minute/1.73 m(2), respectively. Mean percent change estimated glomerular filtration rate was -12% for both equations (p = 0.2). The proportion of patients with newly developed chronic kidney disease stage III following surgery was 32% and 25%, according to the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration equations, respectively (p = 0.001). For patients with 2 functioning kidneys undergoing partial nephrectomy the Chronic Kidney Disease Epidemiology Collaboration equation provides slightly higher glomerular filtration rate estimates compared to the Modification of Diet in Renal Disease equation, with 7% fewer patients categorized as having chronic kidney disease stage III or worse. Copyright © 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  6. National scale biomass estimators for United States tree species

    Treesearch

    Jennifer C. Jenkins; David C. Chojnacky; Linda S. Heath; Richard A. Birdsey

    2003-01-01

    Estimates of national-scale forest carbon (C) stocks and fluxes are typically based on allometric regression equations developed using dimensional analysis techniques. However, the literature is inconsistent and incomplete with respect to large-scale forest C estimation. We compiled all available diameter-based allometric regression equations for estimating total...

  7. SEM Based CARMA Time Series Modeling for Arbitrary N.

    PubMed

    Oud, Johan H L; Voelkle, Manuel C; Driver, Charles C

    2018-01-01

    This article explains in detail the state space specification and estimation of first and higher-order autoregressive moving-average models in continuous time (CARMA) in an extended structural equation modeling (SEM) context for N = 1 as well as N > 1. To illustrate the approach, simulations will be presented in which a single panel model (T = 41 time points) is estimated for a sample of N = 1,000 individuals as well as for samples of N = 100 and N = 50 individuals, followed by estimating 100 separate models for each of the one-hundred N = 1 cases in the N = 100 sample. Furthermore, we will demonstrate how to test the difference between the full panel model and each N = 1 model by means of a subject-group-reproducibility test. Finally, the proposed analyses will be applied in an empirical example, in which the relationships between mood at work and mood at home are studied in a sample of N = 55 women. All analyses are carried out by ctsem, an R-package for continuous time modeling, interfacing to OpenMx.

  8. Twig and foliar biomass estimation equations for major plant species in the Tanana River Basin of interior Alaska.

    Treesearch

    John Yarie; Bert R. Mead

    1988-01-01

    Equations are presented for estimating the twig, foliage, and combined biomass for 58 plant species in interior Alaska. The equations can be used for estimating biomass from percentage of foliar cover of 10-centimeter layers in a vertical profile from 0 to 6 meters. Few differences were found in regressions of the same species between layers except when the ratio of...

  9. Weight estimation techniques for composite airplanes in general aviation industry

    NASA Technical Reports Server (NTRS)

    Paramasivam, T.; Horn, W. J.; Ritter, J.

    1986-01-01

    Currently available weight estimation methods for general aviation airplanes were investigated. New equations with explicit material properties were developed for the weight estimation of aircraft components such as wing, fuselage and empennage. Regression analysis was applied to the basic equations for a data base of twelve airplanes to determine the coefficients. The resulting equations can be used to predict the component weights of either metallic or composite airplanes.

  10. Journal: A Review of Some Tracer-Test Design Equations for ...

    EPA Pesticide Factsheets

    Determination of necessary tracer mass, initial sample-collection time, and subsequent sample-collection frequency are the three most difficult aspects to estimate for a proposed tracer test prior to conducting the tracer test. To facilitate tracer-mass estimation, 33 mass-estimation equations are reviewed here, 32 of which were evaluated using previously published tracer-test design examination parameters. Comparison of the results produced a wide range of estimated tracer mass, but no means is available by which one equation may be reasonably selected over the others. Each equation produces a simple approximation for tracer mass. Most of the equations are based primarily on estimates or measurements of discharge, transport distance, and suspected transport times. Although the basic field parameters commonly employed are appropriate for estimating tracer mass, the 33 equations are problematic in that they were all probably based on the original developers' experience in a particular field area and not necessarily on measured hydraulic parameters or solute-transport theory. Suggested sampling frequencies are typically based primarily on probable transport distance, but with little regard to expected travel times. This too is problematic in that tends to result in false negatives or data aliasing. Simulations from the recently developed efficient hydrologic tracer-test design methodology (EHTD) were compared with those obtained from 32 of the 33 published tracer-

  11. A one-step method for modelling longitudinal data with differential equations.

    PubMed

    Hu, Yueqin; Treinen, Raymond

    2018-04-06

    Differential equation models are frequently used to describe non-linear trajectories of longitudinal data. This study proposes a new approach to estimate the parameters in differential equation models. Instead of estimating derivatives from the observed data first and then fitting a differential equation to the derivatives, our new approach directly fits the analytic solution of a differential equation to the observed data, and therefore simplifies the procedure and avoids bias from derivative estimations. A simulation study indicates that the analytic solutions of differential equations (ASDE) approach obtains unbiased estimates of parameters and their standard errors. Compared with other approaches that estimate derivatives first, ASDE has smaller standard error, larger statistical power and accurate Type I error. Although ASDE obtains biased estimation when the system has sudden phase change, the bias is not serious and a solution is also provided to solve the phase problem. The ASDE method is illustrated and applied to a two-week study on consumers' shopping behaviour after a sale promotion, and to a set of public data tracking participants' grammatical facial expression in sign language. R codes for ASDE, recommendations for sample size and starting values are provided. Limitations and several possible expansions of ASDE are also discussed. © 2018 The British Psychological Society.

  12. Multi-vortex crystal lattices in Bose-Einstein condensates with a rotating trap.

    PubMed

    Xie, Shuangquan; Kevrekidis, Panayotis G; Kolokolnikov, Theodore

    2018-05-01

    We consider vortex dynamics in the context of Bose-Einstein condensates (BECs) with a rotating trap, with or without anisotropy. Starting with the Gross-Pitaevskii (GP) partial differential equation (PDE), we derive a novel reduced system of ordinary differential equations (ODEs) that describes stable configurations of multiple co-rotating vortices (vortex crystals). This description is found to be quite accurate quantitatively especially in the case of multiple vortices. In the limit of many vortices, BECs are known to form vortex crystal structures, whereby vortices tend to arrange themselves in a hexagonal-like spatial configuration. Using our asymptotic reduction, we derive the effective vortex crystal density and its radius. We also obtain an asymptotic estimate for the maximum number of vortices as a function of rotation rate. We extend considerations to the anisotropic trap case, confirming that a pair of vortices lying on the long (short) axis is linearly stable (unstable), corroborating the ODE reduction results with full PDE simulations. We then further investigate the many-vortex limit in the case of strong anisotropic potential. In this limit, the vortices tend to align themselves along the long axis, and we compute the effective one-dimensional vortex density, as well as the maximum admissible number of vortices. Detailed numerical simulations of the GP equation are used to confirm our analytical predictions.

  13. PIV-based estimation of unsteady loads on a flat plate at high angle of attack using momentum equation approaches

    NASA Astrophysics Data System (ADS)

    Guissart, A.; Bernal, L. P.; Dimitriadis, G.; Terrapon, V. E.

    2017-05-01

    This work presents, compares and discusses results obtained with two indirect methods for the calculation of aerodynamic forces and pitching moment from 2D Particle Image Velocimetry (PIV) measurements. Both methodologies are based on the formulations of the momentum balance: the integral Navier-Stokes equations and the "flux equation" proposed by Noca et al. (J Fluids Struct 13(5):551-578, 1999), which has been extended to the computation of moments. The indirect methods are applied to spatio-temporal data for different separated flows around a plate with a 16:1 chord-to-thickness ratio. Experimental data are obtained in a water channel for both a plate undergoing a large amplitude imposed pitching motion and a static plate at high angle of attack. In addition to PIV data, direct measurements of aerodynamic loads are carried out to assess the quality of the indirect calculations. It is found that indirect methods are able to compute the mean and the temporal evolution of the loads for two-dimensional flows with a reasonable accuracy. Nonetheless, both methodologies are noise sensitive, and the parameters impacting the computation should thus be chosen carefully. It is also shown that results can be improved through the use of dynamic mode decomposition (DMD) as a pre-processing step.

  14. Suppression of turbulent energy cascade due to phase separation in homogenous binary mixture fluid

    NASA Astrophysics Data System (ADS)

    Takagi, Youhei; Okamoto, Sachiya

    2015-11-01

    When a multi-component fluid mixture becomes themophysically unstable state by quenching from well-melting condition, phase separation due to spinodal decomposition occurs, and a self-organized structure is formed. During phase separation, free energy is consumed for the structure formation. In our previous report, the phase separation in homogenous turbulence was numerically simulated and the coarsening process of phase separation was discussed. In this study, we extended our numerical model to a high Schmidt number fluid corresponding to actual polymer solution. The governing equations were continuity, Navier-Stokes, and Chan-Hiliard equations as same as our previous report. The flow filed was an isotropic homogenous turbulence, and the dimensionless parameters in the Chan-Hilliard equation were estimated based on the thermophysical condition of binary mixture. From the numerical results, it was found that turbulent energy cascade was drastically suppressed in the inertial subrange by phase separation for the high Schmidt number flow. By using the identification of turbulent and phase separation structure, we discussed the relation between total energy balance and the structures formation processes. This study is financially supported by the Grand-in-Aid for Young Scientists (B) (No. T26820045) from the Ministry of Education, Cul-ture, Sports, Science and Technology of Japan.

  15. Estimation of Land Surface Fluxes and Their Uncertainty via Variational Data Assimilation Approach

    NASA Astrophysics Data System (ADS)

    Abdolghafoorian, A.; Farhadi, L.

    2016-12-01

    Accurate estimation of land surface heat and moisture fluxes as well as root zone soil moisture is crucial in various hydrological, meteorological, and agricultural applications. "In situ" measurements of these fluxes are costly and cannot be readily scaled to large areas relevant to weather and climate studies. Therefore, there is a need for techniques to make quantitative estimates of heat and moisture fluxes using land surface state variables. In this work, we applied a novel approach based on the variational data assimilation (VDA) methodology to estimate land surface fluxes and soil moisture profile from the land surface states. This study accounts for the strong linkage between terrestrial water and energy cycles by coupling the dual source energy balance equation with the water balance equation through the mass flux of evapotranspiration (ET). Heat diffusion and moisture diffusion into the column of soil are adjoined to the cost function as constraints. This coupling results in more accurate prediction of land surface heat and moisture fluxes and consequently soil moisture at multiple depths with high temporal frequency as required in many hydrological, environmental and agricultural applications. One of the key limitations of VDA technique is its tendency to be ill-posed, meaning that a continuum of possibilities exists for different parameters that produce essentially identical measurement-model misfit errors. On the other hand, the value of heat and moisture flux estimation to decision-making processes is limited if reasonable estimates of the corresponding uncertainty are not provided. In order to address these issues, in this research uncertainty analysis will be performed to estimate the uncertainty of retrieved fluxes and root zone soil moisture. The assimilation algorithm is tested with a series of experiments using a synthetic data set generated by the simultaneous heat and water (SHAW) model. We demonstrate the VDA performance by comparing the (synthetic) true measurements (including profile of soil moisture and temperature, land surface water and heat fluxes, and root water uptake) with VDA estimates. In addition, the feasibility of extending the proposed approach to use remote sensing observations is tested by limiting the number of LST observations and soil moisture observations.

  16. Estimating Glomerular Filtration Rate in Kidney Transplant Recipients: Comparing a Novel Equation With Commonly Used Equations in this Population

    PubMed Central

    Salvador, Cathrin L.; Hartmann, Anders; Åsberg, Anders; Bergan, Stein; Rowe, Alexander D.; Mørkrid, Lars

    2017-01-01

    Background Assessment of glomerular filtration rate (GFR) is important in kidney transplantation. The aim was to develop a kidney transplant specific equation for estimating GFR and evaluate against published equations commonly used for GFR estimation in these patients. Methods Adult kidney recipients (n = 594) were included, and blood samples were collected 10 weeks posttransplant. GFR was measured by 51Cr-ethylenediaminetetraacetic acid clearance. Patients were randomized into a reference group (n = 297) to generate a new equation and a test group (n = 297) for comparing it with 7 alternative equations. Results Two thirds of the test group were males. The median (2.5-97.5 percentile) age was 52 (23-75) years, cystatin C, 1.63 (1.00-3.04) mg/L; creatinine, 117 (63-220) μmol/L; and measured GFR, 51 (29-78) mL/min per 1.73 m2. We also performed external evaluation in 133 recipients without the use of trimethoprim, using iohexol clearance for measured GFR. The Modification of Diet in Renal Disease equation was the most accurate of the creatinine-equations. The new equation, estimated GFR (eGFR) = 991.15 × (1.120sex/([age0.097] × [cystatin C0.306] × [creatinine0.527]); where sex is denoted: 0, female; 1, male, demonstrating a better accuracy with a low bias as well as good precision compared with reference equations. Trimethoprim did not influence the performance of the new equation. Conclusions The new equation demonstrated superior accuracy, precision, and low bias. The Modification of Diet in Renal Disease equation was the most accurate of the creatinine-based equations. PMID:29536033

  17. Rational extended thermodynamics of a rarefied polyatomic gas with molecular relaxation processes

    NASA Astrophysics Data System (ADS)

    Arima, Takashi; Ruggeri, Tommaso; Sugiyama, Masaru

    2017-10-01

    We present a more refined version of rational extended thermodynamics of rarefied polyatomic gases in which molecular rotational and vibrational relaxation processes are treated individually. In this case, we need a triple hierarchy of the moment system and the system of balance equations is closed via the maximum entropy principle. Three different types of the production terms in the system, which are suggested by a generalized BGK-type collision term in the Boltzmann equation, are adopted. In particular, the rational extended thermodynamic theory with seven independent fields (ET7) is analyzed in detail. Finally, the dispersion relation of ultrasonic wave derived from the ET7 theory is confirmed by the experimental data for CO2, Cl2, and Br2 gases.

  18. Estimating mean change in population salt intake using spot urine samples.

    PubMed

    Petersen, Kristina S; Wu, Jason H Y; Webster, Jacqui; Grimes, Carley; Woodward, Mark; Nowson, Caryl A; Neal, Bruce

    2017-10-01

    Spot urine samples are easier to collect than 24-h urine samples and have been used with estimating equations to derive the mean daily salt intake of a population. Whether equations using data from spot urine samples can also be used to estimate change in mean daily population salt intake over time is unknown. We compared estimates of change in mean daily population salt intake based upon 24-h urine collections with estimates derived using equations based on spot urine samples. Paired and unpaired 24-h urine samples and spot urine samples were collected from individuals in two Australian populations, in 2011 and 2014. Estimates of change in daily mean population salt intake between 2011 and 2014 were obtained directly from the 24-h urine samples and by applying established estimating equations (Kawasaki, Tanaka, Mage, Toft, INTERSALT) to the data from spot urine samples. Differences between 2011 and 2014 were calculated using mixed models. A total of 1000 participants provided a 24-h urine sample and a spot urine sample in 2011, and 1012 did so in 2014 (paired samples n = 870; unpaired samples n = 1142). The participants were community-dwelling individuals living in the State of Victoria or the town of Lithgow in the State of New South Wales, Australia, with a mean age of 55 years in 2011. The mean (95% confidence interval) difference in population salt intake between 2011 and 2014 determined from the 24-h urine samples was -0.48g/day (-0.74 to -0.21; P < 0.001). The corresponding result estimated from the spot urine samples was -0.24 g/day (-0.42 to -0.06; P = 0.01) using the Tanaka equation, -0.42 g/day (-0.70 to -0.13; p = 0.004) using the Kawasaki equation, -0.51 g/day (-1.00 to -0.01; P = 0.046) using the Mage equation, -0.26 g/day (-0.42 to -0.10; P = 0.001) using the Toft equation, -0.20 g/day (-0.32 to -0.09; P = 0.001) using the INTERSALT equation and -0.27 g/day (-0.39 to -0.15; P < 0.001) using the INTERSALT equation with potassium. There was no evidence that the changes detected by the 24-h collections and estimating equations were different (all P > 0.058). Separate analysis of the unpaired and paired data showed that detection of change by the estimating equations was observed only in the paired data. All the estimating equations based upon spot urine samples identified a similar change in daily salt intake to that detected by the 24-h urine samples. Methods based upon spot urine samples may provide an approach to measuring change in mean population salt intake, although further investigation in larger and more diverse population groups is required. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association

  19. On the exterior Dirichlet problem for Hessian quotient equations

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Li, Zhisu

    2018-06-01

    In this paper, we establish the existence and uniqueness theorem for solutions of the exterior Dirichlet problem for Hessian quotient equations with prescribed asymptotic behavior at infinity. This extends the previous related results on the Monge-Ampère equations and on the Hessian equations, and rearranges them in a systematic way. Based on the Perron's method, the main ingredient of this paper is to construct some appropriate subsolutions of the Hessian quotient equation, which is realized by introducing some new quantities about the elementary symmetric polynomials and using them to analyze the corresponding ordinary differential equation related to the generalized radially symmetric subsolutions of the original equation.

  20. Development of a new model for short period ocean tidal variations of Earth rotation

    NASA Astrophysics Data System (ADS)

    Schuh, Harald

    2015-08-01

    Within project SPOT (Short Period Ocean Tidal variations in Earth rotation) we develop a new high frequency Earth rotation model based on empirical ocean tide models. The main purpose of the SPOT model is its application to space geodetic observations such as GNSS and VLBI.We consider an empirical ocean tide model, which does not require hydrodynamic ocean modeling to determine ocean tidal angular momentum. We use here the EOT11a model of Savcenko & Bosch (2012), which is extended for some additional minor tides (e.g. M1, J1, T2). As empirical tidal models do not provide ocean tidal currents, which are re- quired for the computation of oceanic relative angular momentum, we implement an approach first published by Ray (2001) to estimate ocean tidal current veloci- ties for all tides considered in the extended EOT11a model. The approach itself is tested by application to tidal heights from hydrodynamic ocean tide models, which also provide tidal current velocities. Based on the tidal heights and the associated current velocities the oceanic tidal angular momentum (OTAM) is calculated.For the computation of the related short period variation of Earth rotation, we have re-examined the Euler-Liouville equation for an elastic Earth model with a liquid core. The focus here is on the consistent calculation of the elastic Love num- bers and associated Earth model parameters, which are considered in the Euler- Liouville equation for diurnal and sub-diurnal periods in the frequency domain.

  1. Comparative evaluation of urban storm water quality models

    NASA Astrophysics Data System (ADS)

    Vaze, J.; Chiew, Francis H. S.

    2003-10-01

    The estimation of urban storm water pollutant loads is required for the development of mitigation and management strategies to minimize impacts to receiving environments. Event pollutant loads are typically estimated using either regression equations or "process-based" water quality models. The relative merit of using regression models compared to process-based models is not clear. A modeling study is carried out here to evaluate the comparative ability of the regression equations and process-based water quality models to estimate event diffuse pollutant loads from impervious surfaces. The results indicate that, once calibrated, both the regression equations and the process-based model can estimate event pollutant loads satisfactorily. In fact, the loads estimated using the regression equation as a function of rainfall intensity and runoff rate are better than the loads estimated using the process-based model. Therefore, if only estimates of event loads are required, regression models should be used because they are simpler and require less data compared to process-based models.

  2. Selection of Common Items as an Unrecognized Source of Variability in Test Equating: A Bootstrap Approximation Assuming Random Sampling of Common Items

    ERIC Educational Resources Information Center

    Michaelides, Michalis P.; Haertel, Edward H.

    2014-01-01

    The standard error of equating quantifies the variability in the estimation of an equating function. Because common items for deriving equated scores are treated as fixed, the only source of variability typically considered arises from the estimation of common-item parameters from responses of samples of examinees. Use of alternative, equally…

  3. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate.

    PubMed

    Matsushita, Kunihiro; Mahmoodi, Bakhtawar K; Woodward, Mark; Emberson, Jonathan R; Jafar, Tazeen H; Jee, Sun Ha; Polkinghorne, Kevan R; Shankar, Anoop; Smith, David H; Tonelli, Marcello; Warnock, David G; Wen, Chi-Pang; Coresh, Josef; Gansevoort, Ron T; Hemmelgarn, Brenda R; Levey, Andrew S

    2012-05-09

    The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation more accurately estimates glomerular filtration rate (GFR) than the Modification of Diet in Renal Disease (MDRD) Study equation using the same variables, especially at higher GFR, but definitive evidence of its risk implications in diverse settings is lacking. To evaluate risk implications of estimated GFR using the CKD-EPI equation compared with the MDRD Study equation in populations with a broad range of demographic and clinical characteristics. A meta-analysis of data from 1.1 million adults (aged ≥ 18 years) from 25 general population cohorts, 7 high-risk cohorts (of vascular disease), and 13 CKD cohorts. Data transfer and analyses were conducted between March 2011 and March 2012. All-cause mortality (84,482 deaths from 40 cohorts), cardiovascular mortality (22,176 events from 28 cohorts), and end-stage renal disease (ESRD) (7644 events from 21 cohorts) during 9.4 million person-years of follow-up; the median of mean follow-up time across cohorts was 7.4 years (interquartile range, 4.2-10.5 years). Estimated GFR was classified into 6 categories (≥90, 60-89, 45-59, 30-44, 15-29, and <15 mL/min/1.73 m(2)) by both equations. Compared with the MDRD Study equation, 24.4% and 0.6% of participants from general population cohorts were reclassified to a higher and lower estimated GFR category, respectively, by the CKD-EPI equation, and the prevalence of CKD stages 3 to 5 (estimated GFR <60 mL/min/1.73 m(2)) was reduced from 8.7% to 6.3%. In estimated GFR of 45 to 59 mL/min/1.73 m(2) by the MDRD Study equation, 34.7% of participants were reclassified to estimated GFR of 60 to 89 mL/min/1.73 m(2) by the CKD-EPI equation and had lower incidence rates (per 1000 person-years) for the outcomes of interest (9.9 vs 34.5 for all-cause mortality, 2.7 vs 13.0 for cardiovascular mortality, and 0.5 vs 0.8 for ESRD) compared with those not reclassified. The corresponding adjusted hazard ratios were 0.80 (95% CI, 0.74-0.86) for all-cause mortality, 0.73 (95% CI, 0.65-0.82) for cardiovascular mortality, and 0.49 (95% CI, 0.27-0.88) for ESRD. Similar findings were observed in other estimated GFR categories by the MDRD Study equation. Net reclassification improvement based on estimated GFR categories was significantly positive for all outcomes (range, 0.06-0.13; all P < .001). Net reclassification improvement was similarly positive in most subgroups defined by age (<65 years and ≥65 years), sex, race/ethnicity (white, Asian, and black), and presence or absence of diabetes and hypertension. The results in the high-risk and CKD cohorts were largely consistent with the general population cohorts. The CKD-EPI equation classified fewer individuals as having CKD and more accurately categorized the risk for mortality and ESRD than did the MDRD Study equation across a broad range of populations.

  4. Semiannual Report October 1, 1999 through March 31, 2000

    DTIC Science & Technology

    2000-04-01

    Mark Carpenter (NASA Langley). Textbook Multigrid Efficiency for the Navier-Stokes Equations Boris Diskin A typical modern Reynolds-Averaged...defined as textbook multigrid efficiency (TME), meaning the solutions to the governing system of equations are attained in a computational work...basic elements of the barriers to be overcome in extending textbook efficiencies to the compressible RANS equations, namely entering flows, far wake

  5. Differential geometry techniques for sets of nonlinear partial differential equations

    NASA Technical Reports Server (NTRS)

    Estabrook, Frank B.

    1990-01-01

    An attempt is made to show that the Cartan theory of partial differential equations can be a useful technique for applied mathematics. Techniques for finding consistent subfamilies of solutions that are generically rich and well-posed and for introducing potentials or other usefully consistent auxiliary fields are introduced. An extended sample calculation involving the Korteweg-de Vries equation is given.

  6. The replicator equation and other game dynamics

    PubMed Central

    Cressman, Ross; Tao, Yi

    2014-01-01

    The replicator equation is the first and most important game dynamics studied in connection with evolutionary game theory. It was originally developed for symmetric games with finitely many strategies. Properties of these dynamics are briefly summarized for this case, including the convergence to and stability of the Nash equilibria and evolutionarily stable strategies. The theory is then extended to other game dynamics for symmetric games (e.g., the best response dynamics and adaptive dynamics) and illustrated by examples taken from the literature. It is also extended to multiplayer, population, and asymmetric games. PMID:25024202

  7. Modeling animal movements using stochastic differential equations

    Treesearch

    Haiganoush K. Preisler; Alan A. Ager; Bruce K. Johnson; John G. Kie

    2004-01-01

    We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radiocollared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon. Spatially and temporally explicit vector fields were estimated using approximating difference equations and nonparametric regression techniques. Estimated...

  8. Maneuver Estimation Model for Geostationary Orbit Determination

    DTIC Science & Technology

    2006-06-01

    create a more robust model which would reduce the amount of data needed to make accurate maneuver estimations. The Clohessy - Wiltshire equations were...Applications to Geostationary Satellites...........................................7 2.3.2 Clohessy - Wiltshire Equations...15 3.1.1 Application of Clohessy - Wiltshire Equations ................................15 3.1.2

  9. Estimating equations estimates of trends

    USGS Publications Warehouse

    Link, W.A.; Sauer, J.R.

    1994-01-01

    The North American Breeding Bird Survey monitors changes in bird populations through time using annual counts at fixed survey sites. The usual method of estimating trends has been to use the logarithm of the counts in a regression analysis. It is contended that this procedure is reasonably satisfactory for more abundant species, but produces biased estimates for less abundant species. An alternative estimation procedure based on estimating equations is presented.

  10. Remapping HELENA to incompressible plasma rotation parallel to the magnetic field

    NASA Astrophysics Data System (ADS)

    Poulipoulis, G.; Throumoulopoulos, G. N.; Konz, C.

    2016-07-01

    Plasma rotation in connection to both zonal and mean (equilibrium) flows can play a role in the transitions to the advanced confinement regimes in tokamaks, as the L-H transition and the formation of internal transport barriers (ITBs). For incompressible rotation, the equilibrium is governed by a generalised Grad-Shafranov (GGS) equation and a decoupled Bernoulli-type equation for the pressure. For parallel flow, the GGS equation can be transformed to one identical in form with the usual Grad-Shafranov equation. In the present study on the basis of the latter equation, we have extended HELENA, an equilibrium fixed boundary solver. The extended code solves the GGS equation for a variety of the two free-surface-function terms involved for arbitrary Alfvén Mach number and density functions. We have constructed diverted-boundary equilibria pertinent to ITER and examined their characteristics, in particular, as concerns the impact of rotation on certain equilibrium quantities. It turns out that the rotation and its shear affect noticeably the pressure and toroidal current density with the impact on the current density being stronger in the parallel direction than in the toroidal one.

  11. Conditional estimates of the number of podiform chromite deposits

    USGS Publications Warehouse

    Singer, D.A.

    1994-01-01

    A desirable guide for estimating the number of undiscovered mineral deposits is the number of known deposits per unit area from another well-explored permissive terrain. An analysis of the distribution of 805 podiform chromite deposits among ultramafic rocks in 12 subareas of Oregon and 27 counties of California is used to examine and extend this guide. The average number of deposits in this sample of 39 areas is 0.225 deposits per km2 of ultramafic rock; the frequency distribution is significantly skewed to the right. Probabilistic estimates can be made by using the observation that the lognormal distribution fits the distribution of deposits per unit area. A further improvement in the estimates is available by using the relationship between the area of ultramafic rock and the number of deposits. The number (N) of exposed podiform chromite deposits can be estimated by the following relationship: log10(N)=-0.194+0.577 log10(area of ultramafic rock). The slope is significantly different from both 0.0 and 1.0. Because the slope is less than 1.0, the ratio of deposits to area of permissive rock is a biased estimator when the area of ultramafic rock is different from the median 93 km2. Unbiased estimates of the number of podiform chromite deposits can be made with the regression equation and 80 percent confidence limits presented herein. ?? 1994 Oxford University Press.

  12. Addressing the unemployment-mortality conundrum: non-linearity is the answer.

    PubMed

    Bonamore, Giorgio; Carmignani, Fabrizio; Colombo, Emilio

    2015-02-01

    The effect of unemployment on mortality is the object of a lively literature. However, this literature is characterized by sharply conflicting results. We revisit this issue and suggest that the relationship might be non-linear. We use data for 265 territorial units (regions) within 23 European countries over the period 2000-2012 to estimate a multivariate regression of mortality. The estimating equation allows for a quadratic relationship between unemployment and mortality. We control for various other determinants of mortality at regional and national level and we include region-specific and time-specific fixed effects. The model is also extended to account for the dynamic adjustment of mortality and possible lagged effects of unemployment. We find that the relationship between mortality and unemployment is U shaped. In the benchmark regression, when the unemployment rate is low, at 3%, an increase by one percentage point decreases average mortality by 0.7%. As unemployment increases, the effect decays: when the unemployment rate is 8% (sample average) a further increase by one percentage point decreases average mortality by 0.4%. The effect changes sign, turning from negative to positive, when unemployment is around 17%. When the unemployment rate is 25%, a further increase by one percentage point raises average mortality by 0.4%. Results hold for different causes of death and across different specifications of the estimating equation. We argue that the non-linearity arises because the level of unemployment affects the psychological and behavioural response of individuals to worsening economic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Body mass and stature estimation based on the first metatarsal in humans.

    PubMed

    De Groote, Isabelle; Humphrey, Louise T

    2011-04-01

    Archaeological assemblages often lack the complete long bones needed to estimate stature and body mass. The most accurate estimates of body mass and stature are produced using femoral head diameter and femur length. Foot bones including the first metatarsal preserve relatively well in a range of archaeological contexts. In this article we present regression equations using the first metatarsal to estimate femoral head diameter, femoral length, and body mass in a diverse human sample. The skeletal sample comprised 87 individuals (Andamanese, Australasians, Africans, Native Americans, and British). Results show that all first metatarsal measurements correlate moderately to highly (r = 0.62-0.91) with femoral head diameter and length. The proximal articular dorsoplantar diameter is the best single measurement to predict both femoral dimensions. Percent standard errors of the estimate are below 5%. Equations using two metatarsal measurements show a small increase in accuracy. Direct estimations of body mass (calculated from measured femoral head diameter using previously published equations) have an error of just over 7%. No direct stature estimation equations were derived due to the varied linear body proportions represented in the sample. The equations were tested on a sample of 35 individuals from Christ Church Spitalfields. Percentage differences in estimated and measured femoral head diameter and length were less than 1%. This study demonstrates that it is feasible to use the first metatarsal in the estimation of body mass and stature. The equations presented here are particularly useful for assemblages where the long bones are either missing or fragmented, and enable estimation of these fundamental population parameters in poorly preserved assemblages. Copyright © 2011 Wiley-Liss, Inc.

  14. Nonlinear inhomogeneous Fokker-Planck equations: Entropy and free-energy time evolution.

    PubMed

    Sicuro, Gabriele; Rapčan, Peter; Tsallis, Constantino

    2016-12-01

    We extend a recently introduced free-energy formalism for homogeneous Fokker-Planck equations to a wide, and physically appealing, class of inhomogeneous nonlinear Fokker-Planck equations. In our approach, the free-energy functional is expressed in terms of an entropic functional and an auxiliary potential, both derived from the coefficients of the equation. With reference to the introduced entropic functional, we discuss the entropy production in a relaxation process towards equilibrium. The properties of the stationary solutions of the considered Fokker-Planck equations are also discussed.

  15. Kato Smoothing and Strichartz Estimates for Wave Equations with Magnetic Potentials

    NASA Astrophysics Data System (ADS)

    D'Ancona, Piero

    2015-04-01

    Let H be a selfadjoint operator and A a closed operator on a Hilbert space . If A is H-(super)smooth in the sense of Kato-Yajima, we prove that is -(super)smooth. This allows us to include wave and Klein-Gordon equations in the abstract theory at the same level of generality as Schrödinger equations. We give a few applications and in particular, based on the resolvent estimates of Erdogan, Goldberg and Schlag (Forum Mathematicum 21:687-722, 2009), we prove Strichartz estimates for wave equations perturbed with large magnetic potentials on , n ≥ 3.

  16. Developing a generalized allometric equation for aboveground biomass estimation

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Balamuta, J. J.; Greenberg, J. A.; Li, B.; Man, A.; Xu, Z.

    2015-12-01

    A key potential uncertainty in estimating carbon stocks across multiple scales stems from the use of empirically calibrated allometric equations, which estimate aboveground biomass (AGB) from plant characteristics such as diameter at breast height (DBH) and/or height (H). The equations themselves contain significant and, at times, poorly characterized errors. Species-specific equations may be missing. Plant responses to their local biophysical environment may lead to spatially varying allometric relationships. The structural predictor may be difficult or impossible to measure accurately, particularly when derived from remote sensing data. All of these issues may lead to significant and spatially varying uncertainties in the estimation of AGB that are unexplored in the literature. We sought to quantify the errors in predicting AGB at the tree and plot level for vegetation plots in California. To accomplish this, we derived a generalized allometric equation (GAE) which we used to model the AGB on a full set of tree information such as DBH, H, taxonomy, and biophysical environment. The GAE was derived using published allometric equations in the GlobAllomeTree database. The equations were sparse in details about the error since authors provide the coefficient of determination (R2) and the sample size. A more realistic simulation of tree AGB should also contain the noise that was not captured by the allometric equation. We derived an empirically corrected variance estimate for the amount of noise to represent the errors in the real biomass. Also, we accounted for the hierarchical relationship between different species by treating each taxonomic level as a covariate nested within a higher taxonomic level (e.g. species < genus). This approach provides estimation under incomplete tree information (e.g. missing species) or blurred information (e.g. conjecture of species), plus the biophysical environment. The GAE allowed us to quantify contribution of each different covariate in estimating the AGB of trees. Lastly, we applied the GAE to an existing vegetation plot database - Forest Inventory and Analysis database - to derive per-tree and per-plot AGB estimations, their errors, and how much the error could be contributed to the original equations, the plant's taxonomy, and their biophysical environment.

  17. Spatial Prediction of Coxiella burnetii Outbreak Exposure via Notified Case Counts in a Dose-Response Model.

    PubMed

    Brooke, Russell J; Kretzschmar, Mirjam E E; Hackert, Volker; Hoebe, Christian J P A; Teunis, Peter F M; Waller, Lance A

    2017-01-01

    We develop a novel approach to study an outbreak of Q fever in 2009 in the Netherlands by combining a human dose-response model with geostatistics prediction to relate probability of infection and associated probability of illness to an effective dose of Coxiella burnetii. The spatial distribution of the 220 notified cases in the at-risk population are translated into a smooth spatial field of dose. Based on these symptomatic cases, the dose-response model predicts a median of 611 asymptomatic infections (95% range: 410, 1,084) for the 220 reported symptomatic cases in the at-risk population; 2.78 (95% range: 1.86, 4.93) asymptomatic infections for each reported case. The low attack rates observed during the outbreak range from (Equation is included in full-text article.)to (Equation is included in full-text article.). The estimated peak levels of exposure extend to the north-east from the point source with an increasing proportion of asymptomatic infections further from the source. Our work combines established methodology from model-based geostatistics and dose-response modeling allowing for a novel approach to study outbreaks. Unobserved infections and the spatially varying effective dose can be predicted using the flexible framework without assuming any underlying spatial structure of the outbreak process. Such predictions are important for targeting interventions during an outbreak, estimating future disease burden, and determining acceptable risk levels.

  18. Extended active disturbance rejection controller

    NASA Technical Reports Server (NTRS)

    Tian, Gang (Inventor); Gao, Zhiqiang (Inventor)

    2012-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  19. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2016-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  20. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Tian, Gang (Inventor); Gao, Zhiqiang (Inventor)

    2014-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  1. Hamiltonian derivation of the nonhydrostatic pressure-coordinate model

    NASA Astrophysics Data System (ADS)

    Salmon, Rick; Smith, Leslie M.

    1994-07-01

    In 1989, the Miller-Pearce (MP) model for nonhydrostatic fluid motion governed by equations written in pressure coordinates was extended by removing the prescribed reference temperature, T(sub s)(p), while retaining the conservation laws and other desirable properties. It was speculated that this extension of the MP model had a Hamiltonian structure and that a slick derivation of the Ertel property could be constructed if the relevant Hamiltonian were known. In this note, the extended equations are derived using Hamilton's principle. The potential vorticity law arises from the usual particle-relabeling symmetry of the Lagrangian, and even the absence of sound waves is anticipated from the fact that the pressure inside the free energy G(p, theta) in the derived equation is hydrostatic and thus G is insensitive to local pressure fluctuations. The model extension is analogous to the semigeostrophic equations for nearly geostrophic flow, which do not incorporate a prescribed reference state, while the earlier MP model is analogous to the quasigeostrophic equations, which become highly inaccurate when the flow wanders from a prescribed state with nearly flat isothermal surfaces.

  2. Development of a multichemical food web model: application to PBDEs in Lake Ellasjoen, Bear Island, Norway.

    PubMed

    Gandhi, Nilima; Bhavsar, Satyendra P; Gewurtz, Sarah B; Diamond, Miriam L; Evenset, Anita; Christensen, Guttorm N; Gregor, Dennis

    2006-08-01

    A multichemical food web model has been developed to estimate the biomagnification of interconverting chemicals in aquatic food webs. We extended a fugacity-based food web model for single chemicals to account for reversible and irreversible biotransformation among a parent chemical and transformation products, by simultaneously solving mass balance equations of the chemicals using a matrix solution. The model can be applied to any number of chemicals and organisms or taxonomic groups in a food web. The model was illustratively applied to four PBDE congeners, BDE-47, -99, -100, and -153, in the food web of Lake Ellasjøen, Bear Island, Norway. In Ellasjøen arctic char (Salvelinus alpinus), the multichemical model estimated PBDE biotransformation from higher to lower brominated congeners and improved the correspondence between estimated and measured concentrations in comparison to estimates from the single-chemical food web model. The underestimation of BDE-47, even after considering bioformation due to biotransformation of the otherthree congeners, suggests its formation from additional biotransformation pathways not considered in this application. The model estimates approximate values for congener-specific biotransformation half-lives of 5.7,0.8,1.14, and 0.45 years for BDE-47, -99, -100, and -153, respectively, in large arctic char (S. alpinus) of Lake Ellasjøen.

  3. A novel method for state of charge estimation of lithium-ion batteries using a nonlinear observer

    NASA Astrophysics Data System (ADS)

    Xia, Bizhong; Chen, Chaoren; Tian, Yong; Sun, Wei; Xu, Zhihui; Zheng, Weiwei

    2014-12-01

    The state of charge (SOC) is important for the safety and reliability of battery operation since it indicates the remaining capacity of a battery. However, as the internal state of each cell cannot be directly measured, the value of the SOC has to be estimated. In this paper, a novel method for SOC estimation in electric vehicles (EVs) using a nonlinear observer (NLO) is presented. One advantage of this method is that it does not need complicated matrix operations, so the computation cost can be reduced. As a key step in design of the nonlinear observer, the state-space equations based on the equivalent circuit model are derived. The Lyapunov stability theory is employed to prove the convergence of the nonlinear observer. Four experiments are carried out to evaluate the performance of the presented method. The results show that the SOC estimation error converges to 3% within 130 s while the initial SOC error reaches 20%, and does not exceed 4.5% while the measurement suffers both 2.5% voltage noise and 5% current noise. Besides, the presented method has advantages over the extended Kalman filter (EKF) and sliding mode observer (SMO) algorithms in terms of computation cost, estimation accuracy and convergence rate.

  4. Complicated asymptotic behavior of solutions for porous medium equation in unbounded space

    NASA Astrophysics Data System (ADS)

    Wang, Liangwei; Yin, Jingxue; Zhou, Yong

    2018-05-01

    In this paper, we find that the unbounded spaces Yσ (RN) (0 < σ <2/m-1 ) can provide the work spaces where complicated asymptotic behavior appears in the solutions of the Cauchy problem of the porous medium equation. To overcome the difficulties caused by the nonlinearity of the equation and the unbounded solutions, we establish the propagation estimates, the growth estimates and the weighted L1-L∞ estimates for the solutions.

  5. Correlation analysis between the occurrence of ionospheric scintillation at the magnetic equator and at the southern peak of the Equatorial Ionization Anomaly

    NASA Astrophysics Data System (ADS)

    de Lima, G. R. T.; Stephany, S.; de Paula, E. R.; Batista, I. S.; Abdu, M. A.; Rezende, L. F. C.; Aquino, M. G. S.; Dutra, A. P. S.

    2014-06-01

    Ionospheric scintillation refers to amplitude and phase fluctuations in radio signals due to electron density irregularities associated to structures named ionospheric plasma bubbles. The phenomenon is more pronounced around the magnetic equator where, after sunset, plasma bubbles of varying sizes and density depletions are generated by plasma instability mechanisms. The bubble depletions are aligned along Earth's magnetic field lines, and they develop vertically upward over the magnetic equator so that their extremities extend in latitude to north and south of the dip equator. Over Brazil, developing bubbles can extend to the southern peak of the Equatorial Ionization Anomaly, where high levels of ionospheric scintillation are common. Scintillation may seriously affect satellite navigation systems, such as the Global Navigation Satellite Systems. However, its effects may be mitigated by using a predictive model derived from a collection of extended databases on scintillation and its associated variables. This work proposes the use of a classification and regression decision tree to perform a study on the correlation between the occurrence of scintillation at the magnetic equator and that at the southern peak of the equatorial anomaly. Due to limited size of the original database, a novel resampling heuristic was applied to generate new training instances from the original ones in order to improve the accuracy of the decision tree. The correlation analysis presented in this work may serve as a starting point for the eventual development of a predictive model suitable for operational use.

  6. A Note on Structural Equation Modeling Estimates of Reliability

    ERIC Educational Resources Information Center

    Yang, Yanyun; Green, Samuel B.

    2010-01-01

    Reliability can be estimated using structural equation modeling (SEM). Two potential problems with this approach are that estimates may be unstable with small sample sizes and biased with misspecified models. A Monte Carlo study was conducted to investigate the quality of SEM estimates of reliability by themselves and relative to coefficient…

  7. A Polychoric Instrumental Variable (PIV) Estimator for Structural Equation Models with Categorical Variables

    ERIC Educational Resources Information Center

    Bollen, Kenneth A.; Maydeu-Olivares, Albert

    2007-01-01

    This paper presents a new polychoric instrumental variable (PIV) estimator to use in structural equation models (SEMs) with categorical observed variables. The PIV estimator is a generalization of Bollen's (Psychometrika 61:109-121, 1996) 2SLS/IV estimator for continuous variables to categorical endogenous variables. We derive the PIV estimator…

  8. Numerical discretization-based estimation methods for ordinary differential equation models via penalized spline smoothing with applications in biomedical research.

    PubMed

    Wu, Hulin; Xue, Hongqi; Kumar, Arun

    2012-06-01

    Differential equations are extensively used for modeling dynamics of physical processes in many scientific fields such as engineering, physics, and biomedical sciences. Parameter estimation of differential equation models is a challenging problem because of high computational cost and high-dimensional parameter space. In this article, we propose a novel class of methods for estimating parameters in ordinary differential equation (ODE) models, which is motivated by HIV dynamics modeling. The new methods exploit the form of numerical discretization algorithms for an ODE solver to formulate estimating equations. First, a penalized-spline approach is employed to estimate the state variables and the estimated state variables are then plugged in a discretization formula of an ODE solver to obtain the ODE parameter estimates via a regression approach. We consider three different order of discretization methods, Euler's method, trapezoidal rule, and Runge-Kutta method. A higher-order numerical algorithm reduces numerical error in the approximation of the derivative, which produces a more accurate estimate, but its computational cost is higher. To balance the computational cost and estimation accuracy, we demonstrate, via simulation studies, that the trapezoidal discretization-based estimate is the best and is recommended for practical use. The asymptotic properties for the proposed numerical discretization-based estimators are established. Comparisons between the proposed methods and existing methods show a clear benefit of the proposed methods in regards to the trade-off between computational cost and estimation accuracy. We apply the proposed methods t an HIV study to further illustrate the usefulness of the proposed approaches. © 2012, The International Biometric Society.

  9. On the transition from the Ginzburg-Landau equation to the extended Fisher-Kolmogorov equation

    NASA Astrophysics Data System (ADS)

    Rottschäfer, Vivi; Doelman, Arjen

    1998-07-01

    The Ginzburg-Landau (GL) equation ‘generically’ describes the behaviour of small perturbations of a marginally unstable basic state in systems on unbounded domains. In this paper we consider the transition from this generic situation to a degenerate (co-dimension 2) case in which the GL approach is no longer valid. Instead of studying a general underlying model problem, we consider a two-dimensional system of coupled reaction-diffusion equations in one spatial dimension. We show that near the degeneration the behaviour of small perturbations is governed by the extended Fisher-Kolmogorov (eFK) equation (at leading order). The relation between the GL-equation and the eFK-equation is quite subtle, but can be analysed in detail. The main goal of this paper is to study this relation, which we do asymptotically. The asymptotic analysis is compared to numerical simulations of the full reaction-diffusion system. As one approaches the co-dimension 2 point, we observe that the stable stationary periodic patterns predicted by the GL-equation evolve towards various different families of stable, stationary (but not necessarily periodic) so-called ‘multi-bump’ solutions. In the literature, these multi-bump patterns are shown to exist as solutions of the eFK-equation, but there is no proof of the asymptotic stability of these solutions. Our results suggest that these multi-bump patterns can also be asymptotically stable in large classes of model problems.

  10. Vision-Based Position Estimation Utilizing an Extended Kalman Filter

    DTIC Science & Technology

    2016-12-01

    POSITION ESTIMATION UTILIZING AN EXTENDED KALMAN FILTER by Joseph B. Testa III December 2016 Thesis Advisor: Vladimir Dobrokhodov Co...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE VISION-BASED POSITION ESTIMATION UTILIZING AN EXTENDED KALMAN FILTER 5. FUNDING...spots” and network relay between the boarding team and ship. 14. SUBJECT TERMS UAV, ROS, extended Kalman filter , Matlab

  11. Maine StreamStats: a water-resources web application

    USGS Publications Warehouse

    Lombard, Pamela J.

    2015-01-01

    Reports referenced in this fact sheet present the regression equations used to estimate the flow statistics, describe the errors associated with the estimates, and describe the methods used to develop the equations and to measure the basin characteristics used in the equations. Limitations of the methods are also described in the reports; for example, all of the equations are appropriate only for ungaged, unregulated, rural streams in Maine.

  12. Estimation of traveltime and longitudinal dispersion in streams in West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.; Messinger, Terence

    2013-01-01

    Traveltime and dispersion data are important for understanding and responding to spills of contaminants in waterways. The U.S. Geological Survey (USGS), in cooperation with West Virginia Bureau for Public Health, Office of Environmental Health Services, compiled and evaluated traveltime and longitudinal dispersion data representative of many West Virginia waterways. Traveltime and dispersion data were not available for streams in the northwestern part of the State. Compiled data were compared with estimates determined from national equations previously published by the USGS. The evaluation summarized procedures and examples for estimating traveltime and dispersion on streams in West Virginia. National equations developed by the USGS can be used to predict traveltime and dispersion for streams located in West Virginia, but the predictions will be less accurate than those made with graphical interpolation between measurements. National equations for peak concentration, velocity of the peak concentration, and traveltime of the leading edge had root mean square errors (RMSE) of 0.426 log units (127 percent), 0.505 feet per second (ft/s), and 3.78 hours (h). West Virginia data fit the national equations for peak concentration, velocity of the peak concentration, and traveltime of the leading edge with RMSE of 0.139 log units (38 percent), 0.630 ft/s, and 3.38 h, respectively. The national equation for maximum possible velocity of the peak concentration exceeded 99 percent and 100 percent of observed values from the national data set and West Virginia-only data set, respectively. No RMSE was reported for time of passage of a dye cloud, as estimated using the national equation; however, the estimates made using the national equations had a root mean square error of 3.82 h when compared to data gathered for this study. Traveltime and dispersion estimates can be made from the plots of traveltime as a function of streamflow and location for streams with plots available, but estimates can be made using the national equations for streams without plots. The estimating procedures are not valid for regulated stream reaches that were not individually studied or streamflows outside the limits studied. Rapidly changing streamflow and inadequate mixing across the stream channel affect traveltime and dispersion, and reduce the accuracy of estimates. Increases in streamflow typically result in decreases in the peak concentration and traveltime of the peak concentration. Decreases in streamflow typically result in increases in the peak concentration and traveltime of the peak concentration. Traveltimes will likely be less than those determined using the estimating equations and procedures if the spill is in the center of the stream, and traveltimes will likely be greater than those determined using the estimating equations and procedures if the spill is near the streambank.

  13. All Source Sensor Integration Using an Extended Kalman Filter

    DTIC Science & Technology

    2012-03-22

    Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 All...Positioning System . . . . . . . . . . . . . . . . . . 1 ASPN All Source Positioning Navigation . . . . . . . . . . . . . . 2 DARPA Defense Advanced...equations are developed for sensor preprocessed mea- 1 surements, and these navigation equations are not dependent upon the integrating filter. That is

  14. Finite Difference Schemes as Algebraic Correspondences between Layers

    NASA Astrophysics Data System (ADS)

    Malykh, Mikhail; Sevastianov, Leonid

    2018-02-01

    For some differential equations, especially for Riccati equation, new finite difference schemes are suggested. These schemes define protective correspondences between the layers. Calculation using these schemes can be extended to the area beyond movable singularities of exact solution without any error accumulation.

  15. Simultaneous estimation of aquifer thickness, conductivity, and BC using borehole and hydrodynamic data with geostatistical inverse direct method

    NASA Astrophysics Data System (ADS)

    Gao, F.; Zhang, Y.

    2017-12-01

    A new inverse method is developed to simultaneously estimate aquifer thickness and boundary conditions using borehole and hydrodynamic measurements from a homogeneous confined aquifer under steady-state ambient flow. This method extends a previous groundwater inversion technique which had assumed known aquifer geometry and thickness. In this research, thickness inversion was successfully demonstrated when hydrodynamic data were supplemented with measured thicknesses from boreholes. Based on a set of hybrid formulations which describe approximate solutions to the groundwater flow equation, the new inversion technique can incorporate noisy observed data (i.e., thicknesses, hydraulic heads, Darcy fluxes or flow rates) at measurement locations as a set of conditioning constraints. Given sufficient quantity and quality of the measurements, the inverse method yields a single well-posed system of equations that can be solved efficiently with nonlinear optimization. The method is successfully tested on two-dimensional synthetic aquifer problems with regular geometries. The solution is stable when measurement errors are increased, with error magnitude reaching up to +/- 10% of the range of the respective measurement. When error-free observed data are used to condition the inversion, the estimated thickness is within a +/- 5% error envelope surrounding the true value; when data contain increasing errors, the estimated thickness become less accurate, as expected. Different combinations of measurement types are then investigated to evaluate data worth. Thickness can be inverted with the combination of observed heads and at least one of the other types of observations such as thickness, Darcy fluxes, or flow rates. Data requirement of the new inversion method is thus not much different from that of interpreting classic well tests. Future work will improve upon this research by developing an estimation strategy for heterogeneous aquifers while drawdown data from hydraulic tests will also be incorporated as conditioning measurements.

  16. Using computational modeling of river flow with remotely sensed data to infer channel bathymetry

    USGS Publications Warehouse

    Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Shimizu, Y.

    2012-01-01

    As part of an ongoing investigation into the use of computational river flow and morphodynamic models for the purpose of correcting and extending remotely sensed river datasets, a simple method for inferring channel bathymetry is developed and discussed. The method is based on an inversion of the equations expressing conservation of mass and momentum to develop equations that can be solved for depth given known values of vertically-averaged velocity and water-surface elevation. The ultimate goal of this work is to combine imperfect remotely sensed data on river planform, water-surface elevation and water-surface velocity in order to estimate depth and other physical parameters of river channels. In this paper, the technique is examined using synthetic data sets that are developed directly from the application of forward two-and three-dimensional flow models. These data sets are constrained to satisfy conservation of mass and momentum, unlike typical remotely sensed field data sets. This provides a better understanding of the process and also allows assessment of how simple inaccuracies in remotely sensed estimates might propagate into depth estimates. The technique is applied to three simple cases: First, depth is extracted from a synthetic dataset of vertically averaged velocity and water-surface elevation; second, depth is extracted from the same data set but with a normally-distributed random error added to the water-surface elevation; third, depth is extracted from a synthetic data set for the same river reach using computed water-surface velocities (in place of depth-integrated values) and water-surface elevations. In each case, the extracted depths are compared to the actual measured depths used to construct the synthetic data sets (with two- and three-dimensional flow models). Errors in water-surface elevation and velocity that are very small degrade depth estimates and cannot be recovered. Errors in depth estimates associated with assuming water-surface velocities equal to depth-integrated velocities are substantial, but can be reduced with simple corrections.

  17. Discreteness of time in the evolution of the universe

    NASA Astrophysics Data System (ADS)

    Faizal, Mir; Ali, Ahmed Farag; Das, Saurya

    2017-04-01

    In this paper, we will first derive the Wheeler-DeWitt equation for the generalized geometry which occurs in M-theory. Then we will observe that M2-branes act as probes for this generalized geometry, and as M2-branes have an extended structure, their extended structure will limits the resolution to which this generalized geometry can be defined. We will demonstrate that this will deform the Wheeler-DeWitt equation for the generalized geometry. We analyze such a deformed Wheeler-DeWitt equation in the minisuperspace approximation, and observe that this deformation can be used as a solution to the problem of time. This is because this deformation gives rise to time crystals in our universe due to the spontaneous breaking of time reparametrization invariance.

  18. Nonlinear density wave investigation for an extended car-following model considering driver’s memory and jerk

    NASA Astrophysics Data System (ADS)

    Jin, Zhizhan; Li, Zhipeng; Cheng, Rongjun; Ge, Hongxia

    2018-01-01

    Based on the two velocity difference model (TVDM), an extended car-following model is developed to investigate the effect of driver’s memory and jerk on traffic flow in this paper. By using linear stability analysis, the stability conditions are derived. And through nonlinear analysis, the time-dependent Ginzburg-Landau (TDGL) equation and the modified Korteweg-de Vries (mKdV) equation are obtained, respectively. The mKdV equation is constructed to describe the traffic behavior near the critical point. The evolution of traffic congestion and the corresponding energy consumption are discussed. Numerical simulations show that the improved model is found not only to enhance the stability of traffic flow, but also to depress the energy consumption, which are consistent with the theoretical analysis.

  19. Estimating selected low-flow frequency statistics and harmonic-mean flows for ungaged, unregulated streams in Indiana

    USGS Publications Warehouse

    Martin, Gary R.; Fowler, Kathleen K.; Arihood, Leslie D.

    2016-09-06

    Information on low-flow characteristics of streams is essential for the management of water resources. This report provides equations for estimating the 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and the harmonic-mean flow at ungaged, unregulated stream sites in Indiana. These equations were developed using the low-flow statistics and basin characteristics for 108 continuous-record streamgages in Indiana with at least 10 years of daily mean streamflow data through the 2011 climate year (April 1 through March 31). The equations were developed in cooperation with the Indiana Department of Environmental Management.Regression techniques were used to develop the equations for estimating low-flow frequency statistics and the harmonic-mean flows on the basis of drainage-basin characteristics. A geographic information system was used to measure basin characteristics for selected streamgages. A final set of 25 basin characteristics measured at all the streamgages were evaluated to choose the best predictors of the low-flow statistics.Logistic-regression equations applicable statewide are presented for estimating the probability that selected low-flow frequency statistics equal zero. These equations use the explanatory variables total drainage area, average transmissivity of the full thickness of the unconsolidated deposits within 1,000 feet of the stream network, and latitude of the basin outlet. The percentage of the streamgage low-flow statistics correctly classified as zero or nonzero using the logistic-regression equations ranged from 86.1 to 88.9 percent.Generalized-least-squares regression equations applicable statewide for estimating nonzero low-flow frequency statistics use total drainage area, the average hydraulic conductivity of the top 70 feet of unconsolidated deposits, the slope of the basin, and the index of permeability and thickness of the Quaternary surficial sediments as explanatory variables. The average standard error of prediction of these regression equations ranges from 55.7 to 61.5 percent.Regional weighted-least-squares regression equations were developed for estimating the harmonic-mean flows by dividing the State into three low-flow regions. The Northern region uses total drainage area and the average transmissivity of the entire thickness of unconsolidated deposits as explanatory variables. The Central region uses total drainage area, the average hydraulic conductivity of the entire thickness of unconsolidated deposits, and the index of permeability and thickness of the Quaternary surficial sediments. The Southern region uses total drainage area and the percent of the basin covered by forest. The average standard error of prediction for these equations ranges from 39.3 to 66.7 percent.The regional regression equations are applicable only to stream sites with low flows unaffected by regulation and to stream sites with drainage basin characteristic values within specified limits. Caution is advised when applying the equations for basins with characteristics near the applicable limits and for basins with karst drainage features and for urbanized basins. Extrapolations near and beyond the applicable basin characteristic limits will have unknown errors that may be large. Equations are presented for use in estimating the 90-percent prediction interval of the low-flow statistics estimated by use of the regression equations at a given stream site.The regression equations are to be incorporated into the U.S. Geological Survey StreamStats Web-based application for Indiana. StreamStats allows users to select a stream site on a map and automatically measure the needed basin characteristics and compute the estimated low-flow statistics and associated prediction intervals.

  20. Estimation of GFR in South Asians: A Study From the General Population in Pakistan

    PubMed Central

    Jessani, Saleem; Levey, Andrew S.; Bux, Rasool; Inker, Lesley A.; Islam, Muhammad; Chaturvedi, Nish; Mariat, Christophe; Schmid, Christopher H.; Jafar, Tazeen H.

    2015-01-01

    Background South Asians are at high risk for chronic kidney disease. However, unlike those in the United States and United Kingdom, laboratories in South Asian countries do not routinely report estimated glomerular filtration rate (eGFR) when serum creatinine is measured. The objectives of the study were to: (1) evaluate the performance of existing GFR estimating equations in South Asians, and (2) modify the existing equations or develop a new equation for use in this population. Study Design Cross-sectional population-based study. Setting & Participants 581 participants 40 years or older were enrolled from 10 randomly selected communities and renal clinics in Karachi. Predictors eGFR, age, sex, serum creatinine level. Outcomes Bias (the median difference between measured GFR [mGFR] and eGFR), precision (the IQR of the difference), accuracy (P30; percentage of participants with eGFR within 30% of mGFR), and the root mean squared error reported as cross-validated estimates along with bootstrapped 95% CIs based on 1,000 replications. Results The CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) creatinine equation performed better than the MDRD (Modification of Diet in Renal Disease) Study equation in terms of greater accuracy at P30 (76.1% [95% CI, 72.7%–79.5%] vs 68.0% [95% CI, 64.3%–71.7%]; P <0.001) and improved precision (IQR, 22.6 [95% CI, 19.9–25.3] vs 28.6 [95% CI, 25.8–31.5] mL/min/1.73 m2; P < 0.001). However, both equations overestimated mGFR. Applying modification factors for slope and intercept to the CKD-EPI equation to create a CKD-EPI Pakistan equation (such that eGFRCKD-EPI(PK) = 0.686 × eGFRCKD-EPI1.059) in order to eliminate bias improved accuracy (P30, 81.6% [95% CI, 78.4%–84.8%]; P < 0.001) comparably to new estimating equations developed using creatinine level and additional variables. Limitations Lack of external validation data set and few participants with low GFR. Conclusions The CKD-EPI creatinine equation is more accurate and precise than the MDRD Study equation in estimating GFR in a South Asian population in Karachi. The CKD-EPI Pakistan equation further improves the performance of the CKD-EPI equation in South Asians and could be used for eGFR reporting. PMID:24074822

  1. Evaluation and interpretation of Thematic Mapper ratios in equations for estimating corn growth parameters

    NASA Technical Reports Server (NTRS)

    Dardner, B. R.; Blad, B. L.; Thompson, D. R.; Henderson, K. E.

    1985-01-01

    Reflectance and agronomic Thematic Mapper (TM) data were analyzed to determine possible data transformations for evaluating several plant parameters of corn. Three transformation forms were used: the ratio of two TM bands, logarithms of two-band ratios, and normalized differences of two bands. Normalized differences and logarithms of two-band ratios responsed similarly in the equations for estimating the plant growth parameters evaluated in this study. Two-term equations were required to obtain the maximum predictability of percent ground cover, canopy moisture content, and total wet phytomass. Standard error of estimate values were 15-26 percent lower for two-term estimates of these parameters than for one-term estimates. The terms log(TM4/TM2) and (TM4/TM5) produced the maximum predictability for leaf area and dry green leaf weight, respectively. The middle infrared bands TM5 and TM7 are essential for maximizing predictability for all measured plant parameters except leaf area index. The estimating models were evaluated over bare soil to discriminate between equations which are statistically similar. Qualitative interpretations of the resulting prediction equations are consistent with general agronomic and remote sensing theory.

  2. Estimation of height and body mass index from demi-span in elderly individuals.

    PubMed

    Weinbrenner, Tanja; Vioque, Jesús; Barber, Xavier; Asensio, Laura

    2006-01-01

    Obtaining accurate height and, consequently, body mass index (BMI) measurements in elderly subjects can be difficult due to changes in posture and loss of height during ageing. Measurements of other body segments can be used as an alternative to estimate standing height, but population- and age-specific equations are necessary. Our objectives were to validate existing equations, to develop new simple equations to predict height in an elderly Spanish population and to assess the accuracy of the BMI calculated by estimated height from the new equations. We measured height and demi-span in a representative sample of 592 individuals, 271 men and 321 women, 65 years and older (mean +/- SD, 73.8 +/- 6.3 years). We suggested equations to predict height from demi-span by multiple regression analyses and performed an agreement analysis between measured and estimated indices. Height estimated from demi-span correlated significantly (p < 0.001) with measured height (men: r = 0.708, women: r = 0.625). The best prediction equations were as follows: men, height (in cm) = 77.821 + (1.132 x demi-span in cm) + (-0.215 x 5-year age category); women: height (in cm) = 88.854 + (0.899 x demi-span in cm) + (-0.692 x 5-year age category). No significant differences between the mean values of estimated and measured heights were found for men (-0.03 +/- 4.6 cm) or women (-0.02 +/- 4.1 cm). The BMI derived from measured height did not differ significantly from the BMI derived from estimated height either. Predicted height values from equations based on demi-span and age may be acceptable surrogates to derive accurate nutritional indices such as the BMI, particularly in elderly populations, where height may be difficult to measure accurately.

  3. Periodic solutions of second-order nonlinear difference equations containing a small parameter. II - Equivalent linearization

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1985-01-01

    The classical method of equivalent linearization is extended to a particular class of nonlinear difference equations. It is shown that the method can be used to obtain an approximation of the periodic solutions of these equations. In particular, the parameters of the limit cycle and the limit points can be determined. Three examples illustrating the method are presented.

  4. Solving Fuzzy Fractional Differential Equations Using Zadeh's Extension Principle

    PubMed Central

    Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S.

    2013-01-01

    We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided. PMID:24082853

  5. Singularity-free solutions for anisotropic charged fluids with Chaplygin equation of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahaman, Farook; Ray, Saibal; Jafry, Abdul Kayum

    2010-11-15

    We extend the Krori-Barua analysis of the static, spherically symmetric, Einstein-Maxwell field equations and consider charged fluid sources with anisotropic stresses. The inclusion of a new variable (tangential pressure) allows the use of a nonlinear, Chaplygin-type equation of state with coefficients fixed by the matching conditions at the boundary of the source. Some physical features are briefly discussed.

  6. Family-oriented cardiac risk estimator: a Java web-based applet.

    PubMed

    Crouch, Michael A; Jadhav, Ashwin

    2003-01-01

    We developed a Java applet that calculates four different estimates of a person's 10-year risk for heart attack: (1) Estimate based on Framingham equation (2) Framingham equation estimate modified by C-reactive protein (CRP) level (3) Framingham estimate modified by family history of heart disease in parents or siblings (4) Framingham estimate modified by both CRP and family heart disease history. This web-based, family-oriented cardiac risk estimator uniquely considers family history and CRP while estimating risk.

  7. Soliton and quasi-periodic wave solutions for b-type Kadomtsev-Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Singh, Manjit; Gupta, R. K.

    2017-11-01

    In this paper, truncated Laurent expansion is used to obtain the bilinear equation of a nonlinear evolution equation. As an application of Hirota's method, multisoliton solutions are constructed from the bilinear equation. Extending the application of Hirota's method and employing multidimensional Riemann theta function, one and two-periodic wave solutions are also obtained in a straightforward manner. The asymptotic behavior of one and two-periodic wave solutions under small amplitude limits is presented, and their relations with soliton solutions are also demonstrated.

  8. Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics

    DTIC Science & Technology

    2007-09-30

    sub-processor must be added as shown in the blue box of Fig. 1. We first consider the Kadomtsev - Petviashvili (KP) equation ηt + coηx +αηηx + βη ...analytic integration of the so-called “soliton equations ,” I have discovered how the GFT can be used to solved higher order equations for which study...analytical study and extremely fast numerical integration of the extended nonlinear Schroedinger equation for fully three dimensional wave motion

  9. Exact soliton of (2 + 1)-dimensional fractional Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Rizvi, S. T. R.; Ali, K.; Bashir, S.; Younis, M.; Ashraf, R.; Ahmad, M. O.

    2017-07-01

    The nonlinear fractional Schrödinger equation is the basic equation of fractional quantum mechanics introduced by Nick Laskin in 2002. We apply three tools to solve this mathematical-physical model. First, we find the solitary wave solutions including the trigonometric traveling wave solutions, bell and kink shape solitons using the F-expansion and Improve F-expansion method. We also obtain the soliton solution, singular soliton solutions, rational function solution and elliptic integral function solutions, with the help of the extended trial equation method.

  10. Periodicity and positivity of a class of fractional differential equations.

    PubMed

    Ibrahim, Rabha W; Ahmad, M Z; Mohammed, M Jasim

    2016-01-01

    Fractional differential equations have been discussed in this study. We utilize the Riemann-Liouville fractional calculus to implement it within the generalization of the well known class of differential equations. The Rayleigh differential equation has been generalized of fractional second order. The existence of periodic and positive outcome is established in a new method. The solution is described in a fractional periodic Sobolev space. Positivity of outcomes is considered under certain requirements. We develop and extend some recent works. An example is constructed.

  11. Interval oscillation criteria for second-order forced impulsive delay differential equations with damping term.

    PubMed

    Thandapani, Ethiraju; Kannan, Manju; Pinelas, Sandra

    2016-01-01

    In this paper, we present some sufficient conditions for the oscillation of all solutions of a second order forced impulsive delay differential equation with damping term. Three factors-impulse, delay and damping that affect the interval qualitative properties of solutions of equations are taken into account together. The results obtained in this paper extend and generalize some of the the known results for forced impulsive differential equations. An example is provided to illustrate the main result.

  12. Intrusive Method for Uncertainty Quantification in a Multiphase Flow Solver

    NASA Astrophysics Data System (ADS)

    Turnquist, Brian; Owkes, Mark

    2016-11-01

    Uncertainty quantification (UQ) is a necessary, interesting, and often neglected aspect of fluid flow simulations. To determine the significance of uncertain initial and boundary conditions, a multiphase flow solver is being created which extends a single phase, intrusive, polynomial chaos scheme into multiphase flows. Reliably estimating the impact of input uncertainty on design criteria can help identify and minimize unwanted variability in critical areas, and has the potential to help advance knowledge in atomizing jets, jet engines, pharmaceuticals, and food processing. Use of an intrusive polynomial chaos method has been shown to significantly reduce computational cost over non-intrusive collocation methods such as Monte-Carlo. This method requires transforming the model equations into a weak form through substitution of stochastic (random) variables. Ultimately, the model deploys a stochastic Navier Stokes equation, a stochastic conservative level set approach including reinitialization, as well as stochastic normals and curvature. By implementing these approaches together in one framework, basic problems may be investigated which shed light on model expansion, uncertainty theory, and fluid flow in general. NSF Grant Number 1511325.

  13. Mediation in dyadic data at the level of the dyads: a Structural Equation Modeling approach.

    PubMed

    Ledermann, Thomas; Macho, Siegfried

    2009-10-01

    An extended version of the Common Fate Model (CFM) is presented to estimate and test mediation in dyadic data. The model can be used for distinguishable dyad members (e.g., heterosexual couples) or indistinguishable dyad members (e.g., homosexual couples) if (a) the variables measure characteristics of the dyadic relationship or shared external influences that affect both partners; if (b) the causal associations between the variables should be analyzed at the dyadic level; and if (c) the measured variables are reliable indicators of the latent variables. To assess mediation using Structural Equation Modeling, a general three-step procedure is suggested. The first is a selection of a good fitting model, the second a test of the direct effects, and the third a test of the mediating effect by means of bootstrapping. The application of the model along with the procedure for assessing mediation is illustrated using data from 184 couples on marital problems, communication, and marital quality. Differences with the Actor-Partner Interdependence Model and the analysis of longitudinal mediation by using the CFM are discussed.

  14. Mesh-free distributed point source method for modeling viscous fluid motion between disks vibrating at ultrasonic frequency.

    PubMed

    Wada, Yuji; Kundu, Tribikram; Nakamura, Kentaro

    2014-08-01

    The distributed point source method (DPSM) is extended to model wave propagation in viscous fluids. Appropriate estimation on attenuation and boundary layer formation due to fluid viscosity is necessary for the ultrasonic devices used for acoustic streaming or ultrasonic levitation. The equations for DPSM modeling in viscous fluids are derived in this paper by decomposing the linearized viscous fluid equations into two components-dilatational and rotational components. By considering complex P- and S-wave numbers, the acoustic fields in viscous fluids can be calculated following similar calculation steps that are used for wave propagation modeling in solids. From the calculations reported the precision of DPSM is found comparable to that of the finite element method (FEM) for a fundamental ultrasonic field problem. The particle velocity parallel to the two bounding surfaces of the viscous fluid layer between two rigid plates (one in motion and one stationary) is calculated. The finite element results agree well with the DPSM results that were generated faster than the transient FEM results.

  15. Collective neutrino oscillations and neutrino wave packets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhmedov, Evgeny; Lindner, Manfred; Kopp, Joachim, E-mail: akhmedov@mpi-hd.mpg.de, E-mail: jkopp@uni-mainz.de, E-mail: lindner@mpi-hd.mpg.de

    Effects of decoherence by wave packet separation on collective neutrino oscillations in dense neutrino gases are considered. We estimate the length of the wave packets of neutrinos produced in core collapse supernovae and the expected neutrino coherence length, and then proceed to consider the decoherence effects within the density matrix formalism of neutrino flavour transitions. First, we demonstrate that for neutrino oscillations in vacuum the decoherence effects are described by a damping term in the equation of motion of the density matrix of a neutrino as a whole (as contrasted to that of the fixed-momentum components of the neutrino densitymore » matrix). Next, we consider neutrino oscillations in ordinary matter and dense neutrino backgrounds, both in the adiabatic and non-adiabatic regimes. In the latter case we study two specific models of adiabaticity violation—one with short-term and another with extended non-adiabaticity. It is demonstrated that, while in the adiabatic case a damping term is present in the equation of motion of the neutrino density matrix (just like in the vacuum oscillation case), no such term in general appears in the non-adiabatic regime.« less

  16. Modification of Hazen's equation in coarse grained soils by soft computing techniques

    NASA Astrophysics Data System (ADS)

    Kaynar, Oguz; Yilmaz, Isik; Marschalko, Marian; Bednarik, Martin; Fojtova, Lucie

    2013-04-01

    Hazen first proposed a Relationship between coefficient of permeability (k) and effective grain size (d10) was first proposed by Hazen, and it was then extended by some other researchers. However many attempts were done for estimation of k, correlation coefficients (R2) of the models were generally lower than ~0.80 and whole grain size distribution curves were not included in the assessments. Soft computing techniques such as; artificial neural networks, fuzzy inference systems, genetic algorithms, etc. and their hybrids are now being successfully used as an alternative tool. In this study, use of some soft computing techniques such as Artificial Neural Networks (ANNs) (MLP, RBF, etc.) and Adaptive Neuro-Fuzzy Inference System (ANFIS) for prediction of permeability of coarse grained soils was described, and Hazen's equation was then modificated. It was found that the soft computing models exhibited high performance in prediction of permeability coefficient. However four different kinds of ANN algorithms showed similar prediction performance, results of MLP was found to be relatively more accurate than RBF models. The most reliable prediction was obtained from ANFIS model.

  17. Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2015-06-01

    Non-linear entropy stability and a summation-by-parts (SBP) framework are used to derive entropy stable interior interface coupling for the semi-discretized three-dimensional (3D) compressible Navier-Stokes equations. A complete semi-discrete entropy estimate for the interior domain is achieved combining a discontinuous entropy conservative operator of any order [1,2] with an entropy stable coupling condition for the inviscid terms, and a local discontinuous Galerkin (LDG) approach with an interior penalty (IP) procedure for the viscous terms. The viscous penalty contributions scale with the inverse of the Reynolds number (Re) so that for Re → ∞ their contributions vanish and only the entropy stable inviscid interface penalty term is recovered. This paper extends the interface couplings presented [1,2] and provides a simple and automatic way to compute the magnitude of the viscous IP term. The approach presented herein is compatible with any diagonal norm summation-by-parts (SBP) spatial operator, including finite element, finite volume, finite difference schemes and the class of high-order accurate methods which include the large family of discontinuous Galerkin discretizations and flux reconstruction schemes.

  18. Contributed Review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements

    DOE PAGES

    Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.; ...

    2016-04-01

    Locating the position of fixed or mobile sources (i.e., transmitters) based on received measurements from sensors is an important research area that is attracting much research interest. In this paper, we present localization algorithms using time of arrivals (TOA) and time difference of arrivals (TDOA) to achieve high accuracy under line-of-sight conditions. The circular (TOA) and hyperbolic (TDOA) location systems both use nonlinear equations that relate the locations of the sensors and tracked objects. These nonlinear equations can develop accuracy challenges because of the existence of measurement errors and efficiency challenges that lead to high computational burdens. Least squares-based andmore » maximum likelihood-based algorithms have become the most popular categories of location estimators. We also summarize the advantages and disadvantages of various positioning algorithms. By improving measurement techniques and localization algorithms, localization applications can be extended into the signal-processing-related domains of radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.« less

  19. Contributed Review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.

    Locating the position of fixed or mobile sources (i.e., transmitters) based on received measurements from sensors is an important research area that is attracting much research interest. In this paper, we present localization algorithms using time of arrivals (TOA) and time difference of arrivals (TDOA) to achieve high accuracy under line-of-sight conditions. The circular (TOA) and hyperbolic (TDOA) location systems both use nonlinear equations that relate the locations of the sensors and tracked objects. These nonlinear equations can develop accuracy challenges because of the existence of measurement errors and efficiency challenges that lead to high computational burdens. Least squares-based andmore » maximum likelihood-based algorithms have become the most popular categories of location estimators. We also summarize the advantages and disadvantages of various positioning algorithms. By improving measurement techniques and localization algorithms, localization applications can be extended into the signal-processing-related domains of radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.« less

  20. Separating Dark Physics from Physical Darkness: Minimalist Modified Gravity vs. Dark Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huterer, Dragan; Linder, Eric V.

    The acceleration of the cosmic expansion may be due to a new component of physical energy density or a modification of physics itself. Mapping the expansion of cosmic scales and the growth of large scale structure in tandem can provide insights to distinguish between the two origins. Using Minimal Modified Gravity (MMG) - a single parameter gravitational growth index formalism to parameterize modified gravity theories - we examine the constraints that cosmological data can place on the nature of the new physics. For next generation measurements combining weak lensing, supernovae distances, and the cosmic microwave background we can extend themore » reach of physics to allow for fitting gravity simultaneously with the expansion equation of state, diluting the equation of state estimation by less than 25percent relative to when general relativity is assumed, and determining the growth index to 8percent. For weak lensing we examine the level of understanding needed of quasi- and nonlinear structure formation in modified gravity theories, and the trade off between stronger precision but greater susceptibility to bias as progressively more nonlinear information is used.« less

  1. Separating dark physics from physical darkness: Minimalist modified gravity versus dark energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huterer, Dragan; Linder, Eric V.

    The acceleration of the cosmic expansion may be due to a new component of physical energy density or a modification of physics itself. Mapping the expansion of cosmic scales and the growth of large scale structure in tandem can provide insights to distinguish between the two origins. Using Minimal Modified Gravity (MMG) - a single parameter gravitational growth index formalism to parametrize modified gravity theories - we examine the constraints that cosmological data can place on the nature of the new physics. For next generation measurements combining weak lensing, supernovae distances, and the cosmic microwave background we can extend themore » reach of physics to allow for fitting gravity simultaneously with the expansion equation of state, diluting the equation of state estimation by less than 25% relative to when general relativity is assumed, and determining the growth index to 8%. For weak lensing we examine the level of understanding needed of quasi- and nonlinear structure formation in modified gravity theories, and the trade off between stronger precision but greater susceptibility to bias as progressively more nonlinear information is used.« less

  2. A comparative analysis of extended water cloud model and backscatter modelling for above-ground biomass assessment in Corbett Tiger Reserve

    NASA Astrophysics Data System (ADS)

    Kumar, Yogesh; Singh, Sarnam; Chatterjee, R. S.; Trivedi, Mukul

    2016-04-01

    Forest biomass acts as a backbone in regulating the climate by storing carbon within itself. Thus the assessment of forest biomass is crucial in understanding the dynamics of the environment. Traditionally the destructive methods were adopted for the assessment of biomass which were further advanced to the non-destructive methods. The allometric equations developed by destructive methods were further used in non-destructive methods for the assessment, but they were mostly applied for woody/commercial timber species. However now days Remote Sensing data are primarily used for the biomass geospatial pattern assessment. The Optical Remote Sensing data (Landsat8, LISS III, etc.) are being used very successfully for the estimation of above ground biomass (AGB). However optical data is not suitable for all atmospheric/environmental conditions, because it can't penetrate through clouds and haze. Thus Radar data is one of the alternate possible ways to acquire data in all-weather conditions irrespective of weather and light. The paper examines the potential of ALOS PALSAR L-band dual polarisation data for the estimation of AGB in the Corbett Tiger Reserve (CTR) covering an area of 889 km2. The main focus of this study is to explore the accuracy of Polarimetric Scattering Model (Extended Water Cloud Model (EWCM) with respect to Backscatter model in the assessment of AGB. The parameters of the EWCM were estimated using the decomposition components (Raney Decomposition) and the plot level information. The above ground biomass in the CTR ranges from 9.6 t/ha to 322.6 t/ha.

  3. Methods for estimating streamflow at mountain fronts in southern New Mexico

    USGS Publications Warehouse

    Waltemeyer, S.D.

    1994-01-01

    The infiltration of streamflow is potential recharge to alluvial-basin aquifers at or near mountain fronts in southern New Mexico. Data for 13 streamflow-gaging stations were used to determine a relation between mean annual stream- flow and basin and climatic conditions. Regression analysis was used to develop an equation that can be used to estimate mean annual streamflow on the basis of drainage areas and mean annual precipi- tation. The average standard error of estimate for this equation is 46 percent. Regression analysis also was used to develop an equation to estimate mean annual streamflow on the basis of active- channel width. Measurements of the width of active channels were determined for 6 of the 13 gaging stations. The average standard error of estimate for this relation is 29 percent. Stream- flow estimates made using a regression equation based on channel geometry are considered more reliable than estimates made from an equation based on regional relations of basin and climatic conditions. The sample size used to develop these relations was small, however, and the reported standard error of estimate may not represent that of the entire population. Active-channel-width measurements were made at 23 ungaged sites along the Rio Grande upstream from Elephant Butte Reservoir. Data for additional sites would be needed for a more comprehensive assessment of mean annual streamflow in southern New Mexico.

  4. Modeling Health Care Expenditures and Use.

    PubMed

    Deb, Partha; Norton, Edward C

    2018-04-01

    Health care expenditures and use are challenging to model because these dependent variables typically have distributions that are skewed with a large mass at zero. In this article, we describe estimation and interpretation of the effects of a natural experiment using two classes of nonlinear statistical models: one for health care expenditures and the other for counts of health care use. We extend prior analyses to test the effect of the ACA's young adult expansion on three different outcomes: total health care expenditures, office-based visits, and emergency department visits. Modeling the outcomes with a two-part or hurdle model, instead of a single-equation model, reveals that the ACA policy increased the number of office-based visits but decreased emergency department visits and overall spending.

  5. Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials

    NASA Astrophysics Data System (ADS)

    Antonelli, Paolo; Michelangeli, Alessandro; Scandone, Raffaele

    2018-04-01

    We prove the existence of weak solutions in the space of energy for a class of nonlinear Schrödinger equations in the presence of a external, rough, time-dependent magnetic potential. Under our assumptions, it is not possible to study the problem by means of usual arguments like resolvent techniques or Fourier integral operators, for example. We use a parabolic regularisation, and we solve the approximating Cauchy problem. This is achieved by obtaining suitable smoothing estimates for the dissipative evolution. The total mass and energy bounds allow to extend the solution globally in time. We then infer sufficient compactness properties in order to produce a global-in-time finite energy weak solution to our original problem.

  6. Soft inclusion in a confined fluctuating active gel

    NASA Astrophysics Data System (ADS)

    Singh Vishen, Amit; Rupprecht, J.-F.; Shivashankar, G. V.; Prost, J.; Rao, Madan

    2018-03-01

    We study stochastic dynamics of a point and extended inclusion within a one-dimensional confined active viscoelastic gel. We show that the dynamics of a point inclusion can be described by a Langevin equation with a confining potential and multiplicative noise. Using a systematic adiabatic elimination over the fast variables, we arrive at an overdamped equation with a proper definition of the multiplicative noise. To highlight various features and to appeal to different biological contexts, we treat the inclusion in turn as a rigid extended element, an elastic element, and a viscoelastic (Kelvin-Voigt) element. The dynamics for the shape and position of the extended inclusion can be described by coupled Langevin equations. Deriving exact expressions for the corresponding steady-state probability distributions, we find that the active noise induces an attraction to the edges of the confining domain. In the presence of a competing centering force, we find that the shape of the probability distribution exhibits a sharp transition upon varying the amplitude of the active noise. Our results could help understanding the positioning and deformability of biological inclusions, e.g., organelles in cells, or nucleus and cells within tissues.

  7. Estimating and Interpreting Latent Variable Interactions: A Tutorial for Applying the Latent Moderated Structural Equations Method

    ERIC Educational Resources Information Center

    Maslowsky, Julie; Jager, Justin; Hemken, Douglas

    2015-01-01

    Latent variables are common in psychological research. Research questions involving the interaction of two variables are likewise quite common. Methods for estimating and interpreting interactions between latent variables within a structural equation modeling framework have recently become available. The latent moderated structural equations (LMS)…

  8. Comparison of constitutive flow resistance equations based on the Manning and Chezy equations applied to natural rivers

    USGS Publications Warehouse

    Bjerklie, David M.; Dingman, S. Lawrence; Bolster, Carl H.

    2005-01-01

    A set of conceptually derived in‐bank river discharge–estimating equations (models), based on the Manning and Chezy equations, are calibrated and validated using a database of 1037 discharge measurements in 103 rivers in the United States and New Zealand. The models are compared to a multiple regression model derived from the same data. The comparison demonstrates that in natural rivers, using an exponent on the slope variable of 0.33 rather than the traditional value of 0.5 reduces the variance associated with estimating flow resistance. Mean model uncertainty, assuming a constant value for the conductance coefficient, is less than 5% for a large number of estimates, and 67% of the estimates would be accurate within 50%. The models have potential application where site‐specific flow resistance information is not available and can be the basis for (1) a general approach to estimating discharge from remotely sensed hydraulic data, (2) comparison to slope‐area discharge estimates, and (3) large‐scale river modeling.

  9. Body composition in elderly people: effect of criterion estimates on predictive equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgartner, R.N.; Heymsfield, S.B.; Lichtman, S.

    1991-06-01

    The purposes of this study were to determine whether there are significant differences between two- and four-compartment model estimates of body composition, whether these differences are associated with aqueous and mineral fractions of the fat-free mass (FFM); and whether the differences are retained in equations for predicting body composition from anthropometry and bioelectric resistance. Body composition was estimated in 98 men and women aged 65-94 y by using a four-compartment model based on hydrodensitometry, {sup 3}H{sub 2}O dilution, and dual-photon absorptiometry. These estimates were significantly different from those obtained by using Siri's two-compartment model. The differences were associated significantly (Pmore » less than 0.0001) with variation in the aqueous fraction of FFM. Equations for predicting body composition from anthropometry and resistance, when calibrated against two-compartment model estimates, retained these systematic errors. Equations predicting body composition in elderly people should be calibrated against estimates from multicompartment models that consider variability in FFM composition.« less

  10. Estimating Selected Streamflow Statistics Representative of 1930-2002 in West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.

    2008-01-01

    Regional equations and procedures were developed for estimating 1-, 3-, 7-, 14-, and 30-day 2-year; 1-, 3-, 7-, 14-, and 30-day 5-year; and 1-, 3-, 7-, 14-, and 30-day 10-year hydrologically based low-flow frequency values for unregulated streams in West Virginia. Regional equations and procedures also were developed for estimating the 1-day, 3-year and 4-day, 3-year biologically based low-flow frequency values; the U.S. Environmental Protection Agency harmonic-mean flows; and the 10-, 25-, 50-, 75-, and 90-percent flow-duration values. Regional equations were developed using ordinary least-squares regression using statistics from 117 U.S. Geological Survey continuous streamflow-gaging stations as dependent variables and basin characteristics as independent variables. Equations for three regions in West Virginia - North, South-Central, and Eastern Panhandle - were determined. Drainage area, precipitation, and longitude of the basin centroid are significant independent variables in one or more of the equations. Estimating procedures are presented for determining statistics at a gaging station, a partial-record station, and an ungaged location. Examples of some estimating procedures are presented.

  11. Procedure for estimating stability and control parameters from flight test data by using maximum likelihood methods employing a real-time digital system

    NASA Technical Reports Server (NTRS)

    Grove, R. D.; Bowles, R. L.; Mayhew, S. C.

    1972-01-01

    A maximum likelihood parameter estimation procedure and program were developed for the extraction of the stability and control derivatives of aircraft from flight test data. Nonlinear six-degree-of-freedom equations describing aircraft dynamics were used to derive sensitivity equations for quasilinearization. The maximum likelihood function with quasilinearization was used to derive the parameter change equations, the covariance matrices for the parameters and measurement noise, and the performance index function. The maximum likelihood estimator was mechanized into an iterative estimation procedure utilizing a real time digital computer and graphic display system. This program was developed for 8 measured state variables and 40 parameters. Test cases were conducted with simulated data for validation of the estimation procedure and program. The program was applied to a V/STOL tilt wing aircraft, a military fighter airplane, and a light single engine airplane. The particular nonlinear equations of motion, derivation of the sensitivity equations, addition of accelerations into the algorithm, operational features of the real time digital system, and test cases are described.

  12. Male-Female Wage Differentials in the United States.

    ERIC Educational Resources Information Center

    Kiker, B. F.; Crouch, Henry L.

    The primary objective of this paper is to describe a method of estimating female-male wage ratios. The estimating technique presented is two stage least squares (2SLS), in which equations are estimated for both men and women. After specifying and estimating the wage equations, the male-female wage differential is calculated that would remain if…

  13. Standard Error of Linear Observed-Score Equating for the NEAT Design with Nonnormally Distributed Data

    ERIC Educational Resources Information Center

    Zu, Jiyun; Yuan, Ke-Hai

    2012-01-01

    In the nonequivalent groups with anchor test (NEAT) design, the standard error of linear observed-score equating is commonly estimated by an estimator derived assuming multivariate normality. However, real data are seldom normally distributed, causing this normal estimator to be inconsistent. A general estimator, which does not rely on the…

  14. Exact traveling wave solutions for system of nonlinear evolution equations.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H

    2016-01-01

    In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis.

  15. Truncated Painlevé expansion: Tanh-traveling wave solutions and reduction of sine-Poisson equation to a quadrature for stationary and nonstationary three-dimensional collisionless cold plasma

    NASA Astrophysics Data System (ADS)

    Ibrahim, R. S.; El-Kalaawy, O. H.

    2006-10-01

    The relativistic nonlinear self-consistent equations for a collisionless cold plasma with stationary ions [R. S. Ibrahim, IMA J. Appl. Math. 68, 523 (2003)] are extended to 3 and 3+1 dimensions. The resulting system of equations is reduced to the sine-Poisson equation. The truncated Painlevé expansion and reduction of the partial differential equation to a quadrature problem (RQ method) are described and applied to obtain the traveling wave solutions of the sine-Poisson equation for stationary and nonstationary equations in 3 and 3+1 dimensions describing the charge-density equilibrium configuration model.

  16. Addendum to "Free energies from integral equation theories: enforcing path independence".

    PubMed

    Kast, Stefan M

    2006-01-01

    The variational formalism developed for the analysis of the path dependence of free energies from integral equation theories [S. M. Kast, Phys. Rev. E 67, 041203 (2003)] is extended in order to allow for the three-dimensional treatment of arbitrarily shaped solutes.

  17. Extending the Constant Coefficient Solution Technique to Variable Coefficient Ordinary Differential Equations

    ERIC Educational Resources Information Center

    Mohammed, Ahmed; Zeleke, Aklilu

    2015-01-01

    We introduce a class of second-order ordinary differential equations (ODEs) with variable coefficients whose closed-form solutions can be obtained by the same method used to solve ODEs with constant coefficients. General solutions for the homogeneous case are discussed.

  18. New compacton soliton solutions and solitary patterns solutions of nonlinearly dispersive Boussinesq equations

    NASA Astrophysics Data System (ADS)

    Yan, Zhenya; Bluman, George

    2002-11-01

    The special exact solutions of nonlinearly dispersive Boussinesq equations (called B( m, n) equations), utt- uxx- a( un) xx+ b( um) xxxx=0, is investigated by using four direct ansatze. As a result, abundant new compactons: solitons with the absence of infinite wings, solitary patterns solutions having infinite slopes or cups, solitary waves and singular periodic wave solutions of these two equations are obtained. The variant is extended to include linear dispersion to support compactons and solitary patterns in the linearly dispersive Boussinesq equations with m=1. Moreover, another new compacton solution of the special case, B(2,2) equation, is also found.

  19. Structural Identifiability of Dynamic Systems Biology Models

    PubMed Central

    Villaverde, Alejandro F.

    2016-01-01

    A powerful way of gaining insight into biological systems is by creating a nonlinear differential equation model, which usually contains many unknown parameters. Such a model is called structurally identifiable if it is possible to determine the values of its parameters from measurements of the model outputs. Structural identifiability is a prerequisite for parameter estimation, and should be assessed before exploiting a model. However, this analysis is seldom performed due to the high computational cost involved in the necessary symbolic calculations, which quickly becomes prohibitive as the problem size increases. In this paper we show how to analyse the structural identifiability of a very general class of nonlinear models by extending methods originally developed for studying observability. We present results about models whose identifiability had not been previously determined, report unidentifiabilities that had not been found before, and show how to modify those unidentifiable models to make them identifiable. This method helps prevent problems caused by lack of identifiability analysis, which can compromise the success of tasks such as experiment design, parameter estimation, and model-based optimization. The procedure is called STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decomposition), and it is implemented in a MATLAB toolbox which is available as open source software. The broad applicability of this approach facilitates the analysis of the increasingly complex models used in systems biology and other areas. PMID:27792726

  20. A numerical study of nonlinear waves in a transcritical flow of stratified fluid past an obstacle

    NASA Astrophysics Data System (ADS)

    Hanazaki, Hideshi

    1992-10-01

    A numerical study of the flow of stratified fluid past an obstacle in a horizontal channel is described. Upstream advancing of waves near critically (resonance) appears in the case of ordinary two-layer flow, in which case the flow is described well by the solution of the forced extended Korteweg-de Vries (KdV) equation which has a cubic nonlinear term. It is shown theoretically that the upstream waves in the general two-layer flow cannot be well described by the forced KdV equation except when the wave amplitude is very small. The critical-level flow is also governed by the forced extended KdV equation. However, because of the smallness of the coefficient of the quadratic nonlinear term, the bore cannot propagate upstream at exact resonance. The results for the linearly stratified Boussinesq flow show good agreement with the solution of the Grimshaw and Yi (1991) equation, at least for exact resonance.

  1. Interaction of the sonic boom with atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Rusak, Zvi; Cole, Julian D.

    1994-01-01

    Theoretical research was carried out to study the effect of free-stream turbulence on sonic boom pressure fields. A new transonic small-disturbance model to analyze the interactions of random disturbances with a weak shock was developed. The model equation has an extended form of the classic small-disturbance equation for unsteady transonic aerodynamics. An alternative approach shows that the pressure field may be described by an equation that has an extended form of the classic nonlinear acoustics equation that describes the propagation of sound beams with narrow angular spectrum. The model shows that diffraction effects, nonlinear steepening effects, focusing and caustic effects and random induced vorticity fluctuations interact simultaneously to determine the development of the shock wave in space and time and the pressure field behind it. A finite-difference algorithm to solve the mixed type elliptic-hyperbolic flows around the shock wave was also developed. Numerical calculations of shock wave interactions with various deterministic and random fluctuations will be presented in a future report.

  2. Comparative evaluation of technetium-99m-diethylenetriaminepentaacetic acid renal dynamic imaging versus the Modification of Diet in Renal Disease equation and the Chronic Kidney Disease Epidemiology Collaboration equation for the estimation of GFR.

    PubMed

    Huang, Qi; Chen, Yunshuang; Zhang, Min; Wang, Sihe; Zhang, Weiguang; Cai, Guangyan; Chen, Xiangmei; Sun, Xuefeng

    2018-04-01

    We compared the performance of technetium-99m-diethylenetriaminepentaacetic acid ( 99m Tc-DTPA) renal dynamic imaging (RDI), the MDRD equation, and the CKD EPI equation to estimate glomerular filtration rate (GFR). A total of 551 subjects, including CKD patients and healthy individuals, were enrolled in this study. Dual plasma sample clearance method of 99m Tc-DTPA was used as the true value for GFR (tGFR). RDI and the MDRD and CKD EPI equations for estimating GFR were compared and evaluated. Data indicate that RDI and the MDRD equation underestimated GFR and CKD EPI overestimated GFR. RDI was associated with significantly higher bias than the MDRD and CKD EPI equations. The regression coefficient, diagnostic precision, and consistency of RDI were significantly lower than either equation. RDI and the MDRD equation underestimated GFR to a greater degree in subjects with tGFR ≥ 90 ml/min/1.73 m 2 compared with the results obtained from all subjects. In the tGFR60-89 ml/min/1.73 m 2 group, the precision of RDI was significantly lower than that of both equations. In the tGFR30-59 ml/min/1.73 m 2 group, RDI had the least bias, the most precision, and significantly higher accuracy compared with either equation. In tGFR < 30 ml/min/1.73 m 2 , the three methods had similar performance and were not significantly different. RDI significantly underestimates GFR and performs no better than MDRD and CKD EPI equations for GFR estimation; thus, it should not be recommended as a reference standard against which other GFR measurement methods are assessed. However, RDI better estimates GFR than either equation for individuals in the tGFR30-59 ml/min/1.73 m 2 group and thus may be helpful to distinguish stage 3a and 3b CKD.

  3. Improving estimates of streamflow characteristics by using Landsat-1 imagery

    USGS Publications Warehouse

    Hollyday, Este F.

    1976-01-01

    Imagery from the first Earth Resources Technology Satellite (renamed Landsat-1) was used to discriminate physical features of drainage basins in an effort to improve equations used to estimate streamflow characteristics at gaged and ungaged sites. Records of 20 gaged basins in the Delmarva Peninsula of Maryland, Delaware, and Virginia were analyzed for 40 statistical streamflow characteristics. Equations relating these characteristics to basin characteristics were obtained by a technique of multiple linear regression. A control group of equations contains basin characteristics derived from maps. An experimental group of equations contains basin characteristics derived from maps and imagery. Characteristics from imagery were forest, riparian (streambank) vegetation, water, and combined agricultural and urban land use. These basin characteristics were isolated photographically by techniques of film-density discrimination. The area of each characteristic in each basin was measured photometrically. Comparison of equations in the control group with corresponding equations in the experimental group reveals that for 12 out of 40 equations the standard error of estimate was reduced by more than 10 percent. As an example, the standard error of estimate of the equation for the 5-year recurrence-interval flood peak was reduced from 46 to 32 percent. Similarly, the standard error of the equation for the mean monthly flow for September was reduced from 32 to 24 percent, the standard error for the 7-day, 2-year recurrence low flow was reduced from 136 to 102 percent, and the standard error for the 3-day, 2-year flood volume was reduced from 30 to 12 percent. It is concluded that data from Landsat imagery can substantially improve the accuracy of estimates of some streamflow characteristics at sites in the Delmarva Peninsula.

  4. Estimation of selected flow and water-quality characteristics of Alaskan streams

    USGS Publications Warehouse

    Parks, Bruce; Madison, R.J.

    1985-01-01

    Although hydrologic data are either sparse or nonexistent for large areas of Alaska, the drainage area, area of lakes, glacier and forest cover, and average precipitation in a hydrologic basin of interest can be measured or estimated from existing maps. Application of multiple linear regression techniques indicates that statistically significant correlations exist between properties of basins determined from maps and measured streamflow characteristics. This suggests that corresponding characteristics of ungaged basins can be estimated. Streamflow frequency characteristics can be estimated from regional equations developed for southeast, south-central and Yukon regions. Statewide or modified regional equations must be used, however, for the southwest, northwest, and Arctic Slope regions where there is a paucity of data. Equations developed from basin characteristics are given to estimate suspended-sediment values for glacial streams and, with less reliability, for nonglacial streams. Equations developed from available specific conductance data are given to estimate concentrations of major dissolved inorganic constituents. Suggestions are made for expanding the existing data base and thus improving the ability to estimate hydrologic characteristics for Alaskan streams. (USGS)

  5. Grouping methods for estimating the prevalences of rare traits from complex survey data that preserve confidentiality of respondents.

    PubMed

    Hyun, Noorie; Gastwirth, Joseph L; Graubard, Barry I

    2018-03-26

    Originally, 2-stage group testing was developed for efficiently screening individuals for a disease. In response to the HIV/AIDS epidemic, 1-stage group testing was adopted for estimating prevalences of a single or multiple traits from testing groups of size q, so individuals were not tested. This paper extends the methodology of 1-stage group testing to surveys with sample weighted complex multistage-cluster designs. Sample weighted-generalized estimating equations are used to estimate the prevalences of categorical traits while accounting for the error rates inherent in the tests. Two difficulties arise when using group testing in complex samples: (1) How does one weight the results of the test on each group as the sample weights will differ among observations in the same group. Furthermore, if the sample weights are related to positivity of the diagnostic test, then group-level weighting is needed to reduce bias in the prevalence estimation; (2) How does one form groups that will allow accurate estimation of the standard errors of prevalence estimates under multistage-cluster sampling allowing for intracluster correlation of the test results. We study 5 different grouping methods to address the weighting and cluster sampling aspects of complex designed samples. Finite sample properties of the estimators of prevalences, variances, and confidence interval coverage for these grouping methods are studied using simulations. National Health and Nutrition Examination Survey data are used to illustrate the methods. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Numerical simulation of premixed flame propagation in a closed tube

    NASA Astrophysics Data System (ADS)

    Kuzuu, Kazuto; Ishii, Katsuya; Kuwahara, Kunio

    1996-08-01

    Premixed flame propagation of methane-air mixture in a closed tube is estimated through a direct numerical simulation of the three-dimensional unsteady Navier-Stokes equations coupled with chemical reaction. In order to deal with a combusting flow, an extended version of the MAC method, which can be applied to a compressible flow with strong density variation, is employed as a numerical method. The chemical reaction is assumed to be an irreversible single step reaction between methane and oxygen. The chemical species are CH 4, O 2, N 2, CO 2, and H 2O. In this simulation, we reproduce a formation of a tulip flame in a closed tube during the flame propagation. Furthermore we estimate not only a two-dimensional shape but also a three-dimensional structure of the flame and flame-induced vortices, which cannot be observed in the experiments. The agreement between the calculated results and the experimental data is satisfactory, and we compare the phenomenon near the side wall with the one in the corner of the tube.

  7. Streamflow record extension using power transformations and application to sediment transport

    NASA Astrophysics Data System (ADS)

    Moog, Douglas B.; Whiting, Peter J.; Thomas, Robert B.

    1999-01-01

    To obtain a representative set of flow rates for a stream, it is often desirable to fill in missing data or extend measurements to a longer time period by correlation to a nearby gage with a longer record. Linear least squares regression of the logarithms of the flows is a traditional and still common technique. However, its purpose is to generate optimal estimates of each day's discharge, rather than the population of discharges, for which it tends to underestimate variance. Maintenance-of-variance-extension (MOVE) equations [Hirsch, 1982] were developed to correct this bias. This study replaces the logarithmic transformation by the more general Box-Cox scaled power transformation, generating a more linear, constant-variance relationship for the MOVE extension. Combining the Box-Cox transformation with the MOVE extension is shown to improve accuracy in estimating order statistics of flow rate, particularly for the nonextreme discharges which generally govern cumulative transport over time. This advantage is illustrated by prediction of cumulative fractions of total bed load transport.

  8. Design of adaptive control systems by means of self-adjusting transversal filters

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.

    1986-01-01

    The design of closed-loop adaptive control systems based on nonparametric identification was addressed. Implementation is by self-adjusting Least Mean Square (LMS) transversal filters. The design concept is Model Reference Adaptive Control (MRAC). Major issues are to preserve the linearity of the error equations of each LMS filter, and to prevent estimation bias that is due to process or measurement noise, thus providing necessary conditions for the convergence and stability of the control system. The controlled element is assumed to be asymptotically stable and minimum phase. Because of the nonparametric Finite Impulse Response (FIR) estimates provided by the LMS filters, a-priori information on the plant model is needed only in broad terms. Following a survey of control system configurations and filter design considerations, system implementation is shown here in Single Input Single Output (SISO) format which is readily extendable to multivariable forms. In extensive computer simulation studies the controlled element is represented by a second-order system with widely varying damping, natural frequency, and relative degree.

  9. Error estimation for CFD aeroheating prediction under rarefied flow condition

    NASA Astrophysics Data System (ADS)

    Jiang, Yazhong; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian

    2014-12-01

    Both direct simulation Monte Carlo (DSMC) and Computational Fluid Dynamics (CFD) methods have become widely used for aerodynamic prediction when reentry vehicles experience different flow regimes during flight. The implementation of slip boundary conditions in the traditional CFD method under Navier-Stokes-Fourier (NSF) framework can extend the validity of this approach further into transitional regime, with the benefit that much less computational cost is demanded compared to DSMC simulation. Correspondingly, an increasing error arises in aeroheating calculation as the flow becomes more rarefied. To estimate the relative error of heat flux when applying this method for a rarefied flow in transitional regime, theoretical derivation is conducted and a dimensionless parameter ɛ is proposed by approximately analyzing the ratio of the second order term to first order term in the heat flux expression in Burnett equation. DSMC simulation for hypersonic flow over a cylinder in transitional regime is performed to test the performance of parameter ɛ, compared with two other parameters, Knρ and MaṡKnρ.

  10. Assessing the impacts of extended drought conditions and global warming on groundwater resources in Iowa

    NASA Astrophysics Data System (ADS)

    Acar, O.; Franz, K.; Simpkins, W. W.

    2013-12-01

    Extended drought conditions that affected much of the U.S. throughout 2012 and continued into 2013 are bringing climate change to the forefront of public attention. Long-term effects of an extended dry spell on groundwater is especially concerning as these resources are essential for meeting drinking water demands, supporting agricultural and industrial activities, and maintaining water levels in rivers and lakes. Thus, the impact of extended drought conditions on the entire hydrologic cycle needs to be well understood to guide future resource and land management decisions. This study aims to explore the impact of extended drought conditions on groundwater resources in a representative Iowa watershed using Regional Climate Model scenarios implemented through HydroGeoSphere, a physically-based, surface water-groundwater model. Estimating the impacts of climate changes on groundwater resources requires representation of the full hydrological system, i.e. the connection between the atmospheric and surface-subsurface processes, in a realistic way. In the HydroGeoSphere model, surface and subsurface flow equations are solved simultaneously, and the interdependence of processes like actual evapotranspiration and recharge is handled explicitly. Using such state-of-the-art modeling tools, we seek to address the consequences of changing climate extremes (that have already been experienced and expected to continue over long periods in the future) on the hydrologic cycle of our pilot study area, the South Fork watershed in north-central Iowa. The results will provide a baseline for investigating mitigation strategies in agricultural practices and water use due to changes in the wet and dry cycles of the regional hydrologic cycle.

  11. 76 FR 29030 - BNSF Railway Company-Discontinuance-in Iron and Crawford Counties, MO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... known as the Lead Line extending from railroad milepost 87.60, at Cuba, to the end of the line at... equation in mileposts between milepost 100.72 and 100.74. Line segment 1009, which begins at Cuba, extends...

  12. Methods for estimating selected low-flow frequency statistics for unregulated streams in Kentucky

    USGS Publications Warehouse

    Martin, Gary R.; Arihood, Leslie D.

    2010-01-01

    This report provides estimates of, and presents methods for estimating, selected low-flow frequency statistics for unregulated streams in Kentucky including the 30-day mean low flows for recurrence intervals of 2 and 5 years (30Q2 and 30Q5) and the 7-day mean low flows for recurrence intervals of 5, 10, and 20 years (7Q2, 7Q10, and 7Q20). Estimates of these statistics are provided for 121 U.S. Geological Survey streamflow-gaging stations with data through the 2006 climate year, which is the 12-month period ending March 31 of each year. Data were screened to identify the periods of homogeneous, unregulated flows for use in the analyses. Logistic-regression equations are presented for estimating the annual probability of the selected low-flow frequency statistics being equal to zero. Weighted-least-squares regression equations were developed for estimating the magnitude of the nonzero 30Q2, 30Q5, 7Q2, 7Q10, and 7Q20 low flows. Three low-flow regions were defined for estimating the 7-day low-flow frequency statistics. The explicit explanatory variables in the regression equations include total drainage area and the mapped streamflow-variability index measured from a revised statewide coverage of this characteristic. The percentage of the station low-flow statistics correctly classified as zero or nonzero by use of the logistic-regression equations ranged from 87.5 to 93.8 percent. The average standard errors of prediction of the weighted-least-squares regression equations ranged from 108 to 226 percent. The 30Q2 regression equations have the smallest standard errors of prediction, and the 7Q20 regression equations have the largest standard errors of prediction. The regression equations are applicable only to stream sites with low flows unaffected by regulation from reservoirs and local diversions of flow and to drainage basins in specified ranges of basin characteristics. Caution is advised when applying the equations for basins with characteristics near the applicable limits and for basins with karst drainage features.

  13. Spot urine sodium measurements do not accurately estimate dietary sodium intake in chronic kidney disease12

    PubMed Central

    Dougher, Carly E; Rifkin, Dena E; Anderson, Cheryl AM; Smits, Gerard; Persky, Martha S; Block, Geoffrey A; Ix, Joachim H

    2016-01-01

    Background: Sodium intake influences blood pressure and proteinuria, yet the impact on long-term outcomes is uncertain in chronic kidney disease (CKD). Accurate assessment is essential for clinical and public policy recommendations, but few large-scale studies use 24-h urine collections. Recent studies that used spot urine sodium and associated estimating equations suggest that they may provide a suitable alternative, but their accuracy in patients with CKD is unknown. Objective: We compared the accuracy of 4 equations [the Nerbass, INTERSALT (International Cooperative Study on Salt, Other Factors, and Blood Pressure), Tanaka, and Kawasaki equations] that use spot urine sodium to estimate 24-h sodium excretion in patients with moderate to advanced CKD. Design: We evaluated the accuracy of spot urine sodium to predict mean 24-h urine sodium excretion over 9 mo in 129 participants with stage 3–4 CKD. Spot morning urine sodium was used in 4 estimating equations. Bias, precision, and accuracy were assessed and compared across each equation. Results: The mean age of the participants was 67 y, 52% were female, and the mean estimated glomerular filtration rate was 31 ± 9 mL · min–1 · 1.73 m–2. The mean ± SD number of 24-h urine collections was 3.5 ± 0.8/participant, and the mean 24-h sodium excretion was 168.2 ± 67.5 mmol/d. Although the Tanaka equation demonstrated the least bias (mean: −8.2 mmol/d), all 4 equations had poor precision and accuracy. The INTERSALT equation demonstrated the highest accuracy but derived an estimate only within 30% of mean measured sodium excretion in only 57% of observations. Bland-Altman plots revealed systematic bias with the Nerbass, INTERSALT, and Tanaka equations, underestimating sodium excretion when intake was high. Conclusion: These findings do not support the use of spot urine specimens to estimate dietary sodium intake in patients with CKD and research studies enriched with patients with CKD. The parent data for this study come from a clinical trial that was registered at clinicaltrials.gov as NCT00785629. PMID:27357090

  14. Spot urine sodium measurements do not accurately estimate dietary sodium intake in chronic kidney disease.

    PubMed

    Dougher, Carly E; Rifkin, Dena E; Anderson, Cheryl Am; Smits, Gerard; Persky, Martha S; Block, Geoffrey A; Ix, Joachim H

    2016-08-01

    Sodium intake influences blood pressure and proteinuria, yet the impact on long-term outcomes is uncertain in chronic kidney disease (CKD). Accurate assessment is essential for clinical and public policy recommendations, but few large-scale studies use 24-h urine collections. Recent studies that used spot urine sodium and associated estimating equations suggest that they may provide a suitable alternative, but their accuracy in patients with CKD is unknown. We compared the accuracy of 4 equations [the Nerbass, INTERSALT (International Cooperative Study on Salt, Other Factors, and Blood Pressure), Tanaka, and Kawasaki equations] that use spot urine sodium to estimate 24-h sodium excretion in patients with moderate to advanced CKD. We evaluated the accuracy of spot urine sodium to predict mean 24-h urine sodium excretion over 9 mo in 129 participants with stage 3-4 CKD. Spot morning urine sodium was used in 4 estimating equations. Bias, precision, and accuracy were assessed and compared across each equation. The mean age of the participants was 67 y, 52% were female, and the mean estimated glomerular filtration rate was 31 ± 9 mL · min(-1) · 1.73 m(-2) The mean ± SD number of 24-h urine collections was 3.5 ± 0.8/participant, and the mean 24-h sodium excretion was 168.2 ± 67.5 mmol/d. Although the Tanaka equation demonstrated the least bias (mean: -8.2 mmol/d), all 4 equations had poor precision and accuracy. The INTERSALT equation demonstrated the highest accuracy but derived an estimate only within 30% of mean measured sodium excretion in only 57% of observations. Bland-Altman plots revealed systematic bias with the Nerbass, INTERSALT, and Tanaka equations, underestimating sodium excretion when intake was high. These findings do not support the use of spot urine specimens to estimate dietary sodium intake in patients with CKD and research studies enriched with patients with CKD. The parent data for this study come from a clinical trial that was registered at clinicaltrials.gov as NCT00785629. © 2016 American Society for Nutrition.

  15. Probabilistic estimates of number of undiscovered deposits and their total tonnages in permissive tracts using deposit densities

    USGS Publications Warehouse

    Singer, Donald A.; Kouda, Ryoichi

    2011-01-01

    Empirical evidence indicates that processes affecting number and quantity of resources in geologic settings are very general across deposit types. Sizes of permissive tracts that geologically could contain the deposits are excellent predictors of numbers of deposits. In addition, total ore tonnage of mineral deposits of a particular type in a tract is proportional to the type’s median tonnage in a tract. Regressions using size of permissive tracts and median tonnage allow estimation of number of deposits and of total tonnage of mineralization. These powerful estimators, based on 10 different deposit types from 109 permissive worldwide control tracts, generalize across deposit types. Estimates of number of deposits and of total tonnage of mineral deposits are made by regressing permissive area, and mean (in logs) tons in deposits of the type, against number of deposits and total tonnage of deposits in the tract for the 50th percentile estimates. The regression equations (R2 = 0.91 and 0.95) can be used for all deposit types just by inserting logarithmic values of permissive area in square kilometers, and mean tons in deposits in millions of metric tons. The regression equations provide estimates at the 50th percentile, and other equations are provided for 90% confidence limits for lower estimates and 10% confidence limits for upper estimates of number of deposits and total tonnage. Equations for these percentile estimates along with expected value estimates are presented here along with comparisons with independent expert estimates. Also provided are the equations for correcting for the known well-explored deposits in a tract. These deposit-density models require internally consistent grade and tonnage models and delineations for arriving at unbiased estimates.

  16. Parameter estimation problems for distributed systems using a multigrid method

    NASA Technical Reports Server (NTRS)

    Ta'asan, Shlomo; Dutt, Pravir

    1990-01-01

    The problem of estimating spatially varying coefficients of partial differential equations is considered from observation of the solution and of the right hand side of the equation. It is assumed that the observations are distributed in the domain and that enough observations are given. A method of discretization and an efficient multigrid method for solving the resulting discrete systems are described. Numerical results are presented for estimation of coefficients in an elliptic and a parabolic partial differential equation.

  17. Interaction of gliding motion of bacteria with rheological properties of the slime.

    PubMed

    Asghar, Z; Ali, N; Sajid, M

    2017-08-01

    Bacteria which do not have organelles of motility, such as flagella, adopt gliding as a mode of locomotion. In gliding motility bacterium moves under its own power by secreting a layer of slime on the substrate. The exact mechanism by which a glider achieves motility is yet in controversy but there are evidences which support the wave-like undulation on the surface of the organism, as a possible mechanism of motility. Based on this observation, a model of undulating sheet over a layer of slime is examined as a possible model of the gliding motion of a bacterium. Three different non-Newtonian constitutive equations namely, finite extendable nonlinear elastic-peterline (FENE-P), Simplified Phan-Thien-Tanner (SPTT) and Rabinowitsch equations are used to capture the rheological properties of the slime. It is found that the governing equation describing the fluid mechanics of the model under lubrication approximation is same for all the considered three constitutive equations. In fact, it involves a single non-Newtonian parameter which assumes different values for each of the considered constitutive relations. This differential equation is solved using both perturbation and semi-analytic procedure. The perturbation solution is exploited to get an estimate of the speed of the glider for different values of the non-Newtonian parameter. The solution obtained via semi-analytic procedure is used to investigate the important features of the flow field in the layer of the slime beneath the glider when the glider is held fixed. The expression of forces generated by the organism and power required for propulsion are also derived based on the perturbation analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Asymptotics of QCD traveling waves with fluctuations and running coupling effects

    NASA Astrophysics Data System (ADS)

    Beuf, Guillaume

    2008-09-01

    Extending the Balitsky-Kovchegov (BK) equation independently to running coupling or to fluctuation effects due to pomeron loops is known to lead in both cases to qualitative changes of the traveling-wave asymptotic solutions. In this paper we study the extension of the forward BK equation, including both running coupling and fluctuations effects, extending the method developed for the fixed coupling case [E. Brunet, B. Derrida, A.H. Mueller, S. Munier, Phys. Rev. E 73 (2006) 056126, cond-mat/0512021]. We derive the exact asymptotic behavior in rapidity of the probabilistic distribution of the saturation scale.

  19. Iohexol clearance is superior to creatinine-based renal function estimating equations in detecting short-term renal function decline in chronic heart failure.

    PubMed

    Cvan Trobec, Katja; Kerec Kos, Mojca; von Haehling, Stephan; Anker, Stefan D; Macdougall, Iain C; Ponikowski, Piotr; Lainscak, Mitja

    2015-12-01

    To compare the performance of iohexol plasma clearance and creatinine-based renal function estimating equations in monitoring longitudinal renal function changes in chronic heart failure (CHF) patients, and to assess the effects of body composition on the equation performance. Iohexol plasma clearance was measured in 43 CHF patients at baseline and after at least 6 months. Simultaneously, renal function was estimated with five creatinine-based equations (four- and six-variable Modification of Diet in Renal Disease, Cockcroft-Gault, Cockcroft-Gault adjusted for lean body mass, Chronic Kidney Disease Epidemiology Collaboration equation) and body composition was assessed using bioimpedance and dual-energy x-ray absorptiometry. Over a median follow-up of 7.5 months (range 6-17 months), iohexol clearance significantly declined (52.8 vs 44.4 mL/[min ×1.73 m2], P=0.001). This decline was significantly higher in patients receiving mineralocorticoid receptor antagonists at baseline (mean decline -22% of baseline value vs -3%, P=0.037). Mean serum creatinine concentration did not change significantly during follow-up and no creatinine-based renal function estimating equation was able to detect the significant longitudinal decline of renal function determined by iohexol clearance. After accounting for body composition, the accuracy of the equations improved, but not their ability to detect renal function decline. Renal function measured with iohexol plasma clearance showed relevant decline in CHF patients, particularly in those treated with mineralocorticoid receptor antagonists. None of the equations for renal function estimation was able to detect these changes. ClinicalTrials.gov registration number: NCT01829880.

  20. June and August median streamflows estimated for ungaged streams in southern Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2010-01-01

    Methods for estimating June and August median streamflows were developed for ungaged, unregulated streams in southern Maine. The methods apply to streams with drainage areas ranging in size from 0.4 to 74 square miles, with percentage of basin underlain by a sand and gravel aquifer ranging from 0 to 84 percent, and with distance from the centroid of the basin to a Gulf of Maine line paralleling the coast ranging from 14 to 94 miles. Equations were developed with data from 4 long-term continuous-record streamgage stations and 27 partial-record streamgage stations. Estimates of median streamflows at the continuous-record and partial-record stations are presented. A mathematical technique for estimating standard low-flow statistics, such as June and August median streamflows, at partial-record streamgage stations was applied by relating base-flow measurements at these stations to concurrent daily streamflows at nearby long-term (at least 10 years of record) continuous-record streamgage stations (index stations). Weighted least-squares regression analysis (WLS) was used to relate estimates of June and August median streamflows at streamgage stations to basin characteristics at these same stations to develop equations that can be used to estimate June and August median streamflows on ungaged streams. WLS accounts for different periods of record at the gaging stations. Three basin characteristics-drainage area, percentage of basin underlain by a sand and gravel aquifer, and distance from the centroid of the basin to a Gulf of Maine line paralleling the coast-are used in the final regression equation to estimate June and August median streamflows for ungaged streams. The three-variable equation to estimate June median streamflow has an average standard error of prediction from -35 to 54 percent. The three-variable equation to estimate August median streamflow has an average standard error of prediction from -45 to 83 percent. Simpler one-variable equations that use only drainage area to estimate June and August median streamflows were developed for use when less accuracy is acceptable. These equations have average standard errors of prediction from -46 to 87 percent and from -57 to 133 percent, respectively.

  1. On substructuring algorithms and solution techniques for the numerical approximation of partial differential equations

    NASA Technical Reports Server (NTRS)

    Gunzburger, M. D.; Nicolaides, R. A.

    1986-01-01

    Substructuring methods are in common use in mechanics problems where typically the associated linear systems of algebraic equations are positive definite. Here these methods are extended to problems which lead to nonpositive definite, nonsymmetric matrices. The extension is based on an algorithm which carries out the block Gauss elimination procedure without the need for interchanges even when a pivot matrix is singular. Examples are provided wherein the method is used in connection with finite element solutions of the stationary Stokes equations and the Helmholtz equation, and dual methods for second-order elliptic equations.

  2. Solitary traveling wave solutions of pressure equation of bubbly liquids with examination for viscosity and heat transfer

    NASA Astrophysics Data System (ADS)

    Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen

    2018-03-01

    In this research, we investigate one of the most popular model in nature and also industrial which is the pressure equation of bubbly liquids with examination for viscosity and heat transfer which has many application in nature and engineering. Understanding the physical meaning of exact and solitary traveling wave solutions for this equation gives the researchers in this field a great clear vision of the pressure waves in a mixture liquid and gas bubbles taking into consideration the viscosity of liquid and the heat transfer and also dynamics of contrast agents in the blood flow at ultrasonic researches. To achieve our goal, we apply three different methods which are extended tanh-function method, extended simple equation method and a new auxiliary equation method on this equation. We obtained exact and solitary traveling wave solutions and we also discuss the similarity and difference between these three method and make a comparison between results that we obtained with another results that obtained with the different researchers using different methods. All of these results and discussion explained the fact that our new auxiliary equation method is considered to be the most general, powerful and the most result-oriented. These kinds of solutions and discussion allow for the understanding of the phenomenon and its intrinsic properties as well as the ease of way of application and its applicability to other phenomena.

  3. Techniques for estimating peak-streamflow frequency for unregulated streams and streams regulated by small floodwater retarding structures in Oklahoma

    USGS Publications Warehouse

    Tortorelli, Robert L.

    1997-01-01

    Statewide regression equations for Oklahoma were determined for estimating peak discharge and flood frequency for selected recurrence intervals from 2 to 500 years for ungaged sites on natural unregulated streams. The most significant independent variables required to estimate peak-streamflow frequency for natural unregulated streams in Oklahoma are contributing drainage area, main-channel slope, and mean-annual precipitation. The regression equations are applicable for watersheds with drainage areas less than 2,510 square miles that are not affected by regulation from manmade works. Limitations on the use of the regression relations and the reliability of regression estimates for natural unregulated streams are discussed. Log-Pearson Type III analysis information, basin and climatic characteristics, and the peak-stream-flow frequency estimates for 251 gaging stations in Oklahoma and adjacent states are listed. Techniques are presented to make a peak-streamflow frequency estimate for gaged sites on natural unregulated streams and to use this result to estimate a nearby ungaged site on the same stream. For ungaged sites on urban streams, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow frequency. For ungaged sites on streams regulated by small floodwater retarding structures, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow frequency. The statewide regression equations are adjusted by substituting the drainage area below the floodwater retarding structures, or drainage area that represents the percentage of the unregulated basin, in the contributing drainage area parameter to obtain peak-streamflow frequency estimates.

  4. Ensemble Averaged Probability Density Function (APDF) for Compressible Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2012-01-01

    In this paper, we present a concept of the averaged probability density function (APDF) for studying compressible turbulent reacting flows. The APDF is defined as an ensemble average of the fine grained probability density function (FG-PDF) with a mass density weighting. It can be used to exactly deduce the mass density weighted, ensemble averaged turbulent mean variables. The transport equation for APDF can be derived in two ways. One is the traditional way that starts from the transport equation of FG-PDF, in which the compressible Navier- Stokes equations are embedded. The resulting transport equation of APDF is then in a traditional form that contains conditional means of all terms from the right hand side of the Navier-Stokes equations except for the chemical reaction term. These conditional means are new unknown quantities that need to be modeled. Another way of deriving the transport equation of APDF is to start directly from the ensemble averaged Navier-Stokes equations. The resulting transport equation of APDF derived from this approach appears in a closed form without any need for additional modeling. The methodology of ensemble averaging presented in this paper can be extended to other averaging procedures: for example, the Reynolds time averaging for statistically steady flow and the Reynolds spatial averaging for statistically homogeneous flow. It can also be extended to a time or spatial filtering procedure to construct the filtered density function (FDF) for the large eddy simulation (LES) of compressible turbulent reacting flows.

  5. A stockability equation for forest land in Siskiyou County, California.

    Treesearch

    Neil. McKay

    1985-01-01

    An equation is presented that estimates the relative stocking capacity of forest land in Siskiyou County, California, from the amount of precipitation and the presence of significant indicator plants. The equation is a toot for identifying sites incapable of supporting normal stocking. Estimated relative stocking capacity may be used to discount normal yields to levels...

  6. Comparison of estimated and experimental subaqueous seed transport.

    Treesearch

    Scott Markwith; David Leigh

    2011-01-01

    We compare the estimates from the relative bed stability (RBS) equation that indicates incipient bed movement, and the inertial settling (‘Impact’) law and Wu and Wang (2006) settling velocity equations that indicate suspended particle movement, to flume and settling velocity observations to confirm the utility of the equations for subaqueous hydrochory analyses, and...

  7. An Improved Estimation Using Polya-Gamma Augmentation for Bayesian Structural Equation Models with Dichotomous Variables

    ERIC Educational Resources Information Center

    Kim, Seohyun; Lu, Zhenqiu; Cohen, Allan S.

    2018-01-01

    Bayesian algorithms have been used successfully in the social and behavioral sciences to analyze dichotomous data particularly with complex structural equation models. In this study, we investigate the use of the Polya-Gamma data augmentation method with Gibbs sampling to improve estimation of structural equation models with dichotomous variables.…

  8. Estimating leaf area and leaf biomass of open-grown deciduous urban trees

    Treesearch

    David J. Nowak

    1996-01-01

    Logarithmic regression equations were developed to predict leaf area and leaf biomass for open-grown deciduous urban trees based on stem diameter and crown parameters. Equations based on crown parameters produced more reliable estimates. The equations can be used to help quantify forest structure and functions, particularly in urbanizing and urban/suburban areas.

  9. Biomass estimators for thinned second-growth ponderosa pine trees.

    Treesearch

    P.H. Cochran; J.W. Jennings; C.T. Youngberg

    1984-01-01

    Usable estimates of the mass of live foliage and limbs of sapling and pole-sized ponderosa pine in managed stands in central Oregon can be obtained with equations using the logarithm of diameter as the only independent variable. These equations produce only slightly higher root mean square deviations than equations that include additional independent variables. A...

  10. Using "Tracker" to Prove the Simple Harmonic Motion Equation

    ERIC Educational Resources Information Center

    Kinchin, John

    2016-01-01

    Simple harmonic motion (SHM) is a common topic for many students to study. Using the free, though versatile, motion tracking software; "Tracker", we can extend the students experience and show that the general equation for SHM does lead to the correct period of a simple pendulum.

  11. A three-dimensional kinematic model for the dissolution of crystals

    NASA Astrophysics Data System (ADS)

    Tellier, C. R.

    1989-06-01

    The two-dimensional kinematic theory developed by Frank is extended into three dimensions. It is shown that the theoretical equations for the propagation vector associated with the displacement of a moving surface element can be directly derived from the polar equation of the slowness surface.

  12. Abel's Theorem Simplifies Reduction of Order

    ERIC Educational Resources Information Center

    Green, William R.

    2011-01-01

    We give an alternative to the standard method of reduction or order, in which one uses one solution of a homogeneous, linear, second order differential equation to find a second, linearly independent solution. Our method, based on Abel's Theorem, is shorter, less complex and extends to higher order equations.

  13. Estimated Satellite Cluster Elements in Near Circular Orbit

    DTIC Science & Technology

    1988-12-01

    cluster is investigated. TheAon-board estimator is the U-D covariance factor’xzatiion’filter with dynamics based on the Clohessy - Wiltshire equations...Appropriate values for the velocity vector vi can be found irom the Clohessy - Wiltshire equations [9] (these equations will be explained in detail in the...explained in this text is the f matrix. The state transition matrix was developed from the Clohessy - Wiltshire equations of motion [9:page 3] as i - 2qý

  14. Novel Approach for Solving the Equation of Motion of a Simple Harmonic Oscillator. Classroom Notes

    ERIC Educational Resources Information Center

    Gauthier, N.

    2004-01-01

    An elementary method, based on the use of complex variables, is proposed for solving the equation of motion of a simple harmonic oscillator. The method is first applied to the equation of motion for an undamped oscillator and it is then extended to the more important case of a damped oscillator. It is finally shown that the method can readily be…

  15. Regression Equations for Estimating Flood Flows at Selected Recurrence Intervals for Ungaged Streams in Pennsylvania

    USGS Publications Warehouse

    Roland, Mark A.; Stuckey, Marla H.

    2008-01-01

    Regression equations were developed for estimating flood flows at selected recurrence intervals for ungaged streams in Pennsylvania with drainage areas less than 2,000 square miles. These equations were developed utilizing peak-flow data from 322 streamflow-gaging stations within Pennsylvania and surrounding states. All stations used in the development of the equations had 10 or more years of record and included active and discontinued continuous-record as well as crest-stage partial-record stations. The state was divided into four regions, and regional regression equations were developed to estimate the 2-, 5-, 10-, 50-, 100-, and 500-year recurrence-interval flood flows. The equations were developed by means of a regression analysis that utilized basin characteristics and flow data associated with the stations. Significant explanatory variables at the 95-percent confidence level for one or more regression equations included the following basin characteristics: drainage area; mean basin elevation; and the percentages of carbonate bedrock, urban area, and storage within a basin. The regression equations can be used to predict the magnitude of flood flows for specified recurrence intervals for most streams in the state; however, they are not valid for streams with drainage areas generally greater than 2,000 square miles or with substantial regulation, diversion, or mining activity within the basin. Estimates of flood-flow magnitude and frequency for streamflow-gaging stations substantially affected by upstream regulation are also presented.

  16. Estimating Renal Function in the Elderly Malaysian Patients Attending Medical Outpatient Clinic: A Comparison between Creatinine Based and Cystatin-C Based Equations.

    PubMed

    Jalalonmuhali, Maisarah; Elagel, Salma Mohamed Abouzriba; Tan, Maw Pin; Lim, Soo Kun; Ng, Kok Peng

    2018-01-01

    To assess the performance of different GFR estimating equations, test the diagnostic value of serum cystatin-C, and compare the applicability of cystatin-C based equation with serum creatinine based equation for estimating GFR (eGFR) in comparison with measured GFR in the elderly Malaysian patients. A cross-sectional study recruiting volunteered patients 65 years and older attending medical outpatient clinic. 51 chromium EDTA ( 51 Cr-EDTA) was used as measured GFR. The predictive capabilities of Cockcroft-Gault equation corrected for body surface area (CGBSA), four-variable Modification of Diet in Renal Disease (4-MDRD), and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations using serum creatinine (CKD-EPIcr) as well as serum cystatin-C (CKD-EPIcys) were calculated. A total of 40 patients, 77.5% male, with mean measured GFR 41.2 ± 18.9 ml/min/1.73 m 2 were enrolled. Mean bias was the smallest for 4-MDRD; meanwhile, CKD-EPIcr had the highest precision and accuracy with lower limit of agreement among other equations. CKD-EPIcys equation did not show any improvement in GFR estimation in comparison to CKD-EPIcr and MDRD. The CKD-EPIcr formula appears to be more accurate and correlates better with measured GFR in this cohort of elderly patients.

  17. Nationwide summary of US Geological Survey regional regression equations for estimating magnitude and frequency of floods for ungaged sites, 1993

    USGS Publications Warehouse

    Jennings, M.E.; Thomas, W.O.; Riggs, H.C.

    1994-01-01

    For many years, the U.S. Geological Survey (USGS) has been involved in the development of regional regression equations for estimating flood magnitude and frequency at ungaged sites. These regression equations are used to transfer flood characteristics from gaged to ungaged sites through the use of watershed and climatic characteristics as explanatory or predictor variables. Generally these equations have been developed on a statewide or metropolitan area basis as part of cooperative study programs with specific State Departments of Transportation or specific cities. The USGS, in cooperation with the Federal Highway Administration and the Federal Emergency Management Agency, has compiled all the current (as of September 1993) statewide and metropolitan area regression equations into a micro-computer program titled the National Flood Frequency Program.This program includes regression equations for estimating flood-peak discharges and techniques for estimating a typical flood hydrograph for a given recurrence interval peak discharge for unregulated rural and urban watersheds. These techniques should be useful to engineers and hydrologists for planning and design applications. This report summarizes the statewide regression equations for rural watersheds in each State, summarizes the applicable metropolitan area or statewide regression equations for urban watersheds, describes the National Flood Frequency Program for making these computations, and provides much of the reference information on the extrapolation variables needed to run the program.

  18. Equations for estimating synthetic unit-hydrograph parameter values for small watersheds in Lake County, Illinois

    USGS Publications Warehouse

    Melching, C.S.; Marquardt, J.S.

    1997-01-01

    Design hydrographs computed from design storms, simple models of abstractions (interception, depression storage, and infiltration), and synthetic unit hydrographs provide vital information for stormwater, flood-plain, and water-resources management throughout the United States. Rainfall and runoff data for small watersheds in Lake County collected between 1990 and 1995 were studied to develop equations for estimation of synthetic unit-hydrograph parameters on the basis of watershed and storm characteristics. The synthetic unit-hydrograph parameters of interest were the time of concentration (TC) and watershed-storage coefficient (R) for the Clark unit-hydrograph method, the unit-graph lag (UL) for the Soil Conservation Service (now known as the Natural Resources Conservation Service) dimensionless unit hydrograph, and the hydrograph-time lag (TL) for the linear-reservoir method for unit-hydrograph estimation. Data from 66 storms with effective-precipitation depths greater than 0.4 inches on 9 small watersheds (areas between 0.06 and 37 square miles (mi2)) were utilized to develop the estimation equations, and data from 11 storms on 8 of these watersheds were utilized to verify (test) the estimation equations. The synthetic unit-hydrograph parameters were determined by calibration using the U.S. Army Corps of Engineers Flood Hydrograph Package HEC-1 (TC, R, and UL) or by manual analysis of the rainfall and run-off data (TL). The relation between synthetic unit-hydrograph parameters, and watershed and storm characteristics was determined by multiple linear regression of the logarithms of the parameters and characteristics. Separate sets of equations were developed with watershed area and main channel length as the starting parameters. Percentage of impervious cover, main channel slope, and depth of effective precipitation also were identified as important characteristics for estimation of synthetic unit-hydrograph parameters. The estimation equations utilizing area had multiple correlation coefficients of 0.873, 0.961, 0.968, and 0.963 for TC, R, UL, and TL, respectively, and the estimation equations utilizing main channel length had multiple correlation coefficients of 0.845, 0.957, 0.961, and 0.963 for TC, R, UL, and TL, respectively. Simulation of the measured hydrographs for the verification storms utilizing TC and R obtained from the estimation equations yielded good results without calibration. The peak discharge for 8 of the 11 storms was estimated within 25 percent and the time-to-peak discharge for 10 of the 11 storms was estimated within 20 percent. Thus, application of the estimation equations to determine synthetic unit-hydrograph parameters for design-storm simulation may result in reliable design hydrographs; as long as the physical characteristics of the watersheds under consideration are within the range of those for the watersheds in this study (area: 0.06-37 mi2, main channel length: 0.33-16.6 miles, main channel slope: 3.13-55.3 feet per mile, and percentage of impervious cover: 7.32-40.6 percent). The estimation equations are most reliable when applied to watersheds with areas less than 25 mi2.

  19. Poly(aspartic acid) with adjustable pH-dependent solubility.

    PubMed

    Németh, Csaba; Gyarmati, Benjámin; Abdullin, Timur; László, Krisztina; Szilágyi, András

    2017-02-01

    Poly(aspartic acid) (PASP) derivatives with adjustable pH-dependent solubility were synthesized and characterized to establish the relationship between their structure and solubility in order to predict their applicability as a basic material for enteric coatings. Polysuccinimide, the precursor of PASP, was modified with short chain alkylamines, and the residual succinimide rings were subsequently opened to prepare the corresponding PASP derivatives. Study of the effect of the type and concentration of the side groups on the pH-dependent solubility of PASP showed that solubility can be adjusted by proper selection of the chemical structure. The Henderson-Hasselbalch (HH) and the extended HH equations were used to describe the pH-dependent solubility of the polymers quantitatively. The estimate provided by the HH equation is poor, but an accurate description of the pH-dependent solubility can be found with the extended HH equation. The dissolution rate of a polymer film prepared from a selected PASP derivative was determined by fluorescence marking. The film dissolved rapidly when the pH was increased above its pK a . Cellular viability tests show that PASP derivatives are non-toxic to a human cell line. These polymers are thus of great interest as starting materials for enteric coatings. Poly(amino acid) type biocompatible polymers were synthesized for future use as pharmaceutical film coatings. To this end, we tailored the pH-dependent solubility of poly(aspartic acid) (PASP). It was found that both the solubility and the pK a values of the modified PASP depended strongly on composition. Fluorescent marking was used to characterize the dissolution of a chosen PASP derivative. In acidic media only a negligible amount of the polymer dissolved, but dissolution was very fast and complete at the pH values that prevail in the small intestine. As a consequence, enteric coatings based on such PASP derivatives may be used for drug delivery in the gastrointestinal tract. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Generalized equations for estimating DXA percent fat of diverse young women and men: The Tiger Study

    USDA-ARS?s Scientific Manuscript database

    Popular generalized equations for estimating percent body fat (BF%) developed with cross-sectional data are biased when applied to racially/ethnically diverse populations. We developed accurate anthropometric models to estimate dual-energy x-ray absorptiometry BF% (DXA-BF%) that can be generalized t...

Top